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ABSTRACT 

Rheumatoid arthritis (RA) manifests through distinct phases along an inflammatory 

arthritis continuum (IAC), spanning from a pre-clinical phase to diagnosis and treatment. 

While T-cell subsets have received considerable attention in RA pathogenesis and some 

of them are used as biomarkers, other lymphocyte subsets (LS) remain under-explored, 

particularly for their possible value as biomarkers. This study aims to evaluate the 

biomarker potential value of 18 LS across the IAC, validate a novel dry tube (DT) 

technology against conventional wet tube (WT) methods, and assess the impact of 

freezing samples on flow cytometry (FC) analysis. 

A total of 210 individuals at-risk for RA comprising progressor (n=93) and non-

progressors (n=117), 306 Early Arthritis Clinic  evolving to  RA (n=206) versus non-RA 

(n=100),  and 205 early RA patients receiving methotrexate (MXT) treatment (106 of 

whom achieved remission) were selected across the IAC from Leeds observational 

studies and analysed for 18 LS. Multivariate logistics prediction models were constructed 

for disease progression, diagnosis, and MXT-induced remission. Results notably 

revealed enhanced predictive models incorporating B-reg, NK-cells, and CD8+T-cells 

alongside previously established CD4+T cell subsets for progression in at-risk cohort.  

Blood samples (n=41) were tested using DT (designed in collaboration with Becton 

Dickinson) compared to WT for T-cell and Treg subsets. Using DT significantly reduced 

turnaround time (about 40%) and error rates however only cell surface staining proved 

possible and accurate while intra-cellular staining failed to produce data. 

The effect of freezing PBMC on cell viability for the enumeration of LC was assessed 

using matched paired comparison analysis (frozen versus fresh samples, n=15) and the 

capacity to generate data from 131 frozen samples altogether using 4 FC panels. As 

expected, freezing PBMC greatly reduced cell viability compared to fresh samples, with 

a threshold of ≥15% viability enabling accurate LS enumeration. Furthermore, freezing 

altered the ability to detect certain T-cell subsets due to the sensitivity of some markers 

(notably CD62L) to freezing. 

This study provides several novel insights. First, with respect to the pathogenesis of RA,  

new clues as to events that could be involved in the progression to RA in the pre-clinical 

disease course were identified while my work offered additional stratification markers 

that could be used stratification towards clinical prevention studies. Secondly, it 

demonstrated the feasibility of using DT for T-cell subset enumeration with a gain of time 

and capacity for standardisation of this assays. Lastly defined a rule (viability limit & need 

for adapting markers) that would ensure reliable FC data can be obtained from frozen 

samples allowing for multicentre/retrospective studies where freezing is inevitable.  
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Chapter 1  

Introduction 

1.1 Biomarker translational research 

The foundation for precision medicine begins with better patient stratification and 

accurate prediction of heterogeneous outcomes associated with most disease 

conditions. Identification of robust predictive biomarkers will be important to lay 

such a foundation. In a disease model such as rheumatoid arthritis (RA), this was 

shown to be achievable with a biomarker detection technology such as flow 

cytometry (FC) [1-9].  Biomarkers, besides enabling the identification of 

individuals who are likely to progress to a particular outcome, have the greatest 

potential for guiding informed clinical decisions. Furthermore, biomarkers being 

rooted in the pathophysiologic mechanism of diseases and reflecting the 

disturbances of cellular pathways directly involved in their pathogenesis are more 

likely to be robust [10, 11].    

In RA, immune cells are likely to offer such biomarkers value as deeply related to 

the pathology hence being able to  measure their characteristics is therefore 

highly desirable. 

This PhD will investigate the value of immune cells as biomarkers for the 

management of RA. The technology of choice for biomarker measurement here 

will be FC. 
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1.2 Rheumatoid Arthritis (RA): A disease model for validation of FC 

biomarkers 

RA is the most prominent member of a vast number of autoimmune-mediated 

inflammatory diseases with a significant burden on patients and society [12]. It is 

also a form of chronic systemic inflammatory polyarthritis with an autoimmune 

component. It is characterised by swollen, stiff, and progressive destruction and 

deformity of the joints of the hands, knee, and feet [13, 14] occurring very rapidly 

in 80-85% of patients within the 1st 2 years of the disease onset [15, 16]. It affects 

~0.5% to 1% of the overall western population [17], 0.06 to 3.4% across Africa 

and the Middle East [18] and more females than males at a ratio of 3:1 [19, 20]. 

The disease affects greater than >450,000 of the UK population with a 32% 

increase in the risk of mortality compared to people of the same age without the 

disease [21-24] with about 1.5 men and 3.6 women developing RA per 10,000 

people per year in the UK [25]. Furthermore, the functional capacity in RA patients 

gradually deteriorates with time [26]. 

1.2.1 Clinical signs and symptoms of RA 

The characteristic features of the disease are symmetric polyarthritis affecting the 

small joints of the hands, knee, and feet, with early morning stiffness (EMS) [27]. 

Despite predominant articular manifestations, the disease progression may vary 

from mild, or self-limiting in some cases [28, 29] to an aggressive form [30] that 

may involve extra-articular manifestation [31]. With approximately 1% of the UK 

population suffering from RA, and ~15% of patients having severe disability 

impaired quality of life, and reduced life expectancy [13, 32, 33]. RA is a serious, 

painful, and debilitating condition, despite not being immediately life-threatening. 
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1.2.2 The RA disease burden: economic cost and personal burden 

The incidence and prevalence of RA are increasing with considerable morbidity 

worldwide [12, 34-40]. Although treatment strategies and management 

approaches have improved substantially, only a few patients (about 20%) 

nowadays achieve and sustain clinical remission for those periods of time. 

However, accessing RA treatment is undoubtedly a challenge complicated by the 

high cost of certain drugs (ie biologics) on limited healthcare budgets [41]. 

Consequently, this high cost of treatment, creates  psycho-social and economic 

burdens for the patients, affecting their quality-of-life [42-47]. With RA affecting 

individuals in their productive age (mid 40 – 60 years) with the associated 

functional disabilities, it is conceivable that the indirect cost of RA may outweigh 

direct patient care.  

Costs relating to disabilities and reduction in earning capability as well as reduced 

life expectancies are, often difficult to quantify and constitute the indirect cost of 

RA also termed intangible cost [48-50]. Many RA patients (up to 90%) also 

experienced chronic fatigue with a significant level of absenteeism from work due 

to fatigue [51, 52], or not being able to work leading to about 71% job loss for 

patients at working-age [53, 54], while the Early RA Network inception cohort 

study (ERAN) reported that 10% of patients even with the early RA stage could 

not sustain their jobs. Similar findings have been reported in the USA [55, 56]. 

The greater risk of disability among RA patients has been linked to depression 

[57, 58] and persistent fatigue [59] contributing further to the reduced work ability 

experienced by RA patients. 
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Direct costs representing patient management, include diagnostic, 

hospitalization, therapeutic intervention, mechanical aid for patients, 

physiotherapy, and nursing time [41]. It varies between countries given the 

variation of healthcare organisations) [48, 60] It is evident that RA is associated 

with functional and psychological disabilities that pose an added substantial 

healthcare burden and costs [22] including, but not limited to, hospitalizations in 

up to 8.6%, of patients in Germany while a bit less in the UK or Spain [61]. RA 

flare (35%) and pulmonary infections (25%) are top on list for RA-related 

hospitalisation, confirming the high healthcare resource utilization from RA 

management. This also includes the frequency of occupational and 

physiotherapies used by patients, with a greater percentage of UK patients using 

both services (30.1%/44.7%) compared to patients in Germany (11.8%/33.3%) 

or Spain (2.9%/15.5%)[61]. 

There is also increased functional damage in the late disease stage, 

necessitating the need for orthopaedic surgery in most patients [62]. This 

highlights another huge direct cost and impact on the patients’ economy adding 

to the burden of rheumatic disease (such as OA) [63]. Evidence has shown also 

that those who did not get access to effective treatment early in their disease 

were hospitalized more often than those treated early [61]. 

Later in the disease course, comorbidities such as infection (due to treatment 

related immune suppression), depression, and cardiovascular disease are a 

great concern and source of worry for RA patients [64, 65].For instance, RA 

patients have an increased risk of developing cardiovascular disease compared 

to the general population. This increased risk is attributed to chronic inflammation, 

traditional cardiovascular risk factors, and the use of certain RA medications [66]. 
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A study emphasized the importance of addressing both RA disease activity and 

cardiovascular risk factors to optimize treatment outcomes and reduce the 

burden of comorbidities in RA patients [67]. The burden of the disease is far 

greater in patients with severe disease than in those with low or mild disease 

activity [68]. This suggests the need for an effective treatment approach to 

achieve a low disease activity that would reduce patients’ pain, burdens as well 

as hospitalizations, and its associated costs due to accumulation of damages as 

well as added burden of developing comorbidities. 

In addition to the holistic approach of RA management, targeting depression as 

part of routine clinical care could be a positive option towards reducing the likely 

economic costs for the patient, family, and society [22, 69]. Table 1 summarises 

the significant contribution of RA on the economic burden both of patients as well 

the society [70] particularly in Western countries where work-related disabilities 

and sick leaves cost the economy some billions of dollars [71]. 

Although RA management seems to have improved substantially over the years, 

the huge economic burden still associated with RA and impacting not only the 

patients but also the society at large highlights gaps in the RA management 

approach and the need for reducing, if not reversing, the debilitating consequence 

of RA in individuals of productive age. 
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Table 1 Country estimated cost for RA management. 

Country Direct and indirect cost  Ref 

UK £3.8 and £4.8 billion 
(US$5.1–6.4 billion)[ 

[23, 69] 

USA ~ $128 billion [72] 

Canada, $4.4 billion [73] 

Europe; 
 
 
 

•             France 

~ €3–5000 per patient 
(US$3589-5982) 
 
 
222 million Euros 

[69] 
 
 
[74] 

 

 

1.2.3 Established risk factors for RA 

Established risk factors for RA encompass a multifaceted array of genetic, 

environmental, and lifestyle influences. An understanding these risk factors would 

not only aid in early detection but also informs preventive strategies and 

therapeutic interventions, thereby shaping approaches to mitigate the impact of 

this chronic autoimmune disease. 

1.2.3.1 Genetic risk factor  

There is an established role for genetic factors in the risk, progression, and 

severity of RA [75].  First-degree relatives remain on top of the established risk 

factors conferring up to 2-4-fold increased risk for developing RA [76]. This has 

therefore confirmed the genetic contribution to RA susceptibility, also verified in 

twin studies suggesting an overall 30% genetic contribution [77, 78]. The 

strongest genetic association with RA is located on the (Human leukocyte antigen 

– disease receptor Beta 1 (HLA–DRB1)- locus, in particular a specific amino-acid 

motif in the gene (the “shared epitope" (SE) which has been linked to RA 

susceptibility and estimated to account for >65% of heritability [79, 80], while 

leaving other risk factors account for the remaining 35-45% variance in 
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developing RA [81].  Other studies have, however, reported much lower 

estimated heritability (∼50% for anti-citrullinated protein antibodies (ACPA)-

positive RA and ∼20% ACPA-negative), suggesting a lower genetic risk 

contribution of SE [80, 82-84]. Several assumptions and the different methods 

used in heritability estimation by different studies [76] may  perhaps explain these 

inconsistencies in results. RA severity, mortality and treatment response have 

also been linked to different haplotypes of HLA-DRB1[85]. 

Genome-wide studies have further associated multiple genetic loci, defining >100 

non-HLA risk loci [79, 86, 87]. The majority of these genes are related to T-cell 

immune mechanisms and antigen presentation [8, 88] such as Protein tyrosine 

phosphatase non-receptor type 22  (PTPN22), cytotoxic T-lymphocyte antigen-4 

(CTLA4) and Signal transducer and activator of transcription 4 (STAT4), which 

are implicated in T-cell activation and might account for about 5% variance in 

genetic risk associated with developing RA [79, 89]. PTPN22 has been 

associated with an increased risk of developing autoimmune diseases, including 

RA. This gene encodes a phosphatase that negatively regulates T-cell receptor 

signalling which may lead to dysregulated immune responses and contribute to 

the development of the disease [90, 91]. CTLA4 is a protein receptor that 

downregulates immune responses by inhibiting T-cell activation. Genetic 

variations in CTLA4 have been linked to susceptibility RA. Reduced expression 

or function of CTLA4 may result in unchecked T-cell activation and contribute to 

autoimmune inflammation seen in RA [92, 93]. STAT4 is a transcription factor 

involved in the signalling pathways of several cytokines, including interleukin-12 

(IL-12) and interferon-alpha (IFN-α). These cytokines play crucial roles in the 

differentiation and activation of T-cells and other immune cells.  Dysregulated 

STAT4 signalling may contribute to aberrant immune responses and 
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inflammation observed in RA patients [94, 95]. Furthermore, single-nucleotide 

polymorphisms (SNPs) coding for molecules that regulate T-cell activation have 

also been associated with RA [86]. However, these loci appear less valuable in 

predicting RA development due to their low effect size [96].  

Altogether, only about 13-18% of the total RA genetic risk has been accounted 

so far by all currently known genetic risk factors combined [79, 86], which 

suggests that genetic predisposition is unlikely the sole determinant of heritability.  

Evidence of selected gene–environment interactions in RA development has 

been proposed, notably for smoking and SE [80, 96, 97], indicating that such 

factors may  likely play a ma or contributory role. 

1.2.3.2 Environment risk factors 

There has been a substantial interest in associating environmental and lifestyle 

risk factors with the pathogenesis of RA.  A considerable amount of evidence has 

demonstrated a close interaction between the gene loci-HLA-SE and smoking 

[98, 99]. Besides smoking, other factors such as infectious organisms [100, 101], 

air pollutants (fine particulate (PM 2.5) [102, 103], ozone exposure, and living 

near high-traffic roads [104, 105]  have also been implicated in the risk of 

developing RA.  Most results come from single-centre studies and results across 

multiple studies have also been inconsistent. Therefore, only smoking has shown 

a relatively consistent association with RA as the strongest established 

environmental risk factor estimated to account for about 20% to 30% of this   risk 

[106]. 
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1.2.3.3 Genetic-Environmental interaction 

Gene-environment studies showed that positivity for HLA-DRB1 alleles (SE) and 

the PTPN22 polymorphism constitute the major risk resulting in the production of 

rheumatoid factor (RF) and ACPA with smoking [107, 108]. While the driving 

factors responsible for autoantigen generation (citrullinated self-protein) which 

serves as the trigger for autoantibodies production remain unclear, a range of 

inflammatory processes such as non-specific local inflammation and formation of 

neutrophil extracellular traps (NETs)   as a result of gingivitis, bad mouth hygiene 

and dysbiosis of the buccal microbiota may be implicated [109-113]. NETs are 

web-like structures composed of DNA, histones, and antimicrobial proteins 

released by neutrophils to trap and kill pathogens.  NETs have been implicated 

in promoting inflammation, autoimmunity, and tissue damage. They can activate 

immune cells, stimulate the production of pro-inflammatory cytokines, and 

contribute to the formation of autoantibodies [113-117]. For instance, NETs 

contain citrullinated autoantigens, such as citrullinated histones and other 

proteins. These citrullinated proteins are recognized by the immune system as 

foreign antigens, leading to the production of autoantibodies, such as ACPAs 

[113]. ACPAs are characteristic markers of RA and contribute to the autoimmune 

response in RA patients. Additionally, they release pro-inflammatory molecules, 

including cytokines and chemokines, which activate immune cells such as 

macrophages and dendritic cells. These activated immune cells further propagate 

inflammation within the joints, leading to synovial inflammation and damage to 

cartilage and bone [115, 116].   

There are several mechanisms proposed to mediate this gene-smoking 

interaction. One mechanism suggests that in the context of HLA-SE, smoking 

plays a role through the citrullination of self-protein and subsequent production of 
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autoantibodies [118]. For instance, increasing levels of expression of extracellular 

peptidyl arginine deiminase 2 (PAD2) in the lungs plays a role in the citrullination 

of mucosal proteins [98]. Smoking was also shown to alter the DNA methylation 

pattern of the HLA-DRB1, potentially affecting it expression [119, 120].  

Another mechanism proposes a role for local inflammation at mucosa surfaces 

[120-122] such as periodontal and pulmonary disease, also observed in smokers 

[100, 101]. It has been suggested that biological interactions occurring at these 

sites might promote inflammation and autoimmunity but whether these mucosa 

surfaces are the initial site of autoantibodies development is not fully understood 

[123-125]. Smoking has been associated with elevated bacterial colonisation as 

well as microbiome dysbiosis of the pulmonary mucosal surface [126], and some 

studies  have provided evidence of an association between such dysbiosis and 

an early breach in tolerance mechanisms [127-129].  

Microbial mucosa-restricted processes influencing RA pathogenesis have 

implicated a few bacteria, particularly those involved in periodontal infection given 

their specific role in initiating citrullination of host proteins leading to the 

generation of RA-related autoantibodies. Infectious organisms such as 

Porphyromonas gingivalis [100, 101], Anaeroglobus and Prevotella species [130] 

as well as Aggregatibacter actinomycetemcomitans [131] responsible for 

periodontitis, have been positively associated with autoimmunity in RA. The 

model underpinning their association with RA involves the production of enolase 

and bacterial (Porphyromonas gingivalis) encoded Peptidylarginine Deiminase 

(PAD) leading to citrullination of self-protein or production of leukotoxin-A 

(Aggregatibacter actinomycetemcomitans) inducing hypercitrullination in human 

protein (notably presented on NETs) which potentially leads to generation of 

autoantigens and trigger ACPA production.  
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Porphyromonas gingivalis  a key driver of periodontal inflammation has been 

identified as responsible for  PAD-mediated citrullination of the mucosa surfaces 

and may play a critical role in the initial break of immune tolerance [132-134]. 

Increased expression of human PAD-2 and PAD-4 (protein and mRNA) from the 

local periodontal tissue as well as citrullinated proteins in inflamed gingiva both 

support the hypothesis that periodontal inflammation contributes to the 

inflammatory burden that may lead to the breach in tolerance [135]. The 

importance of the site of antigen presentation, such as local periodontal tissue, in 

RA development lies in the concept of "molecular mimicry" and the initiation of 

autoimmunity [136-138]. Periodontal pathogens, such as Porphyromonas 

gingivalis possess proteins with structural similarities to host proteins, including 

citrullinated proteins. When the immune system responds to the presence of 

these pathogens in the periodontal tissue, it may also produce antibodies that 

cross-react with similar epitopes on host protein and can lead to the development 

of autoimmunity [100, 139-142].  

1.2.3.4 Comorbidities as a risk factor for RA 

Pre-existing comorbidities may also impact disease onset and progression. 

Conditions such as cardiovascular diseases (CVDs) [143], osteoporosis [144], 

and certain infections [145] discussed in the previous section have been linked 

to heightened RA risk [64-66]. Disorders like lupus and psoriasis often coexist 

with RA, suggesting shared underlying mechanisms [146]. Metabolic syndromes, 

including obesity and diabetes, also contribute to increased susceptibility [147]. 

Comorbidities represent important risk factors for RA development and contribute 

to disease severity and treatment outcomes. Addressing comorbidities as part of 



 
 

12 | P a g e  
 

comprehensive RA management is crucial for improving overall health outcomes 

and reducing the burden of disease in RA patients. 
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1.3 Pathogenesis of RA 

The exact pathogenesis of RA is not yet fully understood. However, a model 

describing the aetiological hypothesis of RA proposed that specific environmental 

factors such as smoking altogether in a genetic-restricted context (HLA-DR 

shared epitope), may trigger both cellular and humoral immune response with the 

potential to contribute to RA pathogenesis [120] as illustrated in Figure 1. RA is, 

however, a very heterogeneous disease with various clinical presentations. Some 

autoimmune processes are thought to be involved in addition to infiltration of 

immune cells into the joint tissue resulting in inflammation, cell alterations, 

expression of cytokine, and other mediators, notably enzymes of tissue 

degradation [14, 75, 148-151] . 

The autoimmune processes are known to play a role as evidenced by linkage 

with HLA-SE [152, 153], autoantibodies production (anti-citrullinated protein 

antibody, ACPA and rheumatoid factor, RF) [154-159]. Both features supported 

the hypothesis of a T-cell-related disease,  developed in the late 80s [160-162] 

and backed up more recently by the genetic risk associated with many T-cell-

related genes [8, 88, 163]. The successful response to a therapeutic intervention 

targeting T-cells with abatacept [163, 164], further strengthens this hypothesis. 

However, there is very little T-cell clonality in RA and cytokines are expressed by 

many other cells [165, 166]. The T-cell centric hypothesis has therefore always 

been challenged while never disproven. 
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Figure 1: An overview of RA pathogenesis.  

The figure illustrated the key players driving RA pathologic events  ranging from gene-

environment triggers and immunological signatures leading to clinical synovitis and bone 

damage. Receptor Activator of Nuclear factor Kappa B Ligand (RANKL), interleukin (IL), 

Tumour necrosis factor (TNF), Matrix metalloproteinases (MMPs). Figure Created with 

BioRender.com. 
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1.3.1 Systemic autoimmunity as an early biomarker of the breach of 

tolerance/autoimmunity   

Before the onset of clinically evident inflammatory arthritis (which is presented on 

a physical examination as a swollen joint), there is a phase of detectable systemic 

autoimmunity. This is a period when RA-related autoantibodies, notably ACPA 

and/ or RF are detectable [167-175]. However, the key biological events that lead 

to the initial breach of self-tolerance at this early stage of the disease are yet to 

be fully elucidated. While not consistent across all studies [176], several risk 

factors have been identified that could play a role in the initiation, and propagation 

of autoimmunity before the development of clinically evident inflammatory 

arthritis.  This early stage, RA is also characterised by autoantibodies response 

to a small number of self-antigens [172-175] and the development of systemic 

inflammation [177, 178]. 

Experimental arthritis model of the initial events leading to a breach of self-

tolerance showed that a Th1 and Th17 response to antigen resulted in 

arthropathy [179]. This was characterised by IFN-γ production (rather than IL-17) 

and associated with spontaneous induction of autoreactive T and B cell response. 

These early events are thought to be followed by the expansion of autoimmunity 

and systemic inflammation over time, with the development of innate [180] and 

adaptive responses [3] , increased widening of the ACPA isotypes or repertoire 

(epitope spreading) and other autoantibodies, and subclinical inflammation 

before progression to IA occurs [169]. ACPAs belong to different immunoglobulin 

isotypes, including IgG, IgM, and IgA. However, IgG ACPAs are the most studied 

and clinically relevant isotype in rheumatoid arthritis (RA) due to their strong 

association with disease severity and diagnostic utility [181, 182]  . 
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In humans, the presence of autoantibodies directed against citrullinated and 

carbamylated antigens before clinical synovitis manifests demonstrated that 

breakdown in immune tolerance precedes RA manifestation [183], particularly in 

genetically predisposed individuals.  Evidence of the absence of synovitis in the 

presence of elevated autoantibodies (ACPA/RF) in the peripheral circulation 

further strengthens this hypothesis [172-175, 184, 185].  

The primary site where this event is initiated remains controversial. However, 

relevant events leading to the initial systemic breakdown of tolerance are thought 

to start outside the joint [186]. A defect in T-cell peripheral tolerance is believed 

to contribute, whereby T-cells specific for post-translational modified antigens 

escape thymic selection [186]. This results in a thymic education that does not 

completely remove T-cells recognising such protein modifications. The fact that, 

RA-specific autoantibodies are not directed against self-peptide sequences but 

against a protein that has undergone the same type of specific post-translational 

modifications (PTM) results in a high degree of multi-reactivity [187, 188]. 

Furthermore, loss of tolerance to PTM self-peptide is characterised by epitope 

spreading leading to the expansion of the repertoire of peptides recognised 

notably by ACPAs as the disease progresses [189]. Avidity maturation of ACPAs 

increases from the phase of manifestation of systemic autoimmunity towards the 

time when RA diagnosis is made [189, 190] suggesting that the maturation of the 

autoimmune responses directed against citrullinated self-antigens may be 

associated with disease progression across the IA.   
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1.3.2 Characterisation of  Cell and cytokines interaction (cell and 

pathways)  

Antigen-presenting cells (B-cell, macrophages) via human leukocyte antigen 

(HLA) or major histocompatibility class II (MHC-II) molecules are efficient in 

presenting citrullinated self-proteins (autoantigens) to CD4+ T-cells [107, 191, 

192]. The interaction of these T-cells with autoreactive B-cells arising from 

impaired central and peripheral B-cell tolerance checkpoints in RA patients could 

subsequently lead to the production of autoantibodies (e.g., ACPA ) in response 

to a large spectrum of citrullinated proteins [120, 191, 193-198]. However, T-cell 

frequencies for such post-translational modified (PTM) proteins are not high if 

detectable at all [186]. 

 

T-cell 

T-cells are effectors of cellular immune response which mature in the thymus and 

expand rapidly upon the encounter of their cognate antigen under the influence 

of IL-2 [199-201]. They function as helper-CD4+ T-cells or cytotoxic CD8+T-cells, 

providing cytokine signals to enhance B-cell responses through direct recognition 

of specific antigens [199].  

The role of T-cells in RA pathogenesis has been the subject of numerous studies, 

recently reviewed in [202]. In the last ten years, extensive work has been done to 

understand the function of T-cells in RA.  Even though the pathogenic role of T-

cells is poorly understood, evidence indicates that T-cells are actively involved in 

the persistence of inflammatory immune responses in RA [203]. 
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For a long time, it was believed that Th1 cell secretion of proinflammatory 

cytokines was the primary factor in the pathogenesis of RA. CD4+ T-helper cells, 

notably Th1 cells may be important actors in the pathogenesis of the disease. In 

RA patients, they produce and secrete a wide range of essential inflammatory 

mediators, such as tumour necrosis factor (TNF), interferon-gamma (IFN), and 

IL-2 which are important players in cell-mediated immunity and can activate 

macrophages into antigen-presenting cells (APCs), which enhances the antigen 

presentation process via MHC-II molecules [202, 204]. However, their activity in 

RA was shown to be defective being biased to  IFN-gamma cytokine production 

only rather than all [205-207] as well as not completely polarised (Th1 expression 

not being increased as much) and not fully activated with IL-2 production notably 

lower [208]. On the other hand, Th2 polarisation and capacity appear to be 

untouched in RA [209].  

The initiation and maintenance of chronic inflammation are mediated by a variety 

of T-cell phenotypes and their associated effector mechanisms (Figure 2), which 

contribute to the development of RA [210]. The identification of additional CD4+ 

T-cell subsets, such as Th17 and Treg [211-217], Th2 [218], Th9 [219, 220], and 

Tfh and Tph cells [220, 221],  however, have provided more recent insight 

showing the involvement of the T-cells in RA pathogenesis.  
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Figure 2 : The role of T-cell subsets in RA.  
   Briefly, in patients with rheumatoid arthritis (RA); 

▪ T-helper 1 (Th1) cells exhibit heightened activity, releasing pro-inflammatory mediators 
like tumour necrosis factor-α (TNF-α), Interleukin-2 (IL-2), and interferon-gamma (IFN-
γ), fuelling disease activity [202, 221] 

▪ T-helper 2 (Th2) cells secrete cytokines such as IL-4, IL-5, and IL-13. These anti-
inflammatory cytokines are primarily involved in activating B cells, facilitating antibody 
class switching, and promoting Th2 differentiation [218] 

▪ T-helper 9 (Th9) cells are increased in the synovial fluid and tissues of  RA patients. IL-
9 derived from Th9 cells may play a role by promoting Th17 differentiation, MMP-9 
production, and enhancing neutrophil survival [219, 220] 

▪ T-helper 17 (Th17) cells secrete IL-17, which stimulates the production of matrix 
metalloproteinases (MMPs), chemokines, and pro-inflammatory cytokines which fuel 
disease activity [211, 212] 



 
 

20 | P a g e  
 

▪ T follicular helper (Tfh) cells can engage with B cells, activating autoreactive B-cells 
and initiating autoantibody production. They express elevated levels of CXCR5, B-cell 
CLL/lymphoma 6 (BCL6), C-X-C motif chemokine ligand 13 (CXCL13), the inducible T 
cell co-stimulator (ICOS), programmed death-1 (PD-1), and IL-21, all crucial for 
interacting with B-cells [222, 223] 

▪ T peripheral helper (Tph) cells, characterized by low levels of B-cell lymphoma 6 protein 
(BCL6) and lack of C-X-C chemokine receptor type 5 (CXCR-5) expression in RA 
synovial tissue, significantly influence B-cell maturation, proliferation, trafficking, and 
survival upon activation [222] 

▪ Tregs primarily suppress autoimmune processes by secreting anti-inflammatory 
cytokines like IL-10, IL-35, and transforming growth factor-beta (TGF-β). However, 
while Treg cells can restrain the proliferation of effector T-cells, they are unable to inhibit 
the production of inflammatory mediators such as IL-6 and TNF-α as well as restrain 
B-cell activation [213-217] 
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Our group has documented a significant alteration in T-cell dynamics in RA, 

demonstrating that inflammatory processes drive abnormal T-cell differentiation 

in RA [7]. Essentially, T-cell differentiation following the initial activation of an 

antigen-inexperienced "naive" T-cell results in the development of a "memory" 

phenotype, enabling a quick and forceful response to a secondary challenge, that 

lasts for many years after the initial antigenic encounter. It involves numerous 

molecular processes that are still poorly understood but which transform naive 

cells into highly responsive cells although very restricted, quickly dividing into 

memory cells.  

While CD8+ T-cell differentiation has been extensively studied, CD4+ T-cell 

differentiation appears to differ in several ways. Naive CD4+T-cell (Tho) 

activation leads to a commitment to either a Th1 or a Th2 phenotype (or other 

polarised cells) [202]. This entails the epigenetic reprogramming of a certain set 

of genes and the commitment of a particular set of genes to produce either Th1 

and other polarisation .  

Various theories (with a focus on CD8+ T-cells) have been proposed over time to 

explain the transition from naive to memory cells. In the past, a linear model 

proposed (Error! Reference source not found.) that an effector phenotype d

evelops directly from naive cells, resulting in most of the effector population dying 

and a small number of quiescent memory cells surviving at the end of a response 

[224]. 
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Figure 3 Linear  model of T cell differentiation.  

Model illustrate transition from naïve subset to memory subset upon initial activation. 
Figure created in BioRender.com 

 

 

There are now other models emerging. One  model ( illustrated in Error! R

eference source not found.) suggests a non-linear differentiation were naive cells 

can be turned into effector cells and then memory cells, but the point at which 

differentiation stops depends on the strength of the initial signal [225, 226]. Th0 

naïve cells will transform into a memory phenotype, if the signal from the local 

environment is strong (IL-2), with either a Th1 or Th2 drive if present, and finally 

if there is antigen persistence. Alternatively, Th0 naïve cells will adopt a non-

effector phenotype and develop into memory-like cells with a preference for 

lymph nodes where they can produce secondary responses if the signal is weak 

(low IL-2) in the presence of IL-15 or transforming growth factor-beta (TGF-β).  
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Figure 4 Alternative model of T-cell differentiation.  

Model illustrate transition from naïve subset to memory subset depending on strength of 
inflammatory signals. Figure created in BioRender.com 

 

Data underpinning this model remain inconsistent regarding the precise 

phenotype of these memory cells and their longevity over time. Proliferating cells 

also quickly experience clonal senescence(irreversible growth arrest or ageing), 

making it impossible to maintain them indefinitely through repeated proliferative 

cycles. Highly specialized memory T-cells need survival factors ( for example IL-

7) to be maintained because they are more susceptible to apoptosis [224]. 

Cellular senescence is a state of irreversible growth arrest which a group of cells 

derived from a single progenitor cell (a clone) undergoes simultaneously or 

sequentially due to shared stress signals or intrinsic factors, including telomere 

shortening, DNA damage, and oncogene activation [227] . However, a  few 

studies claim that memory CD4+ T-cells can exist in a quiescent state with a 

phenotype similar to that of naive cells (CD45RA) exhibiting lower apoptosis 
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susceptibility and therefore being capable of long-term memory, and  called 

central memory cells [228, 229]. 

Our team, the Translational Research in Immune-Mediated Inflammatory Disease 

(TRIMID), has examined T-cell differentiation in a cross-section of healthy 

individuals and RA patients, paying special attention to CD4+T-cells in the early 

stages of the disease and correlating it with an examination of the activity of the 

thymus. T-cell precursors rearrange their T-cell receptor genes as they move 

through maturation releasing tiny circles of episomal DNA known as T-cell 

receptor excision circles (TRECs) [230, 231]. Therefore, an estimation of thymic 

function can be made by counting the percentage of peripheral T-cells that 

contain TRECs. However, many dynamic processes, particularly peripheral T-cell 

proliferation, have an impact on TREC measurements [7, 232, 233]. So the 

number of cell cycles that take place prior to reaching that differentiation stage is 

reflected in the TREC content of a given sub-population of cells. With this 

understanding, our team has put forth a model of T-cell differentiation in healthy 

individuals by combining differentiation markers and TREC measurements [7].  

The two models previously discussed both agree and disagree with the T-cell 

differentiation model in some ways, but direct comparison between the three 

models is challenging due to the different markers that were employed. 

Despite RA pathogenesis being considered a T-cell-mediated process, antigen-

driven clonal expansion of T-cells has not been demonstrated in RA [234]. 

Conversely, interaction (i.e., cell-cell contact) with antigen-presenting cells 

(APCs) (macrophages, dendritic cells (DCs), and B-cell), as well as fibroblasts, 

was observed in the synovium [235, 236] , suggesting another possible role for T 

cells as the orchestrator of a cell-cell interaction network [235, 237]. T-cells 
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triggering B-cell responses and antibody production maturation may also 

ultimately contribute to the pathogenesis of RA [238]. 

 

B-cell 

B-lymphocytes are immune cells primarily mediating adaptive humoral immunity 

via an antibody-dependent mechanisms. B-cells also function as APCs and 

produce both anti- and pro-inflammatory cytokines [199]. In the circulation, 

several B-cell subsets (Figure 5) can be recognized based on cell surface-marker 

expression, which represents their differentiation status [199, 239] .  The 

involvement of circulating and tissue-localized B-cell subsets in RA can manifest 

through various mechanisms, such as autoantibody generation via antigen 

presentation, T-cell stimulation, and cytokine production [10, 240, 241]. 

Evidence for a role of B-cells in autoimmunity has been described independently 

of autoantibody production in RA, via the production of and response to pro-

inflammatory cytokines, and/or co-stimulatory activation of T-cells [240-243], and 

notably due to the success of rituximab, a B-cell depletion therapy [12, 244]  

which depletes B cells but does not affect antibody production and only marginally 

reduces ACPA level [245, 246] probably by depleting short-lived plasmablasts 

but not long-lived ones ( as they do not express CD20) [247]. 

The pathogenesis of RA has been associated with B-cell functions. One popular 

hypothesis of how B-cells can affect the course of an inflammatory response is 

the production of autoantibodies (RF and ACPA) by autoreactive B-cells after 

differentiation into plasma cells [248-252]. A second model proposes that B-cell 

involvement in RA pathogenesis is by cytokines production. TNF, IL-10, and IL-

6, [253, 254] as well as the immunoregulatory cytokines IL-2, INF-γ, IL-12, and 
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IL-4, can also be produced by B-cells in RA [255]. Particularly, it has been 

suggested that the cytokines TNF, IL-6, and INF-γ play a significant role in RA 

development. A third hypothesis suggest that antigen presentation and activation 

of antigen-specific T helper cells is another critical component of B-cell function 

that plays a role in the onset and progression of RA [256-260].  
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Figure 5 : B-cell subsets involvement in RA . 

           Briefly, in RA; 
▪ Interactions between B- and T-cells lead to the activation and maturation of 

plasma cells, which produce autoantibodies[261].  
▪ Activated B-cells assist T cells and drive the differentiation of effector T cells that 

generate proinflammatory cytokines [261].  
▪ Moreover, B-cells influence various immune and non-immune cell activities by 

releasing cytokines like interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-𝛼, 
and IL-17A. The production of proinflammatory cytokines and receptor activator 
of nuclear factor 𝜅𝐵 ligand (RANKL) by activated B-cells, and other cells 
promotes the activation and differentiation of osteoclasts, leading to bone 
resorption[262-269] 

▪ B-cells contribute to bone homeostasis by facilitating the differentiation of 
mononuclear cells into osteoclasts through autoantibodies targeting citrullinated 
vimentin[265, 269]. 

▪ B-cells exhibit immunoregulatory functions by supplying IL-10 and employing 
other yet undiscovered mechanisms[261, 270-272] 
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Macrophages  

Macrophages are recognised as one of the most abundant cell types in RA 

synovium [273]. Most macrophage resident-cells in synovial tissue have an active 

phenotype and drive joint erosion and cartilage degradation via multiple 

pathological responses involving the secretion of pro-inflammatory cytokines (IL-

1, IL-6, TNF-α) [148, 150, 274] and chemo-attractants (CCL2 and IL-8) enhancing 

leukocytes infiltration by enabling angiogenesis and upregulation of degrading 

enzymes (proteases) as well as promoting fibroblast activation and proliferation 

[275-277]. On the other hand, IL-10 and TGF-β, the two primary anti-inflammatory 

cytokines are proposed to stimulate macrophages to control tissue inflammation 

and support angiogenesis, tissue remodelling, and tissue repair. The imbalance 

between the 2 macrophage subsets has been implicated in the development of 

RA [278, 279] .  

As an APC, macrophages have been shown to exhibit significant levels of HLA-

DR and leukocyte adhesion molecules, enabling them to engage in T-cell 

activation alongside B-cells in RA [265].  

Mechanistically, osteoclast differentiation from macrophages precursor 

(monocyte) is the result of response to receptor activator of nuclear factor κB 

ligand (RANKL) [280, 281]. 

As such macrophages/monocytes are believed to be the cells fuelling the cycle 

of proinflammatory signals maintaining the disease. These pathogenic features 

are the main target of treatment in RA resulting in macrophages returning to 

resting state [282] supporting their critical role in RA as major player in the 

inflammatory state.  
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Synoviocyte-like fibroblasts 

Joint destruction in rheumatoid arthritis involves several key processes leading 

to cartilage degradation. These include the expansion of the synovial membrane 

through pannus formation, characterized by the proliferation of resident cells, 

called synoviocyte which are fibroblasts like cells [149, 283, 284]. These are 

responsible for an increased expression of extracellular matrix-degrading 

enzymes, which contribute to the degradation of the protein in the cartilage 

matrix. These mechanisms collectively mediate the gradual deterioration of the 

joint. Additionally, synovial fibroblasts play a significant role in driving the 

pathogenesis of RA, further emphasizing their importance in disease progression 

as they are a major source of pro-inflammatory cytokine expression (such as IL-

6, TNF and more) as well as chemo-attractant (SDF1/CCL12 for example) driving 

the influx of immune cells into the joint [283-286].  

 

Other Blood Cell Subsets 

Recent research has demonstrated the importance of the innate immune system 

in the onset and progression of RA. Natural killer (NK) cells and dendritic cells 

(DCs) are innate immune cells that may be involved in the initiation of 

inflammation that occurs in RA patients [236, 287] . The adaptive immune system, 

which is crucial in the later stages of the disease, is also activated by these innate 

immune cells [277]. 

NK cells are a subset of lymphocytes that account for 5 to 15% of the circulating 

lymphocytes. They are crucial elements of the early innate immune response that 

are involved in a spontaneous cell-mediated selective cytotoxicity without prior 

sensitization (before antigen priming) [288-290]. The CD56dull (termed mature 

cytotoxic NK) and CD56bright (termed immature NK) subsets NK cells can be 
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distinguished [277, 291]. The CD56bright favours dendritic cell maturation, 

improves CD4+ T-cell functionality, and promotes naive T-cell differentiation into 

Th1 subset by IFN-gamma secretion. They accumulate in inflamed synovium and 

engage in interactions with macrophages or their precursor cell (monocytes), 

thereby increasing the inflammatory response [292, 293]. When stimulated with 

IL-12, IL-15, or IL-18, CD56bright can, in a contact-dependent manner, increase 

TNF production by CD14+ monocytes [291]. 

NK cells expressing Granzyme B also contribute to the development of 

autoimmunity and to cartilage damage.  The highest expression of granzyme B 

in synovial tissue of patients with early RAs strengthens the involvement of NK 

cells in onset and progression towards RA development [294].  

DCs can play a complex and contradictory role in RA synovium [236, 295, 296]. 

DC can become polarised towards inhibition or activation  which results in 

inducing tolerance or autoimmunity, respectively depending on the different 

signals they receive from the tissue microenvironment [277]. The creation and 

maintenance of Treg cells as well as the induction of T-cell unresponsiveness 

(anergy) are two mechanisms by which DCs can promote tolerance in the 

presence of immunomodulatory molecules, such as glucocorticoids, 

prostaglandins, or retinoic acid, in the environment . These molecules can inhibit 

DC maturation, cytokine production, and co-stimulatory molecule expression, 

leading to the induction of tolerance [297, 298]. Alternatively, in the inflamed 

context, the majority of APCs present are fully differentiated DCs (notably, 

conventional DCs and plasmacytoid DCs) which express class I and class II MHC 

molecules as well as T-cell co-stimulatory molecules, they may aid in educating 

and promoting the differentiation of self-reactive T-cells into effector cells due to 
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their antigen-presenting capability thereby contribution to the development of 

autoimmunity as seen in RA [236, 277]. 

Evidence supports the concept that fibroblasts cells [275, 286], are part of a 

complex cellular network with T and B-cells mediating RA pathogenesis.   

Not much has been reported as to the frequency change of DC and NK in the 

blood of RA patients as well as with respect to clinical outcome. This highlights 

the need to explore in more detail the specific roles of these cells in RA to 

establish their potential as a predictive biomarker with respect to disease 

progression across IAC.  

 

1.4 Inflammatory Arthritis Continuum (IAC) and disease management 

The understanding of inflammatory arthritis (IA) has evolved substantially, and 

RA is now thought of as a continuum, involving a series of gene-environmental 

interplay leading to disease progression via multiple interacting pathways [299, 

300]. The role of established risk factors in RA pathogenesis is fully described in 

section 1.2.3. Briefly, evidence of selected gene–environment interactions in RA 

development have been proposed, notably for smoking and HLA-SE loci [80, 96, 

97]  which are however related to T-cell immune mechanisms and antigen 

presentation [8, 88].   

Finally, autoantibodies have long been associated with RA, notably RF since  the 

’60s. However, The discovery of ACPA revolutionised the IAC concept about 15 

years ago. ACPAs are a heterogenous group of autoantibodies with capacities to 

recognise post-translationally modified citrullinated proteins [301]. ACPA-

seropositivity confers an increased risk of developing RA in healthy individuals 

and therefore, is now recognised as a major European Alliance of Associations 

for Rheumatology (EULAR) classification criterion for RA [302].  
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The autoantibody shows high specificity (98%) and is found to be present in about 

50% of established sever RA [303, 304], but relatively absent in non-RA (up to 

6% in some diseases) [305-307]. 

The IAC is now a well-accepted disease progression with distinct stages towards 

RA [5, 308, 309] (Figure 6). There is a long (up to 15 years) pre-clinical phase 

(also termed at-risk phase) involving a few stages (i – genetic risk to ii- 

environmental risk), leading to a break in tolerance and the development of 

systemic autoimmunity (iii) [302] manifested by the presence of autoantibodies 

(particularly, ACPA) [303, 310, 311] but no evidence of joint involvement [302].  

Then comes (iv), a phase of arthralgia (joint pain), still, with no evidence of 

inflammation. This period can be followed by progression to clinical synovitis (v) 

(persistent or not), which over a few more weeks/months progress further to meet 

the criteria for RA diagnosis (vi) in a proportion of individuals[312] or to other 

types of IA [28] if the patients are referred to this stage of the IAC via an early 

arthritis clinic (EAC). At this stage, first-line therapeutic intervention can be 

initiated with conventional synthetic disease-modifying anti-rheumatic drugs (cs-

DMARDs e.g. Methotrexate  (MTX) in the first instance) with the aim of either 

remission which can be maintained for a long time with moderate drug adjustment 

and acceptable quality of life. However, in ~50% of cases, progression continues 

to a new stage (non-remission, vii) associated with resistance to cs-DMARDs and 

the need to resort to biological therapies (b-DMARDs). 
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Figure 6 Conceptual Framework of Inflammatory Arthritis Continuum (IAC).             

Adapted from [5, 308, 309, 313].  Other diagnostic included Osteoarthritis (OA);  Psoriatic arthritis(PsA); Spondylarthritis(SpA)  
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1.4.1 Clinical management of RA  

The presence of ACPA is key in identifying at-risk individuals although, only ~40% 

of ACPA+ at-risk individuals progress to RA [32, 312, 314] while ACPA-positivity 

heavily contributes to the diagnosis of RA [302] only approximately 50% of 

patients are seropositive at the first visit to a Rheumatology Clinic, leaving an 

unmet need for diagnostic biomarkers for ACPA-negative patients.  

After diagnosis, the early control of inflammation is key to achieving remission 

and biomarker of response to first-line treatment (i.e. following National Institute 

for Health and Care Excellence (NICE) guidelines [32] would be essential to 

stratify patients for a classic approach with synthetic disease-modifying 

antirheumatic drugs (s-DMARDs) if they could be predicted to achieve remission 

or a more aggressive therapy with biologics (b-DMARDs) otherwise.  

Following the achievement of drug-induced remission, the stability of remission 

can be quite variable, and predicting flare would be advantageous. The cost of 

therapy as well as the side effects of risk on patients drove the development of 

tapering treatment guidelines that also would benefit from biomarkers for 

successful tapering. 

The management of RA currently relies on composite scores constructed from 

clinical observations, notably the disease activity score (DAS)-28, with 3 objective 

components (2 counts of tender and swollen joints, blood inflammatory markers 

which include C-reactive protein (CRP) or erythrocyte sedimentation rate (ESR)) 

and 1 subjective score provided by the patients (global health, on a scale of 1-

100) [32, 312, 314].  
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DAS is used to monitor the magnitude of joint symptoms and level of inflammation 

in RA and different DAS scores and the formulae for calculating these scores 

have been described [314, 315]. In RA management, DAS28-CRP is widely used 

in making clinical decisions.  EULAR response criteria categorised patients into 

3 categories based on individual patient's responses to therapy measured by 

DAS28 score-  

• DAS28 score >5.1 is indicative of high disease activity (HDA) and is 

used to determine eligibility for  bDMARDs in the UK  

• DAS28 score ≥ 3.2 but < 5.2 is considered moderate disease activity 

(MDA)   

•  DAS28 score < 3.2 is suggestive of low disease activity (LDA) 

• DAS28 score < 2.6 defines a state of clinical remission [315, 316]. 

The DAS28 greater than 3.2 is commonly used as a threshold for classifying 

active RA patients and a target for tight control treatment [62, 316-319].  

Of note, DAS28-ESR score of 5.1 has been shown to correspond to 4.6 for 

DAS28 score incorporating C-reactive protein (CRP), defining >4.6 as a threshold 

for HDA when using DAS28-CRP [320]. This suggests a need for strict adherence 

to the use of a specific type of measure in clinical decision-making because 

interchanging both scores may likely underestimate the number of patients with 

HDA as well as exclude those who might be eligible for intensive treatment with 

biologics if eligibility is based on DAS28-CRP score. 

The DAS28 score was initially developed as a measure the severity of the 

symptoms and has since been widely employed in research and clinical settings 

[321-325] . However, its utility in assessing disease activity in RA patients 

remains challenging due to inherent confounders in each parameter of the 

DAS28-CRP [323, 326]. For example, a patient can be considered in remission 
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while still having 1 swollen joint or a raised CRP. Despite its endorsement by the 

European Medicines Agency as the preferred tool for determining remission in 

clinical trials, evidence suggests continued radiographic progression in patients 

achieving this goal [327, 328] . This raises questions about the suitability of the 

DAS28-based outcome measure utilized in research/clinical settings with respect 

of remission while its utility for assessing active disease was well accepted.  

The subjective components of the original DAS28, (Ritchie articular index and 44 

swollen joint count, along with patient-reported outcomes using general health 

visual analogue scale), reflect on its capacity to accurately discriminate between 

periods of high and low disease activity [329] , particularly as the subjective 

components tend to carry more weight in the score calculation and are 

susceptible to psychological variability [329] .  

To address these limitations, alternative measures of disease activity , particularly 

those reflecting synovitis levels more accurately such as a two-component 

DAS28 (a score based on SJC28 and CRP alone), may offer improved 

performance in assessing treatment response compared to the original DAS28 

or its components [330]. For instance, the 2C-DAS28CRP, has shown promise in 

studies with a research goal related to the pathophysiological manifestations of 

RA, demonstrating a stronger association with radiographic damage than the 

conventional DAS28 [325, 330] . 

Replacing the conventional DAS28 in clinical trials or clinical daily practice should 

be approached with caution, considering the need to evaluate all core set areas 

as per the “Outcome Measures in Rheumatology” framework [331] .  
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1.4.2 Remission as the new goal of therapies 

Due to time dependant increase in burden, the need to control RA disease activity 

early was identified and is now part of an overall modern strategy for managing 

RA, and particularly the goal of inducing remission as early as possible which has 

become the new target of therapy. 

The first out of the ten recommendations on the treat-to-target (T2T) approach 

based on evidence and expert opinion set the primary target for RA treatment to 

be achieving a state of clinical remission, defined as the absence of signs and 

symptoms of significant inflammatory disease activity [332]. Where this seems 

impossible, a low disease activity state has become an acceptable alternative 

therapeutic goal, particularly in established long-standing disease [26, 313]   

Although there is no cure for RA, early treatment using T2T approach has proven 

to reduce the risk of accumulating joint damage and to limit the long-term impact 

of the disease.  The principle for treating RA early stemmed from the recognition 

of the concept of a “window of opportunity” [333, 334] which involves the 

immediate initiation of treatment upon diagnosis with a minimum delay to achieve 

early suppression of inflammation, before irreversible joint damage occurs in RA 

[313]. Documented evidence has validated this principle by demonstrating that 

early intervention in RA led to optimal therapeutic outcome and a lower disease 

burden [335-339]. For example, data from the Dutch Rheumatoid Arthritis 

Monitoring (DREAM) study [340] showed that patients at 1st referral with early RA 

(i.e less than 24 months duration of symptoms, drug naive) in a T2T protocol 

achieved remission faster with a lowered disease activity compared to those 

treated without such a target (median time of 25 weeks versus 52 weeks). Other 

studies have confirmed the evidence-based merit of T2T over conventional 



 
 

38 | P a g e  
 

treatment in terms of increased rate of remission [341-343], and/or achieving low 

disease activity [344-347] as well as being more cost-effective than usual care 

[348]. 

However, to initiate early treatment intervention with the T2T disease-modifying 

therapy, and prevent disability and deformity, there is the need for early diagnosis 

which sometimes, is missed due to classification errors given the heterogeneity 

in the presentation of RA [313].  Thanks to a collaborative task force between the 

American College of Rheumatology (ACR) and EULAR, a revised set of 

classification criteria was put forward in 2010 (Table 2), emphasizing RA 

characteristics that emerged early in the disease course, to allow diagnosis at the 

earliest possible stage [302].  

Combining the new criteria with prompt referral was suggested as the key to 

achieving remission [313], the new treatment goal to prevent irreversible joint 

damage of RA. 

 

 

 

 

 

 

 

 



 
 

39 | P a g e  
 

Table 2 Revised ACR/EULAR rheumatoid arthritis classification criteria    
(Score-based algorithm) 

A.  Joint Involvement 

score 

1 large joint 0 

2-10 large joint 1 

1-3 small joints (+ or – large joints) 2 

4-10 small joints (+ or – large joints) 3 

>10 joints( at least 1 small joint) 5 

B. Serology (at least one test result needed for classification) 

 

RF- and ACPA- 0 

Low RF+ or low ACPA+ 2 

high RF+ or high ACPA+ 3 

C. Acute-phase reactant(at least one test result needed for classification) 

 

Normal CRP and normal ESR 0 

Abnormal CRP or abnormal ESR 1 

D. Duration of symptoms 

 

< 6 weeks 0 

>6 weeks 1 

Classification of patients as having definite rheumatoid arthritis ≥6 

Anti-citrullinated protein antibody (ACPA), C-reactive protein (CRP), Erythrocyte 

sedimentation rate (ESR), and Rheumatoid factor (RF). Of note, the target population 

(individuals that should be tested) are those who have at least one joint with definite 

clinical synovitis(swelling) not better explained by another disease. Adapted from [302]. 
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1.5 Clinical need in RA necessitating novel biomarkers 

1.5.1 At-risk progression 

Given the success of treatment for early RA [349], predicting an individual’s 

progression to RA may enable preventive interventions. ACPA and/or rheumatoid 

factor (RF) are widely used to identify such individuals, and various prediction 

models were established by combining demographic, genetic, clinical, and 

imaging data [312, 350]. However, the rate of progression to IA is approximately 

30-40% depending on the criteria used to identify at-risk individuals [351, 352].  

Biomarker such as the presence of ACPA is currently the only key in identifying 

at-risk individual although, only approximately 40% of ACPA+ individual progress 

to RA [312]. In ACPA+ at-risk individuals, three CD4+T-cell subsets (naïve, Treg, 

and IRC) from our group showed good predictive value as biomarkers for 

progression to IA, both individually and when combined with clinical variables [3, 

5]. 

1.5.2 Diagnostic 

The 1987 revised classification criteria proposed by the American College of 

Rheumatology [353] are widely used for RA diagnosis (Table 3), allowing 

established RA to be differentiated easily from other forms of inflammatory 

arthritis diseases. However, it should be noted that the ACR was not designed to 

detect RA in its early stage being developed in populations with chronic/long-

standing disease [354]. The 2010 criteria proposed by a joint ACR/EULAR 

committee, therefore accounted for this gap with improved overall sensitivity over 

the 1987 criteria [355]. Even though ACR/EULAR criteria determine synovitis 

based only on clinical examination, insisting on the presence of at least one joint 

with definitive synovitis has substantially led to classification in the earlier stage 
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of RA diseases thereby permitting an opportunity for early intervention using 

DMARDs.  

The most typical clinical presentation of RA, in about 75% of patients, is the 

insidious onset of symmetrical polyarthralgia involving the small joint of the hands 

and feet characterized by tender joints as well as swollen joints [356]. 

ACPA-positivity contributes to the diagnosis of RA [302] although with only 50% 

seropositivity, leaving an unmet need for diagnostic biomarkers for ACPA-

negative patients.   
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Table 3 The 1987 revised criteria for the classification of rheumatoid 
arthritis[353] 

Criterion  Definition  

1. Morning stiffness  Morning stiffness in and around the joints, lasting at least 1 hour 

before maximal improvement  

2. Arthritis of 3 or 

more joint  

areas  

At least 3 joint areas simultaneously have had soft tissue swelling or 

fluid (not bony overgrowth alone) observed by a physician.  

The 14 possible areas are right or left PIP, MCP, wrist, elbow,  

knee, ankle, and MTP joints  

3. Arthritis of hand 

joints  

At least 1 area swollen (as defined above) in a wrist, MCP, or PIP 

joint  

4. Symmetric 

arthritis  

Simultaneous involvement of the same joint areas (as defined in 2) 

on both sides of the body (bilateral involvement of PIPs, MCPs, or 

MTPs is acceptable without absolute symmetry)  

5. Rheumatoid 

nodules  

Subcutaneous nodules, over bony prominences, or extensor 

surfaces, or in juxta-articular regions,  

observed by a physician  

6. Serum 

rheumatoid factor  

Demonstration of abnormal amounts of serum rheumatoid factor by 

any method for which the result has been positive in 4% of normal 

control subjects  

7. Radiographic 

changes  

Radiographic changes typical of rheumatoid arthritis on 

posteroanterior hand and wrist radiographs, which must include 

erosions or unequivocal bony decalcification localized in or  

most marked adjacent to the involved joints (osteoarthritis changes 

alone do not qualify)  

For classification purposes,  

➢ a patient shall be said to have rheumatoid arthritis if he/she has 

satisfied at least 4 of these 7 criteria.  

➢ Criteria 1 through 4 must have been present for at least 6 weeks.         

➢ Patients with 2 clinical diagnoses are not excluded. Designation 

as classic, definite, or  

➢ probable rheumatoid arthritis is not to be made.  

Adapted from 1987 criteria(ref). PIP= Proximal Interphalangeal   MCP= 

Metacarpophalangeal, MTP= Metatarsophalangeal 
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1.5.3 Treatment   

The goal of the treat-to-target strategy in RA is to achieve clinical remission 

(DAS28≤2.6) or at least a reduction in disease activity (DAS28<3.2) according to 

NICE guidelines thereby ameliorating the systemic and inflammatory debilitating 

effect of the disease [62, 317, 318]. RA treatment outcome has been greatly 

improved because of the major focus on early disease treatment.   

The introduction of effective, although extremely costly, b-DMARDs, notably anti-

TNF agents and more recently IL-6 blockade, co-stimulation blockade or JAK 

inhibitors requiring a DAS >5.1 for eligibility in the UK helped greatly in patients 

with long-lasting RA in which cs- DMARDs are not effective. But the introduction 

of biologics therapies in the early disease stage is currently not endorsed by NICE 

as it could impact long-term outcomes in RA. However, treating with a biologic 

without consideration of patients who would have responded to the 1st line 

therapy, with MTX would be extremely costly [357] and selecting which patient 

would benefit most and for which treatment option is still a daunting challenge.  

The availability of different treatment options with different modes of action 

(Figure 7) and various response rates (Table 4) has also lent credence to the 

heterogeneity of the disease being a major factor to take into consideration. The 

“one for all” solution not fitting in RA is now being increasingly acknowledged.  
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Figure 7 Mechanism of action of biologics DMARDs                                                                                                                                                                                                                       
*Mechanism of action of Methotrexate in RA has been extensively reviewed in [358] to include effects on several pathways of cellular metabolic 
functions: antagonism of folate-dependent processes, stimulation of adenosine signalling, inhibition of methyl-donor production, generation of reactive 
oxygen species, downregulation of adhesion-molecule expression, modification of cytokine profiles and downregulation of eicosanoids and matrix 
metalloproteinases (MMPs).Figure created with BioRender.com  
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Table 4 Response rate of common therapies used in RA treatment 

therapy Response rate at 6months ref 

MTX monotherapy 27.3% to 56.4%  [359-363] 

MTX monotherapy 28% [364] 

RXT 21% to 54.3% [365-369] 

Anti-TNF ≤42% [370] 

anti-TNF + MTX <50% [371] 

MTX= Methotrexate, RTX=Rituximab, anti-TNF= anti-tumour necrosis factor 

 

 

 

Such differences between drug responses may underscore differences in 

underlying immunological pathways of inflammation, genetics, and other yet 

unknown mechanisms that might determine different paths to therapeutic 

responses in RA patients.  

The variation in clinical response has also highlighted a gap in the therapeutic 

strategies to manage RA particularly how to identify patients who may likely 

respond to cs-DMARDs notably, MTX 1st line treatment without primary exposure 

to the adverse effect of biologics while allowing major economy.  

Although, our group has demonstrated the predictive value of cellular biomarkers 

(notably multiple CD4+T subsets) for progression across the IAC, profiling of 

other immune cell types at all stages of the disease is yet to be fully explored and 

this thesis seeks to bridge this gap by investigating the value of a comprehensive 

Flow cytometry analysis of multiple LS simultaneously, for possible additional 

value as novel biomarkers for prediction of outcomes across the IAC. 
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1.6       Biomarker studies of RA prognosis  

Biomarker studies encompass a broad spectrum of approaches, including 

genetics, transcriptomics, proteomics/lipidomics/metabolomics and more 

recently epigenetics, while immune cell phenotyping remains more constrained 

to immune cell diseases or residual cancer cell burden Biomarkers for RA, like in 

many other diseases have been extensively searched.  

1.6.1 Genomics biomarkers across the IAC     

Genome-wide association studies (GWAS) have unveiled a plethora of genes 

and genetic loci linked to both susceptibility and severity of rheumatoid arthritis 

(RA), offering crucial insights into the genetic underpinnings of the disease [372, 

373]. Among them, the human leukocyte antigen (HLA) system stands out as the 

main genetic biomarker for RA. Particularly, HLA-DRB1-SE alleles have shown 

robust associations with RA susceptibility and severity, indicating increased risk 

and more severe disease manifestations [153]. Subsequent investigations have 

delved into the intricate interplay between specific HLA-DRB1 alleles, 

autoantibody production, disease severity, and treatment response [374-377].  

Polymorphisms within the TNF and IL-6 genes have been scrutinized beyond 

their impact on RA susceptibility and severity, and genetic variations in the 

promoter regions have showed  associations with response to anti-TNF therapies 

[378-380]. Other numerous genetic biomarkers showed association with poor 

treatment outcomes in RA, however their clinical utility remains modest as no 

single marker alone is predictive enough to guide treatment decisions [86, 88, 

381-384].  

Recent efforts combining data from large cohorts have identified genetic variants 

associated with response to MTX, a cornerstone therapy in RA management 

[381, 384]. These findings underscore the potential of genetic biomarkers in 
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tailoring personalized treatment strategies, however, it's crucial to acknowledge 

that they represent only a fraction of the molecular landscape shaping RA and as 

such have limited biomarker value. 

   

1.6.2 Transcriptomic biomarkers across IAC  

Transcriptomics, which analyzes RNA transcripts, provides crucial insights into 

the molecular mechanisms driving diseases like rheumatoid arthritis (RA). 

