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Abstract

Despite the immense success and powerful capability of machine learning and its sub-

sets, there remain areas in which the technology has not been as thoroughly researched.

The recent advent of Industry 4.0 has enabled new applications of machine learning -

deep learning in particular, which require a vast amount of training data. The objective

of this thesis is to investigate the more recent innovations in machine learning in the

field of smart meter data through non-intrusive load monitoring (NILM): a technique

for analysing gradual change in the energy draw and deducing what is used and how.

Specifically, we explore machine learning-enabled challenges toward the health moni-

toring and proactive repair of electrical appliances, increasing the operational lifetime

and inherently privacy-preserving. Machine learning can allow us to identify hidden

indicators in data that the electrical appliance is deviating from its known, normal

working pattern. Our dataset originates from retrofitted power outlets with metering

functionality, and we are looking to investigate similar techniques based on energy con-

sumption alone. Many existing techniques involved in IoT condition monitoring enjoy

access to feature-rich sensor data, with a large basis of data on which to train. The

research within is a natural complement to the data already collected by the smart

appliances we are to support. This thesis explores the key challenges in implementing

machine learning algorithms and the lack of research on those that look at appliances

with cyclic load patterns (e.g., laundry appliances or dishwashers) before offering pro-

posed discoveries. This thesis proposes and evaluates two deep learning algorithms and

one ensemble-based machine learning algorithm in solving three distinct challenges.
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The first proposed model aims to identify anomalous behavior in the power signatures

of household electrical appliances using an incremental clustering algorithm which first

classifies the cycle, then trains an autoencoder to reconstruct the signature. The second

model in this work aims to predict the idle time until the next usage following a period

of activity of an electrical appliance, which can inform other systems to conserve power,

prolonging the appliance. The model is based on temporal point processes, a classical

statistical field. We architect an LSTM neural network capable of outputting direct time

deltas. Finally, we look to identify specific faults in an appliance, this time knowing

more of its nature, based on known failure conditions. We propose a gradient boosting

model to classify a machine failure. Both anomaly-related models competently account

for the expectedly skewed performance in the literature due to a steep imbalance in the

data.
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Chapter 1

Introduction

1.1 Project Background

The means to our NILM solution come from a retrofitted, IoT-connected BS 1363 smart

plug, running on bespoke firmware and powered by an ESP32-S3 microcontroller. The

plug is capable of remote operation and scheduling, controllable via an in-house cloud,

and is equipped with a metering chip that records and transmits its energy readings

at minute intervals, as well as into the ESP32, equipped with the capability to run

machine learning algorithms on edge. This serves as our target platform for the models

described in this thesis.

This research is the product of an industrially-driven project with a requirement to

implement NILM on the data collected from smart plugs. Several key industrial stake-

holders are exploring the potential of such technologies deployed retrospectively on

appliances without smart functionality. The energy data collected from several thou-

sand plugs over the years by the industrial partner remains unexplored from a NILM

perspective. The work looks to develop a suite of machine learning technologies for this

data to monitor the usage, health, and likelihood of failure of an electrical appliance

based on its energy readings in real time. Development of an enhanced version of the

smart plug capable of capturing 50 energy readings per second as opposed to 1 per

1



1.1. Project Background

minute was underway throughout this research, which we eventually received. This

new frequency should offer greater precision in the behaviour analysis of the connected

appliance than the existing archives, but it must be investigated as to whether and how

the archived readings are best utilised in this machine learning pipeline for the new

hardware.

1.1.1 Objectives

This project looks to develop a comprehensive, intelligent suite of machine learning

solutions to gain a new depth of understanding in appliances, from failure detection

to energy conservation. The primary objective of this project is to develop an overall

system capable of recognising various appliances and their behaviour, then identifying

when such an appliance is developing faults or is likely to fail based on deviation from

expected behaviour. The objectives based on this goal are defined as:

1. Develop a deep learning framework for monitoring laundry appliance energy con-

sumption and identifying anomalous behaviour, relying on power consumption

without the use of sensor data in accordance with NILM, yet still be able to

account for multistate devices;

2. Develop a deep learning empowered framework for deriving energy use patterns of

a variety of appliances and deciding when to shift the appliance into a low power

mode for energy conservation in a NILM context, using only power consumption;

3. Develop a machine learning framework for predictive maintenance in the context

of laundry appliances, capable of recognising both normal operating healthy states

and classifying known modes of failure from a dataset markedly low in features

and volume.

2



1.2. Origination and Definition of Dataset

1.2 Origination and Definition of Dataset

Our dataset originates from a cloud time series database of energy data collected by the

industrial partner with readings of the power, voltage, and current readings of each plug,

sampled each minute. The partner is equipped with the means to continue developing

this dataset it in far richer detail, yet currently has no way of leveraging it for their

customers.

Data collected for each plug are treated as time series, T : an ordered sequence of scalar

data points T = (t0, ti, . . . , tn), ti ∈ R indexed by fixed time intervals [1]. This multi-

variate time series data encapsulates 3 distinct scalar features with each observation,

therefore ti = X = (x0, xj, . . . , xm). How each variable is best utilised is a decision made

by both the programmer and the model. Time series is a prevalent data format across

multiple sectors, including medicine, finance, and industry. Applying machine learning

to this has been a large field in research, for example, [2] developed a convolutional

neural network (CNN) to detect heart arrhythmias in electrocardiographic (ECG) time

series data, which outperformed human cardiologists.

Little work has been done in combining prognostic health monitoring of appliances with

machine learning to run on edge devices with typical IoT constraints (e.g., storage,

resources, processing power). This renders much of the existing research unsuitable for

such an application, as vast training data and computationally expensive operations are

typical in training neural networks; many devices are simply unable to support such

requirements. The dataset that motivates this thesis is entirely unlabelled, making

unsupervised learning a core focus.

The data is formatted as temporal energy data recorded at minute intervals, which

points the overall direction of this thesis toward time series. However, much of the

work cannot rely on the offline availability of this data. In deployment, models are

evaluated on the continuous, unseen arrival of new data and must run their predictions

on experience and history alone before receiving the next input. Further, the nature

3



1.2. Origination and Definition of Dataset

of time series data, with energy/sensor readings in particular, is of high velocity and

volume, which makes it difficult to store onboard edge hardware (the target platform

for this work). To overcome this, relevant models must train themselves in an online

fashion, using the latest data point—or a small reservoir of previous readings.

The first stage in developing our dataset is to extract and process the energy data from

the private cloud of the industrial partner into a local document-based dataset, before

transforming it into data frames for a model at runtime. Energy readings are stored on

cloud infrastructure using InfluxDB: a specialised database for time series data. The

open-source database project allows for a more efficient population and interrogation of

timestamped, sequential data and cites IoT sensor data as a core supported use case.

One row of data consists of a timestamp (usually in milliseconds), a corresponding

value—an integer, floating point, string, or boolean—and a series of optional tags used

for grouping [3]. Beyond highly optimised storage and write performance, key user

attractions of time series databases (TSDB) include range queries and aggregations [4],

which make for easier interrogation and analysis.

Due to the cloud infrastructure, identifying what and where to query from the InfluxDB

realm cannot be determined from within InfluxDB itself. Data concerning smart plugs

themselves are housed separately inside a traditional relational database. Their energy

readings are bundled as a metering service, containing a device-specific identifier for

each axis of energy reading, referred to internally as a ‘characteristic’: voltage, current,

and wattage, all expressed in 64-bit floating point. Querying their private application

programming interface (API) for devices with a user-defined name containing either

‘washing’ or ‘laundry’ returned 15 plugs and their corresponding characteristic identi-

fiers.

For a more efficient development workflow and processing, the data is pulled down in

its entirety onto a local disk and simulated as a stream, where each reading is received

incrementally as input to models. These identifiers are grouped with the device name

and a unique identifier in a row of a five-column output CSV file for further processing,
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1.2. Origination and Definition of Dataset

Timestamp ,Wattage ,Current ,Voltage

2019 -05 -24 T18 :10:00Z ,246.8125 ,0.22265625 ,40.0

2019 -05 -24 T18 :11:00Z ,247.375 ,0.265625 ,41.0

2019 -05 -24 T18 :12:00Z ,246.96875 ,0.30078125 ,29.0

2019 -05 -24 T18 :13:00Z ,246.15625 ,0.11328125 ,7.0

2019 -05 -24 T18 :14:00Z ,239.25 ,9.30859375 ,2000.0

...

Figure 1.1: Head of a sample of a laundry machine cycle once all featured aggregated.

exampled in Figure 1.1, with no relationship to the personal user account of the device.

Although a more convoluted route to data generation, it requires only a single API

request to the cloud, conserving bandwidth and egress costs during these experimental

stages.

To begin extracting raw energy data, each energy characteristic of a device is queried

for the graph of its entire history, and each data point within the graph is appended

to an in-memory dictionary under its title. Eventually, one entry in the dictionary will

be keyed by an observation timestamp, along with an array of the three characteristic

readings as the corresponding value.
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Figure 1.2: Power consumption graph of an isolated laundry machine wash cycle.

The historical power consumption time series must be extracted into individual samples
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1.3. Contributions

as input data for a model, which begins with light manual processing. We observe that

when the appliances are inactive, the smart plugs themselves tend to idle just below

0.04A. We carry this value as a minimum threshold and consider any readings above as

metered activity, in which case it is appended to the sample in situ. Once the readings

bottom out at the 0.04A threshold for 5+ consecutive minutes, we trim and export the

collection as an individual sample.

Timestamp ,Wattage ,Current ,Voltage

2019 -09 -12 T10 :13:00Z ,243.5 ,0.07421875 ,10.0

2019 -09 -12 T10 :14:00Z ,245.1875 ,0.07421875 ,11.0

2019 -09 -12 T10 :15:00Z ,244.859375 ,0.0703125 ,11.0

2019 -09 -12 T10 :16:00Z ,242.125 ,3.3359375 ,473.0

2019 -09 -12 T10 :17:00Z ,242.078125 ,3.32421875 ,472.0

2019 -09 -12 T10 :18:00Z ,242.921875 ,3.375 ,500.0

2019 -09 -12 T10 :19:00Z ,243.8125 ,3.375 ,486.0

2019 -09 -12 T10 :20:00Z ,241.328125 ,3.34375 ,498.0

2019 -09 -12 T10 :21:00Z ,242.359375 ,3.375 ,502.0

2019 -09 -12 T10 :22:00Z ,241.5625 ,3.296875 ,476.0

2019 -09 -12 T10 :23:00Z ,241.015625 ,3.3515625 ,507.0

2019 -09 -12 T10 :24:00Z ,241.75 ,3.3359375 ,493.0

2019 -09 -12 T10 :25:00Z ,242.953125 ,3.40234375 ,509.0

2019 -09 -12 T10 :26:00Z ,243.09375 ,3.38671875 ,510.0

2019 -09 -12 T10 :27:00Z ,243.140625 ,3.30859375 ,478.0

2019 -09 -12 T10 :28:00Z ,243.390625 ,3.36328125 ,490.0

2019 -09 -12 T10 :29:00Z ,243.125 ,3.421875 ,522.0

2019 -09 -12 T10 :30:00Z ,245.015625 ,3.46484375 ,557.0

...

Figure 1.3: Head of a sample of a laundry machine cycle.

As readings are at a fixed minute interval, two or more consecutive idle readings will

write out the sample into a four-column CSV, including the timestamp, wattage, cur-

rent, and voltage as illustrated in Figure 1.2. The head of an example wash cycle is

shown in Figure 1.3.

1.3 Contributions

The overarching basis for this research is to derive as much actionable insight from the

online, evolving dataset we are presented with on each plug. From this task, we begin
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1.3. Contributions

to form our contributions on the nature of what we can feasibly achieve with such a

dataset.

Contribution 1: We first propose an unsupervised anomaly detection system that

operates on a per-cycle basis of a single white appliance (e.g., laundry machine or dish-

washer), without prior knowledge of the machine make or model. For example, the

signature of one machine’s eco cycle is considerably different from another, thus elim-

inating the possibility of a universally trained model, despite access to a substantial

energy consumption dataset. Our first challenge is to address this with a design able

to differentiate between known, similar, and unknown wash cycles. Using a novel adap-

tation of partition clustering and appropriate preprocessing, the algorithm designed

operates on an evolving dataset, compared to conventional clustering algorithms that

rely on full access to the dataset. We must then be able to predict normal behaviour

as a benchmark for anomalies without known anomalous samples in our dataset. To

achieve this, the cycle is then submitted to an ensemble of autoencoders for reconstruc-

tion, which swaps its training parameters ad hoc depending on the cluster matched to

the cycle. The key attraction of this approach is being able to account for operation cy-

cles that differ in nature, helping prevent the system from falsely classifying the normal

behaviour of one cycle as the anomalous behaviour of another.

Contribution 2: Using the same dataset, we look to explore the concept of interval

prediction to estimate the next time to use, allowing us to conserve power amid global

energy challenges. We design a second system to accept meter readings, this time to

predict the interval between the current time and its next use. With the result of this,

the system can potentially be powered down to conserve energy and lifespan. The

system developed encloses an online load-sensing machine learning model capable of

adapting to new environments. Leveraging deep learning, our approach relegates all

aspects of classical temporal point processes to a recurrent neural network. Although

there is existing work in this field, no proposed solution we have investigated to date fully

addresses the unique nature of our challenges. Unlike the majority of solutions that work
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1.4. Thesis Outline

in likelihoods of occurrence, ease of interpretability is a core consideration in the design

of this model, our most significant contribution offers a method to sample intervals

directly from the model. As usage patterns change, the model must be recalibrated

to maintain its accuracy and relevance to the user. As new data is collected, the

model must be retrained or adjusted to account for changes in patterns, behaviours, or

environmental factors.

Contribution 3: Returning to the idea of health and increasing the lifespan of an

appliance in the anomaly detection space, we finally look toward the field of predictive

maintenance and bringing it from typically heavy industrial machinery to domestic

appliances. Through remote diagnosis of appliance failure or even normal wear and

tear, manufacturers can heavily optimise service operations to the benefit of immense

cost savings. Here, we suggest an approach toward conditioning highly imbalanced time

series data of markedly small size into an efficient gradient boosting model, capable of

running on edge hardware. Unlike rich sensor data, as with the majority of similar work,

our model performs solely on statistical features of energy data from a retrofitted power

supply. This model was architected and trained under a dataset of hourly readings to

serve as a basis for comparison. We then adapt the same model for the similar purpose

of fault detection to a new, more intricate dataset.

1.4 Thesis Outline

Chapter 2 offers a background review of the technologies concerned in this project,

primarily deep learning. The chapter begins with the concept of machine learning and

how deep learning advances it, before explaining the core principles of deep learning.

More sophisticated variants of traditional multilayer perceptron networks (including

recurrent neural networks and autoencoders) with more specific use cases are ideal

for this project. This chapter also reviews existing work relevant to our challenges and

approaches. We find some areas are well researched and their approaches well evidenced,

however, many are simply not viable solutions when evaluated against our problems.
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1.4. Thesis Outline

Chapter 3 documents the first framework developed to adaptively learn from a cycle-

based appliance and detect faults in a cycle. The framework addresses the challenges of

grouping cycles, both normal and anomalous, into individual datasets through a novel

incremental clustering algorithm, which is trained and executed in parallel using a set

of autoencoder neural networks working in ensemble, each running on a distinct feature

mapping.

Chapter 4 describes the architecture and approach toward the second model developed

as part of the energy conservation goal. A series of LSTM neural networks are employed

in an online fashion to predict the interval between the last cycle and the time to the

next. Higher-level software can use this prediction to power the appliance down into

a low-energy state. Traditional LSTM solutions are explored before looking toward

temporal point processes, which have seen recent interest in modelling them with neural

network techniques.

Chapter 5 documents the work of the third model: a gradient boosting-enabled system

designed to predict when a machine is likely to fail and designate the failure to one

of four known root causes. Unlike other models, this particular model has access to

labelled data and is, therefore, a supervised learning problem from the onset. We process

the data into moving windows, which the model is fed (along with the state—normal

operating or type of failure). The work is then adapted to be compatible with our

new high-frequency data. Within, changes to both the model architecture and the data

preprocessing stages are detailed.

Chapter 6 then concludes the thesis, summarising the work of the previous chapters,

and the contributions made, and examines potential routes for future work and further

development.
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Chapter 2

Background

This chapter presents some background literature and existing work on deep learning

techniques, before turning toward those more concentrated on time series data. Section

2.1 introduces the core concepts behind machine learning, which Section 2.2 elaborates

on with a focus on deep learning core foundations, its uses and evolution, and its

suitability for the goal of this project. Sections 2.3 and 2.4 review specialised variants

of neural networks better suited to handling sequential data, e.g., time series, and how

they are all scored in Section 2.5. Section 2.6 covers the challenges faced in the vast and

rapidly developing field of deep learning, and how others have attempted to overcome

them. Sections 2.9 and 2.10 review other technologies explored in this project.

2.1 Introduction to Machine Learning

Machine learning empowers machines to approximate patterns and correlations between

data points and their labels, leveraging predictions from past data points as experience

to train its accuracy for the next with as minimal human intervention as possible. Such

a task is known as supervised learning when working with labelled data [5]. Based on

these training sets, the model trains to derive and utilise the underlying structure of

the data.
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A machine learning model is a trained representation of the process used to map the

input data into an output, regardless of shape. Within most models exists a series of

parameters used to form and refine this mapping, which must be learned repeatedly

over data for optimal performance [6]—a process known as training. In this stage, the

performance of a model is measured in its ability to evaluate against data withheld from

the training process. Having to reserve a portion of the overall dataset to quantify this

is one of the long-running challenges of machine learning, as models require an abun-

dance of data to learn from and generalise well. Collecting sufficient volume and variety

of data can be difficult, though several well-researched techniques can help to compen-

sate for lacking or imbalanced data, such as cross-validation and data augmentation

(particularly useful when working with image datasets).

Certain intelligent technologies, such as natural language and computer vision, are dif-

ficult to program manually, more so with sufficient generalisation for a production,

real-world environment. Machine learning has demonstrated extraordinary capabil-

ity in many such tasks, often outperforming leading manual implementations in the

fields concerned with relative ease. A recent example covered in mainstream media

is Google DeepMind’s AlphaZero, a chess-playing deep reinforcement neural network

model, which outperformed world champions in the strategy board games of chess and

shogi [7].

