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Abstract

We contribute to expand 2-dimensional elementary topos theory. We focus on

the concept of 2-classifier, which is a 2-categorical generalization of the notion

of subobject classifier. The idea is that of a discrete opfibration classifier. In-

terestingly, a 2-classifier can also be thought of as a Grothendieck construction

inside a 2-category. We introduce the notion of good 2-classifier, that captures

well-behaved 2-classifiers and is closer to the point of view of logic.

We substantially reduce the work needed to prove that something is a 2-classifier.

We prove that both the conditions of 2-classifier and what gets classified by a 2-

classifier can be checked just over the objects that form a dense generator. This

technique allows us to produce a good 2-classifier in prestacks that classifies all

discrete opfibrations with small fibres, and to restrict such good 2-classifier to

one in stacks. This is the main part of a proof that Grothendieck 2-topoi are

elementary 2-topoi. Our results also solve a problem posed by Hofmann and

Streicher when attempting to lift Grothendieck universes to sheaves.

To produce our good 2-classifier in prestacks, we present an indexed version of the

Grothendieck construction. This gives a pseudonatural equivalence of categories

between opfibrations over a fixed base in the 2-category of 2-copresheaves and

2-copresheaves on the Grothendieck construction of the fixed base. Our result

can be interpreted as the result that every (op)fibrational slice of a Grothendieck

2-topos is a Grothendieck 2-topos. We thus generalize what is called the funda-

mental theorem of elementary topos theory to dimension 2, in the Grothendieck

topoi case.

In order to reach our theorems of reduction of the study of a 2-classifier to dense

generators, we develop a calculus of colimits in 2-dimensional slices. We generalize

to dimension 2 the well-known fact that a colimit in a 1-dimensional slice category
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is precisely the map from the colimit of the domains of the diagram which is

induced by the universal property. We explain that we need to consider lax

slices, and prove results of preservation, reflection and lifting of 2-colimits for the

domain 2-functor from a lax slice. We then study the 2-functor of change of base

between lax slices.

Our calculus of colimits in 2-dimensional slices is based on an original concept of

colim fibration and on the reduction of weighted 2-colimits to essentially conical

ones, which is regulated by the 2-category of elements construction. The latter

construction is a natural extension of the Grothendieck construction. We study it

in detail from an abstract point of view and we conceive it as the 2-Set -enriched

Grothendieck construction, via an original notion of pointwise Kan extension.

Our work is relevant to higher dimensional elementary topos theory as well as to

a generalization of the Grothendieck construction to the enriched setting.
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Introduction

Context and motivation

In this thesis, we contribute to expand 2-dimensional elementary topos theory,

which has been introduced by Weber in [51]. Topos theory is a fundamental

branch of category theory that has had numerous applications to geometry (e.g.

for the calculus of cohomology) and logic (e.g. bringing to the concept of classi-

fying topos and capturing Cohen forcing). It originated in Artin, Grothendieck

and Verdier’s [3]; we take as main reference Mac Lane and Moerdijk’s [34]. A key

concept is that of sheaf, which captures the ability of gluing together compatible

local data into a global datum, and has had tons of applications in geometry.

This is realized thanks to Grothendieck topologies, that generalize classical to-

pologies to the context of categories. Categories of sheaves yield Grothendieck

topoi, and they are the basic object of study of topos theory. Lawvere and Tier-

ney [32, 47] have then developed the notion of elementary topos, generalizing

that of Grothendieck topos. Lawvere’s idea was that an (elementary) topos is

a generalized universe of sets. The key observation is that many constructions

that can be done with sets can be replicated inside a topos. And elementary

topoi have had enormous success in (categorical) logic. Notably, every element-

ary topos has an internal logic, so that one can do (generalized) logic inside the

world of a topos. The most important ingredient of the concept of elementary

topos is the subobject classifier, that represents an object of generalized truth

values, together with a chosen “true”. The archetypal example of elementary

topos is the category Set of sets. Its truth values are the classical true and
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false, represented by the singleton and the empty set. A fundamental result is

that every Grothendieck topos, i.e. every category of sheaves, is an elementary

topos. The subobject classifier of presheaves (which are just functors into Set )

is given by taking sieves, which are a key ingredient of Grothendieck topologies.

Sieves are collections of morphisms into a fixed object that are closed under pre-

composition, or equivalently subfunctors of representables. They generalize the

concept of covering from topology. The subobject classifier of presheaves can

then be restricted to one of sheaves, selecting those sieves that behave well with

respect to the topology, namely closed sieves. A proof can be found in Mac Lane

and Moerdijk’s [34, Section III.7]. The definition of elementary topos just adds,

to the subobject classifier, cartesian closedness and having finite limits. And it

is surprising how these properties imply numerous other ones, making element-

ary topoi into particularly well-behaved categories and a fundamental concept of

mathematics.

We believe it is therefore important to generalize the fruitful 1-dimensional ele-

mentary topos theory to dimension 2. The notion of sheaf has been upgraded by

Giraud [19] to that of stack in dimension 2. The idea is to only ask the local data

to be compatible up to isomorphism. The induced global datum then analog-

ously recovers the starting local data up to isomorphism. Stacks brought to the

2-categorical generalization of Grothendieck topoi, and solved numerous problems

in geometry (e.g. moduli problems) that were not solvable using ordinary spaces

or 1-dimensional sheaves. The theory of elementary 2-topoi, introduced by Weber

in [51], is instead just at its beginning. But it is equally promising, with a high

potential of application to categorical logic, geometry and category theory itself.

For example, elementary 2-topoi could pave the way towards a 2-categorical logic

and offer the tools to study it. The idea is that every elementary 2-topos should

have an internal 2-dimensional logic. As an elementary topos is a generalized uni-

verse of sets, an elementary 2-topos can be conceived as a generalized universe

of categories. Another potential application is a 2-categorical generalization of

categories of classes, and the continuation of Weber’s [51] work of comparison

between structures of “small things”. A direct application of the work of this
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thesis could be a 2-categorical generalization of the fruitful concept of Grothen-

dieck topology, which would bring to an extended notion of stack, with relevance

in geometry. Other ideas could be capturing and generalizing classifying topoi as

well as geometrical classification processes.

The most important ingredient of the concept of elementary 2-topos is the

2-classifier, which is a 2-categorical generalization of the subobject classifier.

Weber’s idea, in [51], is that moving to dimension 2 one can and wants to clas-

sify morphisms with higher dimensional fibres. While injective functions have as

fibres either the singleton or the empty set, discrete opfibrations have as fibres

general sets and are thus the perfect notion to use to define 2-classifiers. This

idea is closely connected with that of homotopy level in Voevodsky’s univalent

foundations, see [46, Chapter 7] and Voevodsky’s [49]. (Discrete) opfibrations,

together with the Grothendieck construction, have been introduced by Grothen-

dieck in [22]; we take Jacobs’s book [26] as main reference. The idea of a

Grothendieck opfibration is that of a functor which is able to lift morphisms.

Discrete opfibrations then require such liftings to be unique. This is similar to

the fruitful path lifting properties in geometry, that are relevant to cohomology

and homotopy theory. Grothendieck fibrations were born to capture together

categories naturally associated to every point of a space. So that one can handle

and study all such categories together, taking into account the change of base

operations between them. A fundamental result in this framework is the equi-

valence between Grothendieck fibrations and indexed categories (i.e. prestacks),

namely the Grothendieck construction. This process collects the data of an in-

dexed category, i.e. a 2-functor F : Bop → Cat with B a small category that is

seen as a family of categories, into a total category
∫
F equipped with a functor

G (F ) :
∫
F → B that tells which index each object came from. More precisely,

G (F ) is given by the projection on the first component, with
∫
F built as follows:

an object of
∫
F is a pair (B,X) with B ∈ B and X ∈ F (B);

a morphism (B,X)→ (C,X ′) in
∫
F is a pair (f, α) with f : B → C a morphism

in B and α : X → F (f)(X ′) a morphism in F (B).
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And all Grothendieck fibrations can be conceived in this way, as they are pre-

cisely the essential image of the fully faithful 2-functor G (−) : [Bop,Cat ] →
Cat /B that calculates the Grothendieck construction. In algebra, an example

of Grothendieck fibration is given by the total category of all modules, that col-

lects together R-modules for every ring R. In geometry, this theory has many

applications to bundles. In logic, it managed to expand dependent type theory.

In order to produce the notion of 2-classifier, Weber proposes to upgrade mono-

morphisms (or subobjects) to discrete opfibrations in a 2-category, which have

been introduced by Street in [41]. 2-classifiers are thus discrete opfibration clas-

sifiers. In this thesis, we introduce the concept of good 2-classifier, that captures

well-behaved 2-classifiers and is closer to the point of view of logic. The idea is to

still have as classifier an object of generalized truth values equipped with a chosen

“true”, as in dimension 1. This is realized upgrading the classification process

from one regulated by pullbacks (in dimension 1) to one regulated by comma

objects (in dimension 2). The archetypal example of (good) 2-classifier is given

by the category of elements, which is a restriction of the Grothendieck construc-

tion to indexed sets (i.e. presheaves). This construction exhibits the 2-category

Cat of small categories as the archetypal elementary 2-topos. More precisely,

the inclusion 1: 1 → Set of the singleton into Set is a good 2-classifier in Cat .

Indeed calculating comma objects along 1: 1 → Set coincides with calculating

the category of elements of presheaves, and hence exhibits an equivalence of cat-

egories between maps into the universe Set and the discrete opfibrations with

small fibres. This perfectly generalizes to dimension 2 the fact that Set is the

archetypal elementary topos. While truth values in Set are just true and false,

represented by the singleton and the empty set, the generalized truth values of

Cat are all sets. In light of this archetypal example of (good) 2-classifier, we can

think of a 2-classifier as a Grothendieck construction inside a 2-category.

The main objective of this thesis is to expand 2-dimensional elementary topos

theory. We present a novel technique of reduction of the study of 2-classifiers to

dense generators. We then apply it to produce a good 2-classifier in prestacks
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(i.e. 2-dimensional presheaves) and restrict such good 2-classifier to one in stacks.

This is the main part of a proof that every Grothendieck 2-topos is an elementary

2-topos. The reason why we focus on 2-classifiers is that the rest of the definition

of elementary 2-topos proposed by Weber in [51] is yet to be ascertained. We

hope that this thesis will contribute to reach a universally accepted notion of

elementary 2-topos. Our good 2-classifiers in prestacks and stacks involve a 2-

dimensional generalization of the concepts of sieve and closed sieve, that could

be applied to produce a 2-dimensional generalization of Grothendieck topologies.

They also involve an indexed version of the Grothendieck construction, which

can be interpreted as the result that every (op)fibrational slice of a Grothendieck

2-topos is a Grothendieck 2-topos. Aiming at our technique of reduction of the

study of 2-classifiers, we also expand 2-category theory, developing a calculus of

colimits in 2-dimensional slices, and the theory of the Grothendieck construction.

Main results

We prove that both the conditions of 2-classifier and what gets classified by a 2-

classifier can be checked just over the objects that form a dense generator. So that

the whole study of a would-be 2-classifier is substantially reduced (Chapter 3).

Dense generators capture the idea of a family of objects that generate all the

other ones via nice colimits; the preeminent example is given by representables

in categories of presheaves. The following two theorems condense our results of

reduction of the study of 2-classifiers to dense generators.

Let L be a 2-category with pullbacks along discrete opfibrations, comma objects

and terminal object (see Section 3.1).

Theorem 1 (Theorem 3.2.5). Let I : Y → L be a fully faithful dense generator

of L . Let then τ : Ω• → Ω be a discrete opfibration in L . If for every Y ∈ Y

Gτ,I(Y ) : L (I(Y ),Ω)→ DOpFib (I(Y ))
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is fully faithful, then for every F ∈ L also

Gτ,F : L (F,Ω)→ DOpFib (F )

is fully faithful, so that τ is a 2-classifier in L .

Theorem 2 (Corollary 3.2.10). Let I : Y → L be a fully faithful dense generator

of L . Assume that τ : Ω• → Ω is a 2-classifier in L , and let φ : G → F be an

arbitrary discrete opfibration in L . Consider K and Λ as in Construction 3.2.7.

The following properties are equivalent:

(i) φ is classified by τ , i.e. φ is in the essential image of Gτ,F ;

(ii) for every (C,X) ∈
∫
W the change of base Gφ,K(C,X)(ΛC,X) of φ along ΛC,X

is in the essential image of Gτ,K(C,X), and the operation of normalization

described in Theorem 3.2.8 starting from φ is possible.

To have a hint of the benefits, we can look at the case of Cat . These theorems al-

low us to deduce all the major properties of the Grothendieck construction from

the trivial observation that everything works well over the singleton category

(Example 3.2.13). The driving idea behind our results of reduction to dense gen-

erators is to express an arbitrary object F as a nice colimit of the dense generators

and induce the required data using the universal property of the colimit.

In order to handle such colimits in our 2-categorical setting, we first need to

develop a calculus of colimits in 2-dimensional slices (Chapter 2). We generalize

to dimension 2 the well-known fact that a colimit in a 1-dimensional slice category

is precisely the map from the colimit of the domains of the diagram which is

induced by the universal property. We show that the appropriate 2-dimensional

slice to consider for this generalization is the lax slice. We obtain the following

result, that involves an original concept of colim fibration.

Theorem 3 (Theorem 2.1.21). Let E be a 2-category and M ∈ E . Then the

2-functor dom: E /lax M → E is a 2-colim-fibration. As a consequence,

colimWF

M

q =
oplaxcart -colim∆1(F ◦ G (W ))

M

q = oplaxcart -colim∆1Lq
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in the lax slice E /lax M . Here, Lq is the 2-diagram in E /lax M that corresponds to

the cartesian-marked oplax cocone λq onM associated to the weighted 2-cocylinder

on M that q represents.

In dimension 1, we also have the useful results that the domain functor from a slice

category preserves, reflects and lifts all colimits. We generalize all these results

to dimension 2 as well (Chapter 2). We then study the change of base 2-functor

between lax slices, laxifying the proof that Conduché functors are exponentiable

(Section 2.4). To obtain these results, it is crucial for us to use F -categorical tech-

niques. The idea of F -category theory, introduced in Lack and Shulman’s [30],

is to consider 2-categories with a selected subclass of morphisms that are called

tight.

As shown in the theorem above, a key ingredient for the calculus of colim-

its in 2-dimensional slices is the reduction of weighted 2-colimits to cartesian-

marked oplax conical ones, that are essentially conical. This result was proved

in Street’s [42]; we present here new, more elementary proofs (Chapter 1). Such

reduction is needed, together with F -category theory, to generalize to dimension

2 the bijective correspondence between cocones over an objectM and diagrams in

the slice over M (Section 2.2). The philosophy behind the reduction of weighted

2-colimits to cartesian-marked oplax conical ones is the following. To capture all

data of a category C , we can either consider functors from every possible category

into C or functors from the singleton 1 into C together with natural transforma-

tions between them. The former idea corresponds with weighted 2-colimits, while

the latter corresponds with cartesian-marked oplax conical colimits.

The reduction of weighted 2-colimits to cartesian-marked oplax conical ones is

regulated by the 2-category of elements construction. The latter is a natural

extension of the Grothendieck construction. We study it in detail from an ab-

stract point of view, using also an original notion of pointwise Kan extension

(Chapter 1). This also contributes to expand the theory of cartesian-marked

oplax conical colimits, that are crucial in this thesis. Our main results on the

2-category of elements are condensed in the following theorem.
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Theorem 4 (Theorem 1.3.8 and Theorem 1.3.12). Let F : B → Cat be a 2-

functor with B a small 2-category. The 2-category of elements is equivalently

given by the lax comma object ∫
F 1

B Cat

G(F ) 1
lax comma

F

in 2-Cat lax. Moreover, this lax comma object square exhibits F as the pointwise

left Kan extension in 2-Cat lax of ∆1:
∫
F → Cat along G (F ).

F = LanG(F ) ∆1.

We explain how this exhibits the 2-category of elements as the archetypal 3-

dimensional classifier and also as the 2-Set -enriched Grothendieck construction

(Chapter 1). So that our results could pave the way towards higher dimensional

elementary topos theory and towards a generalization of the Grothendieck con-

struction to the enriched setting.

We then apply our theorems of reduction of the study of 2-classifiers to dense gen-

erators to the cases of prestacks and stacks (Chapter 5). Our results offer great

benefits there, as they allow us to just consider the classification over represent-

ables. The Yoneda lemma determines up to equivalence the construction of a

good 2-classifier in prestacks (Section 3.3). We explain how this involves discrete

opfibrations over representables, which offer a 2-categorical notion of sieve. We

find however a few problems in handling directly discrete opfibrations in prestacks

over representables.

We develop an indexed version of the Grothendieck construction to solve all such

problems (Chapter 4). This generalizes the classical Grothendieck construction

to the case of opfibrations in the 2-category of prestacks. We obtain the following

theorem.

Theorem 5 (Theorem 4.3.7 and Theorem 4.3.9). Let A be a small category and

consider the functor 2-category [A ,Cat ]. For every 2-functor F : A → Cat , there
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is an equivalence of categories

OpFib [A ,Cat ] (F ) ≃
[∫
F,Cat

]
between split opfibrations in the 2-category [A ,Cat ] over F and 2-(co )presheaves

on the Grothendieck construction
∫
F of F .

This restricts to an equivalence of categories

DOpFib s
[A ,Cat ] (F ) ≃

[∫
F, Set

]
between discrete opfibrations in [A ,Cat ] over F with small fibres and 1-

copresheaves on
∫
F .

Moreover, both the equivalences of categories above are pseudonatural in F .

Taking A = 1, we recover the classical Grothendieck construction. We can think

of the indexed Grothendieck construction as a simultaneous Grothendieck con-

struction on every index A ∈ A , taking into account the bonds between different

indexes (Construction 4.3.8). Our result can also be interpreted as saying that

every (op)fibrational slice of a Grothendieck 2-topos is a Grothendieck 2-topos.

This generalizes to dimension 2 what is called the fundamental theorem of ele-

mentary topos theory (see Mac Lane and Moerdijk’s [34, Section IV.7]), in the

Grothendieck topoi case.

As a consequence, rather than considering discrete opfibrations with small fibres

in prestacks over representables, we can equivalently consider presheaves on slices.

This allows us to produce a good 2-classifier in prestacks that classifies all discrete

opfibrations with small fibres.

Theorem 6 (Theorem 5.1.14). The 2-functor

Ω̃ : C op −→ Cat

C 7→
[(C /C

)op
, Set

]
(C

f←− D) 7→ − ◦ (f◦ =)op,

equipped with the 2-natural transformation ω̃ : 1 → Ω̃ that picks the constant at

1 presheaf on every component, is a good 2-classifier in [C op,Cat ] that classifies

all discrete opfibrations with small fibres.
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Finally, we restrict our good 2-classifier in prestacks to a good 2-classifier in stacks.

We achieve this by proving a general result of restriction of good 2-classifiers

to nice sub-2-categories, involving factorization arguments and our theorems of

reduction to dense generators (Section 5.2). The idea is to select, out of all the

presheaves on slices considered in the definition of Ω̃, which are the 2-categorical

generalization of sieves, the sheaves with respect to the Grothendieck topology

induced on the slices, which are the 2-categorical generalization of closed sieves.

This restriction of Ω̃ is tight enough to give a stack ΩJ , but at the same time

loose enough to still host the classification process of prestacks. We obtain the

following theorem.

Theorem 7 (Theorem 5.3.22). The 2-functor

ΩJ : C op −→ Cat

C 7→ Sh
(C /C , J

)
(C

f←− D) 7→ − ◦ (f◦ =)op,

equipped with the 2-natural transformation ωJ : 1→ ΩJ that picks the constant at

1 sheaf on every component, is a good 2-classifier in St (C , J) that classifies all

discrete opfibrations with small fibres.

This is the main part of a proof that Grothendieck 2-topoi are elementary 2-

topoi. Our results also solve a problem posed by Hofmann and Streicher in [25]

when attempting to lift Grothendieck universes to sheaves. Indeed, in a different

context, they considered the same natural idea to restrict their analogue of Ω̃ by

taking sheaves on slices. However, this did not work for them, as it does not give

a sheaf. Our results show that such a restriction yields nonetheless a stack and a

good 2-classifier in stacks.

Outline of the thesis

In Chapter 1, we give a new, more elementary proof of the equivalence between

weighted 2-limits and cartesian-marked lax conical ones. We then generalize to
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dimension 2 the fact that the category of elements can be captured by a comma

object that also exhibits a pointwise left Kan extension. For this, we introduce

a notion of pointwise Kan extension in 2-Cat lax and we refine the notion of lax

comma object in 2-Cat lax.

In Chapter 2, we present our calculus of colimits in 2-dimensional slices, thanks

to an original notion of colim fibration. We also show results of preservation,

reflection and lifting of 2-colimits for the domain 2-functor from a lax slice. The

result of preservation is shown by proving a general theorem on F -categorical lax

left adjoints. Finally, we apply such general theorem to study the change of base

2-functor between lax slices.

In Chapter 3, after recalling the concept of 2-classifier, we introduce good 2-

classifiers. We then present our theorems of reduction of the study of 2-classifiers

to dense generators. We look at the possibility to apply these theorems to produce

a good 2-classifier in prestacks that classifies all discrete opfibrations with small

fibres. But using directly the induced 2-categorical sieves presents a few problems

that we will solve in Chapter 4.

In Chapter 4, we show an equivalent characterization of opfibrations in [A ,Cat ].

We then present an indexed version of the Grothendieck construction, proving a

pseudonatural equivalence of categories between (split) opfibrations in [A ,Cat ]

over F and 2-copresheaves on
∫
F . This also restricts to a discrete version. Fi-

nally, we obtain a nice candidate for a good 2-classifier in prestacks that classifies

all discrete opfibrations with small fibres.

In Chapter 5, we apply our theorems of reduction to dense generators to the

cases of prestacks and stacks. We produce a good 2-classifier in prestacks that

classifies all discrete opfibrations with small fibres. We then prove a general result

of restriction of good 2-classifiers to nice sub-2-categories, involving factorization

arguments and our theorems of reduction to dense generators. We use this result

to restrict our good 2-classifier in prestacks to one in stacks.



Notations

Throughout this thesis, we fix Grothendieck universes U, V and W such that

U ∈ V ∈ W . We denote as Set the category of U-small sets, as Cat the 2-

category of V -small categories (i.e. categories such that both the collections of

their objects and of their morphisms are V -small) and as CAT the 2-category

of W -small categories. So that Set ∈ Cat and the underlying category Cat 0 of

Cat is in CAT . Small category will mean V -small category. Small fibres, for

a discrete opfibration in Cat , will mean U-small fibres. 2-category will mean a

W -small Cat -enriched category. Small 2-category will mean V -small 2-category.

Small fibres for a discrete 2-opfibration will mean V -small fibres.

We will use the following notations.

C op the opposite of an (enriched) category

C co 2-category obtained from C dualizing the 2-cells; variant

C coop if both 1-cells and 2-cells are dualized

2-Cat the 3-category of 2-categories, 2-functors, 2-natural trans-

formations and modifications

2-Cat lax the lax 3-category of 2-categories, 2-functors, lax natural

transformations and modifications

V -Cat the 2-category of V -enriched categories

C (A, B) hom-object of an enriched category C from C to D (usually

hom-category of a 2-category C )

[C ,D] the strict functor (2-)category from C to D
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[C op,Cat ]lax the 2-category of 2-functors, lax natural transformations

and modifications; variants with laxcart (cartesian-marked

lax), oplax, oplaxcart (cartesian-marked oplax), sigma,

oplaxmark (marked oplax) in place of lax

F =====⇒
oplaxcart

G a cartesian-marked oplax natural transformation; variants

with pseudo (pseudonatural), sigma, oplaxmark (marked

oplax)

Ps [C op,Cat ] the 2-category of pseudofunctors, pseudonatural transform-

ations and modifications

y : C → [C op,Cat ] the 2-categorical Yoneda embedding

St (C , J) the full sub-2-category of [C op,Cat ] on stacks with respect

to the Grothendieck topology J

limWF the enriched limit of F weighted by W ; variant colimWF

for colimits

oplaxcart -colim∆1K the cartesian-marked oplax conical colimit of the 2-diagram

K; variants with limits in place of colimits, lax in place of

oplax, other specified markings

G (F ) :
∫
F → C the 2-category of elements of a 2-functor F : Aop → Cat

(with A a 2-category), or also the classical Grothendieck

construction

(φ)B the fibre of an opfibration φ in Cat over an object B of the

base

OpFibL (F ) the category of split opfibrations in a 2-category L over F ;

variant DOpFibL (F ) for discrete opfibrations

DOpFib s
(F ) the full subcategory of DOpFibL (F ) on discrete opfibra-

tions with small fibres; variant DOpFib P
(F ) for discrete

opfibrations that satisfy a fixed pullback-stable property P

C /C the slice of a category C over C ∈ C
L /lax M the lax slice of a 2-category L overM ∈ L ; sometimes, also

a general lax comma

F //G the lax comma object in 2-Cat lax from F to G
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dom the domain (2-)functor from a (lax) slice

pr1 : A×B → A the projection from a product to its first component; variant

pr2 for the projection to the second component

1 the terminal object of a (2-)category; variant 1 for the

singleton category

∆1 the constant at 1 presheaf; variant ∆U for the functor which

is constant at an object U

f ◦ g the composite of 1-cells or the vertical composition of 2-

cells

α ∗ β the horizontal composition of 2-cells; variants α∗f and f ∗α

for the whiskerings of a 2-cell α with a 1-cell f

idA the identity 1-cell on A; variants IdC for the identity (2-

)functor on C and idf for the identity 2-cell on a 1-cell f

A ∼= B an isomorphism between objects A and B; variant A
≃−→ B

for an isomorphic arrow from A to B

C ≃ D an equivalence of categories between C and D; variant C ∼→

D for an equivalence from C to D

A ↪−→
ff
B a fully faithful morphism in a 2-category or a fully faithful

2-functor

M ⊆ L a full sub-2-category, i.e. an injective on objects and fully

faithful 2-functor

Aτ the tight part of an F -category A ; variant Aλ for the loose

part

− placeholder; variant + for a second placeholder



1. The 2-Set -enriched
Grothendieck construction and

cartesian-marked lax limits

This chapter is based on our paper [36].

In this chapter we expand the theory of the 2-category of elements and of the

cartesian-marked lax limits. Both these concepts will be very useful to us in

the following chapters. Moreover, we believe they are key elements for higher

dimensional elementary topos theory, as we explain below. The 2-category of

elements is the 2-dimensional generalization of the construction of the category

of elements, and it has been introduced by Street in [42]. It is at the same time a

natural extension of the usual Grothendieck construction that admits 2-functors

from a 2-category B into Cat , and a restriction of the 2-dimensional Grothendieck

construction of Baković [5] and Buckley [10] to 2-functors into 2-Cat that factor

through Cat . Analogously, the corresponding notion of opfibration, introduced

by Lambert in [31] with the name discrete 2-opfibration, is at the same time a

natural extension of the usual Grothendieck opfibrations and a locally discrete

version of Hermida’s [23] 2-fibrations. Lambert proved in [31] that split discrete

2-opfibrations with small fibres form the essential image of the 2-functor that

calculates the 2-category of elements. We extend this result to 2-equivalences

between 2-copresheaves and discrete 2-opfibrations (Theorem 1.3.15).

We study the 2-category of elements from an abstract point of view and we in-

terpret it as the 2-Set -enriched Grothendieck construction. We expect this work
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to be very useful for generalizations of the Grothendieck construction. In future

work, we would like to achieve a generalization to the enriched context. While

Vasilakopoulou defined in [48] a notion of fibration enriched over a monoidal fibra-

tion, it seems no one has yet proposed a good notion of fibration for a V -enriched

functor, with V a nice enough monoidal category. There would be many applic-

ations of such enriched fibrations. Some examples would be additive fibrations,

graded fibrations, metric fibrations and general quantale-enriched fibrations. We

believe this work is a starting point towards such a theory. As giving an explicit

definition of enriched fibration is quite hard, we would like to capture Grothen-

dieck fibrations and the Grothendieck construction from an abstract point of view

and try to generalize such abstract theory.

Another motivation that we have in mind is to understand how the various prop-

erties of the 2-category of elements are connected with each other. We will show in

Section 1.3 that our pointwise Kan extension result for the 2-category of elements

(see below) implies many other properties. Among these, the conicalization of

weighted 2-limits and the 2-fully faithfulness of the 2-functor that calculates the

2-category of elements.

In dimension 1, it is known that the category of elements can be captured in

a more abstract way. Given a copresheaf F : B → Set , the construction of the

category of elements of F is equivalently given by the comma object∫ op
F 1

B Set

G(F ) 1
comma

F

(1.1)

Moreover, this filled square exhibits F as the pointwise left Kan extension of the

constant at 1 functor ∆1:
∫ op

F → Set along the discrete opfibration G (F ).

Our main theorem of this chapter (Theorem 1.3.12, after Theorem 1.3.8) is a

2-dimensional generalization of this result. We prove that an analogous square as

the above one exhibits, at the same time, the 2-category of elements G (F ) as a lax

comma object in 2-Cat lax and F as the pointwise left Kan extension in 2-Cat lax
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of ∆1 along the discrete 2-opfibration G (F ). We find the need to consider the

lax 3-category 2-Cat lax of 2-categories, 2-functors, lax natural transformations

and modifications, because the analogue of the square above is now only filled by

a lax natural transformation. Lax 3-categories, introduced by Lambert in [31],

are categories enriched over the cartesian closed category of 2-categories and

lax functors (whose tensor product is the ordinary product of 2-categories). As

2-Cat lax has not yet been studied much, we have to introduce a notion of pointwise

Kan extension in 2-Cat lax (Definition 1.2.16) to achieve our objective. This is

one of our main contributions in this chapter. We also prove that pointwise

Kan extensions in 2-Cat lax along a discrete 2-opfibration are always weak ones as

well (Proposition 1.2.19). The proof is based on an original generalization of the

parametrized Yoneda lemma which is as lax as it can be (Theorem 1.2.18).

Pointwise Kan extensions are actively researched. While it is relatively easy to

give notions of weak Kan extension in a categorical framework, it is much harder

to give the corresponding pointwise notions. In [41], Street proposes to look at

the stability of a Kan extension under pasting with comma objects to obtain

a definition of pointwise Kan extension in any 2-category. However, applying

Street’s definition to the 2-category V -Cat does not give the right notion. For

enriched V -functors, the correct notion, that uses V -limits, has been introduced

by Dubuc in [16] and later used by Kelly in [28]. However, we needed pointwise

Kan extensions in the lax 3-category 2-Cat lax, that we view as 2-Set -Cat , with an

original idea of 2-V -enrichment. Pseudo-Kan extensions of Lucatelli Nunes’s [33]

are a pseudo version of Dubuc’s ones, considering weighted bilimits in the place

of weighted 2-limits, and quasi-Kan extensions of Gray’s [21] are a lax version.

