
Machine Learning-based Control

for Adaptive

Human-Robot-Collaboration in

Manufacturing

Ruidong Ma

Supervisors:

Dr John Oyekan
Prof. Sanja Dogramadzi

Dr James Law

A thesis submitted in partial fulfilment of the requirements
for the Degree of Doctor of Philosophy

in the

Department of Automatic Control and System Engineering

June, 2024

Acknowledgements

Thanks to my supervisors, Dr John Oyekan, Prof. Sanja Dogramadzi and Dr James

Law, for their support throughout my PhD study. Special thanks to John, for his

invaluable guidance and mentorship throughout my academic journey.

Thanks to my colleagues from the university for their endless help in building the

experimental environments, and providing critical feedback and discussions.

Thanks to our group’s industrial partners from Worcester Bosch and Satellite Ap-

plications Catapult for their vital discussion and feedback on the use-case studies. They

have helped me gain valuable knowledge of the research in the industry.

Thanks to my friends in the UK and China who helped and supported me during

my study. Thank you for your camaraderie, for the laughter we shared, and for all the

memories we created along the way.

Thanks to my girlfriend, whose love, understanding, and companionship have been

my sanctuary during the challenging times of the COVID-19 pandemic. Your resilience

and unwavering support have been a source of peace and motivation. And to our cat,

who has been more than a pet but a comforting presence.

Lastly, I would like to express my deepest gratitude to my father, mother and little

sister. Your sacrifices, patience, and faith in me have been the driving forces behind

my pursuit of this PhD. This achievement is as much yours as it is mine. Thank you

for being my constant source of strength and inspiration.

i

Abstract

Human-Robot-Collaboration (HRC) can be seen as a promising way to meet the in-

creasing demand for mass customization in the current manufacturing industry. It

can effectively assist human co-workers and eliminate several human factors. It can

also offer more flexibility and be cost-effective when compared to the industrial robot.

This thesis focuses on developing machine-learning-based frameworks for collabora-

tive robots (cobot) for HRC in industrial settings. The proposed frameworks enable

collaborative robots to adapt to multiple variations during long-horizontal tasks in

Make-to-Order scenarios through intuitive learning processes.

Firstly, a two-level motion planner framework based on Learning-from-Demonstration

(LfD) is proposed for the robot trajectory learning problem. The proposed motion plan-

ner is able to integrate diverse trajectories for different pick and place tasks. A hybrid

guidance framework combining model-based and model-free learning methods is thus

proposed to improve the task success rates. The results show that it can effectively

guide the learning process of a Deep Reinforcement Learning (DRL) agent by setting

a proper guidance ratio.

Secondly, a novel Task and Motion planning framework is proposed for sequential

HRC in massive Package-to-Order (mPTO) problems. This framework uses a Graph

Neural Network (GNN)-based discrete high-level reasoning module. By effectively

reducing the observation dimension through this reasoning module, the previous low-

level motion planner can imitate the motion planning strategy. The results showed that

the proposed framework is able to generate continuous new trajectories with unseen

ii

ABSTRACT iii

tasks without the need for environmental exploration.

Thirdly, a vision-based task planning framework for responsive HRC that can work

in Assemble-to-order scenarios is proposed. In this framework, a hand-centric detector

is used to detect varying assembly actions without object detection. These results

can be transferred into graphic observations and thus a GNN-based planer can predict

the human intended goals and provide detailed assistive actions for the robot. It is

generalizable to new human action sequences and thus produces new robot plans.

Finally, a framework that iteratively generates grasping solutions is proposed to fur-

ther relieve the constraints in the Assemble-to-Order problem. This framework encodes

the visual features of assembly parts or objects into graph observations and iteratively

proposes solutions to make the human-required objects graspable while respecting the

capability constraints of the robot. The results show that it can effectively generate

solutions for human-required objects.

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Aims and objectives . 3

1.2 Thesis contribution . 5

1.3 Thesis Overview . 6

1.4 Publications . 8

2 Related Work 10

2.1 Overview of Robot Learning . 10

2.2 Deep Reinforcement Learning . 12

2.3 Learning from Demonstration . 16

2.3.1 Trajectory Learning from demonstrations 17

2.3.2 Task plan learning from demonstrations 19

2.3.3 Task and Motion Planning . 22

2.4 Visual manipulation for Robotics in HRC 24

2.4.1 Human action understanding 24

2.4.2 Robot manipulation . 26

2.5 Summary . 28

iv

CONTENTS v

3 Continuous trajectory learning 31

3.1 Introduction . 31

3.2 Methodology . 33

3.2.1 Task Conditioned Subgoal Planner 33

3.2.2 Neural Dynamic Planner for joint actions 35

3.2.3 A hybrid guidance framework for Deep Reinforcement Learning 36

3.3 Experimental setup . 38

3.4 Results . 42

3.4.1 Neural Dynamic Planner . 42

3.4.2 Task-Conditioned Subgoal Planner 43

3.4.3 The importance of demonstrations for DRL 46

3.4.4 Summary . 47

4 Adaptive Task and Motion Planning in varying scenarios 49

4.1 Introduction . 49

4.2 Methodology . 53

4.2.1 Reasoning Module with Graph Neural Network 55

4.2.2 Motion module . 58

4.2.3 Task and Motion Planning framework 59

4.3 Experimental Setup . 60

4.4 Results . 64

4.4.1 Reasoning Module . 64

4.4.2 Motion module . 70

4.4.2.1 Task-Conditioned Sub-goal Planner 70

4.4.2.2 Motion Module Performance 72

4.4.3 Overall Performance . 74

4.4.4 Physical Experiment . 76

4.4.5 Practical scenarios . 82

4.5 Summary . 85

CONTENTS vi

5 A vision-based adaptive task planning framework for varying Human-

Robot-Collaboration 88

5.1 Introduction . 88

5.2 Methodology . 92

5.2.1 Hand-centric Action Detector 93

5.2.2 Graph-based semantic planning 95

5.2.3 System Integration . 98

5.3 Experimental Setup . 99

5.4 Results . 102

5.4.1 Action Detector . 102

5.4.2 Semantic Planner . 103

5.4.3 Overall performance . 107

5.5 Summary . 109

6 Iterative Visual Grasping sequence generation for object handling 111

6.1 Introduction . 111

6.2 Methodology . 114

6.3 Experimental Setup . 118

6.4 Results . 121

6.4.1 Industrial parts handling in cluttered environment 121

6.4.2 Daily life objects in stacking environment 127

6.5 Summary . 128

7 Conclusion and future work 130

7.1 Conclusion . 130

7.2 Future work . 132

List of Figures

1.1 Outline of this thesis . 6

3.1 two-level motion planner . 33

3.2 The architecture for the Task-conditioned sub-goal planner starts with

an input layer that takes in raw observations from the environment. It

then processes these observations through two fully connected interme-

diate layers to extract relevant features. These features are combined

with task labels as inputs. It adopts a Variational inference to predict

sub-goals, employing a reparameterization process for effective training.

Finally, the Tanh activation function is used throughout the network for

non-linear processing. 34

3.3 The neural dynamic planner’s architecture. Its inputs consist of the

distance between the predicted sub-goal and the current position of the

end-effector. These inputs are then processed through a feedforward

three-layer neural network. The network’s purpose is to ultimately gen-

erate the joint actions needed to achieve the sub-goal. Between each

layer of the network, the ReLU activation function is used. 35

3.4 Designed tasks, the left top pictures illustrate the final goal. 39

3.5 Objects placing end goal. The robot is required to place each cuboid in

correct position and order (e.g green, blue and red) 39

vii

LIST OF FIGURES viii

3.6 One object correction experiment with the same end goal under two

scenarios. Numbered arrows represent the correction sequence 40

3.7 Two objects correction experiment with the same end goal under two

scenarios. Numbered arrows represent the correction sequence 40

3.8 Absolute Goal-state positional difference of successful demonstrations

for stacking and picking experiments collected using keyboard telepor-

tation. For the stacking experiment, there are 28 demonstrations with

a maximum difference of 0.12m. The placing experiment contains 30

demonstrations with a maximum error of 0.1m. 41

3.9 Goal-state positional difference with Guided Exploration. 43

3.10 The comparison of different inputs is illustrated in the figure, which

displays the absolute mean distance between the current state and the

subgoal along with the standard deviation over steps. This analysis is

based on 20 trials, each with random initial positions and sub-goals. . . 44

3.11 The different planning scenarios of two objects correction experiment as

shown in Fig.3.7. The proposed method first classifies the task labels

according to pre-defined goals (Fig.3.5). The robot thus corrects the

corresponding objects while avoiding any collisions with the proposed

two-level motion planner. The squares stand for the classified stages of

picking or placing. The orange sphere in the scenes stands for predicted

subgoals. 45

3.12 Success rate in two tasks. Bold lines indicate the mean success rate

while a lighter line represents each training curve. 46

3.13 Training curves including hybrid guidance,fully guidance, and pure ex-

ploration for two experiments . 47

LIST OF FIGURES ix

4.1 A real-world example of a package-to-order scenario can be seen with

Amazon sellers, who frequently need to package a diverse range of prod-

ucts. These products must be arranged in different goal configurations

to meet the specific demands of various customers. Each order might

require a unique combination or arrangement of items, reflecting the in-

dividual preferences or needs of the customer placing the order. This

situation exemplifies the complexity and variability inherent in package-

to-order operations, where customization and adaptability are key to

meeting customer expectations. 51

4.2 A graphical representation of the proposed framework is presented dur-

ing both the picking and placing stages. During the picking stage, the

reasoning module consistently directs its attention to the selected ob-

jects within the pending area. In contrast, during the placing stage, it

consistently focuses on the observations of the packaging box. 53

4.3 The Neural Network Architecture for the reasoning module follows this

structure: A graph representation of the object states is initially con-

structed. Three GraphSAGE layers are applied, along with the ReLu

activation function, to extract the most pertinent observations. This

process results in a probability distribution that aids in selecting the

corresponding goal from a set of potential goals. Subsequently, the task

stage is classified by combining these two features. This classification

is achieved through a 3-layer neural network, with ReLu serving as the

activation function. 55

4.4 Neural Network for the sub-goal planner with ranked inputs. 58

LIST OF FIGURES x

4.5 This figure illustrates two distinct scenarios: CASE 1, where the robot

adheres to a fixed task structure, and CASE 2, where the robot col-

laborates with a human, engaging in a variable task structure. In both

scenarios, the robot’s objective is to pick and place the designated ob-

jects into the blue packaging box from the pending area. Please note

that the human model featured in the figures serves purely illustrative

purposes. 61

4.6 These figures show various goal configurations, which include possible

combinations and permutations, along with position-specified labels.

Figure 4.6a shows the packaging order needs different objects (combi-

nations). Figure.4.6b shows the packaging order need the same objects

while with different appearance (permutations). 62

4.7 An investigation into the generalization performance across different

training ratios was conducted in a simulated environment. 64

4.8 The simulation results in the context of the 4 out of 5 experiments

demonstrate that the reasoning module is capable of effectively han-

dling previously unseen tasks. Fig.4.8a depicts the performance on the

demonstrated task, while it is able to handle untrained goal configura-

tion independently in Fig.4.8b and unseen task strictures with human

collaboratively in Fig.4.8c. 67

4.9 The interpretation of the learned reasoning module is provided for both

picking and placing stages in two cases. Each sub-figure displays the

following information: Feature mask (first row): Identifies the most im-

portant features. Edge mask (second row): Highlights the most critical

edges using solid lines. And manipulation scenes (third row): Offers

visual representations of the manipulation scenes from the simulation. . 69

LIST OF FIGURES xi

4.10 The simulation results in 4 out of 5. In each figure, the first graph illus-

trates the initial state of the stage. As shown in the figures, the sub-goal

planner exhibits adaptability to different task information while ensur-

ing collision-free motions. Fig.4.10b,4.10c and 4.10d demonstrate its ca-

pability of generalizing trajectories based on different task labels while

with similar observations. It is also adaptable to different observations

with the same task label as shown in Fig.4.10e 73

4.11 The 3D reproduction trajectory is generated by the motion module,

which was trained using experiments 4 out of 5. 74

4.12 The physical experiment in 3 out of 5 experiments. The text displayed

at the top right corner of the images represents the real-time task plan

generated by the reasoning module. 77

4.13 The efficacy of the motion module in adapting to different goal positions

is demonstrated through physical experiments. For instance, the motion

module was initially trained to place object C at Goal 3 in Fig.4.13a.

The module showed adaptability by successfully generating trajectories

for other untrained task goals, as illustrated in Fig.4.13b and Fig.4.13c. 78

4.14 In the physical experiment in CASE 2 where 3 out of 5 tasks were

conducted, the human participant selected the second object and then

left the remaining tasks to the robot. 80

4.15 In the physical experiment described in CASE 1, which involved han-

dling 3 out of 5 tasks, the robot autonomously executed the entire cus-

tomer order packaging process. 81

4.15 (cont.). 82

4.16 Physical experiment for 3 out of 5 in CASE 1, where some products

are out of stock while robot needs to firstly pack the rest and come back

to pack the restocked product. 84

LIST OF FIGURES xii

4.16 Physical experiment for 3 out of 5 in CASE 1, where some products

are out of stock while robot needs to firstly pack the rest and come back

to pack the restocked product. (cont.). 85

4.17 A practical problem arises when customers have the flexibility to se-

lect varying numbers of products. The TAMP system is initially trained

with a scenario where customers choose ”2 out of 5” products. It demon-

strates the ability to generalize to scenarios where customers select ”3

out of 5” products with an average success rate (SR) of 0.97 in CASE

1 and 0.91 in CASE 2. Moreover, it also generalizes to scenarios where

customers choose ”4 out of 5” products, achieving an average SR of 0.92

in CASE 1 and 0.86 in CASE 2. 86

5.1 Pipeline of the proposed framework:A: The first step involves detect-

ing right hands in incoming image sequences using MediaPipe. The

framework then classifies the assembly actions by combining hand region

features extracted through a CNN-based extractor with motion features

obtained from LSTM-FCN. B: The classified action is used to update the

assembly graph, serving as a connecting edge. The framework, leverag-

ing this updated graph, adaptively infers the human’s intended goal con-

figuration and determines the next object to be assembled using GNN.

Subsequently, a simple LSTM translates the object node’s embedding

into a language format, indicating its preferred assembly positions. This

language output is useful for guiding human decisions in future steps or

for directing robot actions to assist the co-worker. 92

5.2 Different examples of spatial assembly actions 94

5.3 The experimental setup and designed user interface 100

5.4 Different customized goal configurations. 101

5.5 Confusion matrix for the proposed action detector on the whole training

video data. 104

LIST OF FIGURES xiii

5.6 Comparison of the proposed action detector with other approaches with

average accuracy over five experiments. 104

5.7 The average performance of the Semantic Planner over the training ratio.105

5.8 The results in the real-time experiment. The left figure for each sub-

figure is the last detected frame. 106

5.9 These are examples of real-time Human-Robot Collaboration (HRC).

From left to right, the system first recognizes the human intention of

screwing. Therefore, the robot retrieves the next planned object and

delivers it to its goal pose (indicated by the green boxes) based on the

”Semantic Control” command while the human inserts the objects. The

graph and semantic guidance are updated accordingly. 107

5.10 This figure demonstrates the proposed system can dynamically construct

the graph based on detected human actions. The blue squared pictures

are the last detected frame. 108

6.1 Pipeline of the proposed framework: The raw scene image will be first

processed through a common object detection network (e.g. Faster-

RCNN). The detected objects’ visual features will be used to construct

a graph observation. According to the human demand, the GNN should

first produce the graspability of the inquired object while considering the

robot’s capability. If it is not graspable, an LSTM with Attention will

propose the solution as ” move which objects” to enable the demanded

object to be graspable. It will be thus used as the new demand. This

process will continue until the demanded objects are graspable. 114

6.2 The industrial components handling setup 120

6.3 The double-headed arrows show the distance between the objects. The

distance between part a and part b (0.08) in Fig.6.3b is smaller than the

distance (0.10) in Fig.6.3a. The green box stands for graspable objects

while the red boxes stand for ungraspable objects. 121

LIST OF FIGURES xiv

6.4 Examples from VMR dataset for stacking environment. 121

6.5 Comparison between the proposed method and GNN DF Att. 124

6.6 The proposed architecture performance on one single image. 125

6.7 Iterative grasping solution generation from the initial image. 125

6.8 Physical robot experiment scenes for dealing variations including object

numbers, object types, and task lengths. As the figure shows, the frame-

work allows the robot to remove the graspable obstacle objects until it

identifies the graspable object required by human. 126

6.9 The average performance of GNN and LSTM Att over the increasing

number of types of objects. 128

List of Tables

3.1 The success rates of two-level Planner under different thresholds in two

experiments. 46

4.1 Success rates of different methodologies for reasoning with n out of m

objects in simulation. 66

4.2 The results of various sub-goal regression methods on the demonstration

data, along with the success rates in the adaptive packaging experiments,

each consisting of 100 testing trials. 71

4.3 The overall performance of different methods is compared across two

different cases. The DRL agent is trained using demonstrations from

both cases, while the TAMP system is only trained on CASE 1. . . . 76

4.4 Physical experiment results in both cases. 76

5.1 Lookup table for the human assembly actions 102

5.2 The average detection accuracy of Action Detector (AD), the success

rate of the Semantic Guidance (SG) for human workers and the Se-

mantic Control (SC) for the robot produced by the semantic planner. 108

6.1 Object Accuracy (OA) comparison between different approaches in sin-

gle image. Train Acc stands for the graspability classification in training

sets. Meanwhile, the performance based on different numbers of human

requirements has been shown.GNN Att stands for the proposed algorithm.126

xv

LIST OF TABLES xvi

6.2 The accuracy for iterative visual grasping despite the object detection

error . 127

6.3 Image-based Accuracy for different methods in VMR dataset. 128

List of Abbreviations

HRC Human-Robot-Collaboration

MTO Make-to-Order

PTO Package-to-Order

ATO Assemble-to-Order

ROS Robot Operating System

LfD Learning from Demonstration

DRL Deep Reinforcement Learning

MDP Markov Decision Process

TAMP Task and Motion Planning

DDPG Deep Deterministic Policy Gradient

HER Hindsight Experience Replay

GMM Gaussian Mixture Model

HTN Hierarchical Task Networks

VI Variational Inference

LSTM Long-Short-Term-Memory

xvii

LIST OF ABBREVIATIONS xviii

MLP Multi-layer Perceptron

CNN Convolutional Neural Networks

NN Neural Network

GNN Graph Neural Network

GCN Graph Convolutional Network

Sage Graph SAmple and aggreGatE Network

RF Random Forest

GPR Gaussian Process Regression

SR Success Rate

RRT Rapidly-exploring Random Trees

LSTM-FCN . . Long-Short-Term-Memory with Fully Convolutional Network

SG Semantic Guidance

SC Semantic Control

VGG Very Deep Convolutional Network

Faster-RCNN Faster Region-Convolutional Neural Network

WL-GNN Weisfeiler-Lehman Graph Neural Network

LSTM Att . . . LSTM with Attention Mechanism

Chapter 1

Introduction

The industrial sector has witnessed a series of revolutionary shifts, from the mechaniza-

tion of the first Industrial Revolution to the digital transformation of Industry 4.0. To

adapt to increasing market demand, manual assembly systems can be used, although

this may lead to a decline in productivity due to changes in quality and fluctuating

labour rates. By comparing the capability of the manual operator with the automated

system, it can be seen that the performance of manual assembly is greatly affected

by ergonomic factors, with limiting factors being the part weight and precision of the

manual operator. The utilization of robots has been seen as a potential solution to

automation. Due to its capability of carrying out repetitive tasks reliably and thus it

enables the swift and efficient completion of tasks.

There are a variety of types of robots that have been used in the manufacturing

sector. For instance, mobile robots, industrial robot arms and collaborative robots.

Mobile robots in manufacturing are often acquired to perform mobile tasks in factory

and production environments, such as material handling and warehouse management.

They are often not suitable for object manipulation or assembly tasks.

Industrial robot arms are designed for heavy load-handling tasks with repetitive

cycles independently. Thus, they often have large sizes and require space, when con-

sidering the safety issue. However, the flexibility and agility required for complex

1

CHAPTER 1. INTRODUCTION 2

assembly tasks may be too expensive to achieve [1].

Collaborative robots, also known as cobots, are a type of robotic arms specifically

designed to work closely and collaboratively with human co-workers. They are often

lightweight and cost-effective compared to industrial robot arms. These robots combine

the capabilities of traditional robots with the flexibility and agility of human operators.

The primary advantage of collaborative robots, particularly in manufacturing systems,

is their ability to assist human operators rather than replace them, which means they

supplement human abilities to perform tasks. Unlike traditional industrial robotics,

collaborative robots offer a higher degree of safety and flexibility [2]. Additionally, they

can combine the precision and speed of machines with the dexterity of human hands

[1]. Collaborative robots can also easily learn from both human and programmatic

demonstrations [1].

Therefore, this thesis is dedicated to the design of systems that allow collabora-

tive robots to work automatically with humans, such systems are often referred as the

Human-Robot-Collaboration (HRC) system. The collaboration states a joint activ-

ity between human and collaborative robots to achieve given tasks together. It often

requires synchronous and coordinated actions from different parties while physical in-

teraction may exist. The International Federation of Robotics [3] defined four types of

HRC in the current manufacturing industry:

1. Coexistence: Human and robot work alongside each other without a shared

workspace.

2. Sequential Collaboration: Human and robot are active in a shared workspace

with sequential movements, which means they do not work on the same object

simultaneously.

3. Cooperation: Human and robot work on the same part simultaneously.

4. Responsive Collaboration: the robot responds to human motions. This requires

accurate human action understanding.

CHAPTER 1. INTRODUCTION 3

1.1 Aims and objectives

The main aim of this thesis is to develop automotive and flexible HRC systems through

the current advances in machine learning technologies.

Automation transcends the traditional mechanized processes. It encompasses the

use of artificial intelligence, and advanced sensor technologies to perform collaborative

tasks with minimal human intervention. This not only enhances efficiency and precision

but also allows industries to operate around the clock, optimizing production rates and

reducing operational costs.

Flexibility, on the other hand, is about the adaptability of the HRC system. It

enables industries to swiftly adapt to market demands, and customize products. This

agility is crucial in today’s dynamic market landscape, where consumer preferences

evolve rapidly and unpredictability is the only constant.

Furthermore, this thesis specifically focuses on the Make-to-Order (MTO) scenarios.

MTO is a production strategy for customized products, which usually prepares inven-

tory in advance and performs the final production and packaging when the customer

orders are placed [4]. There are variant types of MTO, such as Assemble-To-Order

(ATO), Configure-To-Order (CTO), and Package-To-Order (PTO). In such problems,

the main responsibility of the robot is to perform long-horizontal tasks that can ma-

nipulate different objects based on varying human intended goals or customer requests.

Therefore, the robot should acquire the ability in both high-level task reasoning and

low-level motion generations.

The low-level motions are the robot’s fundamental capacity. It requires the robot

can generate various trajectories in response to multiple positions of objects while

avoiding any collision that can happen.

High-level task learning in robots refers to the process by which robots acquire

knowledge and skills to perform complex tasks that involve multiple steps or require

reasoning about the task’s broader context. Instead of focusing on low-level control,

high-level task learning focuses on understanding the overall structure and objectives

CHAPTER 1. INTRODUCTION 4

of a given task.

From the above discussion, this thesis further proposes three main research objec-

tives that should be addressed towards building automated and flexible HRC systems:

• Easy to program: conventional approaches for robot learning often rely on hand-

coded programming methods. In the aspect of trajectory learning, the robot

is often trained for a specific task via either online [5] or offline training [6].

Moreover, prior knowledge or expert-defined task rules, such as previous works

in [7],[8], are often needed to facilitate the high-level task planning ability of the

robot. On the contrary, the scope of this thesis is to develop more user-friendly

frameworks that enable more intuitive robot training.

• Personalised HRC: personalization means the robot can handle variations in the

environment caused by human co-workers. In this thesis, several variations will

be studied including:

– Object position variations: this is a common variation where the robot

should pick and place the different objects from varying positions.

– Human performance variations: the collaboration strategy of human co-

workers often requires a predefined workflow to avoid any confusion that

may cause to robot [9]. On the contrary, this thesis aims to relieve this

constraint to allow more flexible collaboration.

– Goal configuration variations: This is a problem for MTO scenarios, where

different parts can form different end-goal configurations. This variation can

be caused by customer orders. This means the robot should handle different

long-horizon tasks under different goal configurations.

– Task structure variations: it requires the robot to cognitively make deci-

sions when a pre-defined task structure is interrupted by varying human

performance. In an unbounded environment, the task structure may un-

dergo changes due to disturbances, such as a worker altering the sequence

CHAPTER 1. INTRODUCTION 5

in which required objects are placed. Therefore, the robot should possess

the capability to adapt and successfully complete the task despite these

variations.

• Learn beyond demonstration: Even though the current advances in deep rein-

forcement learning allow the robot to adapt to various tasks. It is still data-

inefficient as it needs long-time exploration and can suffer from high dimensional

observations. On the other hand, the major issue of Model-based learning or

Learning from Demonstration (LfD) is its generalization ability when unseen

tasks or distribution occurs. In this thesis, one objective is to develop data-

efficient frameworks that can improve the generalization ability of the robot in

both high-level reasoning and low-level motion planning with a few demonstra-

tions.

1.2 Thesis contribution

Following the above discussion, this thesis further makes contributions to achieve the

aforementioned research objectives:

• An LfD-based two-level motion planner in continuous trajectory learning. Unlike

previous studies, where they either rely on environmental explorations or heavy

expert knowledge, the proposed motion planner shows generalizability to unseen

goals with only a few demonstrations. Furthermore, its ability to accelerate Deep

Reinforcement Learning has been proven.

• An end-to-end Task and Motion planning framework in varying Package-To-

Order scenarios. This proposed framework can efficiently handle diverse goal

configurations with only 60% demonstrations being trained. Moreover, it also

shows zero-shot generalizations on sequential HRC, where humans can randomly

pack the goal objects. Its capability in practical scenarios is further assessed

highlighting its strength compared to conventional machine learning algorithms.

CHAPTER 1. INTRODUCTION 6

• A vision-based task-planning framework in the Assemble-To-Order scenario in

only 2D videos. This work combines a novel hand-centric motion detector with

a semantic planner. Compared to the previous works, where they often heavily

rely on prior knowledge or hand-coded manipulation rules, this work enables more

detailed assistive plans for diverse end goals. More importantly, it is also data-

efficient and able to produce new plans when unseen human action sequences are

captured.

• A vision-based iterative object-grasping solution generation framework for object

handling. This work is designed to relieve the constraints during responsive HRC

further. Unlike the previous visual-based manipulation framework, it aims to

allow the robot to directly propose grasping solutions while respecting geometrical

relationships and it can be generalizable to unseen requirements and image scenes.

1.3 Thesis Overview

Figure 1.1: Outline of this thesis

This section describes the layout of this thesis and the works carried out in order

CHAPTER 1. INTRODUCTION 7

to achieve the aforementioned research objectives. Fig.1.1 describes the outline of this

thesis.

Chapter 2 provides a literature review of the current methodologies applied to

robot learning. Initially, the traditional approaches to robot learning have been ex-

plored. Following this, the chapter further reviews the state-of-the-art methodologies

of model-free reinforcement learning (RL), particularly focusing on continuous trajec-

tory learning. Afterwards, by identifying some limitations of RL, this chapter reviews

the advanced model-based learning from demonstration (LfD) technologies. It mainly

contains the methodology applied to trajectory learning from demonstration, high-level

task learning from demonstration, and how to integrate discrete decision-making and

continuous trajectory planning as a complete system for long horizontal multi-object

manipulation. Finally, computer-vision-based learning for robots in the HRC field has

been reviewed.

Chapter 3 introduces a two-level motion planner by imitating the expert preference

and planning strategy. It further served as a semi-supervisor for DRL in a continuous

trajectory learning problems.

Chapter 4 introduces a Task and Motion Planning framework that integrates dis-

crete decision-making and continuous motion planning in Package-to-Order scenarios.

The high-level decision-making module can reduce the high-dimensional observations

and thus allow the two-level motion planner to adapt to diverse trajectories. It enables

the robot to adapt to work solely or in sequential HRC.

Chapter 5 introduces a vision-based task planning system in Assemble-to-Order

scenarios during responsive HRC. This work first built a hand-centric action detector

without object detection. By decoding these actions, a planner based on graphs is able

to provide detailed robot assistance actions in the form of contextual language.

Chapter 6 introduces a vision-based iterative grasping solution generation system

to further relax the constraint mentioned in Chapter 5. It encodes the spatial objects

in the image scene as graphic observations. By using the Graph Neural Network and

Attention mechanism, it can iteratively generate grasping solutions that can make the

CHAPTER 1. INTRODUCTION 8

object required by human graspable.

Chapter 7 presents the conclusions derived from this thesis, highlighting its con-

tributions and offering recommendations for potential future work building upon this

work.

1.4 Publications

The following papers have been published and submitted during this PhD study:

• R. Ma and J. Oyekan, ”Guiding Deep Reinforcement Learning by Modelling

Expert’s Planning Behavior,” 2021 7th International Conference on Control, Au-

tomation and Robotics (ICCAR), Singapore, 2021, pp. 321-325.

• C. J. Turner, R. Ma, J. Chen and J. Oyekan, ”Human in the Loop: Industry 4.0

Technologies and Scenarios for Worker Mediation of Automated Manufacturing,”

IEEE Access, vol. 9, pp. 103950-103966, 2021.

