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Abstract

In-silico trials (ISTs) use computational modelling and simulation in virtual
patients to evaluate medical device performance. Despite early promise,
various challenges prevent the use of ISTs from becoming common practice
in medical device development. Three significant challenges are: (i) Pro-
hibitive costs due to complex computational models that require excessive
resources and time to execute. (ii) Lack of exemplar ISTs demonstrating
their effectiveness in generating evidence for medical device performance.
(iii) Lack of scalability and reproducibility due to computational modelling
pipelines requiring significant expert manual input.

In this thesis, challenge (i) was addressed through a comprehensive liter-
ature review into reduced order modelling and machine learning techniques
that can accelerate the computational models that are essential in ISTs.
Challenge (ii) was addressed by performing the FD-PComA IST into flow
diversion (FD) of posterior communicating artery (PComA) aneurysms,
which are a common sub-group currently not approved for treatment with
the most widely used flow diverter. PComA aneurysm treatment is com-
plicated by the presence of fetal posterior circulation (FPC), which has an
estimated prevalence of 4–29% and is more common in black than white
ethnicities. Given these factors, FD-PComA demonstrates the effectiveness
of ISTs in generating evidence for less-studied scenarios and demograph-
ics. Challenge (iii) was addressed in FD-PComA through automation of
the modelling steps. The results of FD-PComA demonstrate that flow di-
version is less effective in FPC patients and that PComA and aneurysm
morphology do not influence treatment performance. Challenge (i) was ad-
dressed further through the development of a machine learning reduced
order model (ML-ROM) for evaluating aneurysm blood flow subject to
physiological variation, which is a relevant problem for IST applications.
The ML-ROM was approximately 98% accurate in evaluating the velocity
solution and provided an acceleration of five orders of magnitude relative
to a computational fluid dynamics model for the same problem.
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Introduction
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1.1 In-Silico Trials of Medical Devices

1.1 In-Silico Trials of Medical Devices

Clinical trials have revolutionised healthcare by providing patients with a myriad of new
treatments such as vaccines, drugs and medical devices. Despite this success, clinical
trials are afflicted by numerous issues in their current state. These issues include the
following:

1. Human clinical trials are the most expensive and time-consuming stage in the
development of a medical device [5]. Using data collected from seven major
biopharma companies across a five year period, Martin et al. [6] found that the
median cost from protocol approval to final clinical trial report was $3.4M USD
for phase I trials, $8.6M USD for phase II trials and $21.4M USD for phase III
trials.

2. Clinical trials are not always successful. Wong et al. [7] found the probability of
success (i.e. likelihood of moving from phase 1 to approval) for all indications
across over 40,000 pharmaceutical trials to be only 13.8%. While identifying
treatments that will not work before they are approved is useful, failed trials cost
money and take time which can delay the development of suitable treatments.

3. Long time-to-market. A survey of over 200 manufacturers found that a Food and
Drug Administration (FDA) pre-market approval certificate took an average of
4.5 years to acquire [8].

4. Clinical trials are not exhaustive. Safety and efficacy can not be established for
the entire population or for long-time use of the device/drug, which can lead to
complications once the device/drug reaches the market [9].

5. Inability to explain underlying mechanisms behind treatment failure. Clinical
trials are phenomenological and often cannot improve our understanding of why
treatments fail in particular patients or under certain physiological conditions.

6. There can be ethical and environmental issues associated with clinical trials [10].

In-silico trials (ISTs) offer an alternative strategy towards the development of med-
ical devices and other treatments that can help to mitigate the above issues [11, 12].
In-silico trials refer to pre-clinical trials performed using individualised computer mod-
elling and simulation to virtually test some aspect of a medical device, drug or clinical
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1.1 In-Silico Trials of Medical Devices

procedure across a large range of anatomies and physiologies. Performing trials in-silico
can facilitate more comprehensive judgement of the safety and efficacy of a treatment
across the population. As a result, in-silico methodologies are being adopted in drug
and medical device development [13–15] in the treatment of pathologies such as diabetes
[16], acute ischemic stroke [17, 18] and COVID-19 [19].

The most relevant exemplar trial for this thesis is the Flow Diverter Performance
Assessment (FD-PASS) IST [20]. In this study, Sarrami-Foroushani et al. [20] used
computer modelling and simulation to perform an IST investigating the performance
of the Pipeline Embolization Device (PED), a flow diverter device used for endovas-
cular treatment of intracranial aneurysms. Fluid dynamics and biochemical reaction
modelling were used to assess the safety and efficacy of the flow diverter in a cohort
of 82 virtual patients, with normotensive and hypertensive physiology modelled for
each patient through the use of boundary conditions calibrated by patient data. By
defining haemodynamic metrics for assessing treatment performance, the results of the
IST were able to be compared with the results from three conventional clinical trials.
Sarrami-Foroushani et al. [20] found that the IST replicated the results from the con-
ventional trials and was able to expand upon them by performing sub-group analyses
and additional experiments that would not be feasible or ethical in conventional trials.
The results from FD-PASS demonstrate the power of ISTs, but the methodology used
to generate the results can be improved upon. Developing an automated simulation
pipeline would reduce the manual input required to prepare and execute simulations,
thus improving the scalability of the trial. Simulation acceleration techniques could
also be used to decrease the computational resources required for each model evalu-
ation. The run-time for one patient, one physiology and one device in FD-PASS was
approximately one day, which could lead to prohibitively large run-times and costs when
increasing the scale of the IST towards thousands of patients, hundreds of physiologies
and multiple devices.

There are numerous challenges to overcome before widespread adoption of ISTs in
medical device development becomes common practice. These challenges can largely
be categorised as relating to regulatory uncertainties, financial/leadership issues and
problems relating to modelling/simulation [5]. The aim of my PhD is to address some
of the aspects of modelling and simulation that currently hinder widespread adoption
of ISTs. Specifically, these challenges are:
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1. Prohibitively large simulation costs and run-times.

2. Lack of exemplars demonstrating the usefulness of in-silico trials.

3. Highly complex modelling and simulation pipelines that require significant expert
input to execute.

The first challenge will be addressed through the review and development of ac-
celerated simulation methods using data-driven modelling techniques. The second and
third challenges will be addressed by performing an exemplar IST into flow diver-
sion of posterior communicating artery aneurysms using a semi-automated simulation
pipeline. Figure 1.1.1 highlights the structure of the thesis chapters in relation to these
challenges.
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Chapter 6: Discussion and Conclusion

Discussion and conclusion from Chapters 3, 4 and 5.
Outlook and future directions from the thesis.

Chapter 4: In-Silico Flow Diverter Performance
Assessment in Posterior Communicating Artery Aneurysms

In-silico trial (IST) performed using semi-automated simulation pipeline.
Exemplar IST in an off-label indication, demonstrating the use of ISTs

for assessing non-approved treatments.

Chapter 2: Intracranial Aneurysms and Vascular Flow Modelling

Provides background to the subsequent chapters.

Efficient Ensemble Simulation Methods for
In-Silico Trials of Endovascular Medical Devices

Chapter 3: Accelerated Simulation Methodologies
for Computational Vascular Flow Modelling

Reduced order modelling and machine learning simulation techniques
assessed for various complexities inherent to vascular flow problems.

Accuracy and acceleration quantified where possible.

Chapter 5: Reduced Order Modelling of Intracranial Aneurysm Flow
Using Proper Orthogonal Decomposition and Neural Networks

Proper orthogonal decomposition with neural network interpolation
reduced order model constructed for aneurysm flow variability.

Model accuracy and acceleration quantified.

Challenges for Widespread Adoption of In-Silico Trials

Large simulation costs. Lack of exemplars. Arduous non-automated
modelling pipelines.

Figure 1.1.1: Thesis outline. The colour used for each chapter corresponds to the
challenge that was tackled in that work.
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1.2 Research Aims

1. Critically review accelerated simulation methodologies for vascular flow problems,
identifying the types of application each method is suitable for and directions for
future research.

2. Perform an in-silico trial investigating flow diverter treatment of intracranial an-
eurysms and automate the steps involved in the simulation pipeline.

3. Develop accelerated simulation methodology to facilitate efficient in-silico trials of
endovascular medical devices and demonstrate the application of the methodology
to a relevant problem.

1.3 Contributions

Various chapters within the thesis represent a distinct study that is published, under
review or soon-to-be submitted. Below I state the contributions of each chapter and
any associated publications.

• Chapter 1 – I briefly discussed some of the issues relating to clinical trials, in-
troduced in-silico trials for medical devices, overviewed a key paper by Sarrami-
Foroushani et al. [20] and presented my research aims.

Sarrami-Foroushani, A., Lassila, T., MacRaild, M., Asquith, J., Roes, K.C.,
Byrne, J.V. and Frangi, A.F., 2021. In-silico trial of intracranial flow diverters
replicates and expands insights from conventional clinical trials. Nature commu-
nications, 12(1), pp.1-12.

• Chapter 2 – I provide background into intracranial aneurysms, treatment of in-
tracranial aneurysms, vascular flow modelling and the use of simulation and mod-
elling for understanding intracranial aneurysm treatment.

• Chapter 3 – I perform an extensive literature review into the acceleration of
computational vascular flow models. The review focuses on: (i) Reduced order
modelling for accelerating vascular flow simulations; (ii) Machine learning-based
approaches for accelerating vascular flow simulations.

Chapters 2 and 3 both contributed to the following publication.
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MacRaild, M., Sarrami-Foroushani, A., Lassila, T. and Frangi, A.F., 2024.
Accelerated simulation methodologies for computational vascular flow modelling.
Journal of the Royal Society Interface, 21(211), p.20230565.

• Chapter 4 – I perform an in-silico trial assessing the performance of the Pipeline
Embolization Device (PED) in posterior communicating artery (PComA) an-
eurysms using a semi-automated simulation pipeline. Treating PComA aneurysms
with PED represents an off-label use of the flow diverter device with an uncertain
outcome, particularly for patients with fetal posterior circulation. The trial estab-
lishes the usefulness of modelling and simulation in assessing treatment scenarios
that may not be approved by the FDA.

MacRaild, M., Sarrami-Foroushani, A., Song, S., Liu, Q., Kelly, C., Raviku-
mar, N., Patankar, T., Lassila, T., Taylor, Z.T., and Frangi, A.F., 2023. Off-
label in-silico flow diverter performance assessment in posterior communicating
artery aneurysms. Journal of NeuroInterventional Surgery, under review.

• Chapter 5 – I develop a machine learning reduced order model for capturing
physiological flow variation in intracranial aneurysm models. Computational
fluid dynamics data was generated in a 3D aneurysm model, a reduced order
model using proper orthogonal decomposition and neural network interpolation
was constructed, and the model’s accuracy and acceleration was assessed.

MacRaild, M., Sarrami-Foroushani, A., Lassila, T., and Frangi, A.F., 2023.
Reduced order modelling of physiological flow variation in intracranial aneurysms
using proper orthogonal decomposition and neural networks. International Journal
for Numerical Methods in Biomedical Engineering, under review.

• Chapter 6 – I present a discussion of each thesis chapter individually, draw final
conclusions from the thesis and present ideas for future studies.
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Intracranial Aneurysms and Vascular Flow
Modelling
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2.1 Introduction

2.1 Introduction

The first and third research aims of this thesis are to review and develop accelerated
simulation methodology. When developing methodology for accelerating vascular flow
simulations, it is useful to have a target application that is suitably complex and in-
teresting. Previous work in my research group has focused on modelling blood flow
and treatments of intracranial aneurysms [20–23]. As such, this will be the target ap-
plication used when developing the methodology. The second aim of this thesis is to
perform an exemplar in-silico trial to generate evidence on medical device perform-
ance. It similarly makes sense to use intracranial aneurysm treatment modelling as the
target application upon which to base the trial. This chapter provides clinical back-
ground on intracranial aneurysms, techniques for treating them, and modelling of their
pre- and post-treatment haemodynamics. It also introduces vascular flow modelling
and the specific complexities that arise in intracranial aneurysm modelling. Vascular
flow modelling and its complexities form the background to Chapter 3 and aneurysm
pathophysiology, treatment and modelling form the background to Chapters 4 and 5.

2.2 Intracranial Aneurysms

Intracranial aneurysm are pathological dilations in the arterial walls of the brain vascu-
lature that form when weakness in the vessel wall causes it to balloon or bulge outwards
[24]. The exact cause of this weakness is unknown, however it has been linked to a host
of inherited and acquired risk factors, such as increasing age, female sex, smoking and
head trauma [25]. It has been estimated that intracranial aneurysms occur in 5–8% of
the general population, but the exact prevalence is unknown because most are asymp-
tomatic [26, 27]. When an aneurysm ruptures, it causes subarachnoid haemorrhage,
an event which carries high rates of mortality, morbidity and disability [28]. Despite
improvement in clinical care of patients with subarachnoid haemorrhage, a quarter still
die and roughly half live with persistent neurological deficits [29]. The estimated annual
cost to the UK’s National Health Service for aneurysmal subarachnoid haemorrhage
was £168.2 million in 2005. Accounting for informal care and production losses the
total economic burden was estimated to be £510 million annually [30].

Aneurysms can occur in all vessels of the brain vasculature, but are most com-
monly found on the Circle of Willis, a loop-like vessel structure that supplies blood
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2.2 Intracranial Aneurysms

to the brain and surrounding tissue (Figure 2.2.1). In the Circle of Willis, blood flow
enters the system through the internal carotid and vertebral arteries and flow into the
other surrounding arteries shown in Figure 2.2.1. The structure of the Circle of Wil-
lis means that each efferent artery can potentially be supplied by either the anterior
(internal carotid arteries) or posterior (vertebral arteries) blood inflow. The posterior
communicating arteries (PComAs) connect the anterior and posterior circulation and
as a result their physiological function can vary depending on the structure of the sur-
rounding vasculature. One example of this is the presence of fetal posterior circulation,
a condition where atrophy or absence of the P1 segment of the posterior cerebral artery
increases the blood flow demand on the PComA. This raises questions regarding treat-
ment of aneurysms that originate from the PComA – this will be investigated further
in Chapter 4 [2].

The most frequent aneurysm location is the anterior communicating artery (35%),
then the internal carotid artery including the posterior communicating and ophthalmic
arteries (30%), the middle cerebral artery (22%) and finally the posterior circulation
locations [31]. Aneurysms also vary in pathogenesis. When a blood vessel balloons
outwards on one side of the vessel wall, the resulting aneurysm is referred to as saccular.
When the vessel bulges radially outwards around the entire wall, the aneurysm is
referred to as fusiform. Saccular aneurysms are typically more spherical in shape and
have a distinct neck, whereas fusiform aneurysms have no distinct neck. Aneurysms can
be further classified as either side wall or terminal, with terminal aneurysms occurring
at a vessel bifurcation.

Aneurysms are commonly categorised as small (maximum diameter < 10 mm),
large (> 10 mm, < 20 mm), and giant (> 20 mm). Aneurysm morphology can also be
described by parameters such as neck diameter, aspect ratio and non-sphericity index.
Aspect ratio is typically the ratio between the distance from the neck to the aneurysm
tip and the neck width. Non-sphericity index is derived from the volume and surface
area of the aneurysm and is used to quantify the complexity of its shape [32]. Figure
2.2.2 illustrates these morphological quantities.
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Figure 2.2.1: The Circle of Willis. Blood flows into the system through the internal
carotid and vertebral arteries. The posterior communicating arteries, which are the
subject of the in-silico trial in Chapter 4, connect the anterior and posterior circulation.
This figure was adapted from a file freely available in the public domain (Wikimedia
Commons).
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Figure 2.2.2: Common morphological parameters used to describe intracranial an-
eurysms.

Within a given aneurysm location and type (e.g. PComA, saccular, bifurcation),
there is still significant variation in aneurysm size and shape. Figure 2.2.3 shows six
PComA aneurysms and Table 2.2.1 gives morphological parameters for the aneurysms
and the posterior communicating arteries for each case. These six cases demonstrate
the large variation in shape and size possible amongst aneurysms arising from the same
location. Aneurysm (a) is spherical in shape with a maximum diameter of 3.5 mm, an
aspect ratio of 1.2, and a non-sphericity index of 0.15. Aneurysm (b) is at the upper end
of the large category with a maximum diameter of 18.5 mm and an aspect ratio of 1.0.
Aneurysm (c) has a high aspect ratio of 2.1 and a complex shape due to the formation
of a daughter aneurysm on the original aneurysm. Aneurysm (c) has the largest non-
sphericity index among these six aneurysms with a value of 0.30. Aneurysm (d) is
similar in size and aspect ratio to aneurysm (a), but has a more complex shape and a
greater non-sphericity index of 0.22 compared to (a). Aneurysm (e) has a low aspect
ratio of 0.5 and a low non-sphericity index of 0.05 due to its uniform rounded shape.
Aneurysm (f) has a complex-shape with a non-sphericity index of 0.28. Differences
are also apparent in the size and shapes of the vessels surrounding the aneurysms.
Of particular interest in this thesis is the posterior communicating artery, which is
drastically different in size for cases (a) and (d), for example. The morphology of the
aneurysm and the surrounding vessels are an important factor in treatment selection.
The physiology of the vessels can also affect the treatment efficacy, but this will be
discussed further in Chapter 4 [2].
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Figure 2.2.3: Six posterior communicating artery (PComA) aneurysm geometries from
the patient cohort used in Chapter 4. ICA, internal carotid artery; MCA, middle
cerebral artery; ACA, anterior cerebral artery.

Table 2.2.1: Six posterior communicating artery aneurysms and their morphological
parameters. Aneurysm morphological parameters are provided by the AneuX database.
PComA radius is taken as the radius of the PComA outlet surface used for the flow
simulations in Chapter 4.

Figure 2.2.3 Max. diameter [mm] Aspect ratio Neck diameter [mm] NSI PComA radius [mm]
(a) 3.5 1.2 3.0 0.15 1.1
(b) 18.5 1.0 10.0 0.14 0.8
(c) 7.8 2.1 4.7 0.30 0.3
(d) 3.4 1.2 2.7 0.22 0.4
(e) 4.0 0.5 3.5 0.05 0.9
(f) 9.6 1.4 4.6 0.28 0.7

NSI, non-sphericity index; PComA, posterior communicating artery.
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2.3 Intracranial Aneurysm Treatment

Improvements in diagnostic techniques using medical image analysis have increased the
detection rate of unruptured intracranial aneurysms [33]. Despite occurring in 5–8%
of the population, only about 1% of intracranial aneurysms actually rupture [34]. This
means that clinicians are faced with the question of whether to treat an aneurysm upon
discovery and how best to treat the aneurysm if treatment is deemed necessary.

It is thought that aneurysm rupture is a consequence of the vessel wall being unable
to contain the haemodynamic load, with rupture occurring when wall stress exceeds
wall strength [35]. The haemodynamic load stems from the pressure exerted by the
blood flow upon the wall of the vessel. Interventional treatments of aneurysms aim
to isolate the aneurysm from the circulatory system, mitigating the impact of blood
flow variability on the weakened vessel wall. Isolating the aneurysm can be achieved
through parent vessel occlusion, surgical clipping or endovascular techniques [1].

Parent vessel occlusion is a viable option for treatment of intracranial aneurysms
where sufficient collateral circulation exists [24]. The procedure involves occluding the
parent vessel through surgery or using an endovascular technique, such as balloons
or coils, to prevent further blood flow to the vessel and therefore to the aneurysm.
Without adequate collateral circulation that can supply the distal regions of the brain
in place of the occluded vessel, this treatment method can result in a stroke.

Surgical clipping was developed in the 1930s and was the standard treatment for
intracranial aneurysms for many years [36]. The procedure involves a craniotomy fol-
lowed by placing a clip across the neck of the aneurysm, thereby excluding it from the
circulation [24]. This treatment method has good long-term efficacy, but it is highly in-
vasive and in some cases the morbidity and mortality rates associated with the surgery
are greater than for rupture of the aneurysm without intervention [25].

An alternative to surgical clipping is endovascular coiling. This procedure involves
catheter insertion of an electrolytically detachable platinum coil that adapts to different
sizes and shapes of aneurysm [37]. This coil can be guided into the aneurysm and
detached once a sufficient packing density has been achieved, as shown in Figure 2.3.1.
Filling the aneurysm sac with coils reduces the blood flow velocity, which reduces
the risk of rupture and promotes the growth of stasis-induced thrombus in the sac.
This procedure raises additional questions, such as how densely to pack the coil [38].
Coiling is shown to be reasonably safe, with moderate effectiveness in terms of complete
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Figure 2.3.1: Virtual treatment of an aneurysm using coiling (left) and a flow diverter
(right) [1].

occlusion of the aneurysm [39]. However, as with aneurysms treated through surgical
clipping, the most difficult to treat with coil embolisation are those with a wide neck,
defined as greater than 4 mm in diameter [40]. In wide neck aneurysms, there is a risk
that the coil will migrate into the parent vessel and lead to an ischaemic stroke.

Another endovascular treatment technique is stenting, which has been used since
the 1990s [41]. Early stent designs had a high porosity and so were rarely able to
redirect flow away from the aneurysm sac of their own accord, but they can be used in
conjunction with coiling for wide neck aneurysms to mitigate the risk of coil migration.
Between the 1990s and 2008, improvements were made to the initial stent design to
create what is called a flow diverter [42]. A flow diverter is a braided metallic cyl-
indrical device that typically has a much lower porosity than a stent. Flow diverters
are deployed in the parent vessel adjacent to the aneurysm, as shown in Figure 2.3.1.
The goal of flow diversion is to reduce the blood flow into the aneurysm sac by redir-
ecting flow away from the aneurysm and into the parent vessel. This process induces
flow stasis in the aneurysm and promotes clot formation in the sac, which triggers the
process of aneurysm healing [43]. Visualisations of blood flow streamlines before and
after treatment and clot formation can be seen in Figure 2.6.1. Similarly to stents,
flow diverters can be used in conjunction with coils for mitigating coil migration [43].
However, flow diverters can also be used by themselves and have demonstrated high oc-
clusion rates irrespective of aneurysm size [44]. Studies have suggested higher complete
occlusion with flow diversion (76%) compared with stent-assisted coiling (69%) [45–47].
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Furthermore, cost-effectiveness analyses have favoured flow diversion over alternative
endovascular treatments, particularly for large or giant aneurysms [45, 48].

The SILK and Pipeline Embolisation Device (PED) were the first two flow diverters
to obtain CE mark approval in 2008 [43, 45]. The PED was also the first flow diverter
to be approved by the U.S. Food and Drug Administration and is subsequently the
most widely used device on the market at present [49]. However, the PED was only
approved for use in a sub-group of aneurysms, namely those of large or giant size in
the internal carotid artery from the petrous to the superior hypophyseal segments. As
popularity and experience with the PED grew, its use has extended to various off-label
indications, such as previously treated aneurysms, small aneurysms, posterior circula-
tion aneurysms, fusiform aneurysms and distal circulation aneurysms [50]. In addition
to the PED, intrasaccular devices such as the Woven Endobridge (WEB), Contour and
Neqstent have recently emerged as alternative treatment approaches for wide-necked
aneurysms. In spite of progress in treatments, flow diverter trials do not always pro-
duce good results. Two randomised trials into flow diverter performance (PARAT [51])
and FIAT [52]) reported below-expectation efficacies and high complication rates. The
growing use of PEDs and other flow diverters in unapproved scenarios, as well as linger-
ing questions in the approved use-case scenarios, motivates the demand for additional
trials to better understand these issues. Performing the trials that would be required
to answer these questions in-vivo (i.e. clinical trials) would be costly and potentially
unethical in cases where the preliminary findings suggest that treatment performance
will be inadequate. This motivates a paradigm shift towards in-silico trials based upon
simulation and modelling, as this allows virtual performance assessment of a device
in virtual patients across an envelope of morphologies, physiologies and device designs
without risk to patients.

2.4 Vascular Flow Modelling

The impact of computational modelling is ubiquitous in the world around us. Model-
ling physical events and engineering systems governed by the laws of mechanics allows
us to design and manufacture efficient transportation, predict weather patterns, im-
prove healthcare and gain a deeper understanding of complex phenomena. Traditional
computational models involve the simulation of high-dimensional numerical problems,
which can incur prohibitively large run-times. This limits the use of traditional models
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in real-time and many-query applications. Real-time applications require that model
evaluations occur almost instantaneously at the same or a faster rate than the real phys-
ical system being modelled. Many-query applications require large numbers of repeated
model evaluations with varying parameters. Real-time and many-query problems often
arise in the modelling of vascular blood flow. Real-time vascular flow simulations can
be useful for providing personalised patient care quickly or for providing instant feed-
back to a surgeon undertaking a treatment procedure [53, 54]. Many-query vascular
flow simulations can be used to iteratively design new vascular implements, establish
safety and performance measures for treatment devices, and simulate interventions on
a population scale through so-called in-silico trials [20, 55–57].

Vascular flow modelling poses various challenges due to the inherent complexities
of the problem, which are highlighted in Figures 2.4.1 and 2.6.1 [58, 59]. Blood flow
dynamics and tissue perfusion are governed by the Navier-Stokes equations, which are
a nonlinear set of time-dependent partial differential equations [60]. Coupling the hae-
modynamics to solid mechanics or biochemical reaction models may also be required
in certain applications. Fluid-structure interaction (FSI) is required when vessel dis-
tensibility is important or when there is a complex interaction between blood flow and
valves or implanted devices [61–64]. Biochemical reactions are crucial in modelling
thrombosis and endothelialisation depends on interactions between blood and blood-
contacting surfaces of devices [23, 65]. The constitutive nature of blood adds additional
complexity – it is a suspension containing various biochemically active particles and
molecules, meaning that multi-phase multi-component flow-biochemistry models may
be required when modelling flow-thrombosis in small vessels [23, 66].

As well as being multi-physical in nature, the length and time scales in vascular
flow problems can differ greatly. Vascular flow is inherently pulsatile, which leads to
features such as flow separation, vortex transport, mixing regions and impingement
varying topologically throughout the cardiac cycle [67]. Variation in length scale and
morphology can also influence these flow features. This leads to varying flow regimes in
different regions of the vasculature and at different times of the cardiac cycle. Vascular
flow modelling encompasses short-term processes such as systemic haemodynamics,
autoregulation and recanalisation in addition to long-term processes such as remodelling
and thrombosis [68–71]. Physiological changes due to factors such as age and lifestyle
also have an impact on various flow problems. Vastly different length scales are also
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Figure 2.4.1: Vascular flow modelling is a multi-physics, multi-scale problem where
nonlinearity and geometric complexity frequently arise.

present, with thrombosis and endothelialisation happening on a molecular level at the
micro-scale, whereas systemic blood flow occurs in arteries with diameters up to a few
centimetres.

Nonlinear effects further complicate vascular flow modelling. This can result from
the convective nonlinearity in the Navier-Stokes equation, the geometric complexity of
blood vessels, or the interactions across different length and time scales between blood
flow and other physical and physiological phenomena. Blood is also shear-thinning,
which can introduce additional nonlinearity [72]. Nonlinear flow features are often found
in the presence of vascular pathologies such as stenosis, atherosclerosis, aneurysms or
valve defects [73–76]. Flow-device interactions and the shear-thinning nature of blood
can present additional sources of nonlinearity [77–80].

The most prominent complexities in vascular flow modelling can be summarised
as: (i) nonlinearity, (ii) geometrical complexity, (iii) multi-physics, (iv) multi-scale
in time, (v) multi-scale in space. In practice, assumptions can be made to simplify
these complexities or eliminate them entirely for most problems, allowing for successful
computational modelling. Despite this, using complex vascular flow models in real-time
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2.5 Simulating Intracranial Aneurysm Haemodynamics

or many-query applications can still require additional acceleration through techniques
such as reduced order modelling or machine learning.

2.5 Simulating Intracranial Aneurysm Haemodynamics

Haemodynamics is one of the most widely accepted factors contributing to aneurysm
pathophysiology, playing a fundamental role in the mechanisms of initiation, growth
and rupture [28]. Excessive haemodynamic loading of the vessel wall is thought to
cause aneurysm rupture [35]. Studies using image-based computational fluid dynamics
(CFD) modelling and statistical analyses have identified correlations between the hae-
modynamic properties of intracranial aneurysm flows and the likelihood of aneurysm
growth and rupture [81, 82]. For this reason, CFD modelling is increasingly being used
as a research tool to help understand the development, prognosis and treatment of
intracranial aneurysms [83]. It is possible that aneurysm haemodynamics can provide
metrics to improve rupture risk assessment in both untreated and treated aneurysms
[28]. Some studies have attempted to replicate the exact anatomy of specific patients
and connect haemodynamic factors to clinical events, which allows statistical analysis
in a patient population [84, 85].

Xiang et al. [81] identified significant morphological and haemodynamic parameters
that discriminate intracranial aneurysm rupture status. Both the morphological para-
meters (size ratio, undulation index, ellipticity index and non-sphericity index) and hae-
modynamic parameters (average wall shear stress (WSS), maximum intra-aneurysmal
WSS, low WSS area, average oscillatory index, number of vortices and relative resident
time) were found to be statistically significant. However, the only independently sig-
nificant morphological variable was found to be size ratio, which is the ratio between
aneurysm height and mean parent vessel diameter [86]. Both WSS and oscillatory shear
index were found to be independently significant from the list of haemodynamic vari-
ables, suggesting that haemodynamics is as important as morphology in discriminating
aneurysm rupture status.

Further to performing haemodynamic analyses of aneurysms, it is possible to im-
plant treatment devices in the virtual patients and assess the performance and safety
of the device. Various CFD studies have investigated a number of aneurysm treat-
ment devices, such as coils [87, 88], stents [89], endovascular flow diverters [20, 23] and
intrasaccular flow diverters [90].
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2.6 The Complexity of Intracranial Aneurysm Haemody-
namics

Section 2.4 outlined the various complexities present in vascular flow in general. Intra-
cranial aneurysm haemodynamics demonstrate similar complexities.

The inclusion of a device into the simulation adds a large number of degrees of
freedom into the problem due to the highly discretised mesh required to model the
micro-scale device’s components (e.g. the PED strut width is 30 µm). The device also
impacts the flow dynamics, with the struts acting to break up the flow around the neck
of the aneurysm. This leads to complex small-scale flow features and recirculation in the
aneurysm sac, which are typically nonlinear flow behaviours that require a modelling
approach that can resolve both the large- and small-scale flow features, i.e. one that
is multi-scale in space. The application of suitable boundary conditions also requires
that the multi-scale nature of the problem is taken into account. Inflow conditions
can depend on the demography and physiology of the patient at hand, and the outflow
conditions must similarly take care to produce a realistic flow split at vessel bifurcations
that do not introduce unwanted uncertainty into the results [91].

Another complexity arises when considering the elasticity of the vessel and aneurysm
walls. Fluid-structure interaction (FSI) can occur between the blood and vessel walls
and plays an important role in the growth and rupture of aneurysms [92]. FSI can
lead to a range of fluid mechanical effects, such as nonlinear pressure-drop/flow-rate
relationships, wave propagation and generation of instabilities [93]. In addition, the
device itself will interact with the vessel walls and the blood flow during deployment,
so inclusion of these interactions may be important in order to accurately predict the
deployed device configurations [94].

Once the device has been implanted, biochemical reactions are important to produce
a more complete understanding of the treatment success and potential risks. Provided
the device successfully reduces flow into the aneurysm sac, stasis-induced thrombosis
is likely to occur. Sarrami-Foroushani et al. [23] developed a computational model
for stasis-driven thrombosis based upon a series of biochemical equations modelled as
a system of eight advection-diffusion-reaction equations for eight biochemical species.
The biochemical model includes two-way coupling with the CFD model in order to cap-
ture the complex interplay between clot and flow. It is also possible that an alternative

20



2.7 Aneurysm Haemodynamics Simulation Costs

Nonlinearity

Geometric Complexity

Multi-Scale in Time

Multi-Scale in Space

Vascular Flow Modelling Exemplar: Intracranial Aneurysm Flow, Treatment and Thrombosis

Treatment 

Thrombosis  

Flow 

Multi-Physics

Vascular flow
complexity

Demonstration in
aneurysm exemplar

Recirculation; flow-device
interaction.

Curved, bifurcating
vessel; aneurysm; device.

Flow-thrombosis.

Quasi-periodic flow; long-
term thrombosis.

Boundary conditions;
micro-scale device struts..

Figure 2.6.1: Aneurysm flow modelling as an exemplar that demonstrates the complex-
ities that are common across various vascular flow modelling problems.

thrombosis pathway would be activated by the device itself and this would require a
different set of equations to model. Thrombosis is typically a much slower process than
the timescales over which flow reduction occurs, so simulating both the short-term hae-
modynamic effects of device implantation as well as the long-term thrombus formation
presents a challenge that is multi-scale in time.

Figure 2.6.1 summarises the potential complexities that may need to be taken into
consideration when modelling intracranial aneurysm flow, treatment and thrombosis.
This application therefore represents a suitable exemplar to use throughout this thesis.

2.7 Aneurysm Haemodynamics Simulation Costs

While simulations can be used to understand aneurysm haemodynamics and treat-
ments, they often take prohibitively long and cannot be used in a real-time or many-
query context due to the excessive computational demand. Central Processing Unit
(CPU) time of 40 hours per case was reported when running aneurysm flow with a
mesh of roughly 1.7 million nodes on a standard workstation with four cores [95].
Sarrami-Foroushani et al. [23] found that flow simulations in untreated aneurysms with
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approximately 2 million mesh elements can take up to 10 hours on 32 processors to run
for three cardiac cycles with 200 timesteps per cycle. Simulations with a flow diverter
implanted have of order 10 million mesh elements and a correspondingly longer run time
of roughly one day for the same simulation and CPU specifications. Simulations of flow
and thrombosis in treated aneurysms can have run times of weeks or even months on
32 processors. Including fluid-structure interaction modelling would similarly increase
simulation run times.

