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Abstract 

Visual impairment is one of the most common symptoms after several 

diseases including cataracts, diabetes, and stroke. It can cause severe 

impact on the quality of life such as a decrease in workforce participation 

and productivity and an increase in the chance of depression among all 

ages. This effect is even worse on patients after stroke because it prevents 

the use of advanced robotic devices. Most of the current upper limb robotic 

devices rely on visual cues to guide the movement throughout the 

rehabilitation process. Therefore, it is beneficial to design a local navigation 

device based on haptic cues for visually impaired patients after stroke. With 

the development of sensing techniques, it is also possible to integrate 

movement assessment function based on kinematic sensor data, which can 

be more objective, sensitive, and continuous than traditional assessments. 

This research aims to design and develop a novel hand-held haptic device 

for movement guidance and movement assessment for robot-assisted 

rehabilitation outside clinical environments, especially for visually impaired 

people after stroke.  

The movement assessment was conducted on kinematic data collected from 

a position sensor or an accelerometer. Two novel position sensing methods 

were proposed, and several kinematic features were extracted from the 

measurements to objectively quantify movement smoothness with the help 

of machine learning. An observational experiment was finally conducted to 

verify the effectiveness of kinematic assessment. The results showed that 

kinematic features could reflect subtle progress in motor function learning 

progress and could contribute to the machine learning models development 

for a better classification result on both movement type and movement 

smoothness.   

The design of the haptic implementation was firstly explored with three 

different haptic motors, among which a voice coil actuator was selected to 

generate asymmetric vibrations for haptic delivery. The input control signal 

was then parameterised as the main contribution, and five output 

parameters were discussed. A psychophysical experiment was finally 

conducted to find the ideal characteristics of input signal that could produce 

clearer haptic directional cues. The results showed that input signals after 

optimisation could improve the delivery of haptic directional cues in terms of 

accuracy, applicability, and user’s confidence.   
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Preface 

At the beginning, I hate writing. Not because I couldn’t write properly and 

logically in English, but because I pay too much attention on my own logics. 

Every time I think this sentence does not make any sense to me or to my 

reader, I will re-write everything until I am satisfied with the logic and the 
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University of Leeds. I started my research activities in October 2020 when 

COVID-19 prevented everything from daily life activities to research. I was 
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I am very lucky to have this PhD opportunity in the University of Leeds. I 

graduated from the Southwest Jiaotong University – University of Leeds 

Joint School in 2020. Professor Jin, the dean of the joint school, asked me if 

I am interested in pursuing a PhD with a scholarship. I hesitated for a long 

time because I am not sure if my proven ability in research is strong enough 

for me to find a supervisor and jump through a master’s degree. Professor 

Levesley and Dr Gallagher seemed to be very satisfied with my experience 

during the interview. Probably because just one year before, I gave an 

interview with Professor Levesley at the joint school about his teaching 

experience here in China. But, still, I was not confident. 

So, what motivated me during my three-year journey if I am not confident? It 

is the pleasant feeling when every time I solved a question from scratch and 

learn new things. I especially love the fusion of how I conduct research and 

how my supervision was conducted. I explored the topic myself, they 

supported me with everything they could. As a consequence, after this 

journey, when I looked back, I noticed that I have more experience in not 

only programming, electrical design, mechanical design and experimental 

design, but also in teaching activities, scientific reach-out activities and so 

many other abilities that will certainly help me in my future professional 

development. 

I feel relieved now after I have finished this thesis. But I know this is not an 

end but a fresh start for myself. I will face more challenges and puzzles. 

However, the only difference is that I am confident now.  

Shuhao Dong 

Leeds, August 14, 2023
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Chapter 1 Introduction 

1.1 Background 

Upper limb movements play integral roles in people’s activities of daily living, 

ranging from interacting with the environment, such as reaching and 

touching to fine manipulations like fine finger movements and gasping. A 

prevalent application scenario of an upper limb movement is to reach for and 

gasp an object. During this process, precise control of finger forces for 

gasping and coordination of distal and proximal joints are indispensable. 

However, various neurological conditions, both in adults and children, would 

impact the function of upper limb movements, such as stroke or cerebral 

palsy. Thus, the assessment of upper limb movements would be beneficial 

during the rehabilitation process.  

Additionally, repetitive upper limb movements are often employed to 

enhance muscle strength or endurance. For example, weight-lifting athletes 

may be trained over time repeatedly on the single lift-up movement. Both 

application scenarios will require an objective measurement of upper limb 

movements so that subtle differences could be observed to guide either the 

rehabilitation interventions or the training methods.  

As one example that can influence upper limb movement, stroke can cause 

serious sensorimotor function deficits including muscle weakness and 

changes in muscle sensations and orientations. Despite the availability of 

acute medical treatment and rehabilitation, upper limb impairment persists in 

about 60% [1] of post stroke patients, which significantly reduces their ability 

to perform activities of daily living. It can be beneficial to understand the 

upper limb sensorimotor function recovery for developing and optimising 

rehabilitation interventions. One constraint impeding this understanding is 

the lack of standardised, responsive, and objective approaches to measure 

the recovery of upper limb deficits.  

The recovery of stroke also requires persistent and repetitive training 

sessions. Traditionally, rehabilitation interventions are provided by 

experienced physiotherapists who will also be responsible for clinical 

assessments such as the upper extremity subscale of the Fugl-Meyer 

Assessment (FMA-UE) and the Action Research Arm Test (ARAT). Even 

though these clinical assessments have been proved to be repetitive and 

reliable by numerous research studies [2, 3], they lack the objectiveness and 
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sensitivity among each repetition in reflecting subtle differences due to the 

use of ordinal scales. This insufficient sensitivity in different repetition 

prevents the ability to distinguish between behavioural restitution from 

movement compensation, which is of vital importance to understand the 

sensorimotor function recovery from the side of neurological mechanisms. 

Behavioural restitution is commonly defined as the return toward the normal 

motor control function with impaired effectors [4] whereas movement 

compensation requires new behavioural approaches using unimpaired 

muscles. Repetitive tasks are major components of rehabilitation after 

stroke. For the upper limb movements, this includes reaching and 

manipulating of an object [5]. Such interventions have been proved by 

several systematic reviews [6-8] to be effective for reducing activity 

limitations. Other research also shows improved muscle strength by 

repetitive trainings [5]. However, the effect of such repetitive training on 

movement smoothness is less studied in the literature.    

Apart from post-stroke rehabilitation, modern sports training also utilise high-

repetition training sessions on endurance performance [9] and muscle 

strength [10]. Therefore, it would be beneficial to quantify the difference 

objectively and sensitively between each repetition in order to track the 

progress of the training.  

Kinematic assessments can address these problems to formulate an 

objective and sensitive evaluation metric, which have the potential to reflect 

subtle improvements, such as in movement smoothness, and monitor 

movement compensations at the same time. Furthermore, the effect of 

COVID-19 has increased the focus on telerehabilitation and digital health 

[11]. Kinematic assessments also have the potential to enhance 

rehabilitation in home environment due to its objectiveness and ease of use, 

which can also provide improved motivations for patients after stroke.  

Furthermore, these kinematic assessments are highly valuable in the 

application of machine learning feature selection process in terms of 

quantifying motor learning or recovery progress and classifying different 

movement types. 

Apart from the upper limb deficits, it is reported that up to 52% of stroke 

survivors also suffer from visual field loss, up to 70% of them have central 

visual problems, 68% of them have eye movement disorders and 80% of 

them have visual perceptual disorders [12]. Since most of the current 

rehabilitation systems assisted by robots are vision based (either required 

during or before the training sessions) [13], it is rather difficult for visual-



- 3 - 

impaired patients to receive the same robot-assisted interventions 

independently in home environment. It is therefore beneficial to study the 

application of haptics in the field of poststroke rehabilitation, specifically in 

how to create directional information for visual-impaired people. Since 

directional guidance based on haptic cues requires users to retain a certain 

level of hand vibration sensation, it may not be suitable for stroke patients 

with a decreased vibration discrimination threshold.  

Haptics is the sense of touch, which enables humans to perform 

manipulations and sensations in the real world. Unlike the other four senses 

(sight, hearing, taste and smell), the sense of touch is not controlled by a 

specific region of the body but distributed across the entire body through the 

skin. This characteristic enables humans to sense multiple information such 

as location, direction, pressure and force etc [14].  

The sense of touch is typically categorised into 2 types: Kinesthetic and 

tactile. Kinesthetic sensations are sensed by muscles, tendons and joints for 

forces and torques [15]. Tactile sensations are sensed by mechanoreceptors 

embedded in the skin for pressure and vibrations. The mechanoreceptors 

are characterised by their temporal resolution and size of their receptive 

fields [16]. For example, Pacinian corpuscles [17] are fast-adapting 

mechanoreceptors that are sensitive to high-frequency vibrations (> 60 Hz) 

and provide transient contact information. Whereas Meissner corpuscles are 

fast-adapting mechanoreceptors that are sensitive to low-frequency 

vibrations (< 60 Hz) [17] and are capable of sensing skin deformation. 

Therefore, it is possible to use proper stimuli to trigger the Meissner 

corpuscles in order to obtain directional information through haptics, which is 

beneficial for poststroke interventions, specifically for visual-impaired people.  

Since the haptic information is the main source for visual-impaired people to 

accurately get directions through physical interactions [18], it is also 

important to study the input signal’s characteristics in order to generate the 

most feasible directional cues, which means the haptic cues should be 

perceived by people accurately and confidently. However, the characteristics 

of the input signal depends on the form of the haptic device and actuation 

method. For example, electrical actuations involving the vibrations generated 

by motors can require asymmetric signals whereas mechanical actuations 

use mechanical linkages to generate vibrations with a similar effect. This 

makes the parameterisation and optimisation of the input signal important in 

delivering the desired vibration patterns. 



- 4 - 

1.2 Aim of the Research 

The aim of this research is to design, implement and evaluate the 

performance of a low-cost hand-held haptic device integrating directional 

guidance and movement smoothness assessment using machine learning 

models, potentially for post-stroke patients and people with visual 

impairment. 

1.3 Objectives 

The following objectives are set in order to achieve the aim of the research: 

a) To review existing applications of kinematic assessments and their 

use in machine learning models to understand the current status of 

research in the field. 

b) To review existing systems that can present haptic directional cues to 

understand the control of the vibration and the development of the 

device.  

c) To extract kinematic features from low-cost sensors that will be 

adopted to assess the movement quality, specifically the change of 

smoothness in each repetition.  

d) To develop and train a machine learning model that can predict the 

motor learning progress and classify the above movement quality for 

optimised upper limb movement assessment in smoothness.  

e) To design and build a portable haptic device integrating movement 

assessment and directional guidance in a 2D plane.  

f) To optimise control signals for the haptic source to allow subjects to 

interact with improved resolution, accuracy and confidence.  

g) To test and evaluate the integrated portable haptic device across a 

range of subjects with the ability to reflect their movement quality. 

h) To draw conclusions and suggest future improvements. 

1.4 Research Timelines 

The research presented in this thesis has been done over the last 3 years 

full time. This has allowed development and refinement of a portable haptic 

device with the ability to assess movement smoothness. This has also 

allowed two human-based experiment with respect to movement quality 

assessment and haptic directional cues. An overview of the research 

timeline is shown in Figure 1.1.  
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Figure 1.1: Timeline overview of the research. 

1.5 Contribution of the Research 

This research contributes to the field of upper limb movement assessment in 

smoothness, which could potentially be applied in the area of post-stroke 

rehabilitation. This research also contributes to the human-machine 

interaction through haptic feedback, specifically the parameterisation and 

optimisation of the haptic input. The following items are of note in the 

contribution of this research: 

 A low-cost portable haptic device that integrates directional guidance 

and movement smoothness assessment, potentially for post stroke 

patients, especially for the visually impaired.  

 A novel human-machine interaction through haptic feedback with the 

existing rehabilitation robots for people with visual impairment.  

 Kinematic features extracted from low-cost sensors for sensitive, 

objective, and continuous upper limb movement smoothness 

assessment, potentially beneficial for post-stroke rehabilitation in 

home environment and sports training.  

 A sensitivity analysis of applied kinematic metrics through repetitive 

tasks.  

 Supervised machine learning models based on kinematic features for 

movement type classification, movement smoothness classification 

and prediction throughout a repetitive process for monitoring the 

muscle learning progress, which can be beneficial for the design of 

personalised training sessions and rehabilitation interventions.  

 The optimisation and parameterisation of the input signal 

characteristics and the vibration source for generating haptic 

directional cues based on asymmetric vibrations to improve user’s 

confidence and sensation accuracy.  

Despite the above contributions related to the main topic of this research, 

other work has also been achieved during the initial stage of the PhD, which 

are highlighted below. 
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 A computer vision-based gesture recognition and position tracking 

algorithm specifically built for poststroke serious game development, 

which enables bilateral training for patients and supports kinematic 

feature extractions.  

 A serious game for poststroke rehabilitation developed by Unity3D 

using computer vision gesture recognition as a control method for the 

training of upper limb and hand/finger movements.   

1.6 Outlines of the Thesis 

The thesis is split into 6 sections, with three sections addressing research 

questions related to computer vision, kinematic assessment, and haptic 

feedback, respectively and the others considering the introduction, literature 

review and conclusions. The structure of the thesis is shown in Figure 1.2. 

 

Figure 1.2: Thesis structure overview. 

1.7 Summary 

Upper limb movements are necessary and essential part of activities of daily 

living. Various neurological conditions would impact the function of upper 

limb movements. Repetitive training during the rehabilitation process would 

help patients re-gain such ability. Additionally, upper limb training sessions 

also require repetitive movements for improved muscle strength and 

endurance. Therefore, an objective assessment among each repetition 

would benefit the design of a rehabilitation intervention and a training 

method. Specifically, movement smoothness assessment after stroke is 

important for optimising rehabilitation interventions for patients. Moreover, 

since most of the current robotic devices are vision-based, it is also 
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beneficial to study the delivery of haptic directional cues for visual-impaired 

patients.  

The research proposed in this thesis focuses on the design and test of a 

low-cost hand-held device that integrates upper limb movement smoothness 

assessment and haptic directional feedback, potentially for visual-impaired 

patients after stroke. The method proposed in this study could also benefit 

the monitor of repetitive normal upper limb movements.   

In order to achieve this, the existing kinematic assessment method on upper 

limb smoothness and haptic actuation method need to be explored. This 

requires a comprehensive knowledge on the extraction of kinematic features 

and the control and optimisation of the haptic device. Specifically, the design 

of the device must integrate movement smoothness assessment and haptic 

feedback.  

A supervised machine learning model will also be developed for classifying 

movement types, identifying subtle smoothness differences among 

movement repetitions, and potentially monitoring the compensation 

movement from other muscles.  

Two independent experiments can be used to aid the design of the haptic 

device and the extraction of the kinematic features. The first experiment 

focuses on the verification of kinematic features in evaluating subtle 

smoothness differences in a repetitive upper limb movement. The second 

experiment focuses on the verification of the optimised haptic feedback for 

delivering a clearer haptic directional cue.  
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Chapter 2 Literature Review 

2.1 Aim of the Literature Review 

The purpose of this literature review is to summarise the state of the art 

regarding upper limb kinematic assessments, with a focus on poststroke with 

respect to the assessment task, assessment equipment and performance 

metrics with the potential as the input features for machine learning models. 

The use of kinematic assessment in other applications would also be 

reviewed for more comprehensive understanding of the topic. For the haptic 

feedback, the purpose is to summarise the generation mechanisms and the 

device design of the haptic directional cues. Subsequently, the potential of 

haptic applications in upper limb rehabilitation interventions are also studied.  

2.2 Review Strategy 

2.2.1 Review Strategy for Kinematic Assessments 

With the interest of applying kinematic assessment potentially for post-stroke 

upper limb movement, a wide scoping search was undertaken to find 

relevant literatures in the area of upper limb rehabilitation assessments. The 

majority of studies are focused on stroke rehabilitation.  

In order to formulate the proper research question, the following key points 

were considered based on a practical guidance published in [19].  

 Research aim: The research is concerned with the subtle movement 

smoothness assessment on upper limb using kinematic features. 

 Variables: The variable is different kinematic features. This includes 

the applications that use kinematic features as inputs for another 

system (e.g., machine learning models use kinematic assessments as 

input features).  

 Comparison: Various types of other movement quality assessments 

(e.g., traditional clinical assessment, surface electromyography etc.). 

 Outcome: The application of kinematic assessments is expected to 

objectively reflect the subtle improvements and distinguish between 

movement compensation and motor recovery. It is also possible to 

use the outcomes from kinematic assessments as the input for 

supervised machine learning data analysis.  
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The following research questions have been generated, informed by 

research aims, objectives and the above analysis to focus the literature 

search: 

 Can the application of kinematic features and supervised machine 

learning models provide more sensitive and continuous smoothness 

assessment for upper limb movements compared to a traditional 

clinical assessment?  

 What kinematic features have been used for the assessment of upper 

limb movement smoothness? 

 What kinematic features have been applied to a supervised machine 

learning model for further data analysis and applications?  

 Does a specific supervised machine learning model have a superior 

performance than other models?  

In order to answer these research questions, a proper data collection and 

definition need to be designed. For each search result, information about the 

kinematic assessment is extracted. If the kinematic assessment is also used 

in a supervised machine learning model, it will be recorded. Additionally, the 

assessment task, assessment system will also be recorded to assist the 

design of the haptic device.  

Assessment tasks are categorised into 5 groups based on the movement 

nature. Two-dimensional (2D) tasks in the horizontal plane includes 2D 

pointing (discrete movements to predefined targets) and 2D drawing 

(continuous movements to finish a pattern). Three-dimensional tasks (3D) 

include 3D pointing and 3D gasping (continuous movements with end 

effector manipulating objects). Tasks not belonging to any of the above will 

be categorised as other tasks. This process is also beneficial and 

inspirational for designing the haptic device since different movement types 

will require a unique haptic stimulus. For example, pointing movement 

requires single directional cues whereas drawing movement requires 

continuous and changing directional cues.  

Assessment systems are categorised into 3 groups based on the level of 

support to the impaired limb. Group A includes the systems with minimum 

support to the impaired limb. For example, hand-held devices, inertial 

measurement unit (IMU), etc. Group B includes the systems with medium or 

partial support, such as systems with arm or shoulder support. Group C 

includes the system with maximum support, such as exoskeletons. This 

process can assist the design of the haptic device since it can be alone or to 

be an additional module added to a current rehabilitation robotic system.  
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A systematic search was conducted in PubMed, Scopus and IEEE Xplore. 

The keywords used for search in each database are ‘kinematic assessment’ 

AND ‘kinematic features’ AND ‘upper limb’ AND ‘rehabilitation’ OR ‘machine 

learning’. Only peer-reviewed journals and conference papers were 

included. The results from 2019 to 2023 were included.  

2.2.2 Review Strategy for Haptic Feedback 

The following key points were considered to formulate the research 

questions following the same guideline referenced above. 

 Research aim: The research is concerned with the design of a haptic 

device that generates directional cues for movement guidance, 

potentially to be used in upper limb rehabilitation interventions for the 

visually impaired.  

 Variable: The first variable is the input signal, including signal 

waveform, frequency, and other characteristics. The second variable 

is the form of the device, such as hand-held devices, wearable 

devices like a belt or a backpack etc.  

 Comparison: The commonly used input signals and device form in 

other literatures. 

 Outcome: The haptic directional cues are expected to be sensed by 

participants and the accuracy of the directional cues should be 

improved by optimising the input signal after signal parameterisation. 

The form of the device should be designed in such a way that it is 

suitable for independent use during upper limb rehabilitation 

interventions in a home environment.  

The following research questions have been generated. 

 What is the effect of different input signal characteristics on the 

perception of haptic directional cues in terms of perception accuracy 

and confidence?  

 What combination of the input signal characteristics will generate the 

most feasible haptic directional cues? Or what is the most important 

signal characteristic for maximum perception accuracy and 

confidence?  

 What kind of haptic generation mechanism and type of device that 

can benefit the upper limb rehabilitation in terms of directional 

guidance in a home environment? 
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For each search result, information about how to generate the haptic 

directional cues is extracted. Additionally, the design of the haptic device 

and the input signal characteristics are also recorded.  

Haptic actuation is categorised into 3 groups based on the actuation 

mechanism. Mechanical actuation refers to the devices that use mechanical 

mechanism to generate haptic effect, such as linkages, springs and 

rotational inertia. Electrical actuation refers to the devices that use current to 

drive the motor to generate the haptic vibration, such as voice coil actuators, 

solenoids, DC motors and eccentric rotating mass (ERM) motors. Actuation 

mechanisms that do not belong to the above two types are grouped as 

others.  

Haptic device is categorised into 3 groups based on the interactions 

between users and the device. Hand-held devices require users to grasp or 

hold the device that generates the vibrations. Wearable devices are attached 

on human body to stimulate a certain area such as a belt. Other interaction 

methods are grouped together as the third category such as a vibrotactile 

screen.  

Input signal characteristics are recorded in terms of signal shape or 

waveform, signal frequency, duty ratio (if any) etc. If the actuation method is 

mechanical, signal characteristics are not recorded.  

A further systematic search was conducted in PubMed, Scopus and IEEE 

Xplore. The keywords used for search in each database are ‘haptic’ AND 

‘directional cues’ AND ‘feedback’ AND ‘assistive device’ OR ‘asymmetric 

vibrations’. Results from 2019 to 2023 are included. Notice that this research 

is focused on generating active haptic directional cues. Thus, any passive 

haptic sensations, such as roughness sensation and texture rendering, are 

excluded from the searching results.  

2.3 Literature Search Results 

2.3.1 Overview 

The literature search gave 56 included studies for kinematic assessments 

and 51 included studies for haptic feedback as shown in Figure 2.1. 
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Figure 2.1: Literature search results for (a) kinematic assessment and (b) haptic 
feedback. 

According to the assessment task classification defined in the review 

strategy, 22 studies used 2D pointing tasks, 8 studies used 2D drawing 

tasks, 18 studies used 3D pointing tasks, 4 used 3D gasping tasks and 4 

used other tasks. Kinematic features were recorded with an assessment 

system of group A, B and C in 38, 14 and 4 studies, respectively. Kinematic 

features were mainly extracted from position sensors and inertial 

measurement units (IMU). Therefore, calculated kinematic features were 

based on distance and acceleration data. Velocity-based features were 

mainly extracted from position data (with proper sample rate and filters). 

However, some studies use acceleration data for integration though this 

process requires filter design and detrend process. Since some kinematic 

features were extracted for particular tasks and not being evaluated with 

clinical properties, Table 2.1 only shows the summary of the extracted 

kinematic features that were commonly used and evaluated with clinical 

properties.  
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Table 2.1 Summary of the kinematic features. 

Distance Velocity Acceleration 

Normalised path length 

Endpoint error 

Trajectory error 

Distance travelled 

Peak velocity 

Number of velocity 

peaks 

Mean velocity 

Spectral arc length 

Number of zero 

crossing 

Normalised jerk 

Normalised mean 

acceleration  

Peak acceleration 

Figure 2.2 shows the overview of the literature search results on kinematic 

assessment type and assessment equipment.  

 

Figure 2.2: Overview of the literature search results on kinematic assessments. 

For the haptic directional feedback, according to the haptic actuation 

method, 42 studies used electrical actuations, 7 studies used mechanical 

actuations and 2 used other actuation methods. Haptic feedback was 

delivered by a haptic device of hand-held and wearable in 32 and 12 studies, 

respectively. 7 studies used a touch screen or similar device for haptic 

delivery. Figure 2.3 shows the overview of the literature search results on 

haptic actuation and haptic equipment.  
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Figure 2.3: Overview of the literature search results on haptic feedback.           

The characteristics of input signal depend on different actuation designs and 

motor types. However, actuation frequency is important for every signal 

since human skins are only able to sense haptic directional cues by the 

Meissner corpuscles with movement frequency under 60 Hz [17]. Vibrations 

with higher frequencies would result to a sensation of normal vibrations.   

2.3.2 Kinematic Feature Extraction 

This section refers to research objective (c): 

To extract kinematic features from low-cost sensors that will be adopted to 

assess the movement quality, specifically the change of smoothness in each 

repetition. 

Traditional clinical assessments are reliable but not sensitive enough to 

reflect subtle improvements [20]. Moreover, these assessments are 

subjective since they are usually conducted by physiotherapists in a certain 

setup [21]. Finally, the use of ordinal scale [22] is not continuous. Therefore, 

it lacks the ability to reflect long-term recovery progress. To overcome these 

drawbacks, kinematic features have been extracted from sensor data to 

objectively present subtle improvement. 

To thoroughly describe a movement quality, features have been grouped 

and divided into different categories. For example, accuracy measurements 

describe how accurate poststroke patients can aim. A machine learning 

model has been trained in [23] using the combination of endpoint error and 

other features to predict the Fugl-Meyer Assessment (FMA-UE) score. 

Instead of studying point accuracy, normalised path length [24] calculated 

the ratio between the shortest point-to-point distance and the actual distance 

travelled by upper limb to reflect accuracy. The actual distance travelled by 

the end effector [25] can also be used independently as another accuracy 

measurement. Other accuracy measurements like axes ratio [26] and 
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movement end direction [26] have also been applied but without proper 

clinical evaluations.  

Apart from accuracy, smoothness is another essential category to assess 

movement quality. Movement from poststroke patients can be treated as the 

sum of various sub-movements. A smoother movement always have a 

smaller number of sub-movements. Therefore, number of velocity peaks [27-

29] have been used widely and evaluated by numerous research for 

smoothness assessment. It can also be used to train a machine learning 

model for progress monitor and clinical score prediction [30]. However, 

velocity profiles require certain computational process before it could be 

used to extract kinematic features, such as a trend removal process to 

minimise the effect of a linear trend, a bypass or low-pass filter to reduce the 

effect of measuring noise and compensatory movements from other muscles 

and a differentiation process from the position data. The number of 

acceleration zero crossings [31] can overcome this drawback since 

acceleration data can be easily captured from a wearable inertial 

measurement unit (IMU) and only require simple filtering process. From the 

acceleration profile, the duration and the frequency [32] of the sub-

movement can also be derived for smoothness measurement. Other 

velocity-based smoothness assessment includes normalised mean velocity 

[33] in time domain and the spectral arc length [27] of the velocity profile in 

frequency domain. Normalised jerk is also an important measurement for 

smoothness quantification. It has been verified with clinical assessment 

scores in [24] although it is only suitable for point-to-point movement [34]. 

Therefore, it could be used as a gold standard for the validation of other 

kinematic features from the clinical point of view.   

2.3.3 Application of Machine Learning 

This section refers to research object (d):  

To develop and train a machine learning model that can predict the motor 

learning progress and classify the above movement quality for optimised 

upper limb movement assessment in smoothness.  

Machine learning can be a powerful tool for analysing kinematic data. There 

exists a large amount of research using machine learning models to predict 

the clinical scores for post-stroke patients. However, there are few papers of 

relevance that study the suitability of a specific machine learning model in 

the application of rehabilitation movement assessment. This is due to the 
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diversity of machine learning models. Each model has its own advantages 

over the others when processing data features.  

Support Vector Machine (SVM) is a supervised machine learning model that 

is particularly suitable for performing classification tasks over small to 

medium data set. In [35], a SVM model was trained to accurately classify 

finger movement quality into user-defined groups based on finger peak 

angle and peak velocity. Instead of using pre-defined classes, Fugl-Meyer 

Assessment (FMA) score was also successfully predicted by a SVM in [36] 

using full body key points kinematics. In the above research, SVM were 

applied on data collected from kinematic sensors (i.e., sensors that collect 

kinematic information). Kinematic sensors can be low-cost and easy to use 

independently by patients in a home environment, which is ideal for the 

research aiming at convenience and performance. SVM had also been 

applied in poststroke bilateral hand training programme using 

electromyography for hand gesture recognition [37]. The use of 

electromyography enables a new interaction between patients and robotic 

devices. However, the attachment of electromyography sensors requires 

specialised skills in order to capture the signal from the correct muscle 

groups. This significantly impedes the suitability of electromyography in a 

home environment and independent measurement.  

Other machine learning models like Random Forest (RF) [38] and deep 

neural network (DNN) [39] were also applied for upper extremity 

measurement. Notice that the feature selection process is very important for 

machine learning models. The same model will generate different training 

results based on different features. In [38], the flattened feature set (every 

kinematic feature) outperformed the range of motion (only include features 

that reflect the range of motion) feature set by 6% on average for the same 

machine learning model.  

Recent research also applied unsupervised machine learning techniques to 

automatically extract new features from kinematic data for building the 

evaluation model of patients’ progress [40]. Unlike supervised learning 

models, unsupervised models do not need pre-defined labels for training. 

This feature makes unsupervised models time efficient. However, in this 

research, only supervised models will be discussed since unsupervised 

models require more powerful machine learning techniques that are not 

included in the main research aim and a much bigger dataset which is 

difficult to collect during the given time.  



- 17 - 

2.3.4 Other Applications 

The kinematic assessment offers precise and objective insights into motor 

strategies linked to goal-oriented tasks, and it enables monitoring of 

therapeutic techniques applied to the upper extremity. In the last two 

decades, many kinematic assessments have been performed in a laboratory 

environment to quantify the upper extremity among healthy subjects [41-43], 

and people with stroke, cerebral palsy [44, 45] and spinal cord injury [46]. 

For such kinematic assessment in the clinical environment, an important 

component is the sensitivity of kinematic metrics in describing the 

rehabilitation outcome. In [47], the responsiveness for kinematic metrics 

during drinking were analysed, and clinically meaningful improvements and 

discriminations were identified in movement time, smoothness and trunk 

displacement.  

Apart from applying kinematic assessment for rehabilitation purposes, 

kinematic assessment has also been developed in other fields. Work-related 

musculoskeletal disorders and muscle fatigue associated with repetitive 

work has been identified as a major health problem. Kinematic assessment 

has the potential to reflect the fatiguing process during such repetitive work. 

In [48], mean and variability of joint angles were recorded by a motion 

capture system in a laboratory environment. The study shows that the 

kinematic measurements differ between fatigued muscles and un-fatigued 

muscles. In [49], the subtle differences between men and women upper limb 

muscle fatigue progress were recognised by kinematic assessments. Both 

research show sufficient sensitivity in describing subtle movement 

differences. Kinematic assessment has also been applied to several sports 

analysis such as boxing [50], tennis [51] and cricket bowling [52] to improve 

athletes’ performance and prevent from injuries.  

2.3.5 Haptic Directional Cues 

This section refers to research object (e) and (f): 

To design and build a portable haptic device integrating movement 

assessment to present haptic directional cues in a 2D plane.  

To optimise control signals for the haptic source to allow subjects to interact 

with improved resolution and accuracy. 

Haptic devices have been widely used in our daily life activities such as a 

mobile phone and a gaming console. In this study, haptic is defined as the 

touch sensation provided by mass vibrations. The texture and roughness 

sensation are not of research interest for this thesis.  
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Most daily haptic feedback does not have the ability to present directional 

cues since normal vibrations can only present transient alert haptic 

sensations. However, multiple haptic actuators can solve this problem by 

sequentially starting each motor in a certain order. In [53], 60 haptic 

actuators (5×12 array) was developed to present 2 degree-of-freedom (DOF) 

information on the torso area. The same idea was also applied to the back 

area in [54]. This multiple actuator solution can achieve a higher accuracy 

with a greater number of actuators attached. However, this array system 

requires a large contact area to work. As a consequence, it is difficult to 

integrate multiple haptic actuators on restricted skin area such as hands 

locally. Additionally, there exists additional learning cost for the array 

systems on how to map local directions (i.e., sensed by local muscle groups 

and tendons) to the world coordinate frame (e.g., the direction of an outdoor 

walking activity). 

To address these problems, a novel method was proposed in [55, 56] where 

a haptic directional cue was created through asymmetric vibrations of a 

mass, specifically from a mechanical slider-crank mechanism. They 

proposed that both amplitude and frequency of the vibration affected the 

perceptibility of directional cues. They also claimed that this directional cue 

was due to a virtual force rather than the existence of a physical force. The 

same asymmetric vibration was also successfully created in [57] by a mass-

spring system. Though these systems require less actuators and no 

coordinate transfer, their mechanical designs are not particularly suitable for 

portable rehabilitation device due to a relatively heavy weight and the 

durability of the mechanical connection.  

In [58], instead of using mechanical mechanisms, an asymmetric input signal 

was used to drive a linear resonant actuator. The same idea was 

implemented in [59] with a voice coil actuator. They both found that driving 

frequency of the input signal significantly affected the perceptibility of 

directional cues. Moreover, the ideal frequency depends highly on the 

dynamic performance of the vibration system. Therefore, it is worthwhile to 

study the dynamic model of the haptic system and optimise the 

characteristics of input signals for each unique haptic implementation. In 

[60], a 2 degree-of-freedom mass-spring-damper system was created to 

model the force and skin displacement when holding the haptic device. It 

was confirmed in this study that the perception of haptic cues is achieved by 

a measurable physical force rather than a virtual force. The results showed 

that an asymmetric input signal with frequency between 30 Hz and 58.8 Hz 
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could provide the best pulling sensations for their device. Apart from 

asymmetric signals, Pulse Width Modulation (PWM) signal was also applied 

in [61] to drive a linear solenoid to generate measurable asymmetric 

accelerations. This also proved the idea that the pulling sensation is caused 

by a physical force rather than a virtual force. In the above designs, 

asymmetric vibrations can only induce bidirectional cues along a certain axis 

instead of a plane. Therefore, it is beneficial to design a mechanism that 

could extend directional cues to another degree of freedom.  

2.4 Literature Discussion 

The purpose of the literature review was to synthesis current research in the 

area of kinematic assessment and movement guidance for upper limb 

movements, specifically through a haptic device, and identify gaps and 

limitations in the research.  

There are an enormous range of kinematic features describing movement 

quality from multiple dimensions, including accuracy, efficiency and 

smoothness etc. However, most kinematic features were measured by 

sophisticated robotic systems that are not suitable for a home setup or 

independent use. Some features showed excellent correlations with patients’ 

improving performance but lack the validity against clinical scores. 

Additionally, current research lacks discussions on the sensitivity of 

kinematic features in the field of upper limb rehabilitation, such as how 

subtle can kinematic features describe an upper limb movement motor 

learning progress with or without the help of machine learning techniques. 

The normalised jerk is one clinically-validated feature to describe movement 

smoothness, and it has been applied to sufficient research for validations 

based on the literature review results. Therefore, this feature will be 

compared with other kinematic features extracted in this work to assess the 

sensitivity of describing movement smoothness.  