• R. Ma, J. Chen, and J. Oyekan, “A learning from demonstration framework

for adaptive task and motion planning in varying package-to-order scenarios,”

Robotics and Computer-Integrated Manufacturing, vol. 82, p. 102539, 2023

• J. Chen, R. Ma, and J. Oyekan, “A deep multi-agent reinforcement learning

framework for autonomous aerial navigation to grasping points on loads,” Robotics

and Autonomous Systems, vol. 167, p. 104489, 2023.

• R. Ma., J. Oyekan, and R. Moore. ”A Learning-from-Demonstration Framework

for Varying Package-to-Order Scenarios”, Presented at ICRA 2023 Workshop on

Communicating Robot Learning across Human-Robot Interaction

• R. Ma, J. Chen and J. Oyekan, ”Graph-based semantic planning for adaptive

human-robot-collaboration in assemble-to-order scenarios,” 2023 32nd IEEE In-

ternational Conference on Robot and Human Interactive Communication (RO-

MAN), Busan, Korea, Republic of, 2023, pp. 2197-2203

CHAPTER 1. INTRODUCTION 9

• R. Ma, Y. Liu, E. Graf and J. Oyekan, ”Applying Vision-Guided Graph Neural

Networks for Adaptive Task Planning in Dynamic Human Robot Collaborative

Scenarios.”, submitted to Advanced Robotics.

Chapter 2

Related Work

This chapter provides a literature review that describes the fundamental concepts and

current advances in machine learning-based robot control. These works form the fun-

damental base of this thesis.

2.1 Overview of Robot Learning

In the early stage of robot learning, there are two commonly used approaches including

Lead-through and offline programming.

Lead-trough requires the teaching pendant to move the robot through the pre-

defined trajectories. The robot will hence record the motions and produce the desired

smooth motion with the safety-guarding device involved as stated in [5]. This method

is simple and easy to implement. However, it is also time-consuming and difficult

to implement when the programming complexity increases. Meanwhile, it needs re-

programming for every new task even if there are only a few variations between two

tasks.

On the other hand, offline programming leverages computer simulations to stream-

line the programming process. For instance, robot coating and welding with built-in

graphic simulation have been studied in [6]. In this manner, the simulated process

10

CHAPTER 2. RELATED WORK 11

can be directly transferred to reality. However, it needs great programming effort and

typically different robot manufacturers have different simulation platforms. Thus, the

cost of acquiring one is generally expensive [2].

The conventional approaches, while effective, can encounter challenges when facing

variations in tasks or workflows, particularly in the context of Human-Robot Col-

laboration (HRC) where different humans may have unique working strategies. This

highlights the need for adaptive robot systems that can handle such variations seam-

lessly. As a result, there has been a growing focus on the development of automatic

robot learning techniques aided by machine learning algorithms.

There are generally three classes of machine learning models that have been in-

vestigated in this thesis based on the needs, including 1. Classification, 2.Regression,

and 3. Reinforcement Learning. Classification models aim to divide input data into

pre-defined categorical classes, they are often used for human action or image recogni-

tion and discrete decision planning. In regression problems, there exists a continuous

relationship between input data and output data, and the model’s task is to learn this

relationship and predict continuous outputs. They are often used for human and robot

trajectory reproductions. On the other hand, Reinforcement Learning aims to pro-

duce optimal robot actions through interaction with the environment based on Markov

Decision Process.

These advances aim to equip robots with the capability to learn and adapt their

behaviours based on changing conditions or input from human collaborators. By lever-

aging machine learning, robots can improve their decision-making processes, refine

their actions, and respond more flexibly to dynamic environments.

The following sections will review two main families of machine-learning-enabled

robot systems. Firstly, model-free reinforcement learning will be introduced. It refers

to a learning strategy in which the robot does not have prior knowledge of the tasks.

Instead, it produces optimal actions by iteratively exploring the environment with re-

wards as feedback. In contrast to model-free methods, model-based learning or Learn-

ing from Demonstration (LfD) leverages prior knowledge typically acquired from hu-

CHAPTER 2. RELATED WORK 12

man demonstrations. The robot learns by mapping these demonstrations into suitable

actions.

2.2 Deep Reinforcement Learning

The process of reinforcement learning for robots can be modelled as a Markov Decision

Process (MDP), where at each time step t, the agent selects an action at to maximize

the obtained reward rt given the current state s, leading to a new state s′.

In the context of a training episode, the total return R(τ) is calculated as the sum

of discounted rewards γtrt from time step t = 0 to t = T , where γ is the discount

factor. This factor is crucial as it ensures that future rewards are appropriately valued

relative to immediate rewards, preventing issues such as infinite returns in scenarios

where episodes could extend indefinitely.

R(τ) =
T∑
t=0

γtrt(τ) (2.1)

Considering the total return of a trajectory under a policy π, denoted as Eτ∼π[R(τ)],

involves integrating over all possible trajectories τ based on the transition probabilities

P (τ |π) governed by that policy. This expectation helps assess the effectiveness of the

policy in achieving desirable outcomes over multiple interactions with the environment.

E
τ∼π

[R(τ)] =

∫
τ

P (τ |π)R(τ) (2.2)

To make decisions about actions in specific states, the state-action function Q(s, a)

plays a significant role. This function estimates the expected return starting from a

state s and taking an action a, guiding the agent’s decision-making process. Under

an optimal policy π∗, the optimal state-action value Q∗(s, a) is maximized, leading to

the selection of the optimal action a∗(s) that promises the highest expected return in

that state. This concept forms the basis for reinforcement learning agents to learn and

CHAPTER 2. RELATED WORK 13

improve their decision strategies in dynamic environments like controlling a robot arm.

Q∗(s, a) = E
τ∼π∗

[R(τ)|s0 = s, a0 = a] (2.3)

a∗(s) = argmax
a

Q∗(s, a) (2.4)

The classical learning pipeline for the RL is to store the state-action values in a

matrix and iteratively update the values by active exploration of the environment.

However, the problem is that it becomes impossible to select actions at given states

when the state or action spaces become high-dimensional or too large, for instance, the

robot manipulation problem. Therefore, approximation is necessary. The Deep Rein-

forcement Learning(DRL) algorithms with neural networks for function approximation

has been paid a lot of attention. For the robot control problem. This approach mainly

consists of two families: 1. Value-based, 2. Policy-based.

The Value-based family attempts to maximize the state-action function and find the

optimal Q function. This optimization is usually performed in an off-policy manner,

which means that the policy used to generate the behaviour may be independent of

the policy being evaluated and improved (called the evaluation policy) [10]. There

have been several approaches proposed for robot manipulation. For instance, Mnih et

al.[11] implemented the Deep-Q-Network (DQN) algorithm to control a planar robot

arm with 2 degrees of freedom with discrete action space. Inoue et al.[12] utilized

long-short-term memory (LSTM) and a variant of recurrent neural network(RNN) to

estimate the Q function in order to achieve peg-in-hole assembly. In this research,

the controlled action is the force controller instead of controlling the robot directly.

The limitation of the value-based method is that it can only handle the task with

discrete and low-dimensional action space [13]. In contrast to the Value-based family,

the Policy-based method directly optimizes policy. This method aims to maximize

the parameterized policy with objective function by policy gradient. There are several

approaches, for example, REINFORCE and Vanilla Policy Gradient [14].

CHAPTER 2. RELATED WORK 14

The Actor-Critic architecture combines them together. In this architecture, it stores

past exploration in the memory buffer. At the end of the iteration, the training sam-

ples are collected randomly from the buffer to train the agent. The actor selects action

based on current policy and the critic for approximating the Q value to evaluate cur-

rent policy. Therefore, they are combined together to iteratively maximize Q value

and optimize policy by temporal difference. Trust Region Policy Optimization(TRPO)

[15] is proposed to control the robot locomotion model continuously. It attempts

to update policy by taking possible largest actions which is constrained by a special

measurement(KL-Divergence) of probability distribution distance between the old and

new policies. Consequently, they also proposed Proximal Policy Optimization(PPO)

for the same control problems [16]. It is similar to TRPO while it is simpler to im-

plement. Deep Deterministic Policy Gradient(DDPG) combines Neural Networks to

solve multiple robot manipulation problems [17]. Soft Actor-Critic (SAC) was imple-

mented for robot arm control by [18] with entropy regularization. The advantage of

the Actor-Critic method is that it uses data more efficiently with a memory buffer.

The DRL approach does not acquire the knowledge of the environment at the early

stage of training. In large state or action spaces, it will cause problems like dangerous

exploration, and slow convergence as it explores too many unnecessary states. Hind-

sight Experience Replay (HER) [19]and Prioritized Experience Replay (PER) [20] are

the methods to improve the sampling efficiency of the memory buffer. There are also

several studies focusing on how to feed environmental knowledge to the DRL agent.

One way is to add demonstrations to DRL. Vecerik et al. [21] implemented the

DDPG from demonstrations(DDPGfD). They feed the demonstration from Kinesthetic

Teaching to an expert replay buffer. Thus the expert experience can be reused to

accelerate learning. Similarly, Nair et al.[22] also utilized demonstrations to improve

DDPG along with HER. They asked human users to demonstrate in virtual reality and

filter out unsuccessful demonstrations by using Behaviour Cloning.

DRL accelerating by model-based learning has also been developed. For example,

[23] utilized Guided Policy Search as a semi-supervisor to guide DDPG to learn complex

CHAPTER 2. RELATED WORK 15

assembly tasks. Xu et al.[13] proposed a model-driven DDPG for peg-in-hole assembly

tasks. In their research, they derive contact surface modelling to know the distance

between the peg and the hole. Afterwards, the actor controls the feedback controller

instead of directly controlling the robot arm. Du et al.[24] utilised Lyapunov barrier

function to assess the safety and reachability of complicated robot control tasks through

experimental data. Lin et al.[25] a Convolutional neural network(CNN) with RL agent

for robotics safety navigation while considering collisions.

Moreover, the concepts of Reinforcement Learning from Human Feedback (RLHF)

have drawn attention. The RLHF aims to improve the learning efficiency of RL agents

by interactively obtaining human feedback or rewards on their current performance.

In the robotics field, Faulkner et al.[26] proposed an interactive RL agent that can

obtain rewards from both environmental exploration and human feedback. It further

proposed a framework that can learn from imperfect feedback. Chen et al.[27] proposed

a hierarchical framework that can efficiently map online user feedback to high level

robotic tasks through noisy and stochastic inputs. Hiranaka et al.[28] leverage RLHF

with primitive skill-based RL to tackle long-horizon tasks. Moreover, Zhang et al.[29]

investigated offline RL with human feedback in terms of preference of trajectory pairs.

They estimate the implicit reward from the offline data.

As discussed, DRL approaches are capable of handling complex control tasks with

less effort in designing the control policy. However, the challenge of sample inefficiency

in DRL remains a significant concern, particularly in industrial settings where training

inefficiencies can lead to increased costs and potential safety risks.

Efforts in research have aimed to seek a trade-off between exploration (learning

new behaviours) and exploitation (using known behaviours) to address this inefficiency.

Despite these efforts, random exploration during training can still lead to dangerous

configurations, posing safety risks in real-world applications.

An alternative approach gaining traction is Learning from Demonstrations (LfD)

. By leveraging human expertise and guidance, this method can ensure safety during

the learning process. It combines the benefits of human knowledge with machine

CHAPTER 2. RELATED WORK 16

learning capabilities, offering a more efficient and safer path to training robotic systems,

especially in complex and safety-critical environments like industrial settings.

2.3 Learning from Demonstration

The human operator can handle complicated tasks due to the flexibility of the wrist, the

sensing system and the decision-making ability. Instead of directly studying the process

of human learning, many researchers focus on how to map the expert demonstrations

to desired robot actions which lead to Learning from Demonstration(LfD) methods.

Several methods for trajectory learning only need fewer than 10 demonstrations [30].

Moreover, it can provide a way for the robot to examine the risk or security related to

the demonstrated state spaces [31].

In practice, there are mainly three approaches for acquiring human demonstrations

including: 1. Kinesthetic Teaching, 2.Teleportation teaching and 3. Passive Observa-

tion.

In Kinesthetic Teaching, the robot arm is directly guided by human experts and

records movements via external sensors. For instance, researchers have focused on

guiding robot hand to play chess [32], or polishing tasks [33]. This approach requires

minimal training of the human operator and it’s intuitive. Additionally, the demonstra-

tion is recorded directly from the sensory information of the robot which will simplify

the following encoding and reproduction phase. However, the quality of the trajectories

often depends on the quality of the demonstrations. Hence, the obtained data often

requires post-processing and may also lead to sub-optimal problems. Moreover, as for

complex tasks with robot hand or robot leg, the challenging demonstrations limit its

capability[30].

Teleportation teaching allows the user to control the robot remotely through the

user interface while the robot records data from internal sensors[30]. Unlike Kines-

thetic Teaching, it does not require physical interaction between robot and human

during training. There are several ways of controlling robots, for example, using hap-

CHAPTER 2. RELATED WORK 17

tic interface [34] or virtual reality [35][36].

The third approach Passive Observation allows the robot to capture human demon-

stration motions passively. In[1], [37] and [38], they use stiffness data from human-

human collaboration for human intention estimation and trajectory planning. Tracked

human hand motion can also be used for robot path planning as studied in [36]. More-

over, some researchers only observe object trajectories for imitation, for example, Rusell

et al.[39] utilize object tracking for picking and placing, Dillman et al.extract knowl-

edge representation from the object in hand [40]. This approach is the simplest for the

user.

Once the demonstrations have been collected, the next step is to extract their

features and reproduce proper robot actions. Moreover, for long-horizontal tasks which

they can contain multiple goals, one consideration should also be given as to how to

produce a high-level task plan and corresponding low-level motions to sequentially

achieve the final goal. The following sub-sections will review the current advances in

trajectory learning for a single task, task planning for long-horizontal tasks as well as

the integration of these two.

2.3.1 Trajectory Learning from demonstrations

Learning from Demonstration (LfD) methods provides a convenient approach, facili-

tating the mapping between human actions to robot actions and enabling rapid repro-

duction of trajectory-level behaviour. Probability-based approaches are often used to

encode the trajectory from diverse demonstrations. For instance, Gaussian Mixture

Model (GMM) is a probabilistic clustering model to represent sub-populations within

an overall population with the assumption that the data is uniformly distributed. In

the encoding phase, its purpose is to represent the states of motion from sampling

points[41],[38]. The Hidden Markov Model (HMM) also describes the distribution

of demonstration through a mixture of multivariate Gaussian. Unlike the GMM, it

also analyses the transition probabilities between each component. Therefore, it can

CHAPTER 2. RELATED WORK 18

describe spatial and temporal variability [42]. In LfD, HMM is extensively used in

recognising the trajectories [38],[43],[37]. To reproduce the desired behaviour, meth-

ods for reconstructing the trajectory have been introduced. The main methodology

used is Gaussian Mixture Regression(GMR) which provides a fast regression method

with the joint probability density derived from GMM [32],[38]. However, the afore-

mentioned approaches suffer from unseen situations and perturbations and thus lead

to generalization problems [13].

To enhance variability and adaptability, the Task-Parameterized-GMM was intro-

duced in [44]. This method involves deriving GMMs that are parameterized from

various task frames. However, it necessitates an additional algorithm for identifying

distinct task frames and lacks the capability to generalize to new, unencountered tasks.

Study in [45] addresses these limitations by employing optimization based on reinforce-

ment learning. Yet, the main issue of these methods is that they only concentrated on

Cartesian space (3-dimensional spaces) and fall short of directly generating actions for

robot joints actions.

Inverse Reinforcement Learning (IRL) is another research direction. It aims to in-

versely infer the potential reward of human experts while accomplishing a task. Krish-

nan et al.[46] proposed a framework that utilizes unsupervised learning for initial expert

demonstrations and thus can improve further explorations. Zhang et al.[47] study the

force-related tasks by using IRL while discovering both impedance and expert reward.

However, IRL may tend to be less robust when facing imperfect demonstrations. It

may not be generalizable for multi-tasks, as it needs the complete trajectory sets. On

the contrary, Behaviour Cloning (BC) directly learns the policy from human demos,

while it is also inefficient for complex tasks. Therefore, research often combines the

BC with RL to improve the trajectory learning and generalizability [48].

Another common approach is to apply motion primitives. One common approach

is Dynamic Motion Primitives (DMP), which is often used to encode the trajectory

as a dynamic system based on positions, velocity, acceleration, and force.etc [43],[38].

Moreover, symbols were utilized as high-level task instructions, as demonstrated in the

CHAPTER 2. RELATED WORK 19

work [49], while symbolic representations have been used to optimize motion primi-

tives [50]. A study in [51] showed that a complex motion can be broken down into

distinct phases, and the transitions between each phase were learned using model-

based reinforcement learning. This approach depended on a pre-established library

of motor primitives. Additionally, Probabilistic Context-Free Grammars were applied

to construct a sequence of these motor primitives as seen in [52]. Skill trees are also

applied as the segmentation of expert trajectories for long-horizon manipulation [53].

Nevertheless, these works often require a careful design of motion-primitive symbols.

An alternative approach involves leveraging hierarchical structures to break down

a complex, goal-oriented trajectory into smaller sub-goals. Paul et al.identified the

initial sub-goals, followed by the application of reinforcement learning for continuous

control [54]. Sub-goal trees have been introduced in [55] to recursively predict posi-

tions in each task segment, while Pan et al.combined inverse reinforcement learning

with demonstrations based on sub-goals [56]. However, these methods still necessitate

extensive exploration of the environment, even when demonstrations are provided.

2.3.2 Task plan learning from demonstrations

Plan learning from demonstrations encompasses techniques adept at learning task-

level abstractions, as discussed in [30]. Traditional planning methods typically rely on

pre-established symbolic rules designed to recursively address problems specific to a

domain. For instance, Kaelbling et al.[57] utilized the hierarchical nature of tasks to

define task-level abstractions, enabling the formation of a planning and execution tree

for dynamic planning. The study in [58] implemented Answer Set Programming (ASP)

to assess the feasibility across various levels of task and motion planning.

The Planning Domain Definition Language (PDDL) represents another conven-

tional approach. Gerevini et al.[59] developed planners focused on actions, employing

symbolic descriptions and logical formulations to delineate the effects and applicability

of actions. PDDL was further developed in the work [8] to facilitate temporal planning

CHAPTER 2. RELATED WORK 20

and further expanded to address hierarchical planning challenges in [60].

Hierarchy in demonstrated task structures has been explored. Task structures

can be constructed using a predefined AND/OR graph while considering all possi-

ble plan combinations [61][62]. Darvish et al.[63] developed a hierarchical architecture

for HRC that can perceive human actions and therefore build representations through

AND/OR graph and finally make task decisions. Similarly, DeMello et al.[64] employed

an AND/OR graph to represent all potential assembly plans in tasks involving the ma-

nipulation of multiple objects. Meanwhile, the integration of this approach with DRL

to accomplish flexible assembly processes for a single end product has been studied

in [61] The Hidden Markov Model (HMM) is also used to figure out hidden parts of

sub-tasks, as shown in [65]. Hierarchical Task Networks (HTN) are used to set up task

structures and calculate how likely different steps are to happen, as seen in [66] and

[67]. HTN was also used in [49], where they mixed symbolic and geometric planning

to plan tasks and movements. This needed special rules and knowledge from experts

to understand the effects of the symbolic planner. These methods still need careful

planning based on expert knowledge. The Markov Decision Process (MDP) was used

in [4] to manage production and inventory in Make-to-Order (MTO) problems. Yu

et al.[68] also looked at MTO problems, using group-based scheduling with the tabu

search algorithm.

The methods mentioned earlier usually don’t require a training process. But, most

of them need manually written task descriptions, models for how tasks change (like

task structure), or rules, such as if-else statements to decide what actions are possible.

Because of this, these methods often need experts in the field to create the rules while

considering all the different situations that could happen.

Recent progress in Learning from Demonstrations (LfD) has opened up possibili-

ties for automatically learning tasks without needing any hand-coding process. Pirk

et al.[69] managed to abstract tasks at a high level using natural language to describe

action symbols. These symbols were derived from sub-tasks shown in video demon-

strations using a Sequence-to-Sequence model. However, it’s not clear how they com-

CHAPTER 2. RELATED WORK 21

bined these action symbols with motion plans based on position. Inverse reinforcement

learning (IRL) was applied to determine the best actions that yield optimal rewards,

specifically for customized products as shown in [9].

Researchers are increasingly using Graph Neural Networks (GNN) [70] for task-level

abstraction, thanks to their ability to naturally represent relationships between objects

or multiple tasks. Some research focuses on turning symbolic task descriptions into

graph formats. For instance, Hayes et al.[66] used a Conjugate Task Graph (CTG) to

create sequences of sub-tasks, while Su et al.[71] developed manipulation graphs that

include sets of motor primitives for performing manipulation tasks. Huang et al.[72]

introduced a Neural Task Graph (NTG), using LSTM to turn demonstrations into task

nodes, creating action transitions as edges that connect valid task nodes through CTG.

Li et al.[73] worked on training GNN with reinforcement learning (RL) for handling

multiple objects, but their results seem less effective compared to training GNN directly

with demonstrations as shown in the study [74]. Their approach shows adaptability to

new tasks. However, these methods still need a lot of work to set up the ground truths,

like deciding the order of sub-tasks and how each node is connected in the graph.

On the other hand, some studies have used Graph Neural Networks (GNN) to

understand the relationships between objects. To create high-level abstractions, Ye

et al.[75] used graphical interaction networks, while Battaglia et al.[76] captured how

objects interact with each other and with robots. They then used these relationships as

states in a Model Predictive Controller. Additionally, Silver et al.[77] focused on object

properties rather than their positions. They used these graphic observations to rank the

importance of objects and plan incrementally among many objects at once. However,

their method isn’t well-suited for problems that require planning in a sequence. Lin

et al.[74] demonstrated that GNNs can learn task structures directly from just the

information about objects, without needing predefined symbolic task descriptions with

fully connected graph observations. Following this, Felice et al.[78] applied GNN to

identify important objects as a form of node classification. Their work also showed

the ability to generalize to new pick-and-place tasks without prior training (zero-shot

CHAPTER 2. RELATED WORK 22

generalization). However, in their approach, they only consider the initial state of each

sub-task. Once the objects and their goal positions are known, they rely on traditional

motion planners for the actual movement generation.

Moreover, current advances in Large Language Models (LLM) have shown great

potential in robotics, especially for vision-based task planning. For instance, Hori et al.

[79] utilized an LLM-based question-answering agent that can improve robotic motion

planning. Consequently, Ren et al.[80] proposed a framework that measures and aligns

the uncertainty of LLM -based planer and therefore can ask for human feedback. Zhou

et al.[81] proposed a framework that can iteratively improve the robotics performance

which is originally proposed by LLM for long-horizon tasks. LLM shows promising

abilities in commonsense reasoning and planning. However, this method needs large-

scale computation and training datasets.

2.3.3 Task and Motion Planning

Efforts have been dedicated to integrating the aforementioned discrete plan planning

and continuous trajectory learning methods mentioned earlier into a unified framework.

These methods are commonly referred to as Integrated Task and Motion Planning

(TAMP) [82].

The main challenge in Task and Motion Planning (TAMP) architecture is combining

a discrete task planner with a continuous motion planner. One common way to solve

this is through sampling-based methodologies. These methods blend discrete task

planning and continuous motion into a single search space. They use sampling-based

probabilistic searches to explore and find solutions within this space [83]. Fang et al.[84]

sampled valid sub-goals and actions using cascaded Variational Inference and a user-

defined reward function. Another method, used in [85], involves applying a conditional

sampler with domain knowledge to pick actions in a large solution space. However,

these sampling-based methods can be inefficient in Make-to-Order (MTO) scenarios,

where the task-level search can become complex. Additionally, if the hierarchical nature

CHAPTER 2. RELATED WORK 23

of trajectories is taken into account, these methods might not find any solutions at all

[83].

To address the limitations of sampling-based methods in Task and Motion Plan-

ning (TAMP), one possible solution is the use of Procedural Attachment [83]. This

approach involves a high-level task planner followed by an external motion planner

[83]. Several studies have applied Procedural Attachment in flexible production with

robots. For example, Kurosu et al.[86] used Mixed Linear Programming (MILP) to

prioritize the sequence of objects, and Behrens et al.[87] employed Ordered Visiting

Constraints (OVC) with constraint optimization. However, these techniques require

a pre-known symbolic representation of the task structure to manipulate workpieces

sequentially towards a specific goal configuration. This need for a predefined task de-

scription means they struggle with environmental variations. Therefore, if a customer

order changes, it becomes necessary to redefine the task description and retrain the

model. Additionally, in these implementations, only high-level plans are considered,

while low-level, collision-free motion generation is left to existing motion planners like

Rapidly Exploring Random Tree (RRT), which can be time-consuming.

To handle variations in observed objects, recent advancements in Graph Neural

Networks (GNN) [74] have demonstrated the capability to use graph-encoded represen-

tations for learning high-level policies, rather than relying on symbolic representations.

For instance, Lin et al.[74] showed that this approach can learn task-specific rules and

adapt to varying geometric goal configurations by utilizing objects’ observations during

demonstrations. However, their method only addresses scenarios where the task struc-

ture remains unchanged. This means it’s not equipped to handle redundant objects

within a task structure or across different tasks. Additionally, their approach doesn’t

accommodate variations in the sequences of tasks involving objects, which is crucial

for the human element in Human-Robot Collaboration (HRC) scenarios.

As discussed, LfD approaches often encounter generalization issues. The main

reason is that demonstrations are often constrained to specific expert policies. Since

the environment may not be fully searched by demonstration, the agent is likely to fail

CHAPTER 2. RELATED WORK 24

when the unseen input arrives [30]. Efforts have been made to improve the robot’s

generalization ability by combining diverse potential manipulation rules as seen in

AND/OR graph or Hierarchical Task Networks. However, these solutions need careful

design with domain expert knowledge.

2.4 Visual manipulation for Robotics in HRC

This thesis also focuses on how to interpret the demonstrated visual human information

as well as objects and thus produce corresponding robot actions. Therefore, this section

provides a literature review of vision-based human and object understanding.

2.4.1 Human action understanding

Human action understanding is the key factor of HRC in terms of safety measurement

and robot programming. By understanding human actions, the robot can infer human

intention and therefore cognitively make decisions or actions that can assist humans

further. Unlike the traditional user interface like a keyboard and touchscreen, vision

information can relieve the burden of communications in HRC. As a result, it leads to

intuitive programming which offers an easy robot programming approach for humans

with non-expert knowledge.

For different assembly actions, human gestures can be unique. As the human body

and hands have unique features, for instance, skin colour and body shape, compared

with environment [88]. Some of the research has focused on identifying human gestures

through spatial images. For instance, Brethes et al.[89] proposed a framework to au-

tomatically segment the picture and detect skin colour for hand and body recognition.

The drawback of this method is that it can be affected by environmental illumination

and human races. The local features approach has been proposed to eliminate the

illumination effect, which is less sensitive to lighting. It is a detailed texture-based

approach which segments the image into small parts and does not correspond to body

CHAPTER 2. RELATED WORK 25

parts according to Speeded up robust features (SURF) by [90] and Oriented FAST and

rotated BRIEF (ORB) by [91]. However, only analysis of human gestures can be inef-

ficient as human gestures may vary from time to time, even for the same actions. As a

result, current advances focused on utilizing Neural Network (NN) approaches to enable

more robust and efficient scene recognition. Chen et al.[92] adopted convolutional neu-

ral networks (CNN) to perform scene understanding including the information about

human and environmental surroundings to infer human actions. Zhang et al.[47] pro-

posed a more detailed dual-CNN model, where one CNN identify the human pose while

the other considers the objects’ context.

In the HRC environment, human motions are also crucial to enable the robot to

recognise the assembly intention. In order to identify and correctly track the movable

human in different frames, several gesture-tracking solutions have been proposed. One

solution is to represent the human in only one hypothesis which refers to single hy-

pothesis tracking, for instance, Mean shift tracker[93] and Kalman Filter[94],[95]. To

classify the tracked motions, it often relies on machine learning algorithms. K-nearest

neighbour (KNN) is able to classify user movements using the closest training points.

Given that the observation is a continuous sequence, the Hidden Markov Model (HMM)

and Gaussian Mixture Model (GMM) are able to extract the desired states. Thus, the

test data sets can be classified by comparing extracted states with the trained model

[96]. Current works also focus on utilizing Neural Network (NN)-based algorithms for

classification, for instance, Recurrent Neural Networks [7] as well as semi-adaptable

Neural Networks [97] with skeleton data or hands.

Combining temporal motion features with spatial assembly context can be more

effective in distinguishing various assembly actions, especially in Assemble-to-Order

problems [98]. When creating a variety of products, different components may be

placed in the same position based on customer demand. In this scenario, the assembly

motions, such as moving to a particular position, maybe the same, but the correspond-

ing objects can vary. Many existing approaches often employ Convolutional Neural

Networks (CNN) for object detection and Recurrent Neural Networks (RNN) to recog-

CHAPTER 2. RELATED WORK 26

nize assembly actions, utilizing data from depth image sequences [99] or skeleton data

[61].

For long-horizon sequential collaborative tasks, the robot should thus recognise the

human intended the end-goal and plan based on observed human action sequences.

Cognitive architectures have been studied for this purpose, for instance, Learning In-

telligent Distribution Agent (LIDA) [100], Adaptive Control of Thought (ACT) [101]

and ACT-Rational [102],[103]. they can integrate the low-level perception knowledge

and extend to necessary control behaviour, for instance, motion planning, decision

making, and memory[104]. However, there are still existing problems, for example,

high dimensional data can cause the decision to become unstable [104]. Probabilistic

approaches have found extensive applications in estimating human intended goals. For

example, Bayesian Inference has been employed to infer human navigation goals [105]

and to determine assembly plans using prior knowledge of human pose and object

interaction as studied in [7]. Additionally, Variable-Length Markov Models (VMM)

have been utilized to analyze classified action sequences, leading to the generation of

optimal plan predictions [47]. It’s worth noting that these approaches often rely on

prior knowledge provided by domain experts.

