
Model-based Self-supervision for
Dense Face Alignment and 3D

Reconstruction

Tatsuro Koizumi

PhD

University of York

Computer Science

October 2023





Abstract

In the field of monocular 3D reconstruction, self-supervision based on differentiable

rendering and a statistical 3D model has been proposed to alleviate the need for

datasets with ground truth. In theory, this enables training of neural networks only

using unannotated images. However, training through self-supervision tends to be

unstable and surrogate supervision such as landmarks is required in practice. More-

over, reaching convergence in self-supervised 3D reconstruction is slow or unachievable

due to the weak and discontinuous supervisory signal provided by a differentiable ren-

derer. Our research starts from the aim to improve such problems in differentiable

renderer-based self-supervision.

Firstly, we combined differentiable linear least-squares fitting of a 3D morphable

model (3DMM), pose, and lighting with self-supervision. We propose linear least-

squares solutions for geometric and photometric parameters including a novel inverse

spherical harmonic lighting model. This assures optimal fitting of photometric com-

ponents given estimated geometric parameters and improves fidelity in reconstructed

appearance. This concept also provides an opportunity to combine 3DMM fitting

with image-to-image networks, leading to stable training without requiring landmark

supervision.

Secondly, we proposed supervision based on semantic segmentation. In contrast to

landmarks, this form of supervision is dense and always well defined. However, it is not

one-to-one, meaning more complex loss functions are required to exploit it. We propose

two novel cohesive measures for semantic segmentation supervision. First, we show

how precomputed distance maps in a 3DMM UV space can be used to supervise pixel-

wise estimates of image-model correspondence. Second, we derive a novel differentiable

vertex to pixel cohesive measure based on the geometric Rényi divergence. Using this

loss, we show that pure shape-from-semantic segmentation is possible via analysis-by-

synthesis.

Lastly, we combined both techniques and propose the self-supervised architecture

for 3D face reconstruction that does not require a differentiable renderer.
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via the geometric Rényi divergence. In Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision, pages 2312–2321, 2021.

• Tatsuro Koizumi andWilliam AP Smith. “Look ma, no landmarks!”–unsupervised,

model-based dense face alignment. In Computer Vision–ECCV 2020: 16th Euro-

pean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II, pages

690–706. Springer, 2020.

Tatsuro Koizumi

September 30, 2023

vi





Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Difficulty of optimisation . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Need for additional supervision . . . . . . . . . . . . . . . . . . 4

1.2.3 Discontinuity in self-occlusion . . . . . . . . . . . . . . . . . . . 4

1.3 Our proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related work 7

2.1 3D morphable model and analysis-by-synthesis . . . . . . . . . . . . . . 8

2.2 Deep neural networks for 3D reconstruction . . . . . . . . . . . . . . . 8

2.2.1 CNN-based 3D face reconstruction . . . . . . . . . . . . . . . . 9

2.2.2 Self-supervised 3D face reconstruction network . . . . . . . . . . 9

2.2.3 Image-to-image methods . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Differentiable rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Differentiable-renderer-based geometry reconstruction . . . . . . . . . . 12

2.4.1 Category specific 3D reconstruction . . . . . . . . . . . . . . . . 12

2.4.2 3D scene reconstruction based on RGBD self-supervision . . . . 12

2.4.3 3D reconstruction based on multi-view self-supervision . . . . . 13

2.5 In-network optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 3D reconstruction meets semantic segmentation . . . . . . . . . . . . . 14

2.6.1 3D reconstruction based on semantic segmentation supervision . 15

viii



2.6.2 Points-to-points distance measures . . . . . . . . . . . . . . . . 15

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Differentiable least-squares model fitting 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 3D morphable model and image formation . . . . . . . . . . . . 19

3.1.2 Exemplar use-cases of linear least-squares layer . . . . . . . . . 20

3.2 Photometric linear least-squares . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Inverse spherical harmonics lighting . . . . . . . . . . . . . . . . 24

3.2.2 Solving photometric linear least-squares . . . . . . . . . . . . . 26

3.3 Geometric linear least-squares . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 UV-warped 3D morphable model . . . . . . . . . . . . . . . . . 28

3.3.2 Solving geometric linear least-squares . . . . . . . . . . . . . . . 30

3.3.3 Variants of geometric least-squares . . . . . . . . . . . . . . . . 34

3.4 Integration of geometric and photometric least-squares . . . . . . . . . 35

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Differentiable cohesive measure 40

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Automatic labelling of model vertices . . . . . . . . . . . . . . . . . . . 41

4.3 Cohesive measure based on distance transform . . . . . . . . . . . . . . 42

4.3.1 Semantic segmentation of 3DMM in UV space . . . . . . . . . . 44

4.3.2 Distance transform of a segmentation map . . . . . . . . . . . . 45

4.3.3 Calculation of a cohesive measure based on bilinear sampling of

a distance map . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Cohesive measure based on the geometric Rényi
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Chapter 1

Introduction

1.1 Background

Reconstruction of the shape and appearance of 3D objects from RGB images has been

one of the ultimate goals of research in computer vision. This field of research is partic-

ularly important for potential in applications such as 3D content creation, augmented

reality, telecommunications, medical diagnosis, land surveying, and robotics [18][67].

In 3D reconstruction techniques, the physical process of forming an RGB image of a

subject is utilised to derive a formulation to reconstruct the original geometric and

photometric information. For instance, multi-view stereo methods reconstruct the

3D geometry of a subject based on constraints from multiple observations, modeled

by perspective projections [27]. Perspective projection models the transport of light

rays from the surface of the subject to the image plane through the principal point

of the lens, in a simplified form. In general, the forward process of image formation

inherently loses a certain amount of information about a subject, making the inverse

process highly ill-posed. To address this ill-posedness, classical algorithms often rely

on hand-crafted priors or models. In the case of multi-view stereo, the local smooth-

ness of a natural object’s surface is commonly utilised. This smoothness constraint

is typically embedded in the form of patch-based matching [20] or incorporated as

post-processing through smoothness regularisation [29]. However, even with sophis-

ticated regularisation, this approach requires a large number of views and is prone
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to producing erroneous results. Another approach is 3D reconstruction based on a

linear statistical model, which serves as a strong prior for specific object categories.

A well-known example of such a model is the 3D Morphable Model (3DMM) [5]. In

this approach, both the 3D shape and texture of a human face are represented by a

linear statistical model. This model comprises linear basis vectors, normalised by the

variance, and a mean vector for the 3D position and albedo at each vertex of the 3D

template meshes. In this method, coefficients for the bases are estimated by minimis-

ing the error between pixel values in a target image and those in a rendered image, an

approach known as analysis-by-synthesis. The effective representational capability of

the linear model enables high-fidelity 3D reconstruction from a single image. However,

this approach usually necessitates solving a challenging optimisation process, which is

both non-convex and non-linear.

In recent years, advancements in deep learning have enabled monocular 3D re-

construction without the need for inference-time optimisation. Neural networks can

learn the mapping from an input image to latent 3D information by training on a

large dataset of images with ground-truth data. In early works, 3D reconstruction is

formulated as a regression task, wherein the network infers 3D representations such

as depth maps, 3D meshes, or 3DMM coefficients from input images. The network

is trained in a supervised manner, requiring costly annotated data that consists of

pairs of an image and its corresponding 3D representation. To relax the requirement

for the dataset, a hybrid approach that combines neural networks with analysis-by-

synthesis, namely model-based self-supervision, is proposed [66]. In this approach, a

fixed rendering layer, implemented in a differentiable manner and known as a differ-

entiable renderer, is integrated into the training pipeline of the neural network. In

this pipeline, the 3D representation estimated by the neural network is rendered by

the differentiable renderer. The parameters of the neural network are optimised so

that the error between the rendered image and the original input image is minimised.

As the rendering layer is differentiable, standard gradient descent techniques can be

applied during training. This hybrid strategy has enabled network training from im-

ages without ground truth, thereby broadening the scope of its application to various

domains where ground truth is unattainable. Figure 1.1 shows the summarisation of
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Figure 1.1: Overview of monocular 3D reconstruction approaches

three approaches. Building on this direction, this thesis explores ways to extend the

hybrid approach. Specifically, we focus on addressing the limitations associated with

a differentiable renderer. The challenges and our proposed solutions will be briefly

described in the following sections.

1.2 Challenges

In this thesis, we address the following challenges associated with the use of a differ-

entiable renderer.

1.2.1 Difficulty of optimisation

In general, a sufficiently large convolutional neural network can learn the mapping from

an input image to a latent 3D representation, due to its redundant parameterisation,

if it is directly supervised. However, if the differentiable rendering layer is applied

to the output of a convolutional neural network, parameters obtained through the
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differentiable rendering layer have physical meaning based on its design. This means

that the obtained parameters are no more redundant. Therefore, training based on

a differentiable renderer becomes more difficult and requires careful adjustment of

hyperparameters such as parameter-wise learning rates like in conventional gradient

descent non-linear optimisation.

1.2.2 Need for additional supervision

Image-based alignment methods generally rely on the smooth-nature of natural images

or objects. Therefore, if network training is conducted only based on the difference

between an input image and a rendered image, the supervisory signal becomes mean-

ingful only if the estimation is sufficiently close to the optimum. This causes the need

for additional supervision such as landmarks that can work as meaningful supervision

when the geometric displacement is large. It also stabilises training by preventing a

network from updating parameters by erroneous estimates.

1.2.3 Discontinuity in self-occlusion

The difficulty of optimisation through the rendering process lies in the fact that ras-

terizing a 3D object onto discrete pixels is fundamentally non-differentiable. If a

differentiable renderer is naively applied, the gradient through the rendering layer is

calculated based on tentative correspondences between a pixel and a mesh. When

the network parameters are updated, the tentative correspondences also change. Such

updates sometimes cause new self-occlusions, leading to drastic changes in pixel-mesh

correspondences. To train 3D reconstruction network for an object that has significant

self-occlusions, discontinuity should be addressed or taken into account.

1.3 Our proposals

In this thesis, we will seek ways to address challenges in the use of a differentiable

renderer. Our goal is to answer the following questions: (1) How can the convergence

of training based on a differentiable renderer be improved? (2) Can we remove auxiliary

4



landmark supervision for statistical model fitting while still achieving stable training?

(3) How can semantic segmentation be leveraged as an alternative to landmarks for

auxiliary supervision? (4) Can we train a neural network using a statistical model but

without using the differentiable renderer?

To this end, we will introduce two novel technical elements to differentiable render-

ing. One element is a differentiable linear least-squares layer that can be combined with

a 3D reconstruction network. This fixed function layer conducts linear least-squares

fitting of a model to inputs or outputs of a neural network in a differentiable man-

ner. To achieve the analytically differentiable model, we introduce the inverse lighting

model based on spherical harmonics to linearise the least-squares problem. On the

one hand, this technique can improve the optimality of the estimation as linear least-

squares assures nearly perfect fitting of the model. On the other hand, we can use this

layer to regularise outputs of a neural network. In this thesis, we show regularisation of

estimated image-to-model correspondence maps by differentiable linear least-squares.

The other new element is distance metrics for a semantic segmentation map. A seman-

tic segmentation map is image-like data in which semantic labels are assigned to each

pixel, and can be used as an alternative to landmark supervision. One straightforward

way to use segmentation as supervision is assigning segmentation labels to each point

on a 3D shape, and rendering it with a differentiable renderer. However, the weak-

ness of differentiable renderers in aligning large displacements reduces the advantage

of supervision based on segmentation map. To address this issue, we propose a novel

distance metric for segmentation map alignment based on Geometric Rényi Diver-

gence (GRD). Finally, we show applications of these new techniques to self-supervised

monocular 3D face reconstruction. One application is fully self-supervised monocular

3D face reconstruction, which combines an image-to-model correspondence prediction

network with a linear least-squares layer. This combination enabled the introduction of

a robust loss function, which contributes to the stabilisation of the training. Thereby,

this approach only relies on input images and does not require additional supervision

such as landmarks. Another application is GRD-based supervision of monocular 3D

face reconstruction. The long-range non-saturating gradient signal of GRD enables

network training based on images with large displacement and rotation. The other
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application is monocular 3D face reconstruction without a differentiable renderer. In

this approach, we completely remove the forward rasterisation layer from the training

architecture while using a statistical face model and a perspective projection model.

1.4 Outline

The remainder of this thesis is organised as follows:

• Chapter 2. Related work: We show prior works related to 3D reconstruc-

tion, statistical shape modelling, and differentiable rendering. We then discuss

limitations of existing works from the perspective of self-supervised monocular

3D reconstruction.

• Chapter 3. Differentiable least-squares model fitting: We propose util-

ising statistical models of shape and texture to regularise the outputs of neural

networks in a differentiable manner.

• Chapter 4. Differentiable cohesive measure: We propose cohesive mea-

sures to use a segmentation map as supervision with a differentiable renderer or

neural network.

• Chapter 5. Self-supervised monocular 3D face reconstruction: We

propose architectures that incorporate the ideas from the preceding two chapters

for the purposes of self-supervised learning with model-based regularisation and

segmentation-based supervision.

• Chapter 6. Conclusion: We summarise our research and discuss limitations

and potential future works.
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Chapter 2

Related work

In this thesis, we specifically focus on monocular 3D reconstruction based on statistical

3D models. Our research direction is to relax the requirements for supervision and

improve the performance in this task by leveraging a physical model of image formation

process. We also introduce supervision based on a semantic segmentation map as an

alternative to landmarks. In this direction, we employ image-to-model correspondence

estimation networks for the sake of reducing the need for landmark supervision and

to enable segmentation-based supervision.

In this chapter, we review existing works on 3D face reconstruction based on 3D

morphable models and analysis-by-synthesis. Subsequently, we review deep-learning-

based regression approaches, and hybrid approaches that combines deep learning with

analysis-by-synthesis using a differentiable renderer. Since the practical target domain

of our research is a human face, in this part, we mainly focus on 3D face reconstruction

methods, and describe the concept of each approach. Then, we go through methods

for image-to-model correspondence estimation, which is the key component of our

approach. We also review differentiable renderers and discuss limitations. Since one

of our key ideas is solving a subproblem within a network, we review in-network

optimisation approaches. Lastly, we review utilisation of semantic segmentation for

3D reconstruction.
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2.1 3D morphable model and analysis-by-synthesis

A 3D morphable model (3DMM) is the most successful and widely used representation

of a human face. Early works in monocular 3D face reconstruction methods used the

3DMM representation. Blanz and Vetter [5] proposed the 3D morphable model, which

represents the shape and texture of a face as a linear combination of bases. Each basis

is represented as displacement of position and albedo of each vertex from the mean.

The mean and basis are calculated via principal components analysis (PCA) of pre-

viously captured and aligned multiple faces. In this approach, 3D morphable model

coefficients are calculated by minimising the error between pixel values in an input

image and a rendered image, which is known as analysis-by-synthesis. Single image

3D face reconstruction usually requires solution of a non-convex and non-linear optimi-

sation process, thus estimation takes significant computation time with no guarantee

of obtaining the global minimum. The earliest work on 3DMM fitting used landmark

distance as a sparse objective function for approximate initialisation and within an

analysis-by-synthesis framework [6]. Subsequently, Romdhani and Vetter [58] used

landmarks and occluding contours within a multi-feature fitting approach. Bas and

Smith [4] explore to what extent geometric parameters can be estimated from land-

marks and contours alone and show that this leads to an ambiguity between shape

and face/camera distance. Many state-of-the-art methods still rely on landmarks for

supervision. E.g. RingNet [60] trains a CNN to regress geometric parameters (shape

and pose) from a single image using only landmark supervision and paired identity

images. Beyond landmarks and contours, silhouettes and segmentation information

have been much less widely used. In early work, Moghaddam et al. [51] used a binary

silhouette loss across multiple images. Since this loss is discontinuous, they use the

derivative-free Nelder–Mead optimisation method.

2.2 Deep neural networks for 3D reconstruction

In this section, we firstly review naive applications of convolutional neural networks

(CNN) to a 3D face reconstruction task, where the task is formulated as regression.

Subsequently, we review self-supervised 3D face reconstruction networks, which com-
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bines CNN with analysis-by-synthesis. Lastly, we review 3D face reconstruction meth-

ods that formulates the task as image-to-image conversion while representing geometry

or correspondence as pixel-wise information.

2.2.1 CNN-based 3D face reconstruction

Recent advancement in deep neural networks have been applied for single image 3D

face reconstruction. Richardson et al. [57] trains the network so that the difference

between estimated 3D morphable coefficients and ground truth is minimised. One

problem with these approaches is the scarcity of real 3D face datasets with ground

truth. Instead of real data, Richardson et al. [57] employed synthetic data for training.

Tran et al. [69] used parameters estimated by another method for training. However,

there is still a huge domain gap between real and synthesised or estimated data. To

mitigate this problem, Kim et al. [36] used synthesised images with ground truth as

well as non-annotated real images with the bootstrapping procedure. This approach

uses only synthesised images at first. As training proceeds, the distribution of training

data is updated so that it reflects the distribution of estimated parameters based

on the current network. Though this method exhibits robustness of reconstruction

against pose variations, it requires cropping the central region of a face and relies

on given facial landmarks. Besides 3DMM, other representations of a face are also

investigated. Feng et al. [16] proposed a method which represents a reconstructed

face as coordinates in UV map for each pixel. Jackson et al. [30] employs the 3D

position of each pixel as the representation. Regardless of the representation, these

methods rely on the existence of ground truth, pseudo ground truth or synthetic data

for 3D faces, and they cannot be applied to objects, for which 3D ground truth is

difficult to obtain.

