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Abstract

With a long history of co-evolution, the mechanisms underlying interactions between bacteria
and their viral predators, phages, remain poorly understood. A deeper understanding of these
mechanisms would enable better design of phages for antimicrobial therapy, known as phage
therapy. This work investigated the factors driving bacterial immunity to phages, known as phage
resistance, from empirical, bioinformatic, and statistical perspectives. Empirically, the mechanisms
underlying phage resistance in Pseudomonas aeruginosa, a major pathogen in Cystic Fibrosis (CF)
lung infections, were characterised. Genetic variation in receptor biosynthesis genes associated
with resistance breadth, while the defence system repertoire associated with resistance specificity.
Bioinformatically, the pan-immune system of 456 clinical P. aeruginosa isolates from a previous
longitudinal CF study was characterised. Despite most systems being localised to variable genomic
regions, signatures of horizontal gene transfer were rare, and defence system repertoires remained
mostly unchanged over time, suggesting a broad but stable pan-immune system. Statistically, the
methods for determining nestedness in phage-bacteria infection networks (PBINs) were evaluated.
An alternative null model more accurately classified nested and non-nested PBINs, indicating that
previous nestedness analyses may need revisiting. Overall, this thesis suggests complementary roles
for receptor modification and defence system carriage in P. aeruginosa phage resistance, proposes
that the theory of frequent horizontal defence system transfer does not apply to clinical CF P.
aeruginosa isolates and recommends a more robust approach for analysing PBIN nestedness.
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Chapter 1: General introduction

1 Motivation: Pseudomonas aeruginosa infections in Cystic Fibrosis patients

1.1 P. aeruginosa infections in Cystic Fibrosis patients are hard to treat

Cystic Fibrosis (CF) is a life-shortening genetic disorder, prevalent in the Caucasian population. The disorder
is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene, resulting
in dysfunction in the maintenance of osmotic balance in epithelial surfaces (1). Approximately 1 in 3,500
newborns in Europe, where CF newborn screening is prevalent, are born with the disorder (2). Across
the world, more than 100,000 individuals are estimated to live with the disorder (3). While more than
700 disease-causing mutations have been identified (4), the most common mutation is the deletion of a
phenylalanine at position 508 (∆F508). Out of 32,100 patients in the CF Foundation Patient Registry, 85.5%
carried at least one copy of this variant (5).
The dysfunction of CFTR results in the secretion of thickened mucus (1). CF patients are thought to suffer
from frequent infections due to abnormal clearing of the thickened mucus (1). In addition, the altered pH of
the airway surface liquid may impair innate immunity function (1). Infections with Staphylococcus aureus
or Haemophilus influenzae are prominent in early life, while P. aeruginosa is associated with infections in
adolescence and adulthood (5–7). This shift is thought to be partly driven by the antibiotic therapy used
against the early colonisers (6), as well as the lung damage caused by the inflammatory response to early
infection (1).
Many patients eventually develop chronic infection with P. aeruginosa, which is associated with reduced
lung capacity and earlier onset of late-stage lung disease and mortality (6). Therefore, clinicians attempt to
delay or prevent chronic infection by exposing patients to antibacterial therapy upon initial colonisation (8).
While this may have resulted in the reduction of P. aeruginosa prevalence observed in recent years (9), it is
unclear whether these treatments improve long-term clinical outcomes (8). Once P. aeruginosa establishes
a chronic infection, patients are continuously treated with antibiotics in an effort to reduce bacterial load
(10). However, P. aeruginosa is likely to evolve resistance to the antibiotics used: many of the prevalent
isolates associated with worsened disease outcomes carry antibiotic resistance (11) and long-term studies have
found P. aeruginosa to acquire antibiotic resistance within CF patients, in part driven by hypermutators (12).
Additionally, phenotypic adaptations such as mucoidy, biofilm formation, persistence and small colony variant
formation can limit the effectiveness of antibiotics (12). Moreover, due to the spatial structure of the lung, P.
aeruginosa with differing antibiotic resistance profiles can co-exist, complicating antimicrobial susceptibility
testing and treatment (13). Recurrent and chronic infections contribute to the lung damage associated with
CF, eventually resulting in lung failure (1). Since respiratory failure is the leading cause of mortality in CF
patients (5, 7), it is important to develop treatments that eliminate pulmonary infections in CF patients.
Besides antibiotics, CF patients in select Western countries are increasingly being treated with CFTR
modulators (CFTRm) (3, 5, 7). These work to restore the function of CFTR by promoting correct protein
folding and cell trafficking or increasing the ability of the CFTR channel to open for chloride and bicarbonate
secretion (14). However, patients still experience P. aeruginosa infections, and more generally the effect of
CFTRm on lung infections remains unclear (15). Additionally, CFTRm is unavailable in most of the world,
the current costs of CFTRm make them inaccessible to many CF patients and not all CF patients carry
eligible CFTR mutations (3, 14, 16). Given the impact of P. aeruginosa infections on the lives of CF patients,
it is pertinent to develop additional treatments for the delay, and ideally prevention, of chronic P. aeruginosa
infections.
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1.2 Phage therapy may aid in the management and treatment of P. aeruginosa infections in
CF

Phages are viruses that specifically infect bacteria, relying on bacteria for their replication (17). Due to their
ability to kill bacteria as part of their replication, phages are being developed as therapeutics for a wide range
of infections, also known as “phage therapy” (18, 19). A high degree of target specificity which minimises
damage to the microbiome, the potential to penetrate biofilms, a rapid discovery process and the potential
to re-sensitise pathogens to antibiotics make phages attractive candidates for the treatment of bacterial
infections (19). Nevertheless, their application faces several hurdles, such as the limited understanding
of their interaction with the human immune system, the current absence of a well-established route to
regulatory approval and the low quality and quantity of phage therapy studies (18, 19). In the context of
CF P. aeruginosa infections, phage therapy trials are in their infancy, with only three single-patient case
reports identified by a recent systematic review (20). While the phage appear to reduce bacterial load in
the three reports (21–23), bacterial isolates with phage resistance are obtained over the course of treatment
with limited (21) or high (23) frequency. While phage resistance may hamper treatment, it is not necessarily
an unfavourable outcome, as phage resistance can sometimes promote antibiotic susceptibility or reduced
virulence (19, 24–26). Nevertheless, in addition to the need for trials with larger cohorts and standardised
treatment protocols (18, 20), there is a need to understand the ways in which P. aeruginosa adapts to phages,
which could greatly improve our ability to predict the effects of phage administration and thereby minimise
the risk of resistance evolution (27).

2 An introduction to phage-bacteria interactions

2.1 Phage resistance mechanisms break specific stages of the infection cycle

For a phage to infect a bacterium, the phage requires the bacterium to display a suitable receptor for binding,
after which it injects its nucleic acid into the host cell (Figure 1A). For some phages, this is followed by
nucleic acid replication, transcription, translation, assembly of phage components into phage progeny and
lysis to release the progeny (28) (Figure 1B-D). These phages are known as ‘obligately lytic’ (29) (Figure 1).
Some lytic phages possess the ability to incorporate their nucleic acid into the bacterial genome (Figure 1E),
after which their genome is replicated alongside the host (Figure 1F). These are known as ‘lytic, temperate’
phages, with the process of integration known as ‘lysogeny’ (29) (Figure 1). This is not a one-way street:
phages can sometimes enter their lytic replication cycles again, releasing further virions (30) (Figure 1G). In
the context of phage therapy, ‘obligately lytic’ phages are generally of interest (19). Note that not all phages
release virions via lysis. ‘Chronic’ phages extrude phages without killing the host cell (31). Similarly to lytic,
temperate phages, a subset of chronic phage strains can enter a temperate state (29). Since chronic phages
do not kill the host as part of their replication, they are generally not of interest in phage therapy (32).
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Figure 1: Lytic phages can be obligately lytic or temperate. Both types bind to the host cell and inject their
nucleic acid (A). Obligately lytic phages do not have a lysis-lysogeny decision (B) and proceed to direct the
construction and assembly of new virions (C) which are then released by lysis (D). Instead, temperate phages
can enter the lysogenic cycle (B), after which their genome is integrated into the host genome (E). The phage
genome is replicated alongside the host (F), until it is released by excision (G). The temperate phage can
then enter the lytic cycle (B), spreading new virions through lysis (C,D). Figure generated with BioRender.

Bacteria can break the stages of phage infection through modification or masking of phage binding sites
(Figure 2A), inhibition of nucleic acid injection through superinfection exclusion (Figure 2B), degradation of
phage nucleic acid (Figure 2C) or induction of lysis or growth arrest before the phage can complete phage
particle assembly (28, 33). This final mechanism is known as “abortive infection” (Figure 2D) (28). The
systems mediating the intracellular stages of infection have been surfacing over recent years, however many
more systems are left to be discovered, as well as the underlying mechanisms (34).
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Figure 2: Bacteria can resist phages at various stages of the infection cycle. A) Phage adsorption can be
prevented through modification or masking of the phage receptor. B) If the host carries an appropriate
temperate phage, nucleic acid injection can be blocked through superinfection exclusion. C) Defence systems
can cleave foreign nucleic acids. D) Abortive infection systems can trigger growth arrest or cell death, for
example thourgh membrane disruption. Figure generated with BioRender.

In the context of P. aeruginosa, mutations in biosynthesis genes for the lipopolysaccharide and Type IV
pilus (T4P) receptors, as well as masking of T4P through glycosylation, have been reported to provide phage
resistance (35, 36). Only one example of superinfection exclusion has been documented in P. aeruginosa,
with the associated mechanism remaining unknown (37).
For defence following successful injection, P. aeruginosa has been found to carry many systems per isolate,
with diversity between isolates (38, 39). Many of these systems function by degrading phage nucleic acids.
For example, many P. aeruginosa isolates carry the classical restriction-modification (RM) and CRISPR-Cas
systems. RM systems of types I-III use an endonuclease to cleave unmethylated motifs on incoming foreign
DNA, while host DNA is methylated by a methyltransferase and is thereby protected from cleavage (40). In
contrast, Type IV RM targets methylated foreign DNA, leaving unmethylated host DNA intact (40). The
CRISPR-Cas system is often referred to as “adaptive”, given the three stages through which it functions:
‘adaptation’, in which signatures of foreign DNA are stored in the genome as CRISPR spacers, ‘expression’,
in which CRISPR spacers are transcribed, processed into CRISPR RNAs (crRNAs) and loaded onto Cas
proteins, and ‘interference’, during which Cas proteins are guided by the crRNAs towards foreign nucleic
acids for cleavage (40). Many other systems that degrade nucleic acids have recently been discovered (34)
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and detected in P. aeruginosa (41), such as the Ssp and Dnd systems, however their function is often not
well understood (34).
Many abortive infection systems have been detected in P. aeruginosa (38, 39), with some also shown to offer
protection. For example, CBASS and Avs (formerly AVAST) Type V were found to protect PAO1 from a
variety of phages (41). CBASS may recognise the phage major capsid protein, followed by production of
cyclic oligonucleotides which then activate one of a variety of effectors that mediate abortive infection (34, 42,
43). Similarly, Avs senses viral proteins and mediates Abi through a variety of effectors (44). For example,
SIR2 domains, which the Type V system carries, deplete the cell of a co-enzyme essential for metabolic
reactions, NAD+ (34).
Overall, with the mechanisms behind many defence systems left to be uncovered, and most defence system
characterization having been performed in E. coli and B. subtilis (34), the mechanistic understanding of
phage defence systems in P. aeruginosa is in its infancy. Over time, a thorough mechanistic understanding
will allow for the study of the drivers of resistance in natural and clinical settings.

2.2 Defence systems are thought to spread by horizontal gene transfer

While mutation in receptor biosynthesis genes or global regulators can prevent phage binding (35), the defence
system repertoire is thought to mainly change through horizontal gene transfer (34). With many defence
systems discovered or detected in close association with mobile genetic element (MGE) genes (45–47), and
many defence systems sharing similar functional modules (34), the theory goes that MGEs are driving the gain
(through infection), modification (through recombination) and loss (due to fitness costs of MGE carriage) of
defence systems (48). By offering protection against lytic phages, MGEs can provide a fitness advantage and
promote their maintenance. For example, temporal fluctuations in resistance to an environmental phage in V.
cholerae were associated with a variable set of defence systems carried by SXT integrative and conjugative
elements (49). Beyond their own gain, MGEs can affect the acquisition of other MGEs (50). For example,
conjugative elements known as pKLC102-like elements have been found to carry CRISPR–Cas systems with
spacers matching known plasmids and prophages (51). Similarly, plasmids may employ CRISPR-Cas to
prevent other plasmids from becoming part of their host (52).
The infectivity of MGEs has been suggested as a one of the drivers of the high number of defence systems in
some genomes (48). Defence systems could also accumulate under selection for a multilayered immune system,
where multiple systems could provide broader defence (48). While this paints an exciting and dynamic picture,
the dynamics may be found to differ between different species and different environments. For one, not all
species carry many systems and many different system families: for example, B. subtilis carry relatively few
systems and H. pylori carry many systems but of relatively few families (38). Additionally, environmental
factors may tip the balance in favour of mutational resistance. For example, receptor-mediated resistance
may be favoured over CRISPR-Cas when phage abundance is high (53). Overall, with an increasing ability
to map defence systems to genomes and MGEs will come an ability to study the balance between mutational
and horizontal adaptation across genetic backgrounds, species and environments.

2.3 Bioinformatics allows for the discovery of potential defence mechanisms

In order to study phage defence mechanisms, the defence mechanisms available to bacteria need to be laid
out. The discovery of many defence systems has relied on the concept of “defence islands”: chromosomal
regions that contain relatively many defence systems and mobilome genes, flanked by house-keeping genes
(54). Such defence islands allow for a “guilt-by-association” approach, whereby genes of unknown function
that co-localise with known defence genes are tested for phage resistance capabilities (34). In P. aeruginosa,
a recent analysis discovered two defence islands, which could vary greatly in size and defence system content
across isolates (39). Acquisition of MGEs with defence systems, followed by loss of mobility through mutation,
may have given rise to defence islands (48). In line with this, some systems were detected by screening
genes of unknown function found in phages or phage satellites (47), or were found to localise to such MGEs
after discovery (55). The availability of two bioinformatics tools, PADLOC and DefenseFinder, makes it
possible to detect known systems in bacterial genomes at relative ease (38, 56). The detection of potential
receptor-mediated resistance requires an alternative approach: comparison of genetic variants in receptor
genes and global regulators to a sensitive host (35). While the detection of defence systems and receptor
modifications have usually been studied in isolation, their combined application could provide insight into
the complete defence repertoire of an isolate, allowing the drivers of phage resistance to be disentangled.
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3 Studying phage-bacteria co-evolution at a network level

3.1 Host resistance and phage counter-resistance drive co-evolution

Phages adapt to the changing landscape of host protective mechanisms, described above, with their own
counter-adaptations. In terms of adsorption, single point-mutations in tail fibre genes can expand the host
range of P. aeruginosa phages (57, 58). In a more complex example in E. coli, phages were found to respond
to loss of the LamB and OmpC receptors by switching to the OmpF receptor, followed by the host acquiring
different OmpF variants, followed by the phage adapting to those new variants (59).
Beyond adsorption, phages have been found to carry counter-adaptations to defence systems. For example,
phages may be under selection to lose recognition motifs used by the Type II restriction system (60).
Additionally, phages can carry systems that protect them from restriction, for example through masking
of restriction sites, deactivation of the host restriction endonuclease or induction of the host methylase,
such that restriction sites on the phage DNA are methylated before the host manages to cleave them (61).
Co-evolution has not stopped with anti-restriction systems, with hosts evolving their own counter-adaptations.
For example, the PARIS system induces growth arrest upon inhibition of the EcoKI Type I RM system by
the Ocr system of phage T7 (47). Similarly, inhibition of the Type I restriction endonuclease Ecoprr1 by
the phage T4 Stp system can trigger PrrC, which halts protein synthesis through tRNAlys cleavage (62).
Interestingly, phage T4 can religate the cleaved tRNAs, thereby overcoming the counter-defence mechanism
of the host (62). In addition to anti-restriction systems, phages can carry anti-CRISPR proteins, which
inhibit CRISPR function by inhibiting DNA binding, DNA cleavage or binding to the crRNA, as well as
inducing dimer formation (63).
Phages have also evolved to counter abortive infection systems. For example P. aeruginosa phages were
recently found to counter CBASS by sequestering its signalling molecule, and acquiring escape mutations
in the major capsid following experimental knockout of the sequestering mechanism (42). Overall, phages
evolve adaptations to the defence mechanisms of hosts, driving further adaptations in the hosts to maintain
resistance. This continual development of resistance and counter-resistance is at the core of phage-bacteria
co-evolution.

3.2 Two major modes of co-evolution

Classically, phage-bacteria co-evolution has been described as following one of two modes: arms-race dynamics
(ARD) or fluctuation selection dynamics (FSD) (64). In ARD, beneficial alleles sweep to fixation in hosts
and phages (64). Over time, with bacteria maintaining resistance to past phages and phages maintaining
infectivity to past hosts, broader resistance and infectivity ranges are expected (65). As such, bacteria and
phages are under directional selection for generalist resistance and infectivity, respectively. In contrast, in
FSD, a continuous cycle is expected of changing genotype frequencies: the common bacterial genotype is
susceptible to the common phage genotype, which favours a rare host genotype that resists the common
phage, which subsequently favours a rare phage that infects the newly common host (64). In contrast to
ARD, bacteria and phages are not expected to accumulate greater resistance and infectivity ranges over time
under FSD (66).
Experimental co-evolution studies have started to reveal the conditions that favour either of these modes
of co-evolution. Generally speaking, ARD is thought to be more costly due to the escalatory accumulation
of adaptations. For example, with the same host and phage, ARD was observed in lab cultures and FSD
was observed in soil (65, 66), where resistance accumulation in the soil environment was thought to be more
costly (66). In a similar vein, different co-evolutionary dynamics between different phage strains with the
same host were suggested to be driven by different costs of resistance (67). FSD was also suggested to be
more likely than ARD under lower nutrient availability (68). Interestingly, co-evolution can also include
(elements) of both modes. For example, FSD may follow ARD due to the costs of ever-increasing resistance
ranges (69). Instead, there may be multiple rounds of ARD, resulting in specialisation along different host
receptor variants (59).

3.3 The development of phage therapy may benefit from co-evolutionary predictions

Principally, the examples above highlight the difficulty in predicting co-evolutionary dynamics. However,
such predictions may be important for the development of phage therapeutics. For example, ARD-promoting
factors such as high nutrient availability (68) could be applied to the development of highly infective phages
for phage therapy (70–72). Moreover, treatment with a phage cocktail may provide better suppression of
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the co-occuring pathogen genotypes than use of a single phage, if the within-patient dynamics follow FSD
(72). FSD may also be preferred over ARD within the patient, to prevent the evolution of broadly-resistant
pathogens. Therefore, an increased understanding of factors promoting different modes of co-evolution could
aid in the development of effective phage therapeutics.

3.4 Network-level signatures of co-evolutionary dynamics

To infer whether variation in hosts, phages or experimental conditions are driving changes in co-evolutionatry
dynamics, patterns need to be identified that represent ARD or FSD. Classically, time-shift experiments
have been used, whereby phage resistance is measured against previous, contemporary and future hosts (64,
73). ARD is then represented by hosts increasing in resistance and phages increasing in infectivity over time.
Instead, FSD is represented by fluctuations in resistance and infectivity over time.
Increasingly, networks are used to infer co-evolutionary dynamics (74). These networks are referred to as
Phage-Bacteria Infection Networks (PBINs). PBINs are constructed by measuring the infectivity of a panel
of phages across a panel of bacteria (Figure 3A). Such networks can be the result of co-evolution experiments,
natural sampling or collections of phages and hosts that are not known to have had any contact before
(75). Given that ARD selects for phages with increasing host ranges and bacteria with greater resistance
ranges, a stair-like pattern is expected in an ARD network (Figure 3B). This pattern is made up of two
components: firstly, there are generalist to specialist gradients (GTSGs) in resistance ranges of hosts and
host ranges of phages. Secondly, host and resistance ranges form nested subsets. This stair-like pattern is
called “nestedness” (74). In contrast, given that FSD selects for phages that infect a subset of the population,
a “modular” pattern is expected (Figure 3C) (74). Local adaptation, whereby phages are most infective to
the hosts from their local environment, is also expected to result in a modular pattern (74).
Given that nestedness was found to increase over time with ARD and to decrease over time with FSD (76),
nestedness may be used as an indicator of ARD in PBINs. Experimental conditions that increase nestedness
may be beneficial in the development of highly infective phages. Crucially however, many nestedness metrics
exist, as well as many methods to infer statistically significant nestedness. As described in the next sections,
a critical evaluation of these methods is required before drawing conclusions on the nestedness of PBINs.
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Figure 3: The common patterns examined in PBINs. A) A random network. B) A maximally nested network.
The network contains both specialist and generalist hosts and phages. In addition, host and resistance ranges
form nested subsets. C) A modular network. Infectivity is confined to modular subsets of the network.
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4 Nestedness metrics and null models

4.1 Nestedness metrics

The concept of nestedness first arose to describe a nested occurrence pattern of species among sites (77). The
concept has also been used to describe mutualistic networks, such as those formed by plants and pollinators
(78). Only later was nestedness applied to the analysis of PBINs (74). Early application of the concept was
made possible by The Nestedness Temperature Calculator, which allowed users to quantify the “nestedness
temperature” (T) (77). T measures the extent to which infectivity falls in the top triangle of the PBIN
and resistance falls in the bottom triangle (79). This is measured through distances to resistance in the top
triangle, and infectivity in the bottom triangle, given an isocline that separates the two (79) (Figure 4A).
The T metric comes with limitations: firstly, T accounts for matrix fill, meaning that an extremely empty
or full PBIN can be highly nested (80) (Figure 4B,C). However, it is unlikely for a co-evolution experiment
following ARD to return networks showing patterns as in Figure 4B and C. Additionally, infective and
resistant interactions that are further from the isocline receive more weight in the calculation (i.e. the longer
arrow in Figure 4A carries more weight), which is not necessarily justified when analysing an interaction
network (77).
While many other metrics were later developed, only one gained popularity in PBIN analysis: Nestedness
Measure based on Overlap and Decreasing Fills (NODF) (74, 80). This measure quantifies the extent to
which a PBIN shows the following characteristics: a wide range in resistance and host range sizes, overlapping
fill in resistance ranges and overlapping fill in host ranges (80). Importantly, these features represent the
expectations for ARD co-evolution: hosts and phages acquire broader resistance and infectivity over time, with
overlaps in resistance and infectivity as hosts and phages accumulate adaptations. Nevertheless, important
results obtained with T in the analysis of PBINs, such as the notion of widespread nestedness in PBINs (75),
have not been re-examined using NODF. In the context of phage therapy development, it is crucial that our
measure of nestedness closely resembles our expectations for ARD.
Note that T and NODF calculate nestedness given binary infection data. Phage infectivity data is commonly
collected through plaque-based assays, which result in plaques or spots on petri dishes if lytic phages have
completed the lytic cycle (81). Since presence or absence of a plaque is binary, T or NODF are suitable
for the analysis of this data. Nevertheless, infectivity can also be determined using differences in optical
density, measured in liquid growth assays (81). At first, it may seem that this data lends itself to analysis
with weighted nestedness measures. For example, a weighted version of NODF exists, called WNODF
(82). In addition to the characteristics mentioned above for NODF, WNODF measures the extent to which
the infectivity in interactions involving generalists is greater than the infectivity in interactions involving
specialists (82). In other words, this metric requires that phages acquire weak infectivity to the common
host and develop stronger infectivity to that host as co-evolution progresses. This requirement does not fit
with the ARD model, in which a phage evolves the ability to infect the host that is currently most abundant,
while maintaining its infectivity to the host that was previously most abundant (65). Alternatively, growth
data could be binarised for analysis with T or NODF. Given that plaque-based assays are most commonly
performed, there are not many examples of binarisation of growth data. Nevertheless, Wright et al. set a
threshold based on the 5th percentile of a normal distribution (35). Overall, while phage infectivity is unlikely
to be binary, PBINs are usually measured in binary form, and the predictions of the ARD model are more in
line with the pattern maximised by NODF than WNODF. Future work could explore binarisation methods
for liquid growth assays, or network metrics that incorporate continuous measures of growth while being in
line with the predictions of ARD.
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Figure 4: Exemplifying the temperature metric. A) The temperature metric quantifies deviations from
"perfect" nestedness. However, perfect nestedness is dependent on matrix fill. Therefore, a highly sparse
matrix can be highly nested (B) and a near-full matrix can be maximally nested (C).