2.1.1 Supervised Learning

Supervised learning matches a series of example inputs with one or more corresponding

outputs, also referred to as targets. These outputs can be well-defined labels in a

form known as classification, e.g., a type of failure in a machine. Alternatively, the

desired outputs may be continuous, e.g., a delay interval or time to failure, known

as regression. The resurgence and success of deep learning solutions are thanks to

supervised learning challenges and the recent computation power, as well as the data

availability that followed, have enabled. Deep learning requires vast training datasets
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2.2. Introduction to Deep Learning

to attain adequate performance, which even today are often difficult to procure and

annotate until the advent of big data.

2.1.2 Unsupervised Learning

Unsupervised learning concerns data where targets (or labels) are unidentified or simply

unavailable. Like supervised learning, the objective is to discover underlying existing

patterns in the data. Perhaps the most common use case of unsupervised learning

is clustering, which organises a dataset into clusters of similar, statistically coherent

examples [8]. This thesis explores combinations of supervised and unsupervised ap-

proaches to machine learning in classification and regression. Concerning deep learning

specifically, its renewed interest comes from the success of promising techniques of au-

toencoder architectures and generative modelling [9], used to capture coherent latent

representations of data.

2.2 Introduction to Deep Learning

2.2.1 Layered Perceptron

(a) Isolated perceptron (b) Multilayer perceptron

Figure 2.1: Examples of a neural network, both single layer (a) and deeply connected

layer (b). Arrowhead density indicates the strength of the synapse (i.e., connection

weight).
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x2 w2 Σ f (ℓ)(·)
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. . .
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Figure 2.2: A classic neuron isolated from part of a larger network. Inputs can be given

as either from the input data at layer 0, or activations of the previous layer for all

subsequent layers.

Neural networks, loosely inspired by the neural architecture of the human brain, are

implemented as a network of interconnected functional elements, each with multiple

inputs mapping to one output. Figure 2.2 illustrates a neuron in its most basic form: a

series of inputs x fed individually from 1, 2, . . . , N , each with a corresponding weight w.

This neuron is a computational unit that produces from its weighted inputs, along with

a separately trainable bias term b
(ℓ)
j [10], a non-linear output guaranteed from passing

through an activation function f(·) : R→ R.

Consider layer ℓ of an L-layered neural network with Nℓ neurons x
(ℓ)
1 , x

(ℓ)
2 , . . . , x

(ℓ)
Nℓ
, each

with some differentiable activation function f (ℓ)(·). The inputs to layer ℓ are given by

the preceding layer ℓ− 1, and each neuron x
(ℓ)
j is weighted by weight matrix W, whose

elements are given by w
(ℓ)
ij , for i = 1, 2, . . . , Nℓ−1 and j = 1, 2, . . . , Nℓ. A trainable offset,

or bias b is maintained alongside the model weights. The net input to x
(ℓ)
j is given by

n
(ℓ)
j =

Nℓ−1∑
i=1

x
(ℓ−1)
i w

(ℓ)
ij + b

(ℓ)
j , j = 1, 2, . . . , Nℓ. (2.1)

Where ℓ = 0, x
(ℓ)
j is simply the j-th element of the input data itself. Where ℓ = L, the

net activation is the final output y for the network. The activation a
(ℓ)
j of neuron x

(ℓ)
j

is given by
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a
(ℓ)
j = f (ℓ)(

Nℓ−1∑
i=1

n
(ℓ−1)
i w

(ℓ)
ij + b

(ℓ)
j ). (2.2)

The summation is passed to an activation function, which transforms the weighted

inputs to produce the end firing intensity (i.e., activation) a
(ℓ)
j of the neuron.

The activation result 0 ≥ a
(ℓ)
j < 1 is received as input by one or more neurons of the

next layer. The dense connections between many of the neurons as shown in Figure 2.2,

where the output of one layer serves as input to another, form a neural network. Layer

ℓ = 0 is considered the input layer and is sized according to the shape of the input data,

given as its initial activations at each execution. Likewise, layer L is considered the

output layer, and its final activations are considered its prediction and in its evaluation.

Any layers between these are known as hidden layers, where the learning takes place.

Training and label vectors x and y are presented individually for processing through

the network. Using t as the time step of the training process, input vector xt prop-

agates through the network per the previous equations, eventually outputting ŷt. In

our application, we derive our label vectors from the next reading, which the model is

tasked with predicting.

Following a complete forward propagation through the network, a loss function mea-

sures the deviation between the model’s prediction ŷ and the ground truth y, i.e., target.

As with activation functions, several loss functions have been developed in response to

varying challenges, and each particular loss function is characterised by different mea-

sures and interpretations of what exactly constitutes loss. An example of loss functions

includes Root-Mean-Square Error (RMSE) given in Equation 2.9. This particular loss

function is well suited when even a few large error margins are unacceptable in machine

learning applications, as its penalisation of these major errors can significantly affect

the overall RMSE score [11]. This lends particularly well in the anomaly detection space

and we leverage RMSE in the evaluation of our first model in Chapter 3.

W and b of each layer ℓ are updated individually according to their degree of responsi-
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2.2. Introduction to Deep Learning

Sigmoid ReLU

Leaky ReLU Tan H

Figure 2.3: Plots of common activations functions. The x-axis represents the given

input and its corresponding activation is given on the y-axis. Inputs are clamped to the

bounds of the axes.

bility for the overall loss. This responsibility for loss is calculated using the backpropa-

gation algorithm. Readers interested in more about backpropagation and the training

processes of artificial neural networks are directed to [12, 13] and the references therein.

This gradient is next multiplied by a learning rate α ∈ [0, 1] for the network: a shared

hyperparameter that governs the step size taken in converging toward ideally the global

minima. Although the learning rate is shared in this implementation, the weight and

bias updates can be driven by independent learning rates. Choosing a value for this

hyperparameter can significantly impact the performance of the model. The learning

rate should be small enough to converge toward the minima, but not so excessively

small that it may become trapped in a suboptimal minima [14]. Likewise, too high a

value may cause the model to continually overshoot [15] and the weights may never

settle towards convergence.
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σ(x) =
1

1 + exp(−x) (2.3)

R(x) = max(0, x) (2.4)

S(x) =
exp(xi)∑
j exp(xj)

(2.5)

tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x) (2.6)

The most common activation functions include sigmoid (σ), rectified linear unit (R)

commonly abbreviated as ReLU, softmax (S), and hyperbolic tangent (tanh). These

activation functions, illustrated in Figure 2.3, are expressed respectively in Equations

2.3 through 2.6. The result of the preactivation sum is then passed to an activation

function, which transforms the weighted inputs z
(ℓ)
j to produce the end firing intensity

(i.e., activation) a
(ℓ)
j of the neuron.

Selecting an activation function for the layer depends on the position and purpose

of the layer in the network, as each activation function contributes independently to

the overall performance of the network. For example, ReLU tends to perform better

in feature space, converging several times faster than equivalents using otherwise [16];

softmax is better suited to output layers of multi-label classification models as it enforces

a probability-like outcome, summing to 1. Softmax (Equation 2.5) accepts a vector as

input, as opposed to a single value, given its use for probabilistic output.

ReLU and its variants are particularly favoured in modern deep learning endeavours

for their consistently high performance in a broad range of applications [17] and their

immunity to the vanishing gradient phenomenon. It plays a significant role in mitigating

the vanishing gradient problem bu its nature of providing a linear response for positive

inputs and clamping negative inputs to 0. In anomaly detection systems, ReLU is

a frequent choice of activation function in combination with autoencoders [18, 19].

Further, its efficient runtime computation and gradient propagation characteristics suit
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our purposes well, working in low-compute environments with scarce data where faster

convergence is a strong requirement.

Also illustrated in Figure 2.3 is Leaky ReLU, a variant that attempts to counter the

”dying ReLU” problem whereby neurons with negative bias may never activate, ensuring

all neurons part of the network may contribute to the final output regardless of their

sign.

Connecting multiple perceptron systems into layers, as illustrated in Figure 2.1 (b) can

produce higher-order, non-linear decision hyperplanes, which often better generalise

around more diverse, complex datasets in a more automated fashion. These intermediate

hidden layers advance a model from logistic regression to a neural network.

A neural network comprises an input and output layer (sometimes known as the logits

layer in classification problems), with multiple hidden layers between. This design is

referred to as a feedforward neural network, or classically, a multilayer perceptron.

The architecture is named feedforward for its unidirectional data flow, as there is no

feedback loop between the outputs and inputs of one part of the model to the next

[8]. A deep neural network comprises multiple hidden layers, which eventually map

the feature space of a problem based on the output of the last, thereby relegating the

task of feature engineering to the model, traditionally undertaken by human domain

experts. These hidden layers can be fully connected (i.e., dense), stacked sequentially,

and comprised of different counts of neurons. Figure 2.1 (b) illustrates this concept of a

neural network comprised of four input features, two hidden layers, and a final output

layer of three output neurons.

Layer ℓ = 0 is considered the input layer, sized of N components and producing ac-

tivations a
(0)
i = xi, i = 1, 2, . . . , N0. N should equal the size of the input vector x.

Similarly, the output layer of M components should match the output vector y, given

by yj = a
(L)
j , j = 1, 2, . . . ,M .
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2.2.2 Measuring Network Loss: Minimising Risk

Training and label vectors x and y are instances of the training set, presented one at a

time to the network. The final output of the network is given as ŷ and used in evaluating

the performance of the model. For example, using time step t of the training process,

input vector x(m),m = 1, 2, . . .M propagates through the network per the previous

equations, eventually outputting ŷ(t).

Following a complete forward propagation through a multilayer perceptron, a loss func-

tion measures the deviation between the model’s prediction and the ground truth, known

as the loss or risk. As with activation functions, several loss functions are available, and

each particular function produces different measures of loss, such as Root Mean Squared

Error (RMSE), given in Equation 2.9. To simplify the explanation, we use the standard

square of error on the target vector y and network output ŷ (i.e., activations of the final

layer a(L)).

MSE(y, ŷ) =
1

n

n∑
i=1

(ŷi − yi)2 (2.7)

CE(y, ŷ) = −
n∑
i=1

yi ∗ log(ŷi) (2.8)

RMSE(y, ŷ) =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (2.9)

where n = the size of the label vector, which should equal the target vector. Selecting a

loss function depends on the nature of the data as well as the form of output from the

model. Commonly used loss functions include mean squared error (MSE) loss, typically

used in regression tasks, binary cross-entropy (CE), used in classification tasks, and

root mean squared error, which features in the models produced as part of this project.

These functions are given respectively in Equations 2.7 through 2.9.

Loss functions offer a quantifiable measure of the model’s performance and its internal
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parameters. Therefore, the smaller the loss, the more accurately the parameters of the

model reflect the natural truth of the data.

2.2.3 Training Through Backpropagation

Regardless of the selected loss function, the objective of the majority of machine learning

models is to minimise its output through learning. Learning is optimised through the

repeated refinement of the model weights and biases through some optimisation process,

such as gradient descent, to define and update the change in ∆W(ℓ) and ∆b(ℓ) on a

per-layer (ℓ) basis during training.

Several more sophisticated variants of optimisation algorithms have recently appeared

which exhibit more efficient convergence toward the global minima of the learning

space—especially in non-convex and complex geometric space—such as the Adam op-

timisation algorithm, which maintains an adaptive learning rate for each parameter of

the network [20].

Backpropagation is one of the most renowned training algorithms used in neural net-

works. Its objective is to minimise the output of a given loss function, quantifying the

difference between actual versus expected output through iterative adjustment of the

network’s weights. Supervised training requires a dataset typically structured as two

vectors: one for the training data itself and another for the corresponding target (i.e.,

label), as classification problems can be multi-label.

w
(ℓ)
ij (q + 1) = w

(ℓ)
ij (q)− η

∂J

∂w
(ℓ)
ij (q)

(2.10)

As training progresses through the dataset, the weights and biases within the network

are updated incrementally based on the provisional output for the sample at position

q of the training set against the ground truth counterpart. Equation 2.10 shows the

change for the weight in the next parameter series deriving from the negative gradient

of the previous weight (i.e., the steepest descent). This gradient is multiplied by η,
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the learning rate for the network: a hyperparameter that governs the stride taken in

converging toward the minimum - local or global. The learning rate must be delicately

balanced, as weights will continually overshoot the minima with too high a learning

rate. Similarly, an unnecessarily low learning rate will take an unreasonable amount

of time to converge to any reasonably reachable global optima and may get trapped

in local optima. It should be noted that bias parameters undergo the same process

described alongside Equation 2.10.

In the context of a single unit, one eventual value will produce the minimum possible

output from the loss function, which is what the backpropagation algorithm seeks to

reach. Backpropagation is an efficient algorithm used to compute this gradient, which

is used in conjunction with an optimiser, such as stochastic gradient descent (SGD), for

parameter adjustment in the network to minimise the network’s overall error [6].

Output from the neural network is then calculated into a sensitivity vector s, which

typically refers to the gradient of the loss function with respect to neuron X
(ℓ)
n and its

responsibility for the overall loss in the forward pass. The sensitivity is particularly

important in the backpropagation algorithm for its ability to express how a particular

output unit (i.e., neuron) changes its output with respect to changes to the input vector

[21], and goes on to assist in identifying and shaping the synapses of the network.

a(ℓ) = f (ℓ)(n(ℓ)) (2.11)

Working backward from layer L, the sensitivity s for the network can be computed

directly for each neuron activation a using the chain rule [10]

s(L)n = 2
(
a(L)n − tn(t)

)
ḟ (L)(n(L)

n ) n = 1, 2, . . . NL (2.12)

where ḟ denotes the derivative of activation function f .
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w
(L)
ij (t+ 1) = w

(L)
ij (t)− α ∂E

∂w
(L)
ij (t)

(2.13)

b
(L)
j (t+ 1) = b

(L)
j (t)− α ∂E

∂b
(L)
j (t)

(2.14)

Based on the steepest descent, the weights and biases are individually updated according

to Equation 2.13-2.14. This gradient is multiplied by a learning rate α for the network:

a hyperparameter that governs the stride taken in converging toward a local minima.

2.2.4 Network Regularisation

Backpropagation in feedforward networks carries the risk of vanishing or exploding

gradients, whereby gradients calculated < 1 shrink exponentially toward zero as training

propagates through the network, delaying the learning process of earlier layers; or where

gradients calculated > 1 explode over the course of training, destabilising the model.

This phenomenon is often observed in neural networks beginning training from randomly

initialised weights and in those opting for the hyperbolic tangent (tanh) as an activation

function.

W ∼ U

[
− 1√

n
,

√
1√
n

]
(2.15)

Several techniques have emerged that help prevent such cases. The most common of

which is to initialise weights within a monitored variance throughout the network in a

strategy developed by [22], given by Equation 2.15, where U is the uniform distribution

and n is the size of layer ℓ− 1.

A model performing well during training but considerably poorer in testing has likely

been designed overly complex and inadvertently learned the training data, thus it can-

not generalise unseen data outside training. This observation is known as overfitting

[23], [24]. Given the enormous number of weights in a deep neural network, which
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can span well into the thousands, deep neural networks require additional precautions

against overfitting [25]. One simple defence mechanism is to reduce the total trainable

parameters of the model. The inverse of this case is known as underfitting; observed

when a model delivers consistently poor results, it may be unable to capture the un-

derlying concept of the training data [24]. In such a case, the model may be too simple

in design, too biased, or the dataset may be unrepresentative of the problem tasked to

the model. Both cases are addressed by seeking to minimise the training error (from

inappropriately preprocessed data) and the gap between the test error [8].

Limiting the error in the generalisation of a model is known as regularisation. Many

techniques designed to achieve this are implemented as configurable hyperparameters

during development stages. One of the most effective techniques developed by [26] is

known as dropout, which randomly severs a defined proportion of neurons within a

network during each training batch. Dropping neurons can help desensitise the model

from the training data, preventing it from forming overly-complex connections. These

neurons are restored after training. Dropout is implemented as a mask and is supplied

with a probability factor of disabling each neuron.

R(x) =


max(0, x), for x < 0 ∧ P (d)

0, otherwise, or for x ≥ 0

(2.16)

For example, when incorporated with the ReLU activation function as previously seen

in Equation 2.4, where P (d) is the probability of dropout of a given rate 0 < d < 1.

Overfitting due to excessive model complexity in a model is typically identified by its

large weights within, as a network with smaller weights tends to generalise better than

a similar network with larger weights [27]. This weight magnitude can be quantified

and regularised through L2 parameter regularisation, also known as weight decay.
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1

n

n∑
i=1

(ŷi − yi)2 +
(

n∑
j=1

∥wj∥2
)

λ

2m
(2.17)

This technique penalises excessive weights and instead encourages lighter values closer

to 0 (but not 0 explicitly) and is implemented alongside the chosen loss function for

the model. Equation 2.17 demonstrates the L2 loss function appended to the MSE loss

function as previously defined in Equation 2.7, where m represents the input count and

wj represents the weight matrix for the layer. An additional hyperparameter λ governs

the strength of the penalty.

Whichever techniques are employed in regularising a model, if any, must be carefully

chosen. Applying these regularisation strategies pre-emptively on a model that does

not yet display a need for them can limit its performance. Likewise, fusing every form

of regularisation can yield a similar result, as investigated by [28], who found pairing L2

regularisation with the Adam optimiser on an otherwise well-performing model often

leads to poorer results than when paired alone with some optimisation strategy (e.g.,

gradient descent).

2.3 Recurrent Neural Networks

Despite the power of traditional feedforward neural networks, they are bound by fixed-

size input for training and evaluation and struggle to consider past input of potentially

varying length, temporally-dependent data (i.e., time series), such as natural language

or time series. As with most classical machine learning models, these networks as-

sume input samples are independent of one another and are not built to capture any

underlying temporal relationships. The simple approach: to architect and feed the en-

tire dataset to the input of a network, is unfeasible when capturing long-range data

dependencies.