2.8 Conclusion

This chapter has introduced intracranial aneurysms and their treatment, vascular flow
modelling, aneurysm haemodynamics and its complexities, and highlighted the cost of
running such haemodynamics simulations. The development of accelerated simulation
methodologies is essential for computational modelling to be viable in real-time and
many-query contexts such as in-silico trials, patient-specific treatment planning and
real-time surgery feedback. There are a vast array of accelerated simulation methodo-
logies, some of which have been applied to vascular flow modelling and some of which
have not. It is unclear at present which approaches are best suited the the various
complexities of vascular flow modelling and what level of accuracy and acceleration
they are capable of providing. To overcome this, Chapter 3 provides a thorough lit-
erature review of accelerated simulation methodologies for the target application of
computational vascular flow modelling.
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Chapter 3

Accelerated Simulation Methodologies for
Vascular Flow Modelling
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Abstract

Vascular flow modelling can improve our understanding of vascular pathologies and
aid in developing safe and effective medical devices. Vascular flow models typically
involve solving the nonlinear Navier-Stokes equations in complex anatomies and using
physiological boundary conditions, often presenting a multi-physics and multi-scale
computational problem to be solved. This leads to highly complex and expensive
models that require excessive computational time.

This review explores accelerated simulation methodologies, specifically focusing on
computational vascular flow modelling. Reduced order modelling (ROM) techniques
like 0D/1D and modal decomposition-based ROMs and machine learning (ML) methods
including ML-augmented ROMs, ML-based ROMs, and physics-informed ML models
are reviewed. The applicability of each method to vascular flow acceleration and the ef-
fectiveness of the method in addressing domain-specific challenges are discussed. When
available, statistics on accuracy and speed-up factors for various applications related
to vascular flow simulation acceleration are provided.

The findings indicate that each type of model has strengths and limitations depend-
ing on the context. To accelerate real-world vascular flow problems, future research on
developing multi-scale acceleration methods capable of handling the significant geomet-
ric variability inherent to such problems is proposed.
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3.1 Introduction

The Motivation for Accelerating Vascular Flow Simulations

Despite the widespread use of computational models across many scientific disciplines,
their use in real-time and many-query contexts is limited by their high computational
cost. These scenarios frequently arise in vascular blood flow modelling. Real-time
vascular flow simulations could provide guidance to clinicians prior to performing a
treatment procedure or provide near-instant feedback during the procedure [53, 54].
Many-query vascular flow simulations can be used to iteratively design new vascular
implements, establish safety and performance measures for treatment devices, and sim-
ulate interventions on a population scale through so-called in-silico trials [20].

Reduced Order Models and Machine Learning for Acceleration

Simulation acceleration refers to reducing the run-time of computational models and
is typically achieved through modelling assumptions and simplifications. Reduced or-
der models (ROMs) are low-order representations of high-order models that preserve
essential model input-output behaviour at the cost of some model accuracy and are a
common approach for accelerating expensive computational models [96, 97]. ROMs can
be categorised into two families, a priori ROMs and a posteriori ROMs. The former
seek to reduce the order of the system prior to solving the high-dimensional model,
using techniques such as Spatial Dimension Reduction (SDR) or Proper Generalised
Decomposition (PGD). A posteriori ROMs are data-driven techniques that depend on
first solving the high-dimensional model or acquiring experimental data to generate
snapshot solution fields. Snapshot data is decomposed into a reduced representation
using, for example, Proper Orthogonal Decomposition (POD) [98–101], Dynamic Mode
Decomposition (DMD) [102, 103] or variants thereof. The reduced representation can
then be advanced in time directly or combined with projection or interpolation tech-
niques to construct a ROM. There are a multitude of ROM techniques, some of which
have been applied to vascular flow problems.

Recent advances in machine learning have improved some ROM methodologies and
provided alternative techniques to accelerate simulations. Machine learning acceler-
ation methods operate under a similar paradigm to many ROM techniques, with an
expensive offline training phase that primes the model for fast online inference in new
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geometries, parameter values, or time points. There are various ways to use machine
learning in simulation acceleration. Machine learning ROMs typically use machine
learning to augment/replace a component of a ROM or they use machine learning
entirely in place of existing ROM components [104, 105]. Physics-informed machine
learning strategies are another possibility. In this approach, flow measurements are
supplemented by additional constraints based on the underlying governing equations
and boundary conditions [106]. Physics-agnostic techniques ignore the underlying phys-
ics of the problem, but instead use large amounts of data to identify mappings from
images or geometries to flow quantities of interest [107]. Other techniques include tailor-
made networks designed to handle point-cloud data [108, 109] and operator learning
strategies [110, 111]. Given the relatively recent emergence of machine learning sim-
ulation techniques, they have not been widely applied to acceleration of vascular flow
simulations yet.

Overview

This review aims to provide an overview of various methods for accelerating simula-
tions and to collate, categorise and critique each method with respect to the target
application of vascular flow modelling. Vascular flow modelling is decomposed into
a series of complexities (nonlinearity, geometric complexity, multi-physics and multi-
scale in time and space) and various acceleration methods are assessed with respect
to these complexities. For ROM approaches, the review provides guidance on what
type of vascular problems the method may be suitable for, what problems they have
already been applied to, and how successful these studies were in terms of the accuracy
and acceleration offered by the approach compared to traditional numerical methods.
For machine learning approaches, the review introduces some common methods, dis-
cusses their benefits and limitations, and advises what vascular problems they may be
suitable for. Throughout this review, acceleration factors are measured by compar-
ing run times for a single evaluation of the accelerated and full-order models, unless
otherwise stated. For complementary reviews on parametric model reduction, model
order reduction in fluid dynamics, data-driven cardiovascular flow modelling, machine
learning for cardiovascular biomechanics, real-time simulation of computational sur-
gery, and the challenges of vascular fluid dynamics, see [59, 96, 99, 112–114]. Finally,
note that although this review focuses on vascular flow acceleration, the complexities
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of this application (nonlinearity, geometric complexity, multi-physics and multi-scale)
are encountered across many other computational modelling domains. Therefore, this
review will be relevant and useful to computational vascular flow modelling researchers
and the broader computational modelling community.
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Figure 3.1.1: Taxonomy of various simulation acceleration methods reviewed in this
chapter.

3.2 Reduced Order Modelling of Vascular Flow

Reduced order models (ROMs) aim to reduce the dimensionality of a numerical prob-
lem either by applying prior knowledge of the problem itself or by inferring knowledge
based on previously gathered data from the system of interest. ROM methods can be
described as a priori or a posteriori, depending on whether the reduction of the sys-
tem exploits prior knowledge about the full-order model (FOM) or information (data)
collected after solving it, respectively. A priori methods are useful when there exist
symmetries or other known information about the underlying system, or when the sys-
tem is too complex to solve with traditional techniques. A posteriori methods are useful
when readily available data from the FOM can be used to guide the construction of the
ROM. Whether the approach is intrusive or non-intrusive is another way to categorise
ROM methods. Intrusive methods require the explicit use of the underlying high-order
numerical implementation of the FOM, whereas non-intrusive methods operate entirely
separate to the FOM. Intrusive methods can be more numerically robust due to their
incorporation of the underlying governing equations, but non-intrusive techniques can
be easier to implement and use in conjunction with commercial solvers, which are com-
mon when studying fluid dynamics problems. Many categories of ROM have been
applied to vascular flow, with various benefits and limitations to each approach. This
section will describe some of the most common ROM techniques and their suitability
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to model various vascular flow complexities.

3.2.1 Spatial Dimension Reduction

The 3D unsteady incompressible Navier-Stokes equations in non-dimensional form are:
find (u, p) ∈ H1(Ω;Rd) × L2(Ω;R) s.t.

∂u

∂t
+ u · ∇u = −∇p + 1

Re∇2u, ∇ · u = 0, (3.2.1)

where u is the velocity, p is the pressure, and Re is the Reynolds number dependent
upon the fluid density ρ and dynamic viscosity µ. The spatial dimension is d = 3 except
for some cases of plane symmetric or axisymmetric flow, when d = 2, and the domain
Ω ⊂ Rd has a suitably regular boundary to ensure the existence of solutions. Spatial
Dimension Reduction (SDR) involves reducing these equations down to a 0D/1D/2D
model that describes bulk quantities instead of the full spatio-temporal flow fields.
A comprehensive review of 0D and 1D techniques has been provided by Shi et al.
[115]. This review provides an overview of the approach, quantifies the acceleration
and accuracy offered, and discusses how applicable this method is to vascular flow
simulation acceleration.

0D Models Lumped parameter models (referred from hereon in as 0D models) exploit
the analogy between hydraulic networks and electrical circuits. Blood pressure and
flow rate are represented by voltage and current, and the frictional, inertial, and elastic
effects of blood flow are described by electrical resistance, inductance, and capacitance,
respectively [115]. Established methods for modelling electrical circuits (Kirchhoff’s
current law, Ohm’s law for voltage-current) with ordinary differential equations (ODEs)
can then be used to describe vascular flow problems.

The first 0D models were based on the Windkessel model, which consists of a capa-
citor that describes the storage properties of large arteries and a resistor that describes
the dissipative nature of small peripheral vessels [115]. This simple approach cannot
model specific pressure and flow rate changes in particular vascular segments and can-
not fully describe the effects of arterial impedance, venous pressure fluctuations or pulse
wave transmission. Various extensions to this model have been used to capture these
more complex physiological phenomena by adding additional resistors, inductances and
capacitors. For example, in a system with capacitance/compliance C, voltage/pressure
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P , charge/flow rate Q, inductance/inertia L, and resistance R, the two ODEs describing
the system are [116]:

C
dP1
dt

+ Q2 − Q1 = 0, L
dQ2
dt

+ P2 − P1 = −RQ2. (3.2.2)

Multi-compartment models can also be used to describe flow and pressure character-
istics within specific vascular segments.

1D Models In 1D models, the form of the velocity profile across the vessel radius is
constrained, which simplifies the 3D governing equations. One-dimensional blood flow
is governed by the axisymmetric forms of the incompressible continuity and Navier-
Stokes equations, which can be written as:

∂A

∂t
+ ∂(AU)

∂x
= 0,

∂U

∂t
+ U

∂U

∂x
+ 1

ρ

∂p

∂x
= f

ρA
, (3.2.3)

where x is a local coordinate describing the vessel segment, A is the cross-sectional area,
U and p are the cross-sectionally-averaged velocity and pressure, ρ is the blood density
and f is a viscosity-dependent term describing the frictional force per unit length
[115, 117]. These equations can be further coupled to a pressure-radius relationship
that describes the elasticity of the vessel wall. The reduced equations can be solved
using various numerical techniques, such as the method of characteristics [118, 119] or
finite differences [120].

A primary benefit of 1D models over 0D models is that they can capture pressure
and velocity pulse wave propagation [121]. Waves carry information about the medium
in which they travel, so capturing the pressure and velocity waves in blood vessels
can provide insight regarding the function of the cardiovascular system and provide in-
formation about various vascular pathologies, such as atherosclerosis and hypertension
[122].

2D Models For 2D vascular models, the 3D vessel loses its torsion and curvature,
becoming a straightened tube governed by the 2D Navier-Stokes equations. Two-
dimensional models include the radial variation of the velocity and pressure fields in
an axisymmetric tube, whereas 1D models only consider the cross-sectionally-averaged
quantities. These models are used less frequently now due to improved computer pro-
cessing power and widely available commercial solvers that make solving the 3D prob-
lem more tractable [123]. However, in certain applications, such as the calculation of
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fractional flow reserve (FFR), 2D models are shown to be significantly faster than 3D
models while retaining a clinically viable level of accuracy [124].

Summary Table 3.2.1 summarises several vascular flow ROM studies using SDR
methods. Included in the table are the specific application, the reported accuracy com-
pared to the FOM as a baseline, and the acceleration factor compared to the FOM.
The accuracy reported for most ROMs was > 90% and the acceleration factors ranged
from 102–105. However, the ROMs are limited to investigating simple flow paramet-
ers, such as FFR or flow rates. Gashi et al. [124] demonstrated that adding complexity
(steady-state to unsteady) reduces the acceleration offered by three orders of magnitude.
Mirramezani and Shadden [125] presented a comprehensive study applying distributed
1D lumped parameter models to aortic, aorto-femoral, coronary, cerebrovascular, pul-
monary and paediatric blood flow problems. Analytical expressions were used to allow
the model to capture energy losses along vascular segments due to viscous dissipation,
unsteadiness, flow separation, vessel curvature and vessel bifurcations.

Conclusion Zero-dimensional SDR models are suitable for global pressure/flow rate
analysis of large regions of the cardiovascular system [115]. One-dimensional models as-
sume axisymmetric flow solutions to capture pressure and velocity pulse wave propaga-
tion [121]. Two-dimensional models can evaluate local flow fields with radial velocity
variation in axisymmetric domains [131]. A prominent use of SDR models is providing
boundary conditions to 3D models that incorporate information from significantly lar-
ger portions of the vasculature than it would be feasible to model in 3D [132–140]. In
this way, SDR models can facilitate multi-scale spatial models that provide well-resolved
3D flow information in local regions of interest while still including the effect of distal
or proximal regions. Zero-dimensional SDR models are unable to describe the nonlin-
earities that can arise in cardiovascular mechanics due to the convective acceleration
term in the Navier-Stokes equations and/or the complex velocity-pressure relationship
in distensible vessels [115]. One-dimensional SDR models can approximate the effect
of vessel wall elasticity on blood flow by adding a constitutive law that relates blood
pressure to vessel cross-sectional area [121]. SDR models are generally only suitable
for bulk velocity/pressure analysis in relatively simple geometries (i.e. axisymmetry
is a valid assumption). They are typically unsuitable for complex multi-physics or
multi-scale temporal problems but well-suited for spatial multi-scale problems.
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Table 3.2.1: Various ROM papers using SDR for vascular flow problems. Acceleration
is measured by comparing the time taken for one ROM evaluation with one FOM
evaluation. This is the case for all tables presenting acceleration statistics, unless
otherwise stated.

Reference Method Application Accuracy Acceleration
Factor

Grinberg
et al. [117]

1D Pulsatile intracranial blood flow - 147,000∗

Reymond
et al. [126]

1D Pressure drop and WSS calculation in
systemic arterial tree

- -

Blanco et al.
[127]

1D
FFR calculation in coronary
arteries

98%
WCT: 302
NT: 2870

Xiao et al.
[128]

1D
Baseline CCA >99% -
Baseline aorta >98% -
Aortic bifurcation >98% -

Papadakis
and Raspaud
[129]

1D (ex-
tended for
stenosis)

Wave propagation in stenotic vessels >99% -

Jonášová
et al. [130]

1D
Outlet flow rate in hepatic
vein network

88%
-

AW: 99%
Mirramezani
and Shadden
[125]

1D Flow rate and pressure calculations in
various vascular domains

>93% >1000

Gashi et al.
[124]

2D steady FFR calculation in coronary
arteries

95% 162,000
2D unsteady 98% 195

∗ Calculated by assuming a linear relationship between number of CPUs and simulation execution
time.
AW, area-weighted; CCA, common carotid artery; FFR, fractional flow reserve; NT, normalised
time (WCT × number of computation tasks); ROM, reduced order model; SDR, spatial dimension
reduction; WCT, wall clock time.
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3.2.2 Proper Orthogonal Decomposition

Spatial Dimension Reduction (SDR) methods depend upon being able to apply geo-
metrical simplifications (i.e. axisymmetry) or analogies with electrical circuit analysis
to the vascular flow problem at hand to simplify the 3D Navier-Stokes equation into
something easier and faster to solve. While SDR methods can be useful in capturing
bulk quantities across large spatial scales, the applicability of these methods to other
vascular flow complexities is limited. An alternative approach is to solve the expens-
ive 3D Navier-Stokes equations and leverage the wealth of information contained in
the data generated from these simulations to develop a ROM for the specific problem
solved in the first instance. This is often referred to as a data-driven (or a posteriori)
approach, as prior to ROM construction the FOM must be solved for some instances.

The method used to extract low-dimensional structures from high-dimensional data
is key to any data-driven ROM. The most commonly used approach for this in fluid
dynamics is the Proper Orthogonal Decomposition (POD). POD was first introduced
in fluid dynamics to analyse the structure of experimental turbulent flow [141] and
was later adopted for the purpose of efficient simulation and control of fluid flows
[142]. POD extracts leading-order information from data in the form of orthogonal
modes ordered by their energetic contribution to the data. In fluid flows, these modes
typically capture spatial information contained within the data.

Before performing the POD, a snapshot matrix U is constructed by stacking columns
of spatial data from different timesteps or input parameter configurations in a large mat-
rix. A mean state derived by averaging over the timesteps or parameter configurations
will often be subtracted from the snapshot matrix prior to performing the decomposi-
tion. Typically, the snapshot matrix will have many more rows than columns. POD is
then performed by taking the Singular Value Decomposition (SVD) of U :

U = ΦΣV ∗, (3.2.4)

where Φ is a matrix of the left singular vectors, or POD modes, Σ is a diagonal
matrix containing the singular values, and V ∗ is a matrix of right singular vectors.
The success of POD in model order reduction stems from the observation that, in
most complex physical systems, the meaningful behaviour of a system is captured
by a low-dimensional subspace spanned by the first few POD modes. The singular
values quantify the relative importance of each POD mode based upon its energetic
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contribution to the snapshot matrix. This knowledge makes it possible to truncate the
system to a certain energy level by discarding the low-energy POD modes and retaining
the high-energy modes.

POD-based ROMs have seen widespread application in areas such as classical fluid
dynamics problems [143–145], aerodynamics [146], fluid-structure interaction (FSI)
[147, 148] and blood flow problems [93, 100, 148–152]. However, POD alone is not
sufficient to build a ROM. POD provides a low-dimensional representation of the snap-
shots of the system, but the low-order representation must be combined with projec-
tion or interpolation techniques to build a ROM that can predict solution fields at new
timesteps or input parameter configurations.

POD-Projection

Projection-based methods use the underlying governing equations of a system and POD
modes to construct a ROM. The governing equations are projected onto the POD
basis to derive a set of reduced equations embedded in this low-dimensional space. A
common approach is to use the Galerkin projection (GP) [153, 154]. POD-GP ROMs
are among the most common ROMs that have been applied to vascular flow problems
[100, 151, 152].

A POD-GP ROM can be derived by decomposing the velocity field u(x, t):

u(x, t) ≈
N∑

j=1
aj(t)Φj(x), (3.2.5)

where Φj denote the POD modes and aj are the temporal coefficients. The Galerkin
projection of the Navier-Stokes equations is written as

⟨Φi,
∂u

∂t
+ u · ∇u⟩ = −⟨Φi, ∇p⟩ + ⟨Φi,

1
Re∇2u⟩, (3.2.6)

where ⟨·, ·⟩ represents the inner product. Following some algebraic manipulation using
the decomposition from equation (3.2.5), the POD-GP ROM can be written as [155]:

dai(t)
dt

= Ai +
N∑

j=1
Bijaj(t) +

N∑
j=1

N∑
k=1

Cijkaj(t)ak(t), i = 1, . . . , N. (3.2.7)

Ai, Bij and Cijk are tensors determined by the specific form of the governing system.
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The functional forms of the coefficient tensors are:

Ai = − 1
Re⟨∇Φi, ∇ū⟩ − ⟨Φi, (ū · ∇)ū⟩

Bij = −⟨Φi, (ū · ∇)Φj⟩ = ⟨Φi, (Φj · ∇)ū − 1
Re⟨∇Φi, ∇Φj⟩

Cijk = −⟨Φi, (Φj · ∇)Φk⟩,

(3.2.8)

where ū =
∫ T

0 u(x, t)dt is the time-averaged flow [99]. The double sum in equation
(3.2.7) arises due to the nonlinearity of the Navier-Stokes equations and is respons-
ible for the slower ROM speeds and greater storage demands required in the case of
nonlinear systems.

Nonlinearity When applied to problems governed by nonlinear equations, POD-
GP does not fully decouple the ROM equations from the FOM, as the algebraic form
of the ROM equations retains dependence on the FOM [99]. This means that the
algebraic operators for the ROM need to be recomputed at every iteration of the system,
which limits the acceleration that this approach can offer for the target application of
vascular flow. It is possible to overcome this issue by using hyper-reduction techniques,
such as the Discrete Empirical Interpolation Method (DEIM), which approximates
the algebraic operators instead of calculating them exactly [156]. Buoso et al. [100]
employed this technique in a POD-GP-DEIM ROM to evaluate coronary blood flow,
and found an acceleration by a factor of 25 for this method compared to the FOM.

Geometric complexity Complex geometric variability can be modelled by POD-
Projection methods, as the POD modes can be made to contain spatial information
about the geometry used to generate the data by mapping them back to a fixed ref-
erence geometry. However, applying any kind of ROM to a geometry not included in
the training data is typically very challenging. In particular, when looking at vascular
flow, the variability in morphology from one person to the next can be extreme, with
entire vascular segments sometimes missing in certain regions [157]. In some cases,
for example when modelling relatively simple features such as stenosis in reasonably
straight vessels, it is possible to parameterise the geometric variation and include these
parameters as input to the ROM, as in [100]. However, for pathologies such as intra-
cranial aneurysms, where blood flow is usually highly dependent on the morphology,
the number of parameters needed and the amount of high-fidelity data required can be
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prohibitive. Buoso et al. [100] demonstrated the use of DEIM to accelerate mesh gener-
ation by a factor of ten, which could help improve the overall efficiency of a simulation
pipeline studying blood flow in multiple geometries.

Multi-physics Provided the governing equations are known and data can be gener-
ated for the system, POD-Projection techniques are suitable for multi-physics problems.
A common multi-physics application of POD-Projection is to FSI problems [158–160].
Ballarin and Rozza [161] applied a POD-GP ROM to three idealised 2D FSI problems,
including a parameterised valve configuration. The ROM showed good qualitative
agreement across all cases and an acceleration factor of the order of ten.

Multi-scale (time) While POD-Projection ROMs are able to reduce simulation
times significantly, the long-term stability of the ROM for unsteady flow problems is
not guaranteed [99, 162]. This instability can be related to the truncation of the POD
basis, the violation of boundary conditions, or an inherent lack of numerical stability
[155]. Various stabilisation techniques can overcome these issues, such as balanced trun-
cation and balanced POD [99], pressure stabilisation [144] or adding corrective terms
to the ROM equations to increase dissipation [163]. Adding these stabilisation tech-
niques to a ROM may increase its long-time accuracy, but will likely come at the cost
of increased computational demands [159]. Lassila et al. [99] noted that periodically
driven inflow problems have been shown to demonstrate accurate long-term predictions.
Given the quasi-periodic nature of vascular flow, this may imply that ROM stability
is satisfactory in this context. However, care must be taken to train the ROM with
data that is representative of the entire cardiac cycle. Flow features will exhibit strong
time dependence due to the pulsatile nature of vascular flow [67]. As a result, training
a ROM using data from only one part of the cardiac cycle (e.g. flow acceleration) is
unlikely to produce a ROM capable of accurately predicting the flow at another time
(e.g. diastole).

Multi-scale (space) The spatial information is contained within the POD modes
when constructing a POD-Projection ROM. The number of spatial degrees of freedom
is the same as the number of rows in each POD mode, which means that data and
computing requirements for POD ROMs will increase as the mesh size grows. Further-
more, as POD requires input data from a FOM, using a refined mesh that captures

35



3.2 Reduced Order Modelling of Vascular Flow

fine flow details could lead to prohibitive run times when solving the FOM. This means
that POD-Projection ROMs are often unsuitable for problems where large regions of
the vasculature need to be modelled.

A possible strategy to mitigate this issue is to couple a POD-Projection ROM with
boundary conditions that are derived from a SDR ROM. Using this technique allows
for the high spatial resolution of the POD-Projection approach in the region of interest
while still accounting for the effects of the proximal and/or distal vasculature using
the SDR model. This technique has been used in various haemodynamics studies to
couple high-fidelity 3D models to SDR models, but POD-Projection ROMs have not
been used for the 3D model [137, 150, 164].

Additional comments While using the underlying governing equations is thought
to improve the robustness of projection-based ROMs, it also reduces the ease of im-
plementation which could be regarded as a weakness. Constructing a projection-based
ROM requires explicit use of the underlying numerical implementation of the FOM,
which may not be available or straightforward to use. In particular, when solving fluid
dynamics problems, researchers often turn to commercial software for which source
code is not readily available. This can hinder incorporating projection-based ROMs
into simulation pipelines that are not built upon open-source software. Equation-free
or non-intrusive methods offer an alternative strategy that mitigates these issues.

POD-Interpolation

An alternative to projection-based ROMs is to use interpolation-based methods. Given
a snapshot matrix U , with SVD given by U = ΦΣV ∗, it is possible to reconstruct
each column of U using:

un(x, t; µ) =
N∑

j=1
an

j (t; µ)Φj(x), (3.2.9)

where µ are the parameter configurations contained in the snapshots, an
j (t; µ) are a

set of time and parameter dependent coefficients, N is the number of truncated POD
modes retained for the ROM and Φj are the POD modes. an are a set of temporal
coefficients that can be considered as a path through the coordinate system given by
Φ [146]. The goal of POD-Interpolation is to predict the trajectory of the system
under a new set of parameter values by using interpolation between the trajectories of
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previously computed parameter values. To perform the interpolation step, authors have
turned to various techniques, such as linear interpolation [165], radial basis functions
(RBFs) [146, 166, 167], Taylor series methods or Smolyak grids [168]. Once calculated,
the new set of coefficients can be multiplied by the retained POD modes to efficiently
calculate the solution field of interest for a new parameter configuration or time point.

Nonlinearity POD-Interpolation is a non-intrusive method, meaning that no modi-
fication of the underlying FOM numerical code is required. This means that the ROM
is agnostic to the system it is being applied to and, therefore, POD-Interpolation does
not suffer the same drawbacks as POD-Projection when applied to nonlinear systems.
This does not guarantee that results with a POD-Interpolation approach will be accur-
ate for a nonlinear system, but the speed of the model is not drastically reduced in this
scenario as can be the case when using POD-Projection on nonlinear problems.

Geometric complexity Similarly to POD-Projection methods, POD-Interpolation
is suitable for complex-shaped individual geometries due to the POD modes containing
rich spatial information. However, the success of this approach is also limited when
applied to geometries that were not included in the training data. Girfoglio et al.
[139] applied POD-Interpolation methods to patient-specific aortic blood flow in the
presence of a left ventricular assist device, but only constructed their ROM for a single
patient geometry. Geometric parameterisation approaches have been applied to POD-
Interpolation methods, but not in the context of vascular flow problems [146].

POD-Interpolation approaches can be applied to sub-domains of the FOM domain
used to generate the snapshots. For example, if high-fidelity data was generated for
a vessel with an aneurysm, it is possible to build a POD-Interpolation ROM for only
the aneurysm rather than the full geometry. This can further accelerate the ROM, as
the number of data and interpolation operations required is reduced. This feature of
POD-Interpolation ROMs gives them an advantage when modelling flow in complex
geometries where dense volumetric meshes are required (e.g. when modelling a flow-
diverting stent), as the amount of data is vastly reduced without affecting the model
performance.

Multi-physics POD-Interpolation techniques have been applied infrequently to multi-
physics problems. Xiao et al. [147] used a non-intrusive POD-RBF ROM for one-way
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and two-way coupled FSI problems and found acceleration factors of order 105–106

whilst showing qualitative ROM-FOM agreement. Hajisharifi et al. [167] applied a
POD-RBF ROM to a fluidised bed problem. Compared to the FOM, the POD-RBF
ROM provided an acceleration factor of order 105 and an accuracy of approximately
99% when reconstructing the time evolution of the Eulerian and Lagrangian fields.
They tested local and global POD approaches and found the local calculation of POD
bases produced a more accurate and efficient ROM.

Multi-scale (time) Similarly to POD-Projection techniques, POD-Interpolation meth-
ods do not have any guarantee of long-term solution stability.

Multi-scale (space) In principle, POD-Interpolation ROMs can be coupled with
0D/1D models for boundary conditions by including the coupling parameters describing
the inflow/outflow conditions in the ROM construction. When evaluating the POD-
Interpolation ROM, one can obtain the boundary condition parameter input from the
output of the 0D/1D boundary condition model and use this to evaluate the 3D flow
field using the ROM. In this way, POD-Interpolation approaches can be suitable for
modelling highly resolved regions of interest in 3D while conscribing to the effects of
the peripheral vasculature. This POD-Interpolation-SDR approach is yet to be applied
to vascular flow, but coupling 0D/1D models with 3D computational fluid dynamics
(CFD) is common [137, 150, 164].

Additional comments Walton et al. [146] noted that POD-Interpolation, when
all POD modes are retained, is equivalent to performing element-wise interpolation
across all spatio-temporal coordinates. Therefore, the maximum accuracy for a POD-
Interpolation ROM will be bounded by the element-wise interpolation error. For this
reason, the acceleration offered by POD-Interpolation ROMs should not only be calcu-
lated relative to the high-fidelity CFD model, but also relative to the cost of perform-
ing element-wise interpolation of the solution field. Despite this limitation, relative
to element-wise interpolation, POD-Interpolation is still capable of vastly reducing the
number of interpolation operations required to calculate a new solution and the amount
of data that needs to be stored offline.
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Summary POD-Projection and POD-Interpolation techniques have been applied to
a wide range of vascular flow problems, including blood flow in tetralogy of Fallot
patients [149, 150], coronary blood flow [100, 151, 169], aneurysm blood flow [170],
aortic blood flow [139, 171] and FSI problems [161]. Tables 3.2.2 and 3.2.3 demonstrate
that POD-Interpolation ROM techniques typically accelerate by factors ranging from
102–106, while acceleration factors for POD-Projection ROMs range from 101–103.
Wang et al. [165] compared POD-GP and POD-Interpolation approaches for steady-
state heat conduction problems with different numbers of parameters. They found that
the POD-GP approach was more reliable, with better performance as the number of
parameters grew. POD-Interpolation may require more snapshots than POD-GP to
achieve similar accuracy, so despite the faster evaluation times of POD-Interpolation,
the overall offline cost to build a ROM of equal accuracy to the POD-GP ROM may be
greater. Xiao et al. [166, 168] performed two studies comparing POD-GP with various
POD-Interpolation techniques (Taylors, Smolyak, RBF interpolation). In both studies,
the interpolation-based ROMs were found to be approximately one order of magnitude
faster while maintaining good accuracy relative to the high-fidelity model.
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Table 3.2.2: Various POD ROM papers for vascular flow and other applications.

Reference Method Application Accuracy Acceleration
Factor

General applications

Xiao et al.
[147]

POD-
Interpolation
(RBF)

One-way FSI: Flow past a cylinder - 727,000
Two-way FSI: Free-falling square - 73,200
FSI: Bending beam - 257,000

Hajisharifi
et al. [167]

Local POD-
Interpolation
(RBF)

Fluidised bed time evolution Eulerian field 98.9%, Lag-
rangian field 98.4%.

200,000

Parametric fluidised bed 88.8% %
Vascular flow applications

McLeod
et al. [149]

Atlas-based
POD

ToF PA flow: case 1 ∼ 70%∗

-
ToF PA flow: case 2 ∼ 80%∗

ToF PA flow: case 3 ∼ 50%∗

ToF PA flow: case 4 ∼ 80%∗

Guibert
et al. [150]

Atlas-based
POD

ToF PA flow: patient 7 ∆p 95.7%, outlet flow 96.0%
∼ 1.33

ToF PA flow: patient 13 ∆p 93.9%, outlet flow 97.7%
Buoso et al.
[100]

POD-GP-
DEIM

FFR calculation in coronary stenosis:
case 1

FFR 98%, min. p accuracy
70%.

25

FFR calculation in coronary stenosis:
case 2

FFR 92%, min. p accuracy
90%.

Ballarin and
Rozza [161]

POD-GP
Fluid problem on moving domain - 30
Stationary FSI of parameterised ideal-
ised valve

- 16

Unsteady FSI of parameterised channel - 10
Ballarin
et al. [151]

POD-GP Coronary blood flow with varying phys-
ical and geometric parameters

> 99% 100

Ballarin
et al. [169]

POD-GP Coronary blood flow with varying phys-
ical and geometric parameters

> 99% 1530†, 100†

Han et al.
[170]

POD-GP Aneurysm blood flow with varying PI > 95% 2,410

Zainib et al.
[172]

POD-GP Coronary artery bypass grafts > 99% 9‡

Girfoglio
et al. [171]

POD-
Interpolation
(RBF)

Aortic flow with LVAD p 99.5%, WSS 92.3%, ux

91.5%, uy 87.8%, uz 88.6%
240

Girfoglio
et al. [139]

POD-
Interpolation
(RBF)

Aortic flow with LVAD: case 1 (PF 3.45
l/min)

p 99.8%, WSS 95.9%, ux

95.0%, uy 92.2%, uz 94.2%
7,200,000

Aortic flow with LVAD: case 1 (PF 4.35
l/min)

p 99.5%, WSS 92.8%, ux

90.3%, uy 86.5%, uz 90.7%

∗ Maximum error estimated from graph in paper and used to calculate minimum accuracy (which
occurs close to systole).
† Authors report computational savings of 99% (therefore acceleration factor of 100). 1530 accel-
eration factor is calculated from simulations times presented for ten patients in Table 2 of [169].
‡ Mean acceleration calculated across three test cases in Table 1 of [172].
DEIM, discrete empirical interpolation method; FFR, fractional flow reserve; FSI, fluid-structure
interaction; GP, Galerkin projection; LVAD, left ventricular assist device; p, pressure; ∆p, pressure
drop; PA, pulmonary artery; PI, pulsatility index; POD, proper orthogonal decomposition; RBF,
radial basis functions; ROM, reduced order model; ToF, Tetralogy of Fallot; ux, x-component of
velocity; WSS, wall shear stress.
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Table 3.2.3: ROM papers comparing POD-Projection and POD-Interpolation ap-
proaches for various applications.