Dysregulated gene expression in RA contributes to inflammation, joint damage, 

and other pathological processes. Identification of transcriptomic biomarkers 

showed promise for early diagnosis (although not an area of clinical needs as 

mainly associated with ACPA+ disease), prognosis and treatment monitoring 

while not predicting of response to treatment so far. Notably, a study employed 

transcriptomic profiling to identify biomarker candidates in RA [385]. They 

examined gene expression patterns in synovial tissue samples from RA patients 

and healthy controls, pinpointing differentially expressed genes associated with 

disease activity and progression, particularly those involved in immune response 

regulation, cytokine signaling, and tissue remodeling. However, the applicability 

of using synovial tissue limit the value of this data as biomarker.  

Afroz et al., conducted a meta-analysis integrating transcriptomic data from 

multiple RA studies to uncover robust biomarker signatures linked to disease 

severity and treatment response [386]. They established a potential 

transcriptomic biomarker (Signal transducer and activator of transcription 1 and 

3 (STAT1/3) and Interferon regulatory factor 7 (IRF7))  for predicting clinical 

outcomes and guiding personalized treatment strategies for RA patients.  

Several other studies have identified transcriptomic biomarker candidates [387-

390]. Recently, a study utilised transcriptome-wide gene expression profiling to 
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identify early molecular signatures indicative of successful treatment outcomes, 

providing insights into the molecular mechanisms underlying TNF-inhibitor 

therapy efficacy, which may aid in the development of novel therapeutic 

strategies [389]. This finding is yet to be validated and replicated in larger and 

more diverse patient cohorts.  

Integration of clinical parameters, other biomarkers, and imaging studies is still 

needed to demonstrate clinical utility. A panel of differentially expressed genes in 

RA synovial tissue, shedding light on immune cell activation and cytokine 

signaling pathways has been identified [391, 392] again with limited utility in daily 

practice. Recent advancements in single-cell RNA sequencing have provided 

deeper insights into cellular heterogeneity and gene expression dynamics within 

inflamed joints of RA patients [393, 394]. The findings collectively offer an 

overview of single-cell transcriptomes within CD4+ T-cell subpopulations 

implicated in autoimmune diseases. Integration of datasets from single-cell 

analysis still remain the biggest challenges for clinical utility. 

Transcriptomic biomarker candidates often necessitate validation in independent 

cohorts while functional studies to confirm their relevance are important from a 

pathogenesis point of view. Altogether, validation and exploitation of these data 

is lacking and represent a major challenge because they use different recruitment 

for population, measure of the response, biological material, and more, rendering 

all data interesting but not useful so far in clinical practice. Integration with other 

omics data has been attempted for translating transcriptomic findings into clinical 

practice effectively but add another layer of complexity that does not help towards 

making this into robust biomarkers. Despite these challenges, transcriptomics still 

probably holds significant promise for identifying biomarkers and advancing 

precision medicine in inflammatory arthritis.  
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1.6.3 Proteomic Biomarkers across the IAC  

Proteomics, which offers insights closer to the molecular mechanisms [395], 

focuses on quantifying mainly circulating (soluble) proteins to elucidate biological 

processes and decipher protein-dependent mechanisms governing regulatory  

mechanisms within living cells [396, 397]. Proteins serve as pivotal signals in 

cellular functions, and alterations in their expressions or activities can profoundly 

impact various cellular processes [398, 399]. Advanced technologies like liquid 

chromatography-mass spectrometry (LC-MS) have identified biomarkers with 

heightened sensitivity and specificity, offering promise in disease management 

[400]. Proteomics emerges as a promising avenue for identifying circulating 

biomarkers crucial for diagnosing, prognosticating, and monitoring treatment 

responses across this spectrum [401-404].  

Proteomic analysis, across tissues, provided insights into disease-related protein 

alterations, stress responses, and therapeutic effects, offering information 

unattainable through other methods [400, 404-406].  

Numerous proteomic studies on RA samples, including peripheral blood cells, 

synovial tissue, fibroblasts, and serum, have unraveled insights into RA 

pathogenesis [400, 404, 407, 408]. Proteomic studies have unveiled biomarker 

candidates in RA including cytokines (e.g., TNF-alpha, IL-6), acute-phase 

proteins (e.g., CRP, serum amyloid A), and autoantibodies (e.g., rheumatoid 

factor, anti-citrullinated protein antibodies) [408-412]. A protein signature with 

diagnostic potential  to discriminate patients with PsA from RA have also been 

identified via this approach [400]. The most successful story for a clinically useful 

biomarker in RA is indeed that of ACPA [413, 414]. These were identified over 30 

years ago as IgM autoantibodies present in many people, reacting to unknown 

antigens in skin tissues, while highly specific to RA when turned into an IgG [310, 



 
 

50 | P a g e  
 

415]. Their value as biomarkers took over 15 years to be recognized but they are 

now routinely assessed as a classification criteria for RA diagnosis. They further 

define a subset of RA cases with a more rapid and severe disease course [310, 

416].  

Proteomic signatures for proteins linked to innate immune mechanisms, like TNF, 

Toll-like receptor 2 (TLR-2), interleukin-1A (IL-1A), and interferon-gamma (IFN-

G) have accurately predicted RA development in at-risk individual, suggesting 

innate immune involvement in the preclinical phase [411]. Alterations in the serum 

proteome preceding clinical RA onset underscore its potential as a biomarker tool 

for classifying at-risk individuals and unraveling molecular pathways implicated in 

RA development [411]. In non-RA forms of inflammatory arthritis such as PsA, 

biomarkers such as IL-17, IL-23, and matrix metalloproteinases (MMPs) reflect 

characteristic inflammatory and tissue remodeling processes [417-420]. Similarly, 

AS-specific biomarkers identified through proteomics (using tandem mass tag 

(TMT)-based quantitative proteomics) include  the combination of molecules 

modulating inflammation (C-reactive protein (CRP)) and serum amyloid A1 

(SAA1) as the best panel for the diagnosis of active AS [421]. As such that can 

aid in early differential diagnosis (and disease progression monitoring) allowing 

to separate RA from these 2 very similar conditions at the early presentation 

stage, notably as those are seronegative diseases and RA remains in need of 

biomarker for the half of patients that are ACPA [403, 407].  

In conclusion, proteomics bridges the gap between genetic and transcriptomic 

information by revealing the functional state of proteins that also have possible 

methods of quantification for clinical use (ELISA for example). While proteomics 

has identified several RA-related candidates, rigorous validation and further 
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analysis of differentially expressed proteins are crucial steps toward translating 

basic scientific findings into clinical applications.  

Lipidomics and metabolomics [422, 423] are still emerging technologies that have 

not yielded notable data in RA to date. Moreover, these technology often overlook 

posttranslational modifications of proteins while they may require to be taken in 

consideration in RA, some of which are crucial for their biological activities.  

1.6.4 Epigenetic biomarkers across the IAC  

Epigenetics has recently been brought at the forefront of the understanding of 

many disease pathologies [424-427]. In RA this mechanism has been studied 

and implicated in the development of the diseases [428-432]. The role of 

epigenetic changes is therefore well established in RA warranting the potential of  

epigenetic biomarkers as tools for RA management.  

RA's complex etiology, reliant on the interplay of genetic and environmental 

factors, is closely intertwined with epigenetic changes linked to transcriptional 

regulation, reflecting pathogenic changes associated with disease states. 

Methylation studies have unveiled epigenetic modifications, influencing gene 

expression and disease phenotype, disease activity, severity, and treatment 

response in RA [431, 433-436] and spondyloarthritis (SpA) patients [437, 438]. 

Altered DNA methylation patterns have been observed in genes related to 

immune response and inflammation. For example, hypomethylation of the 

promoter region of the CTLA4 gene [93] and other genes has been associated 

with RA susceptibility, increased disease severity, and progression [432, 439]. 

Recently, a panel of DNA methylation changes has accurately distinguished RA 

patients from healthy controls while more importantly being correlated with 

disease activity. Assays able to measure accurately and robustly DNA 

methylation have been developed, notably methylation specific qPCR (qMSP) 
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assays [427, 440, 441]. Based on data showing differential methylation in early 

RA [428], TRIMID group developed 2 qMSP assays for genes delivered in this 

pathogenesis study (IL-17 and TNF) and notably demonstrated their value as 

diagnostic biomarkers in RA (TNF and IL-17) [359, 428] and another study for 

response to MTX [442].  

Other histone modifications, crucial for regulating gene expression by modulating 

chromatin structure, have also been implicated in RA [443, 444]. Increased 

histone deacetylase (HDACs) activity and altered histone methylation patterns 

have been linked to key inflammatory pathways in RA, influencing disease 

progression [443-445].  

Enzymes involved in epigenetic modifications, such as DNA methyltransferases 

(DNMTs), histone acetyltransferases (HATs), and HDACs, are also potential 

biomarker candidates and therapeutic targets in inflammatory arthritis [443, 446-

449], due to their dysregulated expression and activity contributing to aberrant 

epigenetic regulation and disease pathology.  

In summary, epigenetic biomarker candidates in the inflammatory arthritis 

continuum offer valuable insights into disease pathogenesis and progression, as 

well as potential targets for precision medicine approaches. Integrating data from 

multiple biomarker types can enhance predictive models and facilitate 

personalized medicine approaches in RA and other inflammatory diseases.  

1.6.5 Other Regulators of Transcription  

Small or long non-coding RNA are a new family of regulators which have been 

shown to have important mRNA regulatory activity [450-455]. Dysregulated 

expression of specific microRNAs (miRNAs) and long non-coding RNAs 

(lncRNAs) has been associated with disease activity, joint damage, and 

therapeutic response in RA and SpA patients [452] . Specific miRNAs, like miR-



 
 

53 | P a g e  
 

146a [456-458] and miR-155 [459, 460], have been identified as potential 

biomarkers in RA due to their regulatory roles in inflammatory pathways. 

Dysregulated expression of lncRNAs has also been reported to contribute to RA 

pathogenesis by modulating inflammatory responses and immune cell function 

[461, 462] .  

Furthermore, differential DNA methylation at specific gene loci has been 

correlated with response to TNF inhibitors (TNFi) and MTX in RA patients [439, 

452], highlighting the potential of epigenetic biomarkers in predicting treatment 

response.  

1.7 Review of existing blood cell subset biomarkers across the IAC  

It is well known that additional types of lymphocytes including T-cells, B-cells, NK-

cells, and their subsets are important players in the development of inflammation 

in RA and the disease progression across all phases in the IAC [194, 370, 463] . 

Immunophenotyping investigations of circulating blood lymphocytes are believed 

to be able to provide useful information that may reflect various states of the 

disease or suggest possible functionalities such as change in migration capacity 

of immune cells to various sites. This has led to the concept that blood cell 

phenotyping could have biomarker value for RA progression from the at-risk 

stage, diagnosis, as well as for treatment response.  

1.7.1 Blood cell biomarkers of progression from the at-risk stage to IA   

Research demonstrating either functional or numerical dysregulation within 

immune cell subsets particularly in the lymphocyte subpopulations in at-risk 

arthralgia individuals are limited. The current literature aimed to understand the 

value of lymphocyte dysregulation while highlighting their association with  

disease progression to IA from either seropositive (ACPA-positive) arthralgia 
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patients or seronegative arthralgia patients. However, data reporting lymphocyte 

dysregulation at this pre-clinical phase are not consistent and most studies 

focused on seropositive arthralgia patients (as shown in table 5) with evidence 

from seronegative patients being scarce due to the difficulty in identifying them.   
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Table 5: Summary of candidate blood cells as biomarker for progression 
to IA 

 

Analysis of Variance (ANOVA),  Area under(AU) the receiver operating 

characteristic(ROC), Odd ratio(OR), Mann-Whitney(MWU) test, inflammatory-related 

cell(IRC), Anticitrullinated peptide antibody(ACPA), Peripheral blood mononuclear cell 

(PBMC), health control (HC) 

 

 

 

 

 

cohort Patient 

population 

     subset study 

design 

sample 

type 

statistical 

analysis 

ref 

Amsterdam 

Reade ASP 

cohort 

 Patients 

with 

arthralgia 

(n=113) 

Lower CD8+T-

cells  

Lower memory 

CD27+ B-cells 

cross-

sectional 

study, 

observational  

fresh 

blood  

Univariate 

association 

(MWU test 

and T-test) 

[464] 

 
 
Groningem 
Very Early 
IA cohort  

SAP 
(n=26) 
versus HC 
(n=24) 

higher “putative” 

Th17 cells  

cross-

sectional 

study 

fresh 

blood  

univariate 

associations 

(MWU test) 

[465] 

                                 
SAP 
(n=30) 
versus HC 
(n=41) 

decrease in total 

NK cell 

numbers/NK56dim 

in SP arthralgia, 

 
fresh 

PBMC 

Univariate: 

ANOVA  

[466] 

 
 
 
 
 
 
 
Leeds at-
risk cohort 

ACPA+ 
individuals 
with pain 
but no 
clinical 
synovitis 
(n=103) 

 Reduced 

Naïve/Treg & 

increased IRC  

cross-

sectional 

study, 

observational  

fresh 

blood  

Modelling:  

multivariate 

logistic 

regressions 

(AUROC/OR) 

and Cox 

models 

[3] 

ACPA+ 
individuals 
with pain 
but no 
clinical 
synovitis 
(n=103) 

higher IRC and 

loss of Naive/Treg  

cross-

sectional 

study, 

observational  

fresh 

blood  

Modelling:  

multivariate 

logistic 

regressions 

(AUROC/OR) 

and Cox 

models 

[5] 
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CD8+ T-cells 

Evidence from the Amsterdam Reade cohort showed that lower circulatory 

CD8+T-cells frequencies were associated with progression, within 24 months to 

the development of IA [464]. The explanation for lower cytotoxic CD8+T-cells 

frequency prior to progression remains unclear. But the authors suggested that it 

might be a reflection of increased immigration of these cells to synovium. At-risk 

arthralgia patients may have a mild infiltration of CD8+ T-cells in their synovium 

[184]. In pre-clinical stage, other reports also suggested that CD8+ T-cells make 

up ~40% the total T-cells infiltrating the synovium [184, 467].  Alterations in 

homing molecules expressed by CD8 T cells  also suggested  enhanced 

migration to the synovium that may also be relevant to the disease development 

[468]. It is therefore possible that CD8+T-cells migrate to sub-clinically inflamed 

tissue while alternatively, they could migrate to lymphoid tissue notably through 

CXCR3 signaling, accumulating in the marginal zone of lymph-nodes [464], An 

argument was also proposed suggesting that the reduction of CD8+T-cells may 

be attributed to the elimination of autoreactive CD8+T-cells from the total CD8 

pool via class I-restricted cross-presentation of self-antigens expressed in tissues 

outside the lymphoid compartment [469, 470]. 

Alternatively, following prolonged exposure to infectious agents, expression of 

homing molecules expressed on CD8 T-cells is altered [468] notably CXCR3 

expression. This was used to suggest that reduction in CD8+T-cell cells was 

related to a population contraction resulting from cell-death following prolonged 

exposure to the infectious agent, proposing a role for subclinical infections as a 

novel environmental risk factor for RA. This was also aligned with suggestion in 

the past for a role for virus like Human parvovirus B19 [471], Epstein-Barr virus 

[472] and others [473].  
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Finally, cell-death causing the release of inflammatory mediators that also serve 

as destructive triggers (notably Netosis) were also proposed to explain the 

reduction in circulating CD8+T-cells [474]. 

Therefore, there remains a gap in knowledge as to whether CD8+ T-cells could 

have biomarker value based on all the possible functional role they may have in 

progression to RA. 

B-cells 

The Amsterdam Reade study also reported a lower frequency of CD27+ memory 

B-cells in patients who progressed to IA within ≤1 year notably compared to those 

who converted to IA [464] later. It was suggested that increased early migration 

of memory B-cell into the inflammatory site (synovium) may play a role in lowering 

circulating memory B-cells frequency. Evidence of elevated frequency of memory 

B-cells in synovium of early RA patients also underpins this hypothesis [475]. 

Alternately, memory B-cell might have homed towards the bone marrow or lymph 

node in line with a report of higher B-cells in the draining lymph nodes of inflamed 

joints in patients at the earliest phase of inflammatory arthritis [476]. However, 

the study did not investigate whether CD8, or memory B-cell subsets had any 

value for predicting progression to IA beyond their association with the outcome.   

CD4+ T-cells      

Beyond our own group’s work, a study looking at regulatory T-cells (CD4+ CD25+ 

FoxP3+Tregs), reported no significant difference between seropositive arthralgia 

patients (SAP) who developed RA and non-progressors [477]. This was used to 

suggest that Tregs were not associated with progression to IA/RA. However, the 

phenotype used to define Treg at the time (CD25/Foxp3) was not complete (no 
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use of CD127 marker). CD127, also known as interleukin-7 receptor alpha (IL-

7Rα), is an important marker in identifying and characterizing Tregs. In defining 

Tregs, CD127 is often used as a negative marker [478] . That means, among 

CD4+ T-cells, Tregs typically express lower levels of CD127 compared to 

conventional CD4+ T-cells. Therefore, CD127low or CD127− cells within the 

CD4+ T-cell population are often enriched for Tregs. The percentage of 

CD25+Foxp3+ Tregs expressing CD127 varies depending on the tissue, 

individual, and experimental conditions. Generally, a substantial proportion of 

CD25+Foxp3+ Tregs are CD127low or CD127−, indicating their regulatory 

phenotype [479]. In situations (like non-availability of FoxP3) where only surface 

staining can be performed, CD127 can indeed be used as a surrogate marker for 

Tregs in conjunction with other markers like CD25. However, it's important to note 

that while CD127 is associated with Treg phenotype, it is not a specific marker 

for Tregs. Foxp3 is the only accepted marker of Treg [480] . Therefore, using 

CD127 alone may not capture the entire Treg population accurately while its 

absence may slightly over estimate the frequency of Treg, particularly in a 

disease context where CD127 expression might be dynamically regulated [481] . 

In contrast, our department demonstrated that in ACPA+ individuals without 

clinical synovitis, 3 CD4+T-cell subsets naïve CD4+T-cell, Treg and IRC showed 

good predictive value as biomarkers of the progression to IA, both as a score and 

in the regression model [3, 5]. The reason for this discrepancy is not clear but the 

Treg phenotype was not the same and no correction for age-associated change 

in Treg was applied to the SAP study.  

To this date association and predictive values but not yet added value beyond 

current model of prediction for these 3 subsets were demonstrated statistically, 
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notably above using ONLY clinical [3, 312] and/or clinical + imaging data [312, 

350].  

NK cells 

The biological role of NK-cells, notably from the CD56dim NK-cells subset, is a 

cytotoxic one associated with an anti-microbial role mediated by the secretion of 

IFN-γ. A reduction in the number of peripheral total NK-cells (and in the CD56dim 

subset) was observed in SAP, however, compared to HC [466]. Whether the 

lower frequencies of NK cell/CD56 dim subset preceded or is associated with the 

IA/RA development was not described as the study did not provide detail on 

whether the at-risk individuals progressed. Given that the comparison group was 

healthy individuals, it is possible that alteration in NK-cells/CD56dim subset may 

play a role in pre-clinical phase, however, this needs to be investigated. 

Th17 cells 

Data on Th17 cells from patients within the at-risk arthralgia phase is scarce, 

however, indirect data on a Th17 surrogate phenotype (defined as CD4+CD161+ 

T-cells) seems to indicate a possible increase in Th17 cells was associated with 

SAP [466]. Findings suggested that in the early immune events leading to clinical 

synovitis (i.e. progression to IA detected by joint swelling or inflammation), an 

elevation in numbers or frequency of Th17 was observed and may therefore play 

a crucial part. However, the CD4+ CD161+ cells phenotype includes various cell 

subsets such as IL-17 and IFN-y expressing cells, representing mixed 

populations of Th17, Th17/Th1, and Th1 cells. This nonetheless is an important 

observation that need to be further investigated. 
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One of the early events associated with RA pathogenesis is a change in the 

cytokine environment that promotes Th17 differentiation [482]. The  

“Translational Research in Immune-Mediated Inflammatory Disease” (TRIMID) 

group also showed that Th17 cell frequencies are reduced in early RA due to 

migration to the site of inflammation via CXCR4 expression [359]. Furthermore, 

increased serum levels of IL-17 proceeding progression toward clinical synovitis 

has indeed been reported in pre-RA patients [177], suggesting that such an event 

is likely, and further research needs to confirm such hypothesis.  

 

1.7.2 Blood cell subsets as diagnostic biomarkers of progression from 

IA/UA to RA  

Here I will discuss multiple immune cell types/subsets reported to play a role in 

the progression to RA from the IA stage with respect to their possible value as 

biomarkers as shown in Table 6. 
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Table 6 summary of candidate blood cell as biomarker for RA diagnosis 

 

Analysis of Variance (ANOVA),  Area under(AU) the receiver operating 
characteristic(ROC), Odd ratio(OR), Mann-Whitney(MWU) test, , seropositive/negative  
(SP/SN), Peripheral blood mononuclear cell (PBMC), health control (HC), Rheumatoid 
arthritis(RA) 

 

 

cohort study 

population 

subset recruitment 

method used 

sample 

type 

statistical 

analysis 

ref 

 
Amsterdam 
Reade ASP 
cohort 

 early drug-

naive RA (n=89) 

versus 

HC(n=37) 

lower CD3 T cells 

lower activated 

CD56+CD3+ NKT-

cells                           

lower memory 

(CD27+) B cells 

with CD80+                        

cross-sectional 

study, 

observational  

fresh 

blood  

Univariate 

association 

(MWU test 

and t-test) 

[464] 

 
 
 
Groningem 
Very Early  
IA cohort  

newly 
diagnosed RA 
patients (n=35) 
versus HC (24) 

lower “putative” 

Th17 cells  

cross-sectional 

study 

 
Univariate 

association 

(MWU test 

or t-test) 

[465] 

SP RA (n = 45)        
SN RA (n = 12)      
versus HC 
(n=41)     

decrease 
number/potency in 
total NK cell lower 
NK56dim in SP 
RA.                    

 
fresh 

PBMC 

Univariate: 

ANOVA 

[404] 

 
 
 
 
Leeds at-
risk cohort 

early 
inflammatory 
arthritis  
DMARDs naïve-
patients (n=179) 
versus HC 
(n=49)    

lower th17                           

higher expression 

of CXCR4  

longitudinal 

prospective study 

fresh 

blood  

  

multivariate 

modelling               

[359] 

evolving IA 
patients (n=294)                       

loss of Naive/Treg  cross-sectional 

study, 

observational  

fresh 

blood  

                            

multivariate 

modelling               

[3] 

Japan 
early-onset 
RA cohort 

early-onset RA 

patients     

(n=11) versus 

disease control 

(OA, n=6) 

elevated th17 

derived th1 cells 

 
fresh 

blood 

PBMC 

Univariate 

association 

(MWU test) 

[483] 

French RA 
cohort 

RA (n=92) 

versus disease 

+ healthy 

control(n=25)        

  lower Tregs cross-sectional 

study, 

observational  

fresh 

blood 

PBMC 

multivariate 

regression 

analysis 

[484] 
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CD4+T-cells 

My group reported on the lower frequencies of naïve CD4+T-cells, higher IRC [7] 

and lower Treg [485] in early RA. The potential as a biomarker value to diagnose 

RA was also established [5]. However, full modelling of the added value beyond 

association of 3 cell subsets as diagnostic biomarkers remains to be 

demonstrated rigorously using regression models.  

Th17 cells 

Evidence suggests a role for Th17 cells in early-onset RA patients [483, 486], 

Alteration in terms of lower peripheral numbers of Th17 cells (defined by the 

surrogate phenotype CD4+CD161+ T-cells) in early RA and subsequent 

enrichment of these cells at the site of inflammation (joint) suggest a role for these 

cells in the early immune events leading to clinical synovitis [465]. However, the 

limitation of this phenotype remains similar to what was discussed at the at-risk 

stage. Consistent with the study, TRIMID group demonstrated that fewer 

circulatory proportions of Th17 cells (not using flow cytometry assay, but a 

quantitative methylation-specific PCR (qMSP) biomarker assay of the epigenetic 

modification of the IL-17 gene itself as a surrogate for the quantification of 

Th17cells) in individuals with early IA symptoms (DMARDs naïve, <12 months) 

was independently associated with progression to RA compared to patients who 

did not develop RA [359]. The study further used a predictive model resulting in 

73% accurate diagnosis adjusted for all confounders notably in an ACPA-

negative subgroup where Th17 and swollen joint count were the only predictors. 

Interestingly, and consistent with this report [465]. Th17 cells using a different 

surrogate phenotype (CCR6+ cells) showed a higher frequency in ACPA-

negative RA patients with a shorter disease duration [487]. However, a model 
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using Th17 (defined as CD4+ CCR6+ cells) cells could not show predictive value 

for progression to RA in ACPA+ patients [487]. The author suggested an 

underlying difference in pathologic pathways involved in both cellular and clinical 

risk factors associated with developing RA in seropositive at-risk individuals. 

Alternatively, in line with data in SAP, Th17 implication may be an event that 

occurs earlier in ACPA+ disease compared to ACPA-. 

Another study [483] used more refined phenotypes of the putative CD161+ cells 

Th17: Th17 cells IL17+CD161+ or Th1 cells IFN-+CD161+  or Th1/17 cells 

IL17+IFN-+CD161+, and showed increased of Th1 over Th17 cells in the 

peripheral blood of the early-onset RA patients, followed by the subsequent 

reduction in Th17 cells but not Th1 cells suggesting a  role for Th17  cells in the 

early phase of RA. However, it remains to be elucidated whether this alteration 

has a predictive value for discriminating progression towards RA or other forms 

of inflammatory arthritis notably, AS or PsA where these cells are predominant.  

Regulatory T-cell (Treg) 

There is an abundant literature about Treg in RA [3, 488-496] however, it is 

difficult to reconcile it all, due to the use of multiple phenotypes (from single to 

multiple markers), RA being one of the 1st diseases to be investigated for immune 

regulation back in the early 2000’s. As consensus developed over time, studies 

are now using what is accepted as a definite phenotype for Treg 

(CD4+CD25highFoxp3+CD127low) [8].  

Patients with RA have significantly less circulating Treg compared with healthy 

controls [272]. Treg frequency at baseline was reported to be lower in RA 



 
 

64 | P a g e  
 

compared to OA or other mechanical diseases (free of systemic inflammation) 

[484].  

TRIMID research group was instrumental in defining the lower circulating Treg 

frequency in early RA [485] and later [3, 5] as well as establishing the age-

relationship in health and its loss in early RA [4]. However, as reduced frequency 

of Treg predated the new-onset rheumatoid arthritis as demonstrated by my 

group [5], this suggests a pathological role for Treg dysregulation towards the 

development of RA, at least in ACPA+ disease. A definite value as diagnostic 

biomarker remains to be established (also comparing ACPA+ and  – diseases), 

while insight was provided again by my group in a recent paper suggesting 

association with RA but NOT yet the predictive value of Treg for diagnosis [5]. 

B-cells 

Regulatory B-cells (Breg) are a recently identified subset of B-cells, notably 

producing IL-10 [497-502]. Reduced frequency of regulatory B-cell was inversely 

associated with disease activity in patients with new-onset RA [272]. However, 

whether this down-regulation of circulating Breg is associated with predicting 

progression to RA is yet to be determined. 

NK cells 

In the study mentioned above in SAP [466], a decline in NK cells and NKCD56dim 

subset was also reported in newly diagnosed, treatment-naive, ACPA-positive 

RA, suggesting that alteration in NK cells may contribute to RA development 

rather than represent the consequence of long-term inflammation.  However, 

whether the alteration preceded RA was not clear from that study but the 

comparison with health control (HC) was used to present NK and NKCD56dim cell 
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subsets as potential biomarkers for RA. There is little or no evidence showing the 

clinical value of NK cells/subsets alterations in relation to disease progression 

from IA to RA. This gap remains to be investigated. 

Conclusion 

Data investigating changes in percentages of various lymphocyte subpopulations 

between outcomes across the IAC are not robust yet due to lack of sufficient 

statistical power [483]. Furthermore, many studies  could not be related to the 

context of progression to  RA because they are not comparing the right population 

of patients in order to establish a diagnosis (i.e., they used healthy control and 

not patients with IA who do not progress to RA) [272, 464, 465, 484, 503-505]. 

Altogether, there remains a gap in phenotyping comprehensively lymphocytes 

and subsets implicated in RA pathogenesis in order to establish their possible 

value as predictive biomarker with respect to disease progression to RA. 
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1.7.3 Blood cell biomarkers of clinical responses to cs/b-DMARDs 

treatment in RA 

Prediction of response to drugs, conventional synthetic disease-modifying anti-

rheumatic drugs (csDMARD) is paramount to preventing long-term damages and 

disabilities notably, in early disease. It may use different cell subsets compared 

to biological drugs targeting specific aspects/cells of immune systems (see 

Figure 7, page 44)  

• anti-TNFs (cytokine blockade against tumour necrosis factor)  

• co-stimulation blockage (Cytotoxic T lymphocyte with associated 

antigen-4-Ig, CTLA4-Ig) 

• B-cell depletion (anti-CD20 monoclonal antibodies), and  

• IL-6 inhibition (anti-interleukin-6 receptor monoclonal antibodies) 

These are likely to be predicted by different cell subsets, indeed due to targeting 

such cells themselves as well as these targets potentially having different roles 

at different stages of the disease. Biologics are readily available in the United 

Kingdom although very expensive with varying rates of efficacy in RA (reported 

between 40-65%) [365-371]. Therefore, these would also benefit from a more 

rational use based on selecting the right drug for the right patient at the right time 

being expensive with only about a 50% chance of success.  

Here is discussed the  multiple immune cell types/subset reported to show 

association with response to cs/b-DMARDs (as  summarised  in Table 7 to Table 

10), with respect to their possible value as biomarkers.   
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1.7.3.1 Blood cell biomarkers of responses to Methotrexate (cs-DMARD) 

treatment 

Methotrexate (MTX) remains the most widely recommended as the standard first-

line csDMARDs therapy for patient with early RA [506-509] with best documented 

efficacy, safety, and relatively low costs [510-516]. csDMARDs therapy have 

been shown to effectively control systemic inflammation in patients with new-

onset RA after 12 weeks of treatment [272], though this is still limited due to 

heterogeneous clinical efficacy that is furthermore, difficult to predict [364]. 

Immune cell subsets reported to show association with responses to MTX is 

shown in Table 7. 

Evidence from a randomized blinded trial demonstrated that poor-prognosis 

(based on DAS28-ESR) of early RA patients on initial MTX monotherapy 

achieved good clinical response at 24 weeks without further need to step-up to 

combination therapy [364]. This suggests that a good proportion of early 

untreated patients (up to 30%) that would likely benefit from MTX monotherapy 

[364]. Nonetheless, poor clinical response occurs in many patients which take a 

prolonged period of time before MTX-nonresponse becomes evident [512-516] 

creating an opportunity for the disease to exacerbate in this group of patients. 

This highlights the need for a  biomarker(s) to predict patients with best chance 

of benefiting from MTX and if otherwise, allow alternative therapy early enough 

to avert worse clinical outcome [517] in potential MTX non-responders.  

 

 

 

 



 
 

68 | P a g e  
 

Regulatory T-cell (Treg)  

Treg (defined as CD4+CD25highCD127lowFoxP3+) is believed to play an important 

role in RA. Initially, data compared various states of disease activity. For instance, 

a lower frequency of Treg (CD4+CD25+Foxp3+ T-cells) in new-onset RA patients 

was inversely associated with disease activity, although whether the reduction 

was predictive of response to treatment was not investigated [272]. In MXT-

treated RA patients (after 6 months on therapy) increased frequency, and 

inhibitory activity of 2 phenotypes of Treg (intra-marker Treg defined as 

CD4+CD25+Foxp3+ and extra-maker Treg defined as 

CD4+CD25high+CD127low−) were associated with clinical remission compared to 

active RA [518]. The Foxp3+ Treg phenotype showed a strong positive 

correlation with CD4+CD25high+CD127low− population, hence the authors 

suggest that either the intracellular (Foxp3) or extracellular markers  only                  

(CD25high/CD127low) can be used to define Treg. Whilst others have used a 

combination of both extra- and intra-cellular markers 

(CD4+CD25highCD127lowFoxP3+) for Treg identification on MTX at BL [5, 519]. 

Data are, therefore, inconsistency across studies due to issue with variabilities in 

markers used to define Treg.  

 A low density of the CD39 cell surface marker on Treg (defined as 

CD39+CD4+CD25+FoxP3+ ) was only associated so far with their reduced 

suppressive activity as well as with unresponsiveness in RA patients treated with 

MTX [512]. Another study demonstrated a direct relationship between higher 

expression of CD39 on Tregs and their inhibitory activity and furthermore higher 

proportion of CD39+ Treg at baseline was shown to have a potential value as an 

independent predictor of good clinical response to MTX monotherapy after 4 
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months in a univariate analysis [363]. Whether CD39+ Treg remained a fair 

predictor of MTX responses (with fully adjusted clinical parameters) was not 

clearly demonstrated in the study. CD39 is an exonucleoside enzyme that is 

responsible for the production of adenosine (ADO), a crucial anti-inflammatory 

mediator of MTX action.  A more recent report then progressed this work 

suggesting a biomarker value for CD39 expression on circulating Tregs in 

predicting MTX response [519],  showing that higher levels of CD39 expression 

on  Treg (MFI) predicted MTX-induced remission at 6 months (defined by 

DAS28CRP) with great  specificity and sensitivity (AUC: 0.725), demonstrating a 

discriminative utility  

In early untreated RA, phenotypic changes in Treg were studied in the course of 

methotrexate treatment (These were defined as  

• FoxP3+CD25+,  

• FoxP3+CD127-,  

• CD25+CD1 percentages calculated based on analysis of CD4+ T cells)  

and subpopulation of FoxP3 CD25+ : 

• CTLA4+surface;  

• CTLA4+intracellular,  

• FoxP3+ICOS+;  

• FoxP3+CD40L+;  

• FoxP3+PD-L1[361] 

The findings suggest that a higher % CTLA4 surface phenotype and 

FoxP3+CD25+Treg at baseline were independently associated (using MWU test) 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/t-cell
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with good clinical respond to MXT monotherapy after 24 weeks with 56% of 

patients achieving remission according to DAS28. This further contributed to the 

idea of value for Treg as a biomarker to predict MTX response.  

Our own study using the  accepted minimum  Treg phenotype  

(CD4+CD25highFoxP3+CD127low) which allows better discrimination between 

recently activated T-cells (CD4+CD25+FoxP3+CD127+) and Treg,  did not 

however, select Treg as a predictor (OR15.4 p<0.0001) of MTX-induced 

remission, although lower frequencies were weakly associated (p<0.05) with 

remission [5]. This work in 70 early RA patients demonstrates the need to use 

appropriate statistical approaches to establish the difference between an 

association with outcomes (using MWU test) for potential biomarkers as opposed 

to those that may achieve clinical utility with predictive values (using OR, AUC, 

and regression model).   

Treg therefore remain a potential biomarker for DMARDs response, more likely 

when using additional phenotypic marker (such as CD39 or CTLA4) that could 

add value to multi-parameter model for predicting clinical response.  

Naïve CD4+ T-cells  

Our group was the first to describe the potential of naive CD4+T-cells to serve as 

a biomarker for clinical response to MTX treatment, evaluated using the EULAR 

response criteria, DAS28, distinguishing responder patients from non-responders 

[520]. A 2nd study [5] demonstrated the clinical utility of naïve CD4+T-cells across 

the IAC and replicated data showing the value of naïve CD4+T-cells frequencies 

at baseline for predicting MTX-induced remission (fully adjusted model for clinical 

parameters) as well as removing Treg and IRC from this model. In this first study 

however, higher naïve cell frequency was not found to be associated with 



 
 

71 | P a g e  
 

remission in patients who received MTX concomitant to anti-TNF, suggesting a 

unique role of the naïve subset in the prediction of MTX response in RA. As a 

result, employing naïve CD4+T cells as a biomarker may have positive 

implications for a personalisation, as well as cost-effectiveness of treatment in 

early RA patients starting MTX. As such LIRMM is currently undertaking a 

randomised clinical trial (Targeted Treatment Early With Etanercept + 

Methotrexate vs.T2T Care for DMARD-naïve Early RA Patients Based on naïve 

T-cell Stratification (TEEMS)) stratifying early RA patients  

➢ predicted NOT to respond to MTX alone using naïve CD4+T-cells as 

biomarker, between 2 arms :   

o MTX-alone the poor predicted outcome in >80% cases versus 

o MTX+TNFi the for improved rate of remission up to 50+%    

➢ and compared to routine care where patients predicted to respond based 

on naïve CD4+T-cells, receive MTX only (with an 80% chance to achieve 

remission) as standard of care.  

This has been delayed by the pandemic and is still recruiting. Briefly, this is a 

single-centre longitudinal cohort study aiming to determine the clinical utility of 

naive T-cell stratification for rationalising treatment with methotrexate (MTX), for 

DMARD-naive early RA patients. Thus, it aims to determine whether TNFi 

therapy (Benepali) instituted as first-line therapy in DMARD-naive early RA 

patients with poor T-cell prognostication, confers better outcomes (clinical and 

structural). Hence, this would enable a change in practice improving outcomes 

for early targeted treatment for those with a poor prognosis based on their 

immunological status (ClinicalTrials.gov Identifier: NCT03813771) [521].  

Nonetheless, a (multicentre) external validation of the value of naïve CD4+T-cell 

for MTX responsiveness would still be needed. 
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Th17 cells 

No study (to my knowledge) reported on the use of flow cytometry for Th17 cells 

(or a surrogate phenotype of Th17 cells) to predict MTX response. However, in a 

study comparing early drug naïve-RA on MTX in a T2T protocol (adding  

sulfasalazine or hydroxychloroquine if remission was not achieved at 8-12 

weeks), fewer circulating Th17 cells at baseline, quantified using a epigenetic 

mark on the IL17A gene (DNA-demethylation of a specific CpG in the IL17A gene 

promoter) rather than flow cytometry was predictive of DAS28CRP-remission 

after 6 months [359].  

B-cells 

In a study evaluating RA patients with various disease durations, treated with 

MXT-T2T, but adding  TNFIs for those who failed to reach at least a good 

response based on EULAR criteria at 3 months, a higher frequency of circulating 

IgD+CD27- naïve B-cells at baseline was  predictive of Clinical Disease Activity 

Index (CDAI) remission after 6-months (using OR) [522]. Patients with high 

circulating IgD+ CD27- naïve B cells at baseline had 4 times more chance of 

reaching remission than patients with lower percentages.  

In new-onset RA patients, MTX + leflunomide (another scDMARD)  was 

associated with changes in the frequency of different regulatory immune cell 

subsets notably decreasing Bregs (defined CD19+TIM1+IL10+ or 

CD19+CD5+CD1d+IL10+ B-cells) frequencies after 12 weeks, but the predictive 

potential of Breg  was not reported  [272], In steroid and scDMARD-naïve early 

RA (disease duration of <24 week), increased frequencies of putative Breg 

subset (defined as CD19+CD24highCD38high transitional cells) compared to  

health, was associated with a good EULAR response to MTX at 12 months [523].   
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Altogether the value of B-cell and B-subsets remains to be better investigated for 

predicting MTX response.  

Monocytes  

It was demonstrated in untreated RA patients, that responders (based on DAS28) 

showed steady numbers  of monocytes and of their subsets (CD14highCD16− and 

CD14highCD16+) over 6 months whereas a higher number of circulating 

monocytes/ subsets were potential predictors of a poor clinical response to MTX 

(using OR) [524]. Increase expression of CX3CR1 on monocytes was used to 

explain the poor predictive value of monocytes in that study, for clinical response 

based on a functional deficit of these cells [524]. A higher expression of this 

homing receptor may be a marker of refractory to treatment with MXT [524]. 

The percentage of CD14high monocytes expressing FcRIIIa/CD16 receptor at 

baseline in early DMARD-naïve RA patients was associated with change in 

DAS28 at 14-weeks post-MTX therapy and frequencies were significantly higher 

in EULAR non-responders compared to moderate or good responders  [525]. 

So, in conclusion, several subsets of CD4+T-cells including naive cells, Treg and, 

Th17 cell, as well as Breg, and monocytes expressing CD16 were shown to have 

potential as biomarkers of response to methotrexate (MTX) in early RA. However, 

many other subsets have not yet been addressed and a comprehensive analysis 

allowing to address the dynamic of all lymphocyte populations together (rather 

than in isolation) will be needed to obtain a full picture of the value of flow 

cytometry here.  
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Table 7: Summary of  candidate blood cell as biomarker for MTX treatment response in RA 

cohort study 
population 

subsets study design Sample 
type 

Drugs 
studied 

statistical 
analysis 

 outcome measured ref 

Madrid 
(Spanish) 
ERA cohort 

untreated RA 
patients 
(n=52) 

1. higher monocytes 
and subset 
(CD14+highCD16- & 
CD14+highCD16+ 
)                            2. 
Increase CX3CR1 
expression in 
Monocyte 

longitudinal 
study: 
observational  

Fresh 
PBMC  

MTX univariate 
analysis: 
modelling                  
(t-test/ROC) 

1.  associated with 
predicting a reduced 
clinical response . 
@6months.                                                                                
2. associated with non-
responder 

[524] 

Madrid 
(Spanish) 
ERA cohort 

DMARD-
naïve ERA 
patients 
(n=48)  

higher cTr B cells  Cross-
sectional: 
observational 

Fresh 
PBMC  

MTX +  low-
dose 
prednisone 

multiple logistic 
analysis : 
Independent 
association (OR) 

associated with a 
LDA/good EULAR 
response @12 months 

[523] 

Italian RA 
cohort 

RA (n=122) higher naïve B cells 
(IgD + CD27-)  

longitudinal 
prospective 
study 

fresh  
blood 

1.MTX 
alone                          
2.MTX + anti-
TNF 

Univariate/multiva
riate analysis: 
modelling  
(AUROC/ OR)       

1. a significant 
predictor of CDAI 
remission @6-months                                                                                      

[522] 

Newcastle 
Early 
Arthritis 
Clinic 

 drug-naïve 
early RA 
patients 
(n=68) 

Higher  CD39 
expression on CD25 
High CD4+ T-cells 
(putative Treg) 

longitudinal 
prospective 
study 

Fresh 
PBMC  

MTX  binomial logistic 
regression: 
modelling 
(AUROC) 

predicted DAS28CRP 
remission  

[519] 

Leeds 
Early 
Arthritis 
cohort 

cDMARDs-
naive RA 
patients 
(n=120)                            

higher  Naive  prospective 
study 

 fresh  
blood 

MTX multivariate  
modelling 
(AUROC/OR) 

 associated with 
predicting MTX-
induced 
DAS28remission                                      

[5] 

Leeds 
Early 
Arthritis 
cohort 

drug-naïve, 
early RA 
patients 
(n=108) 

higher naïve cell 
frequency 

prospective 
study 

frozen  
PBMC 
(n=38)   
fresh blood 
(n=70) 

1. MTX 
2.MXT+anti-
TNF 

Multivariate 
analysis     
(AUROC/OR) 

1.associated with 
(DAS28<2.6) 
remission @6months   
2. not associated with 
Remission  

[520] 
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Leeds 
Early 
Arthritis 
cohort 

Early 
Inflammatory 
Arthritis 
(n=28)  

higher naïve T-cell 
frequency 

pilot 
observational 
study 

fresh  
 blood 

MTX alone    AUROC/OR  a predictor of 
remission at 6 months   

[362] 

Yorkshire 
Early 
Arthritis, 
UK cohort 

DMARDs-
naïve early 
RA (n=42) 

Increased 
FccRIIIa/CD16 
expression on CD14++ 
monocytes  

observatory 
study 

Fresh 
blood 

MTX univariate 
association (MWU 
test) 

associated with 
EULAR non-
responders  

[525] 

Swedish 
Early RA 
cohort 

untreated 
early RA 
(eRA)(n=17). 

higher PD-1+TFh                         
higher CTLA-4+ 
conventional CD4+ T 
cells(nonTreg defined 
as CD25-CD127-/+) 

longitudinal 
(randomized 
trial) study. 

 fresh 
PBMC  

 MTX+ CTLA-
4Ig 
(abatacept) 

Multivariate 
analysis: 
modelling 
(AUROC) 

 predicted CDAI 
remission (CDAI ≤ 2.8) 
@ week 24  

[526] 

Moscow 
ERA cohort 

 early 
untreated 
RA(n=45) 

1. higher 
FoxP3+CD25+                                 
2.high level of CTLA4+ 
on the Treg 

cross-
sectional:  
observational 
study 

fresh 
PBMC  

MXT Univariate 
analysis: 
association (MWU 
test) 

1. associated with 
Good EULAR 
responders to MT 
therapy at week 24                                                                                              
2. associated with 
DAS28 remission/low 
RA activity @24weeks                                                                   

[361] 

Indian RA 
cohort 

DMARDs 
naive-active 
RA (n=70) 

1.higher CD39+ Tregs,                   
2. higher 
CD4+CD25+CD39+ 
cells 

Cross 
sectional: 
observational 

Fresh 
blood 

MTX univariate 
modelling 
(AUROC) 

1. associated with 
EULAR responder 
group                             
2. associated with poor 
response @ 4 months.      

[363] 

Brazil RA 
cohort 

RA patients 
(n=122) 

low density of CD39 
on peripheral 
regulatory T cells 

prospective 
study,  

fresh 
PBMC 

MTX univariate 
association 
(ANOVA/ t-test) 

   associated with  non-
responsiveness at 
least 3 months  

[512] 

Methotrexate (MTX),  Area under (AU) receiving operating curve(ROC), Odd ration (OR), The European Alliance of Associations for Rheumatology 
(former European League Against Rheumatism) (EULAR), Rheumatoid arthritis (RA), Disease activity score(DAS), Clinical Disease Activity Index 
(CDAI),Mann-Whitney test (MWU)
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1.7.3.2 Blood cell biomarkers of responses to anti-TNF treatment.   

Brief summary of  works focusing on subsets associated response to anti-TNF 

alone or with MTX treated is presented in table 8. 

T-cells (Naive, Treg and IRC) 

Naïve CD4+T-cells, Treg and IRC were investigated in TRIMID group in a small 

number of patients on anti-TNF over the years (unpublished abstract, presented 

at EWRR meeting in May 2024 [527]. This work  showed that over time, naïve 

cell frequencies increase with anti-TNF therapy, although the full trial clinical data 

is currently available, and we don’t know if response versus non-response will 

show differential patterns. In contrast, patients on MTX-alone showed continued 

loss of naive cells over time in non-response and a lower predictive frequency at 

baseline as expected, while in responders higher and steady state frequencies 

were observed over 48 weeks.  

Similarly, Treg frequencies keep reducing with MTX-alone and remain stable with 

anti-TNF (with no difference at baseline). In contrast, IRC frequencies remained 

steady with MTX-alone but reduced with anti-TNF (again with no difference at 

baseline).  

My group also showed in the past [491] that higher naïve cells ,lower IRC and 

higher Treg (with a refined phenotype adding CD45RA+and CD62L+ as newly 

developed Treg) provide value as a potential biomarker for the safe 

discontinuation of anti-TNF in early RA treated outside of NICE guidelines, in 

clinical trials testing the benefit of early anti-TNF while not in established RA 

treated according to standard of care. This was however an observational study 

with no predictive value assessed. It would need repeating with similar patients 



 
 

77 | P a g e  
 

from biologics trials in early RA, which was an objective of my studies, that will 

not be achieved due to the pandemic.  

Th17 cells 

A lower Th17 cell frequency (based on CD45RA−CD161+CCR6+ markers) was 

shown to be associated with a good EULAR response at 6 months in active RA 

patients treated with anti-TNF as well as anti IL6 (tocilizumab) [528]. But with 

small number of participants (n=31), the statistical power to suggest Th17 robust 

association with responses may be lacking. Additionally, the gating strategy used 

to identify Th17 cells was unusual. T helper type 17 (Th17) cells are a subset of 

CD4+ effector T-cells [529]. The author defined Th17 as part of the CD45RA- 

subpopulations (the memory compartment) of the total CD4+T.   

 The study based this gating strategy on an animal study (using a C57/BL6 mice 

model) [530] which showed that upregulation of IL-17 exclusively occurs within 

the memory (defined by CD44high CD62Llow ) compartment of T-cells after 

activation to induce Th17 differentiation, hence not in naïve (CD44low or 

CD62Lhigh) cells compartment.  

On the other hand, Th17 differentiation from naïve CD4+ T lymphocytes has also 

been reported in another animal studies [531] and in human [532, 533]. Applying 

evidence from animal studies to define Th17 cell may also be misleading as 

CD4+T-cell are likely to behave differently in humans. Therefore, quantifying 

Th17 only in the memory compartment (CD62L+ CD45RA- cells) based on the 

co-expression of CD161+CCR6+ (a 2-maker identification alone, not the 

production of IL-17) [528] probably may have biased the data. Using a more 

definitive surrogate phenotype notably, 3-makers (CD161+ CCR6+ CXCR3- 

CD4+ T-cells) for th17 [359] may have been more suitable while not yet optimal. 
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The percentage of CD8+T-cells at BL, specific for antigens derived from apoptotic 

cells in chronic inflammation was significantly higher in ant-TNF responders 

compared to those who failed to respond following treatment [534], this was 

decreased, suggesting a possible involvement of apoptosis epitope-specific 

CD8+ T cells in pathways relating to the mechanism of action of anti-TNF. While 

high CD8+T presented a potential predictive biomarker of EULAR response after 

6 months of anti-TNF (AUC 0.82, n=16) in this single study, there would be a 

need to validate the finding using a larger cohort independently to assess it 

potential biomarker value.  

B-cells  

B cells have been identified as a potential predictive biomarker of response to 

anti-TNF [535] with data suggesting that a higher frequency CD27+ memory B- 

cells, notably IgD+CD27+ pre-switch memory B-cells, have value as a biomarker 

for predicting EULAR responders at 3 months based on EULAR criteria (using 

ROC, relative risk). 

A report from UK cross-sectional cohorts plus European prospective cohorts (part 

of the ABIRISK consortium) had shown that a reduced frequency of memory B- 

cells ( defined by the limited phenotype CD19+CD24hiCD38lo) expressing a signal 

regulatory protein (SIRP a/b) predicted patients that developed anti-drug 

antibodies (ADA) which was associated (using t-test analysis) with non-response 

or partial response to anti-TNF (adalimumab) treatment according to the EULAR 

classification at 12 months with AUROC score of 0.92 [536].  

About 33% of adalimumab-treated RA patients developed immunogenicity. The 

development of ADA in RA patients treated with biologics has been shown to vary 

depending on the drug in use [537]. This is because b-DMARDs are proteins 
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which are intrinsically immunogenic as  foreign (such as neutralizing anti-drug 

antibodies, contributing to loss of efficacy) [538-545] .Therefore, the development 

of ADA may not only impact drug efficacy but also elicit adverse drug reactions. 

As such, it was argued that for patients who fail an initial biologic agent or for 

those who initially respond but lose efficacy, the evaluation of whether ADA is 

present will allow clinicians to more effectively choose the best agent to which the 

patient can be switched [537] as such, reduced frequency of memory B cells 

(CD19+CD24hiCD38lo) particularly those expressing this signal regulatory protein 

(SIRP a/b) was proposed to be a good predictor (using AUROC)  for the 

development of ADA and by extension a potential predictive biomarker for poor 

clinical response to adalimumab. 

In a more recent study Rodríguez-Martín et al., [546] phenotyped multiple blood 

lymphocyte subsets in bDMARDs naïve-RA patients treated with anti-TNF (after 

MTX failure to achieve remission). The data seems to validate the work done by 

Fedele et al., [522] as lower % of total and naïve B cells at baseline were found 

to be associated with DAS28 and SDAI non-remission at 6 months. The study 

further demonstrated using a multivariate logistics regression, that a B-cells/CD4 

ratio <0.2 was highly predictive of DAS28 non-remission after 6 months. 

However, this data was not replicated in a more recent study [371] which 

demonstrated that lower percentage of naive B-cells was independently 

associated with remission based on DAS28 in anti-TNF +MTX treated patients at 

6 months. No association, however, was observed for patients who did not 

receive concomitant MTX in the study suggesting that the variance between 

findings could be a consequence of a combination therapy in some studies. 
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Monocytes 

A study of MTX non-responders RA patients treated with anti-TNF (adalimumab) 

showed that good clinical response was found in patients with a significant 

normalization of the numbers of circulating monocytes (CD14+highCD16- & 

CD14+highCD16+) after three months of treatment which then lasts up to six 

months. Although at baseline, the cellular markers were not showing a predictive 

value for discriminating between responders and non-responders, the study 

demonstrated a high positive predictive value (86%) using numbers of monocytes 

at 3 months as an early biomarker for anti-TNF response which may be of help to 

manage people with no response by switching to other drugs early [547]. This is 

univariate modelling using only monocyte without accounting for the effect of 

clinical variables in the model (using AUROC). Therefore there is a need to 

validate this finding in  an independent cohort while accounting for other possible 

confounders. 

In conclusion, multi-centre replication studies would be needed to validate the 

clinical value of these potential cellular biomarkers to better inform the choice of 

using anti-TNF or otherwise in patients. 
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Table 8 Summary of  candidate blood cell as biomarker for anti-TNF treatment response in RA 

cohort study 

population 

subsets study design Sample 

type 

Drugs 

studied 

statistical 

analysis 

 outcome 

measured 

ref 

Madrid RA 
cohort 

 anti-TNF 
naïve-RA 
(n=78) 

lower naïve B-cell a prospective, 

observational, 

longitudinal bi-

center pilot 

study 

frozen 

PBMCs  

1.anti-TNF 

+MTX        

2.anti-TNF 

alone                      

Multivariate 

logistic analysis: 

modelling (OR/ 

AUROC) 

 1.  independently 
associated  @ 6 
months.  
2. no association  

[371] 

Madrid 
(Spanish) ERA 
cohort 

RA patients 

(n=98): 

Biological 

naive(n =86) + 

TNFi-

treated(n=12) 

1. lower total and 

naive-B                  

 2. B-cell/CD4  

ratio<0.2                                             

 prospective 

observational, 

longitudinal, bi-

center pilot 

study 

frozen 

PBMCs  

anti-TNFs                                      Univariate 

(MWU test) and 

multivariate 

analysis: 

modeling 

(OR/AUROC)                                   

1.  associated 

with no REM @ 

6months.                                                                           

2.  associated 

with a higher 

probability of non-

REM status  

[546] 

Madrid 
(Spanish) ERA 
cohort 

MTX non-

responder RA 

patients(n=35), 

active drug 

naive-RA(n=13) 

1. higher monocytes ( 

CD14+highCD16- 

,CD14+highCD16+ and 

CD14+lowCD16+ 

subsets)                         

2. Increase CX3CR1 

expression in monocyte 

longitudinal 

study: 

observational  

Fresh 

PBMC  

anti-TNFa 

(adalimumab) 

+ MTX  

univariate 

analysis 

modelling  

(t-test/ROC) 

1.   @ 3months of  

treatment 

associated with 

Non-responder 

@6months.                                                                              

2. associated with 

non-responders 

[547] 

French RA 
cohort 

RA(n=20) higher CD27+ memory 

B cells (IgD+CD27+ 

pre-switch memory B 

cells) 

pilot 

observational 

study 

 
ant-TNFs                                      Univariate 

analysis: 

association 

(MWU test) 

 associated with 

EULAR 

responders @3 

months.                        

[548] 

Roma, Italian 
cohort 

HLA-

A2+ biologic-

naïve RA(n=16) 

High apoptotic epitope-

specific CD8+ T cells 

 
PBMC anti-TNF 

(Etanercept) 

univariate linear 

regression: 

prediction (AUC) 

 associated with 

EULAR 

response@6onths  

[534] 
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Leeds, UK 
cohort 

RA remission 

(n=47) 

lower IRC                                   

higher naïve                                 

higher CD62L+Tregs 

prospective 

controlled study 

whole 

blood 

anti-TNF+MTX 

(accesation) 

logistical 

regression:  

univariate 

associations 

(AUROC/OR) 

 associated with 

Sustained 

remission was 

associated  

[491] 

London, UK 
cohort + 
European 
(France, 
Netherlands and 
Italy)  cohorts 

 RA (n=57) reduced frequency 

of signal regulatory 

protein (SIRP)a/b-

expressing memory B 

cells  

UK cross-

sectional 

cohort(n=20) + 

European 

prospective 

cohort(n=37)  

frozen 

PBMCs  

anti-TNF 

(adalimumab ) 

univariate 

analysis: 

modelling 

(AUROC) 

 predicts  

development of  

ADA, and 

consequentially 

non 

reponders@12mo

nths  

[536] 

France RA 
cohort 

RA(n=96) higher proportions of 

CD27+ memory B cells 

longitudinal 

prospective 

study 

PBMC 

from 

EDTA 

blood 

anti-TNF Multivariate 

linear regression 

analysis: model 

(AUROC) 

associated with 

responders 

(according to 

EULAR) at 3 

months  

[535] 

Anti-Tissue necrotic factor(TNF), Methotrexate (MTX),  Area under (AU) receiving operating curve(ROC), Odd ration (OR), The European Alliance of 
Associations for Rheumatology (former European League Against Rheumatism) (EULAR), Rheumatoid arthritis (RA), Mann-Whitney test (MWU), 
remission (REM), peripheral blood mononuclear cell (PBMC)
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1.7.3.3 Blood cell biomarkers of responses to CTLA4-Ig (abatacept) 

treatment 

CTLA4-Ig, commonly known as abatacept, targets the immune system by 

inhibiting the co-stimulatory signal required for full T-cell activation. Specifically, 

it binds to CD80 and CD86 on antigen-presenting cells (APCs), thereby 

preventing their interaction with CD28 on T cells. This interaction blockade 

inhibits the co-stimulatory signal necessary for T-cell activation, ultimately leading 

to suppression of the inflammatory response involved in autoimmune diseases 

like rheumatoid arthritis (RA) [549] .  While abatacept has demonstrated efficacy 

in many patients, response rates vary, prompting the need for predictive 

biomarkers to identify individuals most likely to benefit from treatment [550, 551]. 

Blood cell biomarkers represent a promising avenue for predicting responses to 

abatacept therapy, as they reflect the dynamic interplay between the immune 

system and disease activity [551]. This section explored the current 

understanding of blood cell biomarkers associated with responses to abatacept 

treatment in RA, highlighting their potential utility in personalized medicine 

approaches and guiding treatment decisions for improved patient outcomes. 

T-cells subsets 

In early RA patients, higher frequencies of activated Treg (CD3+ CD4+ CD25+ 

CD127low HLA-DR+) were selected at baseline in a model of remission-related 

biomarkers based on clinical disease activity index (CDAI) after 6month 

abatacept, adjusting for other parameters [552]. In established RA, activated Treg 

were not found to be associated with remission [552] suggesting that Treg 

dysregulation may play a critical role in the onset of RA. 
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In a clearly defined cohort of drug-naïve early RA patients, Aldridge et al., [526] 

investigated CD4+ T-cell subsets and found that higher proportions of PD-1+TFh 

and CTLA-4+ conventional CD4+ T cells at baseline (using AUROC) predicted 

remission (CDAI ≤ 2.8) at week 24 in patients treated with abatacept (CTLA-4Ig).  

Patients with low baseline numbers of CD8+CD28– T cells showed a greater than 

4-fold higher probability (odds ratio) of achieving remission within 6 months of 

abatacept therapy than patients with higher levels of these cells [553]. This 

suggested that baseline frequency of circulating CD28-negative CD8+T cells may 

discriminate between potential responders and non-responders to abatacept in 

patients with RA although, it was not demonstrated using appropriate statistical 

methods by the authors. 

Th17 cells 

Additionally, activated Th17 (CD3+ CD4+ CXCR3− CCR6+ CD161+ HLA-DR+) 

cells at baseline were shown to be significantly higher in remission versus non-

remission and were selected using a Cox regression model-related method as a 

remission-related change in T-cells features in the early RA treated with a biologic 

(abatacept). The remission rate however varied between RA subtypes, the 

proportion of patients achieving remission being lower in the seronegative 

compared to seropositive patients. Th17 cell subset was therefore presented as 

a predictive biomarker for good clinical response to abatacept in patients with 

early, seropositive rheumatoid arthritis [552].   

 

 

 



 
 

85 | P a g e  
 

B-cells 

Lower baseline levels of activated B cells (IgD+ CD38+) and/or memory B-cells 

(CD27+) (measured as absolute count) were shown to be important for an 

abatacept poor clinical response in RA resistant to other biologics (anti-TNFα, 

anti-CD20, RTX and anti-IL6R, Tocilizumab) based on DAS28 after 6 months 

[554].  Salomon et al, [528] found in active RA patients who required the initiation 

(or switch) to a biologic drug, that baseline proportion of CD24hiCD27+ Breg was 

associated (MWU test) with DAS28 remission at 6-months and that abatacept-

treated patients with good EULAR response at 6-months had significantly higher 

proportion of Breg cells than those without good EULAR response, however, only 

using  univariate analysis with no further evaluation of predictive value of the 

potential biomarker. Table 9 presented a brief summary of the candidate subsets 

report to be associated with response to CTALA4-Ig therapy. 

Taken together, investigating the value of other immune cells as biomarkers of 

clinical response to co-stimulation blockade (CTLA4-Ig) treatment is needed in 

the future. 