Recent research also applied various supervised machine learning models 

to predict patients’ clinical score using kinematic features though the results 

depended highly on the feature selection process. Unsupervised machine 

learning models have been deployed to automatically extract potential 

features for performance monitoring as well. This could be a future research 

direction. A similar example is the training of intelligent models. For an 

artificial intelligence (AI) model training and labelling such as ChatGPT, 

there is a rapid increase in the demand of prompt engineers [62]. However, 

with the help of unsupervised and supervised machine learning techniques, 
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the performance of the model was increased and the computational cost of 

the training process was decreased as reported in [63]. It is therefore 

hypothesised that similar techniques could be used for automatic kinematic 

feature extraction for upper limb movement assessment. In the present work, 

kinematic features will be used as inputs for supervised machine learning 

models. The output of the model depends on the classification task. For the 

movement type classification, the outputs are the numbers representing 

different movements. For the movement smoothness assessment, the 

outputs are the repetition of a single movement. A higher sensitivity in 

reflecting subtle smoothness differences would be achieved with a higher 

number of repetitions.  

To provide directional guidance to the visually impaired during a robot-

assisted rehabilitation session, haptic directional cues were studied. Haptic 

directional cues can be generated by different actuation methods. Multi-

actuators method only works with large contact area such as back and torso 

due to the inevitable large area for motor implementations. Mechanical 

devices with asymmetric vibrations are not beneficial for portable design 

because of their weights and sizes. Asymmetric input signal can drive a 

motor to generate asymmetric vibrations. This actuation method allows more 

control over mechanical actuation and can also be integrated into a smaller 

device that is suitable for both portability and home-based application. 

However, the characteristics apart from signal frequency needs to be studied 

with a large-scale human experiment. Moreover, the input signal that 

generates asymmetric vibrations lacks proper parameterisation for 

repeatability test and simulations. Although some work has been done in 

terms of haptic out parameterisation in [64], their work was limited by the 

availability of motor dynamic constant such as motor driving factor, linear 

stiffness and the damping coefficient of the spring inside the motor. Without 

experimentally determining these values, the simulation and optimisation 

method proposed in the above reference is difficult to be conducted.  

A portable low-cost rehabilitation device with the capability in movement 

smoothness assessment and directional guidance is possible by combining 

machine learning based algorithms from the software level with the haptic 

directional guidance from the hardware level. Though there were various 

types of wearable haptic guidance implementations that have been proved 

to be effective as introduced in the above section, they do not target at the 

sensitive skin receptors located on human fingertips nor have integrated 

movement smoothness assessment function, potentially for post-stroke 
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patients. Therefore, it is beneficial to design a hand-held device rather than a 

wearable device that targets at the fingertip, produces haptic directional cues 

that are more feasible to users and integrates upper limb movement 

smoothness assessment. Since the proposed haptic device can only provide 

2D directional information, it is recommended to integrate a low-cost 2D 

position tracking technique for movement smoothness assessment based on 

position, velocity, acceleration, and jerk features. Though it is possible to 

differentiate position profiles for velocity, acceleration and jerk performance, 

extensive pre-processing procedures are mandatory including filtering, 

smoothing, linear trend removals and outlier removals. Therefore, an 

alternative for measuring acceleration and jerk during a movement is 

through the implementation of a low-cost inertial measurement unit (IMU). 

The complexity of data processing required for only acceleration data is 

decreased significantly since only filtering process is necessary. This is 

extremely helpful if the power consumption of the portable device is limited 

by the battery and the data is processed locally.  

2.5 Summary 

Review of the literature has shown that there has been a lot of attempts on 

the extraction of kinematic features and their applications with various 

machine learning models, both supervised and unsupervised. However, the 

capture of data requires robotic devices that are not particularly suitable for a 

home environment and independent use. The most adopted movement 

assessment method is achieved by 2D pointing tasks and the most adopted 

movement assessment equipment is with minimum support to the impaired 

arm. Kinematic features were extracted from displacement, velocity, and 

acceleration measurements. Specifically, features listed in Table 2.1 have 

been verified with clinical properties by the existing literatures. Additionally, 

various features were adopted only for a particular task and lack the ability 

for generalisation for other upper limb activities. Some supervised machine 

learning models have been applied to classify movement type and quality. 

However, the performance of the machine learning models depends highly 

on the feature selection process. Therefore, unsupervised machine learning 

models were developed for auto feature selection. It is valuable to study the 

sensitivity of kinematic feature-machine learning approach on how subtle it 

can reflect the smoothness difference during an upper limb motor function 

learning progress.   
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For haptic devices, studies focused more on the device designs and 

actuation methods. Though the frequency and amplitude have been raised 

to enhance the perceptibility of directional cues, other characteristics of the 

input signals are of low interests and lack parameterisation. Some research 

works have been conducted to parameterise the input signal based on the 

simulations on acceleration output. But this parameterisation method lacks 

the translatability to other haptic implementations due to the uncertainty of 

the system dynamic constants. The most adopted form of haptic equipment 

is hand-held device, and the most adopted actuation method is through 

electrical motors. Recent research focused on asymmetric vibrations for 

better haptic delivery because of the improved configurability. There are few 

haptic devices suitable for home rehabilitation integrating movement 

assessment and directional guidance.  
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Chapter 3 Methods and Experimental Designs – Movement 
Smoothness 

The extraction of kinematic features is normally conducted on position, 

velocity, acceleration, and jerk profiles as introduced in the literature review. 

Therefore, tracking the position of upper limbs during a movement is the 

basis for kinematic assessment. One of the most common position tracking 

methods in daily life is to use a mouse to control a curser on a computer 

screen. Additionally, movement trajectory could also be extracted with the 

help of modern computer vision algorithm. It is therefore hypothesised that 

these methods could be extended to track the 2D movements of an upper 

limb for the extraction of kinematic features.   

In this chapter, two experiments were firstly designed to verify the function of 

movement position tracking. Two novel position tracking methods using a 

regular mouse sensor and a single-camera vision system were compared 

with Optotrak Certus position measurement system (hereinafter referred as 

Optotrak), which underpinned the foundation on an alternative low-cost 

position tracking method for a portable haptic rehabilitation device in home 

environments. The Optotrak is developed by Northern Digital© (NDI) for 

kinetic and kinematic measurement with a reported resolution of 0.01 mm 

and an accuracy of 0.1 mm [65]. It adopts active optical measurement for 

positions and orientations of several markers within a large pre-calibrated 

measurement volume of 20 m3. It could be used as a gold standard to 

validate the other two position tracking methods.  

Another two experiments were then conducted for movement type 

classifications and movement smoothness assessments based on the 

kinematic features extracted from the above-mentioned position 

measurements. A movement type classification algorithm based on 

acceleration data was developed, which was verified through four different 

movements conducted by the author. A single group observational 

experiment was finally conducted with 14 participants recruited within the 

University of Leeds to verify the movement smoothness assessment using 

kinematic features extracted from displacement, velocity, acceleration, and 

jerk data.  

The remainder of this chapter is organised as follows. Section 3.1 introduces 

the equipment and experimental verification of position tracking using a 

mouse sensor. Section 3.2 introduces a position tracking method by a single 
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camera based on computer vision. Section 3.3 presents kinematic features 

for movement pattern classification. Section 3.4 presents kinematic features 

for movement smoothness classification. A single group observational 

experiment is also designed in this section. Section 3.5 presents the 

summary.  

3.1 Mouse Position Tracking 

Previous rehabilitation robots adopted rotary encoders or potentiometers for 

angle measurements and use kinematics to obtain the current position of 

user’s limb [66]. This method is accurate and responsive, which makes it 

especially suitable for robot control algorithms and movement assessment. 

However, it always requires a sophisticated robotic device to assist user’s 

movements, which is not particularly suitable for at-home rehabilitation 

environment due to the volume and price of the device and the operation 

complexity. Other position tracking techniques also include the application of 

computer vision such as a dual camera vision system [67] and advanced 

position sensors [68], which can be very expensive and requires calibration 

process before use.  

Since the movement quality assessment will only be conducted in the 2D 

plane with the proposed hand-held device, it is beneficial to integrate a low-

cost mouse position tracking sensor into the device. A mouse sensor has the 

following advantages over other position tracking methods. Firstly, it is a low-

cost sensor that can be easily found on the market. Secondly, it is small in 

the volume and easy to operate with very fast learning curve for users. 

Finally, it does not require any calibration process or expert knowledge for 

operation. Though it is impossible for a mouse sensor to track rotational 

information and vertical information perpendicular to the working plane, its 

accuracy and response time are considered adequate for non-rotational 

movement assessment. Furthermore, although the position data measured 

by a mouse sensor is relative rather than absolute to a certain starting point 

like Optotrak, the same kinematic feature extraction process could be 

followed since the feature calculations are not influenced by the relative 

positions.  

3.1.1 Experiment Procedures 

In order to verify the accuracy and response time of a mouse sensor, a 

comparison was conducted between Optotrak position sensor and a mouse 

sensor. A seven-segment point to point triangle movement was chosen for 
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the verification process as shown in Figure 3.1. The numbers shown in the 

figure indicates the order for each point to be reached in the experiment. The 

participant was expected to use a mouse to draw the pattern on the same 

computer screen for 10 times with a Optotrak position sensor attached to the 

wrist for further verifications. The mouse was set to have a very low 

sensitivity (DPI = 200) to prevent compensatory movement from wrist 

rotations. The position of the Optotrak sensor remained unchanged 

throughout the experiment, and the compensatory movement from trunk was 

restricted in order to control the test-retest variability. This experiment was 

conducted by the author himself at the Rehabilitation Laboratory, University 

of Leeds, Leeds. No ethical approval was needed for this experiment since 

the author himself is a part of the research team.  

 

Figure 3.1 Seven-segment point-to-point triangle movement pattern. 

This pattern was chosen because it involves multiple point-to-point 

movements which require muscle coordination and fine motor control. 

Therefore, this multi-segment triangle movement could better represent the 

complexity of the activities of daily living (ADL) than a single point-to-point 

movement such as reaching movement.  

The triangle movement pattern was repeated for 𝑁௧ = 10 times in a 𝑇 = 30 

seconds window length for each attempt. A one-minute rest time was 

introduced between each attempt to minimise the learning effect. The 

participant (the author) was aged 24 with no arm impairment at the 

experiment. 

3.1.2 Data Processing 

The position of a wireless mouse sensor (Logitech Hero 25k) on a computer 

screen (resolution of 3800×2400 pixels) was recorded by a self-written 
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MATLAB (MathWorks, version R2022b) script sampling at 𝑓 = 100 Hz. An 

Optotrak position marker was also attached on the user’s wrist about 20 cm 

distal away from the elbow. The position data of the marker were recorded 

using the Optotrak system. Data of the marker were captured using the NDI 

software and stored in CSV files for data processing. The sampling 

frequency of the system was set to 𝑓 = 100 Hz with a reported accuracy of 

± 0.1 mm and a reported resolution of ± 0.01 mm. 

The 2D coordinates of the marker and the 2D coordinates of the mouse 

sensor were processed in a self-written MATLAB script. Since mouse sensor 

tracking was achieved in a MATLAB programme, a calibration on the actual 

sampling frequency 𝑓  was conducted for the same duration as the 

measurement window length 𝑇 . The movement onset 𝑖𝑛𝑑𝑒𝑥  and offset 
𝑖𝑛𝑑𝑒𝑥  were determined through a self-written algorithm that repeatedly 

check the difference between 𝐷 measurements among a total number of 𝑁 

position data against a threshold value 𝑃/ as described in Table 3.1. 

Table 3.1 Description on the segmentation algorithm. 

𝒇𝒐𝒓 𝑖 = [1, 𝑁௧] 𝑎𝑛𝑑 𝒇𝒐𝒓 𝑗 = ൣ1, 𝑁 − 𝐷൧ 

𝒊𝒇 |𝑃(𝑖, 𝑗 + 𝐷) − 𝑃(𝑖, 𝑗)| ≥ 𝑃/ 

𝑖𝑛𝑑𝑒𝑥(𝑖, 𝑗) = 𝑗 + 𝐷 

𝑖𝑛𝑑𝑒𝑥(𝑖) = 𝑗 + 𝐷 

𝑖𝑛𝑑𝑒𝑥(𝑖) = 𝑓𝑖𝑛𝑑(𝑖𝑛𝑑𝑒𝑥(𝑖, 𝑗) ≠ 0, 1) 

𝒓𝒆𝒕𝒖𝒓𝒏 𝑖𝑛𝑑𝑒𝑥(𝑖), 𝑖𝑛𝑑𝑒𝑥(𝑖)  

A proper threshold value should satisfy the following two conditions: 

1) Be robust enough to ignore measurement errors for both systems. 

2) Be subtle enough to capture the proper onset and offset points.   

The position data segments along each axis were transformed into 

movement velocity and acceleration using a first order central difference 

technique. Before each differentiation process, a low-pass filter with a cut-off 

frequency 𝑓 = 6 Hz and a moving average filter with a window length of 𝐿 

were applied to remove any high frequency measurement noise. The cut-off 

frequency for the low-pass filter was determined since the triangle 

movement shown in Figure 3.1 is a relatively low-frequency movement. The 

window length 𝐿 for the moving average filter was calculated by Eq. 3.1. 
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𝐿 =
𝑓

10
 (3.1) 

where: 𝑓  is the measurement frequency for Optotrak and the calibrated 

frequency of mouse sensor, respectively.  

Since Optotrak measurement and mouse sensor measurement have 

different units and scaling, a z-normalisation method was applied to 

displacement, velocity, and acceleration profiles to enable direct 

comparisons and error computing. Root mean square errors (RMSE) were 

calculated between the normalised Optotrak measurements and mouse 

sensor measurements. Since the triangle pattern was also used for the later 

observational study regarding upper limb movement quality assessment, the 

same set of kinematic features were also extracted from the mouse position 

data. The method for feature extraction would be discussed in section 3.4.2. 

A two-sample t-test would be conducted on each kinematic feature from two 

measurement systems to determine the significance level of difference.  

Additionally, the test-retest reliability was verified by intra-class coefficient 

(ICC A, 1) with two-way random absolute agreement definition among 10 

attempts over the kinematic features and RMSEs on displacement, velocity, 

and acceleration profiles. Since the aim of this verification was to examine 

how strong the agreement between each attempt but not the potential linear 

relationship, the absolute agreement definition was chosen. The results of 

this part of the work are presented in section 4.1.  

3.2 Single-Camera Position Tracking 

Computer vision has been proved to be an effective tool for position tracking 

in various industries [69, 70] including upper limb rehabilitation assessment. 

And it has been applied in the early-stage work to track the key points of a 

hand. It contributes to the telerehabilitation because it does not require the 

presence of users in a specific experimental environment. This section 

presents the application of an open-source vision algorithm for position 

tracking by a single camera system. The method was verified using a single 

pendulum system against Optotrak measuring system.  

3.2.1 Computer Vision Algorithm 

OpenCV (Open Source Computer Vision) is an open-source algorithm for 

computer vision. For the single camera position tracking in this research, a 

separation of the green pendulum from background environment was 

needed. Therefore, a colour-based tracking method was adopted, 
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specifically using the same Back Projection method as introduced in the 

early-stage work.  

The commonly adopted image format is JPEG that stores the image colour 

information of pixels in red, green, and blue (RGB). However, a slight 

change in the lighting condition could result to a huge difference in RGB 

values. Therefore, a RGB image was firstly converted to HSV (Hue, 

Saturation, Value) image. Hue is the dominant colour recognised by human 

eyes such as red, green, and blue. Saturation is the amount of white light 

assorted with hue. A larger saturation value means more colourfulness. 

Value is the brightness. After the colour conversion, the region of interest 

(ROI) was selected. In this experiment, the ROI was the single pendulum. A 

colour histogram of the ROI was finally calculated to detect the similar colour 

area from background environment. A colour histogram is a figure to plot the 

pixel value against the number of pixels that have the corresponding pixel 

value. The colour segmentation algorithm is illustrated in Figure 3.2 using 

the green object as the ROI.  

 

Figure 3.2 Back projection colour segmentation algorithm. (a) RGB image. (b) HSV 
image. (c) Colour histogram. (d) Segmented image with contour and centre. 

3.2.2 Experiment Procedures 

A single pendulum was used to verify the position recorded by the single 

camera vision system and Optotrak as shown in Figure 3.3. 
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Figure 3.3 Single-camera based position tracking using a single pendulum. 

A single camera vision system was placed at 𝑙 cm away from the pendulum. 

Since there exists a minimum working distance related to the single 

camera’s focus ability for the vision system, the distance 𝑙  was set 

incrementally from 40 cm to 70 cm with an increment of 5 cm. When both 

systems were ready for recording, the pendulum would be released freely 

from a certain height manually. Since the aim of the experiment is to 

compare the position recorded by both system (i.e., system agreement), the 

height at which the pendulum was released was not recorded and kept 

random throughout the experiment. Both systems would stop recording the 

position when the pendulum was in the idle state. A total of 15 pendulum 

cycles were recorded at each distance.  

3.2.3 Data Processing 

The camera used in the experiment was a laptop camera (720P FaceTime 

Camera). An open-source computer vision algorithm (OpenCV) was 

implemented on the laptop for position tracking. Optotrak position data was 

captured on the Optotrak PC by the NDI software. The data from both 

measurement systems was stored in CSV files. Raw data was processed by 

a self-written MATLAB (MathWorks, version R2021a) script. The sampling 

frequency of Optotrak was set to 𝑓 = 100 Hz. The sampling frequency of 
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the vision system was set to 𝑓௩ = 30 Hz due to the limitations by the refresh 

rate of the camera and the screen.  

The root mean square error (RMSE) was computed between Optotrak 

measurements and the vision system measurements. It was normalised by 

the movement range 𝐷. The movement onset and offset were determined 

manually by observations in the Optotrak measurement profiles. The 

movement onset and offset in the vision system measurements were then 

determined using the corresponding movement duration extracted from the 

Optotrak measurements.   

Additionally, the test-retest reliability at each distance among 15 

measurements were verified using the intraclass corelation coefficient (ICC 

A, 1) with two-way random absolute agreement definition. The results of this 

part of the work are presented in section 4.2. 

3.3 Movement Type Classification 

Movement type classification is conducted for the following two reasons. 

First of all, identifying current movement could help regulate the sample 

frequency of the integrated sensors to obtain more battery life in a home 

environment. For example, when the device is placed still, such as during a 

charging period, decrease the sample frequency to save power. Whereas 

when a movement is detected, change to a corresponding sample 

frequency. Secondly, traditional rehabilitation assessments like Action 

Research Arm Test (ARAT) and Fugl-Meyer upper extremity assessment 

(FMA-UE) for stroke, and several recommended exercises for people living 

with Parkinson involve multiple movement types from 2D drawings to 3D 

manipulations [71, 72]. Our activities of daily living (ADL) also require 

multiple different movements to serve different purposes [73]. Since different 

movements require the cooperation and coordination from different muscle 

groups, it is beneficial to accurately classify movement types based on 

sensor data from the rehabilitation device before any movement smoothness 

assessment is conducted. Therefore, several supervised machine learning 

models were developed in this section to classify four movement types 

based on kinematic features extracted from movement accelerations. Notice 

that only acceleration-based features were discussed here in this section 

because of the government’s restrictions on access to campus during the 

COVID-19, which prevented further access to Optotrak position tracking 

system. Although it is mathematically possible to integrate acceleration 

profiles for velocity and position data, the inevitable cumulative errors 
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introduced by the integration process also prevented further feature 

extraction process.  

3.3.1 Experiment Procedures 

Four movements were selected for the experiment, namely reaching out, 

turning keys, drawing circles, and drinking as shown in Figure 3.4. Reaching 

out and drawing circles could be considered as a 2D planar movements if 

the small vertical displacement is neglected while turning a key and drinking 

are strictly 3D movements.   

 

Figure 3.4 Four movement types including (a) reaching out, (b) turning a key, (c) 
drawing a full circle and (d) drinking. 

The four movements require elbow internal/external rotation, shoulder 

extension and flexion, and wrist rotation, which cover the necessary 

movement for performing most activities of daily living (ADL). Therefore, they 

were selected for the verification of the movement classification method. The 

inter-attempt variability was controlled by a consistent sitting position of the 

participant, a consistent orientation and position of the sensor, and 

restriction on the compensatory movement from participant’s trunk 

throughout the experiment. The restriction on the trunk was achieved by 

attaching the participant’s back and the chair with a fastened string. This 

experiment was conducted by the author with his dominant arm in a home 

environment with the help of his neighbour due to the government 

restrictions on access to campus during COVID-19. No ethical approval was 

needed since the author himself was part of the research group.   

During the experiment, each movement was conducted repeatedly for 60 

seconds from reaching out to drinking. The first and the last attempt of each 

movement were excluded to obtain a stable and consistent performance 

during measurements. The movement onset and offset were determined 
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using the algorithm as described in Table 3.1. The participant was aged 22 

with no arm impairment at the experiment. 

3.3.2 Data Processing   

An inertial measurement unit (LSM9DS1) was placed on the participant wrist 

about 20 cm distal away from the elbow by a Velcro fastener. The sensor 

data were collected by a microcontroller (Arduino Nano 33 BLE) through a 

USB cable. The sampling frequency of the sensor was set to 𝑓௦ = 100 Hz. 

Data from the sensor was sent to a PC via Bluetooth Low Energy (BLE) and 

stored in CSV files for data processing.  

The collected data were processed in a self-written MATLAB script. A 

moving average filter with a window length of 𝐿 = 10 calculated by Eq. 3.1 

was applied to the raw data. A total of 20 segments were separated during 

the experiment for each movement type. Six kinematic features were 

extracted from acceleration profiles on each segment for each movement 

type, namely the maximum, minimum and average values, the mean square 

values, the wavelength and the zero crossing of the acceleration profiles as 

described from Eq. 3.2 to Eq. 3.5. These features were chosen since they 

have been reported to be efficient in kinematic assessment [74].  

𝐴௫, 𝐴, �̅� = max൫𝐴൯ , min൫𝐴൯ ,
∑ 𝐴
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𝑍𝐶 =
|𝑠𝑔𝑛൫𝐴ାଵ൯ − 𝑠𝑔𝑛(𝐴)|

𝑛
 (3.5) 

where: 𝐴 is the 𝑗௧ value in each segment, and 𝑛 is the total number of data 

points in each segment. 𝑠𝑔𝑛 is a signum function as described in Eq. 3.6. 

𝑠𝑔𝑛 = ൝
1, 𝑥 > 0
0, 𝑥 = 0

−1, 𝑥 < 0
 (3.6) 

Six features were extracted from all three axes. Therefore, a total of 18 

features were used to train and test the classification models.  

3.3.3 Model Training and Evaluation 

Four supervised machine learning models were selected for training and 

validation process, namely Support Vector Machine (SVM), K-Nearest 

Neighbours (KNN), Decision Trees and Deep Neural Network (DNN). These 
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four machine learning models were chosen since they are classic models for 

solving real-world classification problems for a long time in computer science 

and have been considered as a benchmark test. A 5-fold cross validation 

was adopted to prevent models from overfitting the training data. 30% of the 

dataset were separated as the test data set to verify the performance of the 

trained models.  

Though 18 features were prepared prior to model training, a feature 

selection process using Minimum Redundancy Maximum Relevance 

(MRMR) algorithm [75] was also conducted for comparisons in terms of 

computational time and model performance. MRMR is a commonly adopted 

algorithm for machine learning feature selection process. The computational 

time on the model training may be effectively reduced after feature selection, 

which is beneficial for future online model applications. The hyperparameters 

of each model were optimised by a Bayesian optimiser with a maximum 

iteration of 30. Model performance was evaluated by F1 score and the area 

under the receiver operating characteristics (AUC). Results of this part of the 

work are presented in section 4.3. 

3.4 Movement Smoothness Assessment 

Traditional movement quality assessment mainly depends on the 

observations from experienced physicians during a series of assessment 

tasks, which lacks the sufficient sensitivity to detect subtle motor function 

improvements and has the potential to introduce examiner bias [76]. The 

applications of kinematic features have been proved by several studies to 

facilitate assessing movement quality objectively and sensitively [29, 77]. In 

the previous sections of this chapter, two novel position tracking methods (a 

mouse sensor and a computer vision algorithm) and a supervised machine 

learning approach on movement type classifications were presented to form 

the basis of movement quality assessment based on kinematic features. In 

this section, kinematic features were extracted to classify movement quality, 

specifically movement smoothness, into multiple categories using three 

supervised machine learning models. The maximum achievable number of 

categories is the total number of repetitions during the experiment. If a high 

number of categories is achieved, a high sensitivity in reflecting subtle 

smoothness differences of this method could be concluded. A single group 

observational study was conducted to evaluate the proposed method.  
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3.4.1 Experiment Procedures 

This study was designed as an observational, single group study to classify 

motor learning progress, specifically movement smoothness, using the same 

multi-segment movement as shown in Figure 3.1. This movement pattern 

requires directional coordination and fine motor control from several muscle 

groups on upper limb. Therefore, it is a more realistic representation of 

activities of daily living (ADL) and was chosen as the movement pattern 

throughout different experiments reported in this thesis. A single Optotrak 

position marker was attached to participant’s wrist to obtain the position data 

during the movements. The same marker was placed in the same position of 

participants throughout the experiment. The distance between Optotrak and 

its position marker varied slightly from different participants due to the 

posture difference and different habit in using a mouse. This had no effect 

on the kinematic feature extraction process since the process was 

conducted based on the relative positions during a movement rather than 

the absolute positions of each movement point. The experimental setup was 

illustrated in Figure 3.5. 

 

Figure 3.5 Experiment set up for movement quality classification using two Optotrak 
systems for a better coverage of detection. 

During the experiment, participants were asked to use a mouse to draw the 

triangle pattern with their dominant arm (DA) and nondominant arm (NDA) 
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respectively. Two mouse orientations (i.e., 0-degree rotation and 180-degree 

rotation about the vertical axis perpendicular to the workspace) were also 

considered to increase the difficulty of the task so that a learning progress 

could be detected. Therefore, a total of 4 movement patterns were designed 

for each participant. The same mouse settings (i.e., Logitech Hero 25k with 

DPI = 200) and display settings (i.e., resolution of 3800×2400 pixels) used in 

the mouse position tracking experiment was also adopted in this experiment. 

Participants were asked to draw all the patterns with the same order in the 

experiment (i.e., DA+0-degree rotation, DA+180-degree rotation, NDA+0-

degree rotation and NDA+180-degree rotation). Ten attempts were recorded 

for each movement pattern, and a five-second rest time was provided 

between each attempt. No feedback about the movement quality was given 

to any participants until the end of the experiment. A special circumstance 

was that if a participant did not follow the desired triangle trajectory 

continuously, the current attempt would not be included in the analysis. A 

new attempt would be asked in order to have the same number of attempts 

across different participants. The experiment procedure was shown in Figure 

3.6. The study was approved by the Engineering and Physical Science 

Research Ethics Committee (MEEC 21-003). All participants gave written 

informed consent. The corresponding ethical review materials were 

presented in the Appendix.  

 

Figure 3.6 Experiment procedure for movement quality classification. 

3.4.2 Data Processing and Feature Extraction 

Position data were recorded using the two Optotrak systems with a position 

marker. A single position marker was placed on each participant’s wrist on 
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either DA or NDA depending on the current movement pattern. Position data 

of the marker was recorded by the NDI software and stored in CSV files. The 

sampling frequency of the system was set to 𝑓 = 100 Hz with a reported 

accuracy of ±  0.1 mm and a resolution of ±  0.01 mm. Prior to the 

experiment, a 15-second calibration process was conducted for both 

Optotrak systems in order to validate the consistency between them. A Root 

Mean Square Error (RMSE) of 0.12 mm was obtained for position 

measurements between two systems, which is acceptable for kinematic 

feature extraction based on position profiles and the differentiation process 

to calculate velocity, acceleration, and jerk. During the experiment, a trained 

researcher (the author) monitored any data loss or system failure.  

The position data of the marker were exported in multiple CSV files for data 

processing and kinematic features extraction. The velocity and acceleration 

profiles were calculated from the corresponding vector sum of the position 

data along each axis. The differentiation process was achieved by a first 

order central difference method. Before each differentiation process, a 

moving average filter with a window length of 20 data points was applied to 

smooth the kinematic profiles. This window length was chosen manually to 

achieve the ideal filter performance in terms of keeping most of the variability 

of the original data and removing additional measurement noise introduced 

by the system. Since the starting point and ending point of the movement in 

real-world coordinate were not restricted, a mouse position drift (e.g., the 

ending point was not overlapped with the starting point) was observed from 

all participants during the experiment. Therefore, a trend removal process 

was applied using a linear regression model to remove the linear trend in 

position, velocity, and acceleration profiles. 

Since less-smooth movement is always consisted of several high frequency 

sub-movements, feature extraction process was conducted in both time 

domain and frequency domain. A total of 12 kinematic features were 

extracted from position, velocity, and acceleration profiles for each drawing 

attempt. These features were selected based on the previous literature 

search results where they have been applied to kinematic assessment for 

post-stroke and Parkinson’s disease movement analysis. The movement 

onset and offset were determined manually by observations when there was 

a significant difference in position data. The observations were conducted by 

the same person for all kinematic profiles. Table 3.2 showed all kinematic 

features and their related profiles. 
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Table 3.2 Kinematic features extracted from different profiles. 

Position Velocity Acceleration Jerk 

Distance 

Duration 

 

Peak velocity 

Mean velocity 

Skewness 

Kurtosis 

Variance 

Sample entropy 

Spectral entropy 

Number of peaks 

Peak acceleration 

 

Normalised 

jerk 

Kinematic features were defined below. 

 Distance 𝐷 (mm) is defined as the total distance travelled during each 

drawing attempt.  

 Duration 𝑇 (s) is defined as the time between movement onset and 

movement offset.  
 Peak velocity 𝑉 (mm/s) is defined as the maximum absolute velocity 

during each drawing. 

 Mean velocity 𝑉ത  (mm/s) is defined as the distance divided by the 

duration in Eq. 3.7. 

𝑉ത =
𝐷

𝑇
 (3.7) 

 Skewness 𝑆 , kurtosis 𝐾  and variance 𝑉𝑎𝑟  are defined as the 

corresponding statistics within the velocity profiles for each drawing 

attempt. 

 Sample entropy 𝑆𝑎𝑚𝑝𝐸𝑛  is defined as the measurement of the 

complexity [78] of the acceleration time series signal. 

 Spectral entropy 𝑆𝐸  is defined as the measurement of signal’s 

spectral power distribution [79].  

 Number of peaks 𝑁𝑂𝑃 is defined as the number of acceleration peaks 

in each drawing attempt. 
 Peak acceleration 𝐴  (mm/s2) is defined as the maximum absolute 

acceleration during each drawing attempt.  

 Normalised jerk 𝑁𝐽  is defined as the measurement of movement 

smoothness [80] calculated by Eq. 3.8. 

𝑁𝐽 = ඨ
1

2
න 𝐽(𝑡)ଶ𝑑𝑡 ×

𝑇ହ

𝐿ଶ

௧

௧ೞೌೝ

 (3.8) 

where 𝐽(𝑡) is the third derivative of position (jerk), 𝑇 is the movement 

duration, and 𝐿 is the difference in position at time 𝑡௦௧௧ and 𝑡ௗ. 
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3.4.3 Machine Learning Model Preparation 

Extracted features were re-constructed for supervised machine learning 

model labelling and training. Seven supervised machine learning classifiers 

were tested for their performance, including the Support Vector Machine 

(SVM), K-Nearest Neighbours (KNN), Deep Neural Network (DNN), Tree, 

Ensemble, Naive Bayes, and Discriminant. The data preparation pipeline 

was shown in Figure 3.7.  

 

Figure 3.7 Data preparation pipeline for a single movement pattern. 

Firstly, each kinematic features listed in Table 3.2 were extracted from all 

participants and all drawing attempts per movement pattern and were stored 

in the “Feature Matrix”. The average, maximum and minimum values for 

each attempt were then calculated and flattened to form the “Single Feature 

Matrix”. “All Feature Matrix” was finally constructed by combining all 12 

features. An additional label column was also constructed at the end of “All 

Feature Matrix” in a numerical form.  

Three labelling methods had been used independently to represent the 

different movement smoothness categories. The first label column had 

positive integers from 1 to 10, representing 10 different attempts 

(observations) into 10 different classes. The second label column had 

positive integers from 1 to 5, representing 10 attempts into 5 classes. The 

last label column had positive integers from 1 to 3, representing 10 attempts 

into 3 classes. For the first labelling method, the Discriminant classifier was 

not adopted since it requires more observations than the number of classes. 

Normally, it is more difficult for a machine learning model to classify more 

numbers of classes for a given dataset. If a specific model could achieve a 

higher accuracy with more classes being predicted, it means that this model 

has a superior performance in terms of reflecting subtle smoothness 

differences. It was also hypothesised that during the consecutive 10 

attempts of the experiment, the movement smoothness of each participant 

should be increased monotonically. Therefore, a larger number of classes 
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also represent a higher sensitivity in reflecting subtle smoothness 

differences.   

In order to verify the feasibility of the best outcome of a model, an initial 

training attempt was made on the most difficult movement pattern (NDA + 

180-degree rotation) since the change in smoothness was the most obvious. 

If a best outcome could be achieved with the most difficult pattern, the same 

procedure would be conducted for the rest of the movement patterns. On the 

contrary, the number of levels being classified would be decreased (i.e., 

changed to the next labelling method) until the training accuracy is above 

50%. A total of 3 out of 7 machine learning models would be selected after 

the initial attempt for the final classification task. Figure 3.8 presents the 

workflow of the above procedure. 

 

Figure 3.8 Workflow of selecting machine learning models and proper labelling 
method. 

In order to balance the number of classes being predicted and the number of 

features for classification, a feature selection process was introduced prior to 

model training. Two commonly-applied feature selection algorithms were 

adopted for different models, namely ReliefF [81] for distance based models 

and analysis of variances (ANOVA) for the rest of the models. The resulted 
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top 50% of the features was selected for model training and tests. A 

Bayesian optimiser was adopted for hyperparameter optimisation with 

maximum iterations set to 100.  

3.4.4 Statistical Analysis 

Firstly, a statistical analysis was conducted on the selected kinematic 

features to show learning progress among ten drawing attempts in the four 

movement patterns. This was achieved by computing the coefficients of 

determination (𝑅ଶ) for the selected kinematic features using an exponential 

curve. This analysis was made based on the assumption that the learning 

curve was monotonic. A larger  𝑅ଶ value indicate a higher model precision, 

indicative of more distinguishable learning curves and more reliable 

prediction results.  

Secondly, a statistical analysis was conducted on the selected kinematic 

features to show inter-feature reliability and inter-feature correlations. 