Reference Method Application Accuracy Acceleration
Factor

Xiao et al.
[168]

POD-GP
Flow past a cylinder

- 10
POD-I (Taylors) - 260
POD-I (Smolyak) - 390

Xiao et al.
[166]

POD-GP
Lock exchange - 12
Flow past a cylinder - 10

POD-I RBF
Lock exchange - 496
Flow past a cylinder - 779

Wang et al.
[165]

POD-GP
Four-variable heat conduction 99.81% -
Six-variable heat conduction 98.17% -

POD-I
Four-variable heat conduction >99.99% -
Six-variable heat conduction ∼ 50% -

GP, Galerkin projection; POD, proper orthogonal decomposition; POD-I, POD-Interpolation; RBF,
radial basis functions; ROM, reduced order model; .

Conclusion Both POD-Projection and POD-Interpolation approaches have been ap-
plied to nonlinear, geometrically complex, multi-physics vascular flow problems. It is
possible to couple both of these approaches to 0D/1D models to capture multi-scale
phenomena across large spatial scales in the vasculature. Geometric parameterisations
can be incorporated into POD-based ROMs in an attempt to build models suitable for
unseen geometries, but these models are limited in their generality and in the complex-
ity of geometry they can model with a reasonable number of parameters. Attempts to
build POD-based ROMs that are entirely general to geometry have seen either large
errors [149] or minimal acceleration [150]. POD-based ROMs are often unsuitable for
problems with large time scales, as the long-term stability of the POD modes is not
guaranteed.

3.2.3 Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD) was originally developed by Schmid [173] for
analysing spatio-temporal data from simulations and experiments. Modes are extracted
from the data and can then be used to describe the physical mechanisms present in
the data or for dimensionality reduction. For ROM construction, DMD can provide
an alternative technique to POD for extracting leading-order modes from data. DMD
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trades the optimal reconstruction property of POD for physical interpretability, as the
eigenvalue associated to each mode provides quantitative information on the oscillation
frequency or growth/decay rate of the given mode [174].

Both DMD and POD utilise the SVD, but the difference arises in the construction
of the snapshot matrix prior to performing SVD. In POD, the snapshot matrix is
given by U = [u1 . . . uN ]. For DMD, the snapshot matrix is first divided into two
submatrices, U1 = [u1 . . . uN−1] and U2 = [u2 . . . uN ]. The goal of DMD is to compute
an approximation to the matrix A, where U2 ≈ AU1 [175]. To do this, SVD is
applied to U1 and the resulting decomposition is used to calculate the pseudoinverse
of U1, which is then used to calculate A. Thus, DMD finds a best-fit linear model
that approximates the underlying time dynamics present in the data. In DMD, N will
typically be a set of timesteps for the evolution of the system for one set of parameter
values. Using the DMD model, an initial state can be propagated forward in time at
a low cost. DMD ROMs are non-intrusive by being equation-free and entirely data-
driven.

Since its inception, numerous extensions to DMD have been proposed to help tackle
complexities such as nonlinearity, varying characteristic time scales in a given applic-
ation, or handling externally driven data sequences. These extensions are thoroughly
presented in Schmid [103]. Despite its growing use as a tool for analysing complex
spatio-temporal data, DMD has seen limited application to vascular flow. Herein, the
applicability of DMD and its extensions to modelling vascular flow are discussed.

Nonlinearity DMD aims to find an optimal linear model based on data. The under-
lying system in blood flow problems is nonlinear but the strength of this nonlinearity
will vary depending upon the application. Habibi et al. [174] found that more DMD
modes are required in an aneurysm model than in a stenosis model to achieve a particu-
lar reconstruction accuracy, highlighting the problem-specific nature of the complexity
of vascular flow. In cases where nonlinearity is strong, a large number of measurements
of the field of interest may be required to ensure the nonlinearity is captured in the
reduced model. Extended DMD (EDMD) is an approach designed to help with this
issue by using nonlinear functions of the measurements as input to the DMD algorithm
[103, 176].
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Geometric complexity Similarly to POD modes, DMD modes contain spatial in-
formation, so this approach is well-suited to constructing ROMs for individual complex
geometries. Habibi et al. [174, 177, 178] have demonstrated the use of DMD to identify
blood flow structures in cerebral aneurysms and stenosis models. However, as with
POD, using DMD to evaluate flow fields in an unseen geometry is very challenging.
DMD is a less well-established technique than POD, so few (if any) attempts have been
made to tackle this problem.

Multi-physics DMD is suitable for multi-physics problems as the decomposition can
be applied separately to each field. DMD can also be used to identify spectral coherence
between each field in multi-physics applications, which can help to improve understand-
ing of the problem. So far, the main use of DMD in multi-physics problems is to study
FSI. Rodŕıguez-López et al. [179] used DMD to capture spatio-temporal evolution of
flow over a flexible membrane wing using experimental data. They found that basic
DMD could not reconstruct the fields accurately. Instead, they used high-order DMD
(DMDho), developed by Le Clainche and Vega [180]. Where basic DMD only uses
the previous snapshot, DMDho estimates each snapshot as a linear combination of a
number of previous snapshots, thus improving performance in regimes where the FSI
was stronger. This suggests that as the complexity of the system increases, accurate
propagation of the time dynamics may require more than just the previous snapshot.
This is worth considering when adding complexity (e.g. vessel elasticity, thrombosis
models, device interactions) to vascular flow DMD models.

Multi-scale (time) DMD ROMs are perhaps most beneficial for problems of com-
plex temporal nature. A DMD ROM is inherently designed to uncover time dynamics
in a system and then propagate the reduced system forwards in time. Vascular flow is
often modelled as periodic, with results from a single cardiac cycle taken to be repres-
entative of the flow for all time. This assumption can break down when autoregulation
occurs or when complex long-term physiological phenomena, such as blood clotting,
occur. The period of a cardiac cycle is roughly one second, whereas processes such as
blood clotting can occur over a period of months. Multi-resolution DMD (DMDmr)
provides a way to robustly separate complex systems into a hierarchy of multi-resolution
time components [181]. DMDmr uses iteratively shorter snapshot sampling windows
and recursive extraction of DMD modes from slow to fast time scales, which improves
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the predictions for short-time future states. This technique has been further general-
ised by Dylewsky et al. [182]. Provided with the appropriate data, DMDmr may be
able to produce ROMs that can capture both long- and short-term effects of blood
flow. Identifying a ROM for long-term effects (clotting, plaque build-up, etc.) may be
particularly useful in reducing the cost of vascular models, as current approaches are
too expensive to simulate these processes for the time scales over which they occur [20].
Another approach to handle complex temporal patterns is multi-stage DMD (mDMD)
[174]. mDMD divides a temporal system into stages and applies DMD to each stage in
turn. This allows more DMD modes to be used during periods with a more complex
flow, while reducing the number of modes required when the flow is simpler, as demon-
strated by Habibi et al. [174]. This approach can improve the efficiency of the ROM
and reduce data storage requirements, but does not extend the original DMD method
to more complex problems.

Multi-scale (space) DMD modes are local to wherever the high-fidelity data was
generated, so using this approach for large regions of the vasculature is not possible
without generating enormous amounts of high-fidelity data. However, DMD with con-
trol (DMDc) allows for input controllers to be integrated into the DMD algorithm.
Habibi et al. [174] used inlet velocity as a controller for cardiovascular flow. It may
be possible to extend this approach to account for other flow parameters or boundary
conditions, thus allowing the inexpensive DMD ROM to be coupled to 0D/1D SDR
models that account for the large-scale flow changes in the vasculature.

Summary Despite DMD being used as a ROM technique, very few papers directly
compare the efficiency of the DMD ROM with the FOM used to generate the training
data. Table 3.2.4 highlights a few studies that did evaluate the DMD ROM efficiency,
showing speed-ups ranging from ∼ 100–102. This acceleration seems small, but given
the non-iterative equation-free nature of DMD ROMs, it is likely that they can provide
more acceleration than this in some scenarios. Furthermore, Lu and Tartakovsky [183]
included offline calculation times when determining the ROM speed-up, so higher ac-
celeration values would be found if they only compared the online evaluation time with
the FOM.

Few papers use DMD for vascular flow problems in the literature. Habibi et al. [174]
used multi-stage DMD with control (mDMDc) to reveal hidden low-dimensionality in
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patient-specific blood flow in coronary stenosis and cerebral aneurysms. They found
that mDMDc requires fewer modes than DMD to reconstruct the velocity fields to
a given accuracy, but these modes were not used to construct a ROM. Habibi et al.
[178] used DMD for data assimilation in Womersley flow, 2D idealised aneurysm flow
and 3D real aneurysm flow, but in this instance the DMD analysis was not used to
construct a ROM. Di Labbio and Kadem [184] performed POD and DMD analysis
of left ventricular flow and found that while DMD requires more modes to achieve a
particular energy level, it also preserves global particle advection using fewer modes.
Another important point to consider when using DMD for vascular flow is that due to
the periodic nature of the flow, unstable modes will either decay or grow over time,
thus potentially under- and over-influencing the dynamics as time goes on [184].

Table 3.2.4: ROM papers using DMD for various applications.

Reference Method Application Accuracy Acceleration
Factor

General applications
Bourantas
et al. [185]

DMD Tumour ablation treatment sim-
ulation

> 99.8% ∼ 13-37

Lu and
Tartakovsky
[183]

Lagrangian
DMD

1D advection - 0.21∗

1D advection-diffusion - 581∗

1D inviscid Burgers equation - 0.81∗

1D viscous Burgers equation - 993∗

POD-GP

1D advection - 0.15∗

1D advection-diffusion - 84.2∗

1D inviscid Burgers equation - 0.09∗

1D viscous Burgers equation - 69.4∗

Beltrán et al.
[186]

DMDho-
augmented FOM

1D Ginzburg-Landau equation - 6-254†

∗ Authors include include offline calculation times (e.g. SVD) in DMD computational time, hence
the ROM sometimes being slower than the FOM [183].
† Authors define speed-up as ratio of total simulation time to the sum of the time-lengths of the
snapshots computational intervals, which is a particular definition suitable for their method [186].
DMD, dynamic mode decomposition; DMDho, high-order DMD; GP, Galerkin projection; FOM,
full-order model; ROM, reduced order model; POD, proper orthogonal decomposition.

Conclusion DMD can be used to construct reduced order linear dynamical systems
from data that approximate underlying nonlinear dynamics. DMD ROMs can be inex-
pensively propagated forwards in time or used to extract coherent structures from data.
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DMD offers the benefit of having an associated frequency attached to each mode, thus
providing interpretability (i.e. growth/decay/oscillation for each mode). DMD modes
contain spatial information so this approach can be used to model individual complex
geometries. DMD models are typically built with time as the only input parameter, so
parametric DMD ROMs are rare; however, very recent work has begun to investigate
this by adding interpolation into the DMD approach [187]. DMDc offers the poten-
tial to include input controllers into a DMD model, so this approach can be used to
include the effects of, for example, varying inlet flow rate [174]. The input controllers
could also potentially be boundary conditions derived from 0D/1D blood flow models,
thus allowing DMD ROMs to account for larger portions of the vasculature. DMD can
be applied to multi-physics problems, however a high-order DMD approach may be
required to correctly reconstruct the fields of interest [180]. DMD ROMs are not com-
monly applied to vascular flow problems to date. A promising application of DMD in
vascular flow is to problems where evaluating the long-term effects is not possible with
conventional models. For these problems, DMD could perhaps be used to construct an
efficient ROM for the time dynamics of long-term blood flow phenomena.

3.2.4 Other Techniques

There are various other ROM techniques that have not been as widely used as those
discussed previously. Two of those techniques are discussed herein, the Reduced Basis
(RB) method, which has seen some application to vascular flow problems, and the
Proper Generalised Decomposition (PGD), which has not been applied to vascular flow
modelling.

Reduced Basis

The RB method is usually applied to the fast solution of parameter-dependent prob-
lems [99, 188, 189]. Similarly to POD-based ROMs, the RB method utilises a set of
snapshots of the FOM. Whereas POD uses the SVD to extract an optimal basis from
the snapshots, the RB method is more general and can use various alternative ap-
proaches (e.g. Gram-Schmidt orthonormalisation [190]) to construct a basis spanning
a sub-space of typically much lower dimension than that of the full-order solution man-
ifold. RB methods often employ a greedy procedure for basis construction, whereby
optimal snapshots are computed based upon an a posteriori error estimation [191]. A
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key advantage of the greedy approach is that the specific dynamics of the problem at
hand guide the sample selection process [96]. Following basis construction, a Galerkin
projection is often applied to build the ROM, similarly to POD-Projection ROMs.

The RB method has seen some application to vascular flow problems. Manzoni
et al. [192] used this approach with radial basis functions for interpolating the geomet-
ric parameters to calculate flow fields in 2D parameterised carotid artery bifurcation
geometries. For two test cases of global deformations of the carotid branches and sten-
osis near the carotid sinus, they achieved speed-ups of 96 and 88 times, respectively.
Lassila et al. [193] applied the RB method to inverse problems in flow through stenosed
arteries and in optimal shape design for femoropopliteal bypass grafts, reporting estim-
ated speed-ups of 30–175 times. While effective in predicting downstream shear rates
in the stenosis problem and in identifying optimal design configurations, the models
were only applied to 2D steady-state problems. Colciago and Deparis [194] combined
POD and the RB method, specifically the greedy algorithm, to build a ROM for a
haemodynamics problem, noting CPU time gains of order 103. The application was to
a femoropopliteal bypass problem, which was modelled using a 3D reduced FSI formu-
lation, highlighting the suitability of the RB approach to multi-physics applications.
The authors note that the greedy enrichment scheme can favour reducing the error
in certain variables, especially when the quantities in the problem are of different or-
ders of magnitude, so care should be taken in building an appropriate error estimator
for multi-physics applications. Aside from vascular flow applications, the RB method
has been applied to various other nonlinear Navier-Stokes problems [195, 196], includ-
ing FSI problems [197]. Coupling the parametric RB method to boundary conditions
derived from 0D vascular models provides a way to capture some multi-scale spatial
effects.

Proper Generalised Decomposition

PGD generalises POD using separated representations while avoiding the need for any
a priori knowledge about the solution [198]. Not utilising snapshot generation allows
PGD to be applied to previously unsolved problems, which POD, DMD and RB ROMs
are mostly incapable of. For a problem defined in space of dimension D, PGD provides
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an approximate solution uN in the separated form

uN (x1, . . . , xD) =
N∑

i=1
F 1

i (x1) × · · · × F D
i (xD). (3.2.10)

The PGD approximation is a sum of N functional products involving D functions
F j

i (xj) [199]. PGD solutions are constructed by successive enrichment, where a func-
tional product Fn is determined using the functions from the previous n − 1 steps. It
should be noted that each enrichment step involves solving a nonlinear problem by
means of a suitable iterative process. In PGD, both the number of terms N and the
functions F are unknown a priori, making PGD an a priori ROM method. In a typical
separation of variables, the coordinates xi could be space and time coordinates, but in
PGD additional coordinates can be included for problem-specific inputs such as bound-
ary conditions or material parameters. Furthermore, if M nodes are used to discretise
each of the coordinate spaces, the total number of PGD unknowns is N × M × D in-
stead of the MD degrees of freedom found in standard mesh-based discretisations [199].
When the solution field is sufficiently regular, the number of terms N will be relatively
small, highlighting how PGD overcomes the curse of dimensionality [200].

PGD was initially developed for solving time-dependent nonlinear problems in struc-
tural mechanics [201]. It has since been applied to rheology [202] and the incompressible
Navier-Stokes equations [200]. Chinesta et al. [202] noted a speed-up on the order of
102 when using PGD for a transient rheology problem. Dumon et al. [200] found a
speed-up of ∼ 102 times for a 2D stationary diffusion problem, whereas a speed-up of
5–10 times was found for various Navier-Stokes problems, the most complex of which
was a 2D lid-driven cavity flow. PGD has also been applied to multi-scale in time
applications, where it is possible to separate the time dimension (1D in nature) into a
multi-dimensional time space; however in this study the authors are not able to draw
conclusions on the efficiency of the ROM [203]. PGD has also seen application to
multi-scale in space and multi-physics problems, where the authors highlight that the
savings due to PGD increase with problem complexity [204, 205]. Despite its potential
usefulness in complex problems with known/unknown equations, PGD has not seen as
widespread use as other reduced order techniques.
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3.3 Accelerating Simulations with Machine Learning

Machine learning is a branch of artificial intelligence that excels at extracting underly-
ing patterns in data. The basic building block of many machine learning algorithms is
the neural network, shown in Figure 3.3.1. Neural networks consist of a collection of
processing units, called neurons, and a set of directed weighted synaptic connections
between the neurons. The connections between neurons symbolise the passing of in-
formation between neurons, with a fully-connected neural network (FCNN) meaning
that all neurons in a given layer receive information from all neurons in the previous
layer and pass information to all neurons in the subsequent layer. Each neuron pro-
cesses the information it receives via some calculations and produces an output. The
final layer is referred to as the output layer, where the final output of the network
is produced. The FCNN in Figure 3.3.1 has two inputs, two hidden layers with four
neurons per layer and one output. The objective of the network is to approximate a
mapping between the input and output variables, given data to learn from. In vascular
flow modelling, the inputs may be variables like space, time or Reynolds number and
the outputs may be velocity, pressure or other variables of interest.

Each neuron is characterised by three functions: the propagation function, the
activation function and the output function. The propagation function converts the
vectorial input from the previous layer’s outputs into a scalar input. The activation
function quantifies the extent to which a particular neuron is active by applying a
chosen function to the net input, such as the hyperbolic tangent or rectified linear unit
functions [206]. Including activation functions for several sequential layers allows the
deep network to approximate nonlinear mappings from inputs to outputs. The output
function calculates the scalar output of a neuron based upon its activation state. Each
neuron has a trainable weight associated to it, and each layer often has a trainable
bias. These weights and biases are the network parameters that are optimised through
training.

For a supervised learning problem, training data consists of a set of inputs with
known outputs. During the training procedure, input data is passed through the net-
work to give an output that is compared to the ground truth values for the output. A
loss function is used to quantify the discrepancy between the network output and the
ground truth output. The parameters associated to the network are optimised, typic-
ally through back-propagation and gradient descent algorithms, in order to minimise
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Figure 3.3.1: Selected neural network designs that can be used for simulation acceler-
ation. (a) A fully-connected neural network with two inputs, two hidden layers with
four neurons per layer and one output. (b) A fully-connected autoencoder, consisting
of an encoder, a latent space and a decoder. (c) A physics-informed neural network,
where physical constraints based on partial differential equations (PDEs) and boundary
conditions (BCs) are included in the loss function of the network. x is position, t is
time, u is velocity, p is pressure, superscript D or B means data or boundary point, Fi

are residual equations.
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the loss [207]. Once the network has been trained to accurately match predictions for
the training data set, it can be used for input data where ground truth output values
are unknown. Typically, the accuracy of the network will be assessed by evaluating
its output on a data set that was not used in training, or through procedures such as
cross-validation. A trained neural network can be considered to approximate a function
that maps the input data to the output data. Hornik et al. [208] have demonstrated
the approximation power of sufficiently large and deep networks. Variations on basic
neural networks include autoencoders, convolutional neural networks (CNNs), recur-
rent neural networks (RNNs), and physics-informed neural networks (PINNs), amongst
others [209].

Machine learning and deep learning have both employed neural networks to great
effect in various classification and regression tasks in fields such as computer vision and
natural language processing [210, 211]. Common across all learning-based strategies
is the utilisation of data and the framework of an expensive up-front training stage
preceding a cheap inference stage when evaluating the model for new data. In this
way, machine learning approaches bear resemblance to ROM methods. A benefit of
machine learning compared to ROMs is that the operations used in machine learning are
highly parallelisable, which allows them to be trained and tested using highly parallel
computing hardware, such as Graphics Processing Units (GPUs). This can reduce the
time taken for training and inference, which is driving the growing interest in using
machine learning-based simulation methods for acceleration.

Machine learning can be used in conjunction with ROMs, where the dimensionality
reduction inherent to the ROM provides acceleration and machine learning is used to
improve or replace some aspect of the ROM. For example, when constructing an in-
terpolative ROM, such as in the POD-Interpolation method, using a neural network
for interpolation can produce a ROM capable of outperforming POD-GP ROMs both
in terms of acceleration and accuracy for certain applications [212–214]. Alternatively,
machine learning can be used in place of conventional simulation methods to directly
infer solutions fields or other quantities of interest from inputs such as medical im-
ages and point clouds of spatio-temporal coordinates [106, 107]. In this instance, the
machine learning model itself provides acceleration relative to the full-order model,
either through reduction of the dimensionality of the problem or through exploitation
of parallel computing hardware.
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Table 3.3.1: Machine learning ROM studies for various applications.

Reference Method Application Comments on accuracy and/or acceler-
ation

ML-augmented ROMs
Hesthaven
and Ubbiali
[212]

POD-NN Parameterised steady-state PDEs
(Poisson equation, LDC).

POD-NN achieves similar accuracy to POD-
GP while reducing CPU time by 2-3 orders of
magnitude.

Wang et al.
[215]

POD-NN Parameterised unsteady PDE (quasi-
1D CVRC flow).

Accuracy of ∼ 99% and acceleration factor of
107.

San et al.
[213]

POD-NN
(SN and RN
approaches)

Viscous Burgers equation (time-
dependent nonlinear wave propaga-
tion).

POD-NN approach outperforms POD-GP in
interpolation and extrapolation and is 102

times faster.
Balzotti
et al. [216]

POD-NN Steady-state flow in a coronary artery
bypass graft.

POD-NN achieves similar accuracy to POD-
GP and speed-up of 106 and 104 relative to
FOM and POD-GP, respectively.

Wang et al.
[217]

LSTM-
enhanced
POD-GP

3D Stokes flow, 1D Kuramoto-
Sivashinsky equation, 2D Rayleigh-
Bernard convection.

ROM improves stability and accuracy of
POD-GP for nonlinear problems and allows
time predictions beyond training data.

Gao et al.
[218]

FCNN-
enhanced
POD-GP

Nonlinear PDEs (1D viscous Burgers
equation and 2D flame model).

ROM accuracy is ∼ 95%. ROM is more stable
and accurate than POD-GP with DEIM (in
the small basis limit).

ML-based ROMs
Maulik et al.
[104]

CAE-LSTM Viscous Burgers equation and shallow
water equations.

CAE-LSTM has similar accuracy to POD-GP
and is ∼ 14 times faster.

Pant et al.
[105]

3D CAE 2D flow (past a circular/square cylin-
der, over a plate, in a channel) and SST
data.

Reconstruction accuracy is good and model
can predict future timesteps accurately. Ac-
celeration factor of 102.

Fresca et al.
[219]

POD-
enhanced
CAE NN

Left ventricular cardiac electro-
physiology.

POD-enhancement reduces training time from
15 hrs to 24 mins.

Fresca and
Manzoni
[220]

POD-
enhanced
CAE NN

Flow around cylinder, FSI of beam and
laminar flow, cerebral aneurysm flow.

High levels of accuracy are displayed and ac-
celeration factors are of order 105 for all ap-
plications.

Fresca and
Manzoni
[214]

POD-
enhanced
CAE NN

Flow past a cylinder. POD-enhanced ROM has similar accuracy
to non-enhanced DL-ROM. 105 acceleration
factor relative to FOM.

CAE, convolutional autoencoder; CPU, central processing unit; CVRC, continuously variable reson-
ance combustor; DEIM, Discrete Empirical Interpolation Method; DL, deep learning; FCNN, fully-
connected NN; FOM, full-order model; GP, Galerkin projection; LDC, lid-driven cavity; LSTM,
long short-term memory; ML, machine learning; NN, neural network; PDE, partial differential equa-
tion; POD, proper orthogonal decomposition; RN, residual network; ROM, reduced order model;
SN, sequential network; SST, sea surface temperature.
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3.3.1 Machine Learning Reduced Order Models

Machine Learning-Augmented ROMs Various attempts have been made to aug-
ment ROMs with machine learning. Neural networks (NNs) are adept at interpolation,
so using them in POD-Interpolation ROMs is a natural choice. Hesthaven and Ubbiali
[212] were among the first to apply a POD-NN ROM to parameterised steady-state
PDEs (the Poisson equation and lid-driven cavity problems). In this model, the net-
work approximates a mapping from the input parameter vector (including, e.g. ma-
terial/geometry parameters) to the ROM coefficients. The POD-NN approach offers
similar accuracy to POD-GP, while reducing computation time by two to three orders
of magnitude. Wang et al. [215] extended the work by Hesthaven and Ubbiali [212]
to time-dependent PDEs and applied it to a quasi-1D PDE problem. In this case,
the time coordinate is included as an additional input to the neural network, allowing
evaluation of the ROM at different timesteps. For the simple test problem, the authors
found ROM accuracy of ∼ 99% and an acceleration factor of order 107 relative to the
FOM. San et al. [213] applied the POD-NN approach to the viscous Burgers equation
to model time-dependent nonlinear wave propagation. San et al. [213] used a different
network design to Hesthaven and Ubbiali [212] and Wang et al. [215], with San et al.
[213] building a network that maps from the ROM coefficients at time tn and any con-
trollable input parameters (e.g. Reynolds number) to an output that characterises the
ROM coefficients at time tn+1. Within this framework, they present two variations:
(i) a sequential network, where the outputs are the ROM coefficients, and (ii) a resid-
ual network, where the outputs are the residual between the ROM coefficients of tn+1

and tn. Of these two approaches, the residual network is found to be superior and
both approaches outperform POD-GP for the Burgers equation application. Balzotti
et al. [216] applied the POD-NN approach to optimal control of steady-state flow in a
patient-specific coronary artery bypass graft. The Reynolds number parameterised the
inflow and was the single input parameter for which the ROM was constructed. The
objective of the optimal control algorithm was to identify the normal stress that has to
be imposed at the outlet to ensure a satisfactory agreement between the computed and
clinically measured velocity fields. Online evaluation of the ROM took approximately
10−4 seconds, which is a speed-up of order 106 compared to the FOM. The POD-NN
model was comparably accurate to a POD-GP model applied to the same problem, but
the POD-NN ROM was four orders of magnitude faster [172].
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It is also possible to augment POD-GP ROMs with machine learning. Two chal-
lenges in POD-GP ROMs are: (i) the potential lack of long-term stability and accuracy,
and (ii) the lack of complete decoupling for nonlinear governing equation projection onto
the reduced basis and the subsequent high cost of evaluating these nonlinear reduced
operators. To address the first challenge, Wang et al. [217] used a long short-term
memory (LSTM) network, a type of recurrent neural network designed to operate on
sequential data. The POD coefficients are fed into the LSTM units and the phys-
ical/geometric parameters are fed into the initial hidden state of the LSTM. When
applied to various problems (3D Stokes flow, 1D Kuramoto-Sivashinsky equation, and
2D Rayleigh-Bernard convection), the LSTM-POD-GP ROM is found to improve sta-
bility and accuracy compared to POD-GP for nonlinear problems. Furthermore, the
LSTM ROM facilitates accurate predictions beyond the time interval of the training
data. To address the second challenge, Gao et al. [218] proposed a non-intrusive ap-
proach to hyper-reduction that approximates the ROM velocity function using a FCNN.
The FCNN-enhanced POD-GP ROM was applied to two nonlinear PDEs (1D viscous
Burgers equation and 2D flame model) and found to be accurate to approximately 95%.
The ROM was also shown to be more stable and accurate for the test problems than
POD-GP with alternative hyper-reduction methods (DEIM), in the limit of a small
basis. Another approach to improve accuracy is to use machine learning to adapt the
ROM to a given input. Daniel et al. [221] used a deep classification network to re-
commend a suitable local POD-GP ROM from a dictionary of possible ROMs. This
approach could be used in conjunction with small local ROMs, which have been shown
to outperform a single global ROM in terms of accuracy and acceleration [167, 222].

Machine Learning-Based ROMs Dimensionality reduction is a crucial step in
ROM construction and is commonly performed using techniques such as POD or DMD.
Autoencoders (Figure 3.3.1) are neural networks used to compress and decompress
high-dimensional data and are thus being increasingly used in the dimensionality re-
duction step in reduced models. Autoencoders can provide nonlinear data embedding,
whereas POD and DMD offer only a linear reduced basis [104, 105]. This could al-
low autoencoders to compress complex nonlinear data more accurately than POD or
DMD. Another approach that can offer nonlinear dimensionality reduction is manifold
learning. Csala et al. [223] compared four manifold learning (locally linear embedding,
kernel principal component analysis, Laplacian eigenmaps, isometric mapping) and two
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ML-based (autoencoder, mode decomposing autoencoder) nonlinear dimensionality re-
duction methods to principal component analysis (PCA). They found that all six of the
nonlinear dimensionality reduction methods achieved lower reconstruction errors than
PCA for spatial reduction, but that only the autoencoder-based reduction was defin-
itively superior for temporal reduction. Maulik et al. [104] used a ROM based on a
convolutional autoencoder (CAE) and an LSTM to model the viscous Burgers equation
and the inviscid shallow-water equations. In these advection-dominated systems, the
deep learning (DL)-based ROM outperforms the POD-GP method. The CAE-LSTM
approach is 14 times faster than the POD-GP method, producing errors of the same
magnitude. Pant et al. [105] used a 3D CAE to compress simulation data and advance
the solution in time without solving the Navier-Stokes equations in an iterative fashion.
Using a 3D CAE allows for features to be extracted in both spatial and temporal axes,
which mitigates the need for an additional network (e.g. an LSTM) for time propaga-
tion. Using this approach, the authors reduce computational run times by two orders
of magnitude compared to traditional CFD solvers.

Fresca et al. [219] constructed a POD-DL-ROM that uses POD to reduce the di-
mensionality of the training data, improve training efficiency and reduce complexity.
Compared to previous work by the same authors, enhancement with POD reduces
the DL-ROM training time from 15 hours to 24 minutes. The DL-ROM itself uses
CAEs and feedforward neural networks trained on the POD-reduced solution vectors.
Fresca and Manzoni [214] used the same approach for a series of additional applica-
tions including an unsteady advection-diffusion-reaction system, a coupled PDE-ODE
Monodomain/Aliev-Panfilov system, a nonlinear elastodynamics problem and the un-
steady Navier-Stokes equations. For the most pertinent example, the Navier-Stokes
problem, the acceleration factor was of the order 105 compared to the FOM while
achieving a comparable accuracy to the more expensive non-enhanced DL-ROM. Fresca
and Manzoni [220] used the same POD-DL-ROM for flow around a cylinder, FSI
between an elastic beam and laminar flow, and blood flow in a cerebral aneurysm.
High levels of accuracy are qualitatively displayed for each application. Acceleration
factors for all applications are of the order 105. Essentially, the approach of Fresca
and Manzoni [214], Fresca et al. [219], Fresca and Manzoni [220] reduces the size of
the data passed through the network and the amount of training parameters required,
thus improving the efficiency of training and testing while preserving the precision of
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the DL-ROM without POD enhancement.

Conclusion Machine learning (ML) has a lot to offer the ROM field, as demon-
strated by the various studies in Table 3.3.1 that used ML in conjunction with ROMs.
ML can be used to provide closure in projection-based ROMs, improve interpolation in
POD-Interpolation ROMs, improve long-time ROM predictions, or offer alternative di-
mensionality reduction algorithms that are essential in almost all ROMs. ML-ROMs are
able to address the weaknesses that hinder various reduced order methods, such as poor
performance for nonlinear problems, lack of stability or lack of generality. As a result,
ML-ROMs will typically be suitable for a wider array of vascular flow problems than the
traditional ROM techniques from which they are derived. Balzotti et al. [216] demon-
strated the superior acceleration capacity of a POD-NN ROM compared to a POD-GP
ROM for a vascular flow problem due to the POD-NN approach being better-suited
for the nonlinear nature of the problem. Similarly, Csala et al. [223] demonstrated the
superior spatial reduction capability of nonlinear ML-based dimensionality reduction
techniques when applied to aneurysm blood flow, which suggests that more accurate
models may be possible using ML-based reduction techniques. Fresca and Manzoni [220]
conversely used traditional dimensionality reduction techniques (POD) in conjunction
with an ML-based ROM and achieved high levels of accuracy and acceleration for an-
eurysm blood flow. While not for vasclar flow applications, Wang et al. [217] and Gao
et al. [218] augmented POD-GP ROMs with machine learning and achieved improved
stability and accuracy. These findings demonstrate that ML-ROMs are a compelling
option for vascular flow problems. In particular, ML-ROMs can offer methods suitable
for vascular flow problems that are nonlinear, geometrically complex, multi-physics and
multi-scale in time.

3.3.2 Physics-Informed Machine Learning Simulation

Machine learning can be used to construct fast surrogate models for vascular flow
problems that directly predict haemodynamic quantities of interest, as in work by
Itu et al. [107], Rutkowski et al. [224] and Liang et al. [225] (discussed further in
section 3.3.3). A criticism of this approach is that the models do not guarantee the
underlying physics in the problem will be respected. This can be somewhat resolved
by incorporating known physics into the learning procedure [226]. The most widely
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used technique to achieve this are physics-informed neural networks (PINNs), which
can combine data acquired from simulations or experiments with knowledge of the
underlying governing equations and boundary conditions [106, 227]. In contrast to
most machine learning simulation techniques, PINNs can be used in the absence of data.
PINNs without training data may be less accurate than with data, but data-free PINNs
offer a direct alternative to standard numerical techniques [228]. While PINNs were
initially developed for solution and discovery of partial differential equations (PDEs) in
forward and inverse scenarios, the development of data-free and parametric PINNs have
since seen them applied to simulation acceleration. PINNs have been demonstrated
to vastly reduce simulation times, particularly in the context of parametric design
optimisation problems, hence the focus on this technique in the review [229, 230].