4.2 Uniform null model leads to questionable inferences

Nestedness analyses often focus on whether the PBIN is significantly nested (74). In the development of
phage therapeutics, significant nestedness may suggest that a broadly infective phage is being developed.
Within the patient, significant nestedness may suggest that the pathogen is becoming broadly resistant. To
call statistical significance, a standardised effect size (SES) can be calculated, given a particular null model
(77). A null model reshuffles the number of infective interactions among the hosts and phages, given certain
constraints on the number of interactions that each phage and host can have (77). The SES then measures
the extent to which the PBIN is more nested than a collection of random networks generated with the null
model.
The choice of null model is very important. If an inappropriate null model is chosen, the comparison of the
nestedness of the PBIN and the random networks is non-informative (83). In the context of ARD, GTSGs in
infectivity and resistance are expected to form, with overlapping infectivity and resistance ranges, given the
escalation in infectivity and resistance. Ideally, the PBIN would be compared to null matrices that preserve
any GTSG: thereby, the test would ask whether the PBIN shows greater overlap in resistance and infectivity
than expected by chance. In other words, the test would isolate the pattern of interest (83), which is the
stepwise growth in resistance and infectivity ranges.
A null model that has been widely used in the analysis of PBINs is EE, also referred to as SIM0, R00 or the
“Bernoulli random network” (75, 84–90). This model takes the number of infective interactions in the PBIN
and distributes these among the network such that every phage-host pair has the same chance of showing
infectivity (77). In other words, if 20% of phage-host pairs show infectivity in the PBIN, the EE null model
randomly selects 20% of the phage-host pairs to show infectivity in the null matrix. Therefore, any GTSG
is not preserved in the null matrices, and the overlapping fill is no longer isolated in the test (83). More
generally, this null model has been shown to have a high Type I error rate, whereby non-nested networks
are likely to erroneously be classified as nested (91). Importantly, this null model has been used to infer the
widely-cited claim that PBINs are generally nested (75). Given that conclusions reached exclusively with EE
are not to be trusted (77), this claim requires re-evaluation with a more robust null model. In the context
of phage therapy, if nestedness is to be used as a sign of ARD, it is crucial that the null model allows for
reliable distinction of nested and non-nested networks.

4.3 Choosing an alternative null model: an introduction to the Tuning-Peg landscape

The opposite of EE is the FF null model: this model completely fixes the number of interactions each phage
and host has (92). Therefore, a test with FF asks whether a PBIN has a stronger pattern of overlap in
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infectivity and resistance ranges than null networks with the same GTSG. However, FF is known to have
a high Type II error, whereby nested networks are likely to be classified as non-nested (91). Therefore,
experimental conditions or phages that drive an ARD pattern would be less likely to be discovered when
using the FF null model.
With EE and FF sitting at opposite ends in terms of maintaining GTSGs in null networks, there is a whole
suite of null models that fall in between (92). Moving away from individual null models, the Tuning-Peg (TP)
landscape visualises the effect of varying constraints on the GTSGs of hosts and phages (92). The landscape
shows the outcome of many nestedness tests, each using null models with a different level of discrepancy
in the GTSGs. Figure 5 shows three such landscapes (right column) associated with different PBINs (left
column). The bottom left cell in the landscapes shows the SES of nestedness tests with FF, while the top
right cell shows the SES of tests with EE. The cells in between have varying levels of discrepancy in host
range sizes (x-axis) and resistance range sizes (y-axis) compared to the PBIN that is being analysed.
TP landscapes show characteristic patterns with certain PBINs. For example, the TP landscape of a nested
PBIN shows significant SES values across most of the landscape, while the landscape of a random PBIN
shows non-significant SES values across most of the landscape (top and middle rows in Figure 5). An SES
greater than 1.64 is considered significant, as this is the 95th percentile of a standard normal distribution
(92). Strona et al. found that networks with a GTSG, but without overlapping fill, tended to show a gradient
across the landscape (92). Such networks have “heterogeneous marginal totals” (bottom row in Figure 5).
Strona et al. revealed two key findings (92): firstly, the TP landscape could be a tool with which to distinguish
truly nested networks from those which simply have a GTSG (i.e. nested vs heterogeneous networks). Secondly,
the landscape contains null matrices that appeared to outperform EE and FF in their ability to distinguish
nested and non-nested networks: the quasi-FF (qFF) null networks, contained in the bottom left (Figure 5).
In the context of PBIN nestedness analyses, qFF would allow for a comparison of a PBIN’s nestedness
to networks with very similar GTSGs, thereby closely matching the requirements of the test for ARD.
Additionally, visualisation of TP landscapes may allow researchers to distinguish PBINs with a true nested
pattern from PBINs that only contain a GTSG. Nevertheless, the performance of qFF has not been tested on
PBINs or systematically compared to EE. If qFF is found to outperform EE, it could be adopted in future
studies of ARD-promoting experimental conditions and in assessments of co-evolutionary dynamics within
patients undergoing phage therapy.
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Figure 5: Exemplifying the TP landscape. The left column shows examples of nested, uniform and heteroge-
neous PBINs. The right column shows the associated TP landscapes. The nested PBIN is significantly nested
(SES > 1.64, the 95th percentile of a standard normal distribution) across the whole landscape, except for
the cell with FF null matrices. The uniform PBIN is not significantly nested across most of the landscape.
The heterogeneous PBIN is only significantly nested compared to null matrices that are further away from
the bottom left corner. Notice that the collection of qFF matrices consider the nested matrix nested, while
they consider the heterogeneous matrix non-nested.
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5 Thesis overview

The proposed work investigates the interactions between bacteria and phages through experimental, bioin-
formatic and statistical means, partially with an emphasis on clinical CF P. aeruginosa. In the first data
chapter, the resistance of clinical CF P. aeruginosa isolates is measured against environmental phages. Phage
resistance is associated with receptor biosynthesis variants and defence system repertoires. This study suggests
that in the studied isolate collection, accumulation of LPS variants associates with resistance breadth towards
LPS phages, while similarity in defence system repertoire associates with similarity in resistance specificity.
In the second data chapter, the defence system pangenome of a large collection of clinical CF P. aeruginosa
isolates is characterised. This work suggests that while these isolates carry many different defence systems,
variation between defence system repertoires is rare between closely-related isolates and largely the norm
between more distantly related isolates. Additionally, the within-patient repertoire appears to remain largely
stable through time. In the final data chapter, the performance of the commonly used EE null model is
compared to that of the qFF null model on simulated and empirical PBINs. This work suggests that qFF
is more robust than EE, and that the majority of empirical PBINs studied are only significantly nested
when using the problematic EE null model. Overall, this thesis suggests that it is important to consider
defence system repertoires in light of isolate’s receptor variants, that clinical P. aeruginosa isolates may
show different defence system dynamics than seen in previous studies of other isolate collections and that
conclusions reached previously in PBIN nestedness analyses using EE need to be re-evaluated.
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Chapter 2: Estimating the association between
phage resistance and its determinants in clinical
Cystic Fibrosis Pseudomonas aeruginosa isolates

Abstract

To develop resistance to an infective phage, bacterial hosts need to either modify their recep-
tors or possess an effective defense system. This study investigated the connections between
bacterial growth in the presence of phages and these two methods of phage resistance, in P.
aeruginosa isolates obtained from the Danish Cystic Fibrosis population. Bacterial isolates
with a greater number of lipopolysaccharide (LPS) variants showed increased resistance to
LPS phages, suggesting that LPS variants contribute to resistance breadth. Additionally,
isolates with greater similarity in defence system repertoire had greater similarity in phage
resistance range, suggesting that defence systems contribute to resistance specificity. The
study also identified potential factors contributing to resistance against specific phages.
A particular variant in the rmlA gene appeared to associate with generalist resistance to
LPS phages, while a variant in the fimT gene associated with specialist resistance against
phage phiKZ. Although the presence of the druantia defense system was associated with
resistance to PNM phages, an adsorption assay suggested that the bacterial isolates resisted
PNM through receptor modification. Overall, this work suggests that in this collection of
bacteria and phages, receptor modifications and defence systems play complementary roles
in determining phage resistance.

1 Introduction

Faced with phage infection, bacterial populations can evolve resistance through two modes: surface-based
resistance and defence system-based immunity (Figure 1). Surface-based resistance alters the phage receptor,
impairing entry into the host. Conversely, defence system immunity prevents the entered phage from
completing its infection cycle. Surface-based resistance is often observed to evolve under laboratory conditions
and may be associated with resistance breadth (1–6). Nevertheless, bacteria are known to carry a diverse
set of defence systems (7), and some studies have associated fluctuations in their abundance with phage
resistance in natural environments (8, 9). Therefore, defence systems may be associated with resistance
specificity. Additionally, the fitness costs associated with these modes of resistance are thought to depend on
phage abundance, e.g. through resource availability (1), as well as the presence of host competitors in the
environment (10). While it is clear that both modes of resistance can evolve, it is largely unknown what
modes bacteria generally use, when a sample is taken from a natural environment. Is resistance mainly
mediated by intracellular immunity, as predicted by the costs of surface-based modifications, or are hosts still
able to carry surface modifications in the natural environment?

Previous work on the interactions between bacteria and phages has often considered individual phage-host
pairs. However, individual bacterial and phage strains can also be considered as members of a larger network
of bacteria and phages, known as phage bacteria infection networks (PBINs) (11). To construct a PBIN,
the infectivity of every sampled phage is tested against every sampled host. Given host genome sequences,
associations can be inferred between resistance determinants and phage resistance. For example, LeGault et
al. and Hussain et al. discovered modules in PBINs from natural environments, where resistance between
modules associated with presence of variable genomic regions containing defence system genes (8, 9). In
contrast, despite finding associations in CRISPR spacers matching co-circulating phages, Laanto et al. were
unable to associate CRISPR spacer repertoire with phage resistance (12). Nevertheless, adsorption also
did not associate with resistance, highlighting the need to map resistance determinants beyond receptor
modifications and CRISPR spacers. Additionally, given a genomically diverse set of hosts, mapping both
receptor and defence system components is required to obtain a full picture of the variation in phage resistance
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determinants. Host diversity within a sample reduces the chances of finding a single determinant of resistance,
however it opens up the opportunity to compare the relative importance of the two modes of resistance.

Beyond the importance for the evolutionary and ecological understanding of phage-bacteria interactions,
understanding the natural modes of resistance is also important for phage therapy. Phage therapy relies on
therapeutic phages being able to infect the pathogenic host (13). For this, an understanding of the modes of
resistance carried in the natural environment would be useful. Additionally, the mode of co-evolution within
the patient, following administration of the therapeutic phage, may well depend on the modes of resistance
carried by the pathogen at the start of therapy. One heavily researched pathogen in the context of phage
therapy is Pseudomonas aeruginosa, a bacterium that can chronically infect the lungs of Cystic Fibrosis (CF)
patients. In a chronic infection the pathogen is found in the majority of patient samples over a minimum
period of 12 months (14). Patients tend to acquire P. aeruginosa in childhood or young adulthood, with
the prevalence in adults over 25 being estimated as greater than 70% (15, 16). Over the patient’s life, the
pathogen is thought to undergo many genetic and phenotypic changes (17). For example, a study of 474
P. aeruginosa isolates obtained from CF patients identified mutations in genes associated with increased
antibiotic resistance, a shift towards a biofilm lifestyle and reduced virulence factor production (18). Phage
therapy might prove useful in the treatment of CF, as phages could be used in combination with antibiotics
to induce fitness trade-offs in resistance evolution (19). While the literature lacks data from completed phage
therapy trials in CF patients, individual patient reports have suggested that phage therapy can improve
patient health (20, 21).

Despite the importance of phage resistance in CF phage therapy, the modes of resistance employed by
CF pathogenic isolates are currently unknown. The research literature is rich in phage host range tests on P.
aeruginosa (22–25), in some cases using clinical isolates (26–29). These studies show that P. aeruginosa varies
widely in its resistance to phages. While it is known that the presence of intact host receptors can determine
P. aeruginosa phage susceptibility (4, 30), an important additional factor is the presence of phage defence
systems, of which P. aeruginosa is known to carry many kinds (31–33). Previous work has suggested that
32-68% of phage resistance, in a panel of 32 P. aeruginosa hosts, is driven by defence systems (32). However
this work did not attempt to characterise the receptor modifications that may have driven resistance in the
remaining cases. Moreover, while the authors found a positive association between the number of defence
systems and phage resistance breadth, the corresponding relationship for receptor modifications and phage
resistance was left uncovered. Therefore, there is scope to estimate the associations between both defence
system components and receptor modifications, and resistance, on the same isolate collection. Additionally,
understanding the resistance determinants in clinical P. aeruginosa isolates may also inform the development
of phage therapy.

The present report describes an infectivity assay using 27 phages, mostly isolated from hospital sewage
waters (4), against 24 P. aeruginosa hosts. These hosts represent 23 clone types identified by Marvig et al.
(18), with the addition of PAO1. The aim of this study was to associate phage resistance with properties
of the hosts and phage. Moreover, this study aimed to consider both defence system presence and variants
in receptor biosynthesis genes. Firstly, phage resistance was studied in light of the phage’s predicted host
receptors. Then, associations were estimated between pairwise distances in either receptor biosynthesis
genetic variants or defence system repertoire, and isolate’s full resistance range. In addition, the number
of biosynthesis gene variants or defence systems was associated with overall phage resistance. Moreover,
associations were estimated between the presence of individual genetic variants or defence systems and
resistance to individual phages. Finally, for a subset of isolates that appeared to carry a functional druantia
system, an adsorption assay was performed to rule out receptor-mediated defence. The clinical P. aeruginosa
isolates were found to vary widely in their phage susceptibility. Furthermore, the 23 isolates were found to
carry variants across most receptor biosynthesis genes. Additionally, the isolates carried defence systems
belonging to a total of 59 different system families. Isolates with more variants in LPS biosynthesis genes
were found to have higher resistance to LPS phages. Additionally, isolates with greater similarity in defence
system repertoire had greater similarity, on average, in phage resistance range. Finally, this work identified
rmlA, fimT and the druantia defence system as potential drivers of phage resistance. However, when testing
the involvement of druantia through an adsorption assay, it was found that the mode of resistance was more
likely to be receptor-mediated. Overall, this work suggests that in this collection of bacteria and phages,
receptor modifications are associated with resistance breadth while defence system carriage is associated with
resistance specificity.
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Figure 1: Broadly speaking, phages have two requirements for successful infection and propagation. Firstly,
phages require the host to carry an appropriate receptor for binding. Secondly, in addition to compatible
replication machinery, phages require that the host does not carry a defence system that can shut down their
infection.
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2 Methods

2.1 Isolates used in this work

The bacterial isolates used in this work were isolated and sequenced by Marvig et al (18), with the exception
of PAO1. Isolates were originally grouped into separate clone types if they differed by at least 10,000 SNPs
(18). The isolates used in the assay were chosen to represent separate clone types (Table 1). Thereby, the
isolates would potentially carry a wide range of phage defence systems. Although Marvig et al. identified 53
clone types, the local frozen collection was limited to isolates representing 23 clone types. While the isolates
were also chosen to be the first of their clone type isolated from a patient, some isolates originated from the
same patient. PAO1 was included, as it was a known susceptible host to the phages used in this assay (4).
PAO1 therefore acted as a positive control and as the replication host in the infectivity assay.

Table 1: The bacterial isolates used in this work. Isolates 1-23 were
isolated by Marvig et al (18). While every isolate represented a
separate clone type, some isolates originated from the same patient.
Isolates were grouped by patient and arranged by isolation date in
this table.

Isolate ID Patient Date Genotype
4 CF236 2006-08-29 DK15
23 CF236 2006-08-29 DK53
16 CF382 2007-02-19 DK32
3 CF405 2005-10-11 DK13
2 CF408 2006-08-05 DK09
7 CF422 2005-05-23 DK21
8 CF422 2009-12-01 DK22
9 CF422 2010-02-03 DK23
10 CF422 2012-08-08 DK24
6 CF455 2007-12-17 DK19
5 CF455 2011-12-07 DK18
18 CF472 2005-05-18 DK47
17 CF472 2007-01-16 DK38
19 CF472 2010-08-24 DK48
20 CF472 2011-07-02 DK49
12 CF496 2004-11-24 DK27
13 CF496 2006-03-21 DK28
14 CF496 2007-05-29 DK29
15 CF496 2007-05-29 DK30
1 CF499 2006-03-15 DK06
22 CF499 2007-07-24 DK51
21 CF499 2009-08-07 DK50
11 CF499 2012-11-20 DK26
PAO1 Non-CF patient NA PAO1

The phages used in this assay came from different sources (Table 2). Wright et al. predicted the host receptors
used by these phages through infectivity assays on PAO1 with various receptor mutations (4). While the
majority were predicted to bind to lipopolysaccharide (LPS), four phages were predicted to bind to Type IV
pilus (T4P) by their inability to infect an unpilliated PAO1 host.

Table 2: The phages used in this study. Receptors were predicted
by Wright et al (4).

Strain Receptor Morphotype Reference
phiKZ T4P Myoviridae (34)
PNM T4P Podoviridae (34)
PT7 T4P Myoviridae (34)
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Strain Receptor Morphotype Reference
14/1 LPS Myoviridae (34)
PA1P1 LPS - (4)
PA1P2 LPS - (4)
PA1P3 LPS - (4)
PA1P4 LPS - (4)
PA1P5 LPS - (4)
PA2P1 LPS - (4)
PA4P2 LPS - (4)
PA5P1 LPS - (4)
PA5P2 T4P - (4)
PA7P1 LPS - (4)
PA7P2 LPS - (4)
PA8P1 LPS - (4)
PA8P2 LPS - (4)
PA10P1 LPS - (4)
PA10P2 LPS - (4)
PA10P3 LPS - (4)
PA11P1 LPS - (4)
PA11P2 LPS - (4)
PA12P1 LPS - (4)
PA12P2 LPS - (4)
PA13P1 LPS - (4)
PA13P2 LPS - (4)
PA14P2 LPS - (4)

2.2 Infectivity assay

While phage infectivity data is usually collected through spot tests, phage infectivity can also be tested
by comparing absorbance readings in the presence and absence of phage in liquid media (4). This has the
advantages of being easier to scale up when using many bacterial and phage strains. In addition, more detail
can be obtained on the underlying growth dynamics than when observing spots on a soft overlay agar plate.
Below, the methodology of the infectivity assay is described. Unless stated otherwise, all bacterial growth
was performed at 37 ◦C, 200 RPM, in Synthetic Cystif Fibrosis Medium (SCFM) (35).

2.2.1 SCFM preparation

SCFM was created in two stages. First, a base media was prepared (“SCFM base”), which could be stored
for two weeks. When SCFM was required, a set of nutrients were added to SCFM base on the day of the
assay. The original recipe was prepared by Michael Bottery and the procedure was subsequently adapted
for this work. To create the base media, the compounds in Table 3 were added to dH2O. Additionally, the
three nutrients in Table 4 were dissolved in sodium hydroxide prior to addition to the base. The solution was
subsequently brought to pH 6.8 with HCl, filter sterilised, wrapped in foil and stored at 4 ◦C for up to two
weeks.