2.4.2 Robot manipulation

Computer vision also plays an important role in robotics manipulation tasks. It enables

the robot the ability to sense the environment and provide feasible solutions for grasping

the desired objects even in multi-object scenarios.

Towards addressing this problem, one research direction is to model the geometric

property of the target object. Generative Grasping Convolutional Neural Network

(GG-CNN) has been proposed in [106] and [107] that is able to predict the grasping

quality and grasping pose for the end-effector based on the pixels from the object’s

depth image. Sundermeyer et al.[108] proposed an end-to-end grasping network that

can directly generate a distribution of 6-DoF parallel-jaw grasps. By determining the

CHAPTER 2. RELATED WORK 27

full 6-DoF grasp pose and width in the observed point cloud, the dimensionality of the

grasp representation can be effectively reduced to 4-DoF. Zhang et al.[109] analysed the

point cloud features based on the estimated 6D pose from Pixel-Wise Voting Network

(PV-net). Huang et al.[110] equipped an event-based camera system to generate a

grasping strategy with the point cloud information. Unlike the aforementioned studies

which often focus on grasping pose estimation, Wang et al.[111] also concerns the

generation of the collision-free trajectory generation. They proposed a hierarchical

framework that learns goal-driven grasps based on partial point cloud observations.

During training, an embedding space is learned to encode expert grasp plans, and

during testing, a variational autoencoder is used to sample diverse grasp trajectories.

The aforementioned methods often require rich information about the target object,

for example, point cloud, or CAD model. Meanwhile, it can be problematic when the

target object is overlapped by the surrounding objects too much and therefore the

direct grasping pose estimation may not be effective.

One possible solution is to reason the objects’ relationship through the visual fea-

ture, and thus allow the robot to grasp the intended object orderly. For instance,

Li et al.[112] consider the objects’ pair and proposed visual phrase-guided CNN. Qi

et al.[113] constructed spatial and temporal object graphs through detected features

and thus detected the human-object interaction through a proposed Graph Parsing

Neural Network (GPNN). Lu et al.[114] combine the detected spatial, semantic and

visual information from object pairs and produce the object interaction status through

CNN and tree-based gradient boosting models (GBMS). Consequently, Lu et al.[115]

studied the same problem by using Sequence-to-Sequence (Seq2Seq) with the Trans-

former model. Guermal et al.[116] proposed a three-step framework which can reason

the object-object relationship in a temporal video clip. For the specific application in

robotics, Goodwin et al.[117] investigated the rearrangement of unseen but similar ob-

jects with seen goal images by leveraging the semantic and visual information through

Contrastive Language–Image Pre-training (CLIP). Huang et al.[110] study the objects’

relationship over the robot manipulation via partial point cloud and Graph Neural Net-

CHAPTER 2. RELATED WORK 28

work. Ardon et al.[118] constructed a knowledge graph representation using Markov

Logic Networks to obtain the probability distribution of an object’s grasp availability.

Moreover, there is also attention been paid to the specific object stacking environment

using CNN as in [119],[120]. This means that CNN would need to systematically exam-

ine every possible relationship between each pair of objects in the image. GNN has also

been applied to predict the relationship nodes through the encoded graph observation

[121],[122].

2.5 Summary

This chapter has introduced the concepts of traditional robot learning approaches,

reinforcement learning and learning from demonstrations specifically for trajectory

generations and task plan learning, and computer vision technologies on human action

understanding and robot manipulations. They form the foundations of the thesis, and

they can be concluded as follows:

• Section 2.1 initially provide the traditional methodologies in robot learning. As

stated, they lack adaptiveness in regard to environmental changes.

• Section 2.2 provides a general background of reinforcement learning for the work

in Chapter 3. It is a model-free learning scheme that allows the robot to explore

the environment while building the state-action transitions through Markov De-

cision Process. Current advances in DRL have shown great potential in tackling

complex control problems. However, sample inefficiency is a major issue, espe-

cially in industrial settings. Therefore, Chapter 3 proposes a novel LfD frame-

work that can effectively guide the exploration and the importance of diversity

in memory buffer will be studied.

• Section 2.3 review another robot learning method as Learning from Demonstra-

tion (LfD) in both trajectory reproduction and task planning. For robot trajec-

tories, probabilistic models are often used to model diverse demonstrations for

CHAPTER 2. RELATED WORK 29

one end goal. These studies only focused on the 3D positions of the end-effector.

Motion primitives are also used to encode the trajectory as a dynamic system

with primitives, such as symbolic representations. Moreover, hierarchical struc-

tures can be used to decompose the more complex goal-oriented trajectories into

subgoals and actions, while the current studies still need extra exploration to

guarantee generalization ability. Therefore, Chapter 3 proposes and studies a

novel motion planner that can handle diverse expert trajectories efficiently and

produce direct joint actions. It holds the generalizability without the need for

exploration.

Task planning, on the other hand, plays an important role in long horizontal

tasks. It aims to learn the high-level task abstractions for each sub-task. Tra-

ditional methodologies often use predefined symbolic task abstractions while it

needs hand-coded manipulation rules. Therefore, Chapter 4 aims to utilize ma-

chine learning methodology (specifically Graph Neural Networks) to automati-

cally learn the underly task strictures from the demonstrations without hand-

coding.

• Section 2.3.3 introduces TAMP architecture that can integrate the aforemen-

tioned continuous motion generation and discrete task planning. Sampling-based

methodologies merge the task and motion planning into one search space and find

the solution through probabilistic search, while it is not able to handle complex

tasks. Procedural attachment is another direction that produces actions in corre-

spondence with a high-level planner. Based on this, Chapter 4 further proposes

a TAMP system by combining the proposed task and motion planner following

Procedural attachment methodology.

• Section 2.4.1 reviews the vision-based human action understanding for the part

of the work in Chapter 5. Human gestures can be a vital source for different

assembly actions. It can be detected through skin colour classification, while NN

can be more robust when considering object context in the scene. Human motion

CHAPTER 2. RELATED WORK 30

predictions are also important. Current approaches often utilize probabilistic

models and NN-based methods. Chapter 5 considers combining the temporal

motion features and spatial assembly context, which has been proven to be more

effective in distinguishing different assembly actions, especially in MTO scenarios.

Afterwards, the robot should recognise intentions and plan through the observed

action sequences in long-horizontal MTO tasks. Efforts have been made to de-

velop cognitive architectures by integrating perception knowledge and control

behaviours, while they may suffer from high dimensional observations. Another

research direction is to utilize probabilistic approaches, which are often heavily

based on prior expert knowledge. Thus, Chapter 5 further proposes a novel task

planner that can process graphic human action sequences and hold generalization

ability in unseen observations.

• Section 2.4.2 offers a review of vision-based robotics manipulation approaches

for Chapter 6. For a scene containing multiple objects, some of the current

research focuses on estimating the optimal grasping pose. These approaches

often need rich object information. Another research direction is to reveal the

visual relationship between the objects and thus build manipulation trees based

on classified relationships. Based on these, Chapter 6 proposed a cost-effective

visual solution generation system that aims to produce grasping actions directly

from image scenes.

Chapter 3

Continuous trajectory learning

3.1 Introduction

This section aims to tackle the motion planning problem of robots in multi-object

environments while dealing with variations including object positions and manipulation

order variations. Specifically, this chapter studies sequential HRC for adaptive human

error correction.

The presence of humans in manufacturing may introduce disturbances into the

system and result in variations and unpredictability. As a result, product quality could

be highly impacted [123]. In assembly processes, common errors include omitting items,

the application of wrong components and improper installation to mention a few [123].

Current approaches in error handling are limited to classifying human errors [123],

allowing humans to override robots [124] or focus on only specific types of errors, for

instance, positioning [125].

In situations where there are various objects to pick and place, learning just a single

trajectory isn’t adequate. Collecting a range of demonstrated trajectories can be time-

consuming and resource-intensive. At the same time, the safety of these objects during

manipulation is a crucial factor that needs to be taken into account.

To tackle these challenges, this work decomposes the motion planning problem into

31

CHAPTER 3. CONTINUOUS TRAJECTORY LEARNING 32

hierarchical two-level steps including the following components:

• Subgoal planner is a variational-inference-based probabilistic regressor. By ac-

cessing information about a task, such as its label, the subgoal planner can ef-

fectively integrate different trajectories for various picking and placing positions.

This integration is crucial for handling tasks that involve moving objects to dif-

ferent locations, as it allows the planner to adapt to a variety of scenarios by

predicting the necessary subgoals based on the specific task at hand.

• For executing the actions related to each sub-goal through final joint actions, an

action planner is developed. This planner is capable of directly learning actions

by modelling expert preferences using a simple neural network. This approach

differs from [126], where neural networks were employed to learn the state tran-

sition function and, in turn, guide the action learning of Deep Reinforcement

Learning (DRL). The method presented in this study enhances data efficiency

and eliminates the necessity for extensive exploration.

However, it has been noted that the subgoal generation could suffer from high

dimensional observation. To improve the success rate, this Chapter further proposes

a hybrid hierarchical guidance architecture in order to guide DRL agents for more

efficient learning.

Consequently, there are serval research questions that this Chapter aims to address:

• Q1: Is it efficient enough to only model the function of expert preference (i.e.

goal-state positional difference) for dealing with variations in object positions?

• Q2: Can it produce collision-free subgoals through raw observations while dealing

with objects’ position variations and manipulation order variations?

• Q3: There will also be experiments that are designed to examine the most ap-

propriate way of guiding DRL with demonstrations.

CHAPTER 3. CONTINUOUS TRAJECTORY LEARNING 33

Figure 3.1: two-level motion planner

3.2 Methodology

Fig.3.1 shows the proposed motion planner, the inputs of the Task-conditioned subgoal

planner (TASK VI) are full observations of objects and end-effector positions. A simple

classifier is used to identify the task stages as picking or placing. By modelling

the expert preference as goal-state (or subgoal-state) positional difference, the Neural

Dynamic Planner is proposed to produce joint actions.

Moreover, as found in the experimental section, the high-dimensional observations

can result in inefficient subgoal planning. Thus, this work further proposes a framework

that enables more efficient trajectory learning of DRL by leveraging the proposed

model-based two-level motion planner. At the early stage of training in DRL, one

of the most common issues is that there will be slow convergence as it may explore

too many unnecessary states. Therefore, the two-level motion planner is used as a

semi-supervisor of DRL and thus guides the DRL agent to narrow down the search

space.

3.2.1 Task Conditioned Subgoal Planner

In sub-goal planning, when the same object is picked for different locations, similar

observations might confuse the planner. To avoid this, task parameters, such as labels,

are provided to help differentiate between different tasks. Let x ∈ X stand for the

raw observations and s ∈ S be the corresponding 3D trajectory level subgoal from

CHAPTER 3. CONTINUOUS TRAJECTORY LEARNING 34

Figure 3.2: The architecture for the Task-conditioned sub-goal planner starts with an
input layer that takes in raw observations from the environment. It then processes
these observations through two fully connected intermediate layers to extract rele-
vant features. These features are combined with task labels as inputs. It adopts a
Variational inference to predict sub-goals, employing a reparameterization process for
effective training. Finally, the Tanh activation function is used throughout the network
for non-linear processing.

demonstrations. The robot end-effector is r. A classifier based on MLP is firstly built

as l = c(x; θc), where l ∈ L is the task label and θc are the training parameters of the

classifier. The full observations can thus be expressed as O = {x, l, r}.

Moreover, instead of using a deterministic model that directly generates the cate-

gorical distribution p(s | O), a variational inference-based probabilistic regressor with

additional uncertainty output δ (e.g. standard deviation(std)) is adopted. The latent

parameters Q(z) ∼ N (µ, δ) are formulated to approximate the ground truth sub-goal

s as p(z | O). The µ and δ can be parameterized with neural network as dependency

of O, µ = fθsubµ (O), δ = fθsubδ (O). According to Bayes rule, the posterior p(z | O) can

be expressed as Eq.3.1. The integral form of marginal likelihood
∫
p(O | z)p(z)dz is

often computationally intractable. In variational inference, it tries to find the optimal

distribution p∗(z) that approximates the posterior distribution. It is equivalent to per-

forming optimization by maximizing the Evidence Lower Bound function (ELBO) in

Eq.3.2, where Ez∼Q[logp(s | z)] is the likelihood term and Dkl is the Kullback-Leibler

(KL) divergence that regulates the predicted variational probability q(z) with a prior

distribution p(z). The KL divergence can be rewritten as the expectation form of z

and finally, the cost function can be expressed as Eq.3.3.

CHAPTER 3. CONTINUOUS TRAJECTORY LEARNING 35

Assuming the likelihood and variational distribution are Gaussian according to

[127], they can thus be replaced with a negative Gaussian log-likelihood function in

Eq.3.4. For prior probability, the ground truth sub-goals are assumed as a unit Gaus-

sian distribution p(s) ∼ N (0, 1).

Fig. 3.2 illustrates the network architecture, it uses a Stochastic Gradient Varia-

tional Bayes(SVGB) estimator with reparametrization trick to train the model [127].

By accessing task labels, the sub-goal planner is able to produce adaptive sub-goals

among different tasks. The variational inference concepts can lead to high likelihood

while penalizing over-fitting when estimated q(z) is far away from the true prior p(z).

p(z | O) = p(z)
p(O | z)∫

p(O | z)p(z)dz
(3.1)

arg maxOz = Ez∼Q[log p(s | z)]−Dkl[q(z)||p(z)] (3.2)

Lsub = Ez∼Q[log p(s | z)]− Ez∼Q[log q(z)− log p(z)] (3.3)

LGaussian = −N
2

(2πσ2
θσ)− 1

2σ2
θh

N∑
i=1

(p′i − µθµ) (3.4)

3.2.2 Neural Dynamic Planner for joint actions

Figure 3.3: The neural dynamic planner’s architecture. Its inputs consist of the dis-
tance between the predicted sub-goal and the current position of the end-effector.
These inputs are then processed through a feedforward three-layer neural network.
The network’s purpose is to ultimately generate the joint actions needed to achieve the
sub-goal. Between each layer of the network, the ReLU activation function is used.

CHAPTER 3. CONTINUOUS TRAJECTORY LEARNING 36

For the action planer, since there will be a large number of observations and con-

tinuous actions, a small number of demonstrations is inefficient to directly map the

observations to optimal actions required to achieve the sub-goal.

In the natural way of a human reaching task, the distance often contributes to

direction preference [128]. Inspired by this, the expert preference is modelled as a

dynamic transition function. Assume experts always prefer to minimize the distance

between current end-effector position rt and sub-goal position st at every time step t:

∆t = st−rt in a consistent way (i.e they will first minimize ∆t in the x-y plane, and thus

approach the final goal vertically). Meanwhile, the joint actions at = [a1, a2, a3, ..., an]

will lead to different position rt through forward kinematic in robot arm. Thus, a

dynamic transition function is formulated which contains a continuous state space as

∆t with action space at = [a1, a2, a3, ..., an]. It aims to obtain the actions from the

expert preference ∆t = st− rt inversely through a simple neural network at = DθD(∆t)

as shown in Fig.3.3. This is equivalent to approximating the inverse kinematics of

expert demonstrations. It is trained with a supervised loss function as Mean Square

Error(MSE), which minimizes the loss between ground truth action at and prediction

as shown in Eq.3.5, where T is the training batch size.

Lact =
1

T
Σ

(at,∆t)∈T

1

2
||at −DθD(∆t)||2 (3.5)

3.2.3 A hybrid guidance framework for Deep Reinforcement

Learning

Inspired by [129], this work aims to integrate the expert planner with a Reinforcement

Learning(RL) agent to improve success rates with only sparse reward. In this part,

the problem can be formulated as a Markov Decision Process (MDP) with continuous

state space S and action space A. Since the proposed planner is acting on the joint

action level, it is able to provide the subgoal and thus useful actions and corresponding

state to allow more efficient exploration of the RL agent.

CHAPTER 3. CONTINUOUS TRAJECTORY LEARNING 37

Algorithm 1 Hybrid Hierarchical Guided RL

Initialize RL agent and Experience Replay Buffer R

Trained Hierarchical Planner h,d,c

Guidance ratio λ

for Epoch=1,M do

if λ then
Reset environment and receives s1 and x1

Task Label l = c(x1)

Corresponding Final Goal position pgoal

for T=1,Hhi do

Subgoal p′T = h(xT , lT = c(xT))

for t=1,Hlo do
Select action at according to current policy

Calculate future end-effector position pt+1 according to at

Future Distance ∆t+1 = p′T − pt+1

if ∆t+1 > δg then

Current Distance ∆t = p′T − pt
Corrected action at = d(∆t)

Execute at ,and receives state st+1

Store expert transition

else

for n=1,Hhi ×Hlo do
Pure RL exploration

Stores transition
Sample a mini-batch from R

Update RL agent

Algorithm 1 illustrates the proposed pipeline. Note that observation x fed into

h and c is different from the state s for the RL agent. Deep Deterministic Policy

Gradient (DDPG) with Hindsight Experience Replay (HER) is adopted as the baseline

RL agent. It is tricky for an RL agent to achieve a high-dimensional end goal with only

sparse rewards. Hence, at the beginning of each task, the proposed hybrid framework

CHAPTER 3. CONTINUOUS TRAJECTORY LEARNING 38

first classifies tasks l = C(x1) and selects the corresponding object positions. Each

task can therefore be decomposed into pick-and-place tasks. Also, a critical issue with

pure demonstration-guided RL agents is noted: with only informative experiences, the

agent is likely to lose its knowledge as the experiences are too limited [130]. To address

this problem, there are two solutions being designed: 1. Setting up a guidance ratio λ

to allow the agent to be guided or explore by itself alternatively; 2. At every action

planning horizon Hlo, instead of directly using expert actions, the proposed framework

intend to correct the action from the agent’s policy. This means that it first calculates

the future distance ∆t+1 with forward kinematic and only correct the actions which

cause ∆t+1 greater than a guidance threshold δg, which is 0.05m in this study.

3.3 Experimental setup

The experiments are built and conducted in a simulation platform CoppeliaSim [131].

In the simulation environment, a Universal 10 (UR10) robot arm with a suction cup

is adapted to interact with cubic objects, where the objects are placed on a table in

front of the robot. The robot is controlled by the proposed models written in Python.

The first simple experiment is to place or stack the objects based on pre-defined

goals as shown in Fig.3.4. The tasks require the robot to produce actions that can move

an object to the various target locations starting from a fixed initial state. Assuming

the demonstrated actions can be imperfect, this experiment is designed for the Neural

Dynamic Planner with DRL to assist its ability to improve DRL learning efficiency

with only direction preference.

Moreover, to validate the two-level motion planner, two multi-object correction ex-

periments are designed and simulated. The experiments are set up under the assump-

tion that the robot should correct errors according to end goals as Fig.3.5. The human

error can be reflected in different cases including the objects’ placing orders (wrong

components) and objects’ positions (improper placing). The robot is thus involved

in sequential collaboration to correct them with the green cuboid as the benchmark.

CHAPTER 3. CONTINUOUS TRAJECTORY LEARNING 39

(a) Stacking. (b) Placing.

Figure 3.4: Designed tasks, the left top pictures illustrate the final goal.

Fig.3.6 illustrates the first experiment, the wrong component can be either red or blue.

Fig.3.7 describes the second two objects correction experiment where objects should be

corrected sequentially as objects may occupy other positions. Lastly, collisions among

objects are prohibited.

Figure 3.5: Objects placing end goal. The robot is required to place each cuboid in
correct position and order (e.g green, blue and red)

For the first placing and stacking experiments, the demonstrated joint actions were

collected through keyboard teleportation, which means the demonstrator controls each

joint movement through keyboard command. There were 3 controlled joints including

[q′base, q
′
shoulder, q

′
elbow]. which affect the end-effector positions mostly. As the demon-

strated actions may be imperfect, only the action direction is recorded. To judge

whether a demonstration is successful, the final goal-state positional difference is mea-

sured if it is within a threshold |δ| < 0.15m as shown in Fig.3.8. Therefore, instead

of producing actual actions, the Neural Dynamic Planner only generates directions

CHAPTER 3. CONTINUOUS TRAJECTORY LEARNING 40

(a) Case 1 (b) Case 2

Figure 3.6: One object correction experiment with the same end goal under two sce-
narios. Numbered arrows represent the correction sequence

(a) Case 1 (b) Case 2

Figure 3.7: Two objects correction experiment with the same end goal under two
scenarios. Numbered arrows represent the correction sequence

di ∈ [−1, 0, 1] which stand for -1: Moving Negatively; 0: Not Moving; and 1: Moving

Positively. The Neural Dynamic Planner can be involved anytime when the actions

proposed by DRL may cause the calculated future goal-state positional difference ∆t+1

to exceed a threshold δ (which is 0.05m in this study).

For the second human error correction experiment, the planning strategy is man-

ually designed as how to sequentially correct each object according to the last section

while avoiding collisions. Afterwards, the demonstrations are segmented according to

objects’ position with change point detection in slope [132]. The observationsO include

three raw objects’ 3-dimensional positions x, 3-Dimensinoal end-effector positions and

4 task labels, while yielding a total of 16 observations. As a result, the observations

can be labelled into different classes accordingly. For each cuboid manipulation, they

are labelled as picking or placing stage including: 0. Picking Blue, 1. Placing Blue, 2.

CHAPTER 3. CONTINUOUS TRAJECTORY LEARNING 41

Figure 3.8: Absolute Goal-state positional difference of successful demonstrations for
stacking and picking experiments collected using keyboard teleportation. For the stack-
ing experiment, there are 28 demonstrations with a maximum difference of 0.12m. The
placing experiment contains 30 demonstrations with a maximum error of 0.1m.

Picking Red and 3. Placing Red. For every stage, the time series data is re-sampled

in order to keep their time length equal to 5. Overall, there are 20 demonstrations for

every case in these 2 experiments.

For both experiments above, the standard DDPG with HER architecture is adopted

as the baseline DRL agent. As mentioned above, it can be found that it is tricky

for an RL agent to achieve a goal state formed as three object positions (shown as

Fig.3.5). Instead, the goal state is assigned according to task classifier c. Thus, the

goal of the RL agent is to pick and place a blue object when label=0 or 1 or a red

object with label=2 or 3. The goal can be expressed as the correct position and

yaw angle of the corresponding object Pgoal = [xgoal, ygoal, zgoal, 0] and observe its cur-

rent condition Pobj = [xobj, yobj, zobj, ψyaw]. The rest of the observations include joint

angle, end-effector’s position and orientation. The reward is designed as a sparse re-

ward with Euclidean distance as Eq. 3.6, where δr is the distance threshold. The

positions are measured in meters and ψyaw is measured in radians. The actions are

CHAPTER 3. CONTINUOUS TRAJECTORY LEARNING 42

[q′base, q
′
shoulder, q

′
elbow, q

′
wrist3] within [−6, 6]. Meanwhile, the end-effector is disabled once

any collision happens. This is to prevent the agent from learning any unnecessary be-

haviour.

Rt =

 0 |Pobj − Pgoal| < δr

−1 otherwise
(3.6)

During testing, the performances of the Task-conditioned subgoal planner and the

DRL agents are both assessed with Success Rate (SR). At the initial stage, the objects

are randomly placed within a specific range. One successful trial is defined as the final

reward R is 0; thus, SR stands for the percentage of the successful trial out of the total

attempts.

success =

 1 R = 0

0 otherwise
(3.7)

3.4 Results

3.4.1 Neural Dynamic Planner

This section focuses on evaluating the effectiveness of modelling only the expert prefer-

ence, specifically the distance between the current state and the sub-goal, to generate

efficient actions in the robot’s joints.

For the stacking and placing experiment, Fig.3.9 illustrates the Neural Dynamic

Planner’s performance in guiding the early stage of DRL exploration via only direction

output. As the figure shows, the DRL agent produces random actions at the exploration

phase, the Neural Dynamic Planner can correct the actions, and make the goal-state

positional difference coverage smaller than 0.15m.

In the human error correction experiment, the actions generated by the Neural

Dynamic Planner are depicted in Fig.3.10. When the model’s inputs include the com-

plete observation, which consists of the current end-effector position and the sub-goal,

CHAPTER 3. CONTINUOUS TRAJECTORY LEARNING 43

(a) Stacking. (b) Placing.

Figure 3.9: Goal-state positional difference with Guided Exploration.

denoted as π(rt, st), the model becomes a simple actor-network as those in actor-critic-

based reinforcement learning methods like Deep Deterministic Policy Gradient (DDPG)

[17]. These models undergo training with 5-fold cross-validation and a learning rate of

1 × 10−3. In the experiment, the robot is permitted a maximum of 30 steps to reach

the predicted sub-goal. The absolute mean distance between the end-effector and the

sub-goal is recorded at each timestep.

As depicted in Fig.3.10, when full observations π(rt, st) are used, they fail to produce

optimal actions, as indicated by the red curve which shows that the predicted actions

remain constant. The inefficiency in state-action pairs can lead it to become trapped

in local optima. Additionally, the similarity between observations may pose challenges

during the training process. In contrast, the proposed Neural Dynamic Planner, rep-

resented by the blue line in Fig. 3.10, demonstrates its efficiency and adaptability by

converging to a distance of less than 0.02m in approximately 15 steps.

3.4.2 Task-Conditioned Subgoal Planner

This section aims to examine the ability of the proposed subgoal planner in human error

corrections with full observations without DRL. For each cuboid manipulation, the

observations are labelled into different picking or placing stages including: 0. Picking

CHAPTER 3. CONTINUOUS TRAJECTORY LEARNING 44

Figure 3.10: The comparison of different inputs is illustrated in the figure, which
displays the absolute mean distance between the current state and the subgoal along
with the standard deviation over steps. This analysis is based on 20 trials, each with
random initial positions and sub-goals.

Blue, 1. Placing Blue, 2. Picking Red and 3. Placing Red. For every stage, there will

be five subgoals.

Fig.3.11 describes the example frames on handling two objects correction with four

task labels. It is able to adaptively arrange subgoals followed by informable actions.

It also indicates that the planner is suffice to avoid any collision among objects. For

the numerical results from Table 3.1, they are assisted with same reward function as

Eq.3.6 with greater thresholds. It can be found the planner is not biased as the success

rates of different sub-tasks in the same experiment are almost identical. Meanwhile,

the success rate does not decrease a lot along with increases in the complexity of

experiments, which proves the robustness of the model. However, it can be noticed

that the time steps increase in some of the two object correction tasks as the predicted

subgoal oscillates during the picking stage as shown in Fig.3.11b. Lastly, the main

failure case is caused when the subgoal or action planned is not sufficient to pick up

the object. The possible reason could be that it is not very efficient in handling large

CHAPTER 3. CONTINUOUS TRAJECTORY LEARNING 45

(a) Case 1: Robot corrects the blue object as it occupies the red one’s position and thus the red one
sequentially.

(b) Case 2: Robot corrects the red object as it occupies the blue one’s position and thus the blue one
sequentially.

Figure 3.11: The different planning scenarios of two objects correction experiment as
shown in Fig.3.7. The proposed method first classifies the task labels according to
pre-defined goals (Fig.3.5). The robot thus corrects the corresponding objects while
avoiding any collisions with the proposed two-level motion planner. The squares stand
for the classified stages of picking or placing. The orange sphere in the scenes stands
for predicted subgoals.

CHAPTER 3. CONTINUOUS TRAJECTORY LEARNING 46

One object correction

Task Object
Avg. Success rates Avg. Steps taken

δr=0.08 δr=0.06 δr=0.08 δr=0.06
Case 1 Blue 0.66(±0.01) 0.51(±0.05) 40.35(±4.16) 43.35(±3.73)
Case 2 Red 0.63(±0.04) 0.53(±0.02) 41.57(±3.31) 42.47(±3.2)

Two objects correction

Task Object
Avg. Success rates Avg. Steps taken

δr=0.08 δr=0.06 δr=0.08 δr=0.06

Case 1
Blue 0.64 (±0.01) 0.54(±0.03) 41.35(±2.16) 48.35(±4.61)
Red 0.61(±0.02) 0.51(±0.04) 43.11(±3.31) 48.11(±5.17)

Case 2
Red 0.59(±0.06) 0.53(±0.02) 39.53(±6.16) 41.1(±2.14)
Blue 0.62(±0.01) 0.53(±0.04) 51.37(±5.1) 54.52(±5.1)

Table 3.1: The success rates of two-level Planner under different thresholds in two
experiments.

continuous observations.

3.4.3 The importance of demonstrations for DRL

For the first stacking and placing experiments as shown in Fig.3.12. The Neural Net-

work Planner is capable of guiding the learning of the DRL even with dense rewards

by narrowing down the search space with only directions.

(a) Stacking. (b) Placing

Figure 3.12: Success rate in two tasks. Bold lines indicate the mean success rate while
a lighter line represents each training curve.

CHAPTER 3. CONTINUOUS TRAJECTORY LEARNING 47

Furthermore, the proposed hybrid hierarchical guidance framework is assessed for

more complex human error correction tasks. In RL training, the threshold is set as

δr = 0.01 and the max step is 40. Fig.3.13 shows the training curves of total suc-

cess rates of picking and placing either red or blue cuboids with the hybrid approach

(λ = 0.7), fully guided RL (λ=1) and pure exploration (λ=0) for these two error cor-

rection experiments. Each subtask was trained in sequence. The overall success rates

of the proposed approach can achieve 0.95 and 0.91 within 550 epochs without any

collision. It can be found that the Hybrid Hierarchical Guidance is able to not only

provide informative actions but also maintain diversity in the experience buffer. For

full guidance, the agent is biased toward one specific task. As the agent only receives a

nearly optimal strategy, the prediction accuracy for less common states or behaviours

may become worse due to overfitting. On the contrary, pure exploration is sample

inefficiency.

