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Abstract

This thesis explores the integration of advanced machine learning techniques, particularly deep

learning, in enhancing groundwater prediction models. The primary focus is on developing new

surrogate models that leverage deep neural networks for simulating groundwater flow, bridging

the gap between traditional hydrological methods and contemporary data science approaches.

The research journey begins with the application of synthetic data and computer vision tech-

niques and progressively advances towards handling sparse data and real-world scenarios. The

thesis comprises four key papers, each contributing to the development of machine learning

models for groundwater prediction. These models include convolutional encoder-decoder net-

works (Attention U-Net and U-Net integrated with Vision Transformer) for accurate steady-

state response prediction, the DeepONet framework for generalized groundwater flow modeling

under data-sparse scenarios, and finally spatial-temporal graph neural networks for long-term

forecasting of groundwater levels. The research demonstrates the ability of these models to han-

dle complex hydrological systems, predict accurately under varying conditions, and efficiently

process both high-dimensional inputs and sparse data.

Overall, this thesis contributes to the field of hydrology by establishing advanced machine

learning models as viable alternatives for predictive groundwater level modeling, particularly

noted for their accuracy, computational efficiency, and adaptability to diverse scenarios. The

findings pave the way for future research, focusing on applying these models to larger and more

complex datasets for practical use in groundwater management and decision-making.
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1 CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Motivation

Groundwater is an essential component of the global water supply and is crucial for various

purposes including residential, industrial, and agricultural needs [32]. It plays a pivotal role

in sustaining ecosystems, supporting biodiversity, and ensuring water security, especially in

regions prone to water scarcity and drought conditions. The significance of groundwater re-

sources is underscored by representing one-third of the world’s freshwater [7], emphasizing the

necessity of maintaining these resources for drinking water, irrigation, and industrial needs.

However, the sustainability of groundwater is increasingly threatened by factors such as overex-

ploitation, population growth, and climate change, which lead to environmental consequences

such as aquifer depletion, land subsidence, and water quality degradation [35, 14]. Given these

challenges, accurately forecasting groundwater levels (GWL) becomes paramount to the effec-

tive management and preservation of groundwater resources in order to mitigate the impacts

of global population surges, urbanization, and climate-induced water shortages [28], ensuring

their availability for future generations. The discipline of groundwater hydrology focuses on

the effective management of groundwater systems, predicting aquifer responses to changes in

their state for informed decision-making. Specifically, it seeks to forecast the distribution of

water levels in aquifers at a given time [1]. The prediction of GWL is a complex task due to

the dynamic and nonlinear interactions among various hydrological and meteorological vari-

ables, including rainfall, evaporation, and temperature [13]. These interactions, coupled with
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boundary constraints, affect GWL fluctuations, making the task of modeling these variations a

challenging, yet essential, endeavor for sustainable water resource management.

In addressing the challenges of forecasting groundwater levels, a variety of numerical models

have been extensively employed. These include finite difference methods (FDM) [21], finite vol-

ume methods [11], finite element methods (FEM) [29], and element-free methods [22]. Insights

derived from these models into the past, current, and future states of GWL are crucial for

policymakers and practitioners in the water sector to devise sustainable resource management

strategies. Traditional solvers of partial differential equations, like FEM and FDM, calculate

the hydraulic head as the potential energy that drives groundwater flow by iteratively solving an

implicit system of equations across discretized time and flow domains. This process generates

a system of equations that represent water balances at each model node or cell, necessitating

the computation of unknown heads at these nodes to achieve a balance across the system [20].

These numerical models in complex, large domains face challenges in accuracy and computa-

tional demand [23]. Their resolution, execution time, and memory use scale steeply with the

resolution. Moreover, once the equation is solved on a discretization, this cannot be altered,

making it hard to integrate observations of various resolutions into a grid system. The preci-

sion and dependability of these numerical models also significantly depend on the availability

of extensive hydrogeological data and detailed information about aquifer properties [27]. Simu-

lating groundwater flow mandates the reconstruction of subsurface heterogeneities and aquifer

physical properties, typically based on scarce direct observations. Inverse modeling, aimed at

estimating unknown system parameters, requires multiple forward model runs, thus becoming

highly computationally intensive as the number of unknown parameters increases. The high

dependency on large volumes of data, the complexity of model calibration, and the substantial

computational resources required pose significant limitations to the efficacy of traditional nu-

merical models in groundwater modeling. Moreover, the challenges of integrating diverse data

sources, defining efficient grid sizes for solving differential equations, and demarcating domain

boundaries further complicate groundwater modeling efforts [33].

In recent years, new GWL forecasting techniques based on machine learning algorithms have

gained popularity, as will be described in the following section. The next section highlights how

these advanced computational models open new possibilities for accurate and efficient ground-

water level forecasting. The purpose of this following section is to provide a succinct overview
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of the most relevant literature across the breadth of this thesis, noting that each subsequent

chapter contains more focused, and detailed, literature reviews of the specific machine learning

methodologies that are relevant to the specific context of the research in that chapter. Those

seeking an extensive understanding of deep learning applications in groundwater flow analysis

should consult the studies by [13, 27]. Additionally, for a foundational understanding of deep

learning principles, the work by [8] serves as an essential resource.

1.2 Deep Learning for Groundwater Prediction

Artificial Intelligence (AI) is devoted to creating machines capable of performing tasks that typ-

ically require human intelligence [8]. Within this domain, Machine Learning (ML) centers on

developing algorithms that enable computers to learn from and make decisions based on data,

without being explicitly programmed. In recent years, the advent of ML and AI algorithms has

revolutionized groundwater level (GWL) forecasting, offering methods that circumvent the need

for detailed physical characteristics of GWL systems. Taking a step further, Deep Learning, a

specialized branch of ML, utilizes neural networks with multiple layers that can process and

interpret vast and complex datasets. The recent advancements in computational capabilities,

algorithm development, and data availability have catalyzed significant progress in deep learn-

ing. Deep Learning models are renowned for their effectiveness in tasks such as classification,

regression, and clustering, and have demonstrated superior performance across various fields,

surpassing human abilities in complex tasks like strategic game playing and image classification

[26, 3, 9]. These algorithms, including artificial neural networks (ANNs), leverage mathematical

concepts to detect, classify, or predict GWL fluctuations based on data provided [13]. ANNs

attempt to simulate the neural arrangement of the human brain, involving interconnected neu-

rons linked by adjustable weights. The Multi-Layer Perceptron (MLP), a prevalent form of

ANN , features a design with an input layer, an output layer for delivering predictions, and

several hidden layers that facilitate the learning of complex patterns by enabling non-linear

transformations at each stage. This sequential processing from input to output, coupled with

the ability to adjust weights based on prediction errors through backpropagation, underscores

the ANN’s utility in modeling GWL dynamics.

This thesis explores how machine learning, particularly deep learning techniques, can enhance

the predictive accuracy and efficiency of groundwater models. Deep neural networks, recognized
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as universal function approximators [10], are increasingly employed as surrogate models for

solving problems in physics and engineering [12]. The evolution of AI in hydrological studies

has seen the adoption of deep learning models such as recurrent neural networks (RNNs),

including Long Short-Term Memory (LSTM) and Gated recurrent units (GRUs), to address

the limitations of classical machine learning models in learning long-term dependencies. These

developments have significantly improved the prediction efficiency on various time scales [34,

31]. LSTMs, designed for long-term time series data prediction, are equipped with memory

cells capable of retaining critical information about historical events, making them well-suited

for extracting non-linear spatio-temporal groundwater patterns. Zhang et al.’s study employing

LSTM models to simulate water table fluctuations using a range of inputs over 14 years showed

extremely high accuracy, illustrating the potential of these models to outperform traditional

ANN approaches. Other studies utilize image-to-image regression techniques, employing deep

convolutional neural networks to map input images to output states. Mo et al. [18] proposes a

deep convolutional encoder-decoder as a surrogate model for dynamic multiphase flow problems.

They demonstrated the model’s capability in handling high-dimensional inputs and accurately

predicting pressure and saturation fields at arbitrary time instances.

Tao H. et. al recommends that future research in GWL prediction models should place a greater

emphasis on the time scale of predictions [27]. While a majority of existing studies have focused

on developing predictive models on monthly and daily scales, there’s a significant need to extend

these efforts to long-term GWL forecasting. Yearly predictions are crucial for long-term water

resource management and planning, offering decision-makers valuable insights for developing

strategic policies to ensure water sustainability. Additionally, addressing the challenge of missing

groundwater data is essential for improving the accuracy and reliability of GWL predictions.

Groundwater observations often suffer from data sparsity and missing values due to various

factors such as instrument failure or inadequate monitoring management systems, which can

substantially degrade data quality and increase uncertainty in spatio-temporal groundwater

analysis [5]. This study addresses these limitations by first developing general models that are

not trained on data from a specific location but rely on the groundwater partial differential

equation. Secondly, by applying the models to a specific location, the research tackles the

challenges of sparse and missing data.

To facilitate a fair comparison of models, several key considerations should be taken into account,
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especially given the vast and complex landscape of possible models. Firstly, datasets should be

divided into training, validation, and testing sets to prevent overfitting and ensure that models

are evaluated on unseen data. Cross-validation techniques, such as k-fold cross-validation, can

also help to reduce the impact of dataset bias [15]. Additionally, hyperparameter tuning should

be conducted using systematic approaches, such as grid search or Bayesian optimization, to

ensure optimal hyperparameters are selected for each model [2]. As highlighted by Bouthillier

et al. [4], arbitrary choices in the machine learning process can skew results, making it crucial

to account for variance in benchmarks to detect meaningful improvements. Their study found

that performance fluctuations are influenced by various factors, with data splitting, parameter

initialization, and hyperparameter choices having the greatest impact. The authors recommend

randomizing sources of variation, such as data sampling, augmentation, parameter initialization,

and hyperparameter choices, and accounting for variance in the results comparison. Ensuring

a fair comparison between models requires optimizing each model equally, conducting multi-

ple evaluations, and applying statistical tests to determine significant performance differences.

Furthermore, the choice of evaluation metrics should reflect the specific goals of the GWL pre-

diction task. This approach enables a coherent representation of study outcomes and facilitates

the comparison of different models, including traditional GWL forecasting models. As an exam-

ple from weather forecasting, the evaluation protocol of WeatherBench 2 [24], which provides

a standardized protocol for AI models, closely follows the forecast verification methods used

by the World Meteorological Organization and operational weather centers. This ensures that

the evaluation of deep learning models is accessible to the expert community. Although there

is no universally recognized set of benchmark datasets and metrics in groundwater modeling,

regression models are typically used for GWL modeling [13]. Common evaluation metrics in-

clude Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Relative Error (RE),

and Coefficient of Determination (R2). Special performance measures like Peak Elevation Cri-

teria (PEC) and Low Elevation Criteria (LEC) are also used to evaluate models against critical

parameters. However, RMSE and R2 are the predominant metrics in GWL modeling studies.

Lastly, model evaluation in practice should also consider other metrics such as training time to

reach a performance level and memory usage [25].
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1.3 Research Question and Objectives

The central research question guiding this thesis is to find the most suitable neural network-

based approaches for predicting groundwater flow based on the knowledge of the underlying

Partial Differential Equations (PDEs). This research develops surrogate models for GWF pre-

diction. In essence, the goal of the thesis is to create models that accurately map inputs to

outputs, effectively solving the fundamental equations governing groundwater flow. The project

aims to develop models suitable for groundwater management that not only expedite and refine

predictions for groundwater management but also exhibit versatility across diverse real-world

conditions, including different boundary settings and soil types, and efficiently incorporate ob-

served data. Additionally, the models ideally possess properties that are independent of mesh

definitions and are robust to model uncertainties.

Moreover, this thesis is structured to demonstrate the application of different machine learning

techniques in groundwater modeling. The research starts from synthetic data and computer

vision techniques and advances towards handling sparse data in real-world scenarios. It encom-

passes a series of four key papers, each integral to the overarching aim of advancing groundwater

prediction models through the application of machine learning and neural networks.

Outlined within this thesis are specific objectives aimed at:

• Objective 1: Develop a simple model capable of learning the steady-state solution of

the governing PDE in a homogeneous domain under constant boundary conditions. This

serves as the foundation for creating a basic deep learning model for groundwater systems.

Treated in Chapter 2.

• Objective 2: Progress to more complex and general models that can learn the steady-

state solution in heterogeneous domains, accommodating a variety of boundary conditions.

This step addresses the diversity and complexity inherent in real-world hydrological sys-

tems.

Treated in Chapter 2.

• Objective 3: Conduct a comparative analysis between the developed models and other

existing methods. This comparison aims to identify the most effective techniques and

approaches for further development of the model.
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Treated in Chapters 3 and 4.

• Objective 4: Focus on inferring solutions from limited and varied point measurements,

reflecting the challenges of working with incomplete or indirect data as typically found in

real-world scenarios.

Treated in Chapters 3, 4, and 5.

• Objective 5: Extend the models to transient solutions of the PDE, incorporating the

crucial dimension of time, which reflects the dynamic nature of groundwater flow.

Treated in Chapters 3, 4, and 5.

• Objective 6: Apply the developed models in a real-world case study, benchmarking

their predictions against actual measured ground truth data to assess their accuracy and

applicability in practical situations.

Treated in Chapter 5.

Each objective progressively builds upon the previous, collectively working towards the creation

of sophisticated, accurate, and practical tools for groundwater modeling and prediction.

1.4 Progression of Thesis

This section summarizes each of the four papers included in the thesis, detailing how the research

evolved from initial explorations using synthetic data and computer vision techniques to more

advanced applications involving sparse data, neural operators, and real-world data with graph

neural networks.

Paper 1 (Chapter 2): Attention U-Net as a Surrogate Model for Groundwater

Prediction

This paper proposes a novel application of the Attention U-Net [19], a convolutional encoder-

decoder neural network, as a surrogate model for groundwater prediction. It focuses on generat-

ing solutions for hydraulic head in heterogeneous groundwater systems using input parameters

and boundary conditions. The attention mechanism allows the network to focus on relevant do-

main areas, resulting in detailed and accurate hydraulic head field predictions. The model shows

significant efficiency and accuracy improvements over traditional numerical solvers, demonstrat-
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ing its potential as a surrogate model in groundwater prediction.

Paper 2 (Chapter 3): Developing a Cost-Effective Emulator for Groundwater Flow

Modeling Using Deep Neural Operators

This study introduces an emulator using a deep neural operator (DeepONet) [17] framework

for groundwater flow modeling. The neural operator is capable of mapping between infinite-

dimensional function spaces and is trained and evaluated with sparse data. The model ac-

curately predicts the impact of abstraction in confined aquifers and adeptly handles various

problem setups, including forward time-dependent problems, inverse analyses, and nonlinear

systems. The paper also presents a novel extension to the DeepONet architecture, showing

excellent performance in generating predictions for different hydraulic conductivity fields and

pumping well locations.

Paper 3 (Chapter 4): Understanding the Efficacy of U-Net & Vision Transformer

for Groundwater Numerical Modelling

This paper compares U-Net, U-Net integrated with Vision Transformers (ViT) [6], and Fourier

Neural Operator (FNO) [16] in modeling time-dependent forward problems in groundwater

systems. The paper highlights the potential of U-Net-based models in real-world groundwa-

ter modeling applications, particularly in data-sparse scenarios. The integration of U-Net with

Transformers is shown to enhance predictive capabilities, making it a suitable choice for ground-

water modeling tasks.

Paper 4 (Chapter 5): Spatial-Temporal Graph Neural Networks for Groundwater

Data

In this study, spatial-temporal graph neural networks (ST-GNNs) [30] are applied to predict

groundwater levels in the Overbetuwe area, Netherlands. Utilizing a comprehensive dataset of

395 groundwater level time series, along with auxiliary meteorological and hydrological data,

the ST-GNN model effectively integrates spatial and temporal dynamics. The approach shows

significant improvements over traditional models, particularly in handling missing data and

providing accurate long-term forecasts, highlighting ST-GNNs potential in groundwater level

prediction.
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Chapter 2

Attention U-Net as a Surrogate

Model for Groundwater Prediction

Abstract

Numerical simulations of groundwater flow are used to analyze and predict the response of an

aquifer system to its change in state by approximating the solution of the fundamental ground-

water physical equations. The most used and classical methodologies, such as Finite Difference

(FD) and Finite Element (FE) Methods, use iterative solvers which are associated with high

computational cost. This study proposes a physics-based convolutional encoder-decoder neural

network as a surrogate model to quickly calculate the response of the groundwater system.

Holding strong promise in cross-domain mappings, encoder-decoder networks are applicable for

learning complex input-output mappings of physical systems. This manuscript presents an At-

tention U-Net model that attempts to capture the fundamental input-output relations of the

groundwater system and generates solutions of hydraulic head in the whole domain given a

set of physical parameters and boundary conditions. The model accurately predicts the steady

state response of a highly heterogeneous groundwater system given the locations and piezomet-

ric head of up to 3 wells as input. The network learns to pay attention only in the relevant parts

of the domain and the generated hydraulic head field corresponds to the target samples in great

detail. Even relative to coarse finite difference approximations the proposed model is shown

to be significantly faster than a comparative state-of-the-art numerical solver, thus providing

a base for further development of the presented networks as surrogate models for groundwater
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prediction.

2.1 Introduction

Groundwater resources are of major importance for residential, industrial and agricultural use.

However, the quality and availability of groundwater supplies are significantly affected by their

overexploitation around the world, population growth and climate extremes [2]. Consequently,

a demanding need exists for quick and accurate evaluation of multiple management alternatives

over long time horizons. The last 30 years have seen the development of several physics-based

numerical models for simulating groundwater systems, with Finite Difference (FD) and Finite

Element (FE) discretizations of the partial differential equations (PDEs) as the most used and

classical methodologies [26, 27]. These techniques calculate the hydraulic head by iteratively

solving an implicit system of equations at each time step in the discretized time and flow do-

mains. Running the groundwater model in a complex system within a large domain and with

reasonable accuracy incurs numerical challenges and an excessive computational demand [33,

3]. As the computational cost increases super-linearly with the number of unknowns in the

discretization, long runtimes are a major challenge when high resolution is required or when

many executions are necessary, such as in uncertainty analysis, sensitivity analysis, and inverse

modelling. Mens et al. [14], discuss the case of the National Water Model (NWM) that is used

for national policy-making on drought risk management in the Netherlands and whose heavy

computational burden poses limits to quickly responding to policy questions. The authors ad-

vocate the need for a fast simple model that describes all relevant processes and is quick enough

to explore many scenario and strategy combinations for long time series. Furthermore, ground-

water flow simulations require the reconstruction of subsurface heterogeneities and the physical

properties of the aquifer as inputs to the model, for which only limited direct observations are

available. Inverse modelling is used to estimate the unknown parameters of the system, taking

into account their stochasticity.

Traditional approaches to the inversion problem correspond to iterative techniques and ne-

cessitate a large number of forward model runs. As the number of unknown parameters in-

creases, forward operations become extremely computationally demanding. Surrogate models

are cheaper-to-run models which approximate the response of a complex and computationally

intensive model. Surrogate models have been used in a number of groundwater studies, such
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as for optimization design [32, 6] and uncertainty quantification problems[7, 39], to name a

few. Reduced-fidelity models simplify the level of complexity of the physical processes of the

full-order model, e.g. by projecting the governing equations into a transformed space of smaller

dimension. Projection-based techniques can accurately retain the underlying structure of the

full-order model; however these methods can suffer stability and robustness issues [22, 15], they

are highly code-intrusive and they cannot efficiently treat strong nonlinearity [4]. Data-driven

models learn the response of the system from the simulation data in a supervised manner.

Gaussian processes have been successfully applied to uncertainty quantification tasks for which

the training data are limited but they rely on specific a priori assumptions on the relationship

between the input and the outputs and have high computational costs when dealing with large

datasets. [18, 1]

Deep neural networks are universal function approximators and are becoming increasingly com-

mon surrogate models for solving problems within the fields of physics and engineering. These

techniques have been applied for solving PDEs in high-dimensional settings and nonlinear sys-

tems, with potential applications in parameter estimation and uncertainty quantification. The

reader is referred to Karniadakis et al. [17] for a review on the strengths, limitations, current

applications and outlook of this class of deep learning algorithms.

Recently interest has grown for learning complex nonlinear, multiscale, and high dimensional

mappings of subsurface processes. In the work of Geneva and Zabaras [12], convolutional

neural networks (CNNs) for physics-constrained learning show exceptional performance, with

solutions obtained an order of magnitude faster than with state-of-the-art numerical solvers.

They train deep auto-regressive convolutional neural network models to learn the dynamics

of three transient PDEs (1D Kuramoto-Sivashinsky equation, 1D Burgers’ equation and the

2D coupled Burgers’ system) without any off-line training data. Several studies adopted an

adversarial network framework for surrogate methods for a single-phase flow forward model and

a multiphase flow forward model [34, 40]. Dagasan et al., [8], argue that the use of a conditional

generative adversarial network (cGAN) as a surrogate forward model for groundwater systems

can reduce the computational time by up to 80% compared to the numerical solver MODFLOW.