2.2.2 Self-supervised 3D face reconstruction network

To employ a large quantity of image data without annotation for training, Tewari et

al. [66] combined a CNN encoder with differentiable renderer. This network esti-

mates 3D morphable model coefficients from a single image. The network parameters
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are optimised so that the difference between the rendered image and the input im-

age is minimised. The gradient through self-supervision is weak and the optimisation

is prone to converge to a local minimum compared with direct supervision based on

ground truth [11]. This method relies on 3D morphable basis to resolve the degeneracy

between geometry, texture, and lighting. Therefore, the representation power of the

reconstructed face is limited to that of 3D morphable model. Therefore, the estimated

result tends to be blurry or less realistic. Tran et al. [70] uses encoder-decoder network

as a nonlinear morphable model while regularising the parameters with the distance

from linear 3D morphable model and learning fine textures based on adversarial train-

ing. Tewari et al. [64] proposed a method which trains corrective functions as well

as regression network and optimise the parameters of corrective space at test time to

reproduce fine details. These methods can reproduce the detail of input images and

improve the quality of the result. However, they relies on the existence of 3DMM basis

and facial landmarks. Thus, these methods cannot be applied to other objects, for

which no landmarks and basis are provided.

2.2.3 Image-to-image methods

Going beyond model fitting, a number of methods make pixel-wise predictions. SFSNet

[62] infers lighting and surface normal and albedo maps from single face images. Their

training is bootstrapped using synthetic faces sampled from a model. Sela et al. [61] use

an image-to-image network to predict facial depth and correspondence to a canonical

model. The network is trained entirely supervised using synthetic data and model

fitting requires an offline nonrigid registration to the estimated correspondences. Guler

et al. [2] and Yu et al. [81] predict dense correspondence maps using an image-to-

image network and supervision provided by landmark-based 3DMM fits. Feng et

al. [16] predict a UV map from a 3D face to 2D image coordinates. Zhu et al. [87, 88]

propose the projected normalised coordinate code (PNCC) as a representation for

dense correspondence. Crispell and Bazik [10] augment PNCC with a predicted 3D

offset. All of the above approaches are supervised. Several approaches [61, 81, 10] fit

a model to estimated depth or correspondence, but this is done as an offline, nonlinear

optimisation.
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2.3 Differentiable rendering

Many differentiable renderers employ a simple image formation process. They per-

form a projection of vertices based on the camera projection model, calculate shading

assuming the Lambertian reflection model under point light source or spherical har-

monics lighting, and rasterise pixels. On the other hand, there are several different

approaches to calculate gradients of losses through the rendering process. Tewari et

al. [66] calculates pixel values on each vertex and minimises the difference between

resampled pixel values and rendered pixel values. Resampled pixel values are calcu-

lated based on projected vertices using bilinear interpolation. Occlusion of vertices

and correspondence between pixels and vertices are assumed as fixed during gradient

calculation. Instead of vertex-wise error, Tran et al. [70] calculates error on each

pixel comparing rasterised pixels and input pixels. During gradient calculation, the

occlusion and pixel-vertex correspondence is fixed. To handle complex objects, which

is far from convex shape and has diverse shape variation, calculation of occlusion is

required. OpenDR [47] calculates gradient as the combination of vertex position gradi-

ent and pixel value gradient on an image. In this process, the gradient on the occlusion

boundary is calculated by comparing the nearest face and the second nearest face. The

fundamental challenge is that rasterisation of a continuous 3D object onto a discrete

pixel grid is fundamentally not differentiable. Therefore, the gradient is only meaning-

ful in neighboring pixels. That makes supervision signals weak and causes convergence

to local minimum. Hence, approximations are used that provide useful smooth gradi-

ents. Neural 3D Mesh Renderer (NMR) [35] extrapolates a gradient outside triangles

based on linear interpolation of the derivative across a triangle edge. Soft Rasterizer

(SoftRas) [45] computes a soft (i.e. blurred) rasterisation of each triangle in a mesh.

Petersen et al. [54] employs cycle adversarial loss to compensate the difference in ap-

pearance. However, as both methods still rely on optimisation of pixel value errors,

they could fail to reconstruct fine structures of objects, which is difficult to understand

and analyse by rasterisation process. Inverse graphics GAN [48] trains a differentiable

neural network to approximate the behaviour of a non-differentiable classical renderer.

Neural radiance fields (NeRF) [50] uses soft volume rendering of a non-binary density

field. The problem with such approaches is that this softened rendering is only an
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approximation whose quality depends on parameters controlling the softness. In prac-

tice, these parameters must be tuned or scheduled during optimisation to achieve a

good fit to data [45].

2.4 Differentiable-renderer-based geometry recon-

struction

Differentiable render is also applied to other types of geometry reconstruction tasks

including category specific general 3D reconstruction, 3D scene reconstruction, and

multi-view 3D reconstruction.

2.4.1 Category specific 3D reconstruction

Differentiable rendering has been applied to single image 3D reconstruction of general

objects. Kanazawa [32] et al. proposed category specific single image 3D reconstruc-

tion based on self-supervision with differentiable renderer. The object is assumed to

have the same topology as a sphere, and the deviation of vertex position and texture

flow is obtained through the network from a single image. As this inverse problem is

highly ill-posed, camera parameters are regularised based on category-wise structure

from motion method as well as smoothness prior. Due to strong regularisation to over-

come the ill-posedness, the reproduction of fine structures is still limited. Furthermore,

this method relies on landmarks.

2.4.2 3D scene reconstruction based on RGBD self-supervision

Kaneko et al. [33] tries to apply differentiable rendering to a single image 3D recon-

struction for non-fixed mesh topology scene. To handle the non-fixed connectivity of

the mesh, the method employs disconnected triangle meshes. It also uses depth in-

formation from RGBD images both for supervision and inference. RGBD pixel values

are optimised by a differentiable renderer through training. As this method employs

disconnected meshes and does not use the explicit context of objects, the reconstructed

geometry tends to be noisy.
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2.4.3 3D reconstruction based on multi-view self-supervision

Pillai et al. [55] shows structure from motion based on CNN and differentiable renderer.

The network estimates camera motion and depth map from the input image sequence.

This approach intends to replace conventional structure from motion processing with

a deep neural network. Though it does not require any landmarks, it uses adjacent

frames in a video sequence for training, in which the displacement of geometry is small.

Therefore, this method can be used only if a dataset of video sequences is available.

Kato et al. [34] employed an adversarial loss that discriminates synthesised images and

original images using multi-view images to resolve the ambiguity of 3D reconstruction.

As this method needs silhouettes of objects for training, the scarcity of training data

is still a problem. Lin et al. [43] used a 3D shape dataset to obtain a shape prior and

trains a multi-view stereo network based on a differentiable renderer. As this method

also relies on a 3D shape dataset, which is not abundant and precise, the quality of

reconstruction is still limited.

2.5 In-network optimisation

In Chapter 3, we introduce a linear least-squares layer, which enables differentiable

in-network optimisation. In this direction, we review methods that perform optimisa-

tion within a neural network pipeline. Early works from the pre-deep learning era in

closely related areas include the variable projection method [24] and Wiberg matrix

factorisation [75]. The variable projection method is a technique for solving nonlinear

optimisation problems involving separable linear variables. In this technique, linear

subvariables are analytically solved as a function of nonlinear variables, and then the

nonlinear independent variables are optimised through a nonlinear optimisation tech-

nique. Wiberg matrix factorisation [75] can be viewed as an application of the variable

projection method. This method calculates factorised matrices that approximate the

original matrix. One factor matrix is solved as a linear problem, and the rest is opti-

mised as a nonlinear problem. The concept of solving a subproblem separately within

an entire problem is also applied to the training of a neural network. Kolotouros et

al. [38] proposed training of a 3D human pose and shape estimation network by con-
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ducting keypoint-based fitting from the output of a tentative network and supervising

the network with the fitted result. Although this approach involves in-network op-

timisation, it is not combined with the training pipeline in a differentiable manner.

Van Gansbeke et al. [73] introduced a layer that solves linear least-squares, which is

differentiable, to estimate line parameters for lane detection and train a network by

direct supervision on obtained line parameters, leading to end-to-end training. From

the perspective that in-network optimisation can be viewed as a constraint, we review

implicit representations for neural networks. DeepSDF employs the signed distance

function (SDF) to represent the surface of a 3D object. Unlike NeRF [50], which ex-

plicitly represents occupancy and colour for each spatial point, DeepSDF represents

the surface as an isosurface of the SDF. Although extracting the surface from the SDF

involves a search, which can be considered optimisation, the training is conducted

in a supervised manner using ground truth SDF. DVR [53] extends the SDF-based

approach to unsupervised training with multi-view images. In DVR, surface search

is conducted to establish a tentative surface, and then the implicit function theorem,

which is analytical, is applied to obtain the gradient for backpropagation. NeuralODE

[9] has a similar concept. NeuralODE models the dynamics of a system as an ordi-

nary differential equation (ODE). During gradient calculation, NeuralODE solves the

ODE with any arbitrary solver and calculates the gradient using the adjoint sensitivity

method.

2.6 3D reconstruction meets semantic segmenta-

tion

In Chapter 4, we will show utilisation of semantic segmentation maps to align geometry,

and experiments of network training based on semantic segmentation in Chapter 5.

To this end, we review 3D reconstruction methods based on semantic segmentation

supervision, and points-to-points distance measures, which is closely related to our

proposed method in Chapter 4.
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2.6.1 3D reconstruction based on semantic segmentation su-

pervision

Recent 3D reconstruction works include a face parsing loss as one of a number of losses

with which a face model fitting (i.e. parameter regression) CNN is trained [86, 8]. They

do so simply by rasterising the semantic labels on the mesh using a differentiable ren-

derer, [86] using a variant of SoftRas [45] and [8] using TF Mesh Renderer [21]. Note

that the latter uses a hard rasterisation and does not provide any useful gradient for

changes in rasterisation or, therefore, for aligning discrete semantic segments. Mean-

while, SoftRas compares a soft rasterisation to hard discrete input meaning that the

minimum loss does not correspond to optimal alignment. No previous work, including

[86, 8, 42], has considered the problem of estimating shape using only semantic seg-

mentation information. Li et al. [42] learn both a deformable model and model fitting

in a self-supervised fashion. One of their training objectives is to ensure semantic con-

sistency, measured by projecting the semantically labelled 3D model into the image.

They measure semantic loss using the Chamfer distance which is sensitive to sampling

differences between pixels and vertices and tends to cause the model to shrink.

2.6.2 Points-to-points distance measures

When aligning point clouds to point clouds or vertices to pixels with unknown corre-

spondence, a variety of soft distance measures have been considered to ensure a useful

gradient is provided even from a poor initialisation. Of particular relevance to our work

are those methods based on probabilistic representations. Jian and Vemuri [31] use

the L2 distance between two mixture of Gaussians (MoG) for point cloud registration.

Wang et al. [74] use closed-form Jensen Rényi divergence for MoG for group-wise point

cloud registration. Yamashita et al. [79] represent volumetric point clouds using MoG

and exploit this for fitting to 2D silhouettes using KL divergence, though they require

stochastic Monte Carlo sampling and regularisation to obtain stable performance.
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Method Pros Cons
3DMM fitting [5] No training needed Test time optimisation
Richardson [57] No test time optimisation Trained on synthetic data

Kim [36] No test time optimisation Trained on existing estimation
MoFA [66] Unsupervised Not robust, blurry
Tewari [64] High fidelity Need landmarks for training
RingNet [60] High fidelity Need landmarks for training
NeRF [50] Reconstruct any object Need multiview, no generalisation

Table 2.1: Summary of previous works

2.7 Conclusion

For conclusion, we summarise advantages and disadvantages of previous works in Ta-

ble 2.1. In this chapter, we mainly reviewed self-supervised 3D face reconstruction

methods that rely on a differentiable renderer and 3DMM. Self-supervised approaches

have an advantage that they can leverage a large number of unannotated images for

training network. A limitation of this approach is that it requires landmark supervi-

sion or face region mask for stable training. The reason is that differentiable rendering

of 3DMM can explain only modeled face region by the template meshes. Thus, if a face

model is rendered outside the face region on the image due to erroneous estimation,

that causes a huge penalty in photometric reconstruction loss. This makes the net-

work predict a shrunk shape because it is the statistically safe choice for the network

assuming large errors near the boundary are inevitable. In this context, masking back-

ground or occluded region and constraining prediction by landmark correspondences

are viewed as a straightforward solution. In MoFA [65], the authors state landmark

supervision is optional. However, based on our experience to reproduce MoFA work,

we can state it is very difficult to train a network without landmark supervision and

very careful adjustment of learning rate on each estimated parameters is needed. We

also find achieving high fidelity reconstruction is difficult as convergence is slow and

unstable. This leads us to pursue four research directions: 1) combine image-model

correspondence estimation with 3DMM and differentiable renderer and train a net-

work so that each pixel becomes well explained by the model, which is opposite to

previous differentiable-renderer-based methods, 2) improve fidelity of reconstruction
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by introducing analytically optimal model fitting into the training pipeline, 3) leverage

semantic segmentation dataset to achieve stable training expecting self-supervised seg-

mentation will be available, and 4) seek ways to avoid using a differentiable renderer

and hence avoid approximations of the softened rasterisation process or assumptions

about self-occlusion.

Towards development of image-model correspondence estimation techniques, we

reviewed face reconstruction methods that consist of image-to-image neural networks.

We find existing works in this field rely on supervised training, and combining this with

self-supervision is a promising research direction. We also reviewed 3D reconstruction

methods based on semantic segmentation supervision. Most works in this field rely on

modified implementations of existing differentiable renderers. This approach is sub-

optimal because alignment between semantic segmentation maps sometimes requires:

1) a long-range non-saturating measure, 2) exact matching, and 3) special treatment

for a certain semantic class depending of the meaning of the class. These features are

unattainable by the existing differentiable renderers.
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Chapter 3

Differentiable least-squares model

fitting

3.1 Introduction

In this chapter, we propose linear least-squares layers to implicitly solve for opti-

mal geometric and photometric parameters and describe methods to integrate these

layers within the architecture and training pipeline of neural networks. Since linear

least-squares problems can be solved by matrix operations, this layer is naturally dif-

ferentiable. Our proposal is to use this fixed differentiable layer to regularise outputs

of a neural network and generate physically meaningful expressions based on statis-

tical and physical models. In this section, we will introduce the formulation of 3D

morphable models and perspective projection (in Section 3.1.1), which are the foun-

dational models in our approach. Subsequently, we show exemplar use-cases of linear

least-squares layer for better understanding of the concept (in Section 3.1.2). In the

remainder of this chapter, we will show photometirc, geometric, and combined linear

least-squares layer.
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3.1.1 3D morphable model and image formation

Here, we introduce notations about 3D morphable model and perspective projection

of it. 3DMM is a widely used statistical representation of a human face. 3DMM

represents the shape and texture of a face as a linear combination of bases. Each basis

is represented as displacement of position and albedo of each vertices from the mean.

We represent 3D face models based on a 3DMM:

vj =

Ng∑
i=1

αiSij + s̄j, rj =
Nr∑
i=1

βiAij + āj, (3.1)

where vj is the 3D position and rj is the RGB reflectance of jth vertex respectively.

Sij is the ith linear basis of the vertex position and s̄j is its mean. In the same

manner, Aij is the ith linear basis of the vertex reflectance and āj is its mean. In

typical 3DMM, geometric components of the model are separated into shape and

expression. Shape components are associated with the identity of individual people

and expression components represent facial expression. Since both have the same

mathematical meaning, we merged them into the vertex position bases and mean by

concatenating the basis vectors and summing the mean vectors. We denote the number

of vertex position bases as Ng = Ns+Ne, where Ns is the number of shape dimensions

and Ne is the number of expression dimensions. αi and βi is the coefficient of the linear

combination and that is the representation of 3D face model which we use. We use

the Basel Face Model 2017 [23] as the basis of our representation which has Ns = 199,

Ne = 100, and Nr = 199 dimensions for facial identity shape, facial expression shape,

and skin reflectance respectively.

Each vertex is projected onto the image plane based on a full perspective camera

model:

λj

[
xj

1

]
= K(Rvj + t), (3.2)

where xj is jth projected vertex position, K is an intrinsic camera matrix, R is a

3D rotation matrix, and t is a 3D translation vector. In addition, each vertex is
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shaded using spherical harmonic lighting for image generation and supervision based

on photometric discrepancy:

ij = rj

27∑
k=1

γkfk(nj), (3.3)

where ij is jth shaded vertex colour, fk is a function to obtain kth spherical harmonic

basis from jth vertex normal nj, γk is the coefficient for the kth basis. We employ

second order spherical harmonic lighting, which has 9 bases for each colour channel.

We calculate nj by averaging the surface normal of neighbouring faces of each vertex.

3.1.2 Exemplar use-cases of linear least-squares layer

Figure 3.1 shows exemplary use-case of linear least-squares layer. Typical use-cases are

divided into three categories: photometric, geometric, and hybrid. Figure 3.1(a) is an

example of a neural network combined with photometric linear least-squares layer. In

the naive context of model-based self-supervision like MoFA [66], the neural network

outputs 3DMM coefficients for both shape and albedo as well as pose parameters and

illumination parameters. Predicted parameters form a set of projected and illuminated

vertices, which has both 2D position and colour values. The neural network is trained

so that the difference in pixel values between input pixels and projected vertices is

minimised. On the other hand, in our proposed approach, the network only provides

3DMM parameters for geometry, which is typically shape, expression, and pose pa-

rameters. Based on the estimated geometric parameters, pixel values are sampled from

the input image. The linear least-squares layer takes sampled pixel values and 3DMM

mean and basis vectors for albedo, and computes fitted photometric parameters. The

loss value for network training is calculated based on the error between the fitted ap-

pearance and the input image. As the layer is differentiable, the training signal derived

from fitted appearance is transmitted to the neural network beyond the linear least-

squares layer. In this scenario, the optimality of output photometric parameters is

improved as the linear least-squares assures optimal fitting conditional on the current

model-image alignment. The technical detail will be described in Section 3.2.