Figure 3.13: Training curves including hybrid guidance,fully guidance, and pure explo-
ration for two experiments

3.4.4 Summary

This section discusses the proposed architecture and revisits the research questions

raised in section 3.1 based on the results from the experiments conducted.

As the continuous state-action space can be quite large for robot trajectory learning,

only modelling the dynamic of expert preference as the goal-state positional difference

CHAPTER 3. CONTINUOUS TRAJECTORY LEARNING 48

can be efficient for dealing with object position variations. Moreover, the proposed

Neural Dynamic Planner can also deal with imperfect demonstrations. As shown in

Fig.3.9, it is also capable of guiding random actions with only direction modelling.

This addresses Q1.

Moreover, the subgoal planner is able to produce collision-free subgoals through

raw observations. However, high-dimensional observations affect the performance of

subgoal generation.

To address Q3, the demonstration can indeed improve the sample efficiency of DRL.

However, combining the results in Fig.3.12 and 3.13, it can be found that, maintaining

the experience diversity of the memory buffer is also necessary.

However, the weakness of this work is that both the proposed planner and DRL

agent suffer from high-dimensional observations and thus lead to inefficient perfor-

mance. Chapter 4 aims to tackle this issue with a more complex setting further.

Chapter 4

Adaptive Task and Motion

Planning in varying scenarios

4.1 Introduction

As discussed in the previous section, to tackle the robot learning problem, especially

in multi-object scenarios, both the LfD-based motion planner and DRL suffer from

high-dimensional observations, while the DRL still needs a long time of training even

with a proper design of the guidance from the proposed motion planner. Thus, this

section mainly focused on designing a pure LfD framework that can handle multi-object

manipulation problems that consider variant goals and task structures. Meanwhile, this

problem is termed as massive Package-to-Order (mPTO) in a manufacturing setting.

An example of mPTO (make-to-order production) is seen in packaging companies

that assemble hamper baskets for their employees during festive periods. This study

focuses on mPTO scenarios where the types of products are common across different

customers, but the final packaged product varies based on customer specifications, as

shown in Fig.4.1. This chapter addresses a couple of variations in the mPTO scenario.

• Position variations: This refers to the changing positions of objects that the robot

needs to manipulate.

49

CHAPTER 4. ADAPTIVE TAMP SYSTEM 50

• Goal configurations variations: This variation is related to different customer

orders, like the ones illustrated in Fig.4.1. Due to diverse customer requirements,

the packaging configurations and appearances might change, even when using the

same products. This means a product could be placed in various goal positions

depending on the order.

• Task structure variations: This variation occurs in scenarios where humans col-

laborate flexibly with robots. Different humans might choose different sequences

to complete a task, so the robot should be adaptable. For example, if a human

starts packaging some products in a random order, the robot should be able to

observe and understand what has been done so far and then continue manipu-

lating the remaining objects in response to the human’s actions. This type of

collaboration is known as sequential Human-Robot Collaboration (HRC).

To address these variations in mPTO scenarios, traditional methods typically in-

volve extensive manual planning and design. This process includes accounting for all

potential variations that might occur. For instance, when using manipulation trees

for planning, it’s necessary to create a comprehensive list of all possible product com-

binations, as discussed in [57]. Similarly, logic operations in planning need to be

conditioned on every conceivable action. These approaches require significant fore-

sight and a detailed understanding of the task environment, making them complex

and time-consuming.

This work utilizes the Task and Motion Planning (TAMP) framework, which offers

the ability to seamlessly integrate discrete high-level decision-making with continuous

motion generation.

Compared to traditional approaches, the primary objective of high-level task plan-

ning in this context is to enable a robot to learn task structures without the need for

hand-coded task descriptions or predefined rules. Instead, the robot acquires knowl-

edge of the underlying task policy solely from passive observations derived from expert

demonstrations.

CHAPTER 4. ADAPTIVE TAMP SYSTEM 51

Figure 4.1: A real-world example of a package-to-order scenario can be seen with
Amazon sellers, who frequently need to package a diverse range of products. These
products must be arranged in different goal configurations to meet the specific demands
of various customers. Each order might require a unique combination or arrangement
of items, reflecting the individual preferences or needs of the customer placing the
order. This situation exemplifies the complexity and variability inherent in package-
to-order operations, where customization and adaptability are key to meeting customer
expectations.

Furthermore, there are three research questions that should be addressed for the

TAMP framework:

• Q1 : In the context of mPTO scenarios, the challenge lies in how a high-level

decision-making module can generate accurate sequential plans while handling re-

dundant objects within a task structure. It’s crucial to note that these redundant

objects serve a purpose as they may be required for subsequent customer orders

with different goal configurations. This approach has particular significance in

manufacturing systems, as it can potentially reduce or eliminate downtime during

changeovers.

• Q2: How to translate the change in sequential plan to the lower level motion

planner for subsequent rapid motion generation?

CHAPTER 4. ADAPTIVE TAMP SYSTEM 52

• Q3: Furthermore, in the event that a human worker becomes involved and

chooses to diverge from the originally demonstrated task structure, what methods

can be implemented to develop a Task and Motion Planning (TAMP) framework

that can promptly detect this deviation and adapt the sequential plan accord-

ingly?

To address these issues, this chapter proposed an end-to-end architecture as follows:

• A high-level reasoning module based on Graph Neural Networks (GNN) is in-

troduced. It aims to reason the importance of observations during different task

stages. In comparison to existing GNN-based methods, this approach offers more

detailed guidance for planning low-level trajectories. Differing from prior work

in [74], this method is capable of generating distinct task outlines during both

the picking and placing stages. Furthermore, in [74] and [77], extensive infor-

mation about object types, object fulfilment (i.e., whether objects have reached

their intended positions), and goal types are required. Consequently, their high-

level GNN models still demand additional effort to define conditions like if-else

statements. The aim of this work is to alleviate designers from this complexity

by utilizing only positional data and essential object features in the reasoning

module.

• For low-level motions, the two-level motion planner proposed in the previous

Chapter is adopted to integrate and imitate various trajectories from experts.

Unlike using full observations, the inputs have been effectively reduced through

the use of the high-level reasoning module. Moreover, this Chapter provides a

more extensive study of the proposed motion planner. As shown in the exper-

imental session, the motion planner can produce new collision-free trajectories

when novel goal positions have been perceived.

CHAPTER 4. ADAPTIVE TAMP SYSTEM 53

(a) Picking stage

(b) Placing stage

Figure 4.2: A graphical representation of the proposed framework is presented during
both the picking and placing stages. During the picking stage, the reasoning module
consistently directs its attention to the selected objects within the pending area. In
contrast, during the placing stage, it consistently focuses on the observations of the
packaging box.

4.2 Methodology

Its objective is to offer an end-to-end solution learned from expert demonstrations for

mPTO scenarios, following a Procedural Attachment approach. It operates hierarchi-

cally, determining the allocation of important features across various levels of planning.

Suppose the obtained demonstrated observations can be expressed as a tuple Π =

{g, o, p, r, µ, a, I} from environment scenes. There will be m products with position

information o = {oi}i=m
i=1 from the pending area. According to customer demand, there

will be n selected products with goal position information g = {gi}i=n
i=1 at the packaging

box p (n ≤ m).

CHAPTER 4. ADAPTIVE TAMP SYSTEM 54

The robot is tasked with sequentially transporting selected products to the pack-

aging area, with consideration for two distinct cases encompassed within the same

framework:

1. CASE 1: the robot operates independently by following the same task structure

learnt from demonstrations. Here, the robot engages in a sequential process

of picking and placing products, one after the other, until the predefined goal

configuration is attained.

2. CASE 2: in the second case, the robot encounters different task structures,

particularly when HRC comes in. In such instances, human actions can exhibit

variability, such as employing diverse arm movement trajectories for picking and

placing objects. Subsequently, this proposed approach primarily focuses on mon-

itoring the final stages of human actions, specifically the objects’ final positions.

Figure 4.2 serves as an illustration of the proposed framework, which draws inspi-

ration from the natural human approach to object manipulation. It takes into account

the common sequence in which humans typically decide to interact with objects. The

observed human demonstrations are thus divided into two distinct task stages for each

selected object and its subsequent manipulation:

1. At the picking stage, the robot’s primary task is to identify and prioritize the

most important object within the set of objects o and proceed to pick it up.

2. Subsequent to the object being successfully picked up, the robot’s next objective

is to transport the object to a designated goal pose. It is termed as the placing

stage, which assigns priority to the packaging box position denoted as p as the

most pivotal feature. The specific goal position is deduced based on the task

label l, enabling the robot to complete the placement task effectively.

CHAPTER 4. ADAPTIVE TAMP SYSTEM 55

4.2.1 Reasoning Module with Graph Neural Network

In prior studies, as seen in [74] and [77], the graph representations included both object

and goal nodes, with additional attributes defining object types and their fulfilment

status. While the goal positions for objects could exhibit variations, especially in sce-

narios involving diverse geometric shapes for final goal configurations, such an approach

often led to a rigid adherence to predefined task structures. In these previous works,

the incorporation of additional if-else statements became necessary at each step to de-

termine whether the goal had been fulfilled or not. In contrast, this study adopts a

different approach. It seeks to enable the agent to initially infer crucial observations

and stages solely through object position information, supplemented by essential fea-

tures. Furthermore, the objective is to enhance the agent’s adaptability in scenarios

where the task structure undergoes variations.

Figure 4.3: The Neural Network Architecture for the reasoning module follows this
structure: A graph representation of the object states is initially constructed. Three
GraphSAGE layers are applied, along with the ReLu activation function, to extract
the most pertinent observations. This process results in a probability distribution that
aids in selecting the corresponding goal from a set of potential goals. Subsequently, the
task stage is classified by combining these two features. This classification is achieved
through a 3-layer neural network, with ReLu serving as the activation function.

To achieve these goals, the main idea is to reduce the high-dimensional observa-

tions through importance ranking. It first assigns the necessary goal positions to each

selected object. This will be selected by the importance score at the beginning of the

CHAPTER 4. ADAPTIVE TAMP SYSTEM 56

picking stage. Each single object manipulation task is treated as a graph classifica-

tion problem. The output of the graph neural network will be a m + 1 dimensional

probabilistic distribution P o
pred = {popl, po1, ..., pom} where {po1, ..pom} depicting the object

importance within o at the picking stage and an extra popl suggests the importance of

packaging area p at placing stage.

The distribution P o
pred is combined with the selected goal position. This will then

be further fed to a fully connected NN classifier for classifying n + 1 dimensional

probability distribution P g
pred = {pgpi, p

g
1, ..., p

g
n}, where {pg1, ..pgn} describes the goal

labels at placing stage and an extra pgpi represents the picking stage. Note that each pgn

in {pg1, ..pgn} represents a specific goal position, which is demonstrated by the predefined

goal configuration. It is referred to as position-specified labels. Such a design is to

better infer the low-level motion module about the task stages.

Thereafter, the important features selected by P o
pred and the one-hot encoded label

l ∈ {lpi, lg1 ...lgn} converted from P g
pred are combined together as the inputs for the

motion module (See Fig.4.2) .

Fig.4.3 describes the neural network architecture for the reasoning module. GNN

are introduced to operate the graph classification. The states are encoded as graphs.

Let there be n out of m (n ≤ m) objects that need to be manipulated. There will be m

nodes V = {vm}mm=1 and each node contains 4-dimensional features ϕ(vm), including the

3-dimensional objects positions o and an extra binary property I = 0 or 1 describing

whether such an object has been selected or not according to the predefined g =

{gn}nn=1. The directed linking edges can be expressed as E = {ei,j} for i = 1, ..m − 1

and j = 2, ...m, where each node is only connected with its neighbour nodes.

This study adopts GraphSAGE(Sage) [133] layer. It holds the advantage of being

generalizable to unseen nodes by sampling and aggregating the target node’s neigh-

bour nodes instead of weighting the whole neighbour nodes like Graph Convolution

Network(GCN) [134].

Assume the initial node embedding is h0i = ϕ(vm) and there will be K message

passing iterations or K layers. It can thus aggregate its neighbour nodes hk−1
j from the

CHAPTER 4. ADAPTIVE TAMP SYSTEM 57

previous layer (i.e K − 1) and to form a single vector representation as Eq.4.1. In this

study, fagg is the aggregator that aggregates the neighbours’ features with an averaging

function 1
N

∑
j∈N (i) h

k−1
j . This aggregated representation hkN (i) will be concatenated

with the target node’s embedding from the previous layer hk−1
i and further multiplied

by a weight matrix Wk. Thus, the node embedding of Kth layer can be represented

as Eq.4.2, where σ is the ReLu activation function. fθgnn1
and fθgnn2

are the trainable

functions with parameters θgnn1 and θgnn2 for each layer. In order to prevent gradient

explosion, the obtained node embedding are normalized as hki ←
hk
i

||hk
i ||2

hkN (i) = fagg(h
k−1
j , j ∈ N (i)) (4.1)

hki = σ(Wk · (fθgnnk−1
(hk−1

i) + fθgnnk
(hkN (i))) (4.2)

Afterwards, for graph classification, there will be an additional readout layer that

aggregates the node embeddings into a graph embedding as Eq. 4.3. A final output

layer accepts the graph embedding and produces m+1 final categorical distribution

P o
pred.

Gk =
1

N (v)

∑
i∈N (v)

hki (4.3)

A classifier is further built with three layers. It takes m+1 dimensional distribution

P o
pred and a 3D selected goal position g as inputs, which yields total m+4 dimensional

features with the final outputs P g
pred.

For training this module, it is considered as a supervised learning model with the

ground truth distribution P o
goal and P g

goal. For both GNN and NN classification, the

cross-entropy loss is used as Eq.4.4 and 4.5. These two cost functions are jointly

CHAPTER 4. ADAPTIVE TAMP SYSTEM 58

optimized as a linear combined cost function in Eq.4.6.

loss1 = −
m∑

m=1

[pogoal]mlog(p0pred)m (4.4)

loss2 = −
n∑

n=1

[pggoal]nlog(pggoal)n (4.5)

Lre = (loss1) + (loss2) (4.6)

4.2.2 Motion module

Figure 4.4: Neural Network for the sub-goal planner with ranked inputs.

This section focuses on building a motion module for a robot to generate actions

based on the information provided by the reasoning module. In mPTO scenarios,

collision-free motions need to be considered in order to avoid any damage to the prod-

ucts. Thus, a robot should avoid any collisions with itself and with objects at the

picking stage. It should also avoid collisions between various objects already packed

during the placing stage.

The methodology of the motion module is the same as the one described in the

previous section, while the inputs of the subgoal planner are different as shown in

Fig.4.4.

Since the reasoning module can effectively reduce the observation dimensions, the

subgoal planner in this study is used to produce adaptive plans in dealing with more

variant picking and placing positions. In detail, the sub-goal plan s is based on the

current end-effector pose r and different features obtained from the reasoning module

CHAPTER 4. ADAPTIVE TAMP SYSTEM 59

at different stages. In the picking stage, the reasoning module will always provide the

selected object position oselected and label indicating the task stage lpi, and thus lead

to total observations O = {oselected, lpi, r}. During the placing stage, the reasoning

module will focus on the packaging box position p with a label describing different goal

positions lgi , and lead to O = {p, lgi , r}. By accessing the task information (e.g. label),

it is able to provide 3-dimensional collision-free sub-goals for different target poses even

when similar observations are perceived.

4.2.3 Task and Motion Planning framework

In the testing phase, the high-level planning process commences by having the reason-

ing module identify both the task label and the most critical observation. Subsequently,

in the motion module, the task-conditioned sub-goal planner utilizes the information

supplied by the reasoning module to propose conditioned mean sub-goals. Simulta-

neously, the neural dynamic planner is responsible for executing the low-level actions

aimed at achieving the specified sub-goals, as outlined in Algorithm 2.

CHAPTER 4. ADAPTIVE TAMP SYSTEM 60

Algorithm 2 Proposed TAMP architecture for adaptive packaging problem

Initial observations Π = {g, o, p, r, µ, a}

Trained reasoning module R, and motion module with task-conditioned sub-goal

planner S,neural dynamic planner D

In picking stage

Construct graph G based on objects o and their assigned goals g

Produce the important object oselected and select its goal gselected from GNN, and thus

obtain the task label for picking lpi as {oselected, lpi} = R(G, gselected)

for every sub-goal planning step in picking do

Produce sub-goal st = S(oselected, r, lpi)

for every action planning step do

Produce joint actions at = D(∆t), where ∆t is the distance between end-effector

position and sub-goal ∆t = st − rt.
In placing stage

Construct graph G based on objects o and their assigned goals g

Produce the packaging box position p from GNN and the placing goal label lgi as

{p, lgi} = R(G, gselected).

for every sub-goal planning step in placing stage do

Produce sub-goal st = S(p, r, lgi)

for every action planning step do

Produce joint actions at = D(∆t), where ∆t is the distance between end-effector

position and sub-goal ∆t = st − rt.

4.3 Experimental Setup

In this study, the use cases have been devised to emulate scenarios resembling mPTO

challenges. However, due to the constraints related to the absence of extensive customer

orders, these use cases have been narrowed down to an adaptive packaging problem.

This adaptation still retains the essence of the changes typically encountered between

batches of large-scale orders.

CHAPTER 4. ADAPTIVE TAMP SYSTEM 61

The study encompasses a total of n out of m objects (n ≤ m) for the adaptive

packaging experiments. An illustrative example is provided in Figure 4.5, representing

a scenario with 4 out of 5 selected objects. Each experiment corresponds to a specific

customer order, specifying the requirement to package n objects from a set of m objects.

These experiments introduce a variety of goal configurations, as depicted in Figure

4.6, where each object possesses the potential to be selected. The number of possible

combinations for such configurations is calculated using mCn = m!
(m−n)!n!

. Additionally,

while the positions within the goal configuration remain fixed, the same objects may

assume different positions within the goal configuration. Therefore, for each combina-

tion, there are Pn = n! possible permutations. Consequently, every experiment entails

a total of mCn × Pn distinct goal configurations.

(a) CASE 1: The simulation experiment in 4 out of 5 experiment
with the task structure followed by the demonstrator

(b) CASE 2:human manipulate objects randomly, and the robot
should generalize to different task structures to carry out the rest
of the task.

Figure 4.5: This figure illustrates two distinct scenarios: CASE 1, where the robot
adheres to a fixed task structure, and CASE 2, where the robot collaborates with a
human, engaging in a variable task structure. In both scenarios, the robot’s objective is
to pick and place the designated objects into the blue packaging box from the pending
area. Please note that the human model featured in the figures serves purely illustrative
purposes.

CHAPTER 4. ADAPTIVE TAMP SYSTEM 62

(a) Different combinations in goal configurations when selecting 4
objects among 5 objects

(b) Different permutations under the same combination

Figure 4.6: These figures show various goal configurations, which include possible
combinations and permutations, along with position-specified labels. Figure 4.6a shows
the packaging order needs different objects (combinations). Figure.4.6b shows the
packaging order need the same objects while with different appearance (permutations).

The objective of this study is to address two distinct scenarios within each exper-

iment, all within the framework of the proposed architecture. These two cases are as

follows:

• CASE 1: In this scenario, the robot is tasked with managing the varied goal

configurations independently, as described in Figure 4.5a. The robot’s approach

aligns with the learned task structure obtained from demonstrations. For in-

stance, if the selected objects are [2,3,4,5], the robot consistently manipulates

the selected object with the lowest numerical identifier until it achieves the final

goal.

• CASE 2: In contrast, Case 2 serves as a demonstration of the generalization ca-

pabilities inherent in the proposed approach, particularly when confronted with

unforeseen task structures arising from human actions and diverse goal configura-

tions. For example, as illustrated in Figure 4.5b, the human intervenes by picking

CHAPTER 4. ADAPTIVE TAMP SYSTEM 63

the first and third selected objects, leaving the robot with the task of sequen-

tially manipulating the second and fourth selected objects. This case assesses the

adaptability of the proposed framework to accommodate varying human perfor-

mance and task structures.

To train the architecture, the high-level reasoning module and the low-level motion

module are trained separately using different expert demonstrations.

In the high-level reasoning module, the desired goal configuration is initially demon-

strated, utilizing position-specified labels, as depicted in Figure 4.6. Consequently,

experts manipulate the objects in accordance with the established task structure as

presented in Figure 4.5a. During this process, only two graph-based observations are

gathered for each instance of single-object manipulation, occurring at the commence-

ment of both the picking and placing stages, as visualized in Figure 4.9. To facilitate

the learning process, ground truth distributions denoted as P ogoal and P ggoal are

provided in the form of one-hot vector labels. This ensures that only the probability

selected by the expert is assigned a value of 1, while all other probabilities are set

to 0. Subsequently, the agent learns the underlying structures from graph-encoded

observations, all without the need for manually defined task descriptions or rules.

In the low-level motion module demonstrations, the robot is operated manually by

an expert to perform the tasks of picking and placing objects. Three distinct sub-goals

are designed to govern various stages of the process. For the picking stage, the robot

executes a sequence of actions as follows: it first positions itself above the target object,

followed by a controlled approach toward the surface of the object, and ultimately, it

performs the action of grabbing and lifting the object. In the placing stage, the robot

adheres to a similar sequence of actions: it initially approaches a specific point relative

to the goal position, then moves above the goal, and finally carries out the action of

placing the object in its desired location.

Each of these sub-goals encompasses a set of 20 distinct actions. These actions

are recorded and include the three most impactful joint actions of the UR10 robot,

CHAPTER 4. ADAPTIVE TAMP SYSTEM 64

specifically denoted as [q′base, q
′
shoulder, q

′
elbow,].

4.4 Results

4.4.1 Reasoning Module

(a) Generalization study on handling unseen goal configurations in
CASE 1

(b) Generalization study on handling unseen task task structures and
goal configurations in CASE 2

Figure 4.7: An investigation into the generalization performance across different train-
ing ratios was conducted in a simulated environment.

This section’s primary objective is to demonstrate the efficacy of the GNN-based

reasoning module in managing a substantial volume of goal configurations that involve

redundant objects. Additionally, it seeks to assess the module’s capacity for general-

ization when confronted with previously unseen goal configurations and task structures

CHAPTER 4. ADAPTIVE TAMP SYSTEM 65

across various task stages. To achieve this, the reasoning module is subjected to com-

parison against alternative methods within the context of the mPTO use case:

1. GNN[74]: The GNN-based high-level policy from the work [74] with Graph-

SAGE Layers is implemented. The observations are encoded as a fully connected

graph. This graph provides both objects and goals nodes with spatial 3D po-

sitions and extra properties regarding object types and fulfilment in the graph.

[74] performs the graph classification to directly output the two probability dis-

tribution of the target object P o
pred and goal P g

pred. In order to meet the needs

of the experiment, there are extra binary features as I describing whether an

object has been selected or not in every node. Their work can handle various

positions for each object’s goal by producing the same distribution P g
pred. Hence,

this ground truth P g
goal label does not reflect the specific goal position. Instead,

it only represents the order of goals. Furthermore, the same ground truth for

picking and placing stages is assigned as their work only considers the initial

observation at the beginning of each object manipulation.

2. GNN-task: A design like GNN cannot distinguish between different goal po-

sitions. Hence the low-level motion module will always follow the same static

trajectory regardless of the goal positions. In the comparisons that follow, their

approach is trained with ground truth P o
pred and P g

goal.

3. MLP: In comparing the approach with a traditional Multi-Layer Perceptron

(MLP), the input is flat 1D observations instead of graphs. This was trained

with expert demonstration data.

4. RF: The proposed approach is compared with a Random Forest Classifier (RF)

which is a Neural Network-based traditional approach. This approach infers the

target predictions by using an ensemble of decision trees with each tree containing

a sub-sample of data features. Each tree has branches that use Boolean-type logic

CHAPTER 4. ADAPTIVE TAMP SYSTEM 66

to reach a decision. The RF reaches a decision through a majority vote from an

ensemble of trees.

The training of these methods involves a 5-fold cross-validation setup with a learning

rate as 1×10−3. During the testing phase, the assessment relies on a Success Rate (SR)

metric, which measures the percentage of successful trials out of the total attempts.

The classification results are derived for P o
pred and P g

pred at both the picking and placing

stages. This evaluation is conducted for every individual object manipulation, and a

trial is deemed successful when all predictions for the selected n objects are accurate.

To illustrate, in a single experiment involving n out of m objects, there will be a total

of n x 2 predictions for both P o
pred and P g

pred.

n out of m 2 out of 3 3 out of 3 3 out of 5 4 out of 5
Ours 1± 0.000 1± 0.000 1± 0.000 1± 0.000
GNN 1± 0.000 1± 0.000 1± 0.000 1± 0.000
GNN-task 0.83± 0.015 0.72± 0.017 0.58± 0.024 0.24± 0.031
MLP 1± 0.000 1± 0.000 0.96± 0.013 0.86± 0.025
RF 1± 0.000 1± 0.000 1± 0.000 1± 0.000

Table 4.1: Success rates of different methodologies for reasoning with n out of m objects
in simulation.

Table 4.1 provides an overview of the performance in CASE 1. Each model under-

goes training with the complete demo dataset, and their performance is evaluated when

objects’ positions are randomly initialized within the pending area. As demonstrated

in Table 4.1, the proposed approach exhibits competitive performance, achieving a

100% Success Rate (SR) across a wide range of diverse scenarios. For instance, in the

4 out of 5 experiment, there are 120 different scenarios. The RF method also delivers

a comparable performance. However, the GNN-task model performs the least effec-

tively, likely due to its direct production of position-specific labels from the extracted

GNN features. This underscores the effectiveness of employing an additional classifier

for inferring distinct task stages, particularly when generating varied position-specific

labels during the placing stage. The MLP method experiences a decrease in SR, which

CHAPTER 4. ADAPTIVE TAMP SYSTEM 67

can be attributed to the challenges posed by variations in object positions.

(a) Demonstrated goal configuration

(b) Generalization on unseen goal configuration

(c) Generalization on unseen task structures

Figure 4.8: The simulation results in the context of the 4 out of 5 experiments demon-
strate that the reasoning module is capable of effectively handling previously unseen
tasks. Fig.4.8a depicts the performance on the demonstrated task, while it is able to
handle untrained goal configuration independently in Fig.4.8b and unseen task stric-
tures with human collaboratively in Fig.4.8c.

Furthermore, the study emphasizes the module’s ability to generalize when con-

CHAPTER 4. ADAPTIVE TAMP SYSTEM 68

fronted with observation distributions that fall outside the training data. The modules

in this study were exclusively trained using a fraction (represented as the training ratio

λ) of the dataset, featuring only partial goal configurations.

In CASE 1, the module selects combinations of goal configurations randomly,

representing λ×mCn combinations along with their possible permutations Pn for model

training. Each unique goal configuration is used only once, and the initial positions of

objects are randomized. The objective of this experiment is to evaluate the model’s

Success Rate (SR) on unseen tasks, specifically (1−λ)×mCn×Pn tasks during testing.

This means that during testing, the module must generate task structures for previously

unencountered goal configurations, including scenarios involving previously unobserved

redundant objects.

Figure 4.7a shows the results for CASE 1. The proposed model attains a 100%

SR for unseen goal configurations when λ = 0.6 in 3 out of 5 experiments. Moreover,

it demonstrates the capability to handle 24 unseen goal configurations with 94 trained

demonstrations in 4 out of 5 experiments. Conversely, both GNN and GNN-task

fail to generalize effectively to unseen goal configurations that involve redundant ob-

jects, while RF encounters difficulties when generalize to previously unobserved goal

configurations.

In CASE 2, similar to the study in CASE 1, the models are trained using a subset

of goal configurations, specifically λ ×m Cn × Pn. During the testing phase, an aug-

mented dataset is employed, simulating diverse task structures by utilizing randomly

selected goal configurations (as shown in Fig. 4.5b). Each n out of m experiment

comprises a total of 300 distinct testing scenarios.

CASE 2 as shown in Fig.4.7b, is challenging due to the increase in the amount

of unseen scenarios. When the proposed module is trained with full goal configura-

tions (λ = 1), it exhibits the highest average success rate (SR) of 96.3% for 3 out of

5 experiments and 93.7% for 4 out of 5 experiments in handling unseen task struc-

tures. However, GNN struggles to adapt to different task structures, as evidenced by

its inability to produce accurate importance predictions (P o
pred). Interestingly, MLP

CHAPTER 4. ADAPTIVE TAMP SYSTEM 69

outperforms GNN and GNN-task, possibly due to the risk of aggregating irrelevant

neighbour node features in a fully connected graph, which can impact prediction ac-

curacy. While RF still encounters difficulties in generalizing to diverse task structures.

The simulation results, highlighting the generalization capabilities of the reasoning

module for unseen goal configurations and task structures, are presented in Fig. 4.8.

(a) Case 1: Showing the robot moving towards the objects for sub-
sequent picking and placing into a box

(b) Case 2: Showing the handling of different task structures when
collaborating with a human

Figure 4.9: The interpretation of the learned reasoning module is provided for both
picking and placing stages in two cases. Each sub-figure displays the following infor-
mation: Feature mask (first row): Identifies the most important features. Edge mask
(second row): Highlights the most critical edges using solid lines. And manipulation
scenes (third row): Offers visual representations of the manipulation scenes from the
simulation.

