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Abstract

Intense magnetic waveguides in the solar photosphere, such as pores
and sunspots are ideal environments for the propagation of guided
waves. However, modelling these photospheric waveguides with
varying background quantities such as plasma density and magnetic
field has thus far been very limited. Such modelling is required
to correctly interpret MHD waves observed in pores and sunspots
with resolved inhomogeneities such as light bridges and umbral
dots. Theoretical descriptions of waves are very sensitive to the
way density is distributed and configuration of waveguides. Current
theoretical models assume a homogeneous distribution of plasma
parameters and magnetic field. High resolution observations of
the last decade show that these assumptions are very crude and
alterations from this ideal setup are expected to have a major effect
on the property of waves. One major impediment in extending
the existing theoretical modelling to more realistic situations was
the complexity of the mathematical framework in which waves are
investigated.

The aim of my research presented in this Thesis is to address
this shortcoming and propose analytical and numerical techniques
for wave identification in the presence of inhomogeneous magnetic
waveguides. Here, we provide two various types of models that
can be used to investigate slow MHD modes in solar photospheric
flux tubes in the presence of local equilibrium density, pressure and
magnetic field inhomogeneity. In all studied cases, the equilibrium
profile inhomogeneity is represented by a local circular enhance-
ment or depletion whose strength, size and position can change.

First, we investigate the propagation characteristics and the spa-
tial structure of slow body eigenmodes in a magnetic flux tube
with circular cross section. For analytical progress we assume that



the model has constant plasma-β, assuming that only the plasma
equilibrium density has a spatial dependence.

Later, the constant plasma-β model (which is a rather restrictive
approximation) is relaxed and results of the modification of the
properties and morphology of slow body modes are investigated
considering a case where not only the equilibrium density as func-
tion of coordinates, but also equilibrium pressure and magnetic
field, in line with observations and numerical modelling. Analyt-
ical progress was made by considering that the plasma pressure
and density vary following the same dependency on coordinates,
meaning that we are dealing with a constant sound speed, i.e.
isothermal equilibrium. Given the complexity of the problem, the
task was addressed numerically via the Fourier-Chebyshev Spectral
method (FCS), as well as Galerkin Finite Element method (FEM),
respectively. The radial and azimuthal variation of eigenfunctions
is obtained by solving a Helmholtz-type partial differential equa-
tion with Dirichlet boundary conditions for slow body waves.

The inhomogeneous transverse equilibrium density profile results in
modified eigenvalues and eigenvectors. In particular, a modification
in the equilibrium density distribution leads to a decrease in the
eigenvalues and the spatial structure of modes ceases to be global,
as the modes migrate towards regions of lower density in the case
of the constant plasma-β model. Comparing the homogeneous case
and the cases corresponding to depleted density enhancement, the
dimensionless phase speed undergoes a significant drop in its value
(at least 40%). In contrast to the density enhancement, the slow
body modes investigated here preserve their morphology.

Our investigations can be considered as a very first step in study-
ing the properties of waves in sunspots and pores in the presence
of local inhomogeneities in the form of umbral dots (UDs) and
light bridges (LBs). Multistructure density distributions (as ob-
servations show) can often be replaced by a resulting structure
that adequately captures the effects of multiple UDs present in the
sunspot umbra. This means that the equilibrium density inhomo-
geneity profile is represented by a single local density inhomogene-
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ity, which simulates the UDs observed in the sunspot umbra region,
assuming that they are placed close to each other. Furthermore,
the LB observed in sunspots can be modeled by a single local den-
sity inhomogeneity that separates the sunspot umbra region. The
more complex the shape of the density inhomogeneity, the spatial
structure of the higher-order slow-body modes will be modified de-
pending on the considered density shape and the cross-sectional
configuration of the waveguide. As a result, the pattern of possible
waves loses the high-degree of symmetry one can meet in homoge-
neous cases, especially for higher-order modes, which means that
the pattern is no longer global and, therefore, cannot be easily
identified. Local wave observations in sunspots may be a way to
identify the location and size of density inhomogeneities in the um-
bra region.

These intriguing findings have significant ramifications for optimis-
ing modal structures that may be viewed, compared, and correlated
in observational data as well as for constructing and organising
modes in circular structures.
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CHAPTER 1

Introduction

1.1 A synopsis of the Sun’s history and forma-
tion.

For thousands of years mankind has been fascinated by the Sun, a magnifi-
cent celestial object that has attracted scientific interest and inquiry. Despite
centuries of solar-related discoveries, a large number of solar phenomena con-
tinue to confound scientists and several questions regarding their nature and
evolution remain unanswered. The first solar eclipse documented by modern
humans in 800 BC marked the beginning of the exploration of the Sun. With
the advent of telescopes, solar studies received a new impetus. Using the avail-
able optical advances, Galileo Galilei (1564-1642) developed his telescope that
was able to perform a thirty-times magnification. With the help of this in-
strument he was able to observe "imperfections" on the surface of the Sun,
which he labelled as sunspots. As he observed a clear translational movement
of sunspots across the solar disk, he concluded that the Sun rotates. In the
19th century solar spectroscopy introduced by William Herschel opened up a
novel investigation pathway for celestial bodies (including the Sun) and he was
the first scientist to detect infrared radiations in 1800. One year later, Johann
Willhelm, detected solar ultraviolet radiation.

Nowadays, extensive studies are conducted using a myriad of high-resolution
ground-based telescopes (e.g. Swedish Solar Telescope (SST), Vacuum Tower
Telescope (VTT), Daniel K. Inouye Solar Telescope (DKIST), etc.), and space-
based telescopes (e.g. Solar and Heliospheric Observatory (SOHO), Interface
Region Imaging Spectrograph (IRIS), Transition Region and Coronal Explorer
(TRACE), Solar-B (Hinode), Solar Dynamic Observatory (SDO), Solar Or-
biter, etc.) in an attempt to understand the intricate aspects of mechanisms
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Figure 1.1: A schematic picture of the solar interior (the core, radiative zone,
and convective zone) and its atmosphere (photosphere, chromosphere, tran-
sition region, and corona). The picture also displays several solar transient
atmospheric events, including sunspots, solar flares, prominences, and coronal
loops Priest (2014a).

that control the processes of variability and activity of the Sun. Over the
years, these studies have accumulated extensive and important information
regarding different aspects of the Sun, such as its structure, the role of the
magnetic field, the connectivity of various regions in the solar atmosphere, the
generation and evolution of large and energetic phenomena across many spa-
tial scales, its activity, etc. However, these studies have not provided adequate
and enough information to allow a comprehensive understanding of the physics
behind different phenomena of the Sun that occur at very small scales.

The Sun is a massive ball of plasma compressed by its own gravitational
attraction. It mainly comprises hydrogen (91.7%) and helium (7.3%) atoms.
In addition, about 1% of the remaining structure consists of heavier elements
such as carbon, nitrogen and oxygen Priest (2014a). Due to high temperatures
in the Sun, the matter is found in the plasma state (the fourth state of matter),
which is an ionized gas whose behaviour is controlled by electromagnetic fields
and that shows collective motion. The movement of the plasma generates
strong electric and magnetic fields and corresponding electric currents. Unless
a separate reference is specified, the majority of the current section is based
on work by Aschwanden (2004); Priest (2014b), and should be regarded as
references.

Broadly speaking the regions in the solar visible atmosphere can be clas-
sified as belonging to the quiet or the active Sun. The quiet Sun is defined
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as a plasma ball that is static, spherically symmetric, whose properties vary
based on radial distance from the centre and for which the magnetic field is
negligible. Conversely, the active Sun has a significant magnetic field that re-
sults in a range of transient phenomena, such as sunspots, prominences, solar
flares and coronal mass ejections (CMEs), as shown in Fig. 1.1. The sunspots
are located in the photosphere which are regions where intense magnetic fields
emerge to the solar surface. They have a reduced surface temperature and tend
to be darker than their surroundings, due to magnetic field flux concentrations
that inhibit convection. Prominences are bright, large, gaseous features an-
chored in the photosphere on the surface of the Sun, and further extend in
outward direction into the Solar corona, often in a loop shape. Solar flares
are sudden energy explosions induced by magnetic field line interactions near
sunspots. Coronal mass ejections occur at the location of topological reorgan-
isation of the magnetic field of the solar corona and are associated with an
immense amount of particle and radiation emission into the solar wind and
the interplanetary space.

Figure 1.2: Schematic diagram of the inner layers of the Sun. Credit: Priest
(2014a).

The Sun’s ability to have a tremendous impact on the highly advanced and
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Figure 1.3: Galileo Galilei’s drawing of a sunspot in the 1612 (left panel). The
active zone of the Sun with its dark sunspots is depicted in the right panel.
Credit: Solar Dynamics Observatory (SDO).

technology-based human world is another important aspect for which the Sun
is studied. Magnetic fields and energetic particles are constantly being trans-
ported in the outermost layer of the solar atmosphere. Storm conditions in the
solar atmosphere can, therefore, carry radiation and energetic particles from
the Sun to Earth, impacting satellites used for communication, power grids
and other ground-based technology. Therefore, in order to avoid dangerous
repercussions on our technology, it is imperative that we comprehend the pri-
mary mechanics underlying energetic solar activity events. Stated differently,
research on the solar atmosphere facilitates a more profound comprehension
of the processes governing space weather phenomena and the circumstances
surrounding near-Earth space.

1.1.1 The structure of the Sun

The Sun, generally speaking, can be divided into two natural parts, the interior
and its atmosphere, each with very distinct physics. The solar interior is the
region of the Sun that is shielded from our view, while the atmosphere is
defined as the region where light can escape and, therefore, it can be studied
in a much more detailed way.

The solar interior (for a schematic picture, see Fig. 1.2) is the location
where nuclear reactions take place and where the magnetic field is gener-
ated. The core is the hottest region of the Sun (and the whole solar system),
with a radius of about 0.25R⊙ from the centre. The core has a temperature
T = 1.5 × 107 K and a density of ρ = 1.6 × 105 kg m −3. At this high
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temperature and density, hydrogen nuclei interact by nuclear fusion to form
helium, a mechanism that releases massive amounts of energy. This energy
travels outwards towards the outer layers of the Sun. As the distance from
the center of the core increases, there are significant changes in the properties
and characteristic behaviors of the Sun. Enveloping the core is the radiative
zone that has a temperature of about 7 million K. The energy emitted from
the core is transported through radiation (hence the name of this region) and
it passes through the radiative zone incredibly slowly as photons can travel
only a few millimetres before they are absorbed, later released. Therefore, a
photon could travel through the radiative zone for as long as 50 million years.
The radiative region of the Sun extends to distances of about 0.7R⊙. With
the increase of the distance from the core the density of the plasma also de-
creases. At the top of the radiative zone the density reaches a lower value and
the energy starts to be transported by convection and the region where this
transport mechanism is dominant is called the convective zone that extends till
the surface of the Sun. Hot and dense material is convected towards from the
top of the radiative zone towards the surface, and in this journey the plasma
cools down and becomes less dense. Convective cells reaching the solar surface
become visible and they form the granular network we can see in white light
observations. Convection also transports the magnetic field that is generated
in the solar interior by dynamo effects to the surface and becomes visible as,
e.g. sunspots and pores.

The solar atmosphere is the region that can be sampled by observing the
radiation emitted by the plasma in various wavelengths. This radiation is ob-
served either as emission or absorption lines in the electromagnetic spectrum.
Traditionally, the atmosphere is divided into four regions, each with their own
distinctive properties. First, we have the dense and relatively cool photosphere
(with a thickness of about 500 km) that is dominated by the granular motion
and is the layer where the emerging large-scale magnetic field becomes visible
(discussed in detail later). At these heights, the magnetic field is mostly verti-
cal. In this region the temperature reaches its minimum value (approximately
4,300 K).

The chromosphere is the next layer of thickness of about 1500-2000 km
where temperature rises steadily to about 20,000 K (see Fig. 1.4) and it can be
considered as one of the most dynamic regions of the solar atmosphere. The
chromosphere is also the location where the plasma is changing from being
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Figure 1.4: Variation of the temperature and density with height in the solar
atmosphere (Priest, 2014a).

partially ionised to fully ionised, from optically thick to optically thin and
from being pressure force-driven to magnetic force-driven. The magnetic field
becomes more inclined forming the magnetic network and it is responsible for
the existence of several phenomena in the chromosphere such as prominences
and spicules. Prominences are luminous ionised gas eruptions (when seen on
the limb) that may stretch thousands of kilometres from the chromosphere
to corona Nakariakov and Kolotkov (2020), Kerr (2023). When seen on the
solar disk, these features are called fibrils. Spicules are defined as dynamic
jets that stretch from the photosphere to the chromosphere Bose et al. (2021),
Srivastava et al. (2023).

At the interface between the chromosphere and corona, we have the tran-
sition region which is a very thin layer (approximately 100 km thick), where
the temperature has a very steep increase from a few ten thousand to million
degrees Kelvin (see Fig. 1.4). Finally, the corona is the layer that extends well
into the interplanetary space. The corona cannot normally be seen in visible
light because of the dazzling light of the photosphere, except in eclipses or with
coronagraphs (in which a masking disk is used to eliminate the photospheric
emission). Early observations of the visible spectrum of the corona revealed
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bright emission lines at wavelengths that did not correspond to any known
materials. The true nature of the corona remained a mystery until it was de-
termined that coronal gases are heated to temperatures greater than 1,000,000
K. At these high temperatures both hydrogen and helium (the two dominant
elements) are completely stripped of their electrons. Only the heavier trace
elements like iron and calcium are able to retain a few of their electrons in this
high temperature and are able to produce the spectral emission lines that were
so mysterious to nineteenth century astronomers.

The peculiar variation of the temperature with height shown in Fig. (1.4)
constitutes the foundation of what is known as the coronal heating problem,
one of the biggest mysteries surrounding our Sun. The nature of the processes
that heat the corona, maintain it at these high temperatures and accelerate the
solar wind is still unknown. Usually temperatures fall as you move away from a
heat source (like in the case of the solar interior), however as Fig. (1.4) shows,
over a relatively short distance, the temperature suddenly rises to extremely
high values. For this behaviour thermal energy must be continually supplied
to maintain such temperature against radiative cooling. Several mechanisms
have been suggested as the source of this heating, however a definite answer
as to what mechanisms act in the solar atmosphere to provide the necessary
heat still eludes the scientists. Broadly speaking the proposed mechanisms
are divided into AC heating mechanisms (basically heating by transferring the
kinetic energy of waves into heat) and DC mechanisms (the transformation of
magnetic energy into heat). Nowadays there is wide consensus that coronal
heating is a complex process where both AC and DC mechanisms act to main-
tain the high temperature of the plasma. As such, the coronal heating problem
remains one of the most challenging questions in solar physics Nicholeen et al.
(2022), De Pontieu et al. (2022), Sigalotti and Cruz (2023), Shi et al. (2024)
and Enerhaug et al. (2024).

The solar magnetic field is one of the most important physical quanti-
ties that controls the dynamical and thermodynamical state of the plasma, as
well as its stability. In the solar chromosphere and corona the magnetic field
determines the structure and the behaviour of the plasma. High resolution
observations in the corona are able to provide evidence for the intricate struc-
turing of the magnetism. It is clear that the magnetic field in these regions is
not diffuse, instead it tends to accumulate into entities of different sizes (e.g.
magnetic flux tubes, coronal loops, etc.). In general we can talk about two
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types of regions, depending on whether the magnetic field lines are open and
connect to the interplanetary field (coronal holes) or closed over the surface, so
that field lines form arches with their two endpoints in the photosphere, with
small-scale energetic features (X-ray bright points) scattered over all the Sun’s
surface. Closed regions are in fact composed of myriads of coronal loops, with
a wide range of dimensions, densities and temperatures.

1.2 Magnetic structures in the solar photosphere:

pores and sunspots

The research presented in this Thesis deals with the properties of waves in
photospheric magnetic structures, such as magnetic pores and sunspots. Al-
though the magnetism in the solar photosphere is not as complicated as in the
case of other solar regions, its relative simplicity offers the chance to study
them better.

Sunspots are large, transient, tubes of magnetic flux located in the pho-
tosphere whose intricate structure appear not just due to their uneven dis-
tribution of magnetic field and density, but also due to "invisible" external
forces that are responsible for their dynamic behaviour. Sunspots are magnetic
structures whose transverse shape changes over time, influencing the type and
characteristics of waves that propagate along (and across) these structures.
The transversal shape of a realistic waveguide is far from being regular such
as a circle. They have reduced surface temperature and tend to be darker
than the surrounding areas due to magnetic field flux concentrations that in-
hibit convection. The sunspots consist of a dark central part named umbra
(with more vertical magnetic field) and a brighter and striated part with more
inclined magnetic field surrounding the umbra known as penumbra (see Fig.
1.5). The actual temperature of sunspots is, on average, 3,800 K, while that of
the photosphere is 5,800 K (Jess et al., 2015). Sunspots first appear in the pho-
tosphere as little darkish spots with no penumbra. These features are known
as solar pores (smallest flux tubes) (Solanki, 2003). Pores increase in their size
and can get closer together over time. When a pore becomes large enough (in
diameter, typically around 3,500 km), a penumbra begins to form. Pores are
located along the dividing lines between larger sunspots. The strength of the
magnetic field in sunspots can be measured (using, e.g. the Zeeman or Hanle
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Figure 1.5: The left panel shows a high-resolution view of a sunspot. The dark
area in the centre is the umbra, surrounded by the striated penumbra. Credit:
The Swedish Solar Telescope (SST). The right panel shows schematically the
topology of the magnetic field in a sunspot. The convection motion is shown
by arrows. Credit: Thomas et al. (2002).

effects) and the field strength varies between 1000 and 3000 G.
A particular manifestation of inhomogeneities in pores and the umbral re-

gion of sunspots are umbral dots (UDs) (see Fig. 1.6), which are regions of
limited extent believed to play an important role in the energy balance in
sunspots (Solanki, 2003). Light-bridges are luminous material channels that
separate the umbra of a sunspot and indicate sunspot decay or fragmentation.
They are frequently detected during sunspot break-up and may indicate the
re-establishment of convection, which is generally prevented by the sunspots’
strong magnetic field. They have been shown to have greatly improved chro-
mospheric brightness and activity, including jets and surges (Cristaldi et al.,
2014; Louis et al., 2014; Hou et al., 2020; Zhao et al., 2022). In light bridges,
the intensity of the magnetic field is diminished and it tends to be more hori-
zontal. The emergence of a new light bridge or the brightening of an existing
one could indicate the fragmentation and disintegration of the sunspot. The
study by Sobotka and Hanslmeier (2005) showed that umbral dots are hotter
than the coldest region in the umbra by 1000 K and colder than the undis-
turbed photosphere after analysing observations of two sunspots and two pores.
The core and periphery of umbral dots are used to categorise them. Central
dots appear in the interior of the umbra, while peripheral dots appear near
the edge of the umbra. Peripheral dots are brighter and their magnetic field is
weaker (and slanted). Umbral dots appear in regions where the magnetic field
is weaker and inclined and disappear where the magnetic field is greater and
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vertical (Watanabe et al., 2009).

Figure 1.6: Left panel shows the sunspot with umbral dots and the right panel
shows the sunspots with both umbral dots and light bridges. Credit: Yadav
and Mathew (2018).

1.2.1 Waves and Oscillations in Sunspots

The study of solar oscillations began with the identification of standing pres-
sure waves (acoustic global p modes) that can travel deep inside the solar
interior and reflect upward in the photosphere (Leighton et al., 1962). These
waves are used to determine the state of the plasma in the solar interior using
various techniques imported from seismology (helioseismology). The existence
of waves and oscillations in sunspots has been extensively studied since Beckers
and Tallant (1969)’s pioneering work demonstrated the oscillatory behavior of
sunspots by measuring observed parameters of umbral flashes. Later, Bhatna-
gar (1971) detected oscillations of the order of 180− 220 s in Doppler velocity
in sunspots. Beckers and Schultz (1972) detected the umbral sunspot’s vertical
velocity oscillation for a period of three minutes. More research into the prob-
lem of Doppler velocity oscillations has been conducted by Moore (1981), who
discovered Doppler velocity oscillations in the umbral and penumbral regions
of the order of 120−180s and 240−300s, respectively. Bhatnagar and Tanaka
(1972) measured the intensity directly from time lapse filtergram movies to
find oscillations with a period of 170 ± 40 s. With the wealth of detection of
oscillatory behaviour in and around sunspots it became clear that the oscilla-
tions vary in frequency and strength depending on which layer the oscillations
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are found. The study by Thomas et al. (1984) found 3.5 mHz (∼ 5-min)
oscillations in the photospheric layer and 6 mHz (∼ 3-min) in the chromo-
spheric layers. As a result, as the wave gets closer to the chromosphere above
the umbra, its power multiplies by more than ten. Sunspot umbrae’s chro-
mospheric oscillations are nonlinear that can often steepen into shock waves
(Lites, 1984). These shock waves are believed to be responsible for the heating
of the non-magnetic solar chromosphere (Erdélyi and Ballai, 2007).

Subsequent studies have shown that the most significant oscillation periods
in sunspots and pores are 5 minutes at photospheric heights and 3 minutes at
chromospheric heights, while the periods of global sunspot oscillations vary
from hours to days (Stangalini et al., 2011; Jess et al., 2012, 2015; Grant et al.,
2015). In addition, Stangalini et al. (2021) demonstrated that, in contrast
to the anticipated 5 minutes, the dominant oscillations of a magnetic pore
observed with the Interferometric BIdimensional Spectropolarimeter (IBIS)
have periods of 3 minutes in the photosphere. Nagashima et al. (2007) studied
the spatial distribution of the power spectral density of the oscillatory signal in
and around an active region (AR) using high-resolution observations from the
Solar Optical Telescope (SOT) onboard Hinode. In all the observed frequency
ranges, the oscillatory power was suppressed in the umbra. On the other
hand, oscillations in the umbra, also known as umbral flashes, could be clearly
seen in CaII H intensity maps, with the power peaking at about 5.5 mHz (3
minutes). The CaII H power distribution also revealed enhanced elements with
the umbral flashes’ spatial scale throughout the majority of the umbra, with
an area of suppressed power in the centre. Xu et al. (2017) investigated the
relationship between 3-min and 5-min oscillations in sunspots, obtaining that
running waves propagate through the umbra–penumbra as 3-min oscillations
in the umbra region and 5-min oscillations in the penumbra region.

The study of magnetohydrodynamics (MHD) modes and their character-
istics in the sunspot umbra region has also made extensive use of the wavelet
time series analysis. The umbral regions of an observed sunspot were sub-
jected to a combined wavelet and Fourier analysis using various spectral lines
that cover the range of temperatures from the low chromosphere to the corona
in order to show the existence of oscillations at all investigated temperatures,
with frequencies in the range of 5.4 mHz to 8.9 mHz O’shea et al. (2002).
The 3-min oscillations in the sunspot umbral zone were identified using this
technique by Christopoulou et al. (2003). Jess et al. (2017) recently used Hα
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observations by the Hydrogen-Alpha Rapid Dynamics camera (HARDcam) to
find slow body kink patterns travelling along the azimuthal path of a sunspot.
In order to isolate the major umbral oscillations and the larger spatial fluc-
tuations, the authors applied a temporal and spatial bandpass Fourier filter
encompassing (5 < ω < 6.3 mHz) and (0.45− 0.90 arcsec−1).

The study by Keys et al. (2018) revealed the distinct existence of surface
and body surface sausage modes (modes that propagate without disturbing
the symmetry axis of the magnetic flux tube, discussed in detail in Chapter
2) propagating in all the 7 investigated pores, the majority of which had el-
liptical cross sections. In order to determine the sausage mode, their study
involved taking a one-dimensional cross-cut along the pore and measuring the
power at the pore’s edge and at its centre during the time series. The au-
thors identified the types of the modes by imposing the conditions according
to which the amplitude of surface waves has its maximum at the boundary
and its minimum at the centre of the pore, whereas the amplitude of body
modes has its maximum at the centre and minimum at the boundary. How-
ever, in reality, in a magnetic structure of elliptical cross-section the magnitude
of the surface sausage mode reaches its maximum amplitude at the boundary
along the minor axis and its minimal amplitude at the boundary along the
main axis, as recently demonstrated by Aldhafeeri et al. (2021). As a result,
the assumption made by Keys et al. (2018) may only be true for pores with
roughly circular cross sections. The recent study by Albidah et al. (2021b)
addressed this problem and demonstrated how the Proper Orthogonal Decom-
position (POD) and Dynamic Mode Decomposition (DMD) methodologies are
accurate at simultaneously identifying surface and body modes.

In a recent study, Jess et al. (2017) used HARDcam Hα images in conjunc-
tion with k−ω Fourier filter to evidence slow body kink modes travelling along
the azimuthal direction in the chromospheric umbra of sunspot with periods
of 170 s. For the same set of observations Albidah et al. (2021b) employed the
POD/DMD techniques to recover not only the fundamental slow body sausage
and kink modes propagating in a sunspot, but also the existence of higher or-
der modes (also called fluting modes) that were elusive for solar physicists for a
very long time. The possibility that observed oscillatory wave patterns are due
to existence of fluting modes was proposed Kang et al. (2019), who suggested
that the observed two-armed spiral wave patterns in pores could be explained
in terms of a superposition of slow sausage body mode (corresponding to an
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azimuthal wavenumber n = 0) and a fluting mode (n = 2) using ground-based
observations with the 1.6 m Goode Solar Telescope. However, their study did
not include a correlation analysis to verify the results obtained between the
numerically simulated and observed modes. Another result of the study by Al-
bidah et al. (2022b), who employed a pixel-by-pixel cross-correlation analysis
to compare modes observed in observational data and theoretical models. This
investigation demonstrated that the irregularities in the shape of the waveguide
influence mainly the higher order modes.

Recent research by Gilchrist-Millar et al. (2021) used inversions of spec-
tropolarimetric Si I 10827 Å data to further constrain sausage-mode damp-
ing in a series of adjacent pores and identify extensive wave damping in the
lower solar atmosphere. Using chromospheric spectral data that are further
defined with regard to future solar missions, these authors also determined
the nature of the observed waves as they cross into the chromosphere and
investigated the effect the characteristics of pores have on wave propagation.
The study by Riedl et al. (2021) suggested that sausage modes were generated
by localised drivers in the pore and were damped by wave leakage as well as
geometric effects from the attenuation of the magnetic field as a function of
height. Grant et al. (2022) investigated the propagation of coherent waves
across several solar magnetic pores. Since isolated and/or disconnected struc-
tures frequently appear in pores, wave activity as a function of atmospheric
height cannot be statistically examined. These authors studied photospheric
and chromospheric wave signatures from a distinctive collection of magnetic
pores emanating from the same sunspot using high-resolution data by the
Dunn Solar Telescope. Through comparisons of intensity and area variations,
wavelet analysis of high-cadence photospheric imaging revealed the universal
presence of slow sausage-mode oscillations that are coherent across all photo-
spheric pores and result in statistically significant in-phase connections. They
also discovered fine-scale 5 mHz power amplification as the waves traveled
into the chromosphere by using bisector Doppler velocity analysis of the Ca
II 8542 Å line. Examining the intensity and velocity signals from individual
pores revealed that they behave as fractured waveguides rather than monolithic
structures, which is consistent with the Fourier analysis of chromospheric ve-
locities between neighbouring pores, which revealed the annihilation of the
wave coherency observed in the photosphere. This work is significant because
it shows how complex wave morphology is with atmospheric height and how
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large changes may be seen at different chromospheric layers even if equal wave
modes are put into similar photosphere pores.

Finally, the study by Stangalini et al. (2022) found large-scale coherent
magnetohydrodynamic oscillations in solar sunspots. Although theoretically
possible, it has not yet been proven that many resonant modes in sunspots
are excited simultaneously. Extremely large sunspots did not exhibit several
simultaneous resonant modes, with the exception of a few solitary low order
eigenmodes in small scale magnetic structures. In their study these authors
discovered the largest-scale coherent oscillations ever seen in a sunspot. These
oscillations have a spectrum that differs greatly from the Sun’s regular global
acoustic oscillations and they are a superposition of a number of resonant
waves.

1.3 Aims and Thesis outline

One of the most challenging aspects of modern solar physics is describing the
plasma dynamics qualitatively and quantitatively. This challenge arises from
the combined complexity of dynamics and the complicated interplay between
magnetic fields and flows, as well as the limited analytical tools we have to de-
scribe a realistic dynamics. MHD waves and oscillations result from the various
plasma motions that are subject to restoring forces (such as pressure gradi-
ent, gravitational force, Lorentz force, etc.). Without these restoring forces,
perturbations could develop into shocks, nonlinear patterns, laminar and tur-
bulent flows, instabilities, etc. MHD waves are essential tools to describe and
understand the dynamics, heating, energy and momentum transport, and sta-
bility in the solar atmosphere. In particular, intense magnetic waveguides in
the solar atmosphere, such as pores, sunspots, coronal loops, fibrils, etc., are
ideal environments for the propagation of guided waves. MHD waves are nat-
ural manifestations of disturbances in solar plasmas when deviations in the
equilibrium state of the plasma are paired with various restoring forces that
tend to restore the equilibrium state. In a magnetic fluid (plasma) there is a
much richer spectrum of waves compared to ordinary fluids and these waves
are strongly anisotropic with respect to the direction of the magnetic field.

Observations in almost every wavelength of the last few decades confirm
that the solar atmosphere is filled with MHD waves. Observations of MHD
waves are commonly used in solar magnetoseismology to determine plasma
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and field properties that are typically difficult to measure in the solar atmo-
sphere (ionisation degree, gravitational scale−height, sub−resolution struc-
turing, magnetic field strength, heating/cooling functions, etc.). When waves
dissipate their energy over short length−scales, they also contribute to the
total energy balance of the solar atmosphere, providing an additional heating
that could compensate for radiative losses.

The solar atmosphere is a highly non-uniform and dynamic environment.
Inhomogeneities are known to significantly influence the eigenfunctions and
eigenvalues associated with waves. That is why, for an accurate diagnostic of
the waves’ properties one needs a realistic approach towards modelling. Very
often this modelling can be carried out only numerically, as a mathematical
(analytical) approach would be far too complicated and the complexity of an-
alytical results would obscure the physical meaning. A correct and accurate
knowledge of wave parameters would help carrying out a proper seismological
diagnostics. For example, theoretical descriptions of waves are very sensitive to
the way plasmas density is distributed; current models assume a homogeneous
equilibrium density distribution in magnetic waveguides, such as sunspots.
For an improved modelling one needs to understand the modifications in wave
properties in realistic waveguides, where the plasma shows a transversal vari-
ation of its properties.