Pearson’s product moment correlation coefficients (𝑟 ) were computed to 

quantify the degree to which the selected features were correlated with each 

other. The commonly adopted three scales were used to interpret this 

coefficient, with 0 < 𝑟 < 0.4  classified as weak, 0.4 < 𝑟 < 0.8  classified as 

moderate and 0.8 < 𝑟 < 1 classified as strong. This analysis was conducted 

based on the assumption that each kinematic features would have a linear 

correlation with 𝑁𝐽. Additionally, intraclass correlation coefficients (ICC A,1) 

were computed to evaluate the inter-feature reliability using the two-way 

random absolute agreement definition. This definition was chosen because 

the agreement (i.e., absolute agreement) between the selected features was 

of the research interest instead of the fitness of linear relationship (i.e., 

consistency) between them. The ICC coefficients (𝐼𝐶𝐶 ) were interpreted 

using the guideline from Koo and Li [82] with 0 < 𝐼𝐶𝐶 < 0.5 classified as 

poor, 0.5 < 𝐼𝐶𝐶 < 0.75 classified as moderate, 0.75 < 𝐼𝐶𝐶 < 0.9 classified as 

good and 0.9 < 𝐼𝐶𝐶 < 1 classified as excellent.  

3.5 Summary 

This chapter introduced experimental design and data analysis method for 

four independent experiments regarding to the upper limb kinematic 

smoothness assessment. The first two experiments were designed to 

evaluate and verify the accuracy and performance of novel position tracking 

methods in 2D workspace using a mouse sensor and computer vision 

system. This was achieved by comparing the position data from a mouse 
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sensor and an accurate position measurement system Optotrak during a 

multi-segment triangle movement pattern. For the computer vision system, 

the comparison was achieved through a single pendulum verification. Since 

the movement pattern classification and movement smoothness assessment 

in the later experiments also require kinematic feature extraction from 

velocity and acceleration profiles, a first order central difference method was 

applied to position data from mouse sensor measurements to calculate 

velocity and acceleration profiles. The evaluation was conducted using the 

root mean square errors (RMSE). The test-retest reliability was conducted 

using the intraclass correlation coefficient (ICC A, 1). The kinematic features 

used for movement type classifications and smoothness assessment were 

extracted on the normalised and relative position data. Therefore, the unit 

and the coordinate of position measurement have no influence on feature 

extraction. This part of the work formed the basis on kinematic feature 

extraction and movement quality assessment. 

The third experiment was designed to classify movement patterns based on 

statistical kinematic features from acceleration profiles. Different movement 

patterns were chosen to represent a variety of the activities of daily living 

(ADL). The classification was achieved by supervised machine learning 

models using kinematic features extracted from movement acceleration 

profiles. The performance of each model was evaluated by 𝐹ଵ scores and the 

area under the receiver operating characteristics (AUC).  

The final experiment was designed to verify the combination of movement 

pattern classification and movement smoothness assessment based on 

kinematic features. An observational single group experiment with 14 

participants were recruited for the task. Several supervised machine learning 

models were adopted to classify movement patterns and movement quality 

into different numbers of categories that were controlled by the labelling 

methods. Additionally, the learning progress of participants drawing each 

pattern was verified using both linear and nonlinear models. The inter-

feature reliability was also verified using an intraclass correlation coefficient. 

All experiments and their key functions were presented in Figure 3.9. The 

experimental results and the results discussion are presented in the next 

chapter.  
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Figure 3.9 Summary of experiment designs including inputs, outputs, and 
verifications. 
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Chapter 4 Results on Movement Assessment 

4.1 Mouse Position Tracking Experiment 

4.1.1 Results 

A mouse sensor was firstly used to track the relative position of a 2D triangle 

movement. The sampling frequency of the mouse sensor on the specific 

mouse presented in the previous chapter varied slightly due to the uneven 

execution time of the self-written MATLAB script. Therefore, a frequency 

calibration process was conducted for mouse sensor measurement prior to 

the experiment for a duration of the same as experiment window length. The 

calibration resulted to an actual average sampling frequency of 𝑓 = 64.5 

Hz. This value would be adopted for all the differentiation process for mouse 

sensor position data.  

A data segmentation was then applied on the normalised position data using 

the algorithm described in Table 3.1. The position difference was taken 
between 𝐷 = 5 measurements, and the threshold was set to 𝑃/ = 0.006. 

The position data along each axis was processed with a low-pass filter 

before calculation. A first order central difference method was adopted to 

calculate velocity and acceleration profiles from the recorded position data. 

A total of 10 measurement were conducted during the experiment. Figure 

4.1 showed the normalised position profile, velocity profile and acceleration 

profile along each axis from the first attempt.  
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Figure 4.1 Normalised position along X and Y axis in the first attempt. 

It was observed that relatively low RMSE values from 0.20056 to 0.75388 

were obtained for all kinematic measurements. The RMSE values were 

increased with more differentiations on both axes. This was as expected 

mathematically since the differentiation process would magnify the errors. 

Position errors were found on both axes though a relatively small RMSE was 

obtained. This could be a result of sensor misalignment as shown in Figure 

4.2. The Optotrak position marker was attached to participant’s wrist 

whereas the mouse sensor was at the centre of the participant’s palm. 𝑃ଵ 

and 𝑃ଶ are the two measurements for mouse position. 𝑃ଵ and 𝑃ଶ are the 

two measurements for Optotrak position. 𝑙ଵ and  𝑙ଶ are the distance between 

mouse sensor and Optotrak marker on 𝑌  axis, and 𝑑ଵ  and 𝑑ଶ  are the 

distances between mouse sensor and Optotrak marker on 𝑋 axis.  
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Figure 4.2 Representation of mouse and Optotrak position between two continuous 
measurements. 

Therefore, the distance on each axis between two measurements for both 

systems can be calculated using Eq. 4.1 to Eq. 4.4. 

Along 𝑿 axis: 

𝐷௫ = |𝑥| 

 

(4.1) 

𝐷௫ = |−𝑥 + 𝑙ଶ ∙ tan 𝛽 − 𝑙ଵ ∙ tan 𝛼| (4.2) 

Along 𝒀 axis: 

𝐷௬ = |𝑦| 

 

(4.3) 

𝐷௬ = |𝑦 − 𝑙ଶ + 𝑙ଵ| (4.4) 

Since Optotrak marker was not rigidly connected with participant’s wrist 

during the experiment, the distance between the marker and the mouse 

sensor was not a constant. The rotation angle was also changed because of 

the slight wrist rotations. Consequently, a larger measurement error between 

Optotrak and mouse sensor was expected along 𝑋  axis because the 

trigonometric functions in Eq. 4.2 introduce nonlinear relationship. This was 

consistent with the lower RMSE values along 𝑋 axis presented in Figure 4.1.  

4.1.2 Statistical Analysis 

In order to verify the measurement reliability, the test-retest reliability was 

calculated on the RMSE values for both axes and all three kinematics (i.e., 2 

axes × 3 kinematics = 6 raters) using intraclass correlation coefficient (ICC 

A, 1). SPSS Statistics 20 (IBM) was used to compute the coefficient as 

shown in Figure 4.3. 
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Figure 4.3 Test-retest reliability for 10 mouse sensor position measurements. 

An average value of 𝐼𝐶𝐶 =  0.999 (0.998, 1.000)  was found between 10 

measurements. Using the guideline from Koo and Li [82] to interpret the ICC 

value, the measurement reliability was considered to be excellent. 

Additionally, it was found by a Tukey Test that no significant differences 

were observed between measurements, which was consistent with the ICC 

coefficient. The average RMSE values from all attempts on each kinematics 

along each axis were also compared and tested as shown in Figure 4.4, 

where 𝑃  denotes the position, 𝑉  denotes the velocity and 𝐴  denotes the 

acceleration.  

 

Figure 4.4 Average RMSE values over 10 attempts for each kinematics along each 
axis. 

Significant differences were observed between the acceleration profiles and 

the rest of the kinematic profiles. This is a result of errors introduced by 

multiple differentiations when calculating accelerations. Moreover, the 

average RMSE values on 𝑌 axis was lower than those on 𝑋 axis for all three 

 

Intraclass Correlation Coefficient 

 Intraclass 

Correlationb 

95% Confidence Interval F Test with True Value 0 

Lower Bound Upper Bound Value df1 df2 

Single Measures .990a .978 .996 897.345 11 99 

Average Measures .999 .998 1.000 897.345 11 99 
 

Two-way random effects model where both people effects and measures effects are random. 

a. The estimator is the same, whether the interaction effect is present or not. 

b. Type A intraclass correlation coefficients using an absolute agreement definition. 
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kinematic profiles, which was consistent with the mathematical models 

established by Eq. 4.1 to Eq. 4.4. The misalignment between Optotrak 

marker and the mouse sensor would likely to result in a relatively larger 

measurement error on 𝑋 axis because of the nonlinearity introduced by wrist 

rotation.  

In order to evaluate the influence of the sensor misalignment on the 

extraction of kinematic features, a two-sample t-test was conducted at 95% 

confidence level between kinematic features extracted from each 

measurement system to observe any significant difference between them. 

The 𝑝 values of the test are listed in Table 4.1. The extraction method of 

these kinematic features is reported in Table 3.2. 

Table 4.1 Two-sample t-test results on kinematic features extracted from both 
measurement systems. 

𝐷 𝑇 𝑉 𝑉ത  𝑆 𝐾 

1.0000 0.9997 1.0000 1.0000 0.3355 0.0127 

𝑉𝑎𝑟 𝑆𝑎𝑚𝑝𝐸𝑛 𝑆𝐸 𝑁𝑂𝑃 𝐴 𝑁𝐽 

1.0000 0.0654 0.0172 0.0634 1.0000 1.0000 

It was shown that except the kurtosis (𝐾) of the velocity profiles and the 

spectral entropy (𝑆𝐸) of the acceleration profile in frequency domain, no 

significant difference ( 𝑝 > 0.05 ) was observed among other kinematic 

features. This suggests two important findings that could be helpful for 

kinematic assessments in a home environment. Firstly, the mouse sensor 

could be used as a low-cost alternative for advanced 2D position tracking 

system in a home environment with a similar accuracy. Secondly, the 

extraction of most of the kinematic features based on mouse position would 

not be significantly influenced by the wrist rotation. For kurtosis and spectral 

entropy, it is therefore recommended to evaluate their effectiveness in upper 

limb movement assessment to determine whether a mouse-based position 

tracking method is appropriate.  

In summary, mouse position tracking has the potential to replace advanced 

position sensors in a home environment if 2D planar movement is to be 

studied. The test-retest reliability was excellent with 𝐼𝐶𝐶 = 0.999, and no 

significant difference was observed among 10 measurements. Measurement 

error was accumulated during the differentiation process. Therefore, a 

significant difference was observed between acceleration profiles and the 

rest of the kinematic profiles.  
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Wrist rotations during the movement and the non-rigid connection between 

sensor and wrist could result in a sensor misalignment, which could cause 

different measurement errors along each axis. However, the influence of this 

situation was not significant in terms of the extraction of most of the 

kinematic features except kurtosis and spectral entropy.  

The same sets of kinematic features were extracted from both measurement 

systems. Except kurtosis of the velocity profiles (𝑝 = 0.0127) and spectral 

entropy of the acceleration profiles (𝑝 = 0.0172), no significant difference 

was found among other features.  

The above findings contribute to the exploration of a low-cost alternative 

position tracking method in a home environment for 2D movements. This 

position tracking method has the advantage of accurately recording the 

relative position during a 2D movement while requiring less learning 

experience from the users. It could be conveniently integrated with a hand-

held device proposed in this research at the hardware level and with a 

serious game presented in the early-stage work at the software level. One of 

the major limitations of this tracking method is that no vertical information 

could be measured. A potential solution to this problem is to add a self-

developed Time of Flight (ToF) sensor at the bottom of the mouse or a hand-

held device. For example, the VL53L0X ToF sensor has a measuring 

distance of 30 mm to 1000 mm, which covers sufficient space for a vertical 

movement.  

Except mouse position tracking, computer vision-based position tracking 

method would be discussed below. It would be beneficial to conduct a 

comparative analysis between two measuring system to suggest each of 

their suitable application environment.  

4.2 Computer Vision Tracking Experiment 

4.2.1 Results 

A self-written Python script running an open-source computer vision 

algorithm was used to track the position of a single pendulum. The tracking 

was achieved by continuously extract a specific colour from the background 

noise using the Back Projection method. In order to verify the accuracy of 

this measuring system, Optotrak was also set up as a gold standard. The 

measurements from both systems were taken simultaneously with a 

changing distance between the single camera vision system and the 

pendulum object. This distance was changed incrementally from 40 cm to 70 
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cm with an increment of 5 cm. This distance range was determined by the 

camera specification used during the experiment. A very short or long 

distance would stop the camera from focusing on the pendulum object. This 

distance range is also within the recommended distance range (50 cm - 100 

cm) between a user and a computer screen. Figure 4.5 shows both 

measurements at a distance 𝑙 = 40 cm.  

 

Figure 4.5 Normalised position measurements from computer vision system and 
Optotrak 

It was observed that a relatively small position error existed between two 

measurement systems. Overall, positions measurement by the computer 

vision system did not show significant difference from Optotrak 

measurements. A small amount of time delay (i.e., approximately 0.2 second) 

was presented in the middle of the measurement by the vision system, 

which could be the result of the changing frame rate of the camera during 

the measurement. The frame rate was determined by the speed of the Back 

Projection algorithm on processing each image frame in a video. The 

maximum frame rate allowed during the Back Projection is 30 frames per 

second (FPS).  

In order to quantify the measurement error of the vision system, root mean 

square error (RMSE) of the normalised position measurements between two 

systems was computed for 15 pendulum cycles at each distance and is 

shown in Figure 4.6. 
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Figure 4.6 Normalised RMSE for all measurements at all distances. 

Overall, the average normalised RMSE was 0.12909 for all measurements 

at all distances between the Optotrak and the computer vision system. The 

dashed curve near each box also demonstrated a high possibility that data 

was from a normal distribution. Based on this experiment result, an ideal 

working distance for the vision system could be recommended in the range 

of 𝑙 = 55 cm to 𝑙 = 65 cm. The variance of the normalised RMSE value was 

larger at both ends of the working distances. All these findings suggested 

that computer vision-based position tracking method is limited by the 

working distance between the tracked object and the camera. The tracking 

quality is also restricted by the specification of the camera and the level of 

background noises. 

4.2.2 Statistical Analysis 

A two-sample t-test at 95% confidence level was conducted for each 

distance to detect any significant difference between the two measurement 

systems as shown in Figure 4.7. 
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Figure 4.7 Two-sample t-test on average NRMSE at all distances. 

It was shown that a significant difference was observed between 𝑙 = 45 cm 

and 𝑙 = 60 cm. No significant differences were observed for other distances 

between the two systems. This observation further contributed to the 

determination of the ideal working distance for this vision system was at 𝑙 =

60 cm.  

The test-retest reliability was verified using the intraclass correlation 

coefficient (ICC A, 1) as shown in Figure 4.8. 

 

Figure 4.8 Test-retest reliability for 15 measurements. 

Using the same guideline, the test-retest reliability was considered to be 

good. However, compared to the mouse sensor tracking reliability (𝐼𝐶𝐶 =

0.999), positions measured by the vision system were less reliable based on 

a lower ICC score (𝐼𝐶𝐶 = 0.777). 

Overall, the position tracking method based on a computer vision algorithm 

could record the movement of a single pendulum accurately but with some 

delay time due to the specification of the camera and the background noise. 

However, the recorded movement during this experiment was a simple 

Intraclass Correlation Coefficient 

 Intraclass 

Correlationb 

95% Confidence Interval F Test with True Value 0 

Lower Bound Upper Bound Value df1 df2 

Single Measures .199a .042 .654 4.371 5 65 

Average Measures .777 .381 .964 4.371 5 65 
 

Two-way random effects model where both people effects and measures effects are random. 

a. The estimator is the same, whether the interaction effect is present or not. 

b. Type A intraclass correlation coefficients using an absolute agreement definition. 
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repetitive pendulum movement that could not represent the complexity of 

most of the activities of daily living (ADL). Compared to a mouse position 

tracking method, the decrease in the test-retest reliability also suggests that 

the computer vision-based tracking method may show weaker performance 

in the accuracy and response time if multiple measurements are conducted. 

However, one of the most efficient and commonly applied psychotherapy for 

post-stroke patients is repetitive exercise. These limitations of the computer 

vision-based method using a single camera prevent it from being used for 

kinematic feature extraction. On the other hand, it is more suitable for 

detecting a simple binary-type problem such as the monitoring on the safe 

working space of a rehabilitation robot and as the control input for serious 

games.  

The above limitations and suggestions are based on the single camera 

computer vision algorithm developed in this thesis. Dual camera systems 

may overcome the existing limitations of the current algorithm. For example, 

a depth information estimation could be achieved by a dual camera system. 

However, most of the camera-based systems rely on the colour separation 

from the background, which will be significantly influenced by surrounding 

environments and the movement complexity during the application. It is 

therefore recommended to apply joint localisation measurement for the 

upper limb movement assessment in the future study. Unlike colour 

separation, the key joint localisation method uses existing trained machine 

learning models to detect human joints like wrists, elbows, shoulders and 

knees, and use a straight line to represent different parts of the limbs. The 

machine learning approach would have less requirements on the application 

environments and movement complexity.  

A thorough comparison between computer vision-based position tracking 

algorithm and the mouse sensor-based position tracking method was 

presented at the end of this chapter in the discussion part.  

4.3 Movement Type Classification Experiment 

One of the important tasks for kinematic assessment after the measurement 

of position data is to determine the movement type. Different movement 

types require different muscle groups to work. Understanding which 

movement has been done during a rehabilitation intervention helps design a 

more personalised and specific therapy for different individuals. Additionally, 

recognising different upper limb movements would help determine the 

sample frequency of the sensor to save battery life in a home environment.  
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Therefore, four daily activities including reaching out, turning a key, drawing 

a circle, and drinking water were selected for the movement classification 

task based on kinematic features. A total of 6 types of features were 

extracted from the movement acceleration profiles along the three axes. 

Therefore, a total of 3 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠) × 6 (𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) = 18 (𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)  were 

used for model training and evaluation for movement type classification. 

Prior to feature selection process, all 18 features were adopted for the model 

training. Table 4.2 presents the model training and evaluation results.  

Table 4.2 Evaluation on movement type classification models. 

Model AUC 𝐹ଵ 
Training 

Accuracy 

Test 

Accuracy 

Computational 

Time 

SVM 1 1 100% 100% 22.797 

RF 0.9167 [0.63,1,1,1] 94.6% 95.8% 12.729 

KNN 1 1 100% 95.8% 15.769 

DNN 1 1 100% 95.8% 46.014 

It was shown that all classification models could have a training and test 

accuracy above 90%. However, RF has a lower training and test accuracy 

though it had the fastest computational time on model training. KNN and 

DNN both failed a 100% test accuracy, indicative of a model overfitting on 

the training data set. Specially, DNN consumed the longest computational 

time among all models. Though the layers of the model were limited to three, 

the number of neurons in each layer was not limited for the optimiser. 

Consequently, though the number of training iterations was set to be the 

same for all models, the computational time for DNN was longer than the 

others. SVM had an ideal performance on both model accuracy and 

computational time. A scatter plot for SVM model training result was shown 

in Figure 4.9.  

The computational time is important if online machine learning models will 

be deployed in the future device. The term online here means that the 

machine learning model is being trained in real time when new training data 

is available from sensors. On the contrary, offline models are only trained 

the first time before the model is being applied to solve a problem. Therefore, 

the investigation on the computational time here in the thesis contributed to 

the possibility of applying these machine learning models in real time with 

existing rehabilitation robotic devices.  
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Figure 4.9  Scatter plot with maximum acceleration on X and Y axis. 

In order to optimise the computational time and the model performance, a 

feature selection process using the Minimum Redundancy Maximum 

Relevance (MRMR) algorithm was adopted prior to model training. The 

model performance and the computational time after feature selection were 

compared with the previous base models. Minimum Redundancy Maximum 

Relevance (MRMR) algorithm minimises the redundancy and maximise the 

relevance of feature sets to the response value so that the response values 

could be effectively represented by features with maximum dissimilarity. 

Table 4.3 presents the training results after selecting the top 66.7% features 

with decrease in their MRMR scores. 

Table 4.3 Model performance after feature selection process using MRMR. 

Model AUC 𝐹ଵ 
Training 

Accuracy 

Test 

Accuracy 

Computational 

Time 

SVM 1 1 100% 100% 30.078 

RF 0.9167 [0.63,1,1,1] 94.6% 95.8% 8.577 

KNN 1 1 100% 95.8% 11.597 

DNN 1 1 100% 100% 142.94 

DNN consumed significantly longer time compared to the base model. 

However, its test accuracy was improved to the same level as SVM after the 

feature selection process. This suggests that the feature selection process 

successfully managed to eliminate noisy features from the entire feature set. 
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No obvious performance changes were observed among SVM, RF and KNN. 

A further decrease in the number of selected features was also attempted. 

However, the performances of all models were decreased due to the 

insufficient number of features in terms of training and test accuracy. 

Therefore, it was crucial to balance the number of selected features and the 

number of categories to be classified for classification models in the later 

movement quality assessment tasks.  

Apart from MRMR, other commonly adopted feature selection algorithms, 

specifically Chi square test [83], ANOVA and Kruskal Wallis test [84], were 

also applied to the feature sets in order to find the most relevant features for 
this task. The top 5 selected features by MRMR were: 𝐴௬௫, 𝐴௬

തതതത, 𝑊𝐿௫, 𝐴௬௦ 

and 𝐴௭௫ . The top 5 selected features by Chi square test were: 𝐴௫௫ , 
𝐴௬௫, 𝐴௬௦, 𝐴௭௦ and 𝑊𝐿௫. The top 5 selected features by ANOVA were: 

𝐴௬௫, 𝑊𝐿௫, 𝐴௫, 𝐴௫௫ and 𝐴௭. The top 5 selected features by Kruskal 

Wallis test were: 𝑊𝐿௫, 𝐴௭௦, 𝐴௬௦, 𝐴௬௫  and 𝐴௫௫ . It was found that the 

maximum acceleration along 𝑌 axis 𝐴௬௫, the maximum acceleration along 

𝑋  axis 𝐴௫௫  and the wavelength of acceleration along 𝑋  axis 𝑊𝐿௫  were 

mostly selected by all algorithms. This was presented with the four distinct 
clusters plotted with 𝐴௫௫  and 𝐴௬௫  as shown in Figure 4.9 and the 

literature search results listed in Table 2.1. However, this classification was 

achieved only by acceleration profiles. The effectiveness of kinematic 

features extracted from position and velocity profiles needs to be examined 

for comparison in a more complex and generalised movement pattern.  

In summary, four ML models (i.e., SVM, RF, DNN and KNN) were applied 

individually to classify four movement patterns using kinematic features 

extracted only from acceleration profile. The base models without further 

feature selection could already achieve ideal classification results with SVM 

having 100% accuracy for both training and test dataset. MRMR algorithm 

was then applied to the base model for feature selection. The performance 

of DNN was improved in terms of an increase in test accuracy though its 

computational time was increased significantly compared to the base model. 

The performance of other models was not significantly changed after the 

feature selection. Apart from MRMR, other feature selection algorithms were 

also adopted to find the most related features for this classification task. 

Maximum acceleration along 𝑋 and 𝑌 axis was mostly selected. This may be 

a bias introduced by the particular movement patterns used in the 

experiment. Therefore, it is worth verifying the effectiveness of these 

features in a more generalised and complex movement pattern.  
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So far, kinematic features have been successfully extracted from position, 

velocity and acceleration profiles measured by both Optotrak measurement 

system and a mouse position sensor. Kinematic features extracted from the 

acceleration profiles have demonstrated their ability to classify four different 

movement types with supervised machine learning models. This proves the 

feasibility of applying machine learning models to solve more complex 

problems regarding to the upper limb movement assessment.  

4.4 Movement Smoothness Assessment Experiment 

Objectively measuring movement smoothness contributes to upper limb 

movement analysis. Firstly, it could help monitor the recovery process for 

movement related diseases like a bone fracture. It could also monitor the 

rehabilitation process in terms of movement progression for neurological, 

such as stroke and Parkinson. Additionally, it provides an insight into how 

human progress in a single and repetitive movement, benefiting muscle 

fatigue monitoring and sports training.  

A single group observational study was conducted to verify the application of 

machine learning models in classifying movement patterns and movement 

qualities. Overall, 6720 kinematic features were extracted from the 

experiment using a single position sensor (14 participants × 4 movement 

patterns × 10 drawing attempts × 12 features). The 4 movement patterns 

included DA + 0-degree rotation, DA + 180-degree rotation, NDA + 0-degree 

rotation and NDA + 180-degree rotation. The 12 features are all listed and 

explained in Table 3.2.  

4.4.1 Observation of Learning Progress 

In order to present clear learning curves, the first, middle and last three 

attempts for each movement pattern were grouped together as beginning (1), 

intermediate (2) and smooth (3) level. Six features were able to reflect a 

learning progress with more drawing attempts made in all movement 

patterns as shown from Figure 4.10 to Figure 4.13.  

A single-term exponential function (monotonic decrease) was firstly used to 

fit each kinematic features over 10 drawing attempts. Distance (𝐷) travelled 

during the experiment failed the curve fitting process except in the NDA + 

180-degree rotation pattern. Reasons are listed below. 

1) All participants could adapt to this movement pattern quickly during 

the learning process since the triangle pattern is not complicated to 

be followed by people with normal upper limb functions.  
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2) Distance is not sensitive enough to reflect the subtle learning 

progress throughout the process. 

Instead, movement duration (𝑇), normalised jerk (𝑁𝐽) and number of peaks 

in acceleration profiles (𝑁𝑂𝑃) could reflect most of the learning progress 

monotonically and efficiently despite of current movement pattern. Sample 

entropy (𝑆𝑎𝑚𝑝𝐸𝑛) and spectral entropy (𝑆𝐸) showed limited representations 

on the learning progress with a poor fitness to the assumed exponential 

relationship. Other kinematic features listed in Table 3.2 could not reflect the 

learning progress though they were useful in the later classification tasks.  
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Figure 4.10 Change in kinematic features in DA + 0-degree rotation movement 
pattern. 

 

 

 

 

 

Figure 4.11 Change in kinematic features in DA + 180-degree rotation movement 

pattern. 

 



- 59 - 

 

Figure 4.12 Change in kinematic features in NDA + 0-degree rotation movement 
pattern. 

 

Figure 4.13 Change in kinematic features in NDA + 180-degree rotation movement 
pattern. 

A comparison was then conducted between each movement pattern using 

the average value over 10 attempts. Table 4.4 presents the average values 

for each kinematic features. 

It was shown that distance (𝐷), duration (𝑇), normalised jerk (𝑁𝐽) and 

number of peaks (𝑁𝑂𝑃) increased significantly when a mouse rotation was 

added. This was expected since additional complexity was intoduced to the 
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control of muscle groups during the movement. However, no significant 

changes were observed in sample entropy (𝑆𝑎𝑚𝑝𝐸𝑛) and spectral entropy 

(𝑆𝐸). This suggests that the two features may not be sensitve enough to 

reflect movement smoothness difference between each pattern or the two 

features have a poor test-retest reliability so that a larger variance 

throughout the ten attempts is presented.   

Table 4.4 Average kinematic features over 10 attempts for each movement pattern. 

Type 𝐷 𝑇 𝑁𝐽 𝑁𝑂𝑃 𝑆𝑎𝑚𝑝𝐸𝑛 𝑆𝐸 

DA+0 395.0939 13.0147 5402.1 112.5276 0.0402 9.3570 

DA+180 465.1987 14.7399 10824 148.8923 0.0407 9.6509 

NDA+0 370.1449 12.8656 5685.8 104.476 0.0408 9.3032 

NDA+180 436.4009 16.1821 11368 125.4121 0.0368 10.656 

To further justify and verify the application of the selected kinematic 

features, Pearson product moment correlation coefficient (𝑟) and intraclass 

correlation coefficient (ICC A, 1) were determined to quantify the strength of 

linear correlation and inter-feature reliability. The correlation coefficients (𝑟) 

are shown in Figure 4.14. 

 

Figure 4.14 Pearson's correlation coefficients for all selected kinematic features in 
(a) DA + 0-degree rotation, (b) DA + 180-degree rotation, (c) NDA + 0-degree 

rotation and (d) NDA + 180-degree rotation.  
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Overall, it was shown that a relatively more consistent correlation was 

observed in the DA group regardless of mouse rotation whereas changes in 

correlations existed in the NDA group. The correlation coefficients for each 

kinematic feature pair decreased from DA to NDA. In the DA group, 

distance (𝐷 ) was not well correlated with any other kinematic features. 

However, it correlated moderately with spectral entropy (𝑆𝐸) in the NDA 

group. Movement duration (𝑇), normalised jerk (𝑁𝐽) and number of peaks 

( 𝑁𝑂𝑃 ) correlated strongly with each other in all movement patterns. 

Moderate correlations were also observed for sample entropy (𝑆𝑎𝑚𝑝𝐸𝑛) 

and spectral entropy (𝑆𝐸) with other features in the DA group.  

Since normalised jerk (𝑁𝐽) has been clnically verified by numrous research, 

its correlation between other kinematic features were of interests. Using the 

guideline provided in section 3.4.4, moderate to strong correlations were 

observed with other kinematic features except distance (𝐷) in DA group. 

However, the correlation between 𝑁𝐽 and 𝑆𝐸 decreased significantly from 

DA to NDA where only weak to good correlations were found. This 

suggests that the degree of linearity between the spectral entropy and the 

normalised jerk may change with respect to the movement complexity.  

The inter-feature reliability was verified using the intraclass correlation 

coefficient (ICC A, 1). The two-way random absolute agreement definition 

was adopted. ICC for each movement pattern is shown in Figure 4.15. 

 

Figure 4.15 Inter-feature reliability verified by intraclass correlation coefficient. 

Using the guideline described in section 3.4.4, good inter-feature reliability 

was observed among all movement patterns. This means that a good 
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agreement between each kinematic feature pair is observed. This is a 

positive outcome to show that every kinematic feature presented in this 

thesis had a good consistency in describing movement smoothness 

regardless of different movement patterns. Therefore, a machine learning 

model could be trained next for both movement pattern clasification and 

movement smoothness assessment.  

4.4.2 Movement Pattern Classification 

Although previous analysis and results showed good consistency for all 

kinematic features in describing the motor learning progress, their values 

varied a lot from the four different movement patterns as shown in Table 

4.4. It is therefore important to differentiate between the four movement 

patterns (dominant/nondominant arm with/without mouse rotation) before a 

proper movement smoothness analysis could be conducted. The aim of the 

model is to classify four movement patterns prior to movement smoothness 

assessment. 12 kinematic features were extracted using the pipeline shown 

in Figure 3.7. ANOVA was used for feature selection with DNN, and the 

ReliefF was used with KNN and SVM since the ReliefF is particularly 

suitable for distance-based models [85]. Random forest (RF) was not 

adopted for this classification task since it was proved in the previous 

classification tasks to be less effective in section 4.3 than other ML models 

in terms of training accuracy. Models without feature selection process 

were not evaluated either since no significant performance drop was 

observed in the previous movement pattern classification tasks. 15% of the 

data was split as the test data set. A 5-fold cross validation was applied to 

all the models to prevent model overfitting. Training accuracy (𝐴௧), test 

accuracy (𝐴௧௦௧), F1 score (𝐹ଵ) and Cohen’s Kappa (𝜅)  [86] were used to 

evaluate the model performance. Table 4.5 shows the classification and 

evaluation results on movement patterns.  

Table 4.5 Evaluations on ML models classifying movement patterns using training 
and test accuracy, F1 score and Cohen’s Kappa. 

Evaluation SVM KNN DNN 

𝐴௧ 100% 100% 100% 

𝐴௧௦௧ 100% 100% 100% 

𝐹ଵ 1 1 1 

𝜅 1 1 1 

All the models could achieve 100% training and test accuracy using the 
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selected kinematic features. It was shown in section 4.3 that peak 

accelerations along 𝑋 and 𝑌 directions are the most selected feature by all 

feature selection algorithms to achieve a good classification result on the 

previous movement patterns. However, instead of extracting features from 

all kinematics, only acceleration-based features were used in the previous 

task. Therefore, it is worthwhile to examine the similarities on the results of 

the feature selection process, especially peak accelerations by comparing 

the selection results from both tasks. For each algorithm, the top 50% of the 

features would be recorded.  

The selected kinematic features for DNN are (from the highest ANOVA 
score to the lowest): 𝑆, 𝑉ത , 𝑉𝑎𝑟, 𝑇, 𝐴, 𝑁𝐽, 𝑉 and 𝐷. The selected features 

for KNN are (from the highest ReliefF score to the lowest): 𝑆, 𝑉 , 𝐴 , 𝑇, 

𝑆𝑎𝑚𝑝𝐸𝑛, 𝑉ത , 𝐷, 𝑁𝐽, 𝑉𝑎𝑟 and 𝐾. The selected features for SVM are (from the 
highest ReliefF score to the lowest): 𝑆, 𝑉, 𝐴, 𝑆𝑎𝑚𝑝𝐸𝑛, 𝑇, 𝐾, 𝑉ത , 𝐷, 𝑁𝐽 and 

𝑉𝑎𝑟 . Figure 4.16 presents the number of selections for each kinematic 

feature in this classification task.  

 

Figure 4.16 Number of selections for each kinematic feature in the movement 
pattern classification task. 

It was shown that distance-based and velocity-based kinematic features 

also contributed to the classification task. Peak acceleration was also 

selected by all algorithms, which is consistent with the selection in the 

previous classification task. The same selection result on the peak 

acceleration may help reject the hypothesis raised at the end of section 4.3 

that movement patterns may introduce bias in the feature selection 

process. The rejection is made because of the usage of the same triangle 

pattern throughout the experiment for both DA and NDA.  

Though 𝑆𝑎𝑚𝑝𝐸𝑛 and 𝑁𝑂𝑃 were not selected in this task by any algorithm, 
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they were proved to be beneficial in the observation of learning progress in 

the previous section. Their usage on the later movement quality 

classification should be studied. Additionally, based on the score 

performance listed above, velocity-based features such as skewness (𝑆) 

were especially suitable for movement pattern classification.  

These findings contributed to the classifications of different movements, 

which is beneficial for telerehabilitation in a home environment since the 

patients’ exercise movement could be checked and monitored 

automatically. 

4.4.3 Movement Smoothness Classification 

The goal of applying machine learning models with kinematic features in 

this thesis is to sensitively classify movement smoothness by predicting as 

many repetitions as possible. A higher number of repetitions being 

predicted would illustrate a higher sensitivity in showing subtle smoothness 

changes throughout the experiment. This contributes to the upper limb 

rehabilitation process in terms of providing longitudinal monitor of upper 

limb movement. Additionally, it also helps understand the muscle 

performance in repetitive movements for sports training, struggle detection, 

motor learning progress and fatigue detection.  