 

 

 

 

 

 

 

 

 



 
 

86 | P a g e  
 

 

Table 9 Summary of  candidate blood cell as biomarker for CTALA4-Ig 
(abatacept)  treatment response in RA  

cohort study 
population 

subset study 
design 

sample 
type 

statistical 
analysis 

 outcome 
measured 

ref 

Brest, 
France 
RA 
cohort 

RA resistant 
to other 
biologics 
(n=43) 

reduced 
CD38+ 
and/or 
CD27+ 
memory B 
cell 

a 
retrospecti
ve 
monocentr
ic study 

fresh 
blood 

univariate 
association 
(MWU test/ 
Wilcoxon 
test) 

 poor clinical  
response 
(NR/MR)  
based on 
DAS28 @ 
6months         

[554] 

Brescia, 
Italy RA 
cohort 

RA anti-
TNF-
resistant 
RA(n=32) 

Low 
CD28−  
CD8+ T 
cells 

 
whole 
blood 

univariate 
prediction 
(AUROC) 

 associated 
with predicting 
remission  
based on 
EULAR 
response 
criteria after 6 
months 

[553] 

Tokyo 
RA 
cohort 

RA(n=103):                                     
1. 
seropositive 
early (n=24)                      
2. 
seropositive 
established 
(n=79)                               

1. higher 
activated 
Th17 
(aTh17)                                    
2. higher 
activated 
Treg 
(aTreg)    

longitudin
al study: 
observatio
nal  

 PBMC 1. Cox 
regression 
model–
related 
method 
(AUROC)                
2.Univariate 
logistic 
analysis: 
association  

 1. predictors 
of remission 
based on 
CDAI @ 6 
months  
2. associated 
with a good 
response  

[552] 

Area under (AU) receiving operating curve(ROC), The European Alliance of Associations 

for Rheumatology (former European League Against Rheumatism) (EULAR), 

Rheumatoid arthritis (RA), Mann-Whitney test (MWU), no response (NM), moderate 

response(MR), Disease Activity Index (CDAI), peripheral blood mononuclear cell 

(PBMC) 
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1.7.3.4 Blood cell biomarkers of responses to B cell depletion (Rituximab) 

treatment 

Rituximab (RTX) is a B-cell depleting antibody therapy that only affect CD20+ B-

cells leading to their depletion from the peripheral circulation and lymphoid 

tissues. Notably, rituximab does not affect plasma cells, which lack CD20 

expression, thus sparing the humoral immune response mediated by long-lived 

plasma cells. It showed good clinical response in RA[555, 556]  but is most 

effective in systemic lupus erythematosus (SLE)[557, 558] . The rational for 

investigating blood cell biomarkers associated with RTX response in RA lies in 

the complex interplay between B-cells, T cells, and cytokines in the pathogenesis 

of the disease[559] . B-cells play a central role in RA pathophysiology by 

producing autoantibodies, presenting antigens to T-cells, and secreting pro-

inflammatory cytokines. Targeting B-cells with RTX can modulate these immune 

responses, leading to clinical improvement in some patients. Several studies[555, 

556]  have suggested that baseline levels of specific blood cell subsets, such as 

CD20+ B-cells, and CD19+ B-cells,  may predict response to RTX therapy in RA. 

B-cell subsets 

Higher total lymphocyte counts (LC), and higher plasmablasts frequency using 

ROC analysis were independently shown to be predictors of poor response to 

RTX treatment as well as failure to achieve remission at 6 months (sensitivity 

[93.3%]/specificity [44.8]) [560]. The success of RTX monotherapy after 6 months 

was reported by our team to be associated with complete B-cell depletion after 

1st infusion in both biologic naive RA and patients who were resistant to anti-TNF 

treatment [561]. Higher plasmablasts following incomplete B-cell depletion, have 

been observed in poor clinical response [561]. The 2nd cycle of rituximab 

(administered prior to total B cell repopulation) enhanced B cell depletion and 
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clinical responses, and further strengthened that clinical response was mediated 

by the extent of B cell depletion rather than the RTX dose. 

A moderate-to-good response was reported after 6 months in a small number of 

RA patients (resistant to DMARDs including at least one anti-TNF agent) who 

switched to rituximab treatment [562]. This clinical response was preceded by a 

more significant decrease in peripheral blood CD19+CD27+memory B-cells, 

suggesting that better depletion of memory B-cells was associated with treatment 

response using t-test analysis [562]. 

Baseline levels of activated switched memory (SM) CD95+ and CD21- (IgD-

CD27+) and double negative (DN) memory (IgD-CD27-) B cells were found not 

to be predictive of clinical response [563]. However, the study further suggested 

that only lower CD95+ activated memory B cells (CD95+IgD-CD27+ and 

CD95+IgD-CD27-) at depletion time points (1-month post BCDT) have the 

potential for biomarkers of clinical response after 4 months of follow-up using 

MWU test/Kruskal-Wallis multiple comparison tests. 

A 2-year national, multicenter, randomized, open-label RTX retreatment study, 

demonstrated in BCDT–naive RA patients, that a low baseline CD27+ memory B 

cell frequency was predictive of a greater clinical response to RTX (odds ratio 

0.97)  6 months after the first cycle based on DAS28-CRP [367].  

A combination of B-cell numbers (CD19+ B cells at a level greater than the lower 

limit) with increased memory B-cells (CD19+CD27–IgD–) was demonstrated as 

independent predictors of response (OR=2.2 [1.4, 3.5]) in patients failing one anti-

TNF [564]. Looking at a combination of both B-cell biomarkers at baseline, better 

treatment effects were noted particularly in RF+ RA based on DAS28, whereas 
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only a higher proportion of memory B cells identified responder within RF-  

patients [564].                                                 

In RA patients resistant to TNF-blocker, a significantly higher frequency of naïve 

B-cells (CD27-IgD+) at baseline was reported in non-responders/moderate 

responders to RTX compared to good responders [365]. A low frequency of 

plasmablasts pre-treatment was also proposed as a valid predictor for EULAR 

responsiveness in TNF-resistant active RA patients [366] as naïve/memory B-cell 

frequencies are in apposition; this suggests that the markers/phenotype used 

may have an influence on the results by selecting different subsets with better 

statistical value than others and shows that a careful selection of surface marker 

may have a major effect on findings. 

NKT/NK cells 

In a very small study (n=7), lower numbers of circulating iNKT cells ( defined by 

CD3, CD4, and CD161) in RA patients at baseline [565] were shown to be 

significantly increased in responders (n=5) after 120 days of rituximab treatment, 

and inversely correlated with DAS28, which suggested a potential predictive role.  

Data have shown that NK cells(CD3−CD56+) could be used as an early predictor 

of clinical response, the study demonstrating increased activation of NK-cells 

defined as an upregulation of CD54 (CD56+/CD16+/CD54bright) 3 months after 

the first rituximab course, which  was significantly associated with clinical 

response (using linear regression model analysis) at 6 months and 1 year, 

independent from other clinical variables [566]. 
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T-cells 

On the other hand, lower total LC and CD4+T-cells at baseline were 

independently associated with a good EULAR response to RTX in RA despite 

RTX targeting B-cells. However, these parameters failed to predict patients who 

would achieve remission. Interestingly, unpublished data from TRIMID group 

(presented at EWRR conference, 2019) showed that the return of T-cells to the 

synovial biopsies was associated with relapse after RTX therapy suggesting that 

there may also be differences between the drug target (B-cells) and the cellular 

biomarker (T-cells) that predict the response.   

In summary, B-cells seemed mostly investigated (Table 10) as a biomarker of 

RTX response, but it may not be the only lymphocyte subset (LS) with value. 

Therefore, highlighting the need to investigate the value of other LS as a 

biomarker of RTX response  

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 10 Summary of  candidate blood cell as biomarker for RTX treatment response in RA  

cohort study population subset study design sample 
type 

Drugs 
studie
d 

statistical analysis  outcome  
measured 

ref 

Strasbour
g, France 
cohort 

active RA(n=7) lower iNKT longitudinal 
analysis  

fresh  
blood 

 RTX univariate 
associations (MWU 
test) 

 potentially 
associated  with 
good clinical 
responses 
@120days                 

[565] 

Italian RA 
cohort 

long standing RA 
(LSRA) (n=138) 

lower lymphocyte count retrospective 
observational 
(Muti-centre) 
study 

 
RTX   univariate logistic 

regression 
analysis/multivariate: 
Modelling (OR) 

 predictors for 
good-EULAR 
response 

[369] 

Magenta, 
Italy 
cohort 

 RA 
refractory to 
conventional and 
anti-TNF (n=34) 

increased activated NK 
count (defined as an 
upregulation of 
CD54)(CD56+/CD16+/CD
54bright) 

longitudinal 
study: 
observational  

fresh  
blood 

RTX Multivariate linear 
regression "least 
squares" models  

significant inverted 
relationship 
between 
SDAI/DAS28 
@6months  

[566] 

Leeds 
Early 
Arthritis 
Cohort 

RA(n=19) complete B-cell depletion  
after 1st infusion 

pilot study  Fresh 
 blood 

RTX univariate association 
(MWU test) 

associated with 
good clinical 
response @ 6 
months, 

[561] 

Leeds 
Early 
Arthritis 
Cohort 

RA(n=103) higher  pre plasma  + 
incomplete depletion 

prospective study Fresh  
blood 

RTX univariate logistic 
regression: 
association 

associated with 
non-responders  

[567] 

Leeds 
Early 
Arthritis 
Cohort 

 anti-TNF 
unresponsive 
active RA(n=60) 

complete B-cell depletion  
after 1st infusion 

prospective study Fresh  
blood 

RTX univariate association 
(MWU test) 

associated with 
moderate-to-good 
clinical response 
@ 6 months, 

[568] 

London 
RA 
Cohort 

active refractory 
RA(n=24) 

higher numbers of memory 
B cells @ rtp 

prospective 
observational 
study. 

fresh  
blood 

RTX Wilcoxon test associated with  
RA relapsed  

[569] 

New York 
RA cohort 

RA active 
RA(n=20) 

lower CD95+ activated 
memory B cells (SM and 
DN) at dtp                                          
higher ratio of transitional 
B cells to memory at rtp 

 
fresh  
PBMC  

RTX Univariate analysis: 
association (MWU 
test) 

 Biomarkers of 
clinical response 
@ 4 months 

[563] 
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Graz, 
Austria 
RA cohort 

anti-TNF treated 
active RA(n=52) 

1 elevated CD95+ pre-
switch B cells                                                                        
2.lower Plasmablasts 

Cross-sectional: 
observational 

 PBMC RTX univariate logistic 
regression analysis 
(MWU test/ OR) 

1.associated with 
non-responders                                              
2. predictor for 
EULAR 
responsiveness  

[366] 

Graz, 
Austrian 
RA  
cohort 

RA(n=44) 1.lower total lymphocyte 
counts (LC), T cells and 
CD4 + T cells     
  2.(high LC (absolute 
value),   high plasmablast ) 

observatory 
study 

Fresh 
 blood 

RTX Multivariate logistic 
regression: modelling 
(AUROC) 

1. independent 
predictors of 
EULAR response                                                                                                    
2. predicted   not 
achieving LDA at 
week 24  

[560] 

Heraklion, 
Greece 
cohort 

Active RA 
resistant to 
DMARDs 
including at one 
anti-TNF agent             
(n=31) 

lower CD19+CD27+ 
memory B cells 

Cross-sectional: 
observational 

fresh 
PBMC  
and BM  

RTX univariate association 
(Wilcoxon test) 

                                                                    
associated with 
moderate-to-good 
response (n=6)  
@6month  

[562] 

Bern,  
Switzerlan
d RA 
cohort 

RTX-naïve' RA 
resistant to TNF-
blocker(n=35) 

lower naïve (CD27-IgD+) 
B-cells (absolute number) 

prospective 
observational 
study. 

fresh  
PBMC  

RTX univariate association 
(Wilcoxon test/ MWU 
test) 

 associated with 
non-responders or 
moderate 
responders  

[365] 

France 
RA cohort 

BCDT–naive RA 
patients 

(n=208) 

low CD27+ memory B cell 
frequency 

RTX retreatment 
study, A 2yrs 
national, 
multicenter, 
randomized, 
open-label study 

fresh  
PBMC 

RTX Univariate analysis: 
modeling (OR) 

associated with a 
greater clinical 
response 
6MONTHS  

[367] 

Germany 
RA cohort 

RA patients failing 
one TNFi(n=154) 

increased CD19+CD27–
IgD– B cells (absolute 
value) 

exploratory, 
multicentre, open 
label, 
uncontrolled 
phase IIIb studies 

Fresh 
blood 

RTX multivariate 
regression: modelling 
( AUORC/OR) 

associated with 
responder group 
after 16 weeks  

[564] 

Rituximab (RTX), Area under (AU) receiving operating curve(ROC), Odd ration (OR), The European Alliance of Associations for Rheumatology (former 

European League Against Rheumatism) (EULAR), Rheumatoid arthritis (RA), Mann-Whitney test (MWU), remission (REM), Depletion time point(dpt), 

reconsitution time point(rtp),  rituximab (RTX), low disease activity(LDA), Simplified Disease Activity Index (SDAI), Disease Activity Index (CDAI), peripheral 

blood mononuclear cell (PBMC): Blood cell biomarkers of responses to Tocilizumab (IL-6 inhibition) treatment 



Despite advancements in treatment modalities, achieving optimal outcomes for 

all patients remains a challenge, necessitating a personalized approach to 

therapy. Among the arsenal of biologic agents, tocilizumab, a monoclonal 

antibody targeting the interleukin-6 (IL-6) receptor, has emerged as a pivotal 

player, offering promising results in modulating the immune dysregulation 

inherent in RA. However, the heterogeneous nature of RA poses a conundrum 

for clinicians, as responses to tocilizumab treatment vary widely among 

individuals[509, 570] . Hence, the quest for reliable biomarkers capable of 

predicting and monitoring response to therapy has intensified. In this pursuit, 

blood cell biomarkers have garnered significant attention due to their 

accessibility, dynamic nature, and potential to reflect the underlying 

immunological milieu[570-573].  

There are fewer studies here as this drug was more recently developed. 

Investigation of lymphocyte lineage subsets comprising T, B, NK and NKT cell for 

response to tocilizumab in patients with severe rheumatoid arthritis (n=20) 

observed that only NK-cell (CD3−CD56+ cells) in higher proportion at baseline 

was associated with disease remission at 3 months (using MWU test) [484]. The 

failure of the baseline proportion of NK cells to show association with change in 

disease activity at 3 months in a second cohort (n=15) treated with anti-TNF 

therapy was suggesting that NK cells may be a biomarker of response specific to 

an IL-6 inhibitor agent with a pathological link between anti-IL-6 induced 

remission and NK cells. 
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Conclusion to this section on response to drug  

Despite the substantial increasing evidence of various cellular signatures 

underlying RA pathogenesis, a comprehensive lymphocyte analysis of the 

dynamics of all subsets together for predicting clinical response in RA has not 

been done. It remains important to predict more accurately which patients are 

more likely to respond to a targeted treatment to improve the risk-benefit ratio 

and cost-effectiveness in individual patients as well as the overall treatment 

success on the population level [574, 575]. 

1.7.4 : In summary 

From the current review, the lack of results validation in independent cohorts has 

been found to be the most important limitation of many studies across each stage 

of the IAC. While some results have been replicated in similar cohorts by the 

same group as ours, others have not. This highlights the gap in translating 

promising predictive biomarkers reported by most studies into routine clinical 

tests. A need that seeks urgent attention in this field of study.   Although many 

studies reviewed in this section had proposed promising predictive biomarkers 

across various stages of the IAC, most were significantly limited by a few factors, 

one such factor was; 

 The size of the study population.   

Only 14 out of 55 studies included >100 participants, 14 more enrolled < 100 

subjects, while 27 studies had less than 50 subjects (Table 5 to Table 10). With 

a smaller sample size, it is challenging to draw a definitive conclusion on 

statistically significant associations because of the possibility of higher standard 

error arising from a lack of statistical power.  
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The validity of the study 

Another concern lies in the validity of the statistical model reported by some 

studies. For clinical decision-making about patients, diagnostic and prognostic 

inferences from statistical models are crucial. How reliable these inferences are 

is dependent on the statistical model's validity as well as the accuracy and 

completeness of the data gathered [576]. Prediction models reported by some 

studies lack the appropriate statistical rigor underpinning the value of the model 

as claimed.  

While some studies used multivariate analysis to reach model construction, 

others demonstrated only univariate association which failed to adjust for other 

possible confounders and used inappropriate wording to describe findings (i.e., 

prediction of which using association statistics). 

The end point for outcome assessment was another factor that made comparison 

of findings from different studies difficult. It is not always clear if biomarkers are 

associated or more importantly predictive of those achieving the outcome of 

interest while the time at which the outcome is assessed is also quite valuable. 

Potentially, stable response for an impact on a clinical decision may not be 

accounted for in studies accessing biomarkers at a shorter treatment duration 

(like at 3 or 4 months) [363, 484, 535, 548, 562, 563, 565] or in patients, 3 months 

after treatment and not at BL [512, 547].This may be responsible for inconsistency 

in data reported in literatures evaluating baseline cell subsets that might influence 

clinical response to therapy used may also bring bias in the data. 
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Non-uniformity in classifying response types 

Additionally, non-uniformity in classifying response types may partly explain data 

inconsistency. While some studies [525, 554] used 3 categories (good, moderate 

or non-response) according to EULAR criteria [577, 578], other have used 2 

types- either as  moderate and good  responders [369] or responder (combining 

good + moderate) and non-responders [525, 534, 547] or good responders and 

poor responders (combining moderate + non-responders) [523, 528] or remission 

and non-remission [5, 371, 522, 528, 546]. Does (good)responders mean those 

in remission? or does (moderate)responders mean non-remission? These are 

conceptual questions that needs to be clearly defined to enable better data 

comparison across studies. Agreement between multiple response criteria may 

be poor and will likely cause data variability between studies on similar 

biomarkers, therefore, this needs to be taken into consideration drawing 

conclusions when on reproducibility and validity of biomarkers. 

Different techniques of analysis/variability in defining cell phenotype  

There are also several pieces of literature quantifying lymphocyte subsets with 

major inconsistencies attributable to the use of different techniques, as well as 

the use of different markers to describe the same cell “phenotype”. Th17 [579, 

580], Treg [5, 361, 363, 581] and Breg [270, 582, 583] have widely been reported 

with varying phenotypes.  

While some studies only evaluated the efficacy of a single treatment, they often 

included patients who had received a range of treatments, sometimes targeting 

various molecular pathways such as anti-TNF and IL-6 inhibition prior to the study 

BL. It is highly probable that a biomarker is predictive of response to one specific 
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class of therapy but not another because of the immune mechanism it is targeting. 

However, most of these targets are part of pathways that are not working in 

isolation but in a network/relationship with each other. Hence, interpreting data 

where patients are treated with various classes of agents is difficult and it would 

require clear stratification of where patients are in their disease/drug history to 

ensure a biomarker is valid as well as not discarded because not for the right 

group. Therefore, there is a need for better characterisation of the patient’s history 

(age, smoking status, gender, first degree relative, duration of disease) for 

improved personalised medicine to be achieved in the management of 

inflammatory arthritis such as RA. 

1.8 Predicting treatment outcome in Psoriatic arthritis (PsA) 

PsA is a chronic, systemic inflammatory arthritis often linked to the presence of 

skin psoriasis (Pso). It ranks among the most prevalent inflammatory arthritides, 

affecting up to 0.1% of the general population and manifesting in 6% to 42% of 

individuals with psoriasis [584, 585]. It manifests as a heterogeneous spectrum 

of musculoskeletal and dermatological manifestations, often accompanied by 

enthesitis, dactylitis, and nail dystrophy. PsA significantly impacts patients' quality 

of life due to its chronic nature, potential for joint damage, and associated 

comorbidities [586, 587]. 

While the exact aetiology of PsA remains elusive, it is believed to arise from a 

complex interplay of genetic predisposition, environmental triggers, and 

dysregulated immune responses. Notably, the pathophysiology of PsA involves 

aberrant cytokine signalling, particularly TNF-α, IL-17, and IL-23, which drive 

inflammation, synovial hyperplasia, and tissue damage [586-588] . 
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Over the past two decades, accumulating evidence in RA has underscored the 

significance of early and aggressive treatment with DMARDs and biologics in 

mitigating the adverse effects of the disease, particularly in terms of joint damage 

and disability [589] .  

This paradigm shift has transformed clinical practice, with clinical remission 

becoming an attainable goal for many patients, especially those initiating 

biologics, predominantly TNF blockers, early in the disease course [514, 590]. 

However, the landscape of evidence in PsA remains relatively sparse, with limited 

data on the efficacy of conventional DMARDs such as methotrexate or 

leflunomide [591] . In recent years, advancements in understanding PsA 

pathogenesis and therapeutic strategies have revolutionized its management. 

Biologic agents targeting TNF-α, IL-17, and IL-23 pathways have emerged as 

cornerstone therapies, offering substantial efficacy in mitigating disease activity, 

halting structural damage, and improving patient outcomes [588, 591, 592]. Thus 

far, TNF inhibitors exhibit efficacy across the heterogeneous clinical 

manifestations of the disease, encompassing joints, spine, skin, and nails [593-

595] . Mirroring their impact in RA, TNF inhibitors have also demonstrated the 

ability to arrest structural damage progression in peripheral joints in PsA[596] . 

Moreover, recent advancements have introduced novel treatment modalities 

targeting TNF inhibition, such as golimumab, which have exhibited favourable 

efficacy in managing joint and skin manifestations of PsA, particularly in cases 

resistant to conventional DMARDs such as MXT [597] . 

PsA poses a significant therapeutic challenge due to its heterogeneity in clinical 

presentation and variable treatment responses among individuals [588, 598-601]. 

While considerable progress has been made in the development of targeted 

therapies, identifying optimal treatment strategies for individual patients remains 
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elusive. Therefore, there is a pressing need to advance precision medicine 

approaches by harnessing the predictive power of cellular biomarkers. Cell 

biomarkers offer a promising avenue for predicting treatment outcomes in PsA by 

providing insights into the underlying pathophysiological mechanisms and 

patient-specific disease characteristics. This holds the potential to serve as 

valuable prognostic biomarkers and guide individualised therapeutic decision-

making. 

1.9 Flow cytometry as a biomarker technology   

 
Flow cytometry (FC) is a technique used for the rapid extraction of 

multiparametric qualitative and quantitative data from individual cells within 

complex populations of cells suspended in a fluid [602]. It has increasingly been 

recognised as a highly powerful and versatile technology both in research and 

hospital settings not only for immunophenotyping of a variety of cells (and their 

subsets) but also for assessing membrane-bound and intracellular proteins, 

cytokine expression, or DNA contents of cells in (patho)physiological states [602-

604]. As such, flow cytometry can simultaneously provide information about the 

phenotypic and functional characteristics of cells in heterogeneous body fluids 

such as blood, urine, and bone marrow, as well as in enzyme-digested solid 

tissues, thus enabling quantification of large numbers of cells and evaluation of 

the distribution of various characteristics at population levels [605]. The greatest 

benefit of multi-colour flow cytometry is its high specificity for discrete cell subsets 

and rare populations. It is indeed possible to detect rare cell subsets population 

with frequencies as low as 0.01% [605, 606].  

Overall, FC is  
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• Highly effective, high throughput system for the characterization of diverse 

cell populations simultaneously. Hence representative even for small 

population of cells. 

• Sensitive technique for gathering data on multiple parameters such as the 

expression of surface markers or the presence of intracellular cytokines 

and proteins with limited technical manipulation during sample acquisition 

not too time-consuming [607]. 

1.9.1 FC biomarker discovery and clinical application 

FC is one of the most successful single-cell analytical tools notably utilised to 

characterise immune cells [608-611]. FC has an extremely wide field of 

application (Table 1 and 2) [612-615]. It can perform different types of analytics 

including immunophenotyping (extra- and intra-cellular staining) cell proliferation 

versus cell death, and specific protein evaluation (such as for phosphorylation) 

and more recently hybridisation to nucleic acids [610, 611].   

Accumulated reports have demonstrated the value of FC as a technology to 

quantify biomarkers in diagnosis or for predicting and monitoring several disease 

outcomes. For instance, enumeration of CD4+T cells remains the best method of 

choice for monitoring the immune competence in HIV patients, which allows for 

better treatment management [616].  The significance of monitoring CD4+Treg 

cells as a prognostic biomarker in several cancers including breast, 

gastrointestinal, lung, and ovarian carcinoma has been documented [617]. 

Enumerating CD16+ NKT-like cells in colorectal cancer patients was 

independently associated with shorter disease-free survival [618].   
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In the field of autoimmune inflammatory arthritis, growing evidence in RA, 

systemic lupus erythematosus (SLE), Osteoarthritis (OA), Psoriatic arthritis (PsA) 

have demonstrated that monitoring of certain immune cells.  

For instance;  

• CD4+T-cell and subsets (naïve, memory, regulatory T-cells) 

• B-cells and subsets (naïve, memory and regulatory B-cell) 

• Natural Killer (NK CD56) cells, 

• NKT-cells and  

• Monocytes,  

showed potential biomarker value and were considered promising with respect to 

diagnosis or predicting disease progression and/or treatment responses in 

patients [1, 3, 5, 7, 9]. 

The role and significance of CD4+T subsets quantification in RA patients (notably 

loss of naïve- and regulatory-CD4+T cells and the appearance of inflammatory 

related-naïve and memory cells (IRC) has been reported and furthermore 

replicated/validated [1, 619, 620]. The specific value of these 3 CD4+T-cell 

subsets biomarkers  has been demonstrated by independent studies for the 

prediction of clinical outcomes such as flare following c-DMARDs-induced 

remission [1], sustained remission following cessation of anti-TNF therapy [621] 

and in early RA for predicting patients with a better chance for achieving 

remission with MTX [5, 616] as well as for progression to active disease [3]. 

Altogether, FC offers the best approach to safely achieve rapid quantification of 

peripheral blood cells for the management of diseases and has the potential to 

become a useful tool in most clinical and research settings to predict/monitor 

responses to therapies [616] as highlighted by the many applications used in 

clinical practice in Table 11. 
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Table 11:  Flow cytometry-based assay currently in use for clinical 
application 

Clinical application Ref 

 Hematologic disease and/or Malignancies: 

• Minimal Residual Disease (MRD) 

• Lymphocyte Subset Enumeration for Immunodeficiency Disease 

• Reticulocyte Enumeration for diagnosis and monitoring of anaemia and bone 

marrow regenerative activity after chemotherapy or bone marrow 

transplantation 

• Platelet Function Analysis 

[622-632] 

 

Analysis of DNA Ploidy or proliferation and Cell Cycle   [633-638] 

Measurement of the Efficacy of Cancer Chemotherapy   [639-642] 

Cell function Analysis: 

•  Protein  phosphorylation 

• Intracellular calcium flux  

•  lymphocyte activation (in viral infection and other diseases for example) 

• Oxidative burst in neutrophil as a screening test for chronic granulomatous 

disease 

• Lymphocytes neoantigen expression 

[643-646] 

Transfusion Medicine: 

• Detection of feto-maternal haemorrhage 

• study of HbF levels  

•  frequency of adult red cells with low levels of HbF in individuals with 

hemoglobinopathies,  

• the medical evaluation of anaemic patients, including sickle cell and 

thalassemic patients 

[647-655] 

Organ Transplantation and Hematopoietic Cell Therapy: 

• Pre-transplant cross- matching (in bone marrow transplantation) 

• HLA antibody screening,  

• post-transplantation antibody monitoring. 

• pre-transplantation determinations of the efficacy of ex vivo T-cell graft 

depletion,  

• post-transplantation evaluation immune recovery  

o graft rejection,  graft-versus host disease, graft-versus-leukaemia 

effect 

 [656-662] 

Microbiology: 

• Microbe detection (bacteria, fungi, parasites and viruses) 

• quantitative procedures to assess antimicrobial susceptibility and drug 

cytotoxicity 

[612, 663-

667] 
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In addition to its potential for clinical management, FC has shown wide application 

in research. For instance, in studies involving biology of diseases such as cancer 

to the therapeutic and prognostic relevance of these markers (with a few studies 

summarised in Table 12. 

 

Table 12 Flow cytometry-based application in research 

Disease type Biomarkers  ref 

 Ovarian 

carcinoma 

Adhesion molecules:  

Integrins and the immunoglobulin superfamily 

member CD44 

chemokine receptor: CXCR4 / CXCL12 

leukocyte classes and chemokine receptors: NK 

cells, CD19-positive cells, CXCR4, CCR5, and 

CCR7 

[668-670] 

 

[671] 

[672] 

gastric 

carcinoma 

CD44 expression and epidermal growth fac-tor 

receptor (EGFR) 

 

Protease: matrix metalloproteinase (MMP) 

[673] 

 

 

[674, 675] 

breast 

carcinoma 

 

c-ErbB-2, member of the EGFR family [676] 

Autoimmune 

inflammatory 

arthritis 

Naïve CD4+T and Treg  

And other subsets 

[4, 5, 7, 9, 312, 

616] 

 

 

 

 

 

 



 
 

104 | P a g e  
 

1.9.2 Challenges in the use of flow cytometry technology 

Technically, FC workflow is not particularly challenging. Most protocols use 

standard procedures, optimised through years of experience both in research and 

routine set-ups. This is a powerful technique although subjective to the observer’s 

experience for gating and evaluating the quality of data notably when performed 

as a routine test over long periods of time.  Gating and analysis subjectivity can 

be overcome by high level of specific professional training and experience to 

produce consistent and reliable data and decrease the subjectivity-related 

variability that is observed in flow analysis data [677] 

FC benefit from increasing range of commercially available reagents  which has 

led to major improvement in staining protocols over the years [678]. However, 

this also has drawbacks. The use of different commercially available antibody 

clones, which often fail to identify the same epitope on a target protein [616], has 

been shown to contribute to data discrepancies for certain cell subsets between 

different labs/studies. This suggests critical consideration is needed for assessing 

data obtained from different settings.  

Lack of standardization in assay and instrument setup has also been suggested 

as another area of concern. For instance, a lack of interlaboratory reproducibility 

exists due to variations in local experimental design and execution (e.g., choice 

of antibody clones, choice of fluorochrome-conjugated (usually using 

commercially available already conjugated),, sample preparation protocols, 

acquisition procedures) and instrument setup (e.g., cytometer performance and 

settings) which may arise at different levels of FC workflow [602, 678]. In clinical 

settings notably, the variability in methodological approaches  to monitor cells of 

the immune systems in many disease can be used to illustrate this problem more 

specifically. This calls for a well-controlled FC standardisation underpinned by a 
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detailed set of SOPs peculiar to each disease, starting from the pre-analytical 

(sample preparation and staining protocol) to analytical (cytometer setup and 

acquisition) and then to post-analytical (gating and interpretations) phases [602, 

678]. Improvements in the analytical workflow of the FC, as described in  Figure 

8  will help to minimize data variability and optimize the quality of clinical flow 

cytometry given the current expanding role of the technology [602, 679]. 
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Figure 8 A conventional flow cytometry workflow stages. 

• Sample preparation stage- blood collection, separation of mononuclear cells, 

and sometimes cryopreservation, before staining, and sometimes whole blood 

staining, with fluorescent antibody conjugates.   

• Instrument setup stage- setting voltage gains for the photomultiplier tubes 

(PMTs) for optimal sensitivity.   

• Data acquisition stage- passing the stained cells via a probe in a single file 

through a laser beam and recording the fluorescence emission from all the bound 

antibody conjugates.  

• Data analysis stage- cell populations of interest are defined by gating and then 

reported.  
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1.9.3 Successful use of FC in NHS 

FC is nowadays available in NHS clinical immunology laboratories countrywide 

and used for several clinical measurements in the management/monitoring of 

different conditions .  For instance, immunophenotyping analysis (identification 

and quantitation) of different cells and their subsets  is one of the most important 

applications of FC which has an established role in diagnosis and disease 

monitoring of many diseases including haematology, oncology and inflammatory/ 

autoimmune diseases, etc [680, 681] (see table 13).  

The technology has therefore been instrumental for translational research in 

many clinical situations [611] and has made the transition from a research tool to 

standard clinical testing. 
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Table 13 Flow cytometry in  routine lab services 

Flow cytometry test 

biomarker 

Condition managed/monitored NHS 

CD4 count/Quantification 

 

CD4+ and CD8+ T cells 

HIV- human immunodeficiency virus disease monitoring 

Haematology patients post-BM/PBSC transplant or on 

treatment 

[682, 

683] 

Treg 

Rule out IPEX (Immuno-dysregulation polyendocrinopathy 

enteropathy X-linked syndrome) (dysfunction of FOXP3) 

[682, 

683] 

Naïve T-cells 

(CD3/4/45RA/27) as part of 

extended lymphocytes panel 

PID (pelvic inflammatory disease) suspected patients [682, 

683] 

CD3+T cell enumeration Patients undergoing solid organ transplant and receiving 

OKT3 or ATG therapy 

[682, 

683] 

B cell count 

 

Rituximab monitoring- monitor patients who are on rituximab 

for the treatment of rheumatoid arthritis or certain 

haematological diseases (as directed by a haematologist) or  

[682] 

B-cell panel 

PID, sometime post rituximab/HSCT (haematopoietic stem 

cell Transplant) patients 

[682] 

HLA-B27 positivity 

 

diagnostic indicator for several autoimmune and immune-

mediated diseases including ankylosing spondylitis, reactive 

arthritis and anterior uveitis. 

[682] 

Leucocyte 

Immunophenotyping 

leukaemia and lymphoma diagnosis (Cell Markers), AML, 

ALL, MPD 

[684-

686] 

Stem cell donor/enumeration  CD34+ cells [686] 

Flow crossmatch Renal transplant [687] 

Neutrophil function CGD- chronic granulomatous disease  

TBNK testing:(T-cells 

(CD3/4, CD3/8), B-cell 

(CD19), and NK-cells 

(CD16/56) 

Suspected Primary/secondary immunodeficiencies or SCID 

(Severe combined immunodeficiency) and 

Lymphoproliferative disorders 

[686] 

measurement of CD55 

andCD59 on red cell 

GPI Linked Proteins for Paroxysmal Nocturnal 

Haemoglobinuria (PNH) 

 

[683, 

685, 

686] 

B-ALL  

CD38/CD123/CD58/CD22 

Measurable residual disease (MRD) Flow Cytometry 

assessment 

[686] 
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1.10 Dry tube based FC method 

The conventional wet-tube (WT) based flow cytometry method currently in use in 

NHS settings (as well as most research labs) involves time-consuming multiple 

pipetting steps, which often results in having to exclude data due to mistakes 

(missing staining-antibodies and other technical errors). These are recognised 

limitations to using FC in routine that have been considered by industries like  

Beckman Coulter [688, 689] Cytognos SL [690] and Becton Dickinson (BD) [690-

692] who developed solution to overcome this issues. BD has been an 

international leader in the FC field and developed a technology called dry tubes. 

This technological development was driven by the need to improve quality and 

productivity while reducing the costs/time of the workflow in health services flow 

cytometry laboratories. Dr Ponchel agreed to test some DT with BD on the 

backbone of the biomarker research program funded by LIRMM.   

DT is a ready to use antibody-coated dry flow tube produced using the BD dry 

coating technology. The DT for the T-cell panel and Treg panel were designed 

for quantifying naïve-CD4+T, inflammatory related cells-CD4+T (IRC-CD4+T 

cell) and CD4+Treg which were the 3 most important blood cell subsets 

biomarkers used in RA patients at the time (2018-19). Two DT were produced for 

the validation study.  

• One consists of a cocktail of 5- antibody (CD3, CD45RB, CD4, CD62L, 

CD45RA) dried in a 12 x 75mm tube for T-cell panel for CD4+T subsets  

• The second was a 3- antibody cocktail (CD4, CD127, CD25) for Treg 

panel.  
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DT are intended to minimise lab procedures (i.e., handling mistake, missing Ab, 

etc…) and gain time when used in routine settings that would provide 

standardises processes notably for clinical trials as well as to disseminate a test 

for multicentre studies and facilitate adoption internationally.   

The DT antibody clone selection and optimisation were performed  between my 

lead supervisor, Dr Ponchel, and BD in 2019 . The project had reached the stage 

of performing a WET/DT data comparison on actual patient samples. Data were 

to be acquired as % of lineage with no need for mean fluorescent intensity (MFI) 

hence the fluorochromes were adapted by BD owned clones (commercial 

considerations) as well as based on technical issues with fluorochrome chemistry 

while antibody clones were chosen after comparing various clones for similar 

results during the optimisation phases.  

The DT was then manufactured (n=50) using the same concentrations of 

antibodies that were used with the WT version during the comparison study.  A 

figure of the CD4+T-cells profiling is attached (generated by my supervisor during 

the process, see appendix A).   
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Chapter 2  

Hypotheses, Aims, and Objectives 

Overall Aim 

The significance of CD4+T subsets as biomarkers for the management of RA 

across the IAC has been established [1, 3, 5, 362, 520]. Data were obtained for 

other lymphocyte subsets, by the NHS immunology services but they have not 

so far been explored for their possible value in RA. Given that several transitions 

between the phases of the IAC are still lacking biomarkers, the general aim of my 

PhD is to investigate whether there is an added value in quantifying CD8+T-cell 

subsets, B-cell subsets, and NKT/NK-cell in addition to CD4+T-cells, with respect 

to association with disease progression outcomes across the IAC. As these 

panels were performed routinely by NHS services, the exploration of these flow 

cytometry panels may offer new biomarker tools to manage and stratify the risk 

of developing IA in ACPA+ at-risk individuals, predicting evolving to RA in EAC 

patients, and identify RA as well as PsA patients who may benefit from a specific 

cs- and/or b-DMARDs therapy.  

The wet-base (conventional protocol using  liquid antibody reagents) FC 

procedure classically used in research and NHS lab involves multiple antibodies 

pipetting which is time-consuming and prone to operational mistakes. Therefore, 

the second aim of my PhD was to develop a novel dry-tube flow-cytometry 

technology, with equivalent performances that would reduce the turn-around time 

compared to routine wet-tube flow-cytometry (as currently used by the NHS 

services). This will enable further the development of panels of clinical value for 

worldwide use.  
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My Overall hypothesis is that:  

Lymphocyte dysregulation assessed by FC can provide biomarkers for the 

management of rheumatoid arthritis (RA). This is underlined by the sub 

hypotheses that assessing lymphocyte subsets using FC in hospital services is 

sufficiently reliable to have biomarker value.   

Objective 1: Demonstrate the reliability of the FC data obtained by NHS 

services.  

This would enable better strategies for the improvement in the quality of test 

results used for clinical decision-making on patients' management. 

Objective 2: The Dry tube technology has the potential to replace wet-tube 

technology in daily routine flow cytometry (This is an industrial collaboration 

in an R&D project). 

 Specific aims and objectives  

I. To validate the use of novel flow-cytometer dry-tube technology 

compared to wet tube currently used  

II. Developing SOPs for the use of a new Kit by hospital flow-

cytometry services  

This would enable the adoption of pre-established panels for clinical use 

worldwide. 
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A second hypothesis is that: 

Comprehensive blood cell phenotyping has clinical value for the management of 

RA. Predicting clinical outcomes across the IAC and providing further 

understanding of the events driving progression, 

 This is underlined by the sub-hypotheses that    

I. quantifying CD8+T–cell subsets, NK-cell and NKT can provide 

clinical value.   

II. B-cell quantification across the IAC can have predictive value.  

III.  combining these with the three CD4+T-cell subsets already 

known to be predictive can offer added clinical value. 

Objective 3:  To analyse 18 subset flow cytometry data with respect to 

clinical outcome in several groups of patients across the IAC. 

This would enable improvement of the performances of current prediction models 

that are using only three CD4+T-cells subsets, in combination with demographic 

and clinical data and offer better prediction to manage and stratify the risk of 

progression across the IAC. 

A third hypothesis was that:  

The analysis of frozen samples in a clinical trial of Psoriatic arthritis (PsA) can 

provide useful biomarkers value.  

This would offer new tools to discriminate between patients who will benefit from 

such treatment or not, leading to personalised and cost-effective treatment in 

PsA.  
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Due to the impact of COVI-19, this aspect of my work could not be completed as 

planned (see covid-19 statement section 6.1 page 355). I could not get access 

to the clinical data to merge with the flow data to achieve this objective. Therefore, 

my supervisors and I designed an alternative objective for me to exploit the flow 

data acquired. This led to, 

Objective 4: Flow cytometry can bring valuable information for 

retrospective studies using frozen samples.  

specific aims and objectives   

I. To acquire and analyse flow-cytometry data from frozen samples.  

II. To understand the limitation of working with frozen samples  

III. To develop SOPs for studies where samples have to be frozen.  

This would provide validation of the FC biomarkers using a frozen sample. Thus, 

would enable a better understanding of the impact of freezing on 

immunophenotyping and the development of SOP in the context of inflammatory 

arthritis disease. 

In pursuance of robust flow biomarkers project in autoimmune inflammatory 

arthritis notably, RA, my PhD work seeks to phenotype additional novel blood cell 

biomarker(s) across the IAC, notably with respect to association with disease 

progression from one stage to the next as well as response to treatment using 

flow-cytometry as the main technology.   
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Chapter 3  

Materials and Methods 

3.1 Ethical approval 

As a part of the early Inflammatory Arthritis (IA) programme of work in Leeds 

Institute of Rheumatic and Musculoskeletal Medicine (LIRMM) groups, patients 

were recruited from the wider regional primary care services into several studies, 

one being the cyclic citrullinated peptide (CCP) study and the second, the early 

arthritis clinics (EAC). Blood samples at inclusion into the studies were sent to 

the NHS-immunology services. Cell subsets data were acquired by NHS 

services.   

Patients' data utilised in this project were therefore retrieved from those 2 

longitudinal studies: 

▪ The Leeds Inflammatory Arthritis Disease Continuum the “(IACON 

register”, REC approval: 09/H1307/98)  

▪ The Coordinated Programme to prevent Arthritis study (the “At-Risk CCP 

register”, REC approval: 06/Q1205/169) both comprising >5000 

participants enrolled between 2008-2022.  

Other patients' data used were from ongoing clinical trial: 

▪ An investigator-initiated double-blind, parallel-group randomised 

controlled trial of GOLimumab and Methotrexate versus Methotrexate in 

very early Psoriatic Arthritis (PsA) using clinical and whole-body MRI 

outcomes: the GOLMePsA study (REC approval:14/EM/0124).  

Ethical approval for data recording and sample storage was obtained from Leeds 

Teaching Hospitals NHS Trust Ethics Committee for the study (see approval 

letters, appendices B-D), and all participants provided informed written consent. 
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The raw data (FCS files) for patients across the IAC was made available for use 

in the current study whereas frozen sample of patents from GOLMePsA study 

were used in the current study. Flow cytometry panel design for data acquisition 

for these samples were designed by my lead supervisor (FP) before my PhD 

while data were acquired by me. 

My thesis is composed of a number of patients cohorts selected based on 

availability of clinical data needed for the specific study aim. 

 

3.2 Patient group description 

3.2.1 The Inflammatory Arthritis Continuum (IAC) study  

The study across the IAC included different clinical groups of patients with 

various outcomes of interest to my study, comprising the following cohorts 

summarised in Table 14;   

3.2.1.1 The at-risk cohort 

In the at-risk cohort, lymphocyte subset phenotyping at baseline was investigated 

for the prediction of progression to Inflammatory Arthritis in anti-citrullinated 

protein antibodies (ACPA) positive at-risk individuals (the at-risk cohort).  A total 

of over 1500 data for at–risk individuals were available. However, following data 

cleaning and patients' selection, current study cohort comprised progressors 

(n=93) versus non-progressors (n=117) and various control (healthy and family 

members, n=180) were included to established reference range. Patients were 

recruited from regional primary care services as previously described [1, 3, 312] 

based on positivity for a laboratory test for the presence of anti-citrullinated 

protein antibody (ACPA) or rheumatoid factor (RF). Briefly, patients were included 

based on a new musculoskeletal complain (including rotator cuff tendonitis, 
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subacromial bursitis, carpal tunnel syndrome, tendonitis, back pain, or 

epicondylitis) and ACPA positivity (using various CCP-2 tests over the years, Axis 

Shield Diagnostics Ltd, Dundee, Scotland and the BioPlex 2200 kit, BioRad, USA, 

performed by NHS services) or a RF performed using NHS standards protocol. If 

positive, they were referred to secondary care for clinical evaluation. If evidence 

of clinical synovitis were detected patient were transferred to our EAC. In case of 

absence of clinical synovitis, patients were enrolled into the At-risk CCP register. 

Progression was defined by the development of clinical synovitis evaluated by a 

senior rheumatologist comprising at least 1 swollen joint. Follow-up has been 

ongoing since 2008. 

3.2.1.2 Early arthritis clinic (EAC) cohort 

In the early inflammatory arthritis cohort, lymphocyte subsets phenotyping at the 

first visit were investigated for the prediction of progression to RA in patients with 

early symptoms of clinical synovitis. 

This cohort (n=306) included patients with early symptoms of inflammation in 

joints, who were classified for RA, using the EULAR 2010 criteria (n=206) versus 

another form of arthritis (non-RA, n=100) over 2 years of follow-up since referral. 

These were disease-modifying anti-rheumatic drugs (DMARDs)-naïve patients, 

but the use of non-steroid analgesia and intra-muscular injection of steroid 

(depometrasone) within 3 months of the time of referral to the EAC, were 

permitted. 

3.2.1.3 Methotrexate (MXT)-treated early RA cohort 

Here, lymphocyte subsets phenotyping were analysed for the prediction of MTX-

induced remission in RA patients treated with a Treat-to-target approach, starting 

with MXT as first line drug a recommended by National Institute for Health and 
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Care Excellence (NICE) guidelines.  In this cohort, patients (n=205) were treated 

with MTX dose initially using a Treat-to-target approach [332] then escalated to 

high doses or addition of other synthetics DMARDs for instance Sulfasalazine 

(SSF) or Hydroxychloroquine (HCQ) if not responding to MXT alone. Patients 

achieving MTX-induced remission (n=106) versus non-remission (n=99) based 

on DAS28<2.6 to define remission at 6-months, were selected on basis of 

available flow cytometry data (notably over COVID-19 pandemic).  

3.2.1.4 Remission First Visit cohort  

Early RA patients treated with MTX and other synthetics that achieve remission 

for the 2 consecutive visits over 2 years of the first visit in IACON. Blood collected 

at for the first visit in remission (independently of how long it took to get there) 

was used to get the flow data. 

These clinical groups of patients are representative of similar cohorts at each 

stage of the IAC 

3.2.2     Frozen samples from GOLMePsA trial   

The GOLMePsA study is an investigator-initiated double-blind, parallel-group 

randomised controlled trial of GOLimumab + Methotrexate versus Methotrexate. 

The cohort included a total of 84 PsA patients classified according to CASPAR 

criteria [693], with up to 24-month symptom duration with at least 3 swollen and 

3 tender joints or 2 swollen and 2 tender joints and one tender enthesis, recruited 

during routine appointment at our EAC. These were treatment naïve-PsA patients 

randomised on a 1:1 basis treated with a combination therapy (Golimumab (GoL) 

+Methotrexate (MTX)) versus MTX monotherapy+ placebo for a total of 24 weeks 

duration (primary endpoint at which Golimumab was discontinued in patients with 

combination therapy) while MXT was continued in both arms until week 52, the 
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final endpoint of the study. Patients who consented to the biomarker sub-study 

provided blood samples at baseline and weeks 12, 24, 36 and 52 and PBMC 

separated by the tissue bank technician at Chapel Allerton Hospital using SOP 

(See appendix E). These PBMCs were stored at -1500C and later made available 

for the current flow cytometry work included in the protocol. 

3.2.3 Healthy Controls (HC) 

Healthy controls (HC) (n=180) were recruited mainly as volunteers from 

laboratory staff. These were used to establish reference ranges for cell subsets 

data and update age relationships where relevant as previously described [4] . 

 

Table 14: Summary of data source and study cohorts used in this project 

IAC study 

cohorts 

Leeds 

observati

onal/trial 

cohorts 

Total (n)  Outcome  studied 

(n)  

Study 

start  

Study 

end  

Pre-

clinical  

CCP  ~1500  

(selected 210) 

Progressors n= 93 

No Prog n= 117 

2008  ongoing  

EAC  IACON 

RADAR  

~2500  

(selected 306) 

RA n= 206  

Non-RA n= 100 

2010  

2015  

  

2015  

ongoing  

MTX study  IACON  

RADAR  

~ 500 

(Selected 181 + 

24 from below= 

205)  

Remission n= 106 

Not in rem n=99  

Remission  IACON-

rem  

~144 

 (Selected 24) 

Flare   

No flare (Not part 

of this study 

2008  ongoing  

PsA 

samples  

GOLMe

PsA  

Planned for 84  Good response   

Poor response   

(No access to 

data)  

2018 

(stopp

ed)  

Last 

patient / 

last visit 

March 

2024  

HC 

samples   

variable  180 Not applicable  2008  ongoing  
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3.2.4 Validation of novel Dry-tube assay as a new flow cytometry method  

For this study, fresh blood samples from active RA patients (n=44) were utilised for 

the technical validation of a flow-cytometer kit based on dry-tube technology. Here, 

dry tube CD4+T cell subsets (naive/Treg) phenotyping was performed and 

compared with data from wet lab retrieved from NHS-immunology lab for the same 

patients.  

3.2.5 Flow cytometry validation on frozen samples  

The aim of this analysis was to ensure the appropriateness of frozen PBMC for LS 

qualification. Here, lymphocytes subsets were phenotyped using frozen samples 

from early, drug-naïve with inflammatory arthritis included in the GOLMePsA clinical 

trial (see above).  

 

3.3 Flow cytometry data retrieval from NHS service  

3.3.1 Flow cytometry data files searches 

FCS file of existing raw flow cytometry data from panels that were developed to 

predict the progression alongside the Inflammatory Arthritis Continuum (IAC), were 

retrieved from NHS servers and utilised in the current study. The flow cytometry 

was performed using routine standard techniques followed by the NHS-

Immunology flow services (SOP, appendices F-I). The raw data was made 

available. I had no participation in this wet laboratory data acquisition phase, for 

data derived from patients in the IAC.  

Given that the study involves human subjects, the obligation to respect and protect 

the right of participants was given particular attention. Data (flow cytometry 

files) were transferred securely unto password specific NHS-encrypted external 

hard drives and University password protected N-drive which are only accessible 
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to the research team. To maintain patient’s confidentiality, all files’ coding were 

anonymised by removing patients’ names (which is the normal practice in NHS file 

naming), and study codes were used instead to enable data allocation to the right 

study group. This did not threaten the participant’s confidentiality as data were 

presented and reported as aggregated data findings from the overall 

group/cohort. Some of the files were however annotated with patients’ names 

rather than study code/visit time point (when a study code was not clearly 

provided). This complicated my work as I have no direct access to personal 

information, all register data being anonymised. Data were sorted through a phase 

of “detective work”, whereby clinical colleagues were able to allocate a patient’s 

study code so that the FCS-file could be renamed.  

 

 Each FCS file was then double-checked for time-point either baseline week zero 

(BL/W0) or follow-up visits, 3, 6, 9 or 12 months against the date of the visit to 

clinic to match the data of that visit in the clinical records to ensure that correct 

FCS files were included in the right cohort for analyses.   

3.3.2 Clinical data retrieval 

Clinical data collected as part of the register (at-risk CCP+ or EAC study) were 

downloaded from the several NHS-databases (IACON/CCP+ register), included 

demographic (age, gender, duration of symptoms, smoking habit), inflammatory 

markers (C-reactive protein (CRP), erythrocyte sedimentation rate (ESR)), 

genetic (presence of Shared epitope (SE)), autoantibodies status (anti-

citrullinated protein antibodies (ACPA), and rheumatoid factor(RF)), and physical 

assessment (Joint tenderness, Joint pain, and early morning stiffness (EMS)). 

28-joint disease activity score (DAS28) for patients were recalculated for 

individual parameters using the DAS (4 components) CRP formula:  
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DAS28-4(CRP) =0.56*SQRT(TJC28) +0.28SQRT(SJC28) +0.36*ln (CRP+1) 

+0.014*GH+0.96).   

The 78-joint disease activity score was used in the at-risk CCP+ register. 

 

3.4 Flow cytometry analysis 

Raw flow cytometry data (FSC file) from 5 panels were retrieved as electronic 

files.  Flow cytometry data acquisition using fresh sample was performed on a 

FACSCanto flow cytometer (Beckon Dikson, United State Amercian) by NHS, 

and data analysed using BD Biosciences FACS-DIVA software version 8.0 by 

me. 

Antibody clones and staining protocols used are described in detail in NHS 

immunology lab SOP (appendix F-I) The gating strategies are described in 

Figure 9. Blood subsets frequencies were reported as percentage of the parental 

population.  

Due to subjectivity of technique, training and validation of flow cytometry analyses 

skill were carried out, and preliminary data (over 50 data points for each panels) 

compared to that of my supervisor with over 20 years of flow cytometry 

experience. Until satisfactory comparable data were obtained (rho > 0.950 by 

spearman correlation). Additionally, 30 data points for T-cell subsets and Treg 

panel from NHS–lab also showed comparable data (rho > 0.933) with the 

independent analysis performed. 

Next, eighteen (18) subsets were acquired and quantified by me using frozen 

sample from these 5 panels as listed in Table 15 
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Table 15 :  18 lymphocyte subsets analysed 

 

 

        Panel         Markers used  Subset 

quantified  

Age-

related  

  

1. Lineage   

CD19+, 

CD3+, CD4+,  

CD3+, CD8+,  

CD3-CD56high/low,   

CD3+CD56+ 

B 

CD4,  

CD8,  

NK bright/dull    

NKT  

  

  

No  

2. CD4+T 

cells  

CD3+, CD4+, CD45RA+, CD62L+ 

CD3+, CD4+, CD45RA-, CD62L- 

CD3+, CD4+, CD45RA+, CD62L-  

Naïve,  

memory  

IRC   

  

  

Yes, 

(Naive/  

Memory)  
3. CD8+T 

cells   

CD3+, CD8+, CD45RA+, CD62L+ 

CD3+, CD8+, CD45RA-, CD62L- 

CD3+, CD8+, CD45RA+, CD62L-  

Naïve,  

memory  

IRC  

4. B-cells  
CD19+, CD27-, CD38-  

CD19+, CD27+,CD38-  

CD19+CD24+,  CD38+high 

CD19+CD27+, CD38+  

Naïve,  

Memory,  

Putative Breg 

plasmablasts  

Yes, 

(naïve/  

memory)  

5. Th17 

cells  

CD3+, CD4+, CD161+, CCR6+, 

CXCR3-,   

  

Not applicable  No  
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Figure 9 Gating strategies for lymphocytes cell and subset. 

Lymphocyte lineages were quantified for B-cells, NK cells subsets, NKT-cells CD4+ and 

CD8+T-cells. Lymphocytes populations were first identified through a FSC-A vs SSC-A 

dual plot. The lineage subsets included red gates: gate1- B-cells were identified based 

on CD19 expression, gate 2- NK cell CD56dim, and gate- 3 NK cell CD56bright were 

identified based on low and high expression of CD56 on a dual plot for the expression of 

CD3 and CD56 while gate 4- NKT cell were defined as double CD3+CD56+. The CD3+T-

cells were further interrogated on a dual plot for gate 5- CD8+T cell and gate 6- CD4+T-

cells. Result was expressed as percentage (%) of total lymphocytes, the sum of each 

lymphocyte cell counts (as 100% events) being used to exclude possible contamination 

of monocytes in the original lymphocyte gate.  The HLADR/ KIR3DL2 expression on the 

6 lineage subsets was analysed recording the MFI. 

For CD4+T-cells subsets green gate: gate 1-CD4+T were analysed for subsets, gate-2 

naïve cells, gate 3- inflammation related cells (IRCs), and gate 4- memory cells based 

on the expression of CD45RA and CD62L. CD45RB was used to refine the naïve (gate-

2) and IRC (gate-3). Results for each individual subset were expressed as percentage 

(%) of total CD8+T-cells. The HLADR expression on the 6 subsets was analysed 

recording the MFI. 

For CD8+T-cells green gate : gate 1-CD8+T were analysed for subsets, gate-2 naïve 

cells, gate 3- inflammation related cells (IRCs), and gate 4- memory cells based on the 

expression of CD45RA and CD62L. CD45RB was used to refine an additional population 

of expended-CD8 cells (gate-5). Results for each individual subset were expressed as 

percentage (%) of total CD8+T-cells. The HLADR expression on the 6 subsets was 

analysed recording the MFI. 

For CD4+Th17 cells grey gate: Th17 cells was identified based on 

CD161+CCR6+CXCR3-, a 3-marker identification system. CD4+ T-cells gated from a 

lymphocyte forward/scatter size were analysed first for gate-1, the expression of CD161. 

CD161+ cells then were analysed for gate 2, for the expression of the second marker 

CCR6. Finally, gate 3, th17 cells were defined based on negative expression of CXCR3 

on CCR6+CD161+ cells. Result was recorded as % of CD4+T-cells. The expression of 

HLADR/KIR3DL2 on Th17-cells was then analysed recording MFI. 

For CD4+Treg-cells purple gate: gate 1-CD4+T were analysed for gate-2, regulatory 

T-cells (Treg) based on the high expression of CD25 and FoxP3. CD127 was used to 

refine this Treg (gate-3) based on low expression of CD127. Results were expressed as 

percentage (%) of total CD4+T-cells 

For B-cell subset phenotype blue gate. Gate-1, B-cells were first gated based on the 

expression of CD19 in a dual plot with the scatter parameter. Gate-2, naïve B-cell, gate-

3, memory B-cell, and gate-4 plasmablasts (PBs) were identified based on the 

expression of CD27 (positive or negative) and CD38 (negative, positive and high). Gate-

5, putative Breg were identified as included in the transitional-2 B-cell population using 

high expression of CD38 and positivity for CD24. The expression of HLADR/ILR6 on 

Th17-cells was then analysed recording MFI. Results for each individual subset were 

expressed as percentage (%) of total B-cells.  
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3.5 Normalisation of data for subsets dependant on age 

Age-relationship for specific cell subsets have previously been described in 

health over 6 decades of age using healthy controls [4]. Updating previous data 

with additional data (n=60) to refine the age normalisation (Figure 10). Age range 

was done over time(n=120) [5], and I used (n=180) for all analysis performed in 

my thesis. The addition of more healthy controls increased the significant of age 

normalisation to reach significant rho values (Table 16). This affected 7 subsets 

as previously described (naïve and memory CD4+T- cells, regulatory CD4+T-

cells (Treg), naïve and memory CD8+T-cells, and naïve and memory B-cell). 

Other subsets were not related to age.  

This approach was chosen to ensure that meaningful comparisons on subsets 

between outcome groups across IAC are attributable only to the effect of the 

disease. This allowed for ranges of data to be expected in health to be directly 

compared to disease and to define 95% confidence limit (Cl) of distribution. As 

show in figure 11, data are not fitting normal distribution for all the 18 subsets. 
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Table 16  Correlation Analysis between Age and lymphocyte subsets 

Subsets Spearman 

correlation 

coefficient, rho 

Coefficient of 

determination, 

R2 

Correlation equation  

[ X= age] 

p-value 

Naive 

CD4 

-0.717 0.516 Y = -0.5461*X + 63.78 <0.0001 

Memory 

CD4 

0.323 0.131 Y = 0.1538*X + 10.05 0.0003 

Treg 0.547 0.321 Y = 0.0605*X + 1.861 <0.0001 

Naïve 

 CD8 

-0.703 0.559 Y = -0.7635*X + 56.76 <0.0001 

Memory 

CD8 

0.521 0.279 Y = 0.4816*X + 16.04 <0.0001 

Naïve  

B 

0.660 0.422 Y = 0.6254*X + 38.35 <0.0001 

Memory 

 B 

-0.618 0.372 Y = -0.5884*X + 55.54 <0.0001 
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Figure 10 Association of 18 lymphocyte subsets in relation with age. 

Cell subsets were quantified as percentage (%) of total parental lineage (CD4+T-cells, 

CD8+T-cells and B-cells) and data presented in correlation to age of the HC (n= 180). 

Data obtained were in 2015 (black triangle) in addition to new data acquired since (purple 

triangle). Spearman correlation analysis performed confirmed significant age 

associations with 7 subsets (naïve and memory CD4+T- cells, regulatory CD4+T-cells 

(Treg), naïve and memory CD8+T-cells, and naïve and memory B-cell). 
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Figure 11 Data distribution in healthy control (HC).  

Data acquired in 180 HC are displayed (after age normalisation, for 7 subsets (naïve and 

memory CD4+T- cells, regulatory CD4+T-cells (Treg), naïve and memory CD8+T-cells, 

and naïve and memory B-cell) as boxplot. Distributions are close to normal but not fitting. 

Hence data were treated as not normally distributed. Box plot displayed the median as 

the middle line, the interquartile range as box, and 95% confidence interval (CI) extremes 

as whiskers. Dots outside of whiskers represent the few points out of the 95%CI.  
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3.6 Flow cytometry data acquisition 

3.6.1 Cells 

Two different types of cells were used in the different panels of the work 

▪ Frozen PBMC was used in wet tubes only 

▪ Fresh blood (whole) was used in wet tube and dry tube experiment 

3.6.2 Panel optimisation and compensation on frozen samples 

3.6.2.1 Frozen cell panels development 

Four-panels using up to 8 fluorochromes in various antibody combination were 

designed to quantify frequencies of several subsets (Table 17). 

The antibodies chosen for the panel design were based on first, defining subsets 

of interest in this study and their associated markers to be detected (Table 15) 

and then matching right antibody-fluorochrome conjugate with the right markers 

to be identified on cell population of interest. The matching procedure, however, 

was based on expression level of markers (the antigen density), where makers 

with low expression (dim markers) were assigned to bright fluorochrome and vice 

visa which ensured better resolution of cell population. The fluorochrome spillover 

was minimised by using the “fluorochrome resolution ranking” and “spectrum 

viewer” which helped me assess the cross-laser excitation and fluorochrome spill 

over information [694, 695] 

For the development of each panel, 10 flow tubes were prepared each containing 

50ul of the Peripheral blood mononuclear cell (PBMC) (approximately 1-2 million 

cells). Cells in the first 8 tubes were stained with a single antibody using Ab 

volume as described in table 17. The 9th tube was stained with all the antibodies 

of the panel while the 10th tube was the unstained as negative stain control.  
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After 30 min incubation at 40C in the dark, cells were washed once with 1mL of 

phosphate-buffered saline (PBS) solution ( for detail of preparation see Appendix 

M). After centrifugation, the supernatant was decanted, and pellets re-suspended 

in 300uL FACS buffer  and kept on ice in the dark.  