In the solar atmosphere the magnetic field tends to accumulate into various
structures of different size due to the non-uniformity of the solar plasma (e.g.
sunspots, spicules, prominences, coronal loops, etc.). These structures play
an important role as observations show that waves predominantly propagate
along them, being guided by the magnetic field. Therefore, an accurate di-
agnostics of the properties of waves in the solar atmosphere needs (as a first
step) the analysis of waves along different waveguides.

The present Thesis is structured as follows: in Chapter 2, we provide the
theoretical background framework on which the research carried out is based.
Here, I briefly describe the mathematical framework that stays at the core
of description of MHD waves. Next, I provide a review of the way dispersion
relations are obtained and the properties of waves based on solving the derived
dispersion relations. Dispersion relations for guided waves will be derived in
various geometries, relevant to the content of the Thesis (magnetic slab, and
magnetic cylinders) based on earlier studies by Edwin and Roberts (1982a,

15



1983b, 1982b). We also construct the corresponding dispersion diagrams, as
numerical solutions of the dispersion relations for different situations.

Chapter 3 contains a description of the mathematical framework necessary
to describe the morphology of MHD waves in an inhomogeneous waveguide
which can be derived from the full set of ideal and linearised MHD equations.
The equation solved in this Thesis is a Helmholtz-type partial differential equa-
tion with Dirichlet boundary condition describing the properties of slow body
waves, i.e. waves that are oscillatory inside the waveguide and produce very
little disturbance at the boundary. This Chapter is devoted to the investi-
gations of the propagation characteristics and the spatial structure of slow
body MHD eigenmodes in a magnetic flux tube with circular cross section
with inhomogeneous equilibrium density distribution under solar photospheric
conditions in the short and long wavelength limit. The equilibrium density
profile inhomogeneity is represented by a local circular density enhancement
or depletion whose strength, size and position can change. For analytical
progress we will assume that the model has constant plasma-β and the equi-
librium pressure is homogeneous. The numerical task will addressed by using
the Fourier-Chebyshev Spectral method (FCS) that is employed to solve the
governing equation (as a quadratic eigenvalue problem) in circular coordinate
systems. The numerical solutions will provide the radial and azimuthal vari-
ation of eigenfunctions. The inhomogeneous transverse equilibrium density
profile results in modified eigenvalues and eigenvectors. We carry out a para-
metric analysis to determine the importance of the physical parameters on
the dimensionless phase speed of slow body modes corresponding to the spa-
tial structure of the total pressure perturbation under photospheric conditions.
The presented model can be considered a first attempt to study theoretically
the properties of slow magnetoacoustic body waves in magnetic flux tubes with
local density inhomogeneities. A similar investigation is carried out for long
wavelength limits, i.e. when the wavelength of waves is larger than the radius
of the waveguide.

In Chapter 4 we extend the model used in Chapter 3, by considering not
only the equilibrium density as function of coordinates, but also equilibrium
pressure and magnetic field, in line with observations and numerical modelling.
Analytical progress will be made by considering that the plasma pressure and
density vary following the same dependency on coordinates, meaning that we
are dealing with a constant sound speed, i.e. isothermal equilibrium. The
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profile of the equilibrium density inhomogeneity is represented by a local cir-
cular density enhancement or depletion whose strength, size and position can
change. It is important to note that a decrease in the magnetic field would re-
sult from an increase in density or pressure since the equilibrium total pressure
perturbation must be conserved. We derive a Helmholtz-like governing equa-
tion and solutions will be obtained numerically by imposing Dirichlet boundary
condition at the boundary of the waveguide. We are going to determine the
eigenvalues and eigenvectors appearing in the governing equation and we will
treat this equation as a Sturm-Liouville problem. The governing equation will
be solved using the Galerkin FEM method. Since we are dealing with a short
wavelength limit, all dimensionless phase speeds are converging to one, i.e.
the constant sound speed. As we expect that the inhomogeneities will affect
the higher order modes more, we are displaying the results of these modes, in
addition to the three modes analysed in Chapter 3 to provide a clearer picture
of the impact of the considered inhomogeneities.

The results presented in the previous two chapters serve as motivation for
the research included in Chapter 5, where we extend our analysis to consider
the effect of multi-stranded inhomogeneities in density and magnetic field on
the spatial structure of slow body modes in a circular waveguide. The anal-
ysis is conducted assuming an isothermal equilibrium, where the equilibrium
pressures and densities have the same coordinate dependency as the model
included in Chapter 4. The system of multi-stranded inhomogeneity can be
a very good approximation to the umbral dots that appear in the umbral re-
gions of sunspots. We investigated the spatial structure of waves when the
inhomogeneities present themselves as enhancements or depletions. The ef-
fect of multi-stranded inhomogeneity will be investigated taking into account
higher order modes, as these will likely be more affected by the irregularities
in the equilibrium density and magnetic field.

Finally, Chapter 6 presents our conclusions and drafts several possible av-
enues along which the present research can be carried forward.
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CHAPTER 2

Theoretical background: MHD equations and MHD
waves in magnetic waveguides

The solar atmosphere is an intriguing and difficult environment of study due
to the complexity of plasma behaviour and the interplay between flows and
magnetic fields. The evolution, dynamics and stability of the plasma can be
studied within the framework of MHD that combines well-known conservation
equations from fluid mechanics (mass, momentum, energy) and the Maxwell
equations that represent the evolution and coupling of electromagnetic fields.
The resulting equations describe the interaction between the plasma and mag-
netic field.

Plasma is defined as a quasi-neutral gas consisting of charged particles
sharing a collective behavior. The plasma dynamics largely depend on the
electric and magnetic field developed inside it and its response to the externally
applied fields.

In the classical sense, MHD describes changes in the characteristics of plas-
mas that occur of times much longer than atomic or kinetic processes that take
place in this environment (e.g. collisions between particles), therefore one can
say that the MHD framework describes slow processes. In addition, the length
scales involved in MHD are much longer than the lengths involved in colli-
sional processes, the mean free path of particles, therefore we are interested
in changes in the plasma that occur over long length scales (very useful for
solar physics). These descriptions impose applicability criteria on MHD that
will be discussed in this Chapter together with the system of equations that is
used to describe the dynamical and thermodynamic state of the plasma and
the possible wave solutions of the MHD system that form the scope of my re-
search. The plasma we are going to study will be considered as being treated
as a single, perfectly conducting ideal fluid made up from positive ions and
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electrons that are strongly coupled through long-range collisions.
Although MHD is not the most general description of a plasma, it has been

successfully used to explain a very large number of phenomena in the solar
atmosphere, including the waves and oscillations observed by various high-
resolution ground and space-based telescopes. MHD is considered to belong
to the "classical" physical formalism, meaning that quantum and relativistic
effects are neglected (speeds are usually very small compared with the speed of
light). In addition, MHD assumes that particles are in thermodynamic equi-
librium and the displacement current is neglected in the Maxwell equations.

One type of solution the MHD system of equations can describe well is
the solution whose form is assumed to vary periodically in space and time,
i.e. waves that constitute the topic of the present Thesis. This Chapter is
dedicated to the analysis of the nature and properties of waves in a plasma,
and the modification in the properties of waves when these propagate in a
geometrically well-defined magnetic waveguide.

2.1 The system of MHD equations

In spite of all the simplifications made, the MHD system of equations is still
very complex because it contains a number of coupled non-linear partial differ-
ential equations. To obtain analytical solutions, a number of other assumptions
have to be made. In the present Thesis we are going to employ two more sim-
plifications. The first one assumes motions always such that the speeds are
much larger than the thermal speed of particles and length scales are much
larger than the scales over which transport mechanisms (viscosity, resistivity,
thermal conduction, etc.) operate. As a result, dissipative terms will be ne-
glected, so we are dealing with the system of ideal MHD. Secondly, we will
consider small amplitude changes in the magnitude of physical variables that
leads to a simplified linear approach of perturbations. Finally, we assume that
the length scales involved in our problem are much smaller than the gravita-
tional scale-heights, meaning that gravitational effects can be neglected.

The ideal MHD equations describe conservation laws of mass, momentum,
energy and magnetic flux. These equations are given in terms of density, ρ,
pressure, p, velocity vector v and magnetic field B as

Dρ

Dt
+ ρ∇ · v = 0, (2.1)
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ρ
Dv
Dt

= −∇p+ 1

µ0

(∇× B)× B, (2.2)

D

Dt

(
pρ−γ

)
= 0, (2.3)

∂B
∂t

= ∇× (v × B) , (2.4)

∇ · B = 0. (2.5)

where D/Dt = ∂/∂t + v · ∇ is the material derivative, µ0 is the magnetic
permeability of free space, and γ is the adiabatic index. These equations
express the conservation of mass (Eq. 2.1), conservation of momentum (Eq.
2.2), the adiabatic energy conservation law (Eq. 2.3), the induction equation
(Eq. 2.4) and the Gauss’ law (Eq. 2.5).

Given the density, ρ, kinetic pressure, p, temperature, T , of the plasma can
be calculated using the equation of state for an ideal gas. In a pure plasma
made up of hydrogen, for example, this equation is given by

p = 2
kB
mp

ρT,

where mp is the mass of the proton and kB is the Boltzmann constant.
Basically Eq. (2.2) is nothing more than Newton’s second law and describes

the balance of forces that act upon the plasma element of unit volume. The
right-hand side of this equation contains two forces that act upon a plasma ele-
ment of unit volume. First, there is a pressure gradient force (−∇p) and there
is a magnetic force, called the Lorentz force, that is oriented perpendicular to
the magnetic field. The Lorentz force can be rearranged as

1

µ0

(∇× B)× B = (B · ∇)
B

µ0

−∇

(
B2

2µ0

)
. (2.6)

The first term of the RHS in this equation represents the effect of a tension
parallel to the magnetic field and the second the gradient of a scalar magnetic
pressure. The Lorentz force has, therefore, two effects on the plasma: to
compress it through the magnetic pressure term and also to shorten magnetic
field lines through the tension force, which represents the effect of a tension
parallel to B which appears whenever magnetic field lines are curved.
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Using the above decomposition, Eq. (2.2) is often rearranged as

ρ
Dv
Dt

= −∇PT + (B · ∇)
B

µ0

, (2.7)

where the quantity

PT = p+
B2

2µ0

, (2.8)

is the total pressure. This quantity will play a key role in the mathematical
framework of the present Thesis.

The set of ideal MHD equations (2.1)-(2.5) contains highly nonlinear terms
and mathematical progress can be achieved in the so-called linear approxi-
mation. In this approach each physical quantity is expressed as the sum of
the background (equilibrium) value denoted by the index 0, and its pertur-
bation, denoted by the index 1, i.e. ρ0 + ρ1, etc. We will assume that the
perturbations are just small changes of equilibrium quantities, therefore, every
term consisting of the product of two perturbations becomes negligibly small.
The equilibrium state will be considered to be static (v0 = 0), stationary (the
equilibrium quantities are independent of time), and homogeneous (the equi-
librium quantities are independent on the spatial scales). As a consequence,
the linearised version of the MHD equations becomes

∂ρ1
∂t

+ ρ0∇ · v1 = 0, (2.9)

ρ0
∂v1

∂t
= −∇p1 +

1

µ0

(∇× B1)× B0, (2.10)

∂p1
∂t

− C2
S

∂ρ1
∂t

= 0, (2.11)

∂B1

∂t
= ∇× (v1 × B0), (2.12)

∇ · B1 = 0, (2.13)

where C2
S = γp0/ρ0 is the square of the constant adiabatic sound speed.

A very important parameter that can help reducing the complexity of the
above equations and determine the dominant forces driving the dynamics of
the plasma is the so-called plasma-β parameter defined as the ratio of the
kinetic and magnetic pressure, i.e. β = 2µ0p0/B

2
0 . A general expression of this
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parameter can be given as (Priest, 2014a)

β = 3.5× 10−21nTB−2,

where n is the number density of the plasma (in m−3), T is temperature (mea-
sured in K) and B is the magnetic field (given in G).

If β > 1, the dynamics is driven mainly by kinetic forces (e.g. pressure
gradient). In the opposite case, β < 1, the dynamics is driven predominantly
by magnetic forces, e.g. the Lorentz force. Traditionally the regions in the
solar photosphere and lower chromosphere far away from active regions are
characterised by β > 1, while active regions in the lower part of the atmosphere,
the upper chromosphere, solar corona and solar wind correspond to β < 1.

One important consequence of Eq. (2.12) is the Alfvén’s frozen flux theo-
rem. For a perfectly conductive fluid (as used here) the field lines are frozen
into the fluid, that is the magnetic field moves along with the flow of the
plasma. A common way to explain the frozen flux theorem is to use magnetic
flux tubes and magnetic field lines. A magnetic flux tube is a region of space
that resembles a tube or cylinder and has sides that are entirely parallel to the
magnetic field (i.e. tangential discontinuity). As a result, there is no magnetic
flux through these sides, and the magnetic flux is constant and equal over the
whole length of the tube. Alfvén’s theorem implies that these surfaces of con-
stant flux move with the fluid they are embedded in. Magnetic flux tubes are
consequently solidified within the fluid.

2.2 MHD waves

High resolution ground and space observations of the last few decades con-
firmed that the solar atmosphere is filled with MHD waves seen almost in
every wavelength (Mathioudakis et al., 2013; Jess et al., 2015; Li et al., 2020;
Banerjee et al., 2021; Jess et al., 2022, to name but a few). Waves are natural
manifestations of disturbances in the solar plasma when deviations in the equi-
librium state of the plasma are paired with various restoring forces that tend
to restore the equilibrium state. MHD waves have been extensively studied
in connection to plasma heating or acceleration (see, e.g. Erdélyi and Ballai
(2007), De Moortel and Browning (2015), Van Doorsselaere et al. (2020), Li
et al. (2022) and references therein), and as a diagnostic tool using magneto-
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seismological techniques that aim to determine the plasma and field parame-
ters that cannot be measured directly or indirectly (for a few reviews see, e,g.
Nakariakov et al. (1999); Ballester (2005); Verth (2007); Ballai (2007); Oliver
(2009); De Moortel and Nakariakov (2012); Griffiths et al. (2023); Zheng et al.
(2023); Chen et al. (2023).

Waves are essential tools to describe and understand the dynamics in the
solar atmosphere. An MHD wave can be seen as a harmonic response to
the interaction between electrically conducting fluids (plasmas) and magnetic
fields. MHD waves are ubiquitous in the solar atmosphere, and contribute to
the heating of the solar atmosphere by transporting mechanical energy from the
photosphere into the solar corona, where these waves are dissipated. Waves
can also transport information about the medium in which they propagate,
therefore they can be used as tools to diagnose the plasma using seismological
techniques.

The solar magnetic field tends to accumulate into structures of different
strength and cross section. Manifestations of such structuring are continu-
ously observed in the solar atmosphere (e.g. sunspots, spicules, prominences,
coronal loops, etc.). These structures play an important role in the process of
wave propagation, because waves are predominantly propagating along these
structures, making them guided and dispersive. At the same time, waves act
as tracers of the magnetic field along which they propagate.

The characteristics of MHD waves are studied by using dispersion relations
(i.e. relations that describe the relationship between the frequency of waves, ω,
and their wavevector, k) and the associated dispersion diagrams. In contrast
to hydrodynamics, plasmas can support a much richer spectrum of waves. The
nature of the restoring force acting to restore any deviation from equilibrium
will determine the nature and characteristics of waves. For instance, Alfvén
waves are the results of changes opposed by the magnetic tension. Magneto-
acoustic waves are produced when plasma pressure and magnetic pressure act
in conjunction to oppose changes in the dynamics of the plasma. If plasma
pressure and magnetic pressure act against each other (out of phase), slow
magneto-acoustic waves are produced. On the other hand, when these two
restoring forces act in phase, disturbances will propagate as fast magnetoa-
coustic waves.

The properties of the above propagating in an unbounded and structured
plasma environment will be discussed in more detail in the following sections.
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2.2.1 Dispersion relation of MHD waves in unbounded

homogeneous medium

The simplest approach to investigate the nature and properties of waves sup-
ported by a plasma is to focus our attention on the propagation of these waves
in the idealistic situation of an unbounded plasma, i.e. when we do not impose
restrictions on the spatial extent of the plasma or its structuring. We consider
an unbounded plasma environment where the plasma and field parameters
are constant. As we would like to concentrate on the fundamental proper-
ties of waves, we are going to consider that the plasma is ideal (no transport
mechanisms are included), wavelengths are much longer than the characteristic
lengths of stratification (gravitational forces are excluded), and changes in the
plasma occur adiabatically. We assume a homogeneous magnetic field of the
form B0ẑ, where ẑ is the unit vector in the z direction. The wave that propa-
gates in this environment will be described by the 2-dimensional propagation
vector k = (kx, 0, kz) in the x − z plane. The nature and properties of MHD
wave propagation in such plasma has been examined previously and analysed
by many authors (e.g. Lighthill, 1960; Cowling, 1976; Goedbloed et al., 2004;
Priest, 2014b). The system of ideal and linearised MHD equations (2.9)–(2.13)
can be reduced to a single partial differential equation (Roberts, 1981a) that
describes spatial and temporal evolution of the velocity divergence in the form

∂4△
∂t4

−
(
C2

S + V 2
A

) ∂2
∂t2

∇2△+ C2
SV

2
A

∂2

∂z2
∇2△ = 0, (2.14)

where VA = B0/
√
µ0ρ0 is the Alfvén speed and △ = ∇ · V1 is the divergence

of V1, or the compressibility of the plasma. In order to obtain a dispersion
relation, we Fourier analyse Eq. (2.14) by considering

∆ = ∆̂(x) expi(kyy+kzz−ωt), (2.15)

where ∆̂(x) is the x-dependent amplitude of perturbations and ω is the fre-
quency of waves. Writing the perturbations in this way is equivalent to re-
placing ∂/∂t by −iω and the ∇ operator with ik. If the perturbed velocity
is perpendicular to the wave vector (∇ · V1 = 0) or k · V1 = 0, we have
incompressible plasma and the only wave that propagates is the Alfvén wave
whose dispersion relation is written as ω = ±kVA cos θ, where θ is the angle
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between the direction of wave propagation and the direction of the equilibrium
magnetic field, i.e. kz = k cos θ. Alfvén waves are transverse, purely magnetic
waves that do not perturb density or pressure of the plasma. In a compressible
plasma (k ·V1 ̸= 0), we can substitute Eq. (2.15) into (2.14) resulting in the
dispersion relation of fast and slow magneto-acoustic waves of the form

ω4 − k2
(
C2

S + V 2
A

)
ω2 + k2zC

2
Sk

2V 2
A = 0. (2.16)

The solution of this bi-quadratic equation has two unique solutions that cor-
responds to slow and fast wave propagating in opposite direction as follows

ω2 =
k2

2

(
C2

S + V 2
A

)
± k2

2

√(
C2

S + V 2
A

)2 − 4
kz

2C2
SV

2
A

k2
, (2.17)

where the ± sign denotes the fast (upper sign) and slow (lower sign) magnetoa-
coustic modes. A more complete picture on the properties of magnetoacoustic
modes can be obtained after introducing the phase and group speeds defined
as Vph = ω

k
and Vgr = dω

k
. After dividing equation (2.16) by k4 we can write

the dispersion relation to

V 4
ph − V 2

ph

(
C2

S + V 2
A

)
+ C2

SV
2
A cos2 θ = 0. (2.18)

The solutions of the above equation can be best visualised in a polar diagram
(also called Friedrich diagram). We consider that the equilibrium magnetic
field is along the vertical axis, while the direction of propagation can vary with
respect to this direction. The polar plot for the Vph described by Eq. (2.18), as
a function of θ is shown in Fig. (2.1) for three different values of the plasma-β
parameter.
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Figure 2.1: The Friedrich diagram showing the variation of the phase speeds,
Vph with respect to the propagation direction, for Alfvén, slow and fast mag-
netoacoustic waves (blue, black and red curves, respectively) in an unbounded
homogeneous medium. The three panels correspond to the cases β < 1 (left
panel), β = 1 (middle panel) and β > 1 (right panel). The values of the
characteristic Alfvén and sound speeds are given in units of the sound speed
for references.

The three panels of Fig. (2.1) display the variation in the phase speed of
Alfvén, slow and fast magnetoacoustic waves with respect to the angle between
the ambient magnetic field and the direction of wave propagation, when β <

1 (left panel), β = 1 (middle panel), and β > 1 (right panel). In each case,
it is clear that slow and Alfvén waves cannot propagate in the perpendicular
direction to the ambient magnetic field. Fast waves can propagate across the
field, when they attain their maximum phase speeds (V 2

A + C2
S)

1/2. The same
fast magnetoacoustic waves move at a speed close to the sound speed when
they propagate in the same direction as the ambient field for β ≫ 1, or the
Alfvén speed for β ≪ 1. For the slow mode, the phase speed ranges from
0 ≪ Vph ≪ min(CS, VA), while for the fast mode, the phase velocity ranges
from max(CS, VA) ≪ Vph ≪ (C2

S + V 2
A))

1/2.
In reality, the plasma is neither unbounded nor homogeneous, therefore, it

is natural to consider in what follows the situation where the plasma exhibits
some sort of inhomogeneity via the simplest configuration represented by sharp
interfaces separating homogeneous plasma regions. Inspired from results ob-
tained for surface waves propagating in fluids, we expect that discontinuities
will support the propagation of guided waves. The surface of discontinuity
will separate two regions of different properties and in each of these regions
the MHD equations will be solved. The properties of possible waves will be
studied with the help of the dispersion relations that are obtained after match-
ing the solutions of ideal and linearised MHD equations for the two regions
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separated by the interface. This matching is obtained by imposing the dynamic
and kinematic boundary conditions. In the case of a magnetic field parallel
to the interface (tangential discontinuity), these conditions correspond to the
continuity of the total pressure and the transversal component of the velocity
perturbation. At the same time, since we aim to study waves propagating
along the discontinuities we also require that far away from the location of
these discontinuities the waves’ amplitude vanishes, i.e. waves are evanescent.

2.2.2 MHD Waves in structured plasmas

The magnetic field in the solar atmosphere provides the ideal and natural
structured environment for plasma and this structuring of the solar plasma
is continuously observed in every wavelength. In reality one can expect that
physical parameters that describe the state of the plasma are changing in
every direction, however for the sake of modelling we would need to restrict
our attention to a few cases that could highlight the properties of waves in
structured and inhomogeneous plasmas. The cases we are going to survey
ensure that analytical progress is made whose results allow us to determine
the nature and properties of waves.

Let us consider a unidirectional magnetic field oriented in the z direction
in the form B0 = B0ẑ in a Cartesian coordinate system. The equilibrium gas
pressure, ρ0, pressure p0 and field magnitude B0 may all vary in the direc-
tion perpendicular to the field. The effects of gravitational stratification are
neglected. The condition of pressure balance requires that the total pressure
perturbation is constant and in the equilibrium state this balance of forces can
be written as

d

dx

(
p0 +

B2
0

2µ0

)
= 0.

After linearising the MHD equations, we can split the velocity field into
components parallel (z) and perpendicular (⊥) to the ambient magnetic field.
The evolution of these velocity components are given by

ρ0

(
∂2

∂t2
− V 2

A

∂2

∂z2

)
v⊥ +∇⊥

(
∂PT

∂t

)
= 0, (2.19)

ρ0

(
∂2

∂t2
− C2

T

∂2

∂z2

)
vz +

C2
S

C2
f

∂

∂z

(
∂PT

∂t

)
= 0. (2.20)
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The temporal variation of the total pressure can be written as

∂PT

∂t
= ρ0V

2
A

∂vz
∂z

− ρ0C
2
f∇ · v,

where C2
f = C2

S + V 2
A and ∇⊥ denotes the component of the gradient operator

perpendicular to the direction of the ambient magnetic field, i.e. perpendic-
ular to the z-axis. Note that all characteristic speeds are functions of the x
coordinate.

Considering that all perturbations are written in a spatial dependence of
the form given by Eq. (2.15) allows us to combine Eqs. (2.19) and (2.20) into
a single ordinary differential equation of the form (Roberts, 1981b)

d

dx

{
ρ0(x)(k

2
zC

2
A(x)− ω2)

m2(x) + k2y

dvx
dx

}
= ρ0(x)(k

2
zV

2
A(x)− ω2)vx, (2.21)

where the quantity m2 is defined as (often labelled as the magnetoacoustic
parameter)

m2(x) =
(k2zC

2
S(x)− ω2)(k2zV

2
A(x)− ω2)

(C2
S(x) + V 2

A(x))(k
2
zC

2
T (x)− ω2)

. (2.22)

The last quantity plays a very important role in the classification of waves and,
depending on the relative magnitude of the characteristic speeds, it can be a
positive or negative quantity. In general, an analytical solution to Eq. (2.21)
can be obtained only in some rather specific cases that correspond to specific
inhomogeneities. One such special configuration is when the inhomogeneous
character of the plasma is represented by sudden changes in the properties of
the plasma, i.e. when we deal with changes of properties at an interface sepa-
rating two, otherwise homogeneous, plasma regions. In this case the equations
written for both regions become second order differential equations with con-
stant coefficients. The requirement we have to impose to ensure that waves
remain attached to the interface surface separating the two regions, is that far
away from the interface waves are evanescent, i.e. vx(x → ±∞) = 0. The
schematic profile of waves propagating at the interface can be seen in the first
panel of Fig. (2.3). The properties of MHD waves propagating in such struc-
tured plasmas were first studied in great detail by Roberts (1981b). We are not
going to detail the results obtained in the case of a single interface, however
the ideas presented above will constitute the starting point in presenting the
results obtained for wave propagation in magnetic configurations much more
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relevant for the present Thesis.

2.2.2.1 Dispersion relation of MHD waves in magnetic slabs

A natural extension of the problem of waves at a single interface is the con-
sideration of two magnetic interfaces that are parallel to the z-axis and are
spaced apart by a constant distance, 2x0 forming a waveguide. Although a
Cartesian geometry is not very realistic to describe waves in solar magnetic
structures, it allows us a much simpler understanding of waves’ properties that
will be similar when we consider more realistic configurations. Describing the
wave propagation in a Cartesian coordinate system also allows us to obtain
dispersion relations in terms of functions that are relatively easy to handle.

The problem of waves in magnetic slabs has been extensively studied in
the past. Parker (1974) described the appearance of surface waves for an
incompressible medium in an isolated magnetic slab with no magnetic field
surrounding the slab. Later, Roberts (1981c) studied the wave propagation
for an isolated magnetic slab in a compressible medium. This model was
extended by Edwin and Roberts (1982a) who investigated the effect of a mag-
netic field surrounding the slab by expanding the study by Roberts (1981c).
These pioneering theoretical results were followed by a myriad of further stud-
ies that involved either observational evidence that was combined with theory,
or extra additions to the original models such as flows, multi-layer slabs, etc.
(Zsámberger et al., 2022; Markwick et al., 2024; Briard et al., 2024).

Let us consider the two semi-infinite plasma surfaces forming a slab in-
finitely extended in the y and z directions. These interfaces delimit an internal
and external plasma region labelled by indices 0 and e, respectively. The sound
and Alfvén speeds in the two regions are C0, Ce, VA0, and VAe. We consider
the case of parallel propagation with negligible modification of the wave in the
y direction (∂/∂y = 0) and the motion of the plasma is two-dimensional, i.e.
v = (vx, 0, vz).

The uniform magnetic field (internal (B0ẑ) and external (Beẑ)) is parallel
to the interfaces making them a tangential discontinuity. The solutions of
MHD equations inside and outside the slab are matched at the boundary of
the regions by imposing the kinematic and dynamic boundary conditions, i.e.
we impose the continuity of the transversal component of velocity (vx), and the
total pressure, PT , at the boundaries situated at x = ±x0. Waves are assumed
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Figure 2.2: A sketch of a uniform magnetic slab of width 2x0, embedded in a
uniform medium (left panel). The middle and right panels display schemat-
ically the form of sausage and the kink modes, respectively. Credit: Priest
(2014b).

to propagate along the interface and be evanescent far from the waveguide. A
schematic representation of the geometry used in this discussion together with
the relevant physical parameters is shown in the left panel of Fig. (2.2).

The MHD equations can be reduced in both regions (inside and outside
the slab) to a system similar to Eqs. (2.19)-(2.20), with constant character-
istic speeds specific for each region. These equations can be reduced in each
region to a second order ordinary differential equation for the component of
the velocity that is normal to the interface separating the regions of the form

d2vx
dx2

−m2
0vx = 0, x < |x0|, (2.23)

where the magnetoacoustic parameter m0 was defined earlier by Eq. (2.22). A
similar magnetoacoustic parameter can be obtained in the external region and
will be denoted by me for x > |x0|. As waves are assumed to be evanescent
outside the slab, we require that vx → 0 as x→ ±∞. This condition translates
in the requirement thatm2

e > 0, so the amplitude of waves decays exponentially
with distance. This condition implies that the frequency of waves must satisfy
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the conditions

ω

k
< CTe, or min(C0e, VAe) <

ω

k
< max(C0e, VAe)

Figure 2.3: Schematic diagram of surface wave along an interface (a), magnetic
slab (or flux tube) (b) and body waves propagating in a magnetic slab (or flux
tube) (c). Here the boundaries of the waveguide are situated at ±a.

After some straightforward calculations we obtain that the dispersion rela-
tion of MHD waves propagating along the magnetic slab waves is given by

ρ0
(
k2V 2

A − ω2
)
m0e + ρe

(
k2V 2

Ae − ω2
)
m0i

(
tanh

coth

)
m0ix0 = 0, (2.24)

where the tanh / coth solutions describe the symmetrical and anti-symmetrical
modes.

It is probably appropriate at this stage to define the terminology which
is used here in the classification of modes of Eq. (2.24) and throughout this
Thesis. Following Roberts (1981a), solutions of Eq. (2.24) with m2

0 > 0 will
be referred to as surface waves and those with m2

0 < 0 as body waves (see
the middle and right panels of Fig. 2.3). Thus the distinction pertains only
to their spatial behaviour within the inhomogeneity. Surface waves have their
maximum amplitude at the boundary of the waveguide and show an evanescent
behaviour inside the slab (see the middle panel of Fig. 2.3), and body waves
have an oscillatory behaviour inside the slab (see right panel of Fig. 2.3) and
attain their minimum amplitude at the interface. Based on the form of the
magnetoacoustic parameter, it is clear that surface waves will propagate as
long as (for waves propagating in the positive direction, i.e. in the direction of
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the background magnetic field)

ω

k
< CT , or min(C0, VA) <

ω

k
< max(C0, VA).

When waves have their phase speed that satisfies the first condition, they
will be slow surface waves, while for the second condition, we have fast surface
waves. In addition, body waves will propagate in a magnetic structure provided

CT <
ω

k
< min(C0, VA) or

ω

k
> max(C0, VA).