Instead, we needed a strict version, using some form of strict 2-limit, but which

also takes the 2-V -enrichment into account.

To give our definition of pointwise Kan extension in 2-Cat lax, we take advant-

age of the connection between the 2-category of elements and cartesian-marked

oplax colimits, that we recall in Section 1.1 from a new, more elementary per-

spective. Cartesian-marked (op)lax conical (co)limits are a particular case of
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a 2-dimensional notion of limit introduced by Gray in [20, Section I,7] (called

there “cartesian quasi-limits”). As proved by Street in [42, Theorem 14 and

Theorem 15], and here as well with a more elementary proof, they are an altern-

ative to weighted 2-limits. Indeed they are particular weighted 2-limits and every

weighted 2-limit can be reduced to one of them. But cartesian-marked lax con-

ical limits can be much more useful in some situations, as they allow to consider

cones rather than cylinders, up to filling the cones with coherent 2-cells. Some

of these 2-cells are required to be the identity, whence the adjective “marked”.

As the choice of such 2-cells comes from the cartesian liftings of a 2-category of

elements, we call them “cartesian”. Despite their potential, cartesian-marked lax

limits have been almost forgotten, until Descotte, Dubuc and Szyld’s paper [15],

where they use their pseudo version, called by them sigma-limits. Later, in [44]

and [45], Szyld also considered the strict version that we use here. In Chapter 2,

the reduction of weighted 2-limits to cartesian-marked lax conical ones will be

crucial for us to study colimits in 2-dimensional slices. It will then allow us,

in Chapter 3, to reduce the conditions of a 2-classifier to dense generators, and

hence, in Chapter 5, to construct a 2-classifier in stacks, towards a proof that

Grothendieck 2-toposes are elementary 2-toposes.

We hint at the potential applications of the work of this chapter to higher di-

mensional elementary topos theory. According to Weber’s [51], the filled square

of equation (1.1) presents Cat as the archetypal 2-dimensional elementary topos.

The classification process is the category of elements construction. This is re-

called in Section 3.1. On this line, we believe we should consider 2-Cat lax as the

archetypal 3-dimensional elementary topos. Its classifier would be 1 : 1 → Cat

and its classification process would be the 2-category of elements construction.

We inscribe the sequence of elementary n-topoi

Set ⇝ Cat ⇝ 2-Cat lax

in an original idea of 2-V -enrichment. This guided our definition of pointwise

Kan extension in 2-Cat lax. And we believe that this observation could be useful

also towards an enriched version of the Grothendieck construction. For this, we
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may also notice that comma objects, that regulate the classification process in

Cat , are the archetypal example of exact square in Cat . And the fact that every

copresheaf is the pointwise Kan extension of ∆1 along its category of elements

is actually a consequence of having an exact square, together with 1 : 1 → Set

being dense. Moving to 2-Cat lax, we need to upgrade comma objects to lax

comma objects. We give a new, refined universal property of lax comma objects

to suit the lax 3-dimensional ambient of 2-Cat lax (Definition 1.3.4). This improves

both the universal properties given by Gray in [20, Sections I,2 and I,5] and by

Lambert in [31].

Outline of the chapter

In Section 1.1, we recall from an original perspective the explicit 2-category of

elements and the cartesian-marked (op)lax conical (co)limits. We give a new,

more elementary proof of the equivalence between weighted 2-limits and cartesian-

marked lax conical ones.

In Section 1.2, we introduce a notion of pointwise Kan extension in 2-Cat lax
along a discrete 2-opfibration. We prove that such a pointwise Kan extension is

always a weak one as well. The proof is based on an original generalization of

the parametrized Yoneda lemma.

In Section 1.3, we generalize to dimension 2 the fact that the category of ele-

ments can be captured by a comma object that also exhibits a pointwise left Kan

extension. For this we use our definition of pointwise Kan extension in 2-Cat lax
and a new refined notion of lax comma object in 2-Cat lax.

1.1. Cartesian-marked (op)lax conical (co)limits

In this section we recall, from an original perspective, the explicit 2-category of

elements construction and the cartesian-marked (op)lax conical (co)limits. We

originally show how the two concepts arise simultaneously by the wish of giving
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an essential solution to the problem of conicalization of the weighted 2-limits.

This can also be seen as a justification to both the explicit definition of the 2-

category of elements, introduced by Street in [42], and the cartesian-marked lax

conical limits, a particular case of a notion introduced by Gray in [20, Section I,7]

(called there “cartesian quasi-limits”).

We obtain a new, more elementary proof of the fact that weighted 2-limits and

cartesian-marked lax conical limits give equivalent theories (Theorem 1.1.15 and

Theorem 1.1.13). This has been firstly proved by Street in [42, Theorem 14 and

Theorem 15], where weighted 2-limits are called “indexed limits” and (following

Gray’s [20]) cartesian-marked lax conical limits are a particular case of ”cartesian

quasi-limits”. Cartesian-marked lax conical limits offer huge benefits in many

situations, as they have a conical shape, even if with coherent 2-cells inside the

triangles that form the cone. Sometimes, it is much easier to handle such 2-cells

rather than a non-conical shape.

Indeed such an idea will be crucial to us in Chapters 2, 3 and 5. In Section 1.2, the

concept of cartesian-marked (op)lax (co)limit will guide the original definitions

of colimit in a 2-Set -category and of pointwise left Kan extension in 2-Cat lax.

We first recall the notion of weighted limit, from Kelly’s book [28, Chapter 3]

(also here weighted limits are called “indexed limits”).

Definition 1.1.1. Let V be a complete and cocomplete symmetric closed mon-

oidal category. Consider V -functors F : A → C (the diagram) and W : A → V

(the weight, in place of the classical constant at 1 functor ∆1, that now does no

longer suffice), with A a small V -category. The V -limit of F weighted by W ,

denoted as limWF , is (if it exists) an object L ∈ C together with an isomorphism

in V

C (U, L) ∼=
[
A ,V

]
(W, C (U, F (−))) (1.2)

V -natural in U ∈ C op, where
[
A ,V

]
is the V -category of V -copresheaves on A

valued in V enriched over itself. When limWF exists, the identity on L provides

a V -natural transformation λ : W =⇒ C (L, F (−)) called the universal cylinder.
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For the notion of weighted V -colimit, we start from F : A → C andW : Aop → V .

The universal property is then

C
(
colimWF , U

) ∼= [
Aop,V

]
(W, C (F (−), U))

Weighted Cat -(co)limits, i.e. with V = Cat , will be called weighted 2-(co)limits.

Remark 1.1.2. Although the classical constant at 1 weight ∆1, called the conical

weight, no longer suffices in the general enriched setting, we pay attention to

when a weighted limit can be reduced to a conical one. It is well-known (see

Kelly’s [28, Section 3.4] that in the Set -enriched setting every weighted limit can

be conicalized, using the category of elements. A general strategy of conicalization

(used by Kelly in [28, Section 3.4]) allows to conicalize just the V -colimits W ∼=

colimW y, for W : A → V an enriched presheaf with A small and y : Aop →[
A ,V

]
the V -Yoneda embedding. The lemma of continuity of a limit in its

weight, whose formula is

limcolimWHF ∼= limW
(
limH(−)F

)
, (1.3)

then allows to deduce that all weighted limits are conicalized. We will use such

a strategy in the proof of Theorem 1.1.15.

Remark 1.1.3. When V = Cat , the conicalization of weighted 2-limits is,

strictly speaking, not possible. We would need to encode the universal cocyl-

inder µ (given by the Yoneda lemma) in terms of a universal cocone

µ̃ : ∆1 =⇒ [A ,Cat ] (H(−), W )

with H some 2-functor B → [A ,Cat ]. And this is not possible because the

components of µ are functors rather than mere functions. The idea is to admit

2-cells inside the cocone µ̃ in order to encode the extra data. We thus con-

sider lax natural transformations, that have general structure 2-cells inside the

naturality squares. But, as we explain in Construction 1.1.4, the right notion

of relaxed 2-natural transformation to consider will be a marked version of lax

natural transformations.



22
1. The 2-Set -enriched Grothendieck construction

and cartesian-marked lax limits

Construction 1.1.4 (2-category of elements). Following Remark 1.1.3, we search

for a relaxed notion of 2-natural transformation, which is however stronger than

a lax natural transformation, and for a 2-functor H : B → [A ,Cat ] such that any

cocylinder

φ : W =⇒ [A ,Cat ] (y(−), U)

with U : A → Cat can be encoded in terms of a relaxed 2-natural transformation

φ̃ : ∆1 ====⇒
relaxed

[A ,Cat ] (H(−), U) : Bop → Cat .

In order to deduce that every weighted 2-limit can be analogously conicalized via

the lemma of continuity of a limit in its weight, we need H of the form(∫ op
W

)op G(W )op−−−−→ Aop y−−→ [A ,Cat ] .

Up to now,
∫ op

W and G (A) are just symbols, but will be found to be the 2-

category of elements, as defined explicitly by Street in [42, just above Theorem 15].

For every A ∈ A and X ∈ W (A), we have a morphism φA(X) : y(A) → U , and

we want to form the cocone φ̃ exactly with these morphisms. So we take the

objects of
∫ op

W to be all pairs (A,X) with A ∈ A and X ∈ W (A), and define

G (W ) (A,X) := A. We then set φ̃(A,X) := φA(X).

But φ̃ also needs to encode the assignment of every φA on morphisms α : X → X ′

in W (A). Lax naturality of φ̃ allows to have, for every ξ : (A,X) → (A′, X ′) in∫ op
W , a 2-cell

1 [A ,Cat ] (y(A), U)

1 [A ,Cat ] (y(A′), U)

φ̃(A,X)

−◦y(G(W )op(ξ))
φ̃ξ

φ̃(A′,X′)

For every A ∈ A and α : X → X ′ in W (A), we need a morphism (A,X) →

(A,X ′) in
∫ op

W whose image with respect to G (W ) is idA. Wishing to write the

action of G (W ) as a projection on the first component, we call such morphism

(A,X)→ (A,X ′) as (idA, α). We set φ̃(idA,α) := φA(α).
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We now encode the 2-naturality of φ into the relaxed naturality of φ̃. For every

f : A→ A′ in A and X ∈ W (A), the naturality of φ expresses the equality

φA′(W (f)(X)) = φA(X) ◦ y(f) .

So, for every f : A→ A′ in A and X ∈ W (A), we need a morphism

fX : (A,X)→ (A′,W (f)(X))

in
∫ op

W such that G (W )
(
fX

)
= f and φ̃fX = id.

It is natural to take idA
X = (idA, idX) for every A ∈ A and X ∈ W (A) and ask

any of such equal morphisms to be the identity on (A,X). We then need to close

the union of the two kinds of morphisms (idA, α) and f
X under composition. For

this, we notice that, given f : A → A′ in A and α : X → X ′ in W (A), the two

morphisms fX
′ ◦ (idA, α) and (idA′ ,W (f)(α)) ◦ fX in

∫ op
W will have the same

associated structure 2-cell of φ̃, by lax naturality of φ̃. We then take such two

morphisms in
∫ op

W to be equal, so that we will be able to recover the naturality

of φ (on morphisms) starting from φ̃. At this point, every finite composition of

morphisms in
∫ op

W can be reduced to a composite

(A,X)
fX

−→ (A′,W (f)(X))
(idA′ ,α)−−−−→ (A′, X ′)

for some f : A → A′ in A and α : W (f)(X) → X ′ in W (A′). We define the

morphisms in
∫ op

W to be all the formal composites (idA′ , α) ◦ fX , that we call

(f, α). And we see that fX = (f, idW (f)(X)). Functoriality forces G (W ) (f, α) = f ,

and lax naturality forces

φ̃(f,α) = φ̃(idA′ ,α)◦(f,id) = φA′(α) ◦ id = φA′(α).

We now want to encode the 2-dimensional part of the 2-naturality of φ into the

2-dimensional part of the relaxed naturality of φ̃. Lax naturality of φ̃ allows to

have, for every 2-cell Ξ: (f, α) =⇒ (g, β) : (A,X)→ (A′, X ′) in
∫ op

W ,

1 [A ,Cat ] (y(A), U)

1 [A ,Cat ] (y(A′), U)

φ̃(A,X)

−◦y(f)
φ̃(f,α)

φ̃(A′,X′)

=

1 [A ,Cat ] (y(A), U)

1 [A ,Cat ] (y(A′), U)

φ̃(A,X)

−◦y(g) −◦y(f)
φ̃(g,β)

φ̃(A′,X′)

−∗y(G(W )op(Ξ))
(1.4)
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The 2-naturality of φ expresses the following equality, for every 2-cell δ : f =⇒

g : A→ A′ in A and for every X ∈ W (A):

φA′(W (δ)X) = φA(X) y(δ) : φA′(W (f)(X)) =⇒ φA′(W (g)(X)).

So, for every 2-cell δ : f =⇒ g : A → A′ in A and every X ∈ W (A), we need a

2-cell in
∫ op

W , that we call δX or just δ, such that

δX : (f,W (δ)X) =⇒ (g, id) : (A,X)→ (A′,W (g)(X))

and G (W ) (δX) = δ. These 2-cells are closed under both vertical and horizontal

composition, inherited from A , but we have to close them under whiskering

with morphisms (idA, α). Notice that for every δ : f =⇒ g : A → A′ in A and

every α : X → X ′ in W (A), we have that the axiom of equation (1.4) of φ̃ on

the two whiskerings δX
′
(idA, α) and (idA′ ,W (g)(α))δX in

∫ op
W is exactly the

same. So we ask such two whiskerings in
∫ op

W to be equal. At this point,

every horizontal composition of 2-cells in
∫ op

W can be reduced to a whiskering

of the form (id, β)δX for some 2-cell δ : f =⇒ g : A → A′ in A , X ∈ W (A) and

β : W (g)(X)→ X ′ in W (A′). We define the 2-cells in
∫ op

W to be precisely such

formal whiskerings. Equivalently, a 2-cell (f, α) =⇒ (g, β) : (A,X) → (A′, X ′) in∫ op
W is a 2-cell δ : f =⇒ g in A such that

α = β ◦W (δ)X .

For this, we will call such 2-cell just δ : (f, α) =⇒ (g, β). Compositions are inherited

from A . Then 2-functoriality forces G (W ) (δ) = δ.

It is straightforward to show that
∫ op

W is a 2-category and that G (W ) :
∫ op

W →

A is a 2-functor. Notice that we have also described the right notion of relaxed 2-

natural transformation that φ̃ needs to satisfy to encode the 2-naturality of φ. We

will define it in Definition 1.1.9. It is a form of marked lax natural transformation,

i.e. a lax natural transformation such that certain structure 2-cells are asked to

be identities.

We read from Construction 1.1.4 the following explicit definition of the 2-category

of elements, that coincides with the one of Street’s [42, just above Theorem 15]

(called there ”Grothendieck construction”).
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Definition 1.1.5. Let F : B → Cat be a 2-functor with B a 2-category. The

2-category of elements of F is the 2-functor G (F ) :
∫ op

F → B , given by the

projection on the first component, with
∫ op

F such that:

an object of
∫ op

F is a pair (B,X) with B ∈ B and X ∈ F (B);

a morphism (B,X)→ (C,X ′) in
∫ op

F is a pair (f, α) with f : B → C a morph-

ism in B and α : F (f)(X)→ X ′ a morphism in F (C);

a 2-cell (f, α) =⇒ (g, β) : (B,X)→ (C,X ′) in
∫ op

W is a 2-cell δ : f =⇒ g in B

such that α = β ◦ F (δ)X ;

the compositions and identities are as described in Construction 1.1.4.

Remark 1.1.6. The 2-category of elements is a natural extension of the usual

Grothendieck construction, that allows B to be a 2-category rather than just

a 1-category. It is also the restriction of the 2-Grothendieck construction of

Baković [5] and Buckley [10] to 2-functors into 2-Cat that factorize through Cat .

Analogously, the corresponding notion of opfibration is a natural extension of

the usual notion, and at the same time a locally discrete version of Hermida’s

2-fibrations ([23]). Notice from Construction 1.1.4 that having a 2-cell δ in a

2-category of elements is indeed a property for the underlying 2-cell δ in the base

category.

Definition 1.1.7 (Lambert [31]). Let B be a 2-category. A discrete 2-opfibration

over B is a 2-functor P : E → B such that

(i) the underlying functor P0 of P is an ordinary Grothendieck opfibration;

(ii) for every pair X, Y ∈ E the functor

PX,Y : E (X, Y )→ B (P (X), P (Y ))

is a discrete fibration.

We say that P is split if P0 is so.
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Theorem 1.1.8 (Lambert [31]). Let B be a 2-category. The essential image of

the 2-functor

G (−) : [B ,Cat ]→ 2-Cat /B

is given by the split discrete 2-opfibrations with small fibres.

We will extend Theorem 1.1.8 to a complete 2-equivalence between [B ,Cat ] with

various laxness flavours on morphisms and corresponding 2-categories of discrete

2-opfibrations in Section 1.2.

From Construction 1.1.4 we also obtain the following definition.

Definition 1.1.9. Let W : A → Cat be a 2-functor with A small, and consider

2-functors M,N :
∫ op

W → D. A cartesian-marked lax natural transformation α

from M to N , denoted α : M ===⇒
laxcart

N , is a lax natural transformation α from M

to N such that the structure 2-cell on every morphism of the form

(
f, idW (f)(X)

)
: (A,X)→ (B,W (f)(X))

in
∫ op

W is the identity.

Remark 1.1.10. Cartesian-marked lax natural transformations are a particular

case of a more general notion of marked lax natural transformation introduced

by Gray in [20, Section I,2]. “Cartesian” refers to the fact that the marking

is precisely given by the chosen cartesian liftings of the 2-category of elements

G (W ) :
∫ op

W → A . Street showed in [42] that this less general notion is suffi-

cient to build all the general limits considered by Gray.

Definition 1.1.11. Let W : A → Cat be a 2-functor with A small, and let

F :
∫ op

W → C be a 2-functor. Notice that
∫ op

W is small, since A is small. The

cartesian-marked lax conical limit of F , denoted as laxcart -lim∆1F , is (if it exists)

an object L ∈ C together with an isomorphism of categories

C (U, L) ∼=
[∫ op

W,Cat
]
laxcart

(∆1, C (U, F (−)))

2-natural in U ∈ C op, where
[∫ op

W,Cat
]
laxcart

is the 2-category of 2-functors,
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cartesian-marked lax natural transformations and modifications from
∫ op

W to

Cat (it is straightforward to show that this is indeed a 2-category).

When laxcart -lim∆1F exists, the identity on L provides a cartesian-marked lax

natural transformation λ : ∆1 ===⇒
laxcart

C (L, F (−)) called the universal cartesian-

marked lax cone.

For the definition of cartesian-marked lax conical 2-colimit in C , we apply the

definition above to a 2-functor F :
∫ op

W → C op. As usual, we prefer to consider

instead F op :
(∫ op

W
)op → C , but this time we cannot rename

(∫ op
W

)op
as some∫ op

Z.

Let W : A → Cat be a 2-functor with A small, and let F :
(∫ op

W
)op → C

be a 2-functor. The cartesian-marked lax conical colimit of F , denoted as

laxcart -colim∆1F , is (if it exists) an object C ∈ C together with a natural iso-

morphism of categories

C (C, U) ∼=
[∫ op

W,Cat
]
laxcart

(∆1, C (F (−), U))

Remark 1.1.12. Considering 2-functors F of the form F :
∫ op

W → C in Defin-

ition 1.1.11 is not restrictive at all. Indeed any 2-category B can be seen as the

2-category of elements of the 2-functor ∆1: B → Cat constant at 1. We calculate

that
∫ op

∆1 ∼= B and that G (∆1) is the identity 2-functor up to this isomorphism.

We now show a new, more elementary proof of the fact that cartesian-marked

lax conical limits are particular weighted 2-limits. Street states the analogous

result in [42, Theorem 14] for all the general 2-limits introduced by Gray in [20,

Section I,7] (cartesian quasi-limits), with a complex proof that gives the weight as

the coidentifier of a certain 2-cell with horizontal codomain the weight of lax con-

ical limits. We present an original explicit weight for cartesian-marked lax conical

limits that is actually simpler than the one for lax conical limits. Indeed the lat-

ter involves quotients of lax 2-dimensional slices (see Street’s [42, Theorem 11]),

while the former only needs ordinary 1-dimensional slices. The reason is that the

laxness of cartesian-marked lax natural transformations is concentrated in the

vertical part of
∫ op

W .
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Theorem 1.1.13. Cartesian-marked lax conical limits are particular weighted

2-limits. More precisely, given 2-functors Z : A → Cat and F :
∫ op

Z → C with

A small, the weight that realizes laxcart -lim∆1F is

Wlaxcart :
∫ op

Z −→ Cat

(B,X ′)

(C,X ′′)

(g,β) 7→
Z(B)/X ′

Z(C)/X ′′

β◦Z(g)(−)

(B,X ′)

(C,X ′′)

(g,β) (h,γ)
δ 7→ Z(B)/X ′ Z(C)/X ′′

β◦Z(g)(−)

γ◦Z(h)(−)

Z(δ)dom(−)

where the action of β ◦ Z(g)(−) on morphisms is given by Z(g)(dom(−)).

Proof. Given φ : ∆1 ===⇒
laxcart

N a cartesian-marked lax natural transformation, we

convert it into a 2-natural transformation [φ] : Wlaxcart =⇒ N setting, for every

(B,X ′) ∈
∫ op

Z,

[φ](B,X′)(idX′) := φ(B,X′)

[φ](B,X′)

 X X ′

X ′α

α

 := φ(idB ,α).

[φ] extends in a unique way to a 2-natural transformation.

Corollary 1.1.14. Cartesian-marked lax conical colimits are particular weighted

2-colimits, and the weight that expresses them is Wlaxcart.

We now present our new proof of the fact that every weighted 2-limit can be re-

duced to a cartesian-marked lax conical one. This was first proved by Street in [42,

Theorem 15]; another proof can be derived from Proposition 3.18 of Szyld’s [44].

Our proof is based on the elementary Construction 1.1.4, allowing it to be un-

derstood by a wider audience.

Theorem 1.1.15. Every weighted 2-limit can be reduced to a cartesian-marked

lax conical one. More precisely, given 2-functors F : A → C and W : A → Cat
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with A small,

limWF ∼= laxcart -lim∆1(F ◦ G (W ))

either side existing if the other does, where G (W ) is the 2-category of elements

of W .

Proof. By Remark 1.1.3, we can just essentially conicalize the weighted 2-colimits

W ∼= colimW y

with W : A → Cat a 2-presheaf with A small and y : Aop → [A ,Cat ] the 2-

Yoneda embedding. We thus want to extend Construction 1.1.4 to an isomorph-

ism of categories

[A ,Cat ] (W, [A ,Cat ] (y(−), U)) ∼=
[∫ op

W,Cat
]
laxcart

(∆1, [A ,Cat ] ((y ◦G (W )op)(−), U))

(1.5)

2-natural in U ∈ [A ,Cat ], expressing

W ∼= colimW y ∼= laxcart -colim∆1(y ◦G (W )op).

This is straightforward, using that in
∫ op

W we have (id,W (f)(α)) ◦ (f, id) =

(f, id) ◦ (id, α) for every f : A→ B in A and α : X → X ′ in W (A), and that any

2-cell δ in A lifts to a 2-cell δX in
∫ op

W .

Consider now 2-functors F : A → C and W : A → Cat with A small. Then by

the argument above and Corollary 1.1.14

W ∼= laxcart -colim∆1(y ◦G (W )op) ∼= colimWlaxcart

(y ◦G (W )op).

By the lemma of continuity of a limit in its weight (see Remark 1.1.3) and The-

orem 1.1.13,

limWF ∼= limWlaxcart
(
lim(y ◦G(W )op)(−)F

)
∼= limWlaxcart

(F ◦ G (W )) ∼=

∼= laxcart -lim∆1(F ◦ G (W ))

where the isomorphism in the middle is easy to prove.
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Remark 1.1.16. The proof of Theorem 1.1.15, together with the proofs of The-

orem 1.1.13 and Corollary 1.1.14, also shows how to obtain the correspondence

between the universal cylinder of a weighted 2-limit and the associated universal

cartesian-marked lax cocone. Calling the two, respectively,

λ : W =⇒ C (L, F (−))

̂̂λ : ∆1 ===⇒
laxcart

C (L, (F ◦ G (W )) (=))

the correspondence is given, for every (f, α) : (A,X)→ (B,X ′) in
∫ op

W , by

̂̂λ
(A,X)

= λA(X) and ̂̂λ
(f,α)

= λB(α). (1.6)

Proposition 1.1.17. A weighted 2-limit is preserved or reflected precisely when

its associated cartesian-marked lax conical limit is so.

Proof. Clear after Remark 1.1.16.

Remark 1.1.18. As weighted 2-colimits in C are just weighted 2-limits in C op, we

automatically obtain from Theorem 1.1.15 the reduction of weighted 2-colimits in

C to cartesian-marked lax conical ones. More precisely, given 2-functors F : A →

C and W : Aop → Cat with A small, we obtain that

colimWF ∼= laxcart -colim∆1(F ◦ G (W )op),

where G (W ) :
∫ op

W → Aop.

But when W : Aop → Cat , there is a more natural 2-category of elements con-

struction that we can do on W , i.e. the one which produces the projection on the

first component G (W ) :
∫
W → A , with

∫
W defined as follows:

an object of
∫
W is a pair (A,X) with A ∈ A and X ∈ F (A);

a morphism (A,X)→ (B,X ′) in
∫
W is a pair (f, α) with f : A → B a morph-

ism in A and α : X → W (f)(X ′) a morphism in W (A);

a 2-cell (f, α) =⇒ (g, β) : (A,X)→ (B,X ′) in
∫
W is a 2-cell δ : f =⇒ g in A such

that W (δ)X′ ◦ α = β;
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the compositions and identities are analogous to the ones described in Construc-

tion 1.1.4.

In dimension 1, given Z : Aop → Set , we have that
(∫ op

Z
)op

and
∫
Z coincide,

but this is not true in dimension 2.

We believe that it is more natural to reduce weighted 2-limits to cartesian-marked

lax conical ones and weighted 2-colimits to cartesian-marked oplax conical ones.

This idea is original and brings to Theorem 1.1.21 and Theorem 1.1.22.

Definition 1.1.19. Let W : Aop → Cat be a 2-functor with A small, and con-

sider 2-functors M,N :
(∫
W

)op → D. A cartesian-marked oplax natural trans-

formation α from M to N , denoted α : M =====⇒
oplaxcart

N , is an oplax natural trans-

formation α from M to N such that the structure 2-cell on every morphism(
f, id

)
: (B,X)←− (A,W (f)(X)) in

∫
W is the identity.

Definition 1.1.20. Let W : Aop → Cat be a 2-functor with A small, and let

F :
∫
W → C be a 2-functor. The cartesian-marked oplax conical 2-colimit of F ,

denoted as oplaxcart -colim∆1F , is (if it exists) an object C ∈ C together with a

2-natural isomorphism of categories

C (C, U) ∼=
[(∫

W
)op

,Cat
]
oplaxcart

(∆1, C (F (−), U))

When oplaxcart -colim∆1F exists, the identity on C provides a cartesian-marked

oplax natural transformation µ : ∆1 =====⇒
oplaxcart

C (F (−), C) called the universal

cartesian-marked oplax cocone.

Theorem 1.1.21. Cartesian-marked oplax conical 2-colimits are particular

weighted 2-colimits. More precisely, given 2-functors Z : Aop → Cat and

F :
∫
Z → C with A small, the weight that realizes oplaxcart -colim∆1F is

Woplaxcart :
(∫
Z
)op −→ Cat

(B,X ′)

(C,X ′′)

(g,β) 7→
X ′/

Z(B)

X ′′/
Z(C)

Z(g)(−)◦β

where the action of Z(g)(−) ◦ β on morphisms is given by Z(g)(cod(−)).
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Proof. The proof is analogous to the one of Theorem 1.1.13.

Theorem 1.1.22. Every weighted 2-colimit can be reduced to a cartesian-marked

oplax conical one. Given 2-functors F : A → C and W : Aop → Cat with A

small,

colimWF ∼= oplaxcart -colim∆1(F ◦ G (W ))

where G (W ) :
∫
W → A is the 2-category of elements of W .

Proof. The proof is analogous to the one of Theorem 1.1.15.

Remark 1.1.23. Exactly as in Remark 1.1.16, in the notation of Theorem 1.1.22,

we can calculate the correspondence between the universal cocylinder of colimWF

and the universal cartesian-marked oplax cocone of oplaxcart -colim∆1(F ◦ G (W )).

We find that it is the same as the one in equation (1.6).

Proposition 1.1.24. A weighted 2-colimit is preserved or reflected precisely when

its associated cartesian-marked oplax conical colimit is so.

Proof. Clear after Remark 1.1.23.

Example 1.1.25. By the proof of Theorem 1.1.22, every 2-presheaf W : Aop →

Cat with A small can be expressed as

W ∼= oplaxcart -colim∆1(y ◦G (W )).

The universal cartesian-marked oplax cocone is given by

∀
(B,X ′)

(A,X)

(f,α) in
∫
W

y(A) W

y(B)

⌈X⌉

y(f)

⌈X′⌉

⌈α⌉

In particular, taking A = 1, W is a small category D and G (W ) is D → 1.

We obtain that 1 is “cartesian-marked oplax conical dense”, building D with

universal cartesian-marked oplax cocone

∀
D

C

f in D
1 D

1

C

D

f
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1.2. Pointwise Kan extensions along

discrete 2-fibrations

In this section, we propose an original definition of pointwise Kan extension

in 2-Cat lax along a discrete 2-opfibration (Definition 1.2.16). Our motivating

application is a 2-dimensional generalization of the fact that the category of

elements can be abstractly captured by a comma object that also exhibits a

pointwise Kan extension. We will prove it in Theorem 1.3.12 using such definition.

We explain why we should consider 2-Cat lax in order to prove this, and then we

inscribe 2-Cat lax in an original idea of 2-V -enrichment. It is the concept of 2-V -

enriched category that guides us to a notion of colimit in a 2-Set -enriched category

and then to our notion of pointwise Kan extension in 2-Cat lax. We thus interpret

the 2-category of elements as the 2-Set -enriched Grothendieck construction.