To this end, several machine learning models are trained to classify the 

movement smoothness into different levels based on the same kinematic 

features applied in the previous sections. Since the triangle pattern was 

firstly shown to all participants on site, an increase-steady pattern in 

movement smoothness was hypothesised to be observed monotonically 

with more drawing attempts. The most sensitive and the best outcome of a 

model is to classify different drawing attempts using the first labelling 

method introduced in the previous chapter, into 10 different levels that is 

the same as the total number of drawing attempts. This indicates that the 

proposed machine learning model and kinematic features could reflect very 

subtle smoothness change in a short time. A total of 7 supervised machine 

learning models were used for this classification job. The input of the 

models is the extracted kinematic features, and the output of the models is 

the number of repetitions (i.e., from 1 to 10). During this process, if the 

training accuracy does not exceed 50%, another labelling method (labelling 

method that has 5 and 3 classes) would be adopted. When the training 

accuracy is above 50% with the current labelling method, the top 3 machine 

learning models and the current labelling method would be adopted for the 

rest of the analysis. Table 4.6 presents the training results using all 7 
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machine learning models and the first two labelling methods.  

Table 4.6 Initial classification results using 7 machine learning models and 2 
labelling methods. 

Model 

Training Accuracy 

Labelling method 1 

(10 classes) 

Labelling method 2 

(5 classes) 

SVM 10.0% 44.4% 

KNN 0.0% 22.2% 

DNN 0.0% 22.2% 

Tree 0.0% 0.0% 

Ensemble 0.0% 11.1% 

Naive Bayes Failed Failed 

Discriminant Failed Failed 

It was observed that when the first labelling method was adopted, no 

machine learning models could achieve a training accuracy above 50%. 

This suggests that the power and the number of the selected kinematic 

features does not support the classification into the best outcome. When 

the second labelling method was used, the performance of SVM, KNN, 

DNN and Ensemble models increased to a certain level that was still below 

the expected training accuracy. Based on the results of this initial attempt, 

three machine learning models including SVM, KNN and DNN were 

selected for the rest of the classification task. The labelling method were 

also changed to method 3 that has 3 classes including beginning, 

intermediate and smooth level.  

The same feature extraction and data preparation method was used in the 

following movement smoothness classification based on the selected 

machine learning models and labels from the initial attempt. 15% of the 

data was split as the test set and a 5-fold cross validation was applied to 

prevent model overfitting. The same metrices were used to evaluate the 

model performance, specifically training and test accuracy, F1 score and 

Cohen’s Kappa. Table 4.7 presents the evaluation results on the model. 
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Table 4.7 Evaluations on ML models classifying movement quality using training 
and test accuracy, F1 score and Cohen’s Kappa. 

Movement 

Pattern 

Evaluation 

Metric 
DNN KNN SVM 

NDA 

180-

degree 

rotation 

𝐴௧ 100% 100% 100% 

𝐴௧௦௧ 100% 100% 100% 

𝐹ଵ 1 1 1 

𝜅 1 1 1 

NDA 

0-degree 

rotation 

𝐴௧ 87.5% 75% 87.5% 

𝐴௧௦௧ 100% 100% 100% 

𝐹ଵ [1, 0.86, 0.80] [0.80, 0.67, 0.80] [0.67, 0.86, 1] 

𝜅 0.81 0.63 0.80 

DA 

180-

degree 

rotation 

𝐴௧ 75% 75% 87.5% 

𝐴௧௦௧ 100% 100% 100% 

𝐹ଵ [0.50, 0.67, 1] [0.80, 0.50, 0.86] [0.67, 0.86, 1] 

𝜅 0.62 0.63 0.80 

DA 

0-degree 

rotation 

𝐴௧ 62.5% 75% 75.5% 

𝐴௧௦௧ 100% 100% 100% 

𝐹ଵ [0.67, 0.57, 0.67] [0.67, 0.75, 0.80] [0.67, 0.75, 0.80] 

𝜅 0.41 0.62 0.62 

Overall, the model performance deteriorated from the most difficult pattern 

(i.e., NDA with 180-degree rotation) to the least difficult pattern (i.e., DA 

with 0-degree rotation). This is reasonable since a DA inevitably tends to 

have a faster learning speed than NDA. Therefore, at the end of the 

experiment with DA, no obvious progress could be monitored. As a 

consequence, it would be rather difficult for ML models presented in this 

work to distinguish the movement smoothness towards the end of the 

experiment session. Therefore, the best classification results were achieved 

in the NDA with 180-degree pattern, and the worst classification results 

were achieved in the DA with 0-degree pattern.  

Although the training accuracy decreased from the most difficult pattern to 
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the least difficult pattern, the test accuracy remained at 100% for all the 

models throughout different patterns. One possible explanation could be 

the insufficient amount of training data for verification that leads to a model 

underfitting. Models trained by insufficient amount of training data could not 

capture all the characteristics of the relationship between input features and 

output labels. A larger dataset needs to be constructed in order to balance 

the performance and complexity of the ML models. It is therefore 

recommended to establish an upper limb movement data repository that 

contains kinematic data for standardised movements to enable comparison 

between different algorithms.  

Additionally, models tended to misclassify beginning level and intermediate 

level based on relatively smaller 𝐹ଵ scores. For all the ML models presented 

in this section, SVM had overall a better performance over other models.  

4.5 Discussion and Summary 

In this chapter, the results of the four experiments designed in chapter 3 

were presented and verified using a series of experimental results and 

statistical analysis. The first two experiments explored the application of two 

position tracking methods using a mouse sensor and a computer vision 

system, which formed the basis of kinematic movement assessment and 

provided a potential for alternative low-cost position tracking method in a 

home environment. The third experiment was designed to classify four 

different movement types that could represent some of the common 

human’s activities of daily living. The final experiment was conducted among 

14 participants in order to verify the application of machine learning models 

in terms of movement pattern classification and movement smoothness 

assessment.  

4.5.1 Position Tracking 

Mouse position tracking was firstly studied. Although this position tracking 

method does not support the measurement of rotational information and 

vertical movement, it showed excellent consistency and good accuracy in 2D 

movement position tracking tasks. This was reflected and verified by a 

relatively small RMSE in position, velocity, and acceleration profiles (from 

0.20056 to 0.75388). The test-retest reliability for this method was excellent 

with 𝐼𝐶𝐶 = 0.999.  

The RMSE was higher in acceleration profiles due to the differentiation 

process, which makes it rather important in filter design and signal 
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processing since movement quality assessment relies heavily on 

acceleration-based features. Another reason for higher RMSE was the 

misalignment of the two sensors during the experiment. Since mouse 

sensors cannot measure rotational information, it may still lose some 

movement characteristics even in 2D planar movements due to the rotation 

of the wrist. To further examine the effect of this characteristics lost, the 

same set of kinematic features used in the movement smoothness 

assessment were extracted from the mouse sensor measurement. It was 

found that except kurtosis and spectral entropy, no significant difference was 

observed in other kinematic features. Moreover, it was observed in Figure 

4.16 that spectral entropy was not selected by any feature selection 

algorithm in the later movement smoothness assessment task and kurtosis 

was not the most relevant feature either. Therefore, the effect of the sensor 

misalignment was not significant in any of the tasks presented in this 

research.  

Computer vision-based tracking method was then studied and verified with a 

single pendulum movement. Excellent tracking accuracy was also obtained 

with an average RMSE = 0.12909 . An ideal working distance was also 

confirmed to be around 𝑙 = 60 cm based on a lower-than-average RMSE 

and its significance level. However, since vision-based tracking method 

relies heavily on the software environment and camera frame, a small 

amount of time delay (about 0.2 second) was observed in the pendulum 

experiment, which could make tests less reliable during long-term monitoring. 

This is consistent with a smaller test-retest reliability with 𝐼𝐶𝐶 = 0.777. 

Both systems could achieve an ideal position tracking result. However, 

vision-based tracking method is less reliable than a mouse sensor tracking 

in terms of its test-retest reliability. It is also important to choose the ideal 

working distance for the vision-based system since the tracking accuracy 

could change significantly with various distances. Additionally, vision-based 

systems can only work when the detected object is extracted from the 

background image. The object detection can be either colour based, or 

shape based. Therefore, its accuracy is highly dependent on the object 

detection results, which could be significantly influenced by the surrounding 

environment such as lighting condition. As a consequence, single camera 

vision-based position tracking method may be suitable for remote control 

using different gestures or finger positions. It may also help detect if the 

moving limb is within the safe working space of the rehabilitation robots. 
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Table 4.8 presents the characteristics of both tracking methods and the 

recommended applications.  

Table 4.8 Summary of the measurement systems. 

 Mouse Sensor Vision System 

Accuracy Good Excellent 

Delay None Slight delay 

Cost Low Low 

Environment 

Dependency 
Low High 

Ease of Use Easy Easy 

Reliability Excellent Good 

Limitations 

 Unable to measure 

rotational and vertical 

information. 

 Positions are 

measured in pixel but 

not real distances. 

 Working distance is 

strictly limited by the 

camera 

specifications. 

 Two cameras are 

needed to measure 

depth and rotational 

information.  

Recommended 

Application 

 2D movement position 

tracking. 

 2D movement quality 

assessment. 

 Remote 

gesture/position 

control. 

 Working space 

detection. 

4.5.2 Movement Type Classification 

Movement type classification can be useful for an real-time personalised 

movement assessment and a longer battery life for the device. When users 

are assessed by the device, the device has the ability to recognise the user’s 

specific movement in order to change the sensor sample rate to better 

capture the characteristics of the movement. On the contrary, when no 

activity is detected, the sensor sample rate would be decreased for battery 

life. This dynamic re-configuration of the device would only be achieved if 

movement type classification could be satisfied. The results presented in this 

section is a proof of such concept due to the following two reasons. Firstly, 
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the classification results are promising using kinematic data from a single 

IMU sensor. Secondly, the supervised machine learning models like SVM 

are proved to be implemented successfully with existing microcontrollers.  

In the present work, movement type classification was firstly attempted with 

four individual upper limb movements including reaching, turning keys, 

drawing circles and drinking. Four machine learning algorithms (SVM, RF, 

KNN and DNN) were adopted to classify these movement patterns based on 

kinematic features extracted from only acceleration measurements. All 

models could achieve 100% training accuracy except Random Forest (RF). 

The computational time was hugely influenced by the feature selection 

process, but it had insignificant influence on model accuracies. The most 

selected kinematic features for this classification task were the peak 

accelerations on the 2D plane.  

To further verify the machine learning-based movement classification with 

more complex movement, another movement pattern classification was then 

conducted as part of a single group observational study with 14 participants. 

In this study, four movement patterns were consisted of the combinations of 

different upper limbs (both dominant and non-dominant) and two mouse 

rotation settings (without rotation and with 180-degree rotation). The same 

triangle pattern used in the mouse sensor position tracking experiment was 

adopted. Since Random Forest (RF) had a poorer performance in the 

previous easier task, only SVM, KNN and DNN were applied to classify four 

movement patterns based on kinematic features extracted from position, 

velocity, and acceleration profiles. All models could achieve excellent 

performances with 100% training and test accuracy. Two feature selection 

process targeting corresponding ML models was adopted since 

computational time was not strictly limited in this task. The most selected 

kinematic features for this classification task were velocity-based features. 

Peak acceleration had limited significance in the second task. This is 

because the four movement patterns in the first classification task have 

distinctive movement trajectories whereas the same trajectory (triangle 

pattern) was followed in the second task. Therefore, similar acceleration 

profiles obtained from the second task would result to similar peak 

accelerations. As a conclusion, acceleration-based features are mostly 

suitable for classifications on movements with unique trajectory. On the 

contrary, velocity-based features are more beneficial for movements with 

similar trajectories.  
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Only 6 kinematic features were used to present an exponential monotonic 

learning curve over 10 attempts. However, all kinematic features contributed 

to the classification on movement smoothness assessment. For example, 

skewness of velocity profiles varied so hugely from different participants and 

number of drawing attempts that neither linear nor exponential relationship 

could be well fitted as shown in Figure 4.17. 

Figure 4.17 Skewness varied from different movement patterns and number of 
attempts. 

However, different movement patterns have very distinguishable skewness 

as shown in Figure 4.17. It is also considered to be the most related 

kinematic features by both ANOVA and the ReliefF. Other velocity-based 

features also had higher ANOVA and the ReliefF scores compared to 

acceleration-based and distance-based features. This was also reported in 

[38] where velocity-based features were used to accurately classify different 

movement trajectories and [40] where upper limb rehabilitation process was 

sensitively monitored with the aid of robotic devices using velocity-based 

features. 

Support Vector Machine (SVM) had ideal performance on both classification 

tasks. Though K-Nearest Neighbours (KNN) also achieved excellent 

classification result on the triangle pattern task, its decreased test accuracy 

(from 100% to 95.8%) in the first classification task indicated a model 

overfitting. Deep neural network (DNN) had excellent classification results on 

both tasks. However, its computational time after feature selection process 

increased 210.6%. This huge increase computational time may not be 
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suitable for an online machine learning application that generates real-time 

feedback. However, if the model is applied offline as a data processing tool, 

the increase of the computational time would be less essential. A great 

balance between model performance and training time was achieved only by 

SVM. This suggests that SVM could be used as a baseline measurement for 

future machine learning-based movement analysis for both online and offline 

applications. However, these results were only obtained based on the 

selected kinematic features described in this thesis. The performance of the 

same machine learning model may change based on different selections of 

kinematic features and movements. It is therefore recommended to establish 

a standard movement repository in the future study that involves inputs from 

engineers, clinicians, physiotherapists and potentially stroke patients so that 

comparative analysis could be conducted.  

4.5.3 Observation of Learning Progress  

A single group observational experiment with 14 participants was conducted 

in order to assess movement smoothness using kinematic features. An 

exponential curve was firstly used to fit all kinematic features over 10 

attempts for each movement pattern. It was assumed before the experiment 

that the actual displacement during the movement would help identifying the 

learning progress since participants were more familiar with the same 

pattern. However, distance failed the curve fitting process (i.e., extremely 

small 𝑅ଶ  values) except in the NDA with 180-degree rotation (the most 

difficult pattern). Two potential reasons are related to the complexity of the 

pattern and the sensitivity of the feature. Triangle pattern used in the 

experiment may not be complicated enough or participants got familiar with 

the pattern so that insufficient diversity was presented by distance. On the 

contrary, movement duration, normalised jerk and the number of 

acceleration peaks sensitively reflected a monotonic change over 10 

attempts. Sample entropy and spectral entropy both measures the 

complexity of the acceleration signals in time domain and frequency domain. 

They have the potential to reflect subtle improvements in quantifying upper 

limb movement smoothness since they presented moderate correlations 

over 10 attempts.  

During the curve fitting process, it was also found that some features 

extracted from the last three attempts by participants had larger variances 

than the previous attempts as shown in Figure 4.18. This may be related to 

the muscle fatigue and decrease in participants’ patience, willingness of 

cooperation etc toward the end of the experiment. This could also explain 
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why some kinematic features in a certain movement pattern had only poor to 

moderate exponential fitting over 10 attempts. From this point of view, 

sample entropy and spectral entropy may have a superior sensitivity in 

describing movement smoothness whereas normalised jerk, duration and 

number of peaks are more robust for subtle changes. It is therefore 

suggested to compare the sample entropy and spectral entropy results with 

the sEMG signal to validate the influence of muscle fatigue.  

 

Figure 4.18 Variance in some kinematic features in the last three attempts (DA+180-
degree rotation). 

Inter-feature correlations changed significantly from DA to NDA group. In the 

DA group, distance is not correlated with any other kinematic features. 

However, other kinematic features had moderate to good correlations with 

each other. This shows insufficient sensitivity of distance in reflecting motor 

learning progress. However, In the NDA group, an inconsistency in the 

correlation was observed. For example, spectral entropy correlated 

negatively with duration, normalised jerk, and number of peaks in NDA with 

0-degree rotation. Whereas this negative correlation changed to positive in 

NDA with 180-degree rotation. An explanation could be the inter-participant 

variability. During the consultation after experiment, 2 out of 14 participants 

reported capability in dominating both arms during activities of daily living. 

One participant specialises in PC gaming that requires frequent and fast 

response and aiming. Both circumstances could help participants in learning 

the triangle patterns much faster than others, which could cause the celling 

effect. 
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Specifically, movement duration, normalised jerk and number of acceleration 

peaks showed excellent correlations with each other in all movement 

patterns. Since normalised jerk has been verified with clinical assessment 

scores in existing literature, it is possible to examine the effectiveness of 

movement duration and number of acceleration peaks in upper limb 

movement assessments in the future study. Movement duration and number 

of acceleration peaks have the advantage over normalised jerk in terms of 

data collections and data processing. A single inertial measurement unit 

(IMU) could directly output time and acceleration data whereas normalised 

jerk requires additional filtering and differentiation process.   

4.5.4 Movement Smoothness Assessment 

The performance of movement quality classification deteriorated from the 

most difficult pattern (i.e., NDA with 180-degree rotation) to the least difficult 

pattern (i.e., DA with 0-degree rotation). Dominant arms have overall a faster 

learning speed than non-dominant arms since they are more frequently 

practiced in activities of daily living. This results to a more similar movement 

quality for more drawing attempts because of the ceiling effect [87] when no 

more obvious progress could be achieved. The ceiling effect was also 

supported by the fact that all ML models tented to mis-classify beginning and 

intermediate level. This was verified by relatively smaller 𝐹ଵ  scores. 

Therefore, it was challenging for all ML models presented in this research to 

classify movements conducted by dominant arms into more quality levels. 

This was verified by a significantly lower 𝐹ଵ score (19.9% lower) and 𝜅 (29.7% 

lower) compared to nondominant arms (NDA) group.  

Kinematic features have been successfully extracted from both Optotrak 

measurement system and the low-cost mouse sensor. No significant 

difference was observed between two sets of features except kurtosis of the 

velocity profile and the spectral entropy of the acceleration profile. The 

extracted features could reflect the motor learning progress over 10 drawing 

attempts on the same pattern during an experiment with 14 participants. 

Therefore, the research objective (c) was considered to be met.  

The movement smoothness classification was achieved by categorising the 

continuous 10 drawing attempts into 3 different groups including beginning, 

intermediate and smooth based on the selected kinematic features. The 

research objective (d) was therefore considered to be met. However, the 

classification into more classes is not ideally achieved in this research. The 

best classification outcome was prevented by the selection of current 

kinematic features and the number of total attempts made during the 
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experiment. The results from this thesis could help establish the baseline 

measurements for future upper limb assessment based on machine learning 

and kinematic features. Table 4.9 summarises the main findings of this part 

of the work. 

Table 4.9 Main findings on the kinematic assessment of upper limb movements. 

Position Tracking 

 Both mouse sensors and computer vision 

algorithms could potentially be used as a low-cost 

alternative for position tracking in a home 

environment with high accuracy. 

 Kinematic features extracted from the mouse 

sensor data does not show significant difference 

with those extracted from the Optotrak data. 

 A mouse sensor could be integrated into a haptic 

hand-held device for position tracking. 

 Computer vision algorithms are more suitable for 

the control of serious games and the detection of 

a safe working space of a rehabilitation robot.  

Movement Type 

Classification 

 Different movement types could be classified by a 

machine learning model with a similar trajectory 

(the triangle pattern) or different trajectories 

(reaching out, drawing circles, turning a key and 

drinking water). 

 Acceleration-based features are the most suitable 

for movement type classifications. 

 A standard movement repository could be 

established for comparative analysis on model 

performance and the progress monitoring. 

Movement 

Smoothness 

Assessment 

 Movement smoothness could be classified into 

three categories based on the selected kinematic 

features within a short period of time. 

 The inter-feature reliability between each 

kinematic feature is good in terms of describing 

the progression of upper limb movement 

smoothness. 

 Support Vector Machine has superior 

performance than the other machine learning 

models present in the thesis in terms of the 

balance between computational time and 
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accuracy. It could be used as a baseline 

measurement for future study. 

 Velocity-based features are the most suitable for 

movement smoothness assessment. 

 Movement duration and peak acceleration present 

strong correlation with the clinically verified 

normalised jerk. Clinical assessment scores may 

be successfully predicted by those two features, 

which is beneficial for the telerehabilitation in a 

home environment without the presence of 

clinicians.    

Recall the research question proposed in Chapter 2: Can the application of 

kinematic features and machine learning models provide more sensitive and 

continuous quality assessment for upper limb movements in a home 

environment compared to a traditional clinical assessment?  

All these findings help to answer this research question. Kinematic features 

extracted from a low-cost mouse sensor could be used to assess upper limb 

movement with the help of supervised machine learning models. This 

method has great sensitivity in differentiating different movement patterns 

but is limited for differentiating movement smoothness into more than three 

categories from movements within a short period of time. More subtle 

classifications are expected to be achieved by data in a continuous 

longitudinal experiment. Since this method applies mouse sensor for data 

collection, it could be continuously conducted without professional support in 

a home environment. Overall, the results and findings presented in this 

chapter have answered the research question and met the expectations of 

the research.     
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Chapter 5 Experiment Designs and Hardware Development – 
Haptic Cue 

In the previous chapter, kinematic assessments have been conducted using 

kinematic data collected from position sensors, specifically the Optotrak 

measurement system and a mouse sensor. The feasibility and efficacy of 

applying a mouse sensor for the assessment of repetitive upper limb 

movement smoothness have been proved. The data collection process was 

based on a triangle pattern displayed on a computer screen, which depends 

on the users to be able to receive the corresponding visual cues. However, 

as specified in the literature review, there are a large group of post-stroke 

patients and healthy people who suffer from visual impairments that may 

influence their ability in receiving visual cues. Therefore, finding an 

alternative way to deliver directional information to the visually impaired is of 

the research interest. In this chapter, three haptic motor designs were 

studied to provide directional cues, and the effectiveness of haptic delivery 

was verified through two independent experiments. An eccentric rotating 

mass (ERM) motor was firstly designed. However, this haptic solution was 

abandoned because of its poor performance in providing directional 

guidance and insufficient effectiveness and verifications. To mathematically 

understand the haptic output in order to deliver a strong directional 

guidance, a preliminary test platform was then introduced to study the 

dynamic behaviour of a solenoid-based haptic device. A one-degree-of-

freedom (1DOF) mass-spring-damper model was established to describe the 

dynamic behaviour of the solenoid system. The model was verified by 

acceleration measurements and simulations. Additionally, the effect of 

different input signal waveform was also discussed. Finally, to improve the 

haptic delivery and reduce the size and weight of the hand-held device, a 

voice coil actuator (VCA) - based hand-held haptic device was finally 

designed and prototyped. Displacement measurements was conducted to 

investigate the effect of each input signal parameter on the output features, 

namely the vibration frequency, simplified speed, position stroke, negative 

stroke and stroke ratio. This relationship was then used to guide the 

verification process in the human-involved experiment presented in the next 

chapter. The remainder of this chapter is organised as follows. Section 5.1 

introduces the design of ERM haptic solution and the reasons for choosing 

alternative haptic actuators. Section 5.2 introduces a solenoid test platform 
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that was described by a mathematical model and verified by acceleration 

measurements. Section 5.3 introduces the design and verification of a VCA 

hand-held haptic device. Section 5.4 presents the results of the 

aforementioned experiments.  

5.1 Eccentric Rotating Mass  

Eccentric rotating mass actuators (ERMs) are widely used from 

smartphones to gaming consoles to deliver haptic feedback. When power is 

applied, the off-centre mass will rotate and produce vibrations. Therefore, an 

initial attempt on the design of haptic delivery was made using two ERMs.  

The ERMs used in this design are the vibrating mini motor disc (the PiHut, 

102867). ERMs were powered and controlled by a commercial motor drive 

(DRV2605L, Adafruit). Two ERMs were attached to a frame and were 

controlled by an Arduino Nano 33 BLE as shown in Figure 5.1. 

 

Figure 5.1 Two ERMs attached to a frame and controlled by a motor driver. 

The left and right ERM could generate programmable haptic sequence and 

could be controlled independently. However, it was considered to be 

inappropriate for delivering haptic directional cues due to the nature of ERMs 

and the following reasons. 

 ERMs are mostly suitable for vibrations with a low frequency due to 

the off-centre rotation movement.  

 The ERM used in this design has a maximum input voltage of 5 V. 

The strength of the generated vibrations is strictly limited by the 

maximum voltage. Therefore, the haptic delivery is not clear.  

 Multiple ERMs are necessary if multi-directional haptic cues are 

needed. The precision of directions depends highly on the number of 

Motor Drivers

Arduino Nano 33 BLE

ERM
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ERMs in the design. For example, a minimum of 9 ERMs are required 
if eight directional regions (

ଷ

଼
= 45  in between) are separated as 

shown in Figure 5.2. 

 

Figure 5.2 A total of 9 ERMs are needed for directional guidance along 8 
directions. 

  

 The dynamic behaviour of the motor is extremely difficult to describe 

mathematically without knowing the mechanical specification of the 

motor, such as the rotating inertia and spring constants.  

Although the motor driver provides a rich selection and configurability on 

vibration sequence, the small ERMs presented in this work were considered 

unsuitable for the delivery of haptic directional cues. This initial exploration of 

ERMs helped to establish the key requirements for the haptic device design. 

Firstly, the design should deliver haptic cues with a higher vibration 

frequency. Otherwise, continuous feedback could not be satisfied. Secondly, 

the strength of the haptic output should be quantifiable and strong enough to 

be perceived by users. Thirdly, the direction of haptic output should be 

configurable to serve a 2D plane. The formal design specification of the 

hand-held device would be presented later in the thesis. Because ERM 

motors used in this thesis are nor suitable for providing directional guidance, 

another two types of motors would be discussed below for the generation of 

asymmetric vibrations.  
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5.2 Solenoid Test Platform 

Force sensation is important for humans to receive information during 

activities of daily living. Haptic device could deliver haptic feedback during 

an activity to provide force stimuli. Previous explorations on ERMs have 

revealed key requirements for the design of haptic devices. To achieve this 

purpose, ungrounded haptic devices using linear resonant actuators (LRA) 

based on asymmetric vibrations have been widely studied [56, 88, 89]. The 

term ‘ungrounded’ in this context means that there is no connection between 

the haptic device and the ground.  

Linear resonant actuators (LRA) consist of a moving mass, a spring, and an 

electromagnet. When current is applied, the moving mass will be 

accelerated by the electromagnet and spring alternately, producing 

vibrations. Unlike ERMs, LRA could generate high-frequency vibrations with 

stronger vibration amplitudes. However, normal vibrations could still not 

provide directional haptic feedback using either LRAs or ERMs. To solve this 

challenge, a novel vibration pattern is introduced.  

Traditional haptic feedback such as mobile phone vibrations are symmetric, 

which could only serve the purpose as an alarm or a simple sense of touch. 

However, asymmetric vibrations could also provide directional information 

due to the nonlinear sensing characteristics on haptic cues of human skin 

[90]. When strong and weak haptic stimuli are applied to the skin 

sequentially, people may only feel the stronger stimuli but tend to ignore the 

weaker ones.  

To test the asymmetric vibrations, a solenoid haptic test platform was built 

using a linear pushing solenoid. A pushing solenoid with a spring could be 

considered as a large-scale LRA. A dynamic model was first established to 

mathematically describe the movement of the solenoid. This model was then 

verified on the haptic test platform by accelerations measured using an 

accelerometer. The effect of various input signal shapes was finally 

discussed to suggest future improvements.  

5.2.1 Dynamic Model of Asymmetric Vibrations 

A solenoid-based haptic platform was designed and built to verify the 

asymmetry of the output stimuli. The proposed test platform consisted of a 

pushing linear solenoid (SAIA-BURGESS, 195225-230), two compression 
springs (𝑘 = 110  N/m, 𝑐 = 0.8  Ns/s), a fixed mass (𝑚௫ = 50  g) and an 

accelerometer (BNO055, Adafruit). The accelerometer was attached to the 

end of the solenoid moving metal core ( 𝑚 = 40  g) to measure its 
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acceleration output during movements. The solenoid was rigidly fixed to an 

aluminium base as shown in Figure 5.3. 

 

Figure 5.3 Solenoid haptic test platform. 

The solenoid consists of a moving metal core and an electromagnetic coil. 

Because this solenoid is a pushing type, it is necessary to add a spring to 

retrieve the metal core back to the original position. An extra spring with the 

same specification is also inserted inside the solenoid between the metal 

core and the outside coil as illustrated in Figure 5.4. 

 

Figure 5.4 Sectional view of the solenoid haptic test platform. 

The motion of the moving metal core is controlled by the input signal. For the 

dynamic modelling and simulation verifications, Pulse Width Modulation 

(PWM) signals with varying duty ratios (𝑟) were used as the input control 

signal to generate asymmetric vibrations. When the current is supplied to the 

electromagnetic coil, the metal core will be accelerated in the positive 

direction (i.e., accelerometer side) while the metal core will be pushed back 

to the natural position by two springs when no current is supplied. 
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Duty ratio (𝑟) is the measurement of the amount of working time for a PWM 

signal in a given period of time. Figure 5.5 presents PWM signals with three 

different baseline duty ratios and frequencies used in this haptic test platform 

with a unit scale. Higher duty ratios were used with higher frequencies. 

Otherwise, an insufficient amount of current could not drive the solenoid 

moving metal core.  

 

Figure 5.5 Input current (unit) signals with different frequencies and duty ratios. 

Previous research has explored the potential to create asymmetric vibrations 

using PWM signals [59, 91]. In this research, the hypothesis is that 

asymmetric vibrations could be achieved and measured by accelerations 

when the moving metal core is accelerated asymmetrically by the PWM 

signal. The asymmetry depends on two variables: duty ratio (𝑟) and spring 

response time (𝑇). The spring response time is defined as the amount of 

time needed for the inner spring to accelerate the metal core.  

When the duty ratio is small enough (e.g., 𝑟 = 0.1 at 5 Hz) to just accelerate 

the metal core to compress the inner spring, the returning stroke of the metal 

core is dominated by the spring force 𝐹௦, resulting to a high acceleration in 

one direction. On the contrary, when the duty ratio is large (e.g., 𝑟 = 0.8 at 5 

Hz), there is insufficient amount of time for the springs to push the metal 

core to reach a large acceleration. Therefore, the spring response time (𝑇) 

could not be satisfied. Consequently, the metal core could not be fully 

accelerated by the inner spring but dominated by the electromagnetic force 

𝐹, resulting to a high acceleration towards the opposite direction. 
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In order to quantify and simulate the acceleration of the metal core created 

by PWM signals with varying duty ratios, a 1DOF mass-spring-damper 

model was created in Figure 5.6. 

 

Figure 5.6 Dynamic model of the solenoid haptic test platform. Inner and outer 
springs are considered as parallel connection. 

The equation of motion for the moving metal core is described in Eq. 5.1. 

𝑚�̈� = 𝐹 − 𝑘𝑥 − 𝑐�̇� (5.1) 

where: 𝑚  is the total moving mass, 𝑘  and 𝑐  are the spring stiffness and 

damping constant of the parallel connected springs and 𝐹  is the 

electromagnetic force calculated by Eq. 5.2. 

𝐹 = 𝐵𝑙𝐼 (5.2) 

where: 𝐵 is the magnetic flux density, 𝑙 is the length of the wire in the coil 

and 𝐼 is the current.  

To solve Eq. 5.1, its state space equation form is taken in Eq. 5.3. 

൜
�̇� = 𝐴𝑥 + 𝐵𝐹
𝑦 = 𝐶𝑥 + 𝐷𝐹

 (5.3) 
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The weight of the accelerometer is very light (𝑚 = 3 g) and the inertia 

introduced by the cable connection to the accelerometer was neglected. 
Therefore, the total moving mass 𝑚 = 𝑚 + 𝑚௫ = 90 𝑔 = 0.09 𝑘𝑔.  

Since it is difficult to measure the magnetic flux and the length of the wire in 

the coil, the solenoid drive constant is defined as 𝑑 = 𝐵𝑙  that was 
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determined experimentally. Four known weights (36 g, 86 g, 136 g, and 186 

g) were attached to the end of the metal core. Current was regulated by a 

power supply unit. The current value was recorded if the attached weight 

was just lifted against gravity. A linear regression between current (𝐴) and 

weights (𝑁) was made and the slope of the linear fit was considered to be 

the best estimate of the solenoid drive constant. The result would be 

presented in the next chapter.  

5.2.2 Dynamic Model Verification 

The dynamic model established in the previous section was verified by a 

comparison between the simulated acceleration and experimental 

acceleration of the moving metal core. To do this, a Simulink (v10.6, 

MathWorks) model was built as shown in Figure 5.7. 

 

Figure 5.7 Simulink model of the solenoid dynamic model with PWM as the input 
signal. 

The subsystem took the input signal with varying duty ratios and frequencies, 

and output the acceleration, displacement, and force of the moving metal 

core. The outputs were simulated at three frequencies (5 Hz, 10 Hz and 20 

Hz) as shown in Figure 5.5. The upper limit of 20 Hz was chosen because 

movements with higher frequencies would overheat the solenoid 

electromagnetic coil, which could affect the performance of the solenoid test 

platform. Besides, past research has shown that asymmetric vibrations tend 

to become symmetric vibrations with higher frequencies [60, 91].  

Outputs from the simulation were exported to a self-written MATLAB 

(R2021b, MathWorks) script, where the measured accelerations by the 

accelerometer were processed and compared. The sampling frequency of 

the accelerometer was set to 100 Hz. A bandpass filter with cut-off 



- 85 - 

frequencies of 𝑓 = 5  Hz and 𝑓 = 20  Hz was used to process the raw 

acceleration data.  

Because the simulated accelerations had a much faster sampling frequency 

than the experimental accelerations, the resulted length of acceleration 

profiles were significantly different. Therefore, normal error quantification 

methods using data pairs like root mean square errors (RMSE) could not be 

used. Instead, Dynamic Time Warping (DTW) distance was applied to 

quantify the difference between two acceleration profiles.  

DTW is a popular algorithm in the field of signal analysis for time series to 

measure the similarity between two signals with different lengths. It has been 

widely applied in speech and writing recognition [92, 93]. To compute the 

DTW distance for two one-dimensional time series 𝑋 = {𝑋, 𝑖 = 1,2, … , 𝑚} 
and 𝑌 = ൛𝑌, 𝑗 = 1,2, … , 𝑛ൟ, a distance matrix 𝐷 of size (𝑚 × 𝑛) was calculated 

with 𝐷, representing the Euclidean distance between 𝑋 and 𝑌 as described 

in Eq. 5.4. 

𝐷, = ฮ൫𝑋 − 𝑌൯ฮ (5.4) 

The object of DTW can then be described by Eq. 5.5. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑑 =  𝐷, 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑖௫௧, 𝑗௫௧ = ൝

𝑖, 𝑗 + 1     𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙
𝑖 + 1, 𝑗     ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙

𝑖 + 1, 𝑗 + 1     𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙
 

(5.5) 

A smaller DTW distance 𝑑 indicates more similarities between the simulated 

and experimental acceleration signals, indicative of higher model precisions. 