Body waves propagating in the first domain will be the slow body waves, while
fast waves will propagate in the second domain.

A further categorisation of modes arises from the consideration of oscilla-
tion symmetries of the interfaces forming the boundaries of the slab. Waves
can oscillate such that the boundaries oscillate in phase (these modes are called
the kink modes and correspond to the coth solution of Eq. 2.24). When bound-
aries oscillate in anti-phase, waves will be labelled as sausage modes and these
are the modes given by the tanh solution of Eq. (2.24). The symmetry axis
of the slab is oscillating the same way as the boundaries in the case of kink
modes and does not have a motion in the case of sausage modes. A schematic
representation of these two modes is shown by the middle and right panels of
Fig. (2.2).

The full spectrum of solutions of the dispersion relation (2.24) are shown
for photospheric (VAe = 0.5C0, Ce = 1.5C0 and VA = 2.0C0) and coronal
conditions (VAe = 5C0, Ce = 0.5C0 and VA = 2.0C0) in Fig. 2.4. The two cases
are distinguished by the ordering of phase speeds. Here we plot the phase speed
of waves (ω/k) with respect to the dimensionless quantity kx0 as in the study
by Edwin and Roberts (1982b). In the solar photosphere, where β ≫ 1, slow
surface and body waves propagate with weak dispersion with speeds whose
value is bounded by the internal sound and cusp speeds. In addition, fast
surface sausage and kink modes propagate with speeds between the internal
and external sound speeds and show a much more dispersive character than
slow waves. In contrast, in the solar corona, where β ≪ 1 no surface waves
are able to propagate, and fast modes are very dispersive.
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Figure 2.4: Dispersion curves of modes propagating along a magnetic slab
under photospheric (top panel) and coronal conditions (bottom panel). Here
the phase speed of waves (ω/k) is plotted with respect to the dimensionless
quantity kx0. Sausage and kink modes are represented by solid and dashed
lines, respectively.
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2.2.3 MHD waves in cylindrical magnetic flux tubes

In reality magnetic waveguides are not planar structures, instead their cross
section often looks closer to the circle. The idea of using a Cartesian coordi-
nate system to determine the properties of waves was very useful because it
allows relatively simple mathematics, however for a more realistic description
of possible waves and their nature, we would need to employ a geometry that
allows the curvature of the boundary and the simplest case is the one when the
waveguide is approximated by a cylindrical flux tube. A cylindrical geometry
is the simplest geometry that still provides a high degree of symmetry. Here
we closely follow the derivation of the dispersion relation and interpretation of
solutions presented by the study by Edwin and Roberts (1983c). The study

Figure 2.5: A schematic representation of a cylindrical magnetic flux tube with
the associated physical quantities describing the plasma and magnetic field
inside (index "0") and outside the flux tube. The flux tube has a constant
radius a and it is oriented along the z axis.

of waves in a magnetic flux tube and the derivation of the dispersion rela-
tion of waves follow the same physical principles as in the case of waves in a
magnetic slab, i.e. internal and external solutions have to be matched on the
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boundary of the waveguide (done by imposing the continuity total pressure
and radial velocity component). Similar to the previous cases, the waves will
be localised to the waveguide in which they propagate, meaning that far away
from the structure their amplitude decays exponentially. In addition to the
magnetic slab case, here we impose that solutions are regular at r = 0, i.e.
at the symmetry axis of the tube (this requirement has to be imposed to all
models that have a central point of symmetry). Let us assume that a circular
cross-section flux tube is permeated by a homogeneous straight magnetic field
oriented along the longitudinal axis of the tube, (B0ẑ) and it is embedded
within an environment of uniform magnetic field (Beẑ), where ẑ is the unit
vector in the z direction, all variables inside the flux tube have index 0, while
quantities outside the tube are denoted with index e. The equilibrium state is
assumed to be homogeneous, static and stationary. The cylindrical geometry
will be described by the coordinates r, θ, z. The MHD system of equations
will be perturbed and we assume that the perturbations are small, therefore
we can use the linearised version of this system. Perturbations can be Fourier
analysed by considering them proportional to exp

(
i(ωt+ nθ + kz)

)
, where n,

and k are the azimuthal and longitudinal wave numbers and ω is the (real)
frequency of wave oscillations.

The linear perturbation about equilibrium configuration of variables in the
MHD system of equations leads to Eq. (2.14), however now the Laplace oper-
ator in cylindrical geometry can be expressed as

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
. (2.25)

Similar to the magnetic slab case, we are going to consider that the compress-
ibility, ∆, can be written as

∆ = R(r) exp(i(ωt+ nθ + kz)), (2.26)

where R(r) denotes the amplitude of this quantity that can depend on the
radial coordinate r. As a result, the governing equation for R(r) can be written
as

d2R

dr2
+

1

r

dR

dr
−

(
m2

0 +
n2

r2

)
R = 0, (2.27)
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which is a typical Bessel differential equation and

m2
0 = −

(
ω2 − k2C2

S

) (
ω2 − k2V 2

A

)(
C2

S + V 2
A

) (
ω2 − k2C2

T

) . (2.28)

Depending on the sign of m2
0 (surface and body waves) this equation admits,

as solution, the well-known Bessel functions, i.e. c1In(m0r)+ c2Kn(m0r) when
m2

0 > 0 and c′1Jn(m0r)+c
′
2Yn(m0r) when m2

0 < 0. As we require that solutions
are regular at r = 0, we choose c2 = c′2 = 0. Here c1, c2, c′1, and c′2 are constants.
By inserting Eq. (2.26) into Eqs. (2.1)-(2.5), the three components of the
velocity perturbation in the cylindrical coordinate system can be explicitly
expressed as (Spruit, 1982),

Vri = A
ω2 − k2C2

S

ω2m2
0

d

dr
Rn, Vθi = iA

ω2 − k2C2
S

ω2m2
0

n

r
Rn, Vzi = −AikC

2
S

ω2
Rn,

(2.29)
where A denotes an arbitrary amplitude and Rn denotes a Bessel function
of order n. In a similar way, for the external region the governing equation
for R(r) is obtained in a similar form as Eq. (2.27), but with m2

e replacing
m2

0. Since waves are expected to be evanescent in the external region, the
characteristic Bessel function that will describe the variation of R(r) will be
proportional to Kn(mer).

The dispersion relation is obtained by imposing the continuity of the radial
component of velocity and total pressure at the boundary (r = a) of the
magnetic flux tube. As a result, for the combination of characteristic speeds
for by m2

0 > 0, the dispersion relation for surface wave is given by (Edwin and
Roberts, 1983b)

ρ0(k
2V 2

A − ω2)me
K

′
n(mea)

Kn(mea)
= ρe(k

2V 2
Ae − ω2)m0

I
′
n(m0a)

In(m0a)
. (2.30)

In contrast, when m2
0 = −n2

0 < 0, then the dispersion relation for body wave
can be written as

ρ0(k
2V 2

A − ω2)me
K

′
n(mea)

Kn(mea)
= ρe(k

2V 2
Ae − ω2)n0

J
′
n(n0a)

Jn(n0a)
, (2.31)

where the dash denotes the derivatives of the Bessel functions with respect to
the radial variable. In addition, thanks to the condition of continuity of the
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equilibrium total pressure

p0 +
B2

0

2µ0

= pe +
B2

e

2µ0

,

the relationship between the equilibrium densities can be written as

ρe
ρ0

=
2C2

0 + γV 2
A

2C2
e + γV 2

Ae

.

MHD waves propagating in a magnetic flux tube can be classified according
to the number of radial nodes (fundamental or overtone), the radial structure
(surface or body), and the relative propagation speed (slow and fast magneto-
acoustic modes, Alfvén or intermediate modes). Accordingly, waves that cor-
respond to the azimuthal wavenumber n = 0 are the sausage modes and kink
modes have n = 1 (see Figure 2.7). Waves for which n ≥ 2 are called fluting
modes. Within the waveguide, body waves have an oscillating pattern in the
radial direction, and their lowest amplitude is found close to the waveguide’s
boundary. Surface waves, on the other hand, propagate in such a way that
they are evanescent both inside and outside the magnetic flux tube and reach
their largest amplitude at the waveguide’s boundary. The dispersion curves,
as solutions of the dispersion relations (2.30)-(2.31) are shown in Fig. (2.6),
where we plot the phase speed of waves in terms of the dimensionless parame-
ter ka under photospheric (top panel) and coronal conditions (bottom panel).
In the solar photosphere slow surface waves are bounded by VAe and CT and
their phase speed slightly decreases with increasing wavenumber, or decreasing
wavelength. The slow body waves are confined to the region between CT and
C0 and their phase speed increases with the wavenumber. Since the values
of the tube and sound speeds are so close to each other, the phase speed of
slow waves shows a small variation with the wavenumber. Fast surface waves
are located between C0 and Ce. It is worth noting that the fast body waves
do not appear under photospheric conditions. Figure (2.6, bottom panel), on
the other hand, shows the phase speed of the sausage and kink slow and fast
body waves under coronal conditions. Similar to waves in the photosphere,
slow body waves are bounded by CT and C0. Fast body waves are confined
to the regions between VAe and VA. Under coronal conditions slow and fast
surface waves do not appear. Thus, both panels show that the mean Alfvénic
speed is the common phase speed for the kink fast surface wave under photo-
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spheric conditions and for the kink fast body wave under coronal conditions.
Finally, regions where no modes are shown are regions where waves are not
propagating, i.e. they are leaky.

Figure 2.6: Dispersion curves of modes propagating in a magnetic cylinder
under photospheric (top panel), and coronal conditions (bottom panel). Here
we plot the phase speed of waves (ω/k) as a function of the dimensionless
quantity ka. Sausage and kink modes are shown by solid and dashed lines,
respectively.
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Figure 2.7: A cylindrical magnetic waveguide oscillates in the cases of a sausage
mode (left panel) and a kink mode (left panel). The sausage mode involves
squeezing and stretching the cylinder’s edge, keeping the symmetry axis unper-
turbed. By contrast, the kink mode is shifting the symmetry axis. The thick
side-way arrows show the velocity amplitudes, while the thin upward arrows
point in the direction of the background magnetic field. Credit: Morton et al.
(2012).

Since the Thesis concentrates on slow body modes in the solar photosphere,
let us discuss in detail the value of the phase speed of waves in various limits.
Using the standard formula for the derivatives of the Bessel functions we obtain
that the dispersion relation for sausage body waves reduces to

ρ0(k
2V 2

A − ω2)me
K1(mea)

K0(mea)

J0(n0a)

J1(n0a)
= ρe(k

2V 2
Ae − ω2)n0. (2.32)

In the long wavelength limit (slender tube) we are going to look for a solution
in the limit ka→ 0 as n0a→ 0, mea→ 0. In this limit

K0(mea) ∼ − ln(mea), K1(mea) ∼ (mea)
−1, J0(n0a) ∼ 1, J1(n0a) ∼

n0a

2
.

For visualisation purposes we have solved the dispersion relation numerically
(using the bisection method to find the roots of the dispersion relation) and
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displayed the value of density perturbation and radial component of the veloc-
ity for various types (sausage, kink and fluting modes) of fast and slow MHD
waves propagating in a cylindrical flux tube propagating under coronal condi-
tions. The values of density perturbations were normalised by their maximum
value and the direction of the radial velocity is shown by black arrows. Figures
(2.8) and (2.9) display the spatial distribution of density for fast body and sur-
face modes, and the columns represent the three modes. Figures (2.10) and
(2.11) display the same quantities relating to slow body and surface waves.

Figure 2.8: This figure displays the dimensionless density perturbation (color-
bar) and the radial velocity perturbation (black arrows) for fast body modes
propagating under coronal conditions. From left to right, the columns show
the quantities for sausage (n = 0), kink (n = 1) and fluting (n = 2) modes.
The boundary of the tube is indicated by the white dashed circle in the equi-
librium state, and the black solid circle depicts the boundary’s new position
after the disturbance.

Figures (2.8)-(2.11) clearly demonstrate that, since the radial velocity in
the case of fast waves are larger than in the case of slow waves, these waves
(body or surface waves) have a greater impact on the tube boundary than
slow waves, which have little to no noticeable impact on the boundary. This
result can also be attributed to the fact that for fast waves the dominant
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Figure 2.9: The same as in Fig. (2.8), but here we show the spatial structure
of fast surface modes, however it appears only under photospheric conditions.
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Figure 2.10: The same as in Fig. (2.8), but here we show the spatial structure
for slow body modes.
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Figure 2.11: The same as in Fig. (2.8), but here we show the spatial structure
of slow surface modes.

.
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eigenfunction (say, velocity) is in the radial direction, while in the case of slow
waves, this is in the longitudinal direction. As expected, the radial velocity and
density perturbation amplitudes of the fast and slow surface waves are at their
minimums near the tube’s centre and maximums at its edge, respectively. The
amplitude of the same quantities in the case of slow body waves is very small
at the tube’s boundary. The modes that we described and illustrated in these
figures are the so-called fundamental modes since they only have one node in
the radial direction. Overtones of modes can be recovered if more nodes in
the radial direction are taken into account. For illustration the overtones in
the case of slow body modes are shown in Fig. (2.12). Surface waves, on the
other hand, lack overtones. This is clear from the dispersion diagram (see Fig.
2.6), which demonstrates that for a given value of ka, there is only one curve
that corresponds to surface waves, however for body modes, there are multiple
curves that are visible, each corresponding to a different set of radial nodes.
Our conclusions are fully supported mathematically because surface waves are
defined in terms of the Bessel function In, which exhibits a monotonic variation
(rather than oscillatory behaviour). Body waves, in contrast, are characterised
in terms of the oscillating Bessel function Jn.

Finally, an earlier investigation that is relevant for the research presented
in this Thesis is the study by Aldhafeeri et al. (2022a). These authors investi-
gated the accuracy of describing the properties of slow body waves by assuming
a vanishing longitudinal velocity component (or total pressure) on the bound-
ary of the photospheric waveguide and they compared their hypothesis to the
full solution given by the study by Edwin and Roberts (1983b). This study
showed that in the case of slow body waves in the solar photosphere, con-
sidering the total pressure perturbation or the longitudinal component of the
velocity perturbation zero at the boundary of the waveguide produces errors in
eigenvalues that are less than 1% from the values we would obtain by deriving
the full dispersion relation, as shown in Fig. (2.13). This figure displays the
dispersion curves of slow body kink and sausage modes obtained by solving
the full dispersion relation (Eq. 2.31, solid lines) and the curves obtained by
solving the approximative solution (dashed lines). As Fig. (2.13) shows, the
difference in the solutions for the two cases is less than 1%.

To further evidence our modelling framework, we also show the variation
of the longitudinal component of the velocity in a circular waveguide (see Fig.
2.14) as a result of solving the full dispersion relation (as given by the study
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Figure 2.12: Similar to Fig. (2.8), except that here we display the spatial
structure of slow body overtones, with different numbers of radial nodes.

by Edwin and Roberts (1983b)) for slow body sausage and kink modes modes
(the left column). Here the normalised amplitude is shown with respect to the
dimensionless wavenumber, ka. These figures clearly show that the amplitude
of the longitudinal component of the velocity indeed attain their minimal value
on the boundary, allowing us to treat these modes in the next chapters such
that their amplitude is zero at the boundary, i.e. we will solve our governing
differential equations such that we will impose a Dirichelt boundary condition,
i.e. Vz(r = a) = 0. Given the relationship between this component of the
velocity and total pressure, the same idea applies to the equations describing
the spatial variation of the total pressure. In order to evidence the relative
difference between the maximum of various body modes and the amplitude of
Vz at the boundary the locations of these maximas are shown in the second
column by blue and green dots for waves corresponding to different values of
the radial wavenumber. These variations showed that the fundamental sausage
and kink modes have the largest amplitude inside the cylinder, while higher
overtones have smaller amplitude with increasing the radial wavenumber. The
same pattern is followed by the amplitude of Vz at the boundary, where the
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amplitude of various overtones are close to zero. The right column of Fig.
(2.14) shows the absolute value of the ratio of the maximum amplitude of Vz
measured at the boundary of the waveguide and the maximum value attained
inside the waveguide. On the horizontal axis of the panels in the second and
third column we denote the modes that correspond to different values of the
radial wavenumber.

Figure 2.13: Dispersion curves in a photospheric flux tube for the kink (first
row, left panel) and slow body sausage (first row, right panel) modes prop-
agating in a magnetic cylinder, shown as the phase speed of waves in units
of the internal sound speed (here denoted by CSi). The dashed lines corre-
spond to solutions of Vzi = 0 on the cylindrical waveguide boundary, where
the expression of Vzi is given by Eq. (2.29). The solid lines correspond to
the variation of the phase speed of waves in units of the internal sound speed
obtained based on the dispersion relation Eq. (2.31). Here by red we show
the fundamental modes, while the subsequent higher order modes are shown
by blue, magenta. The percentage error in solving the dispersion relation and
the solutions derived by presuming Vzi = 0 are displayed in (second row, left
and right panels). Credit: Aldhafeeri et al. (2021).
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Figure 2.14: Variation of the z-component of the velocity perturbation over
the cylindrical waveguide’s boundary for slow sausage (first row) and slow
body (second row) under photospheric settings for an0 > 4. The left column
illustrates the variation of the normalised amplitude of Vz with the radial
distance (in waveguide radius units), inside (blue) and outside (magenta) of the
tube. In the second column the green dots represent the maximum amplitude
at the tube boundary, whereas the blue dots represent the maximum amplitude
of Vz inside the flux tube for different modes. The right column displays the
absolute value of the ratio between the maximum value obtained inside the
waveguide and the maximum amplitude of Vz at the waveguide’s boundary.
Credit: Aldhafeeri et al. (2021).

2.2.4 Conclusions

The Chapter is based mainly on the theoretical framework of magnetohy-
drodynamics (MHD), which forms the mathematical foundation for describing
wave behavior in plasma environments. Dispersion relations, key equations de-
scribing the relationship between wave frequency and wavevector, are derived
to understand the properties of waves. These relations are obtained through
analytical techniques and numerical methods, building upon earlier work by
Roberts (1981a), Edwin and Roberts (1982a), Edwin and Roberts (1983b) and
others. The dispersion relations are solved to obtain dispersion diagrams, il-
lustrating waves’ behavior in various geometries such as magnetic slabs and
cylinders. These diagrams serve as fundamental tools for understanding wave
propagation and guiding principles for the research presented in the Thesis.

In the recent investigation byAldhafeeri et al. (2022a), they examined the
accuracy of describing slow body waves by assuming a vanishing longitudi-
nal velocity component or total pressure at the boundary of the photospheric
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waveguide. They compared this hypothesis to the full solution provided by
Edwin and Roberts (1983b). Their study revealed that for slow body waves
in the solar photosphere, assuming zero total pressure or longitudinal velocity
perturbation at the boundary of the waveguide resulted in errors in eigenval-
ues of less than 1% compared to deriving the full dispersion relation. These
findings were utilized in our investigation to further analyze the properties of
waves and their identification in inhomogeneous wave guides.

Ultimately, these dispersion diagrams serve as invaluable tools for researchers,
offering a roadmap for navigating the complex terrain of MHD wave dynamics.
By elucidating the intricate interplay between magnetic fields, fluid motion,
and wave propagation, the research contributes to a deeper understanding of
plasma physics and paves the way for advancements in diverse fields such as
astrophysics.
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CHAPTER 3

Slow body MHD waves in photospheric flux tubes
with circular cross-section in the presence of local
equilibrium density inhomogeneity

3.1 Introduction

High resolution observations allow us to see waves and oscillations in almost
every region of the solar atmosphere. While observations have their own limi-
tations driven by the existing temporal and spatial resolution, waves helped to
gain an understanding of various physical phenomena and to build up connec-
tivity relationships between several important features in the solar atmosphere.
At the same time most of the existing theoretical models operate with a high
degree of idealisation. Waves propagating along the magnetic field are con-
fined to magnetic structures that are modelled as straight and homogeneous
structures with their cross-section being a regular shape (mostly circular). In
reality observations show that magnetic waveguides are far from having a reg-
ular cross-section and being homogeneous either in the radial or longitudinal
direction. Inhomogeneities in the plasma and magnetic field are known to
strongly influence the properties of waves, leading to the modifications in the
spectral properties of waves, wave amplification, mode conversion, etc. (e.g.
De Pontieu et al. (2007); Morton et al. (2011a); Kwon and Bang (2018); Ald-
hafeeri et al. (2021); Stangalini et al. (2022); Albidah et al. (2022b); Skirvin
et al. (2022b) to name a few).

Pores and sunspots are probably the most studied magnetic features in the
solar atmosphere and they are the location of emerging large-scale magnetic
field (of the order of a few kG). Observations nowadays can clearly observe the
complex transversal shape of these structures, how they change, while inten-
sity measurements give us observational evidence for the complicated and ran-
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dom distribution of density inside them. Pores are located along the dividing
lines between larger sunspots and smaller magnetic elements. The existence of
waves and oscillations in sunspots has been extensively studied since Beckers
and Tallant (1969)’s pioneering work demonstrated the oscillatory behavior of
sunspots by measuring observed parameters of umbral flashes. Beckers and
Schultz (1972) detected three-minute oscillations in Doppler velocity in the
umbral area. Subsequent studies have shown that the most significant oscilla-
tion periods in sunspots and pores are 5 minutes at photospheric heights and 3
minutes at chromospheric heights, while the periods of global sunspot oscilla-
tions vary from hours to days (Nagashima et al., 2007; Stangalini et al., 2011;
Jess et al., 2012, 2015; Grant et al., 2015; Khomenko and Collados, 2015). In
addition, Stangalini et al. (2021) demonstrated that, in contrast to the antic-
ipated 5 minutes, the dominant oscillations of a magnetic pore observed with
the Interferometric BIdimensional Spectropolarimeter (IBIS) have periods of
3 minutes in the photosphere.

In the present Chapter we will focus on the modifications in the spatial
structure and propagation speed of guided slow body MHD waves driven by
an inhomogeneous equilibrium density distribution modelling the UDs in a
sunspot. The background of our investigation is based on result presented in
Chapter 2, as obtained by Aldhafeeri et al. (2022a), namely that slow body
modes correspond to those perturbations for which the total pressure becomes
almost zero near the boundary of the waveguide. According to their results
slow body waves under photospheric conditions can be confidently described by
solving a Helmholtz type partial differential equation with Dirichlet boundary
condition, i.e. the total pressure perturbation vanishes at the boundary of
the waveguide. The current analysis and the numerical recipe can be viewed
as a starting point in the exploration of waves in realistic solar photospheric
waveguides, where equilibrium density profile inhomogeneity generated from
observations can be incorporated in the study of the property of slow body
waves.

3.2 Governing equations

The dynamics of slow body waves will be discussed within the framework of
ideal MHD and the equations that describe the spatial and temporal evolution
of physical quantities are given by Eqs. (2.1)-(2.5). Although these equations
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were reduced to a single equation in Chapter 2 (see Eq. 2.14), here we are
going to have a slightly different approach, more relevant to the content of the
Chapter. As before, we linearise the system of MHD equations and consider a
straight magnetic cylinder with radius R and the dynamics will be described
in cylindrical coordinates (r, θ, z).

The constant equilibrium magnetic field, B0 = B0ẑ is directed along the z-
axis. The equilibrium plasma density profile inhomogeneity will be denoted by
ρ0(r, θ), the constant kinetic equilibrium plasma pressure by p0 and the com-
ponents of the velocity and magnetic field perturbations are u = (ur, uθ, uz)

and b = (br, bθ, bz). The perturbed quantities can be Fourier-decomposed with
respect to the spatial coordinate z and time, t, by writing them proportional
to exp

(
i(kz − ωt)

)
, where, as before, k is the longitudinal wave number and

ω is the angular frequency. With these considerations the system of linearised
MHD equations can be written as

−iωρ+ ρ0

[
1

r

∂

r
(rur) +

1

r

∂uθ
∂θ

+ ikuz

]
+ ur

∂ρ0
∂r

+ uθ
∂ρ0
∂θ

= 0, (3.1)

−iρ0ωur = −∂PT

∂r
+ ik

B0

µ
br, (3.2)

−iρ0ωuθ = −1

r

∂PT

∂θ
+ ik

B0

µ
bθ, (3.3)

ωρ0uz = kPT − k
B0

µ
bz, (3.4)

br = −B0
k

ω
ur, bθ = iB0kuθ, bz = −iB0

1

ωr

∂

∂r
(rur)− iB0

1

ωr

∂uθ
∂θ

, (3.5)

p = −iρ0
C2

S

ω

[
1

r

∂

r
(rur) +

1

r

∂uθ
∂θ

+ ikuz

]
, (3.6)

The above equations can be reduced to system of equations given only in terms
of the components of the velocity and total pressure perturbations, as

ρ0
ω

(
ω2 − k2V 2

A

)
ur = −i∂PT

∂r
, (3.7)

ρ0
ω

(
ω2 − k2V 2

A

)
uθ = −i1

r

∂PT

∂θ
, (3.8)

ωρ0uz = kPT + i
kB2

0

µrω

∂

∂r
(rur) + i

kB2
0

µrω

∂uθ
∂θ

. (3.9)
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In addition, from the definition of the total pressure perturbation we have that

PT = −iρ0(C
2
S + V 2

A)

ω

[
1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

]
+
ρ0kC

2
S

ω
uz, (3.10)

where now
CS(r, θ) =

√
γp0

ρ0(r, θ)
, VA(r, θ) =

B0√
µρ0(r, θ)

,

are the adiabatic sound and Alfvén speeds. Using the expressions that connect
velocity components with the total pressure perturbation given by Eqs. (3.7)-
(3.10), we can derive a single equation for the total pressure perturbation as

∂

∂r

[
r

ρ0
(
ω2 − k2V 2

A

) ∂PT

∂r

]
+
1

r

∂

∂θ

[
1

ρ0
(
ω2 − k2V 2

A

) ∂PT

∂θ

]
− m2

0r

ρ0(ω2 − k2v2A)
PT = 0,

(3.11)
where the magnetoacoustic parameter, m2

0, has been defined earlier (see Eq.
2.28). We should mention here that although the form of m2

0 agrees with its
counterpart in homogeneous plasma, here all phase speeds are functions of r
and θ.

In an inhomogeneous plasma with a density varying in the radial and az-
imuthal direction the system of equations describing the evolution of perturba-
tions (see, e.g. Eqs. 3.7-3.10) is prone to the appearance of singularities that
can lead to the appearance of resonances. The phenomenon of resonant ab-
sorption has been used extensively as a mechanism to explain plasma heating
by waves, scattering of p-modes by sunspots, and damping of kink oscillations
of coronal loops, etc. Sakurai et al. (1991a); Keppens et al. (1994); Ballai et al.
(2000); Ruderman and Roberts (2002). Indeed, Eq. (3.11) becomes singular at
ω = ±kVA. However, since we are dealing with waves in the short wavelength
limit, where the propagation speed of slow body waves approaches the internal
sound speed, the singularities will not appear.

In a homogeneous plasma, where ρ0 is independent on r and θ, the total
pressure perturbation has an azimuthal symmetry, i.e. proportional to eimθ,
where m is the azimuthal wavenumber. As a consequence, the governing equa-
tion for the total pressure perturbation inside the cylinder simplifies to

d2PT

dr2
+

1

r

dPT

dr
−

(
m2

0 +
m2

r2

)
PT = 0, (3.12)
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According to the study by Edwin and Roberts (1983b) the dispersion relation of
MHD waves is obtained by matching the solutions obtained inside the magnetic
flux tube (see Eq. 3.12) with the evanescent solutions obtained outside the flux
tube using the continuity of the total pressure and the radial component of the
velocity perturbations at the boundary of the tube. Among all possible modes
predicted by the theory developed by Edwin and Roberts (1983b), the slow
body modes analysed in the present Thesis are confined to the region between
the tube speed, CT , and the sound speed inside the tube, CS. It is worth
noting that the phase speed of slow body waves increases with increasing the
wavenumber k, or decreasing wavelength. In the thick flux tube approximation
the phase speed of slow body modes tends towards the internal sound speed,
CS, under photospheric conditions.

Let us return to the inhomogeneous flux tube case. Since we are interested
in body waves, from now on we will use n2

0 = −m2
0 as our magnetoacoustic

parameter. In addition, our analysis will be restricted to thick flux tube,
where the wavelength of waves is much smaller than the radius of the tube, i.e.
kR ≫ 1. It is our assumption that in this limit the behaviour of slow body
modes is similar to the one in a homogeneous waveguide, i.e. the phase speed
of waves can be written as ω2/k2 ≈ C2

S(1−ν), where ν is a small dimensionless
positive quantity and ν = 1− ω2/k2C2

S.
Let us rewrite Eq. (3.11) for slow body modes into dimensionless form by

introducing the new variable r̃ = r/R, where R is the constant radius of the
flux tube. From now on, for simplicity, we will drop the tilde. As a result, the
dimensionless governing equation for the total pressure perturbation becomes

∂

∂r

[
r

ρ0(C2
S − V 2

A)

∂PT

∂r

]
+

1

r

∂

∂θ

[
1

ρ0(C2
S − V 2

A)

∂PT

∂θ

]
+

n2
0rR

2

ρ0(C2
S − V 2

A)
PT = 0.

(3.13)
By taking into account that the equilibrium plasma pressure is a constant
quantity (in the presence of homogeneous equilibrium magnetic field, this
limit would correspond to the constant plasma-β limit), the coefficient function
present in the terms of the above differential equation can be written as

1

ρ0(C2
S − V 2

A)
=

1

ρ0
(
γp0/ρ0 −B2

0/µρ0
) =

1(
γp0 −B2

0/µ0

) =
1

B2
0/µ0

1(
γβ/2− 1

) .
(3.14)

Here plasma-β is constant and V 2
A/C

2
S = 2/γβ. Finally, after some algebra,
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Figure 3.1: A schematic representation of the local equilibrium plasma density
profile inhomogeneity inside the cylindrical waveguide in the case of a density
enhancement (left column) and density depletion (right column). The top
row show the 3D configuration of density, while the bottom row represents a
horizontal cut in the density distribution. The plots show (for illustration) an
eccentric distribution of density with ϵ1 ̸= 0 and ϵ2 = 0. Credit: Asiri et al.
(2024)

the governing equation for the total pressure becomes

∂

∂r

(
r
∂PT

∂r

)
+

1

r

∂2PT

∂θ2
− (kR)2

(
1− ω2

k2C2
S(r, θ)

)(
1− 2

γβ

)
rPT = 0. (3.15)

The only term that contains information about the inhomogeneous character
of the plasma is via the sound speed that appears in the third term of the
above equation.
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3.2.1 Transverse density profile

The inhomogeneous equilibrium plasma density distribution will be repre-
sented as a local density enhancement or depression that depends on the vari-
ables r and θ in the form

ρ0(r, θ) = ρ2χ(r, θ), (3.16)

where ρ2 is the homogeneous density of the annulus surrounding the inhomo-
geneous density distribution and χ(r, θ) is the dimensionless quantity

χ(r, θ) =

1 +
(σ − 1)

2

[
1− tanh

(
ψ(r, θ)− τ

ξ

)] .