In classical machine learning, the Hidden Markov Model (HMM), a doubly stochastic

model, can model well discrete auto-correlated processes [29] so long as the condi-
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tional probability of the following state is dependent on the present state [30]. This

hard dependency can severely inhibit the model from learning long-term dependen-

cies. The recurrent neural network is one solution toward considering the potential

nuances found in sequential data over long ranges, operating in distinct timesteps

X = (t0, ti, . . . , tn), ti ∈ R > 0 as input.

In this architecture, neurons now retain a memory and can then consider past observa-

tions when computing for the current timestep. Therefore, recurrent neural networks

do not make assumptions of independence over time. This feedback loop distinguishes

a recurrent neural network from a traditional feedforward neural network. As a result,

with its ability to decisively retain and discard past observations, this architecture is

particularly suited to classifying and predicting from temporal/sequential data.

The training of recurrent neural networks is similarly undertaken through backpropa-

gation to feedforward neural networks, known as backpropagation through time. Re-

current neural networks are first unfolded through time to resemble a traditional, ex-

tremely deep feedforward neural network to apply the conventional backpropagation

process through the network on both the input and output layers at each timestep [12].

However, recurrent neural networks are still susceptible to vanishing gradients. Simi-

larly to feedforward neural networks, learning primarily occurs in later layers (i.e., later

timesteps), with the weights decaying and vanishing entirely around earlier timesteps

[31].

2.3.1 Long Short-Term Memory Units

Whilst recurrent neural networks hold the unique capability to interpret sequential

data, vanilla recurrent neural networks struggle to connect long-term dependencies,

given their low short-term memory capacity and propensity for gradients to vanish

or explode during training, as with vanilla neural networks. An alternative model

developed by [31] aims to address these issues by swapping a traditional neuron with

a long short-term memory (LSTM) cell, which extends the cell of a recurrent neural
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Figure 2.4: A long short-term memory cell. Symbols ⊗ and ⊕ denote pointwise multi-

plicative and additive operations between gates respectively.

network. LSTM cells protect the error flow fading from backpropagation during training

through multiplicative input and output gates, which learn to regulate internal access

and update only to relevant inputs [31] based on its own set of learned weights.

Forget Gate: It determines the amount of information to discard from the cell state.

This is crucial for the LSTM’s ability to ”forget” irrelevant or outdated information

from the past, making room for more relevant, new information.

In an LSTM (Long Short-Term Memory) cell, each of the three gates—input, forget,

and output—has a specific function:

LSTM cells each maintain a mutable cell state ct. Each of the four activations (σ

and tanh) are, in essence, their learned network layers acting as gates, denoted as Γ,

regulating the flow of information into, across, and out of the cell. Figure 2.4 illustrates

the layout of an LSTM cell. On input, the cell first discerns at the t-th timestep of the

input x, what segments of information to discard from the cell state by passing through

the forget gate. Cells follow a similar forward propagation to vanilla neural networks
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through a trainable parameter set of weights W and ancillary bias b.

Γtf = σ(Wf [a
(t−1), X t] + bf ) (2.18)

which modulates the cell’s existing memory, where a(t−1) carries the activation at the

previous timestep, and by considering the hidden state—or activation a—at the previous

timestep a(t−1) along with the cell input (i.e., recurrent connections) X t.

Γti = σ(Wi[a
(t−1), X t] + bi) (2.19)

The input gate (Γi) evaluates which values to update into a candidate cell state c̃t. The

existing state c(t−1) is then mutated to integrate the new values. It decides how much of

the new information to add to the cell state. This gate filters the incoming information

from the current input and the previous hidden state, allowing the LSTM to update its

cell state with relevant new information.

c̃t = tanh(Wc[a
(t−1), X t] + bc) (2.20)

ct = Γtfc
(t−1) + Γtic̃

t (2.21)

Finally, the output gate determines whether the cell should emit the activation or not

ot = σ(Wo[a
(t−1), X t] + bo) (2.22)

where W, b are specific to each gate, before passing the cell state for activation. This

gate controls the extent to which the value in the cell state is used to compute the

output activation of the LSTM unit. The output gate filters the cell state based on the

current input and the previous hidden state, producing the final output of the LSTM
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Figure 2.5: Example of an autoencoder neural network, illustrating the gradual com-

pression from the encoder ϕ, to latent space h, to the decoder ψ.

cell, which can be final or piped as input to another cell.

ht = ottanh(ct) (2.23)

Another variant of the recurrent neural network cell, the gated recurrent unit (GRU),

was developed as an alternative to the LSTM. This cell functions similarly to that of

the LSTM cell but instead combines gates Γf and Γi, merges the cell and hidden states

(c, h), then exposes this combined state as the output gate to the next section of the

network [32]. The result is a more computationally efficient cell but at a lesser learning

capacity, for which we favour the LSTM. Eliminating expert human knowledge is one of

the key appeals of deep learning, and research into combining deep learning techniques

with classical point process modelling is relatively new in and of itself.

2.4 Autoencoder Neural Networks

As with other machine learning models, autoencoders are a form of neural network

which strive to minimise the discrepancy between input and expected output. Their

defining characteristic is that their output value is trained to approximate their input

value identically. This mirroring-like behaviour is achieved by encoding the input across
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narrowing layers down to a latent space lower in dimension than the original input, then

decoding from this latent space the original input at the output layers. Their architec-

ture can be considered as two back-to-back neural networks, where the objective of the

first is to compress the input as representatively as possible, which is received by the

second network and tries to reconstruct it back to the original input. Figure 2.5 illus-

trates this architecture and concept, showing independent neural networks conjoined

by the latent space.

When training an autoencoder, the entire architecture is considered as a single network,

forcing this design of neural network to derive a compressed underlying identity function

from the latent space, making this an unsupervised model as the data are unlabelled.

The size of the latent space, i.e., by how much compression the input can withstand

without losing its representative meaning, is configurable, and we express it in a range

of 0–100% of the original input. Optionally, the latent space can be decoupled from

the network once trained before continuing to the decoding stage, where the input is

reconstructed, making it ideal for discriminative tasks such as anomaly detection.

This architecture comprises two trainable functions accompanied with individual train-

ing parameters (encapsulated as θ): the encoder ϕθ : x → h, and the decoder ψθ′ :

h→ x. Note that the encoder stage has separate training parameters from the decoder

(for clarity, differentiated as θ′). Latent space h is the compressed representation of

the input, from which the decoder will try to approximate. The encoder and decoder

operate as parallel neural networks, the inputs for which undergo the same standard

forward propagation found in the deep neural networks that were previously detailed.

The decoding stage accepts as input the latent space, which then undergoes a similar

feedforward propagation with its own separately trainable set of weights and biases.

ϕθ∗, ψθ′∗ = arg min
ϕθ,ψθ′

√√√√ 1

n

n∑
i=1

(xi − ϕθ ◦ ψθ′(xi))2 (2.24)

Outputs are then subjected to one of the same series of activation functions previously
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described in Section 2.2 in training respective parameters θ and θ′ in both components of

the network through the shared optimisation problem (2.24). Here, ◦ denotes the result

of the encoder stage piping the entirety of h directly as an argument to the decoder

stage.

Autoencoders are popularly incorporated as part of a machine learning system, com-

monly as a dimensionality-reduction technique when working with a complex dataset,

or in a generative application to enrich small or sparse datasets (achieved with another

variant of autoencoder, known as a variational autoencoder) based on an underlying

trend. We favour the autoencoder architecture for its reconstruction characteristic. It

has been shown that autoencoders that generalise well on normal, non-anomalous data

will struggle to reproduce data unseen during training [33]. Carrying the reconstruc-

tion error forward, we can analyse and determine if, where, and by what margin the

autoencoder struggled to identify anomalies.

2.5 Measuring Model Performance

The performance metrics classifier machine learning models are derived from the con-

fusion matrix: a 2-dimensional (actual outputs and predicted) form of a contingency

table, where both dimensions comprise sets of classes relative to the problem. For exam-

ple, a classification task with N = 5 potential classes is measured in an N ·N confusion

matrix, where correct classes of cell i are added to position (i, i) of the matrix and

incorrect classifications (predicting j-th class instead of i) are added to cell (i, j). From

this confusion matrix, we derive metrics more informative of the model’s performance,

including accuracy, precision, recall, sensitivity, specificity, and F1-score. For one case,

these rates require, at a minimum, the counts of true positives TP, true negatives TN,

false positives FP (i.e., type I error), and false negatives FN (i.e., type II error).

Accuracy, the most initially intuitive metric, is an absolute performance measure given

as the proportion of results correctly classified as their known, labelled class amongst

the entire training set. It is given by
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ACC =
TP + TN

P + N
(2.25)

=
TP + TN

TP + TN+ FP + FN
(2.26)

where P = count of positive predictions made and mathrmN = the total count of

positive cases in the dataset, and N = the total count of negative cases in the dataset.

In multi-classification evaluations, both of these are relative to the particular class using

ACC =

∑K
i=1Ci,i∑K

i=1

∑K
j=1Ci,j

. (2.27)

However, accuracy alone can be misleading in the common situation where datasets

are not symmetric. For example, in a situation where false negatives are simply un-

acceptable, an imbalanced dataset may have a low P and still return a high accuracy.

Therefore, we look to relative performance measures.

Precision (positive predictive value, PPV) is given as the proportion of results classified

as their labelled class. It can be calculated from the discovery or false discovery rate

(FDR), the proportion of results incorrectly classified as their expected class. These are

given respectively as

FDR =
FP

FP + TP
(2.28)

PPV =
TP

TP + FP
= 1− FDR. (2.29)

Recall (true positive rate, TPR) is given as the proportion of results correctly classified

as their labelled class, given by
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TPR =
TP

P
=

TP

TP + FN
= 1− FNR. (2.30)

Specificity (true negative rate, TNR) is given as the proportion of results correctly

designated as not belonging to the labelled class and is given by

TNR =
TN

N
=

TN

TN+ FP
= 1− FPR. (2.31)

Sensitivity (false negative rate, FNR) is given as the proportion of results incorrectly

designated as belonging to the labelled class, given by

FNR =
FN

P
=

FN

FN + TP
= 1− TPR. (2.32)

The last metric part of the evaluation of our models is the F1-score: a harmonic mean

(i.e., weighted average) of the precision and recall, both of equal contribution to the

score. It is given as

F1 = 2 · PPV · TPR
PPV + TPR

=
2TP

2TP + FP + FN
. (2.33)

We favour this metric as our primary learning target as precision/recall alone can each

improve at the expense of the other. When computing in multi-class applications, the

F1-score is the average of each class of some weighting strategy, e.g., the unweighted

mean for each label.

2.6 Challenges in Deep Learning

It is often difficult to interpret and debug machine learning models. In deep learn-

ing especially, where the training process is highly abstracted from the engineer to the

equivalent of a black box, it can be difficult to deconstruct and surmise the rationale
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behind a model’s evaluation [34]. Various tools can aid the development, training, and

interpretation of deep neural networks. The work of [35] develops such a tool to intro-

duce a novel visualisation technique for use in the diagnostics of CNNs, another variant

of neural network best cased for image data. This technique allows engineers to visu-

alise and inspect the contribution and performance of intermediate feature layers and

the operation of the classifier in the network. The developer may revise the architecture

of a network using the insights gained.

Many implementations of machine learning technologies strive to benefit human life,

whether in health, lifestyle, or out of convenience. Each of these endeavours requires

vast, thorough training data, which can often contain sensitive information revolving

around the habits or profile of a person. This personal identifiable information (PII)

can be recoverable from a compiled trained model, as demonstrated by [36], who were

able to recover images of human faces used in training within the network from a facial

recognition system. However, sanitising such datasets from personal or identifiable

information can considerably diminish the performance of the model, which leads to

an important balancing act. Several techniques have emerged aiming to address this,

such as differential privacy, which introduces in the data calculated statistical noise

and constraints to limit a model’s reliance on sensitive and personal information. Such

techniques have been successfully employed by large technology companies, such as

Apple, who incorporate differential privacy at a local device level in features across

their operating systems [37], such as predictive text.

Arguably the most substantial challenge in most areas of machine learning is procuring

sufficient data for training—in both quality and quantity. Deep neural networks, in

particular, require vast amounts of data to generalise well [38]. Likewise, a dataset that

does not provide sufficient data variety will impact the model’s ability to generalise

for different scenarios. Here, we enter the challenge of imbalanced data: the problem

faced by even modern machine learning approaches whereby the response to inputs is

heavily weighted toward particular classes by uneven distribution in the training data.
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Such a state is easily identified in the data treatment stages. An imbalanced model

will demonstrate a higher competence in the majority class and little to none in the

minority class(es).

Oversampling and undersampling are well-researched strategies to compensate for an

imbalanced dataset. Both sampling methods modify the distribution of a dataset to

redress the balance between minority and majority classes. Oversampling artificially

synthesises instances of the minority class, the simplest technique of which is random.

Using repeated data points will restore the balance at a higher propensity to overfit. One

of the most popular approaches is using the Synthetic Minority Oversampling Technique

(SMOTE): a process that selectively generates and inserts instances of the minority class

at a distance between its nearest neighbour [39]. Undersampling, the converse, deletes

instances of the majority class. Unless the dataset is sufficiently abundant in its majority

class, this approach can have a major impact on model performance. Most often, we

see both techniques applied in tandem. For example, SMOTE is combined with the

Edited Nearest Neighbour (ENN) [40] undersampling technique, which oversamples the

minority class before pruning excessively represented instances of the dataset.

One of the largest challenges to date in the deep learning space is optimising its in-

tense computational complexity requirements. Within this problem lies the secondary

challenge of porting the output of such a training regime into an efficient model, com-

putable on lower-grade hardware. The calculations performed with each training run,

which can run into the billions, have recently become achievable with modern compute

power and have inspired purpose-built hardware, e.g., tensor processing units. At the

microcontroller level, such as the ESP32 we are targeting, quantisation is one technique

available to reduce model size. The high-precision floating point representations within

the weights and bias of a trained model can be reduced to lower precision, potentially

unsigned types at a substantial performance benefit. This technique is not without cost,

as lowering the precision will likely impact model performance. It is for the architect to

decide whether the loss is acceptable. This technique was explored in [41], selectively
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quantising a deep neural network to 8-bit precision at a performance drop of only 0.7%.

An important challenge in deploying machine learning models lies in the implications of

their failure and the effects on their trust. The widespread adoption of machine learning

presents a new attack surface and increased security risk across a broad range of appli-

cations. It is therefore imperative that training and testing be as accurate as possible.

A model could have been the victim of adversarial attack: a set of deliberate methods to

poison a model with adversarial examples [42]. For example, in an autonomous vehicle

domain, failure to correctly recognise a stop sign could lead to road traffic collisions.

Whilst some can only be exercised with knowledge of the model weights, others can

interface directly with the model itself. The work in [43, 44] demonstrates through

calculated noise and pixel swapping, the performance of classifiers can be decimated.

2.7 Non-Intrusive Load Monitoring

Recent advances in society, energy, and climate have led to increasing concerns on

the demand for energy and efficiency. Supporting efforts on energy consumption at the

consumer level has led to the systematic deployment of the smart grid: an electrical grid

enhanced by advanced technologies to monitor and manage the transport of electricity

from origin to end user [45]. The result is a more economical, available, and efficient

electrical grid. To enable this from the end user side requires some integral infrastructure

to assess and monitor energy demands, which gave rise to the smart meter ubiquitous

in households today.

Load monitoring defines the task of measuring energy consumption at the appliance

level, i.e., usage tracking. Given a device or appliance equipped with the appropriate

sensor, its energy consumption can be probed and transmitted across networks as a

feedback system; this is the intrusive approach, where the primary drawbacks include

setup and maintenance costs, whether retrofitted or integrated, as well as the privacy

concerns surrounding personal usage being used to construct profiles and learn habits

of end users. This strategy has proven effective in harvesting organic datasets for load
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monitoring, such as UK-DALE [46] and Blued [47], which have been used to drive NILM

solutions. Cost-effectiveness and low customer acceptance have led to the need for a

less invasive solution [48].

NILM is a low-cost alternative aiming to address both challenges without the need for

distributed direct sensing that is difficult to install in ordinary households, lessening the

invasiveness of the original solution. Easily installed and removed, NILM approaches

are most often based on a single channel source, such as the total power consumption

of an entire property. By using various statistical techniques, providers can disaggre-

gate the power signatures of different appliances from a single source when measuring

power consumption. Electrical appliances display unique signatures during their normal

working cycles, which may contain information on steady or transient states [48].

Employing supervised machine learning-based models for privacy-preserving NILM so-

lutions is a thoroughly researched field. From classical models such as SVM or K-means

clustering [49], this technology can interpret well the dynamics of load monitoring data.

Unsupervised or semi-supervised strategies that do not require labels in training are

preferable in a real-time NILM context but generally will underperform compared to

pretrained, supervised equivalents. For example, [50] proposes a temporal convolu-

tional network to segment and generate pseudo-labels of a load monitoring dataset in

a semi-supervised solution. In an unsupervised approach, [51] employ clustering and

classification using clustering and a variation of the on-off appliance model to detect

events without pretraining.

Our objectives draw several consistencies with the ambitions of and approaches toward

NILM. However, NILM solutions do not typically account for or support the particular

devices we are interested in: those with a finite count of transient states [52], [53]. As

with NILM, we rely solely on the aggregate energy consumption of an entity (in its case,

a household) to isolate different behaviours, before undertaking fault detection. There

are no sensors, probes, or user input to supplement learning, and we must disaggregate

the unknown count of states of a machine of a finite number of states, which does not
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feature in the problem space of NILM [54].

Challenges Outstanding

• Existing classification approaches do not account for multistate devices (e.g.,

laundry machines);

• Measuring the energy consumption of a classified state of a device is not

supported in conventional NILM approaches.

2.8 Anomaly Detection

Anomaly detection, sometimes known as outlier detection, refers to the analysis and

identification of unexpected occurrences in items, events, or observations [55] in oth-

erwise normal data. Regular use cases of anomaly detection include fraud detection

in financial contexts, network intrusion, and medical diagnosis. Data used in this ac-

tively researched field predominantly feature more positive examples than anomalous

ones, complicating the challenge of classifying such anomalies. The general strategy,

therefore, is to define some boundary for positive examples in the dataset, using what

negative examples are available within the dataset to validate.