Next, we explain a use-case for geometric linear least-squares in Figure 3.1(b).

In this scenario, the neural network outputs a correspondence map from an input

20



Encoder
network

Image

3DMM

Photometric
least-squares

Albedo
Illumination

Shape

Pose

Projection

(a)

Pixel-wise Prediction
Network 

Image

3DMM

Geometric
least-squares

Shape
Pose

Depth

Confidence Correspondence

(b)

Pixel-wise Prediction
Network 

Image

3DMM

Geometric
least-squares

Shape
Pose

Depth

Confidence Correspondence

Photometric
least-squares

Albedo
Illumination

(c)

Figure 3.1: Exemplar use-cases of linear least-squares layers: (a) Photometric linear
least-squares layer predicts 3DMM albedo coefficients and spherical harmonics coeffi-
cients for inverse lighting using input pixel values, shape, expression coefficients, and
camera parameters; (b) Geometric linear least-squares layer predicts 3DMM shape
coefficients and camera parameters from correspondence, depth, and confidence maps;
(c) Hybrid linear least-squares layer combines both photometric and geometric func-
tions to predict 3DMM albedo, shape, expression coefficients, camera parameters, and
spherical harmonics coefficients using input pixel values, correspondence map, depth
map, and confidence map.
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image to template meshes of the 3DMM along with a depth map. We apply the

linear least-squares layer to the network output. The model of linear least-squares

layer can be weak perspective projection, perspective projection, 3D alignment, and

3DMM geometry, and the layer produces 3D geometry of an object as shape and

pose parameters. During training, the residual of least-squares is minimised and the

network learns to generate correspondence and depth map, which is consistent with

the space of the model. The estimated geometry is also used to project vertices onto

the image plane and arbitrary loss function is applied. The technical detail will be

described in Section 3.3.

Lastly, a hybrid of both photometric and geometric linear least-squares is shown

in Figure 3.1(c). In this scenario, the geometric linear least-squares layer is applied in

the same manner as the purely geometric one. Subsequently, based on fitted geometric

parameters, photometeric linear least-squares layers is applied (details in Section 3.4).

Motivation It is perhaps not obvious why these alternate formulations might be

promising over current methods. The main difference in the second and third exemplar

use cases compared to previous work is that, instead of image-to-3DMM parameter

regression with a contractive CNN, we propose to estimate a dense image-model corre-

spondence map with an image-to-image CNN architecture. The main difference in the

first exemplar use case is that photometric parameters are not regressed, rather they

are solved for using the input image data and the estimated geometric parameters.

We argue that there are a number of significant benefits in these approaches:

1. A correspondence map is a minimal representation from which all 3DMM pa-

rameters can be estimated. One perspective on this is that using a CNN to

predict both geometric and photometric parameters, as done in all previous

work [66, 36, 22, 64, 11], is redundant.

2. The estimated parameters are least-squares optimal with respect to the input

image and estimated correspondence map. Optimality for a given image is not

guaranteed for a parameter regression CNN whose training objective seeks opti-

mality only in aggregate over the whole training set.
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3. Image-to-image CNNs are well suited to estimating correspondence maps with

invariance to 2D transformations. Intuitively, it is enough for the correspondence

CNN to learn “part detectors” with robustness to 2D rotation (translation invari-

ance comes from the translation invariance of convolution layers). On the other

hand, contractive CNNs are ill-suited to directly regressing geometric parameters

with 2D transformation invariance [44]. This is because spatial information is

lost in contractive layers and fully connected layers must exhaustively represent

both features and their locations to reason about geometric parameters.

4. Image-to-image CNNs are much smaller than parameter regression networks due

to the lack of fully connected layers. Concretely, we require roughly 10× fewer

parameters than previous CNN based approaches (13.4M parameters for our

U-Net versus, for example, 138M parameters in VGG-face used by [22, 66]).

5. Every pixel in the input image can contribute to the losses during training.

Previous model-based methods learn only from the parts of the image covered

by the geometry of the current 3DMM estimate. In our approach, there is no

longer a shortcut for the network to reduce reconstruction loss by shrinking the

model to avoid difficult pixels.

6. We defer estimation of actual face geometry. Correspondence is an intermediate

representation from which we infer geometry. At test time, if we have access to

calibration information or have multiple images from the same camera (e.g. a

video), we can exploit these constraints when we finally compute shape from

the estimated correspondence map(s). Parameter regression networks cannot do

this – they commit to an explanation of the shape and camera parameters for

a single image with no way to inject calibration information or constraints post

hoc.

Alternatively, our approach can be viewed as a means to learn dense face alignment

(correspondence estimation) using model fitting as a form of self-supervision. Corre-

spondence is, in itself, a useful representation. Once trained, the 3DMM can be dis-

carded and the correspondence estimation network used for tasks such as landmarking

or semantic segmentation without ever requiring ground truth labels for supervision.
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3.2 Photometric linear least-squares

In this section, we describe in detail the formulation of our photometric linear least-

squares layer. This layer takes pixel values sampled from a given input image and

predefined 3DMM for albedo components, and calculates illumination parameters and

albedo coefficients of 3DMM by solving linear least-squares. The key of this technique

is to formulate appearance in terms of inverse lighting. Relying on inverse lighting,

we define the objective function of the least-squares system as the error in albedo

space. In the remainder of this section, we show the detail of inverse lighting based

on spherical harmonics in Section 3.2.1, and linear least-squares layer based on the

inverse lighting in Section 3.2.2.

3.2.1 Inverse spherical harmonics lighting

Spherical harmonic lighting [52] is a widely used representation for reflectance under

environment illumination [65]. Appearance is modelled as the product of diffuse albedo

and shading which is in turn represented as a linear combination of spherical harmonics

basis functions shown in Equation (3.3).

This expression is bilinear in diffuse albedo and the spherical harmonic lighting

coefficients. We reformulate this model such that it is linear in both simultaneously.

This means that, given the geometric information (and hence the surface normals and

model-image correspondence), we can directly infer reflectance and lighting parameters

by solving a linear least-squares problem.

In contrast to the conventional model, we use spherical harmonics to represent

inverse lighting. That is, a quantity that (when multiplied by the image intensity)

removes the effect of shading, giving the diffuse albedo. In other words, we use the

spherical harmonic basis functions to represent the reciprocal of diffuse shading. To

this end, we represent the inverse shaded pixel value of the jth sampled pixel r̂j as:

r̂j = ij ·
27∑
i=1

γi fi(nj), (3.4)

where fi(nj) are the spherical harmonic basis functions for normal direction nj. We

24



Regular SH

Inverse SH
Max error 0.0489 0.1086 0.1229 0.2718 0.1681

RMS error 0.0188 0.0430 0.0294 0.0582 0.0462

Figure 3.2: Empirical validation of inverse spherical harmonic lighting model.

employ 9 spherical harmonics basis for each RGB colour. Contrast this to Equa-

tion (3.3). We use the same spherical harmonic basis but now to effectively divide

out the shading from the intensity yielding the albedo. Note that the effect of γk in

Equation (3.4) is totally different from that of γi in Equation (3.3).

Since the reciprocal of inverse lighting effect in Equation (3.4) is not exactly the

same as the lighting effect in Equation (3.3), it is not guaranteed that reversing the

inverse lighting will accurately reproduce the forward lighting. We empirically validate

this model in Figure 3.2. The upper row shows randomly generated images based on

conventional SH lighting. We generate random SH coefficients by σ = 0.2 and add

the random lighting to constant lighting which intensity is 0.9. We use the same SH

coefficients for all RGB channel. Lower row shows images of the same faces rendered

based on inverse SH lighting. Inverse SH coefficients are calculated as a least square

solution that minimises the difference between estimated inverse lighting and inverted

original lighting at random 100,000 sample points on the sphere. We also show the

mean and max pixel errors. We assume the pixel value in both images and 3DMM is

scaled to [0, 1].

These results demonstrate that a variety of complex illumination conditions that

are representable by conventional spherical harmonic lighting can be almost exactly

recreated using our inverse lighting model.

However, the limitation of the inverse lighting model becomes apparent with dark

pixels, which have values close to zero. In such pixels, the ideal inverse lighting might

be excessively steep, leading to significant inconsistencies between forward and inverse
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spherical harmonics lighting. Additionally, this can distort the noise distribution.

To mitigate the numerical instability caused by dark pixels, we clamp low pixel

values of an input image. Specifically, we apply softplus function to input image as

preprocessing: ix,y = log(1 + eξ·ix,y)/ξ where ξ is a parameter to adjust the scale

of softplus function. We also apply inverse function of softplus function to visualise

output images. We use ξ = 4.

3.2.2 Solving photometric linear least-squares

We calculate optimal reflectance parameters {β}i=1,2,...,Nr and inverse lighting param-

eters {γ}i=1,2,...,27 by minimising Ephoto, the error between the model albedo and that

implied by inverse shading the image intensities:

Ephoto =
Nv∑
j=1

cj(ρ)∥r̂j(ρ, γ1, γ2 . . . , γ27)− rj(ρ, β1, β2 . . . , βNr)∥22

+
27∑
i=1

ηiγ
2
i +

Nr∑
i=1

ωiβ
2
i

(3.5)

where ωi and ηi are the weight values for regularisation and regarded as a fixed pa-

rameter. ρ is geometric parameters that determines correspondence between the input

image and the template meshes such as αi in Equation (3.1) and K,R, and t in Equa-

tion (3.2). We assume an inversely illuminated pixel value r̂j and albedo bases and

mean regarding to rj are properly sampled from the input image and 3DMM based

on the geometric parameters ρ. cj is confidence value of each sample, reflecting the

confidence of estimates and visibility of the sample. We solve using linear least-squares:

{β́1, β́2, . . . , β́Nr , γ́1, γ́2, . . . , γ́Ni
} = arg min

β1,β2,...,βNr ,γ1,γ2,...,γNi

Ephoto. (3.6)

This expression has a closed form solution and derivative via the pseudoinverse. Note

that visibility of vertex wi is regarded as fixed value in each training step though it
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depends on geometric parameters ρ. Finally, we can compute the residual error:

Éphoto =
Nv∑
j=1

∥r̂j(ρ, γ́1, γ́2, . . . , γ́Ni
)− rj(ρ, β́1, β́2, . . . , β́Nr)∥22. (3.7)

As this function is differentiable with respect to geometric parameters ρ, Éphoto can

provide supervision through residual error of reconstruction using back propagation.

We now explicitly derive the solution in matrix form for a scenario where photo-

metric errors are defined on each vertex, and pixel values are sampled from the input

image based on the projection of the vertices. Assuming, on the jth sampled pixel,

ij = i(xj(ρ)) is the pixel value, Fj the inverse lighting spherical harmonic basis, cj is a

confidence value, Aj the 3DMM albedo basis matrix, and āj the 3DMM albedo mean,

then the optimal spherical harmonic coefficients γ and 3DMM albedo coefficients β

can be found via the pseudoinverse as:[
γ

β

]
= (ΛTΠΛ)−1ΛTΠΞ. (3.8)

where

Λ =



i1 · F1 −A1

i2 · F2 −A2

...
...

iNv · FNv −ANv

E27×27 027×Nr

0Nr×27 ENr×Nr


, (3.9)

Π = diag (c1, c1, c1, c2, c2, c2, . . . , cNv , cNv , cNv , η1, η2, . . . , η27, ω1, ω2, . . . , ωNr) , (3.10)
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and

Ξ =



ā1

ā2

...

āNv

027×1

0Nr×1


, (3.11)

where ηi and ωi represent the weight for regularisation.

3.3 Geometric linear least-squares

In this section, we describe the application of linear least-squares layer to regularisation

of geometric information predicted by a neural network. Specifically, this layer takes

a correspondence map that relates each pixel on the input image to a point on the

template mesh of the 3DMM. For computational efficiency, we precompute a UV-

warped 3D morphable model, which is a multi-channel 2D image representation of a

3DMM. In Section 3.3.1, we introduce the detail of UV-warped 3D morphable model

first. Subsequently, in Section 3.3.2, we describe the detail of our geometric linear

least-squares layer.

3.3.1 UV-warped 3D morphable model

We assume that the geometric least-squares layer samples the 3DMM mean and ba-

sis for each pixel based on predicted correspondences. Therefore, for computational

efficiency, we flatten the 3DMM to a 2D parameterisation beforehand. Specifically,

we generate a Tutte embedding [19] for each component of the 3DMM. We force the

boundary of the embedding to be square. We refer to the flattened 3DMM as UV-

3DMM and its domain of definition as UV space. To fill a hole inside the mouth of the

Basel Face Model 2017, we introduce an auxiliary vertex inside the hole and connect it

with the boundary vertices of the mouth. We set the mean value of mouth boundary
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vj rj vα(u, v) rβ(u, v)
(a) (b) (c) (d)

Figure 3.3: A 3D morphable model of geometry (a) and albedo (b) can be interpolated
to a UV space (c,d) via an embedding. We refer to this as a UV-3DMM.

vertices for each component of the auxiliary vertex.

Via barycentric interpolation we can compute a linear shape and texture model for

any position, (u, v) ∈ [−1, 1] × [−1, 1], in UV space. Accordingly, we write si(u, v),

s̄(u, v), ai(u, v) and ā(u, v) for the interpolated ith shape basis, shape mean, ith albedo

basis and albedo mean at arbitrary location in UV space (u, v). Note that (u, v) is

continuous and the barycentric interpolation amounts to taking linear combinations

of basis and mean values at the original vertex positions.

The 3D position of the model interpolated at UV coordinate (u, v) is:

vα(u, v) = Su,vα+ s̄(u, v), (3.12)

where Su,v = [s1(u, v), . . . , sNg(u, v)] are the stacked shape bases for the model inter-

polated at UV position (u, v). Similarly, we can write the model albedo interpolated

at UV position (u, v):

rβ(u, v) = Au,vβ + ā(u, v), (3.13)

where again Au,v = [a1(u, v), . . . , aNr(u, v)] are the stacked albedo bases for the model

interpolated at UV position (u, v).

We refer to vα(u, v) and rβ(u, v) as a UV-3DMM (see Figure 3.3). Now, suppose

that we are given a correspondence map between a face image, i(x, y), and the UV

space of our 3DMM, i.e. we are given two maps: u(x, y) and v(x, y) defined for each

pixel (x, y) ∈ {1, . . . , NW} × {1, . . . , NH} in the face image. Each pixel provides a
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i(x, y) u(x, y) v(x, y) vα(u(x, y), v(x, y)) rβ(u(x, y), v(x, y))

(a) (b) (c) (d) (e)

Figure 3.4: Using estimated correspondences (b,c) from an image (a) to the UV space
of the 3DMM, we can define a pixel-3DMM of geometry (d) and albedo (e) in pixel
space as a function of 3DMM parameters.

correspondence between image and model. We can now interpolate our 3DMM at

each pixel, via the correspondence map, giving a pixel-3DMM : vα(u(x, y), v(x, y))

and rβ(u(x, y), v(x, y)) (see Figure 3.4)

3.3.2 Solving geometric linear least-squares

We calculate optimal 3DMM shape coefficients {α}i=1,2,...,Ng , where Ng is the total

number of shape bases and expression bases, and camera parameters H, which is a

3 × 4 matrix, by minimising Egeo, the error between points on a depth map d(x)

and corresponding points vα(u(x), v(x)) on 3DMM accumulated over x = (x, y) ∈
{1, . . . , NW} × {1, . . . , NH}:

Egeo =
Nw∑
x=1

NH∑
y=1

c(x)∥v̂(x,H)− vα(u(x), v(x))∥22 +
Ng∑
i=1

λiα
2
i , (3.14)

where

v̂(x,H) = H

d(x)xd(x)

1

 , (3.15)

and λi is the weight value for regularisation and regarded as a fixed parameter. x rep-

resents predefined image coordinates and a confidence value c(x), UV-correspondence

(u(x), u(x)), and a depth value d(x) are variables on each point. We solve using linear
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least-squares:

{H́, ά} = arg min
H,α

Egeo. (3.16)

This expression has a closed form solution and derivative via the pseudoinverse. Fi-

nally, we can compute the residual error:

Égeo =
Nw∑
x=1

NH∑
y=1

∥v̂(x, H́)− vά(u(x), v(x))∥22. (3.17)

As this function is differentiable with respect to a confidence value c(x), UV-correspondence

(u(x), u(x)), and a depth value d(x), Egeo can provide supervision through residual

error of reconstruction using back propagation.

Again, we derive the optimal solution in matrix form. Assuming, on jth pixel,

xj = (xj, yj, 1)
T is pixel coordinates, dj is depth value, cj is confidence value, Sj is

3DMM shape basis matrix, and s̄j is 3DMM shape mean, then each element of camera

parameters H and 3DMM shape coefficients α are given by:

H́1,1

H́1,2

H́1,3

H́1,4

H́2,1

H́2,2

H́2,3

H́2,4

H́3,1

H́3,2

H́3,3

H́3,4

ά



= (ΘTΩΘ)−1ΘTΩΥ, (3.18)
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where

Ψj =

djx
T
j 1 03×3 03×3

03×3 djx
T
j 1 03×3

03×3 03×3 djx
T
j 1

 , (3.19)

Θ =



Ψ1 −S1

Ψ2 −S2

...
...

ΨNp −SNp

0Ng×12 ENg×Ng


, (3.20)

Ω = diag
(
c1, c1, c1, c2, c2, c2, . . . , cNp , cNp , cNp , λ1, λ2, . . . , λNg

)
, (3.21)

Υ =



a1

a2

...

aNp

0Ng×1


, (3.22)

and λi represents the weight for regularisation. 0 represents zero matrix and E repre-

sents identity matrix.