Our motivations are to capture the Grothendieck construction in an abstract way,

towards an enriched version of the Grothendieck construction, and to understand

how the various properties of the 2-category of elements are connected with each

other. We will show in Section 1.3 that the pointwise Kan extension result which

we prove in Theorem 1.3.12 implies many other properties.

An important ingredient will be that a pointwise Kan extension in 2-Cat lax
is always a weak Kan extension (Definition 1.2.9) as well. The proof

(Proposition 1.2.19) will be based on an oplaxcart - lax generalization of the para-

metrized Yoneda lemma (Theorem 1.2.18), that does not seem to appear in the

literature. While a fully lax parametrized Yoneda lemma is not possible, we show

that cartesian-marked oplax naturality is strict enough to expand the data on

the identities to a lax natural transformation.

The first problem that we encounter is to understand which ambient hosts the

2-category of elements construction. Aiming at a 2-dimensional generalization of

the fact that the category of elements can be captured by a comma object that

also exhibits a pointwise left Kan extension, we recall the following proposition,
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due to Bird.

Proposition 1.2.1 (Bird [6]). Let F : B → Cat be a 2-functor and consider its

2-category of elements. There is a cartesian-marked lax natural transformation λ

of the form ∫ op
F 1

B Cat

G(F ) 1
laxcart

F

Proof. Given a morphism (f, α) : (A,X)→ (B,X ′) in
∫ op

F , λ(A,X) is the functor

1→ F (A) corresponding to X ∈ F (A) and λ(f,α) corresponds to α.

Remark 1.2.2. Proposition 1.2.1 forces us to move out of 2-Cat in order to

capture the 2-category of elements (but also just the usual Grothendieck con-

struction) from an abstract point of view. Indeed, we need to at least admit

lax natural transformations as 2-cells. If we wish to recover the Grothendieck

construction of pseudofunctors or of general lax functors into Cat , we also need

to admit lax functors as 1-cells of our ambient. We will just consider strict 2-

functors for simplicity, but we actually expect everything to hold for lax functors

as well.

We call 2-Cat lax the lax 3-category of 2-categories, 2-functors, lax natural trans-

formations and modifications. In [31, Theorem 2.22], Lambert has indeed proved

that this forms a lax 3-category, i.e. a category enriched over the cartesian closed

1-category of 2-categories and normalized lax functors (where normalized means

that identities are preserved strictly). 2-Cat lax is actually a restriction of the lax

3-category obtained by enriching the 1-category of 2-categories and normalized

lax functors over itself: we consider for simplicity strict 2-functors rather than lax

functors. The idea to use 2-Cat lax is reinforced by the fact that Buckley, in [10]

(continuing the work of Baković’s [5]), found the need to consider trihomomorph-

isms F : Bcoop → 2-Cat lax in order to capture non-split Hermida’s 2-fibrations

([23]) via a suitable Grothendieck construction.

We should keep in mind that 2-Cat lax has no underlying 2-category, since the
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interchange rule now only holds in a lax version, in the sense that we have a

modification between the two possible lax natural transformations. Indeed, con-

sider two lax natural transformations

A B C ;

F

G

H

K

α β

Then for every A ∈ A , the component αA is a morphism F (A) −→ G(A) in B and

we can consider the structure 2-cell of β on such morphism. We obtain that βαA

is a 2-cell in C of the form

H(F (A)) K(F (A))

H(G(A)) K(G(A))

βF (A)

H(αA) K(αA)
βαA

βG(A)

And the βαA ’s collect into a modification βα, since the condition we should check

on a morphism f : A → A′ in A is guaranteed by the 2-dimensional property of

β being a lax natural transformation, applied to the 2-cell αf in B .

Remark 1.2.3. With the motivating exploration of enriched fibrations and

Grothendieck construction in mind, we inscribe 2-Cat lax in an original idea of

2-V -enrichment. Recall that Set is the archetypal elementary topos. Its su-

bobject classifier exhibits a bijection between functions into 2 and subsets of

the domain. We can consider this as the 0-category of elements construction.

Then, according to Weber’s [51] (as we will also recall in Section 3.1), Cat is

the archetypal 2-dimensional elementary topos, and its 2-dimensional classifica-

tion process is the category of elements construction. In this chapter, we claim

that 2-Cat lax is the ambient that hosts the 2-category of elements construction.

We will say in Remark 1.3.9 how our work could be applied to 3-dimensional

elementary topos theory. We believe that the sequence

Set ⇝ Cat ⇝ 2-Cat lax

is best explained by what we call a 2-V -enrichment. That is, for V a general

nice enough monoidal category, we will have the sequence

V ⇝ V -Cat ⇝ 2-V -Cat
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When we enrich over V -Cat , we should take into account the fact that V -Cat is

a monoidal 2-category, and then take a weak enrichment rather than an ordinary

one.

The 2-V -enrichment idea will guide us to propose a notion of colimit and of

pointwise Kan extension in 2-Cat lax. We also notice that the further step in the

sequence above could bring towards a version of Gray-categories, but we have not

investigated this yet.

We recall the following known remark on the ordinary enrichment.

Remark 1.2.4. If (V ,⊗, I) is a monoidal category with coproducts such that

−⊗− preserves coproducts in each variable, we can define a V -enriched category

as pair (S,A) with S a set, that will be the set of objects, and A a monoid in the

monoidal category
[
S × S,V

]
of functors (actually given by mere functions) from

S×S to V and natural transformations (actually given by the mere components),

that we think of as the monoidal category of square matrices indexed by S with

entries in V , with the tensor product given by matrix multiplication and tensor

unit given by the identity matrix (with I all over the main diagonal and the

initial object elsewhere). The multiplication of the monoid A gives indeed the

composition of the enriched category, the unit gives the identities and the axioms

of monoid precisely ask the composition to be associative and unital.

We can then also define V -enriched functors on this line, using the following

construction. Given a V -enriched category (T,B) and a function F : S → T , we

can define a monoid F ∗B in
[
S × S,V

]
, taking

F ∗B =
(
S × S F×F−−−→ T × T B−→ V

)
and defining the multiplication and the unit by whiskering those of B with F ×F

on the left. Indeed F ∗B is a monoid, by pasting calculations, since all the required

axioms just involve cells of strictly higher levels than F × F .

Given (S,A) and (T,B) two V -enriched categories, a V -enriched functor

(S,A) → (T,B) can be defined as a pair (F, F ) with F : S → T a function

and F : A → F ∗B a morphism between monoids in
[
S × S,V

]
.
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We now give a weak 2-categorical generalization of Remark 1.2.4. The concept of

weak enrichment is explored in Garner and Shulman’s [17]. In the terms presented

below (on the line of Remark 1.2.4), however, it does not seem to appear in the

literature.

We will use the concepts of pseudomonoid in a 2-category and of lax morph-

ism between them. A definition of them can be found in Moeller and Vasilako-

poulou’s [38].

Construction 1.2.5 (Weak enrichment). Let (K ,⊗, I, α, λ, ρ) be a monoidal

2-category, i.e. a 2-category K that is monoidal in the 1-dimensional sense but

such that the tensor product is a 2-functor K × K → K . And assume that

K has coproducts and that − ⊗ − preserves them in each variable. Then, for

every set S, the 2-category [S × S,K ] is 2-monoidal as well, with tensor product

given by matrix multiplication and tensor unit given by the identity matrix.

Indeed, the matrix multiplication can be extended to a 2-functor using the 2-

dimensional property of the (now enriched) coproducts, with the 2-functoriality

given by the fact that everything can be discharged on components and that

−⊗− : K ×K → K is a 2-functor.

We define a K -weakly enriched category as a pair (S,A) with S a set, thought as

the set of objects, and A a pseudomonoid in the monoidal 2-category [S × S,K ]

of square S-indexed matrices with entries in K (whose 1-cells are the 2-natural

transformations and whose 2-cells are the modifications). Notice that a strict

2-monoid in [S × S,K ] is the same thing as a monoid in the monoidal category

[S × S,K 0], and thus precisely an enriched category over K 0 with object set S.

Now, notice that if (T,B) is a K -weakly enriched category and F : S → T is a

function,

F ∗B =
(
S × S F×F−−−→ T × T B−→ V

)
is a pseudomonoid in [S × S,K ], defining all the needed structure cells as those

of B whiskered with F × F on the left. That F ∗B is a pseudomonoid holds by

pasting calculations, since all the required axioms just involve cells of strictly

higher levels than F × F .



38
1. The 2-Set -enriched Grothendieck construction

and cartesian-marked lax limits

Given two K -weakly enriched categories (S,A) and (T,B), we define a K -weakly

enriched functor (S,A)→ (T,B) as a pair (F, F ) with F : S → T a function and

F : A → F ∗B a lax morphism between lax monoids in [S × S,K ].

Given now (F, F ), (G,G) : (S,A) → (T,B) two K -weakly enriched functors, we

define a K -weakly enriched natural transformation φ : (F, F ) =⇒
lax

(G,G) as a

collection of 1-cells

φA : I → B (F (A), G(A))

in K for every A ∈ S and 2-cells

A(A,B)⊗ I B(GA,GB)⊗ B(FA,GA)

A(A,B) B(FA,GB)

I ⊗ A(A,B) B(FB,GB)⊗ B(FA, FB)

G⊗φA

comp

λ−1
A(A,B)

ρ−1
A(A,B)

φB⊗F

comp

φA,B

in K for every pair (A,B) ∈ S × S such that, for every A,B,C ∈ S, with

notations like AA,B := A (A, B) and BF,G
A,B := B (F (A), G(B)) and omitting the

tensor product of objects, the pasting in K

BFG
AA

I BGG
AA IBFG

AA

AAA AAAI BGG
AA I BGG

AABFG
AA BFG

AA

IAAA IBFF
AA BFG

AABFF
AA

λ−1

φA

idG(A)

idA
G ρ−1 idG(A) ⊗1

∼=
unit−1

B

ρ−1

G

λ−1

G⊗1 1⊗φA

φA,A

comp

1⊗F φA⊗1

comp

is equal to the pasting

BFG
AA

I II BFG
AA I BFG

AABFF
AA BFG

AA

BFF
AA IBFF

AA

AAA

ρ−1
φA

idF (A)

idA

ρ−1

F

1⊗idF (A)

φA⊗1 1⊗idF (A)

∼=
unit−1

B

comp

λ−1

φA⊗1

F

and the pasting in K
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ABC (AABI) ABC

(
BGG
ABBFG

AA

)
ABCBFG

AB BGG
BCBFG

AB

ABCAAB ABC (IAAB) ABC

(
BFG
BBBFF

AB

)
BGG
BC

(
BFG
BBBFF

AB

)
AB,CBFF

AB (ABCI)BFF
AB

(
BGG
BCBFG

BB

)
BFF
AB BFG

AC

BFF
BCBFF

AB (IABC)BFF
AB

(
BFG
CCBFF

BC

)
BFF
AB BFG

BCBFF
AB

AAC BFF
AC IBFF

AC BFG
CCBFF

AC

1⊗G⊗φA 1⊗comp

1⊗φA,B

G⊗1

comp

1⊗ρ−1

1⊗λ−1

1⊗F

F⊗F

comp

1⊗φB⊗F G⊗1⊗1

1⊗comp 1⊗comp

ρ−1⊗1

λ−1⊗1

G⊗φB⊗1

φB,C⊗1

α

comp⊗1

∼=
assoc−1

B

comp
F ∼=

assocB
φC⊗F⊗1 comp⊗1

comp

F λ−1 φC⊗1

comp

is equal to the pasting

ABC (AABI) ABC

(
BGG
ABBFG

AA

)
ABCBFG

AB

BGG
BCBGG

AB BGG
AC BGG

AC I BGG
BCBFG

AB

ABCAAB AAC AACI BGG
AC BFG

AA

IAAC BFG
CCBFF

AC BFG
AC

1⊗G⊗φA 1⊗comp

G⊗1

comp

G

ρ−1

1⊗φA

∼=
assoc−1

B

comp

1⊗ρ−1

G⊗G

comp

ρ−1

G

λ−1

G⊗φA

φA,C
comp

φC⊗F comp

We notice that Construction 1.2.5 is particularly useful when K is V -Cat , since

we obtain a construction that we can apply to a starting ordinary V .

Definition 1.2.6 (The 2-V -enrichment). Let V be a nice enough monoidal

category such that V -Cat with the tensor product of V -categories (so we need

at least a braiding in V ) becomes a monoidal 2-category with coproducts such

that its tensor product preserves them in each variable.

We call 2-V -enriched category (resp. functor, natural transformation) a(
V -Cat

)
-weakly enriched category (resp. functor, natural transformation). We

call 2-V -Cat the tridimensional structure they form. A notion of 2-V -enriched

modification could be given as well.

Example 1.2.7. Consider V = Set . Then 2-Set -enriched categories, func-

tors, natural transformations and modifications are, respectively, bicategories,

lax functors, lax natural transformations and modifications.
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We will think of 2-Cat lax as the lax 3-category of 2-Set -enriched categories, re-

stricted to strict weakly enriched categories and functors for simplicity.

Remark 1.2.8. We can now think of the 2-category of elements construction as

the 2-Set -enriched Grothendieck construction. It takes enriched presheaves with

values in Set -Cat = Cat , that is the base of the weak enrichment we consider, and

converts them into discrete 2-opfibrations, that can be seen as 2-Set -opfibrations.

In future work, we will explore how we can generalize this to more general mon-

oidal categories V in the place of Set , thus obtaining an enriched Grothendieck

construction. In particular, we believe that for this the 2-Set -enrichment should

be distinguished from the ordinary Cat -enrichment; we actually expect the latter

to be less useful than the former.

We give an original definition of weak Kan extension in a lax 3-category.

Definition 1.2.9. A diagram

B C

A

F

K λ
L

in a lax 3-category Q (that is a category enriched over the 1-category of 2-

categories and lax functors), exhibits L as the weak left Kan extension of F along

K, written L = lanK F , if pasting with λ gives an isomorphism of categories

Q (A , C ) (L, U) ∼= Q (B , C ) (F, U ◦K) (1.7)

for every U ∈ Q (A , C ) (the 2-naturality in U is granted automatically).

Remark 1.2.10. Lambert showed in [31, Theorem 2.22] that 2-Cat lax is a lax

3-category with hom-2-categories

2-Cat lax (A , C ) := [A ,C ]lax

where [A ,C ]lax is the 2-category of 2-functors from A to C , lax natural trans-

formations and modifications.
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So, in the notation of Definition 1.2.9, the isomorphism of categories of equa-

tion (1.7) becomes, for every U ∈ [A ,C ]lax,

[A ,C ]lax (L, U)
∼= [B ,C ]lax (F, U ◦K) .

Remark 1.2.11. We aim at a notion of pointwise Kan extension in 2-Cat lax that

allows us (Theorem 1.3.12) to prove a 2-dimensional version of the pointwise Kan

extension result that we have for the category of elements. For this we need a

notion of (co)limit in the setting of 2-Cat lax. There surely is a natural notion of

“external limit” in this context, i.e. a limit in the whole 2-Cat lax, which is that

of limit enriched over the 1-category of 2-categories and lax functors. Indeed

2-Cat lax is enriched over such 1-category. For C a 2-category, this recovers e.g.

the natural isomorphism

2-Cat lax (U, IdC // IdC ) ∼= 2-Cat lax (2, 2-Cat lax (U, C ))

presented by Lambert in [31] as the universal property of the lax comma object

IdC // IdC (see Definition 1.3.4) being the power of C by 2 in 2-Cat lax.

But we are more interested in an “internal” notion of colimit, i.e. a notion of

colimit in a 2-Set -enriched category (after Example 1.2.7). This should include

the notion of colimit in a 2-category, but be able to express the laxness as well.

After Section 1.1, we use (now non-necessarily conical) cartesian-marked oplax

colimits as colimits in a 2-Set -category (see Definition 1.2.12). Notice that the

marking is a piece of structure. These colimits are a particular case of the sigma-

omega-limits (or sigma-s-limits) considered by Szyld in [44] and [45]. By Proposi-

tion 3.18 of Szyld’s [44], these colimits can all be reduced to (still marked) conical

ones. However, expressing the diagram, the weight and the marking as different

pieces of structure makes it easier for us to define pointwise Kan extensions in

2-Cat lax.

Definition 1.2.12. Let M : Aop → Cat (the marking), F :
∫
M → C (the dia-

gram) and W :
(∫
M

)op → Cat (the weight) be 2-functors with A small. The

cartesian-marked oplax colimit of F marked by M and weighted by W , denoted
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as oplaxcartM -colimWF , is (if it exists) an object C ∈ C together with an isomorph-

ism of categories

C (C, U) ∼=
[(∫

M
)op

,Cat
]
oplaxcart

(W, C (F (−), U))

2-natural in U ∈ C . When oplaxcartM -colimWF exists, the identity on C provides a

cartesian-marked oplax natural transformation µ : W =====⇒
oplaxcart

C (F (−), C) called

the universal cartesian-marked oplax cocylinder.

We will also need to consider the case in which the domain of F is expressed

as
∫ op

M for some 2-functor M : A → Cat , and W :
(∫ op

M
)op → Cat . The

cartesian oplax colimit of F opmarked by M and weighted by W , denoted as

oplaxcartop -M -colimWF , is (if it exists) an object C ∈ C together with a 2-natural

isomorphism of categories

C (C, U) ∼=
[(∫ op

M
)op

,Cat
]
oplaxcart

(W, C (F (−), U))

Definition 1.2.13. Recall from Remark 1.1.12 what we can now call the trivial

marking and denote as triv. That is, given A a 2-category, we can view A as the

2-category of elements of ∆1: A → Cat . Cartesian-marked oplax with respect to

the trivial marking coincides with strict 2-naturality.

Remark 1.2.14. We can now rephrase Theorem 1.1.22 as follows:

In 2-Cat lax every trivially-marked weighted 2-colimit can be equivalently expressed

as a marked trivially-weighted 2-colimit. More precisely

oplaxcarttriv -colim
WF ∼= oplaxcartW -colim∆1(F ◦ G (W ))

Example 1.2.15. Let F : Aop → Cat be a 2-functor with A small. Then by

Example 1.1.25

F ∼= oplaxcartF -colim∆1(y ◦G (F ))

In particular, taking A = 1, we obtain that for every small category D

D ∼= oplaxcartD -colim∆1∆1.
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Notice that the marking given by D is “chaotic”, in the sense that cartesian-

marked oplax with respect to it coincides with oplax. In 2-Cat lax the 2-functor

1 : 1 → Cat is thus conically dense, analogously to the fact that the functor

1 : 1→ Set is dense.

We now propose an original notion of pointwise left Kan extension in 2-Cat lax
along a discrete 2-opfibration, using our definition of colimit in such setting

(Definition 1.2.12). Our idea is to keep the corresponding diagram and weight

considered in the (ordinarily) enriched setting (see Dubuc’s [16] or Kelly’s [28,

Chapter 4] for the classical definition), but adding the marking that we natur-

ally have when we extend along a discrete 2-opfibration. In Theorem 1.3.12, this

notion will allow us to prove a 2-dimensional version of the fact that the comma

object that captures the category of elements exhibits a pointwise Kan extension.

Definition 1.2.16. Consider a diagram

B C

A

F

K λ
L

in 2-Cat lax with B small and K a discrete 2-opfibration. Then by Theorem 1.1.8,

K is isomorphic in the slice 2-Cat /A to G (M) for some 2-functor M : A → Cat .

We can assume K is in the form G (M), up to whiskering the diagram with the

isomorphism in the slice. Assume further that λ is a cartesian-marked lax natural

transformation with respect to M .

We say that λ exhibits L as the pointwise left Kan extension of F along K,

written L = LanK F , if for every A ∈ A

L(A) ∼= oplaxcartop -M -colimA(K(−),A)F

with universal cartesian-marked oplax cocylinder

A (K(−), A) L
==⇒ C ((L ◦K)(−), L(A)) C (λ−,id)

=====⇒
oplaxcart

C (F (−), L(A)) ; (1.8)

or equivalently if for every A ∈ A and every C ∈ C the functor

C (L(A), C) −−→ [Bop,Cat ]oplaxcart (A (K(−), A), C (F (−), C))
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given by the cartesian-marked oplax natural transformation of equation (1.8) is

an isomorphism of categories (notice that the 2-naturality in C and A is granted,

where the latter is using that L is a 2-functor).

The rest of this section is dedicated to the proof that every pointwise left Kan ex-

tension in 2-Cat lax along a discrete 2-opfibration (as defined in Definition 1.2.16)

is a weak left Kan extension in 2-Cat lax as well.

For this, we need a generalization of the parametrized Yoneda lemma which is

cartesian-marked oplax and lax together (Theorem 1.2.18). Such result does not

seem to appear in the literature. While a fully lax parametrized Yoneda lemma

is not possible, since it is the strict naturality that classically allows to expand

the datum on the identity to a natural transformation, our version shows the

minimal strictness needed to do so.

Interestingly, such expansion in the fully strict 2-natural case classically depends

on the naturality of what will be our parameter A. Instead, we will need to

expand via the slight strictness of the cartesian-marked oplax naturality in B.

And an expansion through B is harder to achieve than one through A.

Definition 1.2.17. Let G,H : Bop × C → E be 2-functors. Assume that B is

endowed with the cartesian marking presented by a (split) discrete 2-opfibration

K : B → A (with small fibres). That is, B ∼=
∫ op

M for some 2-functor M : A →

Cat and has the cartesian marking. An oplaxcart-lax natural transformation α

from G to H is a collection of morphisms

αB,C : G(B,C)→ H(B,C)

in E for every (B,C) ∈ Bop×C and, for every f : B′ → B in Bop and g : C → C ′

in C , structure 2-cells

G(B′, C) H(B′, C)

G(B,C) H(B,C)

αB′,C

G(f,id) H(f,id)

αB,C

αf,C

G(B,C) H(B,C)

G(B,C ′) H(B,C ′)

αB,C

G(id,g) H(id,g)
αB,g

αB,C′
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such that α−,C is cartesian-marked oplax natural in B ∈ Bop and αB,− is lax

natural in C ∈ C , and such that the following compatibility axiom holds:

G(B,C) H(B,C)

G(B′, C) G(B,C ′) H(B,C ′)

G(B′, C ′) H(B′, C ′)

αB,C

G(id,g) H(id,g)
αB,g

G(id,g)

G(f,id)

αB,C′

αf,C′
G(f,id)

αB′,C′

H(f,id)

=

G(B,C) H(B,C)

G(B′, C) H(B′, C) H(B,C ′)

G(B′, C ′) H(B′, C ′)

αB,C

αf,C
H(id,g)

αB′,C

G(id,g)

G(f,id)

αB′,g

H(f,id)

H(id,g)

αB′,C′

H(f,id)

A modification Θ: α ≡⇛ β : G ====⇒
oplc - lax

H between oplaxcart - lax natural transform-

ations is a collection of 2-cells

G(B,C) H(B,C)

αB,C

βB,C

ΘB,C

in E that forms both, fixing C, a modification α−,C ≡⇛ β−,C , and, fixing B, a

modification αB,− ≡⇛ βB,−.

Theorem 1.2.18 (The oplaxcart - lax parametrized Yoneda lemma). Let K : B →

A be a (split ) discrete 2-opfibration (with small fibres ) and F : Bop × A → Cat

be a 2-functor. There is a bijection between

αB,A : A (K(B), A)→ F (B,A)

oplaxcart - lax natural in (B,A) ∈ Bop × A and

ηB : 1→ F (B,K(B))

extraordinary lax natural in B ∈ B (see Hirata’s [24] for a definition of ex-

traordinary lax natural transformations and modifications between them ).

Moreover this bijection extends to an isomorphism of categories, consider-

ing as morphisms of the two categories respectively the modifications between

oplaxcart - lax natural transformations and the modifications between extraordin-

ary lax natural transformations.
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Proof. By Theorem 1.1.8, we can assume that K is in the form G (M) :
∫ op

M →

A for a 2-functor M : A → Cat . Given

α(B,Y ),A : A (K(B, Y ), A)→ F ((B, Y ), A)

oplaxcart - lax natural in ((B, Y ), A) ∈
(∫ op

M
)op × A (see Definition 1.2.17), we

construct η(B,Y ) as the composite

1
idB−−→ A (B, B)

α(B,Y ),B−−−−−→ F ((B, Y ), B)

Then η(B,Y ) is extraordinary lax natural in (B, Y ) ∈
∫ op

M , with structure 2-cell

on (g, γ) : (B, Y )→ (B′, Y ′) in
∫ op

M given by the pasting

1 A (B, B) F ((B, Y ), B)

A (B′, B′) A (B, B′)

F ((B′, Y ′), B′) F ((B, Y ), B′)

idB

idB′ g◦−

α(B,Y ),B

F (id,g)

α(B,Y ),g

α(B′,Y ′),B′

−◦g
α(B,Y ),B′

α(g,γ),B′

F ((g,γ),id)

(1.9)

Indeed it is true in general that, given 2-functors T, S : C op × C → E (with a

cartesian marking on C ) the composite

J
ιC−→ T (C,C)

βC,C−−→ S(C,C)

is extraordinary lax in C ∈ C if ιC is extraordinary lax in C and βC,D is

oplaxcart - lax in (C,D) ∈ C op × C , with structure 2-cells given by a pasting

like that of equation (1.9) (with now a possibly non-identity 2-cell also in the up-

per left square). Such structure 2-cells surely respect the identities, and they also

respect the composition by the compatibility axiom of oplaxcart - lax (and oplax

and lax naturality). The two dimensional axiom is satisfied as well by moving the

external 2-cell through the diagram using the three 2-dimensional properties that

we have. We can then apply this result to η(B,Y ) since idK(B,Y ) is extraordinary

natural in (B, Y ) and α(B,Y ),K(B′,Y ′) is oplax
cart - lax natural in ((B, Y ), (B′, Y ′))

(as α(B, Y ), A is oplaxcart - lax in ((B, Y ), A)).
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Now, given ηB : 1 → F ((B, Y ), B) extraordinary lax natural in (B, Y ) ∈
∫ op

M ,

we expand it to functors

α(B,Y ),A : A (K(B, Y ), A)→ F ((B, Y ), A)

oplaxcart - lax natural in ((B, Y ), A) ∈
(∫ op

M
)op × A as follows, using the

cartesian-marked oplax naturality in (B, Y ) (that is the only strictness we have).

Given u : B → A in A , considering uY = (u, id), the structure 2-cell α(u,id),A = id

will give us a commutative square

A (A, A) F ((A,M(u)(Y )), A)

A (B, A) F ((B, Y ), A)

α(A,M(u)(Y )),A

−◦u F ((u,id),A)

α(B,Y ),A

So, looking at how we constructed η from α, in order to reach the bijection we

want, we define

α(B,Y ),A(u) := F ((u, id), A)
(
η(A,M(u)(Y ))

)
.

Given θ : u =⇒ v : B → A in A , considering

θY : (u,M(θ)Y ) =⇒ (v, id) : (B, Y )→ (A,M(v)(Y ))

and using that α(v,id),A = id, we will have by the 2-dimensional axiom of cartesian-

marked oplax naturality that

α(B,Y ),A(θ) = F (θY , A)α(A,M(v)(Y )),A(idA) ◦
(
α(u,M(θ)Y ),A

)
idA

So we firstly define the components of the structure 2-cells that express the

cartesian-marked oplax naturality of α(B,Y ),A in (B, Y ) and then we will read

how to define the action of α(B,Y ),A on morphisms θ.

Looking at the diagram of equation (1.9) applied to (idB, γ) : (B, Y ) → (B, Y ′)

in
∫ op

M , we see that, in order to have a bijection between the α’s and the η’s,

we need to define (
α(idB ,γ),B

)
idB

:= η(idB ,γ).
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Whence, given arbitrary (g, γ) : (B, Y ) → (B′, Y ′) in
∫ op

M and w : B′ → A in

A , since

(w, id) ◦ (g, γ) = (idA,M(w)(γ)) ◦ (w ◦ g, id),

we need to define(
α(g,γ),A

)
w
:= F ((w ◦ g, id), A)

(
η(idA,M(w)(γ))

)
.

And at this point we define, by the argument above,

α(B,Y ),A(θ) := F (θY , A)η(A,M(v)(Y ))
◦ F ((u, id), A)

(
η(idA,M(θ)Y )

)
for every θ : u =⇒ v : B → A in A .

Looking at the diagram of equation (1.9) applied to (g, id) : (B, Y ) →

(B′,M(g)(Y )) in
∫ op

M , we see that, in order to have a bijection between the

α’s and the η’s, we need to define(
α(B,Y ),g

)
idB

:= η(g,id).

Whence, given an arbitrary f : A → A′ in A and u : K(B, Y ) → A in A , by the

compatibility axiom of oplaxcart - lax applied to (u, id) : (B, Y ) → (A,M(u)(Y ))

in
∫ op

M and f : A→ A′ in A , we need to define(
α(B,Y ),f

)
u
:= F ((u, id), A′)

(
η(f,id)

)
.

Now, we verify that such assignments work. To show that α(B,Y ),A is a functor,

consider

u
θ
=⇒ v

ρ
=⇒ w : B → A

in A . Then

α(B,Y ),A(ρ ◦ θ) := F ((ρ ◦ θ)Y , A)η(A,M(w)(Y ))
◦ F ((u, id), A)

(
η(idA,M(ρ◦θ)Y )

)
while α(B,Y ),A(ρ) ◦ α(B,Y ),A(θ) is equal to

F (ρY , A)η(A,M(w)(Y ))
◦ F ((v, id), A)

(
η(idA,M(ρ)Y )

)
◦ F (θY , A)η(A,M(v)(Y ))

◦ F ((u, id), A)
(
η(idA,M(θ)Y )

)
By the extraordinary naturality of η,

η(idA,M(ρ◦θ)Y ) = F ((idA,M(θ)Y ), A)
(
η(idA,M(ρ)Y )

)
◦ η(idA,M(θ)Y )



1.2. Pointwise Kan extensions along discrete 2-fibrations 49

And by the uniqueness of the liftings of 2-cells through G (M), we have that

(ρ ◦ θ)Y = ρY ◦ (idA,M(ρ)Y )θ
Y .

So, by 2-functoriality of F , it suffices to prove that

F (θY , A)F ((idA,M(ρ)Y ),A)(η(A,M(w)Y )) ◦ F ((u,M(θ)Y ), A)
(
η(idA,M(ρ)Y )

)
is equal to

F ((v, id), A)
(
η(idA,M(ρ)Y )

)
◦ F (θY , A)η(A,M(v)(Y ))

.