Selecting an anomaly detection approach requires multiple considerations. Figure 2.6,

elaborated further in [56], illustrates this decision process, where the architect must be

conscious of the form of the data available and the definition of an anomaly in this

particular application. These factors dictate the technologies and mechanisms available

for their use case. Our application will receive multivariate power consumption data,

allowing more complex learning models with more powerful generalisation abilities.

Between the outlier types to be identified by the system, point and sequential, heavily

influence the design of the system. Point-based anomalies are the simplest: searching

for a point in the data sufficiently different from the rest. Sequential (sometimes referred

to as contextual) terms a point of data anomalous in a specific context, but considered
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Figure 2.6: Tree of considerations when working in anomaly detection, including the

available data and nature of anomalies to be detected. These are still decisions driven

by domain expertise.

otherwise normal in a different context. For example, in the context of a financial

system, a gift card purchase may be considered normal during a holiday season than

in year-round buying patterns. A third term, a collective anomaly, is a series of points

that, when grouped, are considered an anomaly.

Conventional statistical approaches, such as ARIMA or exponential smoothing, rely

on the assumption that there is some underlying origin function to the data generated

and will aim to discover the parameters used to define it [57]. Alternatively, machine

learning-based methods for anomaly detection make far less explicit assumptions about

the underlying origin of the data and attempt to optimise a series of complex functions

mapping input data to the desired output.

As outlined by [58], there are several approaches toward anomaly detection, and the

correct one is highly dependent on domain and data. Figure 2.7, adapted from [59],

visualises this set of approaches into a decision tree of suitable approaches depending

on the data available for the task.

The first is probabilistic detection, based on estimating some probability density func-

tion to define an underlying distribution in the data. This statistical approach assumes

the data is generated using some origin function, which this approach attempts to ap-
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Figure 2.7: Decision tree of machine learning approaches available to an architect de-

pending on the nature of the data. Those highlighted in green are options selected for

the work described in this thesis.

proximate. An example of this work today is by [60], who construct a density function

based on Kullback–Leibler (KL) divergence and on minimal assumptions of the data in

a similar approach to domain-based detection.

Another approach to anomaly detection is distance-based detection, using clustering

and nearest-neighbour techniques to form implicit boundaries within datasets, using

distance or density to measure an anomaly. Positive data points are assumed to lie in

close proximity to neighbours, and the task of distance-based algorithms is to provide

a subset of data points inconsistent with this defined positive boundary. The work of

[61] explores a distance-based algorithm measuring a point’s outlier factor, designating

the furthest as anomalies, and testing on a shuttle dataset whether to prefer auto or

manual pilot of a spacecraft landing.

Information-theoretic approaches, based on the principles of information theory, com-

pute the information content of a dataset using measures such as (relative) entropy

under the assumption that the characteristics of a positive dataset are significantly dis-

turbed by introducing an anomalous data point. This assumption is evaluated in the

work of [62], who employ an entropy-based information-theoretic anomaly detection al-

gorithm to identify forged traffic inside in-vehicle controlled area networks. It is found

that a blanket coverage identifies well in high volumes of anomalies, and single-class

targeted algorithms are better suited to fewer anomalies.
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Reconstruction-based approaches are commonly used in safety-critical applications [58]

and introduce us to the deep learning strategies of anomaly detection, where autoen-

coders are the most common choice. Many recent techniques employ some form of

neural network, which, in essence, is trained to approximate the input data as closely

as possible in their output. The ruling theory is that positive examples will reconstruct

with relatively low error; however, the network will struggle with anomalous data not

experienced during training. Learning occurrs inside a latent space, forcing the network

to learn a compressed interpretation of the data in the hope it recognises its core char-

acteristics. The degree of deviation from the original reconstruction can then be used

in a number of techniques to decide whether to designate the point as anomalous. We

favour this approach as, from the beginning, it allows us to refrain from any presump-

tions regarding the data. One deep learning-enabled example of this is the work found

in [63], proposing a recurrent neural network architecture to detect and classify types

of anomalies in spacecraft sensor data, coupled with a higher level framework which

thresholds identified anomalies and, in some cases, mitigates false positives.

2.8.1 Related Work

Consumer-oriented fault detection in the domestic space is largely unexplored, partic-

ularly in the context of a monitoring device fitted retrospectively. At a higher level

of time-series clustering and forecasting, anomaly detection within highly constrained

environments offers a greater wealth of research in each field.

Forecasting is a powerful application of neural networks which can model sequential

data; a network’s ability to generalise even the most complex relationships and pat-

terns in data makes it an attractive alternative to traditional, statistical univariate

approaches (e.g., ARMIA and its variants). However, vanilla neural networks often

struggle beyond single-step forecasting, as investigated by [64], who found the architec-

ture of the network, data preprocessing stages, and abundance of samples required for

training all to be considerable barriers to model performance. Some work attempts to
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increase model performance through intelligent feature engineering, such as [65], which

leverages sparse filtering to learn features from bearing data in identifying faults, though

our dataset does not comprise mechanical features.

The work of [66] adopts a similar approach to this stage of the project, using the min-

imum message length clustering algorithm by [67] to first cluster a time-series dataset

before training each cluster on a counterpart LSTM network. Although the results of

this system were competent, forecasting can only be performed when the entire dataset

is well-clustered. LSTMs have proven immensely successful in time-series forecasting,

given their ability to factor in past readings and experience when making future predic-

tions. An example is the fully connected, convolutional LSTM by [68], which extends the

traditional operations inside the LSTM cell into the convolutional processes. Ensemble

architectures for time-series forecasting are another choice of model design, acting on

the combined results of several forecasting models. In [69], they implement this concept

between multiple LSTM networks, using a weighted system at the output.

One of the most relevant recent works in the context of NILM by [51], who model

event detection using an approach combining heuristics and clustering of household

power data—much like our own—to detect the toggling of specific appliances within

the property in a non-intrusive manner. The system processes the data into estimated

and delta power readings, along with maximum duration, and performs well in clustering

activations. [70] continue research in this field of energy disaggregation by combining

autoencoder reconstruction-based predictions trained on features provided by a form

of popular adversarial networks. In our context of anomaly detection, we see similar

approaches in NILM solutions, including the work in [71] which trains a series of classic

statistical and deep learning models on smart meter household energy data to detect

deviations in user behaviour.

Complex networks require vast amounts of data in specific formats and are significantly

more expensive to (re)train computationally, which requires unrolling the entire LSTM

network. This unrolling is not an ideal process given that we see and train inputs
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incrementally. Autoencoders are a frequent choice in anomaly detection, trained to

capture normal structural patterns. The premise of reconstructing an anomalous input

should result in a much higher error against a normal input has proven effective in

unsupervised anomaly detection. [72] also follows this approach in a network intrusion

detection system, this time powered by an ensemble of autoencoders—a mature theory

in anomaly detection. Unlike others, this particular system is designed to work online

under similar hardware constraints but requires additional training to derive a feature

mapping from one continuous data stream. Further, the autoencoders do not retrain

once executed, which, despite the model training online, still leaves them susceptible

to model decay, though there are mechanisms explored to combat this. Similarly, [73]

develop an autoencoder for anomaly detection, with a transformer network sitting in

the latent space, which performed well in benchmarking.

Challenges Outstanding

• Datasets driving these existing works are single-instance with no requirement

to account for unknown environments;

• Deep neural networks themselves often act as ’black boxes’, making it difficult

to understand and explain the rationale behind certain predictions of a model;

• Deep learning models are computationally expensive to train and interrogate,

requiring far more training data than what we have available.

2.9 Temporal Point Processes for Interval Predic-

tion

To train a model, particularly an LSTM, capable of producing actionable results from

continuous raw timestamps alone is not feasible, as we cannot rely on neural networks in

their current state to consider the nature of this challenge. Temporal point processes are
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probabilistic, statistical models suited for discrete event data, particularly applicable

in scenarios where events occur at unpredictable times. The goal of these models is to

accurately describe the likelihood of these events occurrence in the future. These models

are conditioned on discrete event sequences, with the task of predicting the occurrence

(or likelihood) of the next event. This output comes strictly from event history, with

no learned behaviour in its model.

Temporal point process model a discrete event sequence, where t denotes an interval in

localised time 0 < ti < ti+1, from some intensity function λ(t) describing the probability

of a new arrival, written to capture the underlying distribution of event sequence, i.e.

λ(t) =
∏
n

λ(tn| . . . , t(n−2), t(n−1)) (2.34)

A higher intensity expects a higher probability of arrival. Classical intensity functions,

such as Hawkes or Poisson processes.

λ(t) =

∫ t

0

ϕ(t− ti)dN(u) = µ+
∑
ti<t

ϕ(t− ti) (2.35)

Hawkes processes are a form of self-exciting processes, such that new arrivals to the

process excite the intensity function, decaying toward 0 as time elapses until the next

arrival, given by Equation 2.35, where dN denotes differential of the counting process

for events occurring at times t ∈ A, and µ > 0 is the background rate of the process to

date, sometimes referred to as the response or excitation function.

The decay rate is calculated by ϕ: a kernel function modulating the interval between the

current and past arrivals (e.g., ϕ(t) = exp(−αt), where α ≥ 0 regulates the decay term).

The form of ϕ(·) chosen, although it has no asymptotic upper bound, typically decreases

such that more recent events pose a stronger influence on the intensity than those

more distant. For example, in seismology, aftershocks are far more likely immediately

following the primary quake. Event ti contributes to the intensity at a rate of α.
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In cases where future point processes are inhibited immediately following a new occur-

rence, known as a self-correcting process [74], the intensity function can be modelled

as

λ∗(t) = exp

(
µt−

∑
ti<t

α

)
(2.36)

where µ > 0 is another hyperparameter, and new points are multiplied by a constant

e−α to decrease the likelihood of a future point. Identifying pattern behaviours with the

potential to evolve between behaviours modellable by point processes such as these—or

none at all—is one of our core motivations.

Sampling point process models depend on the historical records and the conditional

intensity function. One of the more known techniques is Ogata’s modified thinning

algorithm [75], which simulates Poisson processes with excessively high intensity before

thinning those designated as such by the defined conditional intensity function.

Arrival patterns that do not conform to this behaviour are better modelled on a con-

ditional intensity function λ∗(t|Ht), which uses the leading history Ht = {t0, · · · , ti} to

the event in calculating a rate of events per time unit. λ∗(t) = µ ≥ 0 where µ is a

constant parameter, are constant or deterministic, assuming events are independent of

their leading history Ht.

Unknown real-world arrival patterns are not guaranteed to fall under assumptions made

by traditional models, or indeed those of any point process model. Applying classical

temporal point process techniques requires extensive domain knowledge for tuning and is

therefore at risk of model misspecification: where the model does not account for some

significant nonlinearities. Leveraging deep learning techniques is a recent approach

toward more flexible implementations of point processes modelling, and has taken re-

search into this has branched into various approaches. Given their demonstrated power

in long-term sequence modelling, recurrent neural networks are particularly suited to

this task.
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Some point process theories translate well into select real-world scenarios, such as re-

taliatory or aftershock events in self-exciting models, and can be extremely useful in

scenarios where events occur at discrete times. These parametric options require do-

main expertise before modelling. Eliminating expert human knowledge is one of the key

attractions of deep learning, and research into combining deep learning techniques with

temporal point processes, however, is relatively new in and of itself. Further, employing

point processes, in general, is largely unexplored in the application of IoT-specification

hardware, energy data, and online learning.

2.9.1 Related Work

The work in [76] was one of the earliest attempts, proposing a Recurrent Marked Tem-

poral Point Process method to model the type and timings between discrete events

by encoding event history through a recurrent neural network, creating a more flexible

model toward data that does not follow parametric assumptions. This modelling con-

siders the intensity function of point process-based models as a nonlinear function—the

essence of deep learning—of the event history, which has proven effective on real-world

datasets. Their model produces a tuple prediction of an event classification and like-

lihood of occurrence given a sequence of events analogous to simulating from classical

point process models.

In the context of commerce, the work of [77] explores a recurrent spatiotemporal network

in estimating a person’s check-in time to a particular region or location given their

previous visit history—regardless of whether or not the person has previously visited the

target location. By converging the historical check-in data (if available) with location

history, a modified LSTM reached considerable performance in this objective. Whilst

this work demonstrates the combination of recurrent neural networks and temporal

point process modelling, neither the features nor nature of the dataset discussed is

transferable to our problem statement, which leaves us unable to base our work on this

architecture.
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More recently, [78] takes the event history from a recurrent neural network and combines

it with another neural network to model the cumulative intensity function, constrained

to non-negative weights. The output of their model is a log-likelihood of a proposed

interval, which requires submitting several samples and deriving the next interval from

the predictive distribution. The work in [79] builds on this by proposing models which

alternatively learn some conditional distribution factor historical events H, as opposed

to the more researched conditional intensity function λ∗(t|Ht).

Challenges Outstanding

• Capturing long-range dependencies and intricate temporal patterns is espe-

cially challenging when sequences are sparse, long and irregular;

• Majority of models are architected as dual-output, with an event classification

alongside an interval prediction;

• Output is not easily interpretable, offering a likelihood score against a pro-

posed interval;

• In high-dimensional feature spaces, it becomes challenging for neural point

processes to process and learn from such data without overfitting;

• The potentially high volume and velocity of event data makes it difficult to

scale neural point processes effectively.

2.10 Gradient Boosting in Fault Detection

Traditional maintenance strategies are far from optimal; the most common is preventa-

tive maintenance: an approach whereby maintenance is undertaken at predetermined

intervals, such as a component’s average lifespan or mean time-to-failure. This interval

may be decided from manufacturer recommendation or statistical inference. The most

prominent drawbacks to this strategy are:
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• Offering little to no assurance in the event of catastrophic failure.

• Under-utilisation of components, which may have otherwise had considerable re-

maining useful life (RUL) and risk premature replacement at an unnecessary cost

to the owner.

The alternative, reactive maintenance, is a more straightforward approach where main-

tenance is performed only after a confirmed failure, fully expending the component(s)

lifespan, but requires rapid diagnostic and repair as failure may occur at any time,

potentially during operations, and incur heavier repair and downtime costs.

Between both approaches lies predictive maintenance: a condition-driven preventative

maintenance strategy [80] relying on factual data over the machine’s condition and

health of its components within, typically in a non-invasive fashion through sensor data.

A comprehensive predictive maintenance program provides reliable insight on which

managers (human or otherwise) can base and schedule necessary maintenance, allowing

early identification of potentially serious problems, easier and cheaper remedied when

repaired early [81]. The vast majority of predictive maintenance research is focussed

on industrial applications, e.g., factory machinery [82] or aviation [83]. Such work is

largely unexplored in the context of domestic applications.

Gradient boosting is a technique part of ensemble learning, a machine learning strategy

that arrives at decisions from the collective outputs of multiple learning algorithms

working in tandem. Boosting refers to a learning strategy combining multiple simpler

models, often referred to as base models, trained using a base learner or weak learner. A

base model alone would be relatively weaker in performance, whereas forming multiple

models using boosting in an ensemble can produce a single, composite model with often

far stronger performance. Two of the most common strategies used in ensemble learning

are each known as boosting and bootstrap aggregation (known as bagging).

• The former trains multiple models in series in a form of evolution, where the errors

and learnings from one training run are given as the base of the next model, used
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to improve prediction scores of the overall model in producing a stronger result.

• The latter, bagging, instead trains multiple independent models, combining their

capabilities (i.e., learned features) and outputs into an aggregate, such as averag-

ing or voting, which serves the final output.

Extreme gradient boosting (XGBoost) [84] is a highly scalable, efficient, portable, and

parallelisable technique of gradient tree boosting—ideal for our intended host platform

where runtime and output performance are critical. It has demonstrated state-of-the-art

results in many real-world challenges and environments. It accomplishes this with pow-

erful optimisation and regularisation routines, in an extremely efficient implementation

largely abstracted from the user.

Given N training vectors {(xi, yi) : i = 1 . . . n,xi ∈ IRm}, each with M examples + 1

target ŷi, given by basic model

ŷi =
K∑
k=1

fk(xi) (2.37)

using scores fk(xi) of K independent regression trees, its overall objective function

becomes

L =
N∑
i=1

l(ŷi, y) +
K∑
k=1

γT +
1

2
Λ∥w∥2 (2.38)

where l herein is some configurable loss function, e.g., mean square error (ŷi − yi)
2,

T is the number of leaves and w their corresponding weight. The second term, given

onward as Ω(ft) where t is the current training iteration, is a form of regularisation

against model complexity as a preventative measure of overfitting, where γ,Λ are two

hyperparameters governing regularisation strength. Training additively, as the function

out of Euclidean space and allowing traditional optimisation techniques [84] L now

becomes
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L(t) =
N∑
i=1

[
ιift(xi) +

1

2
υift(xi)

2

]
+ Ω(ft) (2.39)

and with second-order Taylor expansion, it becomes possible to solve other objective

functions using

L(t) =
M∑
i=1

l

[
yi, ŷ

(t−1)
i + ιift(xi) +

1

2
υif

2
t (vi)

]
+ Ω(ft) (2.40)

ιi = ∂ŷ(t−1)l(yi, ŷ
(t−1)
i ) (2.41)

υi = ∂2ŷ(t−1)l(yi, ŷ
(t−1)
i ) (2.42)

where ιi, υi represents the first and second-order gradient on loss function l. The overall

function is then rewritten, expanding Ω as

L(t) =
N∑
i=1

[
ιift(xi) +

1

2
υift(xi)

2

]
+ Ω(ft) (2.43)

=
T∑
i=1

[
(
∑

i ∈ Ijιi)wj +
1

2
(
∑

i ∈ Ijυi + Λ)w2
j

]
+ γT (2.44)

where Ij = {i|q(xi = j)} is defined as the j-th leaf point of the given structure q. Its

optimal weight w∗
j is computed by

w∗
j = −

∑
i∈Ij ιi∑

i∈Ij υi + γ
(2.45)

taking an overall gain into the objective function for tree q:
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L′(q) = −1

2

T∑
j=1

(∑
i∈Ij ιi

)2∑
i∈Ij υj + Λ

+ γT (2.46)

Whether or not a particular tree structure improves the overall model (i.e., the gain) is

given by

G =
1

2


(∑
i∈IL

ιi

)2

∑
i∈IL

υi + Λ
+

(∑
i∈IR

ιi

)2

∑
i∈IR

υi + Λ
+

(∑
i∈I
ιi

)2

∑
i∈I
υi + Λ

− Λ (2.47)

on the basis that q is optimised whereby G > γ > 0. The algorithm begins from a

single leaf for each structure and continues to add new branches, so long as the gain is

positive. In a full implementation, a model (those built using XGBoost in particular) is

comprised of an ensemble of these, each acting as a base learner. Independently, they

can be weak performers; ensemble learning combines the outputs of all base learners to

generate one overall result [85]. This arrangement allows for more complex relationships

between input features and output targets.