A typical PINN is shown in Figure 3.3.1. The PINN consists of a network with
simulation parameters (e.g. space/time coordinates) as input and solution fields (e.g.
velocity/pressure) as output. FCNNs are typically used for PINNs, but various other
approaches have demonstrated superior results for certain applications [231]. For the
chosen architecture, automatic differentiation is typically used to differentiate network
outputs with respect to its inputs, thus acquiring derivatives such as ux, px, ut, etc.,
which can be combined to formulate governing equation residuals. For the incompress-
ible Newtonian Navier-Stokes equations, the residual of the x-momentum equation will
take the form:

F1 = ut + uux + vuy + wuz + px − 1
Re (uxx + uyy + uzz) , (3.3.1)

where u = (u, v, w) is velocity, p is pressure and Re is the Reynolds number. Reduced
Navier-Stokes equations (e.g. equation (3.2.3) for 1D blood flow) can also be used as
residuals [232]. The residuals are included in the loss function for the network, which
encourages the network to learn mappings that minimise the residuals and therefore
satisfy the underlying governing equations. It is possible to enforce additional loss con-
straints that penalise the network for non-satisfaction of boundary conditions, such as
the no-slip condition that is often applied on blood vessel walls. Alternatively, bound-
ary conditions can be imposed as hard constraints through the network architecture
[233]. Once trained, the PINN is able to infer solution fields that satisfy data, governing
equations and boundary conditions.

PINNs are designed to improve the efficiency of non-informed networks through
reducing the amount of data required and helping the network train efficiently by dis-
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carding non-physical mappings. A further benefit of PINNs is their potential to be
used as an alternative to traditional numerical solvers. If data is unavailable, PINNs
can be trained on PDE residual points and boundary conditions alone, mirroring the
procedure for traditional numerical techniques. However, the input coordinates need
only be a point cloud rather than the volumetric mesh required for typical numerical
solvers. Furthermore, unlike traditional numerical solvers, when a problem has (re-
moved: is ill-posed with) incomplete or noisy boundary conditions, PINNs are still a
viable option [234]. A final benefit of PINNs is that they are well-suited to solving
inverse problems as well as forward problems, whereas traditional numerical techniques
are usually only suitable for forward problems.

Once trained, a PINN can quickly infer physics-respecting solution fields given
spatio-temporal inputs, making them a promising acceleration technique. However,
generalising a PINN for additional input parameters can decrease accuracy and increase
training time, so the fast inference speeds must be balanced against training cost and
accuracy. Despite their promise, PINNs are a relatively new technique for simulation
and the application of PINNs towards acceleration and vascular flow is in its infancy.
Three questions are addressed in order to determine the usefulness of PINNs for vascular
flow acceleration: (i) How suitable are PINNs for simulation acceleration? (ii) How fast
are PINNs relative to traditional numerical techniques? (iii) Are PINNs suited to the
complexities of vascular flow acceleration?
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Table 3.3.2: Various PINN papers that mention the acceleration capability of their
method.

Reference Method Application Comments on accuracy and/or acceler-
ation

General applications
Hennigh
et al. [230]

PINN Heat sink design optimisation problem. Total compute time is reduced by ∼45,000
times and ∼150,000 times compared to com-
mercial and OpenFOAM solvers, respectively.

Arthurs and
King [229]

PINN with
active
training

Parametric Navier-Stokes with para-
meters describing peak inflow velocity
and tube shape.

PINN parameter sweep takes 7.6 s compared
to 54 minutes for FEM. 400 times faster.

Cardiovascular applications
Gao et al.
[218]

PI-CNN SR of parameterised flow fields for
idealised vascular problems.

Model accurately refines spatial resolution by
400 times and provides speed-up of 3364 times
relative to CFD model.

Buoso et al.
[235]

PINNs
with RBF
reduction

Left-ventricular biophysical modelling. 30 times faster than FEM including training
(for evaluating only one condition). Accur-
acy for ejection fraction 97%, peak SBP 93%,
stroke work 96%, myocardial strains 86%.

Sun et al.
[228]

PINNs Parametric flow in 2D idealised stenotic
and aneurysmal vessels.

PINN evaluation is 2000 times faster than
CFD model, but training takes hundreds of
times longer than individual CFD simulations.

CFD, computational fluid dynamics; FEM, finite element model; PI-CNN, physics-informed convo-
lutional neural network; PINN, physics-informed neural network; RBF, radial basis functions; SBP,
systolic blood pressure; SR, super-resolution.

How suitable are PINNs for acceleration? Developing and using a PINN model
often consists of three stages: (i) Generating or acquiring data from simulations or ex-
periments (ii) Training the network whilst incorporating known physics and boundary
conditions (iii) Using the model to infer solutions for new inputs. In inference mode,
PINNs are usually faster than a traditional numerical model applied to the same prob-
lem. However, if the PINN relies on data generated by the numerical model and requires
a potentially expensive training procedure prior to use, then the question of how to use
PINNs for acceleration remains. In order to prove a useful and powerful tool for simu-
lation acceleration, PINNs will either need to be able to generalise to unseen problems
in a similar fashion to how parametric ROMs operate, or they will need to have a
sufficiently small training time such that training a new PINN model is more efficient
than solving a traditional numerical model.

Generalising a PINN model can require adding additional parameters into the train-

59



3.3 Accelerating Simulations with Machine Learning

ing procedure. These parameters could describe geometry, boundary conditions, or
material properties and there are various ways to incorporate this information into
the PINN. The most straightforward approach is to include additional network input
parameters. Arthurs and King [229] introduced two input parameters describing the
peak inflow rate and diameter in a pipe flow problem. Sun et al. [228] similarly in-
cluded parameters that describe geometry and viscosity as input to their PINN. When
parameterising the network in this manner, an active learning strategy can reduce the
cost of up-front data generation. This consists of refining the training data with addi-
tional finite element model (FEM) samples in regions of the parameter space where the
PINN prediction is poor. Costabal et al. [236] used a positional encoding mechanism
for PINNs that creates an input space for the network representing the geometry of
a given object, improving PINN performance in complex geometries. However, for a
Poisson forward problem in a simple domain, the positional encoding method was not
observed to outperform traditional PINNs. de Avila Belbute-Peres et al. [237] developed
a hyper-PINN approach, where an additional network is trained on sets of model input
parameters (e.g. geometric parameters, boundary conditions, material properties) and
network weights from previously trained PINN models for each simulation configura-
tion. This precursor network learns how to map from the input parameter space to
the weights needed for the PINN model for that particular parameter configuration.
For a new parameter set, the precursor produces the weights needed to directly use the
PINN in inference mode, thus bypassing the need to train a new PINN model entirely.

Alternatively to generalising PINNs, reducing training time sufficiently can mean
that training a new PINN for each problem is still a tractable approach. Kissas et al.
[232] suggested transfer learning to solve this problem. Transfer learning consists of
intialising new PINN models with the parameters from a model previously trained on a
similar problem, which can drastically reduce training time. This is similar to providing
an accurate initial guess in iterative numerical methods. A transfer learning approach
could allow for a new PINN to be trained for each new simulation configuration (new
geometry, boundary conditions, etc.) while still providing an acceleration relative to
solving the problem with traditional numerical techniques. For this approach to make
sense, the new PINN must be trained without the use of training data from solving
the numerical model. To this end, Desai et al. [238] proposed a one-shot transfer
learning approach for PINNs, which consists of training for a selection of PDEs and then
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reusing some of the trained layers for an unseen PDE, thereby reducing training time.
Another approach to accelerate training is to incorporate a hyper-parameter into the
activation functions in the PINN [239]. The hyper-parameter dynamically changes the
loss function topology throughout training and is shown to accelerate PINN convergence
and increase accuracy. Residual-based adaptive refinement can also accelerate training
[240, 241]. This approach aims to increase the number of network training points in
regions where the PDE residual is inaccurate throughout training, thus accelerating
convergence.

How fast are PINNs? Once the PINN training time is sufficiently reduced, or the
network is generalised appropriately, the question of how fast PINNs are relative to
traditional numerical techniques remains. Table 3.3.2 collates the literature on PINNs
where the authors commented on the acceleration offered by their approach.

Arthurs and King [229] and Hennigh et al. [230] conducted design optimisation
studies using PINNs. Arthurs and King [229] developed a parametric PINN model for
Navier-Stokes applications and ran a parameter sweep experiment to identify the value
of the geometric input parameter that would lead to a target pressure drop. This is a
typical many-query problem, where repeated model evaluations are required to identify
some kind of threshold in the output variable. The trained PINN required only 7.6
seconds to perform the sweep over 81 parameter points, whereas the same sweep using
FEM would have taken 400 times longer. Scaling up the number of parameter queries
to 1 million only increases the run time to 11.1 seconds, highlighting the scalability of
the PINN due to its fast inference speed. However, it should be noted that the PINN
evaluation was only performed at two spatial points, as this is all that is required to
calculate the pressure drop. This demonstrates a benefit of PINNs, in that they can
be used to query specific regions of interest, but the FEM model inherently evaluates
the entire spatial field, so directly comparing model efficiency is not fair in this case.
Hennigh et al. [230] presented NVIDIA SimNet, an AI-accelerated multi-physics simu-
lation framework based on PINNs. They studied a design optimisation problem where
SimNet is able to reduce total compute time by approximately 45,000 times compared
to a commercial solver and 150,000 times compared to OpenFOAM. Gao et al. [242]
trained physics-informed CNNs for super-resolution of low resolution flow field inputs
using only knowledge of the conservation laws and boundary conditions. They applied
this approach to 2D flow in a vascular domain and parametric super-resolution for in-
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ternal flow with a parameterised inlet velocity profile. The model accurately refines the
spatial resolution by 400 times for the flow fields with any new inlet BCs sampled in the
20-dimensional parameter space. The speed-up time for the trained model compared to
the highly resolved CFD model is 3364 times. Sun et al. [228] used data-free parametric
PINNs for flow in 2D idealised stenotic and aneurysmal vessels. They achieved accurate
results in all test problems with mean test errors of order 10−4–10−8 depending upon
the problem and variable of interest. The authors noted that in the data-free PINN
regime, implementing boundary and initial conditions with hard constraints improved
performance when compared to the more widely used soft constraints. The trained
PINN can be evaluated in 0.02 seconds, whereas the CFD model takes 40 seconds,
yielding a speed-up of 2000 times. However, training the PINN took hundreds of times
longer than an individual CFD simulation. The PINN will therefore only reduce total
computational cost in scenarios where a large number of model evaluations are required,
such as uncertainty quantification or design optimisation. Sun et al. [228] suggested
that the speed-up offered by their approach will be increasingly advantageous when
more complex applications are considered.

PINNs for vascular flow acceleration PINNs are inherently suited to nonlinear
problems due to the nonlinear function approximating capacity of the network. In fact,
the earliest applications of PINNs include nonlinear PDEs, such as the Navier-Stokes
and Schrödinger equations [106]. Since then, PINNs have been successfully applied
to various cardiovascular fluid dynamics problems, all of which are governed by the
nonlinear Navier-Stokes equations [231, 232, 243–247].

Individual complex geometries are relatively straightforward to handle with PINNs.
Instead of the usual volumetric mesh required for traditional numerical techniques,
PINNs require only spatio-temporal coordinates as input and do not require connectiv-
ity between these points. Volumetric meshes may still be required in order to generate
simulation data to train the PINN, but if the PINN is used to generalise across geomet-
ries, then users can forego the time-consuming meshing step for some of the geometries
[228]. Raissi et al. [248] used PINNs to infer flow fields from concentration fields in
an image-derived 3D aneurysm model and Sun et al. [228] applied PINNs with hard
boundary condition enforcement to model flow in idealised stenosis and aneurysm mod-
els. This highlights two geometrically relevant applications of PINNs.

PINNs can also tackle multi-physics problems. Figure 3.3.1 shows a single-physics
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PINN, but additional physics can be added by using a second network that maps
from the same inputs as the first network (space and time) to different outputs (e.g.
displacements and stresses for solid mechanics). It is therefore possible to calculate
all the required derivatives in order to impose the governing equations and boundary
conditions from each aspect of the multi-physics problem. This approach has been
applied to an inverse Navier-Stokes and Cahn-Hilliard blood flow-thrombosis problem
[246], multi-phase heat transfer [249] and FSI [250].

Basic PINNs are not commonly applied to extrapolating the associated PDE in
time. Kim et al. [251] proposed a Dynamic Pulling Method (DPM) to overcome this
issue. DPM manipulates the PINN’s gradients to ensure the PDE’s residual loss term
continuously decreases during training. This is shown to improve extrapolation in time
for various test problems. Basic PINNs are also not well-suited to problems spanning
very large spatial regions. The issue with large spatial and temporal domains is that the
domain can become arbitrarily large, leading to prohibitive training times. The primary
approach to tackling these problems is incorporating domain decomposition into the
PINN framework. Decomposing the large spatio-temporal domain into smaller sub-
domains allows for sub-PINNs to be trained in each sub-domain. This improves training
efficiency as well as reducing error propagation, allowing for domain-specific hyper-
parameter tuning, increasing representation capacity and facilitating parallelisation
[252].

Conservative PINNs (cPINNs), extended PINNs (XPINNs) and parallel-in-time
PINNS (PPINNs) are three possible domain decomposition approaches that can tailor
PINNS for multi-scale problems. cPINNs enforce conservation properties at spatial
sub-domain boundaries using flux continuity and solution averaging across the inter-
faces [252]. XPINN is an extension to cPINN that applies to any type of PDE, not only
conservation laws, and allows for decompositions in time and space [253]. Shukla et al.
[254] compared cPINN and XPINN for a series of forward problems and found that for
space decomposition, cPINNs are more efficient in terms of communication cost but
that XPINNs are more flexible as they can handle time decomposition, a wider array
of PDEs and arbitrarily shaped sub-domains. PPINNs are an extension to PINNs that
mitigate the issue of long-time integration through time-domain decomposition and
using a coarse-grained solver for long-time supervision [255]. The coarse-grain solver
provides initial conditions for the PPINN in each time sub-domain. The coarse-grain
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solver needs be fast enough to solve the long-time PDE with some degree of accuracy
cheaply, hence reduced-order or simplified models are viable options. Meng et al. [255]
stated that the PPINN method could be extended to spatial domain decomposition,
with a coarse-grained solver used to estimate the global solution and then a series of
PINNs applied in parallel to spatial subdomains, thus increasing training efficiency
relative to applying one PINN for the entire domain.

Conclusion PINNs offer a mixture of numerical mechanistic models and data-driven
phenomenological models. Training a PINN model can be expensive compared to run-
ning a high-fidelity numerical model, so they are most useful for acceleration when a
once-trained PINN can be used for numerous parameter or geometry instances. Various
methods have been studied to parameterise PINNs [228, 229, 236, 237]. An alternative
approach is to use PINNs in conjunction with transfer learning techniques to quickly
retrain the model for a new system instance [238]. Employing techniques such as these
can make PINNs a viable option for accelerating vascular flow simulations, particularly
as PINNs (and extensions thereof) are well-suited to handling nonlinear, geometrically
complex, multi-physics and multi-scale modelling problems.

3.3.3 Other Techniques

Given the relatively recent application of machine learning to simulation and the con-
tinued growth of the machine learning field, there are numerous other machine learning
methods that have been or can potentially be applied to vascular flow acceleration. Re-
viewing them all in detail is beyond the scope of this study, and in most instances, there
is insufficient relevant literature to do so, but herein several of these approaches are
briefly discussed and how they may prove useful in the future for the target application
is highlighted.

Physics-Agnostic Machine Learning Simulation

An alternative to augmenting/constructing ROMs using machine learning or attempt-
ing to encode physics into machine learning is to build a machine learning model that
directly predicts the haemodynamic quantities of interest from inputs such as images
or geometries [107, 224]. Some of these approaches are collated in Table 3.3.3. One of
the earliest examples of this is by Itu et al. [107], who used a machine learning model
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Table 3.3.3: Various machine learning simulation papers applied to vascular flow prob-
lems that mention the acceleration capability of their method.

Reference Method Application Comments on accuracy and/or acceler-
ation

General applications
Cai et al.
[256]

DeepONet Steady-state electroconvection. Accuracy > 99%. Acceleration factor ∼ 103.

Mao et al.
[257]

DeepONet Coupled flow and finite-rate chemistry. MSE is ∼ 10−5. Acceleration factor ∼ 105.

Cardiovascular applications
Itu et al.
[107]

FCNN FFR prediction from coronary artery
anatomy.

83.2% diagnostic accuracy for ischaemia. Ac-
celeration factor > 80.

Liang et al.
[225]

AE and
FCNN

Steady-state haemodynamics predic-
tion in thoracic aorta.

Velocity accuracy, 98.0%. Pressure accuracy,
98.6%. Acceleration factor ∼ 900.

Morales
et al. [258]

FCNN
ECAP prediction from LAA geometry.

Mean accuracy, 95.3%. Acceleration factor
144∗.

FCNN with
PCA

Mean accuracy, 94.8%. Acceleration factor
7,200∗.

Ferdian et al.
[259]

Residual
CNN

Super-resolution of aortic 4D flow MRI. Flow rate prediction accuracy > 95%. Predic-
tion time 40–90 seconds.

Gharleghi
et al. [260]

U-Net-style
CNN

Transient WSS prediction in left main
bifurcation of coronary arteries.

Accuracy > 95%. Prediction time of 0.2
and 0.001 seconds with CPU and GPU,
respectively‡.

Li et al. [108] Point-Net Haemodynamics prediction before and
after coronary artery bypass surgery.

Prediction accuracy ∼ 90%. Acceleration
factor 600.

Li et al. [109] Point-Net Haemodynamics prediction before and
after aneurysm treatment by FDS.

Prediction accuracy > 87%. Acceleration
factor 1,800.

Yin et al.
[261]

DeepONet Predicting damage progression and P-
V curves in aortic dissection.

P-V accuracy > 95%†. Prediction time is < 1
second, FOM simulation time is ∼ 12 hours
using 20 processors.

∗ 10-fold cross-validation used with 300 geometries. One round of cross-validation on 30 geometries
took 30 seconds or 25 minutes for each model. This is used to calculate evaluation time for one
geometry and compared to reported 2 hour CFD simulation time to calculate acceleration factors.
† P-V accuracy taken for test cases with damage included, from Table 3 of [261].
‡ Network requires steady-state CFD result as input, which takes < 2 minutes to calculate. With
this included, acceleration factor is ∼ 90.
AE, autoencoder; CFD, computational fluid dynamics; CPU, central processing unit; DeepONet,
deep operator network; ECAP, endothelial cell activation potential; FCNN, fully-connected NN;
FDS, flow-diverting stent; FOM, full-order model; FFR, fractional flow reserve; GPU, graphics
processing unit; LAA, left atrial appendage; MRI, magnetic resonance images; MSE, mean-squared
error; NN, neural network; PCA, principal component analysis; P-V, pressure-volume.
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to predict fractional flow reserve (FFR) given parameterised coronary artery anatomy
as input. The model consists of a FCNN with inputs corresponding to features of the
coronary anatomy and FFR as the solitary output. Using this approach, the authors
achieved an accuracy of 83.2% in correctly diagnosing positive ischaemia and reduced
model run time by a factor > 80.

Liang et al. [225] trained a deep neural network (DNN) to predict steady-state
pressure and velocity fields in the thoracic aorta using 729 aorta geometries generated
from a statistical shape model and CFD data generated for each geometry [262]. The
DNN consisted of autoencoders to encode the aorta shapes and the fields of interest
and another network to map between the encoded shapes and fields. The trained
network predicted velocity and pressure fields with mean errors of 2.0% and 1.4%,
respectively. DNN evaluation time is approximately one second, whereas each CFD
simulation took approximately 15 minutes, giving a speed-up of ∼900 times. Liang
et al. [263] applied this network structure to identifying the geometry corresponding to
a particular pressure field, thus demonstrating an application of this method to inverse
modelling. Morales et al. [258] applied two FCNNs, one with prior dimensionality
reduction and one without, to predict endothelial cell activation potential (ECAP)
from left atrial appendage (LAA) geometry. Their models were trained on 210 LAA
geometries using CFD data. With and without dimensionality reduction, the average
error was 5.8% and 4.7%, respectively. The network with dimensionality reduction was
approximately 50 times faster than the other network when performing cross-validation.
Gharleghi et al. [260] used a machine learning surrogate to replace a transient CFD
solver in order to calculate wall shear stress (WSS) in the left main bifurcation of
the coronary artery. The network requires the steady-state CFD solution for a given
case as an input, but can then predict the transient WSS to an accuracy of > 95%
within 0.2 seconds using a CPU and 0.001 seconds using a GPU. Rutkowski et al.
[224] trained a CNN to map from 4D flow phase-contrast magnetic resonance images
to highly resolved flow fields using CFD data as labels. The focus of this work was fast
and accurate flow field generation directly from images, foregoing the need for time-
consuming and expensive simulation set-up and execution. The network successfully
de-noised flow images, improved velocity field accuracy and enhanced near-wall flow
measurements. Ferdian et al. [259] similarly developed a residual network that was
applied to super-resolution of 4D flow magnetic resonance images of aortic blood flow.
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Their approach was able to predict flow rates in a real patient to greater than 95%
accuracy within 40–90 seconds depending on the image size.

Various physics-agnostic machine learning simulation methods have been able to
accurately and efficiently predict flow fields and flow-derived quantities in vascular
flow applications. Provided that a FOM can be constructed and that sufficient data
can subsequently be generated, the breadth of vascular flow problems that could be
accelerated by these surrogate models is large. However, the vast amount of data
required to generate accurate results could constrain these approaches, particularly
in vascular flow applications where geometric data is typically derived from medical
images that can be expensive to acquire and difficult to process. This is highlighted
by Liang et al. [225], Morales et al. [258] and Gharleghi et al. [260] relying upon data
augmentation strategies to extend their cohorts of real patients into larger cohorts of
mostly synthetic patients. While this is necessary to create sufficiently large data sets,
there is a risk that the augmentation may produce unrealistic results, as demonstrated
by Morales et al. [258] discarding 30% of their initial training samples due to unrealistic
flow features. It is possible that data augmentation approaches from the wider machine
learning field, such as variational autoencoders or generative adversarial networks, could
provide techniques to generate highly realistic synthetic data sets [264–266]. Another
issue with physics-agnostic machine learning simulation methods is that the up-front
cost of running CFD simulations in large cohorts to generate training data and the
subsequent cost of training the complex network can lead to large overall costs. Despite
these challenges, machine learning surrogate models are able to make predictions in
previously unseen geometries due to being trained over an extensive array of different
geometries. This is a crucial challenge in many vascular flow modelling problems that
most acceleration techniques do not address with such generality.

Point Networks

Typical convolutional deep learning architectures require regular input data, such as
images. Point-Net was developed to allow the direct use of irregular point cloud data
with techniques typically applied to regular input data [267]. A benefit of using a
Point-Net architecture is its ability to generalise well to new input point clouds. This
means generalising to unseen geometries for vascular flow applications, which can lead
to large savings in simulation times. Point-Net-based models have been applied to
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cardiovascular flow problems. Li et al. [108] used a Point-Net-based model to predict
steady-state haemodynamics before and after coronary artery bypass surgery. Their
approach yielded a prediction accuracy for velocity and pressure fields of around 90%.
The time to evaluate the deep learning model was 600 times less than for the CFD
model (1 second vs. 10 minutes), although 40 hours of training time was required
prior to using the former. The same authors also applied their Point-Net-based model
to predict steady-state aneurysm haemodynamics before and after treatment with a
porous-medium flow-diverting stent model [109]. A similar prediction accuracy was
found (> 87%) and the calculation time was reduced by a factor of 1800. Kashefi
and Mukerji [268] developed a physics-informed Point-Net (PIPN) and evaluated it for
steady-state incompressible flow problems. The acceleration factor is approximately 35
for trained PIPN evaluation compared to the standard numerical solver. Compared to
PINNs, the accuracy of PIPNs is similar when trained to the same convergence criterion,
but the computational cost of PINNs is 18 times greater. This factor is increased when
exploiting the inherent generalisation of PIPN to model new geometries, as in this
scenario, the PINN will often need to be re-trained. PIPN is a recent technique that
has not yet been applied to vascular flow.

Operator Networks

The function approximation capacity of neural networks is well known, but it is also pos-
sible for neural networks to approximate operators that map between function spaces
[269]. The first and most general operator network is the deep operator network (Dee-
pONet) [110]. DeepONet consists of a branch network, which encodes the input function
space, and a trunk network, which encodes the domain of the output functions. The
input to the branch network are function values at fixed sensors and the input to the
trunk network are spatio-temporal coordinates at which to evaluate the operator. The
output of the trunk network is a set of basis functions, and the output of the branch net-
work is the basis coefficients [111]. Combining the basis coefficients and functions using
the dot product gives the operator network output. Following training, the DeepONet
approximates the underlying solution operator for the input function and coordinate
spaces. Other operator learning methods include the Graph Kernel Network and Four-
ier Neural Operator [270, 271]. Physics-informed extensions to operator networks that
can reduce the required training data have also been studied [111, 272].
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Operator learning approaches have been applied to various linear and nonlinear
problems involving explicit and implicit operators [110]. Cai et al. [256] used DeepONets
for electroconvection, which is a multi-physics problem involving coupled flow, electric
and concentration fields. They noted that training the DeepONets takes approximately
2 hours, but the evaluation time once trained is less than 1 second, representing a speed-
up of approximately 1,000 times when compared to the NekTar solver used to generate
training data. Mao et al. [257] used DeepONet for a hypersonic flow problem involving a
coupling between flow and finite-rate chemistry. They found that the trained network
was five orders of magnitude faster than the CFD solver used to generate the data.
Furthermore, Cai et al. [256] and Mao et al. [257] combined multiple DeepONets to build
a DeepM&MNet, which is specifically designed to handle multi-scale and multi-physics
modelling. DeepONets have also been used as a surrogate for expensive microscopic
models, thus accelerating the coupling between micro- and macro-scale models [273].
Recent work has also investigated using physics-informed DeepONets for long-time
integration of parametric partial differential equations [274]. Applications of operator
learning to vascular flow problems are limited, but two examples are by Yin et al. [261]
and Arzani et al. [275]. Yin et al. [261] applied DeepONets to simulation of aortic
dissection, a complex fluid-structure interaction problem. The DeepONet was able
to make predictions in less than 1 second, whereas the finite element model used to
produce training data took approximately 12 hours to run using 20 processors. Arzani
et al. [275] applied an operator learning surrogate model to 2D cardiovascular flow
applications, but the focus of this work was on the interpretability and generalisation
rather than acceleration.

Compared to function-based learning strategies, a benefit of operator learning is that
they demonstrate small generalisation errors [110]. Furthermore, DeepONets have been
shown to overcome the curse of dimensionality, in that they do not require exponentially
more training data to improve the approximation accuracy [276]. These techniques can
potentially address many of the inherent complexities of vascular flow, particularly
the multi-physics and multi-scale nature of the problem, but they have not yet seen
widespread adoption.
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3.4 Summary

This review presents simulation acceleration methods based on reduced order modelling
(ROM) and machine learning for the target application of vascular flow. The review
focuses on five complexities that are common in vascular flow problems, but which are
also found across a multitude of other domains; namely: (i) nonlinearity, (ii) geometric
complexity, (iii) multi-physics, (iv) multi-scale in time and (v) multi-scale in space.
Each complexity presents unique challenges for vascular flow simulations and their
acceleration. The ROM methods discussed in this review are spatial dimension reduc-
tion (SDR), proper orthogonal decomposition (POD) and dynamic mode decomposition
(DMD) ROMs, as well as brief overviews of reduced basis (RB) methods and proper gen-
eralised decomposition (PGD). The machine learning approaches reviewed are machine
learning-augmented ROMs, machine learning-based ROMs, physics-informed neural
networks (PINNs), physics-agnostic networks, Point-Nets and operator networks. The
review demonstrates that all acceleration methods are well-suited to some of the com-
plexities of vascular flow and limited for others, as highlighted in Table 3.4.1.

3.4.1 Reduced Order Modelling

SDR methods are suitable for capturing spatial multi-scale behaviour and some non-
linear and multi-physics effects, but only in simplified geometries where axisymmetry
or other assumptions are valid [115]. These methods calculate bulk quantities instead
of full spatio-temporal fields and are not designed for temporal multi-scale problems.
SDR methods are widely used in various vascular applications, with one of its most
common uses being for deriving boundary conditions for 3D models [115, 133]. Due to
their simplistic nature, SDR models can provide large acceleration ranging from two to
six orders of magnitude [124].

POD-based ROMs branch into two categories depending upon whether they com-
bine POD with projection or interpolation. POD-Projection and POD-Interpolation
ROMs are able to calculate three-dimensional time-varying solution fields in individual
complex geometries. POD-Projection has been applied to various vascular flow prob-
lems [100, 149–151, 161, 169, 170]. Both approaches are suitable for multi-physics prob-
lems. For nonlinear problems, the projection applied to the governing equations does
not fully de-couple the ROM and the full-order model, limiting the acceleration offered
by POD-Projection ROMs. POD-Interpolation does not depend upon the governing
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Table 3.4.1: Reduced order modelling and machine learning acceleration methods and
their suitability for modelling various vascular flow complexities. RB, PGD, physics-
agnostic and Point-Net simulation acceleration approaches were briefly reviewed in this
chapter but not in sufficient detail to include in this table.

Method Nonlinearity Geometric
Complexity

Multi-
Physics

Multi-Scale
(Time)

Multi-Scale
(Space)

ROMs
SDR ✓ ✗ ∼ ✗ ✓

POD-P ∼ ✓ ✓ ✗ ✗∗

POD-I ✓ ✓ ✓ ✗ ✗∗

DMD ✓ ✓ ∼ ✓ ✗∗

Machine learning-augmented ROMs
POD-I-NN† ✓ ✓ ✓ ∼ ✗∗

POD-P-NN† ✓ ✓ ✓ ∼ ✗∗

Machine learning methods
Physics-agnostic ✓ ✓⋆ ✓ ✓⋄ ✓⋄

PINN ✓ ✓ ✓ ✓‡ ✓‡

DeepONet ✓ ✓ ✓ ✓ ✓

Key: ✓, method is suitable; ∼, somewhat suitable; ✗, not suitable.
∗ In isolation the methods are not well-suited for spatial multi-scale problems, but they can be
coupled to patient-specific SDR models so that boundary conditions are derived from large portions
of the vasculature.
† Includes various types of NN used in conjunction with the ROM approach, such as FCNNs or
RNNs.
⋆ Physics-agnostic approaches are not only suitable for complex individual geometries, but are
capable of generalising to previously unseen geometries.
⋄ While suitable for multi-scale problems in principle, the data-hungry nature of physics-agnostic
approaches may make lead to prohibitive data requirements for problems spanning large spatial
and time scales.
‡ Basic PINNs are not designed for multi-scale problems, but extensions such as cPINNs, XPINNs
and PPINNs are.
cPINNs, conservative PINNs; DeepONet, deep operator network; DMD, dynamic mode decomposi-
tion; FCNN, fully-connected NN; PGD, proper generalised decomposition; POD, proper orthogonal
decomposition; POD-I, POD-Interpolation; POD-P, POD-Projection; NN, neural network; PINN,
physics-informed NN; PPINNs, parallel-in-time PINNs; RB, reduced basis; RNN, recurrent NN;
ROM, reduced order model; SDR, spatial dimension reduction; XPINNs, extended PINNs.
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equations of the system, so it does not suffer the same limitations for nonlinear applic-
ations. However, POD-Interpolation ROMs have been shown to generalise less effect-
ively than their projection-based counterparts [165]. Neither POD-Projection or POD-
Interpolation are well-suited to multi-scale modelling in time, with the long-term sta-
bility of POD modes not guaranteed. Finally, while neither approach is inherently well-
suited to spatial multi-scale modelling, coupling the POD-based ROM to an SDR ROM
could produce a model that can quickly and accurately provide full spatio-temporal
fields in a region of interest while capturing the influence of the systemic vasculature.
Due to the non-iterative nature of POD-Interpolation, it can typically provide large
accelerations ranging from two to six orders of magnitude, whereas POD-Projection
acceleration ranges from one to three orders of magnitude [147, 166, 168, 169].

Similarly to POD-based ROMs, DMD ROMs can provide full spatio-temporal fields
in individual geometries and could be coupled to SDR models to capture the influence
of large regions of the vasculature. DMD ROMs are less common than POD-based
approaches, so application to multi-physics simulation acceleration has not been thor-
oughly investigated. The main benefit to DMD ROMs is that they are designed to
approximate the temporal dynamics of the system, which makes them well-suited to
the long-time model integration required in temporal multi-scale problems.