Table 3: Nutrients that were added directly to dH2O in creating
SCFM base. Note that ‘mass to add (g)’ assumes 1000 mL SCFM
base is being prepared.

chemical
unit name

Molecular weight
(g/mol)

final concentration
(mM)

mass to add
(g)

NaH2PO4 sodium phospate
monobasic

120.0 1.300 0.1560

Na2HPO4 sodium phospate dibasic 142.0 1.250 0.1770
KNO3 Potassium nitrate 101.0 0.348 0.0352
K2SO4 Potassium sulfate 174.0 0.271 0.0472
NH4Cl Ammonium chloride 53.5 2.280 0.1220
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chemical
unit name

Molecular weight
(g/mol)

final concentration
(mM)

mass to add
(g)

KCl Potassium chloride 74.6 14.900 1.1100
NaCl Sodium chloride 58.4 51.800 3.0300
MOPS MOPS buffer 209.0 10.000 2.0900
Ser Serine 105.0 1.450 0.1520
Glu * HCl Glutamic acid

hydrochloride
184.0 1.550 0.2840

Pro Proline 115.0 1.660 0.1910
Gly Glycine 75.1 1.200 0.0903
Ala Alanine 89.1 1.780 0.1590
Val Valine 117.0 1.120 0.1310
Met Methionine 149.0 0.633 0.0944
Ile Isoleucine 131.0 1.120 0.1470
Leu Leucine 131.0 1.610 0.2110
Orn * HCl Ornothine hydrochloride 169.0 0.676 0.1140
Lys * HCl Lysine hydrochloride 183.0 2.130 0.3890
Arg * HCl Arginine hydrochloride 211.0 0.306 0.0645
Thr Threonine 119.0 1.070 0.1280
Cys * HCl Cysteine hydrochloride 158.0 0.160 0.0252
Phe Phenylalanine 165.0 0.530 0.0876
His * HCl Histidine hydrochloride 210.0 0.519 0.1090

Table 4: Nutrients that were dissolved in NaOH solution prior to
addition to the SCFM base preparation. Note that ‘volume to add
to beaker (mL)’ assumes 1000 mL SCFM base is being prepared.

chemical
unit name

NaOH con-
centration

(M)
stock

(M)

stock
volume

(mL)

Molecular
weight

(g/mol)
mass to
add (g)

volume to add
to beaker

(mL)

final concen-
tration

(mM)
Asp Aspartic

acid
0.5 0.1 20 133 0.266 8.27 0.827

Trp Tryptophan 0.2 0.1 10 204 0.204 0.13 0.013
Tyr Tyrosine 1.0 0.1 20 181 0.362 8.02 0.802

To create SCFM on the day of the assay, solutions were prepared of the following nutrients, sterile filtered
and added to an aliquot of SCFM base (Table 5). These solutions could be stored at 4 ◦C for up to 6 weeks,
except for the Iron (II) sulfate heptahydrate solution which was always prepared on the day. In addition,
frozen aliquots of the following solutions, which were filter sterilised prior to freezing at -20 ◦C, were thauwed
and added to the base (Table 6).

Table 5: Nutrients that were added to an aliquot of SCFM base
in creating SCFM. Note that ‘stock to add to SCFM base (uL)’
assumes 100 mL SCFM is being prepared. Also note that except for
Iron (II) sulfate heptahydrate, all nutrients were stored as sterilised
stocks for up to 6 weeks at 4 ◦C. The lactic acid solution was also
brought to pH 7 with NaOH. A sterile Iron (II) sulfate heptahydrate
solution was prepared on the same day as preparing the SCFM.

chemical
unit name

stock
(M)

stock
volume

(mL)

Molecular
weight

(g/mol)

mass
to add

(g)

stock to add
to SCFM
base (uL)

final con-
centration

(mM) notes
G-
glucose

Glucose 1.0000 5 180.0 0.901 300.0 3.0000
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chemical
unit name

stock
(M)

stock
volume

(mL)

Molecular
weight

(g/mol)

mass
to add

(g)

stock to add
to SCFM
base (uL)

final con-
centration

(mM) notes
L-
lactic
acid

Lactic acid 1.0000 5 90.1 0.450 930.0 9.3000 pH stock
to 7 with
NaOH

CaCl2
* H2O

Clacium
chloride

1.0000 5 147.0 0.735 175.0 1.7500

MgCl2 Magnesium
chloride

1.0000 5 95.2 0.476 60.6 0.6060

FeSO4
*
7H2O

Iron (II)
sulfate
heptahydrate

0.0036 15 278.0 0.015 100.0 0.0036 Prepare
freshly

Table 6: Nutrients that were thawed prior to addition to an aliquot
of SCFM base in creating SCFM. Note that ‘stock to add to SCFM
base (uL)’ assumes 100 mL SCFM is being prepared. Also note
that in preparing the biotin solution, 1M NaOH was added until
the biotin dissolved.

chemical
unit name

Stock con-
centration

(mg/L)

Stock
volume

(mL)

mass
to add

(g)

volume to
add to

SCFM base
(uL)

final con-
centration

(mg/L) notes
Thiamine
* HCl

Thiamine
hydrochloride
(B1)

1000 30 0.03 100 1.000

Niacin Niacin acid (B3) 1000 30 0.03 120 1.200
Calcium
pan-
tothen-
ate

D-Pantothenic
acid
hemicalcium salt
(B5)

1000 30 0.03 25 0.250

Biotin Biotin (B9) 500 40 0.02 1 0.005 1M NaOH
added until
biotin
dissolved

2.2.2 Phage stock preparation

To create fridge stocks of the 27 phages, the phages were grown from frozen stock in the presence of PAO1.
To this end, PAO1 was grown overnight in 50 mL Falcon tubes with 10 mL LB. The next day, the overnight
cultures were diluted 1:10 in LB and allowed to grow for 60 minutes. After 60 minutes, each phage strain was
inoculated into a separate host tube. These tubes were incubated overnight. The next day, the tubes were
centrifuged at 5000 RPM for 5 minutes. The cultures were subsequently sterilised using 22 µm filters into
separate hard plastic tubes and stored at 4 ◦C.

2.2.3 Overlay agar plate preparation

To determine phage titres throughout these assays, overlay agar plates were used. These were constructed as
follows. PAO1 was grown overnight in LB. Additionally, soft LB agar was liquified and stored overnight in a
60 ◦C waterbath. The next day, PAO1 was diluted 1:10 in fresh LB and incubated for 3 hours. For the final
hour of incubation, the soft LB agar was placed in a 48 ◦C waterbath. Following incubation, culture was
added to the soft agar, at 10 mL PAO1 culture per 0.5 L soft agar. This suspension was gently swirled and
poured onto LB hard square agar plates. These plates were allowed to dry for at least 30 minutes before use
in phage titre determination.
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2.2.4 Phage titre determination

To determine the titre of the phage stocks, plaque assays were performed. Phage fridge stocks were allowed to
reach room temperature. Then, these stocks were serially diluted up to a dilution of 10−11. Additionally, one
plaque assay plate was prepared for each phage, as described above. Using a multichannel pipette, three 10
µL drops were introduced onto the plate for the dilutions 10−4 − 10−11. The spots were allowed to dry, after
which the plates were incubated overnight at 37 ◦C. The next day, plaques were counted at each countable
dilution. These were used to calculate the phage titre, as PFU

mL = mean(no. plaques) × 10 × dilution factor.

2.2.5 Phage master plate preparation

To limit variation in phage titre between phage treatments in the infectivity assay, two phage master plates
were constructed. Using phage buffer, each phage was diluted to a titre of 7.66 × 105 PFU

mL , in a volume of 1
mL, inside a deep-well plate. Two plates were constructed with the following layout (Table 7). Wells labelled
as ‘c’ only contained phage buffer (hereafter referred to as control wells).

Table 7: The phage master plate layout. Wells labelled with ‘c’
only contained phage buffer.

1 2 3 4 5 6 7 8 9 10 11 12
c c c c c c c c c c c c
1 1 1 2 2 2 3 3 3 4 4 4
5 5 5 6 6 6 7 7 7 8 8 8
9 9 9 10 10 10 11 11 11 12 12 12
13 13 13 14 14 14 15 15 15 16 16 16
17 17 17 18 18 18 19 19 19 20 20 20
21 21 21 22 22 22 23 23 23 24 24 24
25 25 25 26 26 26 27 27 27 c c c

2.2.6 Running the infectivity assay

The infectivity assay was performed across six batches (i.e. separate days). Each bacterial isolate was
replicated across two batches and twice within each batch. Additionally, PAO1 was included in all six batches
as a positive control. To initiate a batch, the allocated bacterial isolates were grown overnight from frozen
stock in 10 mL SCFM, in 50 mL Falcon tubes. The next day, the cultures were normalised to an OD600
(hereafter OD) of 0.2 with sterile water. The cultures were subsequently diluted 1:2000. Based on CFU
counts with PAO1, this would bring the titres down to approximately 3.83 × 105 CFU

mL . These diluted cultures
were used to prepare two assay plates per bacterial host (i.e. the two replicates per batch). Assay plates were
prepared using 96-well plates with moats, to minimise evaporation during the assay. All wells within an assay
plate were inoculated with 10 µL diluted host culture and 10 µL phage preparation in 180 µL SCFM. The
assay plates were prepared using a Gilson PLATEMASTER 220µL. Absorbance readings were taken at 0,
8, 20 and 27 hours using a BMG Labtech SPECTROstar Nano. Plates were incubated at 37 ◦C between
measurements.

2.2.7 Determining infectivity

To assess whether phages were able to infect bacterial hosts, the growth in the presence of phage was compared
to control growth at the 20-hour time point. This time point was chosen because it was the earliest time at
which bacteria had substantially grown. Using this data, the increase in OD (∆OD) since the 0 time point
was calculated for each well within a plate. These values were used to calculate relative OD as the ratio of
growth in a phage well and the mean growth of control wells for a particular isolate. Overall, this resulted
in 12 relative OD values for each phage-host pair, split across four assay plates in two batches. The raw
infectivity data graphs were created using the ggplot2 and patchwork packages (36, 37), and are available
at (38). The standalone infectivity matrix was visualised using the ComplexHeatmap package (39). Rows
were clustered by complete hierarchical clustering with hclust based on euclidean distances derived with
dist (40).
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2.2.8 Adsorption assay

To assess whether phage PNM was adsorbing and bursting out of hosts of interest, an adsorption assay was
performed. This assay was performed in two batches, as measuring adsorption to all isolates in one assay was
not feasible. The assay was performed once for isolates 2, 12, 15 and PAO1 and once for isolates 5, 9 and 10.
Overnight cultures of the isolates of interest were set up in 15 mL SCFM. The next day, the phage PNM
suspension was allowed to reach room temperature. Meanwhile, 18 eppendorf tubes were set aside per host.
Three tubes were labelled per time point: 0, 10, 30, 60, 120 and 180 minutes. Disposable 5 mL syringes were
attached to 0.45 µm filters and mounted onto these eppendorf tubes. Additionally, the overnight cultures
were normalised to an approximate OD of 0.2 using SCFM. These cultures were then diluted 1:10 in SCFM
and transferred into three 14 mL Falcon tubes (10 mL per tube). Then, 170 µL PNM phage suspension
was added to each tube, for a final MOI of 0.2, and mixed by inversion. At the aforementioned time points,
400 µL samples were transferred into the designated syringes and filtered. Between time points, tubes were
incubated in a 37 ◦C waterbath without shaking. Prior to sampling, tubes were mixed by inversion. Filtered
suspensions were serially diluted (up to 10−9) and the phage titre determined as above.

2.3 Bioinformatic analysis

2.3.1 Data source and pipeline construction

Genome sequences for the CF isolates were obtained from the RefSeq database (Bioproject PRJEB5438;
(18)). The bioinformatics pipeline was constructed using Snakemake (41) and executed on the university’s
Viking Cluster.

2.3.2 Assembly and annotation of a PAO1 genome

To assemble a genome of the PAO1 isolate used to grow the phages in this assay, a hybrid assembly approach
was taken. Firstly, genomic DNA was isolated using the Qiagen Genomic tip 100/G kit (Cat No. 10243).
Sequencing was performed using an Oxford Nanopore Minion flowcell (R9.4.1) by the University of York’s
Technology Facility. Raw reads were demultiplexed, trimmed and basecalled using Guppy v6.3.9 with the
super-accuracy model. Subsequently, reads were filtered using Filtlong (42), assembled using Flye (43) and
polished using Medaka (44). Following filtering of trimmed Illumina reads (kindly provided by Michael
Bottery) using Fastp (45), the output of Medaka was short-read polished using Polypolish (46). This pipeline
is available online at https://github.com/ezherman/ont-assembly-pipeline. The assembly was then
annotated with Bakta (47).

2.3.3 Determining genetic variants in receptor biosynthesis genes

To find genetic variants in the clinical CF isolates, bam files were created using snippy (48), with PAO1 as
the reference strain. Variants were called using Freebayes (49) and annotated using SnpEff (50). Variants
were filtered in two stages. First, only variants in LPS or T4P biosynthesis genes were retained using SnpSift
(50), with pathway data taken from the Pseudomonas Genome Database (51). File conversion (vcf to tsv)
was performed using the vcf2tsv from vcflib (52). Then, variants were filtered for quality. Firstly, an
isolate’s variant was required to have a read depth >= 5. Secondly, an overall variant quality of >= 690 was
required (corresponding to a threshold of 30, times 23 isolates). Thirdly, variant allele reads were required to
make up at least 50% of an isolate’s reads for any given locus. Finally, synonymous variants were discarded.

2.3.4 Defence system prediction

Defence systems were predicted using DefenseFinder (31) and PADLOC (53), through the
find-defence-systems pipeline (https://github.com/ezherman/find-defence-systems). This pipeline
ensures that hits that require manual verification are excluded, as well as deduplicating and renaming hits.
Additionally, abortive infection (abi) systems were excluded from the analysis. MOI values of 2 or lower have
previously been associated with abi in abi systems (54–57), which would have prevented protection by abi
systems from being observed in this assay.

2.3.5 Associations in pairwise distances

The associations in clusters based on resistance range and repertoires of relevant genetic features were assessed
as follows. First, pairwise eucledian distances were calculated in relative OD. Then, pairwise euclidean
distances in genetic variants and pairwise Bray-Curtis distances in defence system repertoire were calculated

https://github.com/ezherman/ont-assembly-pipeline
https://github.com/ezherman/find-defence-systems
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(58). Whether associations between distances in relative OD and distances in genetic variants/defence system
repertoire were positive was tested using one-sided mantel tests (59). Distances were calculated using dist
in R (40). Heatmaps were visualised using ComplexHeatmap (39) and the associations were visualised using
ggplot2 (37).

2.3.6 Associations between phage resistance and the number of genetic variants or defence
system families

To associate overall phage resistance with the number of genetic variants or defence system families, linear
mixed effects models were fit (60). The models were fit on the raw data, thus there were 12 data points
per phage-host combination. Separate models were fit for the number of genetic variants, splitting genetic
variants and phages by receptor. The defense system models, as well as the LPS biosynthesis gene models,
had three random intercept terms: phage, host and the interaction between phage and host. Instead,
the T4P biosynthesis gene models had phage as a fixed effect, given the limited number of T4P phages.
Non-parametric bootstrap confidence intervals were constructed using confint with 500 simulations (60).
Parametric bootstrap confidence intervals for the regression lines were obtained using the bootMer function
with 500 simulations (60). Parallelisation was achieved with the parallel, doParallel and foreach packages
(40, 61, 62).

2.3.7 Determining important LPS variants using elastic net regularisation

To determine which LPS biosynthesis genes were contributing positively to the association between phage
resistance and the number of LPS genetic variants, elastic net regularisation was performed using the glmnet
package (63). Cross-validated elastic net regularisation was performed on 1000 data subsets. Each data subset
contained 80% of the observations. The obtained coefficient estimates were visualised using the ggplot2
package (37).

2.3.8 Associations between phage resistance and genetic variant or defence system presence

To associate genetic variant presence or defence system presence with phage resistance, a linear mixed effects
model was fit for each pair of phage and genetic variant or defence system family. These models had relative
OD as the outcome variable. The fixed effect was a binary variable, indicating presence of a genetic variant
or a defence system family. A random effect for isolate ID was included. To find associations with potential
biological significance, the slope parameter p-values were compared to a bonferroni-corrected threshold, based
on an alpha of 0.05. Additionally, a minimum allele frequency of 3 was set for biosynthesis gene variants.
Separate models were fit for LPS and T4P phages and genetic variants. Models were fit with the lme4
package (60). P-values for t-tests on the slope parameters were obtained using the lmerTest package (64).
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3 Results

3.1 Determining phage infectivity

To determine phage infectivity, isolates were cultured with each phage 12 times in SCFM, across two batches
and two replicate plates per batch (i.e. three wells per plate). Infectivity was described through measuring
relative OD in the presence and absence of phage. Examples of the raw infectivity data are shown for three
hosts (Figure 2). These plots exemplify that infectivity patterns were largely consistent between batches, as
plots within the same column showed the same pattern. Plots for all isolates are available at (38).
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Figure 2: Examples of growth dynamics in the presence of phage, compared to control growth. Each data
point shows the relative OD of one well compared to the mean OD of control wells. Qualitatively, isolate 1
was inhibited by most phages, isolate 19 was inhibited by some phages and isolate 4 was not inhibited by most
phages. A relative OD below 1 suggests that growth was inhibited by presence of a particular phage. The
four panels within each column show data from different replicate plates, where the first number represents
batch and the second number represents replicate within that batch. The separate columns show data for
different time points, as labelled above each column.
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To study the range of isolates that each phage could infect, the mean relative OD was visualised for each
phage-host pair (Figure 3). Additionally, isolates were clustered by their resistance range. Finally, phages
were divided by their predicted host receptor type (4). The PBIN revealed a generalist to specialist range in
resistance, i.e. some isolates resisted all phages, some resisted none and some isolates resisted some but not
all phages. For example, the resistance range of isolate 3 appeared similar to that of PAO1, having a low
relative OD across most phages. Isolate 21 showed high relative OD with some LPS phages, a lower reltive
OD with others and a low relative OD with all T4P phages. Isolates 12, 10 and 15 appeared to be generalists,
showing a high relative OD with all the phages used in this study. While T4P phages had a greater infectivity
range than LPS phages, too few T4P phages were included in the assay for a formal comparison. Overall,
this study included a gradient of generalist to specialist phage resistance.
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Figure 3: The mean relative OD of isolates in the presence and absence of phage, for each pair of phage and
bacterial isolate. Bacterial isolates were clustered by their relative OD pattern. Phages were split by their
predicted host receptor. The PBIN showed a gradient of generalist to specialist phage resistance.

3.2 No significant association between pairwise distances in receptor biosynthesis gene
variants and resistance range

To ask whether mutations in phage receptor biosynthesis genes might have been driving phage resistance,
mutations in these genes were inferred using Snippy (48), Freebayes (49) and SnpEff (50). On average, isolates
carried variants in 15 LPS biosynthesis genes (IQR: (8.5; 21.5)) and 8 T4P biosynthesis genes (IQR: (5; 11)).
In total, 48 LPS and 24 T4P biosynthesis genes were studied. Therefore, on average isolates carried variants
in 32% of biosynthesis genes, compared to the PAO1 strain, which was sensitive to all phages used in this
work.
To assess whether LPS biosynthesis variants may have been driving resistance specificity towards LPS phages,
isolates were clustered by their variants. These clusters were then imposed on the subset of the PBIN
with LPS phages (Figure 4A). To quantify the association, a mantel test was performed on the pairwise
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distances in relative OD with LPS phages and the pairwise distances in LPS biosynthesis variant counts.
The pairwise distances were not significantly associated (r = −0.085, 95% CI = (−0.151, 0.058), p = 0.59)
(Figure 4). Additionally, a significant association could also not be concluded between distance in T4P
variants and distance in resistance to T4P phages (Figure 13). Therefore, lack of an association between
resistance distances and biosynthesis gene variant distances could not be rejected. Overall, this suggests that
when studying divergent bacterial isolates, clustering based on receptor biosynthesis gene variants does not
associate with clustering based on phage resistance.
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Mantel's r = −0.085, 95% CI: (−0.15, 0.06), p = 0.66
B

Figure 4: A matrix of LPS biosynthesis variants revealed that none of the isolates shared an identical variants
profile. A) Isolates were clustered by their LPS biosynthesis variants, showing that isolates with relatively
close variant profiles could differ greatly in their relative OD values with LPS phages. B) A one-sided mantel
test did not suggest that a positive association exists between the pairwise distances.

3.3 Isolates with more variants in LPS biosynthesis genes were more resistant to LPS phages

To assess whether isolates with more biosynthesis gene variants tended to have greater phage resistance
breadth, the association between relative OD (Figure 3) and the number of biosynthesis gene variants
was estimated. This analysis was performed separately for the pairs of LPS/T4P phages and LPS/T4P
biosynthesis genes, respectively. The model for T4P phages and genes suggested that the null hypothesis
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of no association could not be rejected (β = 0.0088, 95% CI = (−0.00095, 0.018), p = 0.061). However, the
model for LPS phages suggested that growth of hosts with a greater number of LPS biosynthesis gene variants
was less affected by LPS phage presence (Figure 5; β = 0.017, 95% CI = (0.0019, 0.031), p = 0.04). Overall,
this data suggests that differences in LPS biosynthesis gene variants in CF isolates could drive differences in
phage resistance breadth, with isolates carrying more variants showing on average less growth reduction in
the presence of phage.
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Figure 5: The mean relative OD across phages was significantly associated with the number of variants in
LPS biosynthesis genes carried by isolates. Data points show the mean relative OD for each isolate, taken
across all phages. The shaded area shows 95% parametic bootstrap intervals. Note that isolate 4 was excluded
from this model due to being an outlier, carrying 117 LPS biosynthesis gene variants (Figure 4).

To ask which LPS genes may have driven the association between resistance and number of LPS variants,
feature selection was performed using elastic net regularisation. This method aims to eliminate LPS genes
from the model that do not associate with resistance, while improving the accuracy of parameter estimates for
LPS genes that are associated with resistance. To assess the stability of this feature selection, regularisation
was performed on 1000 random subsets of the data, each containing 80% of the data. Genes that were
estimated to positively associate with phage resistance in more than 75% of data subsets were considered
potentially important for resistance. In total, 18 out of 48 LPS genes met this threshold (Figure 14). Given
their positive average coefficient estimates in models that associate LPS variant count with phage resistance,
these genes may have been drivers of LPS phage resistance breadth in this assay (Table 8). The coefficient
estimates in Table 8 indicate the estimated average increase in relative OD associated with a 1 unit standard
deviation increase in the number of SNPs within any one locus tag, while accounting for the number of SNPs
in all other locus tags. Therefore, variation in locus tags with greater parameter estimates was associated
with greater variation in relative OD.
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Table 8: The locus tags that were retained by regularisation with
positive parameter estimates in more than 75% of data subsets.