Deep neural networks were chosen in this study largely due to their scalability and their ability to

learn based on a few a priori assumptions. The first refers to the capacity to learn from massive
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amounts of data. Compared to a Gaussian process, whose runtime scales poorly with the size of

the datasets, deep neural networks can assimilate large amounts of multi-fidelity observational

data, even in partly understood, uncertain and high-dimensional contexts. Compared to reduced

order model techniques, which aim to bring the physical relationships of full order models

at a much lower dimension, deep neural networks do not assume any prior assumption that

constrains the relationship between input and output samples. This flexibility can lead deep

neural networks to learn complex relationships, thus increasing their modelling power but at

the cost of a lower interpretability.

The encoder-decoder architecture consists of a contracting and an expansive path. It shows

robust and accurate performance in various tasks including machine translation problems [38],

semantic segmentation [25] or depth regression [9]. Initially developed for biomedical image

segmentation [28], U-Net is an encoder-decoder network which uses fully convolutional networks

and requires highly limited training samples. U-net based architectures have been applied

across a wide spectrum of application areas, such as image super resolution, style transfer,

text-to-image translation and image-to-image translation [16]. Mo et al. [24], developed a deep

convolutional encoder-decoder network method as a surrogate model for transient multiphase

flow models. Given the large approximation errors in the concentration fields near the source

release location, the authors assign an additional weight to the loss at the eight pixels around

the source release location in order to improve the surrogate predictive capability. Attention

models address this limitation by allowing the model to learn to focus selectively on the relevant

parts of the input. Attention has recently become an essential component of neural architectures

within diverse application domains [5, 11, 19]. Attention U-net makes use of attention gates in

order to focus on specific parts of the image that are of importance while paying little attention

to unnecessary areas [25, 31].

The purpose of this paper is to propose an Attention U-Net network as a surrogate model for the

forward operator in groundwater modelling. The encoder-decoder model learns the mapping be-

tween model inputs and output for deterministic, steady-state solutions of the two-dimensional

groundwater flow equation given a highly heterogeneous subsurface domain. The surrogate

model accurately captures the nonlinear relationship between the hydraulic conductivity and

the subsurface groundwater map. The model dynamically pays attention to only the parts of

the input where flow can take place in a manner that helps the network in learning the mapping



17 2.2 METHODOLOGY

effectively.

The rest of the paper is organized as follows. Section 2 presents the adopted image-to-image deep

learning approach and the architecture of the Attention U-Net employed. Section 3 provides

an overview of the problem formulation and model set-up along with training of the surrogate

model. The proposed method is evaluated with and without attention gates in section 4. Finally,

the conclusions are formulated in the last section.

2.2 Methodology

2.2.1 Surrogate Modelling as Image-to-Image Regression

A surrogate model f̂(x, θ) ≈ ŷ approximates the ‘ground-truth’ function y = f(x) where f :

X → Y is the mapping between the input domain X and the output domain Y , x ∈ X is the

input, y ∈ Y is the output, and θ are the model parameters. In the case of forward solving of

PDEs with machine learning, the ground truth mapping represents some combination of the

solution of the PDEs governing the physical system, and the surrogate model ŷ = f̂(x, θ) is

trained using a dataset D of N simulation data: D = {(xi, yi)}Ni=1.

By adopting an image-to-image regression approach, the surrogate modelling can be treated as

an image regression problem. By solving the PDE over a spatial domain, such as 2D regular

grids, the simulation data can be thought of as images, with inputs xi ∈ Rdx×H×W and outputs

yi ∈ Rdy×H×W where dx and dy are the number of input and output channels respectively, each

with a resolution of H × W (height × width). The surrogate modelling problem becomes an

image-to-image regression problem with the regression function f̂ : Rdx×H×W → Rdy×H×W [41].

2.2.2 Encoder-decoder model

Encoder-decoder is a learning method with an analysis path (encoder) and a synthesis path

(decoder). The encoder network transforms high-dimensional unlabeled input data x into low-

dimensional embeddings z (latent space) and the decoder maps z to the intended output y =

decoder ◦ encoder(x). The input is passed through a series of layers that progressively down

sample until a bottleneck layer, at which point the decoder restores the spatial dimensions to

produce the output images. Intuitively, the model corresponds to a coarse-refine process: the

encoder reduces the spatial dimension of the input image to high-level coarse features, and the
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decoder recovers the spatial dimension by refining the coarse features. The assumption is that

the input and output images share the underlying structure, or they are different renderings of

the same underlying structure, that is their structures are roughly aligned [16].

As the goal of this study is to generate a targeted output image corresponding to given inputs,

the Encoder-Decoder model learns the mapping x → y from a conditioning input image x to

the output image y. The network converts images from the source to target domains, where

the first corresponds to the initial, boundary conditions and model parameters and the latter

to the resolution of the governing equation given those constrains.

2.2.3 Deep Convolutional Neural Networks

CNNs [23, 29] are popular deep learning networks specialized in image processing [21, 35]. While

the first layers detect basic features, deeper convolutional layers learn higher representation. A

convolution layer is a linear transformation that highlights the presence of a given feature

in the map while preserving spatial information in the input image [13]. Given a 2-D input

image and a square kernel ω with size m, the convolutional layer outputs the value at location

(i, j) by summing up the contributions from the previous layer cells yl−1 weighted by the filter

components; then, the nonlinearity σ is applied.

ylij = σ

(
m∑
a=0

m∑
b=0

waby
l−1
(i+a)(j+b)

)
(2.1)

The stride of the convolutional layer is a parameter that determines the number of pixel shifts

between two successive moves of the filter, while the padding indicates the amount of pixels

with value zero added at each side of the boundaries of the input. The rectified linear unit

function (ReLU) is a piecewise linear function that outputs the input if it is positive and zero

if negative. The Leaky ReLU with slope coefficient modifies the function to allow a small,

negative, output when the input is negative:

σ(x) =


x if x > 0

αx otherwise

(2.2)
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Batch normalization and dropouts are used to stabilize training and mitigate overfitting [30]. A

dropout layer selects a random set of units from the preceding layer and ignores their output,

while batch normalization standardizes the layer’s inputs by calculating the mean and standard

deviation across the batch.

2.3 Application

2.3.1 Groundwater model and datasets

Consider steady-state groundwater flow in saturated media satisfying the fundamental governing

equation [36]:

∇ · (K∇h) + q = 0 (2.3)

The piezometric head h [L] is the field variable of interest, K is the input hydraulic conductivity

[L/T] and q represents the source (or sink) terms [L3 T1].

The problem of this study consists of steady-state flow in a single-layer model representing a

heterogeneous confined aquifer. Initially, in this work, only Dirichlet boundary conditions are

considered and the groundwater head values are fixed in the cells in which the allocated head is

known. The model takes in an input image with three channels: head values, boundary markers

and spatially varying hydraulic conductivity (Figure 2.1). Dirichlet boundary conditions are

imposed on the four sides of the square domain. Head is constant at up to three random

locations across the domain, representing wells. The source term q is set to zero. The second

channel of the input image is a binary mask where the boundary markers identify the cells

with a fixed value, i.e. well locations and boundary cells as defined by the first source image.

The last input channel defines the heterogeneous media. The conductivity field K of the

highly-heterogeneous aquifer is a Gaussian random field [37] in which the values of hydraulic

conductivity are taken from a finite set of values.

This application example demonstrates the capability of an Attention U-Net to successfully

learn and simulate a common hydrologic situation using an image-to-image translation ap-

proach. The model is trained to predict the output fields consisting of the spatial components
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of the groundwater head in the domain. These predictions are compared against simulation re-

sults obtained by the fully-implicit finite difference model MODFLOW [26], here called “target

images”, bearing in mind that finite difference results provide an approximation of the partial

differential equation and are not error free.

Figure 2.1: Input and output channels for an example taken from the training dataset. (Left to
Right) The values of the piezometric head at the boundaries (input- channel #1); the location
of the boundaries (input- channel #2); the hydraulic conductivity field (input- channel #3);
the hydraulic head in the whole domain (output).

2.3.2 Network architecture

The Encoder-Decoder model is implemented as Attention U-Net [25, 28] and the employed

network architecture is shown in Figure 2.2 (for the case of a 64×64 input image, as used in our

computational tests). This is an encoder-decoder model with skip connections. In the down-

sampling half the inputs are encoded with a series of CNNs with kernels of size 4, stride of 2 and

padding set to 1. In each block, CNN is followed by a Batch Normalization layer, Dropout with

rate 0.5 and a Leaky ReLU with slope 0.3. As the number of filters increases to 512 and the

size of the input images reduces to 4x4, the encoder captures high-level abstract information.

In the up-sampling half the representations are expanded spatially and the number of channels

is reduced by a series of CNNs and up-sampling layers. The last up-sampling layer is followed

by a transposed convolution layer with a sigmoid activation function to ensure predicted values

between 0 and 1. Skip connections link the layers in the encoder with corresponding layers with

the same-sized feature map in the decoder [28]. The only difference between Attention U-Net

and the original U-Net architecture is that in the Attention U-Net network skip connections

are additionally passed through attention gates, which use additive soft attention [25]. The

attention coefficients are larger if the vector from the next lowest layer of the network in the up-

sampling path and the corresponding vector from the encoder going through the skip connection

are aligned. The weights are multiplied element-wise to the original vector which passes along

in the skip connection. In this way, the attention gate (AG) mechanism allows the U-Net to
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suppress irrelevant regions and focus more on target structures of varying size and shape. For

reproducibility full details of the network architecture are described in Appendix 3.A.

Figure 2.2: Attention U-net architecture as the surrogate model. The model has three input
channels and one output channel as shown illustrated in Figure 2.1. The first part is the down-
sampling half (left, in blue): the inputs are encoded with a series of CNNs with kernels 4x4
and stride of 2 and down-sampling layers. The second half (right, in yellow) is the up-sampling
part: the representations are expanded spatially and the number of channels is reduced.

2.3.3 Loss function

The aim of the regression task is to minimize the mean square error (MSE) between the gener-

ated samples and training data. The network computes the average loss across a mini-batch of

size Nb:

LMSE =
1

Nb

Nb∑
j=1

(
1

n

n∑
i=1

(yj,i − ŷj,i)
2

)
(2.4)

where y is the training image, ŷ is the image generated by the network and n denote the total

number of pixels of each image. The networks tries to be near the ground truth output in an

L2 sense.
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2.3.4 Network Training

The model is trained in supervised fashion. For the examples described in the following section

a dataset consisting of 32000 training data is used, and the development of the loss function is

compared with 8000 validation data. The size of the training dataset is big enough to ensure

the model’s ability to generalize and the generation time is less than 3 hours.

The losses are minimized using the Adam optimizer [20] with a starting learning rate is 8 ×

104. The network is trained for 130 epochs. Training converged after approximately 2 hours,

by training the models on an Intel(R) Xeon(R) GPU Tesla K80.

The quality of the trained network is evaluated by reporting the coefficient of determination

(R2) and the root mean squared error (RMSE) between each pixel value from the target image

and each pixel value from the generated image:

R2 = 1−
∑N

i=1∥yi − ŷi∥22∑N
i=1∥yi − ȳ∥22

, RMSE =

√√√√ 1

N

N∑
i=1

∥yi − ŷi∥22 (2.5)

where y is the target image, y is the mean of the target images of the dataset y =
∑N

i=1 yi
N ,

ŷ is the network prediction, and N is the total number of samples. The two selected metrics

between them yield complementary and representative information for the evaluation of the

trained model.

2.4 Results and Discussion

2.4.1 Model predictions

This section presents both qualitative and quantitative techniques to test the performance of

the model. The test case considers a square domain Ω = [0, 64] × [0, 64] consisting of 64

rows and 64 columns, with the width of each cell equal to one. The boundary is assumed to

be constant head boundary with head of 1, while the imposed head values in the wells lie in

the range [0.5,1). The number of wells, their locations and their values are randomly selected

and vary for each data sample. The conductivity field, K, of the highly-heterogeneous aquifer

is generated as a continuous Gaussian random field, which is then discretized into a finite set

of values. The heterogeneous hydraulic conductivity field has values belonging to 5 different
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classes (0.1, 0.325, 0.55, 0.775, 1.) which can be thought of as 5 soil types distributed within

the model. The model is trained with loss function in Equation 2.4 and the target response is

the finite difference simulation.

To illustrate the superior performance of the proposed Attention U-Net architecture against the

original U-Net network architecture, the U-Net network without attention gates is also trained

using the same training sets and parameters. At the end of the training, the Attention U-Net

network achieves a RMSE of 1.98 × 10-3 and a R2 score of 0.996, while those obtained by U-Net

are 3.78 × 10-3 and 0.986, respectively (Figure 2.3).

Figure 2.3: (Left to Right) Loss curves for U-Net (solid line) and Attention U-Net (dashed line);
RMSE and R2 scores of the model evaluated on the training dataset for U-Net and Attention
U-Net.

Figure 2.4 provides a comparison of generated images of groundwater head with the target

images for 5 random examples taken from the test dataset with a set size of 4000 samples. The

Attention U-Net model has learnt to map the flow patterns: it generates accurate predictions

for varied input samples that are unseen during training. The predictions match the target

images very well: the model predicts the correct value of groundwater head and the pattern of

its distribution. The model is able to identify and focus on salient image regions: the attention

coefficients are highest at the boundary of the domain and near the well locations, while they

are low in the areas with small head distribution gradients.

When trained without attention gates, U-Net can predict the values of the groundwater head

in the domain, but the generated outputs have some minor deviations especially at a distance

from the source area and the head gradients are smaller. The use of the attention mechanism

significantly improves the accuracy of the results.
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Figure 2.4: Comparison between the target sample (MODFLOW) and the learned solution
(prediction) for the U-Net and the Attention U-Net models for five randomly selected samples
from test dataset. (From top to bottom) The input spatially varying hydraulic conductivity; the
location of the input boundaries; the target prediction; the result for the U-Net; the result for
the Attention U-Net (A U-Net) ; the attention coefficients learnt by the Attention U-Net. The
images in each row share the same colour map with the values given in the rightmost column.
The contour lines in the target and prediction images represent the values: 0.9, 0.92, 0.94, 0.96,
0.98.
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Figure 2.5 visualizes the attention coefficients obtained from two test images with respect to

training epochs. During the first 20 epochs, the loss function rapidly decreases (Figure 2.3, top)

and the attention gates learn to identify the location of the wells, the boundaries and a rough

outline of the area with large head distribution gradients. By training the network for longer

epochs, the attention coefficients are gradually updated and refined to focus on areas with large

head distribution gradients.

Figure 2.5: Example of attention coefficients learnt by the Attention U-Net network across
different training epochs (10, 40, 130) for two random samples of the test dataset.

Appendix 3.B shows the 5 predictions with highest and lowest mean square error between the

generated samples and training data out of 500 random samples from the test dataset. The

errors are localized near the wells and the difference between the generated and target images

is almost negligible even for the samples with the highest error.

2.4.2 Model evaluation

To test the performance of the model, its computational power is compared with the MOD-

FLOW engine. Table 2.1 presents the processing time required for running the forward operators

averaged on 10 examples. In order to have a fair comparison between the two, the tests are

performed on the same hardware. The CPU used is Intel(R) Xeon(R) CPU @ 2.20GHz and

the GPU is Tesla K80. The results demonstrate that Attention U-Net requires less compu-

tational power than MODFLOW. This experiment reveals a 75% computational reduction for

the data-driven model, showing its capability to be used in forward simulations with less com-

putational demand than the state-of-the-art numerical solver. When applying the method to

computationally more expensive forward models, such as in large-scale non-linear system, the

computational cost of the neural network will remain low and significant computational savings
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can be expected.

Table 2.1: Wall-clock Time Comparison

Method Hardware Backend Wall-clock time
(s)

Finite Difference Intel(R) Xeon(R)
CPU @ 2.20GHz,
GPU Tesla K80

MODFLOW FloPy 0.184

Attention U-Net Intel(R) Xeon(R)
CPU @ 2.20GHz,
GPU Tesla K80

Tensorflow 0.046

Dropout at inference time can be considered equivalent to Bayesian approximation in deep

Gaussian processes and the neural network uncertainty can be quantified following the approach

proposed by Gal and Ghahramani [10]. At test time, the same input is passed 1000 times to the

network with random dropout; the mean and the standard deviation of the generated images

give an estimation of the prediction interval. Figure 2.6 presents the results for 3 random

samples: the uncertainty is null at the boundaries and highest in the vicinity of the wells, which

is also the region with highest errors. Compared to the finite difference solver, whose response

is deterministic, this method allows one to estimate the uncertainty of the model.

The generalization capabilities of the network are presented in AppendiX 2.C. The model is

able to extrapolate to out-of-distribution inputs, especially for different values of hydraulic

conductivity and less so for increasing number of wells.

It is worth pointing out that the effect of using attention gates on the uncertainty and generaliza-

tion capabilities of the model has not been addressed in the current study. Future work should

investigate this relation and consequently explore how generalization on out-of-distribution in-

put samples can be improved.

2.5 Conclusion and Future Work

This paper presents a convolutional encoder-decoder network to quickly calculate the steady-

state response of a groundwater system. The data-driven surrogate model is trained and tested

in different scenarios in which the groundwater head values in the whole domain need to be

inferred from the hydraulic head at the locations of the wells. The square domain is a Gaussian

random field with a spatially varying hydraulic conductivity. When trained by minimizing
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Figure 2.6: Model uncertainty: estimate of output mean and standard deviation of the surrogate
model for three randomly selected samples from test dataset. From left to right: the location
of the input boundaries; the input spatially varying hydraulic conductivity; simulated output
obtained with MODFLOW; estimate mean of 1,000 predicted output with the Attention U-
net surrogate; estimate of output standard deviation obtained with the data-driven surrogate
model.



CHAPTER 2. ATTENTION U-NET AS A SURROGATE MODEL FOR GROUNDWATER
PREDICTION 28

the departure from the target images, the proposed U-Net model easily learns the nonlinear

relation between inputs (hydraulic conductivity fields and boundary conditions) and output

(the hydraulic head field).

A significant contribution of the proposed framework is to incorporate attention gates, which

allow the network to identify and focus on the salient regions of the image. The visualization

of the attention coefficients demonstrate that the model has learnt to pay attention to areas

with large head distribution gradients. The attention mechanism improves the network’s ap-

proximation accuracy and reduces the model uncertainty. The application of the data-driven

surrogate method in solving forward simulations gives very accurate results but requiring much

less computational time than the state-of-the-art numerical solver.

One attractive property of this methodology is that the learning is carried out offline. Training

converged after less than 3 hours on an Intel(R) Xeon(R) GPU Tesla K80, which can be consid-

ered as a low training time compared to typical deep learning models. Once the model is trained,

its weights and parameters do not need to be further tuned. The choice of the hyperparameters

and the specificities of the U-Net architecture have been chosen based upon manual variation

(as opposed to systematic optimization) to give accurate results with low computational time

with little apparent sensitivity. Future work could include a more robust hyperparameter tuning

study, with a quantitative sensitivity analysis.

In the current study, only Dirichlet boundary conditions were applied to the borders of the

domain and the locations of the wells. An additional natural extension of our work is to

investigate how well the model generalizes to different and mixed types of boundary conditions.

Discretization is another important factor to consider. The present work has been limited to

data samples with the same resolution. Many questions remain open related to the discretization

of the sample data: e.g. the generalization of the trained model to different discretizations and

the amount of training data required if the model needs to be retrained for different resolutions.

The authors plan to further develop the presented model for more complex, larger and uncer-

tain systems. This could include time dependent problems, three dimensional simulations and

coupled transport through porous media – all of which are likely to require larger training data

sets and potentially deeper networks. Another potential extension is the incorporation of prior

information directly into the learning process by imposing a physics constraint in the loss func-
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tion. Physics-informed learning could increase the speed of inference while requiring less data

for the training process. Finally, in this study the network has been trained using synthetic

data but the potential use of the proposed model holds promises for the solution of practical

applications due to its data-driven nature.

2.A Appendix A: Network architecture

This appendix discusses details in the models used. Both U-Net and Attention U-Net have 4

downsampling layers and 4 upsampling layers (Table 2.2). Each layer consists of a series of

CNNs with kernels of size 4, stride of 2 and padding set to 1, followed by a Batch Normalization

layer and Dropout with rate 0.50. The nonlinear activation is Leaky ReLU with slope 0.3 for

the downsampling layers and ReLU for the upsampling ones (Table 2.3 and Table 2.4). Skip

connections concatenate the layers in the encoder with corresponding layers in the decoder.

The network of Attention U-Net additionally has attention gates which are implemented as

according to the work of Oktay et al. [25]. The total number of parameters of the network is

1.36 × 107, of which 7.35 × 106 are for the attention gates.

Table 2.2: Network architecture: internal layers, input and output feature maps, and number
of parameters.