5.2.3 Effect of Input Signal Shape and Spring Stiffness 

Apart from PWM signals, other analogue input waveforms also have the 

ability to create asymmetric vibrations. For this haptic test platform, sawtooth 

and step-ramp input waveforms were also tested in the simulation after the 

model verification. These two waveforms have been previously proved by 

other literature to be efficient in delivering asymmetric vibrations. Instead of 

duty ratio, the actuation time 𝑇ைே was used to time the signal. The actuation 

time is defined as the amount of time before current reaches saturation. A 

unit of sawtooth and step-ramp signal is illustrated in Figure 5.8. 

In order to quantitively compare the haptic output from different input signal 
shapes, the average difference of acceleration peaks 𝐷௧ was calculated as 

described by Eq. 5.6. 
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𝐷௧ =
∑ 𝐴௫(𝑖)

ேೌೣ
ୀଵ

𝑁௫
−

∑ 𝐴(𝑗)
ே
ୀଵ

𝑁
 (5.6) 

where: 𝑁௫  and 𝑁  is the number of maximum peaks and minimum 

peaks, respectively. 𝐴௫  and 𝐴  is the maximum and minimum 

acceleration peaks, respectively. 

A larger difference in acceleration peaks represents more asymmetry of the 

haptic output. Additionally, the momentum of haptic output of three input 

signal shapes was also simulated and discussed.  

 

Figure 5.8 Sawtooth and step-ramp input signal with an actuation time of 20 ms. 

Three different actuation time 𝑇ைே = 20, 50, 80 ms were tested for both 

waveforms at a frequency of 10 Hz.   

Another important variable for the generation of asymmetric vibrations is the 

stiffness of the springs because it determines the system’s response time 𝑇 

as discussed before. Extra stiffnesses were tested with PWM signals at a 

frequency of 10 Hz. The output acceleration peaks were recorded, and the 

peak difference was calculated to evaluate the asymmetry of the vibrations. 

The results of this part of the work would be presented in the next chapter.  

5.3 Hand-held Haptic Device 

Asymmetric vibrations could be generated by various types of motors, 

among which the voice coil actuator (VCA) is the most popular because of 

its portable size, affordable cost, and ease of control. In terms of the device 

design, hand-held devices have several advantages over wearable devices. 

Firstly, hand-held devices require less time for users to learn on how to use 

the device. Users could master the use of the device in a shorter amount of 

time, which could be beneficial for home-based rehabilitation on a daily basis. 
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Secondly, they could be independently used whereas most of the wearable 

devices often require more adequate assistance from other people during 

the operation, such as wearing a belt, a backpack or a pair of gloves.  

To implement the VCA for haptic information delivery, a hand-held device 

was designed and verified in this section. The device prototype was firstly 

designed and manufactured. The control circuit was built for two versions: a 

printed circuit board (PCB) version and a breadboard version. The device 

was finally tested with 30 participants in order to verify the design of the 

device and the hypotheses regarding to the optimisation of haptic 

information delivery. Additionally, a VCA haptic test platform was also built in 

order to quantify the asymmetry of the haptic output, which would contribute 

to the parameterisation of the input control signal for optimised haptic 

delivery.  

5.3.1 Device Design and Manufacturing 

A product design specification is important for good quality delivery, and it 

helps ensure the product meets the expectations throughout the process. 

Therefore, a design specification was made for the hand-held haptic device 

as listed in Table 5.1. A brief introduction and scope were provided to guide 

the overall design process. Functional requirements including the 

construction of the device, user’s experience and operation safety were also 

considered.  

Table 5.1 Haptic device design specifications. 

Introduction: A cylindrical hand-held local navigation device that produce 

haptic feedback by a voice coil actuator for visually impaired people. 

Basic Operation: The voice coil actuator outputs asymmetric vibrations to 

deliver haptic directional cues. Multidirectional guidance is achieved by a 

stepper motor. Users hold the device by hand and feel the directions locally.  

Scope: Assistive equipment, as a low-cost local navigation prototype for 

visually impaired people. 

Construction 

Materials and Process 3D printing with Polylactic Acid (PLA) 

Dimensions 

For the cylinder body: 

 Height: 90 − 110 𝑚𝑚 

 Thickness: 2 𝑚𝑚 

 Outer diameter: 65 − 75 𝑚𝑚 
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For the motor box: 

 Length: 52.8 𝑚𝑚 

 Width: 34.0 𝑚𝑚 

 Height: 38.5 𝑚𝑚 

 Thickness: 2.0 𝑚𝑚 

For the cap: 

 Outer diameter: dependent on the 

outer diameter of the cylinder body. 

 Thickness: 1 𝑚𝑚 

 Height: 30 𝑚𝑚 

For the assembly: 

 Weight: < 600 𝑔 

Quantity 

Cylinder body: 1 

Cap: 1 

Motor box: 2 

Control circuit: 2 (PCB version and 

breadboard version) 

Reliability 
The product is expected to function correctly 

for a minimum of 3 years.  

Maintenance 

The voice coil actuator (VCA) needs to be 

inspected regularly. Inspection of the VCA 

requires disassembly of the cap from the 

cylinder body. 

User Experience 

Aesthetics 
White, symmetrical, with identification of 

default direction. 

Ergonomics 
Six adhesive finger pads addressing finger 

positions for right hand only. 

Safety 

Safety Considerations 

 Scratch by sharp edges of the device 

or circuit board. 

 Electric shock (< 5 𝑉) if inappropriate 

use of power supply. 
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Safety Standards 
 File or smooth the edge of the device. 

 Turn off power supply after use. 

The material used for 3D printing is PLA that is one of the most popular 

materials in additive manufacturing since it is strong in strength and stiffness 

and can be printed with a relatively low temperature, which means it is 

suitable for the development of a low-cost device. Furthermore, it is a 

biodegradable material that is friendly to the environment.  

The specific size of the cylinder body was not determined since it was 

dependent on the size of rotary encoders and accelerometer embedded into 

the cylinder body. However, the maximum size should not be exceeded, 

which would lead to uncomfortable user experience during operation. This 

maximum size was determined based on the maximum grip exertions on 

cylinders [94] that had a maximum value of 83 mm. The maximum weight 

was determined according to the weight of a bottle of water since post-stroke 

patients may have decreased ability in grip forces according to the results 

reported in [95].  

The voice coil actuator (VCA) itself does not need regular inspection. 

However, the VCA used in this device is powered by cables that may be 

twisted together when changing directions. Therefore, a regular inspection 

on the VCA could help eliminate the effect of twisted cables, which may lead 

to ambiguous haptic feedback during operation.  
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5.3.2 Source of Vibrations 

Haptic directional cues are delivered via a hand-held device as shown in 

Figure 5.9. The device assembly was achieved in JigSpace2 (v3.18) and 

each component was modelled using Shapr3D (v5.4). Figure 5.10 presents 

the model of every component in the hand-held device in JigSpace. 

 

Figure 5.9 The assembly of the hand-held haptic device. 

A voice coil actuator (VCA) (H2W NCM02-10-008-2JBA) was placed inside 

the motor box with the motor shaft fixed at both ends. This is the main 

vibration source to generate asymmetric vibrations. Two absolute rotary 

encoders (Broadcom, AEAT-6012-A06) were used to measure the rotation 

angle of the user shaft and the stepper motor, respectively. The user shaft 

encoder was placed under the top cap with the bottom of the shaft inserted 

into the encoder. The motor box encoder was placed on top of the motor box 

with the shaft inserted into the encoder. The user shaft was only used during 

the verification experiment to measure the perceived angle from participants. 

Because a single VCA can only produce unidirectional haptic cues, a 

stepper motor (28BYJ-48) was placed at the bottom of the cylinder body to 

provide flexiable direction adjustments. The IMU sensor was placed inside 

the cylinder top cap as a tool to integrate the assessment of movement 

quality from the acceleration profiles in the future version of the device.  
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Figure 5.10 Modelling of components inside the hand-held haptic device. 

A system block diagram is illustrated in Figure 5.11 to present the workflow 

of the system. 

 

Figure 5.11 Block diagram of the haptic device. 

The asymmetric vibrations were generated by a VCA using a repeating step-

ramp signal as an input. The signal consists of three components as 

illustrated in Figure 5.12. The step-ramp signal starts with a step input to a 

certain voltage 𝑉. This will accelerate the moving metal of the VCA towards 

one direction, producing a positive stroke. The voltage is then held for an 

adjustable amount of delay time 𝑡ௗ . Because there is no mechanism 

designed to return the moving metal automatically (e.g., a compression 

spring), the moving metal will stay idle during the delay time. Finally, a ramp 

down input is achieved by repeatedly decreasing a certain amount of voltage 

to a cut-off voltage 𝑉  with a ramp-down step length of 𝑆  for several 
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iterations. This will slowly and gently retrieve the moving metal back to the 

initial position for next movement period, producing a negative stroke.  

 

Figure 5.12 Step-ramp input signal that generates asymmetric vibrations. 

The perception of haptic directional cues is highly dependent on the vibration 

frequency and the asymmetry of the output strokes. Therefore, in order to 

quantify and parameterise the input signal, three parameters of the step-

ramp signal were established and studied. Delay time (𝑡ௗ) is the amount of 

time between step input and ramp-down input. By default, this value was set 

to 𝑡ௗ = 20 ms based on the results shown in [60]. A larger delay time results 

to a lower vibration frequency. It is essential to introduce delay time as it was 

also reported in [60] that the lack of the delay time leads to insufficient skin 

displacement that causes ambiguous perception of the haptic directional 

cues. Ramp down step length (𝑆) is the amount of voltage being decreased 

in each iteration. By default, this value was set to 𝑆 = 256. The default 

value was chosen based on the vibration frequency reported in [60]. A larger 

ramp down step length results to a higher vibration frequency since a shorter 

time is used to decrease the voltage. In addition, the ramp down input was 

achieved using a 12-bit digital-analogue converter (DAC) (MCP4725, 

Microchip). Therefore, there exists a conversion from analogue values (0 - 

4095) to output voltages (0 V – 3.3 V) as described in Eq. 5.7. 

𝑉௨௧௨௧ = 0.0008 ∙ 𝑉௨ (5.7) 

Cut-off voltage (𝑉) is the positive voltage level where ramp down iterations 

stop. By default, this value was set to 𝑉 = 0 V where no cut-off voltage is 

applied as the baseline measurement. The hypothesis regarding to the cut-

off voltage is that the asymmetry between output positive and negative 

strokes could be increased by introducing an optimised cut-off voltage. This 
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hypothesis would be verified by a psychophysical experiment with 30 

participants as discussed later.  

In order to control the three parameters established above, a custom control 

circuit was designed and built with two versions: a PCB version and a 

breadboard version. The PCB version is a permanent solution for the control 

circuit, which is suitable for the final product and an experimental 

environment. The breadboard version is a temporary solution for the control 

circuit, which is suitable for circuit optimisation, module add-ons and a test 

environment. The circuit schematic is shown in Figure 5.13. 

 

Figure 5.13 Schematic diagram of the custom control circuit for the VCA. 

Two operational amplifiers were used as a differential amplifier (LM358, 

Texas Instrument) on the left and a current amplifier (PA75CD, Apex 

Microtechnology) on the right. The differential amplifier was used to regulate 

the input voltage (to obtain negative voltage level) and the current amplifier 

was used to power the voice coil actuator (VCA). The digital-analogue 

converter (DAC) was used to generate the desired input signal shape. A 

pulse width modulation (PWM) signal with a frequency of 𝑓ௐெ = 732 Hz 

and a duty ratio of 𝑟 = 50% was applied in the resistor-capacitor circuit (RC 

circuit). The RC circuit is commonly used as a lowpass filter in the circuit 

design. It is important to determine the resistor and capacitor values in a RC 

circuit to achieve ideal filter performance. The transfer function between the 
output voltage from a RC circuit 𝑉 and the input voltage 𝑉 is described 

by Eq. 5.8. 
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𝐺(𝑠) =
𝑉

𝑉
=

1
𝑠𝐶

𝑅 +
1

𝑠𝐶

=

1
𝑅𝐶

𝑠 +
1

𝑅𝐶

 (5.8) 

where: 𝑅 is the resistance of the resistor and 𝐶  is the capacitance of the 

capacitor.  

Because a negative voltage level is required to generate asymmetric 

vibrations for this design, the ideal output voltage from the lowpass filter 

should be the half of the DAC maximum voltage (
୫ୟ୶ (ೠೠ)

ଶ
=

ଷ.ଷ

ଶ
= 1.65 𝑉). 

A Simulink model was built to simulate the performance of the lowpass filter. 

As a result, a resistance of 𝑅 = 2000 Ω and a capacitance of 𝐶 = 100 𝜇𝐹 was 

chosen to build the filter. The simulated response is shown in Figure 5.14. 

 

Figure 5.14 Simulated RC circuit response with 𝑹 = 𝟐𝟎𝟎𝟎 𝛀 and 𝑪 = 𝟏𝟎𝟎 𝝁𝑭. 

5.3.3 VCA Haptic Test Platform  

In order to quantify the asymmetry of the haptic output from a VCA, a VCA 

haptic test platform was built using a low-friction single axis slider as shown 

in Figure 5.15. Existing literatures have applied measurements over 

accelerations for the quantification of haptic output. However, the sensory 

resolution of the vibrotactile amplitude was normally quantified in micrometre 

as shown in [96]. Therefore, displacement measurement was adopted in 

order to parameterise the haptic output and quantify the asymmetry of the 

haptic output. It is also important to verify the hypotheses based on the 

results of displacement measurements by the psychophysical experiment.  
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Figure 5.15 VCA haptic test platform on a slider. 

Displacement measurements were made using the Optotrak Certus motion 

capture system with one position marker attached at the end of the motor 

box. Position data was captured by the NDI software and stored in CSV files 

for data processing. The sampling frequency of the position sensor was set 

to 100 Hz. The reported accuracy of the sensor is ± 0.1 mm.  

Before each measurement, the motor box was placed at the original position 

(i.e., at 0 cm). Step-ramp input signals were then sent to the VCA. The motor 

box would start moving from the left to the right side of the slider due to 

asymmetric vibrations. Position data was recorded throughout the process. 

Each step-ramp input signal has a unique configuration that combines the 

three parameters established in the previous section. Different parameter 

groups were adopted in order to determine the upper and lower boundaries 

of the vibration frequencies because extreme frequencies (i.e., either too 

high or too low) could result to a failure in haptic perception.  

All displacement measurements were normalised using a z-score method to 

enable direct comparison and haptic output parameterisation. Five 

parameters were established to describe a typical displacement profile from 

asymmetric vibrations as illustrated in Figure 5.16.  
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Figure 5.16 Illustration of a typical normalised displacement measurement from 
asymmetric vibrations. 

The five parameters are defined below. 

 Frequency (𝑓௦௬ in Hz) is defined as the movement time divided by the 

total number of vibration cycles during the experiment.  

 Simplified speed (𝑉௦, unitless) is defined as the slope of the linear fit of 

the normalised displacement profile.  

 Negative stroke (𝑆, unitless) is defined as the normalised distance 

between the displacement platform (resulted from the delay time) and 

the negative spike (resulted from the ramp down input) in one cycle.  
 Positive stroke (𝑆 , unitless) is defined as the normalised distance 

between the displacement platform and the positive spike (resulted 

from the step input) in one cycle.  

 Stroke ratio (𝑟௦, unitless) is defined as the negative stroke average 

divided by the positive stroke average as described in Eq. 5.9. 

𝑟௦ =
∑ 𝑆(𝑖)ே

ୀଵ

∑ 𝑆(𝑖)ே
ୀଵ

 (5.9) 

where: 𝑁 is the number of cycles in one displacement measurement.  

For both positive stroke and negative stroke, the average value over all 

cycles were calculated and adopted as the final parameter value for each 

configuration. Stroke ratio was used to quantify the asymmetry of the haptic 

output. A smaller stroke ratio indicates a more asymmetric haptic output.  
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5.4 Results 

5.4.1 Solenoid Test Platform Results 

5.4.1.1 Determination of the Solenoid Drive Constant 

In order to verify the dynamic model of the solenoid haptic test platform, it is 

important to determine the solenoid drive constant 𝑑. However, because the 

independent measurement of magnetic flux density and the equivalent 

length of coil are difficult to made, a simple test was conducted to determine 

their product (i.e., the solenoid drive constant) experimentally. Four known 

weights (36 𝑔, 86 𝑔, 136 𝑔 and 186 𝑔) were lifted by the solenoid against 

gravity with adjustable amount of current. The supplied current and the 

weights are plotted in Figure 5.17. 

 

Figure 5.17 Determination of the solenoid drive constant using a linear regression 
method. 

Based on Eq. 5.2, the slope of the line was considered to be the best 

estimate of the solenoid drive constant with 𝑑 = 2.17 𝑁/𝐴 and 𝑅ଶ = 0.99.  

For the remaining of the simulation, this solenoid drive constant was adopted. 

5.4.1.2 Verification of the Dynamic Model 

The dynamic model established by Eq. 6.3 was simulated in Simulink (v10.6, 

MathWorks). The parameters of the input PWM signals used in the 

simulations are listed in Table 5.2. 
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Table 5.2 Parameters of the PWM signals used in the simulation. 

Frequency (𝑓ௐெ in 𝐻𝑧) 
Duty Ratio (𝑟) 

𝑟 𝑟 𝑟௫ 

5 0.1 0.5 0.8 

10 0.2 0.5 0.8 

20 0.4 0.5 0.8 

Three duty ratios were adopted in the simulation. The minimum duty ratio for 

each PWM frequency was different because there exists a minimum working 

time in order for PWM signals to have sufficient power to drive the solenoid. 

The middle and the maximum duty ratios were kept the same for all PWM 

frequencies.  

The simulated and measured acceleration profiles are shown in Figure 5.18. 

 

Figure 5.18 Comparison of simulated and measured accelerations for different PWM 
frequencies and duty ratios. 

Most of the simulated and measured accelerations matched in terms of 

output direction and amplitude. However, a loss of damping features in the 

measured accelerations were observed at 𝑓ௐெ = 5 Hz, especially at the 

minimum and maximum duty ratio.  

The perception of haptic directional cues depends highly on the asymmetry 

of the haptic output. Even though the net acceleration in each cycle is zero, 

it is the amplitude difference between positive and negative peaks that 

results to the bidirectional force sensation. Specifically, the average value of 
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positive and negative peaks of the measured accelerations are listed in 

Table 5.3 to observe the amplitude directions.  

Table 5.3 Average values of positive and negative acceleration peaks. 

Frequency 
Duty Ratio 

𝑟 = 𝑟 𝑟 = 𝑟 𝑟 = 𝑟௫ 

𝑓ௐெ = 5 𝐻𝑧 
29.15 14.99 17.20 

−19.16 −16.27 −22.56 

𝑓ௐெ = 10 𝐻𝑧 
29.70 18.68 18.27 

−16.91 −19.24 −26.20 

𝑓ௐெ = 20 𝐻𝑧 
22.74 16.02 7.65 

−16.95 −15.74 −20.79 

Perceived 

Direction 
Positive Symmetric Negative 

It was observed that the absolute values of positive peaks were greater than 

negative peaks with minimum duty ratios regardless of PWM input frequency. 

The absolute difference between positive and negative peaks gradually 

decreased to approximately zero with medium duty ratios, and finally 

negative values with larger duty ratios. This change in peak value difference 

is shown in Figure 5.19.  
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Figure 5.19 The change in acceleration peak value difference with respect to duty 
ratio. 

In order to quantify the amplitude difference between the measured and 

simulated acceleration, dynamic time warping distance was calculated for all 

acceleration pairs and are listed in Table 5.4. The Euclidean distance 

definition was used for the distance calculation.  

Table 5.4 Dynamic time warping distance between each acceleration pair. 

Frequency 

Duty Ratio 

Average 𝑟 = 𝑟 𝑟 = 𝑟 𝑟 = 𝑟௫ 

DTW (× 10ସ) 

𝑓ௐெ = 5 𝐻𝑧 6.1828 7.3611 9.1594 7.5677 

𝑓ௐெ = 10 𝐻𝑧 3.4953 5.9542 4.1432 4.5309 

𝑓ௐெ = 20 𝐻𝑧 1.6293 2.2945 1.3865 1.7701 

Average 3.7691 5.2033 4.8964  

It was observed that the DTW distance decreased with larger PWM 

frequencies regardless of duty ratio. However, the effect of different duty 

ratios on the DTW distance was not significant. A Tukey test was used to 

quantify the significance level for duty ratio and PWM frequency. The results 

are shown in Figure 5.20.  
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Figure 5.20 Tukey test results on (a) the effect of duty ratio and (b) the effect of PWM 
frequency. 

It was observed that the DTW distance was significantly less than that with 

lower PWM frequencies at a PWM frequency of 𝑓ௐெ = 20 Hz (𝑝 = 0.043 

and 𝑝 < 0.01). However, the effect of duty ratio was insignificant. This was 

consistent with the previous observation on Figure 5.18 that the measured 

acceleration profiles did not match well with the simulations at a PWM 

frequency of 𝑓ௐெ = 5 Hz.  

The DTW distances with the corresponding statistical analysis show 

improved dynamic model precision with a high PWM input frequency. 

Therefore, the established 1-DOF mass-spring-damper model could better 

represent the dynamic behaviour of the solenoid haptic test platform with a 

higher PWM input frequency. The established model and its verification 

underpin the future design of haptic device using solenoid as a vibration 

source to provide directional cues.  

5.4.1.3 Effect of the Input Signal Shape 

PWM signals have been proved to be effective in generating asymmetric 

vibrations by both acceleration measurements and simulations in the 

previous section. Apart from PWM signals, other analogue input signal 

shapes have also been widely applied in haptic input. To study the effect of 

different signal shapes on the haptic output, two analogue input signal 

shapes (i.e., sawtooth and step-ramp) were simulated at 10 𝐻𝑧 using the 

dynamic model established before. The simulated acceleration output and 

the input signals are shown in Figure 5.21.  
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Figure 5.21 Input signals with corresponding simulated acceleration. 

Similar directional change from positive to negative was observed in both 

sawtooth signal and step-ramp signal. When the actuation time 𝑇ைே = 50 ms, 

symmetric vibrations were observed. This is the same as the haptic output 

from a PWM signal at the same frequency. To quantitively compare the 

asymmetry of the haptic output from different input signal shapes, a 

comparison was made on the average acceleration peak values. The results 

are listed in Table 5.5.  

Table 5.5 Average value of positive and negative acceleration peaks in different input 
signals. 

Input Signal 

Shape 

Actuation Time Peak 

Difference 𝑇ைே = 20 𝑚𝑠 𝑇ைே = 50 𝑚𝑠 𝑇ைே = 80 𝑚𝑠 

Sawtooth 
22.83 17.01 13.31 7.49 

−15.34 −18.82 −23.92 −10.69 

Step-ramp 
23.00 19.85 12.42 7.19 

−15.81 17.70 −17.49 −5.07 

PWM at 

10 𝐻𝑧 

29.70 18.68 18.27 12.79 

−16.91 −19.24 −26.20 −7.93 

Perceived 

Direction 
Positive Symmetric Negative  
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The peak difference was calculated by the difference between the absolute 

positive peak and the absolute negative peak and is shown in Figure 5.22. 

 

Figure 5.22 Acceleration peak difference for difference input shapes and actuation 
time. 

With the same input frequency, PWM signals had larger peak difference 

compared to sawtooth signals and step-ramp signals. Although sawtooth 

signals and step-ramp signals had similar asymmetry in terms of 

acceleration peak difference, their haptic output waveforms had unique 

characteristics. The haptic output from both step-ramp signals and PWM 

signals have an abrupt change in acceleration before the peak value as a 

result of the step input. On the contrary, a gradual change in acceleration 

before the peak value was observed with sawtooth signals as a result of the 

ramp input. Intuitively, an abrupt change in accelerations (i.e., a larger 

change of momentum) is much easier perceived by people than a gradual 

change. The momentum of simulated haptic output for three signal shapes is 

shown in Figure 5.23. 
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Figure 5.23 Change of momentum of haptic output for three input signal shapes (a) 
throughout the movement and (b) at the input instant. 

It was observed that PWM signals have the largest change of momentum 

throughout the movement among all input signal shapes. This is consistent 

with the largest peak difference reflected in Figure 5.22. Sawtooth and step-

ramp signals have similar momentum change with step-ramp signals being 

slightly larger than sawtooth signals. However, the change of momentum 

(i.e., the slope) at the signal input instant (e.g., at 0.2 s) for step-ramp signals 

and PWM signals are much larger than a sawtooth signal as shown in Figure 

5.23 (b), which could theoretically provide a much clearer haptic delivery. 

Therefore, step-ramp and PWM signals are more suitable for providing 

directional cues. However, the effect of larger momentum change on the 

perception of haptic directional cues needs to be further studied.  

For the haptic output after the peak value, abrupt changes in accelerations 

were also noticed with PWM signals. On the other hand, a gradual change 

was observed with step-ramp signals as a result of the ramp down input. 

The effect of this phenomenon on the perception of haptic cues was not 

studied in this research.  

5.4.1.4 Effect of Spring Stiffness 

Different spring stiffness have influence on the system’s response time 𝑇. 

A larger stiffness could accelerate the moving metal core faster to a high 

acceleration, resulting in a smaller system’s response time. In order to 

understand the effect of spring stiffness on the dynamic behaviour of the 

haptic test platform, four spring stiffness (i.e., 𝑘 = 70, 90, 130, 150 N/m) were 

simulated with small (𝑟 = 0.2 ) and large (𝑟 = 0.8 ) duty ratios using the 

dynamic model established before at 10  Hz. Figure 5.24 presents the 

simulated acceleration output with different spring stiffness. Additionally, the 
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averages of positive and negative peak values and the peak-to-peak 

difference are shown in Figure 5.25.  

 

Figure 5.24 Simulated acceleration output with a spring stiffness of (a) 𝒌 = 𝟕𝟎 𝑵/𝒎, 
(b) 𝒌 = 𝟗𝟎 𝑵/𝒎, (c) 𝒌 = 𝟏𝟑𝟎 𝑵/𝒎 and (d) 𝒌 = 𝟏𝟓𝟎 𝑵/𝒎 with a small duty ratio. 

 

Figure 5.25 Average of upper and lower peaks and the peak difference for different 
stiffness with a small duty ratio. 

Larger stiffness could produce a higher peak acceleration in both directions 

since more potential energy could be stored and released during the 

movement giving the same working distance. It was observed that the same 

direction in peak difference (i.e., positive) was obtained with a small duty 
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ratio 𝑟 = 0.2 for all stiffness, which means that the change of the stiffness 

would not influence the direction of haptic cues. However, the peak 

difference decreased with larger stiffness, which would make the desired 

asymmetric vibrations into unwanted symmetric vibrations.  

 

Figure 5.26 Simulated acceleration output with a spring stiffness of (a) 𝒌 = 𝟕𝟎 𝑵/𝒎, 
(b) 𝒌 = 𝟗𝟎 𝑵/𝒎, (c) 𝒌 = 𝟏𝟑𝟎 𝑵/𝒎 and (d) 𝒌 = 𝟏𝟓𝟎 𝑵/𝒎 with a large duty ratio. 

 

Figure 5.27 Average of upper and lower peaks and the peak difference for different 
stiffness with a large duty ratio. 

The same procedure was conducted with a large duty ratio 𝑟 = 0.8. The 

simulated acceleration outputs and average peak difference are shown in 

Figure 5.26 and Figure 5.27, respectively. 
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Similarly, it was observed that the same direction in peak difference (i.e., 

negative) was maintained with a large duty ratio 𝑟 = 0.8 for all stiffness. Both 

positive and negative peaks were increased with a larger spring stiffness. 

However, the peak difference was also decreased with larger stiffness as it 

was observed with a small duty ratio.  

The observation on the change of peak difference with respect to spring 

stiffness with both duty ratios also led to a common finding that the peak 

difference would become optimised when spring stiffness was below a 

certain threshold. Determining this stiffness threshold value would be 

extremely beneficial for haptic device design in terms of obtaining the largest 

asymmetry of haptic output. Similarly, an upper stiffness threshold should 

also be determined. Therefore, extra stiffnesses were simulated using the 

same dynamic model with a duty ratio of 𝑟 = 0.2. The output acceleration 

with a large duty ratio 𝑟 = 0.8 should be opposite to that with a small duty 

ratio. Figure 5.28 presents the average peak difference for all stiffnesses. 

 

Figure 5.28 Change in peak difference with a variation in stiffness. 

It was observed that when the stiffness was below 90  N/m, the peak 

difference for the solenoid haptic test platform would not change significantly. 

When the stiffness was above 150  N/m, the direction of peak difference 

would change from positive to symmetric and negative even with a small 

duty ratio. Therefore, there exists a maximum and minimum spring stiffness 

for each haptic system in order to generate asymmetric vibrations for the 

delivery of haptic directional cues along the desired direction. 
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5.4.2 Voice Coil Actuator Test Results 

A voice coil actuator (VCA) was used to build a hand-held haptic device. A 

step-ramp signal was adopted as the input control signal. This input signal 

would be parameterised based on a VCA haptic test platform that measured 

the displacements resulted from asymmetric vibrations. A psychophysical 

experiment was finally conducted to verify the four hypotheses regarding to 

the delivery and the perception of haptic directional cues.  

5.4.2.1 Displacement from VCA Test Platform 

Three input signal parameters were established and studied, namely delay 

time (𝑡ௗ), ramp down step length (𝑆) and cut-off voltage (𝑉). Five output 

parameters were used to quantify the haptic output, namely vibration 
frequency (𝑓௦௬), simplified speed (𝑉௦), negative stroke (𝑆), positive stroke 

(𝑆) and stroke ratio (𝑟௦). The aim of this test platform was two folds. 

1) To determine the upper and lower limit of each input parameter so 

that the haptic output could be continuous and perceived by people. 

Therefore, a vibration frequency between 2 Hz and 10 Hz should be 

satisfied for this haptic device based on the results from a small-scale 

pre-test.  

2) To optimise each input parameter so that the asymmetry of haptic 

output could be enhanced without significantly effecting vibration 

frequency. Therefore, a minimisation on the stroke ratio should be 

satisfied without influencing output frequency.  

Displacement measurements were normalized using a z-score method since 

the absolute position of the motor box was not of interest in this research. 

On the contrary, data normalization provides direct comparison over the 

output features. 

5.4.2.2 Delay Time 

Delay time is defined as the time between the step input and the ramp-down 

input. In the displacement test as introduced in section 5.3.3, it was set 

incrementally with an increase of 10 ms. The minimum delay time was set to 

0 ms and the maximum delay time was set to 50 ms. This maximum value 

was chosen since any delay time higher than the upper limit would result to 
a low output vibration frequency (𝑓௦௬ < 3 Hz). The ramp down step length 

and the cut-off voltage were set to their default value (𝑆 = 256 and 𝑉 = 0 V). 

Displacement measurements for different delay time are shown in Figure 

5.29. 
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Figure 5.29 Displacement measurements for different delay time settings. 

It was observed that a longer delay time would result to a lower vibration 
frequency 𝑓௦௬ and a slower simplified speed 𝑉௦. There existed an upper and 

lower limit for delay time because low-frequency vibrations could not be 

considered as continuous haptic feedback. The five output parameters were 

extracted (Appendix A1) and the change in vibration frequency, simplified 

speed and stroke ratio is shown in Figure 5.30. The delay time was set as 

categorical values.  

 

Figure 5.30 Change in vibration frequency, simplified speed, and stroke ratio for 
different delay time settings. 

A monotonic decrease was found in both vibration frequency and simplified 
speed. The lowest vibration frequency (𝑓௦௬ = 2.44 Hz) was achieved with 
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𝑡ௗ = 50  ms and the highest vibration frequency ( 𝑓௦௬ = 10.29  Hz) was 

achieved with 𝑡ௗ = 0 ms. However, no monotonic correlation was observed 

between delay time and stroke ratio although longer delay time tended to 

produce larger stroke ratio. As a result, there existed a trade-off between 

input delay time and output stroke ratio. The stroke ratio was minimised 

when no delay time was introduced. Therefore, it was not clear that the 

asymmetry of haptic output could be enhanced by only changing delay time.  

5.4.2.3 Ramp Down Step Length 

Ramp down step length is defined as the amount of voltage being decreased 

in each iteration when generating the ramp signal. A larger ramp down step 

length would require less time to decrease the voltage from saturation to the 

desired minimum voltage, producing a higher vibration frequency. Because 

the voltage was regulated using a 12-bit digital-analogue converter, the ramp 

down step length was set exponentially from 𝑆 = 32 to 𝑆 = 2048. Using Eq. 

5.7, the corresponding voltage boundaries were 𝑉௦ = 0.0256  V and 𝑉௦ =

1.6384  V. The delay time and the cut-off voltage were set to their 

corresponding default value (𝑡ௗ = 20 ms and 𝑉 = 0 V). The displacement 

measurements for each ramp down step length were shown in Figure 5.31 

(a). 
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Figure 5.31 (a) Displacement measurements for different ramp down step length 
settings and (b) a secondary platform in the haptic output. 

The upper and lower boundaries were also restricted by the vibration 

frequency. When ramp down step length was greater than 2048, the 

perception of haptic feedback could be worsened due to the high-frequency 

vibrations. When ramp down step length was less than or equal to 64, there 

was a change in displacement measurements where secondary platforms 

were found during positive strokes as shown in Figure 5.31 (b). The reason 

behind this was not quantitatively studied. However, the effect of the 
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secondary platforms on the perception of haptic cues were studied in the 

later human experiment.  

The same five output parameters were extracted (Appendix A2). Ramp 

down step length was set as categorical values. The change in vibration 

frequency, simplified speed, and stroke ratio is shown in Figure 5.32. 

 

Figure 5.32 Change in vibration frequency, simplified speed, and stroke ratio for 
different ramp down step length settings. 

Overall, a monotonic increase was found for vibration frequency, simplified 

speed, and stroke ratio ( 𝑅ଶ = 0.99 , 0.99 , 0.94 ). The lowest vibration 
frequency ( 𝑓௦௬ = 1.88  Hz) was achieved with 𝑆 = 64  and the highest 

vibration frequency (𝑓௦௬ = 6.93  Hz) was achieved with  𝑆 = 1024 . The 

stroke ratio was ideally minimised with a minimum ramp down step length. 

However, as illustrated in Figure 5.32, the change of ramp down step length 

could also significantly change the vibration frequency. This does not comply 

with the second aim of the test platform. Therefore, it would be beneficial to 

minimise the stroke ratio while remaining vibration frequency by changing 

another input parameter.  

5.4.2.4 Cut-off Voltage 

Cut-off voltage is defined as the voltage level at which the ramp down input 

stops. The value of cut-off voltage is recorded before the differential amplifier. 

Therefore, all cut-off voltages in this work are presented with positive values. 