2.10.1 Related Work

The vast majority of predictive maintenance research is focused on industrial applica-

tions, e.g., factory machinery, aircraft components, and jet engines. Such work is largely

unexplored in the context of domestic applications. In fault detection using machine

learning, gradient boosting has proven a popular and highly effective technique.

Ensemble learning is a well-researched approach in problems where the results of a single

machine learning model may not be sufficient, systematically combining the predictive

power of multiple learners working to produce a single output. XGBoost, in particular,

has demonstrated success in many fields. The authors in [86] apply the same gradient
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boosting framework in the cyber security domain in detecting falsified data in network

traffic (a common threat in grid/IoT networks). The authors in [87] propose a similar

model used to detect degradation in piston pumps, outperforming complex support

vector machines (SVM) and artificial neural networks [88].

Deep learning approaches have shown immense success in the same task. For example,

[63] develop a complex recurrent neural network framework for detecting (and relabelling

false classifications) types of anomalies in spacecraft. In predicting remaining useful life

in machinery, a task similar to this, [89] architect a convolutional temporal (recurrent)

neural network in calculating the point of degradation in industrial machinery.

Most promising solutions are focussed on industrial challenges and rely on obtaining

highly relevant system data, e.g., precise sensor readings, a core requirement in machine

learning-based predictive maintenance solutions [90]. Deep learning approaches require

particularly vast quantities of training data to generalise well. Our limited dataset

inhibits these complex models from learning, and classic oversampling techniques for-

feit the temporal nature of our data—a key attraction in recurrent neural networks in

particular.

Finally, datasets in most predictive maintenance challenges are often formed of rich,

high-frequency sensor readings of vibration, rotation, etc. [91], whereas we are working

solely with energy data, which cannot as easily provide the same insight.

Challenges Outstanding

• Datasets are formed of sensor readings of vibration, rotation, etc., whereas

we are working solely with energy data, which cannot as easily provide the

same insight.
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Chapter 3

Autoencoder and Clustering Based

Unsupervised Online Anomaly

Detection in Cyclic Time Series

Energy Data

This chapter presents the design of an anomaly detection system designed to support the

intricacies of processing time series energy data from a multistate machine. Section 3.2

provides background on the requirements for such a system, which begins with minimal

preprocessing stages described in 3.4. Using a novel incremental clustering algorithm,

a complete wash cycle is matched with its closest cycles, if any, in an unsupervised

technique detailed in Section 3.3. The cycle, in the form of multivariate time series,

is then submitted to an autoencoder system, described previously in Section 2.4, for

reconstruction. From there, analysis of the reconstruction and its error can then be

undertaken with thresholding explained in Section 3.6 to identify and prune anomalies

based on the reconstruction error.
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3.1 Introduction

Many machine learning-enabled approaches toward anomaly detection depend on the

availability of vast training data, an inherent requirement for most neural network-

enabled solutions. Our data is formed from power readings of cycles from domestic

appliances, such as dishwashers or laundry machines, and contains no known examples

of anomalous behaviour. Moreover, we are limited to the machine’s voltage, power,

and current readings, drawn from a retrofitted power outlet in 60-second samples. No

rich sensor data or previous insight is available as a training basis, limiting our ability

to leverage existing work. Our objective is to identify anomalies in power cycles of

domestic appliances with no given definition of anomalous behaviour.

We design a system to monitor the behaviour of an electrical appliance with no prior

background or knowledge of its manufacturer or make. Before we can begin to address

the challenge of online anomaly detection, we must first consider that this system re-

quires special consideration for our data as different power cycles from the same machine

can exhibit radically different behaviour. We account for this requirement by clustering

unseen cycle patterns into siloed training datasets and corresponding learned parame-

ters. They are then passed in real-time to an autoencoder ensemble for reconstruction-

based anomaly detection, using the error in reconstruction as a means of flagging anoma-

lous points in time. The system correctly identifies and trains appropriate cycle clusters

of data streams on a real-world machine dataset injected with stochastic, proportionate

anomalies.

3.2 System Overview

Our objective with this system is to design a reliable machine learning-based monitoring

environment for electrical appliances with varying power cycle patterns, e.g., a laundry

machine or dishwasher. We are interested in identifying anomalies where we have not

formally defined the context and type of anomalous behaviour. We propose using an
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ensemble of autoencoder neural networks to observe the power consumption of an elec-

trical appliance over long periods, thus learning its normal behaviour between different

modes of operation while also identifying anomalies and where they occur. The objec-

tive is to anticipate any potential appliance failure, allowing the owner or manufacturer

to take remedial action before total device failure occurs.

Our data originates from a retrofitted power outlet that records the voltage, power,

and current of a machine sampled every minute. So, given no prior knowledge of the

machine’s function or capabilities and no access to rich sensor readings commonly lever-

aged in applications such as predictive maintenance, we must be able to make inferences

about anomalous behaviour without defining any context. For example, consider the

power the signature of one laundry machine’s eco-friendly cycle; it will significantly

differ from another machine of the same make, thus eliminating any universally trained

model or globally recognised failure patterns as potential solutions. Our working dataset

originates from discrete power consumption readings in 60-second samples from several

laundry machines of unknown make and model, automatically separated into cycles

(i.e., periods of some continuous power activity).

Supervised training requires labelled data, a laborious process to compile manually [92]

before considering the vast count of observations prevalent in time series datasets. The

heterogeneity of intended hosts for this framework means an anomalous example found

in one electrical appliance may be normal behaviour in another. Our requirements begin

to form from these challenges, which involve designing a system that operates using

unlabelled data streams. Specifically, the system must capably recognise the different

patterns of cycles from an unspecified appliance and predict from a set of similar cycles

when an appliance may exhibit anomalous behaviour.

Neural networks have become the mainstream approach for many machine learning

problems. Anomaly detection has been extensively researched in machine learning,

specifically deep learning in the context of time series data.

Although several complex machine learning models have recently shown to work well in
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time series anomaly detection [63, 93, 94], many of these would simply require excessive

processing power and storage than what is otherwise available to most microcontrollers

and edge hardware. This task carries its unique challenges, including:

• Cycles and their characteristics are specific to each host machine, eliminating the

possibility of a universally trained model.

• Cycles will arrive over time and unlabelled, with no immediately available samples

of failures as a basis for development.

Given these constraints, a supervised, deep learning-empowered anomaly detection ap-

proach is unfeasible. Our work proposes a novel approach to the combination of unsu-

pervised clustering and autoencoder-enabled anomaly detection. Our solution combines

similar wash cycles into their own evolving parameter sets, swappable in and out of the

autoencoder ensemble for more accurate learning.

Figure 3.1 illustrates the process of data ingestion through to model execution. Read-

ings of the voltage, power, and current from the cycle are received. The current, offering

the most distinct pattern, is selected to compute a fixed-length representation of the

variable-length wash cycle for clustering, which, in turn, provides a corresponding pa-

rameter set for the autoencoders trained on previous matching cycles. Broken into

stages, our system’s process for a wash cycle is as follows:

1. A complete wash cycle is received with separate readings for the voltage, power,

and current taken once every 60 seconds;

2. The wash cycle input is reduced to a fixed-length vector, where it is clustered into

an incremental cluster space using an online adaptation of K-medoid clustering;

3. The cluster associated with the wash cycle maintains its own set of hyperparam-

eters for an autoencoder ensemble, into which the original cycle is fed;

4. The autoencoder ensemble reconstructs the input to the best of its ability, with

each parameter set assumed to be trained on samples with no anomalous be-
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Figure 3.1: Flowchart of the proposed system. We first pass the wattage readings

through the clustering process to retrieve or create the matching parameter set, then

install them in the ensemble stage. All values are eventually submitted raw to the

ensemble.
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haviour;

5. Deviation between the original cycle and the reconstruction is measured, where

large reconstruction errors indicate abnormal behaviour, returned as points in

time;

6. Higher-level parts of the system can assess output and make decisions on informing

users and manufacturers.

This chapter first presents a novel adaptation of Partitioning Around Medoid (PAM)

clustering [95]: a clustering algorithm that maps a distance matrix into K clusters. The

algorithm is adapted to operate on an evolving dataset without relying on complete

access to the dataset or any predefined notion of K to cluster effectively. Instead, we

introduce a tolerance parameter to determine the maximum allowable distance from a

cluster before a sample is considered a medoid of its own. The cycle, then clustered

and matched to a learned parameter set, is forwarded to an ensemble of autoencoders

for reconstruction, which swaps its training parameters ad hoc depending on the cluster

matched to the cycle. The key attraction of this approach is being able to account for

operation cycles that differ in nature, helping prevent the system from falsely classifying

normal behaviour of one cycle as the anomalous behaviour of another.

The proposed system aims to address these concerns by assigning the complete reading

to an evolving data cluster of similar cycles—or forming a new cluster unsupervised

if the cycle is sufficiently distinct—which maintains its own evolving dataset, without

requiring the entire historical energy readings of the cluster. The system is interoperable

between clusters of different cycles, and the prediction weights can be hot-swapped ad

hoc. The implementation is prototyped in Python 3.*, with support from standard

scientific computing libraries (NumPy, Pandas).
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3.3 Incremental Online Clustering

The first stage of the system when given a wash cycle is to assign it a cluster of similar

cycles—or form a new cluster where the cycle is sufficiently distinct. Different wash

cycles will have different power consumption patterns; and laundry machines will have

different power consumption patterns on the same wash cycle. One key challenge in

our objective is to account for this in an unsupervised fashion. The majority of clus-

tering algorithms—although technically unsupervised models—frequently require some

predefined constant for the cluster count (K).

How similarity is measured and defined is a major decision for this system. The al-

gorithm must be sufficiently robust to account for sometimes critical anomalies in a

signature that would have a place in an existing cluster if deemed normal. Acting too

inflexibly on an anomalous wash cycle may needlessly cast it into a new cluster of its

own; likewise, being too flexible may miscategorise an anomalous cycle as a regular

cycle of a completely different cluster.

Associated with each cluster is a parameter bank (weights, biases, training records, etc.)

on which the autoencoder trains and executes.

Although later stages of the system are capable of processing in real-time, we first

require a matching cluster of similar cycles on which to evaluate, where each cluster

maintains its own learned parameter set to use in the autoencoder ensemble. We receive

our data for this experiment as an array of distinct wash cycles, containing the voltage,

power, and current, and voltage for each minute the cycle is in progress, ranging from

30-240+ minutes in length.

3.3.1 Existing Techniques

Many existing techniques assume a complete dataset or predefined cluster count before

clustering. Conventional offline K-enabled clustering techniques cannot guarantee re-

producible results when repeated, which disrupts the later stages of this system; we may
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3.3. Incremental Online Clustering

 M = { μ1,      μ2,      μ3, ...}

Figure 3.2: Computing the mean seasonal profile of a time series of variable length.

For a dimensionality of N , each (i ·N)-th point of the time series is averaged into the

i = 0, 1, . . . , N -th index of the fixed length vector.

lose or rearrange clusters in the future with these techniques. PAM, an adaptation ofK-

means clustering, developed by [96], selects actual instances from the data as medoids,

whereas K-means generates artificial points in the cluster space as centroids [97]. With

its flexibility toward how objects are defined as close [98], a favourable technique for

our use case.

3.3.2 Tolerance-Based PAM

Each observation is first scaled using zero-mean normalisation (or z-score) to help pre-

vent one feature of a data point with a range different from another from becoming

dominantly influential during training. More importantly, it limits noise impact and

makes for accelerated convergence during training.

A time-series representation is next computed and piped directly to the clustering stage.

Opting for a statistical representation of the time series is a promising approach, as it

can account for disturbance in the series and still draw out the essential characteristics

of data [99]. Our system uses the mean seasonal profile algorithm, which converts a

time series to a length of set seasonality, adapted from [100].

The process compresses the z-scored vector to a fixed size N , then processes according
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to Figure 3.2, illustrating the algorithm against a series of variable length. This mean

seasonal profile features the mean of every i · N -th element at index i = 0, 1, . . . , N

throughout the series. The representation can also be considered as a form of dimen-

sionality reduction, which benefits memory requirements and computational complexity.

The mean seasonal profile approach is a model-based algorithm, which assumes the

data processed originates from the same source [100]. Given the nature and origin of

our data, we can safely base our assumptions on a similar premise.

We modify the process of PAM, which typically begins by building a set S, composed of

k objects, as the initial medoids in the cluster space. The selection process for medoids

can be randomised or conditional. In parallel, another object D records and tracks

the distances between the medoids and child clusters of S. Each addition to the cluster

space requires D to be recalculated to include the new distances after assigning the data

to the nearest cluster. The next phase clones the cluster space, selecting an alternative

set of k medoids, and computes the inter-cluster distances D of candidate medoids S.

Should this version offer a sufficient gain in affinity over the existing cluster space, it

replaces the existing arrangement. This process is repeatable any number of times with

each addition.

The system described in this section implements an adaptation of PAM, where prede-

fined K is replaced with a tolerance parameter to, depending on the distance from the

nearest existing cluster, selectively partition the dataset into new clusters. Unlike many

clustering algorithms, data are instead submitted incrementally to the cluster space.

Its distance is evaluated against that of the closest medoid. As with original PAM

clustering, distance is flexible in how it is measured, and the tolerance can be adjusted

to the sensitivity of the expected data.

We apply ℓ2 norm, or Euclidean distance, as our distance function d between two points

in the cluster space, given as
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dist(x,y) =

(
n∑
i=1

|xi − yi|2
) 1

2

, (3.1)

where x,y are two data points of equal length N to compare; both are z-scored, mean-

seasonal profile vectors previously described in Section 3.4. When appending a wash

cycle to the cluster space, the new distance after matching its nearest medoid is evalu-

ated against the predefined tolerance parameter. If the wash cycle is within distance,

it is appended to the cluster. Exceeding the tolerance, or if in an empty cluster space,

the data point is designated as a new medoid. D and S are each recomputed as with

traditional PAM implementations to include the new data.

The tolerance value becomes another hyperparameter of the system, as it determines the

flexibility of the cluster space. The value must be forgiving enough to provide sufficient

variety for clustering without losing the representation of the cycle. Likewise, setting

too low a tolerance may cast a true anomalous as an outlier and into a new cluster.

3.3.3 Operational Complexity

PAM has a runtime complexity of O(k(n − k)2), where n represents non-medoid data

points and k the count of medoids in the cluster space, as n − k data points must be

distanced k times to compute the lowest change in cost. With our online adaptation,

the runtime complexity becomes O(k + (nk)) per iteration, where k medoids are first

traversed to find the nearest medoid, and then each data point is iterated to again find its

nearest medoid, before evaluating the gain in fit were it placed in each candidate medoid.

Although acceptable in our experiments and evaluation, the runtime will increase as the

cluster space continues to populate over time.

3.4 Data Preprocessing

This section presents the stages of our proposed system and details its implementa-

tion. In complex applications, raw data alone is often unsuccessful in modelling some
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phenomenon from its features. Data preprocessing can significantly impact the gener-

alisation performance of an algorithm—particularly in more complex models. This step

is not unique in anomaly detection challenges; data pre-treatment is a core component

of machine learning and a field of research in and of itself [101].

The input stage begins with a complete cycle, submitted as triaxial readings of voltage,

power, and current in 60-second intervals. We do not consider or derive any features

from timestamps or idle periods between. The readings of a wash cycle are first passed

through a clustering process, which identifies the cycle, designates an identifier for later

stages, and installs a corresponding learned parameter set into the autoencoders for

reconstruction. To enable this clustering process, this stage first builds a representation

of the cycle, the process for which is elaborated in Section 3.3. If a matching cluster

exists, the cycle in question is evaluated against, or contributes to, the learned behaviour

of that cluster from an autoencoder ensemble; if not, a new cluster is created along with

a counterpart parameter set, consisting of the following:

• Weights, initialised randomly when first instantiated;

• Biases, initialised as zeroes;

• Variables for normalised minimum and maximum of data observed during training

phases for the parameter set.

The system maintains the above set of learned parameters for each cluster, which are

hot-swapped in and out of the subsystem for a given wash cycle. The clustering process

described in Section 3.3 outputs an identifier (ID) for a corresponding cluster. Control

then flows to a manager to fetch the parameters and data stream counterparts for the

given cluster. In a newly formed cluster, these learned parameters are instantiated

randomly.

The autoencoder’s readings at each sample of the power profile are then fed individually

to the ensemble, which outputs an approximate reconstruction of the signal. Following

a complete forward pass, the reconstruction is compared against the original, using the
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theory that anomalous cycles will thwart the autoencoder’s ability to reconstruct the

input accurately.

Each cluster begins its corresponding parameter set under a fixed grace period, given

as a hyperparameter to the model and constant between clusters, during which all data

submitted during this time are used solely as training data for the autoencoders of the

particular cluster. A cluster still in its training phase, i.e., within the grace period, will

not offer any predictions.

The learned parameters of the autoencoder ensemble, described in Section 2.4, are hot-

swapped with those of the cluster matching the wash cycle.

We measure the reconstruction against a set of user-defined severities, given as degrees

of deviation from a threshold calculated using light statistical techniques on the errors

made by the autoencoder’s reconstruction, described in Section 3.6.

xz-score =
x−min(x)

max(x)−min(x)
(3.2)

Both inputs (coordinates of the cycle to be clustered and those of the existing cycle

within the cluster space as comparate) are z-scored outputs of mean-seasonal profile

vectors, previously described in Section 3.4. When appending a wash cycle to the

cluster space, the distance calculated after matching its nearest medoid is evaluated

against the predefined tolerance. If the wash cycle is within distance, it is appended

to the cluster; if it exceeds the tolerance or if the cycle is placed in an empty cluster

space, the data point is then designated as a new medoid. Selecting an appropriate

tolerance value, therefore, becomes a hyperparameter of this solution. D and S are

both recomputed as with traditional PAM implementations to include the new data.