The obtained camera parameters H́ are an inverse form of a perspective projection

matrix. Now, we show the conversion of H́ to camera parameters shown in Equa-
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tion (3.2). By inverting H́, we can describe camera parameters:

ψKR =

ṕ
t
1

ṕt
2

ṕt
3

 =

H́11 H́12 H́13

H́21 H́22 H́23

H́31 H́32 H́33


−1

, (3.23)

ψKt = q́ = −

ṕ
t
1

ṕt
2

ṕt
3


H́14

H́24

H́34

 , (3.24)

where K[R t] represents a classical projective camera matrix. To obtain a camera

matrix, we decompose H́, q into K,R, t as:

s = ∥ṕ3∥2, (3.25)

r3 =
ṕ3

s
, (3.26)

k5 = ṕt
3r3, (3.27)

k4 = ∥ṕ2 − k5r3∥2, (3.28)

r2 =
ṕ2 − k5r3

k4
, (3.29)

k3 = ṕt
1r3, (3.30)

k2 = ṕt
1r2, (3.31)

k1 = ∥ṕ1 − k2r2 − k3r3∥2, (3.32)

r1 =
ṕ1 − k2r2 − k3r3

k1
, (3.33)
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K =

k1 k2 k3

0 k4 k5

0 0 1

 , (3.34)

R =

r
t
1

rt2

rt3

 , (3.35)

t =
1

ψ
K−1q́. (3.36)

3.3.3 Variants of geometric least-squares

Geometric linear least-squares can be also applied to other models. Specifically, a

lower-dimensional model can be used for the initialisation stages of neural network

training as is described in Section 5.4.

3D alignment

We can apply linear least-squares to naive 3D alignment model without using a 3DMM.

In this example, we use the 3DMM mean shape s̄ as target geometry and formulate

target function Egeo as:

Egeo =
Nw∑
x=1

NH∑
y=1

c(x)∥v̂(x,H)− s̄(u(x), v(x))∥22, (3.37)

where

v̂(x,H) = H

d(x)xd(x)

1

 , (3.38)

and H ∈ R3×4 is 3D affine transformation matrix.
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Full perspective camera fitting

In the 3D alignment case, a depth map d(x) must be given. If the target shape is

fixed, we can also define a target function Egeo without using a depth map d(x) as:

Egeo =
Nw∑
x=1

NH∑
y=1

c(x)

∥∥∥∥∥xP2(x,Hf )−

[
P0(x,Hf )

P1(x,Hf )

]∥∥∥∥∥
2

2

, (3.39)

where P0(x,Hf )

P1(x,Hf )

P2(x,Hf )

 = Hf

[
s̄(u(x), v(x))

1

]
, (3.40)

and Hf ∈ R3×4 is a perspective projection matrix.

Weak perspective camera fitting

Lastly, we show the model based on weak perspective camera model. The target

function Egeo is defined as:

Egeo =
Nw∑
x=1

NH∑
y=1

c(x) ∥x−P(x,Hw)∥22 , (3.41)

where

P(x,Hw) = Hw

[
s̄(x)

1

]
, (3.42)

and Hw ∈ R2×4 is a weak perspective projection matrix.

3.4 Integration of geometric and photometric least-

squares

In Section 3.2, we assumed that geometric information is given and appropriate normal

vectors are provided for points where photometric least-squares is applied. Normal

vectors can be provided through geometric least-squares. Here, we show the integration
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Figure 3.5: Overview of integration of geometric and photometric least-squares layer
(outputs in red).

of geometric and photometric least-squares layers by Figure 3.5. From the geometry

estimated by the geometric least-squares layer, we can obtain a surface normal map

in UV space. A surface normal vector nα(u, v) at UV position (u, v) in UV space is

given by:

nα(u, v) =
(vα(u, v + 1)− vα(u, v))× (vα(u+ 1, v)− vα(u, v))

|(vα(u, v + 1)− vα(u, v))× (vα(u+ 1, v)− vα(u, v))|
, (3.43)
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nα(u(x, y), v(x, y)) fi (nα(u(x, y), v(x, y)))

(a) (b)

Figure 3.6: From shape parameters α we calculate surface normals in UV space and
interpolate via u(x, y) and v(x, y) to a pixel space normal map (a). From this we
define an SH basis in pixel space (b).

where vα(u, v) is provided by Equation (3.12). Given the estimated image-to-model

correspondence map, we can interpolate a pixel space normal map nα(u(x, y), v(x, y))

(see Figure 3.6(a)). Now, we consider photometric linear least-squares (Equation (3.5))

for pixels instead of vertices. We modify Equation (3.4) to apply it to pixels, and the

inverse shaded pixel value r̂(x) at x = (x, y) in image space is given by:

r̂(x) = i(x) ·
27∑
i=1

γi fi(nα(u(x), v(x))), (3.44)

where i(x) is the pixel value at (x,y) position of the input image. We can write the

objective function for the linear least-squares problem in pixel space as:

Ephoto =
Nw∑
x=1

NH∑
y=1

c(x)∥r̂(x)− rα(u(x), v(x))∥22

+
27∑
i=1

ηiγ
2
i +

Nr∑
i=1

ωiβ
2
i

(3.45)

where rα(u(x), v(x)) is given by Equation (3.13) via bilinear sampling of the UV-

3DMM. The solution for this system can be obtained by the calculation in Section 3.2.2.

We will show the example of self-supervised training based on this integrated archi-
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tecture in Section 5.2.

3.5 Conclusion

In this chapter, we have presented ways to integrate a linear least-squares layer that fits

parameters related to pose, lighting, and/or 3DMM coefficients as a fixed differentiable

component in a pipeline of neural networks.

Firstly, we propose a linear least-squares layer for photometric elements. We show

the layer can be implemented in a differentiable way using a pseudoinverse matrix. To

achieve this, we devise inverse spherical harmonics lighting to linearise the problem

and the idea is validated through experiments to reproduce appearance of randomly

generated 3DMM samples. This layer assures the optimal fit to given appearance

under 3DMM and the lighting model. Hence, this improves the fidelity of the final

estimation.

Secondly, we propose a linear least-squares layer for geometric elements. We show

variations of different camera models and simultaneous fitting of 3DMM coefficients

and solution by a pseudoinverse matrix, which is differentiable. For fitting of full

perspective camera parameters with 3DMM coefficients, obtained camera parameters

can be decomposed into intrinsic and extrinsic camera parameters. This method is

applicable to a dense image-to-model correspondence map and can be used to provide

constraints to the estimated correspondence.

Lastly, we propose an integrated pipeline of photometric and geometric linear least-

squares layers. This method will be used for neural network training in Chapter 5 and

the advantage will be demonstrated.

From the perspective of nonlinear optimisation involving linear variables, both

photometric and geometric linear least-squares layers are viewed as the extension of

the variable projection approach [24] and Wiberg matrix factorisation [75] to neural

network training. In both approaches, linear variables are solved with respect to the

objective function and treated as dependent variables of nonlinear variables. In this

context, we set a sub-target function as either a linear photometric or geometric prob-

lem and optimise network parameters as nonlinear variables by minimising the entire
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loss function. From the perspective of a neural network that includes constraints in

implicit form, our approach linearises the constraints by modifying the formulation

and directly solves them. Alternatively, we can retain the constraints in the origi-

nal formulation and implement them as an implicit layer. In this approach, we can

solve the constraints using any arbitrary solver and calculate the gradient through the

implicit function theorem.
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Chapter 4

Differentiable cohesive measure

4.1 Introduction

A segmentation map is image-like data, in which semantic labels are assigned to each

pixel. In the case of a human face, each label represents a semantically distinguishable

region of a face, such as eyes, ears, nose, and lips. Similarly, semantic labels can be de-

fined on meshes of a 3D face model. Each vertex of the 3DMM corresponds to the same

semantic point, thanks to the dense correspondence among samples with different iden-

tity and expression, which was established when the model was constructed. Therefore,

semantic segmentation on the 3DMM remains fixed under identity and expression vari-

ations. This provides a rationale for using semantic segmentation labels as information

about dense correspondence between an image and a 3D model. When considered as

information for fitting, landmarks represent one-to-one sparse information and require

exact annotation, whereas segmentation labels represent many-to-many dense infor-

mation and can handle regions that cannot be defined by points inherently. To utilise

a segmentation map as a constraint for fitting a 3D model, we need a measure that

represents consistency between a 2D segmentation map corresponding to a target im-

age and the projection of semantic labels on a 3D model. We refer to this measure

as a cohesive measure. To fit a model by gradient-based parameter optimisation or a

neural network, this cohesive measure must be differentiable.

In this chapter, we propose differentiable cohesive measures for two different use-
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cases. One use-case is optimisation of image-to-model correspondence based on a

differentiable cohesive measure on the surface of the 3D model. For this use-case, we

propose to utilise bilinear sampling of a precomputed distance map. In this approach,

the minimisation of the cohesive measure pushes the target points into the correspond-

ing regions. This is particularly effective when not all points on the model are visible

due to occlusion. The details of the distance-transform-based cohesive measure will

be described in Section 4.3. The other use-case is optimisation of pose and shape

parameters of the 3DMM based on a differentiable cohesive measure on image space.

For this use-case, we propose to apply the geometric Rényi divergence (GRD) to the

alignment of segmentation labels on the vertices of the 3DMM, projected onto the

image plane, with a given 2D semantic segmentation map. This approach is intended

to achieve exact matching between target points and regions. Therefore, this is suit-

able for a case that all the points on the model are visible or occlusion is negligible.

The details of the GRD-based cohesive measure will be described in Section 4.4.2. For

semantic segmentation supervision, cross entropy is widely utilised. However, it deliv-

ers supervisory signals only based on local pixel value differences, and its capability

to effectively push target points into the correct regions is limited. The key of the

proposed cohesive measures is its ability to extend gradient signals to spatially distant

points.

Both approaches rely on predefined semantic segmentation labels on the 3DMM

template vertices. In the remainder of this section, we will describe how to construct

semantic segmentation labels on the 3DMM vertices.

4.2 Automatic labelling of model vertices

In order to utilise semantic segmentation labels for image-to-model alignment, seman-

tic labels for each vertex in the 3D face model that are consistent with given semantic

labels on target images are required. We annotate semantic segmentation labels on

the vertices by transferring the labels on the images to the model automatically via

the following process.

First, we pre-train an image-to-image face parsing network using the given labelled
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3DMM
Synthesis

… …
Parsing Voting

Figure 4.1: Automatic semantic labelling of model vertices.

image dataset. Specifically we use CelebAMask-HQ [40]. Next, we randomly generate

3D face meshes sampling from the 3DMM. Subsequently, we render images and feed

them into the face parsing network. Based on output semantic segmentation labels

from the network, we assign the most probable label to each visible vertex as one

vote. Then, we count the number of votes for each vertex and each label. We take the

most assigned label for each vertex as a semantic segmentation label on the vertex.

We note that human annotators may not be entirely consistent in how they segment

face regions (e.g. how they delineate the boundary of the nose region). Our automatic

labelling seeks to be optimal in aggregate across the training set. We show a visual

overview of this process in Figure 4.1.

4.3 Cohesive measure based on distance transform

In this section, we propose a distance-transform-based soft cohesive measure, which

can be used to encourage a group of points to align with a region in an image via
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Figure 4.2: Distance-transform-based supervision. A fixed semantic segmentation of
the model (top left) is mapped to UV space (bottom left) from which a distance
transform for each segment is computed (middle). The estimated correspondence map
(bottom right) provides a UV coordinate for each pixel. The corresponding ground
truth semantic label for that pixel (top right) is used to select the appropriate distance
transform map and the distance at the predicted UV coordinate bilinearly interpolated
to provide the loss.

minimisation. Intuitively, a semantic pixel label restricts the possible image-to-model

correspondence to only the region with the correct semantic class on the model. If the

target point is inside the corresponding region, where both point and region have the

same segmentation class, the distance between the target point and the nearest point

in the region is zero. On the other hand, if the target point is distant from the nearest

point in the region, the distance shows a larger value. Minimising such a measure

provides supervisory signals for establishing dense pixel-to-model correspondence. To

improve computational efficiency and to achieve differentiability, we precompute a dis-

tance map for each semantic class and bilinearly sample it to calculate the distance.

Figure 4.2 shows the overview of this scheme. First, we construct a semantic segmen-
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tation map in UV space (Section 4.3.1). Subsequently, distance maps for respective

semantic classes are generated (in Section 4.3.2). Finally, segmentation maps corre-

sponding to respective target points are bilinearly sampled and aggregated to calculate

the cohesive measure, which can be used as a loss function for neural network training

or gradient-based optimisation.

4.3.1 Semantic segmentation of 3DMM in UV space

To calculate a cohesive measure by sampling a distance map associated with the surface

of 3DMM, we precompute a segmentation map in UV space in the same manner as

we generate UV-3DMM in Section 3.3.1. Now, we assume lij is a binary flag for the

ith vertex in the 3DMM and the jth segmentation label, where [li1, li2 · · · , liNseg ] is a

one-hot vector, and Nseg represents the number of types of semantic classes. If the ĵth

label is assigned to the ith vertex, the binary flag lij satisfies:

lij =

{
1 if j = ĵ

0 otherwise
. (4.1)

We render a segmentation map in UV space as anNseg-channel image L = [L0, L1, · · · , LNseg ]

fromNseg-dimensional flags on vertices via barycentric interpolation. To apply distance

transform, we binarise L and obtain L̂ as:

L̂j(u, v) =

{
1 if ∀i ∈ {1, 2, · · · , Nseg|i ̸= j}, Lj(u, v) > Li(u, v) ∧ Lj(u, v) > ϵ

0 otherwise
.

(4.2)

In our experiment, we choose ϵ = 0.01. By this process, we obtain a segmentation

map in UV space (UV-segmentation map). This labelling is done once and remains

fixed during experiments. An example of the generated semantic segmentation map

in UV space is show in (middle left) in Figure 4.2.
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Left eyebrow Right eyebrow Left ear Right ear

Upper lip Lower lip Hair Neck

Figure 4.3: Visualisation of Euclidean distance maps of facial segmentation labels in
UV space.

4.3.2 Distance transform of a segmentation map

Once the UV-segmentation map is obtained, we apply the Euclidean distance trans-

form [14] to each label. A value of a distance map on (u,v) position for the jth

segmentation label satisfies:

D̂j(u, v) = {(u− û)2 + (v − v̂)2|(û, v̂) ∈ [1, 2, · · · , NH ]× [1, 2, · · · , NW ], Lj(û, v̂) = 1}
(4.3)

Dj(u, v) =

{
min(D̂j(u, v)) if D̂j(u, v) ̸= ∅
Dinf otherwise

, (4.4)
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where Dinf represents a constant value corresponding to the infinite distance. We

show examples of the Euclidean distance map for each label in UV space in Figure 4.3.

Similar to the UV-segmentation map, the distance map in UV space is precomputed

and remains fixed during experiments.

4.3.3 Calculation of a cohesive measure based on bilinear

sampling of a distance map

Using the precomputed distance maps, we calculate a differentiable cohesive measure

by aggregating distance values among target points. We calculate the cohesive measure

Eedt as:

Eedt =

Nseg∑
j=1

wj

[
Np∑
i=1

l′ijDj(ui, vi)

]
, (4.5)

where l′ij represents a binary label for the ith point and the jth label class, Np rep-

resents the number of points, Dj(ui, vi) represents a distance map on (uj, vj) posi-

tion in UV space for the jth label class, and wj represents a weight for jth label

class. (uj, vj) can have fractional values and Dj(ui, vi) is bilinear interpolation of the

UV-segmentation map Dj at (ui, vi). Through bilinear interpolation, Eedt has dif-

ferentiability and can provide a meaningful supervisory signal for network training

and gradient-based optimisation. In this method, target points can be either pixels

or projected vertices. In the case of pixels, the target points can be image-to-model

correspondences predicted by a neural network. In the case of vertices, the target

points can be projected vertices of 3DMM, which is described in Section 3.1.1, and

we can define Eedt by using a distance map Dj(ui, vi) generated from a segmentation

map in image space instead of that in UV space. The minimisation of the distance-

transform-based cohesive measure is underconstrained and tends to push all the points

into a small region. In Section 5.4, we will show the network training that uses pixel-

based loss, projected-vertex-based loss, and model-based regularisation altogether to

introduce reasonable constraints.
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Gaussian
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Figure 4.4: To extract a supervisory signal from a given pixel-wise semantic segmen-
tation, we propose a loss that is differentiable with respect to pose and shape parame-
ters. Given fixed per-vertex semantic labels and pose and shape estimates (col. 1), we
project the labelled vertices to 2D. We represent both these vertex projections (col. 2)
and the given pixel-wise labels (col. 5) as mixtures of Gaussians (col. 3-4) and measure
segmentation loss using the geometric Rényi divergence.

4.4 Cohesive measure based on the geometric Rényi

divergence

In this section, we show a novel cohesive measure based on the geometric Rényi di-

vergence, which can be used to align segmentation labels. We assume that an entity

to be aligned, referred as segmentation labels, is either an image-like segmentation

map or 3D meshes that have segmentation labels and are projected onto the image

plane. A pixel-wise semantic segmentation is a discrete representation. Similarly, the

rasterisation of 3D meshes into an image (and the corresponding pixel-wise semantic

segmentation) is also discrete. This means that pixel-based measures for comparing

the similarity of the two semantic segmentation maps (such as intersection over union)

are discontinuous. Therefore, the gradient of such measures provides no information

about how to adjust the parameters of the 3D model to achieve a similar semantic

segmentation to the given pixel-wise one.