A larger cut-off voltage would reduce the work length of the returning stroke 

of a moving metal core, generating weaker haptic stimuli while preserving 
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the stronger ones. The minimum cut-off voltage was set to 0 V and the 

maximum value was set to 1.37 V. Delay time and ramp down step length 

were set to their corresponding default value. Figure 5.33 (a) presents the 

displacement measurement results on the haptic test platform. 

 

Figure 5.33 (a) Displacement measurements for different cut-off voltage settings and 
(b) damping effect during the delay platform. 

The upper limit of the cut-off voltage was restricted by the damping effect 

during the delay platform as shown in Figure 5.33 (b). When cut-off voltage 
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was above 1.1 V, the original smooth and straight platform resulted from the 

delay time would become less smooth and fluctuate over time. This would 

have two negative impacts: 

1) It was difficult to quantify positive strokes, negative strokes, and 

stroke ratio. The inter-measurement variability would be worsened.  

2) Although the overall displacement measurement could be considered 

because of asymmetric vibrations, the absence of a smooth platform 

introduced by the delay time could result to symmetric vibration of 

human skin [60], which could not provide directional guidance but 

normal vibrations.  

The same five output parameters were extracted (Appendix A3) except with 

a cut-off voltage of 1.37 V. Cut-off voltages were set as categorical values. 

The change in frequency, simplified speed and stroke ratio is shown in 

Figure 5.34. 

 

Figure 5.34 Change in vibration frequency, simplified speed, and stroke ratio for 
different cut-off voltage settings. 

It was observed that vibration frequency and simplified speed had a linear 

relationship with cut-off voltage (𝑅ଶ = 0.98 and 𝑅ଶ = 0.99). A larger cut-off 

voltage could result in a higher vibration frequency and faster simplified 

speed. On the other hand, a single term exponential function (monotonic 

decrease) was used to fit the stroke ratio (𝑅ଶ = 0.99). A larger cut-off voltage 

could significantly minimise stroke ratio. This is consistent with the 

optimisation aim that the change of stroke ratio would not cause significant 
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influence on vibration frequency and simplified speed. Therefore, optimising 

cut-off voltage could be an effective approach to increase the asymmetry of 

haptic output. The effectiveness of this approach on the perception of haptic 

cues would be examined in the human-based experiment. 

5.4.3 Output Parameter Comparison 

Since stroke ratio is defined as a fraction of negative stroke and positive 

stroke, it is important to make sure that this ratio is not a constant across 

different configurations before further analysis. Figure 5.35 presents a 

scatter plot between average positive stroke and negative stroke obtained 

from all configurations in displacement measurements. 

 

Figure 5.35 Negative stroke and positive stroke do not show strong linear correlation. 

It was observed that a negative 𝑅ଶ  value was obtained when forcing the 

linear fit to cross the origin. This result shows that there is no constant stroke 

ratio calculated from positive stroke and negative stroke.  

To quantitatively compare the effect of three output parameters, Table 5.6 

presents the slope of the linear fit or the power of the exponential function of 

the fit on stroke ratio, vibration frequency and simplified speed. 
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Table 5.6 Effect of output parameters on stroke ratio, vibration frequency and 
simplified speed. 

Parameter 𝑓௦௬ 𝑉௦ 𝑟௦ 

Delay Time −1.432 −0.267 N.M. 

Ramp Down 

Step Length 
1.268 0.252 0.085 

Cut-off Voltage 0.248 0.045 0.36 − 0.0024𝑒ଵ.ଵସ 

N.M.: Not monotonic 

Delay time has a linear negative relationship with vibration frequency and 

simplified speed. Although it does not have a monotonic relationship with 

stroke ratio, effective haptic delivery requires the delay platform in the haptic 

output.  

Ramp down step length has a positive linear relationship with vibration 

frequency, simplified speed, and stroke ratio. Although the stroke ratio could 

be minimised with a small ramp down step length, its relatively low vibration 

frequency makes haptic output discrete, which does not comply with the 

optimisation goal.  

Cut-off voltage has a positive linear relationship with vibration frequency and 

simplified speed but with a significantly lower slope compared to ramp down 

step length. On the contrary, it has a negative exponential relationship with 

stroke ratio. The rate of change of stroke ratio becomes extremely fast after 

𝑉 = 0.41 V. This means that cut-off voltage could ideally minimise the stroke 

ratio without significantly influencing vibration frequency and simplified 

speed, which is consistent with the optimisation goal.  

Therefore, it is important to conduct a human-based experiment to examine 

the effectiveness of the optimisation results on the perception of haptic cues.  

5.5 Summary 

5.5.1 Overall 

In this chapter, three haptic implementations were proposed, and 

experiments were designed to verify the effectiveness of the 

implementations correspondingly.  

An ERM-based haptic design was first attempted. Although the application of 

ERMs for haptic delivery was not ideal because of the limitations on vibration 
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frequency and amplitude etc., the initial exploration helped to establish the 

key requirements for precise haptic delivery.  

A solenoid-based haptic test platform was then introduced. This platform 

used a single push-type solenoid controlled by PWM signals to generate 

asymmetric vibrations. A 1-DOF mass-spring-damper model was 

established in Simulink to describe the system’s dynamic behaviour. An 

experiment was then designed to verify the validity of the dynamic model by 

comparing the output acceleration profiles. In the experiment, PWM signals 

with different frequencies and duty ratios were tested. Dynamic time warping 

distance was used to quantify the model precision because of the 

significantly different sampling frequency of two measurements. Additionally, 

the effect of spring stiffness and waveform were also discussed using the 

dynamic model.  

Another haptic implementation was proposed using a voice coil actuator 

(VCA) controlled by step-ramp signals. Since the VCA is small in size and 

light in weight, it is convenient to build a hand-held haptic device using the 

VCA as the source of asymmetric vibrations. Therefore, a design 

specification for the hand-held haptic device was proposed to guide the 

manufacturing process. 

In order to optimise the delivery of clearer haptic directional cues by the 

device, an experiment was designed to quantitively study the haptic input 

and output. The step-ramp input signal was parameterised with three 

adjustable variables, namely delay time, ramp down step length and cut-off 

voltage. The haptic output was measured by the VCA haptic test platform, 

where the displacements resulted from asymmetric vibrations were studied. 

The output was parameterised with five dependent variables, namely 

frequency, simplified speed, positive stroke, negative stroke, and stroke 

ratio. Table 5.7 summarises the input and output parameters of both haptic 

implementations.  

Table 5.7 Summary of the inputs and outputs of two haptic systems. 

Solenoid-based Haptic 

Input 

PWM Duty ratio 

PWM Frequency 

Spring Stiffness 

Waveform 

Output Accelerations 
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VCA-based Haptic 

Input 

Delay Time 

Ramp Down 

Step Length 

Cut-off Voltage 

Output 

Frequency 

Simplified Speed 

Positive Stroke 

Negative Stroke 

Stroke Ratio 

It was assumed that the people’s perception of haptic directional cues would 

change with respect to different output characteristics described by the five 

output parameters. Therefore, a psychophysical single group experiment 

was designed to explore the effect of output characteristics on the 

perception of haptic directional cues. The experiment was designed to have 

four stages in order to verify four hypotheses.  

Compared to solenoid-based haptic implementation, the VCA-based 

implementation allows more control over the input signal although it requires 

additional circuit design to achieve the configurability. Table 5.8 summaries 

two haptic implementations in terms of their design, characteristics, and 

recommended application environment.  

Table 5.8 Summary of two haptic implementations. 

 Solenoid-based Haptic VCA-based Haptic 

Size Large Small 

Weight Heavy Light 

Cost Low Medium 

Control Signal 
PWM, Step-ramp, 

Sawtooth 
Step-ramp 

Configurable 

Input Parameters 
2 3 

Recommended 

Application 

Fixed device 

Grounded(1) device 

Portable device 

Ungrounded device 

(1) The term “grounded” or “ungrounded” in the field of haptic implementation indicates 

if the device is physically connected to the ground or not.   
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5.5.2 Selection of Haptic Motors 

Three haptic actuation methods were examined in this chapter. The 

eccentric rotating mass (ERM) motors were determined unsuitable for the 

delivery of haptic directional cues due to the lack of ability to provide 

accurate and strong multi-directional haptic feedback. However, they are 

easy to be programmed and compatible in size and weight. Therefore, haptic 

feedback based on ERM motors is especially beneficial in low-power 

designs and simple haptic sequence feedback. The other two haptic 

actuation methods applied a linear solenoid and a voice coil actuator (VCA). 

Both could satisfy the aim of generating strong and measurable directional 

cues but were controlled by different input signals. A solenoid motor was 

controlled by a PWM signal whereas a VCA was controlled by a step-ramp 

signal. Since a step-ramp signal is more configurable than a PWM signal, it 

is possible to optimise the former one in a psychophysical experiment for an 

improved haptic experience.  

5.5.3 Solenoid Dynamic Model 

The solenoid test platform consisted of a linear pushing solenoid with two 

compression springs. In order to quantitatively study the movement of the 

solenoid, a 1-DOF mass-spring-damper model was established. An 

important variable to be determined was the solenoid drive constant. It is the 

product of the magnetic flux and the length of the wire of the solenoid. The 

force generated by the solenoid is controlled by the drive constant and the 

current. Since different motors have different drive constants and the force is 

essential in the establishment of dynamic model, it is rather important to 

experimentally determine the drive constant for each motor before further 

analysis. It is also worthwhile to point out that the magnetic flux may change 

with respect to the operation temperature. The temperature could be 

influenced by various factors including the room temperature, operation 

voltage, current frequency etc. Consequently, there exists a trade-off 

between operation voltage and the strength of haptic output. Higher voltage 

generates larger forces but more heat during the vibration process. The 

magnetic flux density decreases with higher temperature, resulting in a 

decrease in haptic forces. Therefore, it is recommended to design a specific 

haptic motor that satisfy the following conditions. 

 High drive constant. A haptic motor with a high drive constant does 

not require a high voltage (current) to generate large output force. 

Therefore, the temperature of the motor during operation will not be 

significantly influenced by voltage. 
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 High frequency tolerant. High frequency input signal generates more 

heat during the operation. A haptic motor with high frequency 

tolerance (between 10 Hz and 60 Hz) could satisfy frequency 

requirement on human perception without damage the motor.  

The established dynamic model was verified by an experimental 

measurement on the output accelerations. The observation of the loss of 

damping in the measured acceleration at 5 Hz could be a result of 

measurement error in the spring stiffness and damping coefficient since they 

were determined experimentally using a mass-spring model. Additionally, 

the two springs in this research were inserted into the solenoid as an 

additional module but not original component, the dynamic behaviour of the 

motor-springs system may be influenced by the friction between the springs 

and the shaft or the solenoid body. Therefore, it is also beneficial in the 

future motor design to include the springs as internal components to match 

the motor’s characteristics for a better delivery of haptic cues.   

The solenoid was controlled by PWM signals with different duty ratios to 

generate asymmetric vibrations. The asymmetry of the haptic output 

changed from a positive direction to a negative direction with larger duty 

ratios. This was illustrated by the average of positive and negative 

acceleration peaks. Dynamic time warping distance was used to 

quantitatively compare the simulation results and experimental results. A 

Tukey test showed that a significant difference was found between different 

PWM frequencies whereas no significant difference was found between 

different duty ratios. This means that the 1-DOF model established in this 

research is particularly suitable for high-frequency (> 5 Hz) simulations and 

have a good applicability over a range of duty ratios.   

5.5.4 Effect of Signal Shape and Spring Stiffness 

The same directional change was observed from a short actuation time to a 

long actuation time. However, analogue signals such as step-ramp signals 

could generate different haptic outputs. An abrupt change in the momentum 

profile was observed as a result of step input in both PWM signals and step-

ramp signals. This abrupt change was assumed to be much more easily 

perceived by human than a gradual change created by sawtooth signals. It is 

worth verifying this assumption in any future study. This observation also 

provides a new idea on the construction of haptic input signal. If a step input 

and a delay time are essential, the ramp-down process of voltage with 

respect to time could be changed from a linear relationship to a nonlinear 

relationship as shown in Figure 5.36.  
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Figure 5.36 Two nonlinear ramp-down curves. 

The difference between a concave curve and a convex curve is perceived by 

humans at the end of each vibration cycle. Convex curve is similar to a linear 

ramp-down but an increase in momentum towards the end of the movement. 

On the contrary, concave curve gradually slows down towards the end of the 

movement. Because humans are more sensitive to abrupt changes in 

momentum, concave curve has the advantage of minimising negative stroke 

(the stroke that returns the mass to the original position) while maintaining 

the positive stroke (the stroke that generates directional cues). 

Apart from signal shape, spring stiffness also effectively changes the 

dynamic behaviour of the haptic system. A large stiffness results in large 

acceleration peak values but a small peak-to-peak difference. It was also 

found in this research that the value of peak-to-peak difference is neither 

linear nor monotonic with respect to spring stiffness. Therefore, for a specific 

haptic device, there exists an upper and lower stiffness threshold in order to 

obtain a maximum peak-to-peak difference. It is important to determine 

these thresholds using the dynamic model established in this research for 

optimised haptic performance.  

5.5.5 Displacement Measurements 

A displacement measurement was conducted in this research on 9 haptic 

configurations to extract 5 displacement output features, namely simplified 

speed, vibration frequency, positive stroke, negative stroke, and stroke ratio. 

Three variables were used to parameterise the input step-ramp signal, 
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including delay time, ramp down step length and cut-off voltage. They all 

have significant influence on the vibration frequency and asymmetry of 

haptic output. Delay time and ramp down step length would effectively 

change the vibration frequency and simplified speed although the 

monotonicity in the change of stroke ratio was only observed with various 

ramp down step lengths. Since stroke ratio and delay time is positively 

correlated, the minimisation of stroke ratio would require zero delay time. 

However, delay time is proved to be essential by [60] in the step-ramp signal 

in order for the haptic cues to be successfully perceived by humans. 

Therefore, other approaches need to be explored to minimise the stroke 

ratio. Ramp down step length also shows a positive correlation with stroke 

ratio. While retaining the delay time, the decrease in ramp down step length 

for the minimisation of stroke ratio would significantly decrease vibration 

frequency as well, which will influence the continuous perception of haptic 

cues.  

Cut-off voltage is a novel approach proposed in this research to optimise 

stroke ratio without significantly affecting vibration frequency. It presents a 

negative correlation with stroke ratio but positive correlation with vibration 

frequency and simplified speed. However, a maximum cut-off voltage should 

be determined for different haptic devices since the range of voltage during 

operation should be sufficient to generate powerful positive stroke.  

A displacement measurement has the advantage of presenting and 

quantifying the asymmetry of haptic output without complicated preprocess 

on the measurement data. However, compared to acceleration or 

force/torque measurement, the interaction between the haptic device and 

human skin could not be quantified using displacement measurements. It 

was also argued in [97] that the dynamic behaviour of the motor would 

change when the motor is connected to human body but not a rigid structure. 

Therefore, it is worthwhile to compare displacement measurements against 

acceleration or force measurements in the future study to verify the efficacy 

of the proposed position-based method.  
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Chapter 6 Human Experiment Design and Results 

A single group psychophysical experiment with 30 participants was finally 

conducted to test the haptic device prototype in order to determine the ideal 

characteristics of the input control signal that provides the clearest 

directional cues. A psychophysical experiment was also designed to test the 

hypotheses regarding to the perception of haptic cues delivered by the VCA 

device. Section 6.1 presents the experimental design, concluding remarks.  

6.1 Human Experiment Design  

A psychophysical single group experiment was designed to evaluate the 

perception of haptic cues induced by the hand-held device. The aim of the 
experiment was to evaluate the effect of the five output parameters (𝑓௦௬, 𝑉௦, 

𝑆 , 𝑆  and 𝑟௦ ) on the perception of haptic directional cues in terms of 

accuracy and user confidence. Additionally, the effect of haptic reference 

and the type of force that delivers the haptic directional cues will also be 

discussed. Therefore, four hypotheses were raised to be verified in the 

experiment. 

1) By introducing cut-off voltages, the asymmetry of the haptic output 

can be increased (smaller 𝑟௦), which can benefit clearer delivery of the 

haptic directional cues. 

2) When asymmetric vibrations could be perceived, there exists a stroke 

ratio that can produce clearer delivery of the haptic directional cues. 

3) The existence of a haptic reference can help improve the sensing 

accuracy and user confidence.  

4) Haptic directional cues delivered by shear forces give improved 

sensing accuracy than those delivered by normal forces.   

In order to verify these hypotheses, a four-stage experiment was designed 

involving 9 different haptic configurations. Each configuration has unique 

combinations of the three input parameters (𝑡ௗ, 𝑆 and 𝑉) established in the 

previous section. Consequently, each configuration would also have different 
output parameters (𝑓௦௬, 𝑉௦, 𝑆, 𝑆 and 𝑟௦). The experiment was conducted in 

the Rehabilitation Robotics Laboratory, University of Leeds, Leeds, UK. The 

study was approved by the Engineering and Physical Science Research 

Ethics Committee (MEEC 22-006). All participants gave written informed 

consent. The corresponding ethical review materials are presented in the 
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Appendix. The experiment procedures are described below and summarised 

in Figure 6.1. Figure 6.2 illustrates a participant holding the hand-held device 

during the experiment.  

1) Initial Display. Participants were asked to experience haptic 

directional cues at a default direction (i.e., pointing forwards) 

delivered by all 9 configurations in the same order. A three-second 

rest time was provided in between each configuration. After the 

display of all 9 configurations, a one-minute rest time was provided 

before continuing to the second stage.  

2) Left or Right. Participants were asked to specify a direction (either left 

or right) based on the current haptic configuration. The same 9 

configurations were used at this stage. Different participants were 

presented with haptic configurations in unique orders. Apart from 

specifying the perceived direction, participant’s confidence on his/her 

answers would also be recorded as the confidence level. The 

confidence level used categorical values with 0 being not sure, 1 

being very sure and 2 being no directional cues were felt. The 

preferred configuration for each participant was finally determined by 

the correctness of direction and the confidence level. If multiple 

configurations were chosen by the same participant, the most 

selected one by other participants would be used for the rest of the 

experiment.  

3) Static Test. Participants were asked to specify a random direction in a 

larger range (0 − 180 semicircle range in front of the participants) 

based on the selected configuration in the previous stage. The haptic 

directional cues were presented at a random angle within the 

semicircle range. After a five-second display, participants were asked 

to use the knob to specify that random direction. Participant’s 

specified angle and the actual haptic angle would be recorded. This 

process was repeated for 5 times with no rest time provided in 

between.  

4) Dynamic Test. Participants were asked to specify a random direction 

in the same range with the help of a haptic reference. A haptic 

reference is haptic directional cues pointing forwards as a default 

direction. During the test, haptic cues would change from the default 

direction to a random angle in the same range. Participants were 

expected to perceive the directional changes and were asked to 

specify the final direction. This process was repeated for 5 times with 

no rest time provided in between.  
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5) After the entire test, participants would be asked for two questions: 

 Which test do you find it easier to tell a direction, static test, or 

dynamic test?  

 Did you feel more haptic feedback on your thumb side or on 

your more-fingers side? 

 

Figure 6.1 Summary of the four stages of the human perception experiment. 

 

Figure 6.2 A participants was holding the hand-held haptic device during the 
experiment. 
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6.2 Human Experiment Results 

The aim of the experiment was to verify the four hypotheses regarding to the 

perception of haptic directional cues listed in the above section and reviewed 

here. 

1) By introducing cut-off voltages, the asymmetry of the haptic output 

can be increased (smaller 𝑟௦), which can benefit clearer delivery of the 

haptic directional cues. 

2) When asymmetric vibrations could be perceived, there exists a stroke 

ratio 𝑟௦ that can produce clearer delivery of the haptic directional cues. 

3) The existence of a haptic reference can help improve the sensing 

accuracy and user confidence.  

4) Haptic directional cues delivered by shear forces give improved 

sensing accuracy than those delivered by normal forces.   

A total number of 30 participants were recruited in the experiment. All 

participants have right dominant arm. Although participants were trained on 

how to grip the device prior to the experiment and markers were provided for 

participants to locate their fingers, difference in hardness of skin, the 

sensitivity to skin vibration and the grip position and angle between fingers 

and the device could have effects on the perception results. Therefore, this 

experiment does not focus on the individual difference, but each haptic 

configuration formulated by input and output parameters. A total of 9 

configurations were selected from three preliminary tests with 4 participants 

within the research group including the author. Due to the limitations on 

experiment time per participant, only upper and lower boundaries, and a 

value in between were selected to form these 9 configurations. The input 

parameters of all configurations are listed in Table 6.1. 
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Table 6.1 Input parameters of all haptic configurations. 

Related 

Variable 
Configuration 

Input Parameters 

𝑡ௗ (𝑚𝑠) 𝑆 (1 𝑠⁄ ) 𝑉 (𝑉) 

Delay Time 

1 20 256 0.00 

2 0 256 0.00 

3 40 256 0.00 

Ramp 

Down Step 

Length 

4 20 128 0.00 

5 20 64 0.00 

6 20 512 0.00 

Cut-off 

Voltage 

7 20 256 0.21 

8 20 256 0.10 

9 20 256 0.41 

6.2.1 Left or Right  

Number of matches (NOM) and number of unidentified answers (NOU) were 

used to quantitatively assess the accuracy of the haptic perception. NOM 

was counted when participant’s specified direction was the same as the 

random left/right. NOU was counted when a participant could not specify a 

direction. Additionally, participant’s confidence on the specified direction was 

assessed using the ordinal scale 0 or 1. Sum of confidence (SOC) was 

accumulated based on participant’s confidence level. The results of the first 

stage experiment are shown in Figure 6.3 (a). The numbers on the outside 

circumference correspond to each configuration number listed in Table 6.1. 

Ideally, a good haptic configuration should have a large NOM for higher 

accuracy, a small NOU for better applicability and a large SOC for better 

user experience. The maximum NOM and NOU for each configuration was 

the same as the number of participants recruited (i.e., 30). The minimum 

NOU was zero.  

It was observed in Figure 6.3 (b) and (c) that configurations with a cut-off 

voltage (i.e., config. 7, 8 and 9) had a larger NOM and a smaller NOU than 

those without a cut-off voltage. Particularly, configurations with a cut-off 

voltage showed a significant increase using a Tukey test in terms of the 

accuracy of haptic delivery (𝑝 = 0.023). No significant difference was found 

in configurations related to delay time and ramp down step length.  



- 128 - 

The average SOC for configurations with a cut-off voltage was also higher 

than that without a cut-off voltage. No significant difference was found. 

Specifically, configurations 2 and 4 had a high NOU among all configurations, 

indicative of a potential poorer performance in terms of the applicability.   

 

Figure 6.3 (a) Experiment results for 9 configurations and comparisons related to cut-
off voltage in terms of (b) NOM, (c) NOU and (d) SOC. 

To examine each configuration in terms of NUM and SOC in detail, a scatter 

plot is shown in Figure 6.4 and the output parameters are listed in Table 6.2. 
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Figure 6.4 Scatter plot of each haptic configuration. 

Configuration 9 had the largest NOM and configuration 3 had the largest 

SOC. The top right corner of the plot was the region of interest because 

configurations within that area had better performance in SOC and NOM. All 

configurations with a cut-off voltage belonged to this area. Configurations 

with a low vibration frequency (i.e., configurations 3 and 5) tended to provide 

better user’s confidence on directional judgement. The bottom or left region 

of the plot was the poor performance region, especially the bottom left 

corner where both NOM and SOC were low.  

Table 6.2 Output parameters for all configurations used in the experiment. 

Configuration 𝑓௦௬ (𝐻𝑧) 𝑉௦ (1 𝑠⁄ ) 𝑆 𝑆 𝑟௦ 

1 4.47 0.8101 0.0963 0.2745 0.3508 

2 10.29 1.9150 0.0622 0.2486 0.2502 

3 2.87 0.5141 0.1186 0.3107 0.3817 

4 3.13 0.5404 0.0452 0.2374 0.1904 

5 1.88 0.3413 0.0528 0.2664 0.1982 

6 5.71 1.0280 0.2115 0.4213 0.5020 

7 4.60 0.8395 0.0933 0.2719 0.3430 

8 4.53 0.8234 0.0948 0.2732 0.3471 

9 4.65 0.8483 0.0920 0.2700 0.3407 

Blue: minimum value of the feature. Red: maximum value of the feature. 
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To control the experiment variability, two sets of comparisons were made 

based on the results shown above. Intra-parameter comparison is the 

comparison within each input parameter group (e.g., configuration 1, 2 and 3) 

and inter-parameter comparison is the comparison between each input 

parameter group (i.e., configuration 1, 4 and configuration 1, 9).  

The first intra-parameter comparison was made for delay time group. All 

three configurations had a vibration frequency that could be perceived by 

people. However, configuration 2 (𝑡ௗ = 0 𝑚𝑠) had the lowest NOM and a low 

SOC among all configurations. This is consistent with the previous analysis 

that the platform introduced by the delay time is essential in the perception 

of asymmetric vibrations. Configuration 1 had a smaller stroke ratio (more 

asymmetry) and a larger NOM compared to configuration 3. However, this 

observation alone could not verify hypothesis (2) due to the lack of 

observations with a bigger range of stroke ratio. This would be addressed in 

the later analysis. 

The second intra-parameter comparison was made for ramp down step 

length group. Configuration 5 had the smallest vibration frequency that was 

out of the frequency range determined through preliminary tests, which 

makes its NOM in the poor performance region. However, it is obvious that 

configuration 5 had a much larger SOC compared to configuration 4 and 6. 

In the previous displacement analysis, a secondary platform during the 

positive stroke was found when 𝑆 < 128 . Therefore, the effect of the 

secondary platform may be beneficial for improving user’s confidence on 

directional judgement while not affecting the accuracy of haptic cues.  

The final intra-parameter comparison was made for cut-off voltage group. All 

three configurations had excellent NOM and SOC while a small NOU. All 

their output parameters were very similar to each other as well. 

For the inter-parameter analysis, only two comparisons were made between 

configurations 1 and 9, and configurations 1 and 4. Configuration 9 had a 

larger NOM and SOC compared to configuration 1. While their output 

parameters were similar, the only difference in the input parameter was the 

existence of a cut-off voltage in configuration 9. This observation could verify 

hypothesis (1) that the application of cut-off voltage could help a better 

delivery of haptic directional cues.  

Configurations 1 and 4 had the same SOC in the poor performance region. 

However, configuration 1 had a larger NOM. This is because the stroke ratio 

of configuration 4 was significantly lower than configuration 1. This 
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observation contributes to hypothesis (2) that there exists an optimised 

stroke ratio that could help a better delivery of haptic cues. To find this 

optimal value, the relationship between stroke ratio and NOM is plotted in 

Figure 6.5 to verify hypothesis (2). 

 

Figure 6.5 Gaussian and quadratic relationship between stroke ratio and NOM. 

A quadratic function and a Gaussian probability density function was used to 

describe the relationship between stroke ratio and NOM with 𝑅ଶ = 0.664 and 

0.893, respectively. The Gaussian probability density function has a better 

goodness of fit compared to a quadratic curve. A stroke ratio of 𝑟௦ = 0.344 

predicted by the Gaussian function could achieve a maximum NOM. On the 

other hand, the quadratic model was not excellent in terms of goodness of fit. 

A stroke ratio of 𝑟௦ = 0.345 was predicted by the quadratic function.  

Apart from the stroke ratio, the relationship between NOM and the other 

features were also explored by a Gaussian probability density function as 

shown in Figure 6.6. 
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Figure 6.6 The relationship between NOM and (a) simplified speed, (b) vibration 
frequency, (c) positive stroke and (d) negative stroke. 

Simplified speed, vibration frequency and positive stroke had a strong 

Gaussian correlation with NOM. This suggested that there existed an 

optimal value for each of the feature in order for a maximum perception rate 

for the haptic directional cues. However, there was no correlation found 

between the negative stroke and NOM.  

Additionally, instead of exploring the non-linear relationship, a Pearson’s 

correlation test was conducted on both half of the quadratic curve with 𝑟௦ =

0.345 as the separation line to examine two sets of relationships as listed 

below. This value was calculated by the line of symmetry of the quadratic fit 

function. Figure 6.7 presents the test results for both intervals. 

 The relationship between NOM, SOC and all output features. 

 The relationship between each output feature. 
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Figure 6.7 Pearson's correlation coefficients for both quadratic intervals separated by 
𝒓𝒔 = 𝟎. 𝟑𝟒𝟓. 

Between NOM, SOC and output features:  

It was observed that NOM had a strong negative correlation with stroke ratio 

(𝑟 = −0.98) when 𝑟௦ < 0.345, and a strong positive correlation with stroke 

ratio (𝑟 = 0.82) when 𝑟௦ ≥ 0.345. Together with the analysis of the first intra-

parameter comparison, the second inter-parameter analysis and the 

quadratic fit, this strong negative-positive correlation between stroke ratio 

and NOM could verify the hypothesis (2) that there exists a stroke ratio that 

could benefit clearer delivery of haptic directional cues. Specifically, the 

optimised stroke ratio value for this hand-held device was 𝑟௦ = 0.345.  

Apart from NOM, SOC had a moderate negative correlation with stroke ratio 

(𝑟 = −0.60) when 𝑟௦ < 0.345, and a moderate positive correlation with stroke 

ratio ( 𝑟 = 0.47 ) when 𝑟௦ ≥ 0.345 . The decrease in both correlation 

coefficients were expected because SOC was calculated based on 

subjective self-assessments by participants. No consistent and moderate 

correlations were found between NOM/SOC and other output parameters.  

Between each output feature: 

It was found that simplified speed and vibration frequency had a strong 

linear correlation (𝑟 = 1) on both intervals. A weak to moderate correlation 

(𝑟 = 0.22 − 0.42) was found between positive stroke and simplified speed. 

Positive stroke also presented a strong correlation with stroke ratio (𝑟 =

0.93 − 1).  

6.2.2 Static Test and Dynamic Test 

Based on the experiment results from the previous stage, configuration 9 

was chosen by all the participants for the static and dynamic test. Two 

absolute rotary encoders were used to measure the angles between 

participant’s input from the shaft and motor’s output. The absolute encoder 
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readings were converted to the range of 0 − 180  using a self-written 

MATLAB script. Root mean square error (RMSE) was computed to quantify 

the difference between the two angles. Because the static test and dynamic 

test were measured independently with the same device, method and the 

group of participants, a two-sample t-test was adopted to verify the 

significant difference between the two tests. The angle difference is shown in 

Figure 6.8. 

 

Figure 6.8 Angle difference in static test and dynamic test. 

The statistics of both tests are also shown in Table 6.3. 

Table 6.3 Statistics of angle difference in static test and dynamic test. 

Test 

Type 

Number of 

Observations 
Mean 

Standard 

Deviation 
Minimum Median Maximum 

Dynamic 150 0.32 19.21 −66.30 3.34 55.99 

Static 150 1.79 42.46 −129.42 1.94 161.17 

It was shown that the mean value and standard deviation of angle difference 

between participant’s input and haptic cues decreases significantly from 

static test to dynamic test. This observation favoured hypothesis (3) that the 

existence of a haptic reference would benefit a clearer delivery of haptic 

directional cues. This was also supported by the result from a question 

asked after all tests. The question asked the participants which test was 

easier to tell a direction. A total of 27 over 30 participants found it easier to 

tell a direction in the dynamic test with the help of a haptic reference.  
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Another positive outcome from the dynamic test was the decrease in the 

number of angle phase shifts. The maximum and minimum value in the 

static test were very close to ± 180 . This caused a cognitive error for 

participants during the static test to misjudge a left/right haptic cue as the 

opposite. However, the extreme values in the dynamic test were strictly 

restricted below ± 70. Although the extreme value in dynamic test would 

also result to a cognitive error within a smaller range, the possibility of 

correcting the error could be promising after practicing for a longer time with 

the specific device.  

The RMSE and the result of a two-sample t-test between participant’s input 

and haptic cues are shown in Figure 6.9. 

 

Figure 6.9 (a) RMSE for dynamic test and static test and (b) the two-sample t-test 
result on RMSE between two tests. 

The RMSE was plotted in an ascending order for static test result and each 

participant’s corresponding dynamic test result was also plotted. It was found 

that no correlation exists between two test results. A two-sample t-test was 

used to quantify the significance level at 5%. The resulted 𝑝 value of the test 

was 𝑝 = 5.48𝑒ିହ, in favour of the alternative hypothesis that the RMSE in the 

dynamic test was significantly lower than that in the static test. Therefore, 

based on the statistics listed in Table 7.8 and the 𝑝 value of the two-sample 

t-test, hypothesis (3) could be verified.  

6.2.3 Normal Force and Shear Force 

Shear force is defined as the haptic force component along the y-axis and 

normal force is defined as the haptic force component along the x-axis as 

illustrated in Figure 6.10. The default forwards direction used during the 

experiment was along the positive y-axis. 
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Angles of 45and 135 were used as the angle thresholds to determine zone 

1 and zone 2. In zone 1, shear force component is greater than normal force. 

Therefore, the haptic feedback was dominated by shear forces. On the 

contrary, the haptic feedback was dominated by normal forces in zone 2. 

The hypothesis is that shear forces could deliver better haptic directional 

cues than normal forces in terms of angle accuracy.  

 

Figure 6.10 Different zones determined by dominant force with local coordinate in the 
haptic experiment. 

The statistics between participant’s input and haptic cues were calculated 

and are shown in Table 6.4 and the angle difference is plotted in Figure 6.11.  

Table 6.4 Statistics of angle difference in different zones and tests. 

Test and 

Zone 

Number of 

Observations 
Mean 

Standard 

Deviation 
Minimum Median Maximum 

Static 

Zone 1 
72 −5.71 32.84 −108.94 −0.18 89.89 

Static 

Zone 2 
78 8.70 48.92 −129.42 3.60 161.17 

Dynamic 

Zone 1 
77 1.01 21.06 −66.30 4.42 55.99 

Dynamic 

Zone 2 
73 −0.42 17.15 −47.82 2.91 37.51 

Zone 1 149 −2.23 27.51 −108.94 2.08 89.89 

Zone 2 151 4.29 37.29 −129.42 3.15 161.17 
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Overall, directional cues delivered by shear forces (zone 1) had better 

delivery of haptic cues in terms of direction accuracy and performance 

stability. The mean value, standard deviation and extreme values of shear 

forces were all lower than those of normal forces. Additionally, a significant 

difference was addressed by a two-sample t-test at 95% significance level in 

static test (𝑝 = 0.037) as shown in Figure 6.11(a). This observation together 

with the above statistics contributed to hypothesis (4). On the other hand, no 

significant difference was found in dynamic test between two zones, indictive 

of the effectiveness of the haptic reference. Therefore, this result also 

contributed to hypothesis (3).  

 

Figure 6.11 Two-sample t-test on zone difference in (a) static test and (b) dynamic 
test. 

6.2.4 Special Concerns 

Apart from force type and haptic reference, three additional factors found 

during the experiment may also influence the perception of haptic cues, 

namely the contact area, haptic exposure time and visual cues. Participants 

were not informed by these questions until they finish all experiment stages. 