CHAPTER 4. ADAPTIVE TAMP SYSTEM 70

The results of the learned importance ranking are explained using GNNExplanier

[135], as shown in Fig. 4.9. GNNExplanier is a tool designed to explain trained graph

models by identifying the most crucial features and edges. In Fig. 4.9, the feature I

proves essential in the mPTO problem, enabling the GNN to discern which subsets

of objects should be prioritized. It efficiently computes object importance based on

position information and neighbouring nodes during the picking stage. Additionally,

the spatial feature of object height z plays a role in the placing stage. Remarkably,

the model exhibits robustness in handling various task structures, with identical masks

observed in both CASE 1 and CASE 2. This indicates that the graph construction

empowers the trained GNN to effectively identify if some objects with I = 1 have been

packaged (i.e., influenced by human performance) using solely position information.

Consequently, it can accurately plan the remaining selected objects according to the

learned task structure, as demonstrated in Fig. 4.8.

4.4.2 Motion module

4.4.2.1 Task-Conditioned Sub-goal Planner

This section intends to demonstrate the significance of supplying task information from

the high-level module and evaluate the efficacy of the sub-goal planner in handling vari-

ations in object positions. The sub-goal planner, operating as a probabilistic regressor,

is subjected to comparison against various regression methodologies, as detailed below.

1. VI: This is a variational inference regressor without any task label.

2. GPR[136, 137]: Gaussian Process Regression (GPR) is a non-parametric regres-

sion technique rooted in Bayesian principles. It involves training with a provided

task label and employing a Radial Basis Function (RBF) kernel.

3. MLP: A simple neural network-based deterministic regression model with task

labels (i.e. it does not measure the uncertainty of p(s | O)).

CHAPTER 4. ADAPTIVE TAMP SYSTEM 71

2 out of 3 3 out of 3 3 out of 5 4 out of 5
Model R2 SR R2 SR R2 SR R2 SR
Ours 0.98 0.96±0.012 0.98 0.94±0.008 0.97 0.92±0.012 0.97 0.89±0.017
VI 0.96 0 0.94 0 0.95 0 0.97 0
GPR 0.98 0.35±0.046 0.99 0.43±0.076 0.99 0.32±0.047 0.99 0.21±0.031
MLP 0.87 0.26±0.041 0.73 0.12±0.023 0.621 0.08±0.019 0.43 0.06±0.016

Table 4.2: The results of various sub-goal regression methods on the demonstration
data, along with the success rates in the adaptive packaging experiments, each consist-
ing of 100 testing trials.

The learning rates for these experiments were set at 1× 10−3. To assess the regres-

sion results, 3-fold cross-validation was employed, and the performance was measured

using the R2 score. A higher R2 score indicates that the model can better explain the

variability in the data.

The different sub-goal planners were then incorporated into the TAMP architecture

and evaluated through simulation experiments. During the training phase, each object

was only allowed to be manipulated to one goal position. In contrast, during testing,

the generalization ability of the proposed sub-goal planner was tested when the same

object needed to be used in different goal positions, such as in permutations under the

same combination (as illustrated in Fig. 4.6a and Fig. 4.11b).

During testing, 100 trials were randomly selected from CASE 1 and CASE 2, as

discussed in the previous section. A successful manipulation of an object was defined

as when the Euclidean Distance between the object’s pose and the goal position was

under a certain threshold δr = 0.06m (as in Equation 4.7). A successful trial was one

in which all target objects had reached their predefined goals without any collisions

during execution

success =

 1 | Poseobj − Posegoal |< δr

0 otherwise
(4.7)

The proposed task-conditioned sub-goal planner demonstrates its ability to handle

up to 4 different goal positions, as indicated in Table 4.2. In contrast, the MLP

CHAPTER 4. ADAPTIVE TAMP SYSTEM 72

exhibits the poorest performance, limited to handling only 2 different goal positions.

The VI model achieves a better R2 score within the training dataset; however, it

struggles to generate stable sub-goals in the absence of task information, highlighting

the significance of task labels.

On the other hand, the GPR model utilizes information from the entire training

dataset to predict sub-goals. Despite having access to task information, it still fails to

adapt to unseen goal positions that deviate from the training distribution. In contrast,

the task-conditioned variational-inference-based sub-goal planner performs better in

handling variations observed during testing experiments.

As illustrated in Fig. 4.10, the sub-goal planner can replicate the planning strat-

egy observed in the demonstrations. It also demonstrates its generalizability when

presented with different goal positions while ensuring safety between objects. Fur-

thermore, it successfully generates sub-goals for scenarios where the robot needs to

pick objects from previously unseen positions, as shown in Fig. 4.11a. However, it’s

important to note that these positions should remain within a particular range (refer

to Section 4.4.3). The primary failure case occurs when the predicted sub-goal is not

efficient for grasping the object’s surface effectively.

4.4.2.2 Motion Module Performance

Figure 4.11 illustrates the 3D trajectories generated by the motion module. In the

picking stage shown in Figure 4.11a, the motion module imitates the expert’s planning

strategy, initially positioning itself above the object and subsequently picking it up. As

shown in Figure 4.11b, the module effectively handles diverse object positions during

the picking stage, producing trajectories that lead to various goal positions, even when

starting from the same initial positions in the placing stage.

CHAPTER 4. ADAPTIVE TAMP SYSTEM 73

(a) Trained sub-goals from demonstration for g1

(b) Generalized sub-goals for g2 with similar observation.

(c) Generalized sub-goals for g3 with similar observation.

(d) Generalized sub-goals for g4 with similar observation.

(e) Generalized sub-goals for g1 with different observation.

Figure 4.10: The simulation results in 4 out of 5. In each figure, the first graph
illustrates the initial state of the stage. As shown in the figures, the sub-goal planner
exhibits adaptability to different task information while ensuring collision-free motions.
Fig.4.10b,4.10c and 4.10d demonstrate its capability of generalizing trajectories based
on different task labels while with similar observations. It is also adaptable to different
observations with the same task label as shown in Fig.4.10e

CHAPTER 4. ADAPTIVE TAMP SYSTEM 74

(a) 3D representations illustrate the tra-
jectory of the robot end-effector at the
picking stage for various object positions.
In this representation, x0 denotes the ini-
tial position, and the robot’s task is to
approach the surface of the objects and
reach the picking points marked as c.

(b) 3D representation shows the end-
effector’s trajectory at the placing stage,
starting from various picking points as c
and guiding the objects to their prede-
fined goal positions marked as g.

Figure 4.11: The 3D reproduction trajectory is generated by the motion module, which
was trained using experiments 4 out of 5.

4.4.3 Overall Performance

In this section, the whole architecture performance in every experiment is discussed.

It is compared with different baseline methods including:

1. DRL: A Deep Reinforcement Learning(DRL) method uses a flat structure to

generate actions directly from full observations. The observations contain objects

positions o = {o1, o2, o3...om} and end-effector positions r. The action space is

the same as the neural dynamic planner. For every trial, the goal also contains m

objects positions including g = {g1, g2, ..., gn} for the selected objects while the

rest objects’ positions remain the same. DDPG and Hindsight Experience Replay

(HER) Buffer is implemented [19] with sparse reward. DRL agent is trained for

5000 iterations for every experiment.

2. RM+RRT-Connect[138]: RRT-Connect refers to a conventional path plan-

ning algorithm that searches a configuration space with two rapidly expanding

CHAPTER 4. ADAPTIVE TAMP SYSTEM 75

random trees growing from both the initial start point and target point. Since it

requires both starting and target position, the reasoning module (RM) is used to

produce the target object’s position and its goal. The motion module is replaced

by RRT-Connect. Moreover, in order to produce collision-free motions, the

environmental information is provided in simulation via OMPL library[139].

Regarding variations in object positions within the environment, the proposed sys-

tem exhibits robustness. It can effectively manage variations of up to 0.3 meters on the

x-axis and 0.15 meters on the y-axis concerning object-picking positions. Additionally,

it can handle variations of up to 0.35 meters on the x-axis and 0.2 meters on the y-

axis for goal positions. The system can accommodate a range of Euclidean distances

between objects and their respective goals, spanning from 0.38 meters to 0.82 meters,

showcasing its adaptability in different scenarios.

Table 4.3 highlights the challenges faced by the Deep Reinforcement Learning

(DRL) algorithm when handling high-dimensional observations and goal spaces, as

well as its inefficiency in terms of data. In contrast, the hierarchical structure of the

proposed TAMP system proves advantageous, as it efficiently reduces high-dimensional

observations into informative features for each module. Moreover, the motion mod-

ule demonstrates competitive performance in comparison to the collision-free Rapidly-

exploring Random Tree Connect (RRT-Connect) algorithm.

Planning and execution times for both the proposed motion module and the RRT-

Connect algorithm are calculated and compared. In the proposed system, three sub-

goals are planned sequentially for each object manipulation, with a maximum of 30

action steps allowed to achieve each sub-goal. During testing, the planning time for

the neural network-based planner is approximately 1.3 milliseconds for one of the sub-

goals. During manipulation, the joint actions are constrained within a range of -5 to 5

degrees. Consequently, the total action steps for a single object manipulation can vary

between 27 and 47 steps, while the execution time can vary between 10.51 seconds and

17.94 seconds.

CHAPTER 4. ADAPTIVE TAMP SYSTEM 76

When comparing the motion module with RRT-Connect, an inverse kinematic

solver is employed to iteratively determine optimized joint configurations. Environ-

mental information is provided at the beginning of each object manipulation to enable

collision-free motions. In this setup, objects that do not need to be manipulated are

considered as obstacles. It is observed that RRT-Connect often requires a longer av-

erage planning time (9.6 seconds), and the execution time varies between 18.3 seconds

to 25.2 seconds. Additionally, the configuration space becomes more complex as the

number of objects increases, impacting the success rate (SR) values. Moreover, the

inverse kinematic solver may generate unsafe joint configurations due to kinematic

redundancy.

2 out of 3 3 out of 3 3 out of 5 4 out of 5
Model SR SR SR SR Avg. planning time Avg. execution time
Ours 0.96±0.012 0.94±0.008 0.92±0.012 0.89±0.017 7.8ms±0.32ms 14.25s ± 2.9s
DRL 0.41±0.032 0.31±0.023 0.18 ±0.018 0.07±0.011 - -
RM+RRT-Connect 0.94±0.008 0.93±0.012 0.89±0.01 0.88 ±0.012 9.6s ±3.32s 21.75s ± 2.2s

Table 4.3: The overall performance of different methods is compared across two differ-
ent cases. The DRL agent is trained using demonstrations from both cases, while the
TAMP system is only trained on CASE 1.

4.4.4 Physical Experiment

Table 4.4: Physical experiment results in both cases.

2 out of 3 3 out of 3 3 out of 5
SR in Case 1 0.98±0.002 0.95±0.01 0.93±0.008
SR in Case 2 0.91±0.012 0.91±0.007 0.87±0.034
Avg. time 44.3s±1.45 43.2s±2.3 43.5s±1.8

In the physical experiments, a setup similar to the simulations is used. The pro-

posed TAMP architecture can be directly applied to physical experiments as long as

the distribution of object positions remains similar to that in the simulations. A Re-

alSense 3D camera is positioned in front of the workspace to sense the environment, as

illustrated in Fig.4.12. To obtain real-world information about the products’ positions

CHAPTER 4. ADAPTIVE TAMP SYSTEM 77

(a) Case 1:Handling the same task
structure

(b) Case 2: Handling different task
structure caused by human

(c) Goal configuration with label

Figure 4.12: The physical experiment in 3 out of 5 experiments. The text displayed at
the top right corner of the images represents the real-time task plan generated by the
reasoning module.

relative to the robot base, a CNN-based detection network YoloV3 [140] is utilized, and

coordinate transformation is facilitated through the Robot Operating System (ROS)

[141]. The suction cap is controlled by toggling the digital I/O output on the UR10

robot during a single object manipulation cycle. The desired joint actions generated

by the motion module are used to control the robot through ROS and MoveIt [142].

One limitation of the neural dynamic planner is its inability to adjust the orientation of

the end-effector in real-time. However, object orientations are adjusted using MoveIt

during the picking stage, when picking objects with the predicted sub-goal, and in the

final step of the placing stage to enhance object detection.

Fig.4.15 provides an example from the 3 out of 5 experiments in CASE 1. As

described, the TAMP system follows the same learned task structure as in the simula-

tion, progressing from A to B until the final goal configuration is achieved. In CASE

2, the worker can initially package the products according to their preference. Subse-

quently, the robot takes over and begins planning and packaging the remaining selected

CHAPTER 4. ADAPTIVE TAMP SYSTEM 78

Figure 4.13: The efficacy of the motion module in adapting to different goal posi-
tions is demonstrated through physical experiments. For instance, the motion module
was initially trained to place object C at Goal 3 in Fig.4.13a. The module showed
adaptability by successfully generating trajectories for other untrained task goals, as
illustrated in Fig.4.13b and Fig.4.13c.

products, as demonstrated in Fig.4.14. The performance of the motion module in the

physical experiment is visualized in Fig.4.13.

The experiments were conducted with 20 runs for each case in every experiment,

covering scenarios such as 2 out of 3, 3 out of 3, and 3 out of 5. The results in

terms of Success Rate (SR) indicate that the proposed system, trained in simulation,

can effectively generalize to hardware for both the reasoning module and the motion

module, as summarized in Table 4.4. The reasoning module takes approximately 5ms

to construct the graph and make predictions, while the planning time for the sub-

goal planner is similar to that in the simulation. The Euclidean distance between

the object and the goal varies from 0.25m to 0.83m, resulting in a variation in the

number of steps taken for each object manipulation, ranging from 20 to 47 steps. The

velocity scaling factor for the UR10 robot was set to 0.05 to ensure safety between the

robot and humans, resulting in an average time of approximately 0.7s for each step.

Additionally, an average of 10.2s is required for extra orientation correction at each

stage. It should be noted that RRT-Connect was not implemented due to the need for

rich environmental information.

However, it’s important to note that the primary reason for failures in the physi-

CHAPTER 4. ADAPTIVE TAMP SYSTEM 79

cal experiments is the unpredictable dynamics of real products during manipulation.

These dynamics can lead to unexpected motions during the placing stage, resulting in

collisions with other products. Additionally, misclassifications of the products in the

YOLOV3 detection system may decrease the success rate during the experiments.

Despite these issues, the proposed architecture demonstrates faster planning and

execution times compared to conventional motion planning methods, highlighting its

potential for efficient and flexible robotic manipulation in real-world scenarios.

CHAPTER 4. ADAPTIVE TAMP SYSTEM 80

(a) First product manipulation

(b) Third product manipulation

Figure 4.14: In the physical experiment in CASE 2 where 3 out of 5 tasks were con-
ducted, the human participant selected the second object and then left the remaining
tasks to the robot.

CHAPTER 4. ADAPTIVE TAMP SYSTEM 81

(a) First product manipulation

(b) Second product manipulation

Figure 4.15: In the physical experiment described in CASE 1, which involved handling
3 out of 5 tasks, the robot autonomously executed the entire customer order packaging
process.

CHAPTER 4. ADAPTIVE TAMP SYSTEM 82

(c) Third product manipulation

Figure 4.15: (cont.).

4.4.5 Practical scenarios

To further investigate the capabilities of the proposed framework in handling variations,

two practical problems are formulated, which are commonly encountered in mPTO

scenarios.

The first practical problem can occur when some items are missing from the inven-

tory and await replenishment. In such a scenario, with the goal of meeting customer

order fulfillment requirements, the robot must initially pack the available products

into their corresponding destinations while awaiting the arrival of the missing prod-

ucts. Consequently, this situation necessitates a different task structure than the one

previously learned. This scenario can be categorized as a partial observability prob-

lem, where the dimensions of observations may vary. When using the MLP and RF

approaches for high-level decision-making, they encounter difficulties as they require

consistent observation dimensions during both training and testing. Conversely, a

GNN-based approach is better suited for handling such a problem, as it can handle

varying numbers of nodes. In this context, the reasoning module needs partial re-

CHAPTER 4. ADAPTIVE TAMP SYSTEM 83

training with additional augmented data, consisting of 50 randomly selected partial

observable expert demonstrations from 3 out of 5 experiments. This retraining enables

the reasoning module to make improved inferences based on each object’s position in-

formation. During the testing phase, a total of 180 experiments are conducted, with

each scenario repeated five times, involving 3 out of 5 scenarios with 1 or 2 products

missing. This approach achieves an average SR of 0.97. In addition, 20 physical exper-

iments are conducted with the entire system, resulting in an average SR of 0.92 across

five test sets.

The second practical problem arises when customers choose different product com-

binations, such as 2 out of 5, 3 out of 5, and 4 out of 5. In such cases, the robot

must be capable of handling various combinations and varying task lengths simulta-

neously. The reasoning module is initially trained for the 2 out of 5 scenario using

demonstrations from CASE 1. The end goal position for each object can be randomly

selected, as described in Fig.4.6. Consequently, the system’s generalizability is assessed

in the context of 3 out of 5 and 4 out of 5 scenarios in both CASE 1 and CASE

2, as illustrated in Fig.4.17. For each experiment, 100 test sets are conducted. Re-

markably, the proposed approach, initially trained with a simpler scenario (2 out of

5), demonstrates the capability to adapt to more complex and unseen tasks, such as 3

out of 5 and 4 out of 5.

CHAPTER 4. ADAPTIVE TAMP SYSTEM 84

(a) Second product manipulation

(b) Third product manipulation

Figure 4.16: Physical experiment for 3 out of 5 in CASE 1, where some products
are out of stock while robot needs to firstly pack the rest and come back to pack the
restocked product.

CHAPTER 4. ADAPTIVE TAMP SYSTEM 85

(c) First product manipulation

Figure 4.16: Physical experiment for 3 out of 5 in CASE 1, where some products
are out of stock while robot needs to firstly pack the rest and come back to pack the
restocked product. (cont.).

4.5 Summary

In this section, the proposed TAMP architecture is discussed while revisiting the re-

search questions raised in section 4.1 based on the results from the experiments con-

ducted.

In the context of high-level decision-making, the reasoning module demonstrates the

capability to directly learn the fundamental task structure from demonstrations. This

process is achieved without the necessity for predefined task structures or additional

efforts, such as the use of specific if-else rules. This approach effectively addresses the

CHAPTER 4. ADAPTIVE TAMP SYSTEM 86

Figure 4.17: A practical problem arises when customers have the flexibility to select
varying numbers of products. The TAMP system is initially trained with a scenario
where customers choose ”2 out of 5” products. It demonstrates the ability to generalize
to scenarios where customers select ”3 out of 5” products with an average success rate
(SR) of 0.97 in CASE 1 and 0.91 in CASE 2. Moreover, it also generalizes to scenarios
where customers choose ”4 out of 5” products, achieving an average SR of 0.92 in
CASE 1 and 0.86 in CASE 2.

concern raised in Q1

In response to Q2, the introduced framework adeptly converts variations in the

high-level plan into distinct low-level motion executions. This is achieved by dividing

a single object manipulation task into discrete stages of picking and placing. Such

segmentation enables the reasoning module to rank the specific features necessary for

the motion module at each stage of manipulation. Additionally, the classified labels

P g
pred are utilized to assist the motion module in distinguishing between various sub-

tasks. Moreover, this motion module is designed to not only effectively learn from an

expert’s planning strategy but also to adapt to diverse observational data.

To tackle both Q1 and Q3, the proposed framework is equipped to manage redun-

dant objects observed in the process by incorporating an additional property, denoted

as I, within the Graph Neural Network (GNN). This inclusion allows the GNN to

concentrate on a specific subset of products during a mPTO task. Moreover, the re-

sults underscore the framework’s capability for zero-shot generalization, particularly in

adapting to various task structures that arise due to differences in human performance,

CHAPTER 4. ADAPTIVE TAMP SYSTEM 87

as elaborated in Fig.4.9.

In regard to the limitations of this work, a comparison with [74] indicates that their

approach has an advantage in terms of generalizability to diverse geometric shapes of

final goals. However, the current study is limited to using pose-specified labels to

enable the functionality of the low-level motion module. On a different note, the

reasoning module in this study is adept at handling various task structures, making

it potentially more suitable for accommodating the diverse and changing preferences

found in Human-Robot Collaboration scenarios.

An additional limitation of the motion module lies in the sub-goal planner’s ability

to manage substantial variations in observations. These observations are characterized

as multivariate Gaussian distributions, which may result in inefficient planning, partic-

ularly in accurately picking an object at its surface. Furthermore, the neural dynamic

planner in this framework is limited to considering only the 3D positions of the robot’s

end-effector. While this may be sufficient for interactions with rigid objects, the sig-

nificance of this limitation becomes more pronounced when dealing with semi-rigid or

soft objects.

Chapter 5

A vision-based adaptive task

planning framework for varying

Human-Robot-Collaboration

5.1 Introduction

This chapter proposed a vision-based task planning system through LfD for respon-

sive HRC. In the previous works, the human state is reflected by the object position

information and the final end goal is predefined. In this Chapter, the robot has no

prior knowledge of the human worker’s intended goal. Instead, it should understand

human actions and thus infer the varying goals without object pose information. Con-

sequently, it should generate adaptive plans in response to human actions. It is studied

as an Assemble-To-Order problem in the manufacturing setting.

Similar to the Package-to-Order (PTO) process mentioned earlier, Assembly-to-

Order (ATO) also refers to a production strategy that involves customizing products

using various basic components. In the manual ATO process, a human worker re-

trieves different parts from the inventory and assembles the final products according

to customer demands.

88

CHAPTER 5. VISION-BASED PLANNING FOR HRC 89

Conventional Human-Robot Collaboration (HRC) methodologies typically involve

offline programming, necessitating that human collaborators adhere to a predetermined

workflow [9]. In such frameworks, robots are capable of providing support through

actions like object handling. However, this approach becomes problematic when there

are deviations in the workflow, whether due to human variability or changes in the task

itself. To address this issue, recent advancements in Learning from Demonstration

(LfD) have demonstrated significant promise in facilitating a more adaptable HRC

environment. LfD empowers robots to assimilate task structures as demonstrated by

humans and to make decisions cognitively in response to varying human actions [9].

To achieve this, understanding human actions becomes a primary task for the robot

in Human-Robot Collaboration (HRC). Earlier research has focused on interpreting hu-

man assembly scenes (including human poses and the surrounding environment) from

spatial images using CNNs [92], [47]. The analysis of human movement trajectories

is also critical for robots to recognize assembly intentions. Previous works have uti-

lized Hidden Markov Models (HMM) and Multilayer Perceptrons (MLP) with skeleton

joints [96], alongside Recurrent Neural Networks [7] and semi-flexible Neural Networks

[97]. Moreover, a combination of temporal motion features with spatial assembly con-

text, as suggested by [98], could more effectively distinguish different assembly actions.

Most studies often employ CNNs for object detection and RNNs to identify assembly

actions from either depth image sequences [99] or skeleton data [61]. In the context

of Assemble-to-Order (ATO) environments, where diverse products are created, differ-

ent components may be placed in the same position based on customer demands, as

illustrated in Fig.5.4. Here, while the assembly motions (moving to a position) remain

consistent, the corresponding objects might differ.

The robot is thus tasked with identifying the human’s intended goal based on the

sequences of human actions observed. Probabilistic methods are frequently employed

to infer the likely goals intended by humans. For example, Bayesian Inference has been

applied to deduce human navigational goals [105] and assembly plans, incorporating

prior knowledge about human poses and object interactions [7]. Additionally, the

CHAPTER 5. VISION-BASED PLANNING FOR HRC 90

variable-length Markov Model (VMM) has been utilized to analyze classified action

sequences, thereby aiding in generating optimal plan predictions [47]. These methods,

however, often depend significantly on prior expert knowledge.

Additionally, to facilitate robots in Human-Robot Collaboration (HRC) scenarios

in assisting human coworkers with planned actions, the concept of hierarchy within

demonstrated task structures has been investigated. These task structures can be es-

tablished using a predefined AND/OR graph, taking into account all possible plan

combinations, as discussed in [63], [61], and [62]. The application of Hidden Markov

Models (HMM) is also prevalent for identifying the hidden states linking sub-tasks [65].

In the study by [9], inverse reinforcement learning (IRL) was employed to determine

the most desirable actions that yield optimal rewards for custom-made products. Hier-

archical Task Networks (HTN) have been utilized as well, to define task structures and

model transition probabilities, as seen in [66] and [67]. However, these methodologies

often necessitate design based on domain-specific knowledge.

For the above discussion, this chapter proposes three common variations that should

be addressed in HRC scenarios for the ATO problem:

• Q1: Variations in human action sequences: In the context of product assembly,

there exists a notable variability in the operational sequences employed by human

workers. These variances are attributable to individual preferences, leading to

diverse approaches to achieving the completion of various products.

• Q2: Variations in goal configurations: This concept pertains to the customiza-

tion, as described in Fig.5.4. Diverging from previous studies that concentrate

on uniform end-products, this study aims to infer the differing end-goals from

variable human operational sequences within the Assemble-to-Order (ATO) set-

tings.

• Q3: Variations in robot task planning: This is about the strategies robots use

to help at different stages of assembly. Previous research allowed robots to make

simple plans like ”handle an object” based on inferred goals. This study, however,

CHAPTER 5. VISION-BASED PLANNING FOR HRC 91

is about making robots plan more detailed actions like ”handling an object in

multiple positions.”

To this end, a two-level Learning from Demonstration (LfD) framework is proposed

based on only 2D videos. This framework can be described as:

• Firstly, a hand-centric action detector is designed to actively identify human

assembly actions by integrating temporal hand motions and the spatial hand-

object interaction status. In this Chapter, the term ”actions” in the context of the

ATO problem pertains to the identification of which object has been assembled

and its specific location by human workers.

• For robot task planning, a semantic planner has been developed that utilizes

the detected action sequences to automatically create a product assembly graph.

This planner initially employs a Graph Neural Network (GNN) [133] to infer the

goal configurations intended by the human worker

• Furthermore, the semantic means that the planner can extract the relationship

between objects and the assembly positions through the trained graph nodes’

embedding. Consequently, it generates assistive plans as textual descriptions,

detailing which object should be assembled where, based on the current se-

quence of human actions. Furthermore, this approach is capable of generating

plans for new, previously unseen human action sequences.”

The proposed framework is validated through physical experiments, specifically

focusing on real-world scenarios involving the adaptive assembly of valve brackets.

The outcomes of these tests demonstrated the framework’s efficiency in accurately

identifying assembly actions. Additionally, it was effective in offering detailed guidance

and support to collaborators, especially in situations involving diverse end goals

CHAPTER 5. VISION-BASED PLANNING FOR HRC 92

Figure 5.1: Pipeline of the proposed framework:A: The first step involves detecting right
hands in incoming image sequences using MediaPipe. The framework then classifies the
assembly actions by combining hand region features extracted through a CNN-based
extractor with motion features obtained from LSTM-FCN. B: The classified action is
used to update the assembly graph, serving as a connecting edge. The framework,
leveraging this updated graph, adaptively infers the human’s intended goal configu-
ration and determines the next object to be assembled using GNN. Subsequently, a
simple LSTM translates the object node’s embedding into a language format, indicat-
ing its preferred assembly positions. This language output is useful for guiding human
decisions in future steps or for directing robot actions to assist the co-worker.

5.2 Methodology

Assume a Assemble-To-Order (ATO) scenario for one end-product with z goal config-

urations G = {gi}i=z
i=1 according to customer demands. It is assumed that there are

n types of components or objects O = {oi}i=n
i=1 and that each of them has different

amounts. Moreover, assume there will be m possible assemble positions P = {pm}mm=1

for O towards achieving final goal configurations.

The framework, as illustrated in Fig.5.1, is designed to establish a Human-Robot

Collaboration (HRC) system that is capable of dynamically detecting human actions.

The primary objective of this system is to accurately identify the human’s intended

goal, denoted as g. Based on this recognition, the system will then generate a detailed

plan for the robot. This plan specifies the position, represented as p, where the next

CHAPTER 5. VISION-BASED PLANNING FOR HRC 93

workpiece, o, should be assembled. It is important to note that the position p may

vary for each workpiece o.

5.2.1 Hand-centric Action Detector

The objective is to characterize assembly actions by identifying which object has been

assembled and where it has been placed. To achieve this, a hand-centric action detec-

tor is introduced. This approach is based on the premise that hand regions in a scene

are often the most informative compared to other features. The open-source platform

MediaPipe [143] is initially employed to capture hand crops and to use segments of

hand trajectories for extracting pertinent temporal features.

More specifically, the input vector at each frame t is the normalized hand posi-

tion st = {xt, yt} in the image space and LSTM Fully Convolutional Neural Network

(LSTM-FCN) is used to [144] to extract temporal features. Compared to a single

LSTM and temporal convolution layer, this model requires less preprocessing and is

more robust to noise. This is achieved by combining the character of time series depen-

dency from LSTM and time-invariant features from FCN [144]. In detail, the LSTM

block will produce the hidden state ht at the last step as ht = LSTM(ht−1, st). The

1D convolution layers conv1d extract features as fFCN = Avg(σ(conv1d(s))), where

σ is the ReLu activation function, Avg is the global average polling function and s is

the same time-series input as LSTM. Afterwards, we concatenate these two features to

obtain the final temporal features:

ftemporal = concat(ht, fFCN) (5.1)

Instead of object detection, the spatial features are termed as the interaction status

between the hand and objects as shown in Fig.5.2. As the labelling process of object

detection can be time-consuming and it can cause errors when hands overlap with

objects [99] especially when the objects are small. Thus, a CNN-based VGG16 [145] is

adopted as the backbone feature extractor and the extracted feature can be expressed

CHAPTER 5. VISION-BASED PLANNING FOR HRC 94

as Eq.5.2, where I is the hand-centric crop at the last frame.

fspatial = CNN(I) (5.2)

Finally, these two features are fused into a Multilayer perceptron (MLP). From this,

the classified assemble actions can obtained asA = {Ao1
p1
, ...,Aon

pm}, and {Atrans,Ascrew},

where {Ao1
p1
, ...,Aon

pm} represents the probability of the object on has been assembled

to pm with examples presented in Fig.5.2a,5.2b and 5.2c. These classified actions will

be further used in the semantic planner. There are also intermediate actions such as

fetches and transports as Atrans as shown in Fig.5.2d and 5.2e. An additional Ascrew

is used to recognise the screwing intention as Fig.5.2f and thus to trigger the future

robot actions. Given the Â as the ground truths, the optimal assemble actions can

be obtained by training the proposed action detector in an end-to-end fashion with

cross-entropy loss as Eq.5.3, where θ are the trainable parameters.