For this reason, we propose a soft, probabilistic measure for comparing pixel-wise

and vertex-wise semantic segmentations in 2D. We illustrate our proposed method

using an example of 3DMM fitting in Figure 4.4. Given estimates of 3DMM shape
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parameters and the pose (camera parameters), we project the 3D vertices of the 3DMM

to 2D (see Section 3.1.1). The vertices themselves have fixed semantic labels (see

Section 4.2). We assume that we are given a target pixel-wise semantic segmentation

(i.e. in the context of CNN training, we assume a supervised scenario). These input

labels could themselves be predicted by a 2D semantic segmentation network. Then,

we represent both the projected vertices and the pixel labels probabilistically as a

mixture of Gaussians. Our key idea is to measure the difference between these two

distributions using the geometric Rényi divergence. This new measure has advantages

that: 1) it varies smoothly with respect to the displacement of the projection; 2)

optimal alignment corresponds to the minimum value; 3) the gradient does not vanish

even if the displacement is large. Hence, this method can enable accurate and stable

2D-3D alignment of the model. We validate our method through experiments on

direct optimisation of the loss given a single input segmentation, i.e. shape-from-

semantic segmentation (see Section 4.5.2) and parameter regression CNN training

(see Section 5.3).

We begin by showing how to compute a semantic segmentation loss between pixels

and projected vertices of a given semantic class.

4.4.1 Pixel and vertex labels as mixtures of Gaussians

In order to obtain long-range gradients from the discrepancy between semantic labels

on input images and projected vertices, we soften both labels by analytically convolv-

ing Gaussian kernels on representative points (see Figure 4.5). Hence, we represent

softened semantic label P on image coordinate z with a mixture of Gaussians:

P (z) =
N∑
i=1

αi

2πσ2
exp

(
− 1

2σ2
(z− xi)

T (z− xi))

)

=
N∑
i=1

αiG
(
z− xi, σ

2I
)
, (4.6)

where xi is the centre of the ith Gaussian kernel (corresponding to either a pixel

centre or projected vertex position), and σ is the corresponding standard deviation
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(a) Soft label on pixels (b) Soft label on vertices

Figure 4.5: Representing pixels (a) and vertices (b) of a given semantic class (shown
in white) as mixtures of Gaussians. The size of each circle represents the weight of its
corresponding Gaussian kernel, which is proportional to the area of the relevant pixel
or neighboring triangles.

of the Gaussian function. αi is the weight of the ith Gaussian kernel, which satisfies

αi > 0 and
∑N

i=1 αi = 1, and is allocated based on the corresponding area on the

image. For input pixel-wise semantic labels, αi is set to 1/N so that it represents the

normalised area of one pixel. For vertices, αi is set to the average of the projected

area of the neighboring faces normalised by the total area of the projected faces.

4.4.2 Geometric Rényi divergence

We employ a closed-form geometric Rényi divergence (GRD) as a cohesive measure

between two mixtures of Gaussian (MoG) distributions, which represent pixel-wise

and projected semantic labels. Wang et al. [74] proposed the closed-form Jensen-

Rényi divergence (JRD) for MoG and applications to group-wise shape registration.

Assuming we calculate JRD among K distributions, which are two (K=2) MoGs in

our case, JRD is defined as:

JRDπ,q (P1, P2, . . . , PK) = Hq

(
K∑
i=1

πiPi

)
−

K∑
i=1

πiHq (Pi) , (4.7)
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where Hq is the qth-order Rényi entropy, and π = {π1, π2, . . . , πn|πi > 0,
∑

i πi = 1}
are the weights for the weighted arithmetic mean of the distributions and the entropies.

The qth-order Rényi entropy is defined as:

Hq(P ) =
1

1− q
log

(∫
P (z)q dz

)
. (4.8)

When q → 1, (4.8) is the Shannon entropy, and (4.7) is the Jensen-Shannon divergence.

Wang et al. [74] employed q = 2 as it has a closed-form for MoG. However, non-

negativity of JRD is not guaranteed when q > 1, and optimal registration does not

necessarily correspond to minimal divergence. Therefore, the second-order JRD is

not a preferable measure for alignment of two distributions. To resolve the negativity

issue, Antoĺın et al. [3] proposed geometric Rényi divergence (GRD):

GRDπ,q (P1, P2, . . . , PK) = (q − 1)

[
Hq

(
K∏
i=1

P πi
i

)
−

K∑
i=1

πiHq (Pi)

]
. (4.9)

For arbitrary q, non-negativity of GRD is guaranteed. In addition, when q = 2, a

closed-form GRD can be derived for comparison of two distributions in the same way

as JRD.

4.4.3 Closed-form second-order GRD between two MoGs

We now derive a closed-form second-order GRD between two MoGs, i.e. for the special

case π = 1
2
, q = 2:

GRD1/2,2 (Px, Py) = H2

(√
PxPy

)
− 1

2
(H2 (Px) +H2 (Py)) . (4.10)

50



Based on the closed-form integral of the product of two Gaussians, we obtain:

H2

(√
PxPy

)
=

∫
Px(z)Py(z)dz

= − log

 M∑
i=1

N∑
j=1

αiβj

∫
G(z− xi, σ

2I)G(z− yj , σ
2I)dz


= − log

 M∑
i=1

N∑
j=1

αiβjG(xi − yj , 2σ
2I)

 , (4.11)

and

H2 (Px) =

∫
Px(z)

2dz

= − log

 M∑
i=1

M∑
j=1

αiαj

∫
G(z− xi, σ

2I)G(z− xj , σ
2I)dz


= − log

 M∑
i=1

M∑
j=1

αiαjG(xi − xj , 2σ
2I)

 . (4.12)

From Equation (4.10), Equation (4.11) and Equation (4.12), we obtain the closed-form

divergence:

GRD1/2,2 (Px, Py) = − log

 M∑
i=1

N∑
j=1

αiβjG(xi − yj , 2σ
2I)


+

1

2
log

 M∑
i=1

M∑
j=1

αiαjG(xi − xj , 2σ
2I)


+

1

2
log

 N∑
i=1

N∑
j=1

βiβjG(yi − yj , 2σ
2I)

 . (4.13)

4.4.4 Numerical stability

The GRD becomes numerically unstable when the difference between two MoG dis-

tributions is large. That is because all the exponential functions in Equation (4.11)

output zero value for large ∥xi − yi∥22. To avoid this issue, in practice, we implement
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Equation (4.11) as:

H2

(√
PxPy

)
= − log

[
M∑
i=1

N∑
j=1

exp (eij −max{eij})

]
− max{eij} − log

(
1

2πσ2

)
,

(4.14)

where eij = −(xi−yj)
T
(xi−yj)

2σ2 + log(αiβj).

4.4.5 Analysis-by-synthesis

We now show how to integrate our GRD-based semantic segmentation loss into analysis-

by-synthesis. We use the GRD for MoG to optimise shape and pose parameters so that

the discrepancy of given semantic labels on vertices and pixels is minimised. We di-

rectly minimise parameters in an analysis-by-synthesis manner as shown in Figure 4.4.

We place a Gaussian kernel on each projected vertex x́j calculated from Equa-

tion (3.2), and obtain the softened semantic label Ṕj of the jth label on the image

coordinate z:

Ṕj(z) =

∑Nv

i=1 ĺijwiG (z− x́i, σ
2I)∑Nv

i=1 ĺijwi

, (4.15)

where Nv represents the number of vertices, ĺij represents the jth label on the ith

vertex, which returns 1 if the vertex belongs to the label and 0 otherwise, wi represents

the average area of three neighboring faces of the ith vertex projected on the image

plane. The area is regarded as zero if the vertex normal points away from the camera

(i.e. self-occluded).

For pixel labels, we place a Gaussian kernel on each pixel with image coordinate

[u, v], and obtain the softened semantic label P̂j of the jth label on the image coordinate

z:

P̂ (z) =

∑NH

v=1

∑NW

u=1 l̂j(u, v)G
(
z− [u, v]T , σ2I

)∑NH

v=1

∑NW

u=1 l̂j(u, v)
, (4.16)

where l̂j(u, v) represents the jth label on the image coordinate [u, v], NW is the number

of horizontal pixels, and NH is the number of vertical pixels.

We calculate GRD for each label based on Equation (4.13) and minimise average
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Figure 4.6: Loss landscape of GRD (top-left), JRD (top-right), L2 (bottom-left), and
IoU (bottom-right) with respect to t pixel horizontal translation.

GRD of all the labels while optimising all shape and camera parameters.

4.5 Experiments

In this section, we evaluate the GRD-based cohesive measure by visualising the loss

landscape and conducting optimisation in an analysis-by-synthesis scenario. Experi-

ments of neural network training based on the distance-transform-based cohesive mea-

sure and the GRD-based cohesive measure will be shown in Chapter 5.

4.5.1 Loss landscape and comparison

We now illustrate the attractive properties of the GRD using a toy example. We draw

a circle with a 10-pixel diameter onto a 100×100 pixel image. We generate two MoGs

by putting Gaussian kernels on each pixel in the circle, and transform one MoG while

fixing the other. In Figure 4.6, a horizontal translation of t pixels is applied, and in

Figure 4.8, magnification by factor s is applied. We visualise how MoG changes by
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Reference MoG of moving vertices

t 0 -20 -10 0 10 20

σ=1

σ=5

Figure 4.7: Visualisaion of the experiment for loss landscape evaluation. According to
t, the MoG of vertices moves horizontally.

Figure 4.8: Loss landscape of GRD (top-left), JRD (top-right), L2 (bottom-left), and
IoU (bottom-right) with respect to magnification by s.

translation in Figure 4.7 and how MoG changes by magnification in Figure 4.9. We

compare GRD with JRD, L2 loss, and IoU loss. L2 loss LL2 for two distributions Px

and Py is defined as LL2 = ∥Px − Py∥22. Following [72] and [45], we define a soft IoU
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Reference MoG of moving vertices

t 1.0 0.6 0.8 1.0 1.2 1.4

σ=1

σ=5

Figure 4.9: Visualisaion of the experiment for loss landscape evaluation. According to
s, the MoG of vertices expands.

GRD (Ours) NMR [35] SoftRas [45]
IoU mean 0.931 0.789 0.423
IoU std 0.013 0.150 0.124

Table 4.1: Direct optimisation results for semantic labels randomly synthesised from
the BFM [23].

loss LIoU for two distributions Px and Py as:

LIoU = 1− ∥Px ⊙ Py∥1
∥Px + Py − Px ⊙ Py∥1

. (4.17)

In the case of translation, the gradient of JRD, L2, and IoU becomes flat when the

displacement is large, whereas GRD increases quadratically. That means only GRD is

suitable for large-scale alignment. In the case of scaling, JRD goes negative when the

difference in scale is large, while L2 exhibits non-optimal local minima and IoU shows

a flat gradient. These examples indicate that GRD is more suitable as a measure for

region alignment than other metrics.

4.5.2 Analysis-by-synthesis

We apply our approach to analysis-by-synthesis and evaluate it both quantitatively

and qualitatively based on synthetic data. We also compare our approach with Neural

Mesh Renderer (NMR) [35] and Soft Rasterizer (SoftRas) [45].

55



0 10 20 30 50 100 200 1000 GT

GRD(Ours)

NMR

SoftRas

GRD(Ours)

NMR

SoftRas

Figure 4.10: Convergence of direct optimisation of our GRD, NMR [35], and SoftRas
[45] segmentation losses. Upper rows show an easy case, lower rows a challenging one.
Target ground truth labels are shown in the final column.

Synthetic pixel label images are generated by perturbing 3DMM coefficients, focal

length, image centre, pose rotation, and pose translation. Pose rotation is parame-

terised by the Euler angles. We directly optimise the 299-dimensional 3DMM coef-

ficients, and the 9-dimensional camera parameters with respect to the average GRD

between the projected MoG and the pixel MoG among 11 labels. We employ the

Adam optimiser with a learning rate 0.2 for GRD, and 0.01 for NMR and SoftRas.

For GRD, we choose σ = 5 as a parameter of the Gaussian kernel. In optimisation

with NMR, we differentiably rasterise semantic labels as an 11-channel image, and

compute the L2 norm between the rasterised image and the ground truth pixel label

image. In optimisation with SoftRas, we differentiably rasterise semantic labels as an

11-channel image. We also rasterise an object silhouette and multiply it to the seman-

tic labels. The L2 norm between the rasterised image and the ground truth pixel label
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image is employed as a loss function. We choose σ = 10−3 and γ = 10−3 for SoftRas

parameters.

Figure 4.10 shows the convergence of projected semantic labels during direct opti-

misation of GRD (Ours), NMR, and SoftRas losses. Upper rows show an example of a

successful case, and lower rows show an example of a difficult case. In both cases, our

approach converges well to the ground truth despite the large rotation from the initial

pose to the ground truth. In a successful case, both NMR and SoftRas converge to

the ground truth. The result of SoftRas shows slight shrinking due to the gap between

original semantic label images and blurred rasterisation. In a difficult case, both NMR

and SoftRas converge to a local minima. We also calculate mean and standard devia-

tion of IoU between the ground truth and the rasterised semantic labels (Table 4.1).

The result indicates our method successfully converges to the ground truth in all 16

cases, whereas NMR and SoftRas fail in some cases.

4.6 Conclusion

In this chapter, we have presented approaches to supervise image-to-model correspon-

dence via minimisation of a cohesive measure on semantic segmentation labels.

Firstly, we propose the distance-transform-based cohesive measure, which can be

used on UV space as the canonical space of the surface of the 3D statistical model,

as well as on image space. We show how to generate a semantic segmentation map in

UV-space and apply the distance transform to the map. By doing this as precompu-

tation, a differentiable cohesive measure can be efficiently computed during network

training or gradient-based optimisation. In this scenario, the distance-transform-based

cohesive measure is calculated on pixels associated with the visible parts of the ob-

ject. Therefore, it does not require occlusion calculations and is suitable for conditions

where self-occlusions need to be considered. An application of this approach will be

described in Section 5.4.

Secondly, we propose the cohesive measure based on the geometric Rényi diver-

gence (GRD). This metric enables exact matching of two groups of points. We show

how semantic segmentation labels on pixels and rasterised meshes can be represented
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by a mixture of Gaussian (MoG) distributions. We derive a numerically stable im-

plementation of GRD between two MoGs. Advantages of GRD are demonstrated

by visualisation of the loss landscape and experiments of image-to-model alignment

based on gradient-based optimisation. Alignment based on the minimisation of GRD

of MoGs enables exact matching between point clouds, but it cannot explicitly han-

dle occlusions. Thus, it is suitable for cases where occlusions can be ignored or for

scenarios where the minimisation process works by computing occlusions each time

and incorporating them as weights to mask invisible vertices. Further applications to

neural networks will be shown in Chapter 5.
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Chapter 5

Self-supervised monocular 3D face

reconstruction

5.1 Introduction

In this chapter, we will describe three novel paradigms to supervise a 3D face recon-

struction network while utilising and demonstrating techniques introduced in Chap-

ter 3 and Chapter 4.

One approach is fully self-supervised training with a differentiable linear least-

squares layer. This approach enables the self-supervised training of a monocular 3D

face reconstruction network based on 3DMM, eliminating the need for any auxiliary

supervision, such as landmarks. The goal of this study is to explore ways to reduce

the need for annotations and to investigate viable network structures and training

procedures. We apply differentiable linear least-squares layer, described in Chapter 3,

to regularise pixel-wise prediction network, which estimates pixel-wise image-to-model

correspondence, confidence, and depth. Additionally, we introduce a robust loss func-

tion on pixel-wise image-to-model correspondence that stabilises the training. The

details will be shown in Section 5.2. We refer to this approach as LSDR (Least Squares

with Differentiable Renderer).

Another approach is GRD-based segmentation supervision. This supervision en-

ables training of a monocular 3D face reconstruction network based on semantic seg-
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mentation maps. We aim to replace landmark supervision by a semantic segmentation

map. This approach uses closed-form GRD, described in Chapter 4, to align segmen-

tation labels on the 3D face model with a semantic segmentation map of a face image.

Owing to the non-saturating gradient of GRD for large displacement, this technique

proves effective as an alternative to landmark supervision. The details will be shown

in Section 5.3. We refer to this approach as GRDDR (GRD based Differentiable

Renderer).

The other approach is self-supervised training without a differentiable renderer

using semantic segmentation. This approach applies a distance-transform-based co-

hesive measure in UV space, introduced in Chapter 4, and regularisation on outputs

of the pixel-wise prediction network by the linear least-squares layer, introduced in

Chapter 3. By using segmentation supervision defined on visible pixels, this approach

removes the need for a differentiable renderer in self-supervised monocular 3D face

reconstruction, yet keeping estimates plausible by regularising outputs by the linear

least-squares layer. The details will be shown in Section 5.4. We refer to this approach

as LSDT (Least Squares with Distance Transform).

5.2 Self-supervision without using landmarks

In this section, we show how an image-to-image network for dense face alignment can

be trained using self-supervision. The idea is that the network predicts a correspon-

dence map from which we implement the fitting process described in Chapter 3 as

differentiable layers. We use a U-Net [59] as the pixel-wise prediction network though

any image-to-image architecture would suffice. The network learns from losses mea-

suring the quality of the fit to the correspondence map as well as an appearance loss

computed via differentiable rendering. Thanks to this architecture, we can introduce

a pixel-wise robust loss function (see Section 5.2.2), while benefiting from regularisa-

tion based on 3DMM, thereby self-supervised training of monocular 3D reconstruction

without landmark annotations is realised.
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Figure 5.1: Overview of LSDR. In addition to correspondence, the network also pre-
dicts a confidence map (for robustness) and a depth map (enabling uncalibrated recon-
struction). The least-squares layer solves first for geometric and then for photometric
parameters.