Samples were acquired using a 13 Detectors, 4 Lasers CytoFLEX S VA-B4-R3-

12 Flow cytometer (Beckman counter, USA). Instrument setup in addition to panel 

compensation was done manually.  

Each panel was adjusted for cell size and granularity using the unstained control 

tube setting voltage for the no stain lymphocyte population below the third decade 

of the fluorescence log scale. Fluorochrome compensation was established using 

single colour control tubes individually. Last all the antibody tube was used to 

define the gating strategy identifying the subsets to be quantified. 

3.6.2.2 Frozen cell panels cell surface staining 

Blood sample from PsA patients in the GOLMePsA clinical trial were processed 

for PBMC separation and cryopreserved in 1mL cryo-vials, stored in -1800C were 

made available to me for the study.   

Frozen PBMCs were thawed quickly at 370C, until a frozen solid agglomerate and 

can be transferred from the vial by tipping it into 9mls of PBS containing 2ul/1ml 

DNase solution [1 vail of DNase (100mg) dissolved in 2.75ml of PBS] and mixed 

by inverting for 3 times followed by centrifugation (5 minutes, 500g at 120C) 

(appendix J). The use of DNase was to help to eliminate free DNA from 

dead/damage cells that leads to  cell clumping or aggregation.  The supernatant 

was decanted, and the pellet re-suspend in 1mL PBS/DNAse solution and spun 

at 500g, 5 mins at RT.  The supernatant was decanted, followed by drying of 

pellet by inverting the tube on towel for few seconds. Cells were re-suspended in 
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30uL blocking buffer containing DNAse (at concentration of 2ul of DNAse per ml 

of blocking buffer).  

Aliquot of 50ul of cells were transferred into flow cytometry each tube before 

adding antibodies according to volume described in table 17. To insure 

consistence in pipetting, antibody cocktails were prepared weekly for each panel 

and stored at 40C. Incubation was done at  40C for 30mins in the dark. Excess 

unbound antibodies were washed off by adding 3mL of  PBS/DNAse solution and 

centrifuged as above. The supernatant was decanted and cells re-suspend in 

300uL FACS buffer containing 2µl/ml of DNase for analysis and kept on ice. Data 

were acquired using a Cytoflex S flow cytometer (VA-B4-R3-12 Flow cytometer, 

Beckman counter, USA).   

Flow cytometry analysis was performed for the quantification of the LS subsets, 

CD4+T cell subsets, CD8+T cells, B-cell subsets, and CD4+Th17 cells using 

CytExpert software. Gating strategies have been previously described above 

(Figure 9, page 126)  

The dual plot of FSC-width versus FSC-height which was also double-gated in a 

plot of SSC versus FSC was used to separate viable from dead cells (Figure 12). 

 

 

 

 

 

 

 

 

 



 
 

134 | P a g e  
 

 

 

Figure 12  Gating strategy for identification of viable cells. 

A representation of a dot plot showing the surrogate (FSC-width versus FSC-height dual 

plot) approach for viable cell identification. The viable cells (live cells) population (bule 

gate) was defined using  the dual plot of FSC-width versus FSC- height. As dead cells 

and debris have reduced light scattering, Viable cells selected (blue gate) also double-

gated in a plot of SSC Versus FSC to separate viable (blue region) from dead cells (dark 

region) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

135 | P a g e  
 

Table 17 Panel showing Antibody clones / fluorochrome (clone name and 
company) used in each panel for frozen PBMC analysis 

Fluoro 
chromes 

Lymphocytes 
panel 

µl T-cells 
panel 

µl Th17 
panel 

µl B-cells 
panel 

µl 

V421 
(Clone) 

(Company) 

CD4 
(RPA-T4) 

BD 

3 CD4 
(RPA-

T4) 
BD 

5 CD4 
(RPA-T4) 

BD 

5 CD19 
(HIB19) 

BD 

10 

V500  
(Clone) 

(Company) 

HLA-DR  
(G46-6)  

BD 

5 HLA-DR 
BD 

5 HLA-DR 
BD 

5 HLA-DR 
BD 

5 

FITC  
(Clone) 

(Company) 

CD3 
(UCHT1) 

BD 

7 CD3 
(UCHT1) 

BD 

7 CD3 
(UCHT1) 

BD 

7 CD24 
(ML5) 

BD 

15 

PE  
(Clone) 

(Company) 

KIR3DL2 
(539304) 

R&D 

10 CD45RA 
(HI100) 

BD 

10 KIR3DL2 
(539304) 

R&D 

10 CD27 
(M-T271) 

BD 

10 

APC  
(Clone) 

(Company) 

CD56 
(NCAM16.2) 

BD 

5 CD126 
(M5) 
BD 

5 CD161 
(DX12) 

BD 

15 CD126 
(M5) 
BD 

5 

PerCP 
Cy5.5 

(Clone) 
(Company) 

CD14  
(MPHIP9 

(also known 
as MφP-9)) 

BD 

5   CCR6 
(11A9) 

BD 

5 IgM 
(G20-
127) 

5 

A700  
(Clone) 

(Company) 

CD8 
(RPA-T8) 

BD 

5 CD8 
(RPA-

T8) 
BD 

5 CD8 
(RPA-T8) 

BD 

5 CD38 
(HIT2) 

BD 

10 

PE Cy7 
(Clone) 

(Company) 

CD19 
(SJ25C1) 

BD 

5 CD62L 
(DREG-

56) 
BD 

5 CXCR3 
(1C6/CXCR3) 

BD 

5 IgD  (IA6-
2 (also 

known as 
δIA6-2) 

5 

Cocktail 
volume 

(µl) 

Mixed 

Abs 

45 Mixed 

 Abs 

42 Mixed 

 Abs 

57 Mixed 

Abs 

65 

V421 = Brilliant Violet 421, V500=Brilliant Violet 500; FITC= Fluorescein Isothiocyanate; 

PE= phycoerythrin; APC= Allophycocyanin; PerCP Cy5.5= Peridinin chlorophyll protein-

Cyanine5.5;     A700= Alexa Fluor 700; PE Cy7= phycoerythrin Cyanine7; µl = microlitre, 

Abs= antibodies  
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3.6.3 Panel optimisation and compensation on fresh blood sample 

3.6.3.1 Fresh cell panels : Development of Dry Tube experiment 

Two-panels using up to 7 fluorochromes in various antibody combinations (5-

colours 5-antibodies tube for T-cell panel and 3-colours 3-antibodies tube for Treg 

panel) were designed for the Dry Tube technology in collaboration with BD to 

allow to quantify frequencies of subsets. Not all the clones used in wet flow were 

from our collaborator BD. As such clones were chosen as replacement (before 

the start of my PhD) and the antibodies (Abs) used compared to Abs used in wet 

tube are described in table 18. 

For the development of each flow panel, fresh whole blood (6 mL) from health 

individuals was collected into EDTA vacutainers tubes and inverted 8–10 times. 

Samples were collected in the morning and processed within 4 hours, as 

recommended [696]. Three millilitre (3mL) whole blood was added to 42mL of a 

of red cell lysis (RCL) buffer solution (see appendix K). The blood + RCL buffer 

mixture (opaque initially) was invert gently (about 5-10 mins) until it became more 

transparent, then centrifuged at 500g for 7 mins at 180C. The supernatant was 

decanted, and residual fluid removed by inverting the tube on absorbing paper. 

The pellet was re-suspended in 45ml RCL buffer, left for 1-2 mins, inverted few 

times and then spun as above. After decanting the supernatant, the pellet was 

re-suspended in 45ml PBS and centrifuged as before. The pellet was re-

suspended in blocking buffer (see appendix K).  

Nine (9) flow tubes were prepared each containing an aliquot of 50uL of the re-

suspended fresh cells (at the end of the previous steps) (approximately 1-2 million 

cells.  
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Due to the effect of cell density on staining, manufacturers usually recommend 

antibody dilutions based on a fixed number of cells, approximately one million 

cells per sample. This guideline is especially crucial for staining low-density 

markers like CD127, where using a high number of cells can significantly 

decrease signal. This loss is due to the antibody being too dilute to bind all of the 

available binding sites [697]. Cells in the first 7 tubes were stained according to 

manufacturer’s guidelines with a single antibody using Ab volume for the Wet 

tube as described in table 18. The 8th tube was stained with all the antibodies of 

the panel while the 9th tube was unstained as negative stain control. After 30 min 

incubation at 40C in the dark, cells were washed once with 1mL of phosphate-

buffered saline (PBS) solution  After centrifugation, the supernatant was 

decanted, and pellets were re-suspended in 300uL FACS buffer and kept on ice 

in the dark.  

Samples were analysed using a 21 Detectors, 4 Lasers CytoFLEX  VA-B4-R3-12 

Flow cytometer (Beckman counter, USA). Instrument setup in addition to panel 

compensation was done manually as described above. 

3.6.3.2 Fresh cell flow panel: Wet tube cell surface and intracellular 

staining  

Six (6 mL) of fresh blood was collected as described above from active RA 

patients and transported using NHS service to WTBB lab at St James Hospital 

from the Early Arthritis Clinic in Chapel Allerton Hospital. Blood was collected 

between 8am to 12pm, packaged and transported through the blood shuttle 

service to St James Hospital the same day (kept at room temperature). Most 

sample were delivered to NHS immunology laboratory at least 3-4hrs after 

collection hence not before late afternoon. The wet tube staining was performed 

by the NHS-Immunology lab the next morning. Left over blood was forwarded to 
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me for a Dry Tube flow cytometry analysis to compare with the wet tube flow done 

by the NHS. The study was designed as presented in figure 13 based on 

possibilities of recruiting samples (clinics not running as per before pandemic) 

while Figure 14 illustrated the  conventional wet tube FC workflow compared to 

DT.  

Figure 13   Flow chart of the study design 
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To assess the appropriateness of the DT technology, the study evaluated the 

performance of a T-cell panel (for identifying naïve/IRC subsets) and Treg panel against 

WT assay.  Staining with WT and data acquisition on a Quanto machine and DIVA 

software was performed by NHS services for the samples (n=43). Blood left over from 

NHS lab were given to me on the day. Staining was performed with the DT and data 

were acquired on the Cytoflex LX/ CytExpert software. FCS files were retrieved and 

analysed later by ICA. Raw data (FCS files) of WT assay also were retrieved from NHS 

servers and analysed by ICA independently.   

 

 

 

 

 

 
 

Figure 14 Flow cytometry workflow: Conventional vs simplified DT 
illustrated.  

The workflow of conventional WT compared with a more simplified DT involves 6 steps 

(blue) with the first half of the procedure constituting the areas of multiple sources of error 

in flow cytometry analysis that can compromise the quality of data thereby leading to 

data loss whereas DT presented only a 3-step workflow (green) WT= Wet tube, DT=Dry 

Tube. 
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3.6.3.3 Dry tube cell surface and intracellular staining 

In the absence of SOP for dry tube (DT) technology being a novel test 

development (see figure 15 for a sample of DT kit and table 18 for antibody 

cocktail used in the DT, (appendices L and M), I adapted sample preparation 

from the NHS lab-processing SOPs for flow while accounting for the 

manufacturing instruction for dry tube.  

 

  

Figure 15 Sample of novel DT KIT.  
This shows the naïve T cell panel and Treg panel developed for the DT 
technology 
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Table 18  Dried antibody cocktails used in the DT Technology compared 
to antibodies used in the Wet Tube (WT)    

                                     DT                                   WT  

T-cell panel  

      Specificity         Format         clone   Vol (ul) Format  clone  

CD3  PerCP-CY5.5  UCHT1  4 V500  UCHT1  

CD4  PE-Cy7  RPA-T4  2 BV421  RPA-T4  

CD62L  APC  DREG-56  2 APC  145/15  

CD45RA  BV421  HI100  5 PE  Bio-rad 
MCA88PE  

CD45RB  PE  MT4  7.5 FITC  Bio-rad 
MCA1114F  

Treg panel 

CD3  Not used  -  
 

V500   UCHT1  

CD4  PE-Cy7  RPA-T4  2 BV421   RPA-T4  
  

CD25  BV421  2A3  2 PE-CY7  2A3  

CD127  Alexa 
Flour647  

HIL-7R-M21  5 Per-Cy5.5   HIL-7R-M21  

Foxp3*  Alexa488     236A/E7  5 Alexa488   236A/E7  

 *NOT contained in the Tube but added during the intracellular staining procedure.  
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Two hundred (200) µL blood was transferred to the lyophilized DT. The blood and 

the antibodies were mixed by inverting the tube. Incubation was carried out in the 

dark for 20 minutes at room Temperature (RT). After which eBioscience RBC 

Lysing solution was added directly to the tube (2mL/test sample) vortexed, and 

another of 2mL lysis buffer added. The mixture incubated at room temperature 

for 10 minutes in the dark. 

After incubation, the tubes were spun at 500g for 5mins. Supernatant was 

discarded. Vortexing was done briefly to disperse pellet and 4ml of PBS wash 

buffer were added. Mixture was centrifuged at 500g for 5 minutes at 12°C and 

this washing step repeated twice. Cells were finally re-suspended in 300μl of 

FACS buffer and acquired on the CytoFlex Flow Cytometer.  

For Treg tube, intracellular staining was performed using the BD Human FoxP3 

Buffer Set kit. Re-suspended cells (at the end of the previous steps) were 

permeabilized using Fix/Perm buffer solution. Two millilitres (2mL) of buffer A 

(Fix) were added into the tubes and incubate for 10 minutes. The tube was 

centrifuged at 500g for 5 minutes, and the supernatant decanted. Cells were re-

suspended by vortexing. After which 0.5 mL of buffer C (Permeabilization) were 

added, mixed by vortexing and incubated for 30 minutes at RT in the dark. After 

incubation, 3mL of PBS wash buffer were added and washing steps repeated as 

above twice. Cells were re-suspended by vortexing, 5µL of FOXP3-Alexa488 

antibody were added, mixed and incubated for 30 minutes in the dark.  The cells 

were washed as above, supernatant decanted and cells were finally re-

suspended in 300μl of FACS buffer and acquired on the CytoFlex Flow 

Cytometer. 
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3.7 Flow cytometry analysis and gating strategies 

Across the different study groups, gating strategies were similar as measuring 

the same subsets. Sample acquisition was performed on 13 Detectors, 4 Lasers 

CytoFLEX S VA-B4-R3-12 Flow cytometer (Beckman counter, USA). and 

analysed using Beckman Counter CytExpert software 2.4. Additional markers 

were added to the GOLMePsA study specifically. Ten thousand (10,000) events 

of interest were recorded for each subset (ie. >10,000 Treg rather than 10,000 

CD4+T-cells) where possible. Table 19 summarised the phenotype and subsets 

interrogated with their identification markers whereas the gating strategies used 

are presented in figure 9. 

Lymphocyte subsets panel enumerates the different lymphocyte subsets (% of 

total lymphocytes) according to their expression of CD3, CD4, CD8, CD19, CD56 

lineage markers.  

➢ A measure of HLA-DR expression (%) was made on each lymphocyte 

subsets in the GOLMePsA study. 

B cells panel: enumerate  based on CD19+ cells, naive B cells (CD27-/CD38low), 

memory (CD27+/CD38low), and putative regulatory B-cells contained in the 

transitional T2 subset (T2/Breg CD27-/CD38high/CD24high).  

➢ A measure of IL-6 receptor (IL-6R) expression was made on total B cells 

and subsets, by median fluorescence measurement (MFI) and HLA-DR 

expression (%) in the GOLMePsA study.  

T cells panel: enumerated (as % of total CD4+ or CD8+ T-cells) naive 

(CD45RA+/CD62L+), memory (CD45RA-/CD62L-), and the IRC 

(CD45RA+/CD62L-).  

➢ The expression of the IL-6R on individual subsets based on their MFI as 

well as their HLA-DR expression (%) in the GOLMeLPsA study. 
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Th17 cells panel: This was only performed in the GOLMeLPsA study only.   Th17 

cells (as % of CD4+T-cells) were enumerated using a validated surrogate 

phenotype CD161+/CCR6+/ CXCR3-.  

➢ The expression of KIR3DL2 receptor measured (MFI) as well as HLA-DR 

% expression was recorded.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

145 | P a g e  
 

Table 19 Summary of markers defining subsets 

  

  Lineage 

Markers  

  

Subset  

markers  

  

Additional 

markers  

  

Subsets  

Lymphocyte  

panel  

CD3+CD4+ 

CD3+CD8+ 

CD19+ 

CD56+CD3- 

  

  

CD56+CD3+ 

  

  

  

  

  

CD56high  

CD56low  

  

  

  

HLA-DR  CD4+T-cells  

CD8+T-cells  

B-cells  

NK-cells  

 (NK56bright)  

(NK56dull) 

NKT-cells  

  

and HLA-DR+ 

subset  

B-cell panel  CD19+ CD27-, CD38- 

CD27+,CD38- 

CD24+, CD38+high        

CD27+, CD38+ 

IL-6R   

HLA-DR  

Naive   

Memory   

Putative Breg   

Plasmablasts   

  

and IL6+ 

MFI/subsets  

HLA-DR+ subset  

T-cell panel  CD3+CD4+ 

  

  

  

  

CD3+CD8+ 

CD45RA+CD62L+  

CD45RA-CD62L-  

CD45RA+CD62L-  

  

CD45RA-CD62L-  

CD45RA-CD62L-  

CD45RA+CD62L- 

IL-6R   

HLA-DR  

NaiveCD4+  

MemoryCD4+  

IRCCD4+  

  

NaiveCD8+  

MemoryCD8+  

IRCCD8+  

  

and IL6+ 

MFI/subsets  

HLA-DR+/subset  

Th17 panel  CD4+ CD161+CCR6+CXCR

3-  

KIR3DL2 

HLA-DR  

TH17  

  

and KIR3DL2+ 

MFI  

HLA-DR+ subset  

  

 

IRC: inflammation related cells. NK natural killer. IL-6R: interleukin-6 Receptor. Th17: 

T-helper 17. KIR: killer-cell immunoglobulin-like receptor. MFI mean fluorescence 

index. HLA-DR: Human leucocyte antigen- D receptor  
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3.8 Statistics analysis  

All data were analysed using the SPSS V27.0 (IBM, Chicago, IL, USA). Figures 

were generated using GraphPad Prism 9.3.1 (La Jolla, CA, USA) and SPSS. R 

package was used for a specific function not available in SPSS with help from Dr 

Farag Shuweihdi (FS), one of my supervisors. P-values of less than 0.05 were 

considered significant. 

3.8.1 Data description 

Descriptions of numerical data are expressed as the median (interquartile range) 

and nominal data with numbers (%) where necessary (unless indicated 

otherwise).  

3.8.2 Data normalisation test 

Data normalisation tests were performed to investigate the normal distribution of 

data or otherwise using Q-Q plot. Non-parametric tests were used as most 

variables were not normally distributed. 

3.8.3 Lymphocyte subset age-normalisation 

Age-relationship for specific cell subsets were performed using a spearman 

correlation as previously described [4, 5]. Subsets with significant age-

relationship (rho>0.600, p<0.05) were corrected based on patients’ age using the 

correlation equation generated. Values obtained after age correction for patient 

data were termed normalised subsets frequencies as in previous publication [5]).  

[Normalised subsets frequencies] = observed frequency [actual value obtained 

from analysis) – [expected frequency]. [Expected frequencies] = Correlation 

coefficient (β) x [age] + Constant(C) per subsets.  
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3.8.4 Univariate analysis of blood cell subset frequencies and for 

high/low risk of progression outcome 

Exploration of data was performed in univariate analysis using Mann-Whitney U 

and Chi-square (X2) tests to compare continuous and nominal variables 

respectively, between outcomes. Variables at baseline were then assessed 

individually for association with an outcome using unadjusted MWU to select 

subsets associated with the outcome and the area under the ROC curve 

(AUROC, 95%Cl) was also calculated as a parameter predictive of the outcome. 

Variables were also assessed individually for predictive value using unadjusted 

odd ratio OR (95%Cl) area under the ROC curve (AUC, 95%Cl). Sensitivity, 

Specificity, positive and negative predictive values (PPV/PNV) were calculated 

from the classification matrix of accurately predicted versus non-accurately 

predicted cases obtained from the probability of progression calculated by logistic 

regression. Bonferroni correction method for multiple testing [698, 699] was 

applied where relevant. 

Statistically relevant cut-off value was obtained from the coordinates of the ROC 

curve at 80% specificity allowing dichotomisation for high/low risk.  These were 

then used to establish sensitivity, specificity, PPV, and NPV of each subset for 

prediction of progression across the IAC. A spearman correlation-based 

clustering algorithm (Cluster-3, Stanford University 1998-99) was applied to 

assess collinearity between cell subsets and displayed using TreeView as heat-

map.  
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3.8.5 Data missingness 

All study cohorts had missing data points in LS from one panel or the other, but 

data were missing at random as confirmed with a Little’s MCAR test (p<0.0001). 

Replacement of missing data were carried out using multiple imputations (5 

cycles) method in SPSS 27. Given that the assumption of data ‘missing at 

random’ holds (Little’s MCAR test, p<0.0001) and the study involves multiple 

variables, the method used provides better estimates that both preserve the 

underlying relationships among variables and of the reliability of estimates. In 

multiple imputation, known values of all variables are used to provide several sets 

of estimates of the missing data. Therefore, using this regression-based method 

the result produced estimates (i.e., regression coefficients and standard errors) 

that were unbiased with no loss of power.  A pooled dataset resulting from the 

imputation process was utilised in subsequent analysing and modelling [700-702] 

 

3.8.6 Multivariate regression model to predict progression across IAC 

Logistic and Cox regression modelling was used to construct multi-parameter 

models for the prediction of outcomes across the IAC using a stepwise forward 

method, selecting the best combination of variables with the most significant 

improvement of the fit.  

To assess the reliability of models, a bootstrapping technique using 500 

permutations was developed and a Dxy discrimination index corrected for 

optimism was calculated in collaboration with Dr FS. Somers’s rank correlation 

between the predicted and the actual outcome for both logistic and cox regression 

models were done using R.4.1.3 (as not available in SPSS).  
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Individual probability to progress for each Cox model was used to check 

proportionality assumption. AUC for Cox regression were construct in R 4.1.3. 

Using statistically relevant cut-off value obtained from the coordinates of the ROC 

curve at 80% sensitivity, models performance accuracy in terms sensitivity, 

specificity, PPV, and NPV for prediction of progression across the IAC were also 

calculated from the classification matrix. WALD tests from the regression 

analyses performed were used to assess the contribution of each of our predictor 

variables. 

3.8.7 Comparison analysis for validation of  DT technology and  NHS 

versus ICA (me) inter-observer variability analysis 

Results are presented using correlation plots using data from the DT vs Wet tube 

(WT) to describe the strength of the relationship between both Methods. Bland-

Altman plot using the difference between data from the DT and WT vs their mean 

for each CD4+T cell subset was constructed to access the degree of agreement 

by estimating the bias (the measurement difference) between DT and WT. The 

evidence of no bias between the methods/observers was performed using a one-

sample t-test of the difference between methods or observers. Estimated 

reliability between the two methods/observers was also calculated for each 

CD4+T cell subset using intraclass correlations (ICC) (and its 95% confidence 

intervals (CI). ICC is a reliability parameter evaluating the correlation between 

duplicate analyses made either between 2 observers or by the same observer on 

2 occasions on the same raw data. It takes values between 0 and 1, with a value 

of 1 corresponding to zero measurement error and a value of 0 indicating 

variability in analysis suggesting the presence of measurement error [703]. The 

reliability of the result between methods/observers was estimated with Intraclass 

Correlation Coefficient (ICC) (Type A) by the two-way mixed effects model where 
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people effects are random and measures effects are fixed and defined to 

measure for an absolute agreement based on the 95% confident interval.   

3.8.8 Technical validation analysis of frozen samples in flow cytometry 

work 

Correlation analysis between Fresh versus frozen samples was calculated using 

the non-parametric Spearman rank test to explore the nature of the relationship 

between two continuous variables.  The comparison of slope values with a full 

identity (slope = 1) was performed after linear regression analysis using the F-

test. Comparisons between fresh and Frozen PBMC were assessed in paired 

matched data using the  paired t-test and Wilcoxon signed rank test (two-tailed). 

All statistical analyses were performed using GraphPad Prism version 10.  

Statistical significance was established at a p-value ≤ 0.05.   

3.8.9 Trajectory clustering analysis 

A series of cell subsets biomarkers across the LC panel, T-cell panel, B-cell 

panel, and Th17 panel were assessed at baseline, 6 months, and 12 months, 

representing variable trajectories.  Data distribution across each panel was 

visualised using box plots. 

Our objective was to identify hidden groups (clusters) by considering the 

collective trajectories, which would provide insights into the distinctive features of 

each cluster. To achieve this, we employed k-means clustering tailored for 

trajectory data. The analysis was conducted using the R package. Thanks to one 

of my supervisors, FS who supported me in doing this aspect of my analysis 

because data needed to be coded in R and I did not have time to learn the R 

package in year four of my PhD. 
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Exploration of data was performed for univariate analysis using Two-way ANOVA 

tests, between clusters A and B to determine the main effects of patients' cluster 

groups (1st independent variable) and time points: BL, 6M, and 12M (2nd 

independent variable), and their interaction effects on the frequency of cell 

subsets (dependent variables). 

A Spearman correlation-based clustering algorithm (Cluster-3, Stanford 

University 1998-99) was applied to assess collinearity between cell subsets and 

displayed using Treeview as a heat map.  

Results were displayed as mean (SD) for continuous variables. The P-value of 

less than 0.05 was considered significant. 
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Chapter 4 Result 

4.1 Technical validation of the use of FC as a technology in biomarker 

research  

  Introduction  

Flow cytometry is used a lot in research but has also made its way into clinical routine 

lab assessments. The technology is safe and robust but heavily depends on adherence 

to protocol and QA/QC while human data interpretation is also an integral part of its 

delivery. 

4.1.1 Validation of the use of fresh blood flow cytometry as a 

biomarker technology  

Blood samples from various studies were sent to the NHS immunology services, and 

LS data were acquired. An analysis of raw data from panels was carried out for a 

wider appreciation of the FC technology itself as a tool in clinical practice on one hand 

still being developed as a research biomarker on the other hand. The raw data from 

5 panels were made available as electronic files (FCS files).  Data analysis for the 

quantification of LS included panels for lineage count, B-cell subsets; CD4+T-cell 

subsets; CD8+T-cell subsets, and CD4+Treg.  

The main purpose here, was to analyse the type of issues encountered, necessitating 

data to be excluded due to poor quality of samples or faulty processing (non-

adherence to sample preparation protocols), faulty acquisition while panels not being 

performed at all was also accessed.  
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4.1.1.1 Technical validation from staining to data acquisition 

Data from 2,911 raw FCS files were used  to examine these issues. 

Problems encountered 

(1) Poor quality blood:  This can be observed for any test performed routinely. 

(a) An acceptable quality of sample for optimal flow cytometry is presented (figure 

16 A) that allows clear identification of cell population of interest.  

(b) Poor red cell lysis often results from biological characterisation of the blood such 

as very high viscosity, inflammatory related causes.  It is impacting the ability of 

fluorochrome to work optimally (Figure 16 A). RA being an IA, this was to be 

expected in a FC test and normally not a major issue if the red cell lysis (RCL) is 

repeated as is often the case in research but not in NHS settings. As such, I 

observed many samples where RCL was far from optimal and the sample is almost 

impossible to read. This affects the FSC/SSC  and can also affect marker detection.  

(c)  Marker expression sometimes was completely “blurred”, and it was impossible 

to define gates but difficult to explain. It is noticeable that there were delays in 

sample transit from clinics (in Chapel Allerton Hospital) to the NHS lab (at St James 

hospital), via NHS transport services and a change of vehicle at the Leeds General 

Infirmary. This may have led to sample deterioration. Delay ≥24 hours are likely to 

impact cell viability [564],  the forward/side scatter, and the expression of markers 

and may account for such poor samples. 

  2. Faulty processing: In most cases this involved non-adherence to sample 

preparation protocol or omission of an antibody (Figure 16 B). Of note, issues with 

non-availability of certain antibodies in a panel was used to explain such cases. This 

impacted mainly the Treg panel with ~8.5% loss of data due to missing antibodies 

(FoxP3 or CD127) but sometime seen also in other panels as well. Another 
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processing issue was poor red-cell lysis leading to erythrocyte contaminating the 

FSC/SSC region with cells and making it hard to gate the lymphocytes. 

(3) Poor instrument set-up: Another issue was the lack of adjustment of instrument 

settings on a daily basis resulting in inability to “find” cells on forward/scatter on a 

sample of “poor quality” (Figure 16A). This caused uncertainty in the initial gating 

of lymphocytes although, marker expression usually allowed analyses of data. This 

is an issue observed mainly in routine analysis as protocol are set “in stone”, settings 

being fixed and not allowing to adjust the FSC/SCC on a daily basis. 

(4) Lack of compensation: Some data reported on the NHS result server, were not 

aligned to my analysis performed on the raw data  and led to a lot of data 

discrepancies between NHS reports and my observations. However, this only 

impacted 1 of the panels.  NHS data acquisition uses fully compensated protocols 

as standards. It appears that one protocol was damaged over the time and data 

were then acquired uncompensated and analysed/reported as such. This seems to 

have been occurring every time the software upgrade automatically while I could not 

understand why it affected only one of the panels. If not noticed by the operator, it 

allows data to be saved  while no analysis can should be done without a fully re-

compensating data. This significantly impacts the ability to analyse straight away 

(Figure 16C). 

Another cause was change in protocols over the years (2013-2020) notably in the 

B-cell panel that initially used 8 antibodies but reduced to 5 two years later, while 

the protocol was not recompensated leading to over-compensation between certain 

fluorochromes. This was, however, a technical hurdle that could be overcome 

(Figure 16D) but resulted in a highly time-consuming process. 

Comment reporting any of such issue should have been included in the NHS records 

made for such samples to allow critical decision making by the clinicians. However, 
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still being a research test, this was not yet included and may also lead to 

discrepancies between me and the NHS reports.  

    

Figure 16 Example of FCS plots illustrating problem encountered during 
analysis.  
(A) Example of displayed event in dual plot of size (FSC) versus granularity (SSC) of 
good (left) versus poor-quality of blood, poor instrument set-up (middle panel), or 
inefficient red cell lysis (right panel).  (B) Plot showing missing of stains for CD127 and 
FoxP3 (black circle) likely due to the antibody not being added and plot (blue circle) 
represents Treg gate. Example of sample showing uncompensated plot in lineage and 
B-cell panel(C) followed by (D) the same re-compensated plots, post-acquisition. 
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Developing sample exclusion rule 

Based on the observations, I developed 3 types of exclusion rules to allow results 

from acceptable QA/QC raw data to be selected for my study, considering 

“human” error, technical error, and poor sample quality. 

I directly compared the 2 data sets and classified samples that needed exclusion 

based on the type of error eligibility associated with its exclusion 

Processing error  

Results showed that “human” error occurred more in the Treg panel analysis 

(8.45% of samples) compared to the addition of the same error in all other 3 

panels together (Lineage, T-cells, and B-cells) at 1.61% of cases. Figure 17 

presented the outcomes of developing the 3 major exclusion rules for all the 

panels analysed.  High level of multiple pipetting procedure associated with the 

Treg panel due to 2 levels of staining (surface and intracellular) may explain in 

part this observation although it is hard to explain why a panel whose gating 

depends on 1 particular marker (FoxP3) can be performed and reported when 

such antibody is not added (this occurred over 4 weeks of consecutive samples 

that were acquired and reported  while  the FoxP3 Ab was missing)   

The second source of error was for Treg frequencies reported in the absence of 

CD127;  

1) It leads to over-estimated Treg frequency and  

2) This change should have been noted in the reported data provided to clinicians 

to make decision. The reason provided was the lack of commercial availability of 

this specific Ab clone. This is a serious issue that was reported and discussed 

with the NHS lab manager (who was unaware of it). Although it may have a limited 
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effect on data according to other studies where CD127 is not used [480] as it is 

a serious departure from the SOP in this context which included the CD3, CD4, 

CD25, CD127, and FoxP3 markers as the minimally required markers to define 

human Treg cells [704]. 

Other panels showed few faulty samples associated with processing  error most 

likely genuine mistakes with pipetting. 

Technical error   

Technical errors involving faulty acquisition were either due to lack of 

compensation or arising from lack of adjustment in the instrument settings as 

described in the previous section. It was more pronounced in B-cell panel in 

6.66% of samples 

Poor blood quality 

Poor blood quality appeared to affect the T-cell subsets panel more (2.58% of 

samples) impacting directly on the expression of the markers and rendering 

gating impossible. 
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Figure 17 Exclusion rules for NHS flow cytometry raw data files available 
for the study.  
 Each pie chart represented the results of excluding samples based exclusion rules for 
sample fully reported on by the NHS flow cytometry services  “processing” error (blue), 
technical error (red), and poor blood quality (green). Acceptable samples (passed 

QA/QC) are represented in grey colour. 
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4.1.1.2 Performance evaluation of inter-observers' variability in gating 

between routine NHS and myself (ICA) 

Flow cytometry raw data from the 2 main panels (T-cell and Treg) routinely 

reported by NHS were re-analysed independently by me (ICA). The full SOPs 

used by the NHS including the gating processes designed by my supervisor 

originally when the protocol was transferred from her lab are attached as 

appendix N. The NHS-reported results for these patients were made available 

and utilized to determine the inter-observers' variability in the cell subset 

frequencies reported.  

Paired samples (n=262 for naïve CD4+T cells, n=203 for IRC CD4+T cells, and 

n=162 for Treg CD4+T cells) with results available from both observers (NHS 

versus ICA) were included in this analysis while I excluded data for samples 

fulfilling my rules for exclusion defined above.  

Distribution characteristics between observers 

I was first trained by a flow cytometry expert with over 20 years of experience (Dr 

Ponchel)  who also developed those panels in research setting as detailed in the 

method section. I then compared my analytical skill to her  and when deemed 

“trained”, I performed my analysis of these raw data files.   

To validate the reproducibility of data between observers I considered myself as 

the reference and the NHS-reported data as the challenger.   

NHS results being acquired by various numbers of staff over 2013-2022, were 

divided into 3-time period representing (as close as possible) the 3 period of 

employment of these staff. The general characteristics of the distribution of data 

for the three blood cell subsets (Naive, IRC, and Treg CD4+T cells) between 
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observers (Me and NHS2013-15, NHS2016-19, and NHS2020-22) were 

evaluated using paired t-test. 

Results are presented in violin plots (Figure 18) comparing 3 periods of time 

corresponding 1st to the development of the service from the right panels, with 

staff 1 (2013-2015), 2nd , to routine use of the service with staff 2 (2016-2019),  

and  3rd over COVID pandemic with staff 3 (2020-2022) and my analyses on the 

right.  

For Naïve, the mean value between the two observers at 2013-2015 did not differ 

significantly (40.30 vs 38.64, p=0.6809) with a very negligible mean of difference 

(95%CL) [0.1667(-0.6540 to 0.9874)]. From 2016-2019 period, the data 

distribution showed a significant decrease in NHS data (36.94) compared to mine 

(39.72, p<0.0001) with a mean of difference 4.392 (1.309 to 2.897). This 

suggested a loss of data consistency over this period. In 2020-2022, there was 

no significant difference between the two observers (33.14 vs 34.27, p=0.0600). 

The mean of difference of 1.249 (0.0265 to 2.471) seems to indicate a restoration 

towards consistency. This may likely be due to a shortage of staff available during 

the pandemic compared to 2016-2019 when several experienced staff had been 

involved. The overall correlation coefficient (r > 0.9) for each period showed that 

pairing was significantly effective, suggesting that naïve data distribution is 

closely comparable between NHS and me. 

For IRC, data distribution, the NHS across the 3 periods of time respectively did 

not differ significantly from data obtained by ICA (all p>0.05), suggesting a better 

consistency in overall gating pattern for IRC subsets. 
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For Treg, NHS2013-15 results were not significantly different between the two 

observers (p=0.8212) during the development of the service while during the late 

period (2019-2022) data were less closely comparable. This may suggest 

inconsistency in gating over the last two periods. However, this also included a 

lot of sample reports when the CD127 or FoxP3 Ab was missing. This highlights 

the need to develop reporting notes for issues that may affect data as well as 

maybe defining rules for not performing an assay when reagents are not all 

available (when NO FoxP3 is available with a caution note while maybe for when 

CD127 is unavailable). 
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Figure 18 Distribution of results for 3 subsets gated by different observers. 
Violin plot indicating data distribution between NHS (blue) and me (red), thick line within 

the violin plot represents the mean value. A paired T-test p-value is indicated. 
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Overall correlation coefficient (r > 0.6) across each period compared showed that 

pairing was significantly effective, suggesting that data at the cohort level are 

relatively similar.  I, therefore, decided to use all 3 staff/period as if a single 

observer and proceeded to a more detailed analysis. 

Correlation between NHS data versus ICA     

I then performed an analysis of the agreement between observers first using 

spearman correlation analysis. Paired data (n=262 for naïve CD4+T cell, n=203 

for IRC CD4+T cells and n=162 for Treg CD4+T cells) between both observers 

(NHS versus ICA) were included in the analysis.  

Results are displayed using a simple scatter plot with the line of best-fit to address 

whether it is a perfect match compared the line of equality which would suggest 

an absolute correlation between datapoints between the two observers (Figure 

19). The correlation coefficients (rho) indicate the strength of the linear 

relationship between two variables 

For naïve CD4+T-cells, there was a highly significant correlation (rho=0.9336, p 

< 0.0001) and both the line of best fit and the line of equality were closely 

overlapped.   

For IRC CD4+T, the correlation was still significant but with a decline in 

correlation strength (rho= 0.7568, p< 0.001). The line of best fit showed 

divergence from the line of equality with increased IRC frequencies in samples 

particularly at frequencies above 5% in my analysis. This shows a poor linear 

relationship between observers when frequencies are low (<5%) while the higher 

frequencies are actually driving the correlation. This suggests a poor consensus 

between observers. 
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For Treg, the correlation coefficient reduces even further (rho= 0.6877) showing 

a decline in the strength of the relationship between the  datasets. Lines of best-

fit and equality were still relatively close.  Several points were particularly 

different. Two points notably suggested a possible additional sources of error in 

data entry on NHS server as reporting very high values (9% and 10% 

frequencies). Further analysis was re-done excluding those odd points. This 

suggests a particular need for experienced staff to gate this panel and possibly 

as well  the need to account for data point where CD127 is missing. 
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Figure 19 Comparison between frequencies identified by the NHS and the 
ICA (Spearman correlation analysis).  

Data displayed in scatter plot with Line of best fit (dotted line, slope), line of equality (blue 
line, slope=1) and rho = coefficient of correlation indicated in for each subset.  Intraclass 
correlation coefficient (ICC) indicates the reliability results between observers 
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As a second step to assess level of the agreement between observers and 

explore further the behaviour of data distribution, Bland-Altman (BA) plots were 

constructed for each cell subsets by plotting the difference between 

measurements from the two observers (NHS - ICA) against the average of both 

observers (Figure 20). If no difference were to be seen, the mean of those 

differences (green) should be equal to zero (black line) and the 95% CI should 

be small (dotted red lines).  

For naïve cells, the result of the mean differences (measurement bias between 

the 2 observers) was approximately –2 which is close to zero as naïve cells 

frequencies are usually about 30%.  The BA plot suggests a range in the 

difference between the 2 observers from -10.5 to +6.3 (with 95% CI) (Figure 20 

top panel). Thus, this 95%CI suggest a trend for higher naïve cells in IAC 

compared to NHS.  

I then tested the hypothesis that the observed mean of the difference (1.9%) was 

indeed not different from zero (for evidence of no bias between observers) by 

performing a one-sample t-test of the difference . A statistically significant p value 

0.001 was obtained which confirms a certain level of measurements bias (over 

estimation) between naïve frequency quantified by NHS and those quantified by 

me.   

 For IRC, the mean difference (green line) was superimposed on assumed mean 

difference of zero (black line) with little or no suggestion of bias. The result of the 

mean differences was approximately –0.01% which showed a non-statistically 

significant different when evidence of bias was testing using one sample t-test 

(p=0.400).  
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However, a difference in data distribution patterns was observed with data points 

tending to diverge farther away from the actual mean of zero at frequencies above 

5%, suggesting possibility of increase in gating variability with increasing IRC 

frequencies.  With the BA plot showing a range in measurement difference (-2.35 

to +2.36) between observers that is often higher than the frequency of IRC 

themselves, it suggests that IRC results obtained by NHS are very poorly 

comparable to those obtained by ICA particularly when below 2% frequency. This 

will need to be considered when interpreting data for their biological value. 

For Treg, the bias was –0.39 (green line) with a range within 1.76 and –2.49.  

However, the test of evidence of bias between observers suggested that the 

difference was significant (p<0.001). Interestingly, the data distribution pattern 

showed that the majority of the datapoints are scattered below the actual mean 

of zero (black line) suggesting a negative bias. This mean that, most result by 

NHS are under-evaluated compared to me.  
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Figure 20 Bland-Altman plots of the CD4+T cells subset quantification 
comparing the NHS observer and ICA.  
Data displayed in BA plot with range of results between observers (dotted red line), 
expected mean difference (dark line at zero), observed mean difference (green line). p-
value for evidenced of biased measured by one sample t-test displayed    
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This BA analysis confirmed that spearman correlation analysis was not sufficient 

to fully acknowledge the probability of error between measurements between 2 

observers as it does not measure actual bias or estimate their level of agreement 

(as represented in BA plots). As such, intraclass correlation coefficient (ICC), is 

recommended as a better index for reliability test between 2 measurements , and 

therefore was also performed as it reflects not only the degree of correlation (i.e., 

the strength of linear relationship) but also the agreements between 2 

measurements [703] . High reliability or low measurements error should be equal 

(or close) to a score of 1 whereas low reliability or high measurements error will 

show a score close to 0. ICC values above 0.9 are considered of excellent 

reliability between 2 measures [705]. 

The average ICC (displayed on figure 19, page 165) between NHS and ICA was 

quite high  for naïve cells [(0.963 (95%Cl, 0.937-0.977)], indicating good reliability 

between both observers. For IRC [0.776, 95%Cl 0.705-0.830] and Treg [0.781, 

95%Cl 0.678-0.848] scores were lower confirming discrepancy in data reported 

by NHS from that generated by myself. The involvement of different staff over the 

years could have played an important role in impacting gating consistency 

between NHS and me considering the subjectivity of the process and the need 

for experience in doing it. 

Taken together, this data prompted me to re-do all the analysis of all raw data 

files used in my thesis rather than accept reported values by the NHS. This 

resulted in a highly time-consuming approach to my PhD data acquisition notably 

with the burden due to the need to recompensate all B-cell panels.   
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4.1.2 Flow cytometry validation using Dry tubes 

The Dry tube (DT) project was driven by the need to improve quality and 

reproducibility of flow cytometry-based biomarkers while reducing the costs/time 

of the wet tube (WT) workflow in health services flow cytometry laboratories. This 

is an industrial collaboration with Becton Dickinson (BD) on the backbone of the 

biomarker research program funded by LIRMM. The DT is intended to minimise 

lab procedures (i.e., handling mistake, missing Ab, etc…) and gain time when 

used in routine settings and for clinical trials (i.e., like TEEMS) as well as to 

disseminate the test internationally.   

The DT for the T-cell panel and Treg panel were designed for quantifying naïve-

CD4+T, inflammatory related cells-CD4+T (IRC-CD4+T cell) and CD4+Treg 

which are the 3 most important blood cell subsets biomarkers used in RA 

patients. Although, BD was not certain that the intra cellular FOxP3 staining would 

be possible. 

The DT antibody selection and optimisation were performed between my lead 

supervisor, Dr Ponchel and BD in 2019. Antibodies were dried in a 12 x 75mm 

tube for T-cell panel for CD4+T subsets and a 3- antibody cocktail for Treg panel. 

The antibodies for both panels are shown in table 18, page 141). A total of 50 

tubes were manufactured by BD with an expiration date 31/10/2020, delivered to 

Leeds in March 2020, a week before lock-down. Progress was therefore 

interrupted by the pandemic, precisely when the project had reached the step of 

performing a WT/DT data comparison on actual patient samples. 
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Data to be acquired were subsets % with no need for MFI hence the 

fluorochromes were adapted by BD based on technical & commercial 

considerations while the Ab clones were chosen after getting closely comparable  

staining pattern/spearman correlation results (rho>0.9) during the optimisation 

phases (see appendix A). The DT were manufactured using the same 

concentrations of antibodies that were used with the WT reagent, which was 

established in the prior validation/optimisation phase of the project.  

The numerical quantification of these 3 CD4+T subsets (naïve, IRC and Treg) in 

samples from rheumatology clinics directly compared results obtained by the 

NHS immunology flow cytometry service using WT and by the LIRMM lab using 

the alternative clone and fluorochrome (performed by Dr Ponchel before my 

arrival).   

The immunophenotyping investigation using the DT was evaluated in 42 patients 

for various LIRMM clinics, consecutively included in the study over a period of 3 

months post pandemic.  These patients came from different clinical studies at 

varied stage of the inflammatory arthritis continuum (IAC) and were analysed in 

parallel but independently to compare data obtained from the WT and DT assays 

for the enumeration of the 3 cell subsets.   

Due to covid restricted access to NHS, this part of my thesis was delayed, and I 

had to acquire results in the LIRMM university lab (between June 2022 and 

August 2022) rather than in NHS service. Samples were received and processed 

by the NHS as usual. The residual blood was given to me to proceed for the DT. 

Flow data acquired by NHS services (FCS files) for WT data were retrieved and 

were compared with similar FCS files obtained from the DT assays in the 

university laboratory.  This implicated the use of two different flow cytometers 
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complicating the DT data comparison as depicted in FC workflow (Figure 13, 

page 138).  

4.1.2.1 Staining results   

Because of the 2 years delay since manufacturing the DT and the expiration date 

on the DT being passed, I first assessed whether the phenotype of cells stained 

with the DT was satisfactory for the enumeration of cell populations not 

compromising the separation of any T-cell subset populations compared to 

sample stained with WT assay.  As shown in figure 21 (top plot,) the use of a 

dried antibody cocktail in different fluorophores has limited impact on the 

detection of the naïve and IRC cell subsets, although the profile was not 

absolutely identical, particularly for the IRC.  CD45RA staining showed better 

separation with the BV421 fluorophore conjugate in DT than in the WT with PE 

conjugate (left vs right column).  The DT panel design seems to have enabled a 

better separation of IRC than the WT although the use of different flow cytometer 

machine for the two methods may have played a role as well (left vs right 

column).  

For the Treg panel, the staining was not detectable for FoxP3 in DT (even with 

double antibody dose) compared to WT (Figure 21, bottom plot).The same 

antibody used in WT assay was however working fine suggesting that the Ab 

itself is not the issue but more likely the intra-cellular procedure not being 

compatible with the DT technology. 

Despite different fluorochrome/clone conjugates  in DT vs WT for surface proteins 

(CD4/CD127/CD25), a “putative” Treg phenotype (using only cell surface 

markers CD25highCD127low)   showed similar staining pattern as well as similar 

frequencies (data not shown, n=17), confirming that surface staining is of good 
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comparable quality in DT vs WT.   Further Treg data acquisition with DT was not 

undertaken as staining for FoxP3- was inconclusive. 

 

Figure 21 Representative flow cytometry profiles of whole blood samples 
stained with the DT (left column) vs WT (right column) technologies.  
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The dual plots shown are derived from the acquisition at least 10,000 events in a 

CD3+/CD4+ T cell gate, followed by gating for specific phenotypes. Plots represent the 

same samples acquired and analysed in parallel by the two Methods. For data 

acquisition/analysis, a Cytoflex LX /CytExpert software for DT and a FACSCanto /DIVA 

software for WT were used and plots from both methods were shown in biexponential 

displayed.  For the T-cell panel, the figure shows 2 representative samples in patient 1 

and patient 2. The gating strategy for the identification of CD3+CD4+ T-cells with a naïve 

phenotype used CD45RA+CD62L+ (yellow square) and for IRC as CD45RA+CD62L- 

(green square) suggesting good reproducibility.  For the Treg panel (patient 3), CD4+T-

cells were gated first. The FoxP3 staining was not observed in DT. A 2-colour gating 

strategy for the identification of “putative” Treg (CD127lowCD25low red circle) was used 

(bottom plot) and showed reproducible data. Treg could be identified in WT as 

(CD127lowCD25highFoxP3+   blue circle), while no convincing staining in the DT would 

allow for a clear population to be detected.   
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4.1.2.2 Performance evaluation of DT versus WT technologies 

Data obtained from each method were then analysed using the same logic as for 

observers' comparison (section 4.1.1.2,  page 159),  here comparing methods.  

Data first were described using the median (interquartile range, IQR) for % 

frequency of the subsets numerated (Figure 22A). The naive median 33.15 (IQR 

22.92 to 41.45) for DT did not differ significantly from that with WT (31.30 (25.10 

to 43.40), p=0.8833   

The naïve and IRC results were then analysed (n=41).  

The agreement between the DT vs WT (scatter plot) showed the line of best fit 

being close to the line of equality (Figure 22B) for naïve. The comparison was 

significantly satisfactory (rho=93%, p<0.0001).  

Bland-Altman (BA) plots were also generated for each cell subsets and Intraclass 

correlation coefficient (ICC) were calculated (Figure 22C).  

For naïve cells, BA plot showed little or no suggestion of a bias between the WT 

and DT. The mean of the differences was relatively close to a zero (+0.8). The 

BA plot suggests a range in the difference between the 2 techniques from -7.5 to 

+9.1 (with 95% CI) indicating a range within which measurements differ for naïve 

CD4+T-cells enumeration between WT and DT similar to that observed between 

observers NHS vs me I then tested the hypothesis that the true mean of the 

difference was indeed zero. Non-significant p value of 0.225 was obtained, 

confirming no evidence of measurement bias.  

ICC between naïve data obtained with both techniques was 0.971(0.947-0.985), 

also indicating good reliability between both methods for naïve enumeration.  
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For IRC, enumeration, the DT median was significantly higher 4.78 (2.69 to 7.32) 

than with the WT, 1.75 (1.10 to 3.50), p=0.0101) suggesting a difference in results 

obtained between technologies (Figure 22A), possibly due to the better subsets 

separation observed with the DT  for BV421 CD62L Ab.    

For IRC enumeration, the median difference was different from assumed mean 

difference of zero, with a more pronounced bias at –1.29%. A difference in data 

distribution pattern was observed with data points tending to scatter above the 

median line at low frequencies but below the median line at high frequencies, 

suggesting constant and/or proportional systematic errors present at high 

frequencies. The observation that DT enumeration of IRC gives a higher % result 

than WT is likely to be due to the change in fluorochrome and changes in clones 

showing a better separation in DT than in WT (Figure 22C).  

The BA plot suggests a high range in measurement difference (-6.9 to +4.3) 

between WT and DT, with a definite bias (p=0.006) mainly observed for high 

frequencies (>2.5%) as over-estimated by the DT while at low frequencies 

(<2.5%) they were less affected. Reliability remained high over the overall range, 

despite better determination with DT for high frequency with an ICC=0.9629 

(0.917-0.981) for IRC. This suggests that IRC results obtained by WT may likely 

be reproducible with DT technology.  
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Figure 22 Data characteristics of subsets biomarker analysed (n=41)    
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(A)  Data distribution between DT vs WT.Boxplot presented the data distribution 

between dry tube (DT box) vs wet tune (WT box). Mann Whitney U test, p values 

displayed.(B)Comparison plots of the cell population frequencies identified with 

the WT and the DT. Data displayed in scatter plot with Line of best fit (dotted line, slope), 

line of equality (blue line, slope=1) and rho = coefficient of correlation indicated for each 

subset. Intraclass correlation coefficient (ICC) indicates the reliability results between 

observers  (C): Bland-Altman plots of the subset frequencies identified comparing 

the WT and DT technology. Data displayed in BA plot with range of results between 

observers (dotted red line), expected mean difference (dark line at zero), observed mean 

difference (green line). p-value for evidenced of biased measured by one sample t-test 

displayed      
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4.1.3 Flow cytometry validation on frozen samples  

Immunophenotyping analyses of human peripheral blood mononuclear cells 

(PBMCs) using flow cytometry technique can be performed either on fresh blood 

samples as well as on frozen samples. Fresh samples are commonly preferred 

for routine analysis given the potential deleterious effect of freezing on functional 

and phenotypic properties of cells that could be associated with cryopreserved 

PMBCs samples [706-711]. However, in many research and clinical trials, 

cryopreservation has become a standard procedure for storage of PBMC and a 

very useful practice in multi-centre studies where blood samples must be 

collected for immune monitoring programs, therefore allowing for frozen PBMCs 

to be processed under identical FC conditions after transfer to centralised 

laboratories for FC analyses.  This procedure allows for batch analysis of samples 

to enhance consistency which reduces the potential inter-assay[712] and inter-

laboratory variation [713] which is often an issue in multi-centre clinical trials with 

local sample collection [714, 715].  As a drawback, it is highly possible that certain 

cell types and their surface markers may likely be affected by the 

cryopreservation of PBMC [715, 716].  

Here frozen PBMCs samples (n=131) from the GOLMePsA clinical trial were 

analysed to search for potential associations between immune cell phenotypes 

and trials outcomes. PMBCs were isolated from freshly collected blood samples 

and processed at the LIRMM Chapel Allerton tissue bank (using LIRMM SOP 

30S for the isolation and freezing of PBMC using Leucosep tubes, see appendix 

E for detail. Briefly, PBMCs were isolated from whole blood collected in Lithium 

Heparin tube (green top) . The lymphocytes were frozen in fetal calf serum (FCS) 

containing 10% dimethylsulfoxide (DMSO)  for long-term storage (-1500C). The 

frozen PBMCs were stored for a mean period of 3.28 years (95% Cl 2.99 to 3.56) 
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due to the pandemic, after which they were transferred to LIRMM lab at St James 

hospital for FC analyses.  

Panels were designed for cell surface markers/ cell phenotypes based on data 

available from a fresh samples study performed by TRIMID group [717]. 

Investigating any effect of freezing PMBCs on the FC results was essential for 

the quality of the analysis reported for this clinical trial. Therefore, I evaluated the 

effect of cryopreservation on the quality of FC data produced.  

4.1.3.1 Frozen PMBCs were associated with reduced cell viability 

To assess the value or rather possible limitations of using frozen blood samples 

in FC analyses, cell viability is one of the main issues affecting data quality.  

The use of viability dye (such as propidium iodide (PI), 7-aminoactinomycin D (7-

AAD), dyes which can selectively label dead cells with compromised membrane 

integrity) would have been ideal solution for discriminating between live cells and 

dead cells prior to flow analysis [718-720]. However, this was not included in the 

Trial protocol. I was restricted for consistency between the Trial protocol and the 

circumstance and time required to perform this analysis within 6 months while 

ethical permission to change the protocol would have taken too long and not a 

priority for the Trial team, thereby leading to the use of an alternative strategy 

here which provided assessment of live cell. Viability was defined as the 

percentage of cells from the total event of cell gated using a dual plot of FSC-

width versus FSC-height which itself double gated from the plot of SSC versus 

FSC to separate viable from dead cells based on morphology (Figure 23A).  Cell 

debris has reduced light scattering, and as such also need to be excluded giving 

an estimated % of live cells with this strategy.    
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I then used the same strategy (Figure 23A) to compare % of viable cells between 

fresh and frozen samples and the result presented in figure 23B.   

The result of this analysis showed very large variations in the distribution of 

percentages of viable cells used for analysis across samples ranging from <1% 

to 69.3% in frozen PBMC (n=131, median, IQR), 45.30 (21.50-52.00) compared 

to fresh sample (n=37, 64.30 (58.30-72.50), MWU test p<0.0001  
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Figure 23 Gating strategy used to quantify viable cell fresh and frozen 

sample. 

A. Gating strategy. The viable cell gate (blue) interrogated in the FSC/SSC plot (blue 

events) showing the lymphocyte gate(red) and monocyte gate (green).B Comparison 

of % of cells selected for analysis in fresh sample(n=37) and for viable cells in 

frozen PBMC(n=131). Boxplot presented the data distribution showing a significant 

difference between Fresh (green box) vs frozen (red box). Mann Whitney U test, 

p<0.0001 displayed. The dotted line indicated cut-off % viability (10%) for possible 

exclusion. 
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I then classified the viability in frozen PBMC using percentage bins (decades of 

% windows) to evaluate which sample would be acceptable for further analysis. 

Based on this boxplot (Figure 24A), ¼ of the sample would be lost to the study 

at below 20% viability. Choosing a cut-off at 10%, 19% of the sample would need 

to be excluded.   

To determine whether the loss of cell viability could be associated with the 

duration of storage, a correlation analysis was performed (Figure 24B, spearman 

test). Contrary to expectation, there was no significant relationship between cell 

viability (%) and storage duration in days (rho=0.03791, p= 0.6661). This 

suggests that other aspects of the freezing process may provide an explanation 

for the reduction in cell viability.  

Further analysis was  performed  to determine if loss of viability is associated with 

inflammation levels (measured by C-reactive protein, CRP) which contribute to 

poor quality of cells FSC/SSC on fresh blood samples[721, 722] Sixty-three (63) 

samples were manually retrieved with the help of another PhD student for CRP 

level due to MHRA restriction in accessing clinical data from the trial electronic 

records. The result showed no significant relationship between CRP and cell 

viability in frozen PBMC either (rho= 0.1684, p=0.1870, Figure 24C).  

Another factor could be the processing of samples (ie., the lymphoprep 

procedure). This has happened over 5 years while involving only 1 staff, with long 

experience of this procedure that is furthermore regulated by an SOP as was the 

defrosting process therefore ensuing all samples were processed the same. 

Furthermore,  when a few samples were processed on the same day from several 

patients/time points, differences in viability were still observed despite the 

samples being processed together.   This suggests that cell viability in frozen 
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PBMCs is probably reduced in  samples by the process itself although quite at 

random with some being greatly affected and other less so.  The extent of the 

effect on the quality of the flow data itself needs to be analysed separately. 

Therefore, as a result of this analysis, I decided to use all samples irrespective of 

viable cells and to manually review all FC marker data. 
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Figure 24 Cell viability in frozen sample  

(A) Distribution of viable cells (%) in frozen PMBCs sample (n=131).  

Black bar represented samples n(%) with ≤ 10% cells viability. Plain bars 

indicated various proportion of sample n(%) with >10% viability.  

(B) Correlation between % viable cells in sample and storage duration. 

Data showed no significant linear relationship between cell viability and 

length of storage (rho=0.03791, p= 0.6661).  Blue dotted line indicating 10% 

cut-off point for analysable FCS data. 

(C) Spearman correlation analysis showing no association between % live 

cell versus CRP (rho=0.1684, p=0.1870, n=63) 
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4.1.3.2 Acceptable limits in cell viability for flow cytometry analysis and 

loss of data using frozen PBMCs  

I then proceeded to the evaluation of the effect of loss of viability on flow analysis 

of lymphocyte subset to determine if a loss of viability could 

1. limit data quality and  

2. if a cut-off should be established to determine acceptability of frozen 

PBMCs.  

To achieve this, all samples, regardless of % cell viability contained were 

analysed to quantify lymphocyte lineages  (CD4+T-, CD8+T-, B-, NK-, and NKT-

cells), CD4+T and CD8+T-cell subsets (naïve/ IRC/ memory/Th17), B-cell 

subsets (Naïve/ memory/ plasmablasts/ regulatory B-cell (Breg).  

Representative flow plots showing samples with varying % of cell viability 

analysed for all 4 panels are presented (Figure 25 to Figure 29).  

Critically, none of the lineage lymphocyte and the lymphocyte subsets could be 

quantified in samples with very low levels of cell viability <5% (all 4 panels). This 

suggests outright rejection of these samples was needed, and this allowed me to 

rule out any samples with ≤ 5% viable cells for flow analyses of lymphocyte 

subsets. 

For viability of between 5-15%, the result showed that the identification of cell 

population was possible for some but not all samples as well as variables 

according to panel analysed . In such lower viability samples, the lineage cell 

populations may be enumerated with a limited issue (Figure 25 middle column), 

while this is impacting much more substantially the enumeration of T-cell (Figure 

26 and Figure 27 middle columns) and B-cell subsets (Figure 28 middle column) 
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as well as Th17 cell (Figure 29 middle column). This suggests that in frozen 

samples with low cell viability, data should be reviewed by an experienced 

observer and may have to be considered manually for acceptance or rejection in 

flow analysis work. 

In samples with greater than 15% viable cells, results presented showed that all 

panels performed well in generating clear cell populations and expression of 

different markers suggesting that samples with >15% cell viability remain suitable 

for flow analysis and may be considered an acceptable viability limit for analysis, 

although the number of cells available for analysis will be lower than in fresh 

sample as shown in figure 23B. This may need to be considered for naïve 

subpopulation. 
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Figure 25 Representative flow plot of frozen PBMC of high, middle and low 
cell viability analysed for Lineage cells.  
left column: Gating for PMBC with high viability (40%) showing clearly 

identifiable/quantifiable subsets of interest which in Middle column reduces for PBMC 

(15%) and in right column, completely difficult to enumerate for PMBC with < 5% 

viability. “?” represented plots where cells of interest were too difficult to enumerate. Gate 

(black circle) in FSC/SCC plot represents the lymphocyte. 
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Figure 26 Representative flow plot of frozen PBMC of high, middle and low 

cell viability analyzed for CD4 T-cells subsets. 

left column: Gating for PMBC with high viability (40%) showing clearly 

identifiable/quantifiable subsets of interest which in Middle column reduces for PBMC 

(15%) and in right column, completely difficult to enumerate for PMBC with < 5% 

viability. “?” represented plots where cells of interest were too difficult to enumerate.  