Locus
tag

Mean coefficient
estimate

Proportion of data subsets in which
this locus tag was retained Product

PA3149 0.038 1 probable glycosyltransferase WbpH
PA3153 0.022 1 O-antigen translocase
PA3154 0.005 1 B-band O-antigen polymerase
PA3159 0.008 1 UDP-N-acetyl-d-glucosamine

6-Dehydrogenase
PA3160 0.019 1 O-antigen chain length regulator
PA3242 0.158 1 temperature-regulated acyltransferase

HtrB1
PA3643 0.095 1 lipid A-disaccharide synthase
PA4406 0.138 1 UDP-3-O-acyl-N-acetylglucosamine

deacetylase
PA4457 0.047 1 arabinose-5-phosphate isomerase

KdsD
PA4517 0.020 1 conserved hypothetical protein
PA5010 0.096 1 UDP-glucose:(heptosyl) LPS alpha

1,3-glucosyltransferase WaaG
PA5011 0.106 1 heptosyltransferase I
PA5162 0.079 1 dTDP-4-dehydrorhamnose reductase
PA5163 0.129 1 glucose-1-phosphate

thymidylyltransferase
PA5447 0.015 1 glycosyltransferase WbpZ
PA5451 0.067 1 membrane subunit of A-band LPS

efflux transporter
PA5452 0.062 1 phosphomannose

isomerase/GDP-mannose WbpW
PA5453 0.232 1 GDP-mannose 4,6-dehydratase

3.4 Genetic variation in the rmlA gene may have contributed to LPS phage resistance

To assess whether individual genetic variants in LPS biosynthesis genes may have been driving resistance
to particular LPS phages, the association between relative growth and presence of a genetic variant was
estimated for every combination of phage and LPS genetic variant. After correcting for multiple testing,
none of the variants significantly associated with phage resistance (Figure 6A). However, closer inspection of
the gene with the lowest p-value associations revealed a variant with potential importance. This concerned
four isolates, which had a SNP in the rmlA gene (locus tag PA5163; amino acid position 101, Asn > Asp):
4, 9, 12 and 22. This gene is involved in the production of L-rhamnose, a component of the O-antigen
of LPS (65, 66). These isolates tended to have high relative OD values across all phages (Figure 6B).
Additionally, these SNP-carrying isolates did not uniquely share any other variants in LPS biosynthesis genes
(Table 10). Inspection of the full set of variants within the rmlA gene revealed that except for this variant,
only a frameshift mutation in the rmlA gene was associated with high relative OD across most LPS phages
(Figure 6C). This frameshift is likely to have caused a loss of function, given its position midway in the amino
acid sequence (amino acid 129 out of 293). Taken together, variants in the rmlA gene may have contributed
to generalist LPS phage resistance in the present assay.
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3.5 A missense mutation in the fimT gene may have reduced phiKZ infectivity

To assess whether individual genetic variants in T4P biosynthesis genes may have been driving resistance
to particular T4P phages, the association between relative growth and presence of a genetic variant was
estimated for every combination of phage and T4P genetic variant. After correcting for multiple testing, one
variant significantly associated with phage resistance (Figure 7A). Isolates 2, 9, 10, 15 and 18, with a Pro >
Ala mutation in position 65 of the fimT gene, tended to have a high relative OD in the phiKZ treatment
(Figure 7B). Previously, phage infectivity screens did not find fimT mutations to confer resistance to three
T4P-binding phages (67, 68). In potential agreement with these findings, the fimT variant was associated
with specialist resistance to phiKZ (Figure 7C). Finally, the isolates with this fimT variant did not uniquely
share any other variants in T4P biosynthesis genes (Table 11).
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Figure 7: A variant in the fimT gene may have been driving phiKZ resistance. A) A variant in locus tag
PA4549, position 3255738, significantly associated with resistance to one phage. Each data point shows the
p-value of a linear mixed model, estimating the association between the presence of a single genetic variant
and relative OD in the presence of a specific phage. B) Isolates with this variant only consistently had high
average relative OD in the presence of phiKZ, suggesting that this variant was associated with specialist
resistance.
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3.6 Similarity in defence subsystem repertoire was positively associated with similarity in
relative OD values

To ask whether defence systems might have been driving phage resistance, the defence subsystem repertoire of
each bacterial isolate was predicted using DefenseFinder (31) and PADLOC (53). On average, isolates carried
defence subsystems from 9 families (IQR: (4.75; 13.25)). A heatmap of this data showed a sparse matrix of
defence system presence, with many system families only present in one or a few isolates (Figure 8). In total,
76 defence subsystem families were identified. These included restriction-modification (RM), CRISPR-Cas
(Cas) and a wide range of recently discovered systems. Importantly, none of the isolates shared an identical
defence subsystem repertoire. Note that abi systems were excluded from this analysis, as the high MOI used
in the infectivity assay was unlikely to allow for resistance through abi to be detected (Figure 12, Table 9).
To assess whether overall defence subsystem repertoire was associated with resistance range, isolates were
first clustered by their defence subsystem repertoire (Figure 8A). To quantify the association between
similarity in defence system repertoire and resistance range, a mantel test was performed on the pairwise
distances in resistance range (used to construct the clusters in Figure 3) and the pairwise distances in
defence subsystem repertoire (Figure 8). The pairwise distances were significantly, albeit weakly, associated
(r = 0.187, 95% CI = (0.02, 0.34), p = 0.03, Figure 8B). Overall, this suggests that similarity in defence
subsystem repertoire contributes to predicting phage resistance specificity in these isolates.
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Figure 8: The association between pairwise distances in defence system repertoire and resistance range in
terms of relative OD. A) A sparse matrix of defence system families revealed that none of the isolates shared
an identical defence system repertoire. Isolates were clustered by their defence system repertoire. B) There
was a weak positive association in pairwise distances.

3.7 Defence system repertoire size and phage resistance breadth were not significantly
associated

To assess whether isolates with more defence systems tended to have greater phage resistance, the association
between relative OD (Figure 3) and the number of defence subsystems was estimated. After accounting for
non-independence due to experimental design, the effect of the number of subsystems was not significant
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(β = 0.019, 95% CI = (−0.006, 0.046), p = 0.18) (Figure 9). Overall, this suggests that isolates with more
defence subsystems were not on average more phage-resistant.
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Figure 9: The mean relative OD of isolates in the presence of phage was not significantly associated with
the number of defence subsystems carried by isolates. Data points show the mean relative OD for an isolate
across all phages.

3.8 An adsorption assay suggested that the druantia defence system was not driving
resistance to phage PNM

To assess whether individual defence systems may have been driving resistance to particular phages, the
association between relative growth and the presence of a defence system was estimated for every combination
of phage and defence system. This analysis suggested that the druantia defence system was providing
protection against the PNM and phiKZ phages (Figure 10). The druantia system contains a large gene with
a domain of unknown function, accompanied by 1-4 accessory genes, with some subtypes relying on nuclease
activity for phage resistance (69, 70). Isolates 2, 5 and 12 carried druantia type II, while isolate 15 carried
druantia type III. Despite this classification, the exact composition of the druantia system differed between
all isolates (Figure 15). This suggested that these different compositions shared the ability to recognise and
terminate PNM and phiKZ infections.
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Figure 10: After correcting for multiple testing, hosts with druantia were found to have higher average
relative OD than hosts without druantia in the presence of phages PNM or phiKZ. A) Each data point shows
the log(p-value) for a linear mixed effects model estimating the association between presence of one defence
system family and relative OD in the presence of one phage. B,C) The raw data for phages PNM and phiKZ,
showing higher mean relative OD in hosts that carry druantia.

While receptor modification prevents a phage from binding to a host, resistance through a defence system
still permits the phage to enter the host. Therefore, an adsorption assay was performed, to test whether
phage PNM was entering hosts carrying the druantia defence system. An adsorption assay involved adding
phage to a growing bacterial culture and frequently sampling the culture to determine phage titre. If the
phage enters the host, an early drop in phage titre is observed. If the phage is able to replicate, a subsequent
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spike in phage titre is observed. All isolates carrying druantia, as well as PAO1 and non-druantia isolates
with resistance to phiKZ/PNM were included in the assay (Figure 11). Note that while growth of isolate 9
was inhibited by phage PNM, this inhibition was only partial (Figure 10B). Therefore, it was expected that
isolate 9 would still show a drop in phage titre, followed by a reduced increase in phage titre compared to
susceptible strains, suggestive of phage entry followed by partial inhibition by druantia.
Firstly, isolates 24 and 2, which showed susceptibility to PNM in the infectivity assay, showed an increase
in phage titre over the course of the assay. This was in line with the expectation that PNM would enter
these hosts and replicate. Host 10, which showed resistance to PNM but did not carry druantia, showed a
persistent drop in phage titre, suggestive of resistance through a non-druantia defence system. A BLAST
search of isolate 10’s CRISPR spacers against the PNM genome did not reveal significant hits. The only
systems that were unique to isolate 10 were PifA and dynamins (Figure 8A, Figure 12). Since isolate 10
showed no growth inhibition in the presence of phage PNM in the infectivity assay, where the MOI was
approximately 2, it is unlikely that isolate 10 resisted PNM through PifA, which is an abi system (71). In
contrast, isolate 10 may have resisted PNM with the help of dynamins, which was shown to mediate phage
resistance through the delay of cell lysis (72).
Surprisingly, none of the druantia-carrying strains showed a drop in phage titre, suggesting that phage PNM
was not entering the hosts. Therefore, these hosts may have resisted PNM through a receptor modification.
Unfortunately this modification could not be identified, as the isolates did not uniquely share any genetic
variants in LPS biosynthesis genes (Table 12). Overall, this data suggests that despite druantia presence
significantly associating with PNM resistance, the mode of resistance was more likely to be receptor-mediated.
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Figure 11: Druantia did not appear to be the driver of resistance to PNM in druantia-carrying isolates. A) All
isolates carrying druantia, as well as PAO1 and non-druantia carrying isolates with resistance to PNM/phiKZ
were included in the assay. B) Isolates carrying druantia displayed a constant phage titre, suggestive of
receptor modification being the driver of phage resistance in these isolates. Phage titre in the absence of
druantia depended on phage susceptibility: PAO1 and isolate 2 displayed an increase in phage titre, while
isolate 10 showed a persistent drop in phage titre, suggestive of resistance through a defence system.
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4 Discussion

For phage resistance in the presence of an appropriate phage receptor, bacterial hosts require a receptor
modification or an appropriate defence system. This report examined the associations between growth under
phage presence and these two modes of phage resistance. The associations between pairwise distances in
host resistance range and receptor variant ranges were not significant. In contrast, the association between
pairwise distances in host resistance and defence system repertoire was positive. In terms of the number of
variants or systems, isolates with more LPS variants were found to have greater average resistance to LPS
phages. Out of the 48 LPS genes, the number of variants in 18 genes were predicted to positively associate
with resistance. Conversely, isolates with more defence system families were not found to have greater average
resistance to phages. This report also showed that it is possible to identify potential drivers of resistance to
specific phages. A variant in the rmlA gene may be driving generalist LPS phage resistance. Additionally, a
variant in the fimT gene may be driving specialist phiKZ resistance. While presence of the druantia defence
system was found to associate with resistance to phages PNM and phiKZ, an adsorption assay revealed
that the druantia-carrying isolates were more likely to resist PNM through receptor modification. Overall,
this report suggests that in the present isolate collection, LPS modifications were associated with resistance
breadth, while defence system carriage was associated with resistance specificity.
The infection network suggested that on average, T4P phages were infective to a greater proportion of isolates
than LPS phages. In the transition from acute to chronic CF infection, T4P-mediated twitching motility is
thought to be lost (73). The isolates studied here were all the earliest representatives of their clone types
within the local isolate collection. The earliest isolates were chosen to represent the scenario wherein an early
infection is treated with phage therapy. Future work using isolates from later time points could ask whether
these isolates show greater resistance to T4P phages. Additionally, future work could include a broader
set of T4P phages, as only four were included in the present study. Nevertheless, this work highlights the
importance of considering the changes that receptors undergo through the transition from acute to chronic
infection, as these may inform the phages applied in therapy.
This work identified that CF isolates of P. aeruginosa carry genetic variants in many of the LPS and T4P
biosynthesis genes, compared to the phage-sensitive PAO1. Nevertheless, there was no association between
pairwise distances in variant counts and pairwise distances in relative OD. However, isolates with more LPS
variants were found on average to have greater phage resistance. Out of the 48 studied LPS biosynthesis
genes, 18 consistently showed positive parameter estimates through elastic net regularisation. The analogous
association was not estimated to be significant for T4P biosynthesis genes, however this needs to be considered
in light of the limited number of T4P phages included in this study. Notably, previous analyses of the drivers
of resistance in PBINs have not described variants in receptor biosynthesis genes (8), described a sample in
which isolates did not vary in those genes (9), tested for adsorption and concluded that a defence system must
be at play (12, 74) or focused on uncovering the resistance drivers amongst phage-host pairs that were more
likely to show defence system resistance (32, 75). The present analysis suggests that in non-clonal isolates,
variation in receptor biosynthesis genes can associate with resistance breadth, highlighting the importance of
considering defence systems in the context of isolate’s receptor profile. The infectivity network in Piel et al.
suggested that phage adsorption is largely clade-specific, and downstream characterisation suggested that
differences in resistance within clades was driven by defence systems (75). Future work could expand the
present PBIN, using both clonal and non-clonal isolates from the collection (18), to test whether resistance
specificity is associated with receptor similarity between non-clonal isolates, and defence system similarity
between clonal isolates.
In an attempt to associate specific variants with phage resistance, two genes with potential importance were
identified: rmlA and fimT. A variant in the rmlA gene appeared to associate with generalist LPS phage
resistance, while a variant in the fimT gene appeared to associate with specialised phiKZ resistance. Although
the rmlA variant was not associated with a p-value below the adjusted significance threshold, the raw data
provided a compelling case for its importance.

RmlA catalyses the first step in the production of L-rhamnose, a component of the O-antigen of LPS (65,
66). This fits with the broad resistance suggested by the present data. Additionally, variants in the rmlA
gene (also known as rfbD) were previously found to allow P. aeruginosa, Pseudomonas syringae and Listeria
monocytogenes to resist phage (6, 76–78). Moreover, an rmlA SNP was previously found to confer PA10P2
resistance, without conferring complete resistance to phage 14/1 (5). This pattern was also observed in this
data (Figure 6B, panels PA10P2 and 14/1). Nevertheless, the protective effect of this rmlA variant (N101D)
could be confirmed in future work, by treating the rmlA frameshift mutation identified in this study as a
de-facto knockout and complementing it with N101D or WT rmlA. Interestingly, an rmlA variant was found
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to evolve in vitro under phage pressure in a P. aeruginosa isolate obtained from CF patients, and associated
with reduced ceftazidime resistance in addition to increased phage resistance (6). Given that the isolates with
this rmlA variant were isolated from different patients across a period of approximately five years (isolates 4,
9, 12 and 22 in Table 1), the rmlA-ceftazidime induced fitness trade-off would be worth exploring in future
phage therapy trials (79). Overall, variants in the rmlA gene may have contributed to generalist LPS phage
resistance in this study.

In contrast to rmlA, the association between the fimT variant and phage resistance was less clear based
on previous work. The fimT gene is found adjacent to the fimU gene in the prepilin gene cluster, required
for T4P biogenesis. FimU is known as a minor pilin which is incorporated into the external fibre of the
T4P (80). Unfortunately, the incorportation of FimT was not assessed in this previous study (80). While
fimT mutation has not been shown to affect twitching motility or phage sensitivity in P. aeruginosa (67, 68),
fimT overexpression could restore twitching motility and phage sensitivity in a fimU mutant (68). Moreover,
FimT shares important predicted features with FimU: a hydrophobic N-terminal region, a motif that is
involved in leader sequence cleavage by the endoprotease PilD and a C-terminal disulphide-bonded domain
(68). Nevertheless, the function of FimT is unknown (81), besides a potential role in DNA binding (82).
However, given that phiKZ requires the T4P for adsorption (4, 83), it is possible that FimT is involved in the
construction of the T4P and that the genetic variant observed here impairs phiKZ binding.

Notably, models were fit for each identified variant, rather than fitting a model for each biosynthesis
gene, precluding the possibility of estimating variant effects given other variants carried by isolates within
the same gene. Such an approach may be possible in the future with a network that involves more isolates.
Additionally, given that variants in global regulators can also drive resistance, albeit at a greater fitness
cost (4), future work could assess whether variants in regulatory genes associate with phage resistance. This
would be especially important in the present CF isolates, as P. aeruginosa is known to accumulate variants
in global regulators within the CF lung (84).
The bacteria in this study were predicted to carry defence systems from 59 different families. Many isolates
were found to carry an RM system, which agrees with a previous analysis of all complete P. aeruginosa
genomes in RefSeq (which does not include the CF isolates studied here) (31). Additionally, the sparse
distribution of most identified defence systems is in line with the patchy distribution of the ten most common
defence systems found in the same analysis (31). The association between defence subsystem repertoire and
resistance range was weak (r = 0.187) suggesting that defence subsystem repertoire is not the only driver of
phage resistance specificty in these isolates. Nevertheless, given that the range of known defence systems is
continually expanding, alongside a continually changing naming system, it will be important for future work
to re-assess the association between defence system similarity and phage resistance specificity.
Importantly, the number of defence systems was not found to significantly associate with phage resistance
breadth. This result contrasts previous findings, where resistance breadth positively associated with the
number of defence systems (32, 75). Future work could consider the diversity of the phage panel, as the
panels used in previous work may have been more diverse than the panel used here. Overall, the present data
suggests that the presence of specific defence systems, rather than the number of systems, may have been
more important in determining phage resistance in the present isolate collection.
This analysis excluded abi system families (Figure 12), due to the setup of the infectivity assay. Under the
high MOI used, it was deemed unlikely for the effects of abi to be detected, as the entire bacterial population
would be expected to abort. Note however that defence system exclusion may have been too stringent, with
the binarisation of defence systems on abi activity having been called into question (85). Assays which
lead to abi phenotypes being called may have actually been driven by phage-induced damage to the host,
leading to death by ‘mutual destruction’ (85). For example, while the DarTG system inhibits phage DNA
synthesis, the resulting host death is thought to be driven by phage-induced host chromosome degradation
(86). Additionally, there are known examples of context-dependence in abi phenotypes. For example, RM
presence can rescue the growth arrest induced by Type IV CRISPR-Cas (87). Nevertheless, given that most
of the excluded systems have not (yet) been found to act conditionally or to have phenotypes that were
actually driven by mutual destruction, it was deemed beneficial for statistical power to exclude them from
the analysis. However, in light of the high MOI complicating the analysis, future work could be performed at
a lower MOI.
An analysis of pairwise associations between defence system presence and phage resistance suggested that the
druantia system was associated with resistance to phages PNM and phiKZ. To rule out an undetected effect
of receptor modification, an adsorption assay was performed with phage PNM. Unfortunately the phage did
not appear to enter isolates carrying druantia, suggesting that these isolates were protected by a receptor
modification. Additionally, assuming that the recent discovery of an abi phenotype for druantia Type III
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applies to the present isolates (32), it would have been unlikely to detect an effect of this subsystem in the
infectivity assay with an MOI of 2. Finally, given the proposed nuclease-dependence of druantia type III
(70), this system may have been unable to mediate resistance against phiKZ, which protects its nucleic acid
through a nucleus-like compartment (88). Even if the isolates were carrying a defensive receptor modification,
the data would still be puzzling: isolate 9, which was inhibited by PNM in the infectivity assay, did not
show the expected decrease in phage titre early in the adsorption assay. In contrast, isolate 10, which was
assayed in the same batch as isolate 9, did show the expected drop in phage titre. Overall, the adsorption
assay did not provide evidence in favour of druantia providing the isolates with protection. Nevertheless, the
positive control data suggested that a repeat of the assay would be necessary in order to confidently conclude
receptor-mediated protection.
In conclusion, this study suggested that out of the factors studied, only the number of modifications in LPS
biosynthesis genes was associated with phage resistance breadth. In contrast, the range of defence subsystems
appeared to associate with phage resistance specificity. Nevertheless, given the low number of T4P phages
studied, and the infrequent overlap in defence system repertoires between isolates, future work including more
T4P phages, as well as clonal isolates in addition to non-clonal isolates, could more comprehensively assess
the importance of these modes of resistance. Finally, this work highlights the importance of considering
naturally-occuring LPS modifications in the development of phage therapeutics for CF P. aeruginosa infections.
The use of phage-antibiotic synergy, as well as the combination of T4P and LPS phages, may avoid such
modifications from protecting CF isolates from phage therapeutics.
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Figure 12: The abortive infection subsystems that were detected in this work. These systems were excluded
from the analysis, due to low chance of detecting the effects of abortive infection in the infectivity assay with
an MOI of 2.
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Figure 14: The coefficient estimates associated with each locus tag across data subsets. The proportion of
data subsets in which regularisation retained a locus tag with a positive parameter estimate is shown at the
top of the figure. Note that variant counts were standardised prior to regularisation, to avoid locus tags with
higher average variant counts being assigned greater importance in regularisation.
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different hmm models for one gene identify different variations on that gene.

Table 9: The abortive infection systems that were identified in this
work and excluded from the analysis.

system ref
Abi (89)
Avast (90)
Avs (90)
Avs (91)
CapRel (92)
CBASS (93)
DarTG (94)
Dazbog (95)
DSR (96)
Gabija (97)
Lamassu (98)
nlr (90)
PARIS (99)
PD-T4-10 (100)
PD-T4-5 (100)
PD-T4-6 (100)
PD-T7-2 (100)
PD-T7-3 (100)
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system ref
PD-T7-4 (100)
PifA (71)
Pycsar (101)
Retron (102)
sanaTA (103)
Thoeris (104)

Table 10: The number of isolates which carry a variant which is
found in all isolates with the rmlA variant of interest (4, 9, 12 and
22). This table shows that there were no other variants, besides the
variant at position 2528912, which were shared by all four isolates
and were unique to them across all bacteria.

Position Variant Locus Tag Number of occurences in other isolates
2204880 G PA5447 16
2528912 C PA5163 0
4606821 CG PA3337 4

Table 11: The number of isolates which carry a variant which is
found in all isolates with the fimT variant of interest (2, 9, 10, 15
and 18). This table shows that there were no other variants, besides
the variant at position 3255738, which were unique to them across
all bacteria.

Position Variant Locus Tag Number of occurences in other isolates
3250984 T PA4554 14
3251841 CTC PA4554 13
3255608 C PA4549 10
3255738 C PA4549 0
3255810 G PA4549 6
3255875 G PA4549 1

Table 12: The number of isolates which carry a variant which is
found in all isolates carrying druantia (5, 9, 12 and 15). This table
shows that there were no variants which were shared by all four
isolates and were unique to them across all bacteria.