5.2.1 Architecture

Figure 5.1 shows the architecture of the training pipeline. In this architecture, the

pixel-wise prediction network infers a correspondence map, a depth map, and a con-

fidence map. Predicted maps, pixel coordinates, and input pixel values are fed into

the linear least-squares layer, described in Section 3.4, and fitted 3DMM shape and

albedo coefficients, camera parameters, and lighting coefficients are calculated. Based

on fitted parameters, colour and position of template mesh vertices are reconstructed.

During training, the residual of linear least-squares, the regularisation terms for the

fitted parameters, and the error between the reconstructed colour and input pixel value

sampled from the corresponding point on the input image are minimised. The gra-

dient signals are transmitted through the fixed differentiable layers and the network

parameters of the pixel-wise prediction network are optimised. The details of the loss

functions will be described in Section 5.4.

Per-pixel confidence

In general, not all of the image will contain face parts. In addition, the face may be

occluded by non-face objects such as glasses or unmodelled features such as beards.

We do not wish these pixels to contribute to the least-squares solutions. Therefore,

61



the network also predicts a scalar confidence map w(x, y) ∈ [0, 1] indicating whether

pixel (x, y) is believed to belong to the face. As with correspondence, this is learnt

unsupervised without ever providing the network with ground truth face segmentation

labels. Note that the prediction of a confidence map is learnt indirectly through self-

supervision and, in practice, it functions more as a mask than as an exact confidence

map in a statistical context.

In-network linear least-squares

We apply the differentiable linear least-squares layer to the outputs of the pixel-wise

prediction network. The outputs of the network consist of a depth map d(x, y), a con-

fidence map c(x, y), and a UV-correspondence map [u(x, y), v(x, y)], which are defined

for all (x, y) ∈ {1, . . . , NW}× {1, . . . , NH}, where NW and NH are the number of hor-

izontal and vertical pixels of input images. We apply the integrated photometric and

geometric least-squares layer described in Section 3.4. On the first stage, geometric

least-squares with precomputed UV-3DMM, described in Section 3.3.1, is applied to

d(x, y), c(x, y), and [u(x, y), v(x, y)] to fit 3DMM shape coefficients and camera pa-

rameters. Based on fitted geometry, a per-pixel normal map n(x, y) is calculated and

fed into the photometric least-squares layer together with the input image i(x, y) to

fit 3DMM albedo coefficients and inverse spherical harmonics lighting coefficients.

Stochastic sampling

Solving a linear system over all pixels for all images in a minibatch within the net-

work during training is prohibitively computationally expensive. For this reason, we

introduce a stochastic sampling of pixels for the linear least square process to reduce

memory consumption. We randomly select 10,000 pixels which have confidence value

larger than 0.001× the maximum confidence value. If the number of pixels which fulfil

the above criteria is less than 10,000, we select the rest of the pixels randomly.
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5.2.2 Losses

Here, we describe the details of the loss functions to train the pixel-wise prediction

network. We employ four losses:

Etotal = ηresEres + ηrecErec + ηstatEstat + ηintEint, (5.1)

where ηrec = 1.0, ηres = 3.0, ηstat = 1.0, and ηint = 1.0. We now describe each of these

four losses.

Least-squares residual loss

The least-squares layer in the LSDR network solves for optimal shape, albedo, camera,

and lighting parameters by minimising the geometric and photometric residuals. The

network can learn from these residuals since they indicate how consistent the 3DMM

fit is with the estimated correspondence map (and depth/confidence maps) and the

image. Whereas the least-squares layer required a closed-form solution and therefore

uses linear least-squares, the loss used for network training is not so constrained. For

this reason, we use a robust loss on the residuals:

Eres =
∑
x,y

min (ε(x, y), 1) , where ε(x, y) = ηgeoεgeo(x, y) + ηphotoεphoto(x, y), (5.2)

where

εphoto(x, y) =
∥∥i(x, y)⊙ f(nά(u(x, y), v(x, y)))γ́ − rβ́(u(x, y), v(x, y))

∥∥
2
, (5.3)

εgeo(x, y) =
∥∥H[d(x, y)x, d(x, y)y, d(x, y), 1]T − vά(u(x, y), v(x, y))

∥∥
2
, (5.4)

and ηgeo = 20 and ηphoto = 5. The variables in Equation (5.3) and Equation (5.4) have

the same notation as those in Chapter 3, and they are calculated by the method in

Section 3.4. This loss has an important effect: it encourages the model to expand so

that more pixels in the input image can be explained by the model in both geometry

and colour. For example, suppose that the pixel-wise network detects an ear with

high confidence and estimates good correspondence to the ear region in the model.
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If the ear of the least-squares 3DMM fit is not close to the detected ear pixels, this

incurs a residual loss, encouraging the model to expand towards the ear. However, we

must make the loss robust since every pixel in the image contributes to it, even the

background (we do not use the confidence map here). The clamping suppresses the

effect from outlier pixels such as occlusion and background.

Reconstruction loss based on differentiable rendering

We also compute a conventional reconstruction loss using differentiable rendering to

compare the fitted model to the image. Without this, the clamped residual loss does

not penalise the growing of the face to fit to the background. We render the 3DMM

geometry given by the geometric least-squares solution. The differentiable renderer

calculates a projection of each vertex as a 2D point on the image as well as its visibility

and RGB albedo. We apply our inverse lighting model to the sampled intensities and

measure the discrepancy to the RGB albedo per-vertex:

Erec =
1∑Nv

j=1wj

Nv∑
j=1

wj

∥∥∥i(xj, yj)⊙ f(nj(ά))γ́ − rj(β́)
∥∥∥
2
, (5.5)

where Nv is the number of the vertices and wj = 1 if a vertex is visible, and zero

otherwise (computed using self-occlusion testing and depth testing against a z-buffer).

We use differentiable bilinear sampling, and i(xj, yj) represents bilinear sampling of

the input image at the non-integer pixel position (xj, yj) given by projection of vertex

vj(ά) using the estimated camera parameters. The variables in Equation (5.5) have

the same notation as those in Chapter 3, and they are calculated by the method in

Section 3.4.

Statistical regularisation loss

The statistical regularisation loss encourages the network to keep the estimated face

plausible in terms of the shape and albedo parameters. It is the weighted squared
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average of the estimated 3DMM coefficients ά and β́:

Estat =

Ng∑
i=1

λ́iά
2
i +

Nr∑
i=1

ώiβ́
2
i . (5.6)

Since the 3DMM bases are normalised by their standard deviation, the statistical

average of ά2
i and β́2

i should be kept to 1 during training. We do this by controlling

the loss weight λ́i and ώi.

During training, the weights for each 3DMM coefficient in statistical regularisation

Estat are adaptively adjusted so that the exponential moving average of the squared

value of each coefficient is kept to 1, which is equivalent to the variance defined in the

3DMM. Assuming an arbitrary element 3DMM parameters in the jth iteration is αj,

an arbitrary element of the weight vector λ́j is set by:

λ́j = max(min(kjE[λ́]j, λ́max), λ́min), (5.7)

E[λ́]j = (1− θ)λ́j−1 + θE[λ́]j−1, (5.8)

kj = max(min(E[α2]j, α
2
max), α

2
min), (5.9)

E[α2]j = (1− θ)α2
j−1 + θE[α2]j−1, (5.10)

where θ is the weight for exponential moving averaging, and λ́max,λ́min,αmax, and αmin

are the bounds for the update. This weight control is also applied to photometric

3DMM coefficients, replacing α by β and λ́ by ώ. Note that λ́ and ώ are different from

regularisation weights for least-squares λ and ω in Section 3.3 and 3.4. We optimise λ

and ω as trainable parameters by the optimiser together with the network parameters.

We implicitly control them through the statistical regularisation loss.

Camera intrinsics regularisation loss

Finally, we employ regularisation on the estimated camera intrinsic parameters. This

penalises the difference between vertical and horizontal focal length as well as the
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shear:

Eint = ηasp
(k11 − k22)

2

k211 + k222
+ ηsh

k212
k211 + k222

, (5.11)

where the kij are the elements of the intrinsic camera parameter matrix K. The first

term represents the difference between vertical and horizontal focal length and the

second term represents the shear component. We normalise the loss by the horizontal

and vertical focal length to avoid reducing the scale of focal length. We set ηasp = 1.0

and ηsh = 1.0.

5.2.3 Training

Initialisation

Supervision of the LSDR network relies on the difference of appearance between the in-

put image and the estimated face. Therefore, the initial estimation must be sufficiently

close to the optimal parameters to obtain a meaningful gradient from the loss function.

We pretrain the network using a small number of roughly aligned images by applying

data augmentation through 2D similarity transformation. In pretraining, we directly

supervise the pixel-wise prediction network using a constant value depth map, syn-

thetic confidence map, and synthetic correspondence map. We align the mean shape

of the 3DMM to pretraining images using the averaged positions of five landmarks,

and generate a synthetic confidence map, in which the face region is set to 1 and the

rest to 0, and a synthetic correspondence map. The same supervision data is used

for all the pretraining images. We apply a random similarity transformation to both

input images and supervision data. An example of an input image and supervision

data is shown in Figure 5.2. Though we use roughly aligned images for pretraining,

we never use the landmarks of each image and the 3D ground truth. Thus, the LSDR

network can be regarded as unsupervised training in the conventional context. We

initially pretrain the network using 1k images from the pre-aligned CelebA dataset.

Here, the batch size is 5, and the number of iterations is 14k.

During early iterations of the main training, we additionally regularise the cam-

era translation parameters in the linear least-squares system, as the calculation of

full perspective camera parameters from planar depth tends to be unstable. Camera
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Input Depth Correspondence Confidence

Figure 5.2: Example of training data for pretraining of LSDR.

translation parameters are regularised by applying L2 distance regularisation between

the camera viewpoint and a fixed point placed in front of the face.

Training data

We train on ∼ 200k images from the pre-aligned CelebA dataset [46]. We augment

with random 2D similarity transformations (magnification ratio: [0.77, 1.3], transla-

tion: [0, 75] pixels horizontally and vertically, rotation [−180◦, 180◦]). The background

region is filled by random images from ImageNet[39] with a blended boundary. Finally,

we crop the image by 224× 224 pixels.

Optimisation

We use the Adadelta optimizer [82] with a learning rate of 0.01, batch size of 3, and

300k iterations. Network weights and biases are initialised by He initialisation [28].

Training takes approximately 120 hours on an Nvidia GTX 1080Ti.

5.2.4 Evaluation

Qualitative evaluation

We qualitatively evaluate the LSDR method based on test images from the CelebA

dataset (Figure 5.3). The LSDR method successfully predicts a 3D face including

ears under arbitrary 2D similarity transformation. We compare LSDR method with

MoFA [66], which can only reconstruct the centre region of a face, whereas LSDR

can reconstruct a uncropped face. LSDR also has better fidelity of reconstruction due

to the optimality of the least-squares. We also test multiframe aggregation of the
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Reconstruction Geometry Reconstruction Geometry
Input (Ours-LSDR) (Ours-LSDR) (MoFA) (MoFA)

Figure 5.3: Reconstruction result of MoFA [66] and LSDR from images in MoFA-test
dataset.

pixel-wise prediction (Figure 5.4). By optimising multiframe geometry and albedo to

the intermediate output in a single optimisation, a superior quality of output can be

obtained.
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Figure 5.4: Results of multiframe aggregation from five frames based on LSDR.
Median Mean Std Supervision

Tran [69] 1.83 2.33 2.05 Fully supervised
PRNet [16] 1.51 1.99 1.90 Fully supervised
RingNet [60] 1.23 1.55 1.32 Landmarks, ID
Ours-LSDR 1.52 1.89 1.57 None

Table 5.1: Quantitative evaluation of LSDR on NoW dataset [60]. Figures in the table
are in the unit of millimetres.

Error(HQ) Error(LQ) Error(Full)
MTCNN-CNN6-eos [17] 2.70 ± 0.98 2.78 ± 0.95 2.75 ± 0.93

MTCNN-CNN6-3DDFA [17] 2.04 ± 0.67 2.19 ± 0.70 2.14 ± 0.69
SCU-BRL [68] 2.65 ± 0.67 2.87 ± 0.81 2.81 ± 0.80

Ours-LSDR (w/o Eint) 2.65 ± 0.98 2.60 ± 0.83 2.62 ± 0.88
Ours-LSDR 2.39 ± 0.81 2.55 ± 0.82 2.49 ± 0.82

Table 5.2: Quantitative evaluation of LSDR on Stirling/ESRC 3D Face Database
[1][17]. Figures in the table are in the unit of millimetres.
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Figure 5.5: Cumulative error of LSDR(Ours) for the NoW dataset [60].

Quantitative evaluation

We quantitatively evaluate the LSDR method based on landmarks (Table 5.3). We

follow the evaluation protocol proposed in Zhu et al. [88] and compare LSDR with

supervised facial landmark detection methods. We evaluate landmarks obtained from

both direct correspondence and fitted model. LSDR shows comparable result to some

supervised methods, despite LSDR being unsupervised.

We quantitatively evaluate LSDR on the NoW dataset [60] (Table 5.1, Figure 5.5)

and the Stirling/ESRC 3D Face Database (Table 5.2), in which the error of recon-

structed neutral face shape is calculated. LSDR does not outperform other methods

that use richer supervision, though it is comparable to some supervised methods de-

spite LSDR being unsupervised.

Ablation study

We investigate the contribution of each loss function, qualitatively (Figure 5.6) and

quantitatively (Table 5.2). The right column in Figure 5.6 shows the result trained

by only the reconstruction loss and the statistical regularisation. This is a clear ex-

ample of a shrinking problem, and the robust residual loss significantly improves the
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Input Full w/o Eint w/o Eint&Eres

Figure 5.6: Ablation study to show the contribution of intrinsic parameter regularisa-
tion Eint and robust residual loss Eres in LSDR. We show input, then for each condition
we show overlaid reconstruction followed by overlaid geometry.

problem. From Figure 5.6 and Table 5.2, it is also clear that the intrinsic parameter

regularisation enables the reconstruction of plausible and a precise shape.

Performance versus training iteration

Figure 5.7 shows the convergence of reconstructed images during the training. The

initial estimate is based on the pretrained network, which only requires a small amount

of roughly aligned images for supervision. Reconstructed face region expands gradually

as training proceeds (odd rows in Figure 5.7). The number of inlier pixels, which has

a larger robust residual error than the threshold, also increases during the training

(dark pixels in even row images in Figure 5.7).
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Figure 5.7: Convergence of images reconstructed by LSDR during training. Odd rows
show the overlay of the reconstructed image. Even rows show the visualisation of the
robust residual loss on each pixel.

5.3 GRD-based segmentation supervision

In this section, we show how to train a network to estimate a shape (restricted to a

single object class via a 3D morphable model) using a semantic segmentation map

of a single 2D image. To this end, we use the geometric Rényi divergence, discussed

in Chapter 4, as a loss function to train a neural network. We represent both the

projection of semantic labels on model vertices and the semantic labels on pixels as

mixtures of Gaussians, and compute the discrepancy between the two based on the

geometric Rényi divergence. The resulting loss is differentiable, and has a wide basin

of convergence.
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Figure 5.8: Parameter regression CNN architecture with semantic segmentation su-
pervision.

5.3.1 Architecture

Figure 5.8 shows a network for 3D face reconstruction based on semantic label loss.

This can be viewed as a variant of MoFA [65] with additional semantic segmenta-

tion supervision. An encoder network predicts pose (camera) parameters and 3DMM

coefficients. The semantic label loss is calculated in the same manner as the analysis-

by-synthesis experiment in Section 4.4.5. To reconstruct colour information, we also

estimate lighting and 3DMM albedo coefficients, and minimise the L2 norm of the dif-

ference in colour between the input image and shaded vertices based on Equation (3.3).

5.3.2 Label correction

Pixel-wise labels contain some classes or face regions not present in the model. For

example, glasses may occlude the face while the neck and forehead are cropped in the

model. Since the network learns the alignment between the image and the model,

inconsistencies in the label definitions could cause the network training to fail. There-

fore, we propose to correct these labels using a provisional network. Having trained

using classes from the original labels that are present in the model (see Figure 5.9,

col. 2), we obtain initial model-based estimates (col. 3). We update the original labels

by allowing a potential occluder class to be replaced with a face class or a face class
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Figure 5.9: Label correction based on rasterised semantic labels generated by a provi-
sional network.

to be replaced with background (col. 4). This can be viewed as a statistical inpainting

of occluded regions.

5.3.3 Camera parameterisation

To take advantage of supervision based on the GRD for semantic labels, which can ad-

dress large displacement and rotation, we employ a 6D redundant expression for cam-

era rotation and an explicit perspective distortion parameter, following Zhou et al. [84].

The network estimates 13-dimensional parameters [r1, r2, r3, r4, r5, r6, tx, ty, tz, f, g, cx, cy].

From the estimated parameters, the intrinsic camera matrix K,the rotation matrix R,

and the translation vector t are given by:

ry = [r1, r2, r3]
t, rz = [r4, r5, r6]

t, (5.12)

ŕz = rz − (rtzry)
ry

∥ry∥2
, (5.13)

r̄y =
ry
∥ry∥

, r̄z =
ŕz
∥ŕz∥

, r̄x = r̄y × r̄z, (5.14)

R =
[
r̄x r̄y r̄z

]
, (5.15)
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t = [gtx, gty, gtz]
t, (5.16)

K =

 gf 0 cx + (1− g)ftx/tz

0 gf cy + (1− g)fty/tz

0 0 1

 . (5.17)

5.3.4 Training

We now use the GRD-based loss to train a network to reconstruct 3D faces from a single

image. The network estimates 3DMM coefficients for both shape and albedo, pose

parameters, and lighting parameters. The visibility and the weight for each vertex used

to calculate the GRD are computed in each iteration of the training. Pose parameters

are represented by a 3D translation vector, a rotation matrix, and a parameter to

express perspective effect. We use the Basel Face Model 2017 as 3DMM, which has

299 bases for shape and 100 for albedo. Rotation matrix is parameterised by 6D

redundant expression, which consists of two 3D vectors. Rotation matrix is generated

from the vectors using the Gram-Schmidt process. We employ individual VGG19

networks to estimate 3DMM coefficients, lighting parameters, and pose parameters

respectively.