Here σ = ρ1/ρ2 is the ratio of densities between the maximum value inside the
inhomogeneous density region (ρ1) and the homogeneous density in the annulus
between the density enhancement/depletion and the circular waveguide. The
function ψ(r, θ), that contains all the information regarding the inhomogeneous
character of density is defined as

ψ(r, θ) =
√

(ar cos(θ)− ϵ1)2 + (br sin(θ)− ϵ2)2, (3.17)

where ϵ1 and ϵ2, describe the location of the center of the density enhance-
ment/depletion, τ is the ratio of the radii of the density inhomogeneity and
the circular magnetic flux tube with 0 < τ < 1, ξ is the width of the annulus
where the change of density occurs, i.e. gradual transition of density between
two regions, and a and b are two quantities that describe the dimensionless
length of the major and minor axis of an ellipse. Although, in principle, we
could discuss the effects of an inhomogeneous density distribution in the form
of an ellipse (to which a circle is just a particular case), here we are going
to restrict our attention to circular shapes for which a = b = 1. The case
ϵ1 = ϵ2 = 0 corresponds to the concentric case, while for any other pair of
values, we are dealing with so-called eccentric cases. Figure 3.1 shows a repre-
sentative distribution of the inhomogeneous equilibrium plasma density profile
in the case of a density enhancement (left panel) and density depletion (right
panel).

The spatial structure of various slow body modes and the variation of the
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dimensionless eigenvalues for slow body modes, Vph = ω/kCS with respect to
the parameters of the inhomogeneous equilibrium plasma density distribution
will be studied numerically employing a suitable numerical algorithm for such
a problem. The recovered dimensionless eigenvalues of our problem could also
be interpreted as a quantitative measure of the change in the frequency. Given
the particular equilibrium plasma model mentioned above, the inhomogeneous
character of the plasma appears through the last term of Eq. (3.15), that can
be written with the help of Eq. (3.16) as

ω2

k2C2
S(r, θ)

=
ω2ρ0(r, θ)

k2γp0
=

ω2ρ2
k2γp0

ρ0(r, θ)

ρ2
=

ω2

k2C̃2
S

χ(r, θ), (3.18)

where C̃2
S denotes the constant sound speed in the homogeneous annulus of

density ρ2. As before, for simplicity, will drop the tilde symbol. As a result,
the governing equation for the total pressure becomes

∂

∂r

(
r
∂PT

∂r

)
+

1

r

∂2PT

∂θ2
− (kR)2

(
1− ω2

k2C2
S

χ

)(
1− 2

γβ

)
rPT = 0. (3.19)

The above equation is a Sturm-Liouville eigenvalue equation and the eigen-
values as well as the corresponding eigenfunctions can be determined using a
Dirichlet boundary condition, i.e. PT (r, θ) = 0 at the boundary of the tube
corresponding to r = 1.

3.3 Numerical method

Given the particulars of the problem, the most suitable method to deal with
such equation is the Fourier–Chebyshev spectral (FCS) collocation method
over the Dirichlet boundary condition PT (r = 1, θ) = 0, as this method can
capture the assumed inhomogeneity in the circular cross section more accu-
rately. In order to implement the numerical algorithm, Eq. (3.19) can be
written as

∂

∂r

(
r
∂PT

∂r

)
+

1

r

∂2PT

∂θ2
+ κ20rPT − κ20χV

2
phrPT = 0, (3.20)

where κ20 = −(kR)2(1−2/γβ). To implement the FCS method and obtain the
eigenvalues and the corresponding eigenfunctions of Eq. (3.20), we will write
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this equation in a compact form as(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+ κ20 − κ20χV

2
ph

)
PT = 0. (3.21)

Our numerical model is smoothly nonuniform, allows a gradual change in the
density of the loaded regions and avoids abrupt changes. To capture the rapid
variation in density, a larger number of grid points are required for the non-
uniform configurations of magnetic flux tube in the radial direction. Spectral
collocation methods appear to offer the greatest accuracy for the least com-
putational expense for this class of problems (Trefethen, 2023). In general,
a spectral collocation method performs the following operations: 1) collects
the given discrete data on the grid points, 2) interpolates the data globally, 3)
evaluates the derivative of the interpolant on the grid points.

The solution of the differential Eq. (3.21) is written as the sum of orthog-
onal basis functions whose coefficient must satisfy the differential equation.
The discretisation of the domain can be done using uniform or non-uniform
grids depending upon the problem type. In general, a mathematical prob-
lem can be periodic or non-periodic. For periodic problems equidistant or
uniform grid points are of best use but for non-periodic problems the accu-
racy of using the regular or uniform grid points is very poor, especially near
the boundaries. Because of this reason, non-periodic functions are generally
discretized over irregular or non-uniform grid points such as Chebyshev grid
points. The Chebyshev grid points discretize the radial direction in an irreg-
ular manner, bounded between 0 and 1. In this approach, the number of grid
points are denser near the boundaries that results in better accuracy by better
depicting the effect of change due to applied boundary conditions. Such an
approach leads to higher accuracy and decreases the code’s run time. In case
of equidistant grid points, the discrete data on grid points can be interpo-
lated globally using the trigonometric interpolant (Fourier Spectral method)
and for non-uniform grid points this can be done using Lagrange polynomial
interpolant (Chebyshev Spectral method). In the Fourier Spectral method, a
grid function, v, is interpolated by computing the band-limited interpolation
of the delta function (δ) that is used to expand v as a linear combination of
translated δ functions.

Let the P (x) be the band limited interpolation, where x is the discrete and
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bounded physical space given by x ∈ {h, 2h, ..., 2π − h, 2π} and let k be the
discrete and bounded wanumber in Fourier space given by k ∈ {−N

2
+1,−N

2
+

2, . . . , N
2
}, where N is an even number given by N = 2π/h. The Kronecker

delta function, δj, is given by

δj =

 1, j = 0 (mod N),

0, j ̸= 0 (mod N).

The discrete Fourier transform (DFT) of an arbitrary function v̂k is given by

v̂k = h

N∑
j=1

exp(−ikxj)v(xj),

and the inverse discrete Fourier transform is given by

vj =
1

2π

N/2∑
k=−N/2+1

exp(ikxj)v̂k, (3.22)

where j = 1, ..., N

Evaluating Eq. (3.22) would give a term eiNx/2 with derivative (iN/2)eiNx/2.
Since eiNx/2 represents a real, sawtooth wave on the grid, its derivative should
be zero at the grid points, and not a complex exponential! The problem arises
because Eq. (3.22) treats the highest wavenumber asymmetrically and can be
resolved by defining v̂−N/2 = v̂N/2. Therefore, Eq. (3.22) becomes

vj =
1

2π

(N/2)′∑
k=−N/2

exp(ikxj)v̂k, (3.23)

where the prime denotes that the terms k = ±N/2 are multiplied by 1/2.
Using the above concepts, the band-limited interpolant of δ is given by

PN(x) =
1

2π

N/2∑
k=−N/2

exp(ikx)v̂k, (3.24)

where x ∈ [−π/h, π/h].
Using the formula for the discrete Fourier transform (DFT) v̂k of δ, we
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obtain δ̂k = h for each k, and so, from (3.24), we obtain

PN(x) =
h

2π

N/2∑
k=−N/2

eikx =
h

2π

1

2

N
2
−1∑

k=−N
2

eikx +
1

2

N
2∑

k=−N
2

+1

eikx


=

h

2π
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(
x

2

)
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−N
2

+ 1
2)x − ei(

x
2
+ 1

2)
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2 ) − ei(

N
2 )x
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h

2π
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(
x

2

)
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−N
2

)x − ei(
x
2 )

e−i(x
2 ) − ei(

N
2 )x

=
h

2π
cos

(
x

2

) N
2
− 1

2∑
k=−N

2
+ 1

2

eikx =
h

2π
cos

(
x

2

)
sin
(
Nx
2

)
sin
(
x
2

) .
Using the identity π

h
= N

2
, the equation for PN(x) becomes

SN(x) =
sin(πx/h)

(2π/h) tan(x/2)
.

When x tends to zero, tan(x/2) ≈ x/2, therefore SN(x) will turn into a sinc
function, so the band-limited interpolant of the δ function is the periodic sinc
function.

Considering a periodic delta function, the periodic grid function vj takes
the form

vj =
N∑

m=1

vmδj−m,

and the band-limited interpolant function is given by

P (x) =
N∑

m=1

vmSN(x− xm).

In this case, the derivative of the periodic sinc function at a grid point is
obtained as

S ′
N =

 0, j ≡ 0 (mod N),

1
2
(−1)j cot(jh/2), j ̸≡ 0 (mod N).

The series obtained from the above relation become the entries of the columns
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for the first order of Fourier spectral differentiation matrix, DθN , which on a
finite grid point is given as

DθN =



0 −1
2
cot 1h

2

−1
2
cot 1h

2

. . . . . . 1
2
cot 2h

2

1
2
cot 2h

2

. . . −1
2
cot 3h

2

−1
2
cot 3h

2

. . . ...
... . . . . . . 1

2
cot 1h

2
1
2
cot 1h

2
0


. (3.25)

Similarly, the higher derivative of the periodic sinc function and the corre-
sponding second order Fourier spectral differentiation matrix, D(2)

θN , on the
grid points are obtained as

S ′′
N =


−π2

3h2 − 1
6
, j ≡ 0 (mod N),

− (−1)j

2 sin2( jh
2
)
, j ≡ 0 (mod N),

therefore

D
(2)
θN =



. . . ...

. . . −1
2
csc2

(
2h
2

)
. . . 1

2
csc2

(
h
2

)
− π2

3h2 − 1
6

1
2
csc2

(
h
2

) . . .

−1
2
csc2

(
2h
2

) . . .
... . . .


.

The Chebyshev grid points are constructed in order to obtain Chebyshev
differentiation matrices, which are used to determine the derivative of a func-
tion along the radial direction. Consider a grid function v that is defined on
the Chebyshev points. Then a discrete derivative, q, can be obtained by defin-
ing a unique polynomial P of degree N such that P (xj) = vj, 0 ≤ j ≤ N and
qj = P ′(xj). The operations defined here are linear and can be represented
as an (N + 1) × (N + 1) matrix. We denote the above operation by DrN :
q = DrNv.
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The grid points are obtained by discretising the domain using the relation

xj = cos
jπ

N
, j = 0, 1, . . . , N, (3.26)

where N is the total number of nodes. For interpolation between nodes we
can use Lagrange polynomials. To have an idea how the interpolation process
works, let us take a look at the simple cases N = 1 and N = 2, as an example
before proceeding to the general case. When N = 1 the interpolation points
are x0 = 1 and x1 = −1, and the interpolating polynomial through data v0

and v1 can be written in Lagrange form as

P (x) =
1

2
(1 + x)v0 +

1

2
(1 + x)v1.

To solve differential equations, we need to calculate the first and second order
derivatives. Let us start by finding the matrix Dr1 as first derivative defined
by wj = P ′(x), that is

P ′(x) =
1

2
v0 +

1

2
v1. (3.27)

This formula implies that Dr1 is the 2× 2 matrix whose first column contains
the constant entries 1/2 and whose second column contains entries −1/2. Now
we can define: w = Dr1v, where Dr1 is square matrix and v and w are vectors.
For two grids points, w becomes[

w1

w2

]
=

[
1
2

−1
2

1
2

−1
2

][
v0

v1

]
, where Dr1 =

[
1
2

−1
2

1
2

−1
2

]
. (3.28)

For N = 2, the discretised points are x0 = 1, x1 = 0 and x2 = −1. The
corresponding interpolant polynomial is obtained as the quadratic function

P (x) =
1

2
x(1 + x)v0 + (1 + x)(1− x)v1 +

1

2
x(x− 1)v2,

whose derivative can be written as as the linear function in x

P ′(x) =

(
x+

1

2

)
v0 − 2xv1 +

(
x− 1

2

)
v2.

The j-th term samples of the above equation at x = 1, 0 and −1 becomes the
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j-th column of the 3× 3 differentiation matrix Dr2 as

Dr2 =



3
2

−2 1
2

1
2

0 −1
2

−1
2

2 −3
2


.

In the similar way, other Chebyshev differentiation matrices are constructed
by interpolating the discrete data over the grid points globally using Lagrange
polynomial. For each N ≥ 1, let the rows and columns of the (N + 1)× (N +

1) Chebyshev spectral differentiation matrix DrN be indexed from 0 to N .
We calculate the first order of the Chebyshev spectral differentiation matrix
DrN by calculating the first derivative of the Lagrange interpolant polynomial
function defined on the finite grids which can be written as

DrN =

2N2+1
6

1
2
(−1)N

−2N2+1
6

−1
2
(−1)N

−1
2
(−1)i

1−xi

1
2
(−1)N+i

1−xi

−2 (−1)N+j

1−xj

2 (−1)j

1−xj

(−1)i+j

xi−xj

−xj

2(1−x2
j)

(−1)i+j

xi−xj

This is equivalent to the subsequent form

(DrN)00 =
2N2 + 1

6
, (DrN)NN =

−2N2 + 1

6
, (3.29)
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(DrN)jj =
−xj

2(1− x2j)
, j = 1, . . . , N − 1, (3.30)

(DrN)ij =
ci(−1)i+j

cj(xi − xj)
, i ̸= j, i, j = 1, . . . , N − 1, (3.31)

where the constant ci takes the values

ci =

{
2, i = 0 or N,

1, otherwise.
(3.32)

The j-th column of DrN contains the derivative of the degree N of the poly-
nomial interpolant to the delta function supported at xj, sampled at the grid
points xi.

The Chebyshev differentiation matrices constructed this way are then used
to obtain the derivative of the governing equation. Hence, we calculate the
higher order Chebyshev differentiation matrix by multiplying the first order of
the Chebyshev spectral differentiation matrix by itself multiple times accord-
ing to the higher order number. For example, we calculate the second order
Chebyshev differentiation matrix by calculating D2

rN = DrN ×DrN .
For polar coordinates, studies suggest that the Fourier expansion works best

for angular coordinates while Chebyshev expansion is best suited for radial co-
ordinates. Using this information, therefore we can develop the Fourier–Chebyshev
spectral collocation method that will be used to numerically solve our eigen-
value problem.

The present study follows the method developed by Fornberg Trefethen
(2000). For our study we select an odd number of grid points in the r direction,
an even number of grid points in the θ direction. For a periodic function,
v(x), trigonometric functions are an appropriate set of spectral basis. Let
the interpolation of the function v(x) be carried out over N points given by
x1, . . . , xN , where each point is separated by distance h as prescribed by Eq.
(3.24). The derivative of the spectral interpolant can be estimated from the
values of v(xj) at the sample points using(

dv

dx

)
sp

= P ′
N(x)

∣∣
xj
. (3.33)

The set of points v(xj) represents a vector function with N components as,
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v = v1, ..., vN . Similarly, the spectral derivative can also be represented as a
vector function with N components and is obtained by matrix multiplication.
Like the previous cases, here the derivative of the interpolant function PN(x)

becomes the entries for the matrix. In order to replace the Laplacian operator
from polar coordinate ∇2 = ∂2r + r−1∂r + r−2∂2θ into a matrix of Fourier-
Chebyshev differentiation, it is important to construct the spectral interpolant
and its derivative with generalized independent variables. This can be done by
Kronecker products of the differentiation matrices with each of the independent
variables. Therefore, the Laplacian operator becomes

L = (D1 +RE1)⊗ Il + (D2 +RE2)⊗ Ir +R2 ⊗D
(2)
θN . (3.34)

where D1 and D2 are the matrices whose elements are extracted from the
second order Chebyshev spectral differentiation matrix corresponding to the
∂2/∂r2 operator shown in the middle panel of Table. 3.1. E1 and E2 are
the matrices whose elements extract from the first order Chebyshev spectral
differentiation matrix for (1/r)∂/∂r shown in the right hand side panel of
Table. 3.1. In the above relation D

(2)
θN stands for the (1/r2)∂2/∂θ2 operator,

R
′ is a diagonal matrix R′

= diag(r−1
j ), 1 ≤ j ≤ (Nr − 1)/2, and Il and Ir are

the identity matrices given by

Il =

(
I 0

0 I

)
, Ir =

(
0 I

I 0

)
. (3.35)

The matrices in Eq. (3.34) are representations of the partial derivatives and are
defined on the grid for Chebyshev (Nr, odd) and Fourier (Nθ, even) collocation
points. The reason why they have been extracted is because of that the original
Chebyshev differential matrix has been constructed based on the Chebyshev
grid points which are defined on the negative and positive radial direction,
bounded between r ∈ [−1, 1]. Following the the algorithm suggested by Tre-
fethen (2000), the mapping of coordinates from polar to Cartesian coordinate
system is 2-to-1, that is each (x, y) point in Cartesian geometry corresponds
to two distinct points (r, θ) in polar geometry. At the origin (x = y = 0), the
mapping follows an ∞-to-1 rule and the problem can be rectified by taking an
odd number of grid parameters, (N), in the r direction. Using the symmetry
u(r, θ) = u(−r, (θ + π)(mod2π)), the portions of the matrix arising from the
regions III and IV , which correspond to the negative radial direction (shown
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Table 3.1: Details of the matrices whose elements extract from the second order
Chebyshev spectral differentiation matrix, D(2)

rN , and the first order Chebyshev
spectral differentiation matrix, DrN .

a b c

in the left hand side panel of Table. 3.1) can be discarded as these portions
are redundant. The portions of the matrix that originate from the regions II
and IV can also be discarded. However, the effect of these discarded portions
of the matrix must be included into the Kronecker products.

Homogeneous Dirichlet boundary conditions for spectral collocation meth-
ods can be implemented by removing the first and/or last rows and columns
of a spectral dimension matrix. After applying the above numerical concepts
to the governing equation and performing some simplification, a matrix equa-
tion is obtained that can be used to solve the generalized eigenvalue problem
written in matrix form

(L+ κ20)PT − κ20χV
2
phPT = 0. (3.36)

In the present study, the eigenvalues and eigenvectors of the quadratic matrix
polynomial are obtained using QZ factorization (also known as generalized
Schur decomposition). The method is potentially capable of handling a va-
riety of eigenvalue problems in the most efficient way. The code that calcu-
lates the eigenvalues and eigenfunctions uses the build-in MATLAB function
’polyeig(L + κ20,−κ20χ)’, which is based on the QZ factorization. The code is
tested against the well-known eigenvalues obtained for the case of the homo-
geneous and cylindrical flux tube. A similar study was conducted by Sathej
and Adhikari (2009), who studied the oscillations of a drum modelled as a
non-uniform membrane whose density smoothly changes between two prede-
termined values. They conducted a thorough analysis of the variance in the
model’s eigenvalues as a function of the model parameters using a Fourier-
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Table 3.2: Values of the physical parameters used for the numerical modeling
and analysis. Unless specified otherwise, for each case we consider kR = 4 and
β = 3× 10−3.

σ τ ξ ϵ1 ϵ2
C1: Uniform density 1
C2: Non-uniform density enhancement
C2.1: - concentric 2.5 0.3 9.1× 10−2 0 0
C2.2: - right eccentric 2.5 0.3 9.1× 10−2 0.25 0
C2.3: - upper right eccentric 2.5 0,3 9.1× 10−2 0.25 0.25
C3: Non-uniform density depletion
C3.1: - concentric 0.5 0.7 9.1× 10−2 0 0
C3.2: - right eccentric 0.5 0.7 9.1× 10−2 0.25 0
C3.3: - upper right eccentric 0.5 0.7 9.1× 10−2 0.25 0.25
C4: Variation of Vph
C4.1: 2 ≤ kR ≤ 10 2.5; 0.5 0.3; 0.7 9.1× 10−2 0; 0.35 0; 0.35
C4.2: 3× 10−6 ≤ β ≤ 3× 10−3 2.5; 0.5 0.3; 0.7 9.1× 10−2 0; 0.35 0; 0.35
C4.3.1: 2 ≤ σ ≤ 10 0.3; 0.7 9.1× 10−2 0; 0.35 0; 0.35
C4.3.2: 0.45 ≤ σ ≤ 0.9 0.3; 0.7 9.1× 10−2 0; 0.35 0; 0.35
C4.4: 0.3 ≤ τ ≤ 0.7 2.5; 0.5 9.1× 10−2 0; 0.35 0; 0.35
C4.5: 1.8× 10−5 ≤ ξ ≤ 0.1 2.5; 0.5 0.3; 0.7 0; 0.35 0; 0.35
C4.6: 0.1 ≤ ϵ1 ≤ 0.5 2.5; 0.5 0.3; 0.7 9.1× 10−2 0; 0.35

Chebyshev collocation method. Their code has also been benchmarked against
the known eigenvalues of the uniform circular membrane, and they found a
spectral convergence as the number of grid points increases. These authors de-
termined the eigenvalues and the eigenvectors using a Cholesky decomposition
algorithm.

In what follows we will analyze the effect of different physical parameters
on the dimensionless phase speed (Vph = ω/kCS) of slow body modes cor-
responding to the spatial structure of the total pressure perturbation under
photospheric conditions. The parameters that could influence the character-
istics of waves are connected to the waveguide and its plasma environment
(plasma-β, dimensionless wavenumber, etc.), but also to the parameters that
describe the local equilibrium density profile inhomogeneity. The solutions ob-
tained for a homogeneous equilibrium plasma density distribution will be used
as a reference benchmark for our comparisons.
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3.4 Results

3.4.1 Slow body modes in the presence of a non-uniform

density in the short wavelength limit

In this section, we will analyze the dependence of the phase speed of slow
body modes and the spatial structure of the total pressure perturbation on the
magnetic flux tube density inhomogeneity under solar photospheric conditions.

3.4.2 The spatial structure of slow body modes in the

presence of a uniform density

The propagation of the MHD waves in a homogeneous cylindrical waveguide
with uniform equilibrium density corresponds to case C1 (see Table 3.2), i.e.
to the particular value of σ = 1 in Eq. (3.16) and previously this scenario
was studied in detail by Edwin and Roberts (1983a). Fig. (3.2) shows the
homogeneous distribution of normalized equilibrium density (left upper panel)
and the spatial structure of the total pressure perturbation in the case of slow
sausage fundamental body (SSFB, right upper panel), slow kink fundamental
body (SKFB, left lower panel) and slow fluting fundamental body mode of
order 2 (SF2FB, right lower panel). These results clearly show that in the
homogeneous limit, slow body modes of different azimuthal order have global
harmonic character. The color bar displays the magnitude of the dimensionless
amplitude of the total pressure perturbation, PT , with the red and blue shaded
regions representing crests (maxima) and valleys (minima) of the amplitude.

3.4.3 The spatial structure of slow body modes in the

presence of a non-uniform density

The changes in the spatial structure of slow body waves as well as the modi-
fication of the dimensionless phase speed in terms of the parameters of local
equilibrium plasma density given by Eq. (3.16) will be discussed when the
inhomogeneous density is represented as a local density enhancement (σ > 1)
and density depletion (σ < 1). The modifications in the oscillatory patterns
of waves are analyzed for three particular positions of the equilibrium density
loading, e.g. concentric (case C2.1), right eccentric (case C2.2), and upper
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Figure 3.2: The density distribution (upper left panel) and the spatial structure
of SSFB, SKFB, and SF2FB modes under photospheric conditions in a circular
magnetic flux tube with uniform density (σ = 1). The color bars display
the magnitude of the total pressure perturbation amplitude divided by its
maximum value. The red and blue shaded regions represent crests (maxima)
and valleys (minima) of amplitude variation of total pressure perturbation.
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Figure 3.3: The same modes as in Fig. (3.2), but here we show the results in
the presence of a concentric density enhancement. All characteristic values of
parameters used in these numerical solutions correspond to the case C2.1 in
Table (3.2).
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right eccentric (case C2.3). The description of parameters related to these
three cases is described in Table (3.2).

3.4.3.1 Slow body modes in the presence of concentric and eccentric
density enhancements

Due to the changes in the values of the radial distribution of equilibrium den-
sity, it is expected that the dimensionless phase speed and the spatial structure
of slow body waves will be modified. Let us first discuss the case C2.1. Figure
(3.3) shows the radial distribution of the equilibrium density and the spatial
distribution of the normalized value of the total pressure perturbation of SSFB,
SKFB, and SF2FB modes. In the presence of concentric inhomogeneity the
corresponding eigenmodes migrate towards the boundary of the waveguide,
i.e. in the direction of lower density. By comparing Figs. (3.2) and (3.3) it
is obvious that obtained MHD modes become more localized but, at the same
time, maintain their symmetry with respect to the center of the flux tube.
The regions where no oscillations are possible correspond to the combination
of physical parameters that will make the value of n2

0 in Eq. (3.19) change
sign, so the governing equation does not describe the eigenfunction of a body
mode. Surface waves cannot be cast in our description, as we had to impose
a Dirichlet-type boundary condition that cannot be applied to surface waves.
These regions simply show that here we have no slow body modes.

The enhanced eccentric equilibrium density distribution corresponds to a
density loading whose position is shifted away from the origin (case C2.2) and
the position of its center is controlled by the two parameters, ϵ1 and ϵ2. In
reality, the position of the inhomogeneous density loading can be arbitrary,
however, in the present study we discuss only cases that correspond to the
shifted inhomogeneous density along the horizontal axis (Fig. 3.4, parameters
given by case C2.2), and a position where both quantities describing the loca-
tion of the density load are non-zero (Fig. 3.5, parameters given by case C2.3
in Table 3.2).

Figure (3.4) shows the radial distribution of the equilibrium density and
the spatial structure of the normalized total pressure perturbation for the same
slow body modes as before. Due to the considered density loading, the spatial
extent of the eigenfunction shrinks and the global nature of these modes ceases.
Comparing Figs. (3.2) and (3.4), it is evident that the oscillations are shifted,
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Figure 3.4: The same MHD modes as in Fig. (3.3), but here we show the results
for an eccentric density loading, situated along the horizontal direction. The
parameters used for this visualization are given as case C2.2 in Table (3.2).

again, towards regions of lower density, so they become more localized. When
the density inhomogeneity is shifted along an arbitrary direction (along the
first bisector as in Fig. (3.5)), the modification in the spatial structure of
modes remains qualitatively the same.

3.4.3.2 Slow body modes in the presence of concentric and eccentric
equilibrium density depletions

In the case of a depleted density inhomogeneity, the maximum value of density
of the inhomogeneous region is less than the density of the homogeneous part
of the waveguide, i.e. σ < 1. The values of parameters used for our numerical
investigations are given in Table (3.2, case C3). Fig. (3.6, case C3.1) shows the
spatial structure of the normalized total pressure perturbation corresponding
to the same body modes as before in the case of concentric loading, while Figs.
(3.7, case C3.2) and (3.8, case C3.3) show the spatial structure of the total
pressure for an eccentric loading, when the density inhomogeneity is placed
along the horizontal axis and in a position along the first bisector.

The results obtained for this case confirm the previous findings, namely
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Figure 3.5: The same MHD modes as in Fig. (3.3), but here we show the
results for an eccentric density loading, situated along the first bisector. The
parameters used for this visualization are given as case C2.3 in Table (3.2).

that in the case of an inhomogeneous distribution of the equilibrium plasma
density, the modes tend to lose their global character, instead they become
localized in the region that corresponds to the lowest density. However, in
contrast to the case C2 of density enhancement, in this case, the modes tend
to be attached to the region of equilibrium density inhomogeneity. Moreover,
unlike the distorted shape of modes found in case C2, the slow body modes in
the depleted density case maintain their symmetric character. As before, the
spatial structure of slow body modes does not change if the density loading is
placed along the horizontal or vertical axes.

The migration of the location of modes in the presence of density inho-
mogeneity obtained for the density enhancement and depletion reveals one
important consequence for observations. A localized wave observation in a
sunspot could be a way to identify the location of a density inhomogeneity in
the umbral region, even if this inhomogeneity cannot be seen in observations.
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Figure 3.6: The same as in Fig. (3.3) but for the case of depleted concentric
equilibrium density inhomogeneity. The parameters used for this visualization
are given as Case C3.1 in Table (3.2).

3.4.4 Comparative study of the variation of the phase

speed of slow body modes in the presence of an

inhomogeneous density distribution

The results presented in the previous section show that the spatial structure
of slow body modes propagating in a circular waveguide is influenced by a
density inhomogeneity by the modifications in the location of these modes.
However, due to the modification in the azimuthal symmetry, it is natural
to expect that these modes are affected by changes in the phase speed of
waves or their frequency. To address this problem in this section we carry
out a comparative study of the variation of the dimensionless phase speed
of body waves (or their dimensionless frequency) in terms of the parameters
related to the plasma environment in which these waves propagate and wave
characteristics (dimensionless wavenumber, kR, plasma-β), but also in terms
of the parameters describing the inhomogeneous density (σ, τ , ξ and the values
of the ϵ parameters). The details of the parameters used are summarized in
Table (3.2, Case C4). The first two parameters (kR and β) are parameters that
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Figure 3.7: The same as in Fig. (3.6), but here the depleted density region
is situated in an eccentric position along the horizontal axis. The parameters
used for this visualization are given as Case 3.2 in Table (3.2).

influence the solution through the Eq. (3.19). The study will be performed
considering the homogeneous density case as a benchmark value.

As the mathematical model described earlier refers to the short wavelength
limit (wide flux tube), first we investigate the variation of the dimensionless
phase speed of waves with the dimensionless wavenumber of body waves (for
a constant tube radius the variation of the kR parameter is, in fact, describ-
ing the variation of the wavenumber, with increasing kR corresponding to a
decrease in the wavelength of waves). Figure (3.9) (upper left panel) shows
the variation of dimensionless phase speed for the three slow body modes with
respect to kR in the case of uniform density: SSFB (solid line), SKFB (dash
line) and SF2FB (dotted line). The three waves show a distinctive disper-
sive character for lower values of kR, while their dimensionless phase speed
becomes practically independent of the wavelength of waves for higher values
of kR, the dimensional speed of each wave tending to the sound speed, CS.
Since waves propagate faster for smaller wavelengths, these waves are known
to have a positive dispersion. The behaviour of modes obtained here is similar
to the variation of the phase speed determined by Edwin and Roberts (1983a).
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Figure 3.8: The same as in Fig. (3.6) but here the depleted density inho-
mogeneity is placed along the first bisector. The parameters used for this
visualization are given as Case 3.3 in Table (3.2).