Layers Input Shape Output Shape Parameters

Input Layer (64, 64, 3) (64, 64, 3) 0

Downsampling* (64, 64, 3) (32, 32, 64) 3072

Downsampling (32, 32, 64) (16, 16, 128) 131584

Downsampling (16, 16, 128) (8, 8, 256) 525312

Downsampling (8, 8, 256) (4, 4, 512) 2099200

Attention Gate [(4, 4, 1024), (8, 8, 256)] (8, 8, 256) 3412481

Upsampling (4, 4, 1024) (8, 8, 256) 2164992

Concatenate - Skip Connection [(8, 8, 256), (8, 8, 256)] (8, 8, 512) 0

Attention Gate [(8, 8, 512), (16, 16, 128)] (16, 16, 128) 3150337

Upsampling** (8, 8, 512) (16, 16, 128) 1066112

Concatenate - Skip Connection [(16, 16, 128), (16, 16, 128)] (16, 16, 256) 0

Attention Gate [(16, 16, 256), (32, 32, 64)] (32, 32, 64) 788737

Upsampling** (16, 16, 256) (32, 32, 64) 266816

Concatenate - Skip Connection [(32, 32, 64), (32, 32, 64)] (32, 32, 128) 0

Conv2DTranspose (32, 32, 128) (64, 64, 1) 2049

*without Batch Normalization and without Dropout

**without Dropout

Total parameters: 13,610,692
Trainable parameters: 13,604,548
Non-trainable parameters: 6,144
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Table 2.3: Second downsampling layer with input (32, 32, 64) with 128 filters of size 4x4, stride
equal to 2 and zero padding.

Layers Input Shape Output Shape

Conv2D (32, 32, 64) (16, 16, 128)

Batch Normalization (16, 16, 128) (16, 16, 128)

Dropout (16, 16, 128) (16, 16, 128)

LeakyReLU (16, 16, 128) (16, 16, 128)

Table 2.4: Last upsampling layer with input (16, 16, 256) with 64 filters of size 4x4, stride equal
to 2 and padding set equal to 1.

Layers Input Shape Output Shape

UpSampling2D (16, 16, 256) (64, 64, 256)

Conv2D (64, 64, 256) (32, 32, 64)

Batch Normalization (32, 32, 64) (32, 32, 64)

Dropout (32, 32, 64) (32, 32, 64)

ReLU (32, 32, 64) (32, 32, 64)

2.B Appendix B: Worst and best Model

This appendix shows the 5 predictions with highest and lowest mean square error out of 500

random samples from the test dataset. The samples with highest errors present multiple wells

with wide plumes which cover most of the domains (Figure 2.7); on the contrary, the best

predictions are those in which the salient region is limited (Figure 2.8). In all cases, highest

errors are localized near the wells. It is worth noticing that even when the error is higher, the

MSE is in the order of 10-5 and the difference between the generated and target images is almost

negligible.

Figure 2.7: Worst 5 predictions out of 500 test samples (highest MSE values)
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Figure 2.8: Best 5 predictions out of 500 test samples (lowest MSE values)

2.C Appendix C: Generalization

So far the model has been both trained and tested for different scenarios in which the ground-

water head values in the whole domain is inferred from the piezometric head at the locations

of up to three wells and the spatially varying hydraulic conductivity has values belonging to

5 different classes between 0 and 1. Here we consider testing the model on cases that have

different numbers of well locations and different values for the hydraulic conductivity between

0 and 1. Figure 2.9) shows the MSE error for the model tested on four new input distributions.

The figure shows that the model is able to generalize well given different values of the hydraulic

conductivity, but less so for increasing number of wells.
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Figure 2.9: Generalization to new input distributions. MSE error when the model is evaluated
with hydraulic conductivity having 3 values; hydraulic conductivity values belonging to 10
intervals; 4 wells in random locations the domain; 10 wells in random locations the domain.
Each test set contains 1000 samples.
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Chapter 3

Understanding the Efficacy of U-Net

& Vision Transformer for

Groundwater Numerical Modelling

Abstract

This paper presents a comprehensive comparison of various machine learning models, namely

U-Net, U-Net integrated with Vision Transformers (ViT), and Fourier Neural Operator (FNO),

for time-dependent forward modelling in groundwater systems. Through testing on synthetic

datasets, it is demonstrated that U-Net and U-Net + ViT models outperform FNO in accuracy

and efficiency, especially in sparse data scenarios. These findings underscore the potential of

U-Net-based models for groundwater modelling in real-world applications where data scarcity

is prevalent.

3.1 Introduction

Groundwater numerical models, such as MODFLOW [8], are crucial for water resource man-

agement, although they are computationally demanding. To alleviate this, surrogate modelling

through data-driven methods offers efficient approximations of these complex numerical tech-

niques.



CHAPTER 3. UNDERSTANDING THE EFFICACY OF U-NET & VISION
TRANSFORMER FOR GROUNDWATER NUMERICAL MODELLING 38

Neural Operators [12, 15], particularly the Fourier Neural Operator (FNO) [11], have been at

the forefront of recent advances, having shown potential to approximate arbitrary continuous

functions. However, the computational demand of FNO is particularly high during training

phase while these neural operators require architectural enhancements to deliver promising

results in subsurface problems [17, 9]. This is evident in the work of Wen et al. [17], where

the integration of FNO with U-Net architecture showed improved accuracy, speed, and data

efficiency in multiphase flow problems. However, Gupta and Brandstetter’s work [6], showing

that U-Net outperforms FNOs across various fluid mechanics problems, raises a question about

the necessity of neural operators when the vanilla U-Net architecture already exhibits remarkable

performance.

Recently, transformers [16] have seen considerable success in various fields, including physical

systems [2, 10], for which the datasets are typically smaller compared to other domains. Only

one study explores the use of transformers in groundwater modeling [13], demonstrating that

the models were outperformed by both GRU and LSTM models to predict groundwater levels

across various stations in France with meteorological and hydrological data.

Finally, the integration of U-Net with Transformers, as exemplified in studies like TransUNet [3]

and ViTO [14], has demonstrated their utility across a broad range of applications, particularly

in the field of medical image segmentation and operator learning for inverse PDE problems.

Yet, the applicability of these combinations in addressing time-dependent forward problems,

real-world data scenarios, and in situations with sparse data, remain areas yet to be fully

explored.

Several studies, such as the one by Brakenhoff et al. [1, 13], primarily focus on individual time

series when analysing the impact of various hydrological stressors, including pumping rates,

precipitation excess, and river stage variations, on groundwater levels of individual monitoring

wells. While this approach provides valuable insights, it does not account for spatial correla-

tions, thereby limiting its use to existing time series or monitoring wells. Similarly, previous

comparisons have been predominantly limited to specific models like LSTM, CNNs and NARX

in the context of groundwater level forecasting [18], leaving room for broader explorations.

In this paper, we present a comprehensive comparison among models—specifically U-Net, U-Net

integrated with Vision Transformers (U-Net+ViT), and Fourier Neural Operator (FNO)—for
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their efficacy in modeling time-dependent forward and inverse problems in groundwater systems.

We test our model extensively on synthetic datasets, simulating conditions from the Overbetuwe

region in the Netherlands, including sparse data scenarios. We show that both U-Net and U-

Net+ViT are particularly well-suited to these important sparse data scenarios, with the addition

of the Transformer providing enhanced predictive capability in many cases.

3.2 Methodology

3.2.1 Example of study site and data

This subsection provides context and rationale for our study via an example case study based

upon the polder region of Overbetuwe in the Netherlands (Figure 3.1). This region showcases

the characteristic Dutch system of water management where the area is divided into several

polders in a mix of agriculture, nature, and urban environments. Alongside its sparse data and

heterogeneous soil, these unique characteristics underscore the inherent complexities of water

management in similar settings, making this dataset a suitable choice for our research. The

subsoil is primarily composed of clay and sandy clay, with soil properties being determined via

borehole and cone penetration tests. The study area features numerous observation wells for

monitoring groundwater heads while well fields (indicated as groundwater usage facilities in

the figure) are utilized for the extraction of drinking water. The work of Brakenhoff et al. [1]

considers a dataset consisting of 250 head time series, with daily recordings starting from the

year 1990 and drawdown attributed to the extraction from up to four well fields.

For the purposes of this study, we employ synthetic data to validate the proposed methodology,

with the intention to subsequently apply the validated method to the real-world data of the

Overbetuwe region. Figure 3.2 represents a sample of the high-fidelity labeled dataset, which is

constructed using the U.S. Geological Survey (USGS) finite-difference flow model, MODFLOW.

The model is composed of a single-layer representation of a confined aquifer with a 128 × 128

grid. The aquifer’s heterogeneity is reflected through varying horizontal hydraulic conductivity

within the bounds k ∈ [0.1, 0.5] m/d. The hydraulic conductivity fields in our study are created

using random fields which are then thresholded to delineate different classes. A maximum of

ten pumping wells are extracting water with variable rates in the range Q ∈ [0, 30] m3/d over

a simulation period of T = 10 days. The pumping wells are located in random locations which
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Figure 3.1: A representation of the target study area located in the polder region of Overbetuwe,
Netherlands. [4]

vary for each sample. The boundary conditions are delineated as Dirichlet, with the head equal

to zero, mimicking a polder encircled by ditches where a stable water level is maintained through

a comprehensive network of pumping stations.

The datasets consist of Ntrain = 5000 training instances and Ntest = 1000 testing instances. To

mirror the inherent sparsity of real-world data, a data selection strategy is adopted for the test

dataset. The locations of the boreholes for estimating the hydraulic conductivity are chosen

following a radial distribution pattern, and a helical pattern is used for the wells monitoring

hydraulic head (Figure 3.2).

3.2.2 Architectures

The architectures of the three models under comparison in this study encompass the U-Net

structure, a U-Net with attention mechanism in the bottleneck, and the Fourier neural operator

(FNO).

The U-Net architecture is designed with an encoder-decoder structure where the decoder receives

the upsampled feature map, which is then concatenated with the corresponding feature map

from the encoder through a skip connection. Detailed diagrams of the U-Net encoder and

decoder can be found in Figures 3.6 and 3.7 in Appendix 3.A. The encoder consists of three

bottleneck blocks, where each block utilizes three layers of Conv2d, Instance Normalization,
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Figure 3.2: An test sample of the high-fidelity dataset constructed using MODFLOW. The first
column showcases the heterogeneous hydraulic conductivity, the second column presents the
randomly positioned pumping wells, and the third column depicts the resulting hydraulic head.
The red dots (column 1 and 3) represent a selection of data points—following radial and helical
patterns, respectively—emulating the sparse observations in real-world scenarios.

and GELU activation to extract spatial features. These blocks increase the number of channels

by a factor of 2 and perform downsampling with a stride of 2. The decoder is composed of

a series of upsampling blocks, where each block consists of a bilinear upsampling operation

(Upsample), followed by a double convolution operation. Each convolution within the decoder

is followed by Instance Normalization and GELU activation function. The bottleneck consists

on a single convolutional layer. In the time-dependent scenario, the time series data of the

historical pumping rates is processed through two layers of feed-forward neural network (FNN)

prior to being concatenated to the input for the latent space representation (Figure 3.6).

The second model, here called UNet+ViT, employs the Vision Transformer (ViT) [5], in the

latent space representation of the U-Net. This implementation is based on the methods used in

TransUNet [3] and ViTO [14]. The input is tokenized into a sequence of flattened 2D patches,

each of size 1×1. Positional information is retained by employing trainable convolutional pro-

jection to learn and add specific position embeddings to the patch embeddings. The structure

of the Transformer includes L blocks, with each block comprising Multi-Head Attention (MSA)

and FNN. This configuration involves the use of 2 blocks, each with 2 Multihead Self-Attentions,

and a FNN composed of 128 neurons. For a more detailed visualization of the Vision Trans-

former, attention block, and multihead attention, please refer to Appendix 3.A, Figure 3.8.

The Fourier neural operator (FNO) [11] model leverages the fast Fourier Transform to param-

eterize the integral kernel directly in the Fourier space. The implementation of FNO for the
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2D Darcy Flow problem as presented in [11] is followed in this study. The total amount of

parameters of FNO corresponds to 2.38 million, that is 15 times more than UNet+ViT (151k)

and 17 times more than UNet (137k).

3.3 Results

3.3.1 Forward problem with sparse observations

This section presents the prediction of the hydraulic head at sparse monitoring wells after a

constant 10-day pumping period under two different training conditions. We employ distinct

sampling strategies for both input and output data in our methodology. Our training data is

sampled from a regular quadratic grid, while for testing we have explored other arrangements,

such as radial and helical, to understand their potential impact on the prediction performance.

In the first scenario, training is conducted using sparse data, with a spacing of 20 grid points for

the input hydraulic conductivity field and a spacing of 8 for the output hydraulic head. Testing

is then carried out on sparse data points, following the radial and helical patterns delineated

in subsection 3.2.1. The resulting root mean square error (RMSE) is found to be 5.2 × 10−2,

3.5× 10−2 and 8.1× 10−2 for the vanilla U-Net, the UNet+ViT models and FNO respectively.

These results underline the superior performance of the UNet+ViT model in handling sparse

data, exhibiting a lower RMSE compared to both the vanilla U-Net and the FNO models.

In contrast, when training is performed using the entire field and testing on the same sparse

dataset, the error marginally escalates to 3.9×10−1 for FNO, 3.8×10−1 for UNet and 3.6×10−1

for UNet+ViT model. This outcome is anticipated considering the training set exhibits sparsity

in the first scenario, but not in the latter. Additionally, Figure 3.3 displays the prediction over

the entire domain, resulting in a lower RMSE of 1.0×10−2 for FNO, 1.7×10−2 and 1.9×10−2 for

the vanilla U-Net and UNet+ViT models, respectively. The FNO model, while superior when

dealing with full data, exhibits the highest predictive error under sparse data observations.

These results highlight the practical advantages of the U-Net and especially UNet+ViT model

in real-world scenarios for which data sparsity is common.

It should be noted that traditional simpler neural networks and other machine learning tech-

niques may not provide adequate solutions for this specific problem. This assertion is backed by

a comparison of the results from a fully connected neural network, a linear regression model and
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a random forest, detailed in Appendix 3.B. Despite the substantial number of trainable param-

eters, reaching 51.17 million, inherent to the fully connected neural network and the application

of linear regression and random forest, these methods significantly underperform compared to

the U-Net, the UNet+ViT models, and FNO.

Figure 3.3: Predictions over the entire domain are shown, with the UNet+ViT model exhibiting
a RMSE of 1.9 × 10−2. The figure demonstrates the model’s ability to accurately capture the
spatial distribution of the hydraulic head across the entire domain.

3.3.2 Identification of pumping wells

In this section, we focus on an inverse problem: specifically the identification of pumping wells.

This task requires determining the locations and rates of pumping wells based on the observed

hydraulic heads. Throughout these experiments, we employ a single hydraulic conductivity

field, which, while spatially varying, remains identical across all samples within the dataset.

In evaluating the performance of our models, we use both RMSE and accuracy. The RMSE

calculates the average difference between the true and the predicted value for each pump location

in the test dataset, giving a quantitative measure of the prediction error. Complementing this,

the accuracy was determined by counting the proportion of correct pump predictions, where a

prediction is considered correct if the predicted and actual pump locations align. This gives a

sense of how often the model correctly identifies the location of pumps.

The U-Net model performs optimally, achieving an RMSE of 5.6 × 10−2. Interestingly, the

integration of the Vision Transformer with the U-Net model does not confer any additional

precision in this scenario, yielding a near RMSE of 6.1 × 10−2. The FNO model exhibits a

higher RMSE of 1.1× 10−1, indicating a somewhat lower accuracy in identifying the pumping

well locations.



CHAPTER 3. UNDERSTANDING THE EFFICACY OF U-NET & VISION
TRANSFORMER FOR GROUNDWATER NUMERICAL MODELLING 44

To visually illustrate these results, Figure 3.4 presents a test sample using the U-Net + ViT

model. It demonstrates an accuracy of 93% in locating the pumps, calculated across the entire

test dataset. The figure visualizes the model’s ability to accurately identify the positions and the

pumping rate of the wells. In comparison, the FNO model achieved a notably lower detection

accuracy of 79% in the same task.

Figure 3.4: Test sample results for the identification of pumping wells using the U-Net + ViT
model. The model accurately identifies both the positions of the pumping wells with an accuracy
of 93 % across the entire test dataset.

3.3.3 Example results for time series data

This section unveils the results achieved from the analysis of time series data, starting with

a simplified scenario, for which the inputs are the varying hydraulic conductivity field and

the pumping rate of a single pump which varies over a 10-day simulation period. Results are

evaluated in terms of root mean square error (RMSE) with a focus on the comparison of different

configurations of the U-Net architecture with transformers. Figure 3.5 presents a comparison

of results over 5 time frames for the U-Net with the Vision Transformer under autoregressive

testing conditions.

The RMSE for each method was calculated to quantify the models’ performance. The U-Net

architecture alone yielded an RMSE of 1.79× 10−2. When supplemented with a Vision Trans-

former, consisting of 2 attention blocks and 2 heads, the performance improves, registering an

RMSE of 1.67×10−2. However, increasing the complexity of the Vision Transformer to 8 blocks

and 8 heads did not further improve the performance, instead, it led to a slight degradation

in the RMSE (1.77 × 10−2). Adding an Axial Transformer [7] to the U-Net architecture also

did not enhance the performance, yielding an RMSE of 1.83× 10−2. These results suggest that
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Figure 3.5: Depiction of autoregressive testing results from the UNet+ViT model over the
final five frames of a ten-frame test sequence. This sequence simulates a single variable-rate
pump operating over a ten-day period within a region characterized by a diverse hydraulic
conductivity field. The top row presents the ground truth, while the lower row displays the
predicted outcomes. Contour lines in the images represent groundwater levels, which are color-
coded for enhanced visual clarity. Each successive frame is employed as input to the U-Net-
Vision Transformer system, aiding in the prediction of the subsequent frame.

while adding a Vision Transformer to the U-Net architecture leads to performance improvement,

increasing the complexity of the latent space does not necessarily do so.

3.4 Conclusion

This paper explores and evaluates the capabilities of different machine learning models, with

a particular focus on U-Net, U-Net integrated with Vision Transformers (ViT), and Fourier

Neural Operator (FNO), in the context of predicting hydraulic head in groundwater studies.

Our analysis and testing, conducted on synthetic datasets designed to simulate the conditions

from the Overbetuwe region in the Netherlands and including scenarios with sparse data, firmly

establish that both U-Net and U-Net + ViT models are particularly adept at dealing with such

tasks. Importantly, these models are also preferred due to their fewer requisite parameters.

Specifically, in the case of sparse observation scenarios, the vanilla U-Net and the U-Net +

ViT models outperformed the FNO model. In particular the performance of the UNet+ViT

model was superior when handling sparse data, highlighting the potential of the model in real-

world applications, where data scarcity is a common issue. The U-Net model demonstrated
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optimal performance in identifying pumping wells. Interestingly, the integration of the Vision

Transformer with the U-Net model did not confer any additional accuracy in this scenario.

As for the analysis of time series data, supplementing the U-Net architecture with a Vision

Transformer improved the model performance, recording an RMSE of 1.67 × 10−2 compare to

1.79× 10−2 of the vanilla U-Net. However, increasing the complexity of the Vision Transformer

did not further enhance the model performance, indicating that a more complex architecture

does not necessarily yield better results.

Future research will involve applying this validated methodology to real-world data, beginning

with the Overbetuwe region in the Netherlands. This will offer an opportunity to further validate

and refine the model, accounting for the sparsity and uncertainties inherent in real-world data.

3.A Appendix A

This appendix provides detailed diagrams of the model structures.

3.B Appendix B

This appendix sets out to examine whether simpler machine learning models, specifically a fully

connected neural network, a linear regression model, and a Random Forest model, can achieve

the same level of accuracy as more advanced models like the U-Net, the UNet+ViT models,

and FNO in predicting groundwater levels.

The particular Random Forest model tested here used 30 estimators. The fully connected

neural network, employed for this comparison, comprises three hidden layers, each containing

1000 nodes and using ReLU activation functions. The model holds an impressive count of 51.17

million trainable parameters.

Unfortunately, none of the models was able to predict accurately the groundwater levels neither

capturing the location of the wells. Specifically, the fully connected neural network and the

linear regression model yielded high RMSEs of 1.17× 10−1 and 1.24× 10−1, respectively. The

Random Forest model fared slightly better, achieving a lower RMSE of 1.02× 10−1, but it still

fell short of the U-Net, the UNet+ViT models, and FNO.