But this is true by naturality of F (θY , A) applied to the morphism

η(idA,M(ρ)Y ) : η(A,M(v)(Y )) → F ((idA,M(ρ)Y ), A)
(
η(A,M(w)(Y ))

)
.

The fact that
(
α(B,Y ),f

)
u
is a natural transformation is checked with techniques

similar to the above ones, noticing that

(f θ)Y = (f, id)θY .

Whereas showing that
(
α(g,γ),A

)
w

is a natural transformation uses that for

(g, γ) : (B, Y )→ (B′, Y ′)

(θg)Y = θM(g)(Y )(g, id) and θY
′
(id, γ) = (id,M(v)(γ))θM(g)(Y ).

At this point, it is straightforward to check that α(B,Y ),A is oplaxcart - lax in

((B, Y ), A). And it is immediately seen that we obtain a bijection between the

α’s and the η’s by construction.

Finally, we extend such bijection to an isomorphism of categories. Given a modi-

fication

Θ(B,Y ),A : α(B,Y ),A =⇒ β(B,Y ),A : A (K(B, Y ), A)→ F ((B, Y ), A)

between oplaxcart - lax natural transformations in ((B, Y ), A), we send it to the

modification

1 A (B, B) F ((B, Y ), B)
idB

α(B,Y ),B

β(B,Y ),B

Θ(B,Y ),B
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between extraordinary lax natural transformations (that the latter is such is easily

checked). And such assignment is surely functorial.

Given a modification

Γ(B,Y ) : η(B,Y ) =⇒ η′(B,Y ) : 1→ F ((B, Y ), B)

between extraordinary lax natural transformations, we construct a corresponding

modification Θ. We see that, if we want to reach an isomorphism of categories,

we need to define (
Θ(B,Y ),B

)
idB

:= Γ(B,Y ).

Whence, given an arbitrary u : B → A in A , since we want Θ−,A to be a modi-

fication, considering (u, id) : (B, Y )→ (A,M(u)(Y )) in
∫ op

M , we need to define(
Θ(B,Y ),A

)
u
:= F ((u, id), A)

(
Γ(A,M(u)(Y ))

)
.

It is straightforward to check that Θ is then a modification between oplaxcart - lax

natural transformations. And such assignment is surely functorial. At this point,

it is immediate to see that the two functors are, by construction, inverses of each

other, giving the desired isomorphism of categories.

We are now ready to show that a pointwise left Kan extension in 2-Cat lax along

a discrete 2-opfibration is always a weak left Kan extension.

Proposition 1.2.19. Consider a diagram

B C

A

F

K λ
L

in 2-Cat lax with B small and K a discrete 2-opfibration. Assume that λ exhibits

L = LanK F (in the sense of Definition 1.2.16 ). Then λ also exhibits L =

lanK F .

Proof. Since L = LanK F , for every C, the 2-cell

A (K(−), A) L
==⇒ C ((L ◦K)(−), L(A)) C (λ−,id)

=====⇒
oplaxcart

C (F (−), L(A)) ;
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is 2-universal, giving an isomorphism of categories

C (L(A), C) −−→ [Bop,Cat ]oplaxcart (A (K(−), A), C (F (−), C)) (1.10)

We need to prove that, for every U ∈ [A ,C ]lax, pasting with λ gives an isomorph-

ism of categories

[A ,C ]lax (L, U)
∼= [B ,C ]lax (F, U ◦K) .

So consider a lax natural transformation φ : L =⇒
lax

U . For every A ∈ A , the

component φA : L(A) → U(A) corresponds to a cartesian-marked oplax natural

transformation

α−,A : A (K(−), A) =====⇒
oplaxcart

C (F (−), U(A))

via the isomorphism of equation (1.10). And φA being lax natural in A ∈ A

precisely corresponds to the cartesian-marked oplax natural transformations α−,A

being lax natural in A , with structure 2-cell on f : A → A′ in A given by the

image of φf through the isomorphism of equation (1.10). This means that the

lax natural transformations φ precisely correspond to functors αB,A oplaxcart - lax

natural in (B,A) ∈ Bop × A .

Consider then a modification Σ: φ ≡⇛ ψ : L =⇒
lax

U . The components ΣA with

A ∈ A correspond to modifications Θ−,A between cartesian-marked oplax natural

transformations α−,A and β−,A. And the modification axiom for Σ corresponds

to the modification axiom for ΘB,− for every fixed B ∈ B . So the modifications

Σ precisely correspond to modifications Θ between oplaxcart - lax natural trans-

formations α and β. By the functoriality of the isomorphism of equation (1.10),

we obtain an isomorphism of categories between [A ,C ]lax (L, U) and the category

of oplaxcart - lax natural transformations

αB,A : A (K(B), A) =====⇒
oplaxcart

C (F (B), U(A))

in (B,A) ∈ Bop × A and modifications between them.
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By Theorem 1.2.18 (the oplaxcart - lax parametrized Yoneda lemma), the latter

category is then isomorphic to the category of extraordinary lax natural trans-

formations

1→ C (F (B), U(K(B)))

in B ∈ B and modifications between them, which is isomorphic (for example,

by Hirata’s paper [24]) to [B ,C ]lax (F, U ◦K). Therefore we have produced an

isomorphism of categories

[A ,C ]lax (L, U)
∼= [B ,C ]lax (F, U ◦K) ,

and we can read that this is given by pasting with λ.

1.3. Application to the 2-category of elements

In this section, we explore in detail the 2-category of elements (Definition 1.1.5),

conceived as the 2-Set -enriched Grothendieck construction, from an abstract

point of view. Our motivation is to introduce, in future work, an enriched version

of fibrations and of the Grothendieck construction. It is also useful to understand

the connections between the various properties of the 2-category of elements (this

speaks in particular of the usual Grothendieck construction as well).

In Theorem 1.3.8, we show that the 2-category of elements can be captured by

a lax comma object in 2-Cat lax, as defined in Definition 1.3.4. This is original,

generalizing a known result due to Bird ([6]). The actual difference between

our result and Bird’s one is that ours allows to consider also lax natural trans-

formations in the 2-dimensional part of the universal property. This also solves

a mismatch in Gray’s [20, Sections I,2 and I,5] lax commas. See below for a

thorough comparison with the existing literature.

We explain how our work has potential applications to higher dimensional ele-

mentary topos theory. Indeed, in our opinion, the 2-category of elements should

be seen as the archetypal 3-dimensional classification process, exhibiting 2-Cat lax
as the archetypal elementary 3-topos.
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In Theorem 1.3.12, we prove a pointwise Kan extension result for the 2-category

of elements, using our original definition of pointwise Kan extension in 2-Cat lax
(Definition 1.2.16). We then show that this result implies many other proper-

ties of the 2-category of elements, also thanks to Proposition 1.2.19 (a pointwise

Kan extension in 2-Cat lax is a weak one as well). Among the properties im-

plied, we find the conicalization of weighted 2-limits (Theorem 1.1.15) and the

2-fully faithfulness of the 2-functor that calculates the 2-category of elements

(that completes Theorem 1.1.8 to 2-equivalences between 2-copresheaves and dis-

crete 2-opfibrations).

Remark 1.3.1. Proposition 1.2.1 gives a cartesian-marked lax natural trans-

formation λ of the form ∫ op
F 1

B Cat

G(F ) 1
laxcart

F

Bird showed in [6] that this square exhibits a lax comma. The notion of lax comma

used by Bird has been introduced by Gray in [20, Section I,2] (with the name “2-

comma category”) and has then been unravelled by Kelly in [27]. However they

did not provide a complete universal property suitable to the lax 3-categorical

ambient 2-Cat lax. Lambert attempted in [31] to give a better universal property

than the one of Gray and Kelly, but without stating any uniqueness condition in

the 2-dimensional part and only giving a partial 3-dimensional part. We present

in Definition 1.3.4 (see also Proposition 1.3.5) a complete universal property of the

lax comma object, that refines both the ones of Gray (and Kelly) and Lambert.

In order to distinguish the explicit definition (given in Gray’s [20]) from the

complete universal property of the lax comma object, we will call the former “lax

comma” and the latter “lax comma object in 2-Cat lax”. However, we will use the

same symbol for both; this is justified by Proposition 1.3.5.

Definition 1.3.2 (Gray [20, Section I,2]). Let F : A → C and G : B → C be

2-functors. The lax comma from F to G is the 2-category F //G that is given by

the following data:
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an object of F //G is a triple (A,B, h) with A ∈ A , B ∈ B and h : F (A)→ G(B)

a morphism in C ;

a 1-cell (A,B, h)→ (A′, B′, h′) in F //G is a triple (f, g, φ) with f : A → A′ in

A , g : B → B′ in B and

F (A) G(B)

F (A′) G(B′)

h

F (f) G(g)
φ

h′

a 2-cell in C ;

a 2-cell (f, g, φ) =⇒ (f ′, g′, φ′) : (A,B, h)→ (A′, B′, h′) is a pair (α, β) with

α : f =⇒ f ′ in A and β : g =⇒ g′ in B such that

F (A) G(B) F (A) G(B)

F (A′) G(B′) F (A′) G(B′)

h

F (f ′) F (f) G(g)
φ

h

F (f ′) G(g′) G(g)

φ′

h′ h′

F (α) G(β)

the composition of 1-cells is given by pasting and that of 2-cells is inherited by

the ones in A and B .

The oplax comma from F to G is the co of the lax comma from F co to Gco.

The following proposition shows the partial universal property of the lax comma

object presented by Gray in [20].

Proposition 1.3.3 (Gray [20, Section I,5]). Let F : A → C and G : B → C be

2-functors. The lax comma from F to G is equivalently given by the enriched

conical limit in 2-Cat of the diagram

A C 2
oplax B

C C
F

coddom
G

where C 2
oplax is the lax comma from IdC to IdC .
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But there is a better universal property that the lax comma satisfies. Indeed, it

is a lax comma object in the lax 3-category 2-Cat lax, as originally defined here.

Definition 1.3.4. Let Q be a lax 3-category and consider 1-cells F : A → C and

G : B → C in Q . The lax comma object in Q from F to G is, if it exists, an

object F //G ∈ Q together with a 2-cell

F //G A

B C

∂0

∂1 F
λ

G

in Q that is universal in the following lax 3-categorical sense:

(i) for every 2-cell γ : F ◦ P =⇒ G ◦ Q : M → C , there exists a unique 1-cell

V : M → F //G such that

M
A

B C

P

Q F
γ

G

=

M

F //G A

B C

P

Q

V

∂0

∂1 F
λ

G

(ii) for every 1-cells V,W : M → F //G and every 3-cell

M

F //G A

F //G

B C

W

V

∆

∂0

∂1 F
λ

∂1
G

Ξ

≡≡⇛

M F //G

F //G A

B C

V

W

∂0

Γ ∂0

∂1 F
λ

G

for 2-cells Γ and ∆, there exists a unique 2-cell ν : V =⇒ W such that

∂0ν = Γ, ∂1ν = ∆, λν = Ξ;

notice that we are precisely asking that Ξ corresponds to the 3-cell given

by the lax interchange rule in Q of

M F //G C ;

V

W

F◦∂0

G◦∂1

ν λ
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(iii) for every 2-cells ν, ω : V =⇒ W : M → F // G and every pair of 3-cells

Φ: ∂0ν ≡⇛ ∂0ω and Ψ: ∂1ν ≡⇛ ∂1ω such that

λω ◦

M

F //G A

F //G

B C

W

V

∂1ν

∂1ω

∂0

∂1 F
λ

∂1

G

Ψ =

M F //G

F //G A

B C

V

W

∂0
∂0ν

∂0ω

∂0

∂1 F
λ

G

Φ

◦ λν

(1.11)

there exists a unique 3-cell Θ: ν ≡⇛ ω such that ∂0Θ = Φ and ∂1Θ = Ψ.

Proposition 1.3.5. Let F : A → C and G : B → C be 2-functors. Then there is

a lax natural transformation

F //G A

B C

∂0

∂1 F
λ

G

that exhibits the lax comma F // G as the lax comma object in 2-Cat lax from F

to G. Moreover, in the condition (ii) of lax comma object in 2-Cat lax, if Γ and

∆ (that can be lax natural ) are both strict 2-natural (resp. pseudonatural ) then

also ν is so.

Proof. Firstly, we construct λ. Given (A,B, h) ∈ F //G, we define the component

of λ on it to be h. Given a morphism (f, g, φ) : (A,B, h)→ (A′, B′, h′) in F //G,

we define the structure 2-cell of λ on it to be φ. It is then straightforward to

show that λ is a lax natural transformation.

For condition (i) of lax comma object in 2-Cat lax, since λ picks the third com-

ponent of objects and morphisms in F // G and the other two components are

determined by the projections through ∂0 and ∂1, we have to define V as

V (M) := (P (M), Q(M), γM)

V (m) := (P (m), Q(m), γm)
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for every M ∈ M and every morphism m in M . This is easily checked to be a

2-functor, and it works by construction.

For (ii), take an arbitrary Ξ as above. We see that the three requests

∂0ν = Γ, ∂1ν = ∆, λν = Ξ

force us to construct the component of ν on an arbitrary M ∈ M to be the

morphism (ΓM ,∆M ,ΞM) in F //G. Then the structure 2-cell of ν on a morphism

m : M → M ′ in M , being a 2-cell in F // G, is determined by its projections

through ∂0 and ∂1. So we are forced to define νm to be the 2-cell (Γm,∆m) in F//G.

This is indeed a 2-cell since Ξ is a modification. It is straightforward to check that

ν is a lax natural transformation, since Γ and ∆ are so. And we immediately see

that if both Γ and ∆ are strict 2-natural (resp. pseudonatural) then also ν is so.

The observation that ν is then the unique lax natural transformation V =⇒
lax

W

such that the modification corresponding to the lax interchange rule in 2-Cat lax
of ν and λ coincides with Ξ follows from Remark 1.2.2.

For (iii), let M ∈ M . Since the component ΘM will be a 2-cell in F // G, it is

determined by its projections through ∂0 and ∂1. So we need to define

ΘM := (ΦM ,ΨM).

That this is indeed a 2-cell νM =⇒ ωM in F //G is guaranteed by equation (1.11),

taking components onM . The condition that the ΘM ’s need to satisfy in order for

them to collect into a modification Θ is then an equality between 2-cells in F //G,

and thus it suffices to check its projections through ∂0 and ∂1. But those two

resulting conditions are given by the fact that both Φ and Ψ are modifications.

Remark 1.3.6. Notice from Definition 1.3.4 that the lax comma object in a lax 3-

category really is an upgrade of the comma object to a lax 3-dimensional ambient.

Indeed, a lax comma object in a 2-category is precisely a comma object, since

any Ξ of Definition 1.3.4 is then forced to be the identity, and the tridimensional

part becomes trivial. Interestingly, the uniqueness in the 2-dimensional part of

the universal property of the lax comma object in a lax 3-category is obtained by

considering the lax interchange rule.
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The universal property of Proposition 1.3.3 is obtained precisely by restricting

ourselves to consider as Γ and ∆ only strict 2-natural transformations.

Remark 1.3.7. The following theorem is original, refining the result of Bird in [6]

that the 2-category of elements is given by a lax comma. The actual difference

between our result and Bird’s one is that ours allows to consider lax natural

transformations Γ and ∆ in the 2-dimensional part of the universal property.

Moreover lax comma objects in 2-Cat lax solve the mismatch of Gray’s lax commas

between the use of lax natural transformations and the strict ambient 2-Cat that

hosts Gray’s universal property.

Theorem 1.3.8. Let F : B → Cat be a 2-functor. The 2-category of elements is

equivalently given by the lax comma object∫ op
F 1

B Cat

G(F ) 1
lax comma

F

(1.12)

in 2-Cat lax, exhibited by the cartesian-marked lax natural transformation of Pro-

position 1.2.1. As a consequence, it is then also given by the strict 3-pullback

in 2-Cat lax (whose universal property can be evidently defined ) between F and

the replacement τ of 1 : 1 → Cat obtained by taking the lax comma object of

1 : 1→ Cat along the identity of Cat (that is a lax 3-dimensional version of the

lax limit of the arrow 1 : 1→ Cat ):∫ op
F Cat •,lax 1

B Cat Cat

⌟
G(F ) τ 1

lax comma

F

The domain of τ is a lax pointed version of Cat , whence the notation Cat •,lax.

Proof. The proof is a straightforward calculation. The fact that G (F ) is then also

the strict 3-pullback of τ is readily checked by showing that such strict 3-pullback

satisfies the universal property of the lax comma object 1//F in 2-Cat lax that we

have presented in Definition 1.3.4, using the universal properties of 1 // IdCat and

of the strict 3-pullback together with some basics of the calculus of pasting.
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Remark 1.3.9. Theorem 1.3.8 shows a potential application of this work to 3-

dimensional elementary topos theory. After Theorem 1.3.8, we should indeed view

2-Cat lax as the archetypal example of a would-be notion of elementary 3-topos.

Its classification process is the 2-category of elements, generalizing Weber’s idea

in [51] that the category of elements is the archetypal 2-dimensional classification

process. Towards a definition of elementary 3-topos, one can choose between two

ways. We can either regulate the classification process with lax comma objects in

a lax 3-category (as originally defined here in Definition 1.3.4) or take pullbacks

along discrete 2-opfibrations (that serve as replacement).

Proposition 1.3.10. By Theorem 1.3.8, the 2-category of elements construction

canonically extends, for every 2-category B, to a 2-functor

G (−) : [B ,Cat ]lax → 2-Cat /B

Proof. Given a lax natural transformation φ : F =⇒ G : B → Cat , we define

G (φ) as the unique morphism G (φ) :
∫ op

F →
∫ op

G induced by the universal

property of the lax comma object
∫ op

G in 2-Cat lax applied to the lax natural

transformation ∫ op
F 1

B Cat

G(F )
λF

1
F

G

φ

where λF is the lax natural transformation that presents
∫ op

F as a lax comma ob-

ject in 2-Cat lax. Explicitly, for every 2-cell δ : (f, α) =⇒ (g, β) : (B,X) → (C,X ′)

in
∫ op

F

G (φ) (B,X) = (B,φB(X)) and G (φ) (f, α) = (f, φC(α)) and G (φ) (δ) = δ.

Given a modification Θ: φ ≡⇛ ψ : F =⇒ G : B → Cat , we define G (Θ) as the

unique 2-natural transformation induced by the universal property of the lax

comma object
∫ op

G in 2-Cat lax applied, in the notation of Definition 1.3.4 to
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V = G (φ), W = G (ψ), Γ = id, ∆ = id and Ξ given by∫ op
F 1

B Cat

G(F )

λF

1
F

G

φ ψ
Θ

Explicitly, the component of G (Θ) on an object (B,X) ∈
∫ op

F is

G (Θ)(B,X) = (idB,ΘB,X) .

It is straightforward to show that G (−) is indeed a 2-functor.

Remark 1.3.11. The following table shows the four co-op versions of the 2-

category of elements construction, with the corresponding notions of fibration.

∫ op
F 1

B Cat

G(F ) 1
lax comma

F

disc 2-opfibrations:

opfibrations, locally

discrete fibrations

∫
F 1

B Cat op

G(F ) 1

F

lax comma

disc 2-fibrations:

fibrations, locally

discrete opfibrations

∫ coop
F 1

B Cat co

G(F ) 1
oplax comma

F

disc 2-coopfibrations:

opfibrations, locally

discrete opfibrations

∫ co
F 1

B Cat coop

G(F ) 1

F

oplax comma

disc 2-cofibrations:

fibrations, locally

discrete fibrations

We now apply Section 1.2 to the 2-category of elements. We show that the same

filled square that exhibits a lax comma object in 2-Cat lax also exhibits a pointwise

left Kan extension in 2-Cat lax (Definition 1.2.16). Such result is original.

Theorem 1.3.12. Let F : A → Cat be a 2-functor with A a small 2-category.

Then the lax comma object square in 2-Cat lax∫ op
F 1

A Cat

G(F ) 1
lax comma

F

exhibits

F = LanG(F ) ∆1.
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Proof. By Proposition 1.2.1, we know that the lax natural transformation λ that

presents the lax comma object in 2-Cat lax is cartesian-marked lax. Given A ∈ A

and C ∈ Cat , we prove that the cartesian-marked oplax natural transformation

A (G (F ) (−), A) F
==⇒ Cat ((F ◦ G (F ))(−), F (A)) Cat (λ−,id)

======⇒
oplaxcart

Cat (∆1(−), F (A)) ,

that we call µ, is 2-universal. Explicitly, µ has components

µ(B,X) : B (B, A) −→ Cat (1, F (A))

B A

u

v

θ 7−→ 1 F (A)

F (u)(X)

F (v)(X)

F (θ)X

for every (B,X) ∈
∫ op

F and structure 2-cells

(
µ(g,γ)

)
u
= F (u)(γ) : F (u ◦ g)(X ′)→ F (u)(X)

on every (g, γ) : (B,X)←− (B′, X ′) in
∫ op

F , for every u : B → A in A . Given

σ : A (G (F ) (−), A) =====⇒
oplaxcart

Cat (∆1(−), C) ,

we prove that there exists a unique functor s : F (A)→ C such that

(s ◦ −) ◦ µ = σ.

We see that there is at most one such s, as we need, for every α : X → X ′ in

F (A),

s(X) = s
(
µ(A,X)(idA)

)
= σ(A,X)(idA)

s(α) = s
((
µ(idA,α)

)
idA

)
=

(
σ(idA,α)

)
idA

.

And this s works thanks to the fact that σ is cartesian-marked oplax. In-

deed it is readily shown to be functorial (using that σ is oplax) and for every

(g, γ) : (B,X)→ (B′, X ′) in
∫ op

F and every θ : u =⇒ v : B → A in A , considering

uX = (u, id) and θX : (u, F (θ)X) =⇒ (v, id),

σ(B,X)(u) = σ(A,F (u)(X))(idA) = s(F (u)(X)) = s
(
µ(B,X)(u)

)
σ(B,X)(θ) =

(
σ(u,F (θ)X)

)
id
=

(
σ(id,F (θ)X)

)
id
= s(F (θ)X) = s

(
µ(B,X)(θ)

)
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(
σ(g,γ)

)
u
=

(
σ(id,γ)

)
u
=

(
σ(u,F (u)(γ))

)
id
=

(
σ(id,F (u)(γ))

)
id
= s(F (u)(γ)) = s

((
µ(g,γ)

)
u

)
We now prove the 2-dimensional universality of µ. Given

Ξ: σ ≡⇛ σ′ : A (G (F ) (−), A) =====⇒
oplaxcart

Cat (∆1(−), C) ,

we prove that there exists a unique natural transformation ξ : s =⇒ s′ : F (A)→ C

such that

(ξ ∗ −)µ = Ξ.

We see that there is at most one such ξ, as we need, for every X ∈ F (A),

ξX = ξµ(A,X)(idA) = Ξ(A,X),idA

And this ξ works since it is readily shown to be natural (using that Ξ is a modi-

fication) and for every (B,X) ∈
∫ op

F and u : B → A in A

Ξ(B,X),u = Ξ(A,F (u)(X)),idA = ξF (u)(X) = ξµ(B,X)(u).

We have thus shown that µ is 2-universal and this concludes the proof.

Thanks to Proposition 1.2.19, we obtain as a corollary that the 2-category of

elements also exhibits a weak left Kan extension in 2-Cat lax. The isomorphism

of categories that presents such weak left Kan extension has been proved by Bird

in [6]. Moreover, such isomorphism restricts to different flavours of laxness. All

these isomorphisms are a particular case of Proposition 3.18 of Szyld’s [44].

Corollary 1.3.13 (Bird [6], Szyld [44]). Let F : A → Cat be a 2-functor. Then

F = lanG(F ) ∆1.

Moreover the isomorphism of categories

[A ,Cat ]lax (F, U) ∼=
[∫ op

F,Cat
]
lax

(∆1, U ◦ G (F )) ,

natural in U : A → Cat , that presents the weak left Kan extension in 2-Cat lax
(see Remark 1.2.10 ) restricts to isomorphisms

[A ,Cat ]ps (F, U) ∼=
[∫ op

F,Cat
]
sigma

(∆1, U ◦ G (F ))
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[A ,Cat ] (F, U) ∼=
[∫ op

F,Cat
]
laxcart

(∆1, U ◦ G (F )) ,

where ps means to restrict to pseudonatural transformations and sigma means

to restrict to sigma natural transformations, that have been defined in Descotte,

Dubuc and Szyld’s paper [15] and are a pseudo version of the cartesian-marked

lax natural transformations.

Proof. Clear by Proposition 1.2.19. It is straightforward to see that the restric-

tions hold.

Remark 1.3.14. The third isomorphism of Corollary 1.3.13 offers a shorter

but less elementary proof to Theorem 1.1.15 (reduction of weighted 2-limits to

cartesian-marked lax conical ones). Indeed this is what Street showed in [42,

Theorem 15].

We can also deduce the 2-fully faithfulness of the 2-category of elements con-

struction (in three laxness flavours) and extend Lambert’s Theorem 1.1.8 to 2-

equivalences between 2-copresheaves and discrete 2-opfibrations. The fact that

the first 2-functor G (−) of Theorem 1.3.15 is 2-fully faithful is proved also in

Bird’s [6], but we show that it is a consequence of the weak Kan extension result.

None of the three 2-equivalence results of Theorem 1.3.15 seems to appear in the

literature.

Theorem 1.3.15. Let A be a 2-category. The 2-category of elements construc-

tion (extended to consider lax natural transformations as in the proof of Propos-

ition 1.3.10 ) produces a 2-equivalence

G (−) : [A ,Cat ]lax
∼→ D2OpFib (A)

where D2OpFib (A) is the full sub-2-category of 2-Cat /A given by the split dis-

crete 2-opfibrations with small fibres. Moreover this restricts to 2-equivalences

G (−) : [A ,Cat ]ps
∼→ D2OpFib cart (A)

G (−) : [A ,Cat ] ∼→ D2OpFib clov (A)

where D2OpFib cart (A) and D2OpFib clov (A) restrict D2OpFib (A) respectively
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and cartesian-marked lax limits

to cartesian functors (as underlying functors of the 1-cells ) and to cleavage pre-

serving functors.

Proof. We already know by Theorem 1.1.8 that the essential image of G (−) (in

each of the three versions) is given by the split discrete 2-opfibrations. So we are

missing the 2-fully faithfulness of the three 2-functors.

Let F,G : A → Cat be 2-functors. Then combining Corollary 1.3.13 and The-

orem 1.3.8 (the 2-category of elements exhibits a lax comma object in 2-Cat lax)

we obtain the composite isomorphism of categories

[A ,Cat ]lax (F, G) ∼=
[∫ op

F,Cat
]
lax

(∆1, G ◦ G (F )) ∼= 2-Cat /A
(∫ op

F ,
∫ op

G
)

where the first functor is given by pasting with the 2-cell λF that presents the lax

comma object
∫ op

F and the second functor is the inverse of pasting with λG on

objects and producing the modification associated to the lax interchange rule (see

Remark 1.2.2) on morphisms. Indeed the second functor is surely a bijection on

objects, and it is also a bijection on morphisms by part (ii) of Definition 1.3.4 (the

2-dimensional part of the universal property of the lax comma object) with Γ = id

and ∆ = id (and so in particular strict 2-natural transformations). Since the

composite functor precisely coincides with the functor on morphisms associated

to G (−) between A and C (see the proof of Proposition 1.3.10), this completes

the proof of the first 2-equivalence.

The composite isomorphism above then restricts to the following two:

[A ,Cat ]ps (F, G) ∼=
[∫ op

F,Cat
]
sigma

(∆1, G ◦ G (F )) ∼= D2OpFib cart (A)
(∫ op

F ,
∫ op

G
)

[A ,Cat ] (F, G) ∼=
[∫ op

F,Cat
]
laxcart

(∆1, G ◦ G (F )) ∼= D2OpFib clov (A)
(∫ op

F ,
∫ op

G
)

by part (i) of Definition 1.3.4, since whiskering λG on the left with a 2-functor∫ op
F →

∫ op
G looks at the second component of the morphisms in

∫ op
G. In-

deed, if we start for example from γ : ∆1 ===⇒
laxcart

G ◦ G (F ), the associated functor

V γ :
∫ op

F →
∫ op

G is such that, for every morphism (f, id) in
∫ op

F ,

pr1(V
γ(f, id)) = f and pr2(V

γ(f, id)) = (λGV γ)(f,id) = γ(f,id) = id .

And then the first 2-equivalence restricts to the other two.
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This chapter is based on our paper [35].

It is well-known that, in dimension 1, a colimit in a slice category is precisely the

map from the colimit of the domains of the diagram which is induced by the uni-

versal property of the colimit. This fact, together with the results of preservation,

reflection and lifting of all colimits for the domain functor from a slice category,

gives a complete calculus of colimits in 1-dimensional slices (see Theorem 2.0.1).

And such a calculus has been proven useful in myriads of applications, in partic-

ular in the context of locally cartesian closed categories or for general exponen-

tiability of morphisms, in categorical logic, algebraic geometry and topos theory.

Indeed, an exponentiable morphism f : E → B in C , that is an exponentiable

object in C /B , can be characterized as a morphism which admits all pullbacks

along it and is such that the change of base functor f ∗ : C /B → C /E has a

right adjoint. The latter condition implies, and by adjoint functor theorems is

often implied by, preservation of all colimits for f ∗. The calculus of colimits in 1-

dimensional slices is what allows to apply such preservation of colimits to colimits

in the slice that come from colimits in the category C , i.e. the ones that we have

in practice.

The main result of this chapter is a generalization to dimension 2 of this fruitful

1-dimensional calculus, including results of preservation, reflection and lifting

of 2-colimits for the domain 2-functor from a lax slice. Theorems on suitable

change of base 2-functors between lax slices are presented as well. The lax slice

is indeed the appropriate 2-dimensional slice to consider in order to achieve such

generalization, as we justify with two different approaches.
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These results, in combination with Chapter 1, will be crucial for us in the follow-

ing chapters to expand the theory of 2-classifiers and elementary 2-toposes. In

particular, it will be very useful to achieve our theorems of reduction of the study

of a 2-classifier to dense generators, in Chapter 3. Indeed the strategy will be to

write an arbitrary object as a nice 2-colimit of dense generators (we will briefly

recall the theory of dense generators in Section 3.1) and then apply the universal

property of such colimits. The work of this chapter will be crucial to handle the

relevant 2-dimensional colimits.