The z-scored vector, equal in size to x then undergoes a final processing stage to approx-

imate the original time series by transforming the time series into a new representation:

the mean seasonal profile, adapted from [100]. Vector z is compressed into a uniform

size as the mean of the elements, as calculated in Algorithm 1. The mean seasonal pro-

62



3.5. Autoencoder-Based Reconstruction

Algorithm 1 Calculate median seasonal profile r using time series ts and frequency p

Require: p > 0 ∨ p ≤ len(t̄)
1: # normalise series
2: t̂s←∑n

i=1ts
2
i /
√
ts

3: # result of size p, filled with zeroes
4: r← [0] · ||t̂s||
5: # declare indices to target
6: ind← []
7: # calculate step size across time series
8: frq ← ||t̂s||/p
9:

10: for i← 0 to p do
11: for j ← 0 to frq do
12: # push adjusted index for i-th stage of total length p
13: indj ← (j · p) + 1
14: end for
15: # populate i-th stage of profile with mean of series at adjusted indices
16: ri ←

∑p
i=1 t̂si/p

17: end for
18:

19: return r

file approach is a model-based algorithm, which assumes the data processed originates

from the same basic source: an ideal assumption we can safely make given the origin

and domain of our cyclic data.

3.5 Autoencoder-Based Reconstruction

Associated with each cluster is a parameter bank (weights, biases, training records)

on which the autoencoder trains and executes. With a parameter set from the cycle’s

belonging cluster, each multivariate reading is submitted to the autoencoder ensemble

incrementally. Where the parameter set is sufficient in size to execute the autoencoder,

the outputs are returned in a vector for analysis. A parameter set still in its training

phase will not make any prediction. Each cluster begins under a fixed grace period for

each clustered parameter set, during which all data submitted are reserved as training

data for the autoencoders. Selecting the grace period is an important decision, as the

consuming system must balance allowing a representative dataset for a particular cycle
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3.6. Post-processing Identification and Grading

to grow organically with the need to begin making predictions and assessments as soon

as possible.

Autoencoders trained well on non-anomalous data will approximate the target with

relatively low error rates but struggle to reconstruct an anomalous signal to the same

accuracy [58]. This phenomenon is the underlying theory of this stage of the detection

system. Each autoencoder in the ensemble trains in silo on at least one feature of the

stream, which is compressed down to a latent representation in an intermediate layer.

This compression ratio is a configurable parameter to be supplied by the user. Features

are repeatable across multiple autoencoders, i.e., the i-th feature of a multivariate series

observation may be input to ≥ 1 autoencoders.

Each observation is passed raw directly into the system one at a time and normalised

to a range of [0, 1] using min-max scaling. To avoid storing the entire observation set, a

record of the smallest and largest values is maintained for each feature observed during

training stages to date.

The output stage of the ensemble described is itself another autoencoder, trained on

the collective outputs of all preceding autoencoders within the ensemble. We assume

for our system that a wash cycle submitted for training on a new or developing cluster

is not anomalous. Following the grace period, the system executes the autoencoders

on all future data received, returning the reconstructed value and the measured loss

according to the RMSE score, given previously in Equation(2.9). In training, the RMSE

is used to drive the classical backpropagation supervised training technique for only the

autoencoders.

As clusters form at different rates, one cluster with sufficient training will transfer into

execution. Swapping to a cluster still in training automatically toggles training mode

for the autoencoder ensemble.
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Figure 3.3: Calculated thresholds for identified grades respective to the range of the

inputs, dashed horizontally in their respective colours, for a wash cycle against an

artificial anomaly, outlined in red. The autoencoder stage should struggle to reconstruct

(orange) this region of the input (blue). Points along the input mark the exact samples

found anomalous and by what grade.

3.6 Post-processing Identification and Grading

The final stage of the system is where anomalies are identified and flagged. Here, we

receive the output of the autoencoder ensemble for each observation in the wash cycle

and compare it to the original input. Treating the scores as face-value indications of

anomalies produces excessive false-positive identifications, diminishing the reliability of

the system. This stage is introduced as a measure to prune and grade the ensemble

scores into definitively ranked anomalies for review.

We begin by calculating the absolute error between the input and reconstructed output

at each time step into a separate vector, e. Then, its severity is measured using a set of

severity grades, calculated by µ(e) + (σ(e) · g) where g = 1, 2 . . . N and N denotes the

maximum degree of separation from the input. For interpretability, we return grades

as an uppercase letter A – Z. Any absolute error score from e exceeding the threshold

appropriate to the current grade is recorded as a dictionary wherein object keys are the

grades, if any, and the corresponding values a set of intervals considered anomalous at
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a particular grade. Figure 3.3 illustrates this process, showing the relative thresholds

for each severity grade. A cycle deemed normal can be resubmitted for retraining the

cluster’s parameter set at the user’s discretion.

This grading mechanism does not consider transposition in its decision, allowing recon-

struction to focus on the overall energy pattern rather than relying on exact matches.

We are particularly concerned on noise and significant deviation from the ensemble’s

reconstruction in our detection criteria.

3.7 Evaluation

Table 3.1: Total number of readings in the dataset, which will be submitted incremen-

tally to the system.

Point evaluation Strict evaluation

Population 1961 2324

True positive 51 70

True negative 1910 2254

Outcome P 95 135

Outcome N 1866 2189

False P 44 65

False N 0 0

Real-world power consumption data served throughout the design, development, and

evaluation of this system. Our dataset for the detailed evaluation is a set of 62 individual

wash cycles from the lifetime of a single laundry machine, collected organically over 6

months. As this system is designed to monitor a single machine, in this evaluation we

do not introduce or aggregate multiple machines or their cycles. Each 60-s reading of

an in-progress cycle contains the timestamp, voltage, power, and current. The system

receives each wash cycle incrementally and not as a batch. In total, we have 2,324

readings, with each wash cycle running 41 min on average. Our final data population

counts, shown in Table 3.1, are inclusive of anomalies injected.
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Data are submitted raw as one complete cycle where it enters the clustering stage.

When the autoencoders are swapped to the parameters of the appropriate cluster, the

cycle is reconstructed reading by reading. The results in this section are produced on

a dishwasher power graph of 75 uniquely identified cycles across 314,464 min-interval

timesteps. The majority of this is standby power—idle readings are not submitted to

the system.

We set our tolerance for clustering wash cycles to 0.05 and found a seasonality of size

20 to be effective in calculating a representative mean seasonal profile, the result of

which is what is used in the cluster space. The autoencoders are each assembled into

a 3-layer mapping and given a grace period of 320 observations for each cluster. This

length was determined as the rounded average of 2-3 complete wash cycles of training

per cluster before execution. The autoencoders are configured to compress input to a

latent representation of 80%, using a learning rate of 0.03, as seen in other works.

3.7.1 Data Setup

The system expects disturbances in the power consumption characterised by prominent

distortions; therefore, we include the novel ability to inject stochastic noise into some

segments of a wash cycle in our testing framework. Anomalies are artificially injected

at a rate proportional to the rest of the signal to carry our example, with a configurable

variable to adjust the noise intensity to resemble the anticipated behaviour of their

real-world domain.

Faced with a highly imbalanced dataset and scarce examples of true anomalous data,

white noise injection is a familiar training tactic in the anomaly detection space. For ex-

ample, the work in [102] explores the condition monitoring of UAV motors by injecting

white Gaussian noise into their dataset as a training label, at a configurable signal-to-

noise (S/N) ratio. Using noise in training is also seen in [103], where the authors assess

the robustness of training deep learning models under synthetic noise to develop an

anomaly-detection system into an unsupervised setting, again with a configurable S/N
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ratio, ranged proportion, and evaluation strategy. More similarly, the work in [104]

explores datasets of a similar nature, bearing local fluctuations as formulaic anoma-

lous periods injected into multivariate time-series datasets. Their work develops a new

algorithm to extract feature vectors for training on existing machine-learning-enabled

anomaly detection frameworks.

Our approach follows similarly to these works, first defining a probability of a wash cycle

containing an anomaly, set at 40%. If selected, a wash cycle is injected with noise across

15± 3 readings of the cycle. We use additive white Gaussian noise as our noise model

and a S/N ratio of −0.2 dB. The wash cycle is then modified in place and recorded in

an external data store inaccessible to the system, marking the timestep in the cluster

and the breakpoint of the anomaly for evaluation, forming our label for the cycle in

the evaluation process. The “input” line in the graphs of Figure 3.4 shows the original

power-consumption pattern, with an anomalous region outlined in red to illustrate the

nature of the disturbances the system should identify.

3.7.2 Evaluation Strategy

This injection strategy does not necessarily mean that 40% of our preprocessed data

becomes anomalous. With an ad hoc source of truth of injected anomalies, measuring

detection performance is essentially reduced to binary classification. There are two po-

tential strategies of performance evaluation, depending on the context of the anomalies

expected and how they are characterised. First, the presence of any anomalous point

alone may be sufficient. In this point-based approach, any one point within the range

of the complete anomalous period found to be anomalous by the system is considered

a success.

Alternatively, another application of this system may require a series of anomalies to-

gether first be identified before considering any action. In this approach, we require

each point within the entire anomalous period be individually identified as anomalous

by the system; points not correctly identified in this range are considered false negatives
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Figure 3.4: Reconstruction of a wash cycle, shown in Watts. The anomaly injected is

marked by the dashed red border. The autoencoder should struggle to reconstruct the

anomalous region marked in red—which the grading mechanism should identify.

and will negatively impact the detection score. Therefore, we present dual evaluation

strategies as:

• Point, requiring any one of the points in the injected anomaly be identified as

anomalous;

• Strict, requiring all points in the injected anomaly be identified as anomalous.

Using the wash cycle graphed in Figure 3.4 as an example, the strict evaluation approach

requires all of the data points within the known anomalous region (bordered in dashed

red) to be identified at any grade to be considered completely successful, whereas the

former approach will accept any anomaly identified within the region as an overall

success.

3.7.3 Results

This evaluation runs both strategies under two versions of the system: the original, as

proposed in this section, and another that bypasses the clustering stage, i.e., all of the
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wash cycles fed to the same autoencoder parameter set. Each version is executed in

silo on the same dataset, meaning it develops its parameters separately from the other

versions of the system. The clustering stage will reserve some of this data as training

for each identified cluster, whereas the continuous examples required will train their

sole cluster once.

Table 3.2: Results of the simulation experiment ran on all versions.

Point evaluation Strict evaluation

TP 1 1

TN 0.977 0.971

FP 0.023 0.029

FN 0 0

Discovery 0.463 0.482

Precision 0.537 0.519

Accuracy 0.978 0.972

From the results logged in Table 3.2, we observe the strict evaluation strategy expect-

edly produces relatively lower results than its more forgiving point counterpart, given

that a single anomalous point within the injection range qualifies as successful, whereas

requiring all anomalous points detected in the range injected is naturally more chal-

lenging for the framework. However, the results are still marginal in comparison. Both

approaches demonstrate together that separating data streams offered by the clustering

stage is beneficial to overall performance, which is beneficial under strict evaluation.

However, clustering will require a fixed series of initial readings for each data stream

before it can begin to offer predictions; hence a lower population in the results ran

without the clustering stage.

This evaluation was conducted with a 0.2 clustering tolerance and a mean seasonal

profile length of 20. Autoencoders were constructed as a 3-layer mapping with a learning

rate η = 0.09, and a latent representation of 80%, a common ratio in autoencoder

applications which displayed the most optimal performance in our ranged cross-search.

Figure 3.3 dashes a red box around the injected anomalous area, showing the exact
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Figure 3.5: Performance graphs of the system recorded during the evaluation. (a) shows

the processing time taken to cluster a cycle into the existing cluster space, (b) shows

time taken to run the cycles through the autoencoder ensemble, (c) shows the time

to grade anomalies received from the autoencoders, and (d) shows the total runtime

between receiving a cycle and returning identified anomalies.

reconstruction points marked as anomalous. The sharp increase along an expected idle

period sufficiently disrupted the autoencoder’s reconstruction, reflected in the RMSE

scores.

Figure 3.4 illustrates an excerpt of the post-processed output of a wash cycle injected

with an anomaly at a random point, bordered in dashed red. The system should

identify from the input (Watts, in the case of Figure 3.4) any or all points within

this region as anomalous, depending on the evaluation strategy. The output shows

the different lengths of each cycle, demonstrating that the system is not confined to

rigid data shaping commonly found in classic machine learning approaches. In both
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examples, the sharp increase along an expected steadier period in the cycles sufficiently

disrupts the autoencoder’s reconstruction, reflected in the running red error line. Figure

3.5 illustrates the system performance during the experiment, showing the evaluation

metrics used in both point and collective evaluation strategies. The grading mechanism

identifies each of these points well. Owing to the bespoke problem we have aimed to

solve, it has proven challenging to source or synthesise a comparable public dataset to

use in these more complex networks that can still make good use of our incremental

clustering stage.

This evaluation runs both strategies under two versions of the system: the original,

as proposed in this section, and another bypassing the clustering stage, treating data

received as one continuous stream (i.e., a single cluster). Each version executes upon the

same data stream in silo, where anomalies are injected externally. It should be noted

the clustering variants must reserve training data for each identified cluster, whereas the

continuous requires no training for additional clusters. Both approaches demonstrate a

worthwhile improvement offered by the clustering stage to overall performance, which

is particularly beneficial under strict evaluation.

Runtime performance is another prominent consideration of the system. To evaluate

time and space performance, the system was non-obtrusively monitored throughout its

execution of various stages by wrapper blocks timing the code’s performance in two core

stages of the workflow: the clustering of a cycle and the overall processing throughout

the rest of the system (including autoencoder reconstruction). These measurements are

illustrated in the timing performance graph in Figure 3.5.

We observe that the majority of the system scales well as input continues, yet a slight

incline appears as the system’s parameter sets evolve. The cause of the performance

scaling is the clustering stage—an expected outcome given its runtime complexity, de-

scribed previously in Section 3.2. As wash cycles continue to populate the cluster space,

new submissions will take expectedly longer to place. A potential remedy we are in-

terested in exploring is a mechanism of selectively thinning intense clusters. Should
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performance become noticeably impacted, we could assess the largest cluster(s) of the

feature space and delete some of the members within, freeing up space with limited im-

pact on the cluster’s significance and strength. As it has already trained the parameter

set, the data and learning experienced by the autoencoders from these cycles would not

be, only their presence in the earlier cluster space would be deleted.

3.8 Conclusions and Future Directions

This work describes the design and implementation of an approach toward the identi-

fication of unlabelled, undefined anomalies within cyclic time-series data—in our case,

wash cycles. Supporting the inherent heterogeneity of different laundry machines, wash

cycles, and their varying power-consumption patterns disqualifies classical training ap-

proaches on even a rich offline dataset, as the system must begin training from the first

reading with few to no prior assumptions.

Through the hot-swapping mechanic, triggered by unsupervised clustering, the system

designed can monitor and predict from sometimes radically varied data from the same

machine. The system is easily optimised for the general nature of any data with high-

level parameter tweaks, as shown in our evaluation. On evaluating the system based

on both point and collective anomaly detection, the system demonstrates competent

performance despite running through only a single pass of incoming data.

In considering the transfer detection of the proposed method between different work

conditions or different electrical appliances, the user has the option to adjust the train-

ing grace period and cluster threshold tolerance within the system, or the traditional

hyperparameters of the autoencoder ensemble, should the need arise. From our experi-

ments, including the above, we observe similar performance between different machines

without adjustment to these parameters. As part of our future directions, we would be

interested in obtaining a similar dataset from, e.g., a dishwasher on which to rerun this

experiment.

73



3.8. Conclusions and Future Directions

In terms of future work, our attention would next be paid to the time complexity of the

incremental clustering algorithm. Although lightweight and storing cycles only in their

condensed form for the cluster space, it may eventually become too intensive to process

on edge hardware. A preliminary thought is to develop a thinning mechanism, which

prunes high-intensity clusters to reduce the dataset size whilst preserving the identity

and strength of the cluster space. Additionally, we would be interested in exploring the

performance increase when threading the autoencoder ensemble over multiple cores. For

machine-learning-related endeavours, we would be interested in appending a classifier

to the end of this pipeline, which would classify anomalies in the context where they

are known.

74



Chapter 4

Online LSTM-Enabled Temporal

Point Process Modelling for Idle

State Detection

The objective of this research is to develop an online load-sensing machine learning

(ML) model capable of adapting to new types of appliances and applications, e.g., from

laundry machines to dishwashers. Given the end of some discrete event, this model

should predict the interval between the beginning of the next in a task commonly

known as time to interval. Event sequencing is a common application in areas such as

commerce, social networking, and finance [105]. For example, an e-commerce store may

be interested in the likelihood and time of the next purchase to be made by a customer,

given their buying history, or a financial institution may be interested in studying the

dynamics of high-frequency historical trading prices [106].

Our objective is to estimate the time elapsed between using an electrical appliance

which typically enters into a standby state when idle, such as a laundry machine, tele-

vision, or dishwasher. Based on the interval forecast by the model, the appliance can

be placed into a low power state—or shut down completely—to conserve energy and

prolong its lifespan, reducing short and long-term costs to both the owner and the
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4.1. Toy LSTM-Powered Time Delta Forecast

manufacturer. Although environmental impact is a factor in buyers’ decisions, inciting

change in consumer behaviour and attitude toward energy consumption has little effect,

even with an emphasis on the financial and environmental benefits [107] it brings. Our

model strives to facilitate this change toward lower energy consumption, fostering more

energy-efficient households.

Recurrent neural networks appear initially the strongest candidates to drive such a

model, given their inherent and powerful ability to consider long-term dependencies from

past observations when presented with unseen input. Such capability is likely needed to

uncover the complex relationships and dynamics in a user’s typical habits. For example,

they may begin a cycle each morning, every second afternoon, each Wednesday of the

week, or during weekends, etc. However, no proposed solution we have investigated to

date addresses the unique needs of our challenge, to:

• Recondition the model over time as usage patterns change with value/concept

drift;

• Operate locally on low-resource edge hardware;

• Predict without assumptions on the underlying dynamics of the host machine.