Other techniques include RB methods and PGD. RB methods are a similar ap-
proach to POD-Projection ROMs and have been successfully applied to various nonlin-
ear, multi-physics, geometrically complex problems [195–197]. RB methods have been
applied to vascular flow problems such as flow field calculation in 2D parameterised ca-
rotid arteries, inverse modelling in stenosed arteries and flow in femoropopliteal bypass
problems [192–194]. The acceleration offered by RB methods ranges from two to three
orders of magnitude. PGD sits apart from most ROM methods, as it uses separated
representations and successive enrichment a priori instead of applying dimensionality
reduction to snapshots from the full-order model a posteriori in order to construct the
reduced basis [198]. PGD has been applied to Navier-Stokes and rheology applications
with acceleration ranging from one to two orders of magnitude [200, 202]. This ap-
proach is well-suited to separable problems, whether the separation is in space or time
[199, 203, 204]; however it has not been applied as widely as other ROM methods and
has seen no application to vascular flow simulation acceleration.
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3.4.2 Machine Learning Simulation Acceleration

Machine learning offers an array of approaches for simulation acceleration. A common
approach is to use machine learning in conjunction with ROM methods, where the
learning algorithm augments or replaces part of the ROM method. Neural networks
can be used to provide a powerful high-dimensional interpolation algorithm in the
POD-Interpolation ROM approach [212, 213, 215] or to overcome the difficulties POD-
Projection ROMs encounter for nonlinear equations [217, 218]. Autoencoders can also
replace the dimensionality reduction that is common across most ROM methods [104,
105]. Another approach is to build a machine learning ROM based on autoencoders
and feedforward neural networks whilst utilising POD for dimensionality reduction
of the data passed to the machine learning ROM [214, 219, 220]. Machine learning
can overcome some of the limitations of traditional ROMs and broaden the scope of
problems for which the ROM methods are suitable.

PINNs are a machine learning-based simulation method that lies at the intersec-
tion of equation-based and data-driven modelling [106]. To be used for simulation
acceleration, PINNs needs to be able to generalise across new input parameters an-
d/or geometries or they need to be sufficiently fast to train that a new PINN can be
constructed for each new problem instance. The former can be achieved by adding
extra inputs to the network or by constructing a pre-cursor network that handles the
parametric dependence in the problem [229, 236, 237]. Faster training times can be
achieved through techniques such as transfer learning, trainable activation functions
and residual-based adaptive refinement [232, 238, 240, 241]. When used in an acceler-
ation context, such as many-query parameter sweeps, PINNs have been demonstrated
to reduce total simulation time by two to five orders of magnitude, depending upon
the application and the number of queries [229, 230]. PINNs and its extensions are
suitable for all of the complexities that commonly occur in vascular flow problems and
have been successfully applied to aneurysm flow modelling and synthesis of non-invasive
flow measurements in a bifurcating vessel model [232, 248].

Alternative machine learning-based simulation techniques include physics-agnostic
methods, Point-Nets and operator networks. Physics-agnostic simulation methods have
been applied to vascular flow problems such as fractional flow rate prediction in coron-
ary arteries, steady-state pressure and velocity prediction in the thoracic aorta, inverse
geometry prediction in the aorta, endothelial cell activation potential prediction and
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prediction of flow fields from magnetic resonance images [107, 224, 225, 258, 263]. While
these approaches can accelerate solution evaluations by two to three orders of magnitude
and tend to generalise well to previously unseen geometries, they require large data sets
and the network outputs do not necessarily respect the underlying physics in the prob-
lem. Point-Nets facilitate the use of powerful convolutional deep learning architectures
on data sets consisting of point clouds. They have been used for steady-state haemody-
namics predictions before and after coronary artery bypass surgery and aneurysm flow
diversion, producing accurate predictions and reducing prediction time by two to three
orders of magnitude compared to the computational fluid dynamics model [108, 109].
Point-Nets generalise well to new geometries despite paying no attention to underly-
ing governing equations, but require large data sets for training. Physics can inform
Point-Nets, but this is a new technique with very few use cases to date [268]. Operator
learning techniques, such as DeepONets, are another powerful simulation technique
that have demonstrated strong generalisation capabilities, the ability to accelerate by
two to five orders of magnitude, and the ability to overcome the curse of dimensionality
[110, 256, 257]. However, operator learning is an emerging technique that has only seen
a small number of applications to vascular flow problems to date [261, 275].
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Chapter 4

In-Silico Flow Diverter Performance Assessment
in Posterior Communicating Artery Aneurysms
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Abstract

In-silico trials use clinical data and mathematical modelling to evaluate the performance
of medical devices in cohorts of virtual patients. Utilising virtual patients allows in-silico
trials to test devices in scenarios and demographic groups that may be underrepresented
in clinical trials. This chapter presents the FD-PComA in-silico trial into flow diverter
(FD) treatment performance in posterior communicating artery (PComA) aneurysms.
PComA aneurysm flow diversion has not been studied in clinical trials to date and is
further complicated by the presence of fetal posterior circulation (FPC). FPC has an
estimated prevalence of 4–29% and is more common in people of black (11.5%) than
white (4.9%) ethnicity, the former of which can be underrepresented in clinical trials.
Therefore, FD-PComA demonstrates the use of in-silico trials to provide insight in
lesser studied scenarios (FPC) and demographics (black ethnicity).

In the FD-PComA trial, flow diverter treatment was modelled in 118 virtual pa-
tients with 59 distinct anatomies, using computational fluid dynamics to assess post-
treatment outcome. Boundary conditions were prescribed to model the effects of non-
fetal and fetal posterior circulation (FPC), allowing for comparison between these sub-
groups. FD-PComA predicted reduced treatment success in FPC patients, with an an-
eurysm space-and-time-averaged velocity reduction of 67.8% across non-fetal patients
and 46.5% across fetal (p < 10−11). Space and time-averaged wall shear stress on the
device surface was 29.2 Pa in fetal patients and 23.5 Pa in non-fetal (p < 0.05), sug-
gesting flow diverter endothelialisation may be hindered in FPC patients. The study
found that morphological variables such as the size and shape of the aneurysm and
PComA size did not affect the treatment outcome.
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4.1 Introduction

In-silico trials (ISTs) are an alternative to clinical trials for generating evidence of
medical device or drug safety and efficacy. In-silico methodologies are being adopted
for drug [14, 15] and medical device development [277] in the treatment of various
pathologies, such as diabetes [16], acute ischemic stroke [17, 18] and COVID-19 [19].
In clinical trials, some treatment scenarios may be unfeasible or unethical to impose in
real life patients and demographic biases due to study type, location or other selection
criteria (e.g. age) may be unavoidable [278]. ISTs can be used to generate evidence in
scenarios that are difficult to assess in clinical trials and/or in demographics that may
be less well-represented.

Previous work has established that ISTs for flow diversion of intracranial aneurysms
can replicate and expand upon results from clinical trials of intracranial aneurysm
flow diversion [20]. Flow diversion is an established treatment method for intracranial
aneurysms, with various devices available on the market. The Pipeline Embolization
Device (PED), produced by Medtronic, is the most widely used flow diverter but it
is not FDA-approved for use in posterior communicating artery (PComA) aneurysms,
which is one of the most common aneurysm locations [49]. Flow diversion aims to
promote stasis-induced thrombosis in the aneurysm sac and endothelial proliferation
of the neointima along the device itself, ultimately leading to aneurysm occlusion.
Safety concerns regarding branch vessel occlusion led the FDA to not approve the use
of the PED in PComA aneurysms, but studies since then have consistently found no
neurological deficits following the treatment (i.e. the safety of the treatment has been
demonstrated) [279–281].

PED efficacy in the treatment of PComA aneurysms in certain scenarios remains
in question despite its safety being established. Fetal posterior circulation (FPC) is
defined by absence (true fetal) or atrophy (fetal-type) of the P1 segment of the posterior
cerebral artery (PCA) [282]. In these scenarios, the PComA is required to provide
some or all of the blood supply to the P2 PCA. The increased demand on the PComA
leads to increased flow rates and potentially subsequent PComA hypertrophy, both of
which could influence PED performance in the treatment of PComA aneurysms. The
incidence of the fetal PComA variant is 4–29% unilaterally and 1-9% bilaterally [283].
FPC is more common in patients with PComA aneurysms than those without [284].
FPC is also more prevalent in patients of black ethnicity than white [285]. Multiple case
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studies [286, 287] have suggested treating fetal-type PComA aneurysms with alternative
methods to the PED. A retrospective review of 49 patients by Rinaldo et al. [2] found
that PED occlusion rates were 43.7% for patients with fetal-type PComA aneurysms
and 81.8% for patients without the fetal-type variant. This review defined FPC as a
PComA diameter greater than that of the P1 PCA, but increased flow rates are also
a characteristic of FPC. This poses the question of whether it is the PComA diameter
or the increased flow that hinders PED treatment [4].

Prospective clinical trials into PED treatment have not focused on PComA an-
eurysms to date, despite them accounting for roughly 25% of all intracranial aneurysms
[283]. The PUFS (Pipeline for Uncoilable or Failed Aneurysms [288–290]), PREMIER
(Prospective Study on Embolization of Intracranial Aneurysms With Pipeline Embol-
ization Device [291]) and ASPIRe (Aneurysm Study of Pipeline in an Observational
Registry [292]) prospective clinical trials into PED flow diversion collectively contained
23/456 (5.0%) PComA aneurysms. The IntrePED (International Retrospective Study
of the Pipeline Embolization Device [293]) retrospective study contained 61/906 (6.7%)
PComA aneurysms. None of these studies reported specific findings for PComA sub-
groups. PComA aneurysms with FPC have similarly not been specifically reported on
in large-scale clinical trials.

The aim of this work is to perform an IST of PComA aneurysm PED flow diversion
and to investigate the impact of FPC on device performance. Herein, I present the
FD-PComA IST, which consists of the following steps: (1) Select PComA aneurysms
from the @neurIST and AneuX studies [294, 295]; (2) Simulate PED deployment us-
ing the algorithm presented in [296]; (3) Generate volumetric lumen meshes pre- and
post-treatment; (4) Apply patient-specific time-varying boundary conditions for nor-
motensive inflow conditions [91]; (5) Apply patient-specific outflow conditions for non-
fetal and fetal posterior circulation; (6) Simulate transient haemodynamics pre- and
post-treatment; (7) Extract haemodynamic markers for aneurysm flow reduction and
endothelialisation on the device struts and examine correlations between non-fetal/fetal
flow conditions, aneurysm morphology and PComA size.

This work is an exemplar IST demonstrating the application of computer mod-
elling and simulation to generating evidence for lesser studied scenarios (FPC) and
demographics (FPC prevalence varies across demographics). This IST also targets an
off-label use of the PED flow diverter and as such represents the largest scale study,
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clinical or otherwise, into PED treatment of PComA aneurysms [50].
The chapter is outlined as follows. Section 4.2 provides background on fetal pos-

terior circulation. Section 4.3 details the methodology, including the IST design (4.3.1),
the simulation pipeline (4.3.2), and the automation of the pipeline (4.3.3). Section 4.4
presents results from the IST and Section 4.5 draws conclusions. Discussion for the
chapter can be found in the thesis discussion (Section 6.2).

4.2 Fetal Posterior Circulation

Posterior communicating artery supplies
posterior circulation

Fetal

ICA

PComA
PCA

Non-Fetal

Posterior communicating artery does not
supply posterior circulation

ICA

PComA

Figure 4.2.1: Example of fetal and non-fetal anatomies for two patients from the trial
cohort.

Figure 4.2.1 shows images of fetal and non-fetal patients from the @neurIST database.
In the fetal case, the PComA is larger and supplying blood to the posterior circulation.
In the non-fetal case, the PComA is less visible in the image. This is due to less contrast
agent being drawn into the PComA as it supplies no distal vessels and therefore has
a reduced flow rate. These images highlight the two factors that could reduce flow
diverter efficacy in PComA aneurysms in patients with FPC - the increased flow rate
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and the increased PComA size.
Fetal posterior circulation (FPC) is estimated to occur in 4-29% of the population

[283] but its prevalence can vary in different demographics. Shaban et al. [285] retro-
spectively reviewed 532 PComA aneurysms and provided statistics for the prevalence
of PFC in a number of ethnicities. This data was collated (4.2.1) to show that full FPC
prevalence is significantly lower in white patients (4.9%, 8/164) than black patients
(11.5%, 40/349, p = 0.008). The FD-PComA in-silico trial therefore not only generates
evidence in less-studied scenarios (i.e. PComA aneurysms with FPC), but also provides
insights that are beneficial to demographic groups that can be under-represented in clin-
ical trials (i.e. black ethnicity) [297]. This demonstrates the capacity of in-silico trials
to generate new evidence in medical device testing and to improve health equity.

Table 4.2.1: Fetal posterior circulation prevalence for different ethnicities.

Reference FPC Classification
Ethnicity

White Black Hispanic

Shaban et al. [285]
Fetal, % (n/N) 4.9 (8/164) 11.5 (40/349) 0 (0/12)

Partial fetal, % (n/N) 15.2 (25/164) 14.9 (52/349) 16.7 (2/12)
Fetal or partial fetal, (n/N) 20.1 (33/164) 26.4 (92/349) 16.7 (2/12)

Non-fetal, % (n/N) 79.9 (131/164) 73.6 (257/349) 83.3 (10/12)

FPC, fetal posterior circulation.

4.3 Methodology

4.3.1 In-Silico Trial Design

Hypotheses and sub-analyses FD-PComA investigated the following hypotheses:

1. Maintained PComA flow following PED flow diversion reduces treatment success
(measured as post-operative aneurysm flow reduction) in patients with FPC.

2. PComA radius influences PComA aneurysm treatment success to a greater extent
than aneurysm morphology (characterised by maximum diameter, aspect ratio,
neck diameter and non-sphericity index).

In addition to flow reduction, endothelialisation plays an important role in flow diverter
treatment. Therefore, the influence of FPC on endothelialisation was also investigated,
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using high wall shear stress on the device as a haemodynamic marker for inhibited en-
dothelialisation. Similarly to flow reduction, the influence of morphological parameters
(PComA radius, aneurysm maximum diameter, aneurysm aspect ratio, aneurysm neck
diameter and aneurysm non-sphericity index) on endothelialisation was analysed.

Power calculation Based on a retrospective study, PED occlusion rate for PComA
aneurysms is thought to be 43.7% for patients with FPC and 81.8% for patients without
[2]. Considering a type I error of 0.05 and a power of 90%, the number of subjects
required to observe this disparity in treatment success in our trial is 64, with 32 from
each sub-group (FPC and non-FPC).

Inclusion criteria and virtual patient cohort The inclusion criteria in the trial
were that the patient must only have one aneurysm and that the aneurysm must arise
from the PComA. Patients were selected from the @neurIST [298] and AneuX [295] co-
horts. A number of cases were initially processed directly from @neurIST images. The
@neurIST cohort consists of 3D rotational angiography images for 800 patients, 143 of
which are for PComA aneurysms. From these images, 29 were selected and automatic-
ally segmented using an algorithm developed by Lin et al. [299]. Following segmentation
and subsequent surface mesh processing and device deployment steps, 13/27 patients
were added to the trial. The reasons for failure in these 14 cases were: (i) absent or
poor quality PComA following segmentation (10/14), (ii) multiple aneurysms present
(1/14), (iii) surface mesh processing (1/14) and (iv) device deployment (1/14). The An-
euX cohort contains surface meshes for 668 vessels and 750 aneurysm domes gathered
by processing patients from the AneuX1, AneuX2, @neurIST and Aneurisk data sets.
Of the 130 PComA cases in AneuX, 60 were randomly selected, ensuring no duplica-
tion with the successful cases already processed from @neurIST images. Eventually,
14/60 cases were omitted due to issues with: (i) geometric configuration e.g. multiple
branch vessels, PComA absent/small/stenosed/mislabelled (8/14), (ii) aneurysm not
arising from the same side of the internal carotid artery (ICA) as the PComA (2/14),
(iii) surface mesh quality (2/14) and (iv) device deployment (2/14). In total, 59 cases
were included in the FD-PComA trial, which exceeds the number required to achieve
statistical power in the results. Details of the cohort can be found in Table 4.3.1.
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Table 4.3.1: FD-PComA in-silico trial cohort characteristics for the 59 distinct ana-
tomies included. The demographic and morphological characteristics were identical in
the non-fetal and fetal patients.

FD-PComA in-silico trial
Number of virtual patients 118
Number of distinct geometries 59
Aneurysm location
PComA, % (n/N) 100 (59/59)
Non-fetal posterior circulation, % (n/N) 50 (59/118)
Fetal posterior circulation, % (n/N) 50 (59/118)
Female sex, % (n/N) 74.6 (44/59)
Male sex, % (n/N) 25.4 (15/59)
Age, years
Mean ± SD (N) 53.4 ± 10.9
Median 53.0
Range 22.0–78.0
Aneurysm size, mm
Mean ± SD (N) 6.0 ± 3.3
Median 5.0
Range 1.8–18.9
Aneurysm neck, mm
Mean ± SD (N) 3.8 ± 1.5
Median 3.5
Range 1.6–8.8
Aneurysm aspect ratio
Mean ± SD (N) 1.3 ± 0.5
Median 1.3
Range 0.4–2.9
Aneurysm non-sphericity index
Mean ± SD (N) 0.18 ± 0.07
Median 0.17
Range 0.03–0.32
PComA diameter, mm
Mean ± SD (N) 1.5 ± 0.5
Median 1.5
Range 0.5–2.2

FD, flow diverter; PComA, posterior communicating artery; SD, standard deviation.
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In-silico trial end points and other metrics Clinical trials for flow diverters typ-
ically use endpoints such as neurological morbidity and mortality, intracranial haem-
orrhage and ischaemic stroke as measures of safety, and angiographic occlusion rate at
6- and 12-month follow up as measures of efficacy. While it is not possible to simulate
long-term treatment response currently, several studies suggest that post-treatment
flow diversion is an appropriate proxy haemodynamic metric for predicting aneurysm
occlusion [300–302]. Furthermore, Sarrami-Foroushani et al. [20] demonstrated that an
in-silico end point of 35% reduction in aneurysm mean velocity led to accurate recre-
ation of existing clinical trial results in a cohort of 82 ICA and PComA aneurysms.
For this reason, a 35% reduction in aneurysm space-and-time-averaged velocity (STAV)
was also considered as a haemodynamic surrogate end point for angiographic occlusion
in this study. As well as reducing the mean aneurysm velocity, flow diverter treatment
aims to reduce the maximum inflow velocity through the neck to minimise the impact
of impinging jets [303]. As such, reduction in maximum time-average velocity (MTAV)
at the aneurysm neck has also been used as a haemodynamic proxy for successful oc-
clusion [20]. This variable was calculated in addition to STAV and used as another
metric to assess aneurysm occlusion.

As well as stasis-induced aneurysm thrombosis, endothelial cell growth along the
device plays an important role in flow diverter treatment of aneurysms [304]. Wall
shear stress (WSS) levels along the device struts have been shown to indicate the
pattern of neointimal growth on the device [305, 306]. Increased WSS was found in
regions that remain patent, whereas longitudinal proliferation of neointimal cells was
found in regions of low WSS. Therefore, space-and-time-averaged WSS (STAWSS) on
the device surface was used as an indicator for treatment performance. However, there
are insufficient clinical or computational studies into this metric to formulate a suitable
end-point to distinguish successful or unsuccessful treatments.

4.3.2 Semi-Automatic In-Silico Trial Simulation Pipeline

Image segmentation The @neurIST database contains 3D rotational angiography
images for each patient. These images were automatically segmented using a multi-task
convolutional neural network and a patch-based learning pipeline designed to segment
both vessel and aneurysm simultaneously [299]. In the AneuX database, surface meshes
for vessel and aneurysm are provided and segmentation was not necessary.
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5. Volumetric meshing 6. Patient-specific inflow
boundary conditions

7. Non-fetal/fetal outflow
boundary conditions

8. Simulation and
post-processing

1. Vessel and aneurysm
segmentation

2. Centreline extraction
and graph estimation

3. Inlet, outlet and
landmark identification

4. Flow diverter deployment
and clipping

Figure 4.3.1: Simulation pipeline.

Surface mesh pre-processing Following automatic segmentation of the 3DRA im-
ages, the segmented masks were processed to prepare vascular surface meshes for sub-
sequent volume meshing. Centrelines were extracted using Laplacian mesh contraction
and spectral clustering. An undirected graph of centreline points was constructed by
exhaustive recursive path finding. The graph was used to identify bifurcation and ter-
minal points in the vasculature and the segmented aneurysm mask (@neurIST) or sac
mesh (AneuX) was used to identify an aneurysm landmark point on the centreline. The
aneurysm landmark point was later used to position the flow diverter during device de-
ployment. The ICA inlet landmark point was identified by calculating the vessel radii
at all terminal centreline points and assuming that the largest radius corresponds to
the inlet. The ICA-PComA bifurcation point was found by assuming the path length
to this bifurcation is shorter than the path to any distal bifurcations. The middle
cerebral artery (MCA) and anterior cerebral artery (ACA) bifurcation is assumed to
be the second shortest path from the inlet to the bifurcation points. Manual surface
corrections were applied where required, particularly to remove small vessels for which
appropriate boundary conditions were not known, such as the anterior choroidal artery.
The PComA, MCA and ACA were clipped or extruded as required to ensure that they
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had a comparable length while retaining as much of the PComA as possible. These
steps produced surface meshes for the inlet (ICA), three outlets (PComA, MCA, ACA),
and vessel (including the aneurysm).

Flow diverter deployment All patients were treated with a single PED flow di-
verter. Each PED consisted of 48 wires with a 30 µm thickness and was deployed using
a fast virtual stent (FVS) placement method, which was presented and validated by
Larrabide et al. [296]. The deployment algorithm acts on a simplified simplex mesh
that describes the stent. To ensure the deployment is realistic, the geometrical charac-
teristics of the stent are used to guide the deformation. These characteristics include
the stent design (strut pattern), the strut length, the angle between the struts and
the deployed stent radius. Using this information and the geometry of the vessel in
which the device is being deployed, the algorithm expands the stent until it reaches
a minimal energy state when the struts are in close proximity to the vessel walls. A
limitation of this approach is that the stent can bulge into the aneurysm, as there is
no vessel wall at the aneurysm neck to restrain the expansion of the device. For this
reason, manual checks were performed to check that there was minimal bulging of the
deployed stent through the neck surface. Each flow diverter was positioned using the
aneurysm location landmark and flow diverter diameter was selected using the mean
of the parent vessel radii proximal and distal to the aneurysm landmark. To reduce
computation costs, the flow diverter was clipped in the vicinity of the aneurysm. This
has been shown to have negligible effect on intra-aneurysmal haemodynamics [307].
When clipping, the portion of the flow diverter covering the aneurysm neck and the
branch PComA vessel was retained.

Volumetric meshing Following surface mesh pre-processing and device deployment,
volumetric meshes were generated using ANSYS ICEM CFD v19.1 (Ansys Inc., Can-
onsburg, PA, USA). Tetrahedral elements with maximum edge size of 0.5 mm were used
to discretise the computational domain. A maximum edge size of 0.2 mm was used on
the vessel wall and 0.05 mm was used on the inlet and outlet surfaces. Where PED was
present, a maximum edge size of 0.01 mm was set on the wires. This led to an average
number of mesh elements across all geometries of approximately 1 million without the
device and 14 million with. Mesh independence of the solutions at these resolutions was
verified by Sarrami-Foroushani et al. [23]. Images of the surface meshes for one case
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with and without the device are presented in Appendix A.2.1. These surface meshes
demonstrate the difference in mesh resolution required in the vicinity of the device due
to small length scale of the struts.

Inflow boundary conditions Meshed anatomies were combined with virtual physiolo-
gical flow conditions to create virtual patients. Flow conditions were applied through
a patient-specific inlet flow waveform generated using a Multivariate Gaussian Model
(MGM) [21, 91]. For each patient, a waveform representing rest/normotensive condi-
tions was produced. Normotensive ICA flow waveforms were taken as the mean of the
MGM, which was trained and calibrated by patient-specific phase-contrast magnetic
resonance imaging (MRI) measurements of ICA flow in 17 healthy young adults (age
= 28 ± 7 years) [308].

Non-fetal and fetal outflow boundary conditions To investigate the hypotheses,
outflow boundary conditions that model the effect of non-fetal and fetal vascular
physiology were developed. Alastruey et al. [3] developed a 1D model of the Circle
of Willis and calculated flow rates in the large vessels after removing various vascular
segments from the model. Using data from this paper (see Table 4.3.2), the mean
volume flow rate in the ICA was calculated by summing the flow rates of the ACA,
MCA and PComA for a given side of the vasculature (i.e. left or right). The ratio of
ICA inflow to PComA outflow was used to calculate a ratio of PComA to ICA flow
for non-fetal and fetal cases. The fetal/non-fetal flow splits are multiplied by the ICA
inflow derived from the MGM to calculate outflow rates for the PComA in fetal and
non-fetal conditions. For fetal patients, the inflow rate was multiplied by 21.7% to
get the PComA outflow rate. For non-fetal patients, the inflow rate was multiplied by
0.34% to get the PComA outflow rate. This allows us to model distinct physiological
conditions for each geometry.

Alastruey et al. [3] developed their 1D model based on one set of vessel parameters.
To check that the derived flow splits fall within the expected variability across a range
of patients, data from a clinical study was also analysed [4]. Zarrinkoob et al. [4] used
phase-contrast MRI to assess cerebral blood flow (CBF) in 94 patients, 17 of which
were fetal. In their results, they found that the percentage of total CBF (tCBF) in the
P1 PCA was unchanged for fetal vs. non-fetal patients (8 ± 1%). For fetal patients
this blood can only be supplied by the PComA, so it can be deduced that the PComA
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Table 4.3.2: Mean volume flow-rates (ml/s) at the outlet of the efferent arteries and
in the middle of the communicating arteries for different study cases. Table recreated
from [3]. Complete circle is non-fetal, and RPCA/LPCA absent is fetal. ICA flow is
calculated as the sum of ACA, MCA and PComA outflow.

Study case Side ACA MCA PComA PComA:ICA [%]
Complete circle Right 1.16 1.73 -0.01 0.34
Complete circle Left 1.16 1.72 0.01 -0.35

PCA (P1) absent Right 1.15 1.70 -0.79 21.7
PCA (P1) absent Left 1.15 1.70 -0.79 21.7

ACA, anterior cerebral artery; ICA, internal carotid artery; MCA, middle cerebral artery; PCA,
posterior cerebral artery; PComA, posterior communicating artery.

also accounts for 8 ± 1% of the tCBF. In fetal patients, the ipsilateral ICA accounts
for 40 ± 3% of the tCBF. The PComA therefore accounts for 20 ± 3% of the ICA
flow. From Zarrinkoob et al. [4], the PComA flow ratio in non-fetal patients can be
calculated to be 2.6 ± 2.3% (see Table 4.3.3). The flow splits from Alastruey et al. [3]
fall within the confidence intervals of the flow splits from Zarrinkoob et al. [4] for the
fetal and right-sided non-fetal cases. As the left side non-fetal flow split (−0.35%) from
Alastruey et al. [3] was outside the bounds of the flow split calculated from Zarrinkoob
et al. [4], this scenario was not considered. The flow splits were used to calculate mass
flow rates for non-fetal and fetal cases which were then imposed as mass flow outlet
boundary conditions on the PComA.

Computational fluid dynamics simulations Blood flow simulations were per-
formed by solving the unsteady Navier-Stokes equations in ANSYS CFX v19.1 (Ansys
Inc., Canonsburg, PA, USA) using a finite volume method. Arterial wall distensibil-
ity was not considered and blood was modelled as an incompressible, Newtonian fluid
with density 1066 kgm−3 and dynamic viscosity of 0.0035 Pa.s. The cardiac cycle was
discretised into 200 equal steps. Timestep independence studies were performed previ-
ously by Villa-Uriol et al. [294] and Cebral et al. [309]. In these studies, the solution
algorithm was iterated to convergence within each timestep, with the residuals required
to converge by three orders of magnitude. Timestep independence was established by
monitoring flow velocity, pressure and WSS at several points in the computational do-
main [294]. Each simulation was run for three cardiac cycles and results from the last
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Table 4.3.3: Mean percentage of total cerebral blood flow measured in each artery all
patients (N = 94) and fetal (N = 17) patients in each vessel with standard deviations
[4]. Values for “All” and “Fetal” rows are directly from [4]. “Non-fetal” mean values are
calculated using µnf = (µallNall − µf Nf )/(Nall − Nf ). Standard deviations for “Non-
fetal” are taken as the standard deviation of “All”. The “PComA” column values for
“All” and “Non-fetal” are the remaining ICA flow percentage once the percentages for
OA, MCA and ACA are subtracted. For “Fetal”, the PComA flow percentage is simply
the PCA flow percentage, as the PComA is the only supplier of the PCA. PComA
to ICA flow ratios and standard deviations are calculated from the PComA and ICA
mean flow percentages and standard deviations.

Study case ICA OA ACA MCA PCA BA PComA PComA:ICA [%]
All (N = 94) 36±4 2±1 11±4 21±3 8±1 20±4 2±1 5.6 ±3

Fetal (N = 17) 40±3 2±1 10±2 21±3 8±1 15±4 8±1 20±3
Non-fetal (N = 77) 35.1±4 2±1 11.2±4 21±3 8±1 21.1±4 0.9±1 2.6±2.3

ACA, anterior cerebral artery; BA, basilar artery; ICA, internal carotid artery; MCA, middle
cerebral artery; OA, ophthalmic artery; PCA, posterior cerebral artery; PComA, posterior commu-
nicating artery.

cycle were analysed to reduce the effect of initial transients. No-slip boundary condi-
tions were applied on vessel walls and zero pressure was applied at the ACA and MCA
outlets. ICA Inflow and PComA outflow conditions were as described previously.

Post-processing and analysis Aneurysm velocity was extracted on the mesh nodes
within the aneurysm sac and interpolated onto a linearly spaced 3D grid. The space-
and-time-average of the interpolated velocity was calculated pre- and post-treatment
and used to calculate aneurysm STAV reduction as a percentage using 100%×(STAVpre−
STAVpost)/STAVpre. Aneurysm neck surfaces were included in the AneuX data and
manually extracted for the @neurIST data. Velocity was extracted on mesh nodes
in close proximity to the neck surface and similarly interpolated onto a uniform grid.
The time-average of the neck velocity was calculated and the maximum value of the
time-averaged velocity was taken to be the 99th percentile. This value is referred to
as MTAV and it was extracted pre- and post-treatment in order to calculate aneurysm
neck MTAV reduction similarly to STAV reduction. The WSS field on the flow diverter
surface was also extracted in the post-treatment simulations and STAWSS was calcu-
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lated by taking the space-and-time-average of WSS across the entire clipped stent and
all timesteps.

The three primary variables of interest are aneurysm STAV reduction, neck MTAV
reduction and STAWSS. A T-test was performed for each variable with the null hy-
pothesis that the independent samples (non-fetal and fetal) have identical means as-
suming identical variances. p-values were calculated and a value of p < 0.05 was used
to determine statistical significance. Each variable of interest was compared with the
morphological quantities of interest, namely (i) aneurysm maximum diameter, (ii) an-
eurysm neck diameter, (iii) aneurysm aspect ratio, (iv) aneurysm non-sphericity index,
(v) PComA radius, and (vi) PComA and ICA radius ratio. A best-fit line was found
for each data set and p and R2 values were computed. The occlusion rate in non-fetal
and fetal groups was calculated using using the > 35% STAV reduction haemodynamic
end point for successful treatment. Alternative end point thresholds were tested for
STAV and MTAV to determine the sensitivity of the results to this parameter.

4.3.3 Automation of the simulation pipeline

In order to improve the scalability and reproducibility of in-silico trials, a key challenge
to address is the large amount of expert user input required in the simulation pipelines.
Throughout this study, the steps in the simulation pipeline were automated where
possible. Herein, details are provided of how each step was automated and the common
failure modes.

Image segmentation Image segmentation was automated through development of
a multi-task convolutional neural network and a patch-based learning algorithm that
takes images as input and returns the segmented masks for vessel and aneurysm as
output [299]. The most common reason for failure at this stage was the PComA not
being segmented by the algorithm. This could be attributed to the PComA being small
in size or the algorithm focusing on large vessels, such as the ICA.

Surface mesh pre-processing Surface mesh pre-processing was partially automated
through the development of an algorithm that takes segmented masks as input and re-
turns the vessel centreline, landmark points for terminal, bifurcation and aneurysm loc-
ations, and surface meshes for the vessel, inlet and outlet surfaces. The most common
issue in this step was that the centreline algorithm was often unable to identify small
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thin vessels. The centreline is the key component in the surface mesh pre-processing
as it is used to identify the inlet and outlet locations that are essential for applying
boundary conditions. When the centreline algorithm does not identify all of the branch
vessels, it is not possible to automatically clip the vessels and define surfaces for the
outlets of the vessels. To overcome this, manual surface corrections had to be made for
some cases to clip or remove small vessels.

Flow diverter deployment Device deployment was automated through an algorithm
that takes the vessel centreline, vessel surface and device deployment landmark point
as inputs and outputs the deployed device [296]. Device diameter was selected auto-
matically by calculating the proximal and distal radii of the parent vessel and choosing
a device that had a comparable radius to the vessel radii. Device length did not need
to be chosen carefully as the subsequent clipping procedure removes the majority of the
device. To automate the clipping procedure, the Vascular Modelling Toolkit (VMTK)
was used to reconstruct the parent vessel without the aneurysm and the PComA branch
vessel [310]. The intersection between the original vessel and the reconstructed VMTK
vessel can then be found, which gives the aneurysm and PComA ostium. The ostium
surface lies adjacent to the clipped PED and can be used to ensure the clipped PED
has full coverage of the ostium, such that the influence of clipping is minimal. As well
as having sufficient coverage, the ostium surface can be used to ensure the device is not
over-deployed (i.e. does not bulge excessively into the aneurysm sac). The main issue
with this step was finding a balance between not having an excessively large clipping
radius and retaining a sufficient portion of the device to cover the ostium. Manual
quality control was performed to identify cases with under/over-sized clipped devices
and then the device was re-clipped with a larger/smaller clipping radius as required.

Volumetric meshing Volumetric meshing was automated through the creation of
ANSYS ICEM CFD macro scripts for each mesh configuration based upon a template
macro. Each macro script contains instructions for the meshing software to read in
the surface mesh files and generate the volumetric mesh using the pre-defined meshing
protocols and the pre-selected meshing parameters. This step did not have any common
failure modes.
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Inflow boundary conditions Inflow boundary condition generation was automated
by the creation of an algorithm that takes the age and sex of a patient as input and out-
puts ICA flow-rate waveforms for various physiological conditions (rest, hypertension,
exercise) [91]. This step did not have any common failure modes.