Figure 3.10 visually contrasts the predictions of these simpler models gainst the ground truth.
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Their significant underperformance becomes evident when compared to more sophisticated mod-

els. For a comparison of these results with accurate outcomes produced by the UNet+ViT

model, the reader is directed to Figure 3.3.
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Figure 3.6: U-Net Encoder: The encoder consists of 3 bottleneck blocks, each comprising 3
convolutional blocks (Conv2d, Instance Normalization, and GELU). These blocks increase the
channel dimension by a factor of 2 and perform downsampling with a stride of 2, extracting spa-
tial features. In time-dependent scenarios, the pumping rate time series undergoes processing
through a two-layer feed-forward neural network. The resulting processed data is then concate-
nated with the input, creating the latent space representation.
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Figure 3.9: These figures illustrate the testing results using a fully connected neural network,
a linear regression model, and a Random Forest model. The leftmost column row of each
figure presents the ground truth, while the remaining columns display the predicted outcomes
generated by each respective model. Contour lines represent groundwater levels, color-coded
for clarity.
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hydraulic head

hydraulic head

hydraulic head

Figure 3.10: These figures illustrate the testing results using a fully connected neural network,
a linear regression model, and a Random Forest model. The leftmost column of each figure
presents the ground truth, while the remaining columns display the predicted outcomes gen-
erated by each respective model. Contour lines represent groundwater levels, color-coded for
clarity.
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Chapter 4

Developing a cost-effective emulator

for groundwater flow modeling using

deep neural operators

Abstract

Current groundwater models face significant challenges in their implementation due to heavy

computational burdens. To overcome this, our work proposes a cost-effective emulator that

efficiently and accurately forecasts the impact of abstraction in an aquifer. Our approach uses

a deep neural operator (DeepONet) framework to learn operators that map between infinite-

dimensional function spaces via deep neural networks. The goal is to infer the distribution of

hydraulic heads in a confined aquifer in the presence of a pumping well. We successfully tested

the DeepONet framework on multiple problems, including forward time-dependent problems,

an inverse analysis, and a nonlinear system. Additionally, we propose a novel extension of the

DeepONet-based architecture to generate accurate predictions for varied hydraulic conductivity

fields and pumping well locations that are unseen during training. Our emulator’s predictions

match the target data with excellent performance, demonstrating that the proposed model can

act as an efficient and fast tool to support a range of tasks that require repetitive forward

numerical simulations or inverse simulations of groundwater flow problems. Overall, our work

provides a promising avenue for developing cost-effective and accurate groundwater models.
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4.1 Introduction

The computational efficiency of existing numerical models for groundwater becomes an issue

when dealing with large-scale or highly nonlinear systems, particularly where decision-making

relies on real-time simulation inference. The nonlinear nature of many groundwater problems

necessitates the use of an iterative process to solve equations, while the computational cost

can escalate rapidly when re-calibrating the initial model to incorporate new observational

data [5]. Consequently, the heavy computational burden of groundwater models can limit

their implementation in decision-making processes, as is the case for the National Water Model

(NWM) used to manage drought risk in the Netherlands, for example [26].

In recent years, the use of deep learning techniques for functional approximation has gained

significant attention due to their potential in developing efficient low-fidelity models that can

approximate expensive numerical methods in a wide range of applications [18, 31, 20, 1, 15].

One area where such approximations have been successful is in using deep convolutional neural

networks (CNNs) as surrogates for dynamic multiphase flow problems [33, 28, 27, 38, 34, 32].

The deep CNN-based surrogate models treat the problem as an image-to-image regression,

where the input and output functions are represented as images and the deep CNNs learn the

mapping between them. The resulting models are capable of accurately predicting pressure

and saturation fields with highly heterogeneous aquifer conductivity fields at arbitrary time

instances. However, employing deep CNNs as surrogate models has several challenges. It is

limited to problems where the input and output functions are defined on a lattice grid, and the

training data encompasses all grid values within the computational domain. The solution cannot

be evaluated at any arbitrary query point lying within the trained domain. The accuracy of the

model and its architecture both depend on the mesh resolution, meaning that the model must be

retrained for different mesh resolutions to maintain its accuracy [39]. Furthermore, independent

simulations need to be performed for every different domain geometry, input parameter set, or

initial/boundary conditions (I/BCs).

For the generalization of the solution, we need to look into higher levels of abstraction to learn

the mapping from an input function space to an output function space (and not a vector space

as in functional regression). To that end, the universal approximation theorem for operators [3]

is suggestive of the potential application of deep neural networks in learning nonlinear opera-
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tors from data. The neural operators, introduced in 2019 in the form of deep operator networks

(DeepONet)[24], learn the mapping between two infinite dimensional Banach spaces, providing

a unique simulation framework for real-time prediction of multi-dimensional complex dynam-

ics. Once trained, the DeepONet is discretization invariant, which means the same network

parameters are shared across different parameterizations of the underlying functional data, and

hence can be used to obtain the solution at any arbitrary spatial and temporal location (inter-

polation). Furthermore, a recent theoretical work [21] has shown that DeepONet can break the

curse of dimensionality in the input space.

In this paper, we demonstrate through multiple problem setups that DeepONet provides fast

and accurate inferences for both explicit as well as implicit operators and hence can be employed

as an efficient surrogate model in approximating various quantities of interest in the domain

of subsurface flows. The reader can refer to section 4.3 for details of the method and an

overview of related works. Specifically, we employ the DeepONet framework to design an

efficient emulator model to estimate the impact of abstraction in the distribution of hydraulic

heads in a heterogeneous confined aquifer. We demonstrate, for the first time, that DeepONet

can be applied effectively to groundwater problems and we illustrate some of the potential

benefits of this learning approach in the domain of subsurface flows. The proposed method can

efficiently learn solutions to both the forward and inverse problems, the latter being notoriously

difficult and time-consuming with traditional methods. We successfully employ DeepONet for

fast inference of a nonlinear system, which would require the use of iterative methods using

standard numerical solvers. Finally, we propose a modification to the vanilla DeepONet in

order to successfully predict the distribution of spatially varying groundwater heads given a

well that is randomly positioned in the heterogeneous aquifer.

The paper is organized as follows. Section 4.2 discusses the problem statement for groundwater

flows and the experiments analyzed in this study: i) mapping from the hydraulic conductivity

field to the hydraulic head, ii) the mapping from a pumping well location and the hydraulic

conductivity field to the hydraulic head, iii) time-dependent forward problems mapping from the

pumping rates to the hydraulic head, iv) a nonlinear problem with a head-dependent boundary

condition, and finally v) learning an inverse mapping from the hydraulic head to the hydraulic

conductivity field. Section 4.3 summarizes the DeepONet framework and provides an overview

of the model setup, along with training of the surrogate model. In section 5.3, we apply the
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neural operator to the experimental setups discussed above while section 4.5 summarizes the

findings and outlines the future directions.

4.2 Problem statement

This work focuses on learning the non-linear operator that is represented by the solution of

the governing equation of groundwater flow employing a neural operator. In this section, we

introduce the partial differential equation (PDE) governing the groundwater flow and the com-

putational limitations of a typical numerical solver. We then discuss the experiments which

have been designed to illustrate the range of applicability of the proposed method.

4.2.1 Governing Partial Differential Equation

The governing PDE that defines the movement of groundwater on a two-dimensional space

combines Darcy’s Law and the principle of conservation of mass [13], and is written as:

Ss
∂h

∂t
−∇ · (K∇h) = qs, (4.1)

which is constrained by certain boundary conditions. In Equation 4.1, h is the hydraulic head

[L], K is spatially varying hydraulic conductivity field [L/T], qs is the volumetric flux of ground-

water sources and sinks per unit volume [1/T], Ss is the specific storage [1/L], and t [T] is time.

A table describing all the notations can be found in 5.E.

The U.S. Geological Survey’s MODFLOW [13] has been a broadly used in groundwater flow

simulation for over 30 years, widely adopted by researchers, consultants, and governments to

analyze aquifer behaviors and manage water resources [14, 5]. The model enables assessment

of impacts from changes in water withdrawals, recharge rates, and new source introductions.

However, its computational demands can be significant for detailed models over extended pe-

riods, especially when solving optimization problems with the aim of maximizing groundwater

withdrawals given some constraints.

Furthermore, solving an inverse problem for inferring aquifer material properties requires mul-

tiple simulations either to discover the missing physics or to calibrate the free parameters of the

formulated inverse problem. Such computational burden motivates the development of deep

neural network-based emulators to provide predictions with acceptable accuracy while substan-
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tially reducing the computational costs at run time. In this work, we have considered a deep

neural operator-based surrogate model that is a viable alternative to numerically approximating

the governing equation for multiple input functions and thus efficiently forecast the impact of

abstraction in an aquifer.

4.2.2 Operator learning task

An operator, denoted by G, is a mathematical function that takes one or more functions as

input and produces another function as output. Given an input function u(x) ∈ Rdx and an

output function v(x) ∈ Rdy , the operator G is defined as G : u(x) ∈ Rdx 7→ v(x) ∈ Rdy , where

Rdx and Rdy represents the dimensionality of the inputs and the outputs, respectively, and

x denotes the spatial and temporal coordinates which define the output space. A PDE may

be regarded as an operator: the input space consists of the functions required to specify the

problem definition, such as initial and boundary conditions (ICs/BCs), forcing functions, and

coefficients (which may vary spatially and temporally). The output space is the Sobolev space

in which the solution of the PDE lies. Our goal is to approximate the PDE introduced in 4.2.1

with a neural operator Gθ where θ collectively represents the parameters of the neural operator,

the weights, W and the biases, b. The mathematical formulation of DeepONet is introduced

in subsection 4.3.1. We demonstrate the effectiveness of approximating subsurface flows with a

neural operator using five computational experiments which are introduced in the next section.

4.2.3 Computational Experiments

The focus of this study is to develop a fast emulator for groundwater flow. We aim to demon-

strate that the proposed framework can be used to efficiently estimate the pumping-induced

change of the groundwater level, relative to the level before pumping, in a highly heterogeneous

confined aquifer (Experiments E1 and E2). Furthermore, we employ the framework for solv-

ing time-dependent forward problems (Experiments E3) and nonlinear systems (Experiment

E4), where the solution is conventionally obtained through an iterative process, and hence is

heavily time-consuming. Finally, we apply the model to inverse problems (Experiment E5),

which require a large number of forward numerical simulations if a traditional numerical solver

is employed. This section introduces the computational experiments (E1 - E5) designed in the

context of subsurface flow presented in subsection 4.2.1. A visual description of different ex-

periments considered in this work is presented in Table 4.1. Details of the data generation to
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consider heterogeneity within the aquifer are presented in 4.B.

The description of the experiments, E# are as follows.

• E1: Forward problem for fixed well location, Gθ : K(x) 7→ h(x): The goal of

this experiment is to learn the solution operator, Gθ that maps the spatially varying

conductivity field, K(x) to the hydraulic head, h(x) at some subsequent timestep. In other

words, the learning goal is to infer the distribution of hydraulic head in a heterogeneous

confined aquifer with one fully penetrating well that starts pumping at a constant rate qs

at t = 0. The solution is the prediction of the distribution of hydraulic head h(x) at the

time instance t = T given a spatially varying hydraulic conductivity field K(x) and under

the assumption of no prescribed flows or heads along the boundary of the domain.

• E2: Multiple input functions, Gθ : [K(x), xP ] 7→ h(x): The goal of this experiment is

to learn a solution operator to approximate the hydraulic head at a time T , given spatially

varying hydraulic conductivity K(x) and the location of one or multiple pumping wells

xP as input functions.

• E3: Time-dependent Forward problem, Gθ : q(t) 7→ h(x, t): The aim of this ex-

periment is to learn the operator Gθ that maps the temporal variation in the pumping

rate, q(t), to the hydraulic head h(x, t) at different points in the domain and at different

time instances. The hydraulic conductivity is assumed to be constant and the same for

all samples. The well locations are also fixed. Three cases are considered in this experi-

ment: (1) Prediction at a single point when having one pumping well (elaborated in 4.C);

(2) Prediction over the whole 2D domain when having one pumping well; (3) Prediction

over the whole 2D domain when having three pumping wells, each with its own variable

pumping rate. In each case, the goal is to predict the hydraulic head distribution over

time, given the varying pumping rate(s) as input.

• E4: Nonlinear Forward problem, Gθ : K(x) 7→ h(x): The scenario of this experiment

is that a pumping well is located in the center of the domain and a head-dependent well

is fixed at a different location within the domain. While a pumping well has specified

flow boundaries, i.e., the flow is not a function of the head, the specified flow of the

head-dependent well is calculated as a function of the hydraulic head, i.e., qs is qs(h) in



59 4.3 SOLUTION OPERATOR APPROXIMATION METHODS

Equation 4.1. The goal of learning the operator G is to approximate the mapping between

the hydraulic conductivity K(x) of the heterogeneous aquifer and the distribution of

hydraulic head h(x) directly. In a traditional solver, nonlinearities are resolved using an

iteration loop by repeatedly formulating and solving the governing equation using heads

from the previous iteration until the residual of the governing equation is within a specified

tolerance. The proposed neural operator-based solution eliminates the need for iterative

solvers.

• E5: Inverse problem, Gθ : h(x) 7→ K(x): The aim of this experiment is to learn

an inverse operator that approximates the spatially varying hydraulic conductivity field

K(x) given the hydraulic head on a domain at different time instances. Understanding

that the problem does not have a non-trivial solution, we acknowledge that having more

observations of the solution field increases the chances of finding a unique solution that

the model converges to. To constrain the solution space in the inverse modeling process,

we incorporate sparse observations of hydraulic conductivity K0(x) as additional inputs.

Moreover, in recognition of the fact that hydraulic conductivity is often observed at sparse

points in reality, we have conducted additional tests on the model. Specifically, while we

trained the model using the whole input data, during the testing phase we only provided

sparse input hydraulic conductivity data. This experimental setup represents a more

realistic scenario where sparse observations of hydraulic conductivity are available and

thus highlights the utility of the model in such situations.

4.3 Solution operator approximation methods

In this section, we introduce the architecture of the deep operator network, DeepONet, and

discuss some of the recent works where neural operators have been employed to solve PDEs.

Consider two separable Banach spaces, u = u(Ω;Rdx) and v = v(Ω;Rdy), where Ω is a bounded

open set in RD, and Rdx and Rdy are the dimensionality of the inputs and the outputs, respec-

tively. The nonlinear map G, arising from the solution of a time-dependent PDE (Equation 4.1)

at some time T , maps from u to v where, for example in E1, u is K(x) and v is h(x, t = T ).

The objective is to approximate the nonlinear operator G through a parametric mapping as

G : u × Θ → v or Gθ : u → v, where Gθ represents the parametric mapping and Θ is a

finite-dimensional parameter space. The optimal parameters θ∗ are found by training a neural
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Experiment Input Function u(x) Output Function v(x)

E1: Forward problem

K(x) h(x)

E2: Multiple input functions

[K(x), xP ] h(x)

E3: Time-dependent problem

q(t)

h(x, t)

E4: Nonlinear system

K(x)
h(x)

E5: Inverse problem

h(x) K(x)

Table 4.1: A schematic representation of the experiments under consideration in this work.
The input/output functions and representative plots to demonstrate the task that the operator
learns are shown.

operator using backpropagation on a dataset of {uj ,vj}Nj=1 generated on a discretized domain.

4.3.1 Deep Operator Network

The universal approximation theorem for operators proposed by Chen and Chen [3] states that

shallow neural networks, of sufficient width, are capable of approximating any nonlinear con-

tinuous functional or operator to arbitrary accuracy. This theorem is based on a particular

neural network model which is composed of two concurrent sub-networks and the outputs of
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the networks are combined by an inner product. Motivated by the universal approximation

theorem, the deep operator Network (DeepONet) [24] was proposed to learn the mapping be-

tween Banach spaces with infinite dimensions. The DeepONet architecture consists of two

deep neural networks (DNNs): the branch net encodes the input function, u, at fixed sensor

points, {x1, x2, . . . , xm}, while the trunk net encodes the information related to the spatiotem-

poral coordinates, ζ = {xi, yi, ti}, at which the solution operator is evaluated to compute the

loss function. The learning process takes place in a general setting, meaning that the sen-

sor locations (xi
m
i=1) at which the input functions, u are evaluated don’t have to be evenly

spaced, but they must be consistent across all input function evaluations. The branch net takes

[u(x1), u(x2), . . . , u(xm)]T as input and outputs [b1, b2, . . . , bq]
T ∈ Rq, while the trunk network

takes ζ as input and produces [t1, t2, . . . , tq]
T ∈ Rq as output. These two subnetwork outputs

are combined through a dot product to produce the desired result. A bias (b0 ∈ R) is added in

the final stage to increase expressiveness, resulting in G(u)(ζ) ≈
∑q

i=k bktk + b0. The optimized

values of the trainable parameters θ can be obtained by minimizing a mean square error loss

function. Figure 4.1 illustrates the architecture of the vanilla DeepONet proposed in [24].

Figure 4.1: Schematic representation of the network architecture of vanilla DeepONet employed
in this work. In this work, we have considered a CNN as a branch net and a fully connected
feed forward neural network as trunk net. In the figure, ”fc” refers to fully connected blocks
and ”conv” refers to convolutional blocks. The outputs of the branch and the trunk networks
are combined through an inner product to approximate the solution operator.
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4.3.2 Related Works

DeepONet has shown remarkable success in diverse fields of applications like approximating

irregular ocean waves [2], learning stiff chemical kinetics [10], bubble dynamics [23], microstruc-

ture evolution [29] etc., where the network is trained using large datasets for solving a forward

mode problem. Additionally, some recent work has been focused on learning the mapping of

multiple input functions to the solution field [16, 11]. Prior work of DeepONet in the area of

subsurface flow problems has been to learn the mapping from the conductivity field to the hy-

draulic head in simple and complex geometries through data-driven [25] and physics-informed

approaches [8, 7, 37]. In both these works, the PDE governing the subsurface flow (Darcy’s

equation) has been employed as an application to demonstrate the framework proposed in the

corresponding work. In another study, an operator-level transfer learning framework [9] was

proposed, where Darcy’s equation was employed as an example to demonstrate the approach.

The idea behind operator transfer learning is to train a source model with sufficient labeled data

from a source domain under a standard regression loss and transfer the learned variables to a

second target model, which is trained with very limited labeled data from a target (different

but related) domain under a hybrid loss function that is the sum of the regression loss and a

conditional embedding operator discrepancy loss. Furthermore, another operator-level transfer

learning framework was proposed in [17], where Darcy’s equation was solved on an L-shaped

domain (source) and transferred to an L-shaped domain with a hole. The implementation of

a hybrid solver (HINTS) approach could directly handle the change in target geometry and

does not require retraining of the operator. None of the works discussed above deal with the

additional specific storage term in Equation 4.1 and is not dedicated to employing the operator

for multiple scenarios in subsurface flows. Furthermore, for the first time, the operator network

is designed to solve an inverse problem in E5 to learn the hydraulic conductivity field, K(x),

from the hydraulic head, h(x) and sparse observations of K(x).

In an independent work of Lanthaler et al. [21], the authors provide a theoretical analysis of the

approximation and generalization errors of DeepONet. They accomplish this by decomposing

the error into encoding, approximation, and reconstruction errors and theorizing the lower and

upper bounds of the total error. Their analysis indicates that the accuracy of DeepONet can

deteriorate in the presence of discontinuities or sharp features that are not fixed in space, while

DeepONet can accurately learn operators that produce discontinuities or sharp features fixed
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in space. This is in line with our observation and we propose a modified architecture to deal

with such scenarios. According to Hadorn [12], it struggles to learn sharp features for each

location without increasing the basis functions from the trunk net. Unfortunately, increasing

basis functions becomes infeasible for high dimensional problems. An effective modification

to overcome this bottleneck of DeepONet to deal with translational invariance is to eliminate

the invariance. Both Shift-DeepONet [12] and FlexDeepONet [35] add pre-transformation sub-

networks to shift, rotate and scale the data. The input functions to the branch network are

passed through these additional networks, which learn the re-scaling and re-centering of these

functions. A transformation layer combines the learned shift, rotation, and scale parameters

with the spatial coordinates of the evaluation points: the outputs of this layer are the inputs of

the trunk network, such that the basis functions of the trunk net depend on the input functions.

Similarly, another extension of DeepONet introduces two encoders, as inputs of the branch and

the trunk network [36]. The embedded features are inserted into the hidden layer of both sub-

networks using point-wise multiplication. This novel architecture appears to be more resilient

than the conventional DeepONet architecture to vanishing gradient pathologies.

In the current work, we consider the vanilla version of the DeepONet as firstly introduced in [24]

which is characterized by two separate networks for the branch and the trunk and which has the

benefit of a simpler architecture. In the later part of the work, we propose a modified version

of DeepONet in order to overcome the limitations of the vanilla DeepONet in dealing with a

source term that is not always defined at the same location, and leads to sharp gradients in the

solution field. The next section presents the details of the employed network architectures.

4.3.3 Network architecture and training

In the time-independent cases, the branch net is considered as a convolution neural network

(CNN) that takes as input the functions, u evaluated on a lattice grid of size 32 × 32, which

is consistent for all the experiments carried out in this work. For the experiments E1 and

E4, we have a CNN with one input channel, however, for E2 and E5 we have two input

channels, where the second channel denotes the location of the well and sparse observations

of the target hydraulic conductivity, respectively. When considering sparse observations of the

target hydraulic conductivity, the input for this channel remains consistent in size and positions

without observations are populated with null values to ensure a uniform structure.
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The inputs to the trunk net are the coordinate of 128 evaluation points, which are randomly

sampled in the domain and are distinct for each training sample. The details of the network

architecture are provided in Table 4.2. A schematic representation of the network is shown in

Figure 4.1.

Table 4.2: Architecture details of vanilla DeepONet employed for all the time-independent
experiments.