La = argminθ[−
i∑

i=1

(ÂilogAi + (1− Âi)log(1−Ai))] (5.3)

(a) Assemble with o1 (b) Assemble with o2 (c) Assemble with o3

(d) Fetch object (e) Transport with o2 (f) Interaction with screw

Figure 5.2: Different examples of spatial assembly actions

CHAPTER 5. VISION-BASED PLANNING FOR HRC 95

5.2.2 Graph-based semantic planning

The purpose of the semantic planner is to learn which object should be handled to

where based on inferred varying goals configurations.

The assembly scenes are encoded as assembly graph G containing n + m nodes as

V = {vo1 , .., von , vp1 , ..., vpm}, where von is the object node and vpm is the position node.

Each node contains two-dimensional categorical features with one describing the type

of the objects and the other one describing the assembly position information. The

detected assembly actions {Ao1
p1
, ...Aon

pm} are thus used to build the adjacency matrix

E = {eo1p1 , ..., e
on
pm}, where eonpn is a directed linking edge to describe the connectivity

between von and vpm . More specifically, the neighbour nodes of an object node von will

be the position nodes vpm according to the classified actions:

eonpm =

 1 Aon
pm = 1

0 otherwise
(5.4)

Afterwards, a GraphSAGE(Sage) [133] layer is adopted in this work to process the

graph observations. It aggregates the mean features embedding from the neighbour

nodes of each object node as Γk
N (i) = 1

N

∑
j∈N (i)(Γ

k−1
j , j ∈ N (i)), where k stands for

the kth Sage layer. This aggregated embedding will be concatenated with target node

embedding at the previous layer and further multiplied by a weight matrix Wk as

Eq.5.5, where fθgnnk−1
and fθgnnk

are the Sage layers with trainable parameters θgnnk−1

and θgnnk
, σ is the ReLu activation function.

Γk
i = σ(Wk · (fθgnnk−1

(Γk−1
i) + fθgnnk

(Γk
N (i))) (5.5)

A readout layer is thus used to aggregate nodes embedding Γk
i into graph embedding

as Eq.5.6. A final output layer will accept Φk and generate z dimensional outputs

CHAPTER 5. VISION-BASED PLANNING FOR HRC 96

Ppred
g = {Ppred

g1
, ...,Ppred

gz } which describe the inferred goal configuration gz.

Φk =
1

N (v)

∑
i∈N (v)

Γk
i (5.6)

The semantic planner further predicts the next object should be assembled as

Ppred
o = {Ppred

o1
, ...,Ppred

on } through another MLP with the inputs containing graph em-

bedding Φk and inferred goal Ppred
g as:

Ppred
o = MLP (Φk,Ppred

g) (5.7)

To train this model, it is considered as a classification problem with the demon-

strated ground truth P tgt
g and P tgt

o . Ppred
g and Ppred

o are jointly learnt via cross-entropy

loss:

Lg = argminθ[−
n∑

n=1

[P tgt
on]log(Ppred

on)−
z∑

z=1

[P tgt
gz]log(Ppred

gz)] (5.8)

In ATO scenarios, a simple multi-class classification is inefficient in producing a

plan such as ”handling objects to multiple positions”. As it will always produce a

deterministic result (i.e. the label with the highest probability). An advantage of the

graph construction in this work is that: for each object node, it only aggregates the

assembled position information that is relevant to itself at different HRC stages under

different goal configurations. Therefore, this work aims to produce ”semantic plans”

that interpret the objects’ graphical observations through a simple LSTM with the

inferred goal.

During training, the LSTM model commences with the input features including the

node embedding Γk
o and the label Ppred

g denoted as flstm = {Γk
o ,Ppred

g }. Concurrently,

the ground truth captions (i.e. semantic plan) are processed through an embedding

layer, converting discrete word indices into continuous vectors:

embeds = Wembedding[captions] (5.9)

CHAPTER 5. VISION-BASED PLANNING FOR HRC 97

where Wembedding represents the embedding matrix. These embeddings, denoted as

embeds, are then concatenated with the input features to form the complete input for

the LSTM layer as shown in Eq.5.10. This is known as the ”teacher forcing” strategy

in order to improve the training and enhance model stability.

inputs = concat(flstm, embeds) (5.10)

The LSTM processes this concatenated input iteratively to learn temporal depen-

dencies. At each time step t, the LSTM updates its hidden state ht and cell state

ct:

(ht, ct) = LSTM(inputs, ht−1, ct−1) (5.11)

where ht captures the short-term dependencies, effectively acting as the memory of

recent inputs, while ct retains long-term information, allowing the LSTM to remember

or forget information over extended sequences.

Finally, the output is passed through a fully connected layer to predict the next

word with the highest probability:

yt = Wfcht + bfc (5.12)

Here, Wfc is the weight matrix of the fully connected layer, and bfc denotes the bias.

During the testing stage, the procedure adopts a slightly different approach. It

commences with the flstm as the initial input to the LSTM. At each time step, the

LSTM’s output is passed through the fully connected layer, which predicts the most

probable word. This word’s embedding then serves as the input for the next time step,

creating an iterative loop until a termination condition is met. Therefore, it can be

simply expressed as:

txt = LSTM(Γk
o ,Ppred

g) (5.13)

CHAPTER 5. VISION-BASED PLANNING FOR HRC 98

The generated txt will contain the information regarding the object type and its

unfinished assembly positions, for example, ”o1, p3, p4” refers to o1 should be assembled

to p3 and p4 afterwards. Moreover, the planner can recognise the situation when all

the positions of o1 have been completed and generate text as ”o1, Finished”.

The proposed semantic planner can thus be used in two ways:

1. Firstly, it can produce txt for each object by feeding objects node embedding into

LSTM. This can assist the human worker in future assembly decisions, which is

referred to Semantic Guidance.

2. Secondly, when robots are involved, the planner will propose the next object that

should be handled given the current graph and thus produce Semantic Control

command, for example, [onext, p2, p3] = LSTM(Γk
onext

,Ppred
g), to control the robot

via a known motion controller such as PickandP lace(onext, p2).

5.2.3 System Integration

Finally, the complete system is outlined in Algorithm.3 and is designed to operate

in real time. To prevent unnecessary updates to the graph G, the human worker is

advised to move their hand out of the detection region after completing an assembly

task. Consequently, the most recently identified action label At, which could range

from Ao1
p1

to Aon
pm , is utilized to update the graph edge, as detailed in the previous

section. Following this, the system generates Semantic Guidance specific to each

object type o.

In the context of Human-Robot Collaboration (HRC), the system is programmed

such that when Ascrew is detected, the robot will execute a predefined PickandP lace()

function to position the object in the initially suggested location by Semantic Con-

trol. During this process, the human worker can focus on screwing the assembled

objects or assembling the object currently managed by the robot. The detector M

is temporarily disabled in these phases, and the graph is updated accordingly. This

process continues until each object o is marked as ’Finished’.

CHAPTER 5. VISION-BASED PLANNING FOR HRC 99

Algorithm 3 Proposed HRC system

Initialize assembly graph G

Trained action detection system M, semantic planner C including a GNN encoder

GNN and a decoder LSTM

while Assembly not finished do
Track hand motion via MediaPipe

if hand detected then
Hand trajectories segment s with t frame length and hand-centric image crop I

at the last step

Predict assembly actions At =M(I, s)

if At ∈ {Ao1
p1
, ...Aon

pm} and hand motion finished then
Update Graph Edge eonpm according to assembly actions Aon

pm

Update objects status in pending area

Infer final goal gz = GNN(G)

Generate Semantic Guidance for each object on [on, p1, ..., pm] =

LSTM(Γon , gz)

else if At = Ascrew then
Infer final goal according to current graph G

as gz = GNN(G)

Predict next object onext = MLP (Φ, gz)

Produce Semantic Control command [onext, p1, ..., pm] = LSTM(Γonext , gz)

Robot execution PickandP lace(onext, p1)

Update Graph

5.3 Experimental Setup

In this section, the effectiveness of the proposed system is demonstrated through a

real-industrial ATO scenario. This particular ATO scenario involves assembling valve

CHAPTER 5. VISION-BASED PLANNING FOR HRC 100

brackets, which vary depending on the boiler model. The experiments are structured

to validate the efficiency of the Hand-centric Action Detector in recognizing human

assembly actions using only 2D video demonstrations. Additionally, the experiments

highlight the proficiency of the Semantic Planner in managing diverse goal configu-

rations. This includes its adaptability to different human action sequences and task-

planning strategies. Lastly, the overall system’s performance in real-time experimental

settings is evaluated and presented.

(a) Experimental setup

(b) The designed user interface.

Figure 5.3: The experimental setup and designed user interface

The studied use-case contains three different types of objects O = {o1, o2, o3} as

shown in Fig.5.2a,5.2b and 5.2c. The number of each type of object varies: the final

CHAPTER 5. VISION-BASED PLANNING FOR HRC 101

(a) Assemble Goal 0

(b) Assemble Goal 1

(c) Assemble Goal 2

Figure 5.4: Different customized goal configurations.

product needs three o1, two o2 and one o3. They can be flexibly assembled to form

three different configurations G = {g0.g1, g2} as shown in Fig.5.4.

Additionally, a user interface has been developed, as depicted in Fig.5.3b. The

assembly cell is monitored from above using a RealSense camera (D435i). Within this

setup, the human worker can pick up objects or a screwdriver from the designated

pending area, and then proceed to assemble or screw these objects onto a steel bracket

in the assembly area. The user interface includes a blue box that displays the count

of detected hand frames, the classified assembly actions, the inferred goals, and the

remaining assembly positions for each object o, collectively referred to as the Semantic

Guidance. The green box in the interface presents the Semantic Control commands

for the robot. The position output, denoted by numbers such as “1,2,3,4,5”, indicates

the assembly positions from right to left. The robot in the system, a Universal 10

(UR10) arm, is operated via the Semantic Control command, using the Robotic

CHAPTER 5. VISION-BASED PLANNING FOR HRC 102

Label Action Label Action Label Action Label Action
0 o1 to p1 5 o1 to p6 10 o2 to p5 15 Fetch
1 o1 to p2 6 o2 to p1 11 o2 to p6 16 Transport
2 o1 to p3 7 o2 to p2 12 o3 to p1 17 Screw
3 o1 to p4 8 o2 to p3 13 o3 to p4
4 o1 to p5 9 o2 to p4 14 o3 to p5

Table 5.1: Lookup table for the human assembly actions

Operation System (ROS), as illustrated in Fig.5.3a.

The video demonstrations are collected and segmented at intervals of every 45

frames, with the camera operating at a speed of 15 frames per second (FPS). As

illustrated in Fig.5.4, the assembly process involves six actions each for o1 and o2, and

three actions for o3. Additionally, as detailed in Fig.5.2, two intermediate actions and

actions related to screwing are included. Consequently, the action detector considers

a total of 18 different actions, as outlined in Table. 5.1.

For the semantic planner, the assembly graph is automatically generated using the

data from the trained action detector. This graph is composed of three object nodes,

denoted as vo, and six position nodes as vp. In this setup, the expert consistently

demonstrates the same task structure (i.e., P pred
o) to the robot, regardless of variations

in human action sequences. This consistent approach means the robot is trained to

always select the first unassembled object from the right, in alignment with the inferred

goal P pred
g . The ground truth distribution for P pred

g and P pred
o is provided in the form

of one-hot encoded labels. Subsequently, the embeddings of the trained object nodes

are annotated, which is essential for training the LSTM.

5.4 Results

5.4.1 Action Detector

The proposed action detector is compared with three baseline methods including:

1. CNN+LSTM: The LSTM-FCN is replaced by a simple LSTM to process the

CHAPTER 5. VISION-BASED PLANNING FOR HRC 103

hand motions.

2. Hand-centric CNN: The assembly actions are classified with only spatial hand

crops via the VGG16 backbone.

3. CNN-LSTM [146]: It first processes the image sequences through VGG16 and

LSTM is thus used to process the extracted feature sequences. This is a popular

framework for video understanding.

Fig.5.5 illustrates the overall effectiveness of the proposed action detector across

the entire demonstration video. The detector achieves an overall accuracy rate of

approximately 99.5%, showing no particular bias towards any specific class.

Furthermore, Fig.5.6 presents the training and testing outcomes of the described

methods, utilizing a training-testing ratio of 0.8:0.2. In these comparisons, the proposed

method demonstrates better performance. The integration of LSTM-FCN enhances

the detector’s ability to handle noisy data. In contrast, relying solely on hand spatial

information, as seen in the Hand-centric CNN experiment, proves less effective in

action classification. Similarly, the CNN-LSTM approach also falls short in delivering

accurate results. This is due to the presence of extraneous features in the scene. These

findings validate that the amalgamation of hand-centric temporal motion and spatial

features significantly augments the accuracy in recognizing flexible assembly actions.

5.4.2 Semantic Planner

The previous studies on task planning in HRC, for example, Bayesian Inference [7],

Hierarchical task networks (HTN) [66] and AND/OR graph [61], can produce plans as

to which object or robot action should be performed. However, these methods are not

suitable in the ATO use case. The reasons are:

1. The previous algorithms such as Bayesian Inference, often produce one plan con-

ditioned on prior knowledge. On the other hand, the proposed method is adapt-

CHAPTER 5. VISION-BASED PLANNING FOR HRC 104

Figure 5.5: Confusion matrix for the proposed action detector on the whole training
video data.

Figure 5.6: Comparison of the proposed action detector with other approaches with
average accuracy over five experiments.

CHAPTER 5. VISION-BASED PLANNING FOR HRC 105

Figure 5.7: The average performance of the Semantic Planner over the training ratio.

able to situations in which actions vary for the robot (i.e. picking one object to

multiple positions).

2. There are approaches with symbolic representations, for instance, HTN and

AND/OR graph, that can offer feasible plans under one final goal, while the

proposed approach can recognise and work for various goals.

3. More importantly, this work is dedicated to releasing the burden of designing the

task rules manually in the ATO problem. Through the simulation experiment,

it is reported that the graph-based approach is generalizable to unseen human

action sequences, which means the planner is capable of producing new plans.

In this assembly framework, the semantic planner can be involved at any stage,

leading to (m−1)Cm different possible human action sequences for assembling a single

final product. For z distinct goal configurations, this results in a total of (m−1)Cm × z

potential scenarios. To assess the generalizability of the proposed planner, similar to

the previous chapter, the model is trained using only a subset of data randomly selected

from all demonstrations. The training ratio λ stands for the percentage of trained data,

while the planner’s performance is evaluated by the whole dataset. The experiments

include the assembly of one, two, or three customized products. To evaluate the model,

the Success Rate (SR), which is the ratio of successful trials to the total number of

CHAPTER 5. VISION-BASED PLANNING FOR HRC 106

possible scenarios, is employed. A trial is deemed successful if the predicted Ppred
g ,

Ppred
o , and the semantic description txt for each object o are all accurate.

Fig.5.7 demonstrates the GNN-based model’s generalizability to scenarios it has not

previously encountered. For instance, the model achieves an average SR of 96.3% when

trained with 143 demonstrations out of a total of 186 scenarios involving 3 different

final goal configurations. The primary instances of failure occur in situations where

the same object is assembled to the same position under different goal configurations,

such as assembling o1 to position p2 for both g0 and g1.

(a) Assemble Goal 0

(b) Assemble Goal 1

(c) Assemble Goal 2

Figure 5.8: The results in the real-time experiment. The left figure for each sub-figure
is the last detected frame.

CHAPTER 5. VISION-BASED PLANNING FOR HRC 107

5.4.3 Overall performance

(a) Assemble Goal 0

(b) Assemble Goal 1

(c) Assemble Goal 2

Figure 5.9: These are examples of real-time Human-Robot Collaboration (HRC). From
left to right, the system first recognizes the human intention of screwing. Therefore,
the robot retrieves the next planned object and delivers it to its goal pose (indicated by
the green boxes) based on the ”Semantic Control” command while the human inserts
the objects. The graph and semantic guidance are updated accordingly.

Finally, the whole system’s performance is assessed in real-world experiments. The

system detects human actions every 45 frames with the camera running over 15 FPS

similar to the training phase. The average action detection time is 95ms and it will

cost an average of 2.1ms to plan each object with GPU acceleration.

Moreover, there are 20 experiments for different assembly goals over five times.

CHAPTER 5. VISION-BASED PLANNING FOR HRC 108

Figure 5.10: This figure demonstrates the proposed system can dynamically construct
the graph based on detected human actions. The blue squared pictures are the last
detected frame.

The human worker can produce random action sequences. Due to the limitation in the

current action detector, fast motions are not well detected. Such errors will cause the

decreasing accuracy of the semantic planner.

Fig.5.8 indicates that the proposed system can adaptively guide the human assem-

bly. Moreover, in different goal configurations, a part can occupy the same assembly

position. This may lead to confusion for the semantic planner. However, with the fur-

ther actions of human workers, this error can be eliminated as shown in Fig.5.10. This

demonstrates that the proposed system can dynamically correct the wrong predictions

by actively updating the assembly graph.

Fig.5.9 also demonstrates the proposed approach can efficiently assist humans by

different object handling in real-time. Different shapes of parts o require different

grasping strategies in PickandP lace(). The semantic output [onext, p2, p3] can describe

the object types and therefore lead to automated selections of grasping strategies.

Number of goals AD (%) SG(%) SC(%)
1 98.3 ±1.2 97.3 ±1.2 95.3 ±1.2
2 97.7 ±2.1 94.3 ±1.1 93.2 ±1.3
3 95.5 ±1.7 93.8±1.6 91.8 ±1.6

Table 5.2: The average detection accuracy of Action Detector (AD), the success rate of
the Semantic Guidance (SG) for human workers and the Semantic Control (SC)
for the robot produced by the semantic planner.

CHAPTER 5. VISION-BASED PLANNING FOR HRC 109

5.5 Summary

This section concludes the proposed framework and revisits the research questions

raised in Section 5.1 based on experimental results.

To address the classification of different human action sequences in Q1. The combi-

nation of temporal human motions and spatial scene information regarding the object

context during assembly can effectively classify various human actions. Moreover, the

proposal of using hand-centric information and terming this as hand-object interaction

can be efficient, especially for small object assembly. This also can be time-efficient

regarding the labelling process when compared to object detection algorithms.

Based on this, the various action sequences can be therefore transferred into an

assembly graph. Through the use of graph observation, each object node only holds

the relative information of the assembled pose. Thus, the GNN can adaptively infer

the human intended goal configurations, which address Q2.

Meanwhile, also based on the advantage of the graphic representation, this work

further predicts the next object that should be assembled based on the inferred goals

and interprets the trained object node embeddings through a simple LSTM. This ap-

proach can reveal the relationship between the object and its assembly status, and

this relationship can be expressed as human understandable languages. Therefore,

the proposed system can work for guiding human future decisions in case of fatigue

that may be caused by long-time of work. The semantic relationship also contains

different numbers of object positions that should be assembled. This proves that the

proposed system can produce more detailed robot plans toward addressing Q3. More-

over, the generalization study indicates that the robot has learned the general rules of

the demonstrated task structure. Compared to previous studies which heavily rely on

prior knowledge from the expert, this work presents a new methodology for HRC that

can learn from fewer demonstrations and produce novel plans.

In regards to the limitations of this work, the HRC experiments in Section 5.4.3 were

conducted with experts, who are familiar with robotics. Further study with non-expert

CHAPTER 5. VISION-BASED PLANNING FOR HRC 110

co-workers is needed to test out the robustness of the proposed system in real-world

applications. This raises another future work of collecting larger-scale and more ran-

dom human movement data for more efficient human action recognition. Moreover, the

current sensing method from only 2D images is unstable when the human moves too

fast and hence causes the decreasing accuracy of the overall system. Meanwhile, even

though this work can relax the constraints of the pre-defined workflow for human work-

ers, they still need to collect the most reachable objects. This regulation is designed

for controlling the robot PickandP lace as this work does not use object detections.

Moreover, a larger scale of the ATO problem should be studied in the future.

Chapter 6

Iterative Visual Grasping sequence

generation for object handling

6.1 Introduction

As noticed in the previous Chapter, the industrial components are well-sorted in the

pending area, and the humans still need to follow a regulation to fetch the most reach-

able parts. This raised the other research theme of how to eliminate such a constraint

even when these parts are randomly placed and thus the robot can handle the human

requirement flexibly. Take an example from Fig.6.2b, in this cluttered environment,

simple object detection and visual servoing approach is inefficient in grasping the ob-

ject required by humans. As the objects can overlap with each other, their unique

geometric shapes can impede the direct grasp of the robot.

Towards addressing this problem, one research direction is to model the geometric

property of the target object. Previous works focused on predicting the grasping quality

and grasping pose for the end-effector based on the pixels from the object’s depth

image [106] [107], point cloud data[109], or event-based camera [110]. Wang et al.

[111] also concerns the generation of the collision-free trajectory generation. They

proposed a hierarchical framework that learns goal-driven grasps based on partial point

111

CHAPTER 6. ITERATIVE VISUAL GRASPING 112

cloud observations. Moreover, some other research focuses on using haptic information

rather than visual features. Chen et al.[147] adopts tactile force information with

deep-learning networks to estimate the number of objects in hands. Abi-Farraj et

al.[148] describes a novel tactile shared control method to assist human operators in

sorting and segregating multiple targets in cluttered and unknown environments. The

aforementioned methods often require rich information about the target object, It can

be problematic when the target object is overlapped by the surrounding objects too

much and therefore the direct grasping pose estimation may not be effective.

Another possible solution is to reason the objects’ relationship through the visual

feature, and thus allow the robot to grasp the intended object orderly. Current research

focuses on classifying the visual relationship between each object pair in a spatial

image[112],[113],[114],[115],[119],[120] or from a temporal video clip [116]. For the

specific application in robotics, Goodwin et al.[117] investigated the rearrangement of

unseen but similar objects with seen goal images by leveraging the semantic and visual

information through CLIP. Moreover, graphic observations, which can naturally hold

the spatial object relationships, have been investigated in [118] [110], [121],[122]

Similar to the object stacking environment studied in [119],[120],[121],[122], this

chapter studies the object handling from the cluttered environment through the 2D

image. From the above discussion, this chapter proposes three research questions that

should be addressed for the specific object-handling problem:

• Q1: Unlike the previous works in 6D object grasping, this work considers the

limited capability of the end-effector. For the occluded target object, there should

be a feasible plan to make such an object become graspable instead of directly

grasping.

• Q2: The aforementioned works often focus on recognising the relationship be-

tween each object pair. As for robotics manipulation, there should be extra effort

in building the manipulation tree through logic operations. On the contrary, this

work aims to directly produce the manipulation rules from the encoded graphic

CHAPTER 6. ITERATIVE VISUAL GRASPING 113

scene.

• Q3: Moreover, considering the realistic scenario when the human only requires

specific types of object. This work aims to develop a framework that can be

generalizable when the request switches from time to time. This means that

the framework is only trained with specific goals, while during testing, it should

produce a new plan for the unseen goals.

Towards addressing these questions, the chapter proposes a visual grasping sys-

tem that can iteratively generate the solution to manipulate the object orderly. The

porposed framework can be described as follows:

• Based on the specific object requirement made by humans, the proposed frame-

work first encodes the raw visual image to graph observation through a pretrained

detection network. Through the graph construction, unlike the previous work in

[121],[122], where they use a pre-defined distance threshold in image space to

filter out the irrelevant object pairs. This work directly aggregates the objects’

features within the image through a weighted edge. This is to prevent the lack

of information in this specific scenario. Thus, the GNN is able to process the

visual feature and evaluate the spatial relationship between the required objects

and their neighbours. As a result, the graspability of the required object can be

classified.

• If there are no graspable objects, this requires the robot to generate feasible

solutions such as moving the surrounding objects or obstacles by decoding the

trained object node embeddings into contextual languages.

The proposed approach has been validated in real-world experiments and daily life ob-

ject datasets. The results have shown that the proposed approach is capable of directly

producing a manipulation solution by recognizing and prioritizing the robot’s actions

based on the objects’ geometric properties. This approach can be also generalizable

for unseen images and requirements.

CHAPTER 6. ITERATIVE VISUAL GRASPING 114

6.2 Methodology

Figure 6.1: Pipeline of the proposed framework: The raw scene image will be first pro-
cessed through a common object detection network (e.g. Faster-RCNN). The detected
objects’ visual features will be used to construct a graph observation. According to the
human demand, the GNN should first produce the graspability of the inquired object
while considering the robot’s capability. If it is not graspable, an LSTM with Attention
will propose the solution as ” move which objects” to enable the demanded object to
be graspable. It will be thus used as the new demand. This process will continue until
the demanded objects are graspable.

Given an image scene containing various objects, the goal of this study is to enable the

robot to identify the graspability of the object required by humans. Considering the

cluttered environment as shown in Fig.6.1, the graspability of an object is determined

by both its surrounding objects and its own geometrical properties, while respecting

the capability of the robot. For example, considering a robot can only grasp a required

object from the top, if such an object is overlapped by a taller object, it is considered

as not graspable at the current stage. Therefore, this work aims to provide a solution

to remove the obstacles iteratively until the required object can be grasped.

Fig.6.1 describes the proposed framework. It first uses a Faster R-CNN [149] with

CHAPTER 6. ITERATIVE VISUAL GRASPING 115

Resnet101 as the backbone feature extractor for object detection. The obtained objects’

features proposed by Faster R-CNN including its feature values fi, label li, and the 2D

center position of the bounding box di within the 2D image. Relying solely on spatial

information of objects within an image, such as bounding box coordinates, does not

adequately convey the graspability of the demanded object in the given scenario, for

example, a deterministic distance threshold.

Instead, this study encodes the detected objects into a graph observation. Suppose

graph observation G containing n nodes as V = {v0, .., v1, v2, ..., vn}. Each node con-

tains the extracted features fi, object label li and the binary goal feature indicating

the demand from human gi, vi = {fi, li, gi}

The graph is fully linked with directed edges. Unlike the previous works in this

thesis, which consider the temporal changes in the environment, such as positions,

and human actions. The spatial relationship of the objects is reflected in the edges.

Consequently, in the construction of the graph observation, the normalized inverse

weighted edge E = {eij} is employed to articulate the relationship between each object

and its adjacent objects as shown in Eq.6.1, where ∥di−dj∥ is the 2D Euclidean distance

between the object node vi and its neighbour node vj based on the centre point of the

bounding box.

eij =

1
∥di−dj∥∑n
j=1

1
∥di−dj∥

(6.1)

To process such a graph observation, the Weisfeiler-Lehman (WL) inspired graph

neural network operator (WL-GNN) is adopted [150]. The WL algorithm is common

method for Graph isomorphism testing, which determines whether two graphs have the

same structure. It iteratively updates node labels through multiple rounds of neigh-

bour aggregation. The WL algorithm takes into account the multi-hop neighbourhood

information of nodes, enabling it to capture the intricate structures within a graph.

Inspired by this, WL-GNN incorporates information from both the node itself and

its multi-hop neighbours:

CHAPTER 6. ITERATIVE VISUAL GRASPING 116

Γk+1
i = σ

W k
1 · Γk

i +W k
2 ·

∑
i∈N (i)

·eij · Γk
j

 (6.2)

Γk
i is the target node embedding at kth message passing and Γk

j is the neighbour

nodes embedding. Moreover, W
(k)
1 and W

(k)
2 are the weighted matrix to handle the

information from the current node and its neighbours, which ensures that during the

information aggregation process, the information from the current node and its neigh-

bours is kept distinct. During message passing, the weighted matrix eij is used to

modulate the propagation of information between nodes. The neighbour node with

a higher weight edge can have a greater influence on the target node. Unlike Graph

Convolution Networks (GCN), where node representations are based on their immedi-

ate neighbours WL-GNN is more capable of exploring richer and more in-depth graph

structural information.

Afterwards, the graspability is considered as a node classification problem with

binary output as P gra
pred. The Cross-entropy loss is used to optimize the model:

loss = −[P gra
goal log

(
P gra
pred

)
+ (1− P gra

goal) log
(
1− P gra

pred

)
] (6.3)

For objects identified as non-graspable, similar to prior work, the trained nodes not

only retain information about themselves but also about their weighted neighbours.

Additionally, during the learning process within the graph, it appears that the graph

captures the demonstrated task structure. Consequently, the object node embedding is

decoded into its corresponding solution as contextual information through Long-Short-

Term-Memory with Attention Mechanism (LSTM Att) [151].

The input feature consists of the trained node embedding Γk
i , object label l and

the graspablity P gra
pred as f

′
= {Γk

i , l, P
gra
pred}. Given the current LSTM hidden state ht

and the input feature, the attention mechanism first computes an attention score as

Eq.6.4, where Wk is the trainable weights and f
′
s is a segment of the input feature.