Position Variant Locus Tag Number of occurences in other isolates
2204880 G PA5447 16
3294168 TG PA4517 15
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Chapter 3: Clinical Cystic Fibrosis P. aeruginosa
isolates show a broad but stable defence system

repertoire

Abstract

Defence systems are thought to be in constant flux, including in Pseudomonas aeruginosa
which is known to have a broad pan-immune system. This study investigated the defense
system repertoire of clinical cystic fibrosis P. aeruginosa isolates, following the idea that
bacteria carry different segments of a population’s pan-immune system over time. This theory
suggests that distantly-related isolates should show signs of horizontal gene transfer, and that
the defence system repertoire of lineages should be changing over time. To assess whether
these patterns held in the clinical isolates, the defense system repertoire was described,
alongside its genomic localisation, mobility, and changes within patients. The clinical isolates
possessed a diverse and open pan-immune system, hinting at the potential discovery of
more system families beyond the 82 studied here. Larger genomes tended to carry more
defense systems, however their number did not positively associate with prophage count
after accounting for genome size. Most defense systems localized to regions of genomic
plasticity. While many variable regions could be grouped into spots of putative insertion,
most spots did not appear to be defence system hotspots. These spots also revealed that
sharing multiple defense systems in the same location among distant isolates was rare, and
closely related isolates typically shared the same systems in any one location, aligning with
the stable defense system repertoires identified within patients over time. Overall, clinical CF
P. aeruginosa isolates showed a broad pan-immune system with minimal signs of horizontal
defence system movement.

1 Introduction

Over the past years, the field of phage-bacteria interactions has seen a major influx of novel defence system
discoveries (1). Defence systems protect bacteria from phage infection by degrading phage nucleic acid or by
inducing programmed cell death or dormancy (1). These defence systems have taken our understanding of
bacterial immunity from reliant on RM and CRISPR-Cas to a model of pan-immunity, where the defence
system repertoire of a bacterial community is far greater than any one of its inhabitants (2). With the
availability of tools to detect defence systems in bacterial genomes (3, 4), there is a growing interest in defence
system dynamics in natural populations (5–8). Nevertheless, studies of natural population-wide defence
system repertoires are rare, and the study of changes over time has been limited to individual genomic regions
(5–7). As of yet, our understanding of defence system evolutionary dynamics in natural populations is limited.

These previous studies of defence systems in natural environments have focused on the Vibrio genus:
Vibrio cholerae, the cause of cholera, and marine Vibrio species (5–8). These studies suggested that defence
system repertoires change over time, with closely-related isolates carrying variable genomic regions that
differ in defence systems and associated phage resistance range (5–7). While these are clear examples of the
importance of defence system movement in natural environments, their results may be specific to Vibrio
species. Firstly, Vibrio may not be very separated spatially, with sewage systems (V. cholerae) and seawater
(marine Vibrio) potentially allowing for frequent encounters between non-clonal isolates. In line with this,
Vibrio are known for their high rates of horizontal gene transfer (HGT) (9). Additionally, Hussain et al. found
little variation in phage receptors and Piel et al. found phage adsorption to be clade-specific, suggesting that
defence systems could be particularly important in Vibrio’s phage defence (5, 7). It is possible that defence
system dynamics will be different in a study system with increased spatial structure between hosts and/or
greater variation in phage receptors.

P. aeruginosa, an opportunistic human pathogen that is often found in the lungs of patients with Cystic
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Fibrosis (CF), is a major cause of morbidity and mortality (10). Crucially, CF patients are isolated when
visiting the clinic, to minimise patient to patient transmission (11). Additionally, previous work has found
receptor mutations in clinical isolates as well as in isolates evolved in vitro, suggesting that receptor-mediated
phage resistance is important for this species (12–18). Nevertheless, P. aeruginosa is known to have a
broad pan-immune system, with isolates and the species as a whole carrying many different systems (4,
19). However, the patterns of defence system gain and loss have not been studied in natural or clinical
environments. Moreover, adaptation of early P. aeruginsa isolates to the CF lung is characterised by genome
reduction (20), suggesting that acquisition of novel defence systems could be rare. These patterns are
important, as frequent transfer may have major implications for phage therapy, where resistance could be
quickly shared between isolates within a patient. Moreover, the CF pathogen presents a novel opportunity to
study the dynamics of defence systems in a natural environment, with the ability to characterise the defence
systems at clinically-relevant evolutionary timescales.

Across a Vibrio pangenome, 92% of defence systems were localised to variable genomic regions, and
defence systems were enriched in putatively mobile variable regions (7). Additionally, 91% of defence systems
in a set of 190 complete E. coli genomes were localised to variable genomic regions, with many regions
classified as putative mobile genetic elements (MGEs) (21). These anlyses suggested that out of all the MGE
types, prophages carried the most defence systems (7, 21). In P. aeruginosa, two variable genomic regions
were recently discovered that contain defence systems in approximately 84% (cDHS1) and 15% (cDHS2)
of isolates (19). In addition, examples were presented of highly similar cDHS1 regions between distant
isolates and highly diverse cDHS1 regions between near-clonal isolates. Nevertheless, Johnson et al. did not
characterise the overall proportion of systems localised to variable regions (19). Additionally, population-wide
similarities and differences in all the defence systems that are localised to variable regions are yet to be
studied in clinical populations. It is therefore unknown at what rate changes occur within such regions, and
to what extent near-clonal isolates generally differ in these regions.

Marvig et al. previously sequenced a longitudinal collection of 474 CF isolates from 34 patients over
the course of 1-10 years, providing the opportunity to study defence system dynamics in a natural and
clinically important environment (22). In this work, the defence system repertoire of these isolates is described.
Additionally, the dynamics of defence system gain and loss is studied within patients. Overall, this work
suggests that the isolates carry a broad and open pan-immune system, with the number of defence systems
associating with genome size. The number of defence systems was not found to positively associate with
the number of prophages after accounting for genome size, which is in line with the discovery of infrequent
localisation of defence systems to prophages. Nevertheless, the vast majority of defence systems are found in
variable genomic regions. Grouping the variable regions into putative spots of insertion suggests that most
regions are not hotspots specifically for defence systems. Additionally, distant isolates rarely have exactly
matching defence systems within spots, and closely related isolates rarely differ in their systems within spots.
Finally, the defence system repertoire appears to be stable through time within patients, suggesting that the
clinical isolates do not undergo high turnover or recombination of defence systems. Overall, this work sheds
light on the defence system dynamics in clinical CF P. aeruginosa, suggesting that in contrast to previous
findings, the defence system repertoire is not in major flux.
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2 Methods

2.1 Genomic data source

Nucleotide assembly, predicted protein sequence and annotation files were obtained for the collection of
clinical CF isolates from NCBI’s BioProject PRJEB5438. This project involved the longitudinal sampling of
P. aeruginosa isolates from sputum samples of 34 CF patients, over the course of 1-10 years per patient (22).
While the original sample included 474 isolates, only the 456 samples that were of sufficiently high quality to
be included in RefSeq were analysed. Marvig et al. grouped the isolates into “Clone Types”, representing
groups of isolates with less than 10,000 SNPs between each pair (22). This data was obtained from the
publication’s supplementary materials (22).

2.2 Detecting putative defence systems

Putative defence systems were predicted using PADLOC and DefenseFinder (3, 4). Their outputs were
wrangled and merged using pandas as follows (23). Firstly, predicted defence system genes were associated
with their original RefSeq locus tags. Since DefenseFinder identifies hits by their position in the provided
predicted protein sequence (.faa) file, the predicted protein sequence was used to pull the associated locus
tag from an isolate’s gbff annotation file using seqtk and biopython (24, 25). Since PADLOC identifies hits
by their start and end in the assembly, these values were used to pull the associated locus tag from an isolate’s
gff annotation file using gffutils (26). Then, systems were renamed to ensure consistency between the
programs. Commands were written to rename systems for cases where the two programs differed in naming
conventions, given the present output. For example, it was found that DefenseFinder returned capitalised
CRISPR-Cas system names with class and type/subtype designation, while PADLOC returned lowercase
names with a type annotation, even if the system was in fact a substype (e.g. CAS_Class1-Subtype-I-F
from DefenseFinder vs cas_type_I-F1 from PADLOC were renamed to cas_subtype_i-f). Subsequently,
redundant and duplicated system annotations were removed. Systems were removed if their locus tags
were included in another system annotation with the same system name and the same or additional locus
tags. For example, isolate GCF_900143905.1 was assigned ‘cas_subtype_i-f’ by DefenseFinder, with genes
Cas__cas8f_I-F_4 (locus tag BUR30_RS26530) and Cas__cas3f_I-F_1 (locus tag BUR30_RS26525).
Since PADLOC identified cas_subtype_i-f with four additional genes/locus tags (Cas1f, Cas23f, Cas8f, Cas5f,
Cas7f, Cas6f with locus tags BUR30_RS26520, BUR30_RS26525, BUR30_RS26530, BUR30_RS26535,
BUR30_RS26540, BUR30_RS26545), the DefenseFinder annotation was discarded for the isolate. Family-
level hits were also removed if a subfamily hit was available with the same or additional locus tags. For
example, DefenseFinder defined subsystems for PARIS (paris_i and paris_ii), while PADLOC returned
a family-level classification (paris). If a paris_i hit covered the same locus tags as a paris hit, the paris
hit was discarded. Moreover, PADLOC assigned “other” classifications to some systems, e.g. ‘DMS_other’.
These represented fragmented putative systems, which would require manual verification (3), and were
therefore excluded. Finally, PADLOC “phage defence candidate” (PDC) hits were also excluded due to their
unverified nature. The pipeline developed for calling, renaming and filtering defence systems can be found at
https://github.com/ezherman/find-defence-systems.

2.3 Collector’s curve analysis

To determine whether the pan-immune system was open or closed, a collector’s curve was estimated. To
estimate the curve, showing the estimated number of defence system families identified for any number of
bacterial samples, the rows in the presence-absence table of defence system families were randomly reshuffled
100 times. Then, the cumulative number of defence system families was calculcated for each reshuffled table
as a function of row index. This data, as well as the mean cumulative number of defence system families per
row index, was visualised using ggplot2 in R (27, 28).

2.4 Associating the number of defence systems with genomic features

The number of defence system families were associated with genome size, number of contigs and number of
prophage sequences using R’s glm function with the Poisson family (28). The regression lines were visualised
using the jtools package (29). Summary statistics were obtained using the summ function from jtools.
Genome size and the number of contigs were calculated using quast (30).

https://github.com/ezherman/find-defence-systems
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2.5 Detecting prophage sequences

Putative prophages were inferred using virsorter2, with a minimum length of 1500 bp and a minimum
score of 0.8 (31). To find defence systems located in prophage sequences, locus tags were extracted from an
isolate’s gff file using the start and end coordinates of prophage sequences. Given that prophage coordinates
could fall within CDS features, the final locus tag with start coordinates smaller or equal to that of the
prophage sequence was taken as the start. Likewise, the first locus tag with end coordinates greater or equal
to that of the prophage sequence was taken as the end. If the prophage start coordinates went beyond
the first locus tag of the contig, the first locus tag was taken as the start. Similarly, if the prophage end
coordinates were ahead of the last locus tag of the contig, the last locus tag was taken as the end. Locus tags
in prophage sequences were then matched up with defence system locus tags, obtained as described above. If
a defence system’s locus tags matched the contents of multiple prophage hits, the prophage which contained
the greatest proportion of the system’s locus tag was taken forward.

2.6 Visualising prophage features

To construct a persistent genome phylogeny, multiple sequence alignments were obtained for the persistent
portion of the pangenome obtained with PPanGoLIN (32). Using IQ-TREE, a phylogeny was constructed
with the NONREV+FO model from nQMaker, 1000 bootstraps with UFBoot2 and the nuclear option for msub
(33–35). The non-reversible model allowed the phylogeny to be rooted without the need for an outgroup. The
phylogeny was visualised using the ggtree package for visualising the relatedness between isolates sharing
the same prophage (36), alongside the prophage genes which were visualised with gggenes (37).

2.7 Localising defence systems to regions of genomic plasticity

To determine which defence systems were localised to variable genomic regions, suggestive of movement
by horizontal gene transfer, the panRGP module of PPanGoLIN was used (38). This module identifies
sequences of shell and/or cloud genes surrounded by persistent genes. Shell and cloud genes are found
at intermediate and low frequencies within the pangenome, respectively, with genes assigned to partitions
through a multivariate Bernoulli Mixture Model (32). PanRGP returns the locus tags associated with genes
in RGPs. The module also returns spots into which the RGPs have been clustered, where possible. The locus
tags associated with RGPs were paired with the locus tags of defence system genes, identified as described
above.
To estimate the difference in the number of systems within RGPs that were or were not on contig borders, a
generalised linear mixed model of the truncated negative binomial family was fit using glmmTMB (39). This
model had a random intercept for isolate and a fixed effect for contig border. The truncated negative binomial
family was chosen because the outcome variable, number of systems, had a minimum value of one. In addition,
a model of the truncated poisson family showed overdispersion with the testDispersion function of the
DHARMa package (40). The data was plotted using ggplot2 (27).

2.8 Identifying putative defence system hotspots

To identify putative hotspots, the number of unique defence system repertoires (ignoring surrounding genes)
was graphed against the proportion of isolates that carried any genes in the spot. Then, spots were sized by
the proportion of RGPs that contain at least one defence system. The graph was generated with ggplot2
(27). The spots corresponding to cDHS1 and cDHS2 regions were identified by the bordering MerR family
transcriptional regulator and the bordering alpha/beta hydrolase, respectively (19), after parsing the isolate’s
gff files with ape (41). Manual inspection of the remaining bordering genes of the spots that were flanked
by one of the two aforementioned genes revealed in both cases that the most abundant spot matched the
hotspot identified by Johnson et al. (19).

2.9 Characterising defence system variation within spots

To find occurences of identical systems within spots between non-clonal isolates, Bray-Curtis distances within
spots were calculated using the vegdist function from the vegan package (42). The output values were
matched with their spots using the dist_groups function of the usedist package (43). Then isolate pairs
were filtered for a Bray-Curtis distance of 0 and a phylogenetic distance greater than 0.001, based on the
observed bimodal distribution of phylogenetic distances. The frequency of identical pairs within spots was
visualised using ggplot2 (27). To find occurences of non-identical systems in near-clonal isolates, the same



66

distance data was filtered for a Bray-Curtis distance greater than 0 and a phylogenetic distance smaller or
equal to 0.001. To find cases where only one member of a near-clonal pair carried systems within a spot,
variable regions with 0 defence systems were included in the vegdist computation, followed by exclusion
of cases where both pair members carried 0 systems. Since there were no cases of near-clonal isolates
with completely different defence systems within spots, a Bray-Curtis value of 1 could be used to identify
cases where only one isolate carried systems within a spot. The relevant spots were visualised using the
ComplexHeatmap package (44).

2.10 Estimating changes in defence system repertoire size over time within clone types and
patients

To estimate whether the number of systems changed on average over time within closely-related isolates
obtained from the same patient, a generalised linear mixed model of the generalised Poisson family was
fit with glmmTMB (39). The generalised Poisson was chosen because a model of the Poisson family showed
underdispersion with the testDispersion function of DHARMa (40). Closely-related isolates were grouped
together using the “Clone Type” classification developed by Marvig et al., described under the Genomic data
source section above. The model had number of systems as the outcome variable and number of days since
the first isolation of an isolate of the same clone type from the same patient as the fixed effect. The model
also contained a random intercept for clone type, in addition to a random intercept and a random slope for
clone type within patient. If less than 5 isolates were available for a clone type within a patient, isolates
of that patient-clone type combination were excluded. In addition, Bray-Curtis distances were calculated
between the first isolate of a clone-type within a patient and subsequent isolates using the vegan package
(42). The number of systems over time was visualised using ggplot2, with generalised linear models of the
Poisson family generated by the same package to show the marginal trends within clone types (i.e. not the
exact marginal trends predicted by the model). Additionally, the Bray-Curtis distances were shown, with
straight lines connecting data of isolates of the same clone-type over time.
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3 Results

3.1 Clinical isolates carried many different defence systems

To study the defence system repertoires of clinical CF P. aeruginosa isolates, defence system presence
was predicted using PADLOC and DefenseFinder (3, 4). Following deduplication of hits and renaming of
systems, the isolates were predicted to carry defense systems belonging to 82 different families (Figure 1A).
Unsurprisingly, RM and Cas were found amongst the most abundant system families (82% RM and 56% Cas).
Interestingly, many of the most abundant system families were abortive infection systems (100% PD-T4-6;
48% CBASS; 41% Gabija). The two most prominent system families were single-gene systems: PD-T4-6
(100%) and SoFIC (89%). Most isolates appeared to be carrying between 4 and 16 defence system families
(Figure 1B), between 4 and 18 defence system subfamilies (Figure 1C) and between 5 and 22 defence systems
(Figure 1D). This suggests that these clinical isolates carried many different means of protection. Despite
the wide range of system families, a collector’s curve suggests that the pan-immune system of clinical CF P.
aeruginosa is broader than described here (i.e. an open pan-immune system), as the curve does not appear to
reach an asymptote (Figure 1E). Overall, while a few abundant systems stand out, the repertoire was mostly
made up of systems at low frequency, and the data suggests that more families are left to be discovered in
this bacterial population.

3.2 Genome fragmentation may have negatively biased defence system detection

Given the fragmented nature of some of the assemblies in this work, the association between the number
of systems and the number of contigs was estimated. If fragmentation was resulting in systems being
missed, there may be a negative association between the number of systems detected and the number of
contigs. Across the full data, and when excluding assemblies composed of more than 500 contigs, there
were positive associations between the number of contigs and the number of defence systems (Figure 1F,G)
(βnumber of contigs = 3.3 × 10−4, 95% CI: (1.3 × 10−4, 5.3 × 10−4), p-value: 0.001; βnumber of contigs, filtered =
5.5 × 10−4, 95% CI: (2.7 × 10−4, 8.3 × 10−4), p-value: 9.2 × 10−5). This suggested that fragmentation did
not negatively bias the number of defence systems identified in this work.

3.3 Clinical isolates with larger genomes carried more systems

Previous work suggested that the number of systems is associated with genome size when considering all
species with complete genomes in RefSeq (4). Additionally, the report found isolates with more prophages
on average to carry more defence systems (4). While prophage presence suggests that the host could not
protect itself from infection, prophages could also provide the host with new defence systems (45). To ask
whether the number of defence systems carried by the clinical isolates was associated with genome size and/or
the number of prophages, firstly univariate poisson GLMs were fit to the data. At this level, both variables
were positively associated with the number of systems (Figure 1H,I). However, given the positive association
between genome size and the number of prophages (Figure 1J), it was important to account for the effect of
genome size.
After accounting for genome size, the number of prophages was assigned a small negative effect (βscaled size =
0.26, 95% CI: (0.22, 0.29), p-value: 10−46; βscaled number of prophages = -0.051, 95% CI: (-0.085, -0.017), p-value:
0.0035). This suggests that after accounting for genome size, isolates with more prophages tended to have
slightly fewer defence systems. Importantly, the variance inflation factor (although operating on linear
correlation) was not sufficiently large to suggest that the effect of the number of prophages changed due to
collinearity (VIF: 1.9). Overall, this analysis suggested that isolates with larger genomes tended to carry more
defence systems, while the number of prophages was not positively associated with the number of systems
after accounting for genome size.

3.4 Defence systems were infrequently found in prophage sequences

Given the lack of a positive association between the number of prophages and the number of defence systems
after accounting for genome size, the defence system content of prophage sequences was investigated. Out of
the 2106 prophage sequences identified, 168 contained at least one defence system and a further 9 contained
defence systems partially. Out of the 5265 identified defence systems, 187 were localised to prophage sequences
and 10 had a subset of genes that were localised to prophage sequences. While Lamassu systems were the
most frequently found in prophage sequences, other systems were found in multiple prophages too (Figure 2A).
The prophage sequences did not appear to be hotspots for defence systems, as most carried only one defence
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Figure 1: Describing the defence system repertoire of clinical P. aeruginosa isolates from CF patients. A)
The frequency of defence system families varied widely within this group of isolates, with PD-T4-6, SoFIC
and RM being the most frequently found. B,C,D) Isolates generally carried many different defence system
families, subfamilies and individual systems. E) A collectors curve suggests that more families are left to be
discovered in this population. F,G) There did not appear to be a negative association between the number
of systems and genome fragmentation. H,I) Both assembly size and the number of prophages appeared to
associate positively with the number of defence systems in univariate graphs. J) The number of prophages
was associated with genome size through a poisson GLM.
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Figure 2: Describing the minority of defence systems found in prophage sequences. A) Lamassu family
systems were most frequently found in prophages. B) Regardless of whether prophage sequences were full or
partial, sequences mostly carried no more than one system. C) Although prophage sequences with multiple
systems were rare, the combination of Tiamat and RM Type IV was most frequently found.

system (Figure 2B). This was irrespective of partial or full prophage classification. Finally, although prophage
sequences with multiple systems were rare, out of the detected combinations of systems the pair of Tiamat and
RM Type IV was most frequently found (Figure 2C). This combination was found in a group of closely-related
isolates (Figure 3A,B). Alongside the defence system genes, an example of one of these prophages showed
many genes of unknown function and mobile genetic element genes (Figure 3C). Not much is known about
Tiamat, besides it being a one-gene system with an HSp90 domain alongside two domains of unknown
funciton (DUF3883) (46). Overall, some examples of system-containing prophages could be found, however
the low frequency of defence systems in prophage sequences was in line with the lack of a positive association
between the number of defence systems and the number of prophages after accounting for genome size.
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3.5 Defence systems in regions of genomic plasticity

Regions of genomic plasticity (RGPs) are defined as stretches of shell and/or cloud genes, flanked by stretches
of persistent genes (38). Since many defence systems were originally identified in variable genomic regions,
and defence systems are thought to spread by horizontal gene transfer, the localisation of defence systems
to variable regions was studied in the present clinical isolates (1). Firstly, the majority of defence systems
were found fully within RGPs, with a minority being found completely outside of RGPs, partially within
RGPs or fully across multiple RGPs (Figure 4A). Note that 58 system hits were not considered by panRGP
since the program excludes genes labeled as pseudogenes (47). Out of 23675 RGPs, 2908 contained at least
one defence system. While most of those regions contained a single system, larger collections of systems
within RGPs were also identified (Figure 4B). Note that approximately 52% of these RGPs were located
on contig borders, suggesting they may contain more systems. Moreover, the difference in mean number of
systems was significantly different between RGPs that were and were not on contig borders, suggesting the
number of systems per RGP may have been negatively biased by genome fragmentation (estimated mean
number of systems in RGPs not on contig borders: 1.62; estimated mean number of systems in RGPs on
contig borders: 1.46; p-value: 2.1 × 10−5)(Figure 4C). Overall, most defence systems were localised to variable
genomic regions, most commonly in isolation from other defence systems.