Contact area refers to the area of the device that is covered by participant’s 

fingers. Because all participants recruited in this experiment had right 

dominant hand, their contact area on the right-hand side was larger than that 

on the left-hand side. The result is shown in Figure 6.12. 
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Figure 6.12 Preference on the contact area by participants. 

Based on the answers from a questionnaire after the experiment, 70% of the 

participants found the contact area not significant in the perception of haptic 

directional cues. 23.3% of the participants preferred a large contact area 

whereas 6.7% of the participants preferred a small contact area.  

Haptic exposure time is the amount of time till a participant could not specify 

a direction through haptic cues. Only 1 participant reported a temporary loss 

in the ability of the directional haptic perception after experiment. Two 

participants reported a decrease in the ability of the haptic perception after 

12 minutes and 15 minutes, respectively. The rest of the participants did not 

feel a significant change in haptic perception throughout the experiment.  

Participants were not asked to close their eyes in order to stop receiving 

visual cues during the experiment. However, only 1 participant was observed 

with an increase in both directional accuracy and user’s confidence when 

visual cues were stopped in an extra static and dynamic test.  

6.3 Discussion and Summary 

A four-stage psychophysical experiment was designed in this research to 

verify the design and optimisation of the hand-held haptic device. Based on 

the results from the previous displacement measurements and three 

preliminary tests, 9 configurations were chosen during the experiment. Three 

evaluation metrics were used to assess the performance of each haptic 

configuration. Number of matches (NOM), sum of confidence (SOC) and 

number of unidentified (NOU) were used to describe the accuracy, user 

experience and applicability of each configuration.  
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The four hypotheses raised before the experiment was conducted are 

summarised below. 

1) The asymmetry of haptic output would be increased by changing the 

cut-off voltage, which would benefit clearer delivery of haptic 

directional cues. 

2) There exists an optimised stroke ratio that could achieve clearer 

delivery of haptic directional cues. 

3) Participants would benefit from a haptic reference when perceiving 

directional guidance. 

4) Haptic directional cues delivered by shear forces are clearer than 

those delivered by normal forces.  

The asymmetry of the haptic output was quantified using stroke ratio that 

was calculated from the displacement measurement. It was shown in Figure 

5.34 that stroke ratio exponentially decreased with larger cut-off voltage. 

Stroke ratio is calculated as a fraction of negative stroke over positive stroke. 

A small stroke ratio indicates a large pulse along the desired direction and a 

small pulse along the opposite direction. Since human haptic sensation is 

nonlinear [90], when strong and weak stimulus are applied to human skin 

sequentially, people perceive the stronger stimulus clearer than the weaker 

ones. A small stroke ratio therefore represents a stronger perception of 

directional cues. This is verified by a Tukey test in the left or right experiment 

as shown in Figure 6.3. Configurations with a cut-off voltage have 

significantly higher NOM and considerably lower NOU and higher SOC 

compared to those without a cut-off voltage, presenting superior 

performance in accuracy, user confidence and applicability. However, during 

the optimisation process on cut-off voltage, it was also found that there 

existed an upper threshold for cut-off voltage as shown in Figure 5.33. For 

the specific device developed in this research, this upper threshold value is 

1.37 V. When a cut-off voltage above this threshold was adopted, though the 

stroke ratio was minimised, the absence of input delay would result in a 

failure of the perception of haptic cues. This was also reported in [60] where 

skin displacement would become symmetric if the input delay was removed, 

resulting in people feeling only normal vibrations but no directional cues.  

Stroke ratio was also optimised in this study for the specific hand-held 

device. This was achieved by fitting a quadratic curve and a Gaussian curve 

between stroke ratio and NOM as shown in Figure 6.5. The commonly used 

psychometric curve in perception analysis was not used in this study since 

the change of NOM was not monotonic with respect to stroke ratio based on 
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the experimental results. When stroke ratio is large, the increased amount of 

negative stroke or decreased amount of positive stroke would reduce the 

difference between the sequential strong-weak stimulus, resulting in a failure 

of the perception of directional cues. Pearson’s correlation test was also 

conducted on either side of the quadratic curve as shown in Figure 6.7, 

resulting in strong correlations between stroke ratio and NOM on both sides 

of the curve.  

Other features such as vibration frequency, simplified speed and positive 

stroke also presented a strong correlation with NOM. This suggested that 

there existed an optimal value for these features in order for a maximum 

perception rate of haptic directional cues. However, the quantitative 

relationship between each feature was not established in this study. It was 

uncertain whether all the optimal values could be satisfied simultaneously. 

Future work should address on this issue to explore the effect of each output 

feature on other features.   

In the dynamic test, a haptic directional reference pointing forward was 

presented to all participants before a directional change. It was shown in 

Figure 6.9 (b) that the RMSE between the actual direction and the perceived 

direction in dynamic test was significantly lower than that in the static test. 

This finding could be used to help the design of haptic directional devices 

when guiding the movement from different points. Instead of providing haptic 

cues along a constant direction, it is more beneficial to subtly change the 

direction of cues by a small amount of angle to the left and right sequentially 

(zig-zag shape) as illustrated in Figure 6.13. 

 

Figure 6.13 Constant direction guidance and zig-zag direction guidance. 

The efficacy of the proposed zig-zag manner needs to be further studied and 

verified using a psychophysical experiment such as the One-interval, Two-

alternatives, Forced-choice (1I, 2AFC) experiment. One interval means that 

only one of the two guidance manners will be presented to participants in 
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one trial, either the constant direction manner or the zig-zag manner. Two 

alternatives means that the chance of each participant receiving each 

manner is equal. Forced-choice means that participants have to indicate 

which manner was presented and it is not allowed to respond ‘I don’t know.’ 

Additionally, it is also important to choose the shift angle in the zig-zag 

manner since there exists a minimum threshold that could be sensed in 

angle discrimination. In [98], this angle was reported to be 15 degrees. 

Analysis could be conducted on the decision model specifically for the 1I, 

2AFC paradigm as described in [97].  

In both static and dynamic test, it was found that haptic directional cues 

delivered by shear forces could be better perceived by participants in terms 

of accuracy and confidence than those delivered by normal forces. The 

theoretical explanation behind this finding was established by the Weber 

fraction [99]. It was determined by E.H. Weber that for many sensory 

modalities including haptic sensation, the change in stimulus density 

(difference threshold, DL) that could be discriminated by human is a 

constant fraction of baseline stimulus that is above the absolute threshold 

(RL) as described by Eq. 6.1. 

∆𝐼 = 𝑘𝐼 (6.1) 

where: 𝑘 is the Weber fraction, 𝐼 is the baseline stimulus and ∆𝐼 is the DL 

that produces Just Noticeable Difference (JND) of the stimulus. For the 

magnitude of force, the Weber fraction lies between 0.07 and 0.1 [100] and 

the RL is reported to be 19 mN [101]. 

When the haptic device and participants are stationary, the force along the 

shear force direction (along the 𝑦 axis in Figure 6.10) is zero. Therefore, if 

the force produced by haptic directional cues is greater than the RL, 

participants could feel a strong pulling sensation along the shear direction. 

However, when haptic cues are presented along the normal force direction, 

the DL will change with respect to the baseline stimulus that is the grip force 

necessary to hold the device. Thus, participants who grip the device harder 

find it more difficult to perceive the haptic directional cues along the normal 

force direction. Future study could be conducted using a force sensor to 

measure the grip force and force change during the presentation of haptic 

directional cues.  
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Chapter 7 Conclusions and Future Work 

This thesis has presented the design and development of a hand-held haptic 

device for post-stroke patients with visual impairment. The device has a 

novelty of combining upper limb movement assessment and haptic 

directional guidance. The device has been validated in two independent 

studies: the movement assessment experiment with 14 participants and the 

haptic psychophysical experiment with 30 participants. All participants are 

healthy subjects.  

Several conclusions could be drawn from both experiments. These findings 

form the basis for future research in the development and verification of 

haptic assistive devices, especially the experimental design and application 

in home environments.  

This chapter specifies novel contributions of the research both cited and 

presented in this thesis and draws conclusions from the work presented in 

the previous chapters. The aim and objectives of the research is restated 

and the extent to which they were met is discussed. Future work based on 

the conclusions is also presented.  

7.1 Conclusions 

7.1.1 Overall Research Findings 

The research presented in this thesis accomplished two tasks. Firstly, an 

upper limb movement assessment was achieved using machine learning 

algorithms and kinematic data. Specifically, different movement types could 

be successfully predicted and the progression of movement smoothness 

could be recognised. Secondly, haptic cues were generated and optimised 

for directional guidance. Specifically, the commonly-used step-ramp signal 

was parameterised and the effect of each parameter on the perception of 

haptic cues was investigated. The above results provide the guidance for 

developing haptic devices and conducting upper limb movement 

assessment based on kinematic features. This has the potential to be 

applied to the rehabilitation for upper limb, such as stroke. Rehabilitation 

after stroke using robotic devices has been studied for the last 30 years. 

However, most of the rehabilitation robots rely heavily on the visual 

information provided by a software environment such as a virtual reality and 

serious games. This device would target at post-stroke patients with visual 
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impairment who possess a certain ability to move the impaired limb 

independently and perceive haptic cues if the device is adopted alone. As an 

alternative, it could be used as an add-on module for existing upper limb 

rehabilitation robots like hCAAR to provide additional haptic cues for 

movement guidance instead of visual cues.  

Movement smoothness assessment for the upper limb was traditionally 

made by physiotherapists during clinical exercises. These subjective and 

non-continuous assessments could not sensitively reflect the motor recovery 

process. Therefore, more personalised rehabilitation interventions could not 

be conducted. The use of kinematic features could address these limitations 

with the help of kinematic sensors. Kinematic features were objectively 

extracted from continuous movement data with an autonomous process. 

These features could sensitively reflect the change of motor function 

learning progress, specifically the movement smoothness, which could 

provide a more comprehensive understanding of the rehabilitation process. 

Some kinematic features like normalised jerk have also been validated with 

clinical assessment scores in various research setups. Additionally, these 

features could be used to train a machine learning model for the prediction 

of clinical scores and classification on movement smoothness. The research 

presented in this thesis focused on the latter classification tasks and have 

shown the feasibility of applying machine learning models for movement 

smoothness assessment through a single group observational experiment.  

Assistive devices providing directional guidance come in various forms from 

wearable belts or gloves to exoskeletons. However, few of them were 

designed specifically for post-stroke patients with visual impairment. They 

not only need another form of directional guidance but also the assessment 

on their rehabilitation process. The research presented in this thesis focused 

on designing a haptic device providing directional guidance. The haptic 

implementation was based on asymmetric vibrations through a voice coil 

actuator in order to minimise the weight of the device. A psychophysical 

experiment reported in this thesis has demonstrated the efficacy of the 

proposed device and provided insight into the optimisation of haptic 

implementation in general.  

7.1.2 Movement Smoothness Assessment Findings 

7.1.2.1 Position Tracking 

Assistive devices have been developed for rehabilitation purposes. Efforts 

have been made to deploy assistive devices not only in research or clinical 
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environments but also in home environments. However, traditional 

movement quality assessments for upper limbs require frequent visits of 

physiotherapists. Though recent developments on sensors have allowed a 

more objective quantification of the movement quality, their applications 

were limited by the cost of sensors and the ability to be independently used. 

The first part of the thesis focused on the use of a low-cost IMU sensor for 

movement type classification and discussed the efficacy of several position 

tracking methods. Machine learning models were developed to achieve 

classifications on both movement type and quality.   

Position tracking is the basis of kinematic feature extraction and data 

analysis. In order to determine an ideal position tracking method in a home 

environment, two novel approaches were tested in this thesis. Both 

approaches were compared with a gold standard position sensor Optotrak. 

Position tracking based on mouse sensors demonstrated excellent test-

retest reliability and accuracy. The measurement results were compared 

with those measured by Optotrak and no significant difference was 

observed. However, this method is limited by the range of measurement. It 

can only measure translational movements in a 2-dimensional plane. This 

measurement range, on the other hand, is sufficient for most of the post-

stroke patients since there existed a few rehabilitation robots specifically 

designed for 2D movements without rotational ones. Another position 

tracking based on computer vision algorithms is the most convenient since it 

does not require additional hardware setups. However, its reliability and 

accuracy changes with respect to the working distance. Additionally, it 

requires specific camera setup so that no depth information is measured. 

The aim of position tracking is to extract kinematic features based on 

kinematic profiles. From this point of view, the same set of kinematic 

features used in the later experiment were extracted from the mouse sensor 

data. Except spectral entropy of the acceleration profiles and skewness of 

the velocity profiles, no significant difference was observed among other 

features. The results have demonstrated the feasibility of applying a mouse 

sensor for upper limb 2D movement analysis in home environments. 

Therefore, mouse sensors are recommended for position tracking in the 

hand-held device proposed in this research. 

7.1.2.2 Kinematic Features and Machine Learning 

Several acceleration-based features were extracted from the acceleration 

profiles during a movement for movement type classification. Four 

movements were adopted during the experiment, including reaching out, 
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drawing a circle, turning a key and drinking water. Maximum acceleration 

along each axis is the most important feature for the classification among the 

four movements. Random Forest, Support Vector Machine, K-nearest 

Neighbours and Deep Neural Networks were adopted for the classification 

task. Except Random Forest, all other models could achieve 100% training 

and test accuracy. The results suggest that acceleration-based features and 

distance-based machine learning models are especially suitable for 

movement type classification. Additionally, feature selection process such 

ANOVA could reduce the training time of the model while retaining current 

model performance, which proves the feasibility of applying online (real-time) 

machine learning models in the future design of rehabilitation robots.  

Another classification was made based on a wider range of kinematic 

features extracted from position, velocity, acceleration and jerk profiles. 

Participants were invited to draw a multi-segment point-to-point figure in four 

different patterns using a mouse. The four movement patterns have a 

decreasing difficulty. A total of 6 out of 12 kinematic features could reflect 

the motor learning progress in terms of movement smoothness 

independently in each difficulty level. Specifically, selected kinematic 

features presented a moderate correlation with normalised jerk that has 

been validated with clinical scores in many studies to describe movement 

smoothness. The degree to which each kinematic feature correlates with 

normalised jerk decreased from the most difficult pattern to the easiest 

pattern. Moreover, a strong inter-feature reliability was observed within 

selected features including normalised jerk at each difficulty level. Both 

results demonstrated the efficacy of applying kinematic features to monitor 

the motor function learning progress in terms of movement smoothness. 

However, all kinematic features were extracted in a laboratory environment 

with pre-determined movement types. In real-world unsupervised 

applications, it is important to segment the movement onset and offset 

based on kinematic measurements automatically and accurately. It is also 

uncertain whether different kinematic features are the most suitable for a 

particular movement type.  

The same four machine learning models were used for the movement 

smoothness classification based on kinematic features. Support Vector 

Machine showed superior performance than the others, which is consistent 

with findings from other literatures. Velocity-based features also contributed 

the most during the classification task. Overall, the performance of each 

model decreased from the most difficult pattern to the easiest pattern. It is 
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therefore recommended to apply Support Vector Mahine and velocity-based 

features for more subtle movement quality classifications.   

7.1.3 Haptic Directional Guidance Findings 

Assistive devices applying haptic cues have been proposed in other 

literature. Various types of haptic implementations have been studied 

including motor sequence and asymmetric vibrations. The motor sequence 

type requires multiple vibrators to work in a pre-defined sequence and order 

so that users can interpret the haptic feedback to directional cues. This 

inherently increases the cost of learning and always requires users to wear 

the haptic device, which is not friendly for post-stroke patients, especially to 

be used independently. On the other hand, haptic directional cues provided 

by asymmetric vibrations only requires two motors to serve a 2-dimensional 

plane. It has been designed to take the form of hand-held device, white 

cane, gloves that could normally be used independently without additional 

learning. Most importantly, users do not need to interpret the directional cues 

from the motor coordination to the real-world coordination if appropriately 

designed. Therefore, asymmetric vibrations were discussed in this thesis in 

terms of hardware selection and the evaluation of the input signal.  

Three haptic motors were discussed in this thesis. Eccentric Rotating Mass 

(ERM) motors were determined to be not suitable for the generation of 

asymmetric vibrations for the hand-held device due to their weaker vibration 

effect and the large number of motors required to generate directional cues. 

Solenoid motors were also tested with PWM signals as the input control. A 

test platform was built using the solenoid haptic implementation, and the 

vibration accelerations were measured by an IMU sensor. The measured 

accelerations were compared with the simulated accelerations from a 1-DOF 

mass-spring-damper model. It was found that the direction of the haptic cues 

changed with respect to the duty ratio of the PWM signals. It was also 

noticed that the spring stiffness of the haptic implementation and the 

waveform of the input signal had significant influence on the asymmetry of 

haptic output. Specifically, the change of output acceleration was nonlinear 

with respect to increasing stiffness. However, further optimisation of haptic 

output was limited by the number of parameters that can be tuned in a PWM 

signal. Therefore, a commonly adopted analogue step-ramp signal was 

finally discussed in this thesis. 

The third motor presented in this thesis was a voice coil actuator (VCA). The 

VCA could be controlled by the step-ramp signal to generate asymmetric 
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vibrations. The main contribution of this part of the work is to parameterise 

the step-ramp signal so that a more standardised optimisation process could 

be followed regardless of motor type. The signal was parameterised with 

three variables, namely delay time, ramp down step length and cut-off 

voltage. To further quantify the asymmetry of haptic output, displacement 

profiles of the VCA was measured on a self-built test slider. Five output 

features were extracted from each measurement. Specifically, stroke ratio 

was used to describe the asymmetry of haptic output as a fraction of positive 

stroke and negative stroke. Finally, a psychophysical experiment was 

designed with 30 participants to verify the effect of optimisation. It was found 

that the perception of haptic cues changed nonlinearly with respect to stroke 

ratio. Unlike a typical psychometric curve, the relationship between the 

human perception and stroke ratio was not monotonic. Instead, it followed a 

Gaussian probability density function. This suggested that for the specific 

hand-held device developed in this research, there existed an optimal stroke 

ratio that could maximise the perception of directional cues. From the results 

of the dynamic test, it was found that the accuracy of the perceived 

directions as well as the participants’ confidence on the perception increased 

when a haptic reference was provided before a cue. This could be used to 

guide the design of a haptic navigation device to improve users’ experience. 

Furthermore, the results also showed that haptic cues delivered by shear 

forces were better perceived than those delivered by normal forces, which is 

related to the perception threshold of vibrotactile cues on human skins. 

Although current research has proved the feasibility of a hand-held device 

presenting haptic cues, limitations exist in terms of comparative analysis and 

performance difference in different dynamic system.  

Parameterisation of haptic input has been explored in other literature, in 

which the input was regulated by the simulated acceleration output. 

Compared to the method proposed in this research, this approach has a 

better applicability since the input is not restricted by waveform but desired 

output acceleration profiles. However, the proposed method has a better 

translatability since the parameterisation of the input signal does not rely on 

other mechanical properties of the system such as spring stiffness, damping 

coefficient and motor’s drive constant etc. A comparative analysis between 

two approaches verified by psychophysical experiment could provide more 

insight into the optimisation of haptic implementation.  

Another limitation of the current work is the displacement measurement 

setup. Current measurement only reflected displacement profiles for the 
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VCA-slider system. However, the dynamic performance of the VCA-finger 

system may differ from the VCA-slider system. Although the purpose the 

current research was not to represent the VCA-finger system by VCA-slider 

system, it is still worthwhile to measure the displacement, force or 

acceleration interactions for the VCA-finger system to get a more 

comprehensive understanding of the haptic perception.   

7.1.4 Evaluation of Research Aim and Objectives 

The aim of the research was:  

“The aim of this research is to design, implement and evaluate the 

performance of a low-cost hand-held haptic device integrating directional 

guidance and movement smoothness assessment using machine learning 

models, potentially for post-stroke patients and people with visual 

impairment.” 

The conclusions made in this chapter are based on the results of literature 

reviews and several experiments conducted in this thesis. The literature 

review showed limited work in the integration of movement smoothness 

assessment and directional guidance, specifically with patients after stroke 

as the target group. However, the work presented in this thesis has 

demonstrated both feasibility and efficacy of the integration through several 

experiments. The experiments primarily focused on the kinematic 

assessment of upper limb movements and the perception of haptic 

directional cues, which contributed to the evaluation of the developed 

device. Therefore, the aim of the research was met.  

The objectives of the research were defined in the first chapter to reach the 

research aim and construct the basic structure of the thesis. Literature 

reviews showed that kinematic features and machine learning have been 

applied to assess movement quality (objective a), and various haptic 

implementations have been designed to provide directional cues (objective 

b). Limitations have been identified through the two objectives that there 

lacks an integration of kinematic assessment and haptic feedback. 

Moreover, little work has been done in terms of the parameterisation of 

haptic input control signal.  

In order to assess movement quality, particularly movement smoothness, 

and to save battery life in a home environment, it is essential to recognise 

different movement types. Kinematic features were extracted from the 

acceleration profiles for the classification on movement types. The 

acceleration data were measured by a low-cost commercial IMU sensor 
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(objective c). This process was extended to position, velocity, acceleration 

and jerk profiles in a single group observational study with 14 participants. 

Three position tracking methods were discussed including a low-cost mouse 

sensor, a low-cost laptop camera and the gold standard Optotrak. A total of 

12 kinematic features were extracted from kinematic measurements 

(objective c). Statistical analysis showed no significant difference between 

kinematic features extracted from mouse-measured data and Optotrak-

measured data. All features had a good to excellent reliability.  

Four machine learning models (DNN, KNN, RF and SVM) have been trained 

to solve two classification problems, namely the classification on movement 

type and on movement smoothness (objective d). Four movement types 

(reaching out, drawing a circle, turning a key and drinking water) were 

successfully classified by all models with 100% training and test accuracy 

when the inputs were acceleration-based features. Another four movement 

patterns (NDA with rotation, NDA without rotation, DA with rotation and DA 

without rotation) were also classified by all models with 100% training and 

test accuracy. The movement smoothness could be predicted either 

numerically into a number or categorically into beginner, intermediate and 

master levels with kinematic features as the inputs. The performance of the 

prediction decreased from the most difficult pattern (100%) to the easiest 

pattern (75%). Both movement pattern classification and movement 

smoothness classification were verified through a single group observational 

experiment with 14 participants (objective g). Support Vector Machine had 

superior performance than the others and velocity-based features were the 

most important predictors.  

A hand-held device was designed and manufactured. The process was 

guided by design specifications (objective e). Three types of motor including 

ERM, solenoid and VCA were tested and simulated in order to determine the 

most ideal one for generating asymmetric vibrations. ERMs were determined 

to be not suitable for a set of reasons. Solenoids could generate asymmetric 

vibrations with PWM signals as an input, which was verified by simulated 

and experimental accelerations. However, the application of solenoids was 

limited by the heavy weight and large size. VCAs were determined to be the 

ideal source of asymmetric vibrations due to their sizes, weights and 

potentials in haptic optimisation.  

The VCA was controlled by a step-ramp signal. Previous studies have 

demonstrated the feasibility of applying this signal for asymmetric vibrations. 

However, only input frequency and delay time of the signal were studied. In 
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order to optimise the haptic output, a step-ramp signal was parameterised by 

three variables including delay time, ramp down step length and cut-off 

voltage in this thesis (objective f). Five signal features were extracted from 

the position measurement of the VCA-slider system. A psychophysical 

experiment with 30 participants was designed to verify the optimisation 

process in terms of perception accuracy and confidence (objective g). 

Results from the experiment have shown a nonlinear quantitative 

relationship between the perception of haptic cues and four signal features.   

This chapter draws conclusions for the current work and suggests future 

work (objective h).  

7.1.5 Research Summary 

The key findings of the research were summarised in Table 7.1. 

Table 7.1 Key findings of the research. 

Key points: 

 Existing literatures show limited study on assistive device for post-

stroke patients with visual impairments since most robot-aided 

rehabilitation therapies rely heavily on visual cues.  

 Kinematic features and the application of machine learning models 

can recognise different movement types and quantify movement 

smoothness into continuous numbers or categories.  

 Features extracted from specific kinematic measurements are 

important in movement smoothness assessment with a certain 

machine learning model. 

 Kinematic data extracted from a low-cost mouse sensor can be used 

for kinematic feature extraction with no significant difference 

compared to those extracted from more expensive and accurate 

sensors.  

 Haptic perception of humans can be improved in terms of accuracy 

and confidence by optimising the input parameters of a step-ramp 

signal.  

 It is necessary to conduct a comparative analysis between the 

parameterisation method proposed in this thesis and in other 

literatures.  

Kinematic features and machine learning: 

 Kinematic features can contribute to the movement type and 

movement smoothness classification. Specifically, acceleration-based 
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features are important for movement type classification and velocity-

based features are important for movement smoothness 

classification.  

 Support Vector Machine has superior performance in movement 

smoothness classification task. However, there are many varieties of 

SVMs and other more advanced machine learning models such as 

Transformer. Attempts using those models may improve the overall 

performance on movement assessment.  

Haptic feedback: 

 The optimisation of step-ramp signals based on the parameterisation 

proposed in the thesis enhances the perception of haptic directional 

cues, especially with cut-off voltages and stroke ratios. 

 The perception of haptic cues changes nonlinearly with stroke ratios. 

Specifically, it follows a Gaussian probability density function curve.  

Experimental design: 

 The movement selected for the experiment is complex enough for the 

differentiation between various difficulty levels. However, it would be 

more beneficial and comparable if movements in a clinical exercise 

are adopted.  

 The psychophysical experiment for the haptic feedback is designed 

within the research group. Its process did not follow a typical 

psychophysical haptic paradigm. A comparative analysis is 

recommended between the proposed method and a classic paradigm. 

Some of the work presented in this thesis have been published in peer-

reviewed conferences and journals. The work related to movement 

assessment based on kinematic features have been invited for a 

presentation during the 2023 International Conference on Rehabilitation 

Robotics. The presentation and the poster were selected as the finalist 

achievement after the judging session.  

7.2 Future Work 

Since the integrated hand-held device has two main functions, future work 

should focus on each function and the application of the device on real 

patients in home environments.  
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7.2.1 Extraction of Kinematic Features and Their Applications 

This thesis has demonstrated the feasibility of applying kinematic features in 

upper limb movement assessment, specifically movement type and 

movement smoothness classifications. It was found that a specific feature 

was essential for a particular task. For example, velocity-based features 

contributed the most to the movement smoothness assessment but were 

less effective in movement type classification. This indicates that a kinematic 

feature is either movement type-dependent or not suitable for movement 

type classification. Based on the current findings, it is hypothesised that 

acceleration-based features are suitable for movement type classification 

while velocity-based features are suitable for movement smoothness 

classification. Therefore, future work should focus on the experimental 

design to verify this hypothesis. The contribution of verifying the hypothesis 

is to guide the selection of the most beneficial kinematic features in upper 

limb movement analysis.  

Firstly, it is important to choose the appropriate movements for analysis, 

which has been reported in [102] for post-stroke at-home recovery. It is also 

recommended to establish a public movement data repository for movement 

analysis. The public repository has accelerated the development of different 

algorithms and methods in computer vision field such as ImageNet [103] and 

in deep learning field such as MNIST [104]. Such a public dataset saves 

repetitive data collection time and establishes a common standard for every 

researcher to test and optimise their methods.  

Secondly, kinematic features need to be extracted from all kinematic 

measurements, including position, velocity, acceleration and jerk. Depending 

on the place for the experiment, the measurement equipment may vary from 

an advanced position sensor to a low-cost mouse sensor or IMU sensors. 

Since a large variety of kinematic features have been published in the 

literature, it is crucial to select those that have been validated with a 

common standard such as normalised jerk for the analysis.  

In terms of experimental subjects, it is more representative if post-stroke 

patients are recruited. However, the recruitment of real patients needs to be 

carefully studied for the inclusion and exclusion criteria, which are 

dependent on the selection of movements as well. It is also important to 

follow ethical requirements from both the research institute and the public 

health service like NHS, especially the privacy on personal data.  
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Finally, proper statistical analysis needs to be conducted. In order to verify 

the hypothesis proposed before, the same machine learning model and 

model optimisations are required. Analysis should focus on statistical 

differences between two model performances based on different sets of 

features for the same task. Additionally, the study on the correlation between 

two features may also help understand the applicability of each kinematic 

feature. If real patients are recruited, the correlations between the kinematic 

assessment scores and their clinical scores are also important for the 

digitalisation of healthcare and telerehabilitation.  

7.2.2 Haptic Perception Experiment 

The haptic implementation and the device proposed in this thesis have 

demonstrated the ability to provide haptic directional cues. The effect of 

different force types and haptic reference on the perception of haptic 

directional cues were also discussed. Future work should focus on two 

aspects: a comparative analysis between different haptic optimisation 

processes and the application of the proposed device in a real-world 

situation.  

Two further comparative analyses need to be undertaken. The first one 

should focus on the difference between optimisation based on acceleration 

output and based on analogue input. A dynamic model of the proposed 

device in a motor-finger system could be established by extending the 

proposed 1DOF model in this thesis to a 2DOF model considering skin 

displacement as well. The idea of quantifying the asymmetry of haptic output 

by a stroke ratio could then be extended to skin displacement profiles rather 

than the VCA displacement profile. This could provide a more 

comprehensive understanding on the perception of haptic cues. Another 

experiment that could be designed is to adopt a classic haptic perception 

experiment to determine if the discrimination threshold of the angle changes 

with a haptic reference. This could be achieved by plotting two psychometric 

curves with one axis representing angle difference and the other axis 

representing the ratio of the right answers from participants. The Just 

Noticeable Difference (JND) could then be determined as the midpoint of the 

curve.  

The second aspect of the future work should focus on the application of the 

proposed device. It could be used as an add-on module for the existing 

rehabilitation robots such as a hCAAR robot [105]. It is a 2D planar robot 

designed for post stroke rehabilitation in a home environment. The proposed 

device could be added as the top handle of the hCAAR robot to provide 
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haptic stimulations to post-stroke patients. The challenge of this application 

is to integrate the haptic device with the hCAAR low-level controller. An 

alternative is to apply the device as a general assistive device. Although it 

was designed for post-stroke patients with visual impairment, it could also be 

used as an assistive device for the visually impaired people.  

However, the most important work to be done in terms of real-world 

application is to verify its efficacy with post-stroke patients. It is uncertain 

from the current work that whether the same perception optimisation process 

could be followed for post-stroke patients. Patients after stroke always show 

various symptoms depending on the area of the stroke, the rehabilitation 

interventions received after stroke etc. Therefore, it would be more beneficial 

if haptic perception experiment could be conducted among stroke subjects.  
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Appendix A 

A.1 Output Features for Delay Time 

The five output features were extracted from the displacement profiles with 

different delay time settings. Features are listed below. 

𝑡ௗ (ms) 𝑓௦௬ (Hz) 𝑉௦ (1/s) 𝑆 𝑆 𝑟௦ 

0 10.29 1.9151 0.0622 0.2486 0.2502 

10 6.17 1.0993 0.1221 0.3270 0.3731 

20 4.47 0.8101 0.0963 0.2745 0.3508 

30 3.49 0.6314 0.0923 0.2851 0.3237 

40 2.87 0.5112 0.1151 0.3231 0.3562 

50 2.44 0.4413 0.1569 0.3786 0.4144 

A.2 Output Features for Ramp Down Step Length 

The five output features were extracted from the displacement profiles with 

different ramp down step length settings. Features are listed below. 

𝑆 𝑓௦௬ (Hz) 𝑉௦ (1/s) 𝑆 𝑆 𝑟௦ 

64 1.88 0.3413 0.0528 0.2664 0.1982 

128 3.13 0.5404 0.0563 0.2674 0.2104 

256 4.47 0.8101 0.0963 0.2745 0.3508 

512 5.71 1.0163 0.2115 0.4213 0.5020 

1024 6.93 1.3293 0.2315 0.4850 0.4773 

A.3 Output Features for Cut-off Voltage 

The five output features were extracted from the displacement profiles with 

different cut-off voltage settings. Features are listed below.  

𝑉 (V) 𝑓௦௬ (Hz) 𝑉௦ (1/s) 𝑆 𝑆 𝑟௦ 

0 4.47 0.8101 0.0963 0.2745 0.3508 

0.41 4.65 0.8483 0.0920 0.2700 0.3407 
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0.82 4.91 0.8757 0.0710 0.2490 0.2851 

1.10 5.21 0.9338 0.0255 0.1996 0.1297 
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Appendix B 

B.1 MEEC 21-003 Experiment Guidance for Participants 

Experiment Guidance for Participants 

This is the experiment guidance for participants in the research project stated 
below.  

A Machine Learning Based Performance Classification for Post-Stroke 
Rehabilitation Using Kinematic Features 

You are being invited to take part in a research project. Before you decide it is 
important for you to understand what will be the procedure of the experiment. 
Please take time to read the following information carefully and discuss it with 
others if you wish. Ask us if there is anything that is not clear or if you would like 
more information. Take time to decide whether or not you wish to take part. 

Preparation for Recording Sessions 

Before the recording sessions for each participant in this experiment, all the 
equipment used during the recording sessions will be fully sanitised in order to 
avoid potential exposure to COVID-19 virus.  

During the Recording Sessions 

(1) Touching Shoulder Exercise 
Prior to performing the exercise, an IMU sensor will be attached to your wrist as 
illustrated in Figure 1. 

 
Figure 1: IMU sensor attached by two elastic bands on wrist 

A soft sponge will be applied to cover the edge and the sharp pinouts on the IMU 
sensor to avoid direct contact with your wrist so as to minimise the potential risk of 
being scratched.  

During one recording session, you will be asked to rest at the initial position where 
your impaired arm (for experiment group) or dominant arm (for control group) is 
aligned with your thigh with palm facing up.  

After a countdown on a computer screen, you will be asked to  

1. raise your impaired arm/dominant arm to touch the upper part of your opposite 
shoulder with your palm.  

2. After touching the shoulder, you will move your arm back to the initial position.  
With the above two movements being one cycle, you will be asked to perform 3 
cycles with a 1-2 second rest between each cycle.  

Totally 3 recording sessions will be conducted in this study, with a 1-minute rest 
between each recording session. 
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(2) Moving Mouse Exercise 
The IMU sensor will be attached in the same way as in Touching Shoulder Exercise. 
During the recording session, you will be asked to move the mouse cursor firstly 
with the normal mouse setting. You will be asked to draw a pattern shown on a 
computer screen with your both arms, with each arm drawing the pattern for 20 
times.  

You will then be asked to draw the same pattern with the irregular mouse setting, 
where the mouse is rotated 180 degrees so that the moving direction of your hand 
is opposite to the mouse cursor. You will be asked to draw the pattern with this 
irregular setting with both arms, with each arm performing 20 times.  