4.1 Toy LSTM-Powered Time Delta Forecast

Recurrent neural networks appear initially the strongest candidates to drive such a

model, given their inherent ability to consider long-term dependencies from past ob-

servations when faced with unseen input. Such capability is likely needed to uncover

complex relationships in a user’s typical habits. For example, they may begin a cycle

each morning, every second afternoon, each Wednesday of the week, or during week-

ends, etc. Further, for the model to reside on edge hardware, it must be computationally

lightweight and retrained adaptively. This is a challenge for recurrent neural networks

and LSTM cells in particular, as the training algorithm (backpropagation through time)

is considerably more intensive than that of a traditional neural network and should be
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4.2. System Design and Architecture

minimised. There exists similar research into collective prediction, including the work

of [108], who predict the daily routine of a user over 24 hours using LSTMs and activity

classification to estimate the time and class of the next activity. [109] also employs an

LSTM in business process monitoring to predict the commencement time of an event

by including temporal factors as input to the LSTM.

To validate the concept of using recurrent neural networks in a point process context to

sample intervals, a stateful LSTM network was trained and executed online using the

elapsed intervals between a 90-cycle dataset over a single epoch, ranging from 1–1,425

minutes in elapsed durations. The model produces overall poor results, attributed to

the vast data required to effectively generalise an LSTM. Were we to pursue this model

further, our attention would turn to the feature engineering stages. Instead of raw time

or deltas, we would explore exogenous time data (minute of hour, of day, of week, of

month, of quarter, etc.) as input with an expected idle period as output, though this

still may not be sufficient to compensate for the lacking data.

This novel exploration established our basis for going forward in the design of this

system.

4.2 System Design and Architecture

The model is architected as a multilayer set of 3 stacked LSTM units each of size 32,

formulated previously in Equations 2.18 through 2.23, where the input to layer i is given

by xit = h
(i−1)
t δ

(i−1)
t where i ≥ 2, δ = 0.1. We find this offers sufficient complexity in the

model for it to learn effectively and at a quicker pace. The last sequence output from

the final LSTM is then propagated to a layer to a mapping size of 16 before passing

through a rectification unit. This output is trained as the suggested time interval until

the next event, allowing for direct sampling from the model. To derive a timestamp

from the interval output by the system, it is simply added to the timestamp of the

last input sequence. This process is illustrated in Figure 4.1, showing a timestamp

outputted along the continuum, derived from its event history. The system catalogues
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...

...

1 Discrete events represented
as time from 0 (in days).

3 Obtain LSTM network output
modelled on intervals.

2 Input vector encoded as
inter-arrival time since lookback.

0 timeTti−1t1t0

Figure 4.1: Overview of system. Discrete events in time are indexed from 0, collected

into vectors and processed throught the LSTM networks, outputting an interval.

events along a continuous timeline, indexing them as having occurred since time elapsed

from 0 (the beginning of observation). When the system is asked to make an assessment,

the previous arrival times, ranging from the lookback interval until present time, are

first loaded and encoded into a vector.

L(x,y) = ϵ
{l1, . . . , lN}⊤

N
, ln = |xn − yn| , (4.1)

MAE, as given in Equation 4.1 where x and y are arbitrarily sized vectors and N is the

batch size, is favoured as the loss function of this model for its gentler approach toward

excessive outliers in the overall training batch. The model should not penalise outliers

with , as usage patterns are prone to change.

Training is scheduled in batches of 64 across five epochs, optimised using the Adam

stochastic optimiser [20] with a learning rate 0.001, an L2 penalty term of 1.0 · 103,

and a dropout rate of 0.1 between all stacked LSTM layers. Given that base training is

undertaken offline, we schedule a batch size of 64 for the volume of the dataset and to

allow the model larger steps in converging.
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4.3. Data Preprocessing

4.3 Data Preprocessing

Our global dataset in this application comprises energy signatures from over 950 elec-

trical appliances collected in minute intervals. Each appliance is formatted as a series of

incrementing timestamp intervals between uses and contains approximately 100 times-

tamps. We do not combine or aggregate cycles from other machines in our training or

evaluation stages; examples follow a single machine throughout its lifetime. Part of our

objective includes training for platforms of a similar nature under loads varying from

infrequent to continuous. We make no distinction between electrical appliances in the

dataset, and therefore type of appliance (laundry machine, dishwasher, etc.) or any

information regarding its manufacturer or components within are withheld from the

model.

Conscious of the intended host platform of this model, we undertake as little pre and

post-processing as possible—another reason for having the model directly output raw

intervals.

Algorithm 2 Preparing dataset X for batch training, constructed according to look-
back l.

1: X̄← []
2: for i← 0 to ∥X∥ do
3: for j ← 0 to ∥xi∥ − (l + 1) do
4: # declare interval sequence
5: s ← []
6: # push time delta between i-th interval until i+ l into sequence
7: for k ← 0 to l + 1 do
8: sk ← [x(j+k) − xj]
9: end for
10: # push sequence into final set
11: x̄i ← s
12: end for
13: end for
14: return X̄

To keep the input size small without resorting to classical batch normalisation tech-

niques, the lookback vector of size ℓ = 16 is preprocessed according to Algorithm 2,

which produces inter-arrival times beginning from the first event within the bounds of
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4.4. Integrated Memory Consolidation

the lookback. This strategy allows us to omit the typical (batch) normalisation stage

within the model—particularly favourable in an online learning context where we may

not make assumptions about the nature of the data post-transfer and cannot guarantee

the range of the training set is perfectly representative. When the system is deployed,

only lines 4 . . . 7 are required to maintain a size l vector with the input sequence.

4.4 Integrated Memory Consolidation

Offline training naturally enjoys full access to the dataset and, traditionally, can expect

data of a similar nature in the future. Adding new tasks to a pre-trained neural network

can result in a phenomenon known as catastrophic forgetting, which is a significant im-

pairment in incremental learning [110]. To facilitate the transfer into online learning

and as a preventative measure against catastrophic forgetting, the model receives a

memory system of a specified capacity ζ to retain previous input sequences and their

outcome. This design is reminiscent of declarative memory consolidation found in bio-

logical cognitive systems, one of several techniques in mitigating catastrophic forgetting

and fostering continual learning [111].

The memory bank is implemented within the model in the form of a double-ended

sequence container. Sequences built by higher layers in the system are maintained in

memory up to a specified capacity and retrained alongside execution on unseen data for

reinforcement until they are progressively discarded at the tail end when a new sequence

is received. This implementation operates at O(1) constant time and is addressable in

code similarly to a vector; the input to the model is submitted following the memory’s

retraining. It should be noted that memory consolidation is disabled during offline

training.
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4.5. Online Transfer

Table 4.1: MAE scores (days) of online outputs, each of varying episodic memory

capacity.

Capacity of memory bank 0 10 50

Active machine MAE 0.212 0.157 0.198

Infrequent machine MAE 0.274 0.146 0.155

4.5 Online Transfer

This sectiThis section presents the migration of the model described previously to an

online learning environment. To evaluate the model’s diversity, two machine samples

are reserved from the same real-world dataset from offline training: one with over 1,000

cycles throughout the month and another with less than 100. To carry forward the

model, its parameters are serialised and exported to disk after offline training. These

can be deserialised from disk when the model should execute.

4.5.1 Environment

To simplify deployment and execution, the model is encapsulated in a manager frame-

work responsible for the rolling input buffer, interrogation, and reporting from the

model. A single method is accessible to the consuming platform, where it may submit a

UNIX timestamp and receive a suggested interval until the next event, assuming data is

sufficient in quantity. No inference is made when the input buffer is below the lookback

size. However, this does not apply to the memory system; training from memory is still

conducted with an underpopulated store, as the sequences within are complete.

4.5.2 Results

We run the framework encapsulating the model individually on each cycle on shared

hyperparameters and a single pass of the data stream. The direct outputs against the

targets of both datasets are illustrated in Figure 4.2, which shows competent predictions

in both sets. We repeat the experiment, varying the model’s memory capacity at 10
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Figure 4.2: Interval prediction (days) from machines of characteristically distinct usage

patterns, where (a) shows interval predictions between cycles of a more active machine

and (b) shows interval predictions between cycles of a less active machine. The scatter

points represent the outputs from different models trained on the same blue baseline

data but with varying episodic memory capacities, as given in the legends.
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and 50 units, the MAE losses for which are detailed in Table 4.1. The model is then

run once more, this time, with its episodic memory capabilities disabled.

From these results, we note that the memory capacity assumes a role as another hyper-

parameter of the model, as an excessive memory capacity leads the model to exhibit

classical overfitting behaviour in its most recent observations. In balancing this hy-

perparameter, we must consider not only the potential to overfit as an upper bound

but also the capabilities of the host platform and whether it can support this level of

retraining, as backpropagation training is an especially intensive process with recurrent

neural networks. However, the memory system still offers a substantial benefit and is a

worthwhile performance enhancement in a problem and approach of this nature.

4.6 Conclusions and Future Directions

This chapter proposes a novel LSTM model trained on temporal point processes from

cyclic machine data, architected to perform and retrain on an unknown, evolving

dataset. We enable this by preparing the dataset into sequences of local intervals and

rebuilding the timestamp from the output of the model. The model is trained offline

with full access to a wide range of appliances in preparation for online transfer, where

it then adopts a consolidated memory system to converge quicker on new and changing

habits in deployment.

The model demonstrated competent performance in an online environment, having

tested in both inactive and frequent data streams. We note from the experiments that

the memory capacity introduces an additional hyperparameter, which may be tuned

when adopting this architecture into another context. It is an important parameter to

balance, as allowing too high a memory capacity can hinder its training on future values

by struggling to discard the irrelevant past, whereas too low would not harness the full

potential of the model and mechanism, it may lead to wasting the compute used for

retraining.
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In terms of future work, we would be interested in regulating the capacity of the inte-

grated memory consolidation feature of this model - or shutting it off completely. Given

that this system is intended for edge hardware, we are conscious of its computational

resources. Should a model perform online competently, the system could confidently re-

duce its memory capacity until it shows signs of struggle (e.g., an upward loss, a change

point detected, or analysis of value drift). Further, given the intensity of model training,

we would also be interested in training from memory during predicted idle periods to

allow maximum resources for the host platform to perform its original purpose.
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Chapter 5

Multi-Classifier for Fault Prognosis

of Electrical Appliances using

Gradient Boosting

The impact of unforeseen downtime in machinery assets, from domestic to industrial,

bears a significant impact on owners. Any underlying mechanical issues or potential

failures should be identified as early as possible. Predictive maintenance and prog-

nostic analysis are well-researched fields motivated and bolstered by the Industry 4.0

revolution, aiming at anticipating equipment or component failure and recommend-

ing proactive maintenance with minimal downtime and impact on broader operations.

Predictive maintenance assists in the management process, offering calculated degrada-

tion and health from data more insightful than ever, given the recent advancement of

machine learning and deep learning techniques.

Through close monitoring of a machine’s health, enriched by the new data and technol-

ogy brought forward by the Internet of Things and Industry 4.0, performing maintenance

pre-emptively at a time that maximises a component’s lifetime without failing allows the

owners to minimise the expense of downtime and potentially avoid catastrophic failure.

Our objective is to introduce this same behaviour in a domestic setting by architecting
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5.1. Introduction

a model that offers the same foresight as to a consumer’s electrical appliance as with

heavy industrial machinery.

The means to our NILM solution comes from a retrofitted, IoT-connected smart plug ca-

pable of remote control and scheduling. The plug is controllable via private cloud and is

equipped with a metering chip that records and transmits its energy readings at minute

intervals as triaxial readings of voltage, power, and current in 60-second intervals. The

recording of these readings is largely powered by an ESP32-S3: a microcontroller ca-

pable of running machine learning algorithms on edge. For analysis and training, we

sample from this hardware onto a desktop environment. We intend to deploy the model

described in this paper onto this hardware.

We face a markedly imbalanced dataset, where an uneven class distribution in the

training data thwarts representative learning. Due to scope and complications in over-

sampling temporal data [112], our attention turns to modern interpretations of classical

machine learning approaches. In this instance, we favour gradient boosting with the

popular XGBoost framework in designing a classifier capable of learning from oversam-

pled data and engineering temporal features from static data points.

5.1 Introduction

With the rise of the Internet of Things and a new abundance of sensor data, condition

monitoring, and its value, are becoming increasingly powerful tools, offering enriched

insights into the performance and operation of machinery and equipment. Industrial

applications are reaping the financial and operational benefits from the ability to pre-

emptively schedule maintenance before a component fails to maximise its usefulness

and mitigate unscheduled, expensive downtime. Our goal for this work is to retrofit a

device inside a domestic electrical appliance next to its power source, using the power

drawn to competently make the same predictions.

Due to scope and complexities of oversampling temporal data, we turn our attention
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5.1. Introduction

to modern interpretations of classical machine learning approaches. We observe that

the model we originally architect struggles to identify any trained failure, yet correctly

recognises our data’s normal, healthy, operational state. Expectedly, the cause of this

is data imbalance: where an uneven class distribution in the training data thwarts

representative learning. In this instance, we favour gradient boosting with the popular

XGBoost framework in designing a classifier capable of learning from oversampled data

and engineering temporal features from static data points.

We instead propose a gradient boosting-enabled ensemble, trained on statistical trans-

formations of the rolling energy data, capable of informing higher levels of a monitoring

system on failure. Further, the model attributes the fault to known failure modes in the

device without access to rich sensor data, maintenance records, or failure history. We

mitigate this imbalance by treating our dataset as non-temporal, allowing us to leverage

oversampling techniques to redress the balance. We find the existing data pipeline and

learned parameters of the model largely untransferable to this new data. We instead

rework the data and feature engineering pipelines, followed by the hyperparameters and

learnings of the model itself.

We adapt the same model, also trained for the similar purpose of fault detection, to a

new, more intricate dataset evolved from the same origin as the data used in Chapters

3 and 4, adjusting the hyperparameters and introducing additional preprocessing for

the new frequency of the dataset.

The design achieves an overall F-1 harmonic score of 97.3% in identifying its healthy

operating state along with failure designations in our proprietary dataset and a similar

score in a public predictive maintenance dataset. This chapter offers an approach toward

the conditioning of highly imbalanced time series data of a relatively small size into

training an efficient gradient boosting model, capable of running on edge hardware.

Unlike rich sensor data, as with most similar existing work, our model performs on

statistical features of energy data from a power supply.
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Figure 5.1: Sample graph in the public dataset leading to a distinct failure, the exact

point of which is marked by the red vertical bar, and all subsequent readings become

those of a faulty machine.

5.2 Materials

5.2.1 Datasets

Datasets of this nature are scarce and often protected. Therefore, as a benchmark

and experimental platform, we turn to a dataset synthesised by the Azure platform to

demonstrate cloud machine learning. This dataset, now no longer publicly available,

is still inside the predictive maintenance problem space and comprises telemetry data

from 100 machines’ voltage, rotation, vibration, and pressure sensors over a span of

1 year for analysis, set in an industrial environment. For these 100 machines across

four different machine models, individual telemetry readings from these sensors contain

876,100 hourly records, at 8,761 records per machine.

This dataset is supplemented with rich historical data including error and maintenance

records, which can each be leveraged in the architecture and feature engineering of a

machine learning model. The failure records contain 3,919 entries and the maintenance

history contains 3,286 logs. Examples of machine failures are illustrated in Figure 5.1,

showing the lead time and aftermath of a failure, marked by a solid vertical line.
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Figure 5.2: Example power consumption graph in the leading to a distinct failure of

the new dataset; the exact point of invoked failure is marked by the red vertical bar.

Of the public dataset, there are four known failures the model must correctly categorise,

one of which is illustrated in Figure 5.2, along with a normal operating state. In the

figures within, we observe a noticeable change in at least one of the axes leading to

a failure. This model should identify the correct failure based on the recent energy

signature of the device. With known failure points in the dataset, the task transforms

into a supervised learning problem, where we have corresponding labels for points of

failure to train against (everything normal is categorised as such). However, the means

of our dataset does not include any of these additional records. To ensure a more

representative development, we opt to use only the telemetry in this dataset and omit

any historical failure or condition records.

Our dataset is to be found from a device farm of a large domestic appliance manufac-

turer, comprising 100 machines running under high-intensity load, simulating several

years of everyday usage over a span of 1 year. The energy readings are collected from

its power outlet on an hourly basis, providing us with over 875,000 combined readings

of four distinct features of voltage, pressure, vibration, and rotation. Meanwhile, we

begin to curate our own, physically pulling the motor from inside a laundry machine,
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recording the time as the mark of failure, then reconnecting it.

Separate from the energy readings are failure records, recorded by devices equipped

with a series of probes that can identify and deliberately invoke failures in real-time;

this equipment is not feasible to integrate into the final product, and we cannot guar-

antee deliberate failures will be perfectly representative those of natural degradation,

hence our requirement for a machine learning-enabled solution. In this case, we aim to

designate motor failure in the machine. When such a failure occurs, the timestamp is

logged along with its class.

Our data originates from a power outlet that records the voltage, power, and current of

a machine sampled every minute, retrofitted to a laundry machine. The energy readings

are sampled from a retrofitted power outlet with proprietary metering hardware at 50

Hz, providing us with almost 50,000 individual readings across the dataset. Each reading

includes distinct readings of the device’s voltage, power, and current at each given time

step. The historical power consumption time series is stored on cloud infrastructure,

which must be dumped then extracted into individual samples as input data for a model.

This process begins with light manual processing. We observe that when appliances of

interest are inactive, the smart plugs themselves tend to idle just below 0.04A. We carry

this value as a minimum threshold and consider any readings above as metered activity,

in which case it is appended to the sample in situ. Once the readings bottom out at

the 0.04A threshold for 5+ consecutive minutes, we trim at that point and export the

readings between as an individual sample.

Due to limitations in our data gathering, the model must categorise only one mode of

failure, an example of which is illustrated in Figure 5.2. We observe a noticeable change

in at least one of the three axes leading to a failure point. This model should identify

the correct failure based on the recent energy signature of the device. Although we are

presently working with a single mode of failure, we design with the intention that this

model will eventually support multiple failure modes.