The following theorem condenses the calculus of colimits in 1-dimensional slice

categories.

Theorem 2.0.1. Let C be a category with products and let M ∈ C . The domain

functor dom: C /M → C preserves, reflects and lifts uniquely all colimits (and

so it creates all colimits ).

Moreover, for every diagram D : A → C with A small that admits a colimit in C ,

every morphism q : colimAD(A)→M in C is the colimit of a diagram in C /M .

More precisely,

colimAD(A)

M

q = colimA

D(A)

M

q◦iA in C /M , (2.1)

where the iA : D(A) → colimAD(A) are the inclusions that form the universal

cocone.

Notice that this theorem recovers the property we mentioned above, that a colimit

in C /M is precisely the map from the colimit of the domains of the diagram

which is induced by the universal property. Indeed, half of this fact is captured

by the preservation of colimits for dom: C /M → C , whereas the other half,

that is harder to capture, is represented by equation (2.1). In dimension 1, the

latter special property holds because a cocone on M is the same thing as a

diagram in the slice over M . But in dimension 2, we need weighted 2-colimits

and then weighted 2-cocylinders rather than cocones. This makes it then harder
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to establish a bijection with diagrams in a 2-dimensional slice, as such diagrams

still have a conical shape.

In this chapter, we first focus on generalizing the special property of equation (2.1)

to dimension 2 (Theorem 2.1.21), extracting from a weighted 2-cocylinder a

diagram in a 2-dimensional slice whose 2-dimensional colimit (of some kind)

is the morphism induced by the weighted 2-cocylinder. We show two differ-

ent approaches to this. The first approach (Construction 2.1.1) is more intu-

itive, based on the reduction of weighted 2-colimits to essentially conical ones,

namely cartesian-marked oplax conical ones. Recall that such reduction is due to

Street [42], and that we have described it in Section 1.1 with new, more elementary

proofs. Recall also that the reduction of weighted 2-colimits to cartesian-marked

oplax conical ones is allowed and regulated by the 2-category of elements, that

we have studied in detail in Chapter 1 (both from an elementary and an abstract

perspective).

The second approach, culminating with Theorem 2.1.21, is instead more abstract.

It is based on an apparently original concept of colim-fibration, that we give both

in dimension 1 (Definition 2.1.3) and dimension 2 (Definition 2.1.14), as well as on

the 2-category of elements construction. Both the approaches show the need to

consider lax slices in order to generalize the special property of equation (2.1) to

dimension 2. In the first one, for example, this corresponds to only being able to

essentially conicalize weighted 2-colimits, rather than to strictly conicalize them.

A result of reflection of 2-colimits for the domain 2-functor dom: E /lax M → E

from a lax slice is the main part of Theorem 2.1.21, as reflection is part of the

concept of 2-colim-fibration. Further than reflecting (appropriate) 2-colimits, a

2-colim-fibration is in particular a discrete 2-fibration (Definition 1.1.7), that is,

what is classified by the 2-category of elements construction.

We then show a result of lifting of 2-colimits for dom: E /lax M → E in Pro-

position 2.2.6. This is based on a generalization to dimension 2 of the biject-

ive correspondence between cocones on M and diagrams in the slice over M

(Proposition 2.2.1). The 2-dimensional correspondence is captured and justified
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by F -category theory, also called enhanced 2-category theory and introduced

by Lack and Shulman in [30]. We will recall it in Definition 2.2.3 (see also Re-

mark 2.2.4). Roughly, the idea is to consider 2-categories, whose morphisms we

think as loose, with a selected subclass of morphisms that we call tight. We then

ask 2-functors to preserve the tightness of morphisms.

F -category theory is then crucial in establishing a result of preservation of 2-

colimits for dom: E /lax M → E (Theorem 2.3.12). Indeed we guarantee preser-

vation of 2-colimits by an original theorem (Theorem 2.3.10) that states that a lax

left adjoint (Definition 2.3.1) preserves appropriate colimits (Definition 2.3.6) if

the adjunction is strict on one side and is suitably F -categorical (Definition 2.3.5).

Lax adjoints have been firstly introduced by Gray in [20, Section I,7], and the

idea is to admit unit and counit to be lax natural transformations (rather than

strict or pseudo). At the level of hom-categories, such laxness translates as hav-

ing an adjunction between them rather than an isomorphism (or an equivalence

as for a biadjunction); see Remark 2.3.2. We need such adjunctions because the

suitable right adjoint to the domain 2-functor dom: E /lax M → E is still M ×−

(as in dimension 1), but the unit is now only lax natural. The idea behind our

general F -categorical Theorem 2.3.10 on the preservation of colimits is to move

back and forth between the two 2-categories taking advantage of the strictness of

the lax adjunction on one side. The condition of having a suitably F -categorical

lax adjunction ensures that this idea works. F -categorical adjunctions appear

also in Walker’s [50]; and another potential source of examples is Bourke’s [9].

Remember that, although our preservation result is expressed in an F -categorical

language, it is always possible to start from a weighted 2-colimit and view it in

this context, after reducing it to a cartesian-marked oplax conical one.

Finally, we apply the general F -categorical theorem of preservation of 2-colimits

to the 2-functor of change of base along a split Grothendieck opfibration between

lax slices (see Proposition 2.4.2). In dimension 1, the concept of change of base

between slice categories is definitely helpful, and it is well-known that the pullback

perfectly realizes such a job. For Cat , given a functor τ : E → B , it is still a good
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idea to consider the pullback 2-functor τ ∗ : Cat /B → Cat /E between strict

slices. It is well-known that such change of base 2-functor has a right 2-adjoint τ∗,

and thus preserves all weighted 2-colimits, precisely when τ is a Conduché functor.

This is proved by Conduché in [13], with the ideas already present in Giraud’s [18].

However, in order to generalize the calculus of colimits in 1-dimensional slices to

dimension 2, we find the need to consider lax slices. And it is then helpful

to have a change of base 2-functor between lax slices of a finitely complete 2-

category. We believe that the most natural way to achieve this is by calculating

comma objects rather than pullbacks. As we have described in Chapter 1, this is

connected to the construction of the category of elements, but also, in general, to

the concept of 2-dimensional elementary topos (see also Section 3.1). Equivalently

to calculating comma objects, we can take pullbacks along split Grothendieck

opfibrations, which serve as a kind of fibrant replacement (see Proposition 2.4.1

and Section 3.1). Such a point of view is preferable for us since Grothendieck

opfibrations in Cat are always Conduché and we can generalize to lax slices the

ideas for finding a right adjoint to the pullback functor τ ∗ : Cat /B → Cat /E
(from Conduché’s [13]). Notice that considering lax slices we are fixing a direction

and we then need to take opfibrations, while Conduché functors are now too

unbiased.

We prove that τ ∗ : Cat /lax B → Cat /lax E has a loose F -categorical right lax

adjoint that is strict on one side, in Theorem 2.4.3. This generalizes also

Palmgren’s [39], where a similar result for pseudoslices of groupoids is proved,

from the comma objects point of view. Our theorem then implies the preserva-

tion of appropriate 2-colimits for the 2-functor τ ∗ between lax slices.

We also show that the 2-functor of change of base along a split Grothendieck

opfibration between lax slices makes sense in a general 2-category rather than just

in Cat (Proposition 2.4.2). For this we take from Street’s [41] and Weber’s [51]

the needed general notion of opfibration; we will recall it in Section 4.2. We

conclude proving that the 2-functor τ ∗ between lax slices preserves appropriate

2-colimits also in the case of prestacks (Proposition 2.4.5) and more in general of
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finitely complete 2-categories with a dense generator (Theorem 2.4.6).

Outline of the chapter

In Section 2.1, we present our calculus of colimits in 2-dimensional slices

(Theorem 2.1.21), firstly by reducing weighted 2-colimits to cartesian-marked

oplax conical ones (Construction 2.1.1) and then via 2-colim-fibrations

(Definition 2.1.14). This includes a result of reflection of 2-colimits for

dom: E /lax M → E .

In Section 2.2, we generalize to dimension 2 the bijective correspondence between

cocones on M and diagrams in the slice over M (Proposition 2.2.1). We then

show a result of lifting of 2-colimits for dom: E /lax M → E (Proposition 2.2.6).

In Section 2.3, we prove a result of preservation of 2-colimits for the domain 2-

functor from a lax slice (Theorem 2.3.12). This is shown by proving a general

theorem of F -category theory (Theorem 2.3.10), which states that a lax left

adjoint preserves appropriate colimits if the adjunction is strict on one side and

is suitably F -categorical.

In Section 2.4, we apply this theorem of preservation of 2-colimits to the 2-

functor of change of base along a split Grothendieck opfibration between lax slices

(Theorem 2.4.3), laxifying the proof that Conduché functors are exponentiable.

We conclude extending such result to prestacks (Proposition 2.4.5) and then to

any finitely complete 2-category with a dense generator (Theorem 2.4.6).

2.1. Colimits in 2-dimensional slices

We aim at generalizing to dimension 2 the well-known 1-dimensional result that a

colimit in a slice category corresponds to the map from the colimit of the domains

of the diagram which is induced by the universal property. Half of such result

will be captured by preservation of 2-colimits for the domain 2-functor from a
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lax slice, that we will address in Section 2.3. In this section, we focus on the

other half, that is the generalization to dimension 2 of the special property of

equation (2.1) (of Theorem 2.0.1). Namely, we want to prove that a morphism

from a 2-colimit to some M can be expressed as a 2-colimit in a 2-dimensional

slice over M .

We show two different approaches to this, that lead to the same result (compare

Construction 2.1.1 with Theorem 2.1.21). The first one is more intuitive, based on

the reduction of the weighted 2-colimits to cartesian-marked oplax conical ones.

The second approach is more abstract, based on an apparently original concept of

colim-fibration (Definition 2.1.3 in dimension 1 and Definition 2.1.14 in dimension

2). This will offer a shorter and more elegant proof, in Theorem 2.1.21. Both the

approaches show the need to consider lax slices.

This section also contains a result of reflection of 2-colimits for the domain 2-

functor dom: E /lax M → E from a lax slice. Indeed the concept of 2-colim-

fibration involves reflecting (appropriate) 2-colimits, together with being a dis-

crete 2-fibration.

We now begin exploring the first approach to the generalization to dimension 2

of equation (2.1) (of Theorem 2.0.1).

Construction 2.1.1. Let E be a 2-category and let M ∈ E . Consider a 2-

diagram F : A → E with A small and a weight W : Aop → Cat such that

the colimit colimWF of F weighted by W exists in E . Take then a morphism

q : colimWF →M , or equivalently the corresponding weighted 2-cocylinder

νq : W =⇒ E (F (−), M) .

We would like to express q as a 2-colimit in a 2-dimensional slice of E over

M . So we need to construct from νq a 2-diagram in a 2-dimensional slice. In

dimension 1, equation (2.1) (of Theorem 2.0.1) is based on the fact that a cocone

on M coincides with a diagram in C /M . But here, in dimension 2, we have a

weighted 2-cocylinder νq instead of a strict cocone, and thus it is not clear how to

directly find a corresponding diagram in a slice. We notice that this is essentially
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a matter of selecting a cocone out of the bunch of cocones that form the weighted

2-cocylinder νq. And then we obtain a great help from the reduction of weighted

2-colimits to cartesian-marked oplax conical ones.

As described in Section 1.1, while it is not possible to represent νq with a selected

strict cocone, it is possible to reduce νq to a cartesian-marked oplax cocone.

Indeed

colimWF ∼= oplaxcart -colim∆1(F ◦ G (W ))

where G (W ) :
∫
W → A is the 2-category of elements of W . And νq corresponds

to a cartesian-marked oplax cocone

λq : ∆1 =====⇒
oplaxcart

E ((F ◦ G (W ))(−), M) :
(∫

W
)op

→ Cat .

It is easy to check that a cartesian-marked oplax cocone onM can be reorganized

as a 2-diagram in the lax slice E /lax M on M (we will see the complete corres-

pondence in Proposition 2.2.1), where a 1-cell in the lax slice from E
g−→ M to

E ′ g′−→M is a filled triangle

E E ′

M

γ̂

g g′

γ

More precisely, we can reorganize λq as the 2-diagram

Lq :
∫
W −→ E /lax M

(A,X)

(B,X ′)

(f,α) 7→
F (A) F (B)

M

F (f)

λq
(A,X)

λq
(B,X′)

λqf,α

δ 7→ F (δ)

In Theorem 2.1.21, we will prove that

colimWF

M

q =
oplaxcart -colim∆1(F ◦ G (W ))

M

q = oplaxcart -colim∆1Lq

in the lax slice E /lax M . Of course, one could prove this directly, but our proof will

be shorter and more abstract, in Theorem 2.1.21, based on the colim-fibrations

point of view (that is, the second approach named above).
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Remark 2.1.2. Although weighted 2-colimits cannot be conicalized, we can al-

most conicalize them reducing them to cartesian-marked oplax conical colimits.

The price to pay is to have 2-cells inside the cocones. And this then translates

as the need to consider lax slices in order to generalize the 1-dimensional The-

orem 2.0.1 to dimension 2.

Such need is further justified by the second approach (see Remark 2.1.20), that

we now present. The idea is to capture Theorem 2.0.1 from a more abstract

point of view, in a way that resembles the property of being a discrete fibration.

We will then proceed to generalize such approach to dimension 2, arriving to

Theorem 2.1.21.

The following definition does not seem to appear in the literature.

Definition 2.1.3. A functor p : S → C is a colim-fibration if for every object S ∈

S and every universal cocone µ that exhibits p(S) as the colimit of some diagram

D : A → C with A small, there exists a unique pair (D,µ) with D : A → S a

diagram and µ a universal cocone that exhibits S = colimD such that p◦D = D

and p ◦ µ = µ.

D(A)

D(B) S

D(A)

D(B) p(S)

µA

D(f)

p

µB

p
µA

D(f)

µB

(2.2)

Remark 2.1.4. This is actually stronger than the property written in equa-

tion (2.1) of Theorem 2.0.1, but it will be clear after Proposition 2.1.10 that

dom: C /M → C is also a colim-fibration. The following propositions shed more

light on what it means to be a colim-fibration.

Proposition 2.1.5. Every colim-fibration is a discrete fibration.

Proof. Let p : S → C be a colim-fibration. We firstly show that only identities

can be over identities with respect to p. So suppose v : S ′ → S is a morphism
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in S such that p(v) = idp(S). We have that p(S) is trivially the colimit of the

diagram D : 2 → C given by the arrow idp(S), with universal cocone given by just

identities. But then both the arrows v and idS give a diagram D : 2 → S with

a universal cocone that exhibits S = colimD such that it is over the universal

cocone given by the identities of p(S). And we conclude that v = idS.

Take now S ∈ S and u : C → p(S) a morphism in C . We want to show that there

is a unique lifting of u to S. Consider then the diagram D : 2 → C given by the

arrow u in C . Then the colimit of D exists trivially and is p(S), with universal

cocone
C

p(S) p(S)

u
u

As p is a colim-fibration, there exist a unique diagram D : 2 → S and a unique

universal cocone µ that exhibits S = colimD with p ◦D = D and p ◦µ = µ. But

then we need to have D(1) = S and µ1 = idS by the argument above, whence D

is the unique lifting of u to S.

Corollary 2.1.6. Let p : S → C be a functor. The following are equivalent:

(i) p is a colim-fibration;

(ii) for every object S ∈ S and every universal cocone µ that exhibits p(S) as

the colimit of some diagram D : A → C with A small, there exists a unique

pair (D,µ) with D : A → S a diagram and a µ a cocone for D on S such

that p◦D = D and p◦µ = µ; moreover µ is a universal cocone that exhibits

S = colimD.

Remark 2.1.7. Corollary 2.1.6 shows that, for a colim-fibration, the liftings µ

of universal cocones µ are unique as mere cocone over µ on the starting S ∈ S .

We notice that the definition of creating colimits (see for example Adámek, Her-

rlich and Strecker’s [1]) and condition (ii) of Corollary 2.1.6 for being a colim-

fibration are actually pretty similar, but somehow dual to each other. Indeed,



2.1. Colimits in 2-dimensional slices 75

looking at the diagram in equation (2.2), creation of colimits starts from a dia-

gram D and produces a colimit S for it, while being a colim-fibration starts from

some S and produces a diagram D with colimit S.

To further clarify the connection between these two, we recall the following pro-

position from Adámek, Herrlich and Strecker’s [1, Proposition 13.34].

Proposition 2.1.8. For a functor F , the following are equivalent:

(i) F preserves and lifts [uniquely] all the colimits;

(ii) F preserves and detects all the colimits, and moreover it is a [discrete] iso-

fibration.

Remark 2.1.9. By Proposition 2.1.5, a colim-fibration is always a discrete fibra-

tion and so always a discrete iso-fibration. But we still have to clarify the con-

nection between being a colim-fibration and reflecting colimits.

Proposition 2.1.10. Let p : S → C be a functor. The following are equivalent:

(i) p is a colim-fibration;

(ii) p is a discrete fibration that reflects all the colimits.

Proof. We prove “(ii) =⇒ (i)”. Take S ∈ S and a universal cocone µ that exhibits

p(S) as the colimit of some diagram D : A → C with A small. Since p is a

discrete fibration, there exists a unique pair (D,µ) with D : A → S a diagram

and µ a cocone for D on S such that p ◦D = D and p ◦ µ = µ. Indeed, for every

A ∈ A , we can define D(A) and µA by taking the unique lifting of µA to S, and,

for every f : A→ B in A , define D(f) to be the unique lifting of D(f) to D(B),

whose domain needs to be D(A) since any discrete fibration is split. Moreover µ

needs to be universal since p reflects all the colimits and p ◦ µ = µ is universal.

We now prove “(i) =⇒ (ii)”. So let p be a colim-fibration. After Proposition 2.1.5,

we just need to prove that p reflects all the colimits. Take a diagram H : A → S

with A small and a cocone ζ for H on some object S ∈ S ; assume then that p ◦ ζ

is a universal cocone, exhibiting p(S) = colim (p ◦H). By Corollary 2.1.6, we
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know that there exist a unique pair (p ◦H, p ◦ ζ) with p ◦H : A → S a diagram

and p ◦ ζ a cocone for p ◦H on S such that p◦p ◦H = p◦H and p◦p ◦ ζ = p◦ ζ,

and that moreover p ◦ ζ is a universal cocone that exhibits S = colim p ◦H. But

then we need to have that p ◦H = H and p ◦ ζ = ζ, whence we conclude.

Corollary 2.1.11. Let p : S → C be a colim-fibration that preserves and detects

all the colimits. Then p (preserves and ) creates all the colimits.

Proof. Clear combining Proposition 2.1.8 and Proposition 2.1.10, since creating

all the colimits is equivalent to lifting uniquely and reflecting all the colimits (see

for example Adámek, Herrlich and Strecker’s [1]).

Remark 2.1.12. We can now rewrite Theorem 2.0.1 by saying that

dom: C /M → C is a colim-fibration that preserves and detects all the colim-

its. This is actually stronger than Theorem 2.0.1, but we see that dom does

satisfy this as it can be expressed as the category of elements of the represent-

able y(M) : C op → Set and is thus a discrete fibration. The explicit formula in

equation (2.1) then comes from the explicit liftings of dom.

Construction 2.1.13. We want to produce a 2-categorical generalization of the

concept of colim-fibration. As described in Chapter 1, what we think most natur-

ally generalizes the notion of discrete fibration to dimension 2 is that of discrete

2-fibration. Recall its definition from Definition 1.1.7 and Remark 1.3.11. Dis-

crete 2-fibrations are a natural extension of the usual Grothendieck fibrations.

They are also required to be, locally, discrete opfibrations. Thus they are able to

uniquely lift 2-cells to a fixed domain 1-cell. Notice, though, that it would now

be much harder to directly generalize Definition 2.1.3 in a way that implies being

a discrete 2-fibration. So we think it is more concise to just ask having a discrete

2-fibration.

To reach a 2-categorical notion of colim-fibration, we then need to use a 2-

categorical concept of cocone. While weighted 2-cocylinders would be hard to

handle, we notice that a discrete 2-fibration has the ability to lift cartesian-

marked oplax cocones. Indeed, let p : S → E be a cloven discrete 2-fibration.
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Consider then S ∈ S , a marking W : Aop → Cat with A small, a 2-diagram

D :
∫
W → E and a cartesian-marked oplax cocone

θ : ∆1 =====⇒
oplaxcart

E (D(−), p(S))

for D on p(S). Then p lifts (D, θ) to a pair (D, θ) with D :
∫
W → S a 2-diagram

and θ a cartesian-marked oplax cocone for D on S such that p ◦ D = D and

p ◦ θ = θ.

D(A,X)

D(B,X ′) S

D(A,X)

D(B,X ′) p(S)

θ(A,X)

D(f,α)
θf,α

p

θ(B,X′)

pθ(A,X)

D(f,α)
θf,α

θ(B,X′)

(2.3)

For every (A,X) ∈
∫
W , we define D(A,X) and θ(A,X) by taking the chosen

cartesian lifting of θ(A,X) to S. For every (f, α) : (A,X) → (B,X ′) in
∫
W , we

then define θf,α : θ(A,X) → ξ to be the unique lifting of θf,α to θ(A,X). Since

θ(B,X′) is cartesian, ξ factors through θ(B,X′); we define D(f, α) to be the unique

factoring morphismD(A,X)→ D(B,X ′), so that θf,α : θ(A,X) → θ(B,X′)◦D(f, α).

It remains to define D on 2-cells. Given δ : (f, α) =⇒ (g, β) : (A,X)→ (B,X ′) in∫
W , we define D(δ) to be the unique lifting of D(δ) to D(f, α). The codomain

of D(δ) is D(g, β) because of the uniqueness of the lifting of

D(A,X)

D(B,X ′) p(S),

θ(A,X)

D(f,α)

D(g,β)

θf,α

θ(B,X′)

D(δ)

which coincides with θg,β, to θ(A,X), and the cartesianity of θ(B,X′). This argu-

ment also proves the 2-dimensional property of the oplax naturality of θ. It is

straightforward to check that D is a 2-functor and that θ is cartesian-marked

oplax natural, using the cartesianity of the θ(A,X)’s and the uniqueness of the

liftings of a 2-cell to a fixed domain 1-cell (with arguments similar to the above

one).
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Clearly, the θ(A,X)’s are not unique above the θ(A,X), but cartesian. Having

fixed them, however, the rest of the cartesian-marked oplax cocone θ is uniquely

defined. It is also true that, given another pair (D̃, θ̃) that lifts (D, θ), the unique

vertical morphisms D̃(A,X) → D(A,X) that produce the factorization of the

θ̃(A,X)’s through the cartesian θ(A,X)’s form a unique vertical 2-natural transform-

ation j : D̃ → D such that θ̃ = (− ◦ j) ◦ θ. This can be checked using the

uniqueness of the liftings of a 2-cell to a fixed domain 1-cell and the cartesianity

of the θ(A,X)’s.

The following definition is original.

Definition 2.1.14. A 2-functor p : S → E is a 2-colim-fibration if it is a cloven

discrete 2-fibration such that, for every S ∈ S , 2-functor W : Aop → Cat with

A small (the marking), 2-functor D :
∫
W → E (the diagram) and universal

cartesian-marked oplax cocone

θ : ∆1 =====⇒
oplaxcart

E (D(−), p(S))

that exhibits p(S) = oplaxcart -colim∆1D, the pair (D, θ) obtained by lifting (D, θ)

through p to S as in Construction 2.1.13 exhibits

S = oplaxcart -colim∆1D.

Remark 2.1.15. Remember that every weighted 2-colimit can be reduced to a

cartesian-marked oplax conical one, so the property of being a 2-colim-fibration

can as well be applied to any universal weighted 2-cocylinder

µ : W =⇒ E (F (−), p(S))

for some 2-diagram F : A → E , after reducing it to a universal cartesian-marked

oplax cocone.

Remark 2.1.16. We would now like to generalize Proposition 2.1.10 to dimen-

sion 2. We see, however, that a 2-colim-fibration does not necessarily reflect

all the (cartesian-marked oplax conical) 2-colimits, because the lifting (D, θ) of
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Construction 2.1.13 is not unique anymore. Indeed, if we start from a cartesian-

marked oplax cocone above (at the level of S ), project it down and lift, we do

not find in general the starting cartesian-marked oplax cocone. We almost find

the same, however, if we start from a cartesian-marked oplax cocone that we call

cartesian, and now define. This will bring us to Proposition 2.1.19.

Definition 2.1.17. Let p : S → E be a discrete 2-fibration. Consider then

S ∈ S , a marking W : Aop → Cat with A small and a 2-diagram H :
∫
W → S .

A cartesian-marked oplax cocone

ζ : ∆1 =====⇒
oplaxcart

S (H(−), S)

is cartesian if for every (A,X) ∈
∫
W the component ζ(A,X) (seen as a morphism

in S ) is cartesian with respect to p.

We say that p reflects all the cartesian (cartesian-marked oplax conical) 2-colimits

if it reflects the universality of cartesian cartesian-marked oplax cocones.

Example 2.1.18. Let E be a 2-category and M ∈ E . The cartesian morphisms

in E /lax M with respect to dom: E /lax M → E are precisely the triangles

E E ′

M

γ̂

g g′

∼=
γ

with the 2-cell γ an isomorphism. So the cartesian cartesian-marked oplax

cocones in E /lax M are the ones with components triangles filled with isomorph-

isms.

Proposition 2.1.19. Let p : S → E be a cloven discrete 2-fibration. The follow-

ing are equivalent:

(i) p is a 2-colim-fibration;

(ii) p reflects all the cartesian 2-colimits.

Proof. We prove “(ii) =⇒ (i)”. In the notation of Definition 2.1.14, the cartesian-

marked oplax cocone θ is cartesian by Construction 2.1.13. Since p reflects all
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the cartesian 2-colimits and p ◦ θ = θ is universal, then θ needs to be universal

as well, exhibiting S = oplaxcart -colim∆1D.

We now prove “(i) =⇒ (ii)”. So consider S ∈ S , a markingW : Aop → Cat with A

small, a 2-diagram H :
∫
W → S and a cartesian cartesian-marked oplax cocone

ζ : ∆1 =====⇒
oplaxcart

S (H(−), S) .

Assume that p ◦ ζ is universal, exhibiting p(S) = oplaxcart -colim∆1(p ◦H). We

prove that ζ is universal as well. Consider the lifting (p ◦H, p ◦ ζ) of (p ◦H, p ◦ ζ)

through p to S, as in Construction 2.1.13. It is straightforward to check that, since

cartesian liftings are unique up to a unique vertical isomorphism, there exists a

2-natural isomorphism j : H ∼= p ◦H such that ζ = (− ◦ j) ◦ p ◦ ζ (see the last

part of Construction 2.1.13). Since p ◦ ζ is universal, as p is a 2-colim-fibration,

and (− ◦ j) is a 2-natural isomorphism, we conclude that ζ is universal.

Remark 2.1.20. We have seen in Remark 2.1.12 that we can rephrase the 1-

dimensional Theorem 2.0.1 by saying that dom: C /M → C is a colim-fibration

that preserves and detects all the colimits. And this latter is actually stronger

than Theorem 2.0.1, but true since dom: C /M → C can be obtained as the

category of elements of the representable y(M) : C op → Set .

As described in Chapter 1, we believe the most natural categorification of the

construction of the category of elements is given by the 2-category of elements. So,

to obtain a generalization of Theorem 2.0.1 (or better, the stronger colim-fibration

result) to dimension 2, we consider the 2-category of elements of a representable

y(M) : E op → Cat (given E a 2-category and M ∈ E). This gives the domain

functor from the lax slice E /lax M , further justifying Construction 2.1.1:

E /lax M 1

E Cat op

dom 1

y(M)

lax comma

We now prove that dom: E /lax M → E is a 2-colim-fibration (Theorem 2.1.21).

In particular, considering how liftings along dom are calculated, this will also
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imply the conclusion of Construction 2.1.1 (first approach) from this abstract

point of view. We will then address lifting (that is stronger than detection)

of 2-colimits in Proposition 2.2.6 and preservation of 2-colimits in Section 2.3,

establishing a full 2-categorical generalization of Theorem 2.0.1.

Theorem 2.1.21. Let E be a 2-category and M ∈ E . Then the 2-functor

dom: E /lax M → E is a 2-colim-fibration. As a consequence, in the notation

of Construction 2.1.1,

colimWF

M

q =
oplaxcart -colim∆1(F ◦ G (W ))

M

q = oplaxcart -colim∆1Lq

in the lax slice E /lax M . Here, Lq is the 2-diagram in E /lax M that corresponds to

the cartesian-marked oplax cocone λq onM associated to the weighted 2-cocylinder

on M that q represents.

Proof. By Remark 2.1.20, we know that dom: E /lax M → E can be obtained as

the 2-category of elements of y(M) : E op → Cat . So dom is a discrete 2-fibration

with a canonical cleavage (the chosen cartesian lifting of a morphism f is (f, id)).

We prove that the second part of the statement is a consequence of the first

one. So assume we have already proved that dom is a 2-colim-fibration.

Calling θ the universal cartesian-marked oplax cocone that exhibits C =

oplaxcart -colim∆1(F ◦ G (W )), we then obtain that the lifting of (F ◦ G (W ) , θ)

through dom to q (calculated as in Construction 2.1.13)

F ◦ G (W )(A,X)

F ◦ G (W )(B,X ′) q

F (A)

F (B) C

θ(A,X)

F◦G(W )(f,α)
θf,α

dom

θ(B,X′)

dom
θ(A,X)

F (f)

θf,α

θ(B,X′)

exhibits

q = oplaxcart -colim∆1F ◦ G (W )
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in E /lax M . And we can calculate F ◦ G (W ) and θ explicitly, looking at the

action of y(M) : E op → Cat on 1-cells and 2-cells, since dom = G (y(M)). Given

(A,X) ∈
∫
W ,

F ◦ G (W )(A,X) = y(M) (θ(A,X))(q) = q ◦ θ(A,X) = λq(A,X) = Lq(A,X)

θ(A,X) =

F (A) C

M

θ(A,X)

λq
(A,X)

q

id

Given (f, α) : (A,X)→ (B,X ′) in
∫
W ,

θf,α = θf,α : (θ(A,X), id)→ (θB,X′ ◦ F (f), y(M) (θf,α)q)

whence, since y(M) (θf,α)q = q ∗ θf,α = λqf,α,

F ◦ G (W )(f, α) =

F (A) F (B)

M

F (f)

λq
(A,X)

λq
(B,X′)

λqf,α = Lq(f, α).