3.6 Defence system hotspots

RGPs across isolates can be grouped into regions of putative insertion, known as “spots”, by clustering RGPs
with similar flanking persistent genes together (38). Out of 2908 RGPs that contained at least one defence
system, 1305 could be assigned to a spot (45%). Note that RGPs on contig borders by definition could not
be assigned a spot, as they were only bound by persistent genes on one side. Therefore, almost all RGPs that
were not located on a contig border could be assigned a spot. To ask whether spots may represent defence
system hotspots, first the number of distinct RGPs per spot was studied. Spots varied in the number of
unique RGPs that contained defence systems (Figure 4D). Interestingly, the proportion of unique RGPs that
contained defence systems decreased with the number of unique identified RGPs, suggesting that most spots
were not specific insertion sites for defence systems (β: -0.08, 95% CI: (-0.1, -0.06), p-value: 1.6 × 10−13)
(Figure 4E).
The recently discovered core Defence system HotSpots cDHS1 and cDHS2 (19) were matched to the spots
identified by panRGP, to ask whether the hotspots were any different from the other spots. cDHS1 and
cDHS2 were identified as genomic regions flanked by core genes, within which isolates varied in defence system
repertoire (19). While no official definition of a hotspot was found in the literature, it may be defined as a
location that is occupied in many isolates with variable genes, usually with at least one defence system, and
with relatively high variability in the defence system repertoires across isolates. Such spots can be identified
by graphing the number of unique defence system repertoires against the proportion of isolates which carry
genes in a region, with points sized by the proportion of variable regions that carry at least one defence
system (Figure 4F). This graph suggested that cDHS1 was a genuine hotpot in these isolates (proportion of
variable regions that contained defence systems: 0.79, proportion of isolates that carried genes in this spot:
0.29, number of unique defence system repertoires: 12). In contrast, very few isolates that showed cDHS2
carried defence systems in the spot (proportion of variable regions that contained defence systems: 0.091,
proportion of isolates that carried genes in this spot: 0.7, number of unique defence system repertoires: 7).
The low proportion of variable regions that contained defence systems in cDHS2 was in line with the 15%
figure identified originally (19), and suggested that this may be an “ordinary” variable region, albeit one that
was present in many isolates. Interestingly, Figure 4F highlighted a spot with 11 different defence system
repertoires, found in 35% of isolates and with 35% of regions containing at least one defence system. The
proportion of RGPs within this spot that contained defence systems was between the proportions of cDHS1
and cDHS2. The spot may or may not be considered a novel, previously unidentified hotspot. Nevertheless,
this analysis suggested that cDHS1 was the only spot that could be called a defence system hotspot with
high confidence.

3.7 Spots suggested infrequent sharing of large defence system modules between non-clonal
isolates

The spots highlighted regions in which defence systems, transferred horizontally, may integrate. Under HGT,
some distantly related isolates would be expected to show the same defence systems within the same spot.
Overall, amongst all shared occurences of a spot in non-clonal isolates where both isolates carried system(s)
in the spot, 36% shared an identical repertoire, 28% shared a partially identical repertoire and 35% shared
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Figure 4: Defence systems in RGPs. A) The majority of defence systems were found in RGPs. B) The
majority of RGPs that contained defence systems, only contained one system. C) RGPs on contig borders
on average contained fewer defence systems, potentially driven by a greater frequency of single-system
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no defence systems at all. Shared repertoires were mostly limited to two single-system spots (Figure 5A).
Spot 1 accounted for most of the cases of identical systems amongst non-clonal isolates (70.5%) and partial
overlap (84.1%), with the vast majority of spots carrying SoFIC and some carrying one or two additional
systems (abiD, Lamassu, RM Type III or Septu + ietAS). Spot 58 accounted for a further 18.7% of pairs and
exclusively contained CRISPR I-F (i.e. there were no cases of partially shared defence system repertoires).
Excluding these spots, most cases showed no shared defence system repertoire (identical repertoire: 10%;
partially shared repertoire: 12%; non-identical repertoire: 78%). Overall, this data suggests that besides
two spots that often contained one or more shared systems, most spots showed non-identical defence system
repertoires amongst non-clonal isolate pairs.

3.8 Closely-related isolates mostly carried the same systems within spots, except for a few
signals of potential recent insertion

The low frequency of shared defence systems within spots between non-clonal isolates, described above, could
be a consequence of stringent segregation of patients with CF. Under HGT, (near)-clonal isolates would be
expected to show variation in defence systems within spots, suggestive of recent defence system movement.
When focusing on pairs of clonal isolates in which both carried defence systems within a spot, the vast
majority of pairs carried exactly the same systems (exactly the same systems: number of pairs = 9207, 98%;
some shared systems: number of pairs = 209, 2%; completely different systems: number of pairs = 0, 0%).
This suggested that recent defence system mobility was extremely rare in this sample set, spanning multiple
years per clone type. However, these statistics excluded cases where only one pair member carried systems
within the spot. Such cases may represent recent acquisition of defence systems, rather than recent changes
in the within-spot repertoire. In total, there were 317 pairs across six spots within which only one member of
the pair carried defence systems (Figure 5B). Within most spots, the frequency of defence system regions
was far lower than the frequency of regions without systems, suggesting that systems were recently acquired
in these spots. Overall, while clonal isolates with systems in spots usually shared their systems with other
clonal isolates, a few spots showed signs of possible recent acquisition of defence systems via horizontal gene
transfer.

3.9 Systems were rarely gained or lost within patients over time

Given the possibility that isolates were under phage selection within patients, the dynamics of system gain
and loss were investigated at the patient level. Marvig et al. previously grouped the present isolates into
‘clone types’, which were defined as groups of isolates that differed in less than 10,000 SNPs (22). Using this
data, the number of systems within closely related isolates was studied within patients over time. Absence
of a significant change in the the number of systems carried by clone types within patients over time could
not be rejected (βdays = -0.0046, 95% CI: (-0.013, 0.0035), p-value: 0.27). The raw data also showed that
for the majority of clone type and patient combinations, the average number of systems was stable over
time (Figure 6). Additionally, Bray-Curtis distances between the first isolate of a clone type within a patient
and subsequent isolates were mostly 0, indicating that the stable number of systems arose from a stable
system repertoire (Figure 6). Interestingly, Figure 6 also suggested that some within-clone type variation
in defence system repertoire size was explained by patient origin. Overall, this analysis suggested that the
defence system repertoire of P. aeruginosa isolates within patients was largely stable through time.
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4 Discussion

Defence systems are thought to be in constant flux, with bacteria harbouring different subsets of a population’s
pan-immune system over time (2). This study set out to characterise the defence system repertoire of clinical
CF P. aeruginosa isolates, its localisation to prophages and variable genomic regions, its mobility and its
changes within patients over time. The clinical isolates showed signs of a broad and open pan-immune
system, with more system families set to be detected despite 456 isolates studied here. Isolates with larger
genomes tended to carry more defence systems. In contrast, the number of defence systems did not positively
associate with the number of prophages after accounting for genome size. This was likely explained by
the small proportion of prophage sequences carrying defence systems, and the small proportion of defence
systems found in prophage sequences. The majority of systems were localised to regions of genomic plasticity
(RGPs), with most RGPs containing only one system. Grouping of RGPs into spots suggested that most
spots were not defence system hotspots, except for cDHS1 (with high confidence) and one newly identified
spot (with less confidence). Additionally, the spots suggested that sharing of more than one defence system
between distant isolates was rare within spots, and that closely related isolates almost always carried the
same systems within spots. This was in line with most clone types appearing to have a stable defence system
repertoire through time within patients. Overall, the defence system arsenal of clinical CF P. aeruginsa
isolates appeared mostly clade-specific, with little evidence for changes within patients or horizontal movement
between distantly-related isolates.

The clinical isolates were found to carry systems from 82 different families. Notably, the collector’s curve
did not show signs of reaching an asymptote, suggesting that further systems are to be identified in clinical
CF isolates. This is in line with the collector’s curve generated previously across isolates of the Pseudomonas
genus (19). While data from Tesson et al. suggested that the number of defence systems was greater in 6
Mb genomes than in 5Mb genomes, with no difference between genomes of 6 Mb and those greater than
6Mb, their model was fit across all RefSeq species in their sample set. In the present analysis, the number of
systems appeared to associate with genome size, given a range of approximately 6 to 7.5 Mb. While this might
suggest that P. aeruginsa are particularly good at accumulating defence systems, in Vibrio the association
between the number of defence systems and genome size vanished after accounting for strain phylogenetic
relatedness (7). If genome size variation is low between closely-related CF P. aeruginosa isolates, future work
accounting for phylogenetic relatedness may find that the effect of genome size disappears.

The present analysis detected numerous defence systems at high abundance. Of note, all isolates were
estimated to carry the PD-T4-6 system, a single-gene abortive infection system with unknown function
(48). Additionally, approximately 89% of isolates were estimated to carry SoFIC, which also is a single-gene
system with unknown function (46). Strikingly, both systems were found at higher abundance than the RM,
CRISPR-Cas, Gabija and CBASS systems, which were previously considered the most abundant systems in
P. aeruginosa (4, 19). PD-T4-6 and SoFIC were recently found in similar abundances across a 100-isolate
panel of clinical P. aeruginosa isolates (49). However, given the risk of false-positives when identifying
single-gene systems, future work could assess the ability of these hits to provide phage resistance, as well as
their variation within P. aeruginosa. Also of note, the RloC system was discovered 15 years ago (50) and
was identified in approximately 36% of isolates, however it has not yet been reported in P. aeruginsa. This
system is activated through detection of double-stranded breaks, after which tRNA molecules are cleaved
to halt translation (51). Its prominence in the clinical isolates suggests that this system is important for
abortive infection in the clinical isolates, however this too is a single-gene system which may suffer from a
risk of false-positive identification.

Previous work has suggested that across bacterial species, isolates with more prophages carry more
defence systems (4). However, this association appeared to be limited to isolates with up to 6 prophages,
with isolates with more prophages grouped together (4). In this work, where many isolates were estimated
to carry more than 6 prophages, the number of systems were not positively associated with the number of
prophages after accounting for genome size. In contrast, a small negative association was found. While this
may suggest that isolates with fewer defence systems are less able to protect themselves from prophages, the
small effect size warrants further analysis on a larger data set. In line with the lack of a positive association,
very few prophages carried defence systems, and only a small proportion of defence systems were found in
prophages. This is in contrast with previous Vibrio and E. coli pangenomes, where prophages frequently
carried defence systems and where they were the MGE type most enriched in defence systems (7, 21). Notably,
70% of prophage genes were found to be lost in the present isolate collection over time within patients (20).
Gabrielaite et al. also found plasmids to be rare in the isolate collection, which appeared to be a property of P.
aeruginsa more generally (20). Future work could estimate the proportion of systems localised to integrative
and conjugative elements (ICEs) and Integrative Mobilizable Elements (IMEs), which have previously been
found to carry defence systems (6, 21), as well as transposons (21), which are prominent in P. aeruginosa
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(52).
To ask whether defence systems tended to be located in variable genomic regions, RGPs were identified

using the panRGP module of PPanGGOLiN (32). While most defence systems were localised to RGPs,
RGPs containing more than one or two systems were rare. Unfortunately the average number of systems in
RGPs was significantly associated with whether the RGP was on a contig border, suggesting that genome
fragmentation negatively biased the number of systems that were found within RGPs. Additionally, it is
possible that larger RGPs, carrying more systems, were more likely to be on contig borders. Future work
could ask whether larger defence system RGPs are found when using less fragmented long-read assemblies.
Additionally, future work could apply the panModule function of PPanGGOLiN, to ask whether systems
tend to co-occur in variable regions, suggestive of synergism (53, 54). Either way, the localisation of most
defence systems to variable regions was in line with the same finding in Vibrio and E. coli (7, 21). However,
given the small proportion of RGPs that contained defence systems, this data suggests that defence systems
made up a small part of the variable genome of clinical P. aeruginsa, unlike one Vibrio species where defence
systems made up a large part (5).

To ask whether RGPs may have been localised to hotspots, RGPs were grouped into putative spots
of insertion using the panRGP module of PPanGGOLiN (32). The fragmented nature of the assemblies
precluded many RGPs from being clustered into spots, as the panRGP module required matching persistent
genes on both RGP borders for clustering. Future work using long-read assemblies may assign more RGPs to
any one spot. Nevertheless, most RGPs that were not on contig borders could be clustered into a spot. The
data suggested that defence system hotspots were rare. Firstly, the proportion of RGPs containing defence
systems decreased with the number of different RGPs. Secondly, when considering the proportion of isolates
carrying a spot, the number of different defence system repertoires within the spot, and the proportion of
RGPs that contained defence systems, only the recently discovered cDHS1 appeared to be a hotspot (19).
The present analysis probably identified more spots than Johnson et al. for two reasons. Firstly, Johnson et
al. selected putative flanking genes by manual inspection of a gene co-occurence network, while panRGP
automated this process. Secondly, Johnson et al. grouped variable regions which had a single matching gene
on each border together, while panRGP clustered RGPs together if either their first flanking genes were of
the same gene family or two out of their first three flanking genes were of the same gene family. Crucially,
the present analysis highlights the need to evaluate the definition of a ‘hotspot’. Johnson et al. defined two
regions as hotspots, although only one of the regions contained defence systems in most of their isolates
(cDHS1: 84%, cDHS2: 15%) (19). The present analysis suggests that cDHS2, with its low proportion of
RGPs containing defence systems and its total number of unique defence system repertoires, was more likely
to be a “regular” spot. Future work could consider the variables proposed here on a larger genomic data
collection, to develop a formal definition of a defence system hotspot.

The finding that defence systems within spots varied little between closely-related isolates, and rarely
fully overlapped between distant isolates (with the exception of two spots that mostly carried single systems),
suggests that the clinical isolates were not frequently exchanging defence system modules during chronic
infection of the CF lung. However, this finding needs to be considered given that the majority of spots only
carried single systems. Since some of the isolates of different clone types were isolated from the same patient,
future work could assess whether the few occurences of identical spots between distant isolates correspond to
isolates that were obtained from the same patient.

A unique feature of the present isolate collection was that closely related isolates were obtained from the
same patient over time, allowing for defence system dynamics to be studied at a microevolutionary scale.
Surprisingly, in contrast to previous findings of defence systems in flux in Vibrio species (5–7), the defence
system repertoire of clone types within patients was on average stable through time. Both in terms of the
number of systems, as well as Bray-Curtis distance from the first detected isolate. Future work characterising
the phage diversity of sputum samples over time could reveal whether this diversity is low, which would
suggest that selection for novel defence systems is low. Additionally, given that P. aeruginosa undergoes
many changes in phage receptor genes within the CF lung (55), it is possible that receptor modifications
are driving phage resistance in this environment. Finally, clinical CF isolates are possibly exposed to fewer
defence systems, given the relatively closed nature of the human lung in comparison to the sewage and
ocean environments of Vibrio (5–7). Nevertheless, given the diversity of defence system repertoires between
more distantly-related isolates, it is possible that defence systems are more frequently gained and lost in the
natural environment (56), from which patients are likely to acquire the pathogen (57). Future work could
longitudinally sample P. aeruginsa from soil or water reservoirs, to ask whether the defence system repertoire
changes over time in these non-clinical environments.
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Chapter 4: Robust statistical methods suggest that
a minority of empirical phage-bacteria infection

networks are nested

Abstract

The interactions between bacteria and phages are often studied at a network level, generating
Phage-Bacteria Infection Networks (PBINs). These PBINs could reveal how the bacteria
and phages are interacting and co-evolving, in part through the nestedness of the network.
In a nested network, only generalist phages infect bacteria with broad resistance profiles.
Additionally, specialist phages only infect bacteria with narrow resistance profiles. This is
thought to arise from arms-race dynamics (ARD) co-evolution, in which bacteria and phages
acquire increasing levels of resistance and infectivity, respectively. While nestedness analyses
have often been performed with the Temperature metric (T), alongside the Equiprobable-
Equiprobable null model (EE), this combination does not allow for an informative or reliable
test. The effect of applying more robust combinations of nestednesness metrics and null
models is yet to be studied in the context of PBINs. In this work, the performance of the T
and NODF metrics is characterised, alongside the EE and qFF null models, on simulated
networks. The NODF and qFF combination is shown to more accurately classify simulated
networks as nested or non-nested than the T and EE combination. Additionally, the NODF
and qFF combination is used to suggest that the majority of empirical PBINs from a previous
meta-analysis are not significantly nested. Overall, this work calls for the adoption of NODF
and qFF in the analysis of PBINs. This work also suggests that empirical PBINs should no
longer be assumed to generally contain a nested pattern. These findings are important for
the understanding of phage-bacteria co-evolution: this work suggests that NODF and qFF
are preferable for inference of ARD in PBINs, and that many PBINs that were previously
inferred to have ARD dynamics instead have generalists and specialists without a strict
overlap in interactions.

1 Introduction

Ever since the initial reports of co-evolution between bacteria and phages, their interactions have been studied
at the level of single bacterium-phage pairs. This has led to important discoveries, such as the phenomenon of
directional selection for increased resistance and infectivity (1). Increasingly, individual bacterial and phage
strains are also considered as members of a larger network of bacteria and phages, known as phage-bacteria
infection networks (PBINs) (2). Studying interactions at the network level allows for processes such as local
adaptation (3, 4), clade-specificity (5) and fluctuating selection (6) to be discovered in natural and clinical
environments. In experimental systems, networks have allowed the dependence of co-evolutionary dynamics
on resource availablity to be uncovered (7), as well as suggesting that phage-bacteria interactions over time
are not limited to one of arms-race or fluctuating selection dynamics (8).

Given the complex patterns that can emerge in PBINs, their study relies on network metrics to distinguish
pattern from noise (2). Nestedness quantifies the degree to which a network contains a spectrum of generalists
to specialists, with the interactions of specialists forming subsets of the interactions of generalists (2, 9)
(Figure 1A). The metric has been used to describe interactions between plants and pollinators or seed
dispersers, predators and prey, species and habitats and host and parasites (10). Within the context of
phage-bacteria interactions, nestedness is thought to be the consequence of arms-race dynamics (ARD)
co-evolution (2). In this mode, bacteria continuously evolve novel ways to prevent phage infection, resulting
in a gradient from generalists (infected by most phages) to specialists (infected by few phages). Phages
continuously evolve ways to overcome the new defences, resulting in a gradient of specialists (infecting few
hosts) to generalists (infecting most hosts). There is interest in uncovering the conditions that promote ARD,
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as this mode could be used to cultivate generalist phages for use as therapeutics, in what is known as “phage
therapy” (11). The overlapping resistance and infectivity ranges, arising from the escalation in resistance and
infectivity, is what distinguishes an ARD network from a network that simply contains a range of generalists
and specialists. This latter network is known as having “heterogeneous marginal totals” (12) (Figure 1B).
Nestedness has been reported in oceanic phage-bacteria communities (3), in soil phage-Rhizobium networks
(4) and in Vibrio and their temperate phages isolated from fish and oysters (5). Additionally, a meta-analysis
of 38 PBINs of various sizes and sources suggested 27 of these networks to be nested (13).

A commonality between all these applications is the need for a nestedness metric and a null model with
which to assess statistical significance. While many nestedness metrics exist (14), the nestedness Temperature
(T) and the Nestedness Metric based on Overlap and Decreasing Fill (NODF) have commonly been used with
PBINs (2–4, 7, 13, 15–20). To determine statistical significance, the null model first generates randomised
versions of the original network under certain constraints (9, 21). Then the nestedness of the original network
is standardised using the null nestedness values, returning a standardised effect size (SES), with which
statistical significance can be determined.

Choosing the right constraints is imperative for meaningful biological inference (22). For example, the
commonly used Equiprobable-Equiprobable (EE) null model reshuffles interactions in the network without
preserving host and infectivity range sizes (9, 21). Recall that nestedness consists of a generalist to specialist
pattern, as well as overlapping resistance and infectivity ranges. Using EE, the hypothesis test asks: “is the
PBIN significantly more nested than similar networks without any generalist to specialist ranges in resistance
and infectivity?”. Instead, consider the Fixed-Fixed (FF) null model (9, 21). This model retains host and
phage range sizes in the null matrices. Therefore, only the degree to which ranges overlap vary in the null
matrices. The hypothesis test therefore asks: “does the PBIN have significantly more overlap in resistance
and infectivity range sizes than null matrices with the same range of generalists and specialists?”.

Since overlapping fill is a key expected consequence of ARD, the FF null model allows for more informative
biological inference. Nevertheless, many previous PBIN nestedness analyses have relied on the EE null model
(3, 4, 15–19), including the widely cited notion that most PBINs are nested (13). As a consequence, it is
unknown whether their significant results arose from a truely nested pattern, or only from having ranges of
generalists and specialists. Given the breadth of resistance and counter-resistance mechanisms that bacteria
and phages can employ (23), respectively, a non-nested generalist to specialist pattern would generally be an
unsurprising result.

Despite allowing for a more informative hypothesis test, the FF null model is not perfect. Namely, a
truely nested network is likely to be classified as non-nested using this null model (i.e., it has a high Type II
error rate) (21). In an attempt to move beyond the use of single null models, Strona et al. developed the
“Tuning Peg” (TP) algorithm (12). This method generates a variety of null models, which differ in the degree
to which they preserve the distribution of host and resistance range sizes of the original network. The null
matrices range from the aforementioned EE to FF in terms of restrictiveness. Interestingly, null matrices
with near-fixed row and column totals, coined quasi-FF (qFF) matrices, were found to distinguish nested
networks and networks with heterogeneous marginal totals (12).

Nevertheless, the applicability of qFF to PBIN nestedness analysis is still to be determined. Firstly,
Strona et al. did not quantify error rates for this null model. Additionally, the method was tested on square
networks (i.e. the same number of phages and hosts) with column and row numbers varying between 15
and 100. Empirical PBINs are often smaller, and rarely square (13). Therefore, while qFF promises to be
more robust than EE, its applicability to PBIN nestedness analysis remains to be verified. If qFF was found
to distinguish nested and non-nested PBINs well, it would allow researchers to ask: “does the PBIN have
significantly more overlap in resistance and infectivity range sizes than null matrices with a very similar range
of generalists and specialists?”. This, combined with the potential of good statistical properties, would make
qFF a strong contender for the main null model to use in PBIN nestedness analysis.