Gate (black circle) in FSC/SCC plot represents the lymphocyte. 
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Figure 27 Representative flow plot of frozen PBMC of high, middle and low 

cell viability analyzed for CD8 T-cells subsets.  

left column Gating for PMBC with high viability (40%) showing clearly 

identifiable/quantifiable subsets of interest which in Middle column reduces for PBMC 

(15%) and in right column, completely difficult to enumerate for PMBC with < 5% 

viability. “?” represented plots where cells of interest were too difficult to enumerate.  

Gate (black circle) in FSC/SCC plot represents the lymphocyte.  
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Figure 28 Representative flow plot of frozen PBMC of high, middle and low 

cell viability analyzed for B-cells subsets.  

left column: Gating for PMBC with high viability (40%) showing identifiable/quantifiable 

subsets of interest which in Middle column reduces for PBMC (15%) and in right 

column, completely difficult to enumerate for PMBC with < 5% viability. “?” represented 

plots where cells of interest were too difficult to enumerate.  The gate (black circle) in the 

FSC/SCC plot represents the lymphocyte.  
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Figure 29 Representative flow plot of frozen PBMC of high, middle and low 
cell viability analysed for Th17 cell.  
Left column: Gating for PMBC with high viability (40%) showing clearly 
identifiable/quantifiable subsets of interest which in Middle column for PBMC (15%) and 
right column (< 5% viability), were completely difficult to enumerate. “?” represented 
plots where cells of interest were too difficult to enumerate.  Gate (black circle) in 
FSC/SCC plot represents the lymphocyte. CD4+T cell (gated in red), CD4+161+ cells 
(gated in yellow), CD4+161+CCR6+ (gated in green), and Th17 (defined as 
CD4+161+CCR6+ CXCR3- cells, gated in purple) 
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This resulted in 3 levels of cell viability with an apparent effect on the ability to 

analyse frozen sample; <5%, 5-15% and >15%, the latter being acceptable. Of 

all the frozen PBMC analysed, 13% of frozen samples were unacceptable in the 

GOLMePsA trial (no lineage or cell subset could be gated),, with an additional 

5% of samples (with 5-15% viability) where by a  manual inspection could still 

validate data to help rescue few more datapoint. However, only   82% of samples 

were acceptable as those could ensure high-quality data , despite the reduced 

number of live cells that can be used for the enumeration.  

 

Figure 30 Acceptable % cell viability in frozen PBMC samples. Pie chart 

presented the three levels of acceptable % cell viability in frozen PBMC samples (n=131)). 13% 

of the sample (Red zone) with 5% or less viable cells indicating outright rejection as cells cannot 

be enumerated. 5% of sample (Gray zone) showed data with cell viability greater than 5 but less 

than 15% still difficult to analyse and maybe rejected as cell enumeration may not be possible for 

all panels.  82% of samples (Green zone) showed data with 15% or more cell viability which is 

perfectly suitable for flow analysis. 
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Overall retrospective frozen PBMCs samples showed a loss of data due to 

freezing in 15% of the sample. Compared to the loss of data when using fresh 

cells due to transport/human error/technical error (as shown in section 4.1.1.1, 

page 158). This is still allowing for the analysis of a substantial amount of data. 

4.1.3.3 The effect of freezing PMBCs on flow cytometry analysis of 

lymphocytes and their subsets. 

So far, the analysis had focused on whether the population could be clearly 

identified and gated but I still needed to investigate further whether the FC 

quantification of lymphocyte cell lineages and their subsets remains comparable 

to data in fresh samples. GOLMePsA being a trial of early PsA, patients were 

recruited from the same EAC cohort as the early RA/nonRA. Therefore, I 

compared the frequency of each cell and subsets from the GOLMePsA frozen 

samples (which had a cell viability that permitted flow analyses) with the 

frequency of LS obtained by analysing FSC data file previously acquired on fresh 

blood for GOLMePsA patients.  Fresh blood for few patients were collected on 

the same day and some blood tubes sent by mistake to the NHS lab while  other 

blood tubes were process as per the protocol to freeze PBMC. Match paired 

patients' samples (fresh versus frozen, n=15) were available and then selected 

for comparison analysis.   

Five main cell subsets were compared between fresh and frozen sample:  

➢ lymphocyte lineage subsets (CD4+T-, CD8+T-, B- and NK-cells), 

➢ CD4+ T-cell subsets (naïve/IRC/memory),  

➢ CD8+T-cell subsets (naïve/IRC/memory), 

➢ B-cell subsets (Naïve/memory/plasmablasts/regulatory B cell(Breg), 

➢ Th17 cells. 
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Impact of freezing PBMCs on lymphocytes lineage subsets quantification 

Staining result fresh vs frozen PBMC 

I first assessed whether the staining pattern of phenotype of lineage subsets in 

the frozen were comparable to the fresh sample and satisfactory for the 

enumeration of lineage populations in this panel.  The result showed that for the 

LC panel (Figure 31) the use of frozen PBMC has relatively no impact on the 

detection of the B-cell , NK CD56 bright and NK CD56dim, and NKT cells  and 

CD4+T and CD8+T cells despite using different antibody-dyes and different FC 

machines. 
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Figure 31 Representative flow cytometry plot from lineage panel comparing 

fresh versus frozen sample for the same patient.  

Staining was performed using different antibody-dyes and data also acquired on different 

machines. Plots show the variation in frequencies for each cell between fresh and frozen 

sample.  The blue gate defines the B-cells (upper row),, the purple gate NK cell (the low 

portion indicates NK CD56dim while the upper portion indicates NK CD56bright), and the 

green gate represents the NKT cells (Middle row) while red and yellow gates define 

CD8+T cell and CD4+T cell respectively(last row). 
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Comparison analysis results for LS (fresh vs frozen) 

First, I analysed the 2 set of paired data using paired T-test and showed no 

significant difference for CD4 and CD8 T-cells (p=0.469 and 0.066). However, 

there appears to be small difference for B (p=0.003), NK(p=0.004) and 

NKT(p=0.001) subsets.   

T-cell being the most abundant subset, the effect of freezing on the frequencies 

were limited while for the 3 other subsets it would be more important to verify 

whether these changes were randomly distributed   or consistently affecting one 

lineage. So, I reanalysed data with match-paired data using the Wilcoxon test for 

the sign of difference (up versus down, figure 32).  
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Figure 32 Comparison of fresh sample and frozen for each LS .  

Fresh sample (coloured in blue) compared to frozen (Coloured in red) using Wilcoxon 

match-paired test for sign of the difference (up and down). CD4+T and CD8+T showed 

no significant difference in number of up and down pairs. For B-cells, NK cells NKT cells 

there were significantly more up pairs. p =T test p-value, P* = Wilcoxon test for sign of 

different of direction of change.  
a frozen  < Fresh(Negative Differences), b frozen  > Fresh (Positive Differences) 
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The result showed no significant change in direction for CD4+T (6 up and 5 down, 

p = 0.988) and CD8+T (10 up and 3 down p=0.092) in frozen sample in contrast 

to B-cell (11 up and 1 down p = 0.006), NK-cell (11 up and 1 down p=0.006) and 

NKT-cell (13 up and 0 down p=0.0002) were clear higher % were often seen in 

frozen samples (Figure 32). Despite the potential impact of over 2 years of 

cryopreservation, our result suggests cryo-stability of CD4+T and CD8+T cells 

using flow cytometry while other LS tend to show higher frequency in frozen 

samples compared to fresh blood samples. 

I then used a correlation analysis to directly compare frozen LS frequencies in 

fresh blood and frozen to identify where the data diverged. 

The percentage of CD4+T (CD3+CD4+) showed no significant difference 

between frozen and fresh cells (Figure 33, rho =0.8455; p = 0.0018). Similarly, 

no difference in % were obtained for CD8+T (CD3+CD8+; rho = 0.7967, p = 

0.0018).  

For B-cell (CD19+CD3-, rho=0.8392, p=0.0011) results were closely correlated 

but with clear departure from being similar and showing consistently higher % B-

cell in the frozen sample. For NKT-cells (CD56-CD3+, rho=0.8077, p=0.0014) 

data were also closely correlated. A non-significant correlation (Rho=0.4336, 

p=0.1616)) was observed for the frequency of NK-cell (CD56+ CD3-) suggesting 

that freezing was particularly affecting this subset enumeration. 
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Figure 33 Correlation analysis of lineage frequencies in fresh and frozen. 

Frequencies of LS subsets in fresh and frozen PBMC samples from the same 

participants are shown in scatter plot. Complete identity line (Slope=1) between fresh 

and frozen cells is indicated by red dotted lines. The linear regression line of best-fit of 

data is indicated by black lines. Spearman correlation coefficients (rho) shown for each 

panel. 
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4.1.3.4 Altered T-cell subsets quantification in frozen samples 

Staining pattern fresh vs frozen PBMC 

The FC analysis for the CD4+T-cell subsets (naïve, IRC, and memory) was 

performed using the previously used 2-markers gating strategy 

(CD45RA/CD62L). I first assessed whether the staining pattern in the frozen 

samples was satisfactory for the enumeration of subpopulations, not 

compromising the separation of any T-cell subsets compared to the fresh sample.  

As shown in figure 34 staining pattern was not identical, particularly for the 

expression of CD62L defining naïve/IRC in both the CD4+ and CD8+ subsets.  

Use of a frozen PBMC has a substantial impact on the detection of the naïve and 

IRC cell subsets. Therefore, enriching CD62L- cells.  
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Figure 34 Representative flow cytometry plot of CD4 and CD8 T-cell panel 
comparing fresh versus frozen sample for the same patient.  
Staining was performed using different antibody-dyes and data also acquired on different 

machines.  Plots show the variation in frequencies for each cell subsets between fresh 

and frozen sample.  The yellow gate defines the naïve subsets, the green gate defines 

the IRC, and the red gate represents the memory subset . Of note the Diva-NHS acquired 

data used an analogue FC scale (on a log scale) while the CytoFlex used a digital one 
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Comparison analysis for CD4+ T-cell subsets (fresh vs frozen) 

A similar analysis was performed for the 3 CD4+T cell subsets-  naïve CD4+T 

cell defined as CD45RA+CD62L+, IRC (CD45RA+ CD62L-), and the memory 

CD4+T cell (CD45RA- CD62L-).  

Matched paired analysis (n = 15) performed using similar approach confirmed 

that naïve CD4+T in the frozen sample were significantly different from fresh 

samples (T-test, p=0.0002) and this change was due to reduced naïve cell 

frequency (Wilcoxon test, 0 up and 15 down, p=0.0007, figure 35). Following the 

reduction in naïve, the IRC subset was found to be significantly different (T-test, 

p=0.0005) and increased in frozen compared to fresh samples (Wilcoxon test,14 

up and 0 down, p=0.0009). This is showing a freezing-specific alteration 

associated with the naïve/IRC subsets possibly doe to loss of CD62L. For 

memory CD4+T, results confirmed the different (T-test, p<0.0001) and a 

significant increased frequencies (Wilcoxon test, 15 up and 0 down, p=0.0007, in 

frozen samples (Figure 35). 

In addition loss of consistency, particularly poor correlations were also observed 

for both naïve CD4+T (rho=0.3750, p=0.1692) and IRC CD4+T (rho=0.0484, 

p=0.8702) between fresh and frozen samples, in contrast to  memory CD4+T 

where a better correlation between frozen and fresh samples (rho=0.6036, 

p=0.0195 (Figure 35 right hand side) was seen suggesting that memory subset 

frequency in the frozen sample may  relatively be more stable. 
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Figure 35 Comparison fresh and frozen samples for CD4+T cell subsets 

(based on conventional 2 markers gating (CD45RA/CD62L).   

(right column) Spearman correlation analysis: Frequencies of CD4+T cell subsets in 

fresh and frozen PBMC samples from the same participants are shown in scatter plot. 

Complete identity line (Slope=1) indicated by red dotted lines. Linear regression line of 

best-fit of data is indicated by black lines. Spearman correlation coefficients(rho) are 

shown for each subset. (Left column) Fresh sample (coloured in blue) compared to 

frozen (Coloured in red) using Wilcoxon match-paired test for sign of the difference (up 

and down). Naïve showed significant difference in number down pairs while IRC showed 

more up pairs. For memory there were significantly more up pairs. p=T test p-value, P* 

= Wilcoxon test for sign of different of direction of change.  a frozen  < Fresh (Negative 

Differences), b frozen  > Fresh (Positive Differences) 
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CD4+T cell subsets (rescuing the analysis)  

Changes in CD62L surface marker expression with freezing have been reported 

with specific shedding from the cell surface being the main explanation [723, 724]. 

CD62L pattern of expression was indeed different between fresh and frozen 

samples (Figure 34, page 202), and the frequency changes are mainly due to 

the loss of CD62L expression in frozen samples  

Considering that IRC is present in the CD4+ T cells subset but in a small 

proportion (except in a few cases with very high inflammation), I proposed a 1-

marker identification gate for enumerating naïve CD4+T (CD45RA+) in frozen 

samples as a potential solution to help fix the issue observed with using the  2-

marker phenotype (CD45RA+CD62L+). I therefore quantified again naïve CD4+T 

using only the CD45RA+ marker. Both subsets were then corrected for age gating 

this new CD45+ gate in consideration. 

The 1-marker identification strategy was applied further to the fresh, and frozen 

samples and the data compared again (Figure 36, n=14).  Results showed that 

naïve CD4+T for the paired fresh-frozen matched sample now compared well (T-

test, p=0.057) with significant correlation value (rho=0.8330, p=0.0004) and no 

significant direction of change (Wilcoxon test, 5 up and 9 down p=0.424). The 

loss/change of CD62L expression due to freezing was therefore leading to the 

negative skewness in naïve CD4+T enumeration using the conventional 2 

markers (CD45RA/CD62L) and was overcome using the 1-marker CD45RA+ 

gate, although at the expense of being able to also quantify IRCs.   
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For memory CD4+Tcells (CD45RA- cells), the 1-marker gating strategy also 

showed no difference (T-test=0.058), maintained a good correlation (rho=0.7319, 

p=0.0040) (Figure 36) and confirmed no significant direction of change (Wilcoxon 

test, 9 up and 5 down, p=0.496) between fresh sample and frozen PBMC. This 

suggests that memory CD4+T enumeration using the 1-marker strategy may 

provide a solution to fix the impact of freezing on this subset. However, although 

with a slight widening of data distribution in frozen samples.   

Therefore, the use of a 1-marker strategy removing CD62L to enumerate naïve 

and memory CD4+T in the frozen sample is likely to result in data that was 

relatively similar.  

The CD45RA (+ and -) subsets are not equivalent to the 2-markers subset 

(CD62L/CD45RA) used in previous analysis and data interpretation will have to 

take this into consideration. The shedding of CD62L due to freezing remains an 

issue if IRC is to be measured.  
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Figure 36 Comparison of CD4+T cell subset in fresh and frozen samples 

(based on proposed 1-marker (CD45RA).  

Right column) Spearman correlation analysis: Frequencies of CD4+T cell subsets in 

fresh and frozen PBMC samples from the same participants are shown in scatter plot. 

Complete identity line (Slope=1) indicated by red dotted lines. The linear regression line 

of best-fit of data is indicated by black lines. Spearman correlation coefficients(rho) are 

shown for each subset. (Left column) Fresh sample (coloured in blue) compared to 

frozen (Coloured in red) using Wilcoxon match-paired test for sign of the difference (up 

and down). Naïve/memory showed no significant difference in number down pairs. p=T 

test p-value, P* = Wilcoxon test for sign of different of direction of change.  a frozen  < 

Fresh(Negative Differences), b frozen  > Fresh (Positive Differences) 
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Comparison analysis for CD8+ T-cell subsets (fresh vs frozen) 

CD8+T cell subsets were impacted in the same way as CD4+T-cell subsets by 

the shedding of CD62L. Naive CD8+T showed a significant difference ( T-test, 

p=0.015), no significant correlation between frozen samples and fresh samples 

(rho=0,34851, p=0.2021) but a significant decreased direction of change in frozen 

sample (Wilcoxon test, 2 up and 13 down, p=0.007). This was mirrored in 

increased IRC CD8+T (Figure 37, t-test, p<0.0001, and rho=0.1226, p=0.7037) 

suggesting a substantial alteration in the frequency of these subsets in frozen 

PBMC. Again, for the memory subset, frozen samples showed a better correlation 

with fresh samples (rho=0.6364, p=0.0299, figure 37) and no significant 

difference (T-test, p=0.341) and no direction of change (Wilcoxon test , 6 up and 

6 down, p=0.988).   
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Figure 37 Comparison fresh and frozen samples for CD8+T cell subsets 

(based on conventional 2 markers gating (CD45RA/CD62L).   

 (right column) Spearman correlation analysis: Frequencies of CD8+T cell subsets in 

fresh and frozen PBMC samples from the same participants are shown in scatter plot. 

Complete identity line (Slope=1) indicated by red dotted lines. Linear regression line of 

best-fit of data is indicated by black lines. Spearman correlation coefficients(rho) are 

shown for each subset. (Left column) Fresh sample (coloured in blue) compared to 

frozen (Coloured in red) using Wilcoxon match-paired test for sign of the difference (up 

and down). Naïve showed significant difference in number down pairs while IRC showed 

more up pairs. For memory there was no significant difference for up and down pairs. 

p=T test p-value, P* = Wilcoxon test for sign of different of direction of change. a 

frozen  < Fresh(Negative Differences), b frozen  > Fresh (Positive Differences) 
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CD8+T cell subsets (rescuing the analysis) 

Next, I repeated the 1-marker strategy (CD45RA+) to determine if it could also find 

a similar solution for CD8+T cell subsets ( 

Figure 38). For naïve cells, the 1-marker strategy did not compare well in paired 

fresh-frozen matched sample (T-test, p=0.035), with a poor correlation result (rho= 

0.0945, p=0.6136, n=14) and no significant direction of change for naïve CD8+T 

cells (Wilcoxon test, 9 up and 5 down, p=0.424). However, the overall significant 

increase for naïve cell in frozen sample (T-test, p=0.035) indicates that the use of 

1-marker strategy to enumerate naïve CD8+T in frozen sample is likely to result in 

over-enumeration, suggesting this is unlikely to offer a solution to fix the impact of 

freezing on this subset. The CD45RA+ cells tend to contain a much higher 

frequency of IRC in CD8+T-cells (notably compared to CD4+T-cells) and in fresh 

samples as such this is more likely to affect the results. Data interpretation will 

have to take this into high consideration.  

For memory CD8+T, the 1-marker strategy was not used as no difference was 

found in frequency between fresh and frozen samples. 
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Figure 38 Comparison of CD8+T cell subset in fresh and frozen samples 

(based on proposed 1-marker (CD45RA).  

(A) Spearman correlation analysis: Frequencies of naiveCD4+T cell subset (fresh versus 

frozen) from the same participants are shown in scatter plot. Complete identity line 

(Slope=1) indicated by red dotted lines. The linear regression line of best-fit of data is 

indicated by black lines. Spearman correlation coefficients(rho) are shown. (B) Fresh 

sample (coloured in blue) compared to frozen (Coloured in red) using Wilcoxon match-

paired test for sign of the difference (up and down). Naïve showed a significant difference 

in number up pairs. p=T test p-value, P* = Wilcoxon test for sign of different of direction 

of change.  a frozen  < Fresh(Negative Differences), b frozen  > Fresh (Positive 

Differences) 
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4.1.3.5 Stability of B cell subsets quantification in frozen versus fresh 

samples 

Staining pattern fresh versus frozen 

For the B-cell panel, the staining pattern was also assessed to see if it was 

satisfactory for the enumeration of subsets. The result presented in figure 39 

showed that for B-cells, the use of a frozen PBMC has limited impact on the 

detection of the naïve, memory, Breg, and plasmablasts subsets, although the 

pattern was not fully identical, as the different FC machine/Antibodies clone/dyes 

also had an impact on the technique.  
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Figure 39 Representative flow cytometry plot of B-cell panel for the fresh 

versus frozen sample of the same patient.  

Plots show the variation in frequencies for each cell between fresh and frozen sample.  

The red gates define the naïve B-cells , the blue gates define the memory B (upper row). 

The green gates represent the plasmablasts while yellow gates define Breg respectively. 
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Comparison analysis for B-cell subsets (fresh vs frozen)  

Naive B-cell showed significant difference (T-test, p=0.015), a significant 

correlation between frozen samples and fresh samples (rho=0. 6845, p=0.002), 

and no significant direction of change for lower frequency for naïve B-cell in 

frozen sample (Wilcoxon test, 5 up and 10 down, p=0.302, figure 40).  

In contrast, there were no significant difference for memory B-cell ( t-test, 

p=0.677), Breg (t-test, p=0.329), and plasmablasts (t-test, p=0.224), and a 

significant correlation observed for memory (rho=0.6615), Breg (rho=0.7026), 

and plasmablasts (rho=0.5481) between frozen and fresh sample and no direct 

of change for memory (p=0.791), Breg (p=0.424), and  plasmablasts (p=0.968, 

figure 40. The randomness observed in change of direction subsets % suggests 

a non-specific freezing impact on the B-cell subsets. Therefore, freezing may 

unlikely impact the frequencies of the B-cell subsets substantially notably the 

enumeration of memory, Breg and plasmablasts. 

 

 



 
 

215 | P a g e  
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Figure 40  Correlation analysis of B-cell subsets in fresh and frozen 
samples from Gol trial.  
(Right column) Frequencies of B-cell subsets in fresh and frozen PBMC samples from 
the same participants are shown in scatter plot. Complete identity line (Slope=1) between 
fresh and frozen cells is indicated by red dotted lines. Linear regression line of best-fit of 
data is indicated by black lines. Spearman correlation coefficients(rho)are shown for 
each subset.(Left column) comparison of B-cell subsets in fresh and frozen 
sample. Fresh sample (coloured in blue) compared to frozen (Coloured in red) using 
Wilcoxon match-paired test for sign of the difference (up and down). Naïve showed a 
significant difference in number down pairs whereas other subsets did not show any 
significant difference for up or down pairs. a frozen  < Fresh(Negative Differences), b 

frozen  > Fresh (Positive Differences) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

217 | P a g e  
 

4.1.3.6 Impact of freezing PBMCs on analysis of Th17 cells 

There was no available paired fresh samples to assess the impact of freezing on 

Th17 staining pattern. As such, the result of representative flow plots for 

assessing staining patterns could not be displayed. However, I obtained results 

from a Th17 panel from late PsA (n=24) from fresh samples (no data available in 

early PsA) from an unpublished study. The Th17 subsets showed significantly 

lower frequencies in frozen GOL samples compared to fresh PsA (p<0.001, n=24, 

figure 41), suggesting that th17 range was not closely comparable between 

frozen and fresh samples as could be expected.  The use of late PsA may also 

suggest a disease stage-specific change as an alternative explanation to a 

freezing-specific difference.  This prevented me from validating the use of frozen 

samples for the Th17 panel and therefore suggests that we will have to take data 

with this limitation into consideration when relating it to biological findings and/or 

trial outcomes. In addition, this may also suggest that discrepancies in the 

literature may be related to the use of frozen versus fresh samples 
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Figure 41 Changes in Th17 cells in fresh versus frozen disease samples.  

Data presented in boxplot showed fresh non-RA sample (blue, n=24) compared to frozen 

Gol samples (red, n=110) (MWU test, p<0.001) 
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4.2 Clinical utility of biomarker using the FC technology   

In this section of my PhD, I plan to validate the use of FC in CD4+ T-cells as well 

as other LS as biomarkers of disease progression across different stages of the 

IAC. The first part of this project (at-risk cohort) has been published [725]. I 

performed most of the data analysis for FC and statistical modelling while my 

coauthors provided a clinical overview and contributed to the manuscript editing 

and revision.  The 2nd part (EAC cohort) and 3rd part (MXT-treated RA cohort) form 

the basis of data to be included in a new publication plan for 2024. For this 2nd  

paper, I performed most of the data analysis for FC and statistical modelling while 

my coauthors provided small cohort data analysis (master students), and clinical 

data from the cohort (ESREP students). 

4.2.1 Clinical utility of (fresh blood) flow cytometry biomarker 

across the IAC  

4.2.1.1 The phases of the IAC; cohort description 

The involvement of immune cells in RA pathogenesis has been extensively 

described (T/B/NK-cells, monocytes [583, 726-729]. The specific cellular and 

molecular events that influence progression to the next stage of the IAC remain 

unclear [730]. 

Rheumatoid arthritis (RA) is a chronic autoimmune, inflammatory joint disease. A 

pre-clinical phase of RA has been identified, also known as the at-risk phase of 

the inflammatory arthritis continuum (IAC) [308, 309]. The at-risk phase can last 

up to 15 years, during which genetic and environmental factors contribute to the 

progression including a break in tolerance and the development of systemic 

autoimmunity manifested by the presence of autoantibodies (particularly, anti-

citrullinated peptide antibodies-ACPA).  
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The development of pain and other musculoskeletal symptoms in the absence of 

synovitis precedes a final stage when synovitis develops. Treatment is 

conventionally initiated upon the detection of clinical synovitis.  

As previously established by our group in ACPA+ at-risk individuals, three 

CD4+T-cell subsets (naïve, IRC-CD4, and Treg) had good predictive value as 

biomarkers for progression to IA, both individually and when combined with 

clinical variables [3, 5, 362, 520]. They were also able to predict the progression 

towards RA from an early arthritis clinic  and to predict MXT-induced remission in 

early RA [5, 362, 520]. However, the predictive value of other immune cells 

across the 3 stages of the IAC is yet to be fully explored. 

Here, I tested the hypothesis that the dysregulation of other LS, in addition to the 

three CD4+T-cell subsets previously reported, may provide mechanistic clues as 

to the cellular events underpinning the progression and clinical outcomes across 

each phase of the IAC. Furthermore, I investigated whether an extended LS 

analysis, can provide an improvement of the performances of current prediction 

models [3, 5], that are using only three CD4+T-cells subsets.  

 

Cohort selection and characteristic for each cohort  

Participants from different clinical groups across the IAC were selected, 

comprising a total of 210 at-risk individuals (Pre-RA phase), 306 patients from the 

EAC (diagnosis phase), and 205 MXT-treated RA patients (1st line treatment 

phase) (Figure 42).  A few factors led to the reduced number of patients selected 

for each cohort amongst the 1000’s of participants enrolled in the longitudinal 

studies [“At-Risk CCP register” and “IACON register”]. Briefly, the B-cell panel 

was the most limiting amongst all participants as it was introduced late in 2015, 



 
 

221 | P a g e  
 

followed by the CD8 panel with poor marker staining limiting separation between 

subsets. Patients with data files for at least 4 out of the 5 panels and who also 

had associated clinical data were selected therefore for this project. During FC 

analysis of the 5 panels, more issues were encountered necessitating data to be 

excluded based on the 3 major exclusion rules I developed ( detailed in Section 

4.1.1.1, page 153), hence limiting the at-risk cohort to 210 patients amongst the 

~400 ACPA+, EAC cohort to 306 amongst the ~350, and the MXT-treated cohort 

to 205 amongst the ~250 participants I was able to identify from the register.   
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Figure 42 Patients' selection workflow across the 3 stages of the IAC.  
The shows the full strategy used for selecting participants and side boxes showing reasons for 

exclusion at each point either based on missing LS data >2/5 panels or on exclusion criteria I 

developed notably due to technical issues (poor quality of blood due to transport delays). ** B- 

and LC- panel major limiting factors. 
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4.2.1.1.1 At-risk cohort outcome  

Altogether, ACPA+ patients (n=210) with a minimum of 12 months of follow-up 

(up to 10 years), were selected from the overall cohort.  

Clinical data were retrieved and progression to clinical synovitis was observed in 

93/210 (44%) of participants, occurring under 12 months in 41 patients (rapid 

progression), within 13-24 months for 18 patients, with the last 33 progressing 

later than 2 years post inclusion and 1 patient after 10 years (Figure 43). 

Seventy-five percent (75%) of progressors met the EULAR 2010 Classification 

criteria for RA at the time of progression with an average of >3.5 swollen joints 

(range 1-15) and were directed to our early arthritis clinic for further care. This 

suggests the possibility of follow-up patients between the 3 cohorts used in the 

study. Unfortunately, I have no ethical permission to re-identify patients as they 

move from pre-clinical RA to the EAC cohort and then get treated with MTX and 

eventually achieve remission.   
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Figure 43 Length follow-up duration (Months) in progressors and non-
progressors.  
The length of follow-up was very wide, 120 months in total with a median follow-up 

duration was 34 months +/- 31 months SD overall.  The shortest time to progression was 

1 month while the longest was 120 months.  The shortest follow-up considered in non-

progressors was 12 months. The cohort was spitted between imminent progressors and 

then 4-time groups of delayed progression by 1 year, 2 year, 3-5 years and more than 5 

years, as displayed in histogram, with BLUE shaded part showing the number of 

progressors and grey parted that of non-progressors with the same duration of follow-

up.   
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Demographic/clinical data univariate association with progression 

Demographic/clinical data are described in Table 20. Association between 

progression and variables at inclusion suggested 2 highly significant parameters 

(HLA-SE and RF, MWU p<0.0001 after correction) and another 3 potential 

(smoking, EMS,TJC78, MWU p<0.05), consistent with published reports in this 

cohort [5, 362, 520, 581]. AUCs were calculated suggesting high predictive value 

for RF and HLA-SE (AUC>0.650, p<0.0001) as well as for smoking, TJC78, EMS 

(AUC>0.600, p<0.010). The individual contribution to the prediction was however 

relatively small for all parameters with 19% for RF (Wald test) and >8% for the 

other 3 variables. Of note, no difference in ACPA-levels were detected between 

progressor (mean 335 OD) or non-progressors (341 OD) as well as between 

rapid (355 OD) and delayed (344 OD) progressors.  
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Table 20  Association of demographic and clinical data with progression 
(n=210) 

 

Categorical data are presented as n (% of participant). * Numerical data are presented 

as median (Interquartile range values); MWU, Mann Witney U, and Chi-square tests for 

continues and categorical variables, respectively were used. &tests adjusted for 12 

comparisons (adjustment of the p-value was performed by applying the Bonferroni 

correction method for multiple comparison tests, 0.05/12 variables = 0.0042 value or less 

considered significant after correction). double star**, significant; #, trend; CI, confidence 

interval; ESR, erythrocytes sedimentation rate; CRP, C-reactive protein; EMS, early 

morning stiffness HLA (SE), human leucocyte antigen (shared epitope); TJC, tender joint 

count; RF, rheumatoid factor; AUROC area under the roc curve. 

 

 

 
Progressors 

n=93 
(44.3%) 

Non 
Progressors 

n=117  
(55.7%) 

adjusted  
p-value&  

AUROC 
(95%CI) 
p-value 

Unadjusted OR 
(95%CI) 
p-value 

Wald 
test   

 

Age 
(years)* 

53.0 
(43,63) 

51.0 
(42,61.) 

0.292  0.542 
(0.464-0.620) 

0.292 

1.013 
(0.993-1.033) 

0.217 

1.5 

Gender 
(Female)  

60 
(64.5%) 

87 
(74.4%) 

 
0.132  

0.549 
(0.470- 0.628) 

0.221 

1.595 
(0.881- 0.888) 

0.123 

2.4 

Alcohol 
(unit) 

4.40 
(0.0,10.15) 

4.50 
(0.0,9.80) 

 
0.327  

0.461 
(0.383-0.540) 

0.335 

0.994 
(0.974-1.014) 

0.564 

0.3 

Smoking 
Never/Ever 

23 (24.7%)/ 
70 (75.3%) 

53 (45.3%)/ 
64 (54.7%) 

 
0.002**  

0.603 
(0.526-0.679) 

0.011 

2.520 
(1.390-4.571) 

0.002 

9.3 

HLA-SE 
[positive] 

68 
(73.1%) 

56 
(47.9%) 

 
<0.0001**  

0.626 
(0.551-0.702) 

0.002 

2.963 
(1.651- 5.316) 

<0.0001 

13.3 

RF 
[Positive] 

57 
(61.3%) 

35 
(29.9%) 

 
<0.0001**  

0.657 
(0.582-0.732) 

<0.0001 

3.710 
(2.087-6.593) 

<0.0001 

19.9 

Suspicion of 
palindromic 

[yes] 

20 
(%) 

18 
(%) 

 
0.282 

0.513 (0.452-
0.610) 
0.446 

0.664 
(0.328-1.343) 

0.255 

1.3 

Family history 
[yes] 

25 
(31.6%) 

32 
(32.0%) 

 
0.960 

0.498 
(0.413-0.584) 

0.968 

0.984 
(0.522-1.854) 

0.960 

0.0 

ESR 
(mm/hr)* 

14 
(6.5,20.00) 

12.0 
(7.0,20.5) 

 
0.343  

0.538 
(0.459-0.617) 

0.344 

1.019 
(0.993-1.045) 

0.162 

1.9 

CRP 
(mg/L)* 

3.180 
(0.99,6.795) 

3.00 
(0.57,5.76) 

 
0.159  

0.557 
(0.479-0.635) 

0.159 

1.044 
(0.995-1.096) 

0.082 

3.0 

EMS 
(min)* 

22 (0.,60.) 5 (0,30.)  
0.007#  

0.604 
(0.527-0.681) 

0.009 

1.007 
(1.000-1.014) 

0.044 

4.0 

TJC78*  1 (0,3) 1 (0,2.) 0.009#  0.601 
(0.524-0.678) 

0.012 

1.113 
(0.992-1.249) 

0.068 

3.3 
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Multivariate Modelling for progression using the clinical variable alone (Model 1) 

I then used logistic regressions with a forward approach (Table 21) to determine 

the predictive value of the demographic/clinical data alone (model 1), selecting 

the best predictors sequentially (Figure 44) . Model-1 selected 4 parameters in a 

stepwise construction, starting with the RF as shown in the step below 

 

Figure 44. Accuracy gains in logistic regression modelling of Clinical data 
(Model 1):  
The histogram illustrated the steps and order of variables selection. The blue bar 

represents step 1, the purple bar represents step 2, Yellow bar represents step 3 and 

green bar shows the final step retaining 4 variables. Model accuracy gain at each step 

is indicated on each bar. 

 

 

This model accurately predicted 70% of cases, with Sensitivity and 

specificity=56% and 81.2% and a good NPV and PPV=70%, with an AUC=0.744 

(Table 21). However, only 25% of the variance for predicting progression was 

accounted for (Nagelkerke R-square) and individual variables contributed 17% 

for RF and less than 7% for the other 3 (individual Wald score).  
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Table 21 Modelling for the predicting of overall progression with clinical 
variables only  

 

 

Logistic regression   OR (95% CI) p-value  

(Wald test) 

n=210 

unadjusted Model-1 

Smokers  

(ever) 

2.520 

(1.390-4.571) 

0.002 

(9.3) 

2.282 

(1.1.187-4.388) 

0.013 

(6.1) 

HLA-SE  

positive 

2.963 

(1.651- 5.316) 

<0.0001 

(13.3) 

2.527 

(1.335-4.782) 

0.004 

(8.1) 

RF  

positive 

3.710 

(2.087-6.593) 

<0.0001 

(19.9) 

3.600 

(1.947-6.656) 

<0.0001 

(16.7) 

TJC78 1.113 

(0.992-1.249) 

0.068 

(3.3) 

1.178 

(11.039-1.336) 

0.010 

(6.6) 

Accuracy (%)   

 

 

 

 

not 

applicable 

 

70.0% 

AUROC (95%Cl) 

p-value 

0.744 

(0.678-0.810)  

p<0.0001 

Sensitivity (%) 

(95%Cl) 

55.9 (55-66) 

Specificity (%) 

(95%Cl) 

81.2 (73-87) 

PPV (%) (95%Cl) 70 (61-78) 

NPV (%) (95%Cl) 70 (64-75) 

Nagelkerke R 

square 

25% 

Hosmer& 

Lemeshow  

0.853 

ESR, erythrocytes sedimentation rate; CRP, C-reactive protein; EMS, early morning 

stiffness HLA (SE), human leucocyte antigen (shared epitope); TJC, tender joint count; 

RF, rheumatoid factor; OR, odd ratio; AUC area under the roc curve, PPV, positive 

predictive value; NPV, negative predictive value. CI, Confidence interval. NB: Table 

showed all variables retained in the model. 
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Flow cytometry analysis and univariate association with progression 

Fresh Blood samples at inclusion in the study were sent from clinics at Chapel-

Allerton Hospital, to the NHS immunology services at the St James hospital using 

NHS transport services. Blood LS data were acquired by NHS staff within a few 

hours of the samples arriving at the NHS immunology lab, with some exceptional 

delays on some occasion. The raw data (FCS files) were made available for use 

in my PhD project as electronic files. 

Data missingness and imputation 

FC  data analysis was performed and data recorded. All selected patients (n=210) 

had data for the CD4+T-cells panel (naïve, IRC) and the lymphocyte count panel. 

For the Treg panel, shortage of 1 antibody (FoxP3) led to missing data over a few 

weeks (n=20/210). For the CD8 panel, I had issue with poor separation between 

markers and difficulties in gating the CD8-IRC subset. This was associated with 

samples for which processing was delayed by transport.  Furthermore, faulty 

acquisition due to non-adherence to sample preparation protocols or problems 

encountered over data acquisition (for example the flow machine breaking down), 

led to more data being excluded .  

Overall, 150/210 patients had a full dataset (i.e.. for all 18 subsets analysed) and 

I imputed data for individual subsets in 41 patients where I had at least >15/18 

LS present. I further imputed data for the B-panel in 19 patients who had complete 

data for all other LS.  Missing data imputation was performed using the SPSS 

“Random Number Generators” function and then the “Imputing Missing Data 

Values” function over 5 cycles. The estimates obtained from each dataset (5 

imputation datasets) were aggregated to produce an overall multiple imputation 

estimate using the same SPSS package. The pooled dataset after imputation 
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was compared to the non-imputed dataset to verify that OR were not affected by 

the imputation process using SPSS. Diagnostic checks [731-734]  confirmed the 

validity of the imputed dataset, showing no significant differences compared to 

the pre-imputed dataset (Table 22). This indicates that the imputed data 

accurately reflected the original dataset.  
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Table 22 Data distribution characteristics of original dataset compared 
with imputed dataset for the at-risk cohort   

  

Cell subsets  Original data  
Median  
(IQR)  

Imputed data  
Median  
(IQR)  

MWU      p-
value 

 CD4 T-cells  51.5  
(45.88, 56.98)  

51.49  
(46.08, 56.34)  

0.919 

CD8 T-cells 19.01  
(15.74, 24.45)  

19.72  
(15.76, 24.51)  

0.897 

 B-cells 11.59  
(9.58, 14.48)  

11.67  
(9.41, 14.54)  

0.848 

NK cell sCD56bright  0.46  
(0.33 to 0.62)  

0.42  
(0.29, 0.56)  

0.865 

NK cells CD56dim  8.42  
(6.58, 11.75)  

8.68  
     (6.83, 11.76)  

0.837 

 NKT  1.52  
(0.93, 3.29)  

1.82  
(0.95, 3.64)  

0.766 

naive CD4 cells$ 4.79  
(-5.91 ,11.05)  

4.12  
(-5.02, 11.09)  

0.973 

IRCCD4 cells  1.02  
(0.30, 2.12)  

1.40  
(0.50 to 2.65)  

0.884 

memory CD4 
cells$  

-8.1  
(-11.92, -2.07)  

-8.1  
(-11.29, -2.85)  

0.953 

Treg CD4 cells $ -0.27  
(-1.2 , 1.26)  

-0.38  
(-1.47, 0.94)  

0.812 

NaïveCD8 cells$  7.14  
(-1.33, 14.78)  

7.39  
(0.58, 14.26)  

0.910 

MemoryCD8 cells$ -23.4  
(-30.02, -4.49)  

-23.52  
(-29.22, -15.53)  

0.989 

exp-mem CD8 
cells  

10.2  
(5.81, 16.10)  

9.72  
(6.25, 14.09)  

0.791 

IRC CD8 cells  10.3  
(6.40, 19.90)  

11.97  
(6.80, 20.24)  

0.850 

Naive B-cells$  -0.91  
(-10.46, 7.77)  

-0.91  
(-10.49, 6.89)  

0.937 

Memo B-cells $ 1.59  
(-8.47, 11.14)  

1.47  
(-6.74 ,10.69)  

0.977 

B-reg  0.54  
(-0.65, 2.04)  

0.8  
(-0.20, 2.14)  

0.807 

PBs  0.5  
(0.2, 0.9)  

0.5  
(0.3, 0.9)  

0.858 

Data are presented as median (1st and 3rd Interquartile values); CI Confidence interval; 

$ normalised subsets, NK natural killer, NKT natural killer-T, Treg regulatory T-cells, IRC, 

inflammatory-related cells;  & MWU, Mann Witney U test . Breg= Regulatory B-cells, 

PBs= Plasmablasts     
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The overall results of LS quantification (Figure 45, Table 23) showed a significant 

association with progression for 5 subsets:  

▪ lower naïve CD4+T-cells (p<0.0001)   

▪ Lower Treg (p<0.0001)  

▪ lower CD8+T-cells (p=0.021)  

▪ higher CD4-IRC (p<0.0001)  

▪ Higher B-reg (p=0.015)  

Three more subsets showed non-significant difference after correction, that may 

nonetheless suggest other biological events leading to progression. 

▪  higher NK-cells CD56bright (p=0.026 before/p=0.154 after) 

▪  higher memory B-cells (p=0.023 before/p=0.135 after) 

▪  lower plasmablasts (p=0.018 before/p=0.105 after) 

AUC calculated and these 8 LS showed significant predictive values/trend for 

progression. Of note, Treg, naïve CD4+T-cells and IRC showed the highest 

contribution to the prediction (Table 23, Wald score 27%, 15% and 12% 

respectively) while  >6% each for CD8, CD56, Breg and plasmablasts. These 

subsets had high specificity for progression (all >80%) but relatively low 

sensitivities (32-40%), except for CD4+Treg (60%) (Table 24).   
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Figure 45 Frequency of lineage and lymphocytes subsets in at-risk 
progressors vs non-progressors.  
LS were analysed by flow cytometry and data displayed as violin plots (each dot 
representing a patient) for Progressor (Prog, n=93) and non-Progressors (Non-Prog, 
n=117). Star (*) indicate LS that were normalised as previously described [5]. P-value 
corrected for multiple testing (MWU test) are indicated when significant and # designate 
trends. 
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Table 23 Association of 18 LS with Progression (n=210) 
 

Missi
ng 

Data 
n (%) 

Progressors 
n=93  

(44.3%) 

Non Progressors 
n=117  

(55.7%) 

adjusted  
p-value& 

AUROC  
(95%CI)  
p-value 

Unadjusted 
OR  

 (95%CI)  
P value 

Wald 
test 
(%)  

CD4 
T-cells 

 
none 
 

52.11 
(46.41 56.96) 

51.18 
(45.98 56.35) 

0.479 0.528  
(0.450-0.607)  

0.479 

1.014  
(0.982-1.048)  

0.394 

0.7 

CD8 
T-cells 

 
19 (9%) 

15.34 
(11.57 21.97) 

17.98 
(13.68 23.46) 

0.021 0.407  
(0.330-0.485)  

0.021 

0.952  
(0.917-.988) 

0.009 

6.8 

B cells 
 

 
none 

10.73 
(7.97   13.55) 

11.44 
(7.41 14.66) 

0.503 0.473  
(0.395-0.551)  

0.503 

0.972 
(0.917-1.030) 

0.337 

0.9 

NK cells 
CD56bright 

none 0.37 
(0.27 0.53) 

0.41 
(0.27 0.57) 

0.154# 0.447  
(0.369-0.524)  

0.164 

0.485 
(0.178-1.317) 

0.156 

2.0 

NK cells  
CD56dim 

none 9.69 
(7.10 12.53) 

8.61 
(6.85 11.67) 

0.207 0.551  
(0.472-0.629)  

0.205 

1.052 
(0.987-1.120) 

0.117 

2.5 

NKT  
cells 

none 1.78 
(1.01 4.16) 

1.93 
(0.96 3.87) 

0.878 0.506  
(0.427-0.586)  

0.878 

1.021 
(0.943-1.106)  

0.610 

0.2 

Naïve  
CD4 cells 

$ 

13  
(6.5%) 

 

0.42 
(-10.10 10.58) 

5.74 
(-2.59 16.38) 

<0.0001* 0.355  
(0.280-0.429)  

<0.0001 

0.956 
(0.934-0.978) 

<0.0001 

14.8 

Memory  
CD4 

cells$ 

 
23 

(11%) 

-6.23 
(-11.34 -0.38) 

-7.81 
(-11.93    -

1.17) 

0.327 0.539 ( 
0.461-0.618)  

0.327 

1.016 
(0.979-1.055)  

0.407 

0.7 

IRC  
CD4 cells 

 
13 

(6.5%) 

2.40 
(1.00 4.50) 

1.00 
(0.30 2.50) 

<0.0001* 0.658  
(0.584-0.732)  

<0.0001 

1.245 
(1.098- 1.411) 

<0.0001 

11.7 

Treg  
CD4 

cells$ 

 
20 

(9.3) 

-1.41 
(-2.71 -0.13) 

0.01 
(-1.10 1.64) 

<0.0001* 0.273  
(0.205-0.342)  

<0.0001 

0.651 
(0.554-0.765) 

<0.0001 

27.0 

Naïve  
CD8 cells 

$ 

 
35 

(16.5%) 

6.16 
(-2.60 14.78) 

6.91 
(-0.82 14.78) 

0.448 0.469  
(0.391-0.548)  

0.448 

0.992 
(0.973-1.011) 

0.387 

0.7 

Memory  
CD8 cells 

$ 

 
36 

(17%) 

-20.22 
(-28.92 -7.65) 

-21.32 
(-30.83-9.72) 

0.533 0.525  
(0.477-0.603)  

0.533 

1.006 
(0.988-1.024) 

0.516 

0.4 

Exp-
memory 
like CD8 

cells  

 
39 

(19%) 

7.60 
(4.46 12.40) 

8.20 
(5.32 12.40) 

0.296 0.458  
(0.379-0.537)  

0.296 

0.980 
(0.945-1.017) 

0.281 

1.2 

IRC  
CD8 cells 

 
37 

(18%) 

11.50 
(5.55 25.09) 

12.20 
(5.60 19.90) 

0.959 0.498  
(0.418-0.578)  

0.959 

1.006 
(0.986-1.027) 

0.536 

0.4 

Naïve  
B cells $ 

 
 
 
 
 

19 
(12.6%) 

-0.50 
(-11.19 8.83) 

-3.39 
(-15.10   6.94) 

0.200 0.554  
(0.476-0.632)  

0.189 

1.014 
(0.995-1.033) 

0.179 

2.2 

Memory  
B cells$ 

0.10 
(-7.35 12.42) 

4.05 
(-7.89 14.42) 

0.135# 0.440  
(0.362-0.518)  

0.138 

.986 
(0.967-1.004) 

0.125 

2.4 

Breg 1.42 
(-0.05 3.56) 

0.60 
(-0.47 2.05) 

0.015* 0.598  
(0.520-0.677)  

0.015 

1.164 
(1.021-1.325) 

0.021 

5.3 

PBs 0.80 
(0.30 1.20) 

0.50 
(0.30 0.95) 

0.105# 0.565 
 (0.486-0.644)  

0.106 

1.119 
(0.873-1.432) 

0.175 

0.8 
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Data are presented as median (1st and 3rd Interquartile values); CI Confidence interval; 

$ normalised subsets, NK natural killer, NKT natural killer-T, Treg regulatory T-cells, IRC, 

inflammatory-related cells; Exp-, expanded, & MWU Mann Witney U test adjusted p-value 

for 18 comparison (adjustment of the p-value was performed by applying Bonferroni 

correction method for multiple comparison test,  AUROC, area under the roc curve. P-

value bold with (*) indicated significant value and with (#) indicated trend. Breg= 

Regulatory B cells, PBs= Plasmablasts   
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Table 24 Univariate performance index of the 18 subsets in relation to 
association with  predicting progression to IA 

 

SENSTIVITY 
(95%Cl) 

SPECIFICTY 
(95%Cl) 

PPV 
(95%Cl) 

NPV 
(95%Cl) 

overall % 
accuracy 
(95%Cl) 

CD4 
T-cells 

20.51 
(13.61 to 28.97) 

80.12 
(73.34 to 85.82) 

41.38 
(30.68 to 52.95) 

59.57 
(56.68 to 62.38) 

55.90 
(49.96 to 61.72) 

CD8 
T-cells 

32.48 
(24.11 to 41.76) 

80.12 
(73.34 to 85.82) 

52.78 
(42.87 to 62.47) 

63.43 
(59.97 to 66.75) 

60.76 
(54.86 to 66.44) 

B cells 
 

21.37 
(14.33 to 29.91) 

80.70 
(73.98 to 86.33) 

43.10 
(32.28 to 54.63) 

60.00 
(57.10 to 62.83) 

56.60 
(50.66 to 62.40) 

NK cells 
CD56bright 

23.93 
(16.53 to 32.70) 

80.12 
(73.34 to 85.82) 

45.16 
(34.62 to 56.15) 

60.62 
(57.57 to 63.59) 

57.29 
(51.35 to 63.08) 

NK cells  
CD56dim 

30.77 
(22.57 to 39.97) 

80.12 
(73.34 to 85.82) 

51.43 
(41.38 to 61.36) 

62.84 
(59.47 to 66.10) 

60.07 
(54.16 to 65.77) 

NKT  
cells 

26.50 
(18.77 to 35.45) 

80.12 
(73.34 to 85.82) 

47.69 
(37.32 to 58.27) 

61.43 
(58.27 to 64.51) 

58.33 
(52.40 to 64.09) 

Naïve  
CD4 cells 

39.32 
(30.41 to 48.77) 

80.12 
(73.34 to 85.82) 

57.50 
(48.16 to 66.33) 

65.87 
(62.09 to 69.45) 

63.54 
(57.69 to 69.11) 

Memory CD4 
cells$ 

25.64 
(18.02 to 34.54) 

80.12 
(73.34 to 85.82) 

46.88 
(36.44 to 57.59) 

61.16 
(58.03 to 64.20) 

57.99 
(52.05 to 63.75) 

IRC  
CD4 cells 

39.32 
(30.41 to 48.77) 

80.12 
(73.34 to 85.82) 

57.50 
(48.16 to 66.33) 

65.87 
(62.09 to 69.45) 

63.54 
(57.69 to 69.11) 

Treg  
CD4 cells$ 

59.83 
(50.36 to 68.78) 

80.12 
(73.34 to 85.82) 

67.31 
(59.55 to 74.22) 

74.46 
(69.77 to 78.64) 

71.88 
(66.30 to 76.99) 

Naïve  
CD8 cells 

$ 
23.93 

(16.53 to 32.70) 
80.12 

(73.34 to 85.82) 
45.16 

(34.62 to 56.15) 
60.62 

(57.57 to 63.59) 
57.29 

(51.35 to 63.08) 

Memory  
CD8 cells 

$ 
32.48 

(24.11 to 41.76) 
80.12 

(73.34 to 85.82) 
52.78 

(42.87 to 62.47) 
63.43 

(59.97 to 66.75) 
60.76 

(54.86 to 66.44) 

Exp-
memory like 
CD8 cells  

30.77 
(22.57 to 39.97) 

78.95(72.07 to 
84.80) 

50.00 
(40.19 to 59.81) 

78.95 
(72.07 to 84.80) 

59.38 
(53.46 to 65.10) 

IRC  
CD8 cells 

23.08 
(15.79 to 31.77) 

80.12 
(73.34 to 85.82) 

44.26 
(33.68 to 55.40) 

60.35 
(57.35 to 63.28) 

56.94 
(51.01 to 62.74) 

Naïve  
B cells $ 

22.22 
(15.06 to 30.84) 

80.12 
(73.34 to 85.82) 

43.33 
(32.71 to 54.61) 

60.09 
(57.12 to 62.98) 

56.60 
(50.66 to 62.40) 

Memory  
B cells$ 

23.93 
(16.53 to 32.70 

79.53 
(72.70 to 85.31) 

44.44 
(34.05 to 55.35) 

60.44 
(57.37 to 63.44) 

56.94 
(51.01 to 62.74) 

Regulatory B 
cells 

35.90 
(27.24 to 45.29) 

80.12 
(73.34 to 85.82) 

55.26 
(45.64 to 64.51) 

64.62 
(61.01 to 68.08) 

62.15 
(56.28 to 67.78) 

Plasmablast
s 

 
38.46 

(29.62 to 47.91) 
81.29 

(74.62 to 86.83) 
58.44 

(48.84 to 67.44) 
65.88 

(62.19 to 69.38) 
63.89 

(58.05 to 69.44) 

Data are presented as median (1st and 3rd Interquartile values); CI Confidence interval; 

$ normalised subsets, NK natural killer, NKT natural killer-T, Treg regulatory T-cells, IRC, 

inflammatory-related cells;   . Breg= Regulatory B cells, PBs= Plasmablasts   PPV, 

positive predictive value; NPV, negative predictive value. CI, Confidence interval. 
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Clusters of patients  

To decipher whether group of patients had similar immune cell profiles, an 

unsupervised hierarchical clustering algorithm was applied to log transformed 

frequencies for 18 LS (n=210) to define groups of patients with similar dynamic 

change in LS profiles while not specifying the clinical outcome. This clustering 

algorithm builds relationships between LS frequencies based on spearman rank 

correlations. First analysis using the 18 LS displayed as a heat-map of 

frequencies (Figure 46), showed 3 distinct profiles of the LS. The 1st group 

included 5 subsets which frequency reduced with age in health (naïve CD4/CD8 

T-cells and memory B-cells) as well as CD4+T-cells and the expanded-CD8 

subset. The 2nd group clustered 6 subsets including those increasing with age 

(memory CD4/CD8 T-cells, Treg) as well as CD8+T-cells, CD8-IRC and PBs. The 

3rd group gathered 7 subsets: B-cells, naïve B-cells and Breg, as well as NK 

(CD56 bright and dim), NKT-cells and CD4-IRC. Therefore, each group contained 

at least 1 of the highly predictive subsets of progression [1st group (naïve CD4), 

2nd group (Treg), 3rd group (Breg)], suggesting that these were dysregulated 

independently of each other.  

The analysis also segregated patients into 3 clusters (annotated I, 2 and 3), 

based on 3 main group of LS. One with 90 patients, a second with 38 patients 

and a  third  with 82 patients . Cluster of patients showed significantly different 

proportions of progressors (Chi-square test, p<0.0001) with 39/90 (45%) 

progressors in the cluster-1, depleted with 5/38 (13%) in cluster-2, and enriched 

in cluster-3 with 49/82 (60%), suggesting that different LS profiles may be able to 

discriminate patients with different outcomes. 
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Figure 46 Unsupervised hieratical clustering of 18 subsets in individual at-
risk of developing IA (n=210). 
Heat-map display showing three cluster of patient annotated with 1, 2 and 3 with the 

highest LS frequency (red)  and (green) the lowest frequency observed in each cluster. 

Dendrogram (bottom) represented 3 LS profile group.  NP= Non-progressors, P= 

progressors. Chi-square test, p<0.0001 for progressors between patient clusters 
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I repeated this approach limiting the data used to the 8 subsets identified as more 

likely to be predictive. This analysis distributed LS in 4 groups of LS in 3 clusters 

of patients ( 

Figure 47). This is further illustrated in figure 48, highlighting the subset 

imbalance.  

▪ The 1st subset LS  included only plasmablasts,  

▪ the 2nd  included naïve CD4+T, B-reg and NK-CD56bright cells;  

▪ the 3rd  combined memory B-cells, Treg and CD8+T-cells.  

▪ The last group  with IRC-CD4 alone.  

For patients, Cluster-1 (n=60) was driven by high Treg and high naïve CD4 but 

very low IRC-CD4 and mixed NKCD56bright and was mainly composed of non-

progressors 47/60 (78%).  

Cluster-2 (n=41) was mainly driven by high plasmablasts while Treg were also 

high and CD4+IRC low. This profile was associated with a mix outcome of 17/41 

(42%) progressors and 24/41 (58%) non-progressors.  

In cluster-3, the largest (n=109), IRC-CD4 was particularly high and all other LS 

showed mixed patterns defining subgroups of patients. The proportion of 

progressors in cluster-3 was 58% (63/109), which was significantly higher than in    

the other 2 clusters (Chi-square test, p<0.0001).  

There was no difference in any demographic or clinical data between these 3 

clusters of patients. I, however, observed higher levels of ACPA measured by a 

2nd generation CCP-2 test (Figure 49, p=0.050, mean 220 OD in cluster 3 

compared to cluster 1 with 158 OD, but not with cluster 2 (253 OD, p=0.177). No 

association was seen between plasmablasts and ACPA (or RF) levels, notably in 

Cluster 2 showing the highest plasmablasts frequencies. 
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Figure 47 Unsupervised hierarchical clustering of the 8 subsets associated 
with progression to IA (n=210). 
An unsupervised hierarchical clustering algorithm was applied to log transformed 
frequencies for 8 LS and results are displayed as a heat-map of data (red being the 
highest and green the lowest frequency observed for each LS). This clustering algorithm 
builds relationships between LS frequencies based on spearman rank correlations, and 
segregated patients into 3 clusters (1, 2 and 3), annotated with the % of progressors. 
The first group of LS (plasmablasts) shows particular high frequencies in patient cluster-
2 (purple) (mix of progressors and non-progressors). The 2nd group with 2 subsets 
[(naiveCD4(red) and NK CD56bright (orange)] defined Cluster-1 (mostly non-
progressors). The third group (with Treg) allows to define both Cluster 1 and 2(blue). The 
last group (IRC-CD4 (yellow)) shows exclusively high frequencies in cluster-3 (enriched 
progressors) with lower frequencies in Cluster-1 and 2. The proportion of progressors to 
IA in the 3 clusters was significantly different (p<0.0001).  
 

 

 

 

 



 
 

244 | P a g e  
 

 

Figure 48 Scale diagram illustrate subsets imbalance driving progression 
from the cluster analysis.  
Subsets with lower frequencies(green box), higher frequencies(red box), and those 
with mix pattern of frequencies( under the base of the scale) 
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Figure 49 ACPA level across the patient's cluster.  

Distribution of ACPA level in each cluster presented in box plots, Median value (dark line 

within the box), Median value = 89 OD (Cluster I), 340 OD (cluster II), and 238 OD 

(cluster III). Significant p-value indicated in bold 
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Multivariate modelling for the prediction of progression across the IAC 

A predictive value for 3 CD4+T-cell subsets (naïve, IRC, Treg) was previously 

reported [5]. Modelling for progression to IA using an enter approach in these 210 

patients (as in previous work, Table 25, Model 3) [5], confirmed previous data 

with an accuracy=78.6% with an AUC=0.880, although IRC did not independently 

contribute to this model (p=0.144). 

This model 3 showed definite better performance than a model using the same 

data/strategy but using only clinical data (Model 1, 69.6%, AUC= 0.744) or  the 3 

LS (Model 2, 71.9%, AUC=0.880). This was already demonstrating the added 

value of these 3 CD4+T subsets. 

 

To demonstrate both the predictive value and the added value of 18 LS 

quantification, I then performed different modelling. Due to the amount of 

variables, I decided to adopt a forward logistic strategy, allowing to select the best 

combination of predictors amongst a large list of  18 LS. 
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Table 25 Three CD4+T-cell subsets modelling (n=210): unadjusted and 
multivariate logistic regression using an enter method as previously 
reported (15) 

 

 

Logistic regression   OR (95% CI) p-value 

unadjusted Model-1 Model-2 Model-3 

Smokers 
(ever) 

2.520 
(1.390-4.571) 

0.002 

2.282 
(1.1.187-4.388) 

0.013 

 4.020 
(1.740-9.290) 

0.010 

HLA-SE 
positive 

2.963 
(1.651- 5.316) 

<0.0001 

2.527 
(1.335-4.782) 

0.004 

2.747 
(1.256-6.007) 

0.011 

RF 
positive 

3.710 
(2.087-6.593) 

<0.0001 

3.600 
(1.947-6.656) 

<0.0001 

3.776 
(1.773-8.040) 

0.0001 

TJC78 1.113 
(0.992-1.249) 

0.068 

1.178 
(11.039-1.336) 

0.010 

1.216 
(1.030-1.435) 

0.021 

Naïve CD4 
cells $ 

0.956 
(0.934-0.978) 

<0.0001 

 0.932 
(0.905-0.952) 

<0.0001 

0.926 
(0.898-0.957) 

<0.0001 

IRC CD4 
cells 

1.245 
(1.098- 1.411) 

<0.0001 

1.099 
(0.958-1.232) 

0.177 

1.104 
(0.955-1.300) 

0.144 

Treg CD4 
cells$ 

0.651 
(0.554-0.765) 

<0.0001 

0.578 
(0.476-0.704) 

<0.0001 

0.528 
(0.420-0.662) 

<0.0001 

Accuracy 
(%) 

 69.5% 71.9% 78.6% 

AUROC 
(95%Cl) 
p-value 

0.744 
(0.678-0.810) 

p<0.0001 

0.807 
(0.714-0.865) 

p<0.0001 

0.880 
(0.831-0.921) 

<0.0001 

Sensitivity 
(%) (95%Cl) 

55.9 (55-66) 62.3 (52-72) 73.1 (63-82) 

Specificity 
(%) (95%Cl) 

81.2 (73-87) 74 (65-81) 82.9 (75-89) 

PPV (%) 
(95%Cl) 

70 (61-78) 63 (55-70) 77.3 (69-84) 

NPV (%) 
(95%Cl) 

70 (64-75) 73.5 (68-78.5) 79.5 (73-84) 

HLA (SE), human leucocyte antigen (shared epitope); TJC, 

tender joint count; RF, rheumatoid factor; Treg, regulatory T-

cells; IRC, inflammatory-related cells; $ normalised frequency, 

OR, odd ratio; AUC area under the roc curve, PPV, positive 

predictive value; NPV, negative predictive value. CI, 

Confidence interval.  
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Modelling for the LS alone (model-2)  

Modelling with 18 LS with  logistic regression (Table 26) excluded many subsets 

and retained only 5 at the end with steps below selecting the best predictor  (Treg) 

followed by those that improved the model’s performance (Figure 50). An 

additional step adding, plasmablasts (although not independently predictive, 

table 6, p=0.085) increased accuracy by ~1% with no improvement of 

AUC=0.862. As such the final model was selected at step 5 

 

 

 Figure 50 Accuracy gains in logistic regression modelling of LS data 
(Model 2):  
The histogram illustrated the steps and order of variables selection. The blue bar 

represents step 1, the purple bar represents step 2, the yellow bar represents step 3 and 

so on till step 5 (red bar)  the retaining 5 variables. Model accuracy gain at each step is 

indicated on each bar. 