This result also proves our initial assumption according to which the Dirich-
let boundary condition imposed in our case would not modify qualitatively or
quantitatively the solution of dispersion relation obtained in the case of body
modes (in line with the recent findings by Aldhafeeri et al. (2022b)). For a
particular wavenumber, it is clear that the fluting mode is the most sensitive
to the variation in size of the waveguide, confirming the results by Albidah
et al. (2022a).

The upper right and lower panels of Fig. (3.9) shows the variation of di-
mensionless phase speed for the same slow body modes with respect to kR in
the case of density enhancement and depletion, respectively. The three posi-
tions of the density inhomogeneity are shown by different colours: concentric
(red) and two eccentric cases (green and blue). Similar to the case of uni-
form plasma, in the enhanced and depleted density distribution we observe
the same dispersive character for smaller values of kR and the dimensionless
phase speed becoming practically independent of the wavelength of waves for
the higher values of kR. Comparing the values of the dimensionless phase
speed in the three cases, it is evident that the density enhancement leaves
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Figure 3.9: The variation of the dimensionless phase speed of slow body waves
with the dimensionless wavenumber kR for a uniform loading with σ = 1
(upper left panel) for the three slow body modes (SSFB, solid blue curve),
SKFB (dashed blue curve), SF2FB (dotted blue curve. Upper right panel:
the variation of the same quantity in the case of an inhomogeneous density
enhancement at three different positions (shown in the legend). Lower panel:
the variation of the same quantity for a depleted density inhomogeneity for the
same three positions. The values of parameters used in these plots are given
as Case 4.1 in Table (3.2).
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Figure 3.10: The same as in Fig. (3.9), but here we investigate the variation
of the dimensionless phase speed with respect to plasma-β. The values of
parameters used in these plots are given as Case 4.2 in Table (3.2).

practically the dimensionless phase speed unchanged, while the density de-
pletion brings a more significant reduction in the dimensionless phase speed
(of nearly 40%) compared to the homogeneous case. In the case of density
enhancement, the concentric distribution of density leads to a much more dif-
ferentiated behaviour of the dimensionless phase speed, especially in the case
of sausage modes. Interestingly, in the depleted density distribution the modes
show a larger variation with respect to the position of the density inhomogene-
ity, however, the distinction of waves’ phase speed with regards to the position
of the inhomogeneity vanishes. These plots show that once a density inho-
mogeneity is taken into account, the phase speeds of particular waves become
much closer, making them rather difficult to distinguish from one another.

Another important parameter that plays a crucial role in the propagating
characteristic of waves is the plasma-β. In the solar photosphere the intensive
magnetic field in sunspots or pores makes this parameter very small. Eq (3.19)
confirms that the eigenvalues determined for the studied slow waves will also
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depend on the plasma-β. Figure (3.10) (upper left panel) shows the variation
of the slow waves’ dimensionless phase speed with the plasma-β parameter
for a homogeneous density (σ = 1). Clearly, for very low plasma β, the
value of ω/kCS is approximately 1 for all three eigenmodes and corresponds
to the value of the phase speed in an unbounded plasma. With the increase
of plasma-β, the value of ω/kCS decreases fairly linearly for all the three
eigenmodes, however, these changes are rather small and the most affected
mode is the fluting mode of order 2. The upper right and lower panels of Fig.
(3.10) show the variation of phase speed for the same slow body modes with
respect to the same parameter in the case of density enhancement (σ > 1) and
depletion (σ < 1). The locations of density inhomogeneity (and the colours
used to represent these) are identical to the ones used in Fig. (3.9). Similar
to the case of uniform plasma, the variation of the dimensionless phase speed
shows the same decreasing pattern with the increase of plasma-β. Similar
to the results shown in Fig. (3.9) the density enhancement does not lead to
significant changes in the variation of the phase speed, while these changes are
more significant in the case of depleted density inhomogeneity. While in the
case of density enhancement, there is a clear dependence of the phase speed
in terms of the location of the inhomogeneity (the concentric case showing
the lowest values), the differentiation of the same mode for the three different
locations ceases, practically they are independent on the location of the density
inhomogeneity.

Let us now discuss the variation of the dimensionless phase speed of slow
waves of different azimuthal order in terms of the parameters describing the
density inhomogeneity (cases C4.3.1-C4.6 in Table 3.2). The left panel of Fig.
(3.11) shows the variation of ω/kCS for the three slow body modes in terms
of the parameter σ in the case of a density enhancement, with the value of
σ = 1 corresponding to the homogeneous density. As before, the different
line styles and colours show different slow body modes and three different
positions of density inhomogeneity. With the increase in the value of σ the
dimensionless phase speed decreases for all three eigenmodes. This decrease
is more pronounced near σ = 1 and becomes fairly linear for larger values
of σ. From the Fig (and all subsequent cases discussed in this study) it is
obvious that the fundamental slow sausage mode has the highest propagation
speed. For a particular value of σ the differences in the propagation speed
of these three waves are very small. The largest modification in the phase
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Figure 3.11: The same as in Fig. (3.9), but here we show the variation of
the dimensionless phase speed with respect to the parameter σ in the case of
a density enhancement (left panel) and density depletion (right panel). The
values of parameters used in these plots are given as case C4.3.1 (for the left
panel) and case C4.3.2 (right panel) in Table (3.2).

speed of waves occurs in the case of concentric loading, and the changes of this
quantity with the strength of inhomogeneity for any eccentric position have
little variation.

The right panel of Fig. (3.11) shows the variation of ω/kCS of slow body
modes for a depleted density loading with respect to σ. In contrast to the case
of an enhanced density, the dimensionless phase speed of the investigated slow
waves shows a much stronger dependence on the value of the density inhomo-
geneity, however, waves propagate with the same phase speed, regardless of
the position of the density depletion, meaning that observationally it would be
impossible to distinguish between these waves if we restrict our mode identi-
fication based on the propagation speed. The propagation speeds of waves in
this case are also independent of the type of waves, all body waves (regardless
of their radial order) tend to propagate with the same phase speed.

The variation of the dimensionless phase speed of selected slow body modes
with respect to the parameter τ (case C4.4 in Table 3.2), denoting the ratio
of the radii of the density inhomogeneity to the radius of the tube, in the
case of a density enhancement and depletion, is shown in the two panels of
Fig. (3.12). The meaning of different line styles and colours is identical to
previous cases. In the case of density enhancement, with the increase in the
size of the inhomogeneity, the dimensionless phase speeds decrease very little
for eccentric density loading, while the variation of the phase speed in the
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case of concentric loading shows the most accentuated variation, however, the
distinction of the type of waves ceases. These conclusions are similar to the
findings on the variation of the modes’ phase speed with the parameter σ.
Figure (3.12, right panel) shows the variation of ω/kCS for the same three slow

Figure 3.12: The same as in Fig. (3.9), but here we plot the variation of
the dimensionless phase speed of different slow body waves in terms of the
parameter τ in the case of density enhancement (left panel) and depletion
(right panel). The values of parameters used in these plots are given as case
C4.4 in Table (3.2).

body modes with respect to the parameter τ when the density inhomogeneity
takes a depleted value (see case C4.4 in Table 3.2). With the increase in
the size of the inhomogeneous region, the value of ω/kCS increases, and the
variation of the dimensionless phase speed is practically independent of the
location of the inhomogeneity. This result has interesting implications, as the
location of the inhomogeneous region can be chosen, for modelling purposes,
in a position that is most suitable for modelling. In the depleted density case
the fundamental sausage mode displays the smallest variation with the ratio of
radia, τ . Comparing the two panels of Fig. (3.12) it is obvious that the phase
speeds corresponding to a depleted case show a much enhanced variation with
τ .

The variation of the dimensionless phase speed of the investigated slow
body waves with respect to the smoothness parameter, ξ (see case C4.5 in
Table 3.2), is shown in Fig. (3.13) for an inhomogeneous equilibrium density
enhancement (left panel) and density depletion (right panel), respectively. In
the case of a density enhancement the values of the phase speed decrease for
all three modes with the increase in the value of ξ. This decrease is fairly
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linear except for sausage modes for concentric loading. As before, for a par-
ticular value of ξ, the sausage mode has the highest propagation speed. The
phase speed of waves for a concentric density distribution shows the largest
variability. On the other hand, in the case of depleted density, the phase speed
of waves is much reduced compared to the case of density enhancement and
the variation of the dimensionless phase speed for the three modes shows a
great degree of independence on the location of the inhomogeneity. The most
affected mode remains the fluting and sausage modes. They are practically in-
dependent of the change of the smoothness parameter in the case of depleted
density.

Figure 3.13: The same as in Fig. (3.9), but here we display the variation of
the dimensionless phase speed of slow body waves in terms of the smoothness
parameter, ξ (see case C4.5 in Table 3.2), in the case of an equilibrium density
enhancement (left panel) and depletion (right panel). The values of parameters
used in these plots are given as case C4.5 in Table (3.2).

Finally, in Fig. (3.14) we investigate the variation of the dimensionless
phase speed for the three investigated slow body modes in terms of the position
of the centre of the density inhomogeneity. For this parametric analysis, we let
the value of the parameter ϵ1 (see case C4.6 in Table 3.2) vary in a given interval
and choose two particular values of ϵ2: ϵ2 = 0 (red curves) and ϵ2 = 0.35

(green curves). The two panels of Fig. (3.14) represent the cases of density
enhancement and depletion, respectively. With the increase in the value of the
parameter ϵ1, the dimensionless phase speed of investigated slow body modes
corresponding to a density enhancement increases with the departure from the
concentric case, but the difference between the phase speed corresponding to
the two particular values of ϵ2 diminishes with the increase of ϵ1. It is also
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clear that the increase with ϵ1 is nearly linear when the density inhomogeneity
is not along the horizontal axis. For a given value of ϵ1, the fundamental
sausage modes have the highest propagation speed. In the case of depleted
density, the dimensionless phase speed of slow body waves shows practically
no (or little) variation with the location of the density inhomogeneity, meaning
that when modelling the effect of density inhomogeneity on the propagation
characteristics of waves we can choose the most convenient location.

Figure 3.14: The variation of the dimensionless phase speed of slow body
waves in terms of the parameter ϵ1 for two particular values of ϵ2. The cases
of density enhancement and depletion are shown in the right and left panels,
respectively. The values of parameters used in these plots are given as case
C4.6 in Table (3.2).

It is fairly straightforward to check why slow body modes in the presence of
density inhomogeneity become localised. Slow body modes appear as long as
the coefficient of the last term of Eq. (3.19) is positive. When this term turns
negative, normally we would have surface (evanescent) solutions, however in
our case the surface wave solution cannot be applied since we use Dirichlet
boundary conditions b.c., i.e. the amplitude of perturbations is expected to be
zero at the boundary. For particular combinations of density parameters, there
are regions where the coefficient of the last term of Eq. (3.19) turns negative
(evanescent solutions). Hence, we will not have an oscillatory solution, as
shown in the Fig. (3.15).
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Figure 3.15: The sign of the last term in Eq. (3.19) corresponding to a concen-
tric density enhancement (upper left panel). Solutions of the Sturm-Liouville
equation are considered only when the sign of this term is positive. Here we
show the value of this term in the case of the three investigated modes.

3.5 Slow body waves in the long wavelength limit

The modification of the properties of waves and their spatial structure can
also be investigated in the other limit, corresponding to the long wavelength
case, i.e. when the wavelength of waves is much larger than the radius of the
waveguide. According to the results by Edwin and Roberts (1983b) slow body
modes in the long wavelength limit (kR ≪ 1) propagate with a phase speed
close to the internal tube speed, CT . Using the same technique of reducing
the governing equation (3.11), with m2

0 = −n2
0 < 0 as before, we assume that

the phase speed of waves can be written as ω2 = k2C2
T (1 + ν), where ν is a

small positive constant, so ν = ω2/(k2C2
T )− 1. Following the same procedure

as presented in the limit of short wavelengths the governing equation for the
total pressure perturbation becomes

∂

∂r

(
r
∂PT

∂r

)
+

1

r

∂2PT

∂θ2
+ (kR)2

2γβ

(γβ + 2)2
(

ω2χ
k2C2

T
− 1
)rPT = 0, (3.37)
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where χ(r, θ) has been defined earlier in Eq. (3.16) and the quantity ω/kCT =

Vph = λ is the dimensionless phase speed of waves and constitutes the eigen-
value of this problem.

To obtain the eigenvalues associated with this equation, we would re-
arrange the equation as

(
λ2χ
) [ ∂

∂r

(
r
∂PT

∂r

)
+

1

r

∂2PT

∂θ2

]
−

[
∂

∂r

(
r
∂PT

∂r

)
+

1

r

∂2PT

∂θ2

]
+D1rPT = 0,

(3.38)
where we introduced the notation D1 = (kR)2 2γβ

(γβ+2)2
.

3.5.1 Description of the numerical method

The particular form of the governing equation (3.38) requires a different nu-
merical approach to determine the eigenvectors and associated eigenvalues.
For our governing equation we are going to employ the Galerkin FEM method
with Dirichlet boundary condition, i.e. PT = 0 at r = 1. Most of the nec-
essary MATLAB algorithms use Cartesian coordinates, therefore, it is more
convenient to transform the governing equation (3.38) into Cartesian coordi-
nates using the standard connection between the Cartesian coordinates (x, y)
and the polar coordinates (r, θ). After some straightforward calculations, the
governing equation for the total pressure (3.38) can be rearranged into a more
suitable formλ2χ( ∂2

∂x2
+

∂2

∂y2

)
−

(
∂2

∂x2
+

∂2

∂y2

)
+D1

u = 0, (3.39)

where the eigenfunction u denotes total pressure perturbation, PT . Comparing
this equation with the governing equation (3.38), it is easy to see the link
between the ways we write the derivatives for the two equations.

The computational domain is discretized using linear combinations of the
small triangular finite elements. Each element is connected to another through
nodes. In general, the number of nodes present in an element depends on the
polynomial approximation used for the element. For linear and quadratic
approximations, the triangular element has 3 and 6 numbers of nodes, respec-
tively, as shown in Fig. 3.16. For the present study we use small triangular
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Figure 3.16: The triangular elements used to discretise the numerical domain:
2D linear triangular element (left panel) and 2D quadratic triangular element
(right panel).

elements which contain three nodes at the vertices of the triangle and the in-
terpolation variable (our eigenfunction), u, within the element is linear in x

and y. Equation (3.39) needs to be solved for each and every node of the
computational domain.

The eigenfunction, u, is written as the sum of orthogonal piecewise poly-
nomial basis functions whose coefficient must satisfy the differential equation.
Let us assume that the unknown function, u, can be written as

u = a1 + a2x+ a3y =
[
1 x y

] a1

a2

a3

 , (3.40)

where the generalized coefficients ai (i = 1, 2, 3) are the constants to be deter-
mined. The above interpolation function should be represented in terms of the
nodal variables (u1, u2, u3) at the three nodal points having the coordinates
(x1, y1), (x2, y2), (x3, y3). Therefore, substituting them into Eq. (3.40), yields u1

u2

u3

 =

 1 x1 y1

1 x2 y2

1 x3 y3


 a1

a2

a3

 . (3.41)

As we would like to determine the values of the generalized coefficients, these
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are given by inverting the coefficient matrix to obtain a1

a2

a3

 =
1

2A

 x2y3 − x3y2 x3y1 − x1y3 x1y2 − x2y1

y2 − y3 y3 − y1 y1 − y2

x3 − x2 x1 − x3 x2 − x1


 u1

u2

u3

 , (3.42)

where

A =
1

2
det

 1 x1 y1

1 x2 y2

1 x3 y3

 .
Substitution of Eq. (3.42) back into Eq. (3.41) allows us to express the un-
known trial function in terms of nodal variables u1, u2 and u3 instead of a1, a2
and a3. The linear triangular element approximations need to be related with
the differential equation using some suitable function. These functions are
called shape functions (denoted by H), basis functions or interpolation func-
tions. The shape function depends on the type of element as well as the
polynomial approximation used for the element. As a result, we can write

u =
[
H1 H2 H3

] u1

u2

u3

 . (3.43)

For each node of an element the equation for shape function is different. For
the linear triangular elements with three nodes, the shape functions for each
nodes are given by

H1 =
1

2A

(
(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2) y

)
,

H2 =
1

2A

(
(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3) y

)
,

H3 =
1

2A

(
(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1) y

)
.

(3.44)

To obtain the complete solution over the whole domain, all the finite elements
need to be integrated for the given differential equation. The shape functions
also satisfy the conditions Hi(xj, yj) = δi,j and

∑3
i=1Hi = 1, where δi,j is the

Kronecker delta symbol and xi and yi are the coordinate values at the ith node
and ui is the nodal variable.

Equation (3.39) needs to be solved for each and every node of the computa-
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tional domain. Applying the finite element method, the first step is to convert
the original governing differential (strong) form of the Partial differential equa-
tion into an integral (weak) form by multiplying with a test (weight) function
denoted by w and integrating over the circular domain (Ω) that reflects the
circular sunspot (more details can be found in Kwon and Bang (2018)).

∫
Ω

−w∂
2u

∂x2
∂Ω +

∫
Ω

−w∂
2u

∂y2
∂Ω +

∫
Ω

wD1u∂Ω +

∫
Ω

wχλ2

(
∂2u

∂x2
+
∂2u

∂y2

)
∂Ω = 0.

(3.45)
In Eq. (3.45), D1 is a constant and the elements of the domain are such
that in each domain (Ωe) the value of χ can be considered constant, so these
quantities can be taken out of the integral (since they are known and calculated
numerically based on the discretization of the domain). Using an integration
by part over the domain of triangular elements, Ωe, and taking into account
that on the boundary the eigenfunction vanishes, consequently the boundary
integral is zero. Hence, the integral equation (3.45) transforms into∫

Ωe

∂w

∂x

∂u

∂x
∂Ωe +

∫
Ωe

∂w

∂y

∂u

∂y
∂Ωe +D1

∫
Ωe

wu∂Ωe

−C1λ
2

(∫
Ωe

∂w

∂x

∂u

∂x
∂Ωe +

∫
Ωe

∂w

∂y

∂u

∂y
∂Ωe

)
= 0. (3.46)

where C1 is χ. We have considered the test functions (w) as shape functions
of the trial function and, thus, the test functions for Galerkin’s method are
wi = Hi. Substitution of these shape functions back into Eq. (3.46) with
element discretisation results in an element matrix which is given by

(1−C1λ
2)

[∫
Ωe

HxH
T
x dΩ

e +

∫
Ωe

HyH
T
y dΩ

e

]
u+D1

∫
Ωe

HHTdΩeu = 0, (3.47)

where

H =

 H1

H2

H3

 , u =

 u1

u2

u3

 , Hx =


dH1

dx
dH2

dx
dH3

dx

 , Hy =


dH1

dy
dH2

dy
dH3

dy
,

 ,
and the superscript T denotes the transpose. Using the particular shapes of
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the elements, the first derivatives of the shape functions can be calculated as
dH1

dx
dH2

dx
dH3

dx

 =

 y2 − y3

y3 − y1

y1 − y2

 ,


dH1

dy
dH2

dy
dH3

dy

 =

 x3 − x2

x1 − x3

x2 − x1

 . (3.48)

Since the first order derivatives of the shape functions are constants, they can
be taken out from the integral in Eq. (3.47). Our relation can be further
simplified using the well-known relation

M e =

∫
Ωe

HHTdΩe =
A

12

 2 1 1

1 2 1

1 1 2

 . (3.49)

After substituting Eq. (3.49) back into Eq. (3.47), we obtain

HxH
T
xAu+HyH

T
yAu+D1M

eu− C1λ
2HxH

T
xAu− C1λ

2HyH
T
yAu = 0

(a1)3∗3u+ (a2)3∗3λ
2u = 0 (3.50)

where (a1)3∗3 and (a2)3∗3 represent the local stiffness matrices for each element
and they are given as

(a1)3∗3 = HxH
T
xA+HyH

T
yA+D1M

e, (a2)3∗3 = −C1λ
2HxH

T
xA−C1λ

2HyH
T
yA.

(3.51)
Each local stiffness matrix contains an equation for each node in the element,
the so-called local equation. The global stiffness matrices are obtained by
assembling all of the local stiffness matrices or by organising all of the local
equations for each node as

(A2)N∗Nλ
2


u1
...
uN

+ (A1)N∗N


u1
...
uN

 = 0, (3.52)

therefore we have that A1u+ A2λ
2u = 0.

In the present study a new algorithm is developed to obtain the eigenvalues
and eigenvectors of a quadratic matrix polynomial using Galerkin FEM and
QZ factorization. The method is potentially capable of handling a variety of
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eigenvalue problems in the most efficient way. The built-in MATLAB func-
tion ’polyeig(A1, A2)’ (based on the QZ factorization) is used to obtain the
generalized quadratic eigenvalues and eigenvectors. The code is tested against
the eigenvalues obtained for the uniform circular cross sectional magnetic flux
tubes.

3.5.2 Results

As we are dealing with slow body waves in the long wavelength limit, the phase
speed of waves will be normalised by the tube speed, CT , while the radial vari-
ation of the density is described by Eq. (3.16). The spatial distribution of the
eigenfunction for the three investigated modes in the case of a homogeneous
plasma equilibrium density (σ = 1) is identical to the one shown in Fig. (3.2),
however, given the particularity of the limit we are using, the dimensionless
phase speed of modes will be slightly larger than 1. In our analysis we use
the constant value of plasma-β = 3 × 10−3, and dimensionless wavenumber
kR = 0.5. The characteristic values of the parameters used for obtaining the
numerical solutions are provided in Table (3.3). As before, the colour bar
represents the relative magnitude of the dimensionless amplitude of the total
pressure perturbation so that red and blue shaded regions correspond to the
crests (maxima) and valleys (minima) of the amplitude of PT . The dimension-
less phase speeds of slow body modes exhibit a very little variation with the
density parameters and their variation is phenomenologically identical with
the solutions we obtained in the short wavelength limit. As before, the fluting
mode has the highest sensitivity to the density parameters. Similar to the
short wavelength limit, the equilibrium density inhomogeneity (enhancement
and depletion) will be placed in a concentric and eccentric location and the
results are displayed in Figs. (3.17)-(3.20).

In the case of slow body waves propagating in an inhomogeneous cylindri-
cal flux tube in the long wavelength limit the most remarkable change occurs
in the morphology (the spatial structure) of modes. When the equilibrium
density appears as a localised concentric enhancement Fig. (3.17) the funda-
mental sausage clearly maintains its global character and the spatial structure
of these modes appears similar to the one we obtained in the homogeneous
density case, therefore fundamental sausage modes are very weakly affected
both in propagation speed (or frequency) and the spatial structure of waves.
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Table 3.3: Details of the physical parameters used for the numerical modeling
and analysis of slow body MHD modes in a circular flux tube, assuming a model
with constant plasma-β = 3× 10−3, in the long wavelength limit (kR = 0.5).

σ τ ξ ϵ1 ϵ2
C1: Non-uniform density enhancement
C1.1: - concentric 2.5 0.3 4.1× 10−2 0 0
C1.2: - right eccentric - - - 0.5 0
C2: Non-uniform density depletion
C2.1: - concentric 0.5 0.7 - 0 0
C2.2: - right eccentric - - - - 0.5

Figure 3.17: The spatial structure of SSFB, SKFB, and SF2FB modes under
photospheric conditions in a circular magnetic flux tube with concentric den-
sity enhancement in the long wavelength limit. The colour bars display the
magnitude of the total pressure perturbation amplitude divided by its maxi-
mum value. The red and blue shaded regions represent crests (maxima) and
valleys (minima) of amplitude variation of total pressure perturbation. The
density distribution is shown in the upper left panel and the radial variation
of the density is given by Eq. (3.16). All characteristic values of parameters
used in these numerical solutions are given in Table (3.3), case C1.1.
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This clearly contrasts the results obtained in the case of slow body modes in
the short wavelength limit Fig. (3.3). While the spatial structure of funda-
mental kink modes in the long and short wavelength limit behave the same,
the fluting mode has a peculiar behaviour as the regions that correspond to
the enhanced density show an oscillatory motion with suppressed amplitude
and the maximum amplitude in the eigenfunction appears to be the regions
in the homogeneous annulus surrounding the density inhomogeneity. That
means that these modes appear to remain global modes, however the weight
of different regions to the global oscillating mode is changing.

The spatial structure of the same three slow body modes in the case of an
eccentric density enhancement is shown in Fig. (3.18) while the values of the
physical parameters describing the inhomogeneous density (placed along the
horizontal direction) are given by case C1.2 in Table (3.3). When compared
to the results obtained in the short wavelength limit (Fig. 3.4), the investi-
gated slow body modes show a completely different behaviour. Although the
symmetry of the modes is distorted, waves remain global in the sense that the
whole cross-section of the flux tube oscillates. As before, the amplitudes in
the total pressure are higher in regions of lower (homogeneous) density.

These results may allow us to conclude that slow body modes propagating
with larger wavelengths than the radius of the flux tube under photospheric
conditions in the presence of an eccentrically placed density inhomogeneity
maintain their global character, however they lose their symmetry.

When the equilibrium density appears as a region of depleted density, the
behaviour of long wavelength slow body modes investigated by us appear to
have the same symmetry and the same character as waves in the short wave-
length limit and that is evidenced by the spatial structure of waves shown
in Figs. (3.19) and (3.20) that cover the cases of a concentric and eccentric
density loading. As before, the extent of the spatial domain where modes are
present is smaller than the spatial extent of the density inhomogeneity.

Finally we should mention that the spatial structure of the investigated
modes when the density inhomogeneity is placed along the first bisector is
identical with the cases shown above.
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Figure 3.18: The same modes as in Fig. (3.17), but here the density loading
is eccentric, and is situated along the horizontal direction. The values of the
parameters used in this case are given in Table (3.2), case C1.2.

Figure 3.19: The same as in Fig. (3.17) but in the case of depleted concentric
equilibrium density inhomogeneity. The values of the parameters used in this
case are given in Table (3.2), case C2.1.
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Figure 3.20: The same as in Fig. (3.17), but here the depleted density region
is situated in an eccentric position along the horizontal axis. The values of the
parameters used in this case are given in Table (3.2), case C2.2.

3.6 Conclusions

Intense magnetic waveguides in the solar photosphere, such as pores and
sunspots are ideal environments for the propagation of guided waves. The
theory developed by Edwin and Roberts (1983a) predicts the qualitative be-
haviour of different waves in such environments assuming an ideal case when
the plasma is homogeneous, without background flows, and unbounded along
the symmetry axis of the magnetic flux tube. High-resolution observations
show that these restrictions are not realistic and the theory of guided MHD
waves must be expanded to account for the presence of, e.g. density inhomo-
geneity.

High resolution magnetic and intensity observations (e.g. SoHo/MDI, SDO/HMI,
etc.) showed that sunspots and pores are inhomogeneous both in magnetic field
and density. These inhomogeneities can alter the frequency of waves and their
propagation speed leading to a real challenge to identify the nature of waves
and their properties. The study summarised in this Chapter investigates the
modification of the properties of waves (their spatial structure, phase speed
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or frequency, in particular) in the presence of a symmetric and geometrically
well-defined inhomogeneity.

In order to tackle the problem mathematically we employed results pre-
viously obtained by Aldhafeeri et al. (2022b), who showed that in the case
of slow body waves under photospheric conditions the dispersive character of
waves and their properties can be confidently described by solving a Helmholtz
equation with Dirichlet boundary condition. In addition, we assumed particu-
lar situations when the wavelength of waves is much smaller (or much longer)
than the radius of the tube (short/long wavelength limit). The eigenfrequency
as well as the eigenfunction of waves were studied as a Sturm-Liouville eigen-
value problem and the governing equation with non-constant coefficients was
solved numerically using the Fourier-Chebyshev spectral, and Galerkin FEM
methods, respectively.

The inhomogeneous equilibrium plasma density considered here was de-
scribed with the help of a series of parameters that defined the shape, location,
size and strength of the inhomogeneity. In our study we conducted a paramet-
ric analysis to highlight what effects these parameters have on the character-
istics of waves. The advantage of the density profile given by Eq. (3.16) is its
versatility for modeling purposes. In order to provide a general approach, we
have considered both cases of an enhanced and depleted equilibrium plasma
density. Since our model assumed a photospheric waveguide where the equi-
librium plasma pressure is constant, these equilibrium density enhancements
and depletions would appear as cooler (darker) and hotter (brighter) regions
inside a magnetic waveguide.

First, we analysed the case of short wavelength limit, i.e. when the wave-
length of slow body waves under photospheric conditions is much smaller than
the radius of the tube (wide tube). In this limit we expect (inspired from the
results by Edwin and Roberts (1983b)) that the phase speed of waves is slightly
less than the sound speed. Our results indicate that a significant change driven
by the inhomogeneous equilibrium plasma density is the modification in the
spatial structure of waves. A direct consequence of the particular density dis-
tribution is that slow body waves in cylindrical waveguides lose their global
character, instead, they become more localized and always tend to appear in
the regions that correspond to a lower density. This property might help iden-
tify locations of density inhomogeneity when these are not visible in intensity
spectral lines.
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The parameters that describe the equilibrium plasma density modifica-
tion (strength, location, size, smoothness of the transition to a homogeneous
density) affect the modes in different ways. In general, the eigenfrequencies of
fluting modes are more sensitive to the modifications of the equilibrium plasma
density parameters. In the case of depleted density, the modifications in the
phase speed of waves is more important (nearly 40% decrease) and the differ-
entiation between different modes according to the size of the inhomogeneity
or its location very often is very small, meaning that for modeling purposes
one can choose the most convenient location for equilibrium plasma density
inhomogeneity.

In the long wavelength limit (when the phase speed of slow waves ap-
proaches the internal tube speed, slender tube) the changes in the phase speed
of waves is small, similar to the changes we had in the short wavelength limit.
However, in this limit the most important change is in the modifications in the
spatial structure of modes. In this limit (for an enhanced density inhomogene-
ity) waves remain global in nature, however they lose their symmetry. These
findings can lead us to conclude that, in contrast to the short-wavelength limit,
the spatial structure of the slow-body modes in the long-wavelength limit ex-
hibits less alterations because of the variations in the phase velocity of the
slow-body modes vary slightly over the long wavelength limit. When the inho-
mogeneous equilibrium density presents itself as a depleted region, the spatial
structure of waves is similar to the results found in the short wavelength limit.