We train the GRDDR network using the CelebAMask-HQ dataset. We use left/right

ears, left/right eyes, left/right eyebrows, upper/lower lips, nose, face, and neck labels

for training and visualisation. We split the dataset into 29,000 training images and

1,000 test images. We augment with random 2D similarity transformations (mag-

nification ratio: [0.654, 1.105], translation: [−56, 56] pixels, rotation: [−180◦, 180◦]).

The background region is filled by random images from ImageNet [39] with blended

boundary. Finally, we crop the image by 224× 224 pixels.

We begin by only training the pose estimation network for 10,000 iterations with

batch size 5 using the original labels. Then, using the corrected labels, we train the pose

and lighting estimation networks for 40,000 iterations with batch size 5. Consequently,

we add the 3DMM estimation network and train the networks for 240,000 iterations

with batch size 2. We employ the Adadelta optimiser to train the networks with a
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learning rate of 0.001 for the final training of lighting and pose and 0.01 for the rest

of the training.

5.3.5 Evaluation

Figure 5.10 shows qualitative results of the reconstruction. The GRDDR method suc-

cessfully reconstructs the 3D face including ears under arbitrary 2D similarity transfor-

mation. We quantitatively evaluate our method based on landmarks (Table 5.3). We

follow the evaluation protocol proposed in Zhu et al. [88] and compare GRDDR with

supervised facial landmark detection methods. GRDDR shows comparable results to

landmark-based methods for modest pose angles.

5.4 Backwards rasterisation: Distance-transform-

based segmentation supervision without differ-

entiable rendering

Model-based self-supervision uses explicit physics-based or geometric models that are

implemented in-network, providing a supervisory signal via a reconstruction error,

forming a model-based autoencoder [65]. Such approaches avoid the need for ground

truth supervision and have been applied to tasks such as 3D face reconstruction, inverse

rendering, and monocular depth estimation.

In many cases, the model includes a renderer to compute a 2D image from 3D

geometry and material properties. However, rendering is not differentiable. Whether

or not a surface point is visible to a particular pixel location is a binary (and hence

discontinuous) function. Rasterisation computes this mapping explicitly, taking as

input a model that depends on continuous parameters (e.g. vertex positions, trans-

formation and camera parameters) and outputting a series of buffers that encode the

discrete pixel to model correspondences and other per-pixel quantities required for

screen space rendering. Similarly, sampling image intensities onto model vertices in

3D (for 3D model fitting [65]) is not differentiable since it is discontinuous when a sam-

ple point moves outside the image boundary or when a vertex becomes self-occluded.
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Figure 5.10: Reconstruction results of GRDDR.
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When a network is trained using a loss that includes rendering or image sampling,

the supervisory signal (gradient) cannot convey information about the effect of these

discontinuous changes. Therefore the network cannot learn how changes in visibility

affect the loss. Differentiable renderers seek to soften the rendering pipeline in some

way, for example by blurring the rasterisation as in SoftRas [45], smoothly extrapolat-

ing the rasterisation as in Neural Mesh Renderer [35] or volume rendering soft density

as in NeRF [50]. This weakness applies to the LSDR method proposed in Section 5.2.

Here, we seek to overcome this limitation.

Our idea avoids forward rasterisation entirely, enabling model-based self-supervision

without a renderer and without a reconstruction loss. The idea is to task a network

with predicting the buffers that would have arisen in the forward rendering that pro-

duced the input image. The desired model, e.g. geometry, albedo and lighting, is

recovered by solving an optimisation problem to find the model that best fits the

buffers. The buffers are chosen such that the optimisation problem is easier to solve

than the original problem (ideally with a closed-form solution) and the solution must

be differentiable. If this is the case, the optimisation can be implemented in-network

and the residuals of the model fit become the learning signal that is backpropagated

through the optimisation. Our approach eliminates a reconstruction loss (and hence

forward rendering) entirely. If part of the model is occluded, then there will simply

be no pixel predicting correspondence to that part of the model, sidestepping the

non-differentiability of occlusions.

Note that the method in Section 5.2 is already very close to this idea. However,

here we introduce the conceptual step of viewing this process as backwards rasterisa-

tion. This is a more general idea of which we only consider one realisation, however

to gain the benefits of avoiding forwards rasterisation, the differentiable renderer must

be removed. The cost of removing supervision from the differentiable renderer entirely

is that the problem becomes too ill-posed and training cannot converge. However,

this problem can be addressed by introducing segmentation supervision. The distance

transform based method that we introduced in Section 4.3 is ideally suited for this

purpose. It provides weak supervision for the correspondence estimation task, ensur-

ing that face parts predict correspondences at least to the right region of the face
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model, while the model-based regularisation further constrains correspondences to be

consistent with a shape explainable by the model.

5.4.1 Architecture

We now describe one realisation of the backwards rasterisation idea. Unlike existing 3D

reconstruction methods, which directly predict 3D shape or regress latent parameters

of a 3D morphable model (3DMM), the LSDT method reconstructs buffers of the

rendering pipeline in image pixel space with a neural network. While many possible

implementations are possible, we choose a minimum viable implementation in order

to illustrate our idea. We predict a correspondence map (comparable to a face buffer

in conventional rasterisation), a depth map (equivalent to a Z-buffer) and a confidence

map (comparable to a stencil buffer). Specifically, the correspondence map predicts,

for every pixel in the input image, the corresponding UV coordinate on the template

3DMM. The depth map predicts the distance to the face surface at every pixel. The

confidence map predicts a probability, indicating whether the network believes a pixel

is explainable by the model. We refer to this approach as LSDT (Least Squares with

Distance Transform).

We train the LSDT network using four losses and only minimal supervision (se-

mantic segmentation maps):

1. Residual loss: this measures the goodness of fit of the 3DMM to the predicted

buffers. This acts as model-based regularisation, requiring the network to predict

depth and correspondence maps that are close to a face that is realisable within the

model. The model fit itself is made robust by using the predicted confidence map to

weight the contribution of pixels.

2. Segmentation loss: we use ground truth semantic segmentation labels on the

input images. Each input pixel is transported to UV space via the estimate in the

correspondence map, where we measure distance to the segment with the ground truth

class label for that pixel. This is our UV space distance transform based cohesive

measure from Section 4.3.2.

3. Confidence loss: we binarise the ground truth segmentation of face parts and use

this to supervise confidence.
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Figure 5.11: The LSDT network predicts correspondence, depth and confidence maps
from a single image. At training time, ground truth semantic labels are unwarped
to UV space via the estimated correspondences and a semantic segmentation loss is
computed against the fixed semantic labels of the model. The 3DMM is warped from
UV space to image using the estimated image-to-model correspondences. The model
is fitted to the estimated depths, weighted by confidence and the residuals of the fit
provide another training signal. We directly supervise the confidence map estimates
with ground truth face part segments, then add segments that potentially occlude face
parts, project fitted model vertices into the image and compute a silhouette loss.
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4. Silhouette loss: this is a counterpart of segmentation loss. Once the 3DMM has

been reconstructed from the estimated buffers, we project the reconstructed vertices

back into the input image and penalise any vertices lying outside the known silhouette.

Note that we can require all vertices to lie inside the silhouette without computing

visibility or rasterising the model. This is our image space distance transform based

cohesive measure from Section 4.3.2.

An overview of the training architecture is shown in Figure 5.11. The silhouette

and segmentation loss together ensure that our estimated models closely adhere to

occluding boundaries of the face surface. The LSDT approach enables prediction of

both accurate dense depth maps (with no depth supervision) as well as the best fit

meshes and the albedo map within the space of the 3DMM (computed in-network

via the solution of an efficient linear least-squares problem). At inference time, given

only an image, we predict the four maps and the corresponding least-squares model

fit parameters.

Buffer reconstruction network

We employ a standard U-Net [59] architecture for buffer reconstruction. The number

of output channels is four: two for the U and V components of the correspondence

map, one for depth, and one for confidence. To restrict the range of output values, we

use the sigmoid activation for correspondence and confidence and the absolute value

for depth.

5.4.2 Weak supervision based on distance transform

For both segmentation loss and silhouette loss, we use a distance-transform-based soft

cohesive measure, shown in Section 4.3, to encourage a group of points (either points

in UV space or projected vertices) to align with a region in an image. Intuitively, a

semantic pixel label restricts the possible image-to-model correspondence to only the

region with the correct semantic class on the model, while a binary silhouette restricts

the projection of model vertices to only lie within the silhouette. Minimising such

a measure provides weak supervisory signals for establishing dense image-to-model

correspondence. In this scenario, some parts of the template shape are invisible from
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the input image. Therefore, the geometric Rényi divergence, which aims to achieve

exact matching, is inappropriate. For this reason, we use the distance-transform as a

soft cohesive measure and combine the semantic segmentation loss and the silhouette

loss.

5.4.3 Hierarchical model-based regularisation

Simultaneous optimisation of both segmentation loss and residual loss is not straight-

forward. When far from a good solution, often the descent direction to reduce seg-

mentation loss increases residual loss. Such conflicts between both losses cause local

minima in the loss landscape and the network fails to learn. Furthermore, buffers

predicted by the network must always be coherent since least-squares model fitting

only provides a meaningful result with plausible inputs. To overcome these issues,

we introduce a hierarchical training scheme, in which model complexity increases as

training proceeds.

Initialisation

At the initial stage of training, we supervise the network with a fixed synthetic tar-

get. We render the mean shape of the 3DMM with fixed camera parameters, which

represent a frontal view in an appropriate scale, and generate a ground truth corre-

spondence map and confidence map. We directly supervise the network so that it

predicts the fixed synthetic correspondence map and confidence map from any given

input image. No model-based regularisation is applied during this stage.

Weak perspective camera fitting

Subsequently, the network is trained with model-based regularisation, assuming a weak

perspective camera model described in Section 3.3.3. This model is very stable and

can align large pose deviation.
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Full perspective camera fitting

Next, we relax the camera model to a less restrictive full perspective camera model.

This model only relies on pose fitting and does not fit 3DMM coefficients. In addition

to the supervision for output correspondence maps and confidence maps, we introduce

supervision for output depth maps simultaneously during this phase. During this

phase, the model learns both correspondence and depth maps that conform to a best

fit of the mean shape to the correspondence map under full perspective. Because of the

erroneous outputs of the network and model mismatch, the fitted camera could result

in the face being behind the camera. To detect and omit such cases, we decompose

fitted Hf into an upper triangular matrix Kf , Rf ∈ SO(3), and tf ∈ R3, such that

Kf

[
Rftf

]
= Hf . If the sign of the third element of tf is negative, the result is

determined as a failure case and omitted from the loss. This treatment is also applied

to the final model.

Full 3DMM fitting

Finally, we apply the full linear least-squares layer, which is discussed in Section 3.4

and used in Section 5.2.

5.4.4 Loss functions

We train the LSDT network with four losses: Etotal = ηresEres + ηsegEseg + ηsilEsil +

ηintEint+ηzEz where, ηres, ηseg, ηsil, ηint, and ηz are weights for respective loss functions.

Segmentation loss

Segmentation loss is supervision for the correspondence map prediction. We apply the

distance-transform-based cohesive measure, discussed in Section 4.3, and calculate the

loss function based on (4.5). In this loss function, we treat each pixel in the predicted

correspondence map as a movable target point, and calculate the distance-transform-

based cohesive measure, in UV space using the precomputed distance maps. We assign

a weight of 10 to the lip, eye, and eyebrow segments, and assign a weight of 1 to the

rest, to encourage accurate reconstruction of important internal face details.
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Residual loss

Residual loss is the residual of in-network fitting as discussed in Sections 3.3 and 3.4. It

is computed by each model in the hierarchical training, described in Section 5.4.3, with

the least-squares optimal parameters. In the loss calculation, the union of semantic

segmentation labels is used as the confidence map instead of the predicted, and mask

background and occluded region from the loss calculation.

Silhouette loss

Silhouette loss encourages the reconstructed 3D shape to project within the union

of semantic segmentation labels additionally augmented by segments corresponding

to classes that potentially occlude face parts (see Figure 5.11 bottom middle). We

precompute the distance transform of this augmented segmentation mask as Dsil and

calculate the loss: Esil =
∑Nv

i=1Dsil(x
′
i, y

′
i), where x

′
i and y

′
i are projected the ith vertices

of the 3DMM. The projection is calculated based on the fitted model parameters.

Confidence loss

We directly supervise a confidence map c by the union of semantic segmentation labels

b. The loss function is defined based on binary cross entropy:

Econf =
W∑
x=1

H∑
y=1

{−b(x, y) log(c(x, y)) − (1 − b(x, y)) log(1 − c(x, y))}. (5.18)

Camera intrinsics regularisation loss

To prevent the LSDT network from predicting implausible outputs, we use the same

camera intrinsics regularisation loss as that in Section 5.2.

Camera distance regularisation loss

To prevent the LSDT network from predicting implausible camera position in early

iterations and the initialisation phase. We apply penalisation on too-close and too-far
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camera position as:

Ez = (|tz − tn| − (tz − tn))
2 + (|tf − tz| − (tf − tz))

2, (5.19)

where tz is the third element of fitted camera translation vector, tn is near-side pe-

nalisation boundary, tf is far-side penalisation boundary. If tz is outside the range

between tn and tf , quadratic penalty is applied.

5.4.5 Training

Network

We employ U-Net for the buffer reconstruction network. The number of channels at

the original scale is 32, and downsampling is applied five times, in which the horizon-

tal/vertical resolution is halved and the number of channels is doubled with subsequent

upsampling.

Training data

We train the LSDT network using the CelebAMask-HQ dataset [40] and the Face

Synthetics dataset [77]. We use left/right ears, left/right eyes, left/right eyebrows,

upper/lower lips, nose, and face labels for supervision through segmentation loss, and

glass, hair, hat, earring, necklace, and cloth labels are treated as occluded region. We

split the CelebAMask-HQ dataset into 29k training images and 1k test images. We

downsample images into 224×224 pixels. We use the Basel Face Model 2017 [23] as the

3DMM, which has 299 bases for shape and 100 for albedo. In the initialisation stages

and early iterations, we only use the Face Synthetics dataset to leverage its large

variations in pose and occlusions. To mitigate a problem caused by the difference

between the 3DMM template and input images in the coverage of the face region,

we reduce confidence values for pixels corresponding to the region near the face-neck

boundary and the upper boundary in UV-space.
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Figure 5.12: Results of reconstruction. Row 1: input image, Row 2: rendered re-
construction, Row 3: fitted segmentation, Row 4: output confidence, Row 5: output
UV correspondence (cropped by silhouette), Row 6: output depth map (cropped by
silhouette), Row 7: unwarped input image, Row 8: estimated depth map textured by
input, Row 9: reconstructed 3DMM.
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Reconstruction Geometry Reconstruction Geometry
Input (Ours-LSDT) (Ours-LSDT) (MoFA) (MoFA)

Figure 5.13: Reconstruction result of MoFA [66] and LSDT from images in MoFA-test
dataset.

Optimisation

In the initialisation step, we use the Adam optimiser with a learning rate of 0.001 and

optimise parameters for 100k iterations with a batch size of 1. After initialisation, we

87



use the Adadelta optimiser with a learning rate of 0.1. In the weak perspective step,

full perspective step, and final step, we optimise parameters for 120k, 500k, and 1800k

iterations with a batch size of 10, 5, and 2, respectively. Before the last 60k iterations

in the final step, only the CelebAMask-HQ is used. In the full 3DMM fitting phase,

we adaptively control the weights to regularise linear least-squares, corresponding to

λ and ω in Section 3.3 and 3.4. Unlike the statistical regularisation loss in Section 5.2,

we directly update the weights while updating them by the same process as those in

Equation (5.7), Equation (5.8), Equation (5.9), and Equation (5.10).

5.4.6 Evaluation

Qualitative evaluation

We show network outputs and the reconstructed 3D model on the test data from

the CelebAMask-HQ dataset (Figure 5.12). The LSDT method can align labels on

the template mesh with input images (3rd row) and reconstruct fine structures and

textures, while using a relatively inexpressive 3DMM. Estimated UV correspondence

produces well-aligned unwarped images (7th row) and a good quality of depth predic-

tion (rows 6 and 8). We also qualitatively evaluate LSDT on the MoFA-test images

(Figure 5.13). LSDT can align whole head meshes of the 3DMM with input facial im-

ages, accurately matching occluding contours thanks to semantic-segmentation-based

supervision. You can also see that LSDT can reconstruct fine structures. Addition-

ally, in Figure 5.14 we visualise the progress of training with hierarchical model-based

regularisation. This visualisation shows that LSDT can successfully align the input

image with the reference in UV-space and reduce the error.