 

Model-2 accounted for 50% of the variance with Treg (34%), naïve CD4+T-cells 

(32%) and CD8 (14%) contributing with the highest and other LS each for >6%. 

Altogether model 2 had better accuracy than Model 1. 
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Table 26  Modelling for the predicting of overall progression with 18 LS   

 

 

Logistic regression   OR (95% CI) p-value (Wald test) 

n=210 

unadjusted Model-2 

 

CD8 

T-cells 

0.952 

(0.917-.988) 

0.009 

(6.8) 

0.911 

(0.867-0.957) 

<0.0001 

(13.7) 

NK cells 

CD56bright 

0.485 

(0.178-1.317)  

0.156 

(2.0) 

0.155 

(0.038-0.631) 

0.009 

(6.8) 

Naïve  

CD4 cells $ 

0.956 

(0.934-0.978) 

<0.0001 

(14.8) 

0.899 

(0.867-0.932) 

<0.0001 

(32.6) 

Treg  

CD4 cells$ 

0.651 

(0.554-0.765) 

<0.0001 

(27.0) 

0.518 

(0.416-0.646) 

<0.0001 

(34.2) 

Regulatory B cells 

 

1.164 

(1.021-1.325) 

0.021 

(5.3) 

1.253 

(1.061-1.479) 

0.008 

(7.0) 

Plasma 

blasts 

 

1.119 

(0.873-1.432) 

0.375 

(0.8) 

1.326 

(0.962-1.826) 

0.085 

(2.9) 

Accuracy (%)   

 

 

 

 

 

 

 

not 

applicable 

 

77.6% 

AUROC 

(95%Cl) 

p-value 

0.862 

(0.814-0.910) 

p<0.0001 

Sensitivity (%) 

(95%Cl) 

74.2 

(64-83) 

Specificity (%) 

(95%Cl) 

80 

(72-87) 

PPV (%) 

(95%Cl) 

75 

(67-83) 

NPV (%) 

(95%Cl) 

80 

(73-85) 

Nagelkerke R 

square 

 

50% 

Hosmer& 

Lemeshow  

 

0.912 

 NK, natural killer; NKT, natural killer-T; Treg, regulatory T-cells; IRC, inflammatory-

related cells; Exp-, expanded, $ normalised frequency, OR, odd ratio;  AUC area under 

the roc curve, PPV, positive predictive value; NPV, negative predictive value. CI, 

Confidence interval. NB; Table presented only LS retained in the model 
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Clinical and LS modelling (model 3). 

To  develop a model accounting for both clinical variables on LS in predicting 

progression, I performed modelling combining both datasets (Table 27). Model-

3 was developed on 10 steps (Figure 51) selecting 4 clinical and 6 LS. Again the 

best LS was Treg, then naïve. Clinical data entered the model as 3rd/4th step and 

the final step still increased accuracy with the last entry (plasmablasts) were not 

fully providing independent contribution (Table 7, p=0. 0.07). 

 

 

Figure 51 Accuracy gains in logistic regression modelling of Clinical and 
LS (Model 3):  
The histogram illustrated the steps (1-10) and order of variables selection. Model 
accuracy gain at each step is indicated on each bar. 

 

 

 
Model 3 had final accuracy=85.7% and AUC=0.911, altogether accounting for 

62% of the variance with again Treg (30%), naïve CD4+T-cells (29%), CD8 (12%) 

and RF (10%) contributing the most with less than 7% for all other variables.  

 

 



 
 

251 | P a g e  
 

Table 27 Modelling for the predicting of overall progression combining 
clinical + LS  

 

 

Logistic regression   OR (95% CI) p-value (Wald test) 

n=210 

unadjusted Model-3 

Smokers  

(ever) 

2.520 (1.390-4.571)  

0.002 (9.3) 

3.158 (1.264-7.891) 

 0.014 (6.1) 

HLA-SE  

positive 

2.963 (1.651- 5.316) 

 <0.0001 (13.3) 

2.871 (1.212-6.800) 

 0.017 (5.7) 

RF  

positive 

3.710 (2.087-6.593) 

 <0.0001 (19.9) 

3.890 (1.681-9.004)  

0.002 (10.0) 

TJC78 1.113 (0.992-1.249) 

 0.068 (3.3) 

1.261 (1.062-1.497)  

0.008 (7.0) 

CD8 

T-cells 

0.952 (0.917-.988)  

0.009 (6.8) 

0.908 (0.859-0.959)  

<0.001 (12.0) 

NK cells CD56bright 0.485 (0.178-1.317)  

0.156 (2.0) 

0.143 (0.027-0.751)  

0.022 (5.3) 

Naïve  

CD4 cells $ 

0.956 (0.934-0.978)  

<0.0001 (14.8) 

0.892 (0.855-0.930) 

 <0.0001 (28.8) 

Treg  

CD4 cells$ 

0.651 (0.554-0.765) 

 <0.0001 (27.0) 

0.489 (0.374-0.630)  

<0.0001 (30.4) 

Regulatory B cells 

 

1.164 (1.021-1.325) 

 0.021 (5.3) 

1.205 (1.1001-1.451)  

0.049 (3.9) 

Plasmablasts 

 

1.119 (0.873-1.432) 

 0.375 (0.8) 

1.303 (0.979-1.735) 

 0.070 (3.3) 

Accuracy (%)   

 

 

 

 

 

 

 

 

 

 

not  

applicable 

 

85.7% 

AUROC 

(95%Cl) 

p-value 

0.911 

(0.871-0.951) 

<0.0001 

Sensitivity (%) (95%Cl) 83.9 (75-91) 

Specificity (%) (95%Cl) 80.3 (72-87) 

PPV (%) (95%Cl) 77.2 (70-83) 

NPV (%) (95%Cl) 86.2 (80-91) 

Nagelkerke R square 62% 

Hosmer& Lemeshow  0.287 

Bias-corrected Somers 

DXy 

0.458 

NK, natural killer; NKT, natural killer-T; Treg, regulatory T-cells; IRC, inflammatory-

related cells; Exp-, expanded, $ normalised frequency, OR, odd ratio;  AUC area under 

the roc curve, PPV, positive predictive value; NPV, negative predictive value. CI, 

Confidence interval. NB; Table presented only 10 variables (4 clinical + 6 LS) retained in 

the model 
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I further applied internal validation to model-3 to correct for optimisms using a 

bootstrapping technique (500 permutations), resulting in an optimised Dxy-

value=0.458.  

The high PPV/NPV of model-3 (77%/86%) suggests that it is possible to predict 

individuals who are likely to progress while identifying those who have low risk 

and may be monitored less often (even discharged). In this cohort, using 

dichotomisation based on the individual patient’s probability to progress 

calculated  from the logistic regression for each patient using model 3, the cohort 

was categorised into 2 risk groups. Based on the 80% sensitivity, a cut-off point 

in the distribution of probability values set at p < 0.0001,  separated a group of 

patients that could be deemed high-risk (65/210). All but 6 progressed (91% 

accurate). 145/210 were deemed to be low risk probability and only 34 

progressed (Chi square, p<0.0001) . Alternatively, within 78/210 cases of the low-

risk group (i.e. probability <20%) only 6 (7.7%) progressed over 10 years.  

This is further illustrated in figure 52, showing a time to  progression comparing 

the high and low risk group using a survival curve analysis method to generate 

this plot.   
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Figure 52 Time to progression based on classification using Model-3.   
Survival plot analysis was performed after patients were dichotomised for High-risk (red 

line, n=65/210) and low risk (blue line, n=145/210) based on individual probability for 

progression calculated from the logistic regression using a cut-off at 80% sensitivity. 
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Summary of Model performance    

The performance of the three models were compared using AUROC (Figure 53). 

The combination of both sets of data in Model-3 showed a +17% improvement in 

AUROC 0.911 (Cl95% 0.871-0.951) compared to Model-1 (AUROC 0.744, 

Cl95% 0.678-0.810). Comparing clinical data to LS alone (Model 2, AUROC= 

0.862, 0.814-0.910) also increased accuracy (+5%) 

 

 

Figure 53 AUROC graphical representation of the logistic regression 
models.  
Binary logistic regression models of the occurrence of progression to inflammatory 

arthritis (IA) were constructed using model-1 (Clinical data only) for 10 parameters (blue 

line), Model-2 (Flow- data only) for 18 subsets (green line) and Model-3 (Clinical+Flow 

data, purple line). Model-1 (AUC=0.744 95%CI 0.678-0.810) was inferior to Model-2 

(AUC=0.862, 0.814-0.910) and Model-3 still showed added value (AUC=0.911, 0.871-

0.951). 
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Modelling rapid progression to IA 

Time to progression is widely distributed in this cohort ranging from 1-120 

months. Different LS association may therefore be involved at different stages of 

the progression, and some may be more predictive of the onset of IA symptoms 

than others. 41/93 (44%) of the progressors did so rapidly and I re-analysed these 

progressors separately using a Cox regression.  

Cox regression models were constructed using the same forward approach. Un-

adjusted hazard ratio (HR) for time to progression were significant for 4 clinical 

variables (smokers, HLA-SE, RF, EMS, with CRP showing a trend, table 28). Six 

LS (Treg, naïve CD4+T-cells, CD4-IRC, CD8+T-cells, NK-CD56dim and B-reg) 

showed similar potential value.  

I constructed similar models with clinical only (Model-4), the LS only (Model-5), 

and then combined both (model-6) for time to progression. The results are 

illustrated further in figure 54.  

Model 4, retained 3 variables sequentially, starting with RF, TJC78 and finally 

smokers (AUC=0.702). 

Model-5 (LS only) used 4 steps and retained 4 variables (AUC=0.773).  

Model-6 (combined datasets) used 7 steps and showed better improvement 

(AUC=0.794). 
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Figure 54 Cox regression model for rapid progression 

The blue bar represents Model 4 (Clinical only) with the sequential 3 steps, purple bar 

represents Model 5 (LS only with 4 steps), Yellow bar represents Model 6 (Clinical + LS) 

showing 7 steps. Each model performance is indicated with AUC on each bar. Of note 

the use of accuracy as indicated for model performance is not applicable with Cox 

regression analysis. Hence, AUC was used.  
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Table 28 Modelling for the predicting of rapid (< 12 months) progression  

 

 

COX regression HR (95% CI) p-value (Wald test) 

n=158 

unadjusted Model-4 

 

Model-5 

 

Model-6 

 

Smokers  

(ever) 

2.005 

(1.250-3.216) 

0.004 

(8.3) 

2.662 

(1.249-5.673) 

0.011 

(6.5)  

 

 

 

 

 

not included 

in the model 

 

 

3.688 

(1.685-8.074) 

0.001  

(10.7) 

RF  

positive 

2.659 

(1.743-4.056) 

<0.0001 

(20.6) 

4.767 

(2.365-9.610) 

<0.0001 

(18.9) 

4.784 

(2.173-10.532) 

<0.0001 

(15.1) 

TJC78 1.058 

(0.984-1.137) 

0.127 

(2.3) 

1.203 

(1.070-1.352) 

0.002 

(9.5) 

 

not retained 

CD8 

T-cells 

0.960 

(0.932-.989) 

0.006 

(7.4) 

 

 

 

 

 

 

 

 

 

not included in 

the model 

 

 

0.943 

(0.905-.982) 

0.005 

(7.9) 

0.950 

(0.911-0.991) 

0.018  

(5.6) 

NK cells  

CD56diml 

1.047 

(1.005-1.090) 

0.028 

(4.8) 

 

not retained 

1.065 

(0.999-1.136) 

0.054 

(3.7) 

Naïve  

CD4 cells $ 

0.973 

(0.958-0.989) 

<0.001 

(11.1) 

0.931 

(0.906-0.956) 

<0.0001 

(25.8) 

0.954 

(0.926-0.984) 

0.003 

(9.1) 

IRC  

CD4 cells 

1.055 

(1.021-1.090) 

0.001 

(10.2) 

 

not retained 

1.113 

(1.000-1.238) 

0.049 

(3.9) 

Treg  

CD4 cells$ 

0.765 

(0.689-0.851) 

<0.0001 

(24.6) 

0.638 

(0.544-0.747) 

<0.0001 

(30.8) 

0.656 

(0.554-0.776) 

<0.0001 

(24.1) 

Regulatory B 

cells 

 

1.123 

(1.024-1.232) 

0.013 

(6.1) 

1.210 

(1.053-1.390) 

0.007 

(7.1) 

 

not retained 

AUROC 

(95%Cl) 

p-value 

 

 

 

not 

applicable 

 

0.702 

(0.697 - 0.704) 

p<.0001 

0.773 

(0.756 -

0.760) 

p<.0001 

0.794 

(0.785-0.791) 

p<.0001 

Nagelkerke 

R square 

 

20% 

 

32% 

 

42% 

Bias-

corrected 

Somers DXy 

not  

performed 

 

0.533 
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ESR, erythrocytes sedimentation rate; CRP, C-reactive protein; EMS, early morning 

stiffness HLA (SE), human leucocyte antigen (shared epitope); TJC, tender joint count; 

RF, rheumatoid factor; NK, natural killer; NKT, natural killer-T; Treg, regulatory T-cells; 

IRC, inflammatory-related cells;  $ normalised frequency, OR, odd ratio; HR,  hazard ratio, 

AUC area under the roc curve, PPV, positive predictive value; NPV, negative predictive 

value. CI, Confidence interval. NB: Table presented variables retained in at least one of 

the models 
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Model 6 had an AUC=0.794, suggesting prediction although less well than that 

for the overall cohort (AUC=0.911). The assumption or proportional Hazard was 

verified for all variables in model 6 and result was satifactory with global 

Schoenfield test p=0.047 (Figure 55). A significant discrimination index (X2) was 

calculated for each included variable, ranging from 31.0 for Treg to 0.00 for NK-

CD56dim cells and Treg was shown as the most discriminating biomarker for rapid 

progression in the mode (Figure 56).  

The bootstrapping approach was repeated and showed that an optimism 

corrected Dxy=0.533.  

  

 

 

Figure 55 Testing the Proportional Hazards Assumption  
Graphics show that the proportional Hazards Assumption was satifactory: global 
Schoenfield test P=0.047. The smooth curve was fairly level across the time horizon 
here, as opposed to substantially increasing or decreasing in level as time passes. 
So, proportional Hazards Assumption was satisfied. Individual Schoenfield test P-
vlaues are indicated on each plot.  
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Figure 56 Variables contribution to Model-6  
This showed the relative importance order of the predictors in the model with Treg as the 

most discriminating biomarker for rapid progression followed by naiveCD4, smoking, 

CD8, RF, IRC-CD4 and finally NK-CD56dim cells.  

 

 

Being able to identify individuals at high-risk of rapid progression (<12 months 

would allow for the design of clinical trials aiming at the prevention of progression 

within a short trial duration of only 12 months.  

I therefore decided to use individual based dichotomisation of the risk of 

progression based on model 6 to categorise patients into high and low risk 

groups. In this rapid progression cohort (n=158), I used the individual X-beta 

score value > 2 calculated from the Cox regression for rapid progression to 

dichotomise patients for high and low risk.   In this cohort, 22/158 participants 
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were dichotomised based on a high-hazard (individual X-beta score value > 2) 

for rapid progression and 20 (91%) indeed progressed as illustrated in figure 57 

using the time to progression curve plot. 

 

 

 

 

Figure 57 Time to progression based on the COX regression for rapid 
progression.  
Survival plot analysis was performed after patients were dichotomised for High-risk (red 

line, n=22/158) and low risk (blue line, n=136/158) based on individual Hazard (>2) 

calculated from the COX regression. 
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Applicability for daily practice 

Flow cytometry is routinely in clinical settings used in Leeds as well as worldwide. 

Therefore, I evaluated technically the gain in terms of accurate stratification of 

adding LS panels over using demographic/clinical data only. 

I used first the demographic/clinical data (reference model) then sequentially 

added 1 to 4 FC panels starting with Treg (panel 1) and adding on panels 2, 3 

and 4 in that order as shown in (Table 29). The model (logistics regression 

forward method) sequentially showed better accuracy 70 to 81.9% and AUC 

0.744 to 0.911, demonstrating the value of added all 4 panels while selecting 

specifically some LS within each of them. Figure 58 (upper panel) presents the 

AUC of these 5 models and the gained obtained with each added panel.  

The stratification showed 70% accuracy for the reference model. Adding the Treg 

panel increased accuracy to 75.2%. Adding the naïve CD4+T-cells panel showed 

further accuracy=80.4% while adding CD8+/NK-cells (lineage panel) and then B-

reg (B-cell panel), only achieved a marginal improvement of accuracy to 81% and 

81.9% respectively. The AUCs however were still improving with every 

incremental step and all 4 panels added value.   

Individual participant’s probability of progression obtained from the logistic 

regression analysis (from each of 5 Models, Table 29) was dichotomised (using 

a cut-off at 80% sensitivity which is deemed an acceptable risk clinically), setting 

cut-off value for each model to segregate high/low-risk groups.  

Then a crosstabulation analysis was performed to determine the % of high-risk 

progressors and high-risk non-prog as well as low-risk progressors versus low-

risk non-progressors (Figure 58, lower panel).  
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Table 29 A practical approach to predicting overall progression to IA 

(n=210)  

  
Logistic 

regression  

Logistic regression   

Model-ref Model + 

1 panel 

Model + 

2 panels 

model + 

3 panels 

model + 4 

panels 

Clinical  
data  

4 clinical   
variables  

4 clinical 
variables  

4 clinical  
variables  

4 clinical 
variables  

4 clinical  
variables  

Flow panel -1  
Treg  

  
  
  
  

Treg CD4  
  

Treg CD4  
  

Treg CD4  
  

Treg CD4  

Flow panel -2  
CD4 T cells  

  
  
  

Naïve CD4   
  

Naïve CD4   
  

Naïve CD4   
  

Flow panel -3  
lineage  

  
  

CD8 T-
cells   

NK cells 
CD56bright  

CD8 T-cells   
NK cells 

CD56bright  

Flow panel -4  
B-cell    

B-reg  
PBs  

Accuracy   
(95% CI)  

70.0%  
(63.31- 
76.11)  

75.24%  
(68.83 – 
80.92)  

80.0%  
(73.93 - 
85.19)  

81.0%   
(74.98 - 
86.03)  

81.9%  
(76.02 - 
86.87)  

AUROC  
(95%Cl)  
p-value  

0.744  
(0.678-
0.810) 

p<0.0001 

0.827  
(0.769-0.884) 

<0.0001 

0.877  
 (0.832-
0.923)  

 <0.0001 

0.898  
(0.857-
0.940)   
<0.0001 

0.911  
(0.871-
0.951)  

<0.0001 

Dichotomisation 
Probability cut-

off  

high risk  
>0.510  

high risk  
>0.500  

high risk  
>0.430  

high risk  
>0.400  

high risk  
>0.390  

Sensitivity (%) 
(95%Cl)  

55.9  
(45-66)  

68.8  
(58- 78)  

 80.7  
(71- 88)  

81.7  
(72- 89)  

83.9  
(75-91)  

Specificity (%) 
(95%Cl)  

81.2  
(73-88)  

80.3  
(72 - 87)  

79.5  
(71 - 86)  

80.3  
(72 - 87)  

80.3  
(72-87)  

PPV (%)  
(95%Cl)  

70.3  
(61-78)  

73.5  
(65- 80)  

          75.8  
(68 - 82)  

76.8  
(69- 83)  

77.2  
(70-83)  

NPV (%)  
(95%Cl)  

69.9  
(64-75)  

76.4  
(70 - 82)  

83.8  
(77- 89)  

84.7  
(78 - 90)  

86.2  
(80-91)  

AUROC area under the roc curve, PPV, positive predictive value; NPV, negative 

predictive value. 
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Figure 58  A. AUROC graphical representation of models for practical 
approach predicting overall progression to IA.  
(Upper panel) Binary logistic regression models of the occurrence of progression to 

inflammatory arthritis (IA) were constructed in 5 logistic regression models including the 

demographic/clinical data only first and then, sequentially adding data from 1, 2, 3 and 

then 4 flow-cytometry panels. AUCs are indicated by the side (lower panel), Overall 

performance of the prediction model using 1 to 4 flow cytometry panels. Individual 

participant’s probability for progression was dichotomised into high/low risk groups 

(based on 80% specificity) in 5 logistic regression models including the 

demographic/clinical data only first and then, sequentially adding data from 1, 2, 3 and 

then 4 flow-cytometry panels. Numbers of patients in both risk groups are displayed 

against the number of progressors (blue bars) and non-progressors (grey bar). 
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A similar analysis for imminent (rapid) progression suggested that only 3 panels 

would be needed while the performances clearly improved with the 3 steps (Table 

30). 

The stratification showed 17.9% accuracy for the reference model. Adding the 

Treg panel increased accuracy to 33.2%. Adding the naïve CD4+T-cells panel 

showed further accuracy=40% while adding CD8+/NK-cells (lineage panel) 

achieved a better improvement of accuracy to 45%. The AUCs however were still 

improving with every incremental step and all 4 panels added value from 64.8% 

to 79.1%   

 

Table 30 Practical approach to predicting rapid progression to IA (n=210)  

 

COX regression 
Model ref Model + 

1 panel 

Model + 

2 panels 

model + 

3 panels 

Clinical 

data 

2 clinical  

Variables 

2 clinical 

variables 

2 clinical 

variables 

2 clinical 

variable 

Flow panel -1 

Treg 

 Treg CD4 

 

Treg CD4 

 

Treg CD4 

 

Flow panel -2 

CD4/CD8 

  Naïve CD4  

CD4-IRC 

Naïve CD4  

 CD4-IRC 

Flow panel -3 

lineage    

CD8  

NK CD56dim 

Accuracy 

Nagelkerke's R2 

0.179 0.322 0.400 0.45 

AUROC 

(95%Cl) 

p-value 

0.648 

 (0.644 0.652) 

<.001 

0.735 

 (0.732 0.738) 

<.001 

0.774 

 (0.771 0.777) 

<.001 

0.791  

(0.788 0.793) 

<.001 

AUROC area under the roc curve. The 2 clinical   variables included were RF and 
smoking 
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4.2.1.1.2 RA diagnosis phase (RA versus Non-RA) 

Our group established the predictive value of the frequencies of circulating naïve 

CD4+T-cells but suggested no potential value of regulatory T-cells (Tregs), or 

IRC for RA diagnosis, as well as for the induction of remission at 1st treatment [5]. 

Here, I also investigated whether extended lymphocyte subsets phenotyping at 

the first visit in the early inflammatory arthritis clinical can provide an improvement 

over the  performances of most recent model [5] that was using only the 3 CD4+T-

cells subsets in combination with demographic and clinical data.  

 

EAC Cohort description 

Patients with early symptoms of inflammation in joints, were classified over 2 

years of follow-up after referral as RA between 2008 and 2016, using the EULAR 

2010 criteria (n=206) versus another form of arthritis (non-RA, n=100). These 

were disease-modifying anti-rheumatic drugs (DMARDs)-naïve patients, but the 

use of non-steroid analgesia and intra-muscular injection of steroid 

(depometrasone) within 3 months of the time of referral to the EAC, were 

permitted.  A total of 306 patients with 4/5 LS panel available (see further detail 

Figure 42, page 222) could be included in this analysis using similar procedures 

as previously described for the at-risk cohort 

Cohort outcome 

Demographic/clinical data at baseline before evolving to RA or other forms of 

arthritis are described in table 31. Association between progression and data at 

inclusion suggested 6 highly significant parameters (RF, ACPA, CRP, TJC28, 

SJC28, or DAS, MWU p=0.0011 after correction) and another 2 parameters (Age, 

HLA-SE,) at trend (p=0.10).  



 
 

267 | P a g e  
 

This is consistent with the data previously reported by our group using similar 

EAC patients [5] as well as other similar cohorts [428, 735] 

The individual calculated AUC suggests a predictive only value for 4 parameters, 

RF, ACPA, SJC28, or DAS (AUC>0.720, p<0.0001) and possible value for CRP 

and TJC28 (AUC>0.600, p<0.0001). The individual contribution to the prediction 

was however small for all non-significant parameters (<7%) but high for ACPA 

(62%) while lower for RF (37%) and < 20% for TJC28, SJC28, or DAS (Wald 

test).  
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Table 31 Association of demographic and baseline clinical data with 
outcomes of Early arthritis clinic (EAC) cohort (n=306)  

 

RA 
n=206(67.3%) 

Non-RA 
n=100(32.7%) adjusted  

p-value& 

AUROC 
(95%CI) 
p-value 

Unadjusted OR 

(95%CI)  

P value 

 

Wald 

Age  
(years)* 

   52.00   
(43.75-62.25) 

48.00 
(33.25-58.00) 0.121 

0.590 
(0.518-0.661) 

0.011 

1.021  
(1.004-1.039)  

0.016  5.8 

Gender 
[Female] 144(71.6%) 65(67.7%) 0.499 

0.520 
(0.449-0.590) 

0.584 

1.284  
(0.769-2.142)  

0.340  0.9 

Smoking 
Never 
Ever 

52(38.2%) 
84(61.8%) 

33(37.5%) 
55(62.5%) 1.000 

0.496 
(0.419-0.574) 

0.926 

0.886  
(0.540-1.454)  

0.632  0.2 

HLA-SE 
[positive] 23(88.5%) 14(56.0%) 0.143 

0.662 
(0.510-0.814) 

0.047 

   0.941  
(0.547-1.618)  

  0.826  0.1 

RF  
[Positive] 93(60.4%) 14(14.9%) 0.0011 

0.727 
(0.664-0.791) 

<0.0001 

6.170 
(3.421-11.128) 

<0 .0001 36.6 

ACPA# 
[Positive] 123(72.8%) 14(14.1%) 

0.0011 
 

0.793 
(0.737-0.850) 

<0.0001 

12.292(6.595-
22.910)   
<0 .0001  62.4 

CRP  
(mg/L) * 

8.55 
(0.00-24.50) 

4.00 
(0.00-11.20) 

0.0011 
 

0.636 
(0.561-0.712) 

0.001 

1.013  
(1.001-1.026)   

0.039  4.2 

TJC28* 
 

9.00 
(4.00-15.00 

3.50 
(1.00-10.00) 

0.0011 
 

     0.691 
(0.622-0.760) 
  <0.0001 

1.099  
(1.053-1.147)  

<0.0001  18.8 

SJC28* 
 

5.00 
(2.00-9.00) 

1.00 
(0.00-4.00) 

0.0011 
 

0.733 
(0.670-0.795) 

<0.0001 

1.273  
(1.164-1.393)   

<0 .0001  27.7 

 DAS* 
4.70 

(3.52-5.61) 
3.47 

(2.32-4.30) 
0.0011 

 

0.730 
(0.656-0.803) 

<0.0001 

1.593  
(1.293-1.964)  

 <0 .0001  19.1 

Duration of 
symptoms 
(weeks)* 

24.00 
(13.00-34.70) 

28.00 
(15.67-48.84) 0.330 

0.422 
(0.350-0.494) 

0.030 

0.985  
(0.974-0.996)  

 0.009  6.8 

 

Categorical data are presented as n (% of participant). * Numerical data are presented 

as median (Interquartile range values); p-values are indicated for Mann-Whitney and 

Chi-square tests for continues and categorical variables, respectively. ESR, erythrocytes 

sedimentation rate; CRP, C-reactive protein; EMS, early morning stiffness HLA (SE), 

human leucocyte antigen (shared epitope); S/TJC, Swollen/tender joint count; RF, 

rheumatoid factor; DAS, disease activity score, AUROC area under the roc curve. &tests 

adjusted for 11 comparisons (adjustment of the p-value was performed by applying the 

Bonferroni correction method for multiple comparison tests, 0.05/11 variables = 0.005 

value or less considered significant after correction).  CI, confidence interval. #268 

patients had complete data. 
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I applied multivariate logistic regression with a forward approach to determine the 

predictive value of the demographic/clinical data alone (Table 32). 

The model selected 4 parameters in a stepwise construction, starting with ACPA, 

and then sequentially adding SJC28, RF, and TJC28. Figure 59 further showed 

the % accuracy gained on the addition of each step.  The final model selected 

accurately predicted 83% of cases, with SEN and SPE=87% and 73% and a good 

PPV and NPV=86% and 73%, with an AUC=0.873 displayed later in comparison 

to other models on figure 64 , page 283. However, the model could only explain 

48% of the variance for predicting progression to RA diagnosis (Nagelkerke R-

square) and the individual variable contribution was highest for ACPA (41.3%), 

followed by SJC28 (10.2%) and less than 9% for the RF and TCJ28 (Wald score). 

 

 

Figure 59  Accuracy gains in logistic regression modelling of clinical data : 

The blue bar represents step 1, the purple bar represents step 2, Yellow bar represents 

step 3 and green bar shows the final step retaining 4 variables. Model accuracy gain at 

each step is indicated on each bar. 
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Table 32 Unadjusted and multivariate modelling for predicting outcomes 
of Early arthritis clinic (EAC) cohort (n=306) using clinical variables only 

 

Logistic regression 

Logistic regression   OR (95% CI) p-value (Wald test) 

Unadjusted Model-1 

 

RF positive 

6.170 
(3.421-11.128)  

<0 .0001  

2.862  

(1.420-5.767)  

0.003  

(8.6) 

ACPA [Positive] 

12.292  
(6.595-22.910)   

<0 .0001  

10.004  

(4.955-20.199) 

 <0.0001  

(41.3) 

TJC28 

1.099  
(1.053-1.147)  

<0.0001  

1.061  

(1.001-1.125)  

0.048 

 (3.9) 

SJC28 

1.273  
(1.164-1.393)   

<0 .0001  

1.205 

 (1.075-1.350) 

 0.001 

 (10.2) 

Accuracy  

(%)  

 

 

 

 

 

Not applicable 

83.30 

(77.61- 86.46) 

AUROC 

(95%Cl) 

p-value 

0.873 

(0.831-0.915) 

<0.0001 

Sensitivity (%) 

 (95%Cl) 

86.89 

(81.51-91.18) 

 

Specificity (%) 

 (95%Cl) 

73.00 

(63.20-81.39) 

 

PPV (%) 

(95%Cl) 

86.89 

(82.71-90.19) 

 

NPV (%) 

(95%Cl) 

73.00 

(65.10-79.67) 

 

Nagelkerke R square 0.482 

Hosmer& 

Lemeshow test 

0.131 

ESR, erythrocytes sedimentation rate; CRP, C-reactive protein; ; TJC, tender joint count; 

RF, rheumatoid factor;  OR, Odd ratio;  AUC area under the roc curve, PPV, positive 

predictive value; NPV, negative predictive value. NB: Only variables retained in the 

model were indicated in the table 
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Flow cytometry analysis of LS  

FC analysis for the quantification of blood cell subsets was performed for lineage 

count, B-cell subsets; CD4+T-cell subsets; CD8+T-cell subsets; CD4+Treg. 

However, this was performed over 10 years (2010-2020) with all the caveats 

described in section 4.2.1.1 page 219. As such, cohort had only 199 patients with 

at least 4/6 panel done presented a full dataset, and 109 patients were missing 

one or another panel. Randomness in the missingness was verified and was 

mainly due to no B-cell panel and no FoxP3 in Treg.  

I imputed missing data using a similar process as to what I did for the at-risk 

cohort patients with >15/18 LS present. Furthermore, I imputed data for the 

CD4+T panel (due to issue with marker segregation) in 10% of patients who had 

complete data for all other LS. For the expanded memory CD8+T subset, I had 

an issue with poor separation between markers and difficulties in gating (as 

previously described) and I performed data cleaning to exclude this LS due to 

high missing datapoint (n=241), limiting the total number of LS used in further 

analysis in this cohort to 17.  This allowed me to use 306 patients altogether. 

Considering that only 4 subsets showed possible association before imputation 

and still showed association after imputation (Table 34), suggests that the 

multiple imputation procedure did not affect the dataset significantly (notably on 

those 4 subsets) when compared with the non-imputed dataset (Table 33) 
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Table 33 Data distribution characteristics of original dataset compared 
with imputed dataset for EAC cohort   

  

Cell subsets  Original data  
Median  
(IQR)  

Imputed data  
Median  
(IQR)  

MWU      p-
value  

 CD4 T-cells 52.04   
(46.06, 58.31)  

52.62  
(48.98, 56.14)  

0.813  

CD8 T-cells 18.97  
(13.90, 24.01)  

19.37  
(16.23, 21.97)  

0.579  

 B -cells 10.22  
(8.26, 14.50)  

11.00  
(9.13, 13.05)  

0.617  

NK cells CD56bright  0.39  
(0.24, 0.57)  

0.43  
(0.20, 0.68)  

0.666  

NK cells CD56dim  8.37  
(4.90, 13.05)  

9.21  
(6.60, 11.70)  

0.181  

 NKT cells  2.19  
(0.97, 4.24)  

2.87  
(1.35, 4.51)  

0.083  

naive CD4 cells$  1.15  
(-9.97, 11.43)  

-1.33  
(-10.77, 7.58)  

0.975  

 memory 
CD4 cells$ 

-1.28  
(-5.73, 3.03)  

-1.59  
(-4.84, 1.07)  

0.442  

IRCCD4 cells 2.10  
(1.00, 5.80)  

2.75  
(1.16, 5.83)  

0.415  

Treg CD4 cells$ -1.27  
(-2.73, 0.49)  

-1.26  
(-2.68, 0.07)  

0.475  

NaïveCD8 cells $  2.99  
(-6.96, 11.56)  

4.65  
(0.55, 8.75)  

0.704  

MemoryCD8 cells$ -14.95  
(-25.07, -7.77)  

-14.84  
(-18.53, -11.46)  

0.987  

IRC CD8 cells 13.50  
(8.00, 23.40)  

17.18  
(13.27, 20.60)  

0.086  

naiveB-cells 0.38  
(-14.13, 10.20)  

-1.58  
(-5.38, 3.82)  

0.281  

memoB cells -2.84  
(-11.71, 12.38)  

-1.34  
(-6.66, 3.83)  

0.156  

B-reg  4.00  
(2.10, 5.70)  

4.10  
(2.69, 5.40)  

0.509  

PBs  0.70  
(0.40, 1.30)  

0.80  
(0.32, 1.43)  

0.953  

  Data are presented as median (1st and 3rd Interquartile values); CI Confidence interval; 

$ normalised subsets, NK natural killer, NKT natural killer-T, Treg regulatory T-cells, IRC, 
inflammatory-related cells;  & MWU, Mann Witney U test . Breg= Regulatory B cells, 
PBs= Plasmablasts      
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The LS phenotyping results are presented in figure 60 and table 34. In the 

lineage subsets (1st panel), none of the subsets showed a significant difference 

between RA and those progressing to other types of IA (non-RA) after correction 

for multiple testing (significant MWU p<0.008 after correction). Although, higher 

CD4+T % were individually associated with (p=0.007 before correction).  

Frequencies of CD4+T-cell subsets (2nd panel) were highly significantly 

associated with RA, showing reduced naïve (p<0.0001) and Treg subsets 

(p=0.009 after correction) but increased for IRC frequencies (p=0.002) which 

remained significant after correction (p=0.006).  The memory subset did not show 

a difference between the 2 groups (p=0.510). CD8T-cell subsets (3rd panel) and 

B-cell subsets (4th panel) showed no significant association for any of the subsets 

between the RA and non-RA groups. 

The overall results, therefore, still suggested that only the 3 CD4+T-cells were 

significantly association with progression to RA diagnosis (after correction) that 

nonetheless strengthens the concept of a major role for CD4+T-cells in predicting  

progression to RA.  

Individual ORs were calculated, and the CD4 subsets had significant/possible 

predictive values for progression adding B-cells to the 2 CD4+ LS for CD4 naïve 

and Treg, and no longer for IRC, (Table 34). Importantly, only naïve CD4+T-cells 

showed a significant contribution to the prediction (Wald score 22%) while Treg 

contributed less (4.4%).  

Despite not showing significant association by MWU test, only B-cells appears to 

have individual significant OR and contribute to the prediction (Wald test score, 

7%). Hence, this is likely due to an overall effect of gating all lineage subsets as 

a 100% of the parental lymphocyte population. 
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Figure 60 Frequency of lymphocytes lineage and subsets in early arthritis 

clinic (EAC) cohort, RA  versus non-RA . LS were analysed by flow cytometry and 

data displayed as violin plots (each dot representing a patient) for Rheumatoid arthritis 

(RA, n=206) and non- Rheumatoid arthritis  (Non-RA, n=100). Star (*) indicate LS that 

were normalised as previously described [5] P-value corrected for multiple testing (MWU 

test after correction) are indicated on the figure.  
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Table 34 Association of 18 blood cell subsets with outcomes of Early 
arthritis clinic (EAC) cohort (n=306) 

 

RA 
n=206(67.3%) 

Non-RA 
n=100(32.7%) 

MWU  
p-value& 

AUROC 
(95%CI) 
p-value 

Unadjusted OR 
(95%CI)  

P value 

 

 
Wald test 

CD4 
T-cells 

     55.29 
(46.93-61.88) 

        51.51 
(44.40-56.24) 0.042 

0.625 
(0.539-0.712) 

0.042 

1.037  
(1.005-1.071)   

0.150  5.1  

CD8 
T-cells 

      18.15 
(12.72-23.39) 

         20.61 
(14.46-25.27) 0.282 

0.408 
(0.319-0.497) 

0.282 

0.972  
(0.932-1.012)   

0.167  1.9  

B cells 
 

       9.85 
(7.62-13.64) 

      11.17 
(8.76-16.05) 0.270 

0.408 
(0.319-0.497) 

0.270 

0.912  
(0.851-0.976)   

0.048  7.0  

NK cells 
CD56bright 

0.40 
(0.25-0.62) 

0.38 
(0.24-0.53) 0.443 

0.537 
(0.443-0.630) 

0.443 

2.721  
(1.050-7.051)   

0.234  4.2  

NK cells 
CD56dull  

7.61 
(4.90-13.05) 

8.76 
(4.92-13.26) 0.834 

0.490 
(0.396-0.584) 

0.834 

1.027  
(0.976-1.081)   

0.302  1.1  

NKT 
cells 

 
1.69 

(0.87-4.10) 
2.49 

(1.23-5.05) 0.396 

0.415 
(0.326-0.504) 

0.396 

0.915  
(0.837-1.002)   

0.324  3.7  

Naïve  
CD4 $ 

-4.71 
(-13.81-4.75) 

5.48 
(-5.50-14.27) <0.0001 

0.328 
(0.260-0.396) 

<0.0001 

0.951  
(0.931-.971)  

 <0 .0001  21.8  

Memory  
CD4$ 

-3.51 
(-7.59-1.34) 

      -1.28 
(-6.64-3.30) 0.510 

0.435 
(0.342-0.527) 

0.510 

0.998  
(0.966-1.032)   

0.920  0.0  

IRC CD4 
 

2.80 
(1.30-6.00) 

1.60 
(0.60-4.50) 0.006 

0.612 
(0.540-0.691) 

0.006 

1.027  
(0.982-1.073)   

0.242  1.4  

Treg  
CD4$ 

-1.64 
(-2.88- -0.50) 

-0.79 
(-2.53-1.18) 0.009 

0.394 
(0.314-0.473) 

0.009 

0.897  
(0.811-0.992)   

0.035 4.4  

Naïve  
CD8 $ 

5.76 
(-4.07-13.91) 

3.78 
(-6.71-14.75) 0.419 

0.540 
(0.443-0.637) 

0.419 

1.014  
(0.988-1.039)   

0.297  1.1  

Memory  
CD8 $ 

-16.85 
(-25.45- -7.77) 

-12.64 
(-21.85- -

5.96) 0.276 

0.441 
(0.334-0.547) 

0.276 

0.993  
(0.965-1.021)  

 0.596  0.3  

IRC CD8 
 

16.25 
(7.45-23.70) 

12.50 
(9.00-26.50) 0.942 

0.496 
(0.391-0.602) 

0.942 

0.988  
(0.960-1.017)   

0.419  0.7  

Naïve  
B $ 

-0.99 
(-13.92-10.11) 

2.28 
(-14.00-11.00) 0.713 

0.483 
(0.389-0.575) 
0.713 

1.001  
(0.981-1.021)  

 0.942  0.0  

Memory  
B$ 

-2.595 
(-11.29-13.24) 

-2.009 
(-11.29-
13.73) 0.850 

0.491 
(0.399-0.583) 

0.850 

0.994  
(0.974-1.015)  

0.586  0.3  

B-reg 
 

4.10 
(1.60-5.70) 

4.00 
(2.10-5.50) 0.844 

0.509 
(0.417-0.601) 

0.844 

1.021  
(0.896-1.164)   

0.756  0.1  

PBs 
 

0.80 
(0.40-1.40) 

0.60 
(0.40-1.20) 0.460 

0.535 
(0.443-0.627) 

0.461 

1.244  
(0.852-1.817)   

0.258  1.3  
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Data are presented as median (Interquartile range values); CI Confidence interval; $ 

normalised subsets, NK natural killer, NKT natural killer-T, Treg regulatory T-cells, IRC, 

inflammatory-related cells; AUROC, area under the roc curve. & MWU, Mann Witney U 

test adjusted p-value for 17 comparisons (adjustment of the p-value was performed by 

applying Bonferroni correction method for multiple comparison tests for significance for 

each panel after correction [LC, 0.05/6=0.008; T-cell panels, 0.05/3=0.0166, B-

panel=0.05/4=0.0125]  
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I then applied multivariate logistic regression with a forward approach to 

determine the predictive value of the LS alone (model-2) and of the combination 

of both (Clinical + LS) datasets (model-3).  

Complete LS dataset after the imputation process as previously described for the 

at-risk cohort were used to construct the prediction models.  

Model-2 initially used 7 steps. However, I chose the model achieved after step 3, 

based on a higher Hosmer-Lemeshow (HL) test =0.556) for that model retaining 

only 3 subsets (Figure 61 and Table 35, naïve CD4, CD4, and Treg) compared 

to the ones using more subsets or less like step 1 or 2.  Subsequent steps that 

added B, removing CD4, then adding on CD8, and finally NKT indeed reduced 

the goodness of fit (by 26% on average) with each addition.  

 

 

Figure 61 Accuracy gains in logistic regression modelling of LS only for 

RA:  

The blue bar represents Step 1, the purple bar represents Step 2, Yellow bar represents 

Step 3 and green (Step 4), red (Step 5), purple bar (Step 6). Model accuracy gain at 

each step is indicated on each bar. 
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The model presented overall accuracy of 70.3% but accounted for only 18% of 

the variance with naïve CD4+T significantly contributing the most (Wald test, 

28.5%) and other subsets <10%. 

This model (Accuracy, 70.3%, AUC=72.7%) with 3 subsets in isolation was not 

better than model 1 (Accuracy, 82.4%, AUC=87.3%) suggesting that clinical and 

demographic characteristics are important to predict progression to RA. 

I therefore proceeded to combine the 2 datasets (model 3). 
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Table 35 Unadjusted and multivariate modelling for predicting outcomes 
of Early arthritis clinic (EAC) cohort (n=306) using 17 LS only 

 

 

Logistic regression 

Logistic regression   OR (95% CI) p-value (Wald test) 

Unadjusted Model-2 

 

CD4 T-cells 
1.037  

(1.005-1.071)   
0.025  

1.055 

(1.019-1.093) 

 0.003 

(9.1) 

Naïve CD4 $ 
0.951  

(0.931-.971)  
 <0 .0001  

0.940 

(0.918-0.961) 

 < 0.0001 

(28.5) 

Treg CD4$ 
0.897  

(0.811-0.992)   
0.035  

0.857 

(0.769-0.955) 

 0.005 

(7.7) 

Accuracy  

(%)  

 

 

 

 

 

Not applicable 

70.26 

(64.80 - 75.33) 

 

AUROC 

(95%Cl) 

p-value 

0.727 

(0.670-0.785) 

<0.0001 

Sensitivity (%) 

(95%Cl) 

72.37 

(66.47 -77.75) 

 

Specificity (%) 

(95%Cl) 

59.18 

(44.21 - 73.00) 

 

PPV (%) 

(95%Cl) 

90.29  

(86.81 - 92.93) 

 

NPV (%) 

(95%Cl) 

29.00 

(23.13 - 35.66) 

 

Nagelkerke R 

square 

0.182 

Hosmer& 

Lemeshow test 

0.556 

 $ normalised frequency, OR, Odd ratio;  AUC area under the roc curve, PPV, positive 

predictive value; NPV, negative predictive value. NB: Only variables retained in the 

model were indicated in the table 
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Modelling combining flow + Clinical data (Model 3) 

Combining both datasets, Model-3 showed added value (Table 36). Although 5 

steps were suggested, a model selected based on retained 4 steps was best 

evidence of HL goodness of fit test=0.384. It selected ACPA, and SJC28, then 

naïve CD4+T (all p<0.001), and finally age (p=0.001). Figure 62 further showed 

the % accuracy gained on the addition of each step. Model 3 did not show a great 

added value over model 1 in terms of accuracy (83.3% vs 84.6%), but a better 

AUC (87.3% vs 0.901, i.e., +3% added value) was observed. The fact that the 

model accounted for 53% variance compared to 48% for model 1 for predicting 

RA still suggest its relative superiority, thus naïve CD4+T contributed (21.3%) 

alongside ACPA (50.3%), SJC28(22.6%), and age (10.8%).  

 

 

Figure 62 Accuracy gains in logistic regression modelling combining 

Clinical+ LS dataset for RA  

The blue bar represents Step 1, the purple bar represents Step 2, Yellow bar 

represents Step 3 and green (Step 4), red (Step 5). Model accuracy gain at each step 

is indicated on each bar. 
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Our group previously reported value for the 3 CD4+T-cell subsets (naïve, IRC 

and Treg) in similar cohort [5] Modelling using a similar approach (Enter method 

as in this previous work) in these 306 patients combining the same 6 clinical and 

3 CD4+T-cells variables, confirmed these previous data with a closely 

comparable accuracy (75.8% and AUC=0.821) in the original paper while IRC 

and Treg were not significant independent contributors to this model. Of note, in 

previous work by our group, ACPA and RF were excluded from the model as the 

most weighted variables used in the classification hence already accounted for in 

RA diagnosis.  

Therefore, the use of a forward method that allow only independent contribution 

into the model suggest a better prediction (+ 8.8% accuracy and + 8% AUC). 

 

Modelling flow + clinical data (model 4) in ACPA negative patients only   

The most urgent need for a new classification biomarker remains in sero-negative 

RA, notably as this delays diagnosis by several months. 

I, therefore, constructed another model 4 (Table 36, combining clinical + LS 

dataset) for 131/306 ACPA-negative patients in EAC cohort to identify set of 

potential predictive biomarkers. 46/131 ACPA-patients progressed to RA. Model 

4 retained TJC28 (p<0.0001), naïve CD4 (p<0.0001), CD4 (p=0.009), duration of 

symptom (p=0.035), RF (p=0.011) and age (p=0.051) in that order using 6 steps 

(Figure 63) and predicted accurately 84% of ACPA negative patient who 

developed RA with both high sensitivity (82.50%) and specificity (85.71%). In the 

model, Naïve CD4+T contributed more (Wald test, 19.4%) followed by TJC28 

(14.9%) and others between 3.8% - 6.9%. 

In this cohort, I then segregated patients based on the predicted probability to 

progress calculated from the logistic regression in model 4 into 2 risk groups, 
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based on the 80% sensitivity cut-off point. A total of 20/131 could be deemed 

high-risk and all but 4 developed RA (80% accuracy) and 111/131 were deemed 

to be low risk but 27% (30/111) progressed to RA in this group (faulty prediction)  

In this particular group, patients achieved clinical classification for RA with a mean 

delay of 6.3 months. The non-RA group had a mean delay of 8.5 months as well, 

using LS would therefore allow 46 (16 high risk + 30 low risk) patients to be 

classified at baseline. 

 

 

 

Figure 63 Accuracy gains in logistic regression modelling combining 

clinical+ LS dataset in ACPA negative patients:  

The blue bar represents Step 1, the purple bar represents Step 2, Yellow bar represents 

Step 3 and green (Step 4), red (Step 5) and purple bar (step 6) with each showing the 

retained variables. Model accuracy gain at each step is indicated on each bar. 

 

 

 

 

 



 
 

283 | P a g e  
 

Table 36 Multivariate modelling for predicting outcomes of Early arthritis 
clinic (EAC) cohort (n=306) using the combined dataset 

 
Logistic regression 

Logistic regression   OR (95% CI) p-value (Wald test) 
 

Model-3 
 

Model 4 (ACPA negative patients)  
n=131 

Age  
(year) 

1.040 (1.016-1.065) 
 0.001 
(10.8) 

1.035 (1.000-1.071) 0.051 
(3.8) 

RF positive Not retained 5.298 (1.454-19.303) 0.011 
(6.4) 

ACPA [Positive] 12.875 (6.357-26.080) 
<0.0001 

(50.3) 

Not included 

TJC28 
 

not retained 1.146 (1.070-1.229) <0.0001  
(14.9) 

SJC28 1.301 (1.167-1.450) 
<0.0001 

(22.6)   

Not retained 

Duration of 
symptoms 

(weeks) 

Not retained 0.971 (0.945- 0.998)  0.035  (4.4) 

CD4 T-cells 

Not retained 1.110 (1.027-1.200) 0.009 (6.9) 

         Naïve CD4 $ 
0.936 (0.910-0.962) < 0.0001  

(21.3)  
0.895 (0.852-0.940) < 0.0001   

(19.4) 

Accuracy (%)  84.64 (80.10 - 88.49) 
 

84.73  (77.41- 90.42) 

AUROC (95%Cl) p-
value 

0.901 (0.864-0.939) <0.0001 0.877 (0.816-0.938)  <0.0001   

Sensitivity (%) 
(95%Cl) 

87.32 (82.10 - 91.48) 
 

82.50 (67.22 - 92.66) 

Specificity (%) 
(95%Cl) 

78.49 (68.76 - 86.34) 
 

85.71 (76.81- 92.17) 

PPV (%) (95%Cl) 87.39 (86.28 - 93.22) 
 

71.74 (60.07- 81.07) 

NPV (%) (95%Cl) 73.00 (65.17 - 79.62) 
 

91.76 (84.98- 95.64) 

Nagelkerke R 
square 

0.528 0.51.8 

Hosmer& 
Lemeshow test 

0.384 0.419 

TJC, tender joint count; RF, rheumatoid factor; $ normalised frequency, OR, Odd ratio; 

HR, AUC area under the roc curve, PPV, positive predictive value; NPV, negative 

predictive value. NB: Only variables retained in each model were indicated in the table 
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Summary of Model performance    

The performance of the three models when compared using AUROC (Figure 64). 

This showed that combining clinical variable and LS in model 3 had +3% 

improved performance in AUC=0.901 compared to Model 1 (AUC=0.873) and 

was able to explain about 53% of variance in progression towards RA compared 

to 48% for model 1.   In ACPA negative patients, Model 4 also showed good 

predictive value discriminating between those developing RA from non-RA 

notably compared to a model not including LS (Model 5). 

 

 
        

               
 

Figure 64 Performances of the models for RA.  

The figure shows AUROC graphical representation of models. Binary logistic regression 

models of the occurrence of progression to RA diagnosis from inflammatory arthritis (IA) 

were constructed using model-1 (Clinical data only) for 10 parameters (blue line), Model-

2 (Flow- data only) for 17 subsets (red line), Model-3 (Clinical + Flow data, purple line). 

Model-4 (green line) included Clinical + Flow data (ACPA negative patients only). AUC 

for each model indicated by the side.  
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4.2.1.1.3 MXT-treated RA cohort (MXT-induce remission versus non-

remission) 

To date, our group has proven that immunophenotyping of CD4+T cells in 

DMARDs-naïve early RA has value to predict clinical responses in MTX-treated 

drug-naïve RA patients. The contribution of other LS remains to be established. 

I hypothesized that dysregulations in circulating LC homeostasis at treatment 

initiation, could increase the accuracy of models (above the value associated so 

far with naïve CD4+T-cells). This would allow patients who are likely to respond 

to MTX to be discriminated from those who may not benefit from the use of 

monotherapy. Predicting MTX response at diagnosis will not only reduce cost of 

ineffective therapy but also help gain time in averting loss of function. Here I 

investigated the value of 17 LS to predict MTX-induced remission based on 

DAS<2.6 after 6 months of treatment. 

 Cohort selection characteristics and outcome 

Participant selection was performed from the EAC patients with RA prescribed 

MTX at BL using same approach described for the at-risk cohort for availability of 

LS data added to the presence of clinical data allowing to establish response to 

MTX (see Figure 42, page 222). This cohort included 205 patients, of these 

achieving MTX-induced remission was seen in n=106 (51.7%) versus non-

remission n=99 (48.3%). 

The cohort comprised DMARD-naïve patients with early RA treated with a MTX 

initially at 15 mg/week using a Treat-to-target approach [736, 737] then escalated 

to higher doses (25 mg/week) over 8 weeks or the addition of other synthetics 

DMARDs, such as Sulfasalazine or Hydroxychloroquine, if remission was not 

achieved, at 3 months. Remission was evaluated at 6 months based on DAS<2.6 
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Demographic/clinical data at baseline are described in table 37. In univariate 

analysis I confirmed that only 3 parameters (CRP and DAS, MWU p<0.030, and 

smoking, x2 p=0.060 after correction) showed a trend for association with the 

achievement of remission. I observed no significant difference in the other 7 

parameters; age, gender, duration of symptoms, RF, ACPA positivity, TJC28, 

SJC28 (p>0.05 after correction).  Data, however, was not absolutely consistent 

with previous work (difference in OR ratio values and significance) [5] perhaps 

due to a smaller number of patients (n=70) in this previous work. For example, 

smoking was previously reported to have a highly significant association with 

remission, while it only showed a trend in the current study. 

The individual contribution to the prediction was small for age and TJC (<5%) 

while >5% for the CRP, SJC28, smoking and DAS (Wald test).  
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Table 37 Association of demographic and baseline clinical data with MTX-
treatment outcome at 6 months (n=205) 

 

Remission 
n=106(51.7%) 

Non-
Remission 

n=99(48.3%) 

MWU/ 
Chi-

square 
p-

value 

AUROC 
(95%CI) 
p-value 

Unadjusted OR 
(95%CI)  

P value 

 

Wald 
test 

Age  
(years)* 

59.00 
(48.00-68.25) 

55.00 
(47.00-63.00) 0.560 

0.577 
(0.499-0.656) 

0 .056 

1.017 
(0.998-1.037)       

 0.079 
3.1 

Gender 
[Female] 72(67.9%) 74(74.7%) 0.354 

0.466 
(0.387-0.545) 

0.399 

0.715 
(0.389-1.316) 

0.282 
1.2 

Duration of 
symptoms 
(weeks)* 

23.50 
(12.00-42.00) 

26.00 
(16.00-40.00) 0.233 

0.451 
(0.371-0.531) 

0.234 

0.996  
(0.983-1.009) 

0 .534 
0.4 

Smoking 
Never 
Ever 

54(51.9%) 
50(48.1%) 

31(32.3%) 
65(67.7%) 0.060 

0.402 
(0.323-0.480) 

0.017 

0.448 
(0.248-0.785) 

0.005 
7.8 

RF  
[Positive] 57(59.4%) 56(63.6%) 0.649 

0.479 
(0.395-0.562) 

0.618 

0.835 
 (0.460-1.515)  

0.553 
0.5 

ACPA 
[Positive] 63(65.6%) 53(63.1%) 0.757 

0.513 
(0.428-0.597) 

0.770 

1.117 
 (0.606-2.058) 

0.724 
0.5 

CRP  
(mg/L) * 

7.7 
(0.00-17.78) 

13.400 
(2.55-32.00) 0.030 

0.380 
 (0.302- 0.458) 

0.003 

0.986 
(0.975-0.996) 

0.009 
6.8 

TJC28* 
 

7.00 
(3.00-13.75) 

10.00 
(4.00-17.00) 0.310 

0.412 
(0.331-0.491) 
      0.031 

0.965 
(0.930-1.002) 

0 .061 
3.5 

SJC28* 
 

4.00 
(2.00-8.00) 

6.00 
(2.00-11.00) 0.370 

0.415  
(0.336-0.494) 

0.037 

0.939 
(0.889-0.991) 

0 .022 
5.2 

 DAS* 
4.10 

(3.14-5.10) 
4.79 

(3.51-5.63) 0.030 

0.378 
(0.300-0.456) 

0.003 

0.744 
(0.605-0.917) 

0.005 
7.7 

 

Categorical data are presented as n (% of participant). * Numerical data are presented 

as median (Interquartile range values); p-values are indicated for Man-Whitney and Chi-

square tests for continuous and categorical variables, respectively. ESR, erythrocytes 

sedimentation rate; CRP, C-reactive protein; EMS, early morning stiffness HLA (SE), 

human leucocyte antigen (shared epitope); S/TJC, Swollen/tender joint count; RF, 

rheumatoid factor; DAS, disease activity score, AUROC area under the roc curve. MWU 

Mann Witney U test adjusted p-value for 10 comparisons (adjustment of the p-value was 

performed by applying the Bonferroni correction method for multiple comparison tests, 

0.05/10 variables = 0.005 value or less considered significant after correction) 
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As in the other cohorts, I performed the multivariate logistic regression with a 

forward approach to determine the predictive value of the demographic/clinical 

data alone (model-1) (Table 38). 

Model-1 selected 3 parameters in a stepwise construction using 3 steps, starting 

with smoking then sequentially adding age, and then CRP (Figure 65).  This 

model accurately predicted 67.8% of patients achieving remission, with 48% 

sensitivity and 79% specificity, and PPV and NPV equals 71% and 58% 

respectively, with an AUC=0.714 (Table 38). Individual variable contributed not 

greater than 11% each. The model only explains 15% of the variance for 

predicting those who will achieve remission at 6months (Nagelkerke R-square)  

 

 

Figure 65 Accuracy gains in logistic regression modelling of clinical data 

for MTX-induced remission:  

The blue bar represents step 1, the purple bar represents step 2, and Yellow bar 

represents step 3 showing the final step retaining 3 variables. Model % accuracy gain at 

each step is indicated on each bar. 

 

 

 



 
 

289 | P a g e  
 

Table 38   Unadjusted and multivariate modelling for predicting MTX-
treatment outcome (n=205).  

 

 

Logistic 

regression 

Logistic regression   

 OR  

(95% CI)  

p-value 

 (Wald test) 

unadjusted Model-1 

 

Age  

(year) 1.017 

(0.998-1.037)       

 0.079 

1.030 

(1.008-1.052) 

0.007 

(7.2) 

Smokers 

(ever) 0.448 

 (0.248-0.785) 

0.005 

0.364 

(0.198-0.669) 

 0.001 

(10.6) 

CRP (mg/L) 

0.986 

(0.975-0.996)  

0.009 

0.982 

(0.971-0.994) 

 0.003 

(8.8) 

Accuracy  

(%)  

 

 

 

Not applicable 

67.8 

(56.42-70.01) 

AUROC 

(95%Cl) 

p-value 

0.714 

(0.643-0.784)  

< 0.0001 

Sensitivity (%) 

(95%Cl) 

48.11 

(38.30-58.03) 

Specificity (%) 

(95%Cl) 

79.80 

(70.54-87.20) 

PPV (%) 

(95%Cl) 

71.83 

(62.19-79.81) 

NPV (%) 

(95%Cl) 

58.96 

(53.84-63.89) 

Nagelkerke R 

square 

0.151 

Hosmer& 

Lemeshow 

test 

0.571 

 

ESR, erythrocytes sedimentation rate; CRP, C-reactive protein;  RF, rheumatoid factor;  

OR, Odds ratio; AUC area under the roc curve, PPV, positive predictive value; NPV, 

negative predictive value. NB: Only variables retained in each model were indicated in 

the table. 
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Flow cytometry analysis  

For this cohort, I had the full 5 panel set for 74% of the patients while imputation 

was performed for 26% who were missing one or another subset mostly the B-

cell panel and LC panel missing before 2015. Data cleaning was also carried out 

as previously described in the other 2 cohorts. Imputation process did not also 

impact the quality of the original dataset (Table 39) 

Subsequent analyses were performed using the 17 LS in all available patients 

(n=205) after the data imputation process.  