Given δ : (f, α)→ (g, β) : (A,X)→ (B,X ′) in
∫
W ,

F ◦ G (W )(δ) = F (δ) = Lq(δ).

We now prove that dom: E /lax M → E is a 2-colim-fibration. By Proposi-

tion 2.1.19, it suffices to prove that dom reflects all the cartesian 2-colimits. So

take t : K → M , a marking W : Aop → Cat with A small and a 2-diagram

H :
∫
W → E /lax M . Consider then a cartesian cartesian-marked oplax cocone

ζ : ∆1 =====⇒
oplaxcart

E /lax M (H(−), t)

such that dom ◦ζ is universal. We prove that ζ is universal as well.

Given g : E →M and

σ : ∆1 =====⇒
oplaxcart

E /lax M (H(−), g) ,
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we need to produce a morphism

K E

M

γ̂

t g

γ

in E /lax M such that σ = (γ ◦ −) ◦ ζ. Then we need

dom ◦σ = dom ◦(γ ◦ −) ◦ ζ = (γ̂ ◦ −) ◦ dom ◦ζ,

whence γ̂ needs to be the unique morphism K → E in E induced by dom ◦σ

via universality of dom ◦ζ. We will now produce the inner 2-cell γ in E via the

2-dimensional universality of dom ◦ζ. Indeed γ corresponds to a modification

Ξ: (t ◦ −) ◦ dom ◦ζ ≡≡⇛ (g ◦ γ̂ ◦ −) ◦ dom ◦ζ.

Notice that the target of Ξ coincides with (g ◦−) ◦dom ◦σ. Given (A,X) ∈
∫
W ,

we will have that Ξ(A,X) = γ ∗ ζ̂(A,X), and we want to obtain

dom(H(A,X)) K E

M

ζ̂(A,X)

H(A,X)

γ̂

t

g

∼=
ζ(A,X)

γ
=

dom(H(A,X)) E

M

σ̂(A,X)

H(A,X)
g

σ(A,X)

The component ζ(A,X) is indeed a triangle filled with an isomorphism, by Ex-

ample 2.1.18, since ζ is cartesian. Whence we need to take

Ξ(A,X) :=

dom(H(A,X)) E

K M

σ̂(A,X)

ζ̂(A,X) H(A,X)

g

t

∼=
ζ−1
(A,X)

σ(A,X)

It is straightforward to check that Ξ is a modification between cartesian-marked

oplax cocones. So Ξ induces a unique 2-cell γ : t =⇒ g ◦ γ̂ in E such that (γ ∗

−) ∗ (dom ◦ζ) = Ξ. We check that σ = (γ ◦ −) ◦ ζ (as cartesian-marked oplax

natural transformations). It surely holds on object components by construction

of Ξ. Given a morphism (f, α) in
(∫
W

)op
, it suffices to check that

σf,α = γ̂ ∗ ζf,α
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But this holds by construction of γ̂.

We now show the uniqueness of γ. So assume there is some γ′ : t→ g in E /lax M

such that σ = (γ′ ◦ −) ◦ ζ. Then γ̂′ = γ̂ by the argument above. Since the two

2-cells γ and γ′ in E are then between the same 1-cells, it suffices to prove that

(γ ∗ −) ∗ (dom ◦ζ) = (γ′ ∗ −) ∗ (dom ◦ζ).

But this can be checked on components, and γ ∗ ζ̂(A,X) = γ′ ∗ ζ̂(A,X) holds because

(γ ◦ −) ◦ ζ = σ = (γ′ ◦ −) ◦ ζ

and ζ is cartesian (essentially, both give the same Ξ).

It remains to prove the 2-dimensional universality of ζ. Given g : E → M , two

morphisms γ, γ′ : t→ g in E /lax M and a modification

Σ: (γ ◦ −) ◦ ζ ≡⇛ (γ′ ◦ −) ◦ ζ : ∆1 =====⇒
oplaxcart

E /lax M (H(−), g) ,

we need to produce a 2-cell Γ : γ → γ′ in E /lax M such that Σ = (Γ ∗−) ∗ ζ. But

the latter equality is satisfied precisely when it is satisfied after composing with

dom. So consider dom ∗Σ; as dom ◦ζ is universal, we find a unique Γ̂ : γ̂ =⇒ γ̂′

such that

dom ∗Σ = (Γ̂ ∗ −) ∗ (dom ◦ζ).

And then Γ̂ gives a 2-cell Γ : γ → γ′ in E /lax M . Indeed, we need to prove that

g ∗ Γ̂ ◦ γ = γ′ as 2-cells in E , and it suffices to show that

((g ∗ Γ̂ ◦ γ) ∗ −) ∗ (dom ◦ζ) = (γ′ ∗ −) ∗ (dom ◦ζ),

by 2-universality of dom ◦ζ. This can be checked on components, where it is true

because it holds after pasting with the components of ζ (that are isomorphisms,

because ζ is cartesian), since Σ: (γ ◦−) ◦ ζ =⇒ (γ′ ◦−) ◦ ζ. By construction of Γ,

we immediately obtain that Σ = (Γ ∗ −) ∗ ζ, and our argument has proved the

uniqueness of Γ as well.

Remark 2.1.22. The proof of Theorem 2.1.21 equally works for sigma colimits

(of Descotte, Dubuc and Szyld [15], w.r.t. the cartesian marking) in the place
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of cartesian-marked oplax colimits. Slightly modified, it works as well for sigma

bicolimits. Exactly as every 2-colimit can be reduced to a cartesian-marked oplax

conical one, every (weighted) pseudo colimit can be reduced to a sigma colimit,

and every bicolimit can be reduced to a sigma bicolimit (see [15], where the result

is derived from Street’s [42]).

We thus have the following corollary.

Corollary 2.1.23.

pseudo -colimWF

M

q =
sigma -colim∆1(F ◦ G (W ))

M

q = sigma -colim∆1Lq

bicolimWF

M

q =
sigma -bicolim∆1(F ◦ G (W ))

M

q = sigma -bicolim∆1Lq

in the lax slice E /lax M , where Lq is the 2-diagram in E /lax M that corresponds

to the sigma cocone λq on M associated to the weighted pseudo cocylinder on M

that q represents.

Proof. Construction 2.1.13 equally works to lift any oplax cocone θ to an oplax

cocone θ. If θ is sigma natural, then θ is sigma natural as well, since a discrete

2-fibration lifts isomorphic 2-cells to isomorphic 2-cells. The same argument of

the proof of Theorem 2.1.21 then shows that dom also reflects the universality of

cartesian sigma cocones.

Slightly modified, the proof of Theorem 2.1.21 works as well for sigma bi-colimits.

Indeed, via bi-universality of dom ◦ζ, we have that dom ◦σ induces γ̂ and an

isomorphic modification κ : (γ̂◦−)◦dom ◦ζ ∼= dom ◦σ. We then induce the 2-cell γ

from a slightly modified version of Ξ obtained by pasting the assignment of Ξ(A,X)

in the proof of Theorem 2.1.21 with κ−1
(A,X). So that κ(A,X) is by construction a

2-cell in the lax slice, and hence becomes a modification between sigma cocones

(as the condition of modification holds after applying dom).
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2.2. F -categories and a lifting result for

the domain 2-functor

In this section, we address the lifting of colimits of dom: E /lax M → E . In

dimension 1, the fact that dom: C /M → C lifts all the colimits is based on the

correspondence between the diagrams in C /M and the cocones in C onM . More

precisely, while the fact that dom is a colim-fibration is based on the ability to

produce a diagram in the slice overM from a cocone onM , the lifting of colimits

is based on the converse.

We have already seen in Construction 2.1.1 (first approach) that, in dimension 2,

we can reorganize a cartesian-marked oplax cocone on M as a 2-diagram in the

lax slice E /lax M . The second approach allows us to capture this reorganization

process from a more abstract point of view (see the proofs of Proposition 2.2.1

and Theorem 2.1.21). However, not every 2-diagram in E /lax M can produce a

cartesian-marked oplax cocone onM , as the cartesian-marked condition may fail.

In this section, we generalize to dimension 2 the bijective correspondence between

cocones on M and diagrams in the slice over M (Proposition 2.2.1). We then

justify this result via F -category theory (introduced by Lack and Shulman in [30],

and recalled in Definition 2.2.3 and Remark 2.2.4). Finally, we show a result of

lifting of 2-colimits for dom: E /lax M → E in Proposition 2.2.6.

Proposition 2.2.1. Let E be a 2-category and M ∈ E . Consider then a marking

W : Aop → Cat with A small and a 2-diagram D :
∫
W → E . There is a bijection

between cartesian-marked oplax cocones

λ : ∆1 =====⇒
oplaxcart

E (D(−), M)

on M and 2-diagrams D :
∫
W → E /lax M such that for every morphism (f, id)

in
∫
W the triangle D(f, id) is filled with an identity.

Proof. Given λ, since dom is a discrete 2-fibration, we can lift (D,λ) to idM and

obtain a pair (D,λ) as in Construction 2.1.13. Exactly as in the first part of the
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proof of Theorem 2.1.21, we can calculate D explicitly, looking at the action of

y(M) : E op → Cat on 1-cells and 2-cells, since dom = G (y(M)). We obtain the

formulas

D(f, α) = (D(f, α), λf,α) : λ(A,X) → λ(B,X′)

Starting instead from a 2-diagram D, we can reorganize its data as a cartesian-

marked oplax cocone λ for dom ◦D on M , with formulas

λ(A,X) := D(A,X) : dom(D(A,X))→M.

λf,α := D(f, α).

It is straightforward to check that the 2-functoriality of D guarantees that λ is

oplax natural. Given (f, id) in
∫
W , we obtain λf,id = D(f, id) = id, and then λ

is also cartesian-marked oplax.

It is clear that the two constructions we have produced are inverses of each

other.

Remark 2.2.2. We believe Proposition 2.2.1 is best captured by F -category

theory, also called enhanced 2-category theory, for which we take as main ref-

erence Lack and Shulman’s [30]. We give a quick recall of F -category theory

in Definition 2.2.3 and Remark 2.2.4. We will thus rephrase Proposition 2.2.1

in Remark 2.2.5. F -category theory will then be even more useful for us to

prove the preservation of (appropriate) 2-colimits for dom: E /lax M → E in

Section 2.3. We will indeed show that dom preserves a large class of 2-colimits

(Theorem 2.3.12), despite not every 2-colimit, and that this makes sense from an

F -categorical point of view.

Definition 2.2.3. F is the cartesian closed full subcategory of Cat 2 (the category

of arrows in Cat ) determined by the functors which are injective on objects and

fully faithful (i.e. full embeddings). It is possible to enrich over F , obtaining

F -category theory. An F -category S is then given by a collection of objects, a

hom-category S (X, Y )τ of tight morphisms and a second hom-category S (X, Y )λ

of loose morphisms that give 2-category structures (respectively) Sτ and Sλ to S ,
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together with an identity on objects, faithful and locally fully faithful 2-functor

JS : Sτ → Sλ. An F -functor F : S → T is a 2-functor Fλ : Sλ → Tλ that

restricts to a 2-functor Fτ : Sτ → Tτ (forming a commutative square); this is

equivalent to Fλ preserving tightness. And an F -natural transformation is a 2-

natural transformation αλ between loose parts that restricts to one between the

tight parts; this is equivalent to αλ having tight components. It is then true that

the category F is enriched over itself, with tight morphisms the morphisms of

F , loose morphisms the functors between loose parts and 2-cells the 2-natural

transformations between the latter. And for every F -category S and S ∈ S we

can build a copresheaf S (S,−) : S → F , that sends S ′ to the full embedding

Sτ (S, S ′)→ Sλ (S, S ′).

Given F -categories S and T , there is an F -category [S ,T ]
F
of F -functors from

S to T , where the tight morphisms are the F -natural transformations, the loose

morphisms are the 2-natural transformations between the loose parts and the

2-cells are the modifications between the loose morphisms. But we will need also

an oplax version [S ,T ]
F
oplax of it, which is the F -category defined as follows:

an object is an F -functor G : S → T ;

a loose morphism G ==⇒
loose

H is an oplax natural transformation αλ between the

loose parts such that the structure 2-cells on tight morphisms are identities,

that precisely means that αλ ∗ JS is (strictly) 2-natural; we call them loose

strict/oplax;

a tight morphism G =⇒ H is a loose one that restricts to a 2-natural transforma-

tion between the tight parts, which is equivalent to a loose morphism with

tight components; they are usually called strict/oplax;

a 2-cell is a modification between the loose morphisms.

Remark 2.2.4. We can apply the definitions above to the case T = F , ob-

taining two F -categories of copresheaves on S . The strict one, [S ,F ]F , can be

characterized as follows:
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an object is an F -functor G : S → F , that we can identify with a pair of 2-

functors Gτ : Sτ → Cat and Gλ : Sλ → Cat together with a 2-natural

transformation

Sτ Sλ

Cat

JS

Gτ Gλ

jG

whose components are all full embeddings;

a loose morphism G ==⇒
loose

H is a 2-natural transformation αλ : Gλ =⇒ Hλ : Sλ →

Cat ;

a tight morphism G =⇒ H is a loose one with tight components, that precisely

means that it induces a 2-natural transformation ατ : Gτ =⇒ Hτ such that

Sτ Sλ

Cat

JS

Gτ
Gλ

Hλ

jG αλ =

Sτ Sλ

Cat

JS

Gτ
Hτ

Hλ

ατ jH

a 2-cell is a modification between the loose morphisms.

Whereas the oplax version [S ,F ]Foplax can be characterized as follows:

an object is an object of [S ,F ]F , that we keep on viewing as a triangle above (in

the description of [S ,F ]F );

a loose morphism G ==⇒
loose

H is an oplax natural transformation αλ : Gλ → Hλ

that is (strictly) 2-natural on tight morphisms, meaning that αλ ∗ JS is

2-natural; we call them marked oplax;

a tight morphism G =⇒ H is a loose one with tight components, that precisely

means that it induces a 2-natural transformation ατ : Gτ =⇒ Hτ such that

Sτ Sλ

Cat

JS

Gτ
Gλ

Hλ

jG αλ =

Sτ Sλ

Cat

JS

Gτ
Hτ

Hλ

ατ jH
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a 2-cell is modification between the loose morphisms.

Remark 2.2.5. The 2-category of elements of a 2-functor W : Aop → Cat has

a canonical structure of F -functor G (W ) :
∫
W → A . Indeed any 2-category A

can be seen as an F -category by taking every morphism to be tight. And we

can give
∫
W a natural F -category structure taking its loose part to be itself (as

a 2-category) and as tight morphisms the morphisms of the kind (f, id) (i.e. the

morphisms of the cleavage). Then
[(∫

W
)op
,Cat

]
oplaxcart

coincides with the loose

part of
[(∫

W
)op
,F

]F
oplax

, justifying even more the use of the cartesian-marked

oplax natural transformations to work with the 2-category of elements (but also

with the usual Grothendieck construction).

Since E /lax M =
∫
y(M), we obtain that the lax slice of E on M has a canonical

F -category structure, with loose morphisms the usual ones and tight morphisms

the triangles filled with an identity. That is, the tight part of E /lax M is the

strict 2-slice E /M . So we can rephrase Proposition 2.2.1 by saying that there is

a bijection between the loose strict/oplax F -cocones on M and the F -diagrams

in the lax slice on M .

We can now prove a result of lifting of 2-colimits for dom: E /lax M → E . Such

result is not about all the cartesian-marked oplax colimits, but this makes sense

from an F -categorical point of view.

Proposition 2.2.6. Let E be a 2-category and let M ∈ E . Then the 2-colim-

fibration dom: E /lax M → E lifts all the cartesian-marked oplax colimits of F -

diagrams.

That is, given a markingW : Aop → Cat with A small, an F -diagram H :
∫
W →

E /lax M and a universal cartesian-marked oplax cocone

θ : ∆1 =====⇒
oplaxcart

E ((dom ◦H)(−), C)

that exhibits C = oplaxcart -colim∆1(dom ◦H) in E , there exist q ∈ E /lax M over

C and a universal cartesian-marked oplax cocone

θ : ∆1 =====⇒
oplaxcart

E /lax M (H(−), C)
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for H on q exhibiting q = oplaxcart -colim∆1H in E /lax M such that dom ◦θ = θ

(i.e. θ is over θ ).

Proof. By Proposition 2.2.1 (together with its proof) and Remark 2.2.5, the F -

diagram H :
∫
W → E /lax M corresponds to a cartesian-marked oplax cocone λ

for dom ◦H onM . As θ is universal, then λ induces a unique morphism q : C →M

such that λ = (q ◦ −) ◦ θ.

Consider now the lifting of the pair (dom ◦H, θ) through the discrete 2-fibration

dom to q, as in Construction 2.1.13. Since dom is a 2-colim-fibration, by The-

orem 2.1.21, the pair (dom ◦H, θ) that we obtain over (dom ◦H, θ) exhibits

q = oplaxcart -colim∆1dom ◦H.

But we can calculate dom ◦H explicitly, as in the first part of the proof of The-

orem 2.1.21, looking at the action of y(M) : E op → Cat on 1-cells and 2-cells,

since dom = G (y(M)). Given δ : (f, α) =⇒ (g, β) : (A,X)→ (B,X ′) in
∫
W , using

also the proof of Proposition 2.2.1 we obtain

dom ◦H(A,X) = q ◦ θ(A,X) = λ(A,X) = H(A,X)

dom ◦H(f, α) = (dom(H(f, α)), q ∗ θf,α) = (dom(H(f, α)), λf,α) = H(f, α)

dom ◦H(δ) = dom(H(δ)) = H(δ)

So dom ◦H = H, whence we conclude.

We have thus already proved that dom: E /lax M → E is a 2-colim fibration

(Theorem 2.1.21, which includes a result of reflection of 2-colimits) that also lifts

a large class of colimits (Proposition 2.2.6, justified via F -category theory). In

order to reach a complete generalization of the 1-dimensional Theorem 2.0.1, it

only remains to address preservation of 2-colimits for dom.

2.3. Lax F -adjoints and preservation of colimits

Aiming at a full generalization of the 1-dimensional Theorem 2.0.1 to dimension

2, we would like to prove that dom: E /lax M → E preserves 2-colimits, assuming
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that E has products. F -category theory will be crucial for this. Remember also

that it helped justify the lifting result and that it could also justify more the

reflection result.

In dimension 1, given a category C with products, the functor dom: C /M → C

preserves colimits because it has a right adjoint, namely dom ⊣ M × −. In

dimension 2, assuming to have products, the 2-functor M ×− is only a lax right

adjoint to dom: E /lax M → E , and more precisely a right-semi-lax right adjoint,

as we prove in Theorem 2.3.12. However, this is not enough for the preservation

of 2-colimits.

In this section, we prove (Theorem 2.3.10) that having a right-semi-lax right

F -adjoint is enough to guarantee the preservation of all tight strict/oplax F -

colimits (see Definition 2.3.6). Furthermore, having only a right-semi-lax loose

right F -adjoint is enough to guarantee the preservation of a large class of 2-

colimits. We then prove that dom has such a (tight) F -categorical right adjoint

(Theorem 2.3.12), and thus preserves all tight strict/oplax F -colimits, as well as

other (more loose) 2-colimits.

In Section 2.4, we will prove that also the 2-functor of change of base along a

split Grothendieck opfibration between lax slices has a suitable F -categorical

right adjoint (so that also such 2-functor preserves a large class of 2-colimits).

We begin recalling the concept of lax adjunction and the universal mapping prop-

erty that characterizes it (Definition 2.3.1, Remark 2.3.2 and Proposition 2.3.3),

for which we take as references Gray’s [20, Section I,7] and Bunge’s [11].

Definition 2.3.1. A lax adjunction is, for us, what Gray calls a strict weak

quasi-adjunction in [20, Section I,7]. That is, a lax adjunction from a 2-functor

F : A → B to a 2-functor U : B → A is given by a lax natural unit η : Id =⇒ U ◦F ,

a lax natural counit ε : F ◦ U =⇒ Id and modifications

F F

F ◦ U ◦ F
F η

s
εF

U ◦ F ◦ U

U U

Uε
t

ηU
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that express lax triangular laws, such that both the swallowtail modifications

id UF

UF UFUF

UF

η

η

ηη
UFη

ηUF
UεF

Us

tF

FU

FUFU FU

FU id

FηU sU

Ft
εFU

FUε ε
εε

ε

are identities.

A right-semi-lax adjunction is a lax adjunction in which the counit ε is strictly

2-natural and the modification s is the identity.

We call a lax adjunction strict when s and t are both identities, making the

triangular laws to hold strictly.

Remark 2.3.2. Using lax comma objects, firstly introduced by Gray in [20, Sec-

tion I,2] and refined in Definition 1.3.4, we can reduce the study of lax adjunctions

to ordinary adjunctions between hom-sets. Indeed, according to Gray, a lax ad-

junction is equivalently given by homomorphic (see below) 2-adjoint functors

F /lax B A /lax U

S

T

⊣

over A×B with unit χ : id =⇒ T ◦S and counit ξ : S◦T =⇒ id (that are automatic-

ally 2-natural if assumed natural) over A×B . Here S and T homomorphic means

that they are given uniquely by lax natural η and ε (it can be defined precisely as

in 1.5.10 of Gray’s [20], asking for example T to transform precomposition with

cells in A into precomposition with the image through F of those cells; see also

below how we produce T from ε).

Strictness corresponds to

χ ∗ iF = id and ξ ∗ iU = id,

where iF : A → F /lax B is the 2-functor induced by the identity on F and ana-

logously for iU .
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Such a 2-adjunction S ⊣ T means, in particular, that we have ordinary adjunc-

tions between homsets

B (F (A), B) A (A, U(B))

S

T

⊣

for every A ∈ A and B ∈ B . And we can rephrase such ordinary adjunctions in

terms of having universal units. The global adjunction S ⊣ T corresponds, then,

to such units satisfying a broader universal property, that captures the possibility

of h : F (A)→ B to vary in the whole lax comma object F /lax B rather than in just

B (F (A), B). This is the idea behind Proposition 2.3.3, that shows the universal

mapping property that characterizes lax adjunctions, except that in general the

lax right-adjoint produced is only oplax functorial. In our examples, however,

such characterization will produce a strict (right-semi-) lax adjunction between

2-functors.

Before that, it is helpful to see explicitly how a lax adjunction (F,U, η, ε, s, t)

produces the adjunctions (S, T, χ, ξ) between the homsets on A ∈ A and B ∈ B ,

as we will use this later. S and T are defined as usual as

S = (− ◦ ηA) ◦ U

T = (εB ◦ −) ◦ F

And the lax naturality of η and ε gives χ and ξ; precisely, given h : F (A)→ B in

B and k : A→ U(B) in A

χh =

F (A)

F (A) F (U(F (A))) B

F (U(B))

h

εh
F (ηA)

sA εF (A)

F (U(h))
εB

ξk =

U(F (A))

A U(F (U(B))) U(B)

U(B)

ηk

U(F (k))ηA

k

U(εB)

ηU(B)
tB
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In particular, we see that for a right-semi-lax adjunction we obtain χ = id and

then T ◦ S = Id (this is where the name comes from).

Proposition 2.3.3 (dual of Proposition I,7.8.2 in Gray’s [20] and of Theorem 4.1

in Bunge’s [11]). Let F : A → B be a 2-functor. Suppose that for every B ∈ B

there is an object U(B) ∈ A and a morphism εB : F (U(B)) → B in B that

is universal in the following sense: for every h : F (A) → B in B there is an

h : A→ U(B) in A and a 2-cell

F (A)

F (U(B)) B

h

F (h)

εB

λh

in B such that, given any other g : A → U(B) and σ : h =⇒ εB ◦ F (g), there is a

unique δ : h =⇒ g such that

F (A)

F (U(B)) B

h
F (h)

F (g)

εB

λh
F (δ)

=

F (A)

F (U(B)) B

h

F (g)

εB

σ

Assume then that, for every h : F (A) → B in B, we have h = h ◦ εF (A) ◦ idF (A)

and
F (A)

F (U(F (A))) F (A)

F (U(B)) B

F (id)
λid

F (h◦εF (A))

εF (A)

h
λh◦εF (A)

εB

=

F (A)

F (U(B)) B

h

F (h)

εB

λh

(2.4)

and also that, for every B ∈ B, we have εB = id and λεB = id.

Then U extends to an oplax functor, ε extends to a lax natural transformation

and there exist a lax natural transformation η and modifications s, t such that U

is a lax right-adjoint to F , except that in general U is only an oplax functor (and

the swallowtail identities need to be slightly modified accordingly ).

In particular, if λh = id for every h : F (A) → B, we obtain a right-semi-lax

adjunction.
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Proof (constructions ). Given g : B → B′ in B , define U(g) := g ◦ εB and εg :=

λg◦εB . Given a 2-cell µ : g =⇒ g′ in B , define U(µ) as the unique 2-cell induced by

εg′ ◦µεB. Given composable morphisms g and g′ in B , pasting εg and εg′ induces

a unique coassociator for U , while the identity 2-cell induces a unique counitor.

We then define ηA := idF (A) and sA := λidF (A)
.

F (A)

F (U(F (A))) F (A)

F (ηA)

εF (A)

sA

And for every f : A→ A′ in A we take ηf to be the unique 2-cell that is induced

from
F (A)

F (U(F (A))) F (A)

F (U(F (A′))) F (A′)

F (ηA) sA

F (U(F (f)))

εF (A)

F (f)εF (f)

εF (A′)

considering sA′ ∗ F (f), thanks to the assumption in equation (2.4). Finally,

for every B ∈ B , we induce tB from the identity 2-cell on εB, using again the

assumption in equation (2.4), with h = εB.

Remark 2.3.4. In our two examples, i.e. with F equal to dom: E /lax M → E

(Theorem 2.3.12) and F equal to the 2-functor of pullback along a split Grothen-

dieck opfibration between lax slices of Cat (Theorem 2.4.3), Proposition 2.3.3 will

produce a strict right-semi-lax adjunction between 2-functors. But this would not

be enough to guarantee preservation of colimits. It is enough if the right-semi-

lax adjunction is F -categorical, as we prove in Theorem 2.3.10. But we have

to restrict the attention to the (tight ) strict/oplax F -colimits, defined in Defini-

tion 2.3.6 (that we believe are the suitable colimits to consider in this context).

It might be helpful to look at Definition 2.2.3 and Remark 2.2.4 (that recall

F -category theory).

The concept of lax F -adjunction appears in Walker’s [50], but in a pseudo/lax

version and with the stronger request that s and t are isomorphisms. Moreover,
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only what for us is the tight version is considered there, asking the unit η and

the counit ε to be (tight) pseudo/oplax F -natural rather than loose ones. The

latter request means that η and ε are tight morphisms in some [S , S ]Foplax of

Definition 2.2.3 rather than loose ones. Such request is not necessary to guarantee

the preservation of the “loose part” of tight strict/oplax F -colimits. Moreover,

it is not satisfied by our example of change of base along a split Grothendieck

opfibration between lax slices.

Definition 2.3.5. A loose lax F -adjunction is a lax adjunction (F,U, η, ε, s, t)

between the loose parts in which F and U are F -functors and η and ε are loose

strict/lax F -natural transformations (i.e. loose morphisms in [S , S ]Flax of Defini-

tion 2.2.3 for suitable S ).

A (tight ) lax F -adjunction is a loose one such that η and ε are (tight) strict/lax

F -natural transformations (that is, have tight components).

A right-semi-lax loose F -adjunction is a loose lax F -adjunction such that ε is

strictly 2-natural (i.e. a loose morphism in [S , S ]F of Definition 2.2.3) and s is

the identity.

We call a loose lax F -adjunction strict if both s and t are identities.

Definition 2.3.6. Let A be a small F -category and consider F -functors

W : Aop → F (the weight) and H : A → S (the F -diagram). The strict/oplax

F -colimit of H weighted by W , denoted as oplaxF -colimWH, is (if it exists) an

object C ∈ S together with an isomorphism in F

S (C, Q) ∼= [Aop,F ]Foplax (W, S (H(−), Q))

F -natural in Q ∈ S , where [Aop,F ]Foplax is the F -category described in Re-

mark 2.2.4.

Remark 2.3.7. The natural isomorphism of Definition 2.3.6 is equivalently a

2-natural isomorphism between the loose parts, that is,

Sλ (C, Q) ∼= [Aop
λ ,Cat ]oplaxmark (Wλ, Sλ (Hλ(−), Q)) , (2.5)
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where the right hand side denotes the marked oplax natural transformations,

which restricts to a 2-natural isomorphism between the tight parts. Such tight

parts are respectively Sτ (C, Q) and those marked oplax natural transformations

αλ that restrict to 2-natural ones ατ : Wτ =⇒ Sτ (Hτ (−), Q), i.e. those forming a

commutative square

Wτ (A) Sτ (Hτ (A), Q)

Wλ(A) Sλ (Hλ(A), Q)

(ατ )A

(jW )A (JS∗Hτ )A

(αλ)A

for every A ∈ A (where JS : Sτ (−, Q) =⇒ Sλ (−, Q) ◦ JS )

Remember that identities are always tight and tight morphisms are closed under

composition. So the request that the 2-natural isomorphism of equation (2.5)

restricts to one between the tight parts equivalently means that the universal

marked oplax cocylinder µλ (corresponding to idC) satisfies the following two

conditions. For every A ∈ A and X ∈ Wτ (A), the morphism

µλA(X) : H(A)→ C

is tight, and, for every q : C → Q in S , if q ◦ µλA(X) is tight for every A ∈ A and

X ∈ Wτ (A) then q needs to be tight. We say that the (cocylinder ) τ -components

µλA(X)’s are tight and jointly detect tightness.

Proposition 2.3.8. Let A be a small F -category and consider F -functors

W : Aop → F (the weight ) and H : A → S (the F -diagram ). The strict/oplax

F -colimit of H weighted by W is, equivalently, an object C ∈ S together with an

marked oplax cocylinder

µλ : Wλ =====⇒
oplaxmark

Sλ (Hλ(−), C)

that is universal in the 2-categorical sense, giving a 2-natural isomorphism

Sλ (C, Q) ∼= [Aop
λ ,Cat ]oplaxmark (Wλ, Sλ (Hλ(−), Q)) ,

and has τ -components that are tight and jointly detect tightness.
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Proof. The proof is clear after Remark 2.3.7. Since the loose limit is 2-categorical,

it can indeed be characterized as having a universal marked oplax cocylinder.