The analysis and the numerical recipe in this study can be considered
as a starting point in the investigation of waves in realistic solar photospheric
waveguides, where the equilibrium plasma density inhomogeneity derived from
observations or realistic sunspot simulations can be incorporated in the study
of the properties of slow body waves. The present analysis can be considered as
a tool for diagnosing the inhomogeneous character of sunspots or pores, how-
ever this diagnosis is rather qualitative, rather than quantitative. The choice
of a waveguide of high symmetry is not entirely realistic, however it allows us
to use a fairly simple mathematical approach and the obtained results show
the modifications of the properties of waves due solely to the density inhomo-
geneity. It is known (see, e.g. Albidah et al., 2021b, 2022b) that the irregular
shape of the waveguides has very strong effects on the spatial structure of
waves, especially in the case of higher order modes. The constant plasma-β
limit considered here is also a rather crude approximation. Observations show
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(see, e.g. Gary, 2001; Grant et al., 2018) that the plasma-β changes over small
spatial scales, and around the density inhomogeneities this quantity may ex-
hibit a sharp gradient that could influence the property of waves studied in
this Thesis.
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CHAPTER 4

Slow body MHD waves in photospheric flux tubes

in the presence of local density, pressure and mag-

netic field inhomogeneity

4.1 Introduction

The magnetic field that permeates plasma actually has a major role in struc-
turing the plasma in the solar environment. Possible magnetic waveguides
where MHD waves can propagate are created by these regions of inhomo-
geneities. Inhomogeneities in the plasma and magnetic field are known to
strongly influence the properties of waves, leading to the modifications in the
spectral properties of waves, wave amplification, mode conversion, etc. (e.g.
De Pontieu et al. (2022),Morton et al. (2011b), Stangalini et al. (2022), Ald-
hafeeri et al. (2022b), Skirvin et al. (2022b) to name but a few). For the
purpose of moving mass and energy from the lower layers of the solar atmo-
sphere to the top layers, these waveguides offer a natural pathway. Sunspots,
pores, spicules, prominences, and coronal loops are a few examples of magnetic
waveguides that are frequently seen in the solar atmosphere. Most of the time,
a boundary can be found in the magnetic field strength or in intensity data
that are somehow connected to a jump in the plasma density. Inhomogeneities
in the magnetic field or density pose a serious challenge when describing the
properties of waves, because the equations that one has to solve, will have
inhomogeneous (i.e. coordinate-dependent) coefficients. On the other hand,
traversal inhomogeneities are necessary requirements to describe the plasma
heating by waves, i.e. the effectiveness of transferring waves’ kinetic energy
into heat requires strong inhomogeneities (see the very large number of studies
on phase mixing, resonant absorption or turbulence).
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The problem of MHD wave propagation in inhomogeneous plasmas was
examined in details by many authors. The most simplistic and natural in-
homogeneity is the one conferred by the gravitational stratification that, in
the case of an isothermal plasma, leads to an evolutionary equation of slow
MHD waves described by a Klein-Gordon differential equation (see, e.g. Rae
and Roberts, 1982; Kalkofen et al., 1994; Sutmann et al., 1998; Ballai et al.,
2006; Goedbloed et al., 2010, 2019; Roberts, 2019). This sort of inhomogene-
ity is known to modify the properties of waves in many ways, for instance the
appearance of cut-off frequencies (the stratified atmosphere plays the role of a
low-frequency filter), the increase in the amplitudes of waves due to the decay
of density and their evolution into shocks that could heat the non-magnetic
atmosphere, etc. When the inhomogeneity is present in the transversal direc-
tion (e.g. the radial direction of a flux tube) the nature of waves’ spectrum
is modified in the sense that the spectrum of slow and Alfvén waves becomes
continuous, while the spectrum of fast waves remain a discrete one. When the
frequency of an externally impinging wave matches one of the frequencies in
the continuum spectrum, resonant absorption or phase mixing is taking place
that are very efficient ways to damp waves’ energy. In this case the governing
equations become singular and the values of eigenfunction can be determined
by using, e.g. Frobenius series (see, e.g. Sakurai et al., 1991b; Goossens et al.,
1992; Soler et al., 2017; Pagano et al., 2020). More recently resonant absorption
was proposed as the mechanism responsible for damping of kink oscillations
of coronal loops when the global standing kink waves are resonantly coupled
with local Alfvén waves (Ruderman and Roberts, 2002; Tomczyk et al., 2007;
Van Doorsselaere et al., 2008; Morton et al., 2015, 2019).

It is commonly recognised that the magnetic fields that permeate the whole
solar atmosphere and its structures are the primary cause of the atmosphere’s
extreme non-uniformity (e.g. Williams et al., 2020). The plasma and field in-
homogeneities have a significant impact on how MHD waves propagate and
are observed. The study by Skirvin et al. (2021, 2022a) demonstrated that
the eigenvalues for trapped wave modes vary depending on the scale of inho-
mogeneity in an inhomogeneous plasma equilibrium. The permissible bands
within which MHD waves can travel get smaller if the plasma is substantially
non-uniform, whereas the continuum areas, where physical damping processes
might occur, span a larger range of phase speeds. The spatial distributions
of observable eigenfunctions generated by MHD wave propagation can also be
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impacted by the non-uniform equilibrium. Large density inhomogeneities were
shown to have a greater impact on slow body modes in coronal slab structures.
This also holds true for body modes in photospheric structures.

Very often, in order to perform a mathematical analysis of wave propaga-
tion and solve the governing equation, the inhomogeneous equilibrium has to
be rather specific so that the complexity is reduced. One typical example was
used earlier in Chapter 3 where we assumed that the plasma-β is constant. A
similar approach will be applied in this chapter, too, where we will assume that
the inhomogeneity in all the equilibrium physical quantities (magnetic field,
pressure, density) is such that the plasma remains isothermal, i.e. the plasma
pressure and density vary following the same dependence on coordinates.

The current analysis and the numerical recipe that is developed and used to
solve the governing equation can be viewed as a follow-up attempt in the explo-
ration of waves in realistic solar photospheric waveguides, where equilibrium
density profile inhomogeneity generated from observations can be incorporated
in the study of the property of slow body waves.

4.2 Equilibrium magnetic field

Our analysis will focus on the modifications in the spatial structure and prop-
agation speed of guided slow body MHD waves in a circular magnetic flux
tube when all equilibrium parameters (density, pressure, magnetic field) have
radial and azimuthal dependence, i.e. they depend on the r and θ coordi-
nates. As before, our investigation will make use of the result that slow body
modes correspond to those perturbations for which the total pressure becomes
almost zero near the boundary of the waveguide, as shown by Aldhafeeri et al.
(2022a). In this case the slow body waves under photospheric conditions, the
dispersive character of waves and their properties can be confidently described
by solving a Helmholtz type partial differential equation with Dirichlet bound-
ary condition, i.e. the total pressure perturbation vanishes at the boundary
of the waveguide. For the specific inhomogeneity we consider here the sound
speed is going to be a constant quantity, i.e. we are dealing with an isothermal
magnetic flux tube.

Let us consider that the equilibrium plasma density has a dependence of
the form given by Eq. (3.16), therefore the equilibrium plasma pressure inho-
mogeneity will be represented by a localised enhanced or depleted region and
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it can be written as
p0(r, θ) = p2χ(r, θ), (4.1)

where ρ2 and p2 represent the density and the pressure outside the inhomoge-
neous region, respectively and the constant sound speed will be CS =

√
γp2/ρ2.

We consider an equilibrium magnetic field oriented along the z-axis (the
longitudinal symmetry axis of the cylindrical waveguide, i.e. B0 = (0, 0, B0(r, θ)),
where B0(r, θ) is an unknown function that can be determined using the radial
and azimuthal components of the equilibrium momentum equation. Indeed,
taking into account the inhomogeneous nature of the equilibrium pressure and
magnetic field, these two equation can be written as

∂p0
∂r

+ 1
2µ

∂B2
0

∂r
= 0,

∂p0
∂θ

+ 1
2µ

∂B2
0

∂θ
= 0,

(4.2)

where B0 = B0(r, θ). Let us integrate the first equation with respect to the
radial coordinate r, that leads to p0(r, t)+B2

0(r, θ)/2µ = C(θ), where C(θ) is an
integration constant that depends on the variable θ. Combining this relation
with the other equilibrium equation in the system (4.2) leads to dC(θ)/dθ = 0,
i.e. C is a genuine constant, which we will denote by a. As a result we have

B2
0(r, θ) = 2µa− 2µp0(r, θ). (4.3)

In order to determine the constant quantity a, let us consider the particular
case when the inhomogeneity is placed in the center of the waveguide, i.e. we
are dealing with a concentric case that corresponds to ε1 = ε2 = 0 in Eq.
(3.16). The equilibrium pressure at r = θ = 0 can be written as

p0(0, 0) = p2

1 +
(σ − 1)

2

[
1 + tanh

(
τ

ξ

)] .

Combining this result with Eq. (4.3), the constant quantity a can be expressed
as

a =
B2

0(0, 0)

2µ
+ p2

1 +
(σ − 1)

2

[
1 + tanh

(
τ

ξ

)] ,
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where B(0, 0) = B0(r = 0, θ = 0). With this, Eq. (4.3) becomes

B2
0(r, θ) = B2

0(0, 0)

1 +
p2

B2
0(0, 0)/2µ

σ − 1

2

[
tanh

(
τ

ξ

)
+ tanh

(
ψ(r, θ)− τ

ξ

)] .

(4.4)
In what follows we are going to denote the dimensionless quantity p2/[B2

0(0, 0)/(2µ)] =

β1, that is defined like a plasma-beta parameter, however this is just apparent,
as it involves the ratio of kinetic pressure from the homogeneous annulus (p2)
and the value of the magnetic field at the centre (inside the inhomogeneous
region). As a result, the equilibrium magnetic field can be written as

B0(r, θ) = B0(0, 0)

1 + β1
σ − 1

2

[
tanh

(
τ

ξ

)
+ tanh

(
ψ(r, θ)− τ

ξ

)]
1/2

.

(4.5)
The above result can be generalised in a straightforward way for an arbitrary
position of the position of the inhomogeneity. Let us consider that in the
eccentric case the inhomogeneity is centered in a position where r̂ = (ϵ21 +

ϵ22)
1/2 and θ̂ = tan−1

(
ϵ2/ϵ1

)
. In this case the profile of the inhomogeneous

equilibrium magnetic field is given as

B0(r, θ) = B0(r̂, θ̂)χB, (4.6)

where

χB =

1 + β̂
σ − 1

2

tanh(ψ(r, t)− τ

ξ

)
− tanh

(
ψ̂ − τ

ξ

)
1/2

, (4.7)

and
ψ̂ =

√
(ar̂ cos θ̂ − ϵ1)2 + (br̂ sin θ̂ − ϵ2)2,

and the meaning of the quantities a, b, τ and ξ is identical with the ones intro-
duced in Chapter (3). Here the quantity β2 is defined as β̂ = p2/[B

2
0(r̂, θ̂)/(2µ)].

As before in Chapter (3), here we are going to concentrate on inhomogeneous
regions of circular shape, so we choose a = b = 1.
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4.3 Governing equation

We consider a straight magnetic cylinder with constant radius R and the
dynamics will be described in cylindrical coordinates (r, θ, z). The inhomo-
geneous equilibrium magnetic field, B0 = B0(r, θ)ẑ is directed along the z-
axis. The equilibrium plasma density profile inhomogeneity is denoted by
ρ0(r, θ) and the components of the velocity and magnetic field perturbations
are u = (ur, uθ, uz) and b = (br, bθ, bz). The perturbed quantities can be
Fourier decomposed with respect to the coordinate z and time, t, by writing
them proportional to ei(kz−ωt), where k is the longitudinal wave number.

In this case the linearised and ideal MHD equations transform into

−iωρ(r, θ)+ρ0(r, θ)

[
1

r

∂

∂r

(
rur(r, θ)

)
+

1

r

∂uθ(r, θ)

∂θ
+ ikuz(r, θ)

]

+ ur(r, θ)
∂ρ0(r, θ)

∂r
+
uθ(r, θ)

r

∂ρ0(r, θ)

∂θ
= 0,

(4.8)

iωρ0(r, θ)ur(r, θ) =
∂p(r, θ)

∂r
− B0(r, θ)

µ

(
ikbr(r, θ)−

∂bz(r, θ)

∂r

)
+
bz(r, θ)

µ

∂B0(r, θ)

∂r
,

(4.9)

iωρ0(r, θ)uθ(r, θ) =
1

r

∂p(r, θ)

∂θ
+
B0(r, θ)

µ

(
1

r

∂bz(r, θ)

∂θ
− ikbθ(r, θ)

)
+
bz(r, θ)

µr

∂B0(r, θ)

∂θ
,

(4.10)

iωρ0(r, θ)uz(r, θ) = ikp(r, θ)− 1

µ

bθ(r, θ)

r

∂B0(r, θ)

∂θ
− br(r, θ)

µ

∂B0(r, θ)

∂r
, (4.11)

br(r, θ) =
−k
ω
B0(r, θ)ur(r, θ), (4.12)

bθ(r, θ) =
−k
ω
B0(r, θ)uθ(r, θ), (4.13)

bz(r, θ) = −iB0(r, θ)

ωr

∂

∂r

(
rur(r, θ)

)
− iur(r, θ)

ω

∂B0(r, θ)

∂r

−iB0(r, θ)

ωr

∂uθ(r, θ)

∂θ
− iuθ(r, θ)

ωr

∂B0(r, θ)

∂θ
. (4.14)

The above equations can be combined into the expression of the total pressure
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perturbation, (PT ) is given by

PT = p+
1

µ
B0(r, θ)bz(r, θ), (4.15)

and the governing differential equation for the total pressure becomes

∂

∂r

[
r

ρ0
(
ω2 − k2V 2

A

) ∂PT

∂r

]
+
1

r

∂

∂θ

[
1

ρ0
(
ω2 − k2V 2

A

) ∂PT

∂θ

]
+

n2
0r

ρ0(ω2 − k2v2A)
PT = 0,

(4.16)
where the magnetoacoustic parameter, n2

0 = −m2
0 has been defined earlier

(see Eq. 2.28) and it is going to be used in the following calculations as we
are concentrating on body waves. We should mention here that although the
form of n2

0 agrees with its counterpart in homogeneous plasma, here all phase
speeds are functions of r and θ. In our analysis we will restrict ourselves to
the thick flux tube limit, i.e. we consider that the wavelength of waves is
much smaller than the radius of the tube (kR ≫ 1). Furthermore, we assume
that in this limit the behaviour of slow body modes is similar to the one in
a homogeneous waveguide, therefore the phase speed of waves can be written
as ω2/k2 ≈ C2

S(1− ν), where ν is a small dimensionless positive quantity and
ν = 1− ω2/k2C2

S.
Let us rewrite Eq. (4.16) for slow body modes into dimensionless form by

introducing the new variable r̃ = r/R. From now on, for simplicity, we will
drop the tilde. In addition, the magnetoacoustic parameter becomes

n2
0 = −k2

(
1− ω2

k2C2
S

)(
1− γβ̂χ

2χ2
B

)
, (4.17)

where the quantities χ and χB contain the information on the dependence of
the equilibrium pressure and magnetic field on the coordinates r and θ. Fur-
thermore, the coefficient functions of governing equation contain the expression
ρ0(C

2
S − V 2

A) that can be written as

ρ0(C
2
S − V 2

A) =
B2

0(r̂, θ̂)

µ

(
γβ̂χ

2
− χ2

B

)
=
B2

0(r̂, θ̂)

µ
F−1(r, θ). (4.18)

As a result, the dimensionless governing equation for the total pressure
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perturbation given by (4.16) becomes

∂

∂r

(
rF (r, θ)

∂PT

∂r

)
+

1

r

∂

∂θ

(
F (r, θ)

∂PT

∂θ

)
− (kR)2

(
1− ω2

k2C2
S

)
2

γβ̂χ
rPT = 0.

(4.19)
The above equation is a Sturm-Liouville eigenvalue equation and the eigen-

values as well as the corresponding eigenfunctions can be determined using a
numerical approach for particular inhomogeneous density distribution assum-
ing that PT (r, θ) = 0 at the boundary of the tube corresponding to r = 1.

4.4 Details of the numerical setup

Equation (4.19) will be solved numerically using the Galerkin FEM method
subject to the usual Dirichlet boundary condition PT = 0 at r = 1. As before,
the eigenvalue of our problem will be the dimensionless phase speed of waves
defined as Vph = ω/kCS.

Given the particular form of the governing equation, similar to our ap-
proach presented in Chapter (3), we are going to use Cartesian coordinates to
solve numerically the governing equation. For simplicity we also introduce the
notation g = 2(kR)2/(β̂γχ(x, y)). As a result, the governing equation becomes

F
∂P 2

T

∂x2
+
∂F

∂x

∂PT

∂x
+ F

∂P 2
T

∂y2
+
∂F

∂y

∂PT

∂y
+ gPT − gV 2

phPT = 0. (4.20)

Since the coefficient function F depends on x and y, the terms ∂F/∂x and
∂F/∂y are approximated using Finite Difference Method (FDM) as

∂F

∂x
=
F (x+ dx, y)− F (x− dx, y)

2dx
,

∂F

∂y
=
F (x, y + dy)− F (x, y − dy)

2dy
.

The computational domain is discretized using linear combination of the small
linear triangular finite elements. Each element is connected to another through
nodes (more details can be found in subsection 3.5.1). Equation (4.20) needs to
be solved for each and every node of the computational domain. For the present
study, the solution of the differential equation, PT , is written as the sum of
orthogonal piecewise polynomial basis functions whose coefficients must satisfy
the differential equation (4.20). The linear triangular element approximations
need to be related with the differential equation using the shape functions
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(denoted by H), often called basis functions or interpolation functions. The
shape function depends on the type of element, as well as the polynomial
approximation used for the element. As a result, we can write

u =
[
H1 H2 H3

] u1

u2

u3

 , (4.21)

where u1, u2 and u3 are nodal variables that are unknown coefficients to be
determined. For the linear triangular elements with three nodes, the shape
functions for each node are given by an equation similar to Eq. (3.44).

Applying the finite element method, the first step is to convert the original
governing differential (strong) form of the PDE into an integral (weak) form
by multiplying with a test (weight) function denoted by w and integrating
over the circular domain (Ω) that reflects the circular sunspot (more details
can be found in Kwon and Bang (2018) and also in Chapter 3). Using an
integration by part over the domain of triangular elements, Ωe, and taking
into account that on the boundary the eigenfunction vanishes, the integral
equation transforms into

−F
∫
Ωe

dw

dx

du

dx
dΩe = 0, −F

∫
Ωe

dw

dy

du

dy
dΩe = 0, (4.22)

∂F

∂x

∫
Ωe

du

dx
dΩe = 0,

∂F

∂y

∫
Ωe

w
du

dy
dΩe = 0, (4.23)

g

∫
Ωe

wudΩe = 0, −gV 2
ph

∫
Ωe

wudΩe = 0. (4.24)

For the Galerkin’s method, we consider the test functions (w) as the shape
function of the trial function PT , so we write w = Hi. Substitution of these
shape functions back into the weak solution Eqs. (4.22) - (4.24) with ele-
ment discretization, results in element matrix which is given by the series of
equations [

−F
∫
Ωe

HxH
T
x dΩ

e − F

∫
Ωe

HyH
T
y dΩ

e

]
u = 0, (4.25)[

∂F

∂x

∫
Ωe

HHT
x dΩ

e +
∂F

∂y

∫
Ωe

HHT
y dΩ

e

]
u = 0, (4.26)
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[
g

∫
Ωe

HHTdΩe − gV 2
ph

∫
Ωe

HHTdΩe

]
u = 0, (4.27)

where

H =

 H1

H2

H3

 , u =

 u1

u2

u3

 , Hx =


dH1

dx
dH2

dx
dH3

dx

 , Hy =


dH1

dy
dH2

dy
dH3

dy
,

 ,
and the superscript T denotes the transpose. Using the particular shapes of
the elements, the first derivatives of the shape functions can be calculated as

dH1

dx
dH2

dx
dH3

dx

 =

 y2 − y3

y3 − y1

y1 − y2

 ,


dH1

dy
dH2

dy
dH3

dy

 =

 x3 − x2

x1 − x3

x2 − x1

 . (4.28)

Since the first order derivatives of the shape functions are constants, they
can be taken out from the integral in Eqs. (4.25)- (4.27) so that[

−FHxH
T
x

∫
Ωe

dΩe − FHyH
T
y

∫
Ωe

dΩe

]
u = 0, (4.29)

[
∂F

∂x

∫
Ωe

HdΩeHT
x +

∂F

∂y

∫
Ωe

HdΩeHT
y

]
u = 0, (4.30)[

g

∫
Ωe

HHTdΩe − gV 2
ph

∫
Ωe

HHTdΩe

]
u = 0. (4.31)

Our relation can be further simplified using the well-known relations

M e =

∫
Ωe

HHTdΩe =
A

12

 2 1 1

1 2 1

1 1 2

 , (4.32)

Ce =

∫
Ωe

HdΩe =
A

3

 1

1

1

 . (4.33)

After substituting Eqs. (4.32) and (4.33) in Eqs. (4.29- 4.30), we obtain

∂F

∂x
CeHT

xu+
∂F

∂y
CeHT

y u = 0, (4.34)
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gM eu− gV 2
phM

eu = 0, (4.35)

The above equations can be simplified as

−FHxH
T
xAu−FHyH

T
yAu+

∂F

∂x
CeHT

xu+
∂F

∂y
CeHT

y u+ gM eu− gV 2
phM

eu =

(a1)3∗3u+ (a2)3∗3V
2
phu = 0, (4.36)

where
(a2)3∗3 = −gM e,

(a1)3∗3 = −FHxH
T
xA− FHyH

T
yA+

∂F

∂x
CeHT

x +
∂F

∂y
CeHT

y + gM e,

represent the local stiffness matrices for each element. Each local stiffness
matrix contains an equation for each node in the element, the so-called local
equation. The global stiffness matrices are obtained by assembling all of the
local stiffness matrices or by organising all of the local equations for each node
as

(A2)N∗NVph
2


u1
...
uN

+ (A1)N∗NVph
0


u1
...
uN

 = 0, (4.37)

therefore we have that A2Vph
2U+ A1Vph

0U = 0.
In the present study a new algorithm is developed to obtain the eigenvalues

and eigenvectors of a quadratic matrix polynomial using Galerkin FEM and
QZ factorization. The method is potentially capable of handling a variety
of eigenvalue problems in the most efficient way. In the code, the built-in
MATLAB function ’(polyeig(A1, A2))’ (based on the QZ factorization) is used
to obtain the generalized quadratic eigenvalues and eigenvectors. The code is
tested against the eigenvalues obtained for the uniform circular cross sectional
magnetic flux tubes.
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Table 4.1: Values of the physical parameters used for the numerical modeling
and analysis. Unless specified otherwise, for each case we consider kR = 4 and
β̂ = 3× 10−3.

σ τ ξ ϵ1 ϵ2
C1: Uniform density 1
C2: Density enhancement
C2.1: - concentric 2.5 0.5 9.1× 10−2 0 0
C2.2: - right eccentric 2.5 0.5 9.1× 10−2 0.5 0
C2.3: - upper right eccentric 2.5 0.5 9.1× 10−2 0.3 0.3
C3: Density depletion
C3.1: - concentric 0.5 0.5 9.1× 10−2 0 0
C3.2: - right eccentric 0.5 0.5 9.1× 10−2 0.5 0
C3.3: - upper right eccentric 0.5 0.5 9.1× 10−2 0.3 0.3

4.5 Slow body modes in the presence of inhomo-

geneous equilibrium density, pressure and

magnetic field

In this section, we will analyze the modification of the spatial structure of the
total pressure perturbation corresponding to slow body modes propagating in
a cylindrical waveguide in the presence of inhomogeneous equilibrium under
photospheric conditions, assuming a short wavelength limit and an isothermal
plasma. The values of the parameters used in our simulations are shown in
Table (4.1).

As a benchmark for our study that allows us to discern the alterations in
wave properties resulting from a non-uniform plasma and field equilibrium,
first we show the results we obtain in the case of homogeneous equilibrium,
i.e. when the value of the parameter σ is equal to one. These results cover
the earlier findings by Edwin and Roberts (1983a). The results presented in
Chapter (3) suggest that the effect of inhomogeneity is more pronounced for
higher order modes, therefore, here we consider the results not only for the
three modes studied earlier in Chapter (3), but also for several higher order
modes.

Figure (4.1) displays the dimensionless phase speeds and the spatial struc-
ture of slow body modes of various radial and azimuthal order in the case of a
homogeneous equilibrium, i.e. when σ = 1. The equilibrium density and mag-
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netic field distribution are shown in the first two panels of the upper row and
they have a constant value, expected from a homogeneous density and mag-
netic field distribution. The remaining panels stand for the spatial structure
of fundamental slow body sausage mode (third panel), the two orthogonally
polarised fundamental slow kink modes (last panel of the first row and first
panel of the second row), the pair of the fluting mode of order n = 2 (sec-
ond and third panels of the second row), slow sausage overtone (fourth panel,
second row), the pair of fluting mode of order n = 3 (first two panels of the
third row), the pair of slow body kink overtone (last two panels of the third
row), the pair of the slow body fluting mode of order n = 4 (first two panels
of the fourth row), and the pair of the fluting overtone mode of order n = 2

(last two panels of the fourth row). Although the pair (n,m) is strictly appli-
cable for the homogeneous case, remnants of the symmetry described by these
numbers can be recovered even in the inhomogeneous case. In addition, we
chose to represent the corresponding orthogonal companion of particular waves
(kink, fluting). In a homogeneous plasma these modes would appear identical
with their counterpart, however shifted by a 90 degree rotation. In an inho-
mogeneous plasma, the inhomogeneity will influence these modes differently,
depending on the direction of their polarisation.

Since we are dealing with the case of short wavelength limit, all dimension-
less speeds (shown on the top of each panel) are converging to one, i.e. the
constant sound speed. The obtained results provide clear evidence that, under
the assumption of a homogeneous equilibrium, the eigenmodes exhibit global
harmonic oscillations and possess well-known symmetrical characteristics along
their respective axes. As before, the color bars represent the amplitude of the
total pressure perturbation divided by its maximum value for each mode. The
regions that are shaded in red and blue correspond to the crests (maxima)
and valleys (minima) of amplitude variation in the total pressure perturba-
tion. This result also proves our initial assumption according to which the
Dirichlet boundary condition imposed in our case would not modify qualita-
tively or quantitatively the solution of dispersion relation obtained in the case
of body modes (in line with the findings by Aldhafeeri et al. (2022b)). The
modes are listed in the descending order of their phase speed in units of the
constant sound speed.

The changes in the spatial structure of slow body waves as well as the
modification of the dimensionless phase speed in terms of the parameters of
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Figure 4.1: The spatial structure of slow body waves in a homogeneous (σ = 1)
cylindrical waveguide under photospheric conditions together with the density
and magnetic field distribution (first two panels in the first row). The re-
maining panels show the spatial structure of slow body modes sausage (top
row, third panel), followed by kink and its corresponding orthogonal mode.
The second row contains the two orthogonally polarised fluting mode of order
n = 2 (second and third panel), followed by slow sausage overtone, the flut-
ing modes of order n = 3 (first two panels in the third row) and the pair of
slow body kink overtones, the pair of slow body fluting modes of order n = 4
(the first two panels of the fourth row, and the pair of fluting overtone of order
n = 2. The color bars display the magnitude of the total pressure perturbation
amplitude divided by its maximum value. The red and blue shaded regions
represent crests (maxima) and valleys (minima) of amplitude variation of total
pressure perturbation.
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local equilibrium plasma density given by Eq. (3.16) and magnetic field (Eq.
4.7) will be discussed in the specific situations when the inhomogeneity is
represented as a local density enhancement (σ > 1) and density depletion
(σ < 1). We should note here that due to the requirement of the conservation
of the equilibrium total pressure, an enhancement in density (or pressure)
would mean that the magnetic field will be depleted. The modifications in the
oscillatory patterns of waves are analyzed for three particular positions of the
equilibrium inhomogeneity loading, e.g. concentric (case C2.1), right eccentric
(case C2.2), and upper right eccentric (case C2.3). The particular values of
parameters chosen for these three cases are given in Table (4.1).

4.5.1 Slow body modes in the presence of concentric and

eccentric equilibrium density (pressure) enhance-

ments

The modification in the values of the radial distribution of equilibrium density,
pressure and magnetic field will result in modifications to the dimensionless
phase speed and the spatial structure of slow body modes represented by the
changes in the total pressure perturbation. Let us first discuss the case of a
concentric loading (Fig 4.2), for which the parameters used in finding numeri-
cally solutions to Eq. (4.19) are given by case C2.1 in Table (4.1). The panels
in Fig. (4.2) show the equilibrium density and magnetic field distributions
(first two panels in the upper row), the spatial structure of the fundamental
slow body sausage mode (third panel) and the two orthogonal fundamental
slow body kink modes (last panel of the upper row and first panel of the sec-
ond row), the two orthogonal fluting mode of order n = 2 (second and third
panel of the second row) the two orthogonal fluting modes of order n = 3 (last
panel of second row and first panel of the third row), the sausage overtone
(second panel of the third row), the two orthogonal fluting modes n = 4 (the
last two panels of the third row), the pair of kink overtone (first two panels of
the fourth row) and the pair of n = 5 fluting mode (the last two panels of the
fourth row). As before, in all panels the amplitude of the total pressure was
normalised by the maximum value of this quantity .

First of all, it is evident that the eigenvalues of the studied waves exhibited
a very small decrease in comparison to the uniform case. Comparing Figs. (4.1)
and (4.2), it becomes apparent that the modes exhibit symmetry in relation
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Figure 4.2: The same modes as in Fig. (4.1), but here we show the results
in the presence of a concentric density (and magnetic field) enhancement. All
characteristic values of parameters used in these numerical solutions corre-
spond to the case C2.1 in Table (4.1).

to the central axis of the circular waveguide. The aforementioned findings
indicate that the presence of a concentric inhomogeneous equilibrium density
enhancement leads to an incremental decrease in the eigenvalues of modes,
however the oscillating modes have global harmonic oscillations character, as
compared to the scenario where the density enhancement is uniform. The
most affected modes appear to be the kink overtone and the fluting overtone
of order n = 2 shown in the last row of Fig. (4.2). When comparing the
concentric density enhancement case to the uniform case, it is evident that the
phase speed of the sausage overtone decreases and becomes less than the phase
speed of the fluting mode of order n = 3. Furthermore, the kink overtone’s
phase speed decreases relative to the order n = 4 fluting mode’s phase speed.
Remarkably, in the first eighteen low order slow body modes, the concentric
density enhancement case does not exhibit the sausage overtone of order n = 2,
and the overtone fluting of order n = 2 drops below the phase speed of the
fluting mode of order n = 6.