Layer Kernel Size Width Activation Output
Branch Network

1 Conv2D 5× 5 16 ReLU 32× 32× 16
2 Avg-Pool 2× 2 16× 16× 16
3 Conv2D 5× 5 8 ReLU 16× 16× 16
4 Avg-Pool 2× 2 8× 8× 16
5 Conv2D 5× 5 4 ReLU 8× 8× 16
6 Avg-Pool 2× 2 4× 4× 16
7 Conv2D 5× 5 4 ReLU 4× 4× 16
8 Avg-Pool 2× 2 2× 2× 16
9 Conv2D 5× 5 4 ReLU 2× 2× 64
10 Avg-Pool 2× 2 Reshaped to 1× 64
11 Fully connected 1024 Tanh 1× 256
12 Fully connected 1024 Tanh 1× 512
13 Fully connected 1024 1× 150

Trunk Network
14 Fully connected 150 ReLU 150× 1
15 Fully connected 150 ReLU 150× 1
16 Fully connected 150 ReLU 150× 1
17 Fully connected 150 ReLU 150× 1
18 Fully connected 150 ReLU 150× 1

In the vanilla DeepONet architecture, the solution operator is approximated as the sum of the

products of the outputs of the branch and the trunk net. However, for experiment E2, we noticed

that informing the trunk network about the location of the pumping well (input function) is key

for good learning. For this reason, we propose a novel DeepONet architecture. As illustrated in

Figure 4.2, each output of the pooling layers of the branch network is combined with the output

of each layer of the trunk net. The tensor coming from the branch net is flattened and followed

by a dense NN layer with Sigmoid activation function. Given the fact that the resulting vector

(whose weights can be interpreted as coefficients) has the same dimension as the corresponding

hidden layer of the trunk net, the two vectors can be merged via an inner product. The result

propagates through the following layers of both the trunk net and, after being reshaped and

concatenated to the output of the pooling layer, the branch net. We demonstrate that this

architecture can accurately predict the high gradients of the hydraulic head in the experiment

E2, for which the vanilla DeepONet gives a smoother prediction.
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Figure 4.2: Schematic of the novel DeepONet architecture proposed for experiment E2. The
architecture is specifically designed to take into account the varying locations of the pump. The
basis functions approximated using the trunk net can be modified according to the position of
the well. In the figure, ”fc” refers to fully connected blocks and ”conv” refers to convolutional
blocks.

In the time-dependent cases (E3), the branch and the trunk are fully connected feed forward

neural networks of 7 layers each. All evaluation points are used as input to the trunk network,

while the input to the branch network is a vector with the pumping rates in time, which are

concatenated in the case of multiple pumping wells. The detailed architecture can be visualized

in Figure 4.3.
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BRANCH  NETWORK

TRUNK  NETWORK

t

fc7

        Output layer sizes: 
TRUNK  NETWORK
fc1: 50 x 1
fc2: 50 x 1
fc3: 50 x 1
fc4: 50 x 1
fc5: 50 x 1
fc6: 50 x 1
fc7: 200 x 1

BRANCH NETWORK
fc8: 50 x 1
fc9: 50 x 1
fc10: 50 x 1
fc11: 50 x 1
fc12: 50 x 1
fc13: 50 x 1
fc14: 200 x 1

fc1 fc2 fc3 fc4 fc5 fc6

fc8 fc9 fc10 fc11 fc12 fc13 fc14

Figure 4.3: Detailed architecture of the network used for the time-dependent case E3. In these
scenarios, both the branch and trunk are fully connected feed forward neural networks with 7
layers each. In the figure, ”fc” refers to each fully connected block. Time coordinates serve as
input to the trunk network, while the branch network receives a time-based vector of pumping
rates, which are concatenated when dealing with multiple pumping wells. As in the traditional
DeepONet setup, the outputs from the branch and trunk networks are merged through an inner
product to approximate the solution operator.

The implementation is carried out using the JAX framework on a single NVIDIA GeForce RTX

3080. For all test cases, the datasets consist of Ntrain = 1000 training data and Ntest = 200

test data. The network is trained using the Adam optimizer [19] with an initial learning rate of

5× 10−4 which exponentially decays every 1000 iteration with a rate of 0.9 and a batch size of

100 for maximum 105 iterations. We monitor the loss after every 100 iterations and trigger an

early stopping if the value of the loss for the test data does not decrease after 2×104 iterations.

4.4 Results

In this section, we demonstrate through the previously discussed experiments that DeepONet

can be employed for approximating a range of groundwater flow simulation problems, accurately

and efficiently. We also provide a comparative study of the two architectures: the vanilla

DeepONet and the novel DeepONet architecture proposed in this paper. All models are trained

on a few sparse points defined on the domain but are evaluated over the whole domain for the test

data. Please refer to 4.B for specific details regarding the datasets utilized for both training and

testing purposes. The mean square error (MSE) is used as an error metric that corresponds to

the loss function used during training, calculated as the square difference between the target and
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the predicted fields for all the models and all the experiments. In 4.D, we provide a comparative

study of the accuracy of DeepONet with other popular deep neural network architectures.

4.4.1 E1: Forward problem for fixed well location

In this experiment, the location of the well is considered the same for the training and the

testing dataset and the operator learns the mapping from the smooth hydraulic conductivity

field K to the hydraulic head: GF1
θ : K(x) 7→ h(x). Training the network takes 283 seconds

for a total of 24,600 iterations, and the error metrics are computed as MSEtrain = 1.8× 10−5

on Ntrain samples and MSEtest = 2.5 × 10−4 on Ntest samples. Figure 4.4 (top row) shows

a typical comparison between the predicted and target values of the hydraulic head given a

heterogeneous hydraulic conductivity field. Both the inputs and the outputs are normalized

along each individual channel, that is the variables are re-scaled into the range [0, 1]. As can be

seen in the prediction plot, DeepONet can predict the pressure buildup and the sharp increase of

the hydraulic head around the well very accurately. We conducted multiple analyses by altering

the number of neurons, layers, kernel size, batch size, and training data, among other factors.

We observed only slight changes in the error rate, and significant deterioration occurred only

when the data was not normalized or the learning rate was too high. Additionally, increasing

the number of query points or sampling more frequently around the well did not improve the

accuracy of predictions. However, it is important to note that these conclusions were drawn

under the condition that the points were already sufficient to capture the sharp increase of

the hydraulic head around the well. We emphasize that a low number of points would indeed

decrease accuracy, as enough points are needed to learn the high gradient at the well.
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Figure 4.4: Prediction of the hydraulic head, h(x) obtained from a trained vanilla DeepONet
(Experiment E1) for two test cases with an unseen heterogeneous hydraulic conductivity field.
The location of the well is fixed at (x, y) = (16, 16), which is the same for the training and the
testing dataset.

In a second experiment, the hydraulic conductivity is channeled. The channeled hydraulic con-

ductivity array is created using a customized function that generates a two-dimensional sinu-

soidal channel pattern. The values of hydraulic conductivity are set to binary, with k1 = 5m/day

representing one type of facies and k2 = 25m/day representing the other type of facies. The

operator learns the mapping: GF1
θ : K(x) 7→ h(x), with K being the hydraulic conductivity field

and h the hydraulic head. The DeepONet model demonstrates an impressive level of accuracy

in predicting the hydraulic head under such channeled hydraulic conductivity conditions. The

average MSE training and testing errors are 4.1× 10−5 and 8.6× 10−5 respectively. In Figure

4.4, one can see a typical comparison between the predicted and target values of the hydraulic

head given a heterogeneous hydraulic conductivity field. The variables are re-scaled into the

range [0, 1]. Despite the strong heterogeneity in hydraulic conductivity, the DeepONet model

can predict the pressure buildup and the sharp increase of the hydraulic head around the well

very accurately. If the trained model is applied to a different type of soil, where the second

facies is a gravel with k2 = 500m/day, the test error significantly increases to 4.1× 10−3. The

increase of the test error is not surprising given that the model has been trained exclusively

with samples corresponding to k2 = 25m/day.
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Figure 4.5: Prediction of the hydraulic head, h(x) obtained from a trained vanilla DeepONet
for two test cases with a channeled hydraulic conductivity field, with k1 = 5m/day representing
one type of facies and k2 = 25m/day representing the other type of facies. The location of the
well is fixed at (x, y) = (16, 16), which is the same for the training and the testing dataset.
The first column represents the channeled hydraulic conductivity field, while the second and
third columns denote the ground truth and the prediction of DeepONet for the hydraulic head,
respectively.

4.4.2 E2: Forward problem for varying well locations

In the next experiment, we further expand the network capabilities to learn the solution for

unseen locations of the pumping well. According to the original formulation of the DeepONet,

the branch network encodes the input functions, which are the hydraulic conductivity field and

the position of the source term (the well). We observed that the vanilla architecture could

not capture the sharp gradients located in the region near the pumping well when the well was

shifted to several locations. The reader can refer to the last column of Figure 4.6 for visualization

of vanilla DeepONet predictions for three representative test samples. In this visualization,

the location of the well (forcing term) is encoded as a binary map and concatenated to the

hydraulic conductivity field as an additional channel of the existing CNN of the branch net. We

conducted multiple computational experiments to explore different approaches to encoding the

forcing term as an input to the branch net. We tried using two separate branch networks for

each input function and giving the location of the source term in various forms, such as by using

Cartesian coordinates or the distance between each point of the domain and the well’s location

or a Gaussian function centered at the well’s location. However, these experiments were not

successful, as they led to either highly inaccurate predictions with incorrect determination of

the extent and location of the pressure front or smoother predictions near the source terms.
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4.E explores the reason for the lower prediction accuracy of the vanilla DeepONet for these

test cases through the lens of the singular value decomposition (SVD). Finally, we found that

informing the trunk net of the location of the source term is necessary for good learning in this

class of problem. When the input to the trunk network is the concatenation of the coordinates

in which the network evaluates the solution and the coordinates of the pumping well, the

predictions match the reference solutions very well for different distributions of K(x) and for

varying locations of the pumping well (the error metric, evaluated on the training and testing

datasets respectively, yields values of 2.4 × 10−5 and 2.7 × 10−4, respectively). In general, the

role of incorporating well locations into the trunk network lies in enabling effective localization

of the basis functions around the wells. However, in practical scenarios, where the number of

wells could vary significantly, it is impractical to predetermine the number of well coordinates

for the trunk network. Moreover, this approach becomes inefficient for more complex scenarios,

such as multiple wells within the domain, different pumping rates of the wells, or features not

localized at a single point (like rivers and drains). In such cases, we decided to encode the

well location as a binary map, which is then concatenated to the hydraulic conductivity field

as input to the branch network. As our experiments showed that informing the trunk network

with the location of the forcing term is key for good learning when the location of the forcing

term varies among the training data, we link the branch and the trunk net with the newly

proposed architecture of DeepONet (Figure 4.2) described in 4.3.3. As shown in the first two

rows of Figure 4.6, the architecture that interlinks the hidden layers of the two sub-networks

substantially outperforms the vanilla DeepONet for scenarios with a single pumping well. The

training process takes approximately 324 seconds, and the computed error metrics equate to

6.6 × 10−5 and 2.6 × 10−4 on the training and testing datasets, respectively. Extending the

analysis, we also accommodated scenarios with two randomly located pumping wells. Here,

the proposed architecture continued to yield superior performance compared to the vanilla

DeepONet, with computed error metrics of 6.4 × 10−5 and 4.3 × 10−4 on the training and

testing datasets, respectively. These results are shown in the last two rows of Figure 4.6.
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Figure 4.6: Predictions of the hydraulic head for unseen heterogeneous hydraulic conductivity
fields (first column) and unseen location of the pumping wells. Predictions with vanilla Deep-
ONet (fourth column) and proposed network architecture (third column) are compared with
the target fields (second column) for four representative test samples, with either one or two
pumping wells. Input to the branch network is the hydraulic conductivity field and a binary
map indicating the location of the well. Input to the trunk network is the coordinates in which
the network evaluates the solution.

4.4.3 E3: Time-dependent Forward problems

In the time-dependent case, we consider a confined aquifer where the pumping rates at one or

more wells change over time. The aim is to predict the hydraulic head response in both one

and two-dimensional scenarios. The evaluation of the one-dimensional case is detailed in 4.C.

For the two-dimensional case, we first consider a 32× 32 grid with a single pumping well. The

well operates for 100 days, maintaining a constant rate for 10 days. Our model aims to predict

the hydraulic head distribution over the domain in response to this pumping action.

Figure 4.7 demonstrates the model’s prediction. The results demonstrate that the model can
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adapt and successfully handle higher-dimensional inputs and outputs, with an average MSE

test error equal to 2.3× 10−8. For a detailed illustration of the inputs and outputs in the case

of a single point evaluation, please refer to Figure 4.20 in 4.C.

Figure 4.7: This figure depicts the results for a test sample in a two-dimensional scenario with
a single pumping well: the input to the model is the time-dependent pumping rate of the well
located at the center of the domain. The first row shows the ground truth hydraulic head, while
the second row presents the predicted hydraulic head from our model, with each contour line
representing a different hydraulic head value. The third row represents the difference between
the ground truth and predicted values. The results demonstrate an excellent match between
the prediction and ground truth.

Then, we consider a more complex scenario with three pumping wells each operating with a

different time series as input. For a more comprehensive overview of the dataset, please consult

4.B and Figure 4.17. The pumping rates are input to the branch, concatenated in a single

vector. Input to the trunk are the 2D spatial and the temporal coordinates for the evaluation

points. The results shown in Figure 4.8 indicate that the model accurately predicts the response

of the hydraulic head over the domain to the operations of the three wells. The average MSE

training and testing errors are 2.95× 10−4 and 3.02× 10−4 respectively.
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Figure 4.8: This figure illustrates the results for a test sample in a two-dimensional scenario with
three pumping wells. The model receives the normalized time-dependent pumping rates of the
three wells as its inputs. Similar to Figure 4.7, the first row shows the ground truth hydraulic
head, the second row shows the predicted hydraulic head, and the third row highlights the
difference between these two. Each column corresponds to a different time step.

4.4.4 E4: Nonlinear Forward problem

Many groundwater processes exhibit nonlinear behavior and hence require the use of iterative

solvers to obtain the solution of the hydraulic head. In this study, we show that the proposed

data-driven method has the capability to resolve the system directly and save on the computa-

tional cost required on the conventional iterative solver. The traditional finite-difference form of

the groundwater flow equations can be written as Ah = b, where h is the vector of head values

at the end of the time step, A is the matrix of the coefficients of head and b is a vector of the

constant terms [13]. In a nonlinear system, the individual entries in A matrix is a function of

the hydraulic head and the system of equations needs to be resolved through a nonlinear outer

iteration loop.

This example explores a nonlinear groundwater system modeled by a single-layer confined

aquifer, with hydraulic conductivity varying across the domain, Dirichlet boundary conditions,

and featuring a consistently-flowing pumping well located in the center of the domain and a

head-dependent well that utilizes a superimposed drain approach to emulate nonlinearity, which

is fixed in another location in the domain. The reader is referred to 4.B for a broader description

of the dataset. The hydraulic head predicted by the neural operator accurately matches the

target values in the whole domain for given hydraulic conductivity fields (considered as input to
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the branch net), unseen during training (Figure 4.4.4). The training process takes 430 seconds

for a total of 44100 iterations and the error metrics computed on the training and the testing

datasets are equal to 3.1× 10−5 and 3.9× 10−5, respectively.

8 
x 
10
3  m

8 x 103 m

Figure 4.9: Comparison between the ground truth and the prediction of the hydraulic head
from DeepONet for unseen heterogeneous conductivity field for the nonlinear problem, E4.

4.4.5 E5: Inverse problem

This section explores the efficiency of the operator network for solving inverse problems and,

more specifically, for underground property characterization. Given that it is impossible to

directly observe the whole underground system, the aim of the inverse analysis is to understand

the heterogeneous aquifer properties (i.e., hydraulic conductivity field) using sparse observations

of the conductivity field and some known information of the hydraulic head. We consider a test

problem for which the information on the hydraulic head in the whole domain is available along

with sparse observations of hydraulic conductivity. While no practical scenarios exist where the

hydraulic head is known universally, this idealized setup serves as a benchmark, enabling us

to gauge the optimal accuracy achievable. Figure 4.10 shows a representative test case with

the inputs and the prediction obtained from the operator network. The MSE error computed

on the test samples are obtained as 1.02× 10−2 when using 20% of the values of the hydraulic

conductivity field (randomly sampled) as observation points. Beyond the comparison between

the target reference fields (first column) and the simulated inverse results (fourth column), we

also compare the input hydraulic head (second column) and the hydraulic head corresponding

to the predicted conductivity as calculated with the traditional solver (third column). The

operator network gives trustworthy predictions with accurate and consistent performance across
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the whole test dataset: the MSE test error is equal to 1.46 × 10−2, with standard deviation

5.3× 10−3.

Figure 4.10: Sample test case from the inverse analysis using the vanilla DeepONet. In the
first column, we see the input hydraulic head, while the second column illustrates the unknown
hydraulic conductivity field. The third column displays the results of the simulated inverse
procedure, and the final column shows the hydraulic head corresponding to the predicted con-
ductivity, as calculated using a conventional solver.

The use of the hydraulic conductivity observational data informs the network and enhances

its accuracy when compared to the case in which no measurements of hydraulic conductivity

are made available. Incorporating 20% of hydraulic conductivity data as supplementary input

results in a noticeable enhancement in model accuracy, with a 29.5% reduction in the MSE error

for test samples. This improvement becomes more pronounced and equal to 37.6% with 40% of

hydraulic conductivity data as extra input. A further improvement can be achieved by informing

the network with the observation of the hydraulic heads at different timesteps. Specifically, by

encoding the hydraulic head at intervals of 67, 133, and 200 days in the branch net — as

opposed to a singular observation at 200 days — the predictions are refined by 4%. Moreover,

in the real world, the observations of hydraulic heads are inherently sparse. Therefore, we

assessed all 200 test samples, picking randomly selected points to use as input for the hydraulic

conductivity. Figure 4.11 presents the results of the same test case of Figure 4.10 but when

using only 10% randomly chosen observations of the hydraulic head as input. As expected,

the results are less accurate when compared to the case in which the input is the whole field.

However, it’s worth noting that the model still manages to capture the dominant features of

the system. In particular, the predicted values of hydraulic conductivity are not only lower in

the corners of the domain, mirroring the ground truth, but also the regions with the highest

values match those of the actual system. This is likely due to the distribution of observation

points across the domain, which allows the model to grasp the overall trends, even with limited

data. Furthermore, in reporting these results it is important to highlight the ill-posed nature

of this version of the problem, based upon sparse hydraulic head observations. It is certainly
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possible that more than one conductivity map could lead to an identical set of sparse water

head observations (with the likelihood of this increasing with increased sparsity), so the results

presented in Figures 4.11 and 4.12 should be considered in this context.

Figure 4.11: This figure presents the same test sample from Figure 4.10, but in this case, only
10% of the hydraulic head is supplied as input. The randomly chosen points are depicted as
black dots in the first column.

Figure 4.12 displays the average error (solid line) along with the standard deviation (shaded

region) for all test samples across a range of 0 to 100% input hydraulic head. The results

improve with an increase in input observation: with less than 4% input, the accuracy is low,

but it substantially improves as we add more data.

Figure 4.12: Graphical representation of the mean absolute error for different percentages of
the known information from the hydraulic head. The solid line denotes the mean and the errors
computed across all the test samples for a given number of observations of the hydraulic head
shown in the x−axis, and the shaded region denotes the standard deviation of the errors.

4.5 Summary and Discussion

This paper presents the DeepONet framework as a surrogate model to efficiently and accu-

rately calculate the state response of a groundwater system. The model is trained and tested
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in multiple experiments that demonstrate its capability to predict hydraulic head in a hetero-

geneous aquifer with a fixed pumping well, generalize to unseen pumping well locations and

time-dependent pumping rates, characterize aquifer properties (inverse analysis), and deal with

nonlinear systems. The proposed model accurately learns both the forward and inverse rela-

tions between the spatially varying hydraulic conductivity and the hydraulic head fields very

accurately. However, modifications to the original formulation of DeepONet are needed when

the pumping well is placed at any location in the domain. To address this, the paper introduces

a novel contribution by linking the input of the branch network to the trunk network, allowing

the network to accurately predict solutions for unseen well locations and hydraulic conductivity

fields. By successfully implementing the neural operator on several examples, we demonstrate

the capacity of the network to support a range of tasks that require repetitive forward numerical

simulations of the groundwater model. We acknowledge that our current study is limited to

single-well and two-wells configurations and we would like to extend our work in the direction

of multiple well-surrogate modeling in the future. Moreover, we explored the impact of sparse

observations for inverse modeling. While our focus was on the quantity of observations, the

strategic placement of these points is a subject for future research. Our experiments provide

initial insights into leveraging limited observations for reliable predictions and the influence

of data distribution on the model performance. Future research directions should include un-

certainty analysis to account for the fact that each set of sparse water head observations can

correspond to multiple conductivity maps. Additional avenues to consider might be the use of

a multi-fidelity and multi-modality approaches. Real-world data are not only sparse but come

from varied sources, each with unique characteristics. Integrating these diverse data sources

presents both a significant challenge and a promising research opportunity.