Accordingly, the attention weight can be expressed as Eq.6.5. As a result, it provides

CHAPTER 6. ITERATIVE VISUAL GRASPING 117

a context-based weight to different portions of the input feature as shown in Eq.6.6.

score(ht, f
′
) = hTt Waf

′

s (6.4)

αts = softmax(score(ht, f
′

s)) (6.5)

contextt =
∑
s

αtsh
′
s (6.6)

Therefore, contextt is the new input feature of LSTM at time step t. A similar

training process can be applied as described in the previous section.

The original intent behind the Attention mechanism was to assist models in de-

termining which part of the encoded sequence to focus on during decoding. In this

task, this implies identifying which words of the input sentence should be emphasized

when generating a particular word in the output. Therefore, the model needs to un-

derstand the semantic relationships between words, and word embeddings provide this

semantic information to the model during testing as shown in Eq.6.7. The initial word

embedding embeds will always be the ”start” token.

txti = LSTM Att(Γk
i , l, P

gra
pred, embeds) (6.7)

Algorithm 4 describes the proposed iterative visual grasping framework. The initial

requirement is made by humans. Consider the complex scenario when such an object

is stuck in multiple objects. Thus, based on the extracted visual feature, the proposed

framework aims to iteratively generate solutions on how to remove these obstacle ob-

jects by using it as the new requirement or input of the G and the LSTM Att, if such

obstacle objects are still classified as not graspable. For a single image or scene, it

aims to find the most graspable object ore. For robot grasping, the ultimate goal is to

obtain the human-required object ogoal. Therefore, this process may involve different

CHAPTER 6. ITERATIVE VISUAL GRASPING 118

steps of solution generation.

Algorithm 4 Proposed Iterative Grasping System

Initialize the object detector O

Trained GNN model G

LSTM Att decoder

Input: human required object ogoal

while not P gra
goal do

Obtain the raw 2D image I

Extract visual information f, l, d = O(I)

Construct the graph scene G according to ogoal, f, l, d

Predict the graspability of the required object P gra
goal = G(Γk

ogoal
)

if not P gra
goal then

Find the new require object ore, ...,= LSTM Att(Γk
ogoal

, l, P gra
goal)

while not P gra
re do

Construct the graph scene G according to ore, f, l, d

Predict the graspability of the required object P gra
re = G(Γk

ore)

if not P gra
re then

Find the new require object ore, ...,= LSTM Att(Γk
ogoal

, l, P gra
re)

else
Robot Grasp

break

6.3 Experimental Setup

To validate the proposed system, there are two experiment environments have been

set.

The first experiment considers the handling of industrial components within a clut-

tered scene. In this study, objects can be randomly oriented, and multiple components

might be overlapped with each other. A Universal Robot 10 (UR10) arm, equipped

CHAPTER 6. ITERATIVE VISUAL GRASPING 119

with a camera at its end-effector, should primarily capture 2D images from a top-down

perspective and execute a top-to-bottom grasping action based on human requirements

as shown in Fig.6.2a. In this experiment, there are three types of industrial compo-

nents including: ”a,b and c”. The maximum amounts for each type in the scene can

be 3,2 and 1 respectively as shown in Fig.6.2b.

A two-finger gripper robitq2F-85 is utilized for robot grasping. Only 3D position

information respected to the robot base is provided via a depth camera RealSense

D435i. This means the orientations of the objects are not considered, and the gripper

is constrained during the grasping as shown in Fig.6.2c. Throughout this study, con-

sideration is given to the geometric shapes and heights of each component. The task

requires the robot to determine the most appropriate object that can be grasped. If the

required objects are classified as ungraspable at a given scene, there emerges a need to

evaluate their neighbour parts and the spatial relationship they share. And therefore

generate robotic solutions as to how to make the required object become graspable.

For this, the main objective is to allow the robot’s ability to recognize and prioritize

its grasping actions based on the geometric and spatial characteristics of the objects

presented. For example, object c is the most graspable one as it is taller than the

other two in this study. Moreover, considering the different orientations of the com-

ponents, the deterministic distance threshold (e.g. 2D distance between the bounding

box) is inefficient as shown in Fig.6.3. Therefore, capturing and extracting the visual

information of the objects is necessary.

In regard to the training process, the objects’ visual information is first labelled

and extracted by Faster-RCNN with Resnet101 as the backbone with feature pyramid

networks (Faster-RCNN-fpn) which is written in pytorch Detectron2 [152]. Based on

this information, the graph can be constructed with human requirements accordingly.

The binary ground truth labels for training GNN are provided by human expert where

1 stands for graspable and 0 stands for ungraspable. For the required objects classified

as ungraspable, their trained node embeddings are annotated with solutions. The

solutions include: ”Move b and/or c, help”.

CHAPTER 6. ITERATIVE VISUAL GRASPING 120

All the models being trained and tested in the following experiments are written in

Pytorch and PyG with a GPU acceleration. The robot is controlled by the Robotics

Operation System (ROS) and MoveIt.

(a) Physical setup

(b) Robot view of the cluttered scene (c) Robot view of the cluttered scene

Figure 6.2: The industrial components handling setup

Moreover, the proposed architecture has also been validated in the open-source

dataset Visual Manipulation Relationship (VMR) V2 Dataset [122]. This dataset

contains an object’s stacking environment as shown in Fig.6.4. Similar to the first

experiment, the main task is to produce the manipulation plan for the intended goal

object.

CHAPTER 6. ITERATIVE VISUAL GRASPING 121

(a) (b)

Figure 6.3: The double-headed arrows show the distance between the objects. The
distance between part a and part b (0.08) in Fig.6.3b is smaller than the distance
(0.10) in Fig.6.3a. The green box stands for graspable objects while the red boxes
stand for ungraspable objects.

Figure 6.4: Examples from VMR dataset for stacking environment.

6.4 Results

6.4.1 Industrial parts handling in cluttered environment

This experiment is designed to demonstrate the generalizability of the proposed frame-

work. Considering that human requirements can vary from one to another, for each

training image, there will be randomly selected object goals or requirements, meaning

that not all the object types shown in the image scene will be labelled. However, the

trained framework will face various unseen scenarios including unseen goals or totally

CHAPTER 6. ITERATIVE VISUAL GRASPING 122

unseen images during testing.

There are 427 training samples with randomly selected goal objects and 50 testing

images with various types and numbers of objects. The proposed system is compared

with several different approaches. The compared approaches are listed as follows:

• GNN Att w/o WE: This is an ablation study. The WL-GNN processes the

nodes’ features without the proposed weighted edges (i.e. all weights equal to 1).

• GNN LSTM: The LSTM Att is replaced by a simple LSTM with the same

parameter settings.

• GNN DF Att: The Distance Filter (DF) aims to filter the irrelevant object

pairs according to a pre-defined imaged-based Euclidian distance threshold, which

is set to 0.16 in this work. This is to demonstrate the importance of processing

the visual features when the orientation of objects varies.

• GVMRN RF [121] [122]: The previous work adopts Graph Convolutional Neu-

ral Network (GCN) to perform the relationship reasoning between each object

pair. Unlike the proposed framework, it extracts the union box features, which

can cover two overlapped objects’ bounding boxes, as node features. Thus, the

relationship reasoning can be termed as a multilabel classification problem with

labels as ”under, above, help, no relation”. To filter out the irrelevant objects,

they further proposed a Relation Filter (RF) based on the intersection area and

a pre-defined distance threshold. Moreover, in order to ensure consistency in

the testing criteria, only the relationship nodes relevant to the required objects

have been trained. As it is not able to directly produce a grasping solution as

contextual language, the prediction accuracy is assessed.

• GCN Att: To further compare with GVMRN RF, the WL-GNN is replaced

by GCN in the proposed framework.

The object-based accuracy (OA) is first assessed as if the predicted graspability

and generated solutions for ungraspable objects are correct based on one single image.

CHAPTER 6. ITERATIVE VISUAL GRASPING 123

There are three scenarios being assessed as randomly requiring 1,2 or three types

of objects. Considering the geometric shapes, the grasping solutions can vary. For

example, the requirement of the object ”a” can be the most difficult case, where its

accuracy is around 0.81. This is because it is the smallest part and may therefore the

generated solution can include both ”b” and ”c” objects as shown in Fig.6.6.

There is also a special case when two same type of objects get too close, the gen-

erated solution will ask for ”help” from human co-worker as the robot is not capable

of grasping it by removing other objects. Fig.6.6a and Fig.6.6b illustrates successful

testing cases to find the most graspable object based on human requirements.

Table 6.1 describes the OA in a single image for different approaches. It indicates the

weighted edges can improve the aggregation process of the GNN and therefore provide

more effective features for decoding in the study of GNN Att w/o WE. Meanwhile,

the LSTM Att shows a slight improvement when compared to simple LSTM. For the

results in GNN DF Att, it is found that a pre-defined distance threshold can not fully

describe the spatial relationship between each object. Fig.6.6 describes a failure testing

case with DF, where the distance between object ”a” and object ”c” is greater than

the pre-defined DF. This will cause incomplete solution generation.

In the comparison of GVMRN RF and GCN Att, the first finding is that their

architecture has worse performance in terms of generalizability. The main reason is

that the relationship node feature is totally new during testing, and thus it can not

efficiently predict labels. While the proposed architecture only modifies parts of the

node features (i.e. goal information) when a new requirement is set. Meanwhile, it was

also found that GCN could not extract informative spatial features as shown in the

results of GNN Att and GCN Att. The reason is that GCN performs only average

aggregation over the node embeddings and its neighbours.

To further assess the proposed system’s ability to iteratively generate grasping

solutions, two more experiments have been conducted as shown in Table 6.2.

As mentioned above, for one initial image, if none of the required objects is gras-

pable, the proposed system aims to iteratively propose the most graspable object as

CHAPTER 6. ITERATIVE VISUAL GRASPING 124

the solution, which can be illustrated in 6.7a and Fig.6.7b. Therefore, the first experi-

ments are conducted to manually assess if the grasping solutions are corrected for the

goal objects from one initial image. There were 10 testing cases for different numbers

of objects. As shown in Table 6.2, the accuracy drops down along with the increase in

the number of objects.

Secondly, the proposed system is integrated with a real robot arm for the real-world

grasping task. There were also 10 testing cases for each number of objects. As shown

in Fig.6.8, the proposed system has the capability of dealing with variant numbers,

and object types and there will be different task lengths depending on the initial scene.

Meanwhile, it also has the ability to generate new solutions for new unseen images,

which can occur after robot grasping. However, it has been noticed that the gripper

may accidentally collide with the surrounding objects and may lead to a decrease in

performance. This reveals one drawback of the proposed system: it is not capable of

recognising visual features with too-large orientation variations in the object and these

variations can lead to infinite possible scenarios.

(a) Grasping solution generated by the
proposed GNN Att

(b) Grasping solution generated by the
GNN DF Att

Figure 6.5: Comparison between the proposed method and GNN DF Att.

CHAPTER 6. ITERATIVE VISUAL GRASPING 125

(a) Require object a (b) Require object a,b

Figure 6.6: The proposed architecture performance on one single image.

(a) Require object a

(b) Require object a

Figure 6.7: Iterative grasping solution generation from the initial image.

CHAPTER 6. ITERATIVE VISUAL GRASPING 126

Train Acc One type Two type Three type
GNN Att 1 0.91 ±0.018 0.891 ±0.021 0.882±0.016
GNN Att w/o WE 0.97 0.634 ±0.013 0.586 ±0.004 0.545 ±0.003
GNN LSTM 1 0.89 ±0.007 0.872±0.017 0.864±0.014
GNN DF Att 1 0.881 ±0.015 0.843 ±0.008 0.829 ±0.005
GVMRN RF - 0.393±0.023 0.467±0.019 0.544±0.018
GCN Att 0.738 0.421±0.025 0.621 ±0.022 0.692 ±0.022

Table 6.1: Object Accuracy (OA) comparison between different approaches in single
image. Train Acc stands for the graspability classification in training sets. Mean-
while, the performance based on different numbers of human requirements has been
shown.GNN Att stands for the proposed algorithm.

(a) Require object a

(b) Require object a

Figure 6.8: Physical robot experiment scenes for dealing variations including object
numbers, object types, and task lengths. As the figure shows, the framework allows the
robot to remove the graspable obstacle objects until it identifies the graspable object
required by human.

CHAPTER 6. ITERATIVE VISUAL GRASPING 127

3 objects 4 objects 5 objects 6 objetcs
Single image 0.962 0.901 0.864 0.806
robot grasping 0.91 0.874 0.782 0.684

Table 6.2: The accuracy for iterative visual grasping despite the object detection error

6.4.2 Daily life objects in stacking environment

In this experiment, two baseline methods have been compared in the VMR dataset as

follows:

• VMRN [153]: This is a CNN-based visual manipulation reasoning network. The

objects’ features are first extracted by the backbone object detector. Therefore,

they need to classify the relationship between every possible object pairs through

CNN.

• GVMRN RF [121] [122]: The previous work adopts Graph Convolutional Neural

Network (GCN) to perform the relationship reasoning between each object pair.

The relationship reasoning can be termed as a multilabel classification problem

with labels as ”under, above, help, no relation” through the union box features.

To filter out the irrelevant objects, they further proposed a Relation Filter (RF)

based on the intersection area and a pre-defined distance threshold.

Image-based accuracy is assessed in this experiment. IA stands for if the objects’

relationships are all correct within one image. However, unlike the proposed framework,

these two works only classify the relationship between different parts. As for the robot

manipulation, they need to traverse the neighbour objects related to the target objects.

Thus, to compare, IA in the proposed framework is assessed if the graspable object is

classified correctly and solutions for the ungraspable object are correct.

Table 6.3 describes the IA performance in the testing dataset. The testing dataset

contains 31 types of different daily life objects and the maximum number of objects in

one image is 5. As the table shows, the proposed framework performs worse than the

baseline algorithms.

CHAPTER 6. ITERATIVE VISUAL GRASPING 128

To figure out the reason behind this issue, further study is carried out. It has been

found that the main failure case happens as the generated solutions often produce the

wrong name or label of the objects. Fig.6.9 illustrates the IA performance on both

GNN classification and solution generated from LSTM Att over the increasing number

of types of objects. It has been found that GNN performance does not decrease a lot

while the LSTM Att’s performance drops. Therefore, it is suspected that the main

reason for poor performance is that LSTM Att can not decode the features efficiently

as the variety of objects grows. Moreover, considering less orientation can happen

in this dataset, the RF method in GVMRN RF can be more effective in aggregating

relevant object information.

Figure 6.9: The average performance of GNN and LSTM Att over the increasing num-
ber of types of objects.

VMRN GVMRN RF GNN Att
IA 0.658 0.688 0.62

Table 6.3: Image-based Accuracy for different methods in VMR dataset.

6.5 Summary

This section concludes the proposed framework and revisits the research questions

raised in Section 6.1 based on experimental results.

CHAPTER 6. ITERATIVE VISUAL GRASPING 129

This study assumes that the robot is constrained to only execute top-down ma-

nipulation for the objects. Through the experimental study, it has been found that

due to the orientation variation that may exist in every object, visual features play

an important role in graspability detection. By leveraging the visual features and the

symbolic object information (e.g. object label and goal property) through the GNN,

the proposed framework can efficiently detect the graspability of the target object

while considering the spatial relationship it may share with neighbour objects within

the scene. Moreover, the weighted edges also play an important role when aggerating

the informative neighbour features. Afterwards, the proposed embedding-to-sequence

approach using an LSTM-like neural network allows the robot to generate actions or

plans by recognizing and prioritizing the geometric and spatial characteristics of the

objects. This can address Q1 and Q2.

To answer Q3, the proposed graph structure tends to be more generalizable than

the previous works. The new goals only modify the symbolic node feature rather

than directly using the total unseen relationship nodes, for example, unseen union box

features.

Regarding the limitation of the work. In the industrial object handling scenarios,

it can be found that the current approach is still unable to handle the too-large orien-

tations of the objects in both GNN and LSTM Att during the test. Moreover, in the

daily life object stacking environment, it shows worse performance than the previous

works. The main reason can be that the current decoding model such as LSTM Att is

still inefficient in processing the node features.

Chapter 7

Conclusion and future work

7.1 Conclusion

This thesis has focused on developing novel frameworks that are dedicated to robot

control strategy to enable adaptive HRC in personalised MTO manufacturing sce-

narios. It studied different types of HRC, including sequential HRC and responsive

HRC, with different information sources including 3D positions information and visual

features. All the proposed frameworks aim to offer generalized robot abilities that

can adapt to variations from either human performance or environmental variations

through intuitive training methods.

Chapter 3 first studied continuous trajectory learning in a sequential HRC setting.

Compared to the current probabilistic approaches in LfD, the main advantage is that

the proposed motion planner separates the motion generation into two steps as subgoal

planning and action generation. By accessing the task stage information, the proposed

method is more capable of integrating diverse demonstrations for different initial and

goal positions. The idea of modelling the dynamic of expert preference in terms of

goal-state distance can effectively produce joint action without extra exploration, This

shows the generalization ability of the proposed approach regarding position variations.

However, the proposed motion planner still suffers from high-dimensional data. A

130

CHAPTER 7. CONCLUSION AND FUTURE WORK 131

hybrid guidance framework that combines LfD and DRL is proposed. The results

show that the exploration issue of DRL can be addressed by providing guidance from

LfD. And therefore improve the task success rates. While it should be noted that,

there should be a trade-off between exploration and exploration in order to maintain

the experience diversity for DRL.

From Chapter 3, the main issue in multi-object tasks is high-dimensional obser-

vation for probabilistic-based subgoal planning. And the DRL agent still needs long

time training. Therefore, inspired by natural human thinking, Chapter 4 further pro-

posed an end-to-end TAMP framework. The Graph-based reasoning module learns

the demonstrated task structure by ranking the most important observations under

different task stages including picking and placing. It is adaptive to the changes in

task structures, which can be caused by human performance. Moreover, the study in

practical scenarios also shows its advantage in terms of object changes. Compared to

previous studies, it can learn the underlying task structures without any hand-coded

manipulation rules and can be more generalizable to task structures in terms of se-

quential HRC. It can thus effectively reduce the observation dimension for the motion

planner. The results of the motion planner also illustrate its capability of generalizing

collision-free trajectories in new tasks. The overall TAMP system trained in simula-

tions can be directly applied to the physical world as long as the distribution of the

input stays similar.

Chapter 5 proposed a vision-based planning system for flexible responsive HRC. Un-

like the works in Chapter 3 and 4, where human performance and goal configurations

are reflected by the objects’ positions, this work infers them from visual human infor-

mation. In order to achieve this, a hand-centric action detector is proposed. Instead of

using object detection with a heavy labelling process, this detector combines the spa-

tial human assembly context as hand-object interaction and temporal hand motions

to better describe the human actions as which objects have been assembled to where.

Furthermore, these detected human action sequences can be dynamically transformed

into graphic observations as the relationship between objects and assembly positions.

CHAPTER 7. CONCLUSION AND FUTURE WORK 132

The proposed semantic planner can thus infer the human intended goal configuration

and the planned object which should be handled by the robot. Furthermore, it can

provide a more detailed robot action as to which object should be handled to where

by the robot. Compared to previous works, this work can work under various goal

configurations with various human action sequences. More importantly, the previous

works often heavily rely on the prior knowledge of the task structure, while this work

is more capable of generating new plans when human action sequences are novel.

In Chapter 5, as there is no visual information on the objects, robots should still fol-

low regulations on handling the objects required by humans, so as to human coworkers.

Therefore, Chapter 6 aims to address this constraint in an even more complex environ-

ment. This work assumes the assembly object or parts are cluttered while the robot’s

grasping capability is constrained. To address this problem, this chapter proposed an

iterative visual grasping solution generation framework. Firstly, the detected objects

visual features are encoded into spatial graphic observations. The graspability of the

objects demanded by humans can be classified. For ungraspable objects, it can itera-

tively generate solutions as separate obstacle objects via decoding the trained objects’

node embeddings. The results showed that the proposed system is able to produce so-

lutions or robot actions while respecting the geometrical characteristics of objects and

the weighted spatial relationship they may share with surrounding objects. Compared

to the previous works, the proposed system is able to directly produce solutions or

robot actions even with unseen human requirements and unseen image scenes.

7.2 Future work

This section discusses the potential future works based on the experimental results and

limitations identified previously in this thesis.

In Chapter 3 and 4, the proposed TAMP system only considers object manipula-

tions in 3D space, which can be problematic when the objects need a proper grasping

solution, for example, deformable objects. Thus, the potential work can utilize depth

CHAPTER 7. CONCLUSION AND FUTURE WORK 133

information such as orientations. Moreover, the current TAMP system only considers

static obstacles. However, in the real world, dynamic obstacles could happen. This is

also related to safe collaboration, for example, humans can move dynamically in the

workspace. The potential future work could consider the detection of human move-

ment and actively infer the optimal joint actions. Moreover, instead of representing

human performance as object positions in the current TAMP system, it could also ’im-

age’ the possible consequences which can happen to the current task by using human

motions. These further directions could facilitate a better human-robot-cooperation

simultaneously.

In Chapter 5, the main issue of the vision-based semantic planner is in the human

action understanding approach, which is not robust enough for fast human motions.

Therefore, one possible work is to utilize wearable sensors to minor the motions and

may adopt tactile pressure sensor gloves to detect hand-object interactions. This could

require multimodal sensor fusion technologies. Moreover, more comprehensive studies

on the larger scale of the ATO problem should be considered to test the proposed

framework’s robustness.

In Chapter 6, the current visual grasping solution generation framework can not

outperform the state-of-the-art approaches in the stacking environment. The main

reason could be the embedded features are not well-represented and the LSTM-like

models can not generate the solutions when object types are too much. One potential

work could utilize depth images or point cloud information instead of 2D images.

Moreover, the overall accuracy can also be improved using Transformer-based decoding

models.

Moreover, the proposed frameworks in this thesis are all works in the multi-objects

under the same task family. To further develop a generalized robot platform that

can work across different HRC scenarios in different tasks, current advances in larger

visual-language models could be one direction [154], [155]. One future work is to

understand human actions as languages while considering temporal image features,

and thus produce robot actions.

Bibliography

[1] E. C. Townsend, E. A. Mielke, D. Wingate, and M. D. Killpack, “Estimating Hu-

man Intent for Physical Human-Robot Co-Manipulation,” arvix, vol. abs/1705.1,

2017.

[2] V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human–robot collaboration

in industrial settings: Safety, intuitive interfaces and applications,” Mechatronics,

vol. 55, no. February, pp. 248–266, 2018.

[3] International and F. of Robotics, “Demystifying Collaborative Industrial

Robots,” International Federation of Robotcis, no. October, pp. 2 – 3, 2019.

[4] S. Benjaafar and M. Elhafsi, “Production and inventory control of a single prod-

uct assemble-to-order system with multiple customer classes,” Management Sci-

ence, vol. 52, no. 12, pp. 1896–1912, 2006.

[5] E. C. Morley and C. S. Syan, “Teach pendants: How are they for you?,” Industrial

Robot, vol. 22, no. 4, pp. 18–22, 1995.

[6] P. Neto and N. Mendes, “Direct off-line robot programming via a common CAD

package,” Robotics and Autonomous Systems, vol. 61, no. 8, pp. 896–910, 2013.

[7] Y. Cheng, L. Sun, C. Liu, and M. Tomizuka, “Towards Efficient Human-Robot

Collaboration with Robust Plan Recognition and Trajectory Prediction,” IEEE

Robotics and Automation Letters, vol. 5, no. 2, pp. 2602–2609, 2020.

134

BIBLIOGRAPHY 135

[8] Maria Fox and Derek Long, “PDDL2.1: An extension to PDDL for expressing

temporal planning domains,” Journal of Artificial Intelligence Research, vol. 20,

pp. 1–48, 2003.

[9] Z. Wang, R. Qin, J. Yan, and C. Guo, “Vision sensor based action recognition for

improving efficiency and quality under the environment of industry 4.0,” Procedia

CIRP, vol. 80, pp. 711–716, 2019.

[10] H. Nguyen and H. La, “Review of Deep Reinforcement Learning for Robot Ma-

nipulation,” Proceedings - 3rd IEEE International Conference on Robotic Com-

puting, IRC 2019, pp. 590–595, 2019.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-

tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and

D. Hassabis, “Human-level control through deep reinforcement learning,” Nature,

vol. 518, no. 7540, pp. 529–533, 2015.

[12] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, and R. Tachibana, “Deep

reinforcement learning for high precision assembly tasks,” in IEEE International

Conference on Intelligent Robots and Systems, pp. 819–825, 2017.

[13] J. Xu, Z. Hou, W. Wang, B. Xu, K. Zhang, and K. Chen, “Feedback Deep

Deterministic Policy Gradient with Fuzzy Reward for Robotic Multiple Peg-in-

Hole Assembly Tasks,” IEEE Transactions on Industrial Informatics, vol. 15,

no. 3, pp. 1658–1667, 2019.

[14] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods

for reinforcement learning with function approximation,” in Advances in Neural

Information Processing Systems, pp. 1057–1063, 2000.

[15] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust region policy

BIBLIOGRAPHY 136

optimization,” 32nd International Conference on Machine Learning, ICML 2015,

vol. 3, pp. 1889–1897, 2015.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal

Policy Optimization Algorithms,” ArXiv, vol. abs/1707.0, 2017.

[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,

and D. Wierstra, “Continuous control with deep reinforcement learning,” in 4th

International Conference on Learning Representations, ICLR 2016 - Conference

Track Proceedings, pp. 1–12, 2016.

[18] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor,” in 35th

International Conference on Machine Learning, ICML 2018, pp. 2976–2989,

2018.

[19] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. Mc-

Grew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight experience replay,” in

Advances in Neural Information Processing Systems, pp. 5049–5059, 2017.

[20] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience re-

play,” 4th International Conference on Learning Representations, ICLR 2016 -

Conference Track Proceedings, pp. 1–21, 2016.

[21] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess,

T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging Demonstrations for Deep

Reinforcement Learning on Robotics Problems with Sparse Rewards,” arXiv

preprint, vol. abs/1707.0, 2017.

[22] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Overcom-

ing Exploration in Reinforcement Learning with Demonstrations,” Proceedings

- IEEE International Conference on Robotics and Automation, pp. 6292–6299,

2018.

BIBLIOGRAPHY 137

[23] Y. Fan, J. Luo, and M. Tomizuka, “A learning framework for high precision

industrial assembly,” in Proceedings - IEEE International Conference on Robotics

and Automation, pp. 811–817, 2019.

[24] D. Du, S. Han, N. Qi, H. B. Ammar, J. Wang, and W. Pan, “Reinforcement

Learning for Safe Robot Control using Control Lyapunov Barrier Functions,”

in Proceedings - IEEE International Conference on Robotics and Automation,

pp. 9442–9448, 2023.

[25] H. Lin, Y. Lou, P. Quan, Z. Liang, D. Wei, and S. Di, “Small-Scale Zero-Shot

Collision Localization for Robots Using RL-CNN,” Applied Sciences, vol. 13,

no. 7, 2023.

[26] T. A. Kessler Faulkner, E. Schaertl Short, and A. L. Thomaz, “Interactive Re-

inforcement Learning with Inaccurate Feedback,” in 2020 IEEE International

Conference on Robotics and Automation (ICRA), pp. 7498–7504, 2020.

[27] S. Chen, J. Gao, S. Reddy, G. Berseth, A. D. Dragan, and S. Levine, “ASHA:

Assistive Teleoperation via Human-in-the-Loop Reinforcement Learning,” Pro-

ceedings - IEEE International Conference on Robotics and Automation, pp. 7505–

7512, 2022.

[28] A. Hiranaka, M. Hwang, S. Lee, C. Wang, L. Fei-Fei, J. Wu, and R. Zhang, “Prim-

itive Skill-Based Robot Learning from Human Evaluative Feedback,” in 2023

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pp. 7817–7824, 2023.

[29] Z. Li, K. Xu, L. Liu, L. Li, D. Ye, and P. Zhao, “Provable Offline Rein- force-

ment Learning with Human Feedback,” in ICML 2023 Worshop on Interactive

Learning with human feedback, pp. 1–19, 2023.

[30] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent Advances

BIBLIOGRAPHY 138

in Robot Learning from Demonstration,” Annual Review of Control, Robotics,

and Autonomous Systems, vol. 3, no. 1, pp. 1–34, 2020.

[31] D. S. Brown and S. Niekum, “Toward probabilistic safety bounds for robot learn-

ing from demonstration,” in AAAI Fall Symposium - Technical Report, pp. 10–18,

2017.

[32] S. Calinon, F. Guenter, and A. Billard, “On Learning the Statistical Represen-

tation of a Task and Generalizing it to Various Contexts,” Proceedings of the

2006 IEEE International Conference on Robotics and Automation, pp. 2978–

2983, 2006.

[33] A. Olivares-Alarcos, S. Foix, and G. Alenyà, “On inferring intentions in shared

tasks for industrial collaborative robots,” Electronics, vol. 8, no. 11, pp. 1–22,

2019.

[34] S. Calinon, P. Evrard, E. Gribovskaya, A. Billard, and A. Kheddar, “Learning

collaborative manipulation tasks by demonstration using a haptic interface,” in

2009 International Conference on Advanced Robotics, ICAR 2009, pp. 1–6, IEEE,

2009.

[35] E. Rosen, D. Whitney, E. Phillips, D. Ullman, and S. Tellex, “Testing Robot

Teleoperation using a Virtual Reality Interface with ROS Reality,” 2018.

[36] J. Spranger, R. Buzatoiu, A. Polydoros, L. Nalpantidis, and E. Boukas, “Human-

Machine Interface for Remote Training of Robot Tasks,” in IEEE International

Conference on Imaging Systems and Techniques - IST2018, pp. 1–5, 2018.