The enhanced eccentric equilibrium inhomogeneity distribution in density
and magnetic field corresponds to an inhomogeneity loading whose position is
shifted away from the origin and the position of its center is controlled by the
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two parameters, ϵ1 and ϵ2. In reality, the position of the inhomogeneous density
loading can be arbitrary, however, in the present study we discuss only cases
that correspond to the inhomogeneous density shifted along the horizontal axis
(see Fig. 4.3), with parameters given by case C2.2, and a position where both
quantities describing the location of the density load are non-zero (Fig. 4.4,
with parameters given by case C2.3 in Table 4.1). All the figures we are going
to present display the spatial structure of the normalised total pressure of the
same slow body modes as before.

The interplay between the effects of inhomogeneous density and magnetic
field leads to some interesting patterns in the spatial structure of waves. Com-
pared with the spatial structures of modes we obtained when only the equilib-
rium density was considered inhomogeneous (Figs 3.4 and 3.5), the difference
in the oscillatory patterns of the studied modes highlights the effect of the
magnetic field homogeneity. While for the results shown in Chapter 3 the
conclusion on the behaviour of modes was clear, for the case presented in this
chapter, a unified conclusion on the behaviour of waves is difficult to draw. The
presence of magnetic field inhomogeneity affects the studied modes in a differ-
ential way, clearly the higher order modes are the most affected. In contrast
to the results obtain in the case of only the density inhomogeneity, the modes
do not migrate towards lower density regions (as the regions where body wave
solutions were allowed shrunk), here the magnetic field inhomogeneity com-
pensates the effect of inhomogeneous density enhancement, extending the size
of the regions where modes are possible. Equally, the effect of all considered
inhomogeneities results in a different effect on waves depending whether the
polarisation direction of waves coincides with the radial direction along which
the inhomogeneous regions are shifted. As a result, the symmetry of the modes
is distorted and a categorisation of certain higher order modes based on a sim-
ple visual inspection is no longer possible.

For the case when the inhomogeneous region is shifted along the horizon-
tal axis, compared to the concentric density enhancement case, it is evident
that the phase speed of the sausage overtone decreases and becomes less than
the phase speed of the fluting mode of order n = 3. Furthermore, the kink
overtone’s phase speed decreases relative to the order n = 4 fluting mode’s
phase speed. Remarkably, in the first eighteen low order slow body modes, the
concentric density enhancement case does not exhibit the sausage overtone of
order n = 2, and the overtone fluting of order n = 2 drops below the phase
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Figure 4.3: The same MHD modes as in Fig. 4.1, but here we show the
results for an eccentric density (and magnetic field) loading, situated along
the horizontal direction. The parameters used for this visualization are given
by Case C2.2 in Table (4.1).

speed of the fluting mode of order n = 6. Low order modes such as the sausage,
kink, and kink overtone fluting modes of order n = 2 and n = 3 can still be
distinguished in terms of their spatial structure. Their orthogonal slow body
modes, on the other hand, exhibit contradictory behaviour, with some modes
shifting leftward and others rightward in the direction of the higher density.

When the inhomogeneous region is shifted along an arbitrary direction
(along the first bisector as in Fig. (4.4), the modification in the spatial struc-
ture of modes remains qualitatively the same as the one presented when the
inhomogeneity loading was placed along the horizontal axis.

4.5.2 Slow body modes in the presence of concentric and

eccentric depleted equilibrium density inhomogene-

ity

In the case of a depleted density, (and consequently, the plasma pressure)
inhomogeneity, the maximum value of density of the inhomogeneous region
is less than the density of the homogeneous part of the waveguide, i.e. we
consider the case when σ < 1. At the same time, given the requirement of total
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Figure 4.4: The same MHD modes as in Fig. (4.1), but here we show the
results for an eccentric density loading (and magnetic field), situated along
the bisector direction. The parameters used for this visualization are given by
Case C2.3 in Table (4.1).

pressure conservation, the equilibrium magnetic field takes its maximum value
inside the inhomogeneous region. In this section we are going to investigate
the modifications in the spatial structure of the same slow body modes as
before, when the inhomogeneity has a concentric position (ϵ1 = ϵ2 = 0) and
an eccentric position when the values of the centre of inhomogeneity, ϵ1 and ϵ2
take any value but zero at the same time.

The values of parameters used for our numerical investigations are given
in Table (4.1), case C3). Figure (4.5), with parameters given by Case C3.1
shows the spatial structure of the normalized total pressure perturbation cor-
responding to the same body modes as before in the case of concentric loading,
while Figs. (4.6, Case C3.2 in Table 4.1) and (4.7, Case C3.3 in Table 4.1)
show the spatial structure of the total pressure for an eccentric loading, when
the density inhomogeneity is placed along the horizontal axis and in a position
along the first bisector. The modes in the panels of the Figs. (4.5)-(4.7) are
listed in the descending order of their dimensionless eigenvalues (propagation
speed in units of the sound speed in the homogeneous region) shown at the
top of the panels.

Compared to the case when only the density inhomogeneity was consid-
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ered, the spatial structure of the slow body modes we recovered in this case
show a distinctive behaviour, and this is due solely to the inhomogeneity in
the equilibrium magnetic field. Although from Figs. (4.2) and (4.5) is evident
that the central symmetry is maintained (also similar to the symmetry in the
homogeneous case), the spatial extent where modes are possible has increased.
The associated eigenmodes exhibit new pattern features differing from those
seen in the case of uniform and concentric densities in the presence of concen-
tric equilibrium depletion density inhomogeneities. These results demonstrate
that the eigenvalues have a very small decrease in the presence of concentric
non-uniform equilibrium density. As the spatial extent of size of modes’ space
structure decreases, it may become more challenging to detect them compared
to the scenario where density enhancement is uniform, particularly along the
internal scattered nodes where centres are more reduced. The overtones of
fluting modes of order n = 2 (Fig. 4.5) and the kink overtones displayed in
the last row of the figure appear to be the most affected modes. Moreover, the
spatial structure of these modes also tends to extend very near to the bound-
aries in the case of concentric equilibrium density depletion, indicating that
they adhere to lower densities with less migration than that seen in Chapter 3.
These intriguing findings have significant ramifications for optimising modal
structures that may be viewed, compared, and correlated in observational data
as well as for constructing and organising modes in circular structures.

In a similar vein, the eigenmodes are associated with eccentrically bal-
anced enhanced density inhomogeneities (placed along the horizontal axis and
the first bisector, Figs. 4.3 and 4.4) differ from those obtained for an eccentri-
cally placed depleted density inhomogeneities shown in Figs. (4.6) and (4.7),
respectively. The investigated modes are differentially affected by the presence
of magnetic field and density inhomogeneities, with the higher order modes be-
ing the most affected. Here, the magnetic field inhomogeneity offsets the effect
of inhomogeneous density, expanding the size of the regions where modes are
possible. This is in contrast to the results obtained in the case when only
the density inhomogeneity was considered, where the modes migrated towards
lower density regions (as the regions where body wave solutions are possible
shrunk). Similarly, depending on whether the polarisation direction of the
waves coincides with the radial direction along which the inhomogeneous ar-
eas are shifted, the influence of all relevant inhomogeneities results in a varied
effect on waves. This leads to a distortion of the modes’ symmetry, making
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Figure 4.5: The same modes as in Fig. (4.1), but here we show the results
in the presence of a concentric depleted density (and magnetic field) enhance-
ment. All characteristic values of parameters used in these numerical solutions
correspond to the case C3.1 in Table (4.1).

it impossible to classify some higher order modes by a mere visual inspection.
As before, the higher order modes are the most affected by the presence of
equilibrium density and magnetic field. Similar to the conclusion obtained in
the case of enhanced density, the spatial structure of slow body modes does
not change if the density loading is placed along the horizontal or vertical axes.
A localized wave observation in a sunspot could be a way to identify the lo-
cation of a plasma and field inhomogeneity in the umbral region, even if this
inhomogeneity cannot be seen in observations.
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Figure 4.6: The same as in Fig. (4.1) but for the case of an eccentric density
(and magnetic field) loading, situated along the horizontal direction. The
parameters used for this visualization are given by case C3.2 in Table (4.1).

Figure 4.7: The same as in Fig. (4.1), but here the depleted density region is
situated in an eccentric position along the bisector direction. The parameters
used for this visualization are given as case C3.2 in Table (4.1).
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4.6 The spatial structure of line-of-sight (LOS)

velocity in the presence of plasma inhomo-

geneity

For practical reasons it is much more convenient to convert our results pre-
sented earlier in this Chapter into quantities that are easier to observe. Wave
activity can be determined by the Doppler-shift of intensity lines of many in-
struments (e.g. SDO/HMI, Hinode/SOT), therefore representing the spatial
structure of the line-of-sight (LOS) component of the velocity is much more
closer to observations and allows a much easier identification. The variation of
this quantity will be derived from the values of eigenvalue and eigenfunction
(here the total pressure) obtained earlier.

In a recent investigation by Stangalini et al. (2022), the authors used
high resolution Interferometric Bidimensional Spectropolarimeter (IBIS) at
the DST (Dunn Solar Telescope; New Mexico, USA) observations of an in-
tense (magnetic field in excess of 3.5 kG) to evidence the presence of large
scale coherent MHD oscillations in a sunspot (see Fig. 4.8). The LOS velocity
in both the spatial and temporal domains was filtered at the most significant
frequencies that allowed the isolation of the determination of the contribu-
tion of global resonant modes from localized fluctuations detected in the same
magnetic structure. Panel (c) in Fig. (4.8) shows how fragmented is the LOS
velocity determined from observations. The oscillations associated with the
global eigenmodes were found to account for up to 10% of the total variance
of all the Doppler fluctuations observed in the umbra. The authors solved nu-
merically the governing equation for waves in the given sunspot to model the
pattern of the observed LOS velocity by linearly superposing several individual
modes of higher degree. The dominating modes are found to be sausage-like
and contain both the fundamental and the first radial overtone in reference
to the usual magnetic cylinder model. Their results showed that most of the
energy was contained in the first 10–15 eigenmodes, but at least 30 modes were
needed to fully reproduce the observed signal (see the right-hand side panel
of Fig. 4.8). When creating the numerical model, one must consider that the
pattern is highly sensitive to the precise form of the umbra. As a result, the
form of the umbra distorts the oscillatory rings, which diverge from the normal
magnetic cylinder model’s perfectly circular shape.
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Figure 4.8: Detection of high radial order MHD oscillations in a sunspot (a):
The AIA/SDO complete disc image in the 1600 Å band, displays the IBIS
FOV as a rectangular area that is pure black. (b): High-resolution intensity
picture taken by IBIS in the continuum close to the spectral line Fe I 6173 Å.
(c): An illustration of an instantaneous map of the filtered Doppler velocity
obtained from the spectrum imaging sequence of IBIS Fe I 6173 Å. The sunspot
umbra can support concentric oscillatory annuli; (d): Numerically modelled
LOS velocities, assuming a fixed umbra-penumbra boundary, produced by su-
perposing nine orthogonal eigenmodes. The right-hand side panel shows the
computed eigenmodes for the sunspot. The black asterisks indicate the most
energetic modes during the whole observation, while the red labels highlight
the sample modes that were used to recreate the pattern seen in panels (c) and
(d). Decomposing the measured velocity pattern into a linear combination of
the computed modes yields the modal reconstruction. Credit: Stangalini et
al. (2022).
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In this section we are approaching the problem of pattern determination of
the LOS velocity in a sunspot with inhomogeneous magnetic field and density
from a different perspective. We will numerically solve the governing equa-
tion that determines the spatial structure of the LOS velocity and find the
morphology of this quantity that could be compared with observations of the
Doppler velocity in various wavelengths.

In order to derive the governing equation of the z-component of the velocity
we would need to go back to the linearised MHD equations we presented in Eqs.
(4.8)-(4.14). After straightforward calculations, the connection between the z-
component of the velocity, and the radial, azimuthal components of velocity
can be given as

ωuz =
kPT

ρ0
+
ikV 2

A

rω

∂

∂r
(rur) +

ikV 2
A

rω

∂uθ
∂θ

. (4.38)

In addition, Eqs. (4.12)–(4.14) can be combined with Eq. (4.15), leading to

iρ0
rω

(ω2 − k2V 2
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∂PT

∂r
, (4.39)

and
iρ0
ω

(ω2 − k2V 2
A)uθ =

1

r
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∂θ
. (4.40)

Combining the last three relations, the field-aligned component of the velocity
can be given in terms of the total pressure as

ωuz =
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(4.41)
As before, let us introduce the dimensionless radial variable, r̃ such that r̃ =

r/R, where R is the constant radius of the flux tube. In what follows we are
going to neglect the tilde. As a result, our governing equation transforms into

ωuz =
kPT

ρ0
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kV 2
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[
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∂
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1
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∂PT

∂θ

]
.

(4.42)
As our investigation closely resides on the previous analysis, we are going to
assume, again, that we concentrate on slow body modes propagating with
wavelengths that are shorter than the radius of the tube, i.e. we consider
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waves in short wavelength limit. Here the phase speed of slow body modes is
approaching the internal sound speed, CS, therefore we can write that ω2 ≈
k2C2

S(1 − ν), where ν is a small, but positive quantity. As a result, we have
that

ν = 1− ω2

k2C2
S

,

and the quantity ω/kCS is the eigenvalue determined earlier. As a result, the
governing equation becomes

uz =
PT

ρ0CS

+
V 2
A

r(kR)2CS

∂
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[
r
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S − V 2
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]
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(4.43)
The coefficient function that appear in the terms on the right-hand side con-
taining derivatives was written in terms of the parameters of the problem (see
Eq. 4.18), so the governing equation leads to

uz = (γp0(r, θ)ρ0(r, θ))
−1/2

{
PT +

χ2
B
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[
F (r, θ)

∂PT

∂θ

]}
. (4.44)

In this equation all quantities on the right-hand side were either determined
earlier, or contain the chosen profiles of the plasma and field parameters, there-
fore the above equation allows us to study the spatial distribution of the LOS
component of the velocity in an easy way.

4.7 Details of the numerical setup

Equation (4.44) will be solved numerically using the Galerkin FEM method.
Given the particular form of this equation and the available values of the to-
tal pressure, it is more convenient to employ small quadratic triangular finite
elements for numerical purposes rather than small linear triangular finite ele-
ments. The way the discretisation of the domain is carried out is shown in Fig.
(4.10), where the upper panel displays the discretisation with linear triangular
finite elements used to determine the values of the total pressure, and the lower
panel shows the discretisation of the domain with quadratic triangular finite
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elements used to determine the LOS velocity component.
In order to compute uz, we must first compute the first and second order

radial and azimuthal derivatives of the total pressure, PT . Given that PT

was estimated using a linear combination of linear triangular elements, the
second order derivatives of PT would vanish. This leads us to the need of
using a different approach to tackle this numerical problem, and the solution
is provided by the use of quadratic triangle elements. Now the second order
derivatives are calculated by interpolating the values of the total pressure using
six nodes. This results in a more visually appealing but less accurate because,
even in a uniform situation, we are unable to obtain the same uz outcome
as we obtained earlier for PT , as PT is an estimate value derived by linear
interpolation rather than an exact value.

A two-dimensional finite element with coordinates is the quadratic trian-
gular finite element. As illustrated in Fig. (4.9), a quadratic triangle consists
of six nodes, each of which has two in-plane degrees of freedom. The sequence
of

(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5), (x6, y6),

represents the global coordinates of the six nodes. For our approach it matters
which nodes are in which sequence for every element. The corner nodes should
be mentioned first, followed by the midside nodes, in an anticlockwise direction.
For the six nodes of each quadratic element the shape functions are given by

N1 =

(
x23 (y − y3)− y23 (x− x3)

) (
x46 (y − y6)− y46 (x− x6)

)
(x23y13 − y23x13) (x46y16 − y46x16)

,

N2 =

(
x31 (y − y1)− y31 (x− x1)

) (
x54 (y − y4)− y54 (x− x4)

)
(x31y21 − y31x21) (x54y24 − y54x24)

,

N3 =

(
x21 (y − y1)− y21 (x− x1)

) (
x56 (y − y6)− y56 (x− x6)

)
(x21y31 − y21x31) (x56y36 − y56x36)

,

N4 =

(
x31 (y − y1)− y31 (x− x1)

) (
x23 (y − y3)− y23 (x− x3)

)
(x31y41 − y31x41) (x23y43 − y23x43)

,

N5 =

(
x31 (y − y1)− y31 (x− x1)

) (
x21 (y − y1)− y21 (x− x1)

)
(x31y51 − y31x51) (x21y51 − y21x51)

,

N6 =

(
x21 (y − y1)− y21 (x− x1)

) (
x23 (y − y3)− y23 (x− x3)

)
(x21y61 − y21x61) (x23y63 − y23x63)

,
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Figure 4.9: A schematic representation of quadratic triangular elements used
to discretise the numerical domain.

where the midpoint values of x4 − x6 and y4 − y6 are calculated as x4 =

(x1+x2)/2, y4 = (y1+y2)/2, x5 = (x2+x3)/2, y5 = (y2+y3)/2, x6 = (x1+x3)/2

and y6 = (y1 + y3)/2. Furthermore, we use xjk = xj − xk and yjk = yj − yk.

4.7.1 Results

In this section we will examine how the spatial structure of the LOS velocity,
uz, is associated with slow body modes propagating in a cylindrical waveguide
with inhomogeneous equilibrium under photospheric conditions, considering
an isothermal plasma. Since the waves we are investigating propagate with
wavelengths that are shorter than the radius of the flux tube, the sound speed,
CS, will be used to normalise the phase speed of the slow body wave modes
in the presence of plasma inhomogeneity. The values of the LOS velocity are
given by the governing equation (4.44), whose solutions are sought using a
numerical approach. Given the particularity of the limit we are using, the
dimensionless phase speed of modes will be slightly less than 1. Since the
values of PT are used in Eq. (4.44) are an estimate rather than an exact
value obtained through linear interpolation, we are unable to obtain the same
the values of uz with same accuracy as we did for PT , even in a uniform
equilibrium situation. As a result of this, although we can draw conclusions
on the spatial structure of the LOS velocity, the "inhomogeneous" aspect of uz
in the next few figures are apparent, resulting from the numerical analysis we
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Figure 4.10: Mesh for linear and quadratic triangular elements used to de-
termine numerically the values of the total pressure (upper panel) and LOS
velocity component (lower panel).
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Figure 4.11: The spatial structure of the LOS velocity component correspond-
ing to various slow body waves propagating in a homogeneous (σ = 1) cylin-
drical waveguide under photospheric conditions together with the density and
magnetic field distribution (first two panels in the first row). The remaining
panels show the spatial structure of the same slow body modes as in Fig. (4.1).
The color bars display the normalised magnitude of the uz. The red and blue
shaded regions represent crests (maxima) and valleys (minima) of amplitude
variation of uz.

carried out. As before, the colour bars show the magnitude of the dimensionless
amplitude of uz. The amplitude’s maxima and minima are represented by the
shaded regions in red and blue, respectively. Our study will focus on the same
modes of oscillation as before, with the equilibrium density inhomogeneity
(enhancement and depletion) placed in a concentric and eccentric location
and the results are displayed in Figs. (4.11)-(4.17). Given the way the LOS
velocity is defined through Eq. (4.44) in terms of the total pressure, the spatial
structure of the LOS velocity component will resemble the spatial structure
we obtained for PT , therefore being sensitive to the variations in the values of
the radial distribution of equilibrium density, pressure, and magnetic field and
the position of the inhomogeneities within the flux tube. In all the subsequent
figures the modes are shown in descending order of their dimensionless phase
speed.

The solutions obtained for the same modes as investigated before in the
present chapter for the homogeneous case (σ = 1) are displayed in Fig. (4.11)
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and these are used for reference to evidence the effect of inhomogeneities in
density and magnetic field. Comparing Figs. (4.1) and (4.11) it is clear that
the spatial structure of the LOS velocity corresponding to different slow body
modes follows the patterns recovered for the total pressure and they present a
clear symmetry.

When the inhomogeneous region has a concentric location, the spatial struc-
ture of the LOS velocity is shown by Fig. (4.12). It is clear that the spatial
structures of recovered LOS velocity for the studied MHD modes are symmet-
ric with respect to the center of the flux tube. The global nature of these
modes can be readily identified, even though the spatial extent of the eigen-
function somewhat diminishes as a result of the concentric enhanced density
loading that has been taken into consideration.

The spatial structures of uz when the inhomogeneous region is placed in an
eccentric position (along the horizontal direction and along the first bisector
are shown by Figs. (4.13)-(4.14), with the parameters describing the inhomo-
geneity presented in Table 3.2), cases C2.2 and C2.3. Compared with the case
of a concentric inhomogeneity distribution, the symmetry of uz with respect to
the centre of the flux tube is distorted, and the amplitude of the LOS velocity
is higher in regions of lower (homogeneous) density. The location of the inho-
mogeneity will influence differently the orthogonal pairs of the same modes.
Due to the considered density loading (and the presence of the inhomogeneous
magnetic field), the spatial extent of the eigenfunctions shrinks and the global
nature of these modes ceases. Comparing Figs. (4.11) and (4.13), it is evident
that the oscillations are shifted, again, towards regions of lower density, so they
become more localized. When the density inhomogeneity is shifted along an
arbitrary direction (along the first bisector as in Fig. (4.14)), the modification
in the spatial structure of modes remains qualitatively the same. One key
conclusion that we can draw from these investigations is that the amplitudes
of the distorted modes are not identical in every location, leading to a possible
ambiguity of the mode identification based on observations.

In the case of a depleted density inhomogeneity, the maximum value of den-
sity of the inhomogeneous region is less than the density of the homogeneous
part of the waveguide, i.e. we consider the case when σ < 1. The values of
parameters used for our numerical investigations are given in Table (3.2), case
C3. Figure (4.15, case C3.1) shows the spatial structure of the dimensionless
amplitude of uz corresponding to the same body modes as before in the case
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of concentric loading, while Figs. (4.16, case C3.2) and (4.17, case C3.3) show
the spatial structure of uz for an eccentric loading, when the density inhomo-
geneity is placed along the horizontal axis and in a position along the first
bisector.

The results obtained for these cases confirm the previous findings, namely,
that in the case of an inhomogeneous distribution of the equilibrium plasma
density and magnetic field, the modes tend to lose their global character, in-
stead they become distorted, with the maximum value of the eigenfunction
appearing in regions of the lowest density. However, in contrast to the C2
cases corresponding to density enhancement (concentric and eccentric), in this
case, the modes tend to present a maximum eigenfunction in the region of equi-
librium density inhomogeneity. The central symmetry of modes is distorted.
As before, the spatial structure of slow body modes does not change if the
density loading is placed along the horizontal or vertical axes, they undergo a
rotational shift mimicking the change of the inhomogeneity location.

The migration of the location of modes and the distorted spatial structure
of these modes in the presence of inhomogeneity reveals one important conse-
quence for observations. A localized wave observation in a sunspot could be a
way to identify the location of a density inhomogeneity in the umbral region,
even if this inhomogeneity cannot be seen in observations.
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Figure 4.12: The spatial structure of the LOS velocity of the same modes as in
Fig. (4.11), but here we show the results in the presence of a concentric density
(and magnetic field) enhancement. All characteristic values of parameters used
in these numerical solutions correspond to the case C2.1 in Table (4.1).

Figure 4.13: The spatial structure of the LOS velocity of the same modes as in
Fig. (4.11), but here we show the results for an eccentric density (and magnetic
field) loading, situated along the horizontal direction. The parameters used
for this visualization are given as case C2.2 in Table (4.1).
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Figure 4.14: The spatial structure of the LOS velocity of the same modes as in
Fig. (4.11), but here we show the results for an eccentric density loading (and
magnetic field), situated along the bisector direction. The parameters used for
this visualization are given by case C2.3 in Table (4.1).

Figure 4.15: The spatial structure of the LOS velocity of the same modes as
in Fig. (4.11), but here the depleted density region is situated in an eccentric
position along the horizontal axis. The parameters used for this visualization
are given as case C3.2 in Table (4.1).
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Figure 4.16: The spatial structure of the LOS velocity of the same modes as
in Fig. (4.11), but here the depleted density region is situated in an eccentric
position along the horizontal axis. The parameters used for this visualization
are given as case C3.2 in Table (4.1).

Figure 4.17: The spatial structure of the LOS velocity of the same modes as
in Fig. (4.11), but here the depleted density region is situated in an eccentric
position along the bisector axis. The parameters used for this visualization are
given as case C3.2 in Table (4.1).
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4.8 Conclusion

High resolution observations of the last few decades have shown that inho-
mogeneities in plasma and field parameters is one of the basic ingredients of
magnetic flux tubes, from the solar photosphere to the solar corona. The
mathematical description of wave propagation in such media is impossible,
as the inhomogeneous character poses difficulties that cannot be resolved and
the determination of the dispersion relation and properties of waves cannot be
conducted. Numerical solutions to this complex problem are the only way for-
ward and the determination of these solutions was the aim of this chapter that
presents a study that attempts to close the gap in describing the properties of
waves modelled in a realistic solar magnetic waveguide.

In this Chapter we extend the model used in Chapter (3), by considering not
only the equilibrium density as function of coordinates, but also equilibrium
pressure and magnetic field, in line with observations and numerical modelling.
Analytical progress has been made by considering that the plasma pressure and
density vary following the same dependency on coordinates, meaning that we
are dealing with a constant sound speed, i.e. isothermal equilibrium. The
equilibrium density profile inhomogeneity was represented by a local circu-
lar density enhancement or depletion whose strength, size and position can
change. The profile of the equilibrium magnetic field has been determined
based on the principle of force balance in the equilibrium state. Based on this
physical requirement, it is clear that a decrease in the magnetic field would
result from an increase in density or pressure due to the conservation of the
equilibrium total pressure. We derive the Helmholtz-like governing equation
with Dirichlet boundary condition and determine the eigenvalues and eigenvec-
tors as a Sturm-Liouville problem. The Galerkin FEM method was employed
to solve the governing equation.

In our analysis we concentrated on slow body waves in the short wave-
length limit, therefore, all dimensionless speeds are converging to one, i.e.
the constant sound speed. Our investigation dealt with the changes in the
spatial structure of waves driven by the presence of inhomogeneity. As ex-
pected, under the assumption of a homogeneous equilibrium, the eigenmodes
exhibit global harmonic oscillations and possess symmetrical characteristics
along their respective axes. Inspired from the results presented in Chapter 3,
where we showed that higher order modes are the most sensitive to the pres-
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ence of localised inhomogeneities, here we analysed several higher order modes
to provide a clearer picture of the impact of the considered inhomogeneities.

First of all, compared to the uniform equilibrium scenario, it is clear that
the eigenvalues of the waves under study showed a very slight drop. The
corresponding eigenmodes in the presence of concentric equilibrium density
inhomogeneity are similar to those found in the case of uniform density and
the modes show symmetry with respect to the circular waveguide’s centre
axis. The kink overtone and the fluting overtone of order n = 2 were the most
affected modes.

The interaction between the inhomogeneous equilibrium magnetic field and
density causes some intriguing patterns in the spatial structure of waves. The
spatial structure of waves maintains its global character when compared to the
spatial structures of modes we obtained when only the equilibrium density was
taken into account (eccentric cases along the horizontal axis). However, the
symmetry is distorted, making it impossible to categorise certain higher order
modes based only on a visual inspection.

The inhomogeneity of the magnetic field will offset the effect of density
inhomogeneity, in contrast to the results obtained in the case of only the inho-
mogeneous density. The recovered modes do not migrate towards lower den-
sity regions (as the regions where body wave solutions were allowed reduced).
Modes tend to operate in the opposite way and have their greatest amplitude
in the regions that correspond to higher densities. The modification of various
higher order modes also depends on the direction in which the inhomogeneity
is shifted with respect to the central symmetry axis, the degree of distortion is
greater when the direction along which this inhomogeneity is moved coincides
with the direction of wave polarisation.

In the presence of concentric equilibrium depletion density inhomogeneities,
the corresponding eigenmodes display novel pattern features that differ from
those observed in the case of uniform and concentric densities. As before, the
eigenvalues exhibit a negligible drop in the presence of concentric non-uniform
equilibrium density depletion. Compared to the case of uniform density aug-
mentation, it may become harder to detect modes when their spatial structure
shrinks, especially along the interior scattered nodes where the centres are
more diminished. These results have important implications for optimising
the structures that can be observed, compared, and correlated in observational
data.
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It is considerably more convenient from a practical standpoint to trans-
late our results we obtained for the total pressure perturbation into quantities
that are simpler to measure. Since many observational facilities can detect the
Doppler-shift of intensity lines, depicting the spatial structure of the line-of-
sight (LOS) component of the velocity is considerably closer to observations
when it comes to wave activity. The eigenvalues and eigenfunctions determined
for the total pressure were used to calculate the fluctuation of this LOS ve-
locity component. Given the way the numerical recipe was constructed when
determining PT , the numerical approach used to find values of the LOS veloc-
ity had to be modified in the sense that the numerical domain was discretized
into quadratic triangle elements. For the examined MHD modes, it is evident
that the reconstructed LOS velocity’s spatial structures are symmetric with
regard to the flux tube’s centre. Despite the fact that the concentric increased
density loading that has been considered considerably reduces the spatial ex-
tent of the eigenfunction, it is still possible to identify the global character
of these modes. A significant finding from these studies is that the distorted
modes’ amplitudes differ at different locations, which could cause confusion
when identifying the modes based solely on observations.

Our investigations can be considered as a very first step in studying the
properties of waves in sunspots and pores in the presence of local inhomo-
geneities in the form of umbral dots (UD) and light bridges (LB). Multistruc-
ture density distributions (as observations show) can often be replaced by a
resulting structure that adequately captures the effects of multiple UDs present
in the sunspot umbra. This means that the equilibrium density inhomogeneity
profile is represented by a single local density inhomogeneity, which simulates
the UDs observed in the sunspot umbra region, assuming that they are placed
close to each other. Furthermore, the LB observed in sunspots can be mod-
eled by a single local density inhomogeneity that separates the sunspot umbra
region. The more complex the shape of the density inhomogeneity, the more
complex the spatial structure of modes will become. As a result, the pattern
of possible waves loses the high-degree of symmetry one can meet in homoge-
neous cases, especially for higher-order modes, which means that the pattern
is no longer global and, therefore, cannot be easily identified. Local wave ob-
servations in sunspots may be a way to identify the location and size of density
inhomogeneities in the umbra region.