In the long term, such a model will be extended to accommodate more complicated and realistic

sub-surface problems. These could include more complex predictions from a wider range of

abstraction rates and aquifer system geometry, properties, and boundaries, and the interaction

with other surface water abstractions and discharges.
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4.A Appendix A: Table of notations

A table of notations is given in Table 4.3.

Notation Meaning

h Hydraulic head

K Hydraulic conductivity

qs Volumetric flux of groundwater sources and sinks per unit volume

Ss Specific storage

t Time

xP Location of the pumping well

x Spatial and temporal coordinates

G Nonlinear Operator

Gθ Network operator approximator

θ Learnable parameters

u Input function

yj Evaluation point

m Number of sensor points

P Number of evaluation points

N Number of input functions

NT Number of training sample pairs

q Number of tunable weights at the last hidden layers of the two sub-networks

b The output vector defined by the last layer of the branch network

t The output vector defined by the last layer of the trunk network

Table 4.3: Table of notations

4.B Appendix B: Numerical simulation settings for generating

the datasets

The labeled high-fidelity datasets for training the data-driven neural operator framework are

obtained by solving the governing equation using a finite difference scheme. The parameters

and settings used for generating the labeled dataset are described in this section. The datasets

are generated within the Python ecosystem and, in particular, using the iMOD Python package
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for time-dependent and for nonlinear cases [4] and a script adapted from [6] for the remaining

test cases.

E1: Forward problem for fixed well location. Figure 4.13 shows representative plots of

input and output pairs from the generated dataset. This problem consists of a single-

layer model representing a confined aquifer. The layer is 50 m thick and the extent of the

model R is 8× 103 m. The grid is defined as 32× 32. Each cell is 250 m on a side, which

corresponds to a typical spatial grid used in practice [5]. The aquifer, whose specific elastic

storage Ss is 2×10−4 1/m, is highly heterogeneous with horizontal hydraulic conductivity

k ∈ [5, 25] m/day. We create the hydraulic conductivity distributions using Gaussian

random fields with Power Spectrum P (l) = lq with q = −4. The resulting continuous

float values are re-scaled in the range k ∈ [kmin, kmax]. The minimum and maximum

values of K, kmin and kmax, vary for each sample: they are randomly selected integers

so that kmin ∈ [5, 10] m/day and kmax ∈ [20, 25] m/day. A pumping well, placed at

(x, y) = (16, 16), is extracting water from the sandy aquifer. Abstraction is specified at a

constant rate of Q = 5000 m3/d, which corresponds to a typical abstraction value [5]. This

generates the target hydraulic head, which is the solution at the time step corresponding

to the simulation time T = 200 days.

Figure 4.13: Representative input(top row) - output (Bottom row) pairs for E1, which considers
the forward problem for a fixed well location operating at a constant rate. The well is situated
in the center of the domain, extracting water at a fixed rate, which affects the hydraulic head
distribution over time. The first row represents model input, specifically the hydraulic conduc-
tivity, and the second row illustrates the ground truth for the hydraulic head.

The forward problem with channeled input is similar to the previously discussed for-
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ward problem, except the hydraulic head is not randomly generated but developed in a

channeled pattern (Figure 4.14). The process involves the creation of certain sinusoidal

'channel'paths which overlaid with a specific value, while the remaining areas are filled

with a different value. This approach results in a channeled and binary distribution of

hydraulic heads.

Figure 4.14: Representative input(top row) - output (Bottom row) pairs for E1, which considers
the forward problem, where the hydraulic head is generated in a channeled pattern. The
distribution is binary, with channels overlaying certain paths with k1 = 5m/day, while the
remaining areas are filled with k2 = 25m/day. The top row represents model input, specifically
the hydraulic conductivity, and the second row illustrates the ground truth for the hydraulic
head. Each column is a unique sample from the dataset.

E2: Forward problem for varying well locations. In this case, we continue to learn the

mapping between the hydraulic conductivity field K to the hydraulic head, h, however,

the pumping well is randomly placed in the domain and the operator considers the well

location, xP as an additional input in addition to the conductivity field. All other settings

are kept the same as discussed above. Figure 4.15 shows representative plots of samples

taken from the labeled dataset of this experiment.
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Figure 4.15: Representative input(top row) - output (Bottom row) pairs for E2, which considers
the forward problem, where two pumping wells are randomly located in the domain. The oper-
ator is tasked to learn the mapping from both the well location and the hydraulic conductivity
field (first row) to the hydraulic head (second row). Each column is a unique sample from the
dataset. The well locations are marked using red dots.

E3: Time-dependent Forward problem. In the time-dependent cases, the study focuses on

a confined aquifer over a 500× 500 area with a 100m depth. The aquifer is characterized

by a specific elastic storage of 5×10−5 and a uniform hydraulic conductivity of 0.5 m/day.

Constant-head cells set at 0 m are imposed along all the boundaries following Dirichlet

boundary conditions. The time-dependent forward tests encompass three scenarios. The

first case is where the model predicts the hydraulic head response to a single pumping well

located at the center of the domain, operating for 100 days with a constant rate maintained

for 10 days in a single point scenario (see Figure 4.19). The second case broadens this

to a 2-dimensional domain, aiming to test the model’s adaptability to higher dimensions,

with outcomes depicted in Figure 4.16.
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hydraulic head

hydraulic head

hydraulic head

Figure 4.16: Three representative samples (row-wise) for E3, which aims to predict the hydraulic
head for a single pumping well located at the center of the domain. The well is operated for 100
days with a constant rate that changes every 10th day, as shown in the first column. The first
column is the pumping rate, and the other columns represent the solution in the 2D domain at
different time steps in days (t = 10, 30, 60, 80).

The third and final scenario involves a complex setting with three pumping wells each

operating at different pumping rates fluctuating between a minimum of 500 m3/day and

a maximum of 50 m3/day (Figure 4.17). The location and the number of wells are kept

the same across the training and testing datasets.
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Figure 4.17: The model prediction of the hydraulic head response to three different pumping
wells, each operating with different pumping rates. All three pumping rates are presented in the
first column, and the following columns illustrate the solutions in the 2D domain at different
time steps. Different rows show different dataset samples.

E4: Nonlinear system The problem consists of a single-layer model representing a confined

aquifer and the aim is to map the hydraulic head from the conductivity field. The layer is

60 m thick with a surface level of 0 m and the extent of the model R is 3.2× 104m. The

domain is discretized as 32× 32 and each cell is 1000 m on a side. The specific storage of

the aquifer Ss = 1.6× 10−4 [1/m] and its hydraulic conductivity varies spatially for each

data sample. The conductivity fields of the heterogeneous aquifer are Gaussian random

fields with Power Spectrum P (l) = lq with q = −4, with values re-scaled in the range

k ∈ [kmin, kmax], where kmin = 5 × 10−4m/day and kmax = 5 × 10−3m/day. Figure 4.18

(left) illustrates the setup of the model. The initial head corresponds to the surface level

everywhere. We impose Dirichlet boundary conditions with constant-head cells equal to

−2 m along the boundary x = 0 and equal to the surface levels along the other three

sides of the domain. A pumping well is located in the center of the domain, i.e., at

(x, y) = (16, 16). The pumping well has specified flow boundaries: the flow is constant in

time and equal to 0.5 m2/d. A head-dependent well, whose flow is calculated as a function

of the head, is located at (x, y) = (10, 16). The relationship between the flow and head of
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this well is reported in Figure 4.18 (Right).

Figure 4.18: Setup for the inverse problem test case (E4). Left: boundary conditions and source
terms; right: plot demonstrating the relation between flow and head for the head-dependent
well.

A simple way to specify this user-defined function is by superposing boundary conditions

that are already implemented in MODFLOW. A drain is a type of boundary condition

that removes water from the aquifer at a rate, called conductance, proportional to the

difference between the head in the aquifer and the drain elevation. If the head in the

aquifer is below the drain elevation, the drain is deactivated and the flow is null. In order

to build the function between flow and head for the head-dependent well, we decided to

place 11 drains in the same cell, one underneath the other. The topmost drain is located

at an elevation 0 m, the spacing between the drains is 1 m in the vertical direction and

all drains have the same conductance equal to 0.010 m2/d. The resulting superposition of

the 11 separate piecewise functions corresponds to a single function between the flux and

the head in the cell. This may be treated as a single head-dependent well which removes

water according to the relationship illustrated in Figure 4.18 (Right) with an approximate

function found by interpolation:

Q(u) =


0 if u ≤ −11

−5.0 · 10−7x5 + 2.0 · 10−6x4 + 2.4 · 10−4x3 + 2.9 · 10−3x2 − 0.11x− 0.66 if u > −11

(4.2)

The calculations are carried out with iMOD Python for a single stress period of 200 days.

The hydraulic head is the output of the calculation, as shown in Figure 4.1 (fourth row).
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E5: Inverse problem The learning goal of this problem is to infer the hydraulic conductivity

in the whole domain given the spatial distribution of the hydraulic head resulting from

water abstraction. The numerical settings used for the inverse problem are the same as

the forward problem, with the only difference being that the pumping well is now located

in the center of the domain and that the resultant values of the hydraulic conductivity

belong to five distinct classes. This method is utilized to make the inverse problem more

feasible and to confine the range of potential solutions. Nevertheless, the model learns the

hydraulic conductivity with a regressive approach, which means that the inferred values of

hydraulic conductivity are not constrained to belong to those predefined classes. The input

and target data of the forward problem discussed above become the target and the input

for the inverse problem, respectively. In addition to the hydraulic head calculated from

the simulation at time T , corresponding to 200 days, we also provide sparse observations

of the target hydraulic conductivity as an additional input.

4.C Appendix C: Additional time-dependent analyses

In this section, we delve further into the exploration of the time-dependent analyses. Specifically,

we extend our investigation by presenting results derived from a one-dimensional time-dependent

scenario. Additionally, we offer supplementary insights by introducing a distinct plot concerning

the two-dimensional spatial and temporal case, as previously discussed in 4.4.3.

4.C.1 Response to a Single Pumping Well at a Single Point

In this scenario, we focus on the hydraulic head response at a single point to a central pumping

well operating for 100 days. Figure 4.19 represents the inputs, outputs, and prediction of this

case. The average MSE training and testing errors for this case are 5.8× 10−8 and 6.0× 10−9

respectively.
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Figure 4.19: Inputs and Outputs for 1D case: point (12,15) of the 2d case.

4.C.2 2D problem: Performance on a Single Point Evaluation

In this subsection, we present additional results of the two-dimensional time-dependent case with

a single pumping well (4.4.3) but evaluate the model’s performance at a single point (12,15) in

the 2D domain. As indicated by the results in Figure 4.16, our model shows an outstanding

performance. The predicted values match the ground truth almost perfectly, demonstrating the

robustness of our model in accurately predicting the hydraulic head at a specific location in the

domain, despite the changes in the pumping rate at the well.
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Figure 4.20: Performance of the model evaluated at point (12,15) in the 2D domain.The first
row illustrates the comparison between predictions and targets, showcasing hydraulic head in
the y-axis and time in the t-axis for four distinct test cases (columns). The second row displays
the corresponding absolute error in the y-axis across time (t) for the same four test cases.

4.D Appendix D: Comparing neural network models

In this section, we compare the accuracy of the predicted solution for all the experiments except

the time-dependent example (E3) obtained using DeepONet and the Fourier neural operator

(FNO), when both models are evaluated after training converges. For time-dependent cases, we

conduct a separate comparative analysis against Long Short-Term Memory (LSTM) networks.

FNO, as introduced by Li et al. [22], leverages the Fast Fourier Transform for the direct

parametrization of the integral kernel in Fourier space. We adhere to the FNO implementation

for the 2D Darcy Flow problem as detailed in [22].

As depicted in Figure 4.21, the vanilla DeepONet achieves the best predictive accuracy in

every case except for the forward problem for varying well locations, indicating the need for

architecture modifications for this particular scenario. It’s noteworthy that DeepONet, whose

architecture is described in 4.3.3, has significantly fewer parameters (approximately 3.84× 105)

compared to FNO (1.19× 106), which consists of four Fourier layers and Gelu activation. Yet,

DeepONet exhibits robust performance across simulations. However, the comparison does not
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account for tuning effort across the models. It’s plausible that with more tuning effort, FNO

might present improved results.

Figure 4.21: Comparison of mean squared error (MSE) for DeepONet and FNO across the
time-independent different test cases. Forward 1 refers to the forward problem for fixed well
location, while Forward 2 to the forward problem for varying well locations.

For the time-dependent scenarios, we shift our comparison to Long Short-TermMemory (LSTM)

networks. In the first case, we consider the hydraulic head response at a single point. DeepONet

demonstrates remarkable performance, producing average Mean Squared Error (MSE) training

and testing errors of 5.8× 10−8 and 6.0× 10−9 respectively, as detailed in 4.C and with 30,800

trainable parameters. In contrast, the LSTM network employed in this case is designed with

an architecture featuring an input layer followed by an LSTM layer with 60 units. A TimeDis-

tributed Dense layer is then used to yield the output. This LSTM network displays an MSE

error of 2.7× 10−6 for training and 1.8× 10−5 for testing, with 14,900 trainable parameters. In

the second scenario, we extrapolate our analysis to the 2D domain with a single pumping well.

The DeepONet model’s objective is to predict the hydraulic head distribution across the domain

in response to the time-dependent pumping well, as described in Section 4.4.3. The average

MSE training and testing errors in this case are 1.1 × 10−7 and 1.0 × 10−7, respectively. In

comparison, we also employ an LSTM model, whose architecture consists of an input layer, and

an LSTM layer with 256 units, followed by a permutation of dimensions and a reshaping step.

The final output is produced using a Time Distributed Conv2DTranspose layer. This LSTM

model yields an MSE error of 3.34× 10−5 for training and 3.9× 10−5 for testing, with 354,292

trainable parameters. In both scenarios, the DeepONet architecture clearly outperforms the

LSTM networks in terms of prediction accuracy, establishing its superior efficacy in handling
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the cases in question.

4.E Appendix E: SVD analysis of training data

The lower accuracy that the vanilla DeepONet shows when approximating the operator in the

case in which the source term can appear at any location is traceable to a limitation of the

model in dealing with symmetries such as translation, rotation, and stretching. Venturi [35]

describes DeepONet as a linear projection-based method, presenting the same inefficiency of

singular value decomposition (SVD) when objects translate, rotate, or scale [30]. By showing

that the trunk retrieves the modes of the projection, Venturi recommends employing SVD on

the training data. This approach can help design the trunk net and its number of outputs

during an exploratory phase.

Performing SVD on the output solutions gives the number of modes that are required to cap-

ture the variance or energy in the dataset. Each output solution of the labeled dataset, with

dimension 32× 32, is reshaped into a column vector; all the resulting vectors are then stacked

horizontally as columns in the matrix X. Figure 4.22 shows the results of the SVD analysis on

the matrix X of datasets of the first two test cases. When the pumping well is fixed at the

center of the domain, the energy contained in the first mode is equal to 85%. Its value decreases

remarkably when the pumping well can be placed at any location: the first mode captures just

24% of the energy of the original datasets and the singular values produced by SVD decay

slowly. The results suggest that the SVD fails as it doesn’t account for the translating nature

of the data. We conclude that this is also the reason why vanilla DeepONet cannot accurately

predict the solution for unseen well locations.
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Figure 4.22: SVD on the output functions of the two data-set F1 of experiment E1 and F2 of
experiment E2: 1) the pumping well is placed in the same location of the domain across the
whole training and testing datasets, 2) the pumping well can be placed at any location.
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Chapter 5

Spatial-Temporal Graph Neural

Networks for Groundwater Data

Abstract This paper introduces a novel application of spatial-temporal graph neural networks

(ST-GNNs) to predict groundwater levels. Groundwater level prediction is inherently com-

plex, influenced by various hydrological, meteorological, and anthropogenic factors. Traditional

prediction models often struggle with the nonlinearity and non-stationary characteristics of

groundwater data. Our study leverages the capabilities of ST-GNNs to address these challenges

in the Overbetuwe area, Netherlands.

We utilize a comprehensive dataset encompassing 395 groundwater level time series and auxiliary

data such as precipitation, evaporation, river stages, and pumping well data. The graph-based

framework of our ST-GNN model facilitates the integration of spatial interconnectivity and

temporal dynamics, capturing the complex interactions within the groundwater system. Our

modified Multivariate Time Graph Neural Network model shows significant improvements over

traditional methods, particularly in handling missing data and forecasting future groundwater

levels with minimal bias. The model’s performance is rigorously evaluated when trained and ap-

plied with both synthetic and measured data, demonstrating superior accuracy and robustness

in long-term forecasting. The study’s findings highlight the potential of ST-GNNs in envi-

ronmental modeling, offering a significant step forward in predictive modeling of groundwater

levels.
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5.1 Introduction

The complexity of groundwater level (GWL) prediction and modeling arises from its nonlin-

earity and sensitivity to various hydrological, meteorological, and anthropogenic influences [17,

10]. Conventional GWL models, such as physical-based and traditional statistical methods,

are limited by their high parameterization needs. This requirement makes the models com-

putationally difficult to calibrate, as each parameter must be accurately estimated to reflect

real-world conditions. Additionally, the models are challenged by computational intensity and

difficulty in capturing the temporal evolution and nonlinearity in GWL data [5, 8, 21, 26]. In

this context, deep learning models and, in particular, spatial-temporal graph neural networks

(ST-GNNs) offer promising new avenues for accurate and efficient groundwater forecasting. Our

study focuses on leveraging ST-GNNs to predict groundwater levels in the Overbetuwe area,

Netherlands. The selection of this area is driven by the availability of data [4].

Machine learning methods, particularly data-driven ones, have been successfully applied in

groundwater level prediction studies without requiring detailed physical process knowledge [25,

23, 24]. Recent works have observed an evolving landscape in groundwater level forecasting,

shifting from conventional shallow networks to deep learning techniques [20]. Wunsch et al

compare the effectiveness of shallow neural networks against deep learning models such as Long

Short-Term Memory (LSTM) and Convolutional Neural Networks (CNNs). They emphasize

their adaptability and efficiency with sparse training data and the potential to outperform with

larger datasets [23]. However, these methods focus predominantly on temporal dynamics and

often overlook the spatial relationships in GWL data, a gap that ST-GNNs are well-equipped

to address. This gap in research is where this paper contributes.

ST-GNNs, rooted in graph theory and neural network methodologies, are particularly effective

in datasets where spatial interconnectivity and temporal changes are significant. The ST-GNNs

process inputs consisting of multivariate time series data, accompanied by a graph structure

which delineates the interconnections between the variables within the multivariate time series.

In these networks, spatial correlations among nodes are effectively represented through graph

convolution techniques, while the temporal relations among past states are analyzed using

recurrent neural network architectures [22, 27, 6, 18, 7, 22, 14, 12, 13]

While ST-GNNs have primarily been used in traffic prediction and skeleton-based action recog-
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nition, their application has recently extended to broader scientific fields, including meteorol-

ogy [16, 15] and seismology [3]. This study harnesses the power of ST-GNNs to predict GWL

in the Overbetuwe area, Netherlands. Unlike traditional methods, ST-GNNs adeptly handle

unstructured spatial data and capture the complex interplay of spatial and temporal dynamics

affecting GWL. The selection of ST-GNNs for this task is motivated by the distinct character-

istics of the data and the specific challenges they introduce to modeling. Firstly, the nature of

groundwater data, characterized by its complex spatial and temporal interactions, aligns well

with the capabilities of spatial-temporal graph modeling. This approach offers the necessary

granularity and flexibility to accurately model the intricate relationships within multivariate

time series data. Secondly, the data encountered in this study is inherently hybrid, contain-

ing both continuous and discrete elements. This heterogeneity requires a modeling solution

that can adeptly manage such diverse data types. Furthermore, the complexities of real-world

data pose significant challenges to accurate modeling and forecasting of groundwater levels.

Notably, the presence of noise and instances of missing data, which span both spatial and

temporal dimensions, can obscure patterns and trends, making it difficult to identify precise

relationships. These conditions necessitate a modeling strategy capable of discerning correla-

tions between observations at various locations and times, yet the reliance on black-box learning

methods is constrained by the limited quantity of data available. Therefore, the deployment of

ST-GNN, infused with a degree of prior knowledge, emerges as a requisite strategy. By incor-

porating control variables like pumping rates and considering multiple aquifers, the proposed

ST-GNN model extends the applicability of GNNs in hydrological forecasting beyond current

capabilities, addressing challenges such as missing data and ensuring model generalizability.

One recent study that does address spatial relationships in groundwater forecasting is by Bai

et al. [1]. In their work, they employ a graph neural network to forecast groundwater dynamics

in the southwest area of British Columbia, Canada. Bai et al.’s model demonstrates superior

performance compared to baseline models like LSTM [11] and Gated recurrent unit (GRU) [9].