Non-fetal and fetal outflow boundary conditions Outflow boundary condition
generation was automated through the development of code that takes the inflow
boundary condition as input and then uses the non-fetal and fetal flow splits derived
from literature studies to generate PComA outlet flow-rate waveforms for the different
conditions. This step did not have any common failure modes.

Computational fluid dynamics simulations Simulation set up was automated
through the creation of a template file defining the array of simulation settings and
parameters. The patient-specific boundary conditions were then applied to the template
before the patient-specific simulation set up file was combined with the volumetric
mesh for the given case. This process was automated through the use of shell scripts
interfacing with the ANSYS software. Simulation execution was automated through
the generation of job scripts to submit the simulations to a high-performance computing
cluster. These steps did not have any common failure modes.

Post-processing and analysis Post-processing was automated by first converting
the ANSYS simulation results files into VTK files and then using various Python librar-
ies and Paraview to extract the quantities of interest from each simulation. The second
post-processing stage performed multi-simulation analysis, such as the calculation of
flow reduction using the pre- and post-treatment results. The final post-processing
stage analysed the quantities of interest using various Python libraries for statistical
analysis and plotting. These steps did not have any common failure modes.

4.4 Results

4.4.1 Qualitative Results

Visualisations of the velocity flow fields in non-fetal and fetal patients can help to
develop an understanding of the impact that the different physiological conditions have
on the aneurysm flow reduction. Figure 4.4.1 shows post-treatment systolic velocity
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streamlines for one patient under non-fetal and fetal flow conditions from two viewing
angles. These images demonstrate how the increased flow imposed through the PComA
in the fetal patient draws a greater amount of blood flow across the flow diverter and
leads to higher residual flow in the aneurysm than in the non-fetal case. For this
patient, the non-fetal aneurysm STAV reduction was 91.0% whereas it was 62.1% in
the fetal case. Given all other factors are identical (geometry, inflow conditions, material
properties, etc.), this highlights the large discrepancy in aneurysm flow reduction that
is caused by non-fetal and fetal flow conditions. However, this result is only for one
patient and more significant results are found when analysing the entire cohort.

4.4.2 Flow Variables vs. Presence of Fetal Posterior Circulation

The cohort was stratified into non-fetal and fetal patients by imposing distinct outflow
boundary conditions at the PComA outlet. The results demonstrated that aneurysm
STAV reduction was significantly lower in fetal cases than non-fetal cases (p < 10−11):
mean STAV reduction was 67.8% in non-fetal patients but only 46.5% in fetal patients.
Similarly, aneurysm neck MTAV reduction was significantly lower in fetal than non-
fetal patients (p = 0.001). Flow reduction is a key feature of aneurysm treatment
by flow diverting devices; these results (Figure 4.4.2) correspondingly suggest that
treatment success will be lower in patients with FPC. Post-treatment stent STAWSS
was also found to be significantly higher in fetal than non-fetal patients (p < 0.05):
mean STAWSS was 23.5 Pa in non-fetal patients and 29.2 Pa in fetal patients. Higher
stent WSS suggests that endothelialisation is more likely to be inhibited in patients
with fetal posterior circulation.

4.4.3 Treatment Success Rate vs. Successful Treatment Threshold

Prediction of treatment success requires specification of threshold values for relevant
variables of interest. In a previous in-silico study [20], a 35% reduction in aneurysm
STAV was used as a success criterion. With such a value, treatment success rates of
98.4% and 85.3% were found in non-fetal and fetal patients, respectively. These are
substantially higher than the corresponding success rates (81.8% and 43.7%, respect-
ively) reported by Rinaldo et al. [2]. Applying a 35% MTAV reduction threshold yielded
treatment success rates of 63.9% and 32.8% in non-fetal and fetal patients, respectively.
Figure 4.4.3 shows the predicted treatment success rates for a range of aneurysm STAV
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Figure 4.4.1: Systolic velocity streamlines for one patient from FD-PComA under non-
fetal and fetal flow conditions. Aneurysm STAV reduction was 91.0% for the non-fetal
case and 62.1% for the fetal case.
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Figure 4.4.2: Flow reduction characterised by aneurysm STAV and MTAV reduction
and stent STAWSS plotted for non-fetal and fetal physiology. In the box plots, the
triangle marker is the mean and the red line is the median. The box extends from the
first quartile (Q1) to the third quartile (Q3). The whiskers extend to the farthest data
point lying within 1.5× the inter-quartile range (IQR) from the edge of the box (i.e.
Q1 − 1.5IQR to Q3 + 1.5IQR). The circles represent the data points that lie outside
the range of the whiskers. STAV, space-and-time-averaged velocity; MTAV, maximum
time-averaged velocity; STAWSS, space-and-time-averaged wall shear stress.
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Figure 4.4.3: Treatment success rates against different STAV/MTAV reduction
thresholds. Literature treatment success rates from Rinaldo et al. [2] are included
as dashed lines. STAV, space-and-time-averaged velocity; MTAV, maximum time-
averaged velocity.

and MTAV threshold values, with the corresponding success rates from [2]. These res-
ults suggest optimal matches between the predicted success rates and the literature
values are obtained with the following thresholds: STAV reduction of 50%, yielding
non-fetal and fetal success rates of 88.5% and 42.6%, respectively; and MTAV reduc-
tion of 26%, yielding non-fetal and fetal success rates of 74.4% and 44.3%, respectively.
These results demonstrate two key points: (i) there is a distinct difference in non-fetal
vs. fetal treatment success for a wide range of thresholds, (ii) 35% STAV reduction is
not applicable across different aneurysm sub-groups or for different measures of flow
reduction.

4.4.4 Flow Variables vs. Morphological Parameters

Statistical analyses were performed to test for correlation between flow variables and
morphological parameters describing the aneurysm and the PComA. The flow vari-
ables tested were aneurysm STAV reduction, aneurysm neck MTAV reduction and
post-treatment stent STAWSS. Aneurysm morphology was characterised by maximum
diameter, aspect ratio, neck width and non-sphericity index (see Figure 2.2.2 for defini-
tions of these parameters). PComA size was characterised by its radius and the ratio of
the PComA radius to the ICA radius. The analyses were performed for non-fetal, fetal
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and all (i.e. non-fetal and fetal combined) patients. Linear regression was performed
between each set of variables for each physiology. R2 and p values are presented in Table
4.4.1. R2 was low across all combinations and p values were typically > 0.05, which
demonstrates that there was typically low correlation between flow variables and mor-
phological characteristics and low significance associated to the best fit lines between
the variables. Only PComA to ICA radius ratio consistently provided p values that
were < 0.05 in the case of fetal patients. However, this variable is implicitly encoded
into the outflow boundary conditions, as both the ICA inlet and PComA outlet areas
are used in the calculation of the outflow boundary condition applied at the PComA.
The significance found between the flow variables and the PComA to ICA radius ratio
is therefore thought to be associated to the PComA outflow boundary conditions, which
is consistent with the results presented in Figure 4.4.2. Scatter plots of the flow vari-
ables and the morphological quantities and the best fit lines can be found in Appendix
A.3.
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Table 4.4.1: Statistical values (R2 and p value for best fit line) were calculated to
quantify the correlation between flow variables (STAV/MTAV reduction, STAWSS)
and morphological parameters (aneurysm maximum diameter, neck width, aspect ratio,
NSI; PComA radius, PComA to ICA radius ratio) for different physiologies (non-fetal,
fetal, or both).

Physiology and Statistics
Non-fetal Fetal Non-fetal and fetal

Morphological Variable Flow Variable R2 p R2 p R2 p

Aneurysm max. diameter STAV reduction 0.084 0.026 0.009 0.474 0.006 0.420
Aneurysm max. diameter MTAV reduction 0.035 0.158 0.032 0.174 0.001 0.733
Aneurysm max. diameter Stent STAWSS 0.015 0.354 0.001 0.806 0.002 0.668

Aneurysm aspect ratio STAV reduction 0.009 0.482 0.001 0.772 0.000 0.823
Aneurysm aspect ratio MTAV reduction 0.023 0.253 0.000 0.97 0.007 0.359
Aneurysm aspect ratio Stent STAWSS 0.000 0.913 0.007 0.525 0.001 0.693
Aneurysm neck width STAV reduction 0.209 0.000 0.008 0.506 0.021 0.122
Aneurysm neck width MTAV reduction 0.042 0.121 0.046 0.104 0.001 0.763
Aneurysm neck width Stent STAWSS 0.044 0.111 0.000 0.946 0.010 0.275

Aneurysm NSI STAV reduction 0.004 0.634 0.006 0.548 0.000 0.932
Aneurysm NSI MTAV reduction 0.001 0.793 0.000 0.918 0.001 0.791
Aneurysm NSI Stent STAWSS 0.012 0.410 0.001 0.798 0.005 0.465
PComA radius STAV reduction 0.021 0.279 0.023 0.257 0.000 0.953
PComA radius MTAV reduction 0.002 0.734 0.112 0.009 0.011 0.248
PComA radius Stent STAWSS 0.001 0.775 0.017 0.321 0.003 0.589

PComA:ICA radius ratio STAV reduction 0.000 0.945 0.087 0.024 0.014 0.204
PComA:ICA radius ratio MTAV reduction 0.000 0.907 0.138 0.004 0.024 0.094
PComA:ICA radius ratio Stent STAWSS 0.060 0.061 0.175 0.001 0.108 0.000

ICA, internal carotid artery; MTAV, aneurysm neck maximum time-averaged velocity; STAWSS,
space-and-time-averaged wall shear stress; STAV, aneurysm space-and-time averaged velocity;
PComA, posterior communicating artery.

4.4.5 Computational Resources

The FD-PComA in-silico trial required simulation of pre- and post-treatment config-
urations in 118 virtual patients, giving a total of 236 simulations. Each simulation was
performed using 32 Central Processing Unit (CPU) cores on a High Performance Com-
puting cluster. The mean run-time was 0.96±1.02 hours for pre-treatment simulations
and 13.5 ±6.09 hours and for post-treatment simulations (see Table 4.4.2). The total
simulation execution time for the complete IST was 1722 hours, or 72 days (rounded
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Table 4.4.2: Simulation run times and their standard deviations (SDs) in hours for the
FD-PComA IST. Each simulation was parallelised across 32 cores and run on a High
Performance Computing cluster.

Run time (hours)
Case Number of simulations Mean SD Total

No device 118 0.96 1.02 113
Device 118 13.5 6.09 1589

to the nearest day). This highlights the demand for simulation acceleration, as medical
device design optimisation could potentially require simulations of multiple devices in
significantly higher numbers of patients under a wider array of physiological states.

4.5 Conclusion

The FD-PComA in-silico trial provided evidence suggesting: (1) PED flow diverter
treatment of PComA aneurysms is less effective in patients with fetal posterior cir-
culation and (2) this is due to the increased flow rate through the PComA in this
scenario. Morphological variables like PComA size, aneurysm maximum diameter, an-
eurysm aspect ratio, aneurysm neck width and aneurysm non-sphericity index did not
influence the treatment outcome. Relating the findings to the initial trial hypotheses,
the following conclusions are drawn:

1. Maintained PComA flow following flow diversion reduces treatment success rates
in patients with FPC.

2. PComA aneurysm flow diverter treatment success is most affected by the pres-
ence of FPC and was not significantly influenced by PComA diameter, aneurysm
maximum diameter, aneurysm aspect ratio, aneurysm neck width or aneurysm
non-sphericity index.

The sub-analyses demonstrated that endothelialisation, as characterised by wall shear
stress on the device surface, is hindered by the presence of FPC and is not influenced
by the morphology of the PComA or aneurysm. These findings lead to the conclusion
that PComA aneurysm patients with fetal posterior circulation should be treated by
alternative means to single PED flow diverter treatment.
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Chapter 5

Reduced Order Modelling of Intracranial
Aneurysm Flow Using Proper Orthogonal
Decomposition and Neural Networks
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Abstract

Reduced order models (ROMs) reduce the dimensionality of high-fidelity mathemat-
ical models, facilitating large gains in simulation execution speed. Recently, machine
learning (ML) has been used to overcome limitations with some ROM techniques, prov-
ing particularly adept at improving parametric ROMs that depend upon interpolation.
Despite this, the performance of ML-ROMs are yet to be evaluated in a wide array
of applications and questions remain regarding the optimal design of ML-ROMs. This
chapter develops a non-intrusive parametric ML-ROM and applies it to a nonlinear,
time-dependent fluid dynamics problem in a complex 3D geometry, contributing to op-
timal ML-ROM design in future studies. The ML-ROM was constructed using Proper
Orthogonal Decomposition (POD) for dimensionality reduction and neural networks
for interpolation of the ROM coefficients. Different network designs and parametric
sampling regimes are compared in terms of approximation accuracy. The ML-ROM
was applied to physiological flow variation in intracranial aneurysms, which is import-
ant when considering rupture risk and treatment performance. Physiological variation
was parameterised by introducing three scale factors into the inflow velocity waveform
that control flow magnitude, pulsatility and heart rate. Across the various sampling
regimes tested, similar model performance was found. The best-performing network
design used a two-level POD reduction, a technique rarely used in previous studies.
The best-performing ML-ROM achieved mean test accuracy of 98.6% and 97.6% in
vessel and aneurysm regions, respectively, while providing speed-up of order 105 times.
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5.1 Introduction

The many-query or real-time solution of parameterised partial differential equations
(PDEs) is a common scenario that arises for example in the design optimisation, un-
certainty quantification and optimal control of problems relating to the modelling of
physical systems. Using high-fidelity computational models in these scenarios remains
challenging due to the cost of solving high-dimensional PDEs. Reduced order mod-
els (ROMs) are low-order representations of high-order models that preserve essential
input-output behaviour at the cost of some model accuracy and are commonly used to
accelerate expensive computational models [96, 97]. Machine learning (ML) is increas-
ingly being used to improve upon traditional ROM techniques, but questions remain
about the optimal design of ML-ROMs and their suitability to real-world applications
[104, 105, 167, 212, 215–217].

Traditional ROM construction for nonlinear PDEs typically involves: (i) solving the
full order model (FOM) using standard numerical techniques for a number of model
configurations to generate data, or snapshots, for the high-order system; (ii) extract-
ing a low-order representation of the solution manifold using dimensionality reduction
techniques such as Proper Orthogonal Decomposition (POD), Dynamic Mode Decom-
position (DMD) or auto-encoders [99, 103, 104]; and (iii) applying projection or inter-
polation methods in the low-order space to build a ROM [165]. Step (iii) of the ROM
construction can be performed either with intrusive approaches that project the un-
derlying governing equations onto the low-dimensional manifold, or with non-intrusive
approaches that interpolate the ROM coordinates in the low-dimensional space. Ma-
chine learning using neural networks has improved upon classical ROM methods by
offering alternative dimensionality reduction techniques [104, 105, 214, 311], approx-
imating algebraic operators in projection-based ROMs applied to nonlinear problems
[100, 218], improving stability and long-term prediction accuracy [217], and providing
high-dimensional interpolation techniques in interpolation-based ROMs [212, 213, 215].

In this chapter, a machine learning ROM is applied to parameterised physiolo-
gical flow variation in intracranial aneurysms. Intracranial aneurysms are pathological
bulges in blood vessels in the brain that are estimated to occur in 5–8% of the general
population [26]. While aneurysms are often asymptomatic, their rupture causes sub-
arachnoid haemorrhage, an event with high rates of mortality, morbidity and disability,
as well as high healthcare costs [28]. In aneurysm haemodynamics, adverse physiolo-
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gical conditions can increase flow velocity, wall pressure and wall shear stress inside
the aneurysm sac, increasing the risk of rupture [21]. Different physiological condi-
tions have also been shown to affect aneurysm treatment performance [20]. Modelling
physiological flow variability in aneurysms is a time-dependent, geometrically complex
problem that requires repeated evaluations of an expensive 3D Navier-Stokes model to
solve. This gives us an excellent real-world complex application with which to establish
ROM performance.

Various ROM techniques have been applied to haemodynamic problems, including
approaches based on POD [93, 100, 148, 150–152, 216], DMD [174, 177, 184] and re-
duced basis methods [192–194]. The approach taken in this chapter is to use POD for
dimensionality reduction and fully-connected neural networks (FCNNs) for interpol-
ation of the ROM coefficients. Non-intrusive interpolation-based ROMs were chosen
for their ability to solve parameterised time-dependent problems while providing lar-
ger computational speed-ups than their projection-based counterparts [212, 213, 215].
Three different network designs are investigated to improve on previous work on this
type of ROM, including a design where a double-POD is utilised for further dimen-
sionality reduction [146]. To generate training data, a validated computational fluid
dynamics (CFD) model of blood flow in a 3D aneurysm derived from 3D rotational
angiography (3DRA) images is used. Physiological flow variation is parameterised by
introducing three inlet flow-rate waveform scale factors that control flow magnitude,
pulsatility and heart rate. Five approaches for sampling the parameter space are in-
vestigated: (i) Uniform grid, (ii) Latin Hypercube with bounds, (iii) Latin Hypercube
without bounds, (iv) Random with bounds, (v) Random without bounds. For each
sampling regime, a distinct set of snapshots are generated and used to train a ROM
and evaluate its performance. For the best-performing network design and hyperpara-
meters, results are presented on the accuracy of the ROM relative to the FOM and on
the acceleration factor and data storage reduction provided by the ROM.

The chapter is outlined as follows. Section 5.2 details the methodology used in the
CFD model (5.2.1) and POD-Interpolation ROM (5.2.3). Section 5.3 presents results
from the multi-stage hyperparameter optimisation (5.3.2, 5.3.3), the network design
comparison and sampling method investigation (5.3.4), the best-performing model
(5.3.5), and the acceleration and data storage reduction quantification (5.3.6). Sec-
tion 5.4 provides conclusions from the chapter. Discussion for the chapter can be found
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in the thesis discussion (Section 6.3).

5.2 Methodology

Proper Orthogonal Decomposition

FCNN

4. Dimensionality Reduction 5. Neural Network Interpolation 6. Solution for New Parameters

1. Sample Parameter Space 2. Generate Flow Rate Waveforms 3. Full-Order CFD Simulations

Figure 5.2.1: The ML-ROM methodology uses Proper Orthogonal Decomposition for
dimensionality reduction and fully-connected neural networks for interpolation of the
ROM coefficients.

5.2.1 Intracranial Aneurysm Computational Fluid Dynamics

Geometry

Figure 5.2.2 shows the 3D aneurysm geometry used in this study. The anatomic surface
model of the geometry was obtained from 3D rotational angiography images using an
automatic segmentation method based on geodesic active regions, details of which can
be found in [298, 312]. The aneurysm diameter is 6.1 mm and its aspect ratio is 0.722.
The full geometry was used for the CFD model, but clipped geometries in the parent
vessel and aneurysm locations were used for the ROM, as non-intrusive ROMs can be
constructed for regions of interest to provide greater speed-up and reduce data storage
requirements. The aneurysm model used in this chapter is for a side wall internal carotid
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artery (ICA) aneurysm, which is geometrically simpler than the PComA aneurysms
investigated in Chapter 4. The flow is also simpler for the side wall aneurysm, as the
branching vessels are further from the aneurysm and therefore have less influence on
the flow in the aneurysm. The simpler problem was chosen for this chapter, as the goal
is to construct an ML-ROM rather than to answer clinically relevant questions about
aneurysm treatment as was the goal in Chapter 4.

Regions of Interest for ROMCFD Geometry

Vessel

Aneurysm

Figure 5.2.2: Full geometry used in the computational fluid dynamics (CFD) simula-
tions and the truncated vessel and aneurysm geometries used for the reduced order
model (ROM).

Computational Fluid Dynamics Model

The three-dimensional Navier-Stokes equations for incompressible Newtonian fluid were
used to describe blood flow:

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + µ∇2u, (5.2.1)

where u and p are velocity and pressure, respectively. Blood is assumed to be a
Newtonian fluid with constant density ρ = 1066 kgm−3 and viscosity µ = 0.0035
Pa·s. A volumetric mesh was constructed using ANSYS ICEM CFD v19.1 (Ansys Inc.,
Canonsburg, PA, USA) and the Navier-Stokes equations were solved with ANSYS CFX
v19.1 using a finite volume method.

104



5.2 Methodology

A flow rate waveform (FRW) is prescribed at the inlet and zero pressure conditions
at all outlets. Vessel walls were no-slip boundaries. The Reynolds number did not
exceed 1000 across the various physiologies, thus all simulations were laminar. Each
simulation was run for three cardiac cycles. The period of the baseline cardiac cycle
was 0.883 seconds. Each cycle was discretised into 100 timesteps, with the velocity and
pressure fields taken from only the final cycle to reduce initial transients.

Parameterisation of Physiological Flow Variability

Physiological variability was parameterised through the inlet FRW, which was derived
from a Multivariate Gaussian Model (MGM) trained on patient-specific phase-contrast
magnetic resonance imaging measurements of internal carotid artery flow in 17 healthy
young adults (age 28 ± 7 years). Further details on the MGM are reported in [21, 313].

From Geers et al. [314], the FRW is of the form

Q(t) = aQ0(ct) + b, (5.2.2)

a = QT A

Q0
T A︸ ︷︷ ︸

SF Q

PI

PI0︸ ︷︷ ︸
SF P

, b = QT A

(
1 − PI

PI0︸ ︷︷ ︸
SF P

)
c = HR

HR0︸ ︷︷ ︸
SF H

, (5.2.3)

where Q0 is the MGM-derived time-varying waveform, QT A is the time-averaged flow
rate, PI is the pulsatility index (the difference between peak systolic and minimum
diastolic flow velocity divided by the time-averaged flow velocity) and HR is the heart
rate for a particular physiology. Superscript 0 (e.g. Q0

T A) represents the value of the
given variable for the baseline waveform derived from the MGM. Three scale factors for
flow magnitude (SFQ), pulsatility (SFP ) and heart rate (SFH) are defined through
equation (5.2.3), as

SFQ = QT A

Q0
T A

, SFP = PI

PI0 , SFQ = HR

HR0 . (5.2.4)

A range of configurations of SFQ, SFP and SFH can be sampled based upon physiolo-
gically realistic bounds and then the FRW for each configuration is calculated through
equations (5.2.2) and (5.2.3). The inlet FRWs are applied through a parabolic velocity
profile at the inlet to the geometry. The inlet velocity condition drives blood flow into
the aneurysm for a given parameter configuration or physiology.
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Flow Rate Bounds Ford et al. [308] measured left and right ICA flow rates in 17
young, healthy volunteers at rest. They found mean total (left + right) ICA flow of
549 mL min−1 with σinter = 103, σintra = 21, minimum flow rate of 398 mL min−1 and
maximum flow rate of 850 mL min−1. Using maximum and minimum flow rate values
gives SFQ bounds of [0.72, 1.54]. Using only intra-patient variability gives SFQ bounds
of [0.96, 1.04]. The ROM approach is only applicable to intra-patient variability, but to
induce additional variation into the snapshots, the bounds are extended to [0.84, 1.29],
which lies midway between the bounds for intra- and inter-patient variability.

Pulsatility Index Bounds Pulsatility index is an easy to obtain (non-invasive)
parameter that has been used to assess macrocirculation in highly prevalent medical
conditions, such as hypertension, type 1 and 2 diabetes, and thyroid disorders [315].
Pulsatility index varies with age - 1.08 ± 0.29 for ICA blood flow in adults [316]. This
is a variance of ±31%, so the bounds of SFP are chosen to be [0.69, 1.31].

Heart Rate Bounds Ford et al. [308] measured mean heart rate as 68±8 bpm (range
56-83) in 17 young, healthy volunteers at rest. Matsuo et al. [317] found that during
moderate steady-state and incremental exercise for 12 young, healthy volunteers, mean
heart rate did not exceed 120 bpm. Therefore, 56 was selected as the minimum heart
rate and 120 as the maximum, with 88 as the mean. This gives SFH bounds of
[0.63, 1.36].

5.2.2 Sampling

Various sampling techniques are investigated. For each technique, 27 configurations
are generated, which corresponds to a 3 × 3 × 3 grid in a uniform-grid sampling regime.
The sampling methods used are shown illustratively in two dimensions in Figure 5.2.3,
alongside the test cases created for ROM evaluation.
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Figure 5.2.3: Exemplar 2D sample points for various methods investigated in this study.

Uniform Grid Uniform Grid sampling consists of discretising each input parameter
with a number of points and generating all possible combinations of the input paramet-
ers. Figure 5.2.3 shows uniform sampling with two input parameters and three points
in each parametric direction. For a parameter space with a parameters and b points in
each direction, Uniform Grid sampling will give ab samples. This exponential depend-
ence on the number of parameters means that the number of samples grows rapidly as
additional parameters are incorporated.

Latin Hypercube Latin Hypercube sampling consists of quasi-randomly populating
the parameter space with a chosen number of points, with no two points residing in
the same row or column of the discretised parameter space. Latin Hypercube sampling
provides better uniformity when compared with random sampling [318]. Similarly to
random sampling, the domain bounds can be included, as shown in Figure 5.2.3.

Random Random sampling consists of defining a chosen number of points and ran-
domly populating the parameter space with this many points. The bounding points of
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the parameter space may also be included, as shown in Figure 5.2.3. Random sampling
can suffer from insufficient distribution of points, which can lead to the ROM being
inaccurate in some regions of the parameter space.

5.2.3 POD-Interpolation ROM

Herein, the POD-Interpolation method used in this work is described. The approach
and notation for POD is the similar to that used by Walton et al. [146]. Another
description of this method can be found in Wang et al. [165]. The benefits of this
approach are: (i) it is non-intrusive; (ii) it is relatively straightforward to implement
and solve; (iii) it is faster than projection-based ROMs; (iv) it can be applied to regions
of interest instead of the full geometry; (v) when compared to element-wise interpolation
between full order solutions, it drastically reduces the amount of data and the number
of interpolation operations required.

POD

The full order CFD model described in section 5.2.1 is used to generate velocity fields for
a range of parameter configurations. M = 27 parameter configurations are used, with
α1, . . . , αM denoting the configuration vectors and αm = (SFQm, SFPm, SFHm).
Each time-varying solution of the FOM for one parameter configuration is taken as
a snapshot. Each snapshot is an D × N matrix, where D is the number of mesh
nodes and N is the number of timesteps. After running the FOM simulations for all
configurations, a snapshot matrix U is generated with the form:

U =


u1

1(α1) . . . uN
1 (α1) . . . uN

1 (αM )
... . . . . . . . . .

u1
D(α1) . . . uN

D(α1) . . . uN
D(αM )

 . (5.2.5)

A column of U lists the values of the velocity magnitude at each of the mesh points
1, . . . , D at one timestep n for a certain parameter configuration αm. This snapshot
matrix will typically have many more rows than columns.

U is factorised using an economic singular value decomposition (SVD):

U
D×MN

= Φ
D×MN

× Σ
MN×MN

× V ∗
MN×MN

. (5.2.6)

The dimensions of each matrix are included in equation (5.2.6), with MN = M × N .
Φ are the left singular vectors of U , Σ are the singular values and V ∗ are the right
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singular vectors. The columns of Φ, denoted Φj with j = 1, . . . , MN , are the mutually
orthogonal POD modes. Σ is a diagonal matrix with each of the singular values,
denoted σj , indicating the energetic contribution of each POD mode.

It is possible to reconstruct each column of U using

un(αm) =
MN∑
j=1

T n
j (αm)Φj , (5.2.7)

where T n(αm) are a set of parameter-dependent coefficients that can be considered
as a path through the coordinate system given by Φ [146]. Each of the simulated
parameter configurations will have a corresponding matrix T n(αm) and the goal of
POD-Interpolation is to predict the path taken by a new set of parameter values. To
do this quickly, it is first necessary to reduce the order of the system.

The system order can be reduced by considering the energy contained within each
POD mode and then retaining r nodes up to a certain energy threshold. The sum
of the squares of all of the singular values in Σ gives a measure of the total energy
contained in the POD modes, so the first r modes will contain a fraction of the total
energy. Provided the majority of the energy in the system is captured in the first several
modes, a large number of modes can be discarded and thus the order of the system
reduced. Mathematically, this equates to choosing a value for the energy fraction Efrac

to be retained and then finding r such that equation (5.2.8) is satisfied.

Efrac ≤
∑r

j=1 σ2
j∑M×N

j=1 σ2
j

(5.2.8)

The snapshot matrix can then be truncated as follows:

U =

[
Φ1 . . . Φr︸ ︷︷ ︸ Φr+1 . . . ΦMN

]
︸ ︷︷ ︸

Retained Discarded



σ1 0 . . . . . . 0

0 . . . . . . ...
... . . . σr

. . . ...
... . . . . . . 0
0 . . . . . . 0 σMN





v∗
1
...

v∗
r
...

v∗
MN


. (5.2.9)

After discarding the high-order modes, the system becomes:

U ≈
[
Φ1 . . . Φr

] 
σ1

. . .
σr




v∗
1
...

v∗
r

 . (5.2.10)
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Figure 5.2.4 demonstrates the vast truncation that can be achieved in the vessel and
aneurysm models.

Figure 5.2.4: Cumulative energy contained in the POD modes for the aneurysm and
vessel models. The red dashed lines from left to right represent the number of truncated
POD modes in order to capture 99%, 99.9%, 99.99%, 99.999% and 99.9999% of the
energy in the system, which is defined by the cumulative sum of the squares of all
singular values. The total number of singular values is M × N = 27 × 101 = 2727,
demonstrating the vast reduction following the truncation.

Low-Dimensional Representation

Now that the order of the system has been reduced, equation (5.2.7) can be modified
to

un(αm) =
r∑

j=1
T n

j (αm)Φj , (5.2.11)

with the sum up to j = r rather than j = MN . Before interpolating between the
T n

j coefficients, they are calculated by exploiting the orthogonality of the POD basis
vectors (equation (5.2.12)).

ΦT
i Φj =

1, if i = j

0, otherwise
(5.2.12)

For each parameter configuration in turn, the inner product is taken of the transpose
of each Φ mode with both sides of equation (5.2.11). To exploit orthogonality, each Φ
mode is looked at in turn. Taking only the first Φ mode (j = 1), equation (5.2.11) is
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now simply
un(αm) = T n

1 (αm)Φ1. (5.2.13)

Multiplying both sides of (5.2.13) by the transpose of Φ1 gives

ΦT
1 un(αm) = ΦT

1 T n
1 (αm)Φ1, (5.2.14)

however, since T n
1 are simply multiplying factors it is possible to use multiplicative

commutativity to rewrite the equation as

ΦT
1 un(αm) = T n

1 (αm) ΦT
1 Φ1︸ ︷︷ ︸
=1

(5.2.15)

This leaves an equation for T n
1 :

T n
1 (αm)
1×N

= ΦT
1

1×D
un(αm)

D×N
. (5.2.16)

Each coefficient in T n
1 gives the weighting of the first Φ mode at timestep n. A vector

of T n
1 coefficients can be found for each parameter configuration for the first Φ mode.

These coefficients are arranged into a second snapshot matrix Sj , as per Walton et al.
[146]:

Sj =


T 1

j (α1) . . . T 1
j (αM )

... . . .
...

T N
j (α1) . . . T N

j (αM )

 . (5.2.17)

Each column of Sj gives the values of the T n
1 coefficients at time n = 1, . . . , N , for a

given parameter configuration αm = α1, . . . , αM , for a given POD mode Φj . A distinct
Sj is found for each Φ mode. The goal is now to interpolate between these Sj matrices
to find the representation for a new set of parameters, αk.

Performing a second SVD on Sj gives a second set of POD modes, denoted Ψj
i .

This presents an opportunity for a second truncation of POD modes to further reduce
the order of the system and simplify the interpolation. Similarly to the previous case,
is it possible to reconstruct each column of Sj using

Tj(αm) =
rQ∑
i=1

Qj
i (αm)Ψj

i , (5.2.18)

where rQ is the number of second POD modes retained following truncation. The pur-
pose of this second SVD is to split Tj(αm) into parameter-dependent terms, Qj

i (αm),
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and parameter-independent terms, Ψj
i . This means that only the Qj

i values need to
be interpolated between to find a low-dimensional representation of the solution at a
new parameter configuration. The Qj

i coefficients can be calculated, similarly to the
T n

j coefficients previously, using

Qj
i (αm)
M×M

= ΨjT
i

M×N

Sj(αm)
N×M

. (5.2.19)

Each column of Qj
i gives the weighting coefficient for the corresponding Ψj

i mode. A
parameter space is then constructed for the Q coefficients for each Ψ mode and the
data points are interpolated to find Q for a new parameter configuration.

Neural Network Interpolation

Linear, cubic spline or radial basis function interpolation schemes are all possible ap-
proaches to use for interpolating the ROM coefficients. Figure 5.2.5 shows interpolation
surfaces for different Φ and Ψ modes for a two-parameter problem that was used in
initial testing of the POD-Interpolation ROM. The Q values can be seen to decrease in
magnitude as the Ψ mode increases.

(a) First Φ mode, first Ψ
mode.

(b) First Φ mode, second Ψ
mode.

(c) First Φ mode, third Ψ
mode.

Figure 5.2.5: Q surfaces for the first three Ψ modes and the first Φ mode. Red points
show where the full-order CFD simulation data points lie, and the surface is generated
by interpolating over these red points onto a finer grid (cubic spline interpolation).
The blue point at SFQ = SFP = 1.25 represents the parameter configuration used for
preliminary testing.