Definition 2.3.9. We call a strict/oplax F -colimit tight if it is exhibited by a

marked oplax cocylinder µλ as in Proposition 2.3.8 such that all cocylinder λ-

components µλA(X), for A ∈ A and X ∈ Wλ(A), are tight. Notice that this

condition is automatic in the case of cartesian-marked oplax cocones, that is the

one we are mostly interested in (as every weighted 2-cocylinder can be reduced

to one of this form).

We are now ready to prove that having a right-semi-lax right F -adjoint guar-

antees the preservation of all tight strict/oplax F -colimits. We will actually see

that the property of the universal marked oplax cocylinder to have τ -components

that jointly detect tightness is preserved when we have a right-semi-lax (tight)

left F -adjoint, but not necessary to prove the preservation of the rest of the

structure, for which a loose adjunction is enough.

The following theorem does not seem to appear in the literature.

Theorem 2.3.10. Right semi-lax loose left F -adjoints preserve all the universal

marked oplax cocylinders for an F -diagram which have tight λ-components (i.e.

in some sense the “loose part” of all the tight strict/oplax F -colimits, even if the

τ -components do not jointly detect tightness ).

Right semi-lax (tight ) left F -adjoints preserve all tight strict/oplax F -colimits.

Proof. Let (F,U, η, ε, s, t) be a right-semi-lax loose F -adjunction between F -

categories S and E . That is, a lax adjunction between the loose parts where

F and U are F -functors, η is a loose strict/lax F -natural transformation, ε is

strictly 2-natural and s is the identity. Let then A be a small F -category and

consider F -functors W : Aop → F and H : A → S such that the strict/oplax

F -colimit of H weighted by W exists in S and is tight. Call C such colimit; we

want to show that F preserves it. By Proposition 2.3.8, it suffices to consider the
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universal marked oplax cocylinder

µλ : Wλ =====⇒
oplaxmark

Sλ (Hλ(−), C)

with tight λ-components that exhibits C = oplaxF -colimWH and the marked

oplax cocylinder

Wλ
µλ

=====⇒
oplaxmark

Sλ (Hλ(−), C)
F

==⇒ Eλ ((Fλ ◦Hλ) (−), F (C))

obtained applying F to the former.

We prove that F ◦ µλ is universal in the 2-categorical sense and such that the

F (µλA(X))’s, for A ∈ A and X ∈ Wλ(A), are all tight, without using that the

τ -components jointly detect tightness. Moreover, we show that if η and ε have

tight components, giving a right-semi-lax (tight) F -adjunction, then having τ -

components that jointly detect tightness is preserved as well.

Since a right-semi-lax loose F -adjunction is in particular a right-semi-lax ad-

junction between the loose parts, we know by Remark 2.3.2 that (F,U, η, ε, id, t)

induces an adjunction between homsets

Eλ (Fλ(Y ), Z) Sλ (Y, Uλ(Z))

SY,Z

TY,Z

⊣

for every Y ∈ S and Z ∈ E with unit the identity, showing T ◦ S = Id, and

counit ξ : S ◦T =⇒ id. The strategy will be to make use of the equality T ◦S = Id

to move back and forth between E and S , recovering, after T ◦ S, the original

starting data of E but with new information gathered in S .

The λ-components F (µλA(X))’s are surely tight, since F is an F -functor. Take

then q : F (C) → Z in E such that q ◦ F (µλA(X)) is tight for every A ∈ A and

every X ∈ Wτ (A). We show that if η and ε have tight components, then q needs

to be tight as well. Notice that S−,Z is marked oplax natural in Y ∈ S op
λ , with

structure 2-cell on y : Y ←− Y ′ in Sλ given by (−∗ηy)∗U , since η is loose strict/lax

F -natural. Moreover, if η has tight components then S−,Z is tight as well, since
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U is an F -functor. Since µλA(X) : H(A) → C is tight, we obtain SµλA(X),Z = id

and hence

Eλ (Fλ(C), Z) Sλ (C, Uλ(Z))

Eλ (Fλ(H(A)), Z) Sλ (H(A), Uλ(Z))

SC,Z

−◦Fλ(µλA(X)) −◦µλA(X)

SH(A),Z

SH(A),Z(q ◦ F (µλA(X))) = SC,Z(q) ◦ µλA(X)

So if η is tight then the left hand side of the equality here above is tight, and

since the µλA(X)’s jointly detect tightness we obtain that SC,Z(q) is tight. If we

also assume that ε is tight, then TC,Z is tight, whence q = T (S(q)) is tight.

We now prove that F ◦ µλ is universal, assuming only a right-semi-lax loose F -

adjunction and never using that the τ -components µλA(X) jointly detect tightness.

Everything below will be loose, so we abuse the notation dropping the loose

subscripts. The following figure condenses the strategy.

W S (H(−), C) E ((F ◦H)(−), F (C))

E ((F ◦H)(−), Z) S (H(−), U(Z)) E ((F ◦H)(−), Z)

σ

µ

γ◦−

F

T (γ)◦−

S T

(2.6)

Given a marked oplax cocylinder

σ : W =====⇒
oplaxmark

E ((F ◦H)(−), Z) ,

we want to prove that there is a unique δ : F (C)→ Z in E such that

(δ ◦ −) ◦ F ◦ µ = σ.

Postcomposing σ with SH(−),Z , we obtain a marked oplax cocylinder for H.

Indeed SH(−),Z is marked oplax natural in A ∈ Aop with structure 2-cell on

a : A←− A′ in A given by (−∗ηH(a))∗U , since η is loose strict/lax F -natural and

H is an F -functor. So, by universality of µ, S ◦σ induces a unique γ : C → U(Z)

in S such that

(γ ◦ −) ◦ µ = S ◦ σ.
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Notice then that the right square of the figure in equation (2.6) is commutative,

since it is equivalent to

(εZ ◦ F (γ)) ◦ F (−) = εZ ◦ F (γ ◦ −),

that holds since F is a 2-functor. So δ := T (γ) in E is such that

(δ ◦ −) ◦ F ◦ µ = T ◦ (γ ◦ −) ◦ µ = T ◦ S ◦ σ = σ.

We now show the uniqueness of δ. So consider another δ′ : F (C)→ Z in E such

that (δ′ ◦ −) ◦ F ◦ µ = σ. Postcomposing with S we obtain

S ◦ (δ′ ◦ −) ◦ F ◦ µ = S ◦ σ.

But we notice that

S ◦ (δ′ ◦ −) ◦ F ◦ µ = (S(δ′) ◦ −) ◦ µ

as marked oplax natural transformations. Indeed, given A ∈ A and α : X → X ′

in W (A),

(S ◦ (δ′ ◦ −) ◦ F ◦ µ)A(X) = U (δ′ ◦ F (µA(X)))◦ηH(A) = U(δ′)◦U (F (µA(X)))◦ηH(A).

Since µA(X) is tight and η is loose strict/lax F -natural, ηµA(X) = id and hence

U(δ′) ◦ U (F (µA(X))) ◦ ηH(A) = U(δ′) ◦ ηC ◦ µA(X) = S(δ′) ◦ µA(X).

And it works similarly for the images on α, using the 2-dimensional property of

η being oplax natural. Given a : A←− A′ in A and X ∈ W (A),

(S ◦ (δ′ ◦ −) ◦ F ◦ µ)a,X = U (δ′ ◦ F (µA(X))) ∗ ηH(a) ◦ U (δ′ ∗ F (µa,X)) ∗ ηH(A′).

Considering µa,X : µA′(W (a)(X)) =⇒ µA(X)◦H(a) in S , since η is loose strict/lax

F -natural and both µA(X) and µA′(W (a)(X)) are tight, we obtain

U (F (µA(X))) ∗ ηH(a) ◦ U (F (µa,X)) ∗ ηH(A′) = ηC ∗ µa,X ,

whence we conclude that

S ◦ (δ′ ◦ −) ◦ F ◦ µ = (S(δ′) ◦ −) ◦ µ
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Therefore, we have

(S(δ′) ◦ −) ◦ µ = S ◦ σ = (γ ◦ −) ◦ µ,

and by universality of µ we conclude that S(δ′) = γ, whence

δ′ = T (S(δ′)) = T (γ) = δ.

It only remains to prove the 2-dimensional universal property of F ◦ µ. Given a

modification

Σ: σ ≡⇛ σ′ : W =====⇒
oplaxmark

E ((F ◦H)(−), Z) ,

we want to prove that there is a unique ∆: δ =⇒ δ′ : F (C)→ Z in E such that

(∆ ∗ −) ∗ (F ◦ µ) = Σ.

By universality of µ, whiskering Σ with S on the right induces a unique Γ: γ =⇒ γ′

in S such that

(Γ ∗ −) ∗ µ = S ∗ Σ.

Notice then that

T ∗ (Γ ∗ −) = (T (Γ) ∗ −) ∗ F

because F is a 2-functor, and thus ∆ := T (Γ) in E is such that

(∆ ∗ −) ∗ (F ◦ µ) = T ∗ (Γ ∗ −) ∗ µ = T ∗ S ∗ Σ = Σ.

To show the uniqueness of ∆, take another ∆′ such that (∆′ ∗ −) ∗ (F ◦ µ) = Σ.

Whiskering with S on the right, we obtain

S ∗ (∆′ ∗ −) ∗ (F ◦ µ) = S ∗ Σ.

But notice that

S ∗ (∆′ ∗ −) ∗ (F ◦ µ) = (S(∆′) ∗ −) ∗ µ

Indeed it suffices to check it on components, where it holds since µA(X) is tight

and hence ηµA(X) = id (analogously to what we have shown for the 1-dimensional

universal property). So

(S(∆′) ∗ −) ∗ µ = S ∗ Σ = (Γ ∗ −) ∗ µ,
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whence S(∆′) = Γ by universality of µ and thus

∆′ = T (S(∆′)) = T (Γ) = ∆.

Therefore F ◦ µ is universal in the 2-categorical sense.

We can now conclude the generalization of the 1-dimensional Theorem 2.0.1 to

dimension 2, by showing that, when E has products, dom: E /lax M → E has

a strict right-semi-lax (tight) right F -adjoint (Theorem 2.3.12) and hence pre-

serves all tight strict/oplax F -colimits. More importantly in the context of this

thesis, Theorem 2.3.10 then also guarantees that dom preserves all the univer-

sal cartesian-marked oplax cocones (which are marked oplax with respect to the

Grothendieck construction) for an F -diagram which have tight components. Re-

member that any weighted 2-colimit can be reduced to a cartesian-marked oplax

conical one.

Remark 2.3.11. Let E be a 2-category with products. After Theorem 2.3.12

we will have proved that, considering a marking W : Aop → Cat with A small

and an F -diagram H :
∫
W → E /lax M (that is, a 2-functor that sends every

morphism of the kind (f, id) to a triangle filled with an identity), if

ζ : ∆1 =====⇒
oplaxcart

E /lax M (H(−), C)

is a universal cartesian-marked oplax 2-cocone for H on q ∈ E /lax M exhibiting

q = oplaxcart -colim∆1H such that ζ(A,X) is a tight morphism for every (A,X) ∈∫
W (which means that it is a triangle filled with an identity), then dom ◦ζ is

universal as well, exhibiting

dom(q) = oplaxcart -colim∆1(dom ◦H).

Theorem 2.3.12. Let E be a 2-category with products and let M ∈ E . Then

the 2-colim-fibration dom: E /lax M → E has a strict right-semi-lax (tight ) right

F -adjoint.

As a consequence, by Theorem 2.3.10, dom preserves all tight strict/oplax F -

colimits, but also all the universal cartesian-marked oplax cocylinders for an F -
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diagram which have tight λ-components (see Remark 2.3.11 for what this means

explicitly in practice ).

Proof. First of all, notice that dom is surely an F -functor, as every morphism of

E is tight (see Remark 2.2.5). We use the universal mapping property Proposi-

tion 2.3.3 that characterizes a lax adjunction to build a right-semi-lax right adjoint

U to dom: E /lax M → E . For every E ∈ E , we define U(E) := (M × E pr1−−→ E)

and εE : M × E
pr2−−→ E, that is tight in E , remembering that in dimension 1 the

domain functor from C /M is left adjoint to M ×−.

We show that such counit is universal in the lax sense. Given h : dom(K
t−→

M) → E in E , take h := ((t, h), id) : (K
t−→ M) → (M × E

pr1−−→ M), which is

tight in E /lax M (see Remark 2.2.5), and λh := id.

dom(K
t−→M)

dom(M × E pr1−−→M) E

h

dom((t,h),id)

pr2

λh

This guarantees that we will find a right-semi-lax adjunction in the end (see

Proposition 2.3.3). Given then another morphism

K M × E

M

γ̂

t pr1

γ

in E /lax M and another σ : h =⇒ pr2 ◦γ̂ in E , there is a unique δ : ((t, h), id) =⇒

(γ̂, γ) in E /lax M such that

dom(K
t−→M)

dom(M × E pr1−−→M) E

h
dom((t,h),id)

dom(γ̂,γ)

pr2

λh
δ

=

dom(K
t−→M)

dom(M × E pr1−−→M) E

h

dom(γ̂,γ)

pr2

σ

Indeed δ is determined by

dom(δ) = K M × E

(t,h)

γ̂

δ ,
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that needs to satisfy pr1 ∗δ = γ in order to be a 2-cell ((t, h), id) =⇒ (γ̂, γ) and

pr2 ∗δ = σ by the condition above. So δ needs to be (γ, σ), and this works.

We then see that, for every E ∈ E , εE = id since in this case (t, h) = (pr1, pr2) =

id (and λ is always the identity). Moreover, for every h : dom(K
t−→ M)→ E in

E ,

h ◦ εF (A) ◦ idF (A) = ((pr1, h ◦ pr2), id) ◦ ((t, id), id) = ((t, h), id) = h,

making the assumption of equation (2.4) (of Proposition 2.3.3) hold.

By Proposition 2.3.3, as λh is always the identity, U extends to an oplax functor,

ε extends to a 2-natural transformation and there exist a lax natural transform-

ation η and a modification t such that U is a right-semi-lax right adjoint to

dom: E /lax M → E . But it is easy to see, following the explicit construction of

Proposition 2.3.3, that U is the (strict) 2-functor

M ×− : E −→ E /lax M

E 7→
(
M × E pr1−−→ E

)
E

e−→ E ′ 7→ (id×e, id)

e
β
=⇒ e′ 7→ id×β

Then, for every (K
t−→M) ∈ E /lax M ,

ηt =

K M ×K

M

(t,id)

t pr1

id

The fact that h is always tight implies that U = M × − is an F -functor and

that η has tight components (both also immediate to check directly). Given a

morphism

K K ′

M

γ̂

t t′

γ
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in E /lax M , we find that

η(γ̂,γ) =

M ×K

K M ×K ′

K ′

id×γ̂

(γ,id)

(t,id)

γ̂ (t′,id)

whence it is clear that η is (tight) strict/lax F -natural (since η(γ̂,id) = id). Finally,

t = id, giving a strict right-semi-lax adjunction.

We have also already checked that dom: E /lax M → E and M × − are F -

functors, η is (tight) strict/lax F -natural and ε has tight components, giving a

strict right-semi-lax (tight) F -adjunction.

Remark 2.3.13. We can actually obtain a sharper result of preservation of 2-

colimits for dom: E /lax M → E (when E has products), as we show in Propos-

ition 2.3.14. Namely, we can omit the assumption that the universal cartesian-

marked oplax cocones for an F -diagram have tight λ-components. Indeed, in the

proof of Theorem 2.3.10, the preservation of the universal marked oplax cocylin-

der uses the assumption that the µλA(X)’s are tight only to guarantee the unique-

ness part of the 1- and 2-universal property. But we can prove both uniqueness

results in another way, taking advantage of the simple description of the strict

right-semi-lax right F -adjoint U =M ×− of dom.

Proposition 2.3.14. Let E be a 2-category with products and let M ∈ E . Then

dom: E /lax M → E preserves all the universal cartesian-marked oplax cocones

for an F -diagram (without assuming them to have tight λ-components ).

Proof. We only need to prove the uniqueness part of the 1- and 2-dimensional

universal property, by Remark 2.3.13. Following the proof of Theorem 2.3.10

with F = dom and considering δ′ : dom(K
t−→M)→ Z in E such that (δ′ ◦ −) ◦

dom ◦µ = σ, rather than considering S(δ′) = ((t, δ′), id), we define

γ′ :=

K M × Z

M

(pr1 ◦ dom(γ),δ′)

t pr1

γ
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Then γ′ satisfies (γ′◦−)◦µ = S◦σ, by the universal property of the product, since

γ satisfies the analogous equation and (δ′ ◦ −) ◦ dom ◦µ = σ. By the uniqueness

of γ, we obtain that γ′ = γ and hence δ′ = pr2 ◦ dom(γ) = T (γ) = δ.

Analogously, we can prove also the uniqueness of the 2-dimensional universal

property, producing from ∆′ the 2-cell (pr1 ∗ dom(Γ),∆′) between the two suitable

triangles γ′ here above. We indeed obtain ∆′ = pr2 ∗ dom(Γ) = T (Γ) = ∆.

2.4. Change of base between lax slices

In this section, we present and study a change of base 2-functor between lax slices

of a finitely complete 2-category. It is actually enough to only assume pullbacks

along split opfibrations and comma objects. We believe that it is natural to

consider a change of base 2-functor that calculates comma objects. Equivalently,

we can take pullbacks along split Grothendieck opfibrations (Proposition 2.4.1).

This is preferable in the context of this section, since Grothendieck opfibrations

in Cat are always Conduché and we can then generalize to lax slices the ideas of

Conduché’s [13] for finding a right adjoint to the pullback functor τ ∗ : Cat /B →
Cat /E .

We prove that if τ : E → B is a split opfibration in a 2-category K (see Sec-

tion 4.2), then pulling back along τ extends to a 2-functor τ ∗ : K /lax B →

K /lax E . Furthermore, we prove that when K = Cat such 2-functor has a

strict right-semi-lax loose right F -adjoint. As a consequence, by Theorem 2.3.10,

τ ∗ : Cat /lax B → Cat /lax E preserves all the universal cartesian-marked oplax

cocylinders for an F -diagram which have tight λ-components (see also Re-

mark 2.3.11). Remember that the context of universal cartesian-marked oplax

cocylinders includes the one of weighted 2-colimits, by Section 1.1.

We then extend this result of preservation of 2-colimits for τ ∗ to more general 2-

categories other than Cat : firstly to prestacks (Proposition 2.4.5) and then to any

finitely complete 2-category with a dense generator (Theorem 2.4.6). This will

be crucial in Section 3.2 to reduce the study of a 2-classifier to dense generators.
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Throughout this section, we fix K a 2-category with pullbacks along split op-

fibrations and comma objects. We also fix a choice of all pullbacks. Reading the

proofs, it will be clear that if one is just interested in τ a discrete opfibration,

then pullbacks along discrete opfibrations are enough.

Proposition 2.4.1. Let ρ : J → B be a morphism in K . Then taking comma

objects along ρ is equivalent to taking (strict 2- )pullbacks along the free Grothen-

dieck opfibration ∂1 : ρ/B → B on ρ, which is split.

P J

A B

ρ

comma

F

P ρ/B J

A B B

⌟
F ∗∂1

∂∗1F

∂1

∂0

ρ

comma

F

Proof. It suffices to check that the diagram on the right above has the universal

property of the comma object on the left, for every F : A → B in K . It is

known that ∂1 is the free Grothendieck opfibration on ρ and that it is split, see

Street’s [41].

Proposition 2.4.2. Let τ : E → B be a split Grothendieck opfibration in K .

Then pulling back along τ extends to a 2-functor

τ ∗ : K /lax B → K /lax E .

Moreover, considering the canonical F -category structure on the lax slice de-

scribed in Remark 2.2.5 (that is, the loose part of the lax slice is itself and its

tight part is given by the strict slice ), τ ∗ is an F -functor.

Proof. Given a morphism F : A → B in K , we define τ ∗F as the upper morphism

of the chosen pullback square in K on the left below. Given then a morphism in

K /lax B as in the middle below, we can lift the 2-cell in K on the right below

P E

A B

⌟
τ∗F

F ∗τ τ

F

A A ′

B

α̂

F F ′

α

P E

A B

A ′

τ∗F

F ∗τ τ

α̂

F

α

F ′
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along the Grothendieck opfibration τ , producing the chosen cartesian 2-cell

τ ∗α : τ ∗F =⇒ V : P → E (in the cleavage) with τ ◦ V = F ′ ◦ α̂ ◦ F ∗τ and

τ ∗ τ ∗α = α ∗ F ∗τ . Using then the universal property of the pullback P ′ of

τ and F ′ we can factorize V through τ ∗F ′, obtaining a morphism τ̂ ∗α : P → P ′.

We define τ ∗α to be the upper triangle in the following commutative solid:

P

P ′ E

A

A ′ B

τ̂∗α

τ∗F

F ∗τ

τ∗α

τ∗F ′

τ

α̂

F
(F ′)∗τ

F ′

α

It is straightforward to check that τ ∗ is functorial, since τ is a split Grothendieck

opfibration. For this, remember that a cleavage is the choice of a left adjoint to

ητ : E → τ /B , where the latter is the morphism induced by the identity 2-cell

on τ . Such a choice then determines the liftings of the Grothendieck opfibrations

(τ ◦ −) : K (X ,E) → K (X ,B) in Cat that we have for every X ∈ K , by using

the universal property of τ /B (to factorize the 2-cells we want to lift). So notice

that taking (α̂, α) : F → F ′ as above and (β̂, β) : F ′ → F ′′ in K /lax B we have

that the chosen cartesian lifting of β ∗ (α̂ ◦ F ∗τ) = (β ∗ (F ′)∗τ) ∗ τ̂ ∗α needs to

coincide with τ ∗β ∗ τ̂ ∗α.

Given a 2-cell δ : (α̂, α) → (β̂, β) : F → F ′ in K /lax B , we define τ ∗δ to be the

chosen cartesian lifting of the 2-cell δ ∗ F ∗τ along the Grothendieck opfibration

(F ′)∗τ , where the latter has the cleavage induced by the cleavage of τ . Using then

that τ is split, together with the definition of 2-cell in K /lax B and the universal

property of the pullback P ′, we obtain that the codomain of τ ∗δ is indeed τ̂ ∗β

and that τ ∗δ is a 2-cell in K /lax E from τ ∗α to τ ∗β. It is then straightforward to

check that τ ∗ is a 2-functor, using that (F ′)∗τ is split.

Finally, consider on both K /lax B and K /lax E the canonical F -category struc-

ture described in Remark 2.2.5. Since the lifting of an identity 2-cell through a

split Grothendieck opfibration is always an identity, then τ ∗ is an F -functor.
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Theorem 2.4.3. Let τ : E → B be a split Grothendieck opfibration in Cat . Then

the F -functor

τ ∗ : Cat /lax B → Cat /lax E

has a strict right-semi-lax loose right F -adjoint.

As a consequence, by Theorem 2.3.10, τ ∗ preserves all the universal cartesian-

marked oplax cocylinders for an F -diagram which have tight λ-components.

Proof. We use Proposition 2.3.3 (universal mapping property that characterizes a

lax adjunction) to build a right-semi-lax right adjoint τ∗ : Cat /lax E → Cat /lax B
to τ ∗. We will generalize the ideas of the construction of a right adjoint to the

pullback between strict slices (see Conduché’s [13] and Palmgren’s [39]), using

that τ is Conduché (being a Grothendieck opfibration). To suit the lax context,

we will fill the relevant triangles with general 2-cells.

So, given a morphism f : X → X ′ in B , we will need to consider the following

pullbacks in Cat

τ−1(X) E

1 B

⌟
U

τ

X

τ−1(f) E

2 B

⌟
V

τ

f

τ−1(X) τ−1(f) E

1 2 B

⌟
0̃

⌟
V

τ

0 f

Notice that τ−1(X) is the fibre of τ over X. Whereas τ−1(f) has three kinds of

morphisms, namely the morphisms in E over idX , those over idX′ and those over

f : X → X ′.

Given a functor H : D → E , we define τ∗H as the projection on the first com-

ponent pr1 : H → B , where the category H is defined as follows:

an object is a pair (X, (α̂, α)) with X ∈ B and (α̂, α) a morphism in Cat /lax E

τ−1(X) D

E

α̂

U H

α
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a morphism (X, (α̂, α))→ (X ′, (β̂, β)) is a pair (f, (Φ̂,Φ)) with f : X → X ′ in B

and (Φ̂,Φ) a morphism in Cat /lax E as on the left below such that Φ∗ 0̃ = α

and Φ ∗ 1̃ = β

τ−1(f) D

E

Φ̂

V H

Φ

τ−1(X)

τ−1(f) D

E

0̃

α̂

U

Φ̂

V H

Φ

So the only data of (Φ̂,Φ) that are not already determined by its domain

and its codomain are the assignments of Φ̂ on the morphisms of τ−1(f)

that correspond to morphisms g : E → E ′ in E over f : X → X ′, and

we have that such assignments produce a morphism in H precisely when

they organize into a functor Φ̂ such that for every g : E → E ′ in E over

f : X → X ′ the following square is commutative:

E H(α̂(E))

E ′ H(β̂(E ′))

αE

g H(Φ̂(0−→1,g))

βE′

the identity on (X, (α̂, α)) is the pair (idX , (îdα, idα)) determined by

îdα(0 −→ 1, g) = α̂(g);

the composition of (f, (Φ̂,Φ)) and (f ′, (Φ̂′,Φ′)) has first component f ′ ◦ f and

second component determined by sending g : E → E ′ over X
f−→ X ′ f ′−→ X ′′

to

Φ̂′(1 −→ 2, g2) ◦ Φ̂(0 −→ 1, g1)

where E
g1−→ Z

g2−→ E ′ is a factorization of g over X
f−→ X ′ f ′−→ X ′′ obtained

by the fact that τ is a Conduché functor. Notice that such assignment is

independent from the choice of the factorization because Φ̂ and Φ̂′ need

to agree on any morphism (1 === 1, h), since the codomain of the former,

that equals the domain of the latter, determines their images. Moreover

it is immediate to check that this gives a morphism in H, pasting the two

commutative squares for g1 and g2.
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It is straightforward to check that H is a category, and τ∗H is then surely a

functor.

We define the counit ε on H as the morphism in Cat /lax E

N D

E

ε̂H

τ∗τ∗H H

εH

given by the evaluation, as follows. An object of N is a pair ((X, (α̂, α)), E)

with (X, (α̂, α)) ∈ H and E ∈ τ−1(X), whereas a morphism in N is a pair

((f, (Φ̂,Φ)), g) with (f, (Φ̂,Φ)) a morphism in H and g : E → E ′ in E over f . We

define

ε̂H((X, (α̂, α)), E) := α̂(E)

ε̂H((f, (Φ̂,Φ)), g) := Φ̂(0 −→ 1, g)

(εH)((X,(α̂,α)),E) := αE

Then ε̂H is readily seen to be a functor, and εH is a natural transformation

thanks to the commutative square that a morphism in H needs to satisfy. No-

tice, however, that εH is not tight, so that we can only hope to obtain a loose

adjunction.

We prove that εH is universal in the lax sense. So take a functor F : A → B and

a morphism in Cat /lax E
P D

E

γ̂

τ∗F H

γ

Wishing to obtain a right-semi-lax loose F -adjunction, we search for a tight

morphism in Cat /lax B as on the left below that satisfies the equality of diagrams

on the right

A H

B

γ̂

F τ∗H

γ

P N D

E

τ̂∗γ

τ∗F

τ∗τ∗H

ε̂H

H

εH =

P D

E

γ̂

τ∗F H

γ

(2.7)
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so that we can take λ(γ̂,γ) = id. Given a : A → A′ in A , we have γ̂(A) =

(F (A), (α̂, α)) and γ̂(a) = (F (a), (Φ̂,Φ)) with

τ−1(F (A)) D

E

α̂

U H

α

τ−1(F (a)) D

E

Φ̂

V H

Φ

And given g : E → E ′ in E over F (a) : F (A) −→ F (A′), then (a, g) : (A,E) →

(A′, E ′) is a morphism in P . So we want to define

α̂(E) = ε̂H(γ̂(A), E) = ε̂H(τ̂ ∗γ(A,E)) = γ̂(A,E)

Φ̂(0 −→ 1, g) = ε̂H(γ̂(a), g) = ε̂H(τ̂ ∗γ(a, g)) = γ̂(a, g)

αE = (εH)(γ̂(A),E) = (εH)(τ̂∗γ(A,E)) = γ(A,E)

Taking a morphism g′ : E → E ′ in τ−1(F (A)),

α̂(g′) = îdα(0 −→ 1, g′) = ε̂H(γ̂(idA), g
′) = ε̂H(τ̂ ∗γ(idA, g

′)) = γ̂(idA, g
′)

It is straightforward to check that this defines a functor γ̂ as in the left part of

equation (2.7); γ̂ satisfies the equality in the right part of the same equation by

construction. Take then λ(γ̂,γ) = id.

Given another morphism in Cat /lax B

A H

B

ξ̂

F τ∗H

ξ

and a 2-cell Ξ: (γ̂, γ) =⇒ (ε̂H , εH) ◦ (τ̂ ∗ξ, τ ∗ξ) in Cat /lax E , we prove that there is

a unique 2-cell δ : (γ̂, id) =⇒ (ξ̂, ξ) in Cat /lax B such that

(ε̂H , εH) ∗ τ ∗δ ◦ id = Ξ. (2.8)

In order for δ to be a 2-cell (γ̂, id) =⇒ (ξ̂, ξ),

τ∗H ∗ δ = ξ.
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Whereas the request of equation (2.8) translates as

ε̂H ∗ τ ∗δ = Ξ.

So, for every A ∈ A , the component δA : γ̂(A)→ ξ̂(A) needs to be the morphism

in H with first component ξA and second component

τ−1(ξA) D

E

δ̂A

V H

δA

given as follows. For every g : E → E ′ over ξA, factorizing g as the cartesian

morphism Cart (ξA, E) in the cleavage of the Grothendieck opfibration τ over ξA

to E followed by the unique induced vertical morphism gvert,

δ̂A(0 −→ 1, g) = δ̂A(1 === 1, gvert) ◦ δ̂A(0 −→ 1,Cart(ξA, E)) =

=
̂̂
ξ(A)(gvert) ◦ ε̂H(δA,Cart(ξA, E)) = ̂̂

ξ(A)(gvert) ◦ ε̂H ((τ ∗δ)A,E) =

=
̂̂
ξ(A)(gvert) ◦ ΞA,E

It is straightforward to prove that δA is a morphism in H and that δ is a nat-

ural transformation, using the uniqueness of the morphisms induced by cartesian

liftings. δ is then a 2-cell in Cat /lax B such that

(ε̂H , εH) ∗ τ ∗δ ◦ id = Ξ

by construction.