After the Recording Session 

The IMU sensor will be removed from your wrist by the lead researcher and fully 
sanitised for the next participant. You are welcomed to give any feedback after your 
recording session.  

Contact for further information 

Should you have any further questions related to this study, please contact the lead 
researcher of this study. 

Mr. Shuhao Dong 

Email: mn16d2s@leeds.ac.uk 

 
 

Thank you for taking the time to read through this information sheet. 
 

Project title Document type Version Date 
A Machine Learning Based Performance 

Classification for Post-Stroke 
Rehabilitation Using Kinematic Features 

Experiment Guidance 
for Participants 

2 16/08/21 
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B.2 MEEC 21-003 Participant Consent Form 

Consent to take part in A Machine Learning Based Performance 
Classification for Post-Stroke Rehabilitation Using Kinematic 
Features 

Add your 
initials next 

to the 
statement 

if you 
agree 

I confirm that I have read and understand the information sheet dated 
[16/08/2021] explaining the above research project and I have had the 
opportunity to ask questions about the project. 

 

I understand that my participation is voluntary and that I am free to 
withdraw at any time without giving any reason and without there 
being any negative consequences. In addition, should I not wish to 
answer any particular question or questions, I am free to decline.  
Contact number: 07887406049 
Email: mn16d2s@leeds.ac.uk 

 

I understand that members of the research team may have access to 
my anonymised responses. I understand that my name will not be 
linked with the research materials, and I will not be identified or 
identifiable in the report or reports that result from the research.   
I understand that my responses will be kept strictly confidential.  

 

I understand that the data collected from me may be stored and used 
in relevant future research in an anonymised form. 

 

I understand that relevant sections of the data collected during the 
study, may be looked at by individuals from the University of Leeds or 
from regulatory authorities where it is relevant to my taking part in this 
research.  

 

I agree to take part in the above research project and will inform the 
lead researcher should my contact details change. 

 

 

Name of participant  

Participant’s signature  

Date  

Name of lead researcher Shuhao Dong 

Signature  

Date*  
 
*To be signed and dated in the presence of the participant.  
Once this has been signed by all parties the participant should receive a copy of the signed and dated 
participant consent form, the letter/ pre-written script/ information sheet and any other written 
information provided to the participants. A copy of the signed and dated consent form should be kept 
with the project’s main documents which must be kept in a secure location.  
 

Project title Document type Version Date 
A Machine Learning Based Performance 

Classification for Post-Stroke 
Rehabilitation Using Kinematic Features 

Participant Consent 
Form 

2 16/08/21 
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B.3 MEEC 21-003 Participant Information Sheet 

Participant Information Sheet 

Please refer to the Research Privacy Notice provided with this information sheet. 

A Machine Learning Based Performance Classification for Post-Stroke 
Rehabilitation Using Kinematic Features 

You are being invited to take part in a research project. Before you decide it is 
important for you to understand why the research is being done and what it will 
involve. Please take time to read the following information carefully and discuss it 
with others if you wish. Ask us if there is anything that is not clear or if you would 
like more information. Take time to decide whether or not you wish to take part. 

Purpose of the Project 

This research project is part of the upper limb rehabilitation using robotic device. 
This particular research aims to use kinematic features to classify post-stroke 
patients into different groups for individual optimised rehabilitation intervention with 
the aid of machine learning. The measured data will also be useful for simulating 
post-stroke movement acceleration profile in order to achieve more accurate 
classification and any further studies related to kinematic features. 

Background: Stroke is the leading cause of human disability and death in the UK 
(Public Health England, 2018). It was estimated that the number of people affected 
by stroke will be increased by 27% in the EU by 2047 (Wafa et al. 2020). It is 
extremely difficult for post-stroke patients to perform activities of daily living without 
any rehabilitation intervention. Currently, apart from traditional physiotherapy, 
robotic systems have been widely applied to support the recovery process. 
However, since the recovery is changing throughout the rehabilitation process, the 
most appropriate intervention strategy may vary from stages to stages. Thus, it is 
necessary to classify post-stroke patients into different groups so that optimised 
training sessions may be designed for each individual.  

The classification requires performance assessment. Clinical scores (e.g. Fugl-
Meyer assessment et al.) are wide applied due to their effectiveness with respect to 
the whole recovery process. However, since these scores are categorical, they are 
not continuous throughout the whole rehabilitation process to reflect subtle 
improvement. Besides, these scores are normally made by clinicians, which means 
they can be subjective. Thus, it is necessary to introduce objective assessments 
based on kinematic features to achieve accurate classification.  

Therefore, this particular research aims to gather kinematic features from each 
post-stroke individual to perform the assessment and further classification.  

Why have I been chosen? 

For participants in the control group, you are chosen because you have no existing 
disability in upper limb and would like to take part in this research by your own 
decision after reading all the provided materials. Your data will be protected and 
used as the base line measurement for our ongoing research project. 

The minimum participant for the control group is 10.  

Do I have to take part? 

Taking part in this research is entirely voluntary and you as the participant may 
withdraw from the study at any time with all your personal information deleted 
without penalty and do not have to give a reason for doing so. If you decide to take 
part you will be given this information sheet to keep, a copy of the experimental 
procedure to look over and will be asked to sign a consent form. 
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What do I have to do? / What will happen to me if I take part? 

The recording sessions will last for 10 minutes for each participant. All participants 
will only have to participate once unless further notice is given.  

During each single recording session, the participant will be asked to sit on a chair 
with a comfortable position, being able to perform activities freely with their upper 
limb.  

1. The participant will be asked to put the impaired arm / dominant arm at the initial 
position where the arm is fully relaxed and aligned with his/her thigh with palm 
facing up.  

2. The participant will then be asked to raise the arm and use the palm to touch 
the upper part of the opposite shoulder, and finally move back to the initial 
position independently for three times. A 1-2 second rest is required between 
each attempt in order for the participant to fully relax the arm. Totally 3 attempts 
are required. 

For each participant, totally 3 recording sessions are required. A 1-minute rest is 
necessary between each recording session should any participant would like to 
have one.  

It is the participant’s responsibility to obey the instructions listed above and in the 
experiment procedure document. It is also required for all the participants to protect 
any equipment used in the experiment.  

No lifestyle restrictions are needed as a result of or prior to the participation. 

What are the possible disadvantages and risks of taking part? 

1. Under the current influence of COVID-19, there is a risk of being exposed to 
COVID-19 virus. This will be minimised by following the restriction rules from the 
government and the university. The IMU sensor (for data recording) and the 
elastic bands (for attaching IMU sensor on the wrist) will be fully sanitised after 
recording sessions for each participant. 

2. Scratch by the sharp edge or component on the IMU sensor. The edge and the 
pinouts on the IMU sensor may hurt participants. This will be minimised by 
covering a soft sponge on the IMU sensor to avoid direct contact with 
participants. 

What are the possible benefits of taking part? 
Whilst there are no immediate benefits for those people participating in the project, 
it is hoped that this work will:  

1) Help develop a novel assessment tool for upper limb performance, which can 
then be used as the preparation for optimised rehabilitation intervention for each 
individual for better rehabilitation results.  

2) Help simulate post-stroke movement kinematic profiles so that more accurate 
models could be developed to serve the classification process. 

3) Contribute to finding the relationship between clinical scores and kinematic 
features so that better recovery monitoring and predictions could be made to 
serve clinicians and patients.  

Use, dissemination, and storage of research data 
The collected data will be encrypted and stored on the University of Leeds 
OneDrive. There is the potential for data collected from this research being 
published in journal or conference articles. No identifiable information will be public. 
During publication, anonymised data will be made available to third parties. 

What will happen to my personal information? 

All data for publication will be anonymised with no trace of personal information 
published. If you wish to quite this research study, all your personal data will be 
deleted however the collected kinematic data will be retained. 
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What will happen to the results of the research project?  

All the contact information that we collect about you during the course of the 
research will be kept strictly confidential and will stored separately from the 
research data.  We will take steps wherever possible to anonymise the research 
data so that you will not be identified in any reports or publications.  

The results from this study will be published within a PhD thesis by October 2023 
(latest to October 2024). Data collected from this study may also be used in journal 
or conference papers where anonymisation will be strictly followed. 

What type of information will be sought from me and why is the collection of 
this information relevant for achieving the research project’s objectives? 

For participants in the control group, your personal data including age, gender, 
presence of other disabilities will be recorded along with the kinematic data during 
the recording sessions. Your data will be used as the base line measurement for 
our developed classification models. 
For participants in the experiment group, your personal data including age, gender, 
time after stroke, presence of other disabilities and the clinical scores for upper limb 
assessment will be recorded along with the kinematic data during the recording 
sessions. Your data will be used to  

1) Validate the proposed kinematic-based assessment tool. 
2) Simulate the post-stroke acceleration profile for training the classification 

models. 
 
Who is organising/ funding the research? 
The research has been organised by the University of Leeds. The lead researcher 
of this study is funded by China Scholarship Council.  

Contact for further information 

Should you have any further questions related to this study, please contact the lead 
researcher of this study. 

Mr. Shuhao Dong 

Email: mn16d2s@leeds.ac.uk 

 
 

Thank you for taking the time to read through this information sheet. 
 

Project title Document type Version Date 
A Machine Learning Based Performance 

Classification for Post-Stroke 
Rehabilitation Using Kinematic Features 

Participant Information 
Sheet 

2 16/08/21 
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B.4 MEEC 21-003 Risk Assessment for Participants 

Risk Assessment for Participants 

This is the risk assessment for participants in the research project stated below.  

A Machine Learning Based Performance Classification for Post-Stroke 
Rehabilitation Using Kinematic Features 

You are being invited to take part in a research project. Before you decide it is 
important for you to understand the potential risk of participating this experiment. 
Please take time to read the following information carefully and discuss it with 
others if you wish. Ask us if there is anything that is not clear or if you would like 
more information. Take time to decide whether or not you wish to take part.  

Hazards and Risk Ratings 

Hazard Type 
How might the 

hazard cause harm 
Who may be 

harmed 
Control measures Action by 

COVID-19 
transmission 

through social 
contact 

Infection with 
COVID-19 (6) 

Staff 

Participant 

Social distancing 
guidelines 

observed (3) 

Shuhao 
Dong 

COVID-19 
transmission 

through 
contaminated 
IMU sensor 

Infection with 
COVID-19 (6) 

Staff 

Participant 

The IMU sensor 
will be disinfected 
with disinfectant 
wipes between 

trials. 

Hand sanitiser will 
be used before and 
after touching the 

IMU sensor (3) 

Shuhao 
Dong 

Scratch by the 
edge or sharp 
component on 
the IMU sensor 

Scratch the skin (6) 
Staff 

Participant 

The IMU sensor 
will be covered by 
a soft sponge (2) 

Shuhao 
Dong 

 

 

Figure 1: Risk assessment reference. 
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Contact for further information 

Should you have any further questions related to this study, please contact the lead 
researcher of this study. 

Mr. Shuhao Dong 

Email: mn16d2s@leeds.ac.uk 

 
Lead researcher signature: _______     Head of School signature: _______ 
 

Thank you for taking the time to read through this risk assessment. 
 

Project title Document type Version Date 
A Machine Learning Based Performance 

Classification for Post-Stroke 
Rehabilitation Using Kinematic Features 

Risk assessment 3 08/10/21 
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Appendix C 

C.1 MEEC 22-006 Experiment Guidance for Participants 

Experiment Guidance for Participants 

This is the experiment guidance for participants in the research project stated 
below.  

The ideal characteristics of the input signal for providing the strongest haptic 
directional cue in a hand-held device for a rehabilitation purpose  

You are being invited to take part in a research project. Before you decide it is 
important for you to understand what will be the procedure of the experiment. 
Please take time to read the following information carefully and discuss it with 
others if you wish. Ask us if there is anything that is not clear or if you would like 
more information. Take time to decide whether or not you wish to take part. 

Before for the Experiment 

Before the experiment, participants will need to read every document (i.e., 
Experiment guidance, information sheet and risk assessment) provided and sign 
the consent form in order to take part in the experiment.  

During the Experiment 

This experiment consists of two stages. In stage 1 of the experiment, participants 
will be asked to hold the device and feel different haptic guidance in order to 
choose the strongest one. In stage 2 of the experiment, participants will experience 
more dynamic using environment that matches some activities of daily living.  

(3) Stage 1 – Rank different setups 
You will be asked to hold a device of similar size as a coffee cup (R: 66mm x H: 
110mm) as shown in Figure 1 on a table comfortably. You will then be displayed 
with 9 different haptic configurations (3 within each group and a total of 3 groups) all 
at once with a 3s gap in between. Each configuration will last approximately 10s. 
The purpose of this initial display is to let you get familiar with directional cues in 
terms of haptic feedback. You will then be asked if you are willing to take part in the 
following study of the experiment and a 1-minute rest will be provided.  

 

Figure 1: Experiment device 
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In the second test, the same 9 configurations will be displayed to you with a 
different order. The test time and rest time will be the same as the initial display. 
After the test for each group, you will be asked which direction you think the device 
is guiding you to (either left or right) and how confident you are about the answer 
(not sure, sort of, very sure). This experiment procedure is also shown in Figure 2.  

 

Figure 2: Experiment procedure at stage 1 

(4) Stage 2 – Static and Dynamic Test 
In the static test, you will be asked to hold the device as shown in Figure 1 
comfortably on a table. When the test begins, you will be asked to use a rotary 
encoder (a device that you can rotate to indicate the direction) to specify the 
direction to which you believe the directional cue is guiding you. A total of 10 tests 
will be conducted with a 3s rest time in between. Each test will take approximately 
10s. There will be 2 tests among the 10 that will not show any directional cues (i.e., 
normal vibrations). This is introduced to reduce your learning effect. When you think 
you are having one of those non-directional haptic cues, you can tell this to the 
investigator during the test. 

In the dynamic test, you will need to hold the device while the device is operating. 
The direction of the haptic cues will be constantly changed while you are holding 
the device. You will need to specify the final directional cue when the operation of 
the device stops. This procedure will be repeated for 10 times and each one will last 
approximately 10s. After this test, you will be asked for two question regarding to 
your feel on the perception of haptic cues.  

Finally, you will be asked to follow the directional cues and complete a certain 
pattern. This pattern may be a triangle, a rectangle, an “8” shape etc. The pattern 
you have to complete will be randomly allocated when you finish the previous tests. 
When you follow the cues, some position sensors will be attached onto your back of 
the hand in order to track you hand position during the movement. This experiment 
procedure is shown in Figure 3. 

 

Figure 3: Experiment procedure at stage 2 
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After the Experiment 

You may leave the experiment area after you finish all the tests if there are no 
further questions. All your personal data will be kept anonymously on University of 
Leeds OneDrive and not accessible by people out of the investigator’s research 
group. Please leave you consent form to the investigator as this is an important 
material for ethical reasons.  

Contact for further information 

Should you have any further questions related to this study, please contact the lead 
researcher of this study. 

Mr. Shuhao Dong 

Email: mn16d2s@leeds.ac.uk 

 
 

Thank you for taking the time to read through this information sheet. 
 

Project title Document type Version Date 
The ideal characteristics of the input 

signal for providing the strongest haptic 
directional cue in a hand-held device for a 

rehabilitation purpose 

Experiment Guidance 
for Participants 

2 20/09/22 
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C.2 MEEC 22-006 Participant Consent Form 

Consent to take part in The ideal characteristics of the input 
signal for providing the strongest haptic directional cue in a 
hand-held device for a rehabilitation purpose 

Add your 
initials next 

to the 
statement 

if you 
agree 

I confirm that I have read and understand the information sheet dated 
[13/09/2022] explaining the above research project and I have had the 
opportunity to ask questions about the project. 

 

I understand that my participation is voluntary and that I am free to 
withdraw at any time without giving any reason and without there 
being any negative consequences. In addition, should I not wish to 
answer any particular question or questions, I am free to decline.  
Contact number: 07887406049 
Email: mn16d2s@leeds.ac.uk 

 

I understand that members of the research team may have access to 
my anonymised responses. I understand that my name will not be 
linked with the research materials, and I will not be identified or 
identifiable in the report or reports that result from the research.   
I understand that my responses will be kept strictly confidential.  

 

I understand that the data collected from me may be stored and used 
in relevant future research in an anonymised form. I understand the 
data collected from me will be kept for 10 years for research 
validation.  

 

I understand that relevant sections of the data collected during the 
study, may be looked at by individuals from the University of Leeds or 
from regulatory authorities where it is relevant to my taking part in this 
research.  

 

I agree to take part in the above research project and will inform the 
lead researcher should my contact details change. 

 

 

Name of participant  

Participant’s signature  

Date  

Name of lead researcher Shuhao Dong 

Signature  

Date*  
 
*To be signed and dated in the presence of the participant.  
Once this has been signed by all parties the participant should receive a copy of the signed and dated 
participant consent form, the letter/ pre-written script/ information sheet and any other written 
information provided to the participants. A copy of the signed and dated consent form should be kept 
with the project’s main documents which must be kept in a secure location.  
 

Project title Document type Version Date 
The ideal characteristics of the input signal 

for providing the strongest haptic 
Participant Consent 

Form 
2 06/12/22 
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directional cue in a hand-held device for a 
rehabilitation purpose 
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C.3 MEEC 22-006 Participant Information Sheet 

Participant Information Sheet 

Please refer to the Research Privacy Notice provided with this information sheet. 

The ideal characteristics of the input signal for providing the strongest haptic 
directional cue in a hand-held device for a rehabilitation purpose  

You are being invited to take part in a research project. Before you decide it is 
important for you to understand why the research is being done and what it will 
involve. Please take time to read the following information carefully and discuss it 
with others if you wish. Ask us if there is anything that is not clear or if you would 
like more information. Take time to decide whether or not you wish to take part. 

Purpose of the Project 

This research project is part of the upper limb rehabilitation using robotic device. 
This particular research aims to find the ideal characteristics of the input signal that 
can provide the strongest haptic directional cues and also to study the effect of the 
device status in delivering the directional cues in a hand-held device.  

Background: Stroke is the leading cause of human disability and death in the UK 
(Public Health England, 2018). It was estimated that the number of people affected 
by stroke will be increased by 27% in the EU by 2047 (Wafa et al. 2020). It is 
extremely difficult for post-stroke patients to perform activities of daily living without 
any rehabilitation intervention. Currently, apart from traditional physiotherapy, 
robotic systems have been widely applied to support the recovery process. 
However, most of the robots are vision-based systems, which is not ideal for stroke 
patients with vision loss or vision deficit. Therefore, it is beneficial to build a 
rehabilitation system with haptic feedback that is able to indicate directions. This 
physical force interactions will also help patients without vision deficit to rebuild their 
neuroplasticity.  

Why have I been chosen? 

You are chosen because you have no existing disability in upper limb and would 
like to take part in this research by your own decision after reading all the provided 
materials. Your data will be protected and used as the base line measurement for 
our ongoing research project.  

Do I have to take part? 

Taking part in this research is entirely voluntary and you as the participant may 
withdraw from the study at any time with all your personal information deleted 
without penalty and do not have to give a reason for doing so. If you decide to take 
part you will be given this information sheet to keep, a copy of the experimental 
procedure to look over and will be asked to sign a consent form. 

What do I have to do? / What will happen to me if I take part? 

The participants will be informed of the consent and experiment information sheet 
prior to any experiment. A signature to confirm the willingness of participating in the 
experiment is required to start the experiment. Participants may require withdraw 
from the experiment at any time before stage 2 of the experiment.  

People will get used to the haptic pattern and effect very quickly during the 
experiment. This learning effect may influence the accuracy and validity of the 
experiment since two different hypotheses need to be verified. Thus, 2 visits are 
required with each experiment stage. The expected gap between two visits is 
maximum 7 days.  
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At stage 1 of the experiment, firstly participants will be asked to hold a device of 
similar size as a coffee cup (R: 66 mm x H: 110 mm) on a table comfortably. Then 
participants will experience 9 different haptic configurations. Each configuration will 
last approximately 10s and a 3s rest will be given between each haptic cue. After 
each configuration, participants will be asked to specify the direction they feel and 
rate how confident they are about their answers. Approximately 5 minutes will be 
required for each participant at stage 1. 

At stage 2 of the experiment, participants will be asked to hold the same device on 
a table comfortably. At this stage, statistically preferred configurations will be used 
for the test. Participants will be randomly allocated with a configuration for this 
experiment. In static test, participants will be asked to rotate a rotary encoder on top 
of the hand-held device to indicate where they believe the directional cue is guiding. 
A total of 10 measurements will be taken with 2 being no directional cues to reduce 
the learning effect. Each measurement will take approximately 10s. In dynamic test, 
participants will be asked to hold the device first. The haptic directional cues will be 
generated while rotating around the centre of the device. The participants will be 
asked to specify the final direction after the rotation using the rotary encoder 
provided on top of the device. A total of 10 measurements will be taken. Each 
measurement will take approximately 10s. Finally, participants will be asked to 
follow the directional cues to complete a certain pattern (e.g., circle, 8 shape, 
rectangle etc.). The position information will be recorded either by Optotrak (An 
accurate movement capture system using IR camera) or a computer vision 
programme.  

It is the participant’s responsibility to obey the instructions listed above and in the 
experiment procedure document. It is also required for all the participants to protect 
any equipment used in the experiment.  

No lifestyle restrictions are needed as a result of or prior to the participation. 

What are the possible disadvantages and risks of taking part? 

3. Being scratched by the sharp edge or component on the device. The edge of 
the device may hurt participants. This will be minimised by coving soft tape and 
rounded edge design. 

4. Being instantly burned by Optotrak sensors. Optotrak works based on IR light. 
When the frequency of the collection is high, there is a chance of feeling an 
instant burning on the skin where the sensor is aiming at. This will be minimised 
by regulating the way how to attach those sensors on participants’ skin. This 
action will be finished and inspected by the principal investigator of this project. 
An instant removal will be done when this situation happens.  

What are the possible benefits of taking part? 

There are no immediate benefits for people participating in the project. However we 
appreciate those who would like to help us improve the development of haptic 
robots for  rehabilitation purposes.   

Use, dissemination, and storage of research data 

The collected data will be encrypted and stored on the University of Leeds 
OneDrive during the PhD study in the university. And the end of the PhD, the 
anonymised data will be uploaded to a data repository (figshare) for research 
verification. Data will be held for 10 years after the experiment to support research 
reproducibility. There is the potential for data collected from this research being 
published in journal or conference articles. No identifiable information will be public. 
During publication, anonymised data will be made available to third parties. 
According to the UK General Data Protection Regulation (GDPR), data collected in 
this experiment belongs to the special category data (data related to health). Based 
on the Article 6 (1) (a) and Article 9 (2) (a), this data collection process is lawful, fair 
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and transparent, and data processing is allowed after your explicit consent. If you 
wish not to use your data in any potential publication or thesis, please inform us 
when you sign the consent form. 

What will happen to my personal information? 

All data for publication will be anonymised with no trace of personal information 
published. If you wish to quite this research study, all your data will be deleted. Your 
personal contact information will be deleted at the end of the project.  

What will happen to the results of the research project?  

All the contact information that we collect about you during the course of the 
research will be kept strictly confidential and will stored separately from the 
research data during the project. At the end of this project, your contact information 
will be deleted.  We will take steps wherever possible to anonymise the research 
data so that you will not be identified in any reports or publications.  

The results from this study will be published within a PhD thesis by October 2023 
(latest to October 2024). Data collected from this study may also be used in journal 
or conference papers where anonymisation will be strictly followed. 

What type of information will be sought from me and why is the collection of 
this information relevant for achieving the research project’s objectives? 

In stage 1, we only ask for the direction you feel and your confidence level.  

This information is collected because a statistically preferred system configuration 
will be selected based on all the participants’ feedback. This will also help to 
validate our hypothesis raised during the preliminary test, which is beneficial to 
determine the ideal characteristics of the input signal for generating the strongest 
directional cues.  

In stage 2, we will ask your movement position data of you hand when you follow 
the directional cue to complete a certain pattern. This information is collected so 
that we can compare your movement track with someone else’s who is using the 
alternative system configuration. This comparison will help to determine whether 
the status of the device will influence the user’s perception of the directional cues.  

Who is organising/ funding the research? 

The research has been organised by the University of Leeds. The lead researcher 
of this study is funded by the University of Leeds and China Scholarship Council. 

Contact for further information 

Should you have any further questions related to this study, please contact the lead 
researcher of this study. 

Mr. Shuhao Dong 

Email: mn16d2s@leeds.ac.uk  

 
 

Thank you for taking the time to read through this information sheet. 
 

Project title Document type Version Date 
The ideal characteristics of the input 

signal for providing the strongest haptic 
directional cue in a hand-held device for a 

rehabilitation purpose 

Participant Information 
Sheet 

2 06/12/22 
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C.4 MEEC 22-006 Risk Assessment for Participants 

Risk Assessment for Participants 

This is the risk assessment for participants in the research project stated below.  

The ideal characteristics of the input signal for providing the strongest haptic 
directional cue in a hand-held device for a rehabilitation purpose  

You are being invited to take part in a research project. Before you decide it is 
important for you to understand the potential risk of participating this experiment. 
Please take time to read the following information carefully and discuss it with 
others if you wish. Ask us if there is anything that is not clear or if you would like 
more information. Take time to decide whether or not you wish to take part.  

Hazards and Risk Ratings 

Hazard Type 
How might the 

hazard cause harm 
Who may be 

harmed 
Control measures Action by 

Being scratched 
by the sharp 
edge of the 
component 

Skin scratch (6) 
Staff 

Participants 

Shap edges are 
rounded or covered 

by soft tapes (3) 

Shuhao 
Dong 

Being burned by 
IR light sensors 

An instant burning 
feeling when the 

sensor is aiming at 
the skin instead of 

the camera (6) 

Participants 

The sensor will only 
be accessible by 

the principal 
investigator and 
participants will 

have to attach this 
sensor under the 
guidance of the 
investigator (2) 

Shuhao 
Dong 

Personal data 
(including name 

and hand 
movement data) 

being stolen 

Data stolen or 
accessed by 

unauthorised parties 
(6) 

Participants 

Data will be kept 
anonymously on 

University of Leeds 
OneDrive and no 

identifiable 
information will be 

collected 
throughout the 
experiment (2) 

Shuhao 
Dong 
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Figure 1: Risk assessment reference. 

Contact for further information 

Should you have any further questions related to this study, please contact the lead 
researcher of this study. 

Mr. Shuhao Dong 

Email: mn16d2s@leeds.ac.uk 

 
 

Thank you for taking the time to read through this risk assessment. 
 

Project title Document type Version Date 
The ideal characteristics of the input 

signal for providing the strongest haptic 
directional cue in a hand-held device for a 

rehabilitation purpose 

Risk assessment 1 
13/09/2

2 
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C.5 MEEC 22-006 Data Management Plan 

University of Leeds Data Management Plan (DMP) Template 

Researcher Name   Shuhao Dong 
Project Title  The ideal characteristics of the input signal for 

providing the strongest haptic directional cue in a 
hand-held device for a rehabilitation purpose 

Faculty   Faculty of Engineering and Physical Sciences 
KRISTAL Reference Number (if 
applicable)  

  

Supervisor(s) name (if applicable)   Prof. Martin Levesley, Dr. Justin Gallagher, Dr. 
Andrew Jackson 

Funder   University of Leeds, China Scholarship Council 
Scheme    
Research Start Date   01/10/2022 
Research End Date  01/04/2023 
Ethical review number MEEC 22-006 
DMP review due    
  

Date  Version   Author  Change notes  
 02/10/2022 1 Shuhao Dong File Created 
 06/12/2022 2 Shuhao Dong Special category 

data 
  

Please provide a brief overview of your project including proposed research methods 
 
Haptic guidance has been applied widely in our daily applications such as phones and cars’ 
control panel etc. This physical excitation to human skin together with the receptors on 
human skin makes it possible to generate a sensible directional cue via motor 
asymmetrical vibrations. This directional cue has been proved by existing research to be 
beneficial for the recovery of stroke patients with/without vision loss. It also has the 
potential to be used with VR (virtual reality) and AR (augmented reality) technology to 
provide additional physical force cue that can be helpful to tele-rehabilitation process. The 
most common way to generate asymmetrical vibrations is to supply the motor with 
asymmetrical current input.  
Thus, the aim of this research is to specify the ideal characteristics of the input current 
signal that can provide the strongest directional cue. Three key variables will be studied in 
this research, namely delay time, ramp down step length and cut-off voltage. For each key 
variable, 3 different configurations were chosen based on the preliminary study on the 
motor behaviour. 
The entire experiment is divided into 2 stages. In stage 1, participants will be asked to 
experience all haptic configurations and finally 4 configurations (out of 9) will be chosen 
based on participants’ feedback. In stage 2, participants will be asked to run through static 
(hold the device still in a single position) and dynamic (hold the device and follow the 
directional cue) tests, in which they will be asked to specify the direction they feel based 
on the haptic cue.  
This research is part of a PhD project funded by the University of Leeds (201088930) and 
China Scholarship Council (201907000162). The potential participants will be recruited in 
the School of Mechanical Engineering. 
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1. What data will be produced? What data will be used from other sources?  
 
1. Survey data: 

 Participants’ name, age and their consent form for participating the experiment. 
 The specified direction (forward, backward, left or right) by participants, and their 

confidence level for the answers (1-3). 
2. Software:  

 A C++ programme will be generated to control the motor used in the project.  
 MATLAB codes will be generated to analyse and visualise the error between users’ 

specified direction and expected direction.  
3. Data studied: 

 Sensor data (rotary encoder and position sensor) 
 
4. Data from other sources: None 
 
2. Where will data be stored? How will data be structured? Include file formats and 

approximate volume. 
 
The estimated data size including files, figures, programmes will be no larger than 500MB. 
All the data will be stored in university’s OneDrive. The collected data from participants 
will be recorded into a csv file (Microsoft Excel) and data will be analysed and visualised 
using MATLAB.  
The name of the file should be in the format below: purpose_of_the_file_version_date. For 
purpose of the file, it can be raw data, position data, angle data etc. For data collected 
from individuals, add the participant’s number between purpose and the version. Data 
collected from individuals will be stored in …/Haptics_Exp/date/IND_Data directory. For 
processed data and MATLAB programme, the directory is …/Haptics_Exp/Processing.  
The version number will be recorded by the file name. A txt document will also be created 
to track the version change and a summary of updates.  
Upon finishing the experiment, data collected in this session will be directly stored in 
OneDrive through a laptop that has been tested by the university. 
 
3. Access to data during the project. Give details of collaborators and any controls. 
 
The data will not be shared with anyone outside the research team during the project. The 
supervisory team my need access to the data for collaborating and assistance during the 
project. If the supervisory team need to access the data, the principal investigator will only 
share the data needed via university’s OneDrive. Since data will not be shared with people 
outside the research team during the project, there is no need for a data sharing 
agreement.  
 
4. Ethics and legal compliance: are there any ‘special’ requirements for your data? Any 

contractual or consent issues? Key policies (internal and external) 
 
The university’s information protection policy and advice on data protection have been 
read carefully. The data collected in this experiment belongs to the special category data, 
specifically personal data concerning health. In order to process the data, the conditions 
listed in Article 6 and Article 9 of the UK GDPR have been carefully reviewed. Participants 
will be asked to sign the consent form after being noticed the purposes of data collection 
to give consent. This satisfied the Article 6 (1) (a). Therefore, the data collection process is 
lawful, fair and transparent. Participants will also be noticed about the aim of the data 
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processing after collection. Therefore, Article 9 (2) (a) explicit consent has been satisfied to 
process the data. The processed and anonymised data will not be shared unless explicit 
consent from the participants has been given. There is no need to do a data protection 
impact assessment (DPIA) for this experiment (small scale, not used to determine access to 
a product, service, opportunity or benefit, not include genetic or biometric data). Since the 
data processing is based on Article 9 (2) (a) explicit consent, there is no need to satisfy DPA 
Schedule 1 conditions.  
The data will be fully anonymised using the participant’s number.  
Data will be deleted upon finishing the PhD degree in the university. 
Participant consents will be recorded by paper upon entering the experiment.  

 
5. How will data be documented and described? Methodologies and protocols. 
 
A txt file will be created to document the data when changes are applied. Appropriate 
labels and file names will be adopted to well classify the data. 
A document will be generated to record how the data is collected. Details are included in 
the corresponding ethical application section C2 and C3.  
It is important for this research to be reproducible. This research is to study how human 
react to haptic directional cues. Only when the research is reproducible can the hypothesis 
of the research be validated to be useful for the majority of the people. Thus, it is also 
beneficial to record the process of data collection and the specific equipment and sensors 
used during the project.  
A C++ programme will be created to control the two motors used in the project. The 
version of the programme and the update log will be recorded in a txt file and the 
comment lines in the programme.  
A MATLAB programme will be created to analyse the visualise the data. This programme 
will also be used to randomly allocate participant number to each individual during the 
project.  
All programmes will be stored in university’s OneDrive.  
 
6. Training and support 

 
Training for data analysis and presentation would be beneficial.  
This training can be accessed in multiple ways:  

 Read current literature in related field in order to learn the method of data 
analysis for specific data type and data visualisation.  

 Coursera also provide data analysis courses.  
 Careful readings on the Guide to the UK General Data Protection Regulation (UK 

GDPR) in order to satisfy all the necessary conditions for data collection, data 
processing and data sharing.  

 
7. What are the plans for data sharing beyond project partners? Include justification if 

some of your data needs to be restricted. Include data and code. Include repository. 
 

Raw data will not be shared with anyone outside the research group. However, processed 
data will be presented in the final thesis for PhD degree and publications to journal and 
conference papers.  
There is a section in the participant consent form for data sharing for publication and 
thesis. Processed data will only be published if participants agree. 
Data will only be used for PhD thesis and potential publications so there will be a delay in 
accessing processed data.  
The data will be kept in university’s OneDrive till the end of the PhD when access to 
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OneDrive is terminated. After PhD, the data will be stored in a trusted research data 
repository (figshare).  
 
8. What Intellectual Property will be generated? How will IP be protected and exploited? 
 
No patent, no commercial applications. This study is for research only.  
 
9. Who is responsible for managing the data? What resources will you need?  

 
The principal investigator of the ethical application is responsible for managing the data. 
The data involved in this project is not complex. The supervisory team may give support for 
data analysis. Special care on the data management is required as this is special category 
data.  
 
10. Ongoing data curation / data housekeeping - you may find it useful to include a 

retention table 
 
All the data related to this project will be kept in university’s OneDrive in order to access 
and analyse during the final year of the PhD study. Data will be deleted upon finishing the 
PhD and potential publications.  
This information will be shared with the supervisory team. 
 

End of Project  

At the end of a project and/or before you leave the institution, you should ensure that 
data and research materials are deposited with the School or a trusted data repository and 
documented in such a way that they can be found and understood.  

 Dataset name  Location  Person responsible  
 Haptics_directional_cues Figshare Shuhao Dong 
      
  