However, there are notable differences between Bai et al.’s approach and our study. While Bai

et al. focus on groundwater dynamics in a region predominantly influenced by rainfall and char-

acterized by high seasonality in groundwater level (GWL) fluctuations, our research extends to

the Overbetuwe area, Netherlands, which does not exhibit such pronounced seasonal patterns.

Our study area is influenced by a broader range of hydrological, meteorological, and anthro-
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pogenic factors, including the effects of pumping wells and river stages, contributing to more

complex and nuanced groundwater behavior. Moreover, our choices of GNN architectures and

predefined adjacency matrix contrast with Bai et al.’s use of Graph WaveNet and a self-adaptive

adjacency matrix. Our model is tailored to our unique dataset and the specific challenges it

presents, including the integration of control variables such as pumping rates, and the defini-

tion of the graph structure to represent the differet hydrological connections. Lastly, a critical

advancement in our methodology, compared to Bai et al., is our approach to handling data

gaps. Bai et al. exclude wells with gaps larger than one month and interpolate smaller gaps,

potentially overlooking valuable information. Conversely, we introduce a masking strategy to

track the locations and times of missing values, seamlessly integrating this information into our

loss function to avoid training on these gaps, thereby enhancing model accuracy and reliability.

This study goes beyond traditional forecasting by exploring the ST-GNN model’s utility in sce-

nario planning and decision-making for drinking water extraction, considering varying weather

condition scenarios months in advance. This capability is pivotal for managing water resources

sustainably, ensuring that the extraction volumes are optimized to prevent drought conditions.

Furthermore, the deep learning model supports rapid computational capabilities. This fea-

ture enables the quick generation and simulation of multiple scenarios, making it an invaluable

resource for strategic planning and promoting efficient water usage.

The paper is structured as follows: following the introduction, we describe our methodology,

including data description, preprocessing, and model architecture in Section 5.2. Section 5.3

presents the results, including an abation study and a comparative analysis with the state-of-

the-art traditional numerical model. Finally, we conclude in Section 5.4 with a discussion on

the implications of our findings for hydrological forecasting and future research directions.

5.2 Methodology

This section outlines the methodology for predicting groundwater levels using ST-GNNs. It

starts with a detailed description of data from the Overbetuwe area in the Netherlands, focusing

on hydrological, meteorological, and anthropogenic factors affecting groundwater levels. The

preprocessing steps for model training are then presented, followed by an explanation of a graph-

based framework designed to capture the complex spatial-temporal relationships in groundwater
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data. Finally, it discusses training strategies and error metrics to optimize model performance

and accurately evaluate its predictive capabilities.

5.2.1 Data Description

The study focuses on the Overbetuwe area in the Netherlands, a polder region approximately

30 km by 10 km in size, flanked by two branches of the Rhine river. The land surface elevation

varies from around +10 m NAP (Amsterdam Ordnance Datum) in the east to around +7 m

NAP in the west. The shallow subsurface is characterized by a low-permeable phreatic layer,

underlain by two aquifers separated by an aquitard. The groundwater is relatively shallow,

with the depth to the water table varying between 0.8 and 4.2 m. For a more comprehensive

understanding of the hydrological system, the reader is referred to the work of [4].

The study encompasses data from 213 observation wells, also called piezometers, yielding a

total of 395 groundwater level time series. Some of these time series originate from the same

geographical location (but differing in terms of depth). While each time series begins in a

different year, some starting as early as the 1950s, the frequency and availability of data have

evolved significantly over time. Initially, the data collection for these time series was on a

monthly basis. However, the introduction of automatic loggers at the turn of the new millennium

enabled an increase in frequency to daily or even more frequent recordings. Figure 5.1 visually

showcases the distribution and types of sensors across the Overbetuwe area.

In addition to the groundwater levels from the observation wells, which represent the primary

variable of interest, other types of time series data are recorded as exogenous variables: precipi-

tation, evaporation, river stages, and pumping wells. Of these, only the pumping well serves as

the control variable. Daily precipitation data is available from seven measurement stations, and

evaporation data from two weather stations. Additionally, river stage measurements are taken

every 10 minutes, and drinking water extraction data is gathered daily from 4 stations. The

metadata for each of these time series includes location coordinates and depth where applicable.

5.2.2 Data Preprocessing

In addressing the critical challenges of data sparsity and noise inherent in the dataset, the

preprocessing strategy lays a foundational stone for the subsequent analysis and modeling phases

of this study. The complexity introduced by noisy data and sparse datasets—characterized by
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Figure 5.1: Illustration of the sensor network. Different types of sensors are represented by
distinct colors, providing an overview of the spatial distribution and categorization of each
sensor within the study area. Notably, one evaporation sensor is located outside the depicted
map area. Additionally, the precise locations of some observation points may not be distinctly
visible, as certain sensors share the same coordinates but are situated at different depths, and
others are too closely positioned to be distinguished on the map.

significant gaps and intermittent recordings—necessitate a rigorous approach to data cleaning

and selection. Refining the dataset to mitigate these challenges, enhances the reliability of the

analysis and establishes a robust basis for the modeling phase. The approach to preprocessing

not only addresses the immediate issues of data quality and completeness but also serves as a

crucial contribution of this study, illustrating the significance of a well-considered preprocessing

phase for robust forecasting results.

The starting point for this analysis is established as the year 2004. This choice rests on two

key factors: the comprehensive availability of time series data from observation wells starting

from this year, and the significant portion of these data recorded on at least a daily basis. To

balance maintaining sufficient data and managing its variability, and considering the relatively

slow daily variations, the data frequency is adjusted to a weekly basis, with values averaged.

Out of the 395 available time series, 200 are selected, prioritizing those with the most complete

data. Initially, the overall percentage of missing values for the observation wells stands at 29.3%;

this selection reduces the overall percentage of missing values to 8.1%. Missing values undergo

linear interpolation, and a mask is introduced to track the locations and times of these missing

values. This mask proves instrumental in the loss function, ensuring that these points are not
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used for training. For the river stage data, only five locations with no missing data are retained:

Dodewaard, IJsselkop, Nijmegen haven, Grebbe, and Pannerdense Kop. The other types of

measurements exhibit no missing data issues.

All data are rescaled within the range (0, 1). The dataset is chronologically divided, with 80%

allocated for training starting from 2004-01-04. The remaining 20% is used for both validation

and testing, starting from 2018-04-01. Due to limited data availability, there is no split between

validation and test sets.

5.2.3 Graph-Based Framework in Groundwater Level Forecasting

In this study, a deep learning graph-based approach is adopted to forecast groundwater levels in

the Overbetuwe area. Each measurement, whether from observation wells (the subjects of the

forecasting task), precipitation, or other hydrological data points, represents a node in a graph.

The values at each time step t are denoted by zt ∈ RN ′
, where N ′ is the number of time series

of groundwater levels and zt[i] ∈ R represents the specific measurement value at that time step.

Objective The primary goal is to predict future groundwater levels using historical observa-

tions within an input window of W time steps, leading up to time step P . This historical data

is represented as X = {ztP−W+1 , ztP−W+2 , . . . , ztP }. The aim is to forecast a sequence of future

values over a forecasting window of Q time steps, denoted as Y = {ztP+1 , ztP+2 , . . . , ztP+Q}.

Incorporating Auxiliary Data To enhance the model’s predictive capability, auxiliary fea-

tures are integrated including precipitation, evaporation, river stages, and pumping well data,

with their number of time series being N ′′. These features are considered up to and including

the forecasting window tP+Q: X′ = {s′tP−W+1 , s
′
tP−W+2 , . . . , s

′
tP+Q}, where each s′ti ∈ RN ′′

contains the auxiliary data at time step ti. This auxiliary dataset X′ then concatenates with

the historical input data X, which only includes observations from time step tP−W+1 to tP .

Padding applies to align the different lengths of historical and auxiliary data for concatenation.

In practical applications, while exogenous variables such as precipitation and river stages will

be forecasted (or modelled), the pumping well data is treated as a controllable variable. The

approach constructs a mapping function f : (X,X′) → Y, where X includes the historical data

up to time step tP , and X′ comprises the extended auxiliary data up to tP+Q, with the goal of

predicting future values Y.
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Graph Definition This study conceptualizes a graph G = (V,E) to represent the hydrologi-

cal system. V signifies the set of nodes, each corresponding to a distinct hydrological measure-

ment, while E encapsulates the connections or relationships among these measurements. The

total number of nodes in the graph N is the sum of two subsets: N ′ representing groundwater

level measurements and N ′′ comprising other hydrological factors. Forecasting efforts focus on

N ′, utilizing both historical groundwater levels and various exogenous variables.

For each node v ∈ V , corresponding to a specific hydrological measurement or time series,

its neighborhood N(v) is defined. This neighborhood consists of other measurements that are

hydrologically interconnected or influenced by v. Each piezometer is linked to its three closest

counterparts, determined by Euclidean distance, a choice that balances the graph’s connectivity

without making it too sparse or overly dense, as established through an ablation study presented

in 5.3.1. Furthermore, each piezometer establishes connections with all pumping locations, the

nearest precipitation and evaporation stations, and the two closest river measurement points.

The adjacency matrix A ∈ RN×N where N=N ′+N ′′ represents these hydrological connections.

In this matrix, an entry Aij assigns a non-zero value if there is a connection between nodes i

and j, and zero if no such relationship exists. The assigned values in the adjacency matrix,

ranging from 0.1 to 0.5, differentiate the types of hydrological connections, such as those between

piezometers, between piezometers and pumping wells, and so on.

5.2.4 Model Architecture

Amodified version of the Multivariate Time Graph Neural Network (MTGNN) model, originally

described by [22], is adapted in this study. This adaptation omits the graph learning layer,

favoring predefined graph structures which we found to yield significantly improved results.

The architecture, visualized in Figure 5.2, demonstrates the sequential processing of data

through the model. Input data is first subjected to a starting convolution operation, after

which it progresses through multiple graph and temporal convolution modules, designed to

capture spatial and temporal dependencies, respectively. These modules are interconnected

by skip connections, enhancing the model’s ability to preserve information across layers. The

graph convolution module operates on spatial relationships by aggregating node information

with neighboring nodes, leveraging mix-hop propagation layers for this purpose. Meanwhile,

the temporal convolution module employs dilated 1D convolution filters to analyze temporal
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patterns, utilizing a combination of filter and gating layers to modulate the flow of information.

Finally, the output module itself consists of two 1x1 convolution layers, adjusting the channel

dimension of the input to meet the desired output dimension.

Filter Inception
Layer

Predefined
A_tilde

Gate Inception
Layer Multiplication Dropout Mix-hop Propagation

Layers
Residual

Conv
Layer

Normalization
Layer
Output

Start ConvInput X_in

Skip Conv 0

...

MTGNN Layer 1

MTGNN Layer 2

... MTGNN Layer n

Skip Connection 1

Skip Connection 2

Skip Connection n

Skip Conv E ReLU End Conv
1

End Conv
2

Output
Y

MTGNN Model

MTGNN Layer

Figure 5.2: The model architecture includes both graph and temporal convolution modules,
highlighted by their sequential processing and integration of skip connections to facilitate data
flow and information preservation across layers.

For a more detailed description of the architecture, readers are referred to the original article

[22], while the subsequent sections of this paper will only briefly present the temporal and

spatial modules, highlighting the innovations in this work.

Graph Convolution Module

The graph convolution modules address spatial dependencies by aggregating information from

each node with its neighbors. This involves two mix-hop propagation layers, which facilitate

the inflow and outflow of information at each node [22]. The mix-hop propagation layer, given

by Equation 5.1 and Equation 5.2, handles the spatial information flow across nodes in the

network:

H(k) = βHin + (1− β)ÃH(k−1), (5.1)

Hout =

K∑
k=0

H(k)W(k). (5.2)

In Equation 5.1, H(k) represents the hidden states at the k-th propagation step, β is a hyper-

parameter controlling the retention ratio of the root node’s original states, Hin denotes the

input hidden states from the previous layer, Ã is the normalized adjacency matrix including
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self-connections, and H(k−1) are the hidden states from the (k − 1)-th propagation step. In

Equation 5.2, Hout represents the output hidden states of the current layer, K is the depth of

propagation, and W(k) is the parameter matrix acting as a feature selector at each propagation

step.

Temporal Convolution Module

The temporal convolution modules focus on capturing the temporal dynamics within the data.

These modules utilize standard dilated 1D convolution filters, arranged in two layers: a filter

layer followed by a tanh activation function and a gating layer with a sigmoid activation function

[22]. The temporal convolution module utilizes dilated 1D convolution filters:

z = concat(z ⋆ f1×1, z ⋆ f1×2), (5.3)

where z is the input 1D sequence, f1×k are the convolution filters of varying sizes and z ⋆ f1×k

represents the dilated convolution operation. This study deviates from the original model’s filter

sizes of 1 × 2, 1 × 3, 1 × 6, and 1 × 7, whose combinations were designed to capture a variety

of inherent periods typical of temporal signals. Given our data is measured in weeks without

significant seasonal fluctuations, this broad spectrum of filter sizes was not deemed necessary

and the choice of the filters is based on an ablation study presented in 5.3.1. Dilated convolution

introduces ”gaps” in the convolution kernel to extend its coverage on the input feature map

without increasing parameters or computation. This efficiently broadens the receptive field,

enabling the incorporation of wider input information without escalating the model’s parameter

count. The outputs of convolution operations across different filter sizes are concatenated by

the concat function. Finally, the skip connection layer and output module, which standardize

and transform the data for final output, follow the temporal and spatial modules.

5.2.5 Training Approach

Our model harnesses historical observations to forecast future groundwater levels. It adopts a

recursive forecasting approach, wherein the groundwater level prediction at time t + 1 serves

as an input for the subsequent time step t+ 2, thereby recursively using forecasted outputs as

historical inputs when the prediction window exceeds a single time step. This recursive strategy



105 5.2 METHODOLOGY

is enhanced by incorporating exogenous variables, which, although they might originate from

forecasts of different models or be based on scenarios to be considered, are given as inputs for

the next time step without being forecasted themselves.

Furthermore, the training regime involves adjusting the size of the prediction window dynam-

ically, thus tailoring the model for different forecasting scenarios. The training employs an

iterative process that gradually extends the prediction window. Specifically, our model utilizes

a past window size W of 5 time steps, with each time step representing a week, to incorporate

recent observations and a future prediction window F of up to 8 time steps for projecting im-

minent trends. Through this methodology, the model concurrently optimizes forecasts across

the entire prediction horizon during training, ensuring a comprehensive learning process.

The loss function, as defined in Equation 5.4, is designed to accommodate missing data within

the time series through a masked mean squared error method. The maski,t is a binary indicator

where the value is set to 0 when data is missing and 1 otherwise. This binary mask ensures that

while the missing points are linearly interpolated and used as inputs, they do not contribute

to the loss calculation, thereby preserving the integrity of the model’s training process. In this

way, the model concentrates on accurately predicting the available data points, while effectively

disregarding the segments with missing or unreliable data.

Loss =
B∑
i=1

F∑
t=1

maski,t · (yi,t − ŷi,t)
2, (5.4)

Here, B represents the batch size and F is the length of the future prediction window. The

actual observed values are denoted by yi,t, and the model’s predicted values are represented by

ŷi,t. The use of the mask in the loss function ensures that the model is trained primarily on

the robust data points, providing a reliable performance metric that truly reflects the model’s

forecasting capabilities.

To quantify the accuracy of our forecasting model, we utilize the Root Mean Square Error

(RMSE) as the primary error metrics. The RMSE, detailed in Equation 5.5, quantifies the

forecast error’s magnitude and indicates the average deviation between the model’s predictions

and the actual observed values.
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RMSE =

√√√√ 1

M

M∑
i=1

(yi − ŷi)2, (5.5)

In Equation 5.5, M denotes the number of forecasts, yi the actual observed values, and ŷi the

values predicted by the model. A lower RMSE value indicates a more accurate model.

5.3 Results

This section presents a rigorous evaluation of the deep learning model’s efficacy in long-term

groundwater level forecasting. The first part presents an ablation study, analyzing the influence

of various model components and parameters on the forecasting results. Subsequently, the

model’s efficacy is evaluated on real-world data, with performance comparisons drawn against

the traditional numerical MODFLOW model.

5.3.1 Ablation Study

This section explores various model configurations and parameters with the goal of assessing

the impact of these variables on forecasting accuracy, quantified by the Root Mean Square

Error (RMSE). A key focus is the evaluation of spatial and temporal convolution modules,

alongside the influence of graph parameters on model performance. In the ablation study,

using a historical window size W of 5 time steps, each corresponding to one week, training is

confined to forecasts up to only 2 weeks ahead to expedite the processing of numerous model

configurations. During testing, the model extends its forecasting to a future prediction window

F of 100 weeks.

This approach demonstrates a notable improvement in performance when using synthetic data

(see below for details), for which the ST-GNN model secures a baseline RMSE of 8.13, in

contrast to RMSE of 16.9 obtained with real data. This underscores the utility of synthetic

data in honing forecast accuracy and in refining the model parameters during the ablation

study. The increased error observed with real data can likely be attributed to the inherent

noise present in such real-world data. Subsequent studies could explore the estimation of this

noise and its introduction into synthetic datasets to achieve a more authentic representation of

measured data, particularly when such data are insufficient for training deep learning models.

The synthetic dataset is derived from the MODFLOW groundwater model for the Overbetuwe
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area, a component of the larger MORIA model [19], which represents a collaborative effort in-

volving several organizations, including provinces, waterboards, and drinking water companies.

The model leverages a comprehensive range of input data to simulate groundwater dynamics

accurately, including subsurface schematization through REGIS II.2 [19]. It accounts for the

actual meteorological conditions and known groundwater abstractions during the period in ques-

tion, facilitating a balanced comparison with the real-world data. Additionally, it incorporates

factors like anisotropy, drainage, boundary conditions, initial heads, and storage coefficients.

The dataset includes over 800 observation wells and spans from 2008 to 2019, with daily record-

ings. To ensure a consistent evaluation, the dataset consists of 188 observation wells that have

both simulated and real-world data. The unavailability of simulated data for 12 out of the origi-

nal 200 wells leads to selecting alternative wells with real data, which are not chosen among the

real-world observations due to their higher rates of missing data. Although the dataset includes

spatial coordinates, depth, and node type as static features, certain aspects like the top and

bottom elevations of aquifers and hydraulic conductivity for aquifers are not directly used in

model training. Instead, they are considered intrinsic properties learned by the GNN.

Furthermore, the ablation study assesses the performance of different hyperparameters and

model configurations, beginning with the examination of the utility of both the temporal and

graph convolutional modules. Initially, replacing each dilated 1D convolution layer in the tem-

poral module with an LSTM, followed by a fully connected layer, results in an increased error,

raising the RMSE to 34.6. Removing the graph convolution module from the model incurs a

pronounced increase in RMSE to 31.0 as well, clearly illustrating the vital contribution of both

modules to maintaining accuracy.

The network graph’s definition is also shown to be crucial for performance. The series of adja-

cency matrices depicted in Figure 5.3 illustrates various connectivity levels among observation

wells and exogenous variables. Figure 5.3a illustrates the proposed network configuration, es-

tablishing connections for each well to its three nearest counterparts, all pumping sites, the

closest precipitation and evaporation monitoring stations, and the two nearest river gauging

points. Within the adjacency matrix, the values assigned to these connections range from 0.1

to 0.5, reflecting the varying types of hydrological interactions. Conversely, setting all non-

zero values in the matrix to 1 leads to a significant error increase of approximately 112.75%.

This change highlights the critical role of detailed connectivity, affirming that this configura-
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tion yields a balanced and empirically validated network structure. The matrix’s denser lower

segments reveal more intense connections with external variables. By contrast, Figure 5.3b,

which features only half of the observation wells—randomly selected—connected to exogenous

variables, results in a more sparse matrix and an elevated RMSE of 15.0. This underscores the

importance of linking all observation wells to exogenous variables. The minimal connectivity

scenario in Figure 5.3c, where each well is linked to only its nearest neighbor, results in the

sparsest matrix and an increased error of 10.3. Similarly, connecting each well to four of its

neighbors results in a higher error of 10.7. Enabling the network to learn the adjacency matrix,

as described by Wu et al. [22], resulted in a higher error of 10.90. In contrast, employing the

predefined adjacency matrix with the proposed connectivity achieved a 25.4% improvement in

RMSE compared to allowing the network to learn the adjacency matrix. This indicates that

while the strategy of allowing the network to autonomously learn the adjacency matrix can be

beneficial initially, it does not lead to the optimal outcome when compared to the adjustments

made to address the deficiency.

The ablation study further evaluates the model’s sensitivity to a range of hyperparameters,

encompassing those impacting both temporal and spatial convolutional layers, with the aim of

optimizing forecast accuracy. In the finalized implementation of the ST-GNN model, the depth

of the graph convolution is set to four layers, with kernel sizes selected as 1 and 2. To prevent

overfitting, a dropout rate of 50% is implemented. Moreover, the model employs a β value of

0.05 to preserve the original states of the root nodes.

Finally, the impact of the multi-step-ahead function on the model’s training efficacy is investi-

gated. Drawing inspiration from the approach taken by [2], the effect of extending the forecast

horizon on model performance is examined. The results align with Bentivoglio et al.’s find-

ings, showing that increasing the number of steps ahead consistently improves model accuracy.