[37] D. Vogt, S. Stepputtis, S. Grehl, B. Jung, and H. Ben Amor, “A system for

learning continuous human-robot interactions from human-human demonstra-

tions,” Proceedings - IEEE International Conference on Robotics and Automa-

tion, pp. 2882–2889, 2017.

BIBLIOGRAPHY 139

[38] L. Rozo, S. Calinon, D. G. Caldwell, P. Jiménez, and C. Torras, “Learning Phys-

ical Collaborative Robot Behaviors From Human Demonstrations,” IEEE Trans-

actions on Robotics, vol. 32, no. 3, pp. 513–527, 2016.

[39] R. Toris, D. Kent, and S. Chernova, “Unsupervised learning of multi-

hypothesized pick-and-place task templates via crowdsourcing,” in Proceedings

- IEEE International Conference on Robotics and Automation, pp. 4504–4510,

IEEE, 2015.

[40] R. Dillmann, “Teaching and learning of robot tasks via observation of human

performance,” Robotics and Autonomous Systems, vol. 47, no. 2-3, pp. 109–116,

2004.

[41] L. Rozo, S. Calinon, D. Caldwell, P. Jim, C. Torras, and I. D. Rob, “Learning

Collaborative Impedance-Based Robot Behaviors ,” Proceedings of the Twenty-

Seventh AAAI Conference on Artificial Intelligence Learning, pp. 1422–1428,

2013.

[42] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications

in Speech Recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286,

1989.

[43] H. B. Amor, G. Neumann, S. Kamthe, O. Kroemer, and J. Peters, “Interaction

Primitives for Human-Robot Cooperation Tasks,” IEEE International Confer-

ence on Robotics Automation (ICRA), pp. 2831–2837, 2014.

[44] S. Calinon, “A tutorial on task-parameterized movement learning and retrieval,”

Intelligent Service Robotics, vol. 9, no. 1, pp. 1–29, 2016.

[45] Y. Q. Wang, Y. D. Hu, S. E. Zaatari, W. D. Li, and Y. Zhou, “Optimised Learn-

ing from Demonstrations for Collaborative Robots,” Robotics and Computer-

Integrated Manufacturing, vol. 71, no. 102169, 2021.

BIBLIOGRAPHY 140

[46] S. Krishnan, A. Garg, R. Liaw, B. Thananjeyan, L. Miller, F. T. Pokorny, and

K. Goldberg, “SWIRL: A sequential windowed inverse reinforcement learning al-

gorithm for robot tasks with delayed rewards,” International Journal of Robotics

Research, vol. 38, no. 2-3, pp. 126–145, 2019.

[47] X. Zhang, L. Sun, Z. Kuang, and M. Tomizuka, “Learning Variable Impedance

Control via Inverse Reinforcement Learning for Force-Related Tasks,” IEEE

Robotics and Automation Letters, vol. 6, no. 2, pp. 2225–2232, 2021.

[48] Z. Zhang, J. Hong, A. S. Enayati, and H. Najjaran, “Using Implicit Behavior

Cloning and Dynamic Movement Primitive to Facilitate Reinforcement Learning

for Robot Motion Planning,” arXiv preprint, vol. arXiv:2307, pp. 1–18, 2023.

[49] M. Gharbi, R. Lallement, and R. Alami, “Combining symbolic and geomet-

ric planning to synthesize human-aware plans: Toward more efficient combined

search.,” in IEEE International Conference on Intelligent Robots and Systems,

pp. 6360–6365, IEEE, 2015.

[50] A. Orthey, M. Toussaint, and N. Jetchev, “Optimizing motion primitives to make

symbolic models more predictive,” Proceedings - IEEE International Conference

on Robotics and Automation, pp. 2868–2873, 2013.

[51] O. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, and J. Peters, “Towards

learning hierarchical skills for multi-phase manipulation tasks,” in Proceedings

- IEEE International Conference on Robotics and Automation, pp. 1503–1510,

2015.

[52] R. Lioutikov, G. Maeda, F. Veiga, K. Kersting, and J. Peters, “Inducing Prob-

abilistic Context-Free Grammars for the Sequencing of Movement Primitives,”

in Proceedings - IEEE International Conference on Robotics and Automation,

pp. 5651–5658, 2018.

BIBLIOGRAPHY 141

[53] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot learning from

demonstration by constructing skill trees,” International Journal of Robotics Re-

search, vol. 31, no. 3, pp. 360–375, 2012.

[54] S. Paul, J. van Baar, and A. K. Roy-Chowdhury, “Learning from trajectories

via subgoal discovery,” in Advances in Neural Information Processing Systems,

pp. 1–11, 2019.

[55] T. Jurgenson, E. Groshev, and A. Tamar, “Sub-Goal Trees – a Framework for

Goal-Directed Trajectory Prediction and Optimization,” in Proceedings of the

37th International Conference on Machine Learnin, pp. 5020–5030, 2020.

[56] X. Pan and Y. Shen, “Human-interactive subgoal supervision for efficient inverse

reinforcement learning,” in Proceedings of the International Joint Conference on

Autonomous Agents and Multiagent Systems, AAMAS, pp. 1380–1387, 2018.

[57] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion planning in

the now,” in 2011 IEEE International Conference on Robotics and Automation,

pp. 1470–1477, 2011.

[58] E. Erdem, V. Patoglu, and P. Schüller, “A systematic analysis of levels of inte-

gration between high-level task planning and low-level feasibility checks,” in AI

Communications, vol. 29, (NLD), pp. 319–349, IOS Press, jan 2016.

[59] A. E. Gerevini, “An Introduction to the Planning Domain Definition Language

(PDDL): Book review,” Artificial Intelligence, vol. 280, no. 2, pp. 1–187, 2020.

[60] D. Holler, G. Behnke, P. Bercher, S. Biundo, H. Fiorino, D. Pellier, and R. Alford,

“HDDL: An Extension to PDDL for Expressing Hierarchical Planning Problems,”

AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, pp. 9883–9891,

2020.

BIBLIOGRAPHY 142

[61] R. Zhang, J. Li, P. Zheng, Y. Lu, J. Bao, and X. Sun, “A fusion-based spiking

neural network approach for predicting collaboration request in human-robot col-

laboration,” Robotics and Computer-Integrated Manufacturing, vol. 78, no. May,

p. 102383, 2022.

[62] R. Zhang, X. Li, Y. Zheng, J. Lv, J. Li, P. Zheng, and J. Bao, “Cognition-driven

Robot Decision Making Method in Human-robot Collaboration Environment,” in

IEEE International Conference on Automation Science and Engineering, pp. 54–

59, IEEE, 2022.

[63] K. Darvish, E. Simetti, F. Mastrogiovanni, and G. Casalino, “A hierarchical

architecture for human–robot cooperation processes,” IEEE Transactions on

Robotics, vol. 37, no. 2, pp. 567–586, 2021.

[64] L. S. de Mello and A. C. Sanderson, “AND/OR graph representation of assembly

plans,” IEEE Transactions on Robotics and Automation, vol. 6, no. 2, pp. 188–

199, 1990.

[65] E. C. Grigore, A. Roncone, O. Mangin, and B. Scassellati, “Preference-Based As-

sistance Prediction for Human-Robot Collaboration Tasks,” IEEE International

Conference on Intelligent Robots and Systems, pp. 4441–4448, 2018.

[66] B. Hayes and B. Scassellati, “Autonomously constructing hierarchical task net-

works for planning and human-robot collaboration,” in 2016 IEEE International

Conference on Robotics and Automation (ICRA), pp. 5469–5476, 2016.

[67] Y. Cheng, L. Sun, and M. Tomizuka, “Human-aware robot task planning based

on a hierarchical task model,” IEEE Robotics and Automation Letters, vol. 6,

no. 2, pp. 1136–1143, 2021.

[68] C. Yu, Y. Ji, G. Qi, X. Gu, and L. Tao, “Group-based production scheduling for

make-to-order production,” Journal of Intelligent Manufacturing, vol. 26, no. 3,

pp. 585–600, 2015.

BIBLIOGRAPHY 143

[69] S. Pirk, K. Hausman, A. Toshev, and M. Khansari, “Modeling Long-horizon

Tasks as Sequential Interaction Landscapes,” in Proceedings of Machine Learning

Research, vol. 155, pp. 471–484, 2020.

[70] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The

graph neural network model,” IEEE Transactions on Neural Networks, vol. 20,

no. 1, pp. 61–80, 2009.

[71] Z. Su, O. Kroemer, G. E. Loeb, G. S. Sukhatme, and S. Schaal, “Learning

manipulation graphs from demonstrations using multimodal sensory signals,”

in Proceedings - IEEE International Conference on Robotics and Automation,

pp. 2758–2765, 2018.

[72] D. A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese, and

J. C. Niebles, “Neural task graphs: Generalizing to unseen tasks from a single

video demonstration,” in Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, pp. 8557–8566, 2019.

[73] R. Li, A. Jabri, T. Darrell, and P. Agrawal, “Towards Practical Multi-Object

Manipulation using Relational Reinforcement Learning,” in Proceedings - IEEE

International Conference on Robotics and Automation, pp. 4051–4058, 2020.

[74] Y. Lin, A. S. Wang, E. Undersander, and A. Rai, “Efficient and Interpretable

Robot Manipulation with Graph Neural Networks,” IEEE Robotics and Automa-

tion Letters, vol. 7, no. 2, pp. 2740–2747, 2022.

[75] Y. Ye, D. Gandhi, A. Gupta, and S. Tulsiani, “Object-centric Forward Mod-

eling for Model Predictive Control,” in Conference on Robot Learning (CoRL),

pp. 100–109, PMLR, 2019.

[76] P. Battaglia, R. Pascanu, M. Lai, D. Rezende, and K. Kavukcuoglu, “Interaction

networks for learning about objects, relations and physics,” Advances in Neural

Information Processing Systems, pp. 4509–4517, 2016.

BIBLIOGRAPHY 144

[77] T. Silver, R. Chitnis, A. Curtis, J. Tenenbaum, T. Lozano-Pérez, and L. P. Kael-

bling, “Planning with Learned Object Importance in Large Problem Instances

using Graph Neural Networks,” in 35th AAAI Conference on Artificial Intelli-

gence, AAAI 2021, pp. 11962–11971, 2021.

[78] F. D. Felice, S. D’Avella, A. Remus, P. Tripicchio, and C. A. Avizzano, “One-shot

Imitation Learning with Graph Neural Networks for Pick-and-Place Manipula-

tion Tasks,” IEEE Robotics and Automation Letters, vol. 8, no. 9, pp. 5926–5933,

2023.

[79] K. Hori, K. Suzuki, and T. Ogata, “Interactively Robot Action Planning with

Uncertainty Analysis and Active Questioning by Large Language Model,” in 2024

IEEE/SICE International Symposium on System Integration, SII 2024, pp. 85–

91, IEEE, 2024.

[80] A. Z. Ren, A. Dixit, A. Bodrova, S. Singh, S. Tu, N. Brown, P. Xu, L. Takayama,

F. Xia, J. Varley, Z. Xu, D. Sadigh, A. Zeng, and A. Majumdar, “Robots That

Ask For Help: Uncertainty Alignment for Large Language Model Planners,” in

Proceedings of Machine Learning Research, vol. 229, pp. 1–24, 2023.

[81] H. Zhou, G. Yang, B. Wang, X. Li, R. Wang, X. Huang, H. Wu, and X. V. Wang,

“An attention-based deep learning approach for inertial motion recognition and

estimation in human-robot collaboration,” Journal of Manufacturing Systems,

vol. 67, no. January, pp. 97–110, 2023.

[82] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and

T. Lozano-Perez, “Integrated Task and Motion Planning,” Annual Review of

Control, Robotics, and Autonomous Systems, vol. 4, pp. 265–293, 2021.

[83] M. Mansouri, F. Pecora, and P. Schüller, “Combining Task and Motion Planning:

Challenges and Guidelines,” Frontiers in Robotics and AI, vol. 8, no. May, pp. 1–

12, 2021.

BIBLIOGRAPHY 145

[84] K. Fang, Y. Zhu, A. Garg, S. Savarese, and L. Fei-Fei, “Dynamics Learning

with Cascaded Variational Inference for Multi-Step Manipulation,” in Advances

in Neural Information Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), pp. 1–13, IEEE,

jun 2020.

[85] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Sampling-based meth-

ods for factored task and motion planning,” International Journal of Robotics

Research, vol. 37, no. 13-14, pp. 1796–1825, 2018.

[86] J. Kurosu, A. Yorozu, and M. Takahashi, “Simultaneous dual-arm motion plan-

ning for minimizing operation time,” Applied Sciences, vol. 7, no. 12, pp. 1–14,

2017.

[87] J. K. Behrens, R. Lange, and M. Mansouri, “A constraint programming approach

to simultaneous task allocation and motion scheduling for industrial dual-arm

manipulation tasks,” in Proceedings - IEEE International Conference on Robotics

and Automation, pp. 8705–8711, IEEE, 2019.

[88] H. Liu and L. Wang, “Gesture recognition for human-robot collaboration: A

review,” International Journal of Industrial Ergonomics, vol. 68, pp. 355–367,

2018.

[89] L. Brèthes, P. Menezes, F. Lerasle, and J. Hayet, “Face tracking and hand gesture

recognition for human-robot interaction,” in Proceedings - IEEE International

Conference on Robotics and Automation, pp. 1901–1906, 2004.

[90] H. Bay, T. Tuytelaars, and L. V. Gool, “LNCS 3951 - SURF: Speeded Up Robust

Features,” Computer Vision–ECCV 2006, pp. 404–417, 2006.

[91] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alter-

native to SIFT or SURF,” Proceedings of the IEEE International Conference on

Computer Vision, pp. 2564–2571, 2011.

BIBLIOGRAPHY 146

[92] Y. Chen, W. Wang, V. Krovi, and Y. Jia, “Enabling robot to assist human in

collaborative assembly using convolutional neural networks,” IEEE International

Conference on Intelligent Robots and Systems, pp. 11167–11172, 2020.

[93] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-rigid objects

using mean shift,” in Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pp. 142–149, 2000.

[94] M. S. Mohd and S. A. Suandi, “Hand gesture tracking system using Adaptive

Kalman Filter,” in Proceedings of the 2010 10th International Conference on

Intelligent Systems Design and Applications, ISDA’10, pp. 166–171, 2010.

[95] G. Du and P. Zhang, “A Markerless Human-Robot Interface Using Particle Filter

and Kalman Filter for Dual Robots,” IEEE Transactions on Industrial Electron-

ics, vol. 62, no. 4, pp. 2257–2264, 2015.

[96] D. Wu and L. Shao, “Leveraging Hierarchical Parametric Networks for Skeletal

Joints Based Action Segmentation and Recognition,” in 2014 IEEE Conference

on Computer Vision and Pattern Recognition, pp. 724–731, 2014.

[97] Y. Cheng, F. Sun, Y. Zhang, and F. Tao, “Task allocation in manufacturing: A

review,” Journal of Industrial Information Integration, vol. 15, no. June 2018,

pp. 207–218, 2019.

[98] D. Moutinho, L. F. Rocha, C. M. Costa, L. F. Teixeira, and G. Veiga, “Deep

learning-based human action recognition to leverage context awareness in col-

laborative assembly,” Robotics and Computer-Integrated Manufacturing, vol. 80,

no. October, p. 102449, 2023.

[99] P. Rückert, B. Papenberg, and K. Tracht, “Classification of assembly operations

using machine learning algorithms based on visual sensor data,” Procedia CIRP,

vol. 97, pp. 110–116, 2020.

BIBLIOGRAPHY 147

[100] S. Franklin, T. Madl, S. Strain, U. Faghihi, D. Dong, S. Kugele, J. Snaider,

P. Agrawal, and S. Chen, “A LIDA cognitive model tutorial,” Biologically In-

spired Cognitive Architectures, vol. 16, pp. 105–130, 2016.

[101] J. R. Anderson, “ACT A Simple Theory of Complex Cognition,” Carnegie Mellon

University, vol. 51, no. 4, pp. 355–365, 1996.

[102] F. E. Ritter, F. Tehranchi, and J. D. Oury, “ACT-R: A cognitive architecture for

modeling cognition,” Wiley Interdisciplinary Reviews: Cognitive Science, vol. 10,

no. 3, 2019.

[103] J. Oyekan, Y. Chen, C. Turner, and A. Tiwari, “Applying a fusion of wearable

sensors and a cognitive inspired architecture to real-time ergonomics analysis of

manual assembly tasks,” Journal of Manufacturing Systems, vol. 61, pp. 391–405,

2021.

[104] I. Kotseruba and J. K. Tsotsos, “A Review of 40 Years of Cognitive Architecture

Research: Core Cognitive Abilities and Practical Applications,” arXiv preprint,

vol. abs/1610.0, 2016.

[105] L. Bruckschen, K. Bungert, N. Dengler, and M. Bennewitz, “Predicting human

navigation goals based on Bayesian inference and activity regions,” Robotics and

Autonomous Systems, vol. 134, p. 103664, 2020.

[106] D. Morrison, P. Corke, and J. Leitner, “Closing the Loop for Robotic Grasping:

A Real-time, Generative Grasp Synthesis Approach,” in Robotics: Science and

Systems, pp. 1–10, 2018.

[107] D. Morrison, P. Corke, and J. Leitner, “Learning robust, real-time, reactive

robotic grasping,” The International Journal of Robotics Research, vol. 39,

pp. 183–201, jun 2019.

BIBLIOGRAPHY 148

[108] M. Sundermeyer, R. Triebel, and R. O. Mar, “Contact-GraspNet : Efficient

6-DoF Grasp Generation in Cluttered Scenes,” in 2021 IEEE International Con-

ference on Robotics and Automation (ICRA), 2021.

[109] Z. Zhang, C. Zhou, Y. Koike, and J. Li, “Single RGB Image 6D Object Grasping

System Using Pixel-Wise Voting Network,” Micromachines, vol. 13, no. 2, pp. 1–

13, 2022.

[110] Y. Huang, A. Conkey, and T. Hermans, “Planning for Multi-Object Manipula-

tion with Graph Neural Network Relational Classifiers,” in Proceedings - IEEE

International Conference on Robotics and Automation, pp. 1822–1829, IEEE,

2023.

[111] L. Wang, X. Meng, Y. Xiang, and D. Fox, “Hierarchical Policies for Cluttered-

Scene Grasping with Latent Plans,” IEEE Robotics and Automation Letters,

vol. 7, no. 2, pp. 2883–2890, 2022.

[112] Y. Li, W. Ouyang, X. Wang, and X. Tang, “ViP-CNN: Visual phrase guided con-

volutional neural network,” in Proceedings - 30th IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2017, pp. 7244–7253, 2017.

[113] S. Qi, W. Wang, B. Jia, J. Shen, and S. C. Zhu, “Learning human-object inter-

actions by graph parsing neural networks,” Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 11213 LNCS, pp. 407–423, 2018.

[114] Y. Lu, C. Chang, H. Rai, G. Yu, and M. Volkovs, “Learning Effective Visual

Relationship Detector on 1 GPU,” in International Conference on Computer

Vision, pp. 1–8, 2019.

[115] Y. Lu, H. Rai, J. Chang, B. Knyazev, G. Yu, S. Shekhar, G. W. Taylor, and

M. Volkovs, “Context-aware Scene Graph Generation with Seq2Seq Transform-

BIBLIOGRAPHY 149

ers,” Proceedings of the IEEE International Conference on Computer Vision,

pp. 15911–15921, 2021.

[116] M. Guermal, R. Dai, and F. Bremond, “THORN: Temporal Human-Object Rela-

tion Network for Action Recognition,” in Proceedings - International Conference

on Pattern Recognition, pp. 3303–3309, 2022.

[117] W. Goodwin, S. Vaze, I. Havoutis, and I. Posner, “Semantically Grounded Ob-

ject Matching for Robust Robotic Scene Rearrangement,” Proceedings - IEEE

International Conference on Robotics and Automation, pp. 11138–11144, 2022.

[118] P. Ardon, E. Pairet, R. P. Petrick, S. Ramamoorthy, and K. S. Lohan, “Learning

Grasp Affordance Reasoning through Semantic Relations,” IEEE Robotics and

Automation Letters, vol. 4, no. 4, pp. 4571–4578, 2019.

[119] H. Zhang, X. Lan, S. Bai, X. Zhou, Z. Tian, and N. Zheng, “ROI-based Robotic

Grasp Detection for Object Overlapping Scenes,” IEEE International Conference

on Intelligent Robots and Systems, pp. 4768–4775, 2019.

[120] R. Zhang, F. Torabi, L. Guan, D. H. Ballard, and P. Stone, “Leveraging human

guidance for deep reinforcement learning tasks,” in IJCAI International Joint

Conference on Artificial Intelligence, pp. 6339–6346, 2019.

[121] G. Zuo, J. Tong, H. Liu, W. Chen, and J. Li, “Graph-Based Visual Manipula-

tion Relationship Reasoning Network for Robotic Grasping,” Frontiers in Neu-

rorobotics, vol. 15, no. August, pp. 1–12, 2021.

[122] G. Zuo, J. Tong, H. Liu, W. Chen, and J. Li, “Graph-based Visual Manipula-

tion Relationship Reasoning in Object-Stacking Scenes,” in Proceedings of the

International Joint Conference on Neural Networks, pp. 1–8, 2021.

[123] Y. Torres, S. Nadeau, and K. Landau, “Classification and quantification of human

error in manufacturing: A case study in complex manual assembly,” Applied

Sciences, vol. 11, no. 2, pp. 1–23, 2021.

BIBLIOGRAPHY 150

[124] W. Wang, Y. Chen, R. Li, and Y. Jia, “Learning and Comfort in Human–Robot

Interaction: A Review,” Applied Sciences, vol. 9, no. 23, 2019.

[125] A. Muxfeldt and J. J. Steil, “Recovering from Assembly Errors by Exploiting

Human Demonstrations,” Procedia CIRP, vol. 72, pp. 63–68, 2018.

[126] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural Network Dy-

namics for Model-Based Deep Reinforcement Learning with Model-Free Fine-

Tuning,” Proceedings - IEEE International Conference on Robotics and Automa-

tion, pp. 7579–7586, 2018.

[127] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd In-

ternational Conference on Learning Representations, ICLR 2014 - Conference

Track Proceedings, pp. 1–14, 2014.

[128] H. Kim, N. Yoshimura, and Y. Koike, “Characteristics of Kinematic Parame-

ters in Decoding Intended Reaching Movements Using Electroencephalography

(EEG),” Frontiers in Neuroscience, vol. 13, p. 1148, 2019.

[129] H. M. Le, N. Jiang, A. Agarwal, M. Dud́ık, Y. Yue, and H. Daumé, “Hierarchi-

cal imitation and reinforcement learning,” in 35th International Conference on

Machine Learning, ICML 2018, pp. 4560–4573, PMLR, 2018.

[130] T. de Bruin, J. Kober, K. Tuyls, and R. Babuska, “The importance of experience

replay database composition in deep reinforcement learning,” in Deep Reinforce-

ment Learning Workshop, Advances in Neural Information Processing Systems

(NIPS), pp. 1–9, 2015.

[131] E. Rohmer, S. P. Singh, and M. Freese, “V-REP: A versatile and scalable robot

simulation framework,” in IEEE International Conference on Intelligent Robots

and Systems, pp. 1321–1326, IEEE, 2013.

BIBLIOGRAPHY 151

[132] R. Killick, P. Fearnhead, and I. Eckley, “Optimal detection of changepoints with

a linear computational cost,” Journal of the American Statistical Association,

vol. 107, pp. 1590–1598, 2012.

[133] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on

large graphs,” in Advances in Neural Information Processing Systems, pp. 1025–

1035, 2017.

[134] M. Fey and J. E. Lenssen, “Fast Graph Representation Learning with PyTorch

Geometric,” in ICLR Workshop on Representation Learning on Graphs and Man-

ifolds, pp. 1–9, 2019.

[135] R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “GNNExplainer:

Generating explanations for graph neural networks,” in Advances in Neural In-

formation Processing Systems, vol. 32, pp. 1–13, 2019.

[136] J. Wang, “An intuitive tutorial to Gaussian processes regression,” arXiv preprint

arXiv:2009.10862, 2020.

[137] V. Joukov and D. Kulic, “Gaussian process based model predictive controller

for imitation learning,” in 2017 IEEE-RAS 17th International Conference on

Humanoid Robotics (Humanoids), pp. 850–855, 2017.

[138] J. J. Kuffner and S. M. La Valle, “RRT-connect: an efficient approach to

single-query path planning,” in Proceedings - IEEE International Conference on

Robotics and Automation, pp. 995–1001, 2000.

[139] I. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning Library

(OMPL),” IEEE Robotics Automation Magazine, no. December, pp. 1–10, 2010.

[140] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv

preprint, vol. abs/1804.0, 2018.

BIBLIOGRAPHY 152

[141] M. Fleder, Robot Operating System (ROS) The Complete Reference (Volume 1),

vol. 1. Springer Publishing Company, Incorporated, 1st ed., 2012.

[142] M. Gorner, R. Haschke, H. Ritter, and J. Zhang, “Moveit! task constructor for

task-level motion planning,” in Proceedings - IEEE International Conference on

Robotics and Automation, pp. 190–196, 2019.

[143] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays, F. Zhang,

C.-L. Chang, M. G. Yong, J. Lee, W.-T. Chang, W. Hua, M. Georg, and

M. Grundmann, “MediaPipe: A Framework for Building Perception Pipelines,”

ArXiv, vol. abs/1906.0, pp. 1–9, 2019.

[144] F. Karim, S. Majumdar, H. Darabi, and S. Chen, “LSTM Fully Convolutional

Networks for Time Series Classification,” IEEE Access, vol. 6, pp. 1662–1669,

2017.

[145] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” 3rd International Conference on Learning Representations,

ICLR 2015, pp. 1–14, 2015.

[146] J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadarrama,

K. Saenko, and T. Darrell, “Long-Term Recurrent Convolutional Networks for

Visual Recognition and Description,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 39, no. 4, pp. 677–691, 2017.

[147] T. Chen, A. Shenoy, A. Kolinko, S. Shah, and Y. Sun, “Multi-Object Grasping-

Estimating the Number of Objects in a Robotic Grasp,” in IEEE International

Conference on Intelligent Robots and Systems, pp. 4995–5001, 2021.

[148] F. Abi-Farraj, C. Pacchierotti, O. Arenz, G. Neumann, and P. R. Giordano, “A

Haptic Shared-Control Architecture for Guided Multi-Target Robotic Grasping,”

IEEE Transactions on Haptics, vol. 13, no. 2, pp. 270–285, 2020.

BIBLIOGRAPHY 153

[149] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pp. 770–778, 2016.

[150] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and

M. Grohe, “Weisfeiler and leman go neural: Higher-order graph neural net-

works,” 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st In-

novative Applications of Artificial Intelligence Conference, IAAI 2019 and the

9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI

2019, pp. 4602–4609, 2019.

[151] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural

Information Processing Systems, pp. 5999–6009, 2017.

[152] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2.”

https://github.com/facebookresearch/detectron2, 2019.

[153] H. Zhang, X. Lan, X. Zhou, Z. Tian, Y. Zhang, and N. Zheng, “Visual manip-

ulation relationship recognition in object-stacking scenes,” Pattern Recognition

Letters, vol. 140, pp. 34–42, 2020.

[154] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-

Maron, M. Gimenez, Y. Sulsky, J. Kay, J. T. Springenberg, T. Eccles, J. Bruce,

A. Razavi, A. Edwards, N. Heess, Y. Chen, R. Hadsell, O. Vinyals, M. Bordbar,

and N. de Freitas, “A Generalist Agent,” Transactions on Machine Learning

Research, vol. 1, no. 1, pp. 1–42, 2022.

[155] C. Huang, C. Chan, C. Pan, C. Fu, C. Devin, D. Driess, D. Pathak, D. Shah,

and B. Dieter, “Open X-Embodiment : Robotic Learning Datasets and RT-X

Models,” arXiv preprint, vol. arXiv:2310, pp. 1–12, 2023.

	Acknowledgements
	Abstract
	Introduction
	Aims and objectives
	Thesis contribution
	Thesis Overview
	Publications

	Related Work
	Overview of Robot Learning
	Deep Reinforcement Learning
	Learning from Demonstration
	Trajectory Learning from demonstrations
	Task plan learning from demonstrations
	Task and Motion Planning

	Visual manipulation for Robotics in HRC
	Human action understanding
	Robot manipulation

	Summary

	Continuous trajectory learning
	Introduction
	Methodology
	Task Conditioned Subgoal Planner
	Neural Dynamic Planner for joint actions
	A hybrid guidance framework for Deep Reinforcement Learning

	Experimental setup
	Results
	Neural Dynamic Planner
	Task-Conditioned Subgoal Planner
	The importance of demonstrations for DRL
	Summary

	Adaptive Task and Motion Planning in varying scenarios
	Introduction
	Methodology
	Reasoning Module with Graph Neural Network
	Motion module
	Task and Motion Planning framework

	Experimental Setup
	Results
	Reasoning Module
	Motion module
	Task-Conditioned Sub-goal Planner
	Motion Module Performance

	Overall Performance
	Physical Experiment
	Practical scenarios

	Summary

	A vision-based adaptive task planning framework for varying Human-Robot-Collaboration
	Introduction
	Methodology
	Hand-centric Action Detector
	Graph-based semantic planning
	System Integration

	Experimental Setup
	Results
	Action Detector
	Semantic Planner
	Overall performance

	Summary

	Iterative Visual Grasping sequence generation for object handling
	Introduction
	Methodology
	Experimental Setup
	Results
	Industrial parts handling in cluttered environment
	Daily life objects in stacking environment

	Summary

	Conclusion and future work
	Conclusion
	Future work