While the objective is often to determine whether a PBIN is significantly more nested than null matrices,
it is also possible for PBINs to be significantly less nested than null matrices. This is known as anti-nestedness
(24). There are various patterns that can underly anti-nestedness. One such pattern is “non-inclusive sets”,
in which bacteria resist phages with infectivity ranges greater than the phage which infects them (24, 25).
Another such pattern is the “perfect checkerboard”, which can be rearranged to show two compartments (24,
25). In analyses of PBINs, compartmentalisation can be of interest, as it can be a marker of local adaptation
or fluctuating selection dynamics (FSD) (2, 3) (Figure 1C). In local adaptation, phages can evolve to be more
infective on local hosts than on hosts from other populations (26). In FSD, phage selection drives cycling in
the abundance of host genotypes, which drives a lagged cycle of abundance in phage genotypes (27). Crucially,
FSD is non-directional, meaning that resistance and infectivity ranges are not expected to grow over time.
While Almeida-Neto et al. described anti-nestedness for specific types of compartmentalisation (24), it is
currently unknown whether anti-nestedness is a general property of compartmentalised networks. Additionally,
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the behaviour of qFF on compartmentalised matrices has not been characterised. Since compartmentalisation
is expected to occur under local adaptation or FSD, it is important to understand whether anti-nestedness
can be used as one of the markers for these dynamics.

In this work, the performance of T and NODF are compared using the EE and qFF null models. Random,
nested, heterogeneous and compartmentalised networks are simulated, with size and fill appropriate to
empirical PBINs. To ask which of the four metric-null model combinations can best characterise PBINs, these
combinations are applied to simulated networks. Then, the PBINs from Flores et al. (13) are re-analysed
using these four method combinations. Overall, this work shows that the NODF and qFF combination
is the most reliable. Additionally, this work suggests that the majority of empirical PBINs in the Flores
collection cannot be considered nested, when using robust methodology. Finally, this work highights the
need to reconsider the conditions under which ARD are expected, and whether nestedness would be a good
indicator of this dynamic.
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Figure 1: Patterns of interest in PBINs. A) In the nested pattern, hosts and phages exist along a continuum
of generalists to specialists. In addition, the interactions of specialists form subsets of the interactions of
generalists. B) In a PBIN with heterogeneous marginal totals, hosts and phages exist along a continuum of
generalists to specialists without the interactions of specialists forming nested subsets of the interactions of
generalists. C) In a modular PBIN, phage-bacteria interactions are clustered.
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2 Methods

2.1 Overview

Broadly speaking, this work consisted of five stages (Figure 2). A brief overview is given here, before further
details are outlined below.

In the first stage, 100 PBINs of four types were simulated: uniform (completely random, given network
size and fill), heterogeneous (with generalist to specialist ranges in hosts and phages, but no nested subsets),
nested and compartmentalised (Figure 2A). In addition, the PBINs analysed by Flores et al. were obtained
from the publication’s supplementary files (13).

In the second stage, null networks were obtained for each of the 437 PBINs (Figure 2B). Since the TP
algorithm returned 5 qFF null matrices per run, the algorithm was run 50 times per PBIN to generate 250
qFF null matrices (Figure 2B1). Additionally, the EE function was run 250 times for each PBIN (Figure 2B2).

In the third stage, standardised effect sizes (SESs) were calculated for each PBIN (Figure 2C). First,
raw nestedness was calculated with NODF and NT (Figure 2C1). Then, four SES values were calculated,
following all possible combinations of nestedness metric and null model (Figure 2C2). An SES adjusted the
raw nestedness value (e.g. NODF) by the nestedness values of all null networks (e.g. 250 qFF networks),
thereby measuring how different the nestedness of the PBIN was from the nestedness of the null networks.
An SES above 1.64 was taken as significant nestedness and below -1.64 as sigificant anti-nestedness, given the
95th and 5th percentiles of the standard normal distribution, respectively.

In the fourth stage, the proportion of nested, non-nested and anti-nested PBINs were visualised for each
of the five PBIN types, in addition to estimating an average effect (Figure 2D).

Finally, two quality control analyses were performed (Figure 2E). First, the association between SES,
network size and network fill was measured across the different types of simulations (Figure 2E1). Second,
the proportion of unique qFF null networks was calculated for each PBIN type (Figure 2E2).

All PBINs used in this work, alongside their nestedness metrics and null nestedness distributions, can
be viewed online (28). PBINs were simulated, analysed and visualised in R and the workflow was managed
using Snakemake (29, 30).
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Figure 2: An overview of the methods employed. A) PBINs were either simulated or obtained from a previous
meta-analysis. B) Then, qFF and EE null networks were simulated for each PBIN. C) These null networks
were used to calculate standardised effect sizes (SESs) for each combination of nestedness metric and null
model. D) Next, these SES values were analysed to ask whether PBINs were on average nested, non-nested or
anti-nested across each of the four SES combinations. E) Finally, two quality control analyses were performed.
The association between SES, matrix fill and matrix size was estimated (E1). In addition, the proportion of
unique qFF null matrices was visualised as a function of matrix size (E2).
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2.2 Simulation of theoretical infectivity matrices

Theoretical infectivity matrices were generated as follows. The number of rows and columns of a matrix
were drawn from a uniform distribution with bounds of 5 and 25. The fill of the matrix was drawn from a
uniform distribution with bounds of 0.2 and 0.8 (as in (12)). Given these matrix properties, a set of three
matrices was produced: one with uniform marginal totals (“U”, i.e. a completely random matrix), one with
heterogeneous marginal totals (“H”, i.e. a matrix with diverging row and column totals but without imposed
overlapping fill) and one with nestedness (“N”). U and H matrices were generated equal (U) and unequal
(H) probability sampling with R’s sample function (31). In contrast, N matrices were generated through a
nestedness maximisation procedure.
Specifically, U matrices were generated by sampling positive matrix cells (given the matrix size and fill) with
equiprobable cell weights. That is, if the matrix was drawn to have 20 cells and a fill of 0.5, 10 cells would be
randomly sampled to be positive. In contrast, H matrices were generated by sampling positive matrix cells
(given the matrix size and fill) with variable cell weights. Row weights and column weights were obtained by
sampling from an exponential distribution, with a rate drawn from a uniform ditribution with values between
1 and 2 (as in (12)). Cell weights were then obtained by multiplying row and column weights. Finally,
positive matrix cells were sampled using these weights. Drawing row and column weights from exponential
distributions ensured that the set of H matrices was likely to contain entries with high, intermediate and low
row and column fill. R’s sample function employed inverse transform sampling (31). Therefore positive cells
were drawn sequentially, with the probability of a cell being positive being proportional to its weight, given
the weights of all other remaining cells.
N matrices were generated by a sequential swap procedure. Starting with an H matrix, positive and zero
cells were swapped, with only swaps that increased the NODF metric being retained. Swapping was repeated
until 2000 sequential swaps did not increase NODF. 100 sets of matrix properties (i.e. size and fill) and
associated theoretical matrices were simulated. Since the downstream TP algorithm involved division by row
and column totals to calculate row and column discrepancies, the theoretical matrices were constrained to
having non-empty rows and columns (12). Cell weights were sampled using the R functions sample and rexp
and NODF was calculated using the vegan package in R (31, 32).
In addition, 100 compartmentalised matrices were simulated (“C”). First, 105 compartmentalised matrix
specifications were simulated with fill between 0.2 and 0.8. Out of these, 100 specifications were sampled,
ensuring a uniform distribution of matrix fill. To simulate the matrix specifications, the number of rows
and columns of a matrix were drawn from a uniform distribution with bounds of 5 and 25. Additionally,
the number of modules was drawn from a uniform distribution with bounds of 2 and the smallest dimension
of the matrix. Thus, a matrix with 6 rows and 10 columns could have 2 to 6 modules. Each module had a
minimum of one row and one column, with additional rows and columns separately drawn from a multinomial
distribution, with weights separately drawn from an exponential distribution with a rate parameter of 4.
The heterogeneous weights ensured that some matrices contained large modules, which were required to
include high-fill compartmentalised matrices in the drawn matrix specifications. After sampling 100 matrix
specifications with a uniform fill distribution, these matrices were generated by following the specification of
modules (i.e. module cells were filled and non-module cells were left empty). Sampling was performed using
R’s runif and rexp functions (31).

2.3 Experimental data processing

Experimental data was obtained from the supplementary materials of Flores et al. (13). Flores et al. provided
one Excel file with 38 sheets, each containing one PBIN. These sheets were split into separate csv files using
the pandas library (33). These csv files were processed using tidyverse packages (34), including the removal
of empty rows and columns. This is required for the TP algorithm, which involves division by row and column
totals to calculate row and column discrepancies (12). Importantly, division by 0 causes the algorithm to
fail. Since the network from Kudva et al. had a fill of 1 after removing empty rows, it was excluded from
the analysis (35). The complete fill of this network prevented it from being randomised, and therefore the
significance of its nestedness could not be determined.

2.4 Construction of the null matrices

For each PBIN, the TP algorithm was run 50 times, resulting in 250 qFF null matrices. Note that the five
qFF matrices from a single TP run are structurally independent (12), preventing the need to run the TP
algorithm 250 times. The TP algorithm was executed using the R script provided by Strona et al. (12), with
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a grid increment of 10. This work was parallelised using the foreach, parallel and doParallel packages
(31, 36, 37). The qFF matrices, defined here as cells (0, 0.2), (0.1, 0.2), (0.2, 0.2), (0.2, 0.1) and (0.2, 0), were
extracted from the TP objects using the igraph package (38). 250 EE null matrices were generated using
the EE function provided by Strona et al. (12).

2.5 Calculation of nestedness effect sizes

To measure nestedness, two metrics were used in this work: nestedness temperature (T) and nestedness
metric based on overlap and decreasing fill (NODF) (39, 40). Since T decreases with increased nestedness,
NT = 100 − T was used in this work (as in (13, 40)). Both metrics were computed using the vegan package
(32). For each combination of PBIN and null matrix type (EE or qFF) a standarised effect size was calculated
as SES = x−µ

σ , where x is the NT or NODF value of a PBIN, µ is the mean NT or NODF value of the 250
null matrices and σ is the standard deviation of the NT or NODF distribution in the null matrices (12). To
determine whether a PBIN was nested, non-nested or anti-nested, its SES was compared to the bounds of
the 90% confidence interval of a standard normal distribution (analogous to a one-sided hypothesis test). An
SES greater than 1.64 indicated nestedness, an SES less than -1.64 indicated anti-nestedness and an SES
between these bounds indicated non-nestedness. To obtain p-values for significant average nestedness and
anti-nestedness, one-sided t-tests on the standardised effect size were performed with µ = 1.64 and µ = -1.64,
respectively. To obtain p-values for significant non-nestedness, equivalence tests with bounds (-1.64, 1.64)
were performed using the TOSTER package (41).

2.6 Association between SES, size and fill across simulation types

To assess whether SES was associated with size and fill across simulation types, this data was both visualised
with simple linear regression models and analysed through linear mixed modelling. Simple linear regression
plots were generated using ggplot2 (42). Two linear mixed models were fit using the lme4 package (43). The
first model was fit to the SES data of non-compartmentalised matrices, with SES as the outcome variable
and predictor variables for scaled size, scaled fill, null model, nestedness metric, simulation type and their
interactions. Since each set of size and fill generated one uniform, one heterogeneous and one nested matrix,
and each matrix was analysed with two null models and two nestedness metrics, the model included a random
intercept for each set of size and fill (with 12 data points per group). The second model was fit to the SES
data of compartmentalised matrices with the same set of predictor variables, excluding simulation type. This
model also included a random intercept for each set of size and fill (with 4 data points per group). Parameter
estimates and p-values were obtained with the lmerTest package (44) by re-fitting the same model for each
combination of nestedness metric and null model (and simulation type, in the case of non-compartmentalised
matrices), with the reference levels set to the nestedness metric and null model (and simulation type) of
interest.

2.7 Association between the proportion of qFF null matrices that were unique and matrix size

To assess how the proportion of qFF null matrices that were unique varied along matrix size, this data was
visualised with scatterplots generated with ggplot2 (42) for each matrix source. Uniqueness was determined
using R’s unique function (31). Uniqueness was visualised prior to reordering of null matrices, as well as after
reordering by the NODF or T functions (nestednodf and nestedtemp functions from the vegan package (32),
respectively). The NODF algorithm reorders matrices by arranging their columns and rows by decreasing
marginal totals (40). In contrast, the T algorithm reorders matrices through an algorithm that aims to
minimise T (i.e. maximise NT) (32, 45).

2.8 Visualisation of PBINs and null nestedness distributions

Each PBIN was visualised using the ggplot2 package (42). In addition, distributions of nestedness values in
the null matrices were visualised for each PBIN across all combinations of null models and nestedness metrics.
These distributions were visualised using the ggplot2 package (42), with the nestedness of the original PBIN
and its SES marked on the plots. These visualisations are available online (28).
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3 Results

3.1 Across all null model and nestedness metric combinations, uniform matrices were
significantly non-nested

To assess the ability of qFF and EE to characterise random matrices as non-nested, nestedness tests were
performed on uniform matrices (U). In U matrices interactions were allocated to matrix cells with equal
probability. As a consequence, every “phage” and “host” combination had an equal probability of being
positive. Since the simulation did not involve creating marginal totals or overlapping fill, U matrices were not
expected to show nestedness.

Firstly, the proportion of nested, anti-nested and non-nested matrices was calculated according to each
combination of null model and nestedness metric. Across all combinations, the majority of matrices were
non-nested, with 7% or less of matrices being classified as significantly nested (Figure 3). In addition, the mean
SES values were statistically equivalent to 0 (“p-value non-nested” in Table 1). Overall, these results show
that both qFF and EE were able to characterise U matrices as non-nested, irrespective of nestedness metric.
Nevertheless, the qFF combinations classified a greater proportion of networks as non-nested compared to
EE combinations.
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Figure 3: The distributions of standardised effect sizes across nestedness metrics and null models for the
simulated uniform matrices. Percentages indicate the percentage of simulated matrices that were classified as
anti-nested, non-nested or nested based on their SES. Across all combinations, the majority of matrices were
correctly classified as non-nested. Nevertheless, qFF did classify more PBINs as non-nested than EE, across
both nestedness metrics.
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Table 1: Across both metrics and null models, the mean standardised effect size was statistically equivalent
to 0 (p-value non-nested < 0.05).

metric null
model

mean
ses

CI
low

CI
high

t
statistic df p-value

nestedness

p-value
non
nested

p-value
anti
nestedness

NT EE -0.111 -0.32 0.0987 -16.6 99 1 1.26e-26 1
NT qFF -0.131 -0.32 0.0578 -18.7 99 1 2.43e-29 1
NODF EE 0.128 -0.0832 0.3390 -14.2 99 1 5.15e-26 1
NODF qFF 0.146 -0.000776 0.2940 -20.2 99 1 3.54e-37 1

3.2 The NODF and qFF combination reliably identified nested matrices as nested

To assess the ability of qFF and EE to characterise nested matrices as nested, nestedness tests were performed
on nested matrices (N). These were generated by a sequential swapping procedure which maximised the
NODF of a given random matrix. As a consequence, N matrices were expected to be more nested than most
alternative “infectivity” patterns given the number of “phages”, “hosts” and “interactions”.

Firstly, the proportion of nested, anti-nested and non-nested matrices was calculated according to each
combination of null model and nestedness metric. While most combinations classified at least 95% of matrices
as significantly nested, the NT and qFF combination only considered about 65% significantly nested (Figure 4).
Nevertheless, all combinations showed significant average nestedness (“p-value nestedness” < 0.05 in Table 2).
Overall, all methods could reliably identify nested matrices as nested. However, the reduced proportion
of networks that were significantly nested under qFF and NT reflected the differing definitions underlying
NT and NODF: the nested matrices, which were generated by maximising NODF, did not always carry a
significant NT score with qFF.
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Figure 4: The distributions of standardised effect sizes across nestedness metrics and null models for the
simulated nested matrices. Percentages indicate the percentage of simulated matrices that were classified as
anti-nested, non-nested or nested based on their SES. Across all combinations, the majority of matrices were
correctly classified as nested. However, the combination of NT and qFF was somewhat prone to classifying
nested networks that were generated by maximising NODF as non-nested.

Table 2: Across all metric and null model combinations, nested simulated matrices were on average significantly
nested (p-value nestedness < 0.05).

metric null
model

mean
ses

CI
low

CI
high

t
statistic df p-value

nestedness

p-value
non
nested

p-value
anti
nestedness

NT EE 6.83 6.22 7.45 16.70 99 8.71e-31 1.000 1
NT qFF 1.77 1.69 1.85 3.14 99 0.00113 0.999 1
NODF EE 11.90 10.50 13.40 14.50 99 1.76e-26 1.000 1
NODF qFF 2.43 2.34 2.51 17.70 99 1.19e-32 1.000 1

3.3 Only with EE was there an erroneous significant nestedness effect in matrices with
heterogeneous marginal totals

To assess the ability of qFF and EE to characterise matrices with varying range sizes but without overlapping
ranges as non-nested, nestedness tests were performed on matrices with heterogeneous marginal totals (H).
In H matrices, the probability of a “phage” and “host” interacting depended on their respective infectivity
and host range sizes, simulated with weights drawn from an exponential distribution. Therefore, while the
host and infectivity range sizes were simulated to vary as in a nested network, any overlap in fill would arise
by chance.

Firstly, the proportion of nested, anti-nested and non-nested matrices was calculated according to each
combination of null model and nestedness metric. Note that by chance, a subset of networks from this
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simulation will have had overlapping fill, and would therefore be nested. While approximately 78.5% of H
matrices were classified as non-nested with qFF, the majority of H matrices were wrongly classified as nested
with EE (91%, Figure 5). In other words, H matrices were only significantly nested compared to networks
without a similar generalist to specialist range in resistance and infectivity. Similarly, while the average effect
size with qFF was statistically equivalent to 0 (“p-value non-nested” < 0.05), the average effect size indicated
significant nestedness with EE (“p-value nestedness” < 0.05, Table 3). Overall, these results show that only
qFF could reliably identify H matrices as non-nested.
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Figure 5: The distributions of standardised effect sizes across nestedness metrics and null models for the
simulated matrices with heterogeneous marignal totals. Percentages indicate the percentage of simulated
matrices that were classified as anti-nested, non-nested or nested based on their SES. Using qFF, the majority
of networks were correctly classified as non-nested. In contrast, using EE, the majority of networks were
wrongly classified as nested.

Table 3: The qFF null model correctly suggested that heterogeneous matrices were on average significantly
non-nested. In contrast, the EE null model wrongly suggested that the heterogeneous matrices were on
average significantly nested.

metric null
model

mean
ses

CI
low

CI
high

t
statistic df p-value

nestedness

p-value
non
nested

p-value
anti
nestedness

NT EE 5.050 4.490 5.60 12.2 99 7.63e-22 1 1
NT qFF 1.030 0.860 1.20 -7.17 99 1 6.7e-11 1
NODF EE 5.900 5.240 6.55 12.8 99 5.35e-23 1 1
NODF qFF 0.935 0.766 1.10 -8.34 99 1 2.27e-13 1
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3.4 Only the NODF metric generally considered compartmentalised matrices anti-nested

Since previous work suggests that some compartmentalised networks are anti-nested (24), and compart-
mentalisation has been observed in empirical networks (3–6, 20), the nestedness of compartmentalised
networks, under the different null models and nestedness metrics, was investigated. Firstly, the proportion
of nested, anti-nested and non-nested matrices was calculated according to each combination of null model
and nestedness metric (Figure 6). Interestingly, only with NODF were the majority of matrices considered
anti-nested. In contrast, with NT and qFF the matrices were split between non-nested and anti-nested, and
with NT and EE, matrices were split between nested, non-nested and anti-nested. In terms of average effects,
the NT and EE combination was the only combination that did not show a significant anti-nestedness effect
(Table 4). Overall, these results suggests that compartmentalised networks only had a predictable anti-nested
pattern when using the NODF metric, while the nestedness pattern was more variable with the NT metric.
Importantly, this highlights that co-evolution between bacteria and phages may not always be expected to
result in nestedness. In constrast, if NODF is used, local adaptation or FSD would be expected to result in
anti-nestedness regardless of null model used.
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Figure 6: The distributions of standardised effect sizes across nestedness metrics and null models for the
simulated compartmentalised matrices. Percentages indicate the percentage of simulated matrices that were
classified as anti-nested, non-nested or nested based on their SES. Using NODF, the majority of networks
were classified as anti-nested. In contrast, using NT, networks were split between the three categories.
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Table 4: With NODF, networks were on average significantly anti-nested. With NT, networks were significantly
non-nested.

metric null
model

mean
ses

CI
low

CI
high

t
statistic df p-value

nestedness

p-value
non
nested

p-value
anti
nestedness

NT EE -0.074 -0.674 0.526 -5.68 99 1 5.48e-07 1
NT qFF -3.18 -4.14 -2.22 -9.99 99 1 0.999 0.000984
NODF EE -12.1 -13.3 -10.9 -22.5 99 1 1 1.27e-31
NODF qFF -8.16 -8.91 -7.4 -25.6 99 1 1 1.76e-31

3.5 Only with qFF was the SES largely invariant to network size and fill

To assess whether matrix size may have affected the SES values reported above, the association between
matrix size and SES was investigated across all null model and nestedness metric combinations (Figure 7).
The plot suggests that the SES of nested and heterogeneous matrices varied with matrix size with the EE
null model. Additionally, the SES of compartmentalised matrices appeared to vary with matrix size across
most, if not all, combinations of nestedness metric and null model.
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Figure 7: The association between SES and matrix size across simulation type, null model and nestedness
metric combinations. SES appears to associate with matrix size for heterogeneous and nested matrices when
using the EE null model. Additionally, SES appears to vary along size with compartmentalised matrices.

To assess whether matrix fill may have affected the SES values reported above, the association between
matrix fill and SES was also investigated across all null model and nestedness metric combinations (Figure 8).
Similar to size, the SES of nested and heterogeneous matrices appeared to vary with matrix size with the EE
null model. Additionally, the SES of compartmentalised matrices appeared to vary with matrix fill across
most, if not all, combinations of nestedness metric and null model.
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Figure 8: The association between SES and matrix fill across simulation type, null model and nestedness
metric combinations. SES appears to associate with matrix fill for heterogeneous and nested matrices when
using the EE null model. Additionally, SES appears to vary along fill with compartmentalised matrices.