Performing interpolation as shown in Figure 5.2.5 can become more complex as the
number of parameters increases. With the development of machine learning, researchers
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often turn to neural networks for interpolation as they excel at approximating functions
mapping from high-dimensional inputs to outputs. In this study, the inputs are the scale
factors (and potentially time) and the outputs are the corresponding ROM coefficients
(either T or Q values). Three different networks were constructed, highlighted in Figure
5.2.6.

 NetworkTime-  Network Network

FCNN FCNN FCNN

Figure 5.2.6: Three fully-connected neural network (FCNN) designs for the POD-
Interpolation ROM that map from simulation parameters {SFQ, SFP , SFH, t} to
ROM coefficients {T , Q}. Exemplar T data for one simulation and six POD modes is
shown top left, with blue data points output by the T network and orange data points
output by the Time-T network, which correspondingly includes time as an additional
input parameter. Qr data for six POD modes and three second POD modes is shown
top right and is output by the Qr network.

The number of neurons in the output layer of each network in Figure 5.2.6 is dif-
ferent. The T network has r × N outputs, where r is the number of truncated POD
modes and N is the number of timesteps, the Time-T network has r outputs, and the
Qr network has r×rQ outputs, where rQ is the number of modes retained in the second
POD truncation. An in-depth hyperparameter study for the network parameters was
performed, details and results for which can be found in Sections 5.3.2 and 5.3.3.

Once the networks are optimised and trained, the goal is to evaluate the ROM for
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a previously unseen parameter configuration αk. Inputting αk into the Qr network
gives us Q(αk). The corresponding T values can then be found by multiplying by the
stored Ψ modes:

Tj(αk) =
rQ∑
i=1

Qj
i (αk)Ψj

i . (5.2.20)

In this case of the T and Time-T networks, the new parameter configuration is input
to those networks to calculate the above T values directly. The new T values are then
multiplied by the stored Φ modes and summed over r to give the solution for the new
parameter configuration:

un(αk) =
r∑

j=1
T n

j (αk)Φj . (5.2.21)

This model allows for quick evaluation of the solution field for new values of SFQ,
SFP and SFH, which is essentially for new physiological conditions.

To highlight and concisely state the steps involved in the POD-NN ROM, Al-
gorithms 1 and 2 are presented for the offline and online stages of the ROM, respectively.

Algorithm 1 POD-NN Offline Phase
1: Use FOM to simulate a number of parameter configurations αm

2: Construct snapshot matrix U .
3: Economic SVD of U = ΦΣV ∗ to generate POD modes Φj .
4: Retain first r POD modes based upon energy criteria: Efrac ≤

∑r

j=1 σ2
j∑M×N

j=1 σ2
j

.

5: Take inner product of snapshot matrix and each POD mode to generate time coef-
ficients: un(αm) = ∑r

j=1 T n
j (αm)Φj .

6: Construct time coefficient matrix Sj for each POD mode.
7: SVD of Sj to generate Qj

i (αm) and Ψj
i .

8: Save the retained POD modes Φr, all Ψj
i modes and low-dimensional representa-

tions Qj
i (αm) of each full order simulation.

9: Train one of the following FCNNs: (i) T Network: (SFQ, SFP, SFH) 7→
Tt; (ii) Time-T Network: (SFQ, SFP, SFH, t) 7→ Tr; (iii) Qr Network:
(SFQ, SFP, SFH) 7→ Qr

114



5.3 Results

Algorithm 2 POD-NN Online Phase
1: For a new parameter configuration αk, evaluate T n

j (αk) or Qj
i (αk) using the trained

FCNNs.
2: For Qr network, calculate T coefficients for new parameter configuration: T n

j (αk) =∑M
i=1 Qj

i (αk)Ψj
i .

3: Calculate solution for new parameter configuration: un(αk) = ∑r
j=1 T n

j (αk)Φj .

5.3 Results

The results section for the three-parameter POD-NN ROM is outlined as follows. First,
preliminary tests and the two-stage hyperparameter study performed on each network
design shown in Figure 5.2.6 are presented. The hyperparameter study was only per-
formed for one sampling regime to drastically reduce the number of networks that had
to be trained. Furthermore, using the same optimised network parameters for different
sampling techniques allows for direct comparison of the ROM with the only difference
being in the sampling technique. Second, for the best-performing network design, res-
ults are presented to quantify the different sources of error in the ROM, namely the
errors due to POD truncation, network generalisation and parameter space sampling
regime. Finally, for the best-performing sampling regime and network design, qualitat-
ive and quantitative results demonstrating the accuracy and acceleration the approach
offers relative to the high-fidelity CFD model are presented.

5.3.1 Preliminary Tests

Given the difference between the three network designs, it is likely that each network
will require a different set of hyperparameters to perform optimally. Preliminary tests
were performed to identify suitable data processing steps, activation functions and loss
calculation methods. Details of the tests performed for data processing and activation
function choices can be found in Appendix B.1. From these preliminary tests, good
network performance was found for: (i) global normalisation and standardisation of
the data; (ii) Leaky ReLU activation functions on hidden layers and Tanh on the
output layer; (iii) L1 training loss (as opposed to L2). For all networks trained, Adam
optimisation was used with a learning rate of 10−3 [207] and trained until either 1000
epochs or until the loss plateaued such that the mean loss over the ten most recent
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epochs is within 10−5 of the mean loss over the ten preceding epochs. A batch size of
one gave the most accurate results for the T and Qr networks. A slightly larger batch
size was better for the Time-T network (both in terms of improving ROM accuracy
and reducing training time), so a batch size of ten was used in this case.

These choices were applied to all networks and then the remaining hyperparameters
that the network performance was sensitive to were optimised, namely the network
size, the loss function construction, the number of POD modes, and the number of
second POD modes in the Qr network case. Throughout all testing of the networks,
the same set of eight unseen test cases were used to evaluate ROM accuracy. For
each test case, the velocity magnitude field was evaluated in the region of interest (i.e.
vessel/aneurysm) and the L1 error between the ROM and CFD solution fields was
calculated. The mean error was then calculated across the eight test cases and used as
the metric for ROM performance.

5.3.2 Hyperparameter Study: Stage 1

For the first hyperparameter study, the parameters listed in Table 5.3.1 were varied
through the specified values. Various hidden layer sizes were tested, including a small
network with one hidden layer and ten neurons, a wide network with three hidden layers
and 1000 neurons per layer, and a deep network with six hidden layers and ten neurons
per layer. For each network, single-component and multi-component loss functions were
tested. The single component loss was simply the prediction error between the ROM
coefficients (Tt, Tr or Qr) and their ground truth values, whereas the multi-component
loss also included the prediction error for the solution field compared to its ground
truth. For the T and Qr networks, the full temporal solution field can be predicted in
each training iteration, so the multi-component loss function evaluated the error on the
full spatiotemporal solution field. The Time-T network only predicts the solution for
a batch of ten timesteps, so for this network the multi-component loss only calculated
the solution field error for these ten timesteps. The number of POD modes used in the
model was varied according to the energy truncation criteria. To retain {99%, 99.9%,
99.99%, 99.999%, 99.9999%} requires {1, 6, 24, 68, 143} POD modes for the aneurysm
model, whereas the vessel model requires {1, 2, 6, 12, 24} modes. This is shown in
Fig. 5.2.4. Note that in the first hyperparameter study, three second POD modes were
retained for all Qr networks, however this parameter is investigated in more detail in

116



5.3 Results

the second hyperparameter study.

Table 5.3.1: First hyperparameter study details.

Hyperparameter Values

Hidden layers
[10], [10, 100], [10, 100, 1000], [100, 100, 100],
[1000, 1000, 1000], [10, 10, 10, 10, 10, 10]

Loss construction Single component, multi-component
No. of POD modes (aneurysm) 1, 6, 24, 68, 143

No. of POD modes (vessel) 1, 2, 6, 12, 24
No. of second POD modes (Q-network only) 1, 3, 5, 10, 20

From the first hyperparameter study results (Figure B.2.1, Table B.2.2, Table
B.2.1), the following conclusions are drawn: (i) Smaller network sizes ([10], [10, 100])
provide the best results for the T and Qr networks. For the Time-T network, larger
networks provide the best results ([1000, 1000, 1000]). (ii) Loss construction is the
least important of the hyperparameters investigated, with similar results for single-
and multi-component loss functions. However, the multi-component loss does produce
a smaller minimum error in the Qr network. (iii) The accuracy is best for somewhere
around 99.9%-99.99% energy retention. For the T and Time-T networks, adding more
POD modes increases the error significantly, whereas the Qr network can retain more
POD modes without as much accuracy degradation.

5.3.3 Hyperparameter Study: Stage 2

Based on the conclusions from the first hyperparameter study, the hyperparameter
ranges in the second study were restricted to those presented in Table 5.3.2. Note that
for the Qr network, an additional hyperparameter is investigated for the number of
second POD modes retained. Following the second hyperparameter study, results for
which can be seen in Tables B.3.1 and B.3.2, the optimal network configurations were
identified (Table 5.3.3).
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Table 5.3.2: Second hyperparameter study details.

Hyperparameter Values
T Network

Hidden layers [10], [10, 100]
Loss construction Multi-component
Number of POD modes (aneurysm) 4, 8, 10, 12, 18
Number of POD modes (vessel) 4, 8, 10

Time-T Network
Hidden layers [10, 100, 1000], [1000, 1000, 1000], [1000]
Loss construction Single-component
Number of POD modes (aneurysm) 4, 6, 8, 12, 18
Number of POD modes (vessel) 2, 4, 6, 8, 10, 12

Qr Network
Hidden layers [10], [10, 100]
Loss construction Multi-component
Number of POD modes (aneurysm) 12, 16, 20, 28, 32
Number of POD modes (vessel) 4, 8, 10, 12, 16
Number of second POD modes 1, 3, 5, 10

Table 5.3.3: Optimal hyperparameters for each network design in each region of interest.

Model Network Network Size Loss Construction
No. of
POD Modes

No. of second
POD Modes

Vessel
T [10, 100] Multi-component 4 NA

Time-T [1000, 1000, 1000] Single-component 4 NA
Qr [10] Multi-component 12 5

Aneurysm
T [10] Multi-component 10 NA

Time-T [10, 100, 1000] Single-component 6 NA
Qr [10] Multi-component 16 3

5.3.4 Error Quantification

Three main sources of error exist in the ROM: (i) POD truncation error, (ii) network
generalisation error and (iii) snapshot sampling error. POD truncation error depends
upon the number of POD modes retained in the ROM (and the number of second POD
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modes retained for the Qr network). In traditional ROMs, increasing the number of
POD modes will typically lead to increased accuracy and reduced efficiency. However,
for ROMs that use neural networks for coefficient interpolation, there is additional
error dependent on how well the network is able to generalise. In a POD-NN ROM, a
compromise must be found between the truncation and generalisation errors. The final
source of error depends on how the parameter space was sampled. Again, a balance
must be struck between the up-front cost to generate the snapshots and the demand
for sufficient snapshots to adequately capture the solution variability throughout the
parameter space.

POD Truncation and Network Generalisation Errors

Figure 5.3.1: Mean ROM testing errors on the test and train sets of eight and 27
parameter configurations, respectively, for each of the three network designs. The
truncation error refers to the error due to the POD truncation. The remainder of
the error above the red dashed bar is attributed to the network generalisation error.
The black error bars represent the standard deviation of the error across all parameter
configurations for that network, region and data set. P values are calculated using a
T-test for the means of independent samples.

For the optimal network designs presented in Table 5.3.3, model performance was
evaluated on the test and training sets of data for vessel and aneurysm regions. The
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contributions of the POD truncation and network generalisation errors can be quantified
for the training data test cases, as the ground truth values for T and Q were previously
calculated for these parameter configurations. Calculating the solution using the ground
truth T and Q values means there is no network generalisation error and therefore the
error is entirely due to the POD truncation. The network generalisation error was then
calculated as the difference between the ROM error using the network predicted and
ground truth T and Q coefficients.

Figure 5.3.1 shows the ROM errors for each network design for the testing and train-
ing data sets for each geometry. The Qr network was found to significantly outperform
the T and Time-T networks. The T network performed second best and the Time-T
network third best. All networks achieve mean test errors of < 5% in all geometries
and for all data sets. In most cases, the network generalisation error contributes more
to the total error than the POD truncation error.

To understand why the Qr network gives the most accurate results, networks were
trained with different values of POD truncation energy to see how the weighting between
POD truncation and network generalisation error varies. The optimal network para-
meters (Table 5.3.3) were used but with varying values of r based on the number of
POD modes required to retain 99%, 99.9%, 99.99%, 99.999% and 99.9999% of the cu-
mulative energy. For the Qr network, the same number of second POD modes (rQ = 3)
was used so that the variation in truncation error with additional POD modes would
not be affected by this parameter for the different regions.

Figure 5.3.2 shows that the POD truncation error dominates the total error when
the number of POD modes retained is small. Adding more POD modes decreases
the POD truncation error but increases the network generalisation error due to the
increased number of parameters in the output layer of the network. The POD trun-
cation error does not decrease as much for the Qr network as for the T and Time-T
networks. Despite this, the total error remains lower for the Qr network as the network
generalisation error does not grow as large as it does for the other networks.
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(a) T network.

(b) Time-T network.

(c) Qr network.

Figure 5.3.2: Mean ROM testing errors on the test and train sets of 8 and 27 parameter
configurations, respectively, for each of the three network designs with different values
for the POD truncation energy threshold. r is the number of POD modes for a given
energy cut-off and region. V and A refer to the vessel and aneurysm geometries,
respectively.
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Sampling Method Error

For the Qr network, which provided the best accuracy of the three network designs
tested (Fig. 5.3.1), a new network was trained for each different parameter space
sampling regime. Five sampling methods were investigated, namely Uniform Grid,
Latin Hypercube With Bounds, Latin Hypercube Without Bounds, Random With
Bounds and Random Without Bounds. For each of the Latin Hypercube and Random
sampling methods, three distinct data sets were generated and a Qr ROM was trained
for each data set. Results are presented from the best-performing sampling regime
among the three distinct data sets for each sampling regime.

Figure 5.3.3 shows the ROM test errors on testing and training data sets for the
uniform grid sampling approach and the best-performing Latin Hypercube (with and
without bounds) and Random (with and without bounds) sampling regimes. The
performance is similar across all regimes, with only a slight improvement upon uniform
grid sampling for the best-performing sampling regime, which was Latin Hypercube
with bounds. Despite using the same number of POD modes for each sampling regime,
it is notable that the POD truncation error varies from regime to regime. This suggests
that in some cases the sampling regime leads to a better distribution of snapshots across
the parameter space.
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Figure 5.3.3: Mean Qr network ROM testing errors on the test and train sets of eight
and 27 parameter configurations, respectively, for different parameter space sampling
regimes. The truncation error refers to the error due to the POD truncation. The
remainder of the error above the red dashed bar is attributed to the network general-
isation error. The black error bars represent the standard deviation of the error across
all parameter configurations for that network, region and data set. P values are calcu-
lated using a T-test for the means of independent samples.

5.3.5 Best-Performing Model

To further demonstrate the quantitative accuracy of the ROM predictions, as well as
show the qualitative agreement between ROM and FOM, several visualisations and
additional figures were created using the best-performing ROM approach. These extra
results are only presented for the aneurysm model as the flow is more complex in this
scenario. The best-performing ROM was the Qr ROM using Latin Hypercube sampling
with bounds included. Figure 5.3.4 shows the velocity magnitude field in a 2D slice
of the aneurysm geometry at systole and diastole. The relative error for the velocity
magnitude U is calculated as:

Relative Error = UROM − UF OM

UF OM
× 100%, (5.3.1)

where UF OM is the space-and-time-averaged FOM velocity magnitude.
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Reduced Order Model Full Order Model Relative Error
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Figure 5.3.4: Visualisations of systolic (timestep 30) and diastolic (timestep 90) ROM
and CFD velocity magnitude fields and the relative error between them in a 2D slice
of the aneurysm geometry for a median error test case using the Qr network.

The largest relative errors occur at systole (∼ ±30%). Figure 5.3.4 demonstrates
the qualitative agreement between ROM and FOM at systole and diastole. A median
error test case with an error of 2.2% was chosen as a representative case for Figure
5.3.4. Across the eight test cases, the mean error was 2.4±0.3% and the maximum
error was 3.0%, which highlights the suitability of the median case to represent the
overall performance of the ML-ROM. Figure 5.3.5 shows Bland-Altman plots in the
aneurysm region for systolic (timestep 30), diastolic (timestep 90) and time-averaged
ROM and CFD velocity magnitude. At systole, the mean difference line (black dashed)
is above the y = 0 line, which implies that the ROM slightly over-predicts the solution
at this time. Conversely, the ROM slightly under-predicts the diastolic and time-
averaged solutions. However, the Bland-Altman points largely fall in close proximity
to the y = 0 line and the scale of the differences is smaller than that of the means,
implying low errors. Figure 5.3.5 also shows spatially-averaged velocity magnitude
field waveforms for ROM and FOM, the standard deviation across the spatial points
and the absolute relative error between the two waveforms. These waveforms show
good agreement throughout the cardiac cycle, with the largest discrepancy in velocity
magnitude occurring in the post-systolic period of the cardiac cycle, where the ROM
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slightly smooths the gradients of the CFD waveform. The Bland-Altman plots in
Figure 5.3.5 demonstrate the agreement between the spatially-varying ROM and CFD
velocity magnitude fields at different time points and for the time-averaged fields. The
waveform plots in Figure 5.3.5 demonstrate the agreement between the temporally-
varying solutions that are averaged in space.

(a) Bland-Altman plots for systolic (timestep 30), diastolic (timestep 90) and time-averaged velocity
magnitude. The means of the ROM and CFD velocity magnitude at the spatial points in the mesh
are plotted on the x-axis. The differences between the ROM and CFD velocity magnitude fields
(UROM − UCFD) at the spatial points in the mesh are plotted on the y-axis. The blue dashed lines
represent a 95% confidence interval for the differences and the black dashed line represents the mean
difference between the ROM and CFD solutions.

(b) Velocity magnitude waveforms for ROM and CFD (left) and the error between them (right). The
error is calculated by taking the absolute values of the relative error (equation 5.3.1).

Figure 5.3.5: Bland-Altman plots for ROM and CFD velocity magnitude at systole,
diastole and for the time-averaged fields and spatially-averaged waveform plots in the
aneurysm model for a median error test case using the best-performing Qr network.
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5.3.6 Acceleration, Data Storage Reduction and Training Times

Acceleration

ROM speed was quantified by calculating the mean run-time across the eight test
cases and the 27 train cases for each network design. Across all network designs and
both geometries, the mean ROM run-time was 0.037 seconds, which highlights that
the POD-NN ROM methods can provide very fast solution inference. The ROM took
approximately twice as long in the aneurysm as in the vessel, which is likely due to
the optimal aneurysm models using more POD modes and therefore having more ROM
coefficients being output in the final layer of the network, thus slowing down the evalu-
ation speed slightly. To calculate acceleration, the mean ROM run-time was compared
with the time it took to run the FOM locally and on a high-performance computing
(HPC) cluster. One local evaluation of the FOM was performed using one CPU. This
simulation took 1 hour 39 minutes and 32 seconds. For the HPC simulations, 16 cores
were used and the mean run-time across the eight test cases was 25 minutes and 51
seconds. The acceleration of the various ROM designs was then calculated for each
geometry relative to these FOM run-times. The results are presented in Table 5.3.4.
The ROMs provide acceleration of roughly 104–105 times. However, it is important to
note that the simulation times are for the full geometry, whereas the ROM evaluations
are only in smaller regions of interest. This inflates the ROM acceleration factors to
some degree.

Table 5.3.4: Acceleration offered by each ROM relative to running the full order model
on one CPU locally and on 16 CPUs using a high-performance computer.

Model Network
Mean Test
Time [seconds]

Acceleration Factor*
(relative to 1 CPU)

Acceleration Factor*
(relative to 16 CPUs)

Vessel
T 0.012 5.1 × 105 1.3 × 105

Time-T 0.031 1.9 × 105 5.0 × 104

Qr 0.022 2.7 × 105 7.1 × 104

Aneurysm
T 0.043 1.4 × 105 3.6 × 104

Time-T 0.055 1.1 × 105 2.8 × 104

Qr 0.062 9.7 × 104 2.5 × 104

∗Note that the run-time used to calculate the acceleration factors was taken from a simulation of
the full geometry, whereas the ROM run-times are only for the regions of interest.
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Data Storage Reduction

Retaining all POD modes in the ROM equates to performing direct interpolation
between the high-order solution snapshots. When considering data storage require-
ments, a comparison can therefore be made between the amount of data that must
be stored in order to construct a POD-Interpolation ROM and the data that must
be stored in order to perform direct solution interpolation (DSI). DSI requires that
all of the full order simulation data is stored, so that each spatiotemporal point can
be interpolated. Constructing a POD-Interpolation ROM only requires that the POD
modes (and potentially the second POD modes) and the ROM coefficients are stored.
The total size of the stored variables for DSI and the ROMs are shown in Table 5.3.5.
The amount of data stored by the reduced order models compared to that required for
direct solution interpolation is approximately 120 times less for the aneurysm model.
This reduction factor would be further increased if the number of POD modes was
decreased (for example, for 5 POD modes, the reduction factor would be roughly 380).

Table 5.3.5: Number of variables involved in POD-Interpolation and direct solution
interpolation.

Method Total size of stored data Aneurysm model∗

DSI M × D × N 17,272,818
T and Time-T ROMs (r × D)︸ ︷︷ ︸

ϕ modes

+ (r × N × M)︸ ︷︷ ︸
T coefficients

144,976

Qr ROM (r × D)︸ ︷︷ ︸
ϕ modes

+ (r × N × M)︸ ︷︷ ︸
ψ modes

+ (r × rQ × M)︸ ︷︷ ︸
Q coefficients

146,272

D, number of mesh nodes; N , number of timesteps; M , number of parameter configurations; r

number of retained first POD modes; rQ, number of retained second POD modes.
∗For the aneurysm model, D = 6334, N = 101 and M = 27. For the calculation, r = 16 and
rQ = 3, which are the optimal parameters for the Qr network.

Training Times

All of the networks were trained using a single CPU in Google Colab. The training
times for the optimal networks for each geometry and network design are shown in Table
5.3.6. The optimal T network trained fastest, with the Qr network second fastest and
the Time-T network the slowest. The mean and standard deviations for were also
calculated across all of the hyperparameters investigated in the first hyperparameter
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study for each geometry and network design. In this case, the Qr network trained the
fastest, with the T network second fastest and the Time-T network the slowest. All
networks were trained with the same stopping criteria, so the Qr network training faster
for a large range of hyperparameters highlights how this network design can typically
make network training more efficient.

Table 5.3.6: Network training times for each network design and each problem. The
hyperparameters for the optimal network design are those presented in Table 5.3.3.
The mean and standard deviations are calculated across all training runs performed in
the first hyperparameter study (see Table 5.3.1 for details).

Model Network
Optimal network
training time [mins]

Mean network
training time [mins]

SD network
training time [mins]

Vessel
T 6 10 9

Time-T 43 24 22
Qr 8 9 6

Aneurysm
T 7 43 46

Time-T 28 70 77
Qr 18 32 30

5.4 Conclusion

A POD-NN ML-ROM has successfully been developed and applied to physiological
blood flow variation in intracranial aneurysms. A two-stage POD reduction was found
to improve model performance compared to the widely used one-stage POD approach,
however similar performance was found for the various sampling regimes tested. The
best-performing ROM achieved mean test accuracy of 98.6% and 97.6% in vessel and
aneurysm regions, respectively, while providing speed-up of order 105 times. This level
of acceleration means that the ROM could be used for real-time flow field inference.
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6.1 Chapter 3: Literature Review

6.1.1 Challenges

Despite years of research on ROMs and the recent application of machine learning to
simulation acceleration, applying these techniques to real-world vascular flow problems
remains challenging. Three key challenges to address that have been identified by this
review are:

1. The development of accelerated simulation methods that can handle large geo-
metric variability, facilitating their application to previously unsimulated and
dynamically varying geometries.

2. The development of accelerated simulation methods for multi-scale problems,
enabling seamless evaluation of small- and large-scale processes over short- and
long-term time scales.

3. The development of a benchmarking framework for accelerated simulation meth-
ods, allowing for systematic quantification and comparison of new approaches
whilst driving transparent progress in the field.

A critical challenge to widespread adoption of simulation acceleration in vascular
flow applications is incorporating large geometric variability into the models. Whether
performing large-scale testing of medical devices in cohorts with varying anatomy,
simulating medical device responses as part of treatment planning for an individual
patient, or providing real-time surgical feedback during operation, the ability of the
accelerated model to accurately evaluate haemodynamics in a previously unsimulated
or dynamically changing geometries is essential. Efforts to introduce geometric variab-
ility into vascular flow ROMs have mainly focused on developing parameterised models
[100, 151, 161, 169]. While these approaches yielded accurate results, acceleration was
only of one order of magnitude in most cases, with the largest acceleration roughly
three orders of magnitude. Furthermore, models typically only used a small number
of parameters describing features such as vessel diameter or stenosis severity and posi-
tion [100]. In pathologies with highly complex shapes, such as aneurysms, identifying
descriptive parameterisations with few parameters may not be possible. This would
be further exacerbated by device modelling or fluid-structure interaction. A possible
approach to overcome this is to use domain decomposition ROMs that can partition an
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unseen geometry into sub-geometries that bear resemblance to the geometries for which
snapshots were previously calculated [319, 320]. This approach has been applied to flow
over urban landscapes and pipe flow problems so far, but could potentially be applied to
vascular flow problems, where the sub-geometries could be a set of commonly required
vascular segments and configurations. ML approaches such as physics-agnostic simula-
tion methods [225, 258, 260] and Point-Nets [108, 109] have demonstrated the ability to
generalise to unseen geometries by using large sets of mostly synthetic geometries and
corresponding simulation data for training. These are the most promising attempts to
provide generalisation across geometries in vascular simulation acceleration, but they
are still hampered by the amount of data required and the risk that data augmentation
strategies can lead to unrealistic results. Informing these approaches with physics could
potentially reduce the data requirement and increase the reliability of the results but
there have been few studies into this to date [268].

Multi-scale problems represent the second challenge for accelerated simulation of
vascular flow models. When using computational models to inform treatment decisions
or in assessing medical device safety and efficacy, short- and long-term metrics are
likely to be required. Depending upon the specific problem, models of small-scale
processes like thrombosis or endothelialisation may need to be coupled to models of
large-scale haemodynamic effects. In principle, DMD ROMs are well-suited to long-
term solution evaluation, but the few studies using this approach for vascular flow
applications have focused on solution reconstruction rather than long-term prediction
[174, 178]. Domain decomposition PINN methods, such as cPINNs, XPINNs, and
PPINNs, are suitable for multi-scale problems in time and space, but have also seen little
use in vascular flow applications [252–254]. DeepONets have also shown great potential
for multi-scale applications. Wang and Perdikaris [274] used DeepONets for long-time
prediction of partial differential equations, while Cai et al. [256] and Mao et al. [257]
used modular DeepONets trained individually on single-physics single-scale problems
to facilitate multi-physics and multi-scale modelling for electroconvection and flow-
chemistry applications. Modular DeepONets are referred to as DeepM&MNets (Deep
Multi-Physics & Multi-Scale Networks) and represent a promising approach towards
the challenge of long-time evaluation of multi-physics and multi-scale models which are
crucial in vascular flow applications.

The final challenge highlighted is the need for a benchmarking framework for assess-
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ing simulation acceleration methods. Throughout Chapter 3, quantitatively comparing
different approaches has proved challenging due to the the following factors that vary
across studies: (i) amount of training data; (ii) training details, e.g. stopping/con-
vergence criteria, number of modes retained in model; (iii) accuracy and acceleration
metrics, e.g. error metrics and variables of interest, acceleration relative to FOM or
entire offline cost; (iv) target applications. To overcome this challenge, the develop-
ment of a benchmarking framework for use in the simulation acceleration community
is proposed. This should consist of a series of example problems of varying nature and
complexity, data sets for each example problem for use in training, specified allowances
and/or metrics for the computational cost of data generation and training, and metrics
defined for assessment of accuracy and acceleration. The example problems should also
be motivated by real-world problems where a balance often must be struck between
the amount of training data available for the machine learning model and the task for
which it is to be used (e.g. many-query tasks, control problems, real time prediction,
etc.). Development and subsequent use of this framework would enable objective as-
sessment and comparison of methodological advances in the field. Inspiration could
also be taken from the medical image analysis field, where challenge problems are com-
monly proposed with publicly available data and predefined metrics to assess model
performance for tasks like registration and segmentation [321, 322].

6.1.2 Outlook

Accelerated vascular flow models are essential for applications such as in-silico trials
(ISTs), patient-specific treatment planning and real-time surgery feedback. ISTs can
require the evaluation of nonlinear, multi-physics, multi-scale models in large cohorts of
virtual patients, which are anatomically and physiologically diverse, undergoing treat-
ment with different devices [11, 20]. Patient-specific treatment planning requires sim-
ilarly complex models that can be evaluated for an individual patient in a reasonable
time frame given the prognosis of the pathology in question. Real-time surgery feed-
back requires complex model evaluation for individual patients at a sufficient speed to
provide haptic feedback or visualisations to the surgeon performing the procedure [114].
These three applications highlight some of the impact that accurate and efficient vas-
cular flow models can have on patient care, which makes developing these approaches
a worthwhile endeavour. This review has identified that the key challenge to be ad-
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dressed is the development of multi-scale simulation acceleration methods that can
handle the large geometric variability inherent to vascular flow problems. To achieve
quantifiable and transparent progress in simulation acceleration, it is also suggested
that the community should develop a benchmarking framework consisting of a series of
exemplar problems with standardised metrics for assessing acceleration and accuracy.
This framework would benefit both the simulation acceleration and the vascular flow
modelling communities.

6.2 Chapter 4: FD-PComA In-Silico Trial

6.2.1 Discussion

In-silico trials of internal carotid artery (ICA) and posterior communicating artery
(PComA) intracranial aneurysm flow diversion (FD) have been demonstrated to rep-
licate and expand upon results from conventional clinical trials [20]. In addition,
each component of the FD-PComA in-silico trial modelling pipeline has been valid-
ated independently through a series of studies [21, 23, 91, 294, 296, 299]. Through
the component-wise validations performed in these studies and the soft validation of
the complete modelling pipeline performed by Sarrami-Foroushani et al. [20], there is
sufficient trust in the modelling choices to use the FD-PComA pipeline to investigate
hypotheses for flow diverter treatment indications that have not been studied in clin-
ical trials and are not well understood. In particular, the FD-PComA in-silico trial
investigates Pipeline Embolization Device (PED) flow diversion of PComA aneurysms
with and without fetal posterior circulation.

Fetal posterior circulation (FPC) is estimated to occur in 4–29% of the population
[283], but its prevalence can vary across different demographics. Shaban et al. [285]
retrospectively reviewed 532 PComA aneurysms and provided statistics for the pre-
valence of FPC in a number of ethnicities. This data was collated and it was found
that full FPC prevalence is significantly lower in white patients (4.9%, 8/164) than in
black patients (11.5%, 40/349, p = 0.008). In patients with FPC, the PComA supplies
the posterior cerebral artery and will typically be larger in diameter than in non-fetal
patients. This highlights two factors that could reduce flow diverter efficacy in PComA
aneurysms in patients with FPC: the increased flow rate and the increased PComA
size. The results demonstrate that it is the increased flow rate associated to FPC that
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is the primary determinant of treatment success. In the FD-PComA in-silico trial,
computational fluid dynamics simulations were performed for 118 virtual patients pre-
and post-treatment by the PED flow diverter and haemodynamic variables (aneurysm
STAV/MTAV and stent STAWSS) were used to assess treatment performance. Signi-
ficantly lower flow reduction and treatment success rates were found in patients with
FPC, which was characterised by an increased flow rate through the PComA. Patients
with FPC were also found to have significantly higher STAWSS on the device struts
than non-fetal patients. This could inhibit endothelialisation and neointimal prolifer-
ation along the device struts [305, 306]. This will aid in maintaining PComA patency
following the treatment, which could explain why neurological complications follow-
ing the treatment are rare [279–281]. By construction, the PComA size distributions
were identical in the non-fetal and fetal sub-groups since the same anatomies were
used in each. The difference in predicted treatment success is therefore attributable to
the difference in flow rates in the sub-groups. Aneurysm morphological characteristics
(maximum diameter, aspect ratio, neck width, non-sphericity index) were also identical
across the non-fetal and fetal sub-groups, so it is concluded that aneurysm morphology
does not affect treatment success.

The results indicate that fetal PComA aneurysms treated by PED flow diversion
will have low aneurysm flow reduction due to the persistent flow through the PComA.
This could explain the slow or failed occlusion that is observed more predominantly
in patients with FPC than in those without [2]. Coiling of PComA aneurysms tends
to be relatively uncomplicated compared to aneurysms located in other regions, so in
patients with FPC, using endovascular coils in conjunction with flow diversion may
improve aneurysm flow reduction and accelerate occlusion [283]. Stent-assisted coiling
has already been shown to be effective in treating PComA aneurysms, but further
studies are required to ascertain the efficacy of flow diverter-assisted coiling [323].

6.2.2 Limitations

Two limitations in this study relate to the outflow boundary conditions. Firstly, the
posterior cerebral artery was not included in the simulation geometries for the 59 patient
anatomies used in the trial. FPC was modelled using boundary conditions that mimic
flow conditions for non-fetal and fetal posterior circulation, but including the posterior
cerebral artery explicitly where possible could allow for additional analysis and further
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stratification of the cohort (e.g. comparisons between true fetal and fetal-type variants).
Secondly, the same PComA flow split was used for all patients, which meant that the
study could not account for any intra- and inter-patient variability that may be present
in the flow split.