However, this enhancement comes with higher memory requirements and longer training times.

Specifically, the duration needed for each training epoch increases from 2 seconds with a single

forecast horizon to 93 seconds for 10 forecast windows, equating to a period of 10 weeks. An

optimization analysis of the forecast horizon reveals that the model achieves notable perfor-

mance within just a three-week timeframe. While further extension of the forecast horizon does

yield improved outcomes, the rate of performance gain diminishes, nearly reaching a plateau

beyond three weeks. Therefore, a six-week period is chosen for real-world data analysis in the
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(a) Adjacency matrix with op-
timal connectivity

(b) Adjacency matrix with 50%
connectivity to exogenous vari-
ables

(c) Adjacency matrix with min-
imal connectivity

Figure 5.3: Comparison of adjacency matrices representing different levels of connectivity in
the modeled groundwater network. Figure 5.3a depicts the adjacency matrix corresponding
to the best case scenario where each observation well is connected to its three nearest wells
based on Euclidean distance. Additionally, connections extend to all pumping stations, the
nearest precipitation and evaporation monitors, and the two proximal river measurement sites,
explaining the increased density seen in the last 19 rows and columns beyond the 200 observation
wells. Figures 5.3b and 5.3c illustrate matrices with reduced connectivity: the former with
only half of the observation wells linked to exogenous variables, and the latter with each well
connected to only its single nearest counterpart.

following section to strike an optimal balance between enhancing performance and managing

the increased memory demands associated with a longer forecast horizon. This strategy ensures

peak performance while maintaining computational efficiency.

5.3.2 Real-World Data Application

This section examines the application of the deep learning model to real-world datasets. Fig-

ure 5.4 presents a comparison between forecasts for four randomly selected observation wells

and actual data that was not seen by the model during training, beginning in April 2018. The

solid lines represent the actual measured groundwater levels, while the dashed lines depict the

model’s forecasts. This figure illustrates that the model closely aligns with the actual observed

groundwater levels. Despite being trained to forecast up to 6 weeks ahead, the model demon-

strates remarkable extrapolation capabilities for up to 100 weeks, as evidenced by its predictions,

which closely follow the trends observed in the actual groundwater measurements without any

significant error propagation or accumulation. In contrast to synthetic data, these real-world

datasets include missing values. As indicated in the figure, where there is a prediction for a

missing window in an observational well, it underscores the model’s ability to predict for periods

where data are unavailable. This highlights another potential application of the model for data
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Figure 5.4: Comparative performance of the model’s predictions over four randomly selected
piezometers. The model utilizes a past window of 5 weeks and extends its forecasts to demon-
strate its proficiency in capturing groundwater level trends over a longer horizon. Solid lines
correspond to observed data, while dashed lines represent forecasts.

Figure 5.5 showcases two contrasting results, featuring selected wells with very high and very

low RMSE values. The green lines depict the best testing outcome, which achieves an RMSE of

4.2; this result closely follows the target trajectory with only minor prediction errors that do not

result in error amplification. Conversely, the red line represents a test sample with an RMSE of

53.4. In this scenario, a larger variation in groundwater levels is observed; however, the model

still manages to forecast within this wider range. Although the trend is predicted, there is

a notable discrepancy in the values towards the end. This sample ranks as the second worst,

surpassed only by another with an RMSE of 67.6, which is not depicted here due to its relatively

stationary trend. It is noteworthy that these worst two samples originate from the same site

but at different depths, hinting at a potential issue within the system, possibly missing some

external information. This suggests that the model could also serve as a tool for identifying

such anomalies. Despite these findings, no specific pattern or geographical distribution of errors

could be determined.

When benchmarked with real data, the traditional MODFLOW model exhibits an RMSE of

25.2, thus showcasing the enhanced precision of the deep learning model in the forecasting

task. Figure 5.6 presents a scatter plot comparison of the RMSE values for the ST-GNN and

MODFLOW models. In this plot, each data point corresponds to a unique piezometer in the

test set, with the inclusion of an equality line serving as a reference to easily discern which model

achieves a lower RMSE. Moreover, observation wells featured in Figures 5.4 and 5.5 are marked
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Figure 5.5: Comparative analysis of the model’s forecasting accuracy for observation wells,
highlighting those with the highest (red) and lowest (green) RMSE. Solid lines indicate observed
data, while dashed lines denote forecasts.

with a star, with colors matching their depiction in the plots. Data points situated beneath

the equality line indicate superior performance by the ST-GNN model. The aggregation of

points below the equality line corroborates the ST-GNN model’s consistent outperformance,

validating its efficacy in predicting groundwater levels. It is noted that, with the exception of

the observation well with the highest error, all other high-RMSE predictions, such as the one

visualized in Figure 5.5, do not lie far from the equality line in Figure 5.6.
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Figure 5.6: RMSE scatter plot comparison between the GNN and MODFLOW models, with the
ST-GNN model predominantly achieving lower RMSE values. Stars and corresponding colors
highlight the specific observation wells from Figures 5.4 and 5.5.

In conclusion, evaluating the ST-GNN model on real-world data showcases its robustness and

reliability. The model yields more accurate forecasts than traditional MODFLOW models,

showcasing the profound potential of deep learning in groundwater level forecasting.
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5.4 Summary and Conclusions

This research has successfully demonstrated the application of spatial-temporal graph neural

networks (ST-GNNs) for predicting groundwater levels in the Overbetuwe area of the Nether-

lands. The utilization of a comprehensive dataset, including 395 groundwater level time series

and auxiliary data such as precipitation, evaporation, river stages, and pumping well data,

has enabled the modeling of the spatial interconnectivity and temporal dynamics influencing

groundwater systems. The graph-based framework of the ST-GNN model has exhibited remark-

able capability in capturing these intricate interactions, resulting in high forecasting accuracy

and robustness, despite the presence of noise in the real-world data and instances of missing

data.

The performance evaluation of our model against traditional numerical models, such as MOD-

FLOW, underscores the superior accuracy and predictive capabilities of ST-GNNs in long-term

forecasting scenarios, particularly when forecasting in specific observation wells. The utility of

the ST-GNN model extends beyond mere prediction, showing the potential to play a crucial role

in scenario planning and decision-making for drinking water extraction under varying weather

conditions. By enabling the simulations for various weather scenarios months in advance, the

model aids in determining the optimal volume of water extraction to prevent drought condi-

tions. The deep learning architecture of the model facilitates rapid computation, allowing for

the quick execution of numerous probabilistic scenarios. This capability is potentially invaluable

for water resource managers, offering a tool for strategic planning and sustainable water usage

that is both flexible and efficient.

Future research could focus on enhancing the model’s predictive accuracy by integrating addi-

tional variables into the model architecture, such as incorporating resistance as weights within

the graph’s edges. Explicitly including features such as the top and bottom elevations of aquifers,

their hydraulic conductivity, and the resistance in aquitards within the dataset could signifi-

cantly improve the model’s performance. Moreover, the scalability of this approach to encom-

pass larger networks of groundwater measurements and the integration of additional exogenous

variables present promising avenues for research and application. The development of networks

capable of processing multi-modal inputs, including continuous geological information, could

further enhance the model’s predictive accuracy and utility. Importantly, by incorporating
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additional continuous variables, it would be interesting to develop a model that can extrap-

olate and predict also in points that are not observation wells, thereby truly competing with

traditional models which currently provide solutions in the whole domain.

In summary, this study contributes significantly to advancing the application of machine learning

in hydrology, establishing the potential for ST-GNNs to become a a powerful tool for predictive

modeling of groundwater levels.

5.E Appendix A: Table of notations

A table of notations is given in Table 5.1.

Symbol Description

G Graph representing the hydrological system
V Set of nodes in graph G, representing hydrological measurements
E Set of edges in graph G, representing relationships among measurements
N Total number of nodes in graph G
N ′ Number of time series of groundwater levels
N ′′ Number of time series of auxiliary hydrological factors
A Adjacency matrix representing connections in the hydrological network
zt Measurement values at time step t
X Historical data used for training the model
Y Forecasted future values over a prediction window
W Past window size in time steps
Q Forecasting window size in time steps
F Future prediction window size in time steps
X′ Auxiliary data up to and including the forecasting window
s′ti Auxiliary data at time step ti
H(k) Hidden states at the k-th propagation step in the graph convolution module
β Hyperparameter controlling retention ratio in graph convolution module

Hin Input hidden states from the previous layer
Hout Output hidden states of the current layer

Ã Normalized adjacency matrix including self-connections

W(k) Parameter matrix in graph convolution module
z Input 1D sequence in temporal convolution module

f1×k Convolution filters in temporal convolution module

Table 5.1: Table of notations used in the paper.
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Chapter 6

Conclusions

This thesis has successfully demonstrated the potential of deep learning in transforming ground-

water modeling. The research has shown that machine learning models can provide rapid, accu-

rate predictions and efficiently handle complex hydrological systems. The contributions of this

thesis is to provide an evolution of research from steady-state scenarios using synthetic data

and computer vision techniques to more complex applications involving sparse data, neural

operators, and real-world scenarios with graph neural networks. Throughout this journey, the

work has been anchored by a central research question: identifying the most effective neural

network-based approach for predicting groundwater flow. Each paper within this thesis con-

tributes uniquely to addressing this question, progressively fulfilling the outlined objectives and

pushing the boundaries of current knowledge and methodologies in groundwater prediction.

6.1 Discussion

Paper 1 (Chapter 2): Attention U-Net as a Surrogate Model for Groundwater

Prediction

This work introduces a convolutional encoder-decoder network, specifically the Attention U-

Net, as a surrogate model for predicting the steady-state response of groundwater systems.

This approach represents a significant advancement in groundwater modeling, leveraging the

power of machine learning to address complex, nonlinear relationships between inputs (hydraulic

conductivity fields and boundary conditions) and outputs (the hydraulic head field) with greater
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efficiency and reduced computational demands. The adoption of attention mechanisms within

the U-Net architecture has been shown to significantly enhance the model’s ability to focus on

salient regions of the input data, thereby improving approximation accuracy and reducing model

uncertainty. This approach yields very accurate results in forward simulations, substantially

reducing the computational time required compared to traditional numerical solvers. Another

notable strength of this methodology is the efficiency of the training process, which is carried

out offline and converges in a relatively short period. Once trained, the model can be deployed

for inference without further adjustments or re-training.

Among the limitations of this work, the paper acknowledges that the choice of hyperparameters

and the U-Net architecture specifics are based on manual variation rather than systematic

optimization. Future work could benefit from a more robust hyperparameter tuning study,

possibly incorporating automated methods like grid search or Bayesian optimization to explore

a broader parameter space and identify optimal configurations. Moreover, the study’s focus

on Dirichlet boundary conditions and a single resolution for data samples presents limitations

in the model’s applicability to more diverse real-world scenarios. Expanding the model to

accommodate mixed boundary conditions and varying discretizations could significantly enhance

its utility, making it more adaptable to different groundwater systems and the varying quality

of available data.

Addressing more complex, dynamic, and uncertain systems, including time-dependent prob-

lems, three-dimensional simulations, and coupled transport through porous media, represents a

natural and necessary progression of this research. Such extensions would likely require larger

training datasets and potentially deeper neural network architectures to capture the increased

complexity of these systems adequately. Finally, the suggestion to incorporate prior physical

knowledge directly into the learning process, by imposing physics constraints in the loss func-

tion, is particularly promising. This method could offer a way to increase inference speed and

reduce the amount of data needed for training by leveraging existing knowledge of the underlying

physical processes governing groundwater flow.

In conclusion, this paper represents a significant advancement in the application of deep learn-

ing for groundwater modeling, demonstrating the potential of the Attention U-Net model as a

surrogate for groundwater prediction. Its innovative application of attention mechanisms for



119 6.1 DISCUSSION

focusing on relevant parts of the domain offers detailed and accurate predictions, showcasing

significant advancements over traditional approaches. This initial investigation successfully ad-

dresses the first two objectives of the thesis: firstly, by developing a basic model that learns

the steady-state solution of the governing Partial Differential Equations in a homogeneous do-

main under constant boundary conditions, and secondly, by progressing to more sophisticated

models capable of understanding steady-state solutions in heterogeneous domains with diverse

boundary conditions. This foundational work not only achieved these specific objectives but

also established a solid basis for further exploration of complex models and their applications

in real-world hydrological systems.

Paper 3 (Chapter 3): Understanding the Efficacy of U-Net & Vision Transformer

for Groundwater Numerical Modelling

The paper investigates the efficacy of U-Net, U-Net integrated with Vision Transformers (ViT),

and Fourier Neural Operator (FNO) models for predicting hydraulic head in groundwater stud-

ies. The comparative analysis, grounded in synthetic datasets reflective of the Overbetuwe

region’s conditions in the Netherlands, reveals critical insights into the performance and appli-

cability of these models, particularly in scenarios characterized by sparse data.

The demonstrated superiority of the U-Net and U-Net + ViT models in handling sparse observa-

tion scenarios underscores the practical relevance of these approaches to real-world groundwater

modeling, where data scarcity often poses significant challenges. The U-Net model demonstrates

proficiency in identifying pumping wells, with only a marginal improvement in performance ob-

served through the integration of Vision Transformers in its bottleneck. The fact that a more

sophisticated Vision Transformer architecture does not necessarily lead to improved perfor-

mance calls for a critical reflection on the balance between model complexity and practical

utility. This balance is especially relevant in the field of groundwater modeling, where both

the interpretability and computational efficiency of models are of paramount importance, along

with predictive accuracy.

The intention to apply this methodology to real-world data from the Overbetuwe region presents

a promising direction for future research. This step is crucial for validating the models in more

complex and uncertain environments, which are characteristic of actual groundwater systems.
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In summary, the paper further enriches the thesis by comparing different neural network ar-

chitectures in their efficacy for groundwater numerical modeling. This comparative analysis

directly addresses the third objective of the thesis, which involves evaluating the effectiveness

of the developed models against other methodologies. Additionally, it sheds light on both the

potential and limitations of current models, paving the way for future research that is more

attuned to the complexities and uncertainties of real-world applications.

Paper 2 (Chapter 4): Developing a Cost-Effective Emulator for Groundwater Flow

Modeling Using Deep Neural Operators

This paper presents the DeepONet framework as an efficient surrogate model for groundwater

flow prediction. This framework demonstrates its capability to predict hydraulic head in het-

erogeneous aquifers, transient systems and generalize to unseen conditions, such as changes in

well locations and hydraulic conditions. The successful implementation of this neural operator

across various experiments, including forward and inverse problems,underscores its potential as

a versatile tool for repetitive forward numerical simulations, offering significant improvements

over traditional modeling approaches. Moreover, a novel contribution of this work is the mod-

ification of the DeepONet architecture, specifically the linking of the branch network to the

trunk network. This adjustment enables the model to accurately predict outcomes for unseen

well locations and varying hydraulic conductivity fields.

However, the study acknowledges certain limitations and areas for future research. The cur-

rent focus on single-well and two-wells configurations represents a constrained exploration of

the model’s capabilities. Expanding the model to encompass multiple well-surrogate modeling

is identified as a natural progression for future work, suggesting a need to explore more com-

plex and realistic subsurface problems. This expansion would enhance the model’s applicability

and relevance to real-world groundwater management challenges. Furthermore, the exploration

of sparse observations for inverse modeling in this study opens the door to investigating the

strategic placement of observation points, which are the inputs to the trunk network. Under-

standing how the distribution of these points affects model performance is a critical aspect that

needs further exploration. Such investigations could lead to more effective strategies for data

collection and model training, thereby improving the reliability and accuracy of predictions.

Future research directions also include uncertainty analysis and the integration of multi-fidelity
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and multi-modality approaches. Recognizing that real-world data are not only sparse but also

vary in source and characteristics, the paper points towards the challenge and opportunity of

integrating diverse data sources.

In conclusion, this paper advances the narrative of the thesis by introducing a deep neural

operator framework for groundwater flow modeling, capable of handling sparse data and diverse

problem setups. This development aligned with the thesis’s aim to create versatile models

for groundwater management, addressing the complexity and diversity inherent in real-world

hydrological systems. The contributions of the paper in developing a cost-effective emulator for

groundwater flow modeling using Deep Neural Operators directly align with the fourth and fifth

objectives of the thesis. These include focusing on inferring solutions from limited and varied

point measurements to address the challenges of incomplete or indirect data found in real-

world scenarios and extending the models to capture transient solutions of the PDE, thereby

incorporating the crucial dimension of time that reflects the dynamic nature of groundwater

flow.

Paper 4 (Chapter 5): Spatial-Temporal Graph Neural Networks for Groundwater

Data

Leveraging a comprehensive dataset of real-world groundwater level time series, this paper inves-

tigates the application of spatial-temporal graph neural networks (ST-GNNs) for groundwater

level forecasting. The approach directly aligns with the sixth objective of the thesis, which

focuses on employing developed models in real-world case studies to evaluate their predictive

accuracy and practical applicability against measured ground truth data. The study demon-

strates the ST-GNN model’s superior performance in long-term forecasting and its robustness

against noise, outperforming traditional LSTM networks and the numerical MODFLOW model.

By leveraging a comprehensive dataset that includes both groundwater level time series and

auxiliary data such as precipitation, evaporation, and river stages, the study adeptly models the

complex spatial and temporal dynamics that influence groundwater systems. The graph-based

approach of the ST-GNN model, with its inherent capacity to encapsulate these multifaceted

interactions, demonstrates high forecasting accuracy and robustness, especially in long-term

forecasting and specific observation wells scenarios, a notable achievement given the noise and

missing data typical of real-world datasets. The model’s utility extends to scenario planning
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and decision-making for water resource management, offering a strategic tool for determining

optimal water extraction volumes under various weather conditions. The rapid computation

afforded by the deep learning architecture underscores the model’s practical value, enabling the

execution of numerous probabilistic scenarios with efficiency and agility.

The study not only demonstrates the efficacy of the current model but also paves the way for

future enhancements to its predictive capabilities. Future work could be the incorporation of

additional variables into the model’s architecture, such as using resistance as weights in the

graph’s edges. Enriching the model with a broader range of exogenous variables and additional

features such as aquifer elevations, hydraulic conductivity, and aquitard resistance could deepen

the model’s understanding of groundwater dynamics, leading to more precise predictions. The

prospect of developing networks capable of processing multi-modal inputs, including continuous

geological information, could dramatically enhance the model’s utility, making it an even more

powerful tool for groundwater level prediction.

Moreover, future research could aim to scale the ST-GNN approach to encompass larger net-

works capable of making predictions beyond mere observation points. This ambition sets the

stage for a model that could rival traditional approaches, offering solutions for the entire do-

main. This advancement would not only broaden the scope of machine learning applications in

hydrology but also potentially revolutionize the field by providing more flexible, efficient, and

comprehensive tools for groundwater management.

In conclusion, this work culminates the research journey by employing spatial-temporal graph

neural networks to predict groundwater levels in a real-world case study. This paper’s focus

on integrating spatial and temporal dynamics through ST-GNNs directly addressed the sixth

objective of the thesis, applying developed models in a practical context and benchmarking

their predictions against actual data. The success of ST-GNNs in providing accurate long-

term forecasts, especially in handling missing data, underscored the thesis’s ultimate goal of

developing sophisticated, accurate, and practical tools for groundwater modeling and prediction.

Collectively, these papers weave a coherent narrative that responds to the central research ques-

tions of the thesis, while significantly advances the modelling and methodological approaches

within the field of groundwater prediction. This thesis demonstrates the transformative po-

tential of deep learning-based models in groundwater management, offering novel insights and
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methodologies that pave the way for future research.

6.2 Future Work

Moving forward, there is a significant need for the development of scalable and efficient models

that can accurately simulate complex processes across a range of scales, from local to global

groundwater level systems. A critical step in this direction involves creating comprehensive

benchmark datasets for groundwater. These datasets will serve a dual purpose: firstly, they

will enable the development and rigorous evaluation of machine learning models tailored for

GWL forecasting and uncertainty quantification; secondly, they will establish a standardized

foundation that the broader research community can leverage to innovate, test, and validate

new modeling approaches and technologies.

Expanding on the groundwork laid by this thesis, future research will also explore the application

of these models to broader environmental contexts, such as coupled ground-water and surface-

water flow models. This expansion will leverage the experience gained in groundwater prediction

to address complex environmental challenges more holistically.

Moreover, the creation of robust tools for quantifying and managing uncertainty in environmen-

tal models represents a vital area of future work. By building on advances in AI and machine

learning, integrating uncertainty quantification methods into environmental simulations will en-

hance the predictive power and reliability of these models, contributing to more informed and

effective real-world decision-making.

Finally, the methodologies and findings presented in this thesis lay a solid foundation for con-

tinued innovation in the field of groundwater modeling. As we look to apply these models to

larger and more complex real-world datasets, such as an entire national network of groundwa-

ter measurements, the horizon for future research in this field is both exciting and promising.

Further research will continue to advance the field, driving forward the capabilities of machine

learning in environmental science and hydrology.
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