The existence of the location of modes in the presence of density inhomo-
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geneity determined for the density augmentation and depletion indicates one
major consequence for observations. Even in cases when a density inhomo-
geneity in the umbral area is not visible in observations, the location of the
inhomogeneity may be determined by means of a localised wave observation
in a sunspot or pore.
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CHAPTER 5

Slow body MHD waves in magnetic waveguides

with multi-stranded inhomogeneities

All the waves studied so far in the present Thesis and all the models we have
employed for inhomogeneities involved one single localised enhancement or
depletion of density or magnetic field. In reality, though, inhomogeneities are
much more complex, line intensity observations show that sunspots are pores
covered by a number of inhomogeneities that appear as bright points in the
umbral region. That is why, in this Chapter we will extend to inhomogeneities
represented by a multi-stranded distribution of localised inhomogeneities.

5.1 Inhomogeneities in umbral regions of sunspots

and pores: umbral dots and light bridges

As mentioned in the Chapter 4, transient photospheric phenomena, such as
pores and sunspots with resolved inhomogeneities, do not have a single lo-
calised density distribution if they are positioned apart from one another. Since
the resolved UDs are presumed to be somewhat far from one another, we thus
assume that they can be modelled by using numerous strands of enhanced con-
tour density distribution. Additionally, a single local density inhomogeneity
that divides the sunspot umbra region can be used to simulate the LB seen in
sunspots. As previously, an increase in density (or pressure) would result in
a depletion of the magnetic field because of the necessity of maintaining the
equilibrium total pressure.

A particular manifestation of inhomogeneities in pores and the umbral
region of sunspots are UDs, which are regions of limited extent situated within
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pores and the umbra of sunspots, believed to play an important role in the
energy balance in sunspots (Solanki, 2003). They account for only 3%− 10%

of the umbral area and 10% − 20% of its brightness (Watanabe et al., 2012).
The majority of UDs appear to form close to the edge of the umbra and
subsequently migrate towards the sunspots’ centre at velocities of 700 m s−1

(Watanabe, 2014). UDs have a lifetime ranging from 2.5 to 10 min Riethmüller
et al. (2008),Watanabe et al. (2009), Louis et al (2012). Based on their location,
UDs are divided into central and peripheral dots. The magnetic fields of the
peripheral UDs are weaker (and tilted) and they appear brighter than those
situated in the centre. According to Watanabe et al. (2009), UDs appear when
the magnetic field is weaker and inclined and disappear where it is the field
becomes stronger and vertical. Using Hinode blue-continuum observations
Watanabe (2014) found that, as sunspots progress, UDs become less dense
and more clumped together. They also discovered that UDs migrate inward,
their speeds are positively connected with the magnetic field inclination, and
that UDs with longer lifetimes are typically larger and brighter.

Using observations by the New Vacuum Solar Telescope, Ji et al. (2016)
showed that the lifetime of UDs located in several sunspots were correlated with
the strength of the accompanying magnetic fields. They also found that the
effective diameter, intensity, and velocity are affected by the fluctuation in the
magnetic field. Yadav and Mathew (2018) performed a statistical comparison
of the properties of UDs using Hinode observations of seven sunspots seen in
high-resolution, G-band continuum filtergrams and they found that the average
effective diameter of UDs is 270 km. The inhomogeneities, both in magnetic
field and density, induced by UDs can drastically alter the frequency of waves
and their propagation speed leading to a real challenge to identify the nature
of waves and their properties. The physical parameters of UDs using high
resolution observational data were studied in great detail by, e.g. Feng et al.
(2015); Yadav and Mathew (2018); Kilcik et al. (2020).

Another form of localised inhomogeneities in sunspots and pores are light
bridges (LB) that are bright features that divide umbral zones in two or more
irregular regions. LBs typically show that magnetic zones are merging or,
conversely, that the region is breaking up (Sobotka, 2003; Thomas and Weiss,
2004). LBs are structures that are frequently present during the creation or
fragmentation of spots (Garcia de La Rosa, 1987). LBs can be thought of as
either field-free hot plasma incursions into the umbral magnetic field (Parker,
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1979; Choudhuri, 1986) or as large-scale magneto-convection manifestations
in umbrae (Rimmele, 2008). The fine structure and energy transmission in
sunspots are now mostly, if not completely, attributed to the latter hypothesis
(Schüssler and Vögler, 2006; Cheung et al., 2010; Ortiz et al., 2010; van der
Voort et al., 2010; Pozuelo et al., 2015). Magneto-convection in sunspots is
further supported by the interaction between UDs and intruding penumbral
filaments, which is frequently observed during the creation of LBs (Yukio et al.,
2007; Louis et al., 2012). In this sense, LBs are a naturally occurring region
of a sunspot where convective disruptions are more pronounced and obvious
than elsewhere. Such a disruption might result in inhomogeneities that could
account for the strong chromospheric activity in LBs that was described in
studies by Louis et al. (2008) and Louis et al. (2014).

The inhomogeneities, both in magnetic field and density, induced by UDs
or LBs can drastically alter the frequency of waves and their propagation
speed leading to a real challenge to identify the nature of waves and their
properties. The theory developed by Edwin and Roberts (1983b) predicts
the qualitative behaviour of slow body waves under photospheric conditions,
however it assumes an ideal case, when the plasma is homogeneous, static, and
unbounded. High resolution observations show that these restrictions are not
always realistic.

5.1.1 Slow body modes in the presence of multi-stranded

density inhomogeneity distribution

Inspired from the results presented in the previous two chapters, we will expand
our analysis to consider a circular waveguide in the presence of several localised
density and magnetic field inhomogeneities. Similar to the model of Chapter
4, we are going to consider an isothermal equilibrium, where the equilibrium
densities and pressures have the same coordinate dependence. The localised
inhomogeneities considered in this chapter model the case of UDs in a sunspot.

The density of each individual strand is considered to have the same form
as defined earlier, i.e.

ρ0i(r, θ) = ρ2χi(r, θ), (5.1)

where ρ2 is the homogeneous density of the annulus surrounding the inho-
mogeneous density distribution, the index i represent the sets of considered
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inhomogeneities and χi(r, θ) is the dimensionless quantity

χi(r, θ) =

1 +
(σi − 1)

2

[
1− tanh

(
ψi(r, θ)− τ

ξ

)]
, σ0i and σi describes the strength of the inhomogeneity and σi > 1 and
σi < 1 denote an enhanced or depleteted density, respectively. In the above
expression the function ψi(r, θ) contains information about the location of the
inhomogeneity and takes the form

ψi(r, θ) =
√
(r cos θ − ϵ1i)2 + (r sin θ − ϵ2i)2,

where ϵ1i and ϵ2i describe the location of the center of the i-th density en-
hancement/depletion, τ is the ratio of the radii of the density inhomogeneity
and the circular magnetic flux tube with 0 < τ < 1, ξ is the width of the
annulus where the change of density occurs, i.e. gradual transition of density
between two regions, and for simplicity we assume that the values of τ and
ξ is identical for all density inhomogeneities. For simplicity the shape of all
inhomogeneities are circular. The global inhomogeneity of the circular sunspot
will be a quantity that will be used in the numerical analysis and it is defined
as

ρ0(r, θ) =
1

N

N∑
i=1

ρ0i(r, θ), (5.2)

where N is the number of strands considered in the problem.
Since we consider an isothermal plasma, the equilibrium pressure will have

the same coordinate dependence as density. The equilibrium pressure, in turn,
will allow us to determine the distribution of the equilibrium magnetic field,
in a similar fashion as in Chapter 4. Accordingly, the equilibrium magnetic
field takes the form

B0i(r, θ) = B0(r̂i, θ̂i)χBi, (5.3)

where

χBi =

1 + β̂i
σi − 1

2

tanh(ψi(r, t)− τ

ξ

)
− tanh

(
ψ̂i − τ

ξ

)
1/2

, (5.4)
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and
ψ̂i =

√
(r̂i cos θ̂i − ϵ1i)2 + (r̂i sin θ̂i − ϵ2i)2,

and the quantity β2 is defined as β̂i = p2/[B
2
0(r̂i, θ̂i)/(2µ0)] and

r̂i = (ϵ21i + ϵ2i)
1/2, θ̂i = tan−1(ϵ2i/ϵ1i).

The global magnetic field in the inhomogeneous waveguide, therefore, can be
written as

B0(r, θ) =
1

N

N∑
i=1

B0i(r, θ). (5.5)

The eigenvalue problem solved in this chapter is identical with Eq. (4.18)
and the numerical approach employed in this chapter is identical with the one
detailed in Chapter 4 (see Section 4.7). For our numerical solutions we choose
N = 6 localised inhomogeneities dispersed randomly across the cross-section
of the waveguide. To evidence the effect of the multi-stranded inhomogeneities
on the spatial structure of slow body waves, we will consider three particular
cases: (1) when all density inhomogeneities have the same strength (σ = 20),
and the location of inhomogeneities are chosen randomly (see Table 5.1); (2)
the case when all density inhomogeneities are enhancement, but they take
different values (see Table 5.2); and (3) for the same locations as the first two
cases, but we chose three of the inhomogeneities to be depletions (see Table
5.3).

As before, due to the requirement of the conservation of the equilibrium
total pressure, an enhancement/depletion in density (or pressure) would mean
that the magnetic field will be depleted/enhanced.

5.1.2 Results and discussions

Figure (5.1) shows the distribution of equilibrium density and magnetic field
in the first two panels and the parameters used for this simulation are given in
Table (5.1). The modes present in this figure are shown in descending order
of their dimensionless phase speed displayed on top of each panel. First of
all, one important result of this simulation is that the spatial structure of
fundamental sausage, kink and fluting modes (shown in the last two panels
of the first row and the first three panels of the second row) are very little
affected by the presence of inhomogeneities, meaning that describing these
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Table 5.1: Values of the physical parameters used for the numerical modeling
and analysis of modes in Fig. (5.1). For each case we consider kR = 4 and
β̂ = 3× 10−3, ξ = 9.1× 10−2 and τ = 0.15.

σ ϵ1 ϵ2
C1: enhanced density 20 -0.6 0.1
C2: enhanced density 20 0.6 0
C3: enhanced density 20 -0.3 -0.6
C4: enhanced density 20 0 0
C5: enhanced density 20 0.4 -0.6
C6: enhanced density 20 0 0.6

modes in a waveguide with homogeneous equilibrium would result in a fairly
accurate description of these modes, both qualitatively and quantitatively. The
inhomogeneities that represent the UDs have a much more pronounced effect
on the higher order modes; we can observe a high degree of disorganisation
of the spatial structure of modes and the loss of their symmetries. While
sausage overtone (last panel of the second row) and the fluting mode n = 3 are
recognisable in the first two panels of the third row, the pattern of the spatial
structure of the remaining modes becomes too complicated to be diagnosed
based on their symmetry.

Figure (5.2) displays the spatial structure of modes when the strength of
the six density enhancements are different and their values are shown in Table
(5.2). As before, the first two panels show the spatial distribution of the density
and magnetic field inhomogeneities. While the fundamental sausage, kink
modes are clearly very weakly affected (except one of the n = 2 fluting modes),
all the other modes undergo a dramatic change in their spatial structure and
their identification becomes challenging. The alteration of the spatial structure
of modes is differentiated for the same orthogonaly polarised modes (see e.g.
the n = 3 and n = 4 fluting mode in the first two panels of the third and fourth
row, respectively). When comparing the results shown in Figs. (5.1) and (5.2),
it is clear that having a distribution of inhomogeneous densities of different
strengths will affect the higher order modes in a considerable way. It can be
inferred that, in the case of more intricate configurations of inhomogeneity
such as multi-structure systems the eigenfunctions will undergo alterations
that correspond to the specific shape of the inhomogeneity being considered.

Finally, when the multi-stranded density inhomogeneity is represented by
a mixture of localised density enhancements and depletions (seen in the first
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Table 5.2: Values of the physical parameters used for the numerical modeling
and analysis of modes shown in Fig. (5.2). For each case we consider kR = 4
and β̂ = 3× 10−3, ξ = 9.1× 10−2 and τ = 0.15.

σ ϵ1 ϵ2
C1: enhanced density 20 -0.6 0.1
C2: enhanced density 15 0.6 0
C3: enhanced density 10 -0.3 -0.6
C4: enhanced density 5 0 0
C5: enhanced density 20 0.4 -0.6
C6: enhanced density 15 0 0.6

two panels of Fig. 5.3 with particular values used in the numerical analysis
given in Table 5.3) the fundamental sausage and kink modes are practically
unaffected, while the morphology of n = 2 fluting mode is changes, irrespective
of its direction of polarisation (the second and third panel of the second row).
The spatial structure of the sausage overtone obtained in this situation (fourth
panel of the second row) is similar to the pattern we obtained for the case when
all density inhomogeneities were enhancements, but different (see the fourth
panel of the second row in Fig. 5.2), so for this mode the localised depletion
of density does not have any effect. The n = 3 fluting mode seen in the first
two panels of the third row behaves differently according to the direction of
the polarisation. The kink overtone modes displayed in the last two panels of
the third row undergo a slight change in their spatial structure. Unlike the
previous two cases (all localised density are enhancements) the n = 4 fluting
mode shown in the first two panels of the fourth row surprisingly maintain
their symmetry, meaning that the depleted density inhomogeneities compen-
sate for the distortions of density enhancements seen in Figs. (5.1) and (5.2),
therefore the density depletions have the opposite effect as enhancements. The
last two panels of the fourth row display the fluting overtone of order n = 2

and these confirm the above results, their spatial structure suffers a rather
little change compared to the pattern we obtained for the homogeneous case
(Fig. 4.1). Comparing the values of the dimensionless phase speeds in the two
cases of a single localised and multi- stranded density distributions, it is obvi-
ous that density enhancement actually leaves the dimensionless phase velocity
significantly unchanged. This is result could be attributed to the very small
value of the plasma-β parameter in magnetic waveguides of strong intensity,
such is in sunspots and pores. It is likely that the changes in the phase speed
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Table 5.3: Values of the physical parameters used for the numerical modeling
and analysis of modes in Fig. (5.3). For each case we consider kR = 4 and
β̂ = 3× 10−3, ξ = 9.1× 10−2 and τ = 0.15.

σ ϵ1 ϵ2
C1: enhanced density 8 -0.6 0.1
C2: enhanced density 10 0.6 0
C3: enhanced density 5 -0.3 -0.6
C4: depleted density 0.9 0 0
C5: depleted density 0.5 0.4 -0.6
C6: depleted density 0.1 0 0.6

could be more pronounced in waveguides where the plasma-β takes moderate
values. Therefore, once density inhomogeneities are taken into account, the
phase velocities of specific waves become much closer, making them difficult
to distinguish from one another. This means that propagation speed of waves
cannot be considered as a diagnostic tool for the slow body modes propagating
in the photospheric waveguides.

The theoretical patterns of slow body modes obtained in our study could
be used to identify modes in a different way. Similar to the study by Albidah
et al. (2021a), the spatial structures of the modes obtained in the present The-
sis can be used in conjunction with observational patterns of waves detected by
various instruments and decomposed using the Proper Orthogonal Decomposi-
tion (POD) and Dynamic Mode Decomposition (DMD) methods. The nature
of waves and oscillations can be determined using a goodness-of-fit test of by
Pearson correlation. This method would indirectly allow us to determine the
location of density inhomogeneities inside a photospheric waveguide.
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Figure 5.1: The same modes as in Fig. (4.1), but here we show the spatial
structure of modes in the presence of the multi-stranded enhanced density
distribution modelling UDs observed in the umbral region of sunspot. The
inhomogeneous strands have the same strength. The numerical solutions were
obtained for the particular values of the parameters shown in Table (5.1).

Figure 5.2: The same modes as in Fig. (5.1), but the inhomogeneous density
distribution contains a mixture of enhanced regions of different strengths. The
numerical solutions were obtained for the particular values of the parameters
shown in Table (5.2).
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Figure 5.3: The same modes as in Fig. (5.1), but the inhomogeneous density
distribution contains a mixture of enhanced and depleted regions. The numer-
ical solutions were obtained for the particular values of the parameters shown
in Table (5.3).

145



CHAPTER 6

Conclusions and possible future directions of re-

search

6.1 Summary of findings

Intense magnetic waveguides in the solar photosphere, such as pores and
sunspots are ideal environments for the propagation of guided waves. Waves
are often used to diagnose the thermodynamic and plasma properties. The the-
ory developed by Edwin and Roberts (1983b) predicts the qualitative behaviour
of different waves in such environments, however it assumes an ideal case, when
the plasma is homogeneous, static, and unbounded along the symmetry axis of
the flux tube. Their model also assumes a high degree of symmetry. High res-
olution observations show that these restrictions are not always realistic. The
present Thesis aimed to address these shortcomings and provide an in-depth
analysis of the spatial structures of waves that can appear in inhomogeneous
waveguides, where the inhomogeneity was present in the equilibrium density
(pressure) and magnetic field.

6.1.1 Summary of Chapter 3

It is well-known that pores and sunspots are inhomogeneous, both in magnetic
field and density. These inhomogeneities can drastically alter the frequency
of waves and their propagation speed leading to a real challenge to identify
the nature of waves and their properties. The research covered in this Chap-
ter addresses the modification of the properties of waves (their phase speed
or frequency, in particular) when a symmetric and geometrically well-defined
inhomogeneity is considered that could model the umbral dots observed in the
pores and the umbra region of sunspots. In order to simplify the problem
we employed a result by Aldhafeeri et al. (2022a), who showed that in the
case of slow body waves under photospheric conditions the dispersive char-
acter of waves and their properties can be confidently described by solving a
Helmholtz-type differential equation with Dirichlet boundary condition, i.e. we
assumed that the total pressure perturbation (and implicitly the longitudinal
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component of velocity) vanishes at the boundary of the waveguide. In addition,
we assumed a situation when the wavelength of waves is much smaller (and
later much larger) than the radius of the tube (als known as the short/long
wavelength limit). The frequency as well as the eigenfunctions related to the
studied waves were investigated as a Sturm-Liouville eigenvalue problem and
the governing equation with non-constant coefficients was solved numerically
using the Fourier-Chebyshev spectral method. As the inhomogeneous equilib-
rium plasma density considered here was described by a series of parameters
that determine the size, the strength and location of the inhomogeneity, we
conducted a parametric study with the aim to highlight what effects these
parameters have on the characteristics of waves. In order to provide a general
approach, we have considered both cases of an enhanced and depleted equilib-
rium plasma density. Since we assumed waveguides for which the equilibrium
plasma pressure is constant, these density changes would appear as dark or
bright regions inside a magnetic waveguide.

First, we analysed the case of short wavelength limit, i.e. when the wave-
length of slow body waves under photospheric conditions is much smaller than
the radius of the tube. Inspired from the results by Edwin and Roberts (1983b)
we expect that in this limit the phase speed of waves is slightly less than the
sound speed. With a constant sound speed assumed in our model, this assump-
tion remains perfectly viable. Our results indicate that a significant change
driven by the inhomogeneous equilibrium plasma density is the modification in
the spatial structure of waves. A direct consequence of the particular density
distribution is that slow body waves in cylindrical waveguides lose their global
character, instead, they become more localized and always tend to appear in
the regions that correspond to a lower density. This property might help iden-
tify locations of density inhomogeneity when these are not visible in intensity
spectral lines.

The parameters that describe the equilibrium plasma density modification
(strength, location, size, smoothness of the transition to a homogeneous den-
sity) affect the modes in different ways. In general, the eigenfrequencies of
fluting modes were shown to be more sensitive to the modifications of the
equilibrium plasma density parameters. In the case of depleted density, the
modifications in the phase speed of waves is more significant (nearly 40% de-
crease) and the differentiation between different modes according to the size
of the inhomogeneity or its location very often is very small, meaning that for
modeling purposes one can choose the most convenient location for equilibrium
plasma density inhomogeneity.

In the long wavelength limit (when the phase speed of slow waves ap-
proaches the internal tube speed, or the slender tube model) the changes in
the phase speed of waves is small, similar to the changes we had in the short
wavelength limit. However, in this limit the most important change is in the
modifications in the spatial structure of modes. For an enhanced density inho-
mogeneity waves remain global in nature, however they lose their symmetry.
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These findings can lead us to conclude that, in contrast to the short-wavelength
limit, the spatial structure of the slow-body modes in the long-wavelength limit
exhibits less alterations because of the variations in the phase velocity of the
slow-body modes vary slightly over the long wavelength limit. When the inho-
mogeneous equilibrium density presents itself as a depleted region, the spatial
structure of waves is similar to the results found in the short wavelength limit.

The analysis and the numerical recipe discussed in this chapter can be
considered as a starting point in the investigation of waves in realistic solar
photospheric waveguides, where the equilibrium plasma density inhomogeneity
derived from observations or realistic sunspot simulations can be incorporated
in the study of the properties of slow body waves. The present analysis can be
considered as a tool for diagnosing the inhomogeneous character of sunspots
or pores, however this diagnosis is rather qualitative, rather than quantitative.
The choice of a waveguide of high symmetry is not entirely realistic, however
it allows us to use a fairly simple mathematical approach and the obtained
results show the modifications of the properties of waves due solely to the den-
sity inhomogeneity. It is known (see, e.g. Albidah et al., 2021b, 2022b) that
the irregular shape of the waveguides has very serious effects on the spatial
structure of waves, especially in the case of higher order modes. The constant
plasma-β limit considered here is also a rather crude approximation. Observa-
tions show (see, e.g. Gary, 2001; Grant et al., 2018) that the plasma-β changes
over small spatial scales, and around the density inhomogeneities this quan-
tity may exhibit a sharp gradient that could influence the property of waves
studied by us.

6.1.2 Summary of Chapter 4

In this Chapter we extended the model used in Chapter 3, by considering not
only the equilibrium density as function of coordinates, but also equilibrium
pressure and magnetic field, in line with observations and numerical mod-
elling. Analytical progress was made by considering that the plasma pressure
and density vary following the same dependency on coordinates, meaning that
we are dealing with a constant sound speed, i.e. isothermal equilibrium. The
equilibrium density profile inhomogeneity was represented by a local circu-
lar density enhancement or depletion whose strength, size and position can
change. Using the requirement of the conservation of the total pressure, the
magnetic field aligned with the symmetry axis of the tube was determined.
Naturally, a decrease in the magnetic field would result from an increase in
density or pressure. We derived a Helmholtz-like governing equation that has
been solved numerically (by means of the Galerkin FEM method) by imposing,
again, Dirichlet boundary conditions for the total pressure perturbation. This
equation was adequate to allow us to determine the eigenvalues and eigenvec-
tors as a Sturm-Liouville problem.

Since we are dealing with a short wavelength limit, all dimensionless speeds
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are converging to one, i.e. the constant sound speed. Inspired from the results
obtained in Chapter 3 that showed that inhomogeneities are affecting more
dramatically the higher order modes, we displayed the results for several higher
order modes in addition to the three modes analysed earlier to provide a clearer
picture of the impact of the considered inhomogeneities here.

First of all, compared to the uniform scenario, it is clear that the eigenval-
ues of the waves under study showed a very slight drop. The corresponding
eigenmodes in the presence of concentric equilibrium density inhomogeneity
are identical to those found in the case of uniform density, i.e. the modes show
symmetry with respect to the central axis of the circular waveguides. Our
results show that the eigenvalues of modes gradually decrease in the presence
of a concentric inhomogeneous equilibrium density enhancement; however, the
oscillating modes exhibit global harmonic oscillations character in contrast to
the case where the density enhancement was the only inhomogeneity. The kink
overtone and the fluting overtone of order n = 2 seem to be the most affected
modes. The interaction between the magnetic field and inhomogeneous density
causes some intriguing patterns in the wave’s spatial structure. The symmetry
of higher order modes is distorted, making it impossible to categorise them
based only on a visual inspection.

Comparing the obtained results with the corresponding findings listed in
Chapter 3 indicate that the inhomogeneity of the magnetic field will offset
the effect of density inhomogeneity, modes no longer migrate towards lower
density regions. While all other modes tend to operate in the opposite way,
that is, to have their greatest amplitude in the regions that correspond to
higher densities, fundamental sausage, kink, and fluting modes tend to exhibit
a tendency to have larger amplitude in the lower density regions.

In the presence of concentric equilibrium depletion density inhomogeneities
the corresponding eigenmodes display novel pattern features that differ from
those observed in the case of uniform and concentric densities. The eigenvalues
exhibit a negligible drop in the presence of concentric non-uniform equilibrium
density loss, as the aforementioned data show. Compared to the case of uni-
form density augmentation, it may become harder to detect modes when their
spatial structure shrinks, especially along the interior scattered nodes where
the centres are more diminished. These results have important implications
not only for building and organising modes in circular structures, but also for
optimising modal structures that can be observed, compared, and correlated
in data.

It is considerably more convenient from a practical standpoint to translate
our total pressure perturbation results into numbers that are simpler to mea-
sure. Since several observational facilities are equipped to measure the Doppler
shift of spectral intensity lines, depicting the spatial structure of the line-of-
sight (LOS) component of the velocity is considerably closer to observations
when it comes to wave activity. The eigenvalue and eigenfunction values (here,
the total pressure) that were previously obtained were used to calculate the
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fluctuation of this quantity. The numerical method used to solve this problem
was modified by using quadratic triangle elements to discretise the numerical
domain. For the examined MHD modes, it is evident that the spatial structure
of the reconstructed LOS velocity is symmetric with regard to the flux tube’s
centre. Despite the fact that the concentric increased density loading that has
been considered considerably reduces the spatial extent of the eigenfunction,
it is still possible to identify the global character of these modes. A significant
finding from these studies is that the distorted modes’ amplitudes differ at
different locations, which could cause confusion when identifying the modes
based solely on observations.

The existence of the location of modes in the presence of density inhomo-
geneity determined for the density ehnacement and depletion indicates one
major consequence for observations. Even in when a density inhomogeneity
in the umbral area is not visible in observations, the location of the inhomo-
geneity may be determined by means of the observation of localised waves in
a sunspot.

6.1.3 Summary of Chapter 5

Spectral line intensity observations reveal that sunspots and pores are very
often covered by several inhomogeneities that look as bright regions in the
umbral area. In this Chapter we broaden our study to take into account a
circular waveguide in the presence of a multi-stranded distribution of localised
inhomogeneities, drawing inspiration from the findings reported in the pre-
ceding two chapters. We analysed an isothermal equilibrium, in which the
equilibrium densities and pressures have the same coordinate dependency, as
in the model of Chapter 4. The inhomogeneities considered in this chapter
could model the UDs in a sunspot. For modelling purposes we modelled out
inhomogeneity by several strands of both enhanced and depleted density distri-
butions. To be able to use the results presented in previous chapters, we have
introduced a global density and magnetic field. As previously, an increase in
density (or pressure) would result in a depletion of the magnetic field because
of the necessity of maintaining the equilibrium total pressure.

The numerical method used in this chapter is the same as that described in
Chapter 4 (see Section 4.7), and the eigenvalue problem solved in this chapter
is identical with Eq. (4.18). We selected N = 6 localised inhomogeneities
distributed randomly across the waveguide’s cross-section. To have a sense of
generality of our results, we investigated three specific situations to analyse
how multi-strand inhomogeneities affect the spatial structure of slow body
waves. Our results showed that the propagation speeds are smaller in the
context of the UDs equilibrium density inhomogeneity than they are in the
homogeneous situation. As a result, with respect to the spatial structure
of global oscillation, the morphology of low order eigenmodes remains fairly
intact, however the spatial structure of higher order modes is rather distorted.
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These results carry important implications for observations and the ability of
observers to correctly identify the oscillating modes in a sunspot or pore.

6.2 Future work

Inspired by our findings, one can identify various avenues along which new
kinds of investigations can be drafted as a natural extension of the presented
research, but also a few other directions that stem from the methods developed
here.

• Our investigations contained several simplifications that allowed us to de-
rive an analytical eigenvalue equation that was solved numerically. These
equations were relevant to specific cases when the wavelength of waves
was much larger or much shorter than the radius of the waveguide. There
is clearly a difference between the spatial structure of slow body waves
in the two limits, and an investigation for the case when the wavelength
of waves is comparable with the radius of the tube would provide the
bridge between the two cases, it would help us better understand the
way the morphology of oscillations is changing.

• Observations clearly show that, in reality, the cross-section of sunspots
is not regular, sometimes the closest symmetric shape of a sunspots or
pore resembles the one of an ellipse. Determining a relevant wave solu-
tion for the MHD equations in a realistic waveguide with an elliptical
and irregular cross sectional structure is the important step towards un-
derstanding and assessing the behaviour of MHD observed in the solar
environment. Wave characteristics and their dispersion curves are sensi-
tive to the waveguide’s transversal geometry, as shown by a comparison
of the solutions of the dispersion relations for regular circular and ellip-
tical cross-sections Aldhafeeri et al. (2021) and Albidah et al. (2022b).
Once the possible theoretical modes in a realistic waveguide have been
determined, these can be compared with the modes recovered after ap-
plying the Proper Orthogonal Decomposition (POD) and Dynamic Mode
Decomposition (DMD) techniques to observational data. Various corre-
lation techniques can be applied to identify the modes, as well as their
contribution to the overall signal.

• Our analysis can be expended also in the direction of analytical investiga-
tion. The presence of a circular cross-section inhomogeneity (as assumed
in the present Thesis) in a circular waveguide can be modelled as a sys-
tem of co-axial waveguides, where a homogeneous cylindrical magnetic
flux tube of radius r1 is embedded in a larger homogeneous magnetic
cylinder of radius r2 with r1 = τr2 and τ < 1. The densities of the
two cylinders is homogeneous, however there is a sharp transition at the
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boundary r1. Proper boundary conditions have to be applied at the in-
terface r1 (continuity of the radial component of the velocity and total
pressure) and at the outer surface of the system, r2, toghether with the
requireemnt that at r > r2 waves are evanescent. This complex system
will allow us to study not only body waves, but also surface waves.

• The inhomogeneity profiles used in the present Thesis were assumed to
be circular (a = b = 1 in Eqs. 3.16-3.17). Observations clearly show
that UDs are not really circular, instead they tend to be elliptical. That
is why the above investigation can be expanded by considering inhomo-
geneities of elliptical shape, that would require a new determination of
the profiles of the magnetic field that satisfy the condition of conserva-
tion of the total pressure. In an extreme conditions the parameters a
and b can be modified so that the inhomogeneity becomes an elongated
elliptical structure that could model a light bridge. The large number
of parameters in the expression of the inhomogeneous density allow us
to place this inhomogeneity in an arbitrary location, mimicking a real
situation of a light bridge.

• Additional developments of the analysis presented in this Thesis might
involve simulating asymmetric profiles, such as non-steady asymmetric
background plasma flows, which would require some adjustments to the
physics of MHD wave modes in the sense that the obtained frequencies
will be all Doppler shifted. Line of sight observations of plasma flows
in sunspots are continuously observed, therefore such an addition would
bring the modelling much closer to reality.
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