The data from univariate analysis for the 17 LS are displayed in figure 66 and 

table 40. In the lineage panel (1st panel), none of the lineage subsets showed  

association with achieving remission.  For the CD4+T-cells subset (2nd panel), 

only the naïve subset at higher frequencies showed significant association with 

remission (p<0.0001) and remained significant after Bonferroni correction for 

multiple testing.  Other CD4+T-cell subsets did not show any difference between 

the 2 groups (p>0.05). Similarly, for CD8T-cell and B cell subsets (3rd panel and 

4th panel), no subset showed a significant difference between the 2 groups.   
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Table 39 Data distribution characteristics of original dataset compared 
with imputed dataset for the MXT-treated cohort   

  

Cell subsets  Original data  
Median  
(IQR)  

Imputed data  
Median  
(IQR)  

MWU      p-
value  

 CD4 T- cells 52.33  
(46.26, 58.68)  

52.62  
(46.48, 59.20)  

0.891  

CD8 T-cells 18.31  
(12.83, 24.41)  

18.57  
(12.83, 25.28)  

0.744  

 B-cells  10.75  
(8.06, 13.63)  

11.01  
(8.13, 13.86)  

0.712  

NK cells 
CD56bright  

0.33  
(0.20, 0.47)  

0.35  
(0.22, 0.51)  

0.396  

NK cells 
CD56dim  

9.10  
(5.94, 13.63)  

8.90  
(5.90, 13.62)  

0.779  

 NKT cells 2.24  
(1.00, 5.13)  

2.70  
(1.06, 6.05)  

0.216  

naive CD4 
cells$  

3.95  
(-8.00, 15.13)  

4.20  
(-8.03, 15.34)  

0.947  

IRCCD4 cells 1.60  
(0.60, 3.70)  

1.80  
(0.65, 4.00)  

0.846  

memory CD4 
cells$  

-3.68  
(-9.09, 1.77)  

-4.07  
(-10.02, 1.60)  

0.817  

Treg CD4 cells$ -1.36  
(-2.59, -0.06)  

-1.32  
(-2.69, 0.09)  

0.757  

NaïveCD8 cells$ 4.86  
(-3.63, 12.42)  

4.66  
(-4.66, 12.32)  

0.944  

MemoryCD8 
cells$  

-17.33  
(-25.89, -10.45)  

-16.77  
(-25.51, -8.62)  

0.538  

IRC CD8 cells 11.00  
(6.00, 21.00)  

13.08  
(7.85, 24.10)  

0.14  

NaiveB cells $ -0.77  
(-9.15, 8.18)  

-1.22  
(-11.70, 7.76)  

0.653  

MemoB cells$ -2.85  
(-10.45, 6.04)  

-2.17  
(-10.24, 8.14)  

0.634  

B-reg  4.00  
(2.35, 5.85)  

4.10  
(2.45, 6.08)  

0.664  

PB  0.70  
(0.40, 1.30)  

0.80  
(0.40, 1.30)  

0.389  

  Data are presented as median (1st and 3rd Interquartile values); CI Confidence 
interval; $ normalised subsets, NK natural killer, NKT natural killer-T, Treg regulatory T-
cells, IRC, inflammatory-related cells;  & MWU, Mann Witney U test . Breg= Regulatory 
B cells, PBs= Plasmablasts       
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Figure 66 Frequency of lymphocytes lineage and subsets in MTX-treatment 
RA cohort.   
LS were analysed by flow cytometry and data displayed as violin plots (each dot 
representing a patient) under remission (Rem, n=106) and non- remission (non-Rem, 
n=99). Star (*) indicate LS that were normalised as previously described (15). P-value 
corrected for multiple testing (MWU test) are indicated when significant. 
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Table 40 Association of 18 blood cell subsets with MTX-treatment 
outcome (n=205)  

 

Mis
sing 

data 

 

Remission 
n=106(51.7%) 

Non-
Remission 
n=99(48.3%) &MWU 

p-value 

AUROC 
(95%CI) 
p-value 

Unadjusted OR 
(95%CI) 

P value 

Wald 
test 

CD4 
T-cells 

26% 

52.03  
(45.37-57.58) 

52.72 
(46.95-
61.13) 0.207 

0.441 
(0.349-0.532) 

0.207 

0.975 
(0.944-1.007) 

0.123 
2.3 

CD8 
T-cells 

18.26  
(11.87-25.44) 

18.31 
(13.96-
22.69) 0.478 

0.466  
(0.372-0.560) 

0.478 

0.989 
(0.951-1.028) 

0 .574 
0.2 

B cells 
 

11.281  
(8.140-14.276) 

10.166 
(7.742-
2.540) 0.108 

0.576  
(0.484-

0.668) 0.108 

1.079 
(0.995-1.169) 

0 .065 
4.0 

NK cells 
CD56brig

ht 
0.34  

(0.21-0.49) 
0.33 

(0.20-0.47) 0.841 

0.510 
(0.416-0.603) 

0.841 

1.138 
(0.360-3.596) 

0.825 
0.0 

NK cells 
CD56dull 

9.39  
(5.92-14.97) 

8.11 
(6.02-12.76) 0.248 

0.555  
(0.462-0.648) 

0.248 

1.034 
(0.979-1.092) 

0 .230 
1.3 

NKT 
cells 

 
1.89  

(0.86-4.08) 
2.68 

(1.02-5.62) 0.486 

0.467  
(0.374-0.560) 

0.486 

0.991 
(0.903-1.088) 

0.854 
0.0 

Naïve  
CD4 $ 

0% 

7.91  
(-0.63-16.15) 

-1.88 
(-14.75-11.83) 

<0.000
1 

0.659  
(0.582-0.736) 

<0.0001 

1.038 
(1.018-1.058) 

<0.0001 
14.2 

Memory  
CD4$ 

-4.75  
(-10.57- 0.21) 

-3.02 
(-8.38-2.59) 0.180 

0.421 
(0.339-0.502) 

0.060 

0.964 
(0.930-0.998) 

0 .040 
4.0 

IRC CD4 
 

2.00  
(0.90-4.00) 

1.55 
(0.50-3.85) 0.409 

0.534  
(0.453-0.616) 

0.409 

0.995 
(0.940-1.052) 

0.848 
0.0 

Treg  
CD4$ 

12% -1.66  
(-2.67- -0.31) 

-1.06 
(-2.71-0.14) 0.407 

0.464 
(0.380-0.549) 

0.407 

0.959 
(0.838-1.098) 

0.546 
0.4 

Naïve  
CD8 $ 

17% 

4.88  
(-1.82-11.90) 

1.43 
(-6.60-
12.42) 0.420 

0.566 
(0.478-0.653) 

0.140 

1.012 
(0.989-1.036) 

0.313 
1.0 

Memory  
CD8 $ 

-18.37  
(-25.96- -

11.21) 

-16.27 
(-26.27- -
10.10) 0.608 

0.474 
 (0.377-

0.572) 0.606 

0.992 
(0.965-1.019) 

0.542 
0.3 

IRC CD8 
 

11.75  
(7.78-20.75) 

11.00 
(5.70-21.00) 0.565 

0.528 
(0.432-0.625) 

0.565 

1.005 
(0.979-1.032) 

0.707 
0.1 

Naïve  
B $ 

26% 

0.48  
(-7.27-8.46) 

 
-1.87 

(-10.42-7.28) 0.595 

0.525 
(0.433-0.617) 

0.595 

0.996 
(0.977-1.015) 

0.690 
0.1 

Memory  
B$ 

-3.79  
(-11.26-5.56) 

-2.03 
(-10.05-
8.39) 0.510 

0.469 
(0.377-0.561) 

0.510 

1.004 
(0.984-1.024) 

0 .718 
0.2 

B-reg 
 

4.10  
(2.58-6.20) 

4.00 
(2.20-5.80) 0.584 

0.526 
(0.434-0.618) 

0.584 

1.011 
(0.909-1.123) 

0.845 
0.0 

PBs 
 

0.70  
(0.38-1.20) 

0.80  
(0.40-1.40) 0.473 

0.466 
(0.375-0.558) 

0.474 

0.775 
(0.512-1.171) 

0.226 
0.9 

Data are presented as median (Interquartile range values); CI Confidence interval; $ normalised 

subsets; NK, natural killer; NKT, natural killer-T; Treg, regulatory T-cells; IRC, inflammatory-

related cells; AUROC, area under the roc curve. & MWU, Mann Witney U test adjusted p-value 

for 17 comparisons (adjustment of the p-value was performed by applying Bonferroni correction 

method for multiple comparison tests for significance for each panel after correction [LC, 

0.05/6=0.008; T-cell panels, 0.05/3=0.0166, B-panel=0.05/4=0.0125]. 
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Using the same approach as before, I performed the modelling for the LS alone 

(model-2) using 17 LS, model excluded many subsets and retained only 2; 1st 

naïve CD4+T(p<0.0001), and then adding CD4+T-cells (p=0.004) with an overall 

accuracy=68.3%.  Model-2 explains only 18% of the variance in predicting 

remission with naïve CD4+T contributing the highest (20%) and the other 2 each 

for <8% (Table 41). 

Table 41  Unadjusted and multivariate modelling for predicting MTX-
treatment outcome(n=205).  

 

 

Logistic 

regression 

Logistic regression   OR (95% CI) p-value (Wald test) 

unadjusted Model-2 

 

CD4 T-cells 

0.975 

(0.944-

1.007) 0.123 

0.948 

(0.914-0.983) 

 0.004 

(8.2) 

Naïve CD4 $ 

1.038(1.018-

1.058) 

<0.0001 

1.052 

(1.029-1.075)  

<0.0001 

(19.9) 

Accuracy  

(%)  

 

 

Not 

applicable 

68.30 (56.92-70.48) 

AUROC 

(95%Cl) 

p-value 

0.721 

(0.651-0.791) 

< 0.0001 

Sensitivity (%) 

(95%Cl) 

49.06 

(39.22-58.95) 

Specificity (%) 

(95%Cl) 

79.80 

(70.54-87.20) 

PPV (%) 

(95%Cl) 

72.22 

(62.68-80.10) 

NPV (%) 

(95%Cl) 

59.40 

(54.21-64.38) 

Nagelkerke R 

square 

0.183 

Hosmer& 

Lemeshow test 

0.194 

 $ normalised frequency, OR, Odd ratio;  AUC area under the roc curve; PPV, positive 

predictive value; NPV, negative predictive value. NB: Only variables retained in each 

model were indicated in the table. 
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Combined modelling [clinical + LS data] (Model 3) 

Next, combining both datasets (Clinical+ Flow), Model-3 predicted remission 

accurately in 70.2% of cases and showed added value (accuracy > model-2 and 

> Model-1) and AUC=0.734 (Table 42). The model included 3 variables starting 

with naïve CD4+T-cell (p<0.0001), CRP (p=0.002) and smoking (p=0.008) that 

showed significant association. Figure 67 further presented the % accuracy 

gained on the addition of each step. The model confirmed the predictive value of 

naïve CD4+T-cell (p<0.001) contributing the highest (Wald test, 16.2%), and CRP 

(p=0.002, Wald test 9.2%) with smoking(p=0.008) making the least contributing 

(Wald test, 6.9%) but excluded DAS. Trying to include DAS instead of CRP made 

the model less fitting (Hosmer& Lemeshow test <0.0001). Data shown here are 

consistent with the findings previously reported by our group [5] and further 

validate the use of naïve CD4+T-cells (from 17 LS studied) as a predictive 

biomarker for MTX-induced remission in DMARD-naïve early RA patients. This 

suggests that a model using  large cohort size  with naïve CD4+T-cell datapoint 

would be sufficient to predict MTX-remission. 
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Figure 67 Accuracy gains in logistic regression modelling of Clinical +LS 

data for MTX-induced remission:  

The blue bar represents step 1, the purple bar represents step 2, and Yellow bar 

represents step 3 showing the final step retaining 3 variables. Model % accuracy gain at 

each step is indicated on each bar. 

 

With the help of 2 students, Helen Ng and Melanie Liu (who were allowed access 

to NHS computer over the pandemic while space access was restricted), I 

identified a few more patients (recruited from 2018 to 2019). This allowed me to 

perform a comparison of the early published model (n=120) [5] and all patients in 

my cohort with data for naïve CD4+T subset (n=277, 205 + 22 more patient 

identified) at the time of this analysis. I performed a second analysis with patients 

available (n=227) with panel 2 (naïve CD4+T-cell subsets irrespective of any 

other panel being done). Model 4, (clinical + naive CD4+T cell only) showed 

71.9% accuracy and AUC=0.738. The model 3 showed lower performance over 

model 4 using naïve CD4+T alone. This confirms that the model using naïve 

CD4+T cell alone is indeed sufficient to predict MXT-remission while the smaller 

effect of the 22 more patients identified was eliminated as showing same data as 

if using only 205. Model performance is summarised and displayed in comparison 

to other models in figure 68. 
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Table 42    Unadjusted and multivariate modelling for predicting MTX-
treatment outcome(n=205)  

 

 

Logistic regression 

 

Logistic regression   OR (95% CI) p-

value (Wald test) 

 

Model-3 

(n=205) 

Model 4 (n=227) 

Smokers (ever) 0.442 

(0.241-0.810) 

0.008 

(6.9) 

0.392 

(0.22-0.699) 

0.001 

(10.0) 

CRP (mg/L) 0.983 

(0.971-0.994) 

0.002 

(9.2) 

0.982 

(0.972-0.993)  

<0.0001 

(10.1) 

Naïve CD4 $ 

1.043 

(1.022-1.064) 

<0.0001  

(16.2) 

1.040 

(1.021-1.059)  

<0.0001 

Accuracy  

(%)  

70.20 

(58.42-71.86) 

71.9 
(63.63- 75.93) 

AUROC 

(95%Cl) 

p-value 

0.734 

(0.665-0.804) 

< 0.0001 

0.738 
(0.673-0.804) 

<0.0001 

Sensitivity (%) 

(95%Cl) 

51.89 

(41.97-61.70) 

70.25 
(61.26- 78.21) 

 

Specificity (%) 

(95%Cl) 

79.80 

(70.54-87.20) 

69.81 
(60.13- 78.35) 

 

PPV (%) 

(95%Cl) 

73.33 

(64.09-80.91) 

72.65 
(66.04- 78.39) 

 

NPV (%) 

(95%Cl) 

60.77 

(55.39-65.90) 

67.27 
(60.34- 73.53) 

 

Nagelkerke R 

square 

0.208 0.217 

Hosmer& 

Lemeshow test 

0.104 0.842 

CRP, C-reactive protein;  $ normalised frequency, OR, Odd ratio;  AUC area under the 

roc curve, PPV, positive predictive value; NPV, negative predictive value. NB: Only 

variables retained in each model were indicated in the table.  
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Figure 68  Performances of the models for MTX-induced remission  

The figure shows AUROC graphical representation of models. Binary logistic regression 

models of achieving remission in MXT-treated RA were constructed using model-1 

(Clinical data only) for 10 parameters (blue line), Model-2 (Flow- data only) for 17 subsets 

(green line), Model-3 (Clinical + Flow data, purple line) and, Moel-3 (AUC=0.734,0.665-

0.804) added value (+2 accuracy). Model 4 (Clinical + naïve CD4+T) was comparable to 

Model 3 that included all the 17 subsets (red). 
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Comparison with model previously published from this cohort 

I performed the forward logistics regression in the 2 groups for the clinical data + 

naïve CD4+T cells alone. For both datasets, the model selected the same 3 

variables starting with naïve, CRP and finally smoking. The current model showed 

no improvement despite more patients (Table 43 and Figure 69). The main 

difference between groups was the  patients from the control Clinical Trial  who 

was recruiting all early RA at the time (VEDERA study) were included in the 

previous paper(62/120 patients with full dataset) while my cohort was mostly day-

to-day patients included in a register and therefore reflecting more a real-life 

patient population of patients and missing clinical data at 6 months not allowing 

to select everyone. In addition, ACR 1957 criteria for classification were used in 

our previous work while EULAR 2010 are for more recent patients. 
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Table 43 multivariate modelling for predicting MTX-treatment comparing 2 
groups using only 1 LS (naïve CD4+T) 

Variables  

Logistic regression   OR (95% CI) p-value (Wald 

test) 

 

 
Early cohort  
(2005-2010)  

n=120 

Current cohort  
(2011-2020) 

n=227 

Smokers 

(ever) 

0.270 
 (0.108-0.672) 

 0.005 

0.392(0.220-0.699) 

0.001 

CRP (mg/L) 

 

0.974 
 (0.957-0.992) 

 0.004 

0.982(0.972-0.993) 

<0.0001 

 

Naïve CD4+ 

T cells 

1.070 
 (1.038-1.103) 

<0.0001 

1.040 

(1.021-1.059) 

 <0.0001 

Accuracy  

(%)  

78.26 
(69.60- 85.41) 

71.9 
(63.63- 75.93) 

AUROC 

(95%Cl) 

p-value 

0.816 
(0.735-0.875) 

<0.0001 

0.738 
(0.673-0.804) 

<0.0001 

Sensitivity 

(%) (95%Cl) 

78.33 
(65.80- 87.93) 

70.25 
(61.26- 78.21) 

Specificity 

(%) (95%Cl) 

78.18 

(64.99- 88.19) 69.81 
(60.13- 78.35) 

PPV (%) 

(95%Cl) 

79.66 

(70.01- 86.79) 72.65 
(6.04- 78.39) 

NPV (%) 

(95%Cl) 

76.79 

(66.71- 84.52) 67.27 
(60.34- 73.53) 

CRP, C-reactive protein;  $ normalised frequency, OR, Odd ratio;  AUC area under the 

roc curve, PPV, positive predictive value; NPV, negative predictive value. NB: Only 

variables retained in each model were indicated in the table.   
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Figure 69  AUC Performances of the 2 models The figure shows AUC 
graphical representation of previous  and current models.  
The predicted probability scores from the binary logistic regression using (Clinical data 

+ naïve CD4+T) were used to construct the AUROC graphs. Model FP (previous model, 

dark line) showed high performance index compared to Model-IA (Current model, red 

line).  AUC for each graph is indicated.  
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Summary of blood cell subsets with predictive value across the stages of the 

inflammatory arthritis continuum (IAC). 

Beyond the validation of the value of CD4+T subsets across IAC previously 

reported by our group, the TRIMID research group, the current study 

demonstrated added value of  3 novel cellular biomarkers (CD8, NK, and Breg) 

for predicting outcomes across the IAC (Figure 70). 

 

 
 

 

 

Figure 70 Summary of blood cell subsets with predictive value across each 

stage of the inflammatory arthritis continuum (IAC).  

The diagram illustrated the biomarker value of 6 LS investigated across all phases of the 

IAC. Light yellow bars with question makers(?) indicate seropositive without arthralgia 

stage (with no identifiable biomarker yet). Red indicates subsets with predicate values. 

Yellow represents the subset with only association while gray bars are the subset with 

no significant association. 
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4.2.2 Validation of clinical utility of flow cytometry data using frozen 

samples   

Introduction   

For this aspect of my PhD, 36 cell subsets biomarkers across 4 LS panels 

(Lineage panel, T-cell panel, B-cell panel, and Th17 panel) were assessed at 

baseline (BL), 6 months, and 12 months in PsA patients from the GOLMePsA 

Trial.  For the modelling analysis initially planned, I needed to get the full clinical 

dataset to assess the value of the flow data.   

I, therefore, applied for access to the GOLMePsA clinical data including (1) 

treatment arms and (2) outcomes. Unfortunately, it was rejected by the MHRA, 

as the Trial was delayed due covid-19 pandemic. I could also only analyse 31 

patients with full-time line (visits 1 to 5 at 12 months) due to time constraints and 

delays in reaching last visit. I also could only access the variable age (because I 

needed it to normalize the cell subsets) and gender.  I still saw this as an 

opportunity to explore another type of statistics, in order to understand what could 

theoretically be used in terms of longitudinal data analysis. I choose to do a 

trajectory analysis based on time.  
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4.2.2.1 Data distribution  

Data distribution for the 36 subsets for 31 patients at 3 time points (BL, 6 months, 

and 12 months) was visualised using a frequency distribution curve to access the 

pattern of distribution for each subset. Of the 36 subsets, only 8 were found to be 

normally distributed (passing the normality test, p<0.05). 2/36 subsets (naïve B-

cell and HLA expression on B-cell) were particularly  skewed to high value (right 

skewness). Of the 26/36 that showed left-skewness, 12 also had dual mode 

distribution (Figure 71 C and D). This skewness may suggest subsets different 

in groups of patients perhaps due to drug effects at different time-points 

particularly for subsets with bimodal distribution (D, left column) when compared 

to BL time-point (D, right column)  
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Figure 71  Representative data distribution curves of subsets(n=29) at 3 time points (left) 

and BL (right). (A) relatively normal distributed data with subsets indicated on the right (passed 

normality test, p>0.05), (B) right-skewed distribution failed normality test, p>0.05, and (C) left-

skewed distribution, failed normality test, p>0.05) and (D) Bimodal distributed data (failed 

normality test, p>0.05) with subsets also indicated on the right.   
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4.2.2.2 Trajectory cluster analysis and association of subsets between 

clusters of patients  

 My objective was to identify hidden groups of patients (clusters) by considering 

the collective trajectories of subset frequency over time, which would provide 

insights into the distinctive features of each cluster[738] .To achieve this, I 

employed k-means clustering tailored for trajectory data analysis (Thanks to my 

supervisor Farag Shuweihdi  supporting this analysis using the R package). A 

graph Figure 72) was used to visualise the quality criterion, employing the 

Calinski & Harabasz metric, specifically the Kryszczuk variant [739] for all 

previously discovered partitions. High values indicate partitions of "high quality," 

while low values suggest otherwise. Two clusters (labelled as "2") exhibit higher 

values of the Calinski & Harabasz metric suggesting clusters with informative 

insights compared to the other clusters, leading to two clusters being selected. 

The result presented in Table 44 showed two clusters of patients (Cluster A, n=22 

and Cluster B, n=7) which may speculatively suggest 2  subgroups of PsA 

patients with phenotypic lymphocyte differences.  
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Figure 72 Estimation of the Number of Clusters Using Multiple Clustering Validity 

Indices. Suggested number of clusters are labelled as 2, 3, 4, 5 and 6. 

 

Next, I performed a 2-way mixed ANOVA to determine the cell subsets that were 

driving/contributing to the clustering of patients over time. I observed that for a 

number of subsets (notably those not normally distributed), frequencies were 

significantly different between clusters A and B, at BL with no change over time 

remaining significant at 12 months but less so at 6 months.  The frequencies of 

all other LS showed no significant difference between the 3 time points (BL, 6, 

and 12 months), suggesting that the patients clustering was driven by changes in 

subset frequency at BL rather than changes over time.   

In more details, at baseline, memory B cells (p=0.0306 after correction) were 

significantly higher and DNM-B-cells lower (p<0.0001) in Cluster A compared to 

Cluster B.  Naïve B-cells (p=0.0512) and Breg (p=0.0631) showed a trend for 
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difference between clusters as part of total B-cell population (100%) (Table 44 

and  

Figure 73). In contrast, all other subsets showed no difference at any time 

point, suggesting again no changes at BL and over time in these subsets. 

At 12 months, I still observed the same difference in memory B cells (p=0.0108) 

and PreSM B cells (p=0.0180) and naïve B cells (p=0.0211), DNM-B cell 

(p<0.0001), and lower HLA expression on B-cell (p=0.0066) was also observed in 

cluster A patients. This analysis therefore suggested that there were 2 groups of 

patients in the study, mainly regulated based on B-cell subsets which was 

surprising in PsA as it may have been more expected on CD8+T cells being 

associated with HLA-B27. 
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Table 44  Association of 36 LS with cluster A versus B (n=29) at BL  

BASELINE   
A cluster (n=22)   

Median (IQR)  
B cluster (n=7)  
Median(IQR)  

Adjusted  
P-value  

Age  36.25(29.50-59.00)  35.00(28.25-38.25)  0.372  

Sex M/F n(%)  15(68.2%)/7(31.8%)  3(42.9%)/4(57.1%)  0.223  

Panel 1  

CD4 (%)  39.65(9.25)  47.30(11.93)  0.6279  
 CD8 (%)  23.22(9.66)  26.04(10.59)  0.9858  

B-cells (%)       11.28(7.72)  9.54 (5.18)  0.9930  

NK CD56 bright (%)  0.87 (0.71)  0.39(0.43)  0.6930  

NK CD56 dim (%)      11.24(6.45)  6.66(6.67)  0.6017  
NKT (%)        8.64(5.71)  4.98(3.59)  0.6312  
CD4 HLA (%)  2.03(0.98)  1.41(0.71)  0.6767  
CD8 HLA (%)    2.29(1.65)  1.38(0.78)  0.7734  

B HLA$
(MFI)  2960.43(630.18)  3423.59(999.33)  0.8725  

NK CD56 bright HLA%  5.52(3.35)  3.21(2.48)  0.3820  

NK CD56 dim HLA%  0.52(0.38)  1.33(2.53)  0.2233  

NKT HLA (%)  6.97(12.69)  5.06(4.64)  0.9992  

CD4 KIR (%)  1.15(0.80)  1.31(1.29)  0.9983  

CD8 KIR (%)  0.25(0.60)  0.10(0.07)  0.9108  

NK CD56 bright KIR (%)  8.81(5.63)  10.67(6.84)  0.9948  

NK CD56 dim KIR (%)  24.34(8.16)  25.47(10.31)  0.9999  

NKTKIR%  16.40(12.51)  17.60(7.64)  0.9999  

  Panel 2      
NaiveCD4 (%) *  1.24(19.81)  0.33(17.37)  0.9999  

MemoryCD4 (%) *   -1.24(19.89)  -0.27(17.34)  0.9999  
NaiveCD4 HLA$

 (MFI)  155.00(23.08)  191.49(109.84)  0.9999  
memoryCD4HLA $

 (MFI)  157.33(12.66)  183.19(30.47)  0.7001  
  Panel 3      

NaiveCD8 (%) *  22.77(16.11)  22.06(20.88)  0.9999  

MemoryCD8 (%) *  -23.56(16.23)  -22.38(20.32)  0.9999  
NaiveCD8 HLA$  159.21(39.81)  150.27(38.69)  0.9999  

memoryCD8HLA$   161.47(33.19)  184.20(51.98)  0.9964  
  Panel 4      

Naïve B (%) *   -4.10(21.84)  20.57(7.60)  0.0512  

Memory B (%) *  1.41(17.92)  -20.64(6.23)  0.0306  

Pre-SMB (%)     52.84(13.99)  37.69(10.87)  0.1049  

Post-SMB(%)  39.50(12.47)  43.98(6.94)  0.9541  

DNM (%)           7.67(3.65)  18.32(5.45)  <0.0001  

B-reg (%)               3.05(1.44)  5.36(1.58)  0.0631  

Plasmablaste(%)  0.57(0.36)  0.75(0.43)  0.9451  

B IL6R$
 (MFI)  441.69(269.51)  593.64(431.84)  0.7437  

  Panel 5      

CD4 Th17(%)  2.84(1.84)  2.17(2.10)  0.9189  

CD4 Th17 HLA$ (
MFI)   87.12(11.81)  84.60(22.02)  0.9999  

CD4 Th17 KIR$
 (MFI)   428.05(67.41)  524.27(200.10)  0.1459  
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* Normalized subset, $ levels of expression as median fluorescence index, 
adjusted p-value by 2-way ANOVA multiple comparisons test. DNM= double 
negative memory B-cells, SMB=switch memory B cells. All results are 
expressed as median (IQR) except for sex expressed in number (percentage).  

 

 

Figure 73 Frequency of B-cell subsets associated with change between 

Cluster A and Cluster B.    

LS were analysed by flow cytometry and data was displayed as a box plot (each dot 

representing a patient) for Cluster A (blue colour, n=22) and Cluster B (red colour, n=7). 

Two way ANOVA P-values are indicated by the blue top line and p-value between groups 
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for the 3-time point indicated for trend (green), no significant difference (dark), and 

significant difference (red).   

 

4.2.2.3 Unsupervised hierarchical clustering of the 36 subsets   

To define groups of patients with similar LS profiles, unsupervised algorithm was 

used , that builds relationships between LS frequencies based on Spearman rank 

correlations. The algorithm was applied to log-transformed frequencies for 36 LS 

(n=30) at 3-time points (BL, 6M, 12M) and results are displayed as a heat map of 

data (Figure 74). The analysis segregated patients into 4 clusters based on 2 

main groups of LS, suggesting different LS profiles. I observed that the clusters 

were driven by patients rather than time points as subset frequency from patients 

were closely related regardless of the time points and were therefor grouped 

together (the small box around the 3 time point for the same patients).  

Altogether despite not being able to analyse data with respect to drug response 

this work suggests 2 types of PsA patients, based on a surprising B-cell signature, 

that is very stable over time which even treatment is hard to control disease. 
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Figure 74 Unsupervised hierarchical clustering of the 8 subsets associated 
with cluster groups (n=29).  
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An unsupervised hierarchical clustering algorithm was applied to log-transformed 
frequencies for 36 LS and results are displayed as a heat map of data (red being the 
highest and green the lowest frequency observed for each LS). This clustering 
segregates patients into 4 clusters based on 2 main LS groups (upper dendrogram). 3 
time point for the same patients grouped together in each cluster (small boxes).  
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Chapter 5 Discussion and Future Work 

 

5.1  Technical Discussion 

5.1.1 Validation of the use flow cytometry as a technology for biomarker 

research   

A persistent challenge to accepting flow cytometry as a biomarker technology is the 

potential number of samples that cannot be analysed due to poor quality of blood, 

technical acquisition or data gating and/or reporting.  

I performed a technical evaluation of the NHS flow cytometry data from the staining 

to data acquisition and analysis, using data already acquired by NHS immunology 

lab, to validate the extent of the impact of poor blood and faulty sample handling, 

gating error and data reporting by the NHS. 

My results confirmed that four major problems arise. Faulty processing, poor 

instrument set-up, lack of compensation, while poor blood quality compromising the 

quality of a data may result from delays in reaching the lab. Consequently, this is 

limiting the amount of usable data when using the technology while still reported on 

NHS servers. My findings are consistent with the consensus report by a panel of 

flow cytometry experts from the American Thoracic Society that “poor handling and 

non-standardised sample processing is the step most likely to result in poor flow 

cytometry performance” [740]. 

Across the four panels analysed (Figure 75), human, involving particularly “missing 

antibodies” during staining, and technical errors presented the highest form of error 

encountered. It affected more of the Treg panel where FoxP3 was missing from the 

intracellular part of the protocol. This is a serious  error as the definition of Treg is 

based on this marker more than any others. It led to reporting approximately 0.1% 
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Treg due to human error and could have led to major issues if this was a panel used 

for clinical decisions whereas it is still currently research as the TEEMS trial uses 

naïve cells for stratification and only records Treg for now. The errors due to missing 

CD127 are no less serious but here the point is that it should have been  reported 

as a note for the clinician to make their decision fully informed as well as circulating 

the information about not being able to perform the test due to shortage of reagents. 

This suggests that a more careful training and QA/QC procedure needs to be in 

place for flow cytometry biomarkers to be taken at face value from any report. 

Technical errors involving faulty acquisition either due to lack of compensation or 

arising from lack of adjustment in the instrument settings were more pronounced in 

B-cell panel analysis. This is mostly because this panel was introduced later and 

changed over time (from 8 to 5 markers). Nonetheless, reporting data from an 

uncompensated panel should have been spotted during a QA/QC process as it 

affects gating. 

Poor blood sample quality may be attributable to the length of time between 

specimen collection and processing. This affected mostly the T-cell panel, most 

likely because the CD62L makers being more sensitive to experimental conditions 

[723, 724] are affected. Such delays in sample transit from clinics (in Chapel Allerton 

Hospital) to the NHS-lab (at St James hospital), via NHS-transport services 

(including change of vehicle at the Leeds General Infirmary) would need to be 

considered when optimising panels and reports to clinicians should account for such 

issues (or refuse the test based on the knowledge of its limitations). 
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Figure 75 Errors across the four panels analysed.   

Pie chart represent the 3 errors encountered during FC analysis. Red ( Technical 
error), Blue (processing error), Green( poor blood quality) 
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Processing time of > 24 hours has been reported to impact data quality for all 

downstream assays (sometimes due to loss of viability) as well as flow cytometry 

analyses performed routinely [679, 741].  Lymphocyte enumeration was found to be 

overestimated in blood samples after >24 hours at room temperature before 

processing and staining [696, 741].  

My findings suggest that all data retrieved from the NHS server were possibly 

allowing for one or more types of errors. This necessitated the development of 

exclusion rules that should be incorporated in the final SOP for the FC biomarker 

test. Combined (figure 75) processing error, faulty acquisition, poor sample quality, 

I identified a failure rate greater than 10% in data passing this NHS QA/QC 

procedure which was indeed much higher compared to the 2% failure rate for flow 

analysis of peripheral blood previously reported in another study [679]. This 

highlights that tests performed as research rather than NHS need to be considered 

carefully if used in clinical practice. 

In more detail, for the 3 most important CD4+T subsets used in my overall PhD 

project (naïve, IRC, and Treg) gating remains the most subjective part of FC 

analysis. I re-analysed flow cytometry raw data from the T-cell and Treg panels while 

excluding all samples fulfilling exclusion rules. Results of the paired sample analysis 

between observers showed that the results for the naïve subset were relatively 

consistent with my observation. For IRC, this was also observed with greater 

variability notably when reporting low frequencies. 

Regulatory T-cell (Treg), after the initial optimisation period (2013-15), were not 

relatively closely comparable with my results. The discrepancy at the later period 

may be also attributed to a lack of strict adherence to the use of the CD127 maker 

(as the 2nd most essential marker for Treg) due to the lack of availability of the 
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antibody for some time while not reporting this missing Abs as an issue. This 

highlights the need to also develop reporting rules and/or circulating information that 

a test ( for example, Treg) cannot  be performed  when some reagents ( e.g., the 

most essential  makers, FOXP3 for Treg)  are not available. Disagreement between 

observers in subsequent periods suggests that adherence to the gating protocol for 

Treg was not strictly followed by some staff involved in performing the assay during 

this period (not reporting shortage of reagent to their manager for example).    The 

use of multiple NHS staff over this different period may have led to some of the 

variability in gating patterns detected.   

The result of the analysis of the direction of changes suggests that data for the 3 

subsets were relatively comparable (rho ≥ 0.6) between observers while much better 

for the naïve subsets showing the best correlation value (rho=0.9336) with a slope 

of the line best-fit matching to the line of complete identify. This suggests agreement 

in the gating performed by both observers despite a significant mean difference for 

naïve enumeration demonstrated using the BA plot (estimated at a -2%) suggesting 

small a negative bias in NHS analysis compared to me.  

BA plot and test for bias confirmed that there was measurement bias between 

observers for IRC, however, this was mostly affecting low IRC frequencies. These 

are less biologically relevant and suggest that IRC results obtained by NHS may 

likely be usable by the clinician as it is comparable to those obtained by myself (as 

well as by my supervisor). 

Treg showed a significant negative bias estimated at 0.4%. This suggests that most 

data reported by the NHS were underestimated compared to mine, which might 

have been explained in part by overestimated gating due to the absence of CD127 

antibody although, excluding samples with no CD127 antibody, did not improve this 



 
 

319 | P a g e  
 

issue. Therefore a need for careful training of observers for this panel may be 

needed as its subjectivity is higher than for the other subsets.    

The level of measurement bias for naïve (2%) and Treg (0.4%) between observers, 

suggests that these deviations may fall within the uncertainty of measurements, thus 

also suggesting that both gating patterns delivered acceptable results, provided 

exclusion of the faulty result is adhered to. 

The current study, therefore, demonstrated the need to review the gating protocol 

for flow cytometry analysis in the NHS setting notably for IRC and Treg, and the 

need to adopt strict exclusion criteria to ensure the analysis and reporting of only 

acceptable FC data. This would ensure that accurate test result for patients is made 

available to improve clinical decisions while permitting a streamlined clinical 

laboratory operation, and harmonised results across multiple centres.   

Therefore, I propose a few points that would need adding to NHS SOPs to support 

the use of FC biomarkers in clinical practice: 

1. Specific handling guidelines for transportation for whole blood samples sent for 

immunophenotyping:   The delay in sample delivery to the lab should be 

reconsidered and probably set at < 24 hours. Therefore, records of the time of blood 

taking to the delivery to the lab should be recorded. This could form the basis for 

further study to confirm the impact of transport time on individual blood cell 

immunophenotyping.  

2. Optimisation of instrument performance with a lab protocol that could track 

reliability and reproducibility of setting (compensation).  The protocol should also be 

revalidated in case of a change in markers (number and/or colour) and 

recompensated fully each time. This is usually in place but change in software 

version was overlooked. 
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3. The staining procedure  performed when  a key reagent ( for example FoxP3 for 

Treg)  is missing should be reported 

4. A QA/QC of sensitive markers (i.e., CD62L) should define how acceptable/non-

acceptable profiles “look” by asking an experienced 2nd opinion. 

5.1.2  Flow cytometry validation using Dry tubes  

In this study, I validated the feasibility of this novel DT technology to enumerate the 

2 most important blood cell subset biomarkers (naïve and IRC CD4+T cells) used for 

the management of RA patients.  I report the performance of  2 single DT, one 

containing a cocktail of 5- antibodies designed for quantifying naïve-CD4+T, and 

inflammatory-related cells-CD4+T (IRC-CD4+T cell) and the other, containing a 3- 

antibody cocktail designed for quantifying Treg using the Becton Dickinson dry 

coating technology. In validating reproducibility, DT results were correlated with the 

conventional wet tube (WT) data to compare the equivalence of the staining pattern 

and numerical data obtained using both technologies.  

The DT data distribution was equivalent to WT for naïve but differed significantly for 

IRC. Although the profile was not absolutely identical, the staining pattern observed 

in DT for naïve and IRC allowed for a better subset separation, particularly for the 

IRC. The combination of fluorochromes in DT, notably for CD45RA showed a better 

separation with the BV421 fluorophore conjugate in DT than in the WT with PE 

conjugate.  The DT panel design seems to have enabled a better separation of IRC 

than the WT design which could be advantageous in the NHS setting as discussed in 

the section, although the use of different flow cytometer machines for the two 

methods may have also played a role. DT were also designed as new with 

commercial constraint in the choice of clones and technical ones related to 

fluorochrome and the chemistry drying-technology, while the WT were designed over 

15 years ago (2008 when more recent advance in FC functionalities) and maintained 
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for consistency over time/cohorts. The newly designed DT may therefore incorporate 

between reagents than those available in the past based on TRIMID groups’ 

experiences and ensuring optimal detection of antigen expression, which may be 

fluorochrome dependent. 

 

For the Treg panel, the staining was not detectable for the FoxP3- antibody (Alexa 

flour colour conjugate) in DT so far for an unknown reason. Data acquisition for a full 

Treg phenotype could not continue, although a “putative” Treg (defined by cell surface 

expression  CD4/CD127/CD25) showed a comparable staining patterns. BD had 

reservation about the compatibility of  intracellular staining and the chemistry of the 

DT, and while it was not fully validated in their lab, the putative Treg subset based on 

cell surface (CD127) was not an issue. More work is needed on both sides to resolve 

this issue and understand what is causing this lack of reactivity (i.e. whether FoxP3 

specific or intra-cellular related). 

 

DT versus WT comparison was satisfactory for naïve subset numeration with no 

evidence of bias between the two methods. This suggests that naïve quantification 

by the conventional WT routinely used in NHS is reproducible using the novel DT.  

Although, IRC showed poor correlation and evidence of bias, the BA analysis showed 

that such observation was mainly affecting high frequency which was over-estimated 

using DT but not at low frequency.  Low frequencies are considered within the healthy 

range and only high frequencies (above 2.5%) are relevant for RA management. This 

may therefore be a “good bias” allowing a better determination of IRC thanks to the 

change in fluorochrome for CD45RA clear increased frequencies will be easier to 

account for in a clinical decision.  
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Interestingly, the overall reliability test remained high for both naïve and IRC, despite 

better determination with DT for high frequency for IRC. My overall conclusion for this 

part of the work is that naive/IRC results obtained by WT will likely be reproducible if 

switching to  DT technology.  

DT workflow efficiency in the laboratory was also evaluated by comparing the 

turnaround time required to produce results. 

Beyond technical improvement, DT allows for greater workflow efficiency and great 

applicability in terms of ease-to-use single-tube format [689, 690], Figure 14 presents 

a streamlined workflow where time/risk for error of preparing antibodies cocktailing 

translated into reduced time to results thereby gaining about 30-40minute compared 

to WT. In the context of the screening of haematological malignancies, the use of the 

DT technology compared to liquid reagent also reported a significant gain of time and 

cost savings [688].  

DT also presents a greater workflow standardisation as it eliminates the 

major sources of error arising from multiple manual pipetting. For instance, 

inadvertent omission of one or more antibodies as described before is one of the 

“processing” errors in NHS lab that can be difficult to discover (only visible at the later 

stage of acquisition) and may require a repeat analysis with increased cost [689] and 

further loss of time.  The use of ready-to-use DT dry kit, therefore, could reduce day-

to-day intra/inter staining variability between different samples and thereby lead to an 

increased result consistency across setting [690, 742]. 

Taken together, results show that the use of DT is equivalent to that of WT for the T-

cell panel in terms of enumerating naïve and IRC subsets but not usable for a full 

Treg (CD4+CD127lowCD25highFoxP3+) identification, while it may work for 

enumerating “putative” Treg which has been reported by other investigators [742]. 

The current study, therefore, demonstrated the feasibility of using the DT Technology 
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for T-cell panel as a replacement for WT flow cytometry method in the NHS routine 

immunology laboratory. The DT technology offers a powerful tool to simplify and 

standardize flow cytometry workflow and maximize laboratory efficiency by 

eliminating repetitive pipetting and human-prone errors, notably missing Ab due to 

handling mistakes. The DT will deliver easy-to-use standardization of multicolour flow 

cytometry data across multiple instruments and set the stage for its clinical application 

in routine NHS immunology service and in diverse areas of flow cytometry-based 

clinical trials/research worldwide.   

5.1.3 Validation of FC technology using frozen samples  

Immunophenotyping of immune cell subsets using frozen PMBC could allow for 

retrospective data collection and comparability of results in case of multicentre clinical 

settings. However, the use of frozen samples is associated with alteration in the 

integrity of the cell (viability), cell phenotype (influencing the frequency of cell 

enumeration), and/or cell functionality. The impact of freezing for a prolonged time on 

immunophenotyping in the context of biomarkers in inflammatory arthritis disease has 

been sparsely documented. This study, therefore evaluated the effect of freezing 

samples on the immunophenotyping of lymphocytes and their subsets. 

Freezing PBMC (over 2-3 years storage) resulted in a substantial reduction in cell 

viability (10% loss of sample) with a possible risk of data loss while inducing a marker-

specific alteration in the frequency of lymphocyte subsets (particularly CD62L) 

compared to fresh samples.  

My data suggests that for lymphocytes and subsets enumeration, PBMC with greater 

than or equal to 15% cell viability still offer suitable quality allowing flow cytometry 

analysis with limited risk of mis-enumeration.  This remains a very high rate of 

exclusion for sample analysis compared to a 2% exclusion rate reported for fresh 



 
 

324 | P a g e  
 

peripheral blood specimens in a review [679] and ~ 5% from my data related to blood 

quality. 

PBMC as well as other cell types are known to be susceptible to the impact of 

the freezing process [743]. Fetal bovine serum plus 10% dimethylsulfoxide 

remains the best cryoprotectant in the freezing process for cells in immunology 

[744] and was used here by our Tissue bank.  PBMC isolation and freezing in 

such standard cryoprotectant, loss of viability in my study is therefore over the 

expected. Several processes occur during freezing (i.e., intracellular ice crystal 

formation, the osmotic imbalance between the intracellular versus extracellular 

space, and the formation of channels by the residual unfrozen medium outside 

the cells) that damage the cells leading to this loss of cell viability [743-745].  

Under these freezing conditions, the effect of freezing PBMC should be expected 

to be similar. TRIMID group before now have observed lower quality in FC 

FSC/SSC in samples from rheumatic patients compared to HC, although using 

fresh blood. It is therefore possible that different diseases may influence 

lymphocyte cryo-sensitivity in a unique fashion [746] notably in inflammatory 

diseases such as RA and PsA explaining the higher loss of sample I observed in 

this cohort. 

Within the lineage panel, although there were no substantial differences in the 

percentage of CD4+T and CD8+T cells, B-cells, NK-cells, and NKT-cells were 

higher in frozen samples paired with fresh ones. This was a sample from same 

patients but split into two before freezing.  Several studies have also reported the 

absence of a substantial effect on the frequency of CD4+T- and CD48+T-cells 

[724, 747-751],  consistent with my data. While those studies used frozen 

samples for short storage periods (<12 months), the consistency with my data 
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using frozen samples over 2-3 years, suggests that the length of storage is less 

unlikely to impact T cells enumeration.   

I observed a higher percentage of B-cells, NK-cells, and NKT-cells. B cells were 

higher in frozen PBMC in contrast to other studies reporting that distributions 

remained unaltered [750] or showed loss of B cells [752]. The result for NK cells 

has also remained contradictory across studies with some showing a trend 

towards lower frequency in frozen samples [748, 751, 753] while others found 

that NK cells were not impacted substantially [747, 750].  This suggests that 

lineage subsets are probably relatively stable although surface makers for 

lineage cells may also be sensitive to cryopreservation. Surface marker for NK 

cell identification (CD56) has been shown to be susceptible to freezing [723, 724]. 

In several disease conditions (such as HIV), standardization of analysis of frozen 

samples has been adopted [709, 741]. In addition, the use of different antibody 

clones may also interfere with such comparison. 

For CD4+T-cell subsets (naïve/IRC/memory) enumeration, I observed a 

significantly lower frequency in naïve CD4+T cells paralleled with a higher 

frequency in IRC CD4+T cells in the frozen sample in paired matched fresh 

samples.  The memory subset showed relatively higher frequencies however, it 

still showed good correlation results between fresh and frozen samples, 

suggesting that the impact of freezing on memory CD4+T was minimal compared 

to the substantial alteration observed in naïve/IRC subsets. I was able to attribute 

this effect to the loss of surface  CD62L most likely through shedding [723, 724]. 

Similar results were observed for the CD8+T cell subsets at a lower level of 

impact than on CD4+T cells.  
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A study also showed significantly lower frequency for naïve CD8+T and  CD4+T 

cells (defined with the same  CD45RA+ and CD62L+ markers) in frozen 

compared to fresh  samples [712] . Therefore, the alteration in the naïve/IRC 

subset associated with CD62L instability (due to protein shedding associated with 

cryopreservation) was also observed by others and is a limitation to using frozen 

samples when investigating such particular subset [712, 754]. The impact of 

freezing on the expression of several markers naïve (CD45RA+CD62L+) and 

“central memory” (CD45RO+CD62L+) T cells) used to categorize various subsets 

of both CD4+/CD8+ T-cells was also reported [712]. 

To overcome this issue, a 1-marker (CD45RA+) phenotype for enumerating 

naïve/memory T-cell subset in frozen samples was used to allow data acquisition. 

CD4+T naïve/memory cells showed no significant difference between frozen and 

fresh samples using this 1-marker gate. This suggests that loss/change of CD62L 

expression due to freezing leading to the negative skewness in CD4+T subsets 

enumeration using the conventional 2 markers (CD45RA/CD62L). This allowed 

me to overcome the issue, although at the expense of being able to also 

enumerate the IRC subset. Considering that IRCs are present in early RA and 

PsA but in a small proportion (except in a few cases with very high inflammation) 

and in the fresh sample I had data for, this may not be a major concern for this 

particular trial.   

In contrast, the 1-marker approach in the CD8+T cells failed to fix the impact of 

freezing as the naïve subset was statistically significantly different than in fresh 

samples. This suggests that this approach would lead to over-estimation of naïve 

CD8+T cells in frozen samples. IRC frequencies are always much higher in 

CD8+T cells, so this information would be lost when using frozen samples. 
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Previous studies have reported that there was no significant alteration of B-

subsets [755-758] whereas other studies have found substantial alteration in 

frozen PBMC compared with fresh [712, 759]. I observed that there were no 

significant changes in the frequency of memory B-cells, putative Breg, and 

plasmablasts in line with other studies [755-758] while the frequency of the naïve 

B subset was significantly lower in frozen samples compared with paired matched 

fresh samples. The reason for the effect on naïve B-cells was not determined and  

I could not propose a reason for this while not an isolated observation. This 

agreement/discrepancy with other studies may therefore be related to a 

diseases-specific impact rather than freezing alone.  

For the Th17 panel, I did not have access to matched pairs (fresh + frozen). I 

used fresh sample for comparison with the frozen trial sample, both being PsA 

patients recruited from the same EAC cohort. I also compared the frequency of 

th17 cells from late PsA samples (fresh, n=24) for which I had data available from 

our group.  All samples being associated with an inflammatory arthritis condition 

allowed me to account for the effect of PsA and inflammation or freezing cells. 

The results presented here also show significant changes in the frequency 

distribution of the surrogate CD4+Th17 phenotype in frozen samples. This 

suggests that the surface markers for Th17 identification are likely to be impacted 

by freezing. However, this remains to be confirmed using paired matched fresh 

samples. 

Overall, the data presented show that the freezing of PBMC sample  induce  

limited changes in the cell lineages which suggests that the use of frozen samples 

for the identification of these lymphocytes may be safe. However, the consistent 

alteration associated with their subsets (naïve/IRC) is a major concern in 
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inflammatory arthritis where definitive immunological features are investigated 

where these T-cell subsets have been found to provide biomarkers value across 

the disease continuum in RA particularly. Hence, the use of frozen PMBC may 

lead to underestimation of naïve CD4+T and overestimation of IRC CD4+T using 

the 2 marker gate. The CD45RA  1 marker gate identification can be used but at 

the cost of losing IRC data.  

The data have implications for biomarker validation studies specifically, in the 

field of translational research in autoimmune inflammatory arthritis where large 

numbers of PBMC are cryopreserved. This process usually involves a long 

storage period and then a subsequent thawing process which may partly explain 

the loss in sensitive surface markers leading to lower comparability of results 

across multicentre research settings. Further studies may be necessary to 

develop novel tools for the assessment of blood cell biomarker stability in 

cryopreserved immune cells. Nonetheless, the use of fresh samples notably in 

multi-centre clinical trials has its challenges [714, 715]. Alternatively, it may be 

better to use flow specific freezing SMART tubes as previously reported by our 

group [5] to cryopreserve whole blood (hence requiring less work).  

These are suitable for clinical trial as they allows cryostability of these sensitive 

subsets (including Treg) and notably allow for IRC  with CD62L shedding to be 

quantified with no issue. However, there is a substantial cost for these tubes. 
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5.2 Clinical utility of FC biomarkers 

5.2.1 Predicting outcome across the IAC 

5.2.1.1 Alignment of my cohorts with previous studies at the clinical level 

Demographic/clinical data from the various groups of patients I used were aligned 

with other cohorts at similar stages of progression in the IAC. 

As expected, ACPA+, as a classification criterion for RA [302] with high specificity 

(~98%) and present in about 50-70% of RA [303, 304], but relatively absent in 

non-RA (up to 6% in some diseases) [305-307] was significantly higher in 

RA  (67.8%) than non-RA (14.1%). Similarly, RF+ was higher in at-risk 

progressors and RA. Data underpinning the association between both 

autoantibodies and progression from at risk [189, 312, 760] and at the diagnostic 

stage of the IAC previously were reported [761-765]. So TRIMID groups’ results 

were no different to similar cohorts. 

EMS, TJC, SJC, and systemic inflammatory marker (CRP) showed significantly 

increased values in association with poor outcomes across IAC as previously 

reported [761, 766] . DAS28 (and its component element), were nonetheless 

significantly higher in RA but lower in MTX-induced remission. At the clinical level, 

each study cohort used in my PhD therefore is representative of the wider 

community of patients. 
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5.2.1.2   LS predicting progression across the IAC 

It is important here to differentiate the predictive value from the dysregulation of a 

LC population in a disease. Indeed, many subsets are disturbed in the IAC (from 

at risk to remission) compared to health, but that is different from being predictive 

of an outcome. Furthermore, the modelling strategy chosen used a forward 

method which intend to select the best predictors amongst many variables, rather 

than highlighting changes in the data distribution of a variable.  As such it shows 

that progression across the IAC is predicted by certain subsets and that this is 

stage specific while it does not diminish the valued of the observations that other 

subsets may be dysregulated in the disease (i.e. related to its pathophysiology) 

but not predictive. As such disturbance in Treg, IRC naive- CD4 T-cells, Breg, 

plasmablasts, NK cells, and CD8T-cells were observed in several stages but as 

detailed below, only predictive in specific ones and in combination with different 

clinical variable.  

Altogether, my findings demonstrated the value of performing an extensive 

phenotyping of 18 LS to understand further the pathogenesis of RA, while 

prediction across the different IAC outcomes selected specific LS with a reduction 

in the number of LS needed to achieve prediction as the disease progressed while 

considering clinical parameters that were relatively normal at the pre-clinical stage 

where the model included mainly demographic and life-style predictors. 

Progression to IA in ACPA+ at-risk individuals showed clear improvement by the 

addition of the newly identified LS over the 3 LS already known. The clustering 

analysis suggested that progressors were specifically associated with 8 LS 

profiles, cluster–III dominated by high CD4-IRC and cluster-II by high 

plasmablasts and Treg. Non-progressor (cluster-I) was characterised by high 

Treg and CD4-naïve paralleled with low frequencies of  plasmablasts and CD4-
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IRC. These profiles were not associated with any particular demographic and 

clinical data suggesting that they are independently regulated from any genetic, 

environmental or inflammatory events.  

My findings, therefore, confirmed previous data for CD4+T-cell subsets and 

further identified 5 more LS associated with progression towards IA in ACPA+ at-

risk individuals, providing clues to the identity of cells (CD8, NK, and B-cells) 

involved in the events triggering or associated with progression.  

Importantly, different subsets were retained in the modelling for overall  (Treg, 

CD4-naïve, CD8, NK-cells, B-reg, and plasmablasts and smoking, RF, HLA-

SE, Tender-Joint-Count-78) compared to imminent IRC, CD4-naïve, Treg, NK-

cells, and CD8+T-cells and smoking, RF) progression, suggesting a time frame 

for different biological events and/or triggers. Overall, data confirm that in ACPA+ 

at-risk individuals wider LS dysregulation precedes the development of clinical 

synovitis, while also providing increased accuracy over previous models with only 

CD4+T-cells subsets [5] . 

Patients with clinical synovitis who later developed RA were characterised by 

significantly low naïve CD4+T and Treg with high CD4-IRC against those who 

progressed to other types of IA (non-RA), suggesting that dysregulation in 

CD4+T-cell subsets is not transient from at-risk phase but rather a persistent 

trigger for progression towards developing RA [5].  The possible value of these 

subsets to diagnose RA was established briefly by our group . Here, my extensive 

LS modelling as diagnostic biomarkers validated the predictive value of  naïve 

CD4+T towards progression to ACPA+ RA from the IA stage while the other 

subsets have no added predictive value despite some of them being indeed 

dysregulated in RA ( for instance, IRC CD4 cell, Treg CD4, and CD4 T-cells).  
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As in previous work [5], I also investigated the effect of autoantibodies (RF and 

ACPA) on the model because the EULAR 2010 criteria majorly depend on both 

autoantibodies for RA classification also considering the overarching OR of ACPA 

include in model 3 (OR 12.875, Table 36). In the current cohort (n=306), I 

constructed a combined Model (clinical without RF and ACPA + Flow data) this 

time using the forward approach. The model consistent with our previous work 

accurately predicted progression to RA in 75.16% of evolving IA patients while 

selecting only 3 variables: first, naïve CD4+T-cells with the highest contribution 

(30.8%), followed by SJC28 (26.0%), and finally age (11.9). This further 

strengthens the highly predictive value of naïve CD4+T in RA diagnosis 

regardless of the modelling approach used (enter or forward) particularly when 

not including APCA in the model as a classification marker. 

A new classification biomarker for sero-negative RA is the most urgent need. With 

this consideration, I constructed a model (Model 4,Table 36) showing the specific 

LS profile associated with progression towards ACPA-negative RA, providing 

clues to the identity of cells (naïve CD4+T and CD4+T) involved in the events 

triggering progression towards ACPA-negative RA. The model predicted 

accurately 84% of ACPA-negative patients who developed RA with both high 

sensitivity (82.50%) and specificity (85.71%). However, external validation of this 

model will be needed using a larger replication  sero-negative cohort. 

 

Predicting MTX-induced remission at diagnosis will not only reduce cost in 

responders but also help gain time in averting the functional debilitating 

consequences of RA with early use of biologics in potential MTX non-responders.  

In patients with new onset RA, I tested the hypothesis that multiple dysregulations 

in circulating lymphocyte subsets homeostasis before 1st line treatment initiation 
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will predict with higher accuracy patients who are likely to respond to MTX while 

discriminating those who may never benefit from the use of the 1st line 

monotherapy. My data showed that MTX-induced remission was only predictive 

by high naïve CD4+T-cells. On the other hand, Treg, IRC and CD4 T-cells still 

showed slight difference in data distribution with no predictive added value over 

naïve CD4+T-cells and clinical data. Of note, modelling (fully adjusted for clinical 

parameters) used a forward method that allows the model to select the best 

predictive biomarkers confirmed high naïve CD4+T cell as the only LS retained 

for MTX-induced remission based on DAS28<2.6 with  smoking and CRP 

retained in the model and 70.20% accuracy (AUC=0.734) . 

Our group reported a significant value for a naïve CD4+T-cell subset being 

predictive for remission in ERA treated with MXT(n=120) although using the 

“Enter” method (other variables not contributing significantly to the model). I 

performed logistic regression using the “Forward” method to compare the 

previous model on my current data. Interestingly, both models retained the same 

set of predictors (smokers, CRP, and naïve CD4+T) regardless of the logistic 

regression method used with closely comparable accuracy. This confirms that a 

model with naïve CD4+T is indeed sufficient to predict MXT-remission while 

adjusted with demographic/clinical data.  As a result, employing naïve CD4+T 

cells as a biomarker may have positive implications for a personalised treatment, 

as well as the cost-effectiveness of treatment in early RA patients starting MTX. 

However, this finding may need to be further validated by an independent study 

notably in early RA disease.  

Prediction of response to drugs such as biologics may use different cell subsets 

as conventional synthetic disease-modifying anti-rheumatic drugs (csDMARD). 
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Both types of drugs potentially have different targets and may have different rates 

of response at different stages of the disease. In the first study by our group , 

higher naïve cell frequency was not found to be associated with remission in 

patients who received MTX concomitant to anti-TNF (n=70), suggesting a unique 

role of the naïve subset in the prediction of MTX response in RA. This remains to 

be examined in more details. 

My findings showed an increase in circulating putative B-reg frequencies 

paralleling a reduction in Treg in pre-RA, suggesting an additional role for 

regulatory mechanisms before the onset of clinical synovitis. Functionally 

defective B-regs have been associated with homing to synovitis [270] while other 

studies have associated inflammation with the expansion of B-regs [767, 768]. In 

new-onset RA, the failure of B-reg to maintain a functionally suppressive Treg 

population was demonstrated [270, 769]. It is therefore conceivable that a 

decrease in Treg (loss of tolerance), paralleled with an increase in B-regs 

(subclinical inflammation) are both associated with progression to IA.  

On the other hand, my findings do not exclude that, B-regs may be functionally 

defective [770, 771] or were excluded from the synovium (i.e., circulating), limiting 

their ability to perform their role locally. Future work will be needed to determine 

which hypothesis may be correct using functional studies to understand the 

reason for the increased Breg associated with at-risk progressors. 

Consistent with our original work [3, 5], a reduction in circulating naïve and Treg 

CD4+T-cells frequencies and an increase in IRC-CD4 predates the development 

of IA . Since this original work, a standardised normalisation procedure for the 

naïve/memory and Treg subsets was established [3, 5], allowing analysis of 

different phase-specific outcomes across the IAC using continuous data. 
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Applying this to this group of 210 patients provided further validation of the 

original 3 CD4+T-cell subset model using the same logistic regression approach 

based on entering all variables in the model (enter method), however, it 

suggested that IRC-CD4 were no longer independently contributing to the 

prediction in this larger group (OR=1.104, p=0.144). Modelling using a forward 

method allowing for the best predictors only (accuracy=78.6%, AUC=0.880) 

confirmed that IRC was less predictive of the overall progression over 10 years, 

while still highly associated with rapid progression over 12 months, as also 

observed in the clustering (Figure 47) where most of the rapid progressors (68%) 

were in Cluster 3 defined by higher CD4+IRC.  

We have associated many defects in the naïve CD4+T-cell subset with early RA 

pathogenesis, notably in relation to a decline in thymic activity, aberrant signalling, 

and aberrant proliferation reducing their TREC (T-cell receptor excision circle) 

content by more than 50% (1-2 cell cycle) [7], impaired IL7 responsiveness [772] 

and recently an IL6-driven network of epigenetic modifications suggesting the 

development of a subpopulation expressing more pro-inflammatory cytokines and 

closely resembling IRCs [1, 428]. In addition, naïve CD4+T-cell loss was also 

shown to directly result from the differentiation of naïve cells into IRC [7], a 

process driven by inflammation directly related to measures of inflammation [7] 

with a central role for IL6 in driving such changes and loss of IL6R expression as 

a result of its signalling [428]. Furthermore, IRCs persist when inflammation is 

subclinical due to reduced expression of pro-apoptotic genes (Bax expression) [1] 

and are associated with the occurrence of flares in patients in synthetic-DMARDs-

induced remission [773]. Most importantly, IRCs remained naïve to an antigen 

challenge (hence expressing CD28) [1, 7] and were shown to be recent progeny 
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of naïve cells with a high content of T-cell receptor excision circles (TREC) [7]. As 

such, they are not to be confused with terminally differentiated T-effector memory 

T-cells (TEMRA) re-expressing CD45RA with controversies about high/low levels 

of expression of CD45RO and expression of CCR7 (reported negative or 

positive), while more consistently lacking CD62L, CD27 and CD28 expression, 

with also differences between CD4+ and CD8+ T-cells [774-777] and are antigen-

experienced. The 5-colour panel used here does not include all the markers that 

could definitely differentiate all the various memory subsets of T-cells, but this 

does not alter the biomarker value of the IRC phenotype identified in this study. 