Our working dataset is organically formulated by the industrial partner, manually simu-
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lating catastrophic failures and recording the time of the action. In this case, the motor

is pulled from the machine. The energy readings are collected from a retrofitted power

outlet on a 50 Hz basis, providing us with almost 50,000 individual readings across 21

machines. Each reading includes distinct readings of the device’s voltage, power, and

current consumption at each given time step. There is, for now, only one mode of known

failure in this dataset that the model must categorise, examples of which are illustrated

in Figure 5.1. In the figures within, we observe a noticeable change in at least one of

the three axes leading to a failure point. This model should identify the correct failure

based on the recent energy signature of the device.

5.2.2 Data Ingestion

We receive our dataset in the form of a series of JSON documents, where each file

contains an object representing the cycle from start to finish. The point of failure is

marked in the file name with the minute count into the cycle, which are parsed using

regular expressions (RegEx). There is also additional preprocessing to be undertaken

in bringing the raw readings to their actual values.

Due to the nature of the metering hardware and how time series data is uploaded from

edge to the cloud, we are given calibration offsets and scales for each feature of the data:

voltage, power, and current. Each of these must be processed on a per-cycle basis to be

compatible with our existing pipeline.

The preprocessing strategy calls for an additional stage to account for the new format

and nature of the data. We receive a series of readings for voltage, power, and current,

along with a set of constants defining a calibration offset and scale for each of these

features, exampled above in Figure 5.3. These scales and offsets are calculated by the

hardware to make uniform the readings we receive between metering chips. The novel

nature of this hardware and its stability require these constants to be provided with

each cycle, as the hardware is not fully stress-tested and cannot be presumed stable.

Per Algorithm 3, we receive voltage v and power p readings together. Using ν to denote
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{

"CalibrationVoltageOffset": 0.0 ,

"CalibrationVoltageScale": 3.278749942779541 ,

"CalibrationCurrentOffset": 0.0 ,

"CalibrationCurrentScale": 473.06768798828125 ,

"CalibrationPowerOffset": -0.019999999552965164 ,

"CalibrationPowerScale": -0.20392952859401703 ,

"Readings": [{

"V": 0.0 ,

"A": 0.0 ,

"W": -3.0

}, {

"V": 0.0 ,

"A": 0.0 ,

"W": -1.0

},

// ...

]

}

Figure 5.3: Head of a given wash cycle. The offsets and scales provided with the payload

are calibrated by the metering hardware of our smart plug.

the given voltage scale, ρ for the current scale, and ϱ for the current offset, we can

then calculate the correct meter readings and derive the power. We clamp non-negative

values to 0 as a pre-emptive measure in enforcing non-negative output in the model.

These results, accompanied by an identifier for the specific cycle, are grouped as a tuple

and appended to the total available training data.

5.2.3 Feature Engineering

To feed the model raw energy data as-is would not produce insightful results. We

look to feature engineering to provide the model with more meaningful patterns for

classification, referencing moments, and quantitative measures to the fourth ordinal,

similar to the work in [113] for some of the features selected. These include: mean and

variance
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Algorithm 3 Preparing proprietary dataset meter readings into actual values, using
supplied scales and offsets from the payload in Figure 5.3.

1: # apply voltage scale
2: vtg ← min(0, v/ν)
3: # scale and offset current
4: crt ← min(0, (a− ρ)/ϱ)
5: if v > 0 ∧ w > 0 then
6: # derive power if non-negative
7: pwr ← vtg / crt
8: else
9: # clamp to 0
10: pwr ← 0
11: end if
12: return vtg, crt, pwr

µ(j) =

∑N
i zij
N

(5.1)

v(j) =
1

N − 1

N∑
i

(zij − z̄j)2 (5.2)

as well as the skewness, standard deviation, and kurtosis

sk(j) =
NΣN

i (zij − z̄j)3√
NΣN

i (zij − z̄j)2
(5.3)

σ(j) =

√√√√ 1

N − 1

N∑
i

(zij − µ(j))2 (5.4)

kt(j) =
NΣN

i (zij − z̄j)4
[ΣN

i (zij − z̄j)2]
− 3 (5.5)

(deducting 3 for normal distribution as per the definition of [114]) as a measure of the

asymmetry and the combined weight of the tails of a distribution relative to its centre.
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5.2.4 Data Preprocessing

We receive a series of readings for voltage, power, and current, along with a set of con-

stants defining a calibration offset and scale for each of these features. The novel nature

of this hardware and its stability require these constants be provided with each cycle, as

the hardware is not fully stress-tested and cannot be presumed stable. As a pre-emptive

measure in enforcing non-negative output in the model, we clamp negative values to

0. These results, accompanied by an identifier for the specific cycle, are grouped as a

tuple and appended to a wider matrix, forming our training data. Input data is then

resampled into time windows of 3 hours and rolling time windows of 24 hours, both of

which are fed collectively to the convolution layer. Each point in the window is calcu-

lated into new features using the statistical methods described in Equation 5.1-5.5 in

addition to the minimum and maximum range of the window.

In our proprietary dataset, we use an equivalent strategy with 30-second and 5-minute

windows. These windows are conjoined as a single input feature, where the 5-minute

window lag is included alongside all 30-second windows elapsed of the sample as features.

No form of normalisation is applied at any point in pre-processing stages or the model.

When complete, the model will be given a total of 48 features, shared between 3-hour

summations and 24-hour rolling windows. We adopt this approach based on piecewise

linear degradation [115], where the component gradually exhibits signs of degradation

rather than an abrupt failure. As the estimation of each component’s exact lifetime is

the problem itself, we use a general frame of tagging failures up to 24 hours prior in the

pre-treated dataset.

Early training with an uncompensated dataset demonstrated strong performance in

classifying a normal control state. The model displayed the same underperformance in

correctly classifying our given test state. Through experimentation with model perfor-

mance and imbalance ratios, we favour a combination of oversampling and undersam-

pling techniques using the dual-strategy SMOTE-EEN.

We first considered an adaptive synthetic (ADASYN) approach [116] before opting for
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SMOTE-ENN to overcome our data imbalance problem, the ratios for which are denoted

in Table ??. This oversampling strategy holds the more favourable characteristic of its

ability to decide autonomously the required production volume of minority classes. This

technique demonstrated its performance in reconciling an imbalanced dataset [117].

SMOTE-ENN begins with the standard SMOTE oversampling technique, generating

calculated synthetic data points for the minority class to redress the balance. This data

space is then piped to the Edited Nearest Neighbour (ENN) undersampling algorithm

[40], an adaptation of KNN which deletes redundant or noisy instances from the dataset,

which are:

1. Members of the majority class;

2. Not members of the K-nearest neighbour.

Each step is repeatable and, upon completion, delivers preferable results when used in

noisier data spaces [118].

5.2.5 Training

Selecting optimal hyperparameters is a common challenge across many applications of

machine learning. The model hyperparameters are obtained from an exhaustive grid

search within predefined ranges for each parameter, drawn from other works, for our

tuneable parameters, given in Table 5.1. Training of the model is conducted using

softmax function, a loss function well suited in multiclass classification training. Sim-

plicity in the design of the system was a core consideration for its intended purpose

and environment, as illustrated by Figure 5.4, which shows the shared data preprocess-

ing stage described in subsection 5.2.4 and the training process undertaken following.

Selecting optimal hyperparameters is a challenge common across many applications of

machine learning. The hyperparameters of the model are obtained from an exhaustive

grid search within predefined ranges for each parameter, drawn from other works, for

our tuneable parameters, given in Table 5.1. Training of the model is conducted using

softmax, a loss function well suited in multiclass classification training.
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Table 5.1: Hyperparameters selected for model training and evaluation in public and

proprietary datasets.

Variable Description Value (sensor) Value (energy)

η The learning rate, or shrinkage. In
extreme gradient boosting, η gov-
erns the rate at which new trees
are created to correct the residual
error and reduce the influence of
overpowered trees within the en-
semble, which betters the learn-
ing of newer trees in improving the
overall model.

0.01 0.15

γ A regularisation parameter gov-
erning the loss required to further
partition a leaf node of a tree.

0.00015 0.0015

max depth Maximum depth of a tree in the
model, directly influences model
complexity and, by extension, its
propensity to overfit.

25 50

n estimators The tree count available to the
model. Generally, the tree count is
heavily responsible for model com-
plexity.

20 25

one drop At least one tree is always dropped
during the dropout—used in con-
junction with Dropout meet Mul-
tiple Additive Regression Trees
(DART) booster: an approach
which introduces dropout tech-
niques from deep learning reg-
ularisation strategies to gradient
boosting-enabled learning [119].

true true

objective Configures the model for multi-
class classification, mutually exclu-
sive outputs. In this case, we select
softmax as our function, which is
given by yi(zi) =

ezi∑k
k=1 e

zk
.

softmax softmax
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Dataset

Train

Begin grid
search training

Select candidate
hyperparameters

Model
training

Store optimal
hyperparameters

Predict test
laundry cycles

Anomaly
classification

Search
exhausted?

Test

Window
preprocessing

Figure 5.4: Flowchart of the workflow built for this application, showing both the

hyperparameter tuning and test streams. The process is shared between the public and

proprietary datasets alike.

Preliminary training observed promising output from the model in classifying normal

operating state, but struggled to identify any form of degradation with a high false neg-

ative rate. Post-processing, the model shows only 719 failures against 30,000 normal

samples in the original dataset. Such an imbalance is expected as a machine should be

in a normal operating state for the majority of its lifetime. The model exhibited the

same underperforming behaviour in correctly classifying our test state, recorded when

physically removing power from the motor of a laundry machine. Through experimen-

tation with model performance and imbalance ratios, we favour this time a combination

of oversampling and undersampling techniques using the SMOTE-EEN sampler.

5.3 Results

The results of the training and testing runs are given in Table 5.2 for the original public

dataset, and in Table 5.3 for our proprietary dataset. Each records performance evalua-
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Table 5.2: Training evaluation on original dataset.

Designation Normal 1.0 2.0 3.0 4.0

Precision 0.99 0.98 0.93 0.99 0.98

Recall 0.98 0.99 1.0 1.0 1.0

F1 score 0.97 0.99 0.99 0.99 0.98

Table 5.3: Training evaluation on proprietary dataset.

Designation Normal 1.0 (pulled motor)

Precision 0.95 0.99

Recall 0.99 0.95

F1 score 0.97 0.97

tions for all respective failure designations as well as normal operating state. We note a

consistently high F-1 score across both datasets of around 97% in failure identifications

and a well-balanced hit rate despite the training size differential. As a baseline, we

train a support vector machine (SVM) [120] classifier, a classical supervised learning

model, on the same dataset. The SVM performs comparatively lower at average PPV

= 0.9581, TPR = 0.9566, F-1 = 0.9565, as well as at a noticeably slower training rate.

The XGBoost-enabled model has a higher overall reliability in designating failure states.

Further, the feature engineering approach in this paper has shown its effectiveness, as

the SVM baseline still attains a 95.6% overall accuracy.

5.4 Conclusions and Future Directions

To conclude, this paper explores the notion of applying predictive maintenance tech-

niques, typically involving heavy industrial machinery, to a domestic setting, substitut-

ing intricate sensor readings for power signatures from a retrofitted smart plug. The

model developed classifies multiple potential points of failure. Our work begins with

omitting the maintenance and surrounding records of machines in a public dataset, re-

lying solely on sensor readings to make informed fault diagnoses. We then detail the

revisions and changes undergone to adapt this classifier to the new, real-world, higher-
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frequency dataset. Special care is paid to preprocessing stages, most notably the data

imbalance—an inherent challenge in fault diagnosis where normal operating state vastly

outweighs failure samples and model learning complexity. We employ an extreme gra-

dient boosting ensemble, trained on rolling windows of statistical features running up

to a single mode of known failure, demonstrating we can successfully develop according

to the temporal nature of our data with a negligible effect on its overall performance of

97.3%.

We achieved a similar score in our public dataset for benchmarking, despite omitting

detailed failure, maintenance, and age records. This study faced the pervasive limitation

of an imbalanced dataset. The failure records account for a vast minority in the dataset,

which required thoughtful feature engineering and preprocessing techniques to balance

out the dataset before training of the ensemble could commence. After discovering a

large data imbalance, we compensate by oversampling according to the SMOTE-ENN

technique.

In terms of future work, we would be interested in exploring how distant in time the

model is configurable to accurately predict and differentiate component-level failures

from a more diverse dataset. Further, we would be interested in gaining some example

data of a machine experiencing multiple failures and then exploring the model’s adapt-

ability toward multi-label classification, i.e., designating multiple (imminent) failures.
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Chapter 6

Conclusions and Future Directions

This thesis presents and evaluates the architecture, data processing, and performance

of multiple distinct machine learning models, each engineered to solve unique challenges

and performing with notable competence in their problem space. Although differing in

purpose and technology, the models form strong links and, used in conjunction, can offer

significant insight as to the usage and condition of a device from its power signature

alone, along with its prolongation.

We first explore the use of autoencoder-based reconstruction as a means of anomaly

detection in Chapter 3. This approach is well-researched, however, it does not fully

address our challenges, the most prominent being that the system must operate in rela-

tively unknown environments with different patterns of energy cycles. To address this,

we first build an incremental clustering system based on K-medoids, which allocates

complete cycles into what become individual data streams later in the system. These

streams carry a matched parameter set for an autoencoder ensemble, hot-swapped in

real time depending on the active cycle. In this design, the model first spends a prede-

fined amount of time learning the track’s normal behaviour for future reconstruction.

When a parameter set is trained up to, or beyond, this grace period, future readings

relevant to the parameter set are reconstructed through the ensemble, and any anoma-

lous behaviour is flagged in the returned result. To continue training in an online
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fashion, completed cycles are resubmitted to the system as training data. The model

demonstrates competent output on simulated (therefore known) injections, and the con-

figurable grading mechanism can designate the anomalies we inject as our test data. We

evaluate the model on both point and collective strategies, accepting a single marked

failure as success or requiring the entire injection to be flagged as anomalous.

Then, in Chapter 4, we employ an online deep learning technique in predicting the

interval between one event and the next—in this case, machine cycles. We begin with

classic statistical methods of temporal point processes. However, certain models are bet-

ter suited to different dynamics and complexities and require careful selection. Given

this model is for an unknown environment, where usage may be infrequent or hyperac-

tive, it is not possible to make such presumptions. Therefore, we look to relegating as

much of the tasks of point processes to a neural network. In this case, we propose an

LSTM recurrent neural network designed to produce direct outputs from its training

data, given only as timestamps, processed into rolling lookback windows. We train on

a rich and varied dataset and see strong performance in data samples of varying usage.

To support this model’s adaptability for transfer into new environments, the model

is equipped with an episodic memory, in which previous interval tracks are stored for

retraining.

Finally, in Chapter 5, we look to develop a machine learning model capable of identify-

ing as well as designating known failures in electrical appliances. The original approach,

trained on statistical features of the dataset, struggled to correctly classify anything be-

yond the normal operating state. We found this is due to data imbalance exceptionally

severe for temporal data, and oversampling forfeited any benefits of temporal stages.

We then looked toward extreme gradient boosting, a technique that has seen remarkable

performance in recent studies, and applied it to the same problem. We then adapt the

model to our newer real-world dataset collected from new metering hardware on a laun-

dry machine. This new form of data required additional preprocessing stages, bringing

the new data shape into a workable format, in the data pipeline. We then account for
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the slight difference in the problem it is tasked with solving in the model’s hyperpa-

rameters, primarily by reducing the model’s complexity. Following these adjustments,

the model’s performance was brought up to comparable competence with the original

design and dataset.

6.1 Future Directions

The work of this thesis opens avenues to exciting future possibilities. The models

proposed within, when deployed into a consumer environment, can facilitate and com-

plement useful, higher-level features. For example, detecting faults can serve push no-

tifications to both the manufacturer and the user of the machine’s failure (and precise

root cause) and organise a repair before catastrophic failure. Similarly, a higher-level

framework may record the intervals and activity of a laundry machine to calculate,

track, and reorder detergent; or it may detect an overload of components within based

on the same output from the model.

In terms of technical improvements, for the anomaly detection system of Chapter 3,

there is an inherent risk that the system begins training from an already-anomalous

machine. We would be interested in researching an approach that could address this,

perhaps based on transfer learning. As a preliminary thought, we suggest monitoring the

autoencoder’s learning progress during initial training, flagging a failure to converge as

potentially anomalous. In terms of future work, our attention would immediately focus

on the time complexity of the incremental clustering algorithm. Although lightweight,

it may eventually become too intensive to process on edge hardware. A preliminary

thought is to develop a thinning mechanism, which prunes excessively dense clusters to

reduce the dataset size, whilst preserving the identity and strength of the cluster.

Similarly, the model described in Chapter 4 also requires consideration for its first in-

stallation in a new system. The episodic memory part of the LSTM encourages stronger

consolidation in new environments. We would be interested in regulating its capacity

as learning improves so as not to avoid overfitting and not forfeit the varied training
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it has received. Likewise, a high-performing model may have its memory capacity shut

off completely, as we must still consider the model is running on edge hardware and be

conscious of the intense training process of recurrent neural networks.

For the failure prognosis model in Chapter 5, our primary interest in its future devel-

opment is to adapt the model to multi-label classification—offering multiple failures (if

existing) from a single reading. To achieve this we must first understand how the target

machines behave with multiple impending failures, as we were only able to physically

pull the motor cord from inside the laundry machine to gather live fault data.

In a wider sense, part of the original objective of this research was to onboard each of the

final models into an all-in-one metering system; one that could intelligently catalogue its

usage (autoencoder-based reconstruction as a means of anomaly detection in Chapter

3), dynamically place itself into a low-power state during predicted periods of idleness

(a novel LSTM model trained on temporal point processes from cyclic machine data

in Chapter 4), and monitor and diagnose where available for a set of known faults

based on the same dataset. Each model is designed and trained on the same nature of

data, produced by the same source. It would be a fascinating endeavour to architect

a framework that can bootstrap, on edge, to the firmware level of our data source’s

metering technology.
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