Quantitative evaluation

We quantitatively evaluate our LSDT on the NoW dataset [60] and the AFLW2000-

3D [88] dataset. To align evaluation images with the input size, scale, and position

of the network, we detect landmarks by using dlib face landmark detection [37] and

MTCNN [83], and align and crop the image by a similarity transformation so that

the MSE of landmarks is minimised. We conduct a landmark-based quantitative eval-
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Figure 5.14: Visualisation of the progress of training with hierarchical model-based
regularisation. Top row shows input images (left) and ground truth semantic seg-
mentation labels (middle). In each row, visualisation of the output of each model:
initialisation (2nd), weak perspective (3rd), full perspective (4th), 3DMM full (5th) is
shown. Left column shows unwarped input images. Middle column shows unwarped
semantic segmentation labels. Right column shows segmentation loss for each pixel.

uation on the AFLW 2000-3D dataset based on projection of landmarks on the re-

constructed 3D model (Table 5.3). We use the evaluation method proposed by Zhu

et al. [88]. While LSDT uses only weak supervision and model-based regularisation,

LSDT shows comparable results to some supervised methods. We also conduct 3D-

reconstruction-based quantitative evaluation on the NoW challenge (Table 5.4). Due
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AFLW Dataset AFLW2000-3D Dataset
Method Mean[0-30] Mean[0-90] Std[0-90] Mean[0-30] Mean[0-90] Std[0-90]
LBF [56] 7.17 17.72 10.64 6.17 16.19 9.87
ESR [7] 5.58 12.07 7.33 4.38 11.72 8.04
CFSS [85] 4.68 12.51 9.49 3.44 13.02 10.08
MDM [71] 5.14 13.40 9.72 4.64 13.07 10.07
SDM [80] 4.67 9.19 6.10 3.56 9.37 7.23

3DDFA [88] 4.11 4.55 0.54 2.84 3.79 1.08
PRNet [16] 4.19 4.77 - 2.75 3.62 -
Guo [25] 3.98 4.43 - 2.63 3.51 -

Ours-LSDR (Direct) 5.51 16.00 10.74 4.98 16.63 10.98
Ours-LSDR (Fitted) 5.87 18.63 13.20 4.74 18.55 13.38

Ours-GRDDR 3.98 10.14 5.99 4.97 10.49 5.64
Ours-LSDT - - - 3.73 6.87 2.95

Table 5.3: Evaluation of LSDR, GRDDR, and LSDT on AFLW [49] and AFLW2000-
3D [88] datasets. The accuracy is evaluated by the Normalised Mean Error,
which is the dimensionless average error of landmark positions normalised by the√
width · height of the face bounding box. [0-30] and [0-90] indicate the absolute yaw

angle ranges of a face, measured in degrees.

to the relatively small representation power of the Basel Face Model 2017, which we use

as the 3DMM, the performance of LSDT is moderate. However, it is still comparable

with some supervised methods.

Post-optimisation with known intrinsics

One advantage of the buffer prediction network is the option to incorporate known

camera parameters as post-optimisation after training. We minimise the objective

function (Equation (3.17)) in Section 3.3 with fixed known camera intrinsics. Unlike

the original formulation, this optimisation problem is nonlinear. Thus, we apply alter-

nating optimisation, which consists of iterative PnP to obtain camera pose and linear

least-squares to obtain 3DMM coefficients. We also show the result with known in-

trinsics in Table 5.4. Post-optimisation greatly improves the performance. Figure 5.15

is an example of 3D face reconstruction from an image in the NoW dataset. You can

see that post-optimisation with known intrinsics reduces shape distortion.
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Non-metric Metric
Median Mean Std Median Mean Std

Tran [69] 1.84 2.33 2.05 3.91 4.84 4.02
PRNet [16] 1.50 1.98 1.88 - - -
RingNet [60] 1.21 1.53 1.31 1.50 1.98 1.77

Deng et al. [12] 1.11 1.41 1.21 1.62 2.21 2.08
3DDFA V2 [26] 1.23 1.57 1.39 1.53 2.06 1.95
MGCNet [63] 1.31 1.87 2.63 1.70 2.47 3.02
DECA [15] 1.09 1.38 1.18 1.35 1.80 1.64

SynergyNet [78] 1.27 1.59 1.31 2.28 2.86 2.39
Dib et al. [13] 1.26 1.57 1.31 1.59 2.12 1.93
MICA [89] 0.90 1.11 0.92 1.08 1.37 1.17
FOCUS [41] 1.04 1.30 1.10 1.41 1.85 1.70

Wood et al. [76] 1.02 1.28 1.08 1.36 1.73 1.47
Ours-LSDR 1.52 1.89 1.57 - - -

Ours-LSDT (w/o intrinsics) 1.42 1.75 1.44 2.33 2.99 2.62
Ours-LSDT (w/ intrinsics) 1.17 1.49 1.27 1.51 1.99 1.82

Table 5.4: Evaluation of LSDR and LSDT on NoW dataset [60]. Figures in the table
are in the unit of millimetres.

Input w/o intrinsics w/ intrinsics

Figure 5.15: Reconstructed 3D face with and without known intrinsics from a NoW
dataset image.

5.5 Conclusion

In this chapter, we have presented three novel paradigms for supervision of a 3D

face reconstruction network: fully self-supervised training with a differentiable linear

least-squares layer, GRD-based segmentation supervision, and self-supervised training

without a differentiable renderer using semantic segmentation.

Firstly, fully self-supervised training with a differentiable linear least-squares layer
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(LSDR) is a method which combines trainable pixel-wise face alignment with linear

least-squares to reconstruct a 3D face model. To the best of our knowledge, this is

the first method that enables the reconstruction of an uncropped face model under

arbitrary in-plane transformation based on unsupervised training. LSDR has further

potential to boost the performance of conventional supervised face alignment methods

by harnessing abundant unlabeled images as well as application to a domain in which

annotated images are scarce. In future work, LSDR can be further improved by incor-

porating an occlusion model, specular reflection, and a perceptual metric to alleviate

the vulnerability of photometric error-based optimisation.

Secondly, GRD-based segmentation supervision (GRDDR) is a method that uses

the closed-form GRD for spatial alignment of two MoG distributions based on gradient-

based optimisation. GRD-based segmentation loss shows preferable characteristics in

that it can reconstruct a 3D face from images with arbitrary in-plane rotation and large

displacement. GRD has further potential for application to other computer vision tasks

such as point cloud registration, image registration, and general 3D reconstruction.

In particular, GRD is suitable for alignment based on soft landmarks, which predicts

landmark position with uncertainty. GRD can be used for multiview silhouette fitting,

extended to other object classes, and combined with pretrained semantic segmentation

networks.

Lastly, self-supervised training without a differentiable renderer using semantic seg-

mentation (LSDT) is a fundamentally different approach to model-based self-supervision

compared to the wide array of existing methods that incorporate a differentiable ren-

derer and a reconstruction loss. The motivation for doing so is that any differentiable

renderer can only approximate the true, hard rendering process while the output of

parameter-regression-based approaches is restricted to the fixed set of parameters cho-

sen at training time. This makes it difficult to incorporate information such as known

camera calibration at test time. On the other hand, image-space buffers provide an

intermediate representation such that the actual model fitting process can be deferred,

solved in a different way at test time or even not done at all if a depth or correspon-

dence map provides a useful output. We present here only one realisation of backwards

rasterisation. Obvious extensions would estimate additional buffers, for example, the
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normal map (regularised by depth and 3DMM shape) and albedo (regularised by

3DMM) allowing out-of-model details to be reconstructed.

Additionally, when comparing our proposed methods through evaluations on 3D

reconstruction (Figure 5.4) and landmarks (Figure 5.3), LSDT and GRDDR demon-

strate improved performance over LSDR due to stronger supervision from segmenta-

tion labels. Specifically, LSDT excels by utilizing occlusion-free segmentation-based

supervision, showing the best results among the three.
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Chapter 6

Conclusion

In this thesis, we explored the utilisation of a differentiable linear least-squares layer

and semantic-segmentation-based supervision for 3DMM-based monocular 3D face

reconstruction. We have shown that a linear least-squares layer is useful for the reg-

ularisation of image-model correspondence estimation and demonstrated a fully self-

supervised monocular 3D face reconstruction network. Additionally, we have presented

supervision of a monocular 3D face reconstruction network based on semantic segmen-

tation, and demonstrated self-supervised monocular 3D face reconstruction network

without a differentiable renderer. In this chapter, we will summarise the contributions

of this thesis and present them as overarching conclusions. We will also discuss the

limitations of the proposed methods and suggest ideas of potential work building on

the results of this thesis.

6.1 Summary of contributions

In Chapter 3, we proposed combining differentiable 3D model fitting with a neural

network. Specifically, we focused on fitting of 3DMM coefficients, pose parameters,

and low-dimensional lighting parameters. We tackled the photometric part and geo-

metric part of the fitting problem separately. We formulated both problems as linear

least-squares, which can be analytically solved via a pseudoinverse matrix in a differ-

entiable manner. To linearise the problem for the photometric elements, we devised
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an inverse spherical harmonics lighting technique. This lighting technique was em-

pirically validated in Section 3.2.1. In-network model fitting is particularly beneficial

for self-supervised learning as it can improve optimality of the output without ne-

cessitating the adjustment of learning rates for individual physical parameters of the

model. The advantages were verified through network training experiments in Chap-

ter 5. For the geometric part, we formulated the perspective camera model as a 3D

affine transformation from the image space to the model space by introducing an

auxiliary depth map. In this technique, image-model correspondence is established

based on pixel-wise estimation by a neural network, and the 3DMM bases and mean

corresponding to each pixel are efficiently obtained through bilinear interpolation of

precomputed UV-3DMM, which is a 3DMM in UV-texture space. The obtained 3D

affine transformation can be converted and decomposed into common intrinsic and ex-

trinsic camera parameters in a differentiable way. We combined the geometric linear

least-squares with the photometric one in a sequential manner. The combined tech-

niques are demonstrated and verified through neural network training in Section 5.2

and Section 5.4.

In Chapter 4, we explored supervision based on the minimisation of a cohesive

measure on a semantic segmentation labels. Specifically, we proposed the utilisation

of bilinear sampling of precomputed distance maps for image-model correspondence as

well as the application of geometric Rényi divergence to segmentation label alignment.

In Section 4.3, we showed the framework of segmentation label alignment using the dis-

tance transform. The advantage of this method is its ability to handle self-occlusion,

demonstrated in Section 5.4. In Section 4.4.2, we proposed a novel application of

geometric Rényi divergence of Gaussian mixtures to the alignment of semantic seg-

mentation labels. We devised a method to represent segmentation labels on both

pixels and projected mesh triangles by weighted Gaussian mixtures and introduced a

technique for numerical stability. The advantage of this method is that the values do

not saturate, even when the displacement is large. This is important to make network

training stable and to ease the difficulty of initialisation in model alignment tasks.

Such characteristics bring about the possibility that semantic segmentation maps can

be used as more informative source of supervision than landmarks. This advantage
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is verified through loss landscape visualisation in Section 4.5.1, direct optimisation

experiments in Section 4.5.2, and through network training in Section 5.3.

In Chapter 5, we proposed novel network training paradigms based upon the tech-

niques proposed in Chapters 3 and 4. In Section 5.2, we explored completely self-

supervised monocular 3D face reconstruction that does not require landmarks as su-

pervision. Regularisation by the differentiable linear least-squares layer, as discussed

in Chapter 3, allows a pixel-wise prediction network such as U-Net to be combined with

a 3DMM. Thereby, we introduced a pixel-wise robust residual loss that assures the

coverage of a fitted 3D model. In doing so, we achieved self-supervised training with

no landmarks. In Section 5.3, we demonstrated the advantage of GRD-based super-

vision for network training based on images with large displacement and rotation. In

Section 5.4, we proposed the training of a monocular 3D face reconstruction network

that does not rely on a differentiable renderer, utilising a distance-transform-based

metric as discussed in Section 4.3.

6.2 Overarching conclusions

Landmarks are not essential for training a model-based 3D reconstruction

network.

In Section 5.2, we demonstrated the self-supervised training of a monocular 3D recon-

struction network based on 3DMM. A careful design of the loss function can achieve

stable training without auxiliary landmark supervision. The key is to introduce a

robust residual loss on each pixel that encourages increased face coverage. By lever-

aging self-supervised training, we can improve the performance of a network by using

a large number of unannotated images for training. Additionally, we can train a 3D

reconstruction network in a domain where annotated images are unavailable, using

self-supervision.
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Model-based regularisation can be achieved using in-network linear least-

squares.

To the best of our knowledge, this is the first study to utilise the in-network linear

least-squares for introducing 3DMM-based regularisation on network outputs. We

demonstrated its feasibility through network training experiments in Chapter 5. The

photometric linear least-squares can contribute to improving the optimality of the

fitting in appearance. The geometric linear least-squares allow an image-model corre-

spondence estimation network to leverage model constraints provided by a 3DMM and

a camera model. This enabled the introduction of new types of supervision. One ex-

ample is the robust residual loss discussed in Section 5.2, which enables self-supervised

training of a monocular 3D reconstruction network without landmark supervision. The

other example is semantic segmentation loss in Section 5.4.

Spherical harmonics can model inverse lighting and this linearises lighting

and albedo parameter estimation.

To the best of our knowledge, our research is the first to utilise inverse lighting, based

on spherical harmonics, to linearise the 3DMM albedo fitting problem. In this thesis,

we demonstrated its effectiveness through empirical validation in Section 3.2.1 and all

the network training examples in Chapter 5.

Semantic segmentation can serve as useful supervision for 3D reconstruc-

tion networks.

We demonstrated that a model-based monocular 3D face reconstruction network can

be trained using semantic segmentation maps, as discussed in Section 5.4 and Sec-

tion 5.3. This provides an alternative means of supervision when a target object

possesses an appearance that is challenging to annotate with landmarks.
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6.3 Limitations

In-network linear least-squares necessitate a linear model.

A notable limitation of in-network linear least-squares model fitting is its inability to

handle non-linear objects. In this thesis, we selected a human face as target object

domain due to the ease of obtaining a linear statistical model. However, in the domain

of objects surrounding us, such models usually do not exist. This fact could constrain

the applicability of this method.

Linear least-squares needs careful initialisation.

As demonstrated in Section 5.2.3 and Section 5.4.3, the linear least-squares layer re-

quires careful initialisation to stabilise training. This implies that sufficient realistic

synthetic data or adequate domain knowledge to preform pre-alignment is needed.

This requirement could somewhat weaken our claim that we achieved self-supervised

training without landmark supervision.

Adjusting the regularisation weight in linear least-squares is non trivial.

To mitigate overfitting of linear least-squares to noisy input data, adaptive weight

adjustment is introduced in Section 5.2.2. In this method, a constant regularisation

weight vector is updated to ensure the distributions of fitted coefficients are plausible.

However, this method does not guarantee the plausibility of every fitted model. If the

network generates highly implausible data, the fitted result also becomes implausible.

Calculation of the geometric Rényi divergence for a large image or 3D

meshes is prohibitively expensive.

In our GRD calculation in Section 4.4.2, all possible combinations between a group

of pixels and a group of vertices must be taken into account. This could require

unrealistic computational cost when the number of pixels and/or vertices is large.
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Inconsistency between semantic labels on the image and those on the model

is not fully resolved.

We generate semantic segmentation labels on a 3DMM by automatic labelling and

accumulation based on a pretrained semantic segmentation network (see Section 4.2).

This label is always consistent, no matter what coefficients appear. On the other hand,

semantic segmentation labels on natural images vary from image to image due to self-

occlusion and limited coverage of a face in the 3DMM. This results in the inconsistency

of labels between the image and the model. Minimising our GRD loss moves points

so that exact matching will be achieved. Hence, inconsistency in labels could cause

erroneous results. We tried to resolve this problem by a coarse alignment and update

approach in Section 5.3.2. However, this is still imperfect, and misalignment occurs in

some images.

6.4 Future work

Generalising in-network linear least-squares to non-linear objects

In this thesis, we only focused on a human face that can be well represented by a

3D morphable model, a purely linear statistical model. However, most objects in our

surrounding environment are not as simple as a linear model. To leverage in-network

linear least-squares model fitting for broader domains and applications, it is necessary

to combine it with a non-linear model that consists of linear model elements and non-

linear elements (e.g. correctives, joints, neural-network-based bases representation).

Application of in-network photometric linear least-squares to NeRF

Recently, as a 3D scene representation, the neural radiance field (NeRF) is attracting

attention due to its explosive evolution. A typical problem with NeRF is its huge

computation cost for training. We believe that in-network least-squares for lighting

can contribute to reducing the computational cost of training variants of NeRF, which

disentangle lighting and reflectance from observed images. The least-squares layer

could remove the burden of explicitly estimating lighting by a network.

99



Application of the geometric Rényi divergence to broader 2D/3D alignment

problems

The GRD on Gaussian mixtures is a long-range, non-saturating distance metric, which

is suitable for 2D/3D model or image alignment. This measure has not yet been

extensively studied in the field of computer vision. We believe GRD can be used as a

substitute for keypoint-based distance metrics and is even suitable for the integration

of multiple geometric cues including correspondence of keypoints, lines, and regions.

In recent years, self-supervised learning for detection of such geometric features has

significantly advanced. This trend makes this research direction more promising, as

GRD can handle network outputs without applying global pooling or non-maximum

suppression, and can benefit from the advancement of the field.

Lightweight calculation of the geometric Rényi divergence

To apply GRD to broader applications, reducing the computation cost of GRD is

essential. To this end, we could explore the ways to approximate the distribution of

points by a small number of Gaussian distributions, by merging neighbouring points

and removing points whose effects on the final GRD value is negligible.

Combination of self-supervised semantic segmentation and backward raster-

siation

What is disappointing in our backward rasterisation network, which reconstructs a 3D

human face without a differentiable renderer, is that it requires semantic segmentation

labels as additional supervision to train the network. Combining a self-supervised se-

mantic segmentation approach with backward rasterisation is a possible research direc-

tion to establish a fully self-supervised monocular 3D reconstruction method without

using a differentiable renderer.
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