Indeed, here, we observed that IRC-CD4 enables segregation of a particular 

cluster of patients, the majority being rapid progressors, progressors being in 

Cluster-III. This further supports the hypothesis that imminent progression 

towards IA may be driven by an event involving or resulting from subclinical 

inflammation, driving or being associated with the differentiation of naïve CD4+T-

cell into IRC as previously hypothesized [3, 7, 428].  

Other CD4+T-cell subsets are relevant to RA pathology, notably Th17 cells and 

Tfh cells [778, 779]. However, it would have been very limiting to include panels 

for these in 2017-19 having started this work long before these were identified. 

Alternatively, the addition of a test for the enumeration of Th17 cells using a DNA-

methylation specific qPCR [359], is however possible and should prove 

informative using stored whole blood.  These subsets remain to be investigated 

more closely for a potential biomarkers value in the future. 

Higher CD4+T-cell predated RA development in patients with clinical synovitis 

against those who developed other types of inflammatory arthritis (non-RA). In 

contrast, though later in established RA, a lower CD4+ T-cells have been reported 

in severe cases possibly (associated with intestinal bleeding) [780, 781]. 
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Congruent with my result, another study comparing RA versus OA (a type of non-

RA), reported significantly higher CD4+T-cells frequency in RA [782]. In contrast 

to no difference being reported in another one [783]. Therefore, the relative 

increase (~4%) in CD4+ T-cell in RA was visible probably because a variety of 

non-RA diseases (e.g., OA, SpA, pSA etc.) was included in the comparison group. 

Although CD8+T-cells share some of the pathways genetically associated with 

CD4+T-cells in RA [206], to my knowledge they have not been reported for their 

potential biomarker value, with one report presenting an association with 

arthralgia[464]. In preclinical IA, reports however suggest that CD8+T-cells make 

up approximately 40% of the total T-cells infiltrating the synovium [184, 559]. 

Following prolonged/chronic exposure to infectious agents, alterations in homing 

molecules expressed by CD8+T-cells occur [468], resulting in enhanced/altered 

migration. Here, I indeed demonstrated a reduced frequency of circulating 

CD8+T-cells, predictive of progression that could be reflecting 

migration/accumulation into the joint. Alternatively, this reduction could reflect a 

contraction of the CD8+T-cell pool following an infection (post activation cell-

death), suggesting a role for subclinical infections as additional environmental risk 

for RA, as proposed in the past [473]. Furthermore, cell-death causes the release 

of inflammatory mediators that might also serve as triggers of cascades of events 

particularly Netosis [784]. In my study, NK-cells CD56dim were also predictive of 

progression suggesting that dysregulation of NK-cells may have a significant 

biological role, further fuelling an inflammatory cascade leading to disease 

progression. Several studies have indeed supported a role for NK-cells in RA 

pathology [293, 785] and at the onset of disease in ACPA+ RA and in pre-RA 

(arthralgia), although this observation was not directly related to progression 

[466].  
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Taken together, data presented in a flow chart (see Figure 70) showed that  3 

novel cellular biomarkers (CD8, NK, and Breg) were identified. I demonstrated 

their predictive value for progression in addition to validating the predictive value 

of 3 CD4+T subsets across the IAC previously reported by our group. 

▪ All 6 subsets were predictive for progression in seropositive + arthralgia 

individuals. (3 CD4+T cells were previously reported and currently 

validated by me while also showing the added value of 3 other subsets 

(CD8, NK, and Breg) not previously reported in this cohort) 

▪ Only naïve was predictive for the diagnostic phase while Treg and IRC 

showed significant association. (previously reported by our group and 

currently validated in a large cohort in my thesis) 

▪ For the clinical response phase, the naïve subset has shown predictive 

value for both csDMARDs- and bDMARDs-induced remission in RA-

treated patients whereas only Treg and IRC were associated with 

remission in csDMARDs-treated patients alone (previously reported by our 

group and currently validated in a large cohort for csDMARDs only in my 

thesis).  

▪ In flare, the 3 CD4+T subsets (naïve, Treg, and IRC) have shown 

predictive value but only with csDMARDs treatment while 2 of the CD4+T 

subsets (Treg and IRC) have been reported to be also associated with 

flare in patients treated with bDMARDs (previous report by the group).  

▪ Of note, there were no identifiable biomarkers yet for seropositive 

individuals without arthralgia (hence bars with question marks) as it would 

require 10-year retrospective samples to be able to isolate such a cohort 

–a daunting task. 

 



 
 

339 | P a g e  
 

 

The major clinical benefit of being able to predict rapid progression would be for 

patients to access treatment at the critical very early IA/RA stage (i.e., 1-2 weeks 

of detectable synovitis) and to assess whether this can affect the long-term 

outcome/prognostic of these patients compared to routine early arthritis referrals 

(up to 2 years symptom duration). These are all studies currently ongoing in Leeds 

and hopefully will be reported in the future. Although few RA prevention trials have 

been reported (many being in progress/planned), it remains unclear whether IA 

development can be prevented in at-risk individuals and which drug/regimen 

would be most appropriate. Recent trials nonetheless suggest this may be 

possible: the APIPRRA study (ISRCTN-46017566 using abatacept [786] showed 

a sustained preventive effect at 2 years (data presented at EWRR and EULAR 

2023); the PRAIRI study (using rituximab [12] also showed delayed progression. 

My data add valuable information that could contribute to risk stratification (as well 

as an understanding of the biology of the at-risk phase), but do not in themselves 

justify treatment for the time being. Different LS being indicative of the imminence 

of IA, our data may therefore find their best utility in selecting possible 

interventions targeting these cells/subsets/events, supporting personalised 

clinical-decision making, and guiding the selection of patients best suited for such 

preventive intervention.  

On the practical side, although my group transferred these panels  to the NHS 

services (back in 2013, based on the use of fresh whole blood samples), currently 

these specific panels are still only available in Leeds, while the technology itself 

is used worldwide and can provide data for clinical use in about 3-5 hours. A 

protocol that would allow for frozen blood samples (using SmartTubesTM) [7] 

https://www.isrctn.com/search?q=+ISRCTN46017566.+
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could facilitate the use of these panels in a single flow centre (i.e., for 

retrospective analysis of samples as well as prospectively).  

Alternatively, the technology can easily be replicated as recently shown in a 

collaborative work between Leeds and France (panels were transferred and data  

were replicated and merged with no bias) [9]. Careful planning of the number of 

antibodies/panels could be rationalised to suit local technical flow machine 

capacity (using SSC/CD4 gating for example). Novel technical development such 

as the use of DT technology whereby antibodies are pre-coated on flow plastic 

tube would also considerably help reduce procedure time (no pipetting) and 

increase adherence to SOP (although not suitable for Treg).  

Using flow cytometry data as biomarkers in the NHS can be robust and feasible, 

despite technical issues, possible human error and subjectivity in gating 

strategies, and outweigh the challenges in view of the potential benefit to 

patients.  The strength of FC as a biomarker tool lies in its ability to provide 

valuable information into disease prediction and management within a day (like 

most other laboratory test (including FC) generated by the NHS ) that can guide 

personalized treatment strategies and improve patient outcomes. Furthermore, 

FC-based biomarkers are already largely utilised in NHS for many other 

purposes  (see section 1.9.3) .These FC-biomarker panels were transferred to 

the NHS in Leeds in 2013 from being previously done in the Translational 

Research in Immune Mediated Inflammatory Diseases  (TRIMID) group for over 

5 years (since 2008), after demonstrating their clinical utility [5, 359, 520, 772, 

781, 787], being replicated in another laboratory in France [9].  

While others FC-based biomarker developed by other groups have also 

demonstrated value in the past as previously discussed in section 1.7 . These 

findings collectively  emphasize the potential clinical relevance of FC-based cell 
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subset data as potential biomarkers in predicting disease outcomes and guiding 

therapeutic interventions. Nonetheless, it is important to acknowledge that these 

studies were not replicated (to date) or performed in routine hospital service, 

while ours repeatedly validated our initial results, is performed in routine settings 

and showed added values over clinical only data models. Furthermore, the 

strategy used for modelling allowed individual prediction (using an individual 

patient’s probability to achieve a outcome) enabling personalised medicine. 

Further advancements in FC technology and international standardization efforts 

have improved the reproducibility and reliability of FC data, enhancing its 

potential for clinical applications across sites. Initiatives such as the EuroFlow 

Consortium [690, 788] aim to standardize flow cytometry protocols and data 

analysis algorithms, thereby minimizing variability and facilitating the comparison 

of results across different laboratories and studies. Independently, the current 

study re-analysed the raw data retrieved from NHS and performed a rigorous 

validation analysis confirming the reliability of data produced by the NHS 

compared to data produced in research settings (ICC > 0.70). This suggests that 

with standardized protocols and rigorous training, the personal subjectivity of 

gating strategies can be mitigated to a large extent. Human error can also be 

mitigated by implementation of SOPs and the development of strict exclusion 

rules for poor samples quality.   

Altogether, the rich information provided by cell subsets and the ongoing efforts 

to standardize protocols and improve analysis methods makes them worthy 

addition to the panel of tool with hight clinical utility for the management of RA. 

Thus, despite challenges, FC biomarker for cell subsets should become a 

adopted tool in personalised medicine and hold promise for improving patient 

care.   
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 In conclusion, my study suggests that LS homeostasis is dysregulated at the 

early stage of the RA disease continuum before clinical synovitis occurs. I have 

demonstrated the additional predictive value of CD8+ T-cells B-reg and NK-cells 

besides the previously established CD4+T-cell subsets while further validating 

the highly predictive value of naïve CD4+T both in diagnosis and MTX-induced 

remission previously reported by our group. I demonstrated that perturbations in 

different subsets are associated with progression to arthritis, including rapid 

progression within 12 months, suggesting that additional time-dependent cell-

based events are necessary for the progression to IA, while the development of 

systemic autoimmunity is not sufficient alone. Secondly, these panels are simple 

to perform routinely offering new tools to manage and stratify the risk of 

developing IA in ACPA+ at-risk individuals. However, there is still a need to 

investigate other LS not included in the 18 subsets reported here. For instance, 

Th17 and Tfh subsets that have shown to fuel inflammatory response in the 

synovium[211, 212, 223] and their hypothetical role in pre-clinical RA needs to be 

confirmed (which the pandemic prevented me to start). FC-based identification of 

cellular subsets is indeed a valid biomarker, but alone it may not capture the full 

complexity of diseases like RA and other inflammatory conditions. Other 

biomarker approaches such as genetics, transcriptomic analyses, proteomic 

profiling, and epigenetics may offer insights into the underlying mechanisms and 

can complement cellular subset analysis, enhancing our understanding and 

predictive models of these diseases.  Integrating these various biomarker data 

can enhance the predictive power of models, aiding in diagnosis, prognosis, and 

treatment strategies.   
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5.2.2 Clinical utility of flow cytometry data using frozen samples   

The original plan for this clinical trial (GOLMePsA) was to conduct the work at the 

NHS-immunology laboratory facilities in James University Hospital. However, due 

to COVID related restrictions to accessing laboratory space as well as the closure 

of clinics for over 18 months (all appointment were done by telephone), there was 

a need to change the original intended work plan. As a result, the flow cytometry 

work had to be carried out in the WTBB lab, utilizing frozen samples from only 31 

patients in the clinical trial which luckily had PBMC stored at 2-time points 

baseline and 12 months.  More samples were collected once clinic resumed but 

there was no time left to include them in my analysis (and no 12 months follow-

up). 

In the absence of drug arms and any other clinical information, I can only 

speculate about the meaning of these data. The trial was supposed to be 

randomized for treatment into equal halves, I used consecutive patients who had 

achieved the 12 months follow up. As such I was hoping to have equal 

representation of both arms (MTX and MTX+ golimumab). The difference 

between cluster A (n=22) and cluster B (n=7) being based on BL difference in B-

cells subsets is unlikely to represent the drug arms as these would suggest a bias 

in randomisation.  The absence of noticeable changes in subsets disturbance is 

more surprising and suggests very stable LS profiles in PSA which is not the case 

in RA.  However, there is the possibility that it may associated with response and 

non-response to treatment as non-response in early PsA (~40%) is less frequent 

than in RA (~50%) [789-791]. Therefore, and highly speculatively, 22 versus 7 

patients cluster groups could be related to response (n=22) versus non-response 

(n=7) as in early disease, non-response outcomes are not expected at a high 

frequency.  At this point, I cannot speculate further until I have access to the 
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clinical data (sometime in  summer 2024), unveiling of drug arms and responses 

group for me to validate this analysis. This will be part of further work, also adding 

data from 50 more patients who have now finished the study ( December 2023). 

While the original aim of investigating the LS for predicting treatment outcomes 

in early PsA patients could not be achieved due to COVID and MHRA/clinical trial 

unit restrictions on accessing clinical data (for unblinding/response). The LS data 

may still prove valuable for the overall trial analyses and the remaining FC data 

will be acquired. Over the work in the EAC on 18 LS  for diagnostic purposes, 26 

PsA patients were classified as non-RA. In these patients, the profile of LC 

changes was different from that seen in RA (as described below Table 45) as 

well as for Th17 from another study in fresh blood[9].  

My data in frozen samples (at BL) are aligned with the disturbances specifically 

seen in PsA.  For instance, NK cells have been reported to be reduced in number 

in PsA due to their recruitment to the synovium[792] .The progression from PsO 

to PsA is marked by  disturbance in immune profiles, with specific T-cell subsets 

(CD8+T and Treg shift towards reduction) playing key roles in perpetuating 

inflammation[793, 794] . This highlights the pathological role of lymphocytes in 

during the course of the disease which may hold promise as biomarkers for 

predicting outcomes in PsA patients, 
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Table 45 LS analysis in 26 PsA patients compared to HC in fresh blood 
samples (BL data) 

 HC (n=35) PsA (n=26) p value  *RA  (n=206) 

LS 

CD4% 48 (29; 66) 39.8 (17; 68) 0.008 
     55.29 

(46.93-61.88  

CD8% 17.9 (6; 43) 14.2 (6; 30) ns  
      18.15 

(12.72-23.39)  

B % 10 (3.7; 19.3) 12.4 (4.5; 25.6) ns  
       9.85 

(7.62-13.64)  

NK% 13.6 (5; 35) 8.7 (1.4; 35) ns  
7.61 

(4.90-13.05  

NKT% 3.4 (0.6; 27.4) 2.1 (0.1; 20) ns  
1.69 

(0.87-4.10)  

CD4+T-cell 

Norm-naïve $ -0.1 (-19.7; +142) +2.2 (-22.8; +17.4) ns  
-4.71 

(-13.81-4.75)  

Norm-memory $ 
+0.6 (-10.6; 

+16.1) 
+0.5 (-7.4; +18.3) ns  

-3.51 

(-7.59-1.34)  

IRC 1.3 (0.1-7.9) 2.8 (0.6;29) <0.0001 
2.80 

(1.30-6.00)  

CD8+T-cell 

Norm-Naïve  $ -3.3 (-23; +22.5) +9.4 (-18.8; +39) ns  
5.76 

(-4.07-13.91)  

Norm-memory $ +0.1 (-21.3; +28) -16.6 (-23; +44) <0.0001 
-16.85 

(-25.45- -7.77)  

IRC  1.0 (0.5 ; 36) 7 (2 ; 28.5) <0.0001 
16.25 

(7.45-23.70)  

B-cell 

Norm-naïve $ -3.5 (-28; +20.2) -6.1 (-37; +13.3) 0.042 
-0.99 

(-13.92-10.11)  

Norm-memory $ -5 3 (-23; +31) +2.9 (-22.6; +41) ns  
-2.595 

(-11.29-13.24)  

Breg  2.5 (0.5; 5.8) +4.7 (0.4; 13.6) <0.0001 
4.10 

(1.60-5.70)  

Treg 

Norm-Treg % $ +0.1 (-2.8; +2.8) -0.6 (-2; +1.3) ns  
-1.64 

(-2.88- -0.50) 

Th17 cells  

Th17 % 6.5 (4.1; 13) 5.1 (1.2; 14) ns  Not done 

$ normalised values, , data are presented as median (range. *RA result from EAC 
cohort (see Table 34, page 274), ns=non-significance 
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Conclusion 

The overall hypothesis of my thesis was that lymphocyte dysregulation assessed 

by flow cytometry could provide biomarkers for the management of rheumatoid 

arthritis (RA). The first part of this hypothesis was achieved. 

1. assessing the reliability of the wet-based FC data obtained by NHS 

services, 

2. validating the use of novel flow-cytometer dry-tube technology compared 

to wet-tube currently used, and  

3. finally validating FC on frozen samples  

In connection with the first hypothesis, I showed that wet-based FC data retrieved 

from the NHS were affected by one or more types of errors. When combined 

(Human error-missing Ab, Technical error-faulty acquisition, Poor sample 

quality), resulted in a failure rate greater than 10% for generating data passing 

the QA/QC procedure required for FC biomarker test. This necessitated the 

development of rules for exclusion that should be incorporated in the final SOP 

for a flow cytometry biomarker test. The study further demonstrated the feasibility 

of using the novel DT Technology for T-cell panel as a replacement for the WT 

flow cytometry method in the NHS routine immunology laboratory. For the FC 

validation on frozen samples, I demonstrated that only PBMC with ≥15% cell 

viability represented a suitable viability limit that allowed flow cytometry analysis 

with limited risk of mis-enumeration. 

As a second aspect, the involvement of immune cells in RA pathogenesis has 

been extensively studied [5, 7, 428, 583, 726-729], leading to a compelling need 

to identify comprehensively blood cell flow cytometry biomarkers with predictive 

value that can support improved RA management; from at-risk individuals, to 
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diagnosis of RA, and selecting optimal treatment option with improved accuracy. 

My group has demonstrated the predictive value of a few cellular biomarkers 

(notably multiple CD4+T subsets) for progression across the IAC, however, the 

effector profile of other immune cell types in all stages of the disease across IAC 

is yet to be fully explored.  To bridge this gap, the second part of my thesis set 

out to test the hypothesis. 

1. That comprehensive blood cell phenotyping has added clinical value for 

the management of RA:  

(i) in predicting clinical outcomes across the IAC, and  

(ii) ii) providing further understanding of the events driving progression.  

This aspect was also achieved. My data demonstrated that in ACPA+ at-risk 

individuals wider LS dysregulation preceded the development of clinical synovitis, 

while also providing increased accuracy over previous models with only CD4+T-

cells subsets. I also demonstrated the additional predictive value of CD8+ T-cells, 

B-reg, and NK-cells besides the previously established CD4+T-cell subsets while 

further validating the highly predictive value of naïve CD4+T both in diagnosis 

and MTX-induced remission previously reported by our group. Therefore, my PhD 

provided further insight into understanding cellular events driving progression 

across the IAC and offered clinicians a set of new tools to manage and stratify 

the risk of developing Inflammatory Arthritis in at-risk individuals. 

Finally, I demonstrated a new set of classification biomarkers for sero-negative 

RA, providing clues to the identity of cells (notably, naïve CD4+T and CD4+T) 

involved in the events triggering progression towards ACPA-negative RA patients 

with a predictive accuracy of 84%. 

In addition, DT technology offers a powerful tool that will deliver easy-to-use 

standardization of multicolour flow cytometry data across multiple instruments 
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and maximize laboratory efficiency by eliminating repetitive pipetting and human-

prone errors.   

5.3  Future work 

I am hoping to complete the statistical modelling of outcome analysis and 

prediction for response to drugs in PsA patients from the GOLMePsa clinical trial 

which I could not finish due to the COVID-19-associated delay that affected the 

unblinded date.  I will start as soon as the unblinding of the trial is done and 

clinical data is made available (sometime in 2024) to emerge with flow cytometry 

data (LS which is now fully analysed). Secondly, I will, together with my 

supervisor (Frederique Ponchel) and other clinical colleagues (Gabriele De 

Marco, another PhD student working on the trial, and Helena Marzo-Ortega, PI), 

write up the findings for publication. 

To test the hypothesis generated from my thesis regarding Breg functionality; the 

increased Breg associated with at-risk progressors may be functionally defective 

or due to exclusion from the synovium, limiting their ability to perform their role 

locally. Future work will be needed to determine which hypothesis may be correct. 

Finally, to understand the role of NK/CD8+T in pre-RA, I would like to add other 

different subsets, Th17 and Tfh in pre-RA. 

The study on the EAC cohort investigating the LS as biomarkers for the predicting 

RA diagnosis used a disease comparison group (termed the non-RA group) 

which comprised all other forms of inflammatory arthritis (PsA, ReA, OA, Gout, 

UA and AS as well as a few connective tissue disease) and non-persistent  

symptoms, In the future, it will be interesting to consider disease comparison 

groups independently as it would partly shed more light on the ongoing debate 

on whether LS may also have value in these disease. The TRIMID research 
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group already described such potential in AS for response to anti-IL17 but not for 

anti-TNF, there are clear disturbances in PsA (described above) as well as those 

observed in OA [4]. The value of these disturbances remains to be investigated 

to establish if any may prove to also have  biomarker and novel programmes 

should be developed for this disease as did for RA.  
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Chapter 6 Challenges and limitations  

Clinical predictors in the at-risk models developed in my PhD were slightly at 

variance with those from a previously published model [312] probably because 

different patients and parameters were used (notably 78-TJC rather than hands 

small TJC and importantly, ACPA-positivity validated by a research CCP2 test). 

Model-1 notably only explains 25% of the variance in predicting IA. Modelling 

using combined data in model-3 showed that 6 LS and the same 4 clinical 

parameters had superior value over model-2, and clearly over model-1 (+15.7% 

accuracy). Nonetheless, only 62% of the variance can be explained by model-3, 

leaving room for additional biomarkers to be added, possibly using imaging [795], 

genetics, transcriptomics, and cytokines previously discussed section 1.6 or 

epigenetic modification as recently evidenced in early RA [428]. 

Enumeration of cellular subsets is indeed a valid biomarker, but alone it may not 

capture the full complexity of diseases like RA. Other biomarker approaches such 

as genetics, transcriptomic analyses, proteomic profiling, and epigenetics may 

offer insights into the underlying mechanisms and can complement cellular 

subset analysis, enhancing our understanding and predictive models of these 

diseases. However, to achieve a more complete view of the events that underpin 

progression and response to treatment in RA, it is likely that biomarkers present 

in several data types will need to be measured in the same individuals permitting 

a more holistic analysis approach. These various biomarker modalities 

complement each other and provide a more comprehensive understanding of 

disease mechanisms and heterogeneity. Integrating these various biomarker 

data can enhance the predictive power of models, aiding in diagnosis, prognosis, 

and targeted therapies tailored to individual patients' needs. 



 
 

351 | P a g e  
 

Furthermore, the presence of comorbidities in rheumatoid arthritis (RA) as 

previously mentioned in section Error! Reference source not found. can s

ignificantly impact the identification and enumeration of cell subsets, although in 

the work described in this thesis, this is a relatively minor concern as the disease 

is in its pre-clinical/early stage and those have not yet developed. Cardiovascular 

disease (CVD), is often comorbid with long lasting RA. It develops due to the 

burden of chronic inflammation and may potentially alter the proportions of 

different immune cells. Specifically, CVD can induce alterations in immune cell 

subsets, particularly atherosclerosis-related changes. For example, plaque 

formation in blood vessels was associated with alterations in monocyte and T cell 

subsets, affecting immune cell distribution and function [796, 797]. Additionally, 

conditions like obesity (reflected in BMI) are linked to chronic low-grade 

inflammation, which can disrupt immune cell distribution-phenotypic and function 

changes through various mechanisms like metabolic dysregulation [798]. 

Diabetes Mellitus (DM) is another common comorbidity in RA, and both diseases 

share inflammatory pathways [799]. Here hyperglycemia and insulin resistance 

can dysregulate immune cell function, affecting subsets T cells and 

macrophages. Moreover, DM-associated complications like diabetic neuropathy 

and nephropathy can exacerbate inflammatory responses [799].  

Understanding these late disease comorbidities is crucial for RA management, 

as they can influence disease severity and treatment outcomes [509]. Addressing 

these interconnected health issues holistically improves patient care and 

enhances overall prognosis in individuals with RA. 
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Further comparison with other models [350, 581] notably the most recent one 

[795] that used more than 30 candidates is difficult as they did not use the same 

statistical approach (also not providing AUC) but my model 3 showed high 

performance (AUC=0.911) for the overall prediction, while rapid progression is 

slightly less good but still high (AUC=0.794). On the other hand, I observed similar 

findings in RF+ only patients (4/13 progressors) which also confer risk for IA 

development in patients with arthralgia [6]. This was verified for naïve, Treg, IRC, 

and CD8 but not for NK and the B-cell subsets (possibly due to small numbers). 

This nonetheless suggests potential predictive value for these LS across at least 

2 risk-related autoantibodies. Further work would be needed to evaluate these 

with respect to other risk factors such as genetic (HLA-DR SE) and/or lifestyle 

(smoking), however, I already showed higher predictive value for LS than for 

known risk factors.    

Other limitations of my work include the relatively low number of subjects with all 

flow panels across the 3 stages of the IAC, notably due to B- and LC-panels not 

being available and the selection of ACPA+ participants with a highly specific 

CCP-2 test for the at-risk stage.  

I also acknowledge the limitation of the statistical modelling approaches and 

performed the optimism correction to account for this in model-3 and 6 for the at-

risk cohort, while the model with only the 3 CD4+T-cell subset clearly reproduced 

previous data [3, 5]. External cohorts would be critical to fully validate these 

findings. The main hurdle in any biomarker research programme is that it can 

only be replicated if the selection criteria for the study population are the same. 

For instance, there are many cohorts of at-risk individuals worldwide [312, 352, 

765, 800, 801] but they all use different criteria to define individuals at-risk of RA, 
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preventing the generalisation of any findings. The data presented here 

nonetheless replicate previous models, while the final model using more subsets 

showed clear improvement across the IAC. 

Addressing missing cell data was crucial for obtaining reliable estimates in the 

analysis. To handle missing data effectively, multiple imputation was employed, 

a method known for reducing imprecision and bias compared to other approaches 

like complete case analysis or single-value imputation methods [802, 803]. Unlike 

single-value imputation methods, multiple imputation does not replace missing 

data with a single predicted value. Instead, it inputs multiple values for each 

missing item, incorporating random errors to better reflect the true distribution of 

the original measure. By imputing missing entries based on statistical 

characteristics of the dataset, such as associations among variables and their 

distributions, multiple imputation provides accurate estimates and reduces the 

risk of false conclusions [803, 804].  

Data cleaning was carried out to mitigate bias due to missing data and ensure a 

usable dataset was included in the statistical analysis and modeling. For instance, 

samples missing all B-cell and lineage subsets were excluded from the analysis 

before imputation (described in detail in section 4.2.1.1). This allowed multiple 

imputation to be performed for data with no more than a certain threshold of 

missing values, avoiding potential bias and loss of statistical power. Multiple 

imputation is a widely accepted statistical method for handling missing data, 

applicable to various types of data [805-807] , including cell data [795, 808-810]. 

However, its validity relies on assumptions about the mechanism of missingness, 

particularly that data are missing at random (MAR) [804, 811] . Unfortunately, the 

missingness mechanism is not usually fully known and is often a combination of 

more than one mechanism. However, including all possibly relevant predictors in 
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the imputation model [812-816] and conducting tests to possibly reject other 

mechanisms for missingness, such as missing completely at random (MCAR), as 

was performed in  this work, ensured that the imputation model yield reliable 

results. Diagnostic checks also confirmed the validity of the imputed dataset. No 

significant differences obtained when the original dataset was compared to the 

imputed dataset suggest that the imputed data accurately reflected the original 

dataset. 

Unfortunately, COVID-19 prevented the development of the Th17 panel within 

the NHS immunology service, hence further work will need to add Th17 cells to 

provide a more comprehensive picture and maybe as well as Tfh subset and 

overall refined the B-cell subset for certain class of drugs.  
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6.1 Covid Statement 

The COVID-19 lockdown and the restriction policies affecting access to facilities 

both within the NHS and University settings were a major setback for my Ph.D. 

This had a major impact on my activities when working with human samples and 

data analysis as well as for using the offline flow cytometry facilities.  

To summarise this, the covid-19 lockdown in March 2020, started just 5 months 

after my start date on 1st Oct 2019 and lasted for 6 months. Access to the lab 

remained limited for another 9 months after that.  

My supervisor managed to provide me with alternative means to perform my data 

analysis for raw data already retrieved from NHS services before the lockdown 

(ie., FCS files from servers). However, this took 4 months and impacted my 

progress in acquiring data due to having to identify a suitable laptop with Windows 

7 manager right to restriction to install DIVA software. This time was thankfully 

used to progress my literature reading and writing of my transfer report, although 

with very limited data could be included. I have unfortunately not been able to 

recover the lost time on this part of my PhD project.   

Another aspect of my experimental work requires me to access NHS immunology 

premises which were also halted in March 2020 and to patients samples. This 

restriction has not been lifted until clinics resumed in late 2022. This also greatly 

impacted on the DT chapter of my thesis.   

A 3rd aspect of my project included work on a clinical trial that was stopped due 

to MHRA restriction  during the pandemic. This trial could not terminate as 

planned (end of 2021) in time for the drug unbinding and clinical data release that 

would be necessary for me to complete my analysis for this chapter of my thesis. 

This was the biggest challenge as access to clinical data (for a small set of 32 

patients) was refused by the MHRA. With the support of my supervisors, we had 
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to design an alternative strategy for me to exploit the flow data acquired and this 

took out a great part of my thesis as well. Thankfully, this time was used to 

develop additional data analytical and statistical skills. 
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1. Purpose and scope 

This SOP provides instructions for the isolation of PBMC (Peripheral Blood 

Mononuclear Cells) using pre-filled LeucosepTM tubes at LIRMM Chapel Allerton. 

This SOP must be followed to ensure a high standard of separation and storage of 

biological samples as the way a sample is collected, transported, fractionated and 

stored will affect sample integrity which is extremely important to the final laboratory 

or research results. 

 

2. Health and safety 

2.1 All employees should make themselves aware of any health and 

safety issues related to the use of Chemical and biological 

hazards and demonstrate adequate training has been received.  

Employees are responsible for ensuring the health and safety of 

themselves and others in the workplace.   

2.2 Biological samples may represent an infection risk; therefore appropriate 

protective equipment should be worn. Lab coat and gloves should be worn 

whenever handling biological samples. Dispose of all biological solid waste in 

biological hazardous waste container.   

 

3. Detailed description of the method. 

 

3.1 Blood processed in the CAH Lab for PBMC can be collected in Lithium Heparin 

(green top) or K2ETDA (purple top) tubes. 

The blood collection must be carried out by a suitably trained registered nurse, doctor or 

phlebotomist and should follow site-specific practices. 

Blood tubes should be labelled either with the sample barcode or where handwritten, 

labelling should be legible and in permanent ink. 

In the case of any very specific collections the procedure will be agreed with the lab to 

maintain required conditions through the study. 
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CHAPTER 8 MATERIALS AND EQUIPMENT 

 

3.2.1 Equipment: 

Laminar Flow Cabinet 

ALC PK 130R centrifuge 

Freezer -150C and -80C 

Pipetteboy 

Materials: 

Sterile 50ml centrifuge tubes and sterile 15ml conical tubes 

Sterile 2ml tubes (e.g. Greiner BIO-ONE 123263) 

Inserts for tubes e.g. Sarstedt 65.386 

Sterile 10ml, 5ml and 1ml pipettes 

Sterile pastettes 

Storage box suitable for -150C freezer 

Mr Frosty or Cool Cell 

Pre-filled 50ml LeucosepTM tubes eg Greiner Bio-one  227 288 

3.2.2 Reagents 

Sterile Phosphate Buffered Saline (PBS) (e.g. Gibco 18912-014) 

Fetal calf serum (FCS) heat-inactivated eg Gibco 16140063 

DMSO eg Sigma D2650 

Isopropanol (for Mr Frosty) 
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3.3 PROCEDURE for PBMC separation from blood samples using LeucosepTM tubes (carry 

out procedure in a laminar flow cabinet) 

3.3.1 If any of the density gradient medium has risen above the porous barrier in 

the LeucosepTM tube during transportation then a 1minute spin at 1000g is 

required before use. 

3.3.2 Dilute the blood sample in an equal volume of sterile PBS 

E.g. if you have 15 ml of blood add 15 ml of sterile PBS 

3.3.3 Pour the blood/PBS mixture gently on top of the barrier in the tube. 

3.3.4 Centrifuge at 2500 rpm/900g for 10 minutes with no chiller and no brake 

(programme 4 on ALC PK 130R). 

3.3.5 After centrifuging the PBMC layer appears as a cloudy layer between the 

plasma and separation medium. 

 

 

 

3.3.6 Harvest the PBMC layer using a sterile pastette or by pouring the liquid 

phase above the barrier directly into a 50ml centrifuge tube. Use a small volume 

of PBS to wash the LeucosepTM tube and add this to the cells. Make up the 

volume to 40ml with PBS. 

 3.3.7 Centrifuge at 1200rpm /250g for 10 minutes (programme 5 on ALC PK 

130R). 

 3.3.8 Pour off the supernatant, resuspend the pellet and make up the volume to 

40 ml with sterile PBS. 

Wash by centrifuging at 1200 rpm/250g for 10 minutes. 

3.3.8 Repeat washing step using a 15ml tube and 10ml of PBS. 
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        Proceed to either 3.4 or 3.5 

 

  

3.4  TO SAVE THE CELLS AS A DRY PELLET (eg FOR DNA ANALYSIS) 

3.4.1 Pour off supernatant from 3.3.8,  resuspend pellet and transfer to a 2ml tube 

3.4.2 Make up the volume to 2ml using PBS 

3.4.3 Spin at 7500rpm/5000g for 10 minutes in Hettich Micro 20 centrifuge. 

3.4.4 Pour off supernatant and blot on tissue paper until all the liquid is removed. 

3.4.5 Freeze at -80C. 

 

3.5  TO SAVE THE CELLS IN A VIABLE STATE 

3.5.1 Pour off the supernatant from 3.3.8. The lymphocytes are frozen in foetal calf serum 

(FCS) containing 10% dimethylsulfoxide (DMSO) in a volume of 1 ml per vial. The 

FCS/DMSO must be kept chilled in order to reduce cell damage. 

3.5.2 Add cells to 1ml freezing mixture (90% FBS + 10% DMSO) in 2ml vial and 

place in a Mr Frosty or Cool Cell in -80C freezer overnight before placing in -150C 

freezer for storage. 

 

NB if required cells may be counted using a haemocytometer or Bio Rad TC20 prior 

to freezing (see SOP 23E). 

 

4 Roles and responsibilities  

This SOP applies to all CAH Lab staff collecting research samples.  Where applicable 

this SOP must be used in conjunction with HTA Codes of Practice and all other 

relevant University and, where appropriate, local University Health and Safety 

policies and SOPS. 

4.1 The clinical staff are responsible for:  
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- completion of the appropriate Research sample request form for the particular 

study with correct and complete information in order to correct collection and 

recording of the sample.  

- data should include donor, study and time of collection. 

- signing the appropriate sample collection form by which they confirm that the patient 

has signed appropriate consent for the sample to be collected and used as part of the 

study/research purpose. 

 

The phlebotomists are responsible for:  

- identifying the patient against the details on the form before specimen collection, filling 

in collection time on the form. It is the responsibility of the person taking the sample to 

identify the patient, label the sample and ensure that the information supplied on the 

request form and sample are accurate and match in each case. 

4.2 The Laboratory personnel are responsible for: 

 - Working in accordance with this SOP. 

- Checking Research Blood Request Form and sample quality. 

- Recording relevant information about the sample condition into the study sample log.  

- Tracing missing information if reasonably possible.  

- Processing samples that have been collected accompanied by a complete and signed 

sample collection form.  

- Responding to queries.  

5. References 

1. Human Tissue Act 2004 

2. Human Tissue Authority, Codes of practice 9: Research  
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Appendix F SOP FOR B cell panel 

  

Routine standard flow-cytometry technique followed by the NHS-lab  
  

(A) B-cell panel SOP  
  
procedure or methodology  
Before handling biological samples and chemical contained within this SOP familiarize  
yourself with the COSHH and Risk Assessments and take the necessary precautions  
required.  
The sample is evaluated for risk status in the sample reception area of Room 07 09 154.  
All request cards/ forms must be stamped and booking in form should be completed at  
the sample reception desk. Once completed, it should be attached to the request card  
and put on the clipboard located next to sample reception tray. The original request card  
and the booking in form should have a telepath bar code sticker attached to them and  
the rest of the stickers should be attached to the sample bag. A sticker should be  
attached to the sample tube when the sample is taken from the bag.  
If the staining procedure is not performed straight away the sample should remain in its  
bag and stored in the high risk sample reception 20°C incubator in Room 07 09 161.  

1. Labelled test tubes with the patient initials and the name of the panel and 
placed them in a rack.  
2. Labelled 2 test tubes for each patient initials and the name of the panel and 
placed them in a rack.  

   
3. Add 300 µl of patient’s sample (whole blood) into one of the test tube and 
add 3 ml of PBS.  

   
4. Vortex and then centrifuge tubes at 1500rpm for 5 minutes; make sure tubes 
are balanced.  

   
5. Aspirate supernatant and resuspend the cells in 3 mL of 1X PBS.  

   
6. Repeat step 4 for the second wash.  

   
7. After the final centrifuge, aspirate supernatant; add 1500 µl of 1% PBS into 
the cell pellet and vortex.  

   
8. Add antibodies as listed below into the stain tube, ensure that the antibodies 
are pipette to the bottom of the tube and none is left on the side of the tube.  

   

1 µl CD19-BV421 (Biolegend cat # 302234)  4 µl CD10-APC (BD cat # 332777)  
2 µl IgD-V500  (BD cat # 561490)  10 µl CD27-PE (BD cat # 555441)  
2 µl CD38-PE-Cy7 (BD cat # 335825)  10 µl CD24-FITC (BD cat # 555427)  
2 µl IgM-PerCP-Cy5.5 (BD cat # 561285)     

   
Change pipette for each antibody.  
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9. Vortex the patient cell pellet (washed blood) and add 300 µL into the 
appropriate stain tube. Ensure blood sample and the antibodies are properly 
mixed. Ensure that the blood is pipette to the bottom of the tube and none is left 
on the side of the tube as it will not be incubated with the monoclonal antibodies 
and in analysis will appear as a false negative population. These volumes are 
critical and should be measured accurately as it will affect the results.  

   
10.  When dealing with more than one sample check the name on the EDTA tube 
matches those on the FACS Flow tubes.  

   
11.  Mixed gently and incubate for 20 minutes at room temperature protecting 
samples from the light during this time.  

   
12.  Add 5mL of lysing solution (3/4 full) into each tube, vortex and incubate for 
20 minutes at room temperature.  

   
13.  Centrifuge tubes at 1500 rpm for 5 minutes; make sure tubes are balanced 
(symmetrical).  

   
14.  Decant supernatant and resuspend cells.  

   
15.  Add 3 mL of 1% PBS into each test tube and centrifuge at 1500rpm for 5 
minutes  

   
16.  Decant supernatant and repeat washing procedure (as above).  

   
17.  Decant supernatant and resuspend in PBS + 0.5% formaldehyde 
approximately 5 drops.  

   
18.  Mixed solution and run on Flow Cytometer. Analyse within 24 hours on the 
FACSCanto Flow Cytometer using the B-cell template and acquiring 30,000 B cell 
events/samples.  

   
19.  Sample can be analysed immediately on the flow cytometer or analysed the 
following day. For next day analysis stored stained tubes in the fridge at 4ºC, 
protectd from light.  

   
N.B the Flow cytometer must be set up following SOP’s- Operation of FACSCanto Flow 
Cytometer and Calibration of Flow Cytometer (QC)  
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Appendix G SOP for LS panel 

(B) 
procedure or methodology  
Before handling biological samples and chemical contained within this SOP familiarize  
yourself with the COSHH and Risk Assessments and take the necessary precautions  
required.  
The sample is evaluated for risk status in the sample reception area of Room 07 09 154.  
All request cards/ forms must be stamped and booking in form should be completed at  
the sample reception desk. Once completed, it should be attached to the request card  
and put on the clipboard located next to sample reception tray. The original request card  
and the booking in form should have a telepath bar code sticker attached to them and  
the rest of the stickers should be attached to the sample bag. A sticker should be  
attached to the sample tube when the sample is taken from the bag.  
If the staining procedure is not performed straight away the sample should remain in its  
bag and stored in the high risk sample reception 20°C incubator in Room 07 09 161.  

1. Labelled test tubes with the patient initials and the name of the panel and 
placed them in a rack.  

   
2. Add antibodies as listed below into the stain tube, ensure that the antibodies 
are pipette to the bottom of the tube and none is left on the side of the tube. 
Change pipette tip for each antibody.  

   

1 µl CD19-BV421 (BD Cat # 562440)  10 µl CD3-FITC (BD Cat # 555332)  

2 µl CD4-V500 (BD Cat # 560768)  15 µl CD56-PE (BD Cat # 555516)  
3 µl CD16-PE-Cy7(BD Cat # 557744)  15 µl CD14-APC (BD Cat # 555399)  
5 µl CD8-PerCP5 (BD Cat # 560662)     

   
3. Invert (mix) patient blood and add 300 µL, ensure blood sample and the 
antibodies are properly mixed. Ensure that the blood is pipette to the bottom of 
the tube and none is left on the side of the tube as it will not be incubated with 
the monoclonal antibodies and in analysis will appear as a false negative 
population. These volumes are critical and should be measured accurately as it 
will affect the results.  

   
4. When dealing with more than one sample check the name on the EDTA tube 
matches those on the FACS Flow tubes.  

   
5. Mixed gently and incubate for 20 minutes at room temperature (in the dark) 
protecting samples from the light during this time.  

   
6. Add pre-lysing solution (3/4 full) to each tube, vortex and incubate for 15 
minutes at room temperature.  

   
7. Centrifuge tubes at 1500 rpm for 5 minutes; make sure tubes are balanced 
(symmetrical).  
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8. Decant supernatant and resuspend cells.  

   
9. Add 3 mL of 1% PBS into each test tube and centrifuge at 1500rpm for 5 
minutes.  

   
10.  Decant supernatant and repeat washing procedure (as above).  

   
11. Decant supernatant and resuspend in PBS + 0.5% formaldehyde 
approximately 5 drops.  

   
12. Mixed solution and run on Flow Cytometer. Analyse within 24 hours on the 
FACSCanto Flow Cytometer using the Cell Count template and acquiring 100,000 
lymphocyte events/samples.  

   
13.  Sample can be analysed immediately on the flow cytometer or analysed the 
following day. For next day analysis stored stained tubes in the fridge at 4ºC.  

   
N.B the Flow cytomer must be set up following SOP’s- Operation of FACSCanto Flow 
Cytometer and Calibration of Flow Cytometer (QC)  
See SOP………………….. For retrieving Cell Count template, recording results for exporting and 
importing dat   
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Appendix H  T-cell subsets panel SOP 
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1. CLINICAL RELEVANCE/PURPOSE OF PROCEDURE 

Regulatory T (T-Reg) cells are an important subset of lymphocytes and are 
believed to be essential for maintaining peripheral tolerance, preventing 
autoimmune diseases and limiting chronic inflammatory diseases. However, 
they may also have limit beneficial responses by suppressing immunity and 
limiting anti-tumour responses. The phenotypes of human T-reg cells is still 
incompletely understood, with those that express CD3, CD4, CD25 and 
FoxP3 being the most understood. Identification and enumeration of these 
cells can be helpful in certain pathological states.  
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2. PRINCIPLE OF PROCEDURE 
When monoclonal antibodies are added to whole blood, the fluorochrome 

labelled   
antibodies bind specifically on the surface of the leucocytes, which enable 

enumeration  
of the sub- populations of white cells using FACSCanto flow cytometer. As the 
transcription factor Foxp3 is localised within the nuclear compartment of cells, 
this protocol depends on cell surface combined with intracellular staining. 
 
 
 

 
3. PERSONNEL / TRAINING REQUIREMENTS 

Only those individuals who have received specific training from Zainab Kabba 
or Dr  

Clive Carter are permitted to perform the procedures outlined in this SOP. 
Trainee  

Biomedical Scientists and Trainee Clinical Scientists and above are permitted 
to perform  

these tasks without direct supervision. 
 
4. SPECIMEN REQUIREMENTS 

Minimum 2 mL EDTA blood, to reach the laboratory within 24 hours of 
collection, and  

stored at room temperature. Other anticoagulant blood samples are NOT 
acceptable. 
 
5. EQUIPMENT 

• Pipette tips polypropylene 5-100 µL yellow, pack of 1000 (Regional Supplies 
Dept). 

• Pipette tips polypropylene 200-1000 µL blue, pack of 100 (Regional Supplies 
Dept). 

• Pastettes (Regional Supplies Dept). 

• Eppendorf pipette 0.5- 10 µL 

• Eppendorf pipette 200- 1000 µL 

• Gloves, disposable (Regional Supplies Dept). 

• Goggles, coverall (BDH) 

• Laboratory coat 

• Laboratory Booking in Forms 

• FACSCanto Flow Cytometer (Becton Dickinson) 

• FACS Flow Tubes 

• FACS falcon tubes 
 
6. HEALTH AND SAFETY/RISK ASSESSMENT 

See COSHH and procedure risk assessments  
 

7. REAGENTS 

• FACSFlow solution, FASC Shut-down solution, FACS Cleaning solution 
(Becton Dickinson). 

• FACS Flow Tubes (Becton Dickinson) 
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• Monoclonal antibodies (Becton Dickinson) see below for details. 
 

• Lysing solution (Becton Dickinson), dilute to 1/10 with distilled water. 
 

• 1% PBS / FBS (wash buffer) - made with 500 mL PBS and 5 mL of foetal 
bovine serum (FBS Invitrogen). 

 

• Permeabilization/Wash buffer- (by mixing 1 part of permeabilization 
concentrate and 9 parts of the ddH2O.  (eg. 1 mL solution A and 9 mL 
ddH2O). 

 

• Permeabilization buffer (buffer C) - by mixing 1 part of fix/Permeabilization 
concentrate and 3 parts of the fix/permeabilization diluent. (980 µL of buffer A 
+ 20 µL of perm (buffer B). 

 

• 0.5% Formaldehyde (fix solution): made with 1.35 mL 37% formaldehyde 
(BDH) and 100 mL PBS. 

 
 
8. CALIBRATION 

See SOP…….. 
 
 
 

9. QUALITY CONTROL 
Several quality control issues are relevant to this assay:- 
A check list is attached to the booking in form and must be fully signed before 
a result is reported on Telepath. Also see ‘Acceptance Criteria’ Section. 

 
10. COMPUTER / TELEPATH CODES 

N/A 
 

  
11. PROCEDURE OR METHODOLOGY 

Before handling biological samples and chemical contained within this SOP 
familiarize  

yourself with the COSHH and Risk Assessments and take the necessary 
precautions  

required. 
The sample is evaluated for risk status in the sample reception area of Room 

07 09 154.  
All request cards/ forms must be stamped and booking in form should be 

completed at  
the sample reception desk. Once completed, it should be attached to the 

request card  
and put on the clipboard located next to sample reception tray. The original 

request card  
and the booking in form should have a telepath bar code sticker attached to 

them and  
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the rest of the stickers should be attached to the sample bag. A sticker should 
be  

attached to the sample tube when the sample is taken from the bag. 
 
If the staining procedure is not performed straight away the sample should 

remain in its  
bag and stored in the high risk sample reception 20°C incubator in Room 07 

09 161. 
 

1. Labelled test tubes with the patient initials and the name of the panel and 
placed them in a rack. Add antibodies as listed below into the stain tube, 
ensure that the antibodies are pipette to the bottom of the tube and none is 
left on the side of the tube. Change pipette tip for each antibody. 
 

 

2 µl HLA-DR-APC-H7 (BD cat # 
561358) 

5 µl CD127- PerCP-Cy5.5 (BD cat 
# 560551) 

2 µl CD25-PE-Cy7 (BD cat # 
335824) 

5 µl CD45RA-PE(Serotec cat # 
MCA88PE) 

2 µl CD4-BV421(BD cat# 562424) 5 µl CD62L-APC (Miltenyi cat 
#130-091-755 

4 µl CD3-V500 (BD cat # 561416)  

 
2. Mix the blood sample by inversion and add 300 µL/tube, ensuring that the 

blood and the antibodies are properly mixed. Also check that the blood is 
pipetted to the bottom of the tube and none is left on the side of the tube as it 
will not be incubated with the monoclonal antibodies and in analysis will 
appear as a false negative population. These volumes are critical and should 
be measured accurately as it will affect the results. 

 
 

3. Mixed gently and incubate for 20 minutes at room temperature (in the dark) 
protecting samples from the light during this time. 

 
4. Add lysing solution (4.5ml) to each tube, vortex and incubate for 10 minutes at 

room temperature. 
 

5. Centrifuge tubes at 1500 rpm for 5 minutes; make sure tubes are balanced 
(symmetrical). 

 
6. Decant supernatant and resuspend cells by vortexing.  
7. Add 4 mL of 1% PBS into each test tube and centrifuge at 1500rpm for 5 

minutes  
 

8.  Decant supernatant and repeat washing procedure (as above). 
  

9.  Decant supernatant and resuspend cells by vortexing. 
 

10.  Add 2 mL of diluted buffer A (Fix buffer) into each test tube and incubate for 
10 minutes. 
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11.  Centrifuge tubes at 1500rmp for 5 minutes and decant supernatant. 

Resuspend cell pellet by vortexing 
 

12.  Add 0.5 mL of sample C (Permeabilization buffer), mix by votexing and 
incubate for 30 minutes at RT in the dark. 

 
13.  Add 3mL of PBS into each test tube and wash (see steps 7-9). 
 
14.  Add 2 µL of FOX- P3-Alexa488 antibody (BD cat # 561181), mix and 

incubate for 30 minutes in the dark.  
 

15.  Wash cells (repeat steps 7-9). 
 

16.  Decant supernatant and resuspend in PBS + 0.5% formaldehyde 
(approximately 200uL). 

 
 Analyse within 24 hours on the FACSCanto Flow Cytometer using the T-Reg 
template (T-Reg V2 15/05/15) and acquiring 30,000 events CD4+ T 
cells/samples.  The Flow cytotomer must be set up following SOP’s- 
Operation of FACSCanto Flow Cytometer and Calibration of Flow Cytometer 
(QC) 

 
 

17.  Sample can be analysed immediately on the flow cytometer or analysed the 
following day. For next day analysis stored stained tubes in the fridge at 4ºC, 
protected from light. 

 
18. Results reported on Telepath are % of CD4+ T cells positive for CD25 and 

Foxp3.  
 
 

See SOP Title: Rheumatology Project analysis using Diva 7 Software to 
retrieve T-Reg template, recording results and exporting and importing data 

 
 

 
12. UNCERTAINTY OF MEASUREMENT  

See acceptance criteria  
 
13. REFERENCE RANGE / ACTION LIMITS 

Age related reference ranges for each subset are printed on the telepath 
report. Advice may be sought from the consultant 
Immunologist/rheumatologist if values fall unexpectedly outside the reference 
ranges. 
 

14. REFERENCES 
 See monoclonal antibody package inserts (Becton Dickinson) 
 

15.   
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Appendix I  Summary of T and Treg panel SOP 

 

T-cell panel and Treg Panel Protocol 

mAb/Sample Tube 1(TCP) Tube 2(Treg) 

1. mAb: 
CD4-BV421 

CD62L-APC 
CD3-V500 

CD45RA-PE 

CD45RB-FITC 
CD25-PE-CY7 

CD127-Per-Cy5.5 

 
2µl 

2µl 
4µl 

5µl 

7.5µl 
- 

- 

 
2µl 

2µl 
4µl 

- 

- 
2µl 

5µl 

2. Blood(200-300µl) 250µl 250µl 

✓ Incubate  20mins @ rtm 

✓ Half fill with FACS lysing buffer 
✓ Vortex 

✓ Top up with FACS lysing buffer 

✓ Incubate  10mins @rtm 
✓ Spin and wash with PBS@1500rpm 5mins, repeat until clear 

 

3. FACS buffer 
4. formaldehyde 

 300µl 
4 drops  

Vortex->Flow 

- 

    

5. Solution A - 

 

2ml 

✓ Vorex  
✓ Incubate 10mins @ rtm 

✓ Spin/wash 

6. Solution C - 0.5ml 

✓ Vortex 

✓ Incubate 30mins @ rtm 
✓ Top with PBS and wash/spin 

x2 
 

7. Foxp3-Alexa488 - 3µl 
Incubate in dark for 30 minuets 
Wash twice  

8. FACS buffer 

9. formaldehyde 

- 300µl 

5 drops 

Vortex->Flow 

Preparation of FoxP3 Buffer (for permeabilisation) 
Label two tubes A and C 
Pipette 0.5ml FOXP3 buffer (big white Container) into A to make 1 in 10 dilution using H2O (NB:per 2 
patients) 
Take 980µl of A into C (NB: Per 2 patients) 
Add 20µl FOXP3 (small brown container) into C (NB: per 2 patients)  
     FoxP3: H20 
    0.5ml   :   4.5ml                             0.5/5 = 5/50 =1/10 (i.e. 1:9) 
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Appendix J protocol for preparing PBMC from frozen cells 

 Materials  
PBS containing DNAase (aliquots done. 100ul/50ml….2ul/ml) keep constant 
throughout PBS and FACS  
(to make DNase form lypholysed …2.75ml PBS/ vial)  
Blocking buffer…100uL human IgG, 300uL mouse serum, 1100uL FACs buffer in 
store at 40C   
PBS solution= 1 table of PBS + 200ml distilled H2O  
FACS Buffer (500ml) =      1. 500ml PBS  

2. 0.5g Bovine Saline Albumin (BSA)  
3. 5ml of 1% Sodium Azide (SA)  
4. 200µL of 0.5M EDTA solution  
5. filter using the filter unit (must be done in the hood)  

  
Protocol.  

1. Thaw cells quickly in a water bath at 37C, till frozen solid can be 
removed from vial by tipping.  
2. Decant into 9mls PBS containing DNase at RT. Mix by inverting x3  
3. Spin at 500g, 5mins 120C  
4. Decant supernatant, resuspend pellet in 1ml PBS, top up to 10ml 
PBS. Mix by inverting.   
5. Spin at 500g , 5mins 120C  
6. Decant supernatant, dry pellet by inverting on towel for few 
seconds.  
7. Remove and residual liquid with a pipette, if necessary do not 
disturb the pellet.  
8. Resuspend pellet in blocking buffer(BB) (volume dependent on size 
of pellet)* usually 50-100uL   
9. Aliquot 50ul into each tube.  
10.  Add Abs according to vol required (see above antibody panel 
table)  
11.  Leave at 40C for 30mins  
12.  Wash with about 2mls or more of PBS  containing DNase, spin as 
above  
13.  Decant, resuspend in PBS, spin as above  
14.  Decant, resuspend cell in about 300uL FACS buffer  
15.  Acquire in flow cytometry  

  
Keep away from direct light  
 

 Buffer 



 
 

432 | P a g e  
 

Appendix K 

Buffers 

 
 

 
 
 
 

Lysis buffer: Ammonium chloride buffer 1X (Ammonium Chloride (A4514-Sigma) 8.99g +  Potassium 
Bicarbonate (P/5080/53- Fisher Scientific) 1g + Na EDTA0.5 M  200ul all top up to one litre with ddH2O) 
Keep for 5 days maximum 

 

Blocking buffer: (Mouse serum (M5905-Sigma) 300ul + Human IgG (I2511-Sigma) 100ul +FACS buffer 1100 
ul). 

 

FACS buffer: 500ml (0.1% BSA in PBS (0.5g) + 0.01% Sodium Azide (1ml of 5% stock solution) + 200ul Na 
EDTA 0.5 M) 

 

Fix/Permeabilization buffer: (by mixing 1 part of fix/Permeabilization concentrate (ebioscience) cat# 00-
5123-43 and 3 parts of the fix/permeabilization diluent (ebioscience) cat# 00-5123-56).  
Prepare 200ul per patient sample 

 

Permeabilization/Wash buffer: (by mixing 1 part of permeabilization concentrate (ebioscience) cat# 00-
8333-56 (ebioscience) and 9 parts of the ddH2O). Prepare 1ml/patient sample 
 

Fix solution: 500ml of PBS + 20 gms of paraformaldehyde powder (Sigma Cat# P6148) heat on hotplate 
magnetic stirrer the fume hood at 60°C till fluid is clear. Cool to RT. Then filter to store at 4°C (Fridge) for 6 
months. 
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Collect bloods  

Lyse RBCs- 1st lysis  

Add 3mls blood to 42ml lysis buffer - mix by inversion.  

Leave for 10 minutes at RT 

Centrifuge 

LIDS ON CENTRIFUGE POTS- make sure pots are balanced (symmetrical) 

500rcf (*), acc8 + decel8, 8-10mins, RT 

Clean up any blood spill in centrifuge buckets using 2% Trigene spray / alcohol 

wipes 

 

Decant the supernatant 

Reddish colour. Decant into Distel.  

Should leave a white pellet 

Re-suspend pellet 

1ml PBS (phosphate buffer saline) –   

 re-suspend using P1000 pipette  

0.5ml (500µl) PBS for each 50ml falcon tube: transfer the re-suspended pellet 

from one falcon tube to the other (using pipette) so that all of the cells from that 

one sample you separated in the first instance (step 2) are in the same tube 

Leave for 5 mins  

 

Second lysis- Add 40ml Lysis buffer 

Mix by inversion 

Incubate for 5-10 minutes  

 

Nb adding more lysis 

buffer will NOT hurt 

(<50ml- fill falcon tube) 

Leaving for longer will not 

hurt- just enhances lysis 

1
st Lysis 

2
n

d Lysis 

ICON samples post IDEA/EMPIRE 

keep 2ml for Ann Morgan Group 

Book centrifuge for 2 hours  
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Centrifuge for 2nd lysis 

500rcf(*), acc8, decel8, 8-10mins, RT 

Use LIDS for centrifuge pots 

Clean any spills of blood with 2% Trigene 

spray 

Decant the supernatant 

pale pinkish lysis supernatant. Decant into Trigene container.  

Re-suspend pellet 

0.5ml (500µl) PBS – using pipette P1000 

Add 10ml PBS, re-suspend and filter  

Filter into 50ml falcon tube, with 10ml 

pipette + pipette aid + 70µm strainer 

 

Centrifuge 

500rcf(*),8acc, 8decel, 8-10mins, 5°C, 

Use LIDS for centrifuge pots 

Clean any spills of blood with 2% Trigene spray 

 

Decant the supernatant 

Decant into Trigene container 

RE-suspend in BLOCKING BUFFER 

Buffer required = no. of wells x 50µl  

RINSE strainer with 10ml PBS 

Final vol 20ml PBS 

 

If required you should 

prepare fix/perm and 

perm/wash buffers during 

the centrifuge steps 

Aspirate reddish supernatant remaining above pellet 

Using pipette P1000 

Aspirate reddish supernatant remaining above pellet 

Using pipette P1000 

2
n

d Lysis 
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Add 50ul stain buffer to each well required. 

Add 50ul cell suspension 

Add antibody mixtures 

 

Lymph Count 65ul 

Naive 50ul 

B Cells 55ul 

TLR lympho 60ul 

IL7R 55ul 

TLR Mono 60ul 

STAT3 40ul 

 

Fridge for 30 mins after LAST antibody added 

Top each well with ICE COLD FACS buffer  
150µl per well 

Prepare Buffers 

(1) Put FACS buffer on ice – (2) FACS/FIX on ice 

 

Centrifuge 

500rcf(*),acc8 decel8, 5 mins, 5 degrees 

 

Decant supernatant (IN SINK) 

 

TRANSFER in FIX/PERM BUFFER 
200µl – transfer to separate plate 

Leave for 30mins in Fridge 

 

AOI Tregs Others 

Top each well with ICE COLD FACS buffer  
150µl per well 

Centrifuge 

500rcf(*), acc8 decel8, 5min, 5°C 

 

Decant supernatant (IN SINK) 
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Leave Over Night in Fridge 

 

Add PERM/WASH BUFFER 

100ul 

Proceeding with AIO TRegs 

Centrifuge  

300rcf, Acc8,decel8, 5min, 5°C 

DECANT in SINK 

Re-suspend pellet GENTLY in PERM/WASH BUFFER 

200ul 

Re-suspend pellet PERM/WASH buffer 

80ul 

Add STAT3 APC antibody 

20– mix with pipette – when out of fridge ICE 

Fridge for 30 mins 

Top with PERM/WASH buffer 

200ul 

Centrifuge  

300rcf, Acc8,decel8, 5min, 5°C 

DECANT in SINK 

Leave Over Night in Fridge 

 

Re-suspend in Fix Solution 

100µl 

 

Vortex for 10 secs, add 300ul FACS buffer. Store on ice and in dark 

for processing. 

Centrifuge  

300rcf, Acc8,decel8, 5min, 5°C,  

DECANT in SINK 

Use pipette P200, 

set at 110ul so 

that you aspirate 

ALL the sample! – 

don’t froth! 

Re-suspend in Fix Solution 

100µl 

 

AOI Tregs Others 
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Appendix L 

DT Technical Data sheet for Naïve T cell panel 
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Appendix M 

DT Technical Data Sheet for Treg panel 

 



 
 

440 | P a g e  
 

s
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Appendix N  

NHS gating stratergies for T-cells and Treg panels 
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