To assess the strength of the associations with size and fill, parameter estimates were obtained for scaled size,
scaled fill and their interaction (Table 5). The largest parameter estimates were observed with the EE null
model. Additionally, on nested and heterogeneous matrices, qFF parameter estimates were generally of a
smaller scale than EE parameter estimates. On compartmentalised matrices, the NODF + qFF combination
showed strong associations with size and fill, despite still being of smaller scale than the NODF + EE
combination. Overall, this analysis suggests that when performing nestedness tests on simulated matrices,
use of the qFF null model was less susceptible to variation with matrix size and fill, however analysis of
compartmentalised matrices may require accounting for matrix size and fill.
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Table 5: Parameter estimates for scaled size, scaled fill and their interaction across simulation type, null
model and nestedness metric combinations, when fitting linear mixed models to SES. The table suggests that
SES was largely invariant to these factors for uniform matrices. For nested and heterogeneous matrices, SES
appeared to associate with most factors only when using the EE null model. For compartmentalised matrices,
SES appeared to associate with combinations of these factors across all nestedness metrics and null models.

metric null
model

size
estimate

size
p-value

fill
estimate

fill
p-value

interaction
estimate

interaction
p-value

uniform
NODF qFF 0.003 0.981 0.072 0.54 -0.151 0.14
NODF EE -0.037 0.754 -0.234 0.048 -0.040 0.694
NT qFF 0.168 0.157 0.129 0.273 -0.075 0.462
NT EE 0.292 0.014 0.140 0.236 -0.154 0.13

nested
NODF qFF 0.279 0.019 -0.016 0.892 -0.020 0.847
NODF EE 5.414 < 0.001 -4.207 < 0.001 -2.483 < 0.001
NT qFF 0.059 0.616 0.023 0.848 0.015 0.885
NT EE 2.487 < 0.001 0.467 < 0.001 -0.254 0.013

heterogeneous
NODF qFF 0.187 0.115 0.187 0.114 -0.108 0.29
NODF EE 2.564 < 0.001 -0.934 < 0.001 -0.749 < 0.001
NT qFF 0.275 0.021 0.403 0.001 -0.053 0.606
NT EE 2.082 < 0.001 0.877 < 0.001 -0.210 0.04

compartmentalised
NODF qFF -1.283 < 0.001 1.647 < 0.001 0.768 0.016
NODF EE -5.261 < 0.001 -3.073 < 0.001 -1.523 < 0.001
NT qFF -0.169 0.606 -0.490 0.129 -0.191 0.547
NT EE 1.359 < 0.001 0.718 0.026 -0.302 0.341

3.6 Only with the EE null model was there a non-zero nestedness effect in empirical PBINs

The sections above showed that the behaviour of EE and qFF varied across nested, heterogeneous and uniform
matrices. In addition, compartmentalised matrices were more likely to be classified as anti-nested when
using NODF than when using NT. Importantly, the combination of NT and EE was shown to erroneously
classify heterogeneous PBINs as nested, while the NODF and qFF combination correctly classified many as
non-nested. Since empirical PBINs were previously concluded to generally show nestedness using the NT and
EE combination (13),
the data was re-analysed with all null model and metric combinations. Firstly, the proportion of nested, anti-
nested and non-nested matrices was calculated according to each combination of null model and nestedness
metric (Figure 9). While many matrices were considered significantly nested with EE, the majority of matrices
were considered non-nested with qFF. In other words, the use of qFF greatly reduced the number of PBINs
that were considered significantly nested (Figure 9). With NT, the number of significantly nested PBINs was
reduced from 25 to 4. With NODF, the number was reduced from 16 to 2. In addition, the NODF and qFF
combination considered 10 networks to be anti-nested. Since NODF with qFF did not suffer from NT and
EE’s high change of erroneously suggesting nestedness in non-nested networks with heterogeneous marginal
totals, the true proportion of nested matrices in the Flores data set was estimated to be 0.05. In terms
of average effects, only with NT were these significant: with EE there was significant average nestedness,
while with qFF there was significant average non-nestedness (Table 6). Overall, this analysis suggested that
the PBINs in the Flores data set were generally not significantly nested when compared to null matrices
with similar resistance and infectivity range sizes. In other words, the Flores networks generally lacked a
significant pattern of nested subsets, a key component of ARD dynamics.
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Figure 9: The distributions of standardised effect sizes across nestedness metrics and null models for the
empirical Flores networks. Percentages indicate the percentage of simulated matrices that were classified as
anti-nested, non-nested or nested based on their SES. The EE and NT combination considered the majority of
networks to be significantly nested. In contrast, approximately the same number of networks were considered
non-nested or nested using EE and NODF. Using qFF, the majority of networks were considered non-nested.

Table 6: The Flores networks were on average significantly nested according to the EE and NT combination.
In contrast, the networks were significantly non-nested according to the qFF and NODF combination. There
were no significant effects for the average nestedness pattern using NODF.

metric null
model

mean
ses

CI
low

CI
high

t
statistic df p-value

nestedness

p-value
non
nested

p-value
anti
nestedness

NT EE 3.75 2.28 5.22 2.9 36 0.00317 0.997 1.000
NT qFF 0.148 -0.452 0.749 -5.06 36 1 6.33e-06 1.000
NODF EE 3.84 0.868 6.81 1.5 36 0.0715 0.929 1.000
NODF qFF -1.25 -2.15 -0.347 -6.51 36 1 0.189 0.811

3.7 With the smallest simulated matrices, qFF could struggle to generate unique null
matrices after NODF or NT reordering

Given that qFF generates null matrices by reshuffling the original matrix under near-maximal constraints on
row and column discrepancies, it was important to verify that qFF was able to generate unique null matrices.
Without a completely unique set of null matrices, the standard deviation of null nestedness may not be
accurately estimated, resulting in a biased SES estimate. Crucially, “unique” was nestedness metric-specific, as
NODF and NT relied on different reshuffling methods prior to calculating nestedness. Across all combinations
of matrix type and nestedness metric, the proportion of unique null matrices was graphed as a function of
matrix size (Figure 10).



97

Of note, when considering small matrices generated by qFF, on nested and heterogeneous networks, and
rearranged by NODF or NT, not all rearranged null networks were unique. This was to be expected, given the
combination of a wide range of row and column fill values alongside a small number of positive interactions
with which to make up those marginals. In addition, qFF struggled to generate unique null matrices on small
compartmentalised networks, especially in combination with the NT metric. This analysis suggests that care
should be taken when interpreting SES values generated with qFF null matrices derived from small PBINs.
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Figure 10: The association between the proportion of qFF null matrices that are unique and matrix size
across matrix source and nestedness metric. While most null matrices were unique prior to reordering, some
small null matrices lost their uniqueness after reordering by the NODF or NT algorithms.
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4 Discussion

Bacteria and phages can co-evolve through arms-race dynamics (ARD), in which resistance and infectivity
increase over time (1). Understanding the drivers of this dynamic is important for phage therapy, where
ARD could be employed to generate phages with broad infectivity ranges (11). The study of complex
Phage-Bacteria Infection Networks (PBINs) has relied on network metrics to distinguish pattern from noise
(2). In these analyses, nestedness has been used as a key indicator of ARD, as the nested pattern captures the
nested subsets expected to arise from ARD (2). However, previous work has employed a nestedness metric
(NT) and a nestedness null model (EE) that did not allow for a meaningful test of ARD. In this work, the
performance of the NT and NODF nestedness metrics, in combination with the EE and qFF null models,
was compared on simulated and empirical PBINs.

On uniform networks, all combinations of metric and null model correctly identified the matrices as
generally non-nested. On nested networks, all combinations of metric and null model correctly identified
the matrices as generally nested. However, the NT and qFF combination only characterised 65% of nested
matrices as nested, highlighting that NT and NODF differ in their definitions of nestedness. On heterogeneous
matrices, EE wrongly identified the matrices as generally nested. In contrast, qFF correctly identified the
matrices as generally non-nested. Compartmentalised networks were generally identified as anti-nested
by NODF. With NT, there was no significant average effect. Given the superior performance of NODF
and qFF, this combination was used to interpret the nestedness of empirical PBINs. This combination
suggested that only 2 out of 37 networks were significantly nested. Amongst the remaining networks, 25 were
considered non-nested and 10 were considered anti-nested. Overall, this work suggests that the qFF and
NODF combination was the most reliable. In addition, this work suggested that a minority of the empirical
PBINs were significantly nested.

The conclusion that nestedness may be rare in empirical PBINs is in contrast to the conclusion reached
by Flores et al. on the same empirical data (13). However, note that the NT and EE combination was used
by the authors to conclude widespread nestedness. A recent meta-analysis reiterated the conclusion that
that PBINs are generally nested, however this work also used the Temperature metric (46). The authors set
out to compare two implementations of the Temperature metric, the original NTC implementation and the
BINMANTEST implementation (46). The latter was also the implementation used here, however it does
not overcome most of the shortcomings of the original NTC algorithm (40). As the simulations in this work
showed, using NT with EE was unreliable due to its propensity to classify heterogeneous matrices as nested.
Therefore, using more robust methods, we concluded that the majority of networks in the Flores data were
not significantly nested. A future meta-analysis, using the data from Molina et al. (46), could test whether
this conclusion holds on an independent data set.

Future work lies in analysing the nestedness of experimental PBINs with known co-evolutionary dynamics
with qFF and NODF, to ask whether nestedness can be observed to arise from ARD co-evolution. Key
to this will be analysing PBINs that span isolates from the entire co-evolutionary experiment (7), rather
than separate PBINs for isolates from separate time points (15), as the former is more likely to capture
the escalation in resistance and infectivity (2). Additionally, the PBIN row and columns could be ordered
by sampling time, rather than by marginal totals as is the default in NODF, to more specifically test
for the escalation of resistance and infectivity across time (9, 40). For ecological PBINs, consideration of
population scale is required, as PBINs spanning several meta-populations may show nested compartments
rather than network-wide nestedness (3, 4). Overall, this work suggests that future analyses would benefit
from considering whether a test for ARD is appropriate for the PBIN at hand, prior to performing a nestedness
test. Additionally, a future meta-analysis using networks known to have undergone ARD could assess whether
nestedness can be detected in such networks, using the robust combination of qFF and NODF. Given
previous work that suggested nestedness SES values to associate with network fill when using the EE null
model (40), and the importance of having a statistical test that is invariant to network size and fill, the
present work assessed the association between SES, network size and network fill across the simulation types
and null models. Sizeable associations with size, fill and/or their interaction appeared more common with
the EE null model than with the qFF null model. Importantly, this analysis suggests that the SES estimates
obtained with qFF on non-compartmentalised matrices were not strongly affected by network size and fill,
adding further weight to the conclusion that the combination of qFF and NODF is suitable for nestedness
testing. Future work using NODF for nestedness tests on compartmentalised networks may still need to
account for network size and fill, due to the strong associations identified in this work.

The present work also highlighted the propensity of the qFF null model to generate null matrices, from
small networks, that were not unique after reordering by NODF or NT. Since the null matrices are used
to calculate the SES, this could lead to a biased SES estimate on small PBINs. Crucially, the number of
matrices with non-unique null matrix sets may have been inflated by the large number of qFF null matrices,
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250, used in this work. Future work could assess whether the number of qFF null matrices should be adjusted
based on the size of the PBIN. Nevertheless, this work also raised the question of whether it is meaningful to
test for nestedness on small PBINs, given the small number of permutations that are possible while retaining
similar marginal totals. This, in turn, complicates answering the question raised in the introduction: “does
the PBIN have significantly more overlap in resistance and infectivity range sizes than null matrices with a
very similar range of generalists and specialists?”

This work suggested that compartmentalised networks, which are expected to arise from local adaptation
or FSD co-evolution, are generally anti-nested. This extends previous work that suggested anti-nestedness for
two specific instances of compartmentalisation (24). Within PBIN analysis, previous work has used Barber’s
modularity metric to infer compartmentalisation (3–5, 13, 16–20): this metric quantifies the extent to which
infections occur within pre-defined modules (47), often using a maximisation algorithm to identify the optimal
number of modules (48). The present work does not advocate for using anti-nestedness instead of a significant
Barber’s modularity for inferring local adaptation or FSD co-evolution. Instead, this analysis highlighted that
if anti-nestedness is observed, particularly with NODF, the network may be compartmentalised, and further
modularity analysis may prove fruitful. Nevertheless, since the present work used perfectly compartmentalised
networks, future work could assess whether compartmentalised networks with some infections outside of
modules, as may be expected from natural PBINs (2), are also significantly anti-nested.

This work extends previous attempts to characterise the behaviour of NT and NODF under varying null
models (12, 21, 40, 49). While previous work has inferred error rates under a range of null models and/or
simulation types, none have done so using random, nested, heterogeneous and compartmentalised simulated
networks. Additionally, a novel comparison is made between the widely used EE + NT combination, and the
more reliable qFF + NODF combination. Future work lies in simplifying the process of obtaining qFF null
matrices. In the present work, qFF matrices were obtained after simulating the entire TP landscape. However,
given that the extremes of the landscape are defined by EE and FF (12), future work could specifically obtain
qFF matrices through a sequential swap that starts with FF matrices and only swaps up until qFF. This
would allow users to obtain qFF null matrices at greater speed and ease. Additionally, future work may lie
in the comparison of qFF to the “average” null model used in more recent PBIN experimental work (20),
implemented through BIMAT (50), and originally developed by Bascompte et al. (51). However, this null
model was found to perform very similarly to EE with NODF (“CE” in (49)), suggesting that qFF would be
more robust.

It should be noted that qFF was defined as consisting of 5 cells rather than the 8 bottom left cells as
originally suggested by Strona et al. (12) (i.e. cells (0, 0.1), (0.1, 0) and (0.1, 0.1) were excluded from qFF in
this study). When developing this analysis, a trade-off was observed between the two definitions. The 8-cell
qFF incorporates lower average host and resistance range discrepancies, thereby being more prone to Type II
errors on nested matrices (i.e. the SES from qFF is brought closer to that of FF (21)). Instead, the 5-cell
qFF has higher average host range and resistance range size discrepancies, thereby being at greater risk of
Type I errors on non-nested matrices. A lower Type II error on nested networks was favoured, as the Type I
error of 5-cell qFF with NODF on heterogeneous matrices was deemed sufficiently low, considering that some
of these networks would have been significantly nested by chance (Figure 5). Future work lies in a formal
comparison of the error rates of 5 and 8-cell qFF, as well as their dependency on network size, as the relative
importance of the two error rates is likely to vary between studies.

Overall, this work advocates for the use of qFF and NODF. Additionally, given the collection of empirical
networks analysed, this work suggests that nestedness is not a common property of PBINs. Future work
could assess the nestedness of empirical PBINs using the robust methodology proposed here, while also
taking into account whether ARD are expected to have occured within the network. Finally, improvement
in the methods used to infer ARD from PBINs will allow for more accurate identification of the conditions
underlying ARD, towards the more effective design of phages for therapeutics (11).
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Chapter 5: General discussion

P. aeruginosa lung infections are a major cause of morbidity and mortality in Cystic Fibrosis (CF) patients
(1). Given the difficulty of eradicating such infections with antibiotics, phages are being considered as novel
CF therapeutics (2). This thesis set out to increase the understanding of phage-bacteria interactions in
clinical CF P. aeruginosa isolates, the pan-immune system of these bacterial isolates, and the methods with
which co-evolutionary patterns are discerned in Phage-Bacteria Infection Networks (PBINs).
In the first data chapter, phage resistance was investigated in light of receptor modifications and defence
systems carried by clinical CF P. aeruginosa isolates. While it has long been known that bacteria rely on
extracellular and intracellular defence mechanisms (3), the range of known defence systems has recently been
substantially expanded (4). The aims of the present work were to assess whether similarity in receptor mod-
ifications or defence system repertoire was associated with similarity in phage resistance, whether carrying
more receptor mutations or defence systems was associated with broader resistance ranges, and whether
individual receptor mutations or defence systems associated with resistance to specific phages. Similarity in
defence system repertoire was associated with similarity in phage resistance, suggesting that defence systems
are associated with resistance specificity. In contrast, only the number of variants in lipopolysaccharide (LPS)
receptor genes was associated with resistance breadth. Given that only four T4P phages were included, the
study was likely underpowered to detect a similar effect for T4P biosynthesis genes. Additionally, given that
the sample consisted of 23 hosts with highly divergent defence system repertoires, the distribution of defence
systems may have been too patchy to observe an association between the number of defence systems and
resistance breadth. Interestingly, Costa et al. did find clinical P. aeruginosa isolates with more systems
to have broader resistance ranges (5). While this thesis exclusively studied P. aeruginosa isolates from CF
patients, Costa et al. studied strains from a wide variety of clinical settings including sputum, blood cul-
tures and contact lenses (5). Future work could compare the diversity of defence systems in the two isolate
collections. Additionally, the phage panels used in the two assays could be swapped, to ask whether the
association is specific to the phage panels used. Finally, the genetic diversity in the phage panels could be
compared.

In terms of individual associations between phage resistance and the presence of genetic variants, variants
in rmlA, involved in the production of the LPS O-antigen, and fimT, a gene of unknown function thought
to be involved in T4P biosynthesis, appeared to associate with resistance. Future work could clone the
identified variants into PAO1 to test for phage resistance, analogous to the approach taken by Costa et al.
with defence systems (5). Since variants in rmlA have previously been shown to provide phage resistance
(6–8), in addition to a trade-off with ceftazidime resistance (8), the present work suggests that phage therapy
could exploit this synergy in clinical CF isolates. Future work could investigate the involvement of fimT
in phage resistance, which as of yet is elusive, using the studied clinical CF isolates. Finally, the study
highlighted the difficulty in associating phage resistance with the presence of individual defence systems
in a small panel of hosts with divergent defence system repertoires: while presence of druantia appeared
to associate with phage resistance, an adsorption assay suggested that phages were not adsorbing to the
druantia-carrying hosts. While more laboursome, the approach taken by Costa et al. may be preferable in
future work: measure adsorption across the entire infectivity network, and specifically investigate resistance
mediated by defence systems within phage-host pairs that show adsorption (5). Finally, given that the
present and previous phage panels were obtained from sewage systems (5, 8), and the availability of sputum
samples from which the present isolates were obtained, future work could investigate the resistance of the
CF isolates to phages from their native clinical environment. Nevertheless, the first data chapter suggested
that receptor variation and defence system carriage could play complementary roles in determining phage
resistance. This suggests that it will be important to characterise receptor variants alongside defence system
repertoires, especially given the potential for phage-antibiotic synergism in phage therapy (9).
In the second data chapter, the pan-immune system of clinical CF P. aeruginosa isolates was characterised.
Given recent reports of variability in P. aeruginosa defence systems (10, 11), and reports of changing defence
system repertoires in natural settings (12, 13), this work investigated whether such patterns could be found in
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the clinical setting. While the isolates carried a broad and open pan-immune system, closely-related isolates
carried mostly identical repertoires, and distantly-related isolates never shared identical repertoires. In
addition, despite most systems localising to variable genomic regions, systems were rarely found in prophages
and signs of horizontal movement of systems across the phylogenetic tree were rare. Nevertheless, given that
many variable regions containing defence systems could not be grouped into spots due to the fragmented
nature of the assemblies, it is possible that some evidence for horizontal gene transfer was missed. Future
work using long-read assemblies could re-assess the evidence for the low frequency of similar defence system
spots between distant isolates. Finally, the defence system repertoire appeared to be mostly stable over time
within closely-related isolates obtained from the same patient. Importantly, this work suggested that the
prevailing narrative of frequent defence system movement (4) does not apply to clinical CF P. aeruginosa
isolates. Future work using environmental P. aeruginosa isolates, obtained over time, could ask whether
movement appears more frequently outside of the clinical setting, where bacteria may encounter a more
diverse and changing set of phages. In contrast to the stability discovered in the defence system repertoires,
previous work with CF P. aeruginosa isolates identified many modifications in LPS, which is frequently
used by phages for attachment (14). As P. aeruginosa isolates are isolated as part of future phage therapy
trials, it will be interesting to ask whether therapeutic phage pressure induces defence system movement,
and whether it selects for a different set of receptor modifications from those identified in the clinical isolates
studied in this thesis. Understanding the dynamics of both modes of resistance may prove fruitful for the
development of effective phage therapeutics, whereby phages could be developed to work synergistically with
antibiotics and to overcome common modes of resistance within the CF lung.
In the final data chapter, the dependence of nestedness and anti-nestedness patterns on the choice of nest-
edness metric and null model was investigated. Nestedness has been of interest in PBIN analysis due to its
theoretical association with arms-race dynamics (ARD), a form of co-evolution whereby hosts and phages
continuously increase their resistance and infectivity capabilities, respectively (15). Additionally, previous
work suggested that anti-nestedness may be a property of compartmentalised networks (16), which are
thought to arise from fluctuating selection dynamics (FSD) or local adaptation (15). Importantly, previous
analyses of PBINs have relied on a null model (EE) and sometimes a metric (T) that are prone to returning
significant nestedness with non-nested networks (17). Given the recent development of the Tuning-Peg algo-
rithm, and its quasi-FF (qFF) null model which appeared to have good statistical properties (18), the effects
of the choice of nestedness metric and null model were estimated on simulated and empirical networks. Over-
all, this work revealed that the qFF null model more accurately classified simulated networks as nested or
non-nested. In addition, the analysis suggested that compartmentalised networks are generally anti-nested.
Crucially, the study suggested that the widely-cited notion of nestedness being frequent in empirical PBINs
should be revised, as the robust qFF null model suggested that very few of the PBINs were nested. To ease
application of the qFF null model, a simplified function that obtains qFF matrices without evaluating the
full Tuning-Peg landscape could be developed for the vegan package in R, complementing its current set set
of nestedness functions (19). Importantly, the present work lacked an explicit assessment of the nestedness of
experimental PBINs with known underlying co-evolutionary dynamics. Given that such experimental work
has previously been published (20–26), future work could consider whether robustly estimated nestedness or
anti-nestedness are actually good indicators of experimental ARD or FSD dynamics, respectively. If these
turn out to be reliable indicators, the NODF metric and the qFF null model investigated here could help in
the development of phage therapeutics and in understanding within-patient co-evolutionary dynamics (27).
Overall, this thesis highlighted the complexities of phage resistance and defence system dynamics in clinical
CF P. aeruginosa. Namely, receptor modifications and defence system carriage may play complementary
roles in determining resistance, and the isolate’s defence system repertoires may stay relatively stable through
time. Additionally, this thesis has suggested that the field of PBIN nestedness analysis requires a shift from
the commonly used EE null model, to the more robust qFF null model. Given the need for novel antimicrobial
therapeutics for CF patients, which acquire chronic lung infections with antimicrobial resistant pathogens,
phages could become invaluable therapeutic tools. Future therapeutic development could be improved by
considering the full spectrum of phage resistance mechanisms, as well as the conditions that promote ben-
eficial modes of co-evolution in phage cultivation and within-patient application. Such developments may
allow for existing antibiotic therapy for P. aeruginosa infections in CF patients to be complemented with
antibiotic-synergising phages, offering a novel approach to treating one of the biggest sources of morbidity
and mortality within the disorder.
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