Biological processes such as stasis/device-driven thrombosis and PComA remod-
elling were also not modelled. Stasis-driven thrombosis plays an important role in
aneurysm treatment success and clot composition has been linked to ischaemic/haem-
orrhagic stroke. Device-induced thrombosis is an alternative clotting pathway that links
to endothelial cell growth along the device, which is another component of successful
flow diverter treatment [304]. PComA remodelling can occur as a long-term result
of flow diverter treatment affecting the PComA flow rate and the vessel subsequently
adapting to the increased/decreased flow. Modelling stasis/device-induced thrombosis
would require coupling biochemical models to the blood flow model, such as in [23],
but this was not deemed necessary to address the FD-PComA trial hypotheses. In
FD-PComA, PComA flow rates were assumed to be the same pre- and post-treatment
to address the hypotheses regarding fetal posterior circulation, which meant that in-
vestigating remodelling was not feasible. Addressing each of these limitations could
form the basis for additional in-silico trials.

Finally, a methodological limitation in the calculation of STAWSS on the stent
surface is noted. In this calculation, the WSS field is evaluated for all timesteps and
all mesh points on the surface of the clipped stent. This will lead to the results being
somewhat dependent on the size of the clipped stent. Oversized clipped stents are likely
to have more of the struts lying in close proximity to the vessel walls, which is likely to
lead to lower WSS values in these regions and therefore a reduction in the mean WSS
for this configuration. Performing the clipping manually helped to reduce the impact
that this effect has on the overall results due to the more optimal sizing that can be
achieved. However, the results could have been made more accurate by identifying a
sub-region of the stent that lies adjacent to the neck surface and only using WSS values
from this region in the calculation of STAWSS instead of using WSS values evaluated
on the entire clipped stent.
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6.2.3 Outlook

FD-PComA has demonstrated the power of in-silico trials for investigating less-studied
scenarios that may not be analysed in clinical trials, such as PED treatment of PComA
aneurysms with FPC. The finding that FPC is more prevalent in certain demographics
highlights how in-silico trials can be used to generate evidence in groups that may be
under-represented in clinical trials. For these two reasons, FD-PComA represents an
exemplar trial that demonstrates the usefulness of in-silico trials, which is one of the
challenges that this thesis aimed to address.

6.3 Chapter 5: Machine Learning Reduced Order Model

6.3.1 Discussion

In Chapter 5, a non-intrusive parametric machine learning reduced order model (ML-
ROM) using proper orthogonal decomposition (POD) for dimensionality reduction and
neural networks (NN) for interpolation of the ROM coefficients was developed. The
POD-NN ML-ROM was applied to intracranial aneurysm fluid dynamics with physiolo-
gical variability characterised by inflow parameters for flow magnitude (SFQ), pulsat-
ility (SFP) and heart rate (SFH). Typically POD-NN ROMs utilise a single POD
reduction and evaluate the ROM coefficients using a network that takes the varying
parameters (i.e. SFQ, SFP, SFH) and the time coordinate as inputs and outputs the
corresponding coefficients [167, 215, 216]. This approach (referred to as the Time-T
network) and two other approaches were investigated, one that outputs the entire time
trajectory of coefficients in one forward pass through the network (T network) and
another that performs a second POD reduction and trains using the doubly reduced
coefficients (Qr network). The latter approach has not yet been used in POD-NN
ROMs and is rarely used even in POD methods that do not utilise machine learning
[146].

The findings indicate that the Qr network outperforms the T and Time-T net-
works. For the vessel model, the best-performing Qr network achieves an error of
1.50%, whereas the T network achieves 2.61% and the Time-T network achieves 3.31%.
For the aneurysm model, the best-performing Qr network achieves an error of 2.97%,
whereas the T network achieves 3.58% and the Time-T network achieves 4.61%. In
addition, the Qr network appears to be more robust to the number of modes retained
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in the model. Figure 5.3.2 shows that the ML-ROM errors grow as an increasingly
large number of POD modes are added to the model, particularly for the T and Time-
T networks. The POD truncation error decreases with additional modes as expected
but the network generalisation error grows at a faster rate and so the total error in-
creases. For the Qr network, the truncation error does not decay as much as for the T

and Time-T networks, but in turn the network generalisation error does not grow so
rapidly. The double-POD performed in the Qr network therefore seems to make the
network more robust to the number of POD modes retained. This makes the network
more straightforward to optimise as there are a greater range of hyperparameters that
can give close to optimal performance.

While the results demonstrated that the Qr network performs best, a more extens-
ive and therefore costly investigation into optimal network design could have led to
improved results for the T and Time-T networks. In principle, the minimum error a
POD-NN ROM can achieve is bounded by the POD truncation error (assuming the
interpolation error approaches zero). The truncation error is larger in the Qr network
case than the T or Time-T cases, so in theory it should be possible to train the latter
two approaches to a higher accuracy. In practice, a balance must be struck between
the ML-ROM accuracy and the resources put into searching for the optimal network.
If the aim is to streamline the network optimisation process, then the findings demon-
strate that using a two-stage POD reduction can provide accurate results with a more
straightforward network optimisation procedure. Given that simplifying the ML-ROM
data appears to improve the network robustness, it may be that using more advanced
machine learning-based dimensionality reduction tools such as autoencoders could fur-
ther simplify the training data and further improve ML-ROM performance or simplify
training [223].

Each ML-ROM that was investigated provided a speed-up of order 105 relative to the
full-order computational fluid dynamics simulation performed on one CPU. ML-ROM
evaluation time was less than a tenth of a second for all network designs, although each
evaluation took approximately twice as long in the aneurysm as in the vessel. This
is likely because the optimal aneurysm models use more POD modes and therefore
have more coefficients to output in the final layer of the network and more calculations
to perform in order to produce the solution field. In a vascular flow context, the
ML-ROM solution fields can be calculated quicker than the period of the heartbeat,
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which constitutes a model that is fast enough to respond to real-time measurements
of physiological changes. Using a POD-NN ROM also reduces the amount of stored
data by approximately 100 times compared with retaining full-order model solutions
and directly interpolating them. This means that the POD-NN ROM provides fast and
accurate predictions while requiring minimal storage capacity.

6.3.2 Outlook

The ML-ROM could be useful in scenarios such as inverse modelling (e.g. to identify
boundary conditions that produce outputs matching experimental data [216]), design
optimisation (e.g. identifying input parameters that induce desired flow features) or in
uncertainty quantification (i.e. analysing model output sensitivity to its inputs). An
example use of the ROM for an in-silico trials application could be for assessing the
sensitivity of the flow fields in a given geometry to the ICA-PComA flow split ratio
used for the non-fetal and fetal boundary conditions that were developed in Chapter 4.
The ML-ROM could also be suitable for real-time flow monitoring in various applica-
tions due to its speed. However, in its current design, the ML-ROM is not suitable for
problems where capturing geometric variability is essential. Two examples of this in
a vascular flow context are in real-time surgical feedback where the geometry changes
dynamically and in performing in-silico trials where flow needs to be evaluated in pre-
viously unsimulated geometries at low cost. Some attempt has been made to include
geometric parameters into POD-NN ROMs but only for relatively simple geometries
[212]. In the wider ROM field, higher dimensional parameterisations have been used
for vascular flow applications but these are often limited in their generality [100]. Due
to the limitations of the ML-ROM in evaluating flow in new geometries, the approach
is not seen as an alternative to traditional numerical methods for performing complete
in-silico trials, but instead as a tool that could be used for uncertainty quantification
in problems related to in-silico trials.

6.4 Conclusion

This thesis set out to achieve the following aims:

1. Perform an in-silico trial investigating flow diverter treatment of intracranial an-
eurysms and automate the steps involved in the simulation pipeline.
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2. Critically review accelerated simulation methodologies for vascular flow problems,
identifying the types of application each method is suitable for and directions for
future research.

3. Develop accelerated simulation methodology to facilitate efficient in-silico trials of
endovascular medical devices and demonstrate the application of the methodology
to a relevant problem.

The in-silico trial (IST) into flow diversion (FD) of posterior communicating artery
(PComA) aneurysms presented in Chapter 4 achieved the first aim in part. The FD-
PComA IST successfully generated evidence for flow diverter efficacy in PComA an-
eurysms with and without fetal posterior circulation (FPC). Flow diverter treatment of
PComA aneurysms using the Pipeline Embolization Device is not approved by the U.S.
Food and Drug Administration and treatment of PComA aneurysms with FPC has not
been investigated in clinical trials to date, so FD-PComA demonstrates the use of ISTs
to generate evidence in off-label scenarios that have not been widely studied. FPC was
found to be more prevalent in particular demographics, so FD-PComA also demon-
strates how ISTs can be used to generate evidence in demographic groups that may be
under-represented in clinical trials. For these reasons, FD-PComA is an exemplar trial
that demonstrates the usefulness of ISTs. In the FD-PComA trial, device deployment,
boundary condition assignment, simulation set up and execution, and post-processing
were fully automated. Surface mesh pre-processing required some manual corrections
in cases that had small thin vessels which were not detected in the centreline calcula-
tion. Device clipping also required manual input in some cases to ensure the clipping
radius was not over/undersized. To create a fully automatic simulation pipeline would
require additional work into improving these steps.

The literature review presented in Chapter 3 achieved the second thesis aim in
full. The review covered reduced order modelling and machine learning techniques
for simulation acceleration and found that each method has strengths and limitations
depending upon the specific application. A taxonomy of each reviewed approach’s
suitability to the complexities of vascular flow modelling can be found in Table 3.4.1.
Various avenues for future research emerged from this review, a number of which are
outlined in Section 6.5.

The machine learning reduced order model (ML-ROM) study presented in Chapter 5
achieved the third aim in full. This chapter made a methodological contribution to ML-
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ROM design by showing that a two-stage reduction of the training data using successive
applications of POD improves the ROM performance. The ML-ROM was then applied
to evaluating flow fields in intracranial aneurysms subject to physiological variation,
where the model demonstrated high levels of accuracy and acceleration compared to a
computational fluid dynamics model.

6.5 Future Work

This thesis has made significant contributions in a number of areas related to compu-
tational modelling and simulation for in-silico trials applications. Various studies could
be undertaken as a continuation of this work.

From the literature review into accelerated simulation methodologies (Chapter 3),
possible future studies include:

• The development of accelerated simulation methods that can evaluate flow fields
for geometries that were not included in the training data. Techniques such
as Point-Nets could be explored for capturing geometric variability [108, 109].
Informing the Point-Net with physics could reduce the amount of training data
required and improve the accuracy of the inferred solution fields [268].

• If the development of the aforementioned methods are successful, then using
these methods and traditional numerical methods to perform an in-silico trial
would allow for comparison between the two approaches in terms of accuracy and
efficiency.

• The development of a benchmarking framework for reduced order modelling and
machine learning simulation acceleration techniques. This framework would in-
clude carefully selected exemplar problems to align with the common complex-
ities in computational modelling (see Section 2.4), data for these problems, and
specified metrics for assessing the accuracy and acceleration of the simulation
acceleration techniques.

From the FD-PComA in-silico trial (Chapter 4), future studies could include:

• An in-silico trial for PComA aneurysm treatment comparing single PED flow
diversion with other treatments, such as PED flow diversion with multiple PEDs,

140



6.5 Future Work

PED flow diversion with adjunct coiling, and intrasaccular devices such as the
Woven Endovascular Bridge [324] or Contour Neurovascular System [325].

• An in-silico twin trial for PED treatment in PComA aneurysms. This would
require collecting clinical data for patients with PComA aneurysms that were
treated by flow diversion, constructing models of the patients and comparing the
simulation results with the clinical outcomes.

• Analysis of the simulation pipeline using the ASME V&V 40 framework for es-
tablishing model credibility based on the question of interest and context of use
[326].

From the ROM study (Chapter 5), future studies could include:

• Application of the ROM developed in Chapter 5 to real-time flow monitoring in
cardiovascular applications with the ROM input parameters derived from easily
measured quantities such as blood pressure and heart rate.

• Investigation of machine learning-based dimensionality reduction techniques, such
as autoencoders, for interpolation-based ROMs [223].
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A.1 Fetal Posterior Circulation

Table A.1.1: Fetal posterior circulation prevalence in various studies undertaken in
different countries. Fetal/fetal-type are taken as the pooled hypoplastic P1 PCA types.

Study details
Reference [327] [328] [329] [330] [331] [332]
Location USA (1) Morocco USA (2) France Iran Sri Lanka

Total number of patients 994 100 414 200 102 225

Circle of Willis variation Number of patients
Typical (full circle) 192 18 20 29 29 32

UL HP P1 47 3 4 5 1 2
BL HP P1s 33 1 16 6 0 1

HP P1 and CL A1 2 0 10 0 0 0
HP P1 and IL A1 20 1 1 3 1 4

BL HP P1s and A1 5 0 3 1 0 1
HP AComA and P1 35 4 0 4 1 6

HP PComA and CL P1 26 0 46 3 2 1
HP PComA, AComA and CL P1 17 1 28 1 1 0
HP P1, CL PComA and IL A1 10 1 5 0 0 0

BL HP P1s and AComA 13 0 10 1 0 1

Fetal/non-fetal Prevalence, % (n/N)
Fetal/fetal-type (HP P1 types pooled) 20.9 11.0 29.7 12.0 5.9 7.1

Non-fetal (remaining cases) 79.1 89.0 70.3 88.0 94.1 92.9

A1, A1 anterior cerebral artery; AComA, anterior communicating artery; BL, bilateral; CL, con-
tralateral; IL, ipsilateral; HP, hypoplastic; P1, P1 posterior cerebral artery; PComA, posterior
communicating artery.

De Silva et al. [332] compared different Circle of Willis variations in their study and a
series of similar studies. Hypoplasia of the P1 posterior cerebral artery (PCA), which
is a feature of fetal posterior circulation (FPC), was included in a number of these
variations. Hypolastic P1 PCA can be used as an indicator of the patient having FPC
and the patients for each study can be pooled into those with and without P1 PCA
hypoplasia to find the prevalence of fetal and non-fetal vasculature in the different
studies (see Table A.1.1). The findings indicate that FPC occurs in roughly 25.3% of
people in America (USA (1) and USA (2)), 11.5% in Europe and North Africa (Morocco
and France) and 6.5% in Asia (Iran and Sri Lanka). This highlights the variance in
FPC prevalence across different demographics (ethnicities/races).

143



A.2 Methodology

A.2 Methodology

A.2.1 Volumetric Meshing

Figure A.2.1: Pre- and post-treatment surface meshes for one case used in the FD-
PComA in-silico trial. The volumetric mesh is similarly more highly refined in the
vicinity of the clipped flow diverter than in the vessel.
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The volumetric meshes in the FD-PComA in-silico trial were more highly refined in
the vicinity of the device. Figure A.2.1 shows the surface meshes for one case with
and without the clipped flow diverter. The highly refined surface mesh for the device
illustrates the high density of mesh elements required to explicitly model the device
struts.

A.3 Results

A.3.1 Flow Variables vs. Aneurysm Characteristics

The three flow variables of interest (aneurysm STAV reduction, aneurysm neck MTAV
reduction, stent STAWSS) were plotted against four aneurysm morphological paramet-
ers (maximum diameter, neck diameter, aspect ratio, non-sphericity index). A line of
best fit was found between the morphological parameters and the pooled non-fetal and
fetal flow variables. The R2 and p values associated to the best fit line were calculated
for each plot. Figure A.3.1 shows aneurysm STAV reduction against the morphological
parameters. Figure A.3.2 shows aneurysm neck MTAV against aneurysm morphology.
Figure A.3.3 shows stent STAWSS against aneurysm morphology. In each figure, the
R2 values are typically small and the p values are large. The lowest p value is found
for aneurysm STAV reduction against aneurysm neck width (p = 0.028). These results
suggest that aneurysm morphology typically does not play an important role in the
assessment of treatment success using haemodynamic metrics.
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Aneurysm STAV Reduction

Figure A.3.1: Aneurysm STAV reduction vs. aneurysm morphological characteristics.
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Aneurysm Neck MTAV Reduction

Figure A.3.2: Aneurysm neck MTAV reduction vs. aneurysm morphological character-
istics.
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Stent STAWSS vs. Aneurysm Characteristics

Figure A.3.3: Stent STAWSS vs. aneurysm morphological characteristics.

A.3.2 Flow Variables vs. PComA Size

The three flow variables of interest (aneurysm STAV reduction, aneurysm neck MTAV
reduction, stent STAWSS) were plotted against the size of the PComA vessel. PComA
size was characterised by its radius and by the relative radius between the PComA
and ICA. A line of best fit was found between the morphological parameters and the
pooled non-fetal and fetal flow variables. The R2 and p values associated to the best
fit line were calculated for each plot. The plots are shown in Figure A.3.4. The R2

values are small and the p values are large, demonstrating that there is not a significant
relationship between the three flow variables or the two measures of PComA size.

148



A.3 Results

Figure A.3.4: Flow variables vs. PComA size.
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B.1 Normalisation and Activation Function Tests

Three strategies for normalisation and standardisation of the ROM coefficients were
investigated: (i) global normalisation and standardisation, (ii) local normalisation and
standardisation and (iii) no normalisation and standardisation. These strategies were
tested for the T network only. The normalisation function was defined by:

Xnorm = 2
(

X − Xmin

Xmax − Xmin

)
− 1, (B.1.1)

where X is the ROM coefficients. For the global normalisation, the minimum and max-
imum values are taken across the entire set of coefficients for all simulations, timesteps
and POD modes. For the local normalisation, the above equation is applied to the
coefficients for each POD mode separately, with the minimum and maximum values
taken across all coefficients for the given mode. Standardisation is applied by using:

Xstan = (X − µX)
σX

, (B.1.2)

where µ and σ are the mean and standard deviation, respectively. Various activation
functions were also tested, namely: (i) ReLU on all layers, (ii) Tanh on all layers, (iii)
Leaky ReLU on all layers, and (iv) LeakyReLU on hidden layers and Tanh on final
layer.

These various data processing and activation function strategies were tested using
a T network test network consisting of two hidden layers with ten and 100 neurons
in each layer. The first 68 POD modes were retained in the model, corresponding to
99.999% of the energy in the system. All networks were trained until either 100 epochs
or until the loss plateaued. A network was trained for every combination of the above
data processing and activation function choices and the mean test error was calculated
across eight test cases.

From Table B.1.1, it is evident that global normalisation and standardisation sig-
nificantly outperforms the other choices. The best-performing activation function is
Tanh, but using LeakyReLU and Tanh in combination only performed marginally worse.
Given this, additional preliminary tests were performed using both activation function
combinations in order to determine which is best. In this instance, each activation
function choice was tested with a series of network sizes and number of modes retained
in the model. Results for this are presented in Tables B.1.2 and B.1.3. For the vessel
model, Table B.1.2 shows that the Tanh activation function achieves a minimum error
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Table B.1.1: Mean test error for T networks trained with different normalisation and
standardisation schemes (global, local, none) and different activation function choices
(ReLU, Tanh, LeakyReLU, LeakyReLU plus Tanh final layer). The test cases is for the
aneurysm geometry. The model uses a network with two hidden layers (ten and 100
neurons in each layer) and 68 POD modes retained.

ReLU Tanh Leaky ReLU Leaky ReLU and Tanh
Global 32.3% 22.5% 30.4% 25.1%
Local 102.7% 104% 102.8% 104.2%
None 99.9% 97.6% 99.3% 97.0%

of 4.78% vs. 3.71% for Tanh and LeakyReLU. For the aneurysm model, Table B.1.3
shows that the minimum error for Tanh is 4.04% vs. 4.11% for Tanh and Leaky ReLU.
It also appears that the minimum error with Tanh activation grows to larger values
than for Tanh and Leaky ReLU. Overall, the two activation functions produce similar
results, but Tanh and Leaky ReLU seems to perform slightly better in this scenario.
For this reason, Leaky ReLU was chosen for hidden layers and Tanh for the output
layer in subsequent testing.
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Table B.1.2: Preliminary hyperparameter study results for vessel model. Mean and
minimum test errors are taken across all hyperparameter combinations.

Hyperparameter Value Mean Error [%] Minimum Error [%]

T Network with Tanh (Vessel)

Layers

[10] 22.1 5.58
[10, 100] 9.65 4.78

[10, 100, 1000] 11.9 5.83
[1000, 1000, 1000] 12.1 6.32

[10, 10, 10, 10, 10, 10] 22.9 8.68

Number of POD modes

1 11.1 10.7
2 6.05 4.78
6 8.59 4.55
12 14.8 10.6
24 32.9 15.7

T Network with Leaky ReLU + Tanh (Vessel)

Layers

[10] 5.69 3.71
[10, 100] 7.42 4.27

[10, 100, 1000] 7.72 5.27
[1000, 1000, 1000] 8.60 3.86

[10, 10, 10, 10, 10, 10] 13.0 8.16

Number of POD modes

1 10.8 10.7
2 5.37 4.17
6 6.31 3.71
12 7.83 4.31
24 11.4 5.52
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Table B.1.3: Preliminary hyperparameter study results for aneurysm model. Mean and
minimum test errors are taken across all hyperparameter combinations.

Hyperparameter Value Mean Error [%] Minimum Error [%]

T Network with Tanh (Aneurysm)

Layers

[10] 47.2 4.04
[10, 100] 16.9 6.09

[10, 100, 1000] 26.0 6.52
[1000, 1000, 1000] 24.6 5.54

[10, 10, 10, 10, 10, 10] 45.4 14.1

Number of POD modes

1 13.7 13.5
6 6.95 4.04
24 15.7 14.4
68 24.4 17.9
143 87.9 28.2

T Network with Leaky ReLU + Tanh (Aneurysm)

Layers

[10] 9.00 4.11
[10, 100] 24.5 5.25

[10, 100, 1000] 14.1 5.65
[1000, 1000, 1000] 15.8 6.28

[10, 10, 10, 10, 10, 10] 16.8 13.5

Number of POD modes

1 13.5 13.4
6 7.23 4.11
24 13.3 5.22
68 19.6 8.88
143 26.5 13.4
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B.2 Hyperparameter Study 1

Figure B.2.1: Mean test error against number of POD modes for various network sizes
and loss formulations.
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Table B.2.1: First hyperparameter study results for vessel model. Mean and minimum
test errors are taken across all hyperparameter combinations.

Hyperparameter Value Mean Error [%] Minimum Error [%]

T Network

Loss Construction
T-U 7.99 3.28
T 8.34 3.71

Layers

[10] 5.70 3.28
[10, 100] 7.06 3.74

[10, 100, 1000] 8.51 4.13
[1000, 1000, 1000] 8.05 3.86

[10, 10, 10, 10, 10, 10] 12.6 8.16

Number of POD modes

1 10.8 10.6
2 5.34 4.17
6 5.96 3.28
12 7.56 4.29
24 11.2 5.52

Time-T Network

Loss Construction
T-U 11.1 3.55
T 10.0 3.46

Layers

[10] 13.1 5.56
[10, 100] 7.74 4.33

[10, 100, 1000] 7.26 3.55
[1000, 1000, 1000] 7.22 3.46

[10, 10, 10, 10, 10, 10] 21.0 4.32

Number of POD modes

1 11.5 10.8
2 5.15 4.26
6 7.90 3.46
12 12.0 4.94
24 16.3 10.3

Qr Network

Loss Construction
Q-U 7.07 1.92
Q 6.87 1.97

Layers

[10] 4.78 1.92
[10, 100] 4.94 1.97

[10, 100, 1000] 6.60 3.79
[1000, 1000, 1000] 6.58 3.49

[10, 10, 10, 10, 10, 10] 13.0 7.63

Number of POD modes

1 12.2 10.8
2 6.45 4.33
6 5.05 1.97
12 5.01 1.92
24 6.20 2.34
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Table B.2.2: First hyperparameter study results for aneurysm model. Mean and min-
imum test errors are taken across all hyperparameter combinations.

Hyperparameter Value Mean Error [%] Minimum Error [%]

T Network

Loss Construction
T-U 14.7 4.12
T 16.0 4.11

Layers

[10] 9.24 4.11
[10, 100] 21.0 5.25

[10, 100, 1000] 13.7 5.58
[1000, 1000, 1000] 16.0 5.43

[10, 10, 10, 10, 10, 10] 16.9 13.5

Number of POD modes

1 13.6 13.4
6 7.0 4.11
24 12.6 5.22
68 18.3 8.30
143 25.4 13.4

Time-T Network

Loss Construction
T-U 22.4 4.49
T 21.2 4.45

Layers

[10] 21.7 12.7
[10, 100] 19.0 5.51

[10, 100, 1000] 20.7 4.45
[1000, 1000, 1000] 20.1 4.49

[10, 10, 10, 10, 10, 10] 28.8 7.11

Number of POD modes

1 14.0 13.5
6 9.41 4.45
24 16.3 9.34
68 33.0 21.8
143 36.2 34.3

Qr Network

Loss Construction
Q-U 10.1 2.97
Q 10.4 3.41

Layers

[10] 6.09 2.97
[10, 100] 7.81 3.71

[10, 100, 1000] 11.1 4.54
[1000, 1000, 1000] 11.7 4.04

[10, 10, 10, 10, 10, 10] 14.5 14.0

Number of POD modes

1 14.2 13.5
6 5.84 3.14
24 6.90 2.97
68 10.6 4.02
143 13.7 4.99
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Table B.3.1: Second hyperparameter study results for vessel model. Mean and min-
imum test errors are taken across all hyperparameter combinations. The lowest min-
imum error (i.e. the best-performing model) is in bold.

Hyperparameter Value Mean Error [%] Minimum Error [%]

T Network

Layers
[10] 3.82 3.08

[10, 100] 4.23 2.94

Number of POD modes

2 4.32 4.17
4 3.01 2.94
6 3.51 3.28
8 4.47 3.77
10 4.37 4.02
12 4.47 4.29

Time-T Network

Layers
[10, 100, 1000] 4.64 3.27

[1000, 1000, 1000] 4.49 3.20
[1000] 8.94 5.15

Number of POD modes

2 5.14 4.26
4 3.87 3.20
6 5.79 3.46
8 6.53 4.35
10 7.33 4.72
12 7.46 5.08

Qr Network

Layers
[10] 3.48 1.30

[10, 100] 4.09 1.77

Number of POD modes

2 5.75 3.97
4 3.53 1.86
6 3.27 1.65
8 3.13 1.39
10 3.52 1.54
12 3.39 1.30
16 3.91 2.15

Number of second POD modes

1 7.30 6.89
2 3.19 1.75
3 2.89 1.39
4 2.77 1.54
5 3.35 1.30
7 3.28 1.95
10 3.72 1.86
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Table B.3.2: Second hyperparameter study results for aneurysm model. Mean and
minimum test errors are taken across all hyperparameter combinations. The lowest
minimum error (i.e. the best-performing model) is in bold.

Hyperparameter Value Mean Error [%] Minimum Error [%]

T Network

Layers
[10] 4.12 3.47

[10, 100] 7.42 4.73

Number of POD modes

4 4.37 4.01
6 4.74 4.12
8 4.48 3.58
10 5.29 3.47
12 4.69 3.83
18 7.84 4.48
24 8.96 5.25

Time-T Network

Layers
[10, 100, 1000] 6.81 4.45

[1000, 1000, 1000] 6.56 5.28
[1000] 11.6 7.37

Number of POD modes

4 5.94 5.18
6 6.02 4.45
8 7.04 5.24
12 8.41 5.86
18 9.83 7.52
24 12.68 9.56

Qr Network

Layers
[10] 4.43 2.66

[10, 100] 5.93 3.28

Number of POD modes

1 4.66 2.88
16 4.59 2.66
20 5.02 2.99
24 5.15 2.97
28 5.98 3.16
32 5.70 3.38

Number of second POD modes

1 8.37 8.17
2 4.06 3.43
3 3.64 2.66
4 4.30 3.28
5 4.29 2.99
7 5.57 2.88
10 6.05 3.49
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interaction between pulsatile blood flow and a curved stented coronary artery on
a beating heart: A four stent computational study. Computer Methods in Applied
Mechanics and Engineering, 350:679–700, 2019.

[79] Xiangkun Liu, Wen Zhang, Ping Ye, Qiyi Luo, and Zhaohua Chang. Fluid-
structure interaction analysis on the influence of the aortic valve stent leaflet
structure in hemodynamics. Frontiers in Physiology, page 910, 2022.
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[154] Maŕıa-Luisa Rapún and José M Vega. Reduced order models based on local pod
plus galerkin projection. Journal of Computational Physics, 229(8):3046–3063,
2010.

[155] Michel Bergmann, C-H Bruneau, and Angelo Iollo. Enablers for robust pod
models. Journal of Computational Physics, 228(2):516–538, 2009.

[156] Saifon Chaturantabut and Danny C Sorensen. Nonlinear model reduction via
discrete empirical interpolation. SIAM Journal on Scientific Computing, 32(5):
2737–2764, 2010.

[157] Kanchan Kapoor, Balbir Singh, and Inder Jit Dewan. Variations in the config-
uration of the circle of willis. Anatomical science international, 83(2):96–106,
2008.

[158] Thuan Lieu, Charbel Farhat, and Michel Lesoinne. Reduced-order fluid/struc-
ture modeling of a complete aircraft configuration. Computer methods in applied
mechanics and engineering, 195(41-43):5730–5742, 2006.

[159] I Kalashnikova, MF Barone, and MR Brake. A stable galerkin reduced order
model for coupled fluid–structure interaction problems. International Journal
for Numerical Methods in Engineering, 95(2):121–144, 2013.

[160] A Placzek, D-M Tran, and R Ohayon. A nonlinear pod-galerkin reduced-order
model for compressible flows taking into account rigid body motions. Computer
methods in applied mechanics and engineering, 200(49-52):3497–3514, 2011.

[161] Francesco Ballarin and Gianluigi Rozza. Pod–galerkin monolithic reduced or-
der models for parametrized fluid-structure interaction problems. International
Journal for Numerical Methods in Fluids, 82(12):1010–1034, 2016.

[162] Angelo Iollo, Stéphane Lanteri, and J-A Désidéri. Stability properties of pod–
galerkin approximations for the compressible navier–stokes equations. Theoretical
and Computational Fluid Dynamics, 13(6):377–396, 2000.

178



BIBLIOGRAPHY

[163] Sirod Sirisup and George E Karniadakis. A spectral viscosity method for correct-
ing the long-term behavior of pod models. Journal of Computational Physics,
194(1):92–116, 2004.
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D Fiorella, P Jabbour, E Levy, C McDougall, et al. International retrospect-
ive study of the pipeline embolization device: a multicenter aneurysm treatment
study. American Journal of Neuroradiology, 36(1):108–115, 2015.

[294] M.C. Villa-Uriol, G. Berti, D.R. Hose, A. Marzo, A. Chiarini, J. Penrose, J. Pozo,
J.G. Schmidt, P. Singh, R. Lycett, et al. @neurist complex information processing
toolchain for the integrated management of cerebral aneurysms. Interface Focus,
1(3):308–319, 2011.

[295] Norman Juchler, Sabine Schilling, Philippe Bijlenga, Vartan Kurtcuoglu, and
Sven Hirsch. Shape trumps size: image-based morphological analysis reveals
that the 3d shape discriminates intracranial aneurysm disease status better than
aneurysm size. Frontiers in Neurology, 13:809391, 2022.

[296] I. Larrabide, M. Kim, L. Augsburger, M.C. Villa-Uriol, D. Rüfenacht, and A.F.
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Stephanie Häger, Annkristin Lange, Sven Kuckertz, Stefan Heldmann, Wei Shao,
et al. Learn2reg: comprehensive multi-task medical image registration challenge,
dataset and evaluation in the era of deep learning. IEEE Transactions on Medical
Imaging, 2022.

[322] Kimberley M Timmins, Irene C van der Schaaf, Edwin Bennink, Ynte M Ruigrok,
Xingle An, Michael Baumgartner, Pascal Bourdon, Riccardo De Feo, Tommaso
Di Noto, Florian Dubost, et al. Comparing methods of detecting and segmenting
unruptured intracranial aneurysms on tof-mras: The adam challenge. Neuroim-
age, 238:118216, 2021.

[323] YD Cho, WJ Lee, KM Kim, H-S Kang, JE Kim, and Moon Hee Han. Stent-
assisted coil embolization of posterior communicating artery aneurysms. Amer-
ican Journal of Neuroradiology, 34(11):2171–2176, 2013.

197



BIBLIOGRAPHY

[324] S Asnafi, A Rouchaud, L Pierot, W Brinjikji, MH Murad, and DF Kallmes.
Efficacy and safety of the woven endobridge (web) device for the treatment of in-
tracranial aneurysms: a systematic review and meta-analysis. American Journal
of Neuroradiology, 37(12):2287–2292, 2016.

[325] P Bhogal, I Lylyk, J Chudyk, N Perez, C Bleise, and P Lylyk. The con-
tourâ€”early human experience of a novel aneurysm occlusion device. Clinical
neuroradiology, 31:147–154, 2021.

[326] Marco Viceconti, Francesco Pappalardo, Blanca Rodriguez, Marc Horner, Jeff
Bischoff, and Flora Musuamba Tshinanu. In silico trials: Verification, valida-
tion and uncertainty quantification of predictive models used in the regulatory
evaluation of biomedical products. Methods, 185:120–127, 2021.

[327] Helena E Riggs and Charles Rupp. Variation in form of circle of willis: the
relation of the variations to collateral circulation: anatomic analysis. Archives of
Neurology, 8(1):8–14, 1963.

[328] A El Khamlichi, M Azouzi, F Bellakhdar, A Ouhcein, and A Lahlaidi. Anatomic
configuration of the circle of willis in the adult studied by injection technics.
apropos of 100 brains. Neuro-chirurgie, 31(4):287–293, 1985.

[329] CM Fisher. Anatomical variations. Vasc Dis, 2:99–105, 1965.
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