Considering (γ̂, γ) = (ε̂H , εH), we immediately see that we obtain ε̂H = id, be-

cause (ε̂H , εH) is the evaluation.

Moreover, for every functor F : A → B and morphism in Cat /lax E

P D

E

γ̂

τ∗F H

γ

we prove that

((γ̂, γ) ◦ (ε̂H , εH)) ◦ idτ∗F = (γ̂, γ). (2.9)
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idτ∗F = (η̂F , id), that will be the unit ηF , is such that, for every a : A→ A′ in A ,

morphism g′ in τ−1(F (A)) and g : E → E ′ in E over F (a) : F (A)→ F (A′),

̂̂ηF (A)(E) = (A,E) ̂̂ηF (A)(g′) = (idA, g
′)

̂̂ηF (a)(0 −→ 1, g) = (a, g) η̂F (A)E = id

Whereas for a general (ψ̂, ψ) : G→ H in Cat /lax E , the morphism(
(ψ̂, ψ) ◦ (ε̂H , εH)

)
= (τ̂∗ψ, id)

will be the action of τ∗ on the morphism (ψ̂, ψ), and is such that τ̂∗ψ acts by

postcomposing the triangles with (ψ̂, ψ). Thus equation (2.9) holds.

By Proposition 2.3.3, as λ is always the identity, then τ∗ extends to an oplax

functor, that can be easily checked to be a 2-functor (it acts by postcomposition),

ε extends to a 2-natural transformation, η extends to a lax natural transformation

and there exists a modification t such that τ∗ is a right-semi-lax right adjoint to

τ ∗. It is easy to check that t is the identity.

Since (γ̂, γ) is always tight, then τ∗ is an F -functor and η has tight components.

It remains to show that η is loose strict/lax F -natural. Given a morphism in

Cat /lax B
A A ′

B

σ̂

F F ′

σ

the component on A ∈ A of the structure 2-cell η(σ̂,σ) is the morphism in the

domain of τ∗τ
∗F ′ with first component σA : F (A) → F ′(σ̂(A)) in B and second

component given by

η̂(σ̂,σ),A(0 −→ 1, g) = ̂̂ηF ′ (σ̂(A))(gvert) =
(
idσ̂(A), gvert

)
.

When (σ̂, σ) is tight, so when the 2-cell σ is the identity, then g = gvert because

τ has a normal cleavage, and we find η(σ̂,σ) = id. Thus η is strict/lax F -natural.

We conclude that τ∗ is a strict right-semi-lax loose right F -adjoint to τ ∗.
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Remark 2.4.4. We have actually proved in Theorem 2.4.3 that τ∗ sends every

morphism in Cat /lax E to a tight one in Cat /lax B . So τ∗ : Cat /lax E → Cat /lax B
is still an F -functor if we take the trivial F -category structure on the domain,

i.e. taking everything to be tight, and the canonical one in the codomain. Of

course, with such a choice of F -category structures, τ ∗ remains an F -functor

and η remains with tight components. But ε becomes tight, having now tight

components trivially.

So we find a strict right-semi-lax (tight) F -adjunction between τ ∗ and τ∗. But

Theorem 2.3.10 does not add anything to the preservation of 2-colimits we have

already proved in Theorem 2.4.3, since it would consider strict/oplax F -colimits

in an F -category with trivial F -category structure.

We now extend the result of preservation of 2-colimits that we have proved for

the 2-functor τ ∗ : K /lax B → K /lax E when K = Cat (Theorem 2.4.3) to K =

[Lop,Cat ] a 2-category of 2-dimensional presheaves.

Proposition 2.4.5. Let L be a small 2-category and let τ : E → B be a split

Grothendieck opfibration in [Lop,Cat ]. Then the F -functor

τ ∗ : [Lop,Cat ]/lax B → [Lop,Cat ]/lax E

preserves all the universal cartesian-marked oplax cocones for an F -diagram

which have tight components.

Proof. Consider a marking W : Aop → Cat with A a small 2-category and an

F -diagram H :
∫
W → [Lop,Cat ]/lax B (that is, a 2-functor that sends every

morphism of the kind (f, id) to a triangle filled with an identity). Let then

ζ : ∆1 =====⇒
oplaxcart

[Lop,Cat ]/lax B (H(−), C)

be a universal cartesian-marked oplax cocone that exhibits C =

oplaxcart -colim∆1H such that ζ(A,X) is tight for every (A,X) ∈
∫
W (which

means that it is a triangle filled with an identity). We want to prove that τ ∗ ◦ ζ

is universal as well, exhibiting τ ∗(C) = oplaxcart -colim∆1(τ ∗ ◦H).
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Since the ζ(A,X)’s are all cartesian, as they are tight, and τ ∗ is an F -functor, by

Theorem 2.1.21 (the domain 2-functor from a lax slice is a 2-colim-fibration), we

know that dom: [Lop,Cat ]/lax E → [Lop,Cat ] reflects the universality of τ ∗ ◦ ζ.

But the 2-functors (−)(L) : [Lop,Cat ] → Cat of evaluation on L ∈ L jointly re-

flect 2-colimits (as 2-colimits in 2-presheaves are calculated pointwise). Therefore,

in order to prove that τ ∗ ◦ ζ is universal, it suffices to show that, for every L ∈ L ,

the cartesian-marked oplax cocone (−)(L) ◦ dom ◦τ ∗ ◦ ζ is universal. Notice now

that the diagram of 2-functors

[Lop,Cat ]/lax B [Lop,Cat ]/lax E [Lop,Cat ]

Cat /lax B(L) Cat /lax E(L) Cat

τ∗

(−)L

dom

(−)L (−)(L)

(τL)
∗ dom

is commutative, where (−)L is the F -functor that takes components on L, because

pullbacks in [Lop,Cat ] are calculated pointwise and the components of the liftings

along τ are the liftings of the components of τ . Indeed every component τL of τ

is a split Grothendieck opfibration in Cat because τ ◦ − : [Lop,Cat ] (y(L),E)→

[Lop,Cat ] (y(L),B) is so, taking on the former the cleavage induced by the lat-

ter. And since a cleavage for τ is the choice of a left adjoint to ητ : E → τ /B
(where the latter is the morphism induced by the identity 2-cell on τ), the cleav-

ages determined on the Grothendieck opfibrations (τ ◦ −) : [Lop,Cat ] (X ,E) →

[Lop,Cat ] (X ,B) in Cat (by applying the universal property of τ /B ) are com-

patible.

We prove that dom ◦(τL)∗ ◦ (−)L ◦ ζ is universal. We have that (−)L ◦ ζ is

universal because it suffices to check that dom ◦(−)L ◦ ζ = (−)(L) ◦ dom ◦ζ is so,

by Theorem 2.1.21, as ζ has tight components and (−)L is an F -functor. And

dom preserves the universality of ζ by Theorem 2.3.12 (thanks to the hypotheses),

while (−)(L) preserves every 2-colimit. Then dom ◦(τL)∗ ◦ (−)L ◦ ζ is universal

applying Theorem 2.4.3 and Theorem 2.3.12, thanks to the hypothesis and to the

fact that both (−)L and (τL)
∗ are F -functors.

We conclude extending again the result of preservation of 2-colimits for

τ ∗ : K /lax B → K /lax E , to K endowed with a dense generator. For this, we
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will need to restrict to relatively absolute 2-colimits. But remember that any ob-

ject of K can be expressed as a relatively absolute 2-colimit of dense generators,

so that our assumption is not much restrictive in practice. We take Kelly’s [28,

Chapter 5] as the main reference for dense generators; we will recall them in

Section 3.1.

Theorem 2.4.6. Let J : L → K be a fully faithful dense 2-functor. Consider

τ : E → B a split Grothendieck opfibration in K . Then the F -functor

τ ∗ : K /lax B → K /lax E

preserves all the universal cartesian-marked oplax cocones for an F -diagram

which have tight components and whose domain is J-absolute.

Proof. Let A be a small 2-category and consider a marking W : Aop → Cat and

an F -diagram H :
∫
W → K /lax B . Let then

ζ : ∆1 =====⇒
oplaxcart

K /lax B (H(−), C)

be a universal cartesian-marked oplax cocone that exhibits C =

oplaxcart -colim∆1H such that ζ(A,X) is tight for every (A,X) ∈
∫
W . As-

sume also that dom ◦ζ is J-absolute, i.e. preserved by J̃ : K → [Lop,Cat ].

Notice that dom ◦ζ is indeed universal by Theorem 2.3.12. We want to prove

that τ ∗ ◦ ζ is universal as well, exhibiting τ ∗(C) = oplaxcart -colim∆1(τ ∗ ◦H).

Since the ζ(A,X)’s are all cartesian (as they are tight) and τ ∗ is an F -functor,

by Theorem 2.1.21, we know that dom: K /lax E → K reflects the universality

of τ ∗ ◦ ζ. Moreover, by definition of dense functor, J̃ is fully faithful and hence

reflects any 2-colimit; and the 2-functors (−)(L) : [Lop,Cat ]→ Cat of evaluation

on L ∈ L jointly reflect 2-colimits. Therefore, in order to prove that τ ∗ ◦ ζ is

universal, it suffices to show that, for every L ∈ L , the cartesian-marked oplax

cocone (−)(L) ◦ J̃ ◦ dom ◦τ ∗ ◦ ζ is universal.
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Notice now that the diagram of 2-functors

K /lax B K /lax E K

[Lop,Cat ]/lax J̃(B) [Lop,Cat ]/lax J̃(E) [Lop,Cat ]

Cat /lax J̃(B)(L) Cat /lax J̃(E)(L) Cat

τ∗

J̃/lax

dom

J̃/lax J̃

(−)L

dom

(−)L (−)(L)

(τ◦−)∗ dom

is commutative, where J̃ /lax is the F -functor that applies J̃ on morphisms and

triangles. Indeed K (J(L),−) preserves pullbacks, and since a cleavage for τ is

the choice of a left adjoint to ητ : E → τ /B , the cleavages determined on the

Grothendieck opfibrations (τ ◦ −) : [Lop,Cat ] (X ,E)→ [Lop,Cat ] (X ,B) in Cat

(by applying the universal property of τ /B ) are compatible.

We prove that dom ◦(τ ◦ −)∗◦(−)L◦J̃ /lax ◦ζ is universal. We have that J̃ /lax ◦ζ is

universal, since it suffices to check that dom ◦J̃ /lax ◦ ζ is so, by Theorem 2.1.21,

as ζ has tight components and J̃ /lax is an F -functor. And dom ◦J̃ /lax ◦ ζ =

J̃ ◦ dom ◦ζ is universal because dom ◦ζ is J-absolute by hypothesis. Then (−)L
preserves the universality of J̃ /lax ◦ ζ because dom ◦(−)L = (−)(L) ◦ dom does

so. Finally, we obtain that dom ◦(τ ◦ −)∗ ◦ (−)L ◦ J̃ /lax ◦ ζ is universal applying

Theorem 2.4.3 and Theorem 2.3.12, thanks to the hypothesis and to the fact that

J̃ /lax , (−)L and (τ ◦ −)∗ are all F -functors.



3. 2-classifiers via dense

generators

This chapter is based on the first half of our [37].

The notion of 2-classifier has been proposed by Weber in [51]. It is a 2-categorical

generalization of the concept of subobject classifier and thus the main ingredient

of a 2-dimensional notion of elementary topos. In [51], Weber proposes as well

a definition of elementary 2-topos. Although 2-dimensional elementary topos

theory is still at its beginning, we believe it has a great potential. Indeed, for

example, elementary 2-topoi could pave the way towards a 2-categorical logic and

offer the right tools to study it. We believe they could also be fruitful for theories

of bundles in geometry.

In this chapter, we contribute to expand 2-dimensional elementary topos theory.

We substantially reduce the work needed to prove that something is a 2-classifier.

This will allow us, in Chapter 5, to present the main part of a proof that Grothen-

dieck 2-topoi are elementary 2-topoi. Weber’s idea for 2-categorical classifiers is

that, moving to dimension 2, one can and wants to classify morphisms with higher

dimensional fibres. So monomorphisms (or subobjects) are upgraded to discrete

opfibrations in a 2-category, which have been introduced by Street in [41]. In-

terestingly, a 2-classifier can also be thought of as a Grothendieck construction

inside a 2-category. Indeed the archetypal example of 2-classifier is given by the

category of elements (or Grothendieck construction), that exhibits the 2-category

Cat of small categories as the archetypal elementary 2-topos. We introduce the

notion of good 2-classifier in Definition 3.1.12, which captures well-behaved 2-
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classifiers. The idea is to keep as classifier a morphism with domain the terminal

object, and upgrade the classification process from one regulated by pullbacks

to one regulated by comma objects. Good 2-classifiers are closer to the point of

view of logic, as they can still be interpreted as an object of generalized truth

values together with a chosen “true”. Moreover, a classification process regulated

by comma objects is sometimes more natural and easier to handle. We also ask

good 2-classifiers to classify all discrete opfibrations that satisfy a fixed pullback-

stable property P. In our examples, such a P will be the property of having small

fibres. Of course, the construction of the category of elements, hosted by Cat , is

a good 2-classifier, classifying all discrete opfibrations (in Cat ) with small fibres.

A problem with 2-classifiers is that it is quite hard and lengthy to prove that

something is a 2-classifier.

We prove that both the conditions of 2-classifier and what gets classified by a

2-classifier can be checked just over the objects that form a dense generator. So

that the whole study of a would-be 2-classifier is substantially reduced. We also

give a concrete recipe to build the characteristic morphisms (i.e. the morphisms

into the universe that encode what gets classified). This is organized in the three

Theorems 3.2.2, 3.2.5 and 3.2.8; see also Corollaries 3.2.10 and 3.2.11. Dense

generators capture the idea of a family of objects that generate all the other ones

via colimits in a nice way. The preeminent example is given by representables in

categories of presheaves. To have a hint of the benefits offered by our theorems of

reduction to dense generators, we can look at the case of Cat . We have that the

singleton category alone forms a dense generator of Cat . All the major properties

of the Grothendieck construction are hence deduced from the trivial observation

that everything works well over the singleton category (Example 3.2.13). The

proof of our theorems of reduction to dense generators uses our calculus of colim-

its in 2-dimensional slices, developed in Chapter 2. Recall that such calculus

generalizes to dimension 2 the well-known fact that a colimit in a 1-dimensional

slice category is precisely the map from the colimit of the domains of the diagram

which is induced by the universal property. The calculus is based on the reduc-

tion of weighted 2-colimits to cartesian-marked oplax conical ones (Section 1.1),
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and on F -category theory (recalled in Section 2.2).

In Chapter 5, we will apply our theorems of reduction of the study of 2-classifiers

to dense generators to the cases of 2-presheaves, i.e. prestacks, and stacks. Our

theorems will offer great benefits there, as they allow us to consider the classific-

ation just over representables. We start looking at this in Section 3.3. Yoneda

lemma determines up to equivalence the construction of a good 2-classifier in

prestacks that classifies all discrete opfibrations with small fibres. We explain how

this involves discrete opfibrations over representables, which offer a 2-categorical

notion of sieve. Exactly as sieves are a key element for the subobject classifier in

presheaves, the 2-dimensional generalization of sieves described above is a key ele-

ment for the 2-classifier in prestacks. The only problem, described in Section 3.3

is that taking discrete opfibrations over representables only gives a pseudofunctor

Ω which is not a 2-functor and that a priori only lands in large categories. Such

a problem will be solved by the work of Chapter 4; see also Section 3.3.

Outline of the chapter

In Section 3.1, we recall 2-classifiers (3.1.1) and dense generators (3.1.2). We also

introduce good 2-classifiers (Definition 3.1.12).

In Section 3.2, we present a reduction of the study of a 2-classifier to dense

generators (Theorems 3.2.2, 3.2.5 and 3.2.8; see also Corollaries 3.2.10 and 3.2.11).

In Section 3.3, we look at the possibility to apply our theorems of reduction

to dense generators to produce a good 2-classifier in prestacks that classifies all

discrete opfibrations with small fibres. We find a problem that will be solved by

the work of Chapter 4.

Notations

Recall the size notations fixed in the Notations chapter (right after the Introduc-

tion).
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Throughout this chapter, we fix an arbitrary 2-category L with pullbacks along

discrete opfibrations (see Definition 3.1.2), comma objects and terminal object.

We also fix a choice of such pullbacks in L such that the change of base of an iden-

tity is always an identity. Following the proofs, it will be clear that some results of

this chapter involving 2-classifiers à la Weber work also without assuming comma

objects, and that some results involving good 2-classifiers (see Definition 3.1.12)

work also without assuming pullbacks along discrete opfibrations.

3.1. Preliminaries

In this section, we recall some important concepts and results that we will

use throughout the chapter. These include 2-classifiers and dense generators.

Moreover, we introduce the notion of good 2-classifier (Definition 3.1.12).

In 3.1.1, we recall the notion of 2-classifier. Weber’s idea (in [51]) is that a 2-

classifier should be a discrete opfibration classifier. The definition of opfibration

in a 2-category is due to Street [41], in terms of pseudo-algebras for a 2-monad.

It is known that opfibrations in a 2-category can be equivalently defined by rep-

resentability, as in Weber’s [51]. In Definition 3.1.12, we introduce the notion of

good 2-classifier.

In 3.1.2, we briefly recall from Kelly’s [28, Chapter 5] (2-categorical) dense gen-

erators and the preeminent example of representables in 2-presheaves. The idea

is that every object of a 2-category can be written as a nice colimit of a small

family of objects.

3.1.1. 2-classifiers

Weber’s idea is to define 2-classifiers by looking at the following well-known equi-

valent definition of subobject classifier.

Definition 3.1.1. Let E be a category. A subobject classifier is a monomorphism
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i : I ↪−→ Ω in E such that for every F ∈ E the function

Gi,F : HomE (F,Ω)→ Sub(F )

given by pulling back i is a bijection, where Sub(F ) is the set of subobjects of

F . When this holds, I is forced to be the terminal object of E .

Towards a notion of 2-classifier, Weber proposed in [51] to upgrade the concept

of monomorphism to the one of discrete opfibration. The idea is that, moving to

dimension 2, i.e. increasing by 1 the dimension of the ambient, we want to increase

by 1 also the dimension of the fibres of the morphisms to classify. While injective

functions have as fibres either the singleton or the empty set, discrete opfibrations

have as fibres general sets. Exactly as the notion of injective function extends

to the one of monomorphism in any category, the notion of discrete opfibration

extends to the one inside any 2-category. This idea is closely connected with that

of homotopy level in Voevodsky’s univalent foundations, see [46, Chapter 7] and

Voevodsky’s [49].

Exactly as Set is the archetypal elementary topos, Cat needs to be the archetypal

elementary 2-topos. And Cat hosts indeed a nice classification of discrete opfibra-

tions, given by the category of elements (or Grothendieck construction).

Definition 3.1.2 (Street [41], Weber [51]). A morphism s : G → F in L is a

discrete opfibration in L (over F ) if for every X ∈ L the functor

L (X, G)
s◦− L (X, F )

induced between the hom-categories is a discrete opfibration in Cat .

We denote as DOpFibL (F ) or just as DOpFib (F ) the full subcategory of

the strict slice L /F on the discrete opfibrations over F . That is, a morphism

between discrete opfibrations s : G → F and s′ : G′ → F is a morphism G →

G′ that makes the triangle with s and s′ commute. Given P a pullback-stable

property for discrete opfibrations, we denote as DOpFib P
(F ) the full subcategory

of DOpFib (F ) on the discrete opfibrations that satisfy P.
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Remark 3.1.3. By definition, a discrete opfibration s : G→ F in L is required

to lift every 2-cell θ : s ◦ a =⇒ b to a unique 2-cell θ
a
: a =⇒ θ∗a. We can draw the

following diagram to say that s ◦ θ∗a = b and s ⋆ θ
a
= θ.

X G

G
X F

a

θ∗a
s

sa

b

θ
a

θ

Remark 3.1.4. Discrete opfibrations in L are stable under pullbacks. Indeed

L (X,−) preserves pullbacks (as it preserves all limits, because it is a represent-

able) and discrete opfibrations in Cat are stable under pullbacks.

Remark 3.1.5. Applying Definition 3.1.2 to L = Cat , we obtain a notion that

is equivalent to the usual one of discrete opfibration. This is essentially because

for L = Cat it suffices to require the above liftings for X = 1. We are then able

to lift entire natural transformations θ componentwise. In Proposition 4.2.5, we

will extend this idea to the case of 2-presheaves (i.e. prestacks).

Proposition 3.1.6. Let p : E → B be a discrete opfibration in L . For every

F ∈ L , pulling back p extends to a functor

Gp,F : L (F, B)→ DOpFib (F ) .

Proof. Given a morphism z : F → B in L , consider the chosen pullback in L

Gz E

F B

⌟
z̃

sz p

z

We define Gp,F (z) to be sz, which is a discrete opfibration in L by Remark 3.1.4.

Given a 2-cell α : z =⇒ z′ : F → B, we induce Gp,F (α) by lifting the 2-cell

Gz F Bsz
z

z′

α
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to z̃ along the discrete opfibration p. We obtain a unique 2-cell

Gz E

z̃

v

α̃

such that p ◦ v = z′ ◦ sz and pα̃ = αsz. We define Gp,F (α) to be the morphism

from Gz to Gz′ induced by sz and v via the universal property of the pullback

Gz′ . We may represent this with the following diagram:

Gz

Gz′ E

F

F B

Gp,F (α)

z̃

sz
z̃′

α̃

pzsz
′

z′

α

(3.1)

It is straightforward to show that Gp,F is a functor, using the universal property

of the pullback and the uniqueness of the liftings through the discrete opfibration

p.

Notation 3.1.7. Given a morphism z : F → B in L , we will denote as Gz
p,F or

just as Gz the domain of the discrete opfibration Gp,F (z). We will also often draw

the action of Gp,F on morphisms as in the diagram of equation (3.1). Sometimes,

we will denote the functor Gp,F as Gp.

We will also need the following result from our joint work with Caviglia [12]. It

is a particular case of a proposition that we will report in Proposition 4.2.9.

Proposition 3.1.8 ([12], Proposition 4.2.9). The assignment F ∈ L 7→

DOpFib (F ) ∈ CAT extends to a pseudofunctor

DOpFib (−) : Lop → CAT .

Moreover this restricts to a pseudofunctor DOpFib P
(−) that sends F 7→

DOpFib P
(F ).

Proof. (Definition of the assignment). On the underlying category of Lop, we

define DOpFib (−) as the restriction of the pseudofunctor given by the pullback
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(thanks to Remark 3.1.4). So, given a morphism H
y−→ F in L , we define

DOpFib (y) := y∗ : DOpFib (F )→ DOpFib (H)

Given a 2-cell α : y =⇒ y′ : H → F in L , we define DOpFib (α) = α∗ : y∗ → (y′)∗ as

the natural transformation whose component on a discrete opfibration s : G→ F

in L is Gs,H(α).

Proposition 3.1.9. Let p : E → B be a discrete opfibration in L . The functors

Gp,F are pseudonatural in F ∈ L .

Proof. The proof is straightforward, using the universal property of the pullback

and the uniqueness of the liftings through a discrete opfibration.

Definition 3.1.10 (Weber [51]). A 2-classifier in L is a discrete opfibration

p : E → B in L such that for every F ∈ L the functor

Gp,F : L (F, B)→ DOpFib (F )

is fully faithful.

In that case, we say that a discrete opfibration s : G→ F in L is classified by p (or

that p classifies s) if s is in the essential image of Gp,F , and we call characteristic

morphism of s a morphism z : F → B such that Gp,F (z) ∼= s.

Remark 3.1.11. While Definition 3.1.1 asks for a universal monomorphism,

Definition 3.1.10 asks for a universal discrete opfibration. The classification pro-

cess is kept to be regulated by pullbacks. The condition to have a bijection is

upgraded in dimension 2 to ask Gp,F to be an equivalence of categories with its

essential image. Notice that Definition 3.1.10 allows for a classification of a smal-

ler class of discrete opfibrations. In dimension 1, this idea brought for example

to the concept of quasitopos.

However, Definition 3.1.1 loses the interpretation of the subobject classifier as

picking “true” inside an object of generalized truth values. Indeed the domain

of a 2-classifier is not forced at all to be the terminal object. In order to keep
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such point of view, which is useful for categorical logic, we propose to upgrade

the 1-dimensional classification process, which is regulated by pullbacks, to one

regulated by comma objects. This is slightly less general than Definition 3.1.10,

but with better properties (see the following two remarks).

Definition 3.1.12. Let P be a fixed pullback-stable property P for discrete op-

fibrations in L . A good 2-classifier in L (with respect to P) is a morphism

ω : 1→ Ω in L such that for every F ∈ L the functor

Ĝω,F : L (F,Ω)→ DOpFib (F )

given by taking comma objects from ω is fully faithful and forms an equivalence

of categories when restricting the codomain to DOpFib P
(F ). (In particular, we

are asking that Ĝω,F lands in DOpFib P
(F )).

In the following two remarks, we show that Ĝω,F is indeed a functor which lands in

DOpFib (F ) and that good 2-classifiers are 2-classifiers enjoying better properties.

Remark 3.1.13. Taking comma objects from ω is equivalent to pulling back the

lax limit τ of the arrow ω, which serves as a replacement.

G 1

F Ω

Ĝω,F (z) ω
comma

z

=

G Ω• 1

F Ω Ω

⌟
Gτ,F (z) τ ω

comma

z

Moreover, by Weber’s [51], the span with vertex Ω• formed by τ and the map to

1 is a bisided discrete fibration. And we get that τ is a discrete opfibration. (In

L = Cat , it is also known that such a τ is the free opfibration on the functor ω.)

Explicitly, the lifting of θ : τ ◦ a→ b to a is calculated by applying the universal

property of the comma object. Indeed θ∗a is induced by

X Ω• 1

Ω Ω
b

a

τθ
comma

ω

and θ
a
: a =⇒ θ∗a is then induced by the pair of 2-cells formed by the identity

(between X and 1) and θ (between X and Ω).
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By Remark 3.1.4, it follows that Ĝω,F lands in DOpFib (F ). Moreover, Ĝω,F

lands in DOpFib P
(F ) if and only if τ satisfies P. It is easy to see that, up to

choosing appropriate representatives of the comma objects, Ĝω,F = Gτ,F . So that

if ω is a good 2-classifier, τ is a 2-classifier.

Remark 3.1.14. Good 2-classifiers enjoy better properties than 2-classifiers.

They are closer to the point of view of categorical logic, as they can still be

thought of as the inclusion of “true” inside an object of generalized truth values.

Moreover, a classification process regulated by taking comma objects from a

morphism that has the terminal object as domain is sometimes easier to handle.

As an example, the assignment of Ĝω,F on morphisms is just induced by the

universal property of the comma object, while for Gp,F , in Proposition 3.1.6, we

had to consider liftings along a discrete opfibration. Using good 2-classifiers rather

than 2-classifiers will be very useful for us in Section 5.2. Indeed, we will restrict

2-dimensional classifiers to nice sub-2-categories via factorization arguments, and

factorizing good 2-classifiers is much easier than factorizing general 2-classifiers.

We also notice that a classification process regulated by comma objects offers

another justification for the idea of upgrading subobjects to discrete opfibrations.

Indeed discrete opfibrations are what gets produced by taking comma objects

from a morphism that has the terminal object as domain.

In our examples, P will be the property of having small fibres. In some sense, our

good 2-classifiers will classify “all possible morphisms”, as the Ĝω,F ’s are required

to be equivalences of categories.

Example 3.1.15. Cat is the archetypal example of 2-category endowed with a

(good) 2-classifier. Consider indeed ω = 1: 1 → Set . For every B ∈ Cat , the

functor

Ĝω,B : Cat (B , Set )→ DOpFib (B)

is precisely the Grothendieck construction (or category of elements). It is well-

known that this forms an equivalence of categories when restricting the codomain

to be the full subcategory DOpFib s
(B) of DOpFib (B) on the discrete opfibra-
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tions with small fibres. So that 1 : 1→ Set is a good 2-classifier in Cat .

E 1

B Set

∀p
disc opfib

small fibres comma
1

∃χp
taking fibres

Notice that the lax limit of the arrow ω is given by the forgetful functor τ : Set • →

Set from pointed sets to sets.

Remark 3.1.16. In light of this archetypal example, we can think of a 2-classifier

as a Grothendieck construction inside a 2-category.

Notation 3.1.17. We will often write as τ : Ω• → Ω any 2-classifier or would-be

2-classifier, having in mind the archetypal example of Cat .

Remark 3.1.18. Upgrading monomorphisms to discrete opfibrations, one could

try to upgrade Sub(F ) to a category of isomorphism classes of discrete opfibra-

tions over F . It is possible to form such a category and almost the entire reduction

to dense generators of the study of 2-classifiers would equally work (if accordingly

adjusted). However, there is one point, in Theorem 3.2.5, that does not seem to

work well with this choice. We will give more details in Remark 3.2.6. We believe

it is more natural and fruitful to work without isomorphism classes.

3.1.2. Dense generators

In Section 3.2, we will reduce to dense generators the study of 2-classifiers. Here

we briefly recall what a (2-dimensional) dense generator is. The main reference

we take for this is Kelly’s [28, Chapter 5].

The basic idea behind the concept of generator of a 2-category L is that of a

family of objects that builds all the objects of L via weighted 2-colimits.

Definition 3.1.19. A fully faithful 2-functor I : K → L is a naive generator if

every F ∈ L is a weighted 2-colimit in L of a diagram which factors through K .
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Definition 3.1.20 ([28, Chapter 5]). A 2-functor I : Y → L with Y small is a

dense generator (or also just dense) if the restricted Yoneda embedding

Ĩ : L −→ [Yop,Cat ]

F 7→ L (I(−), F )

is (2-)fully faithful.

Remark 3.1.21. Of course the Yoneda embedding is fully faithful. And we may

interpret this by saying that considering all morphisms from any object into F we

get the whole information of F . The idea of a dense generator is that morphisms

with source in a smaller family of objects are enough.

Definition 3.1.22. Let I : Y → L be a 2-functor. A weighted 2-colimit in L is

called I-absolute if it is preserved by Ĩ : L → [Yop,Cat ].

When I : Y → L is fully faithful, we can characterize density of I in terms of

weighted 2-colimits in L .

Theorem 3.1.23 ([28, Theorem 5.19]). Let I : Y → L be a fully faithful 2-functor

with Y small. The following are equivalent:

(i) I is a dense generator;

(ii) every F ∈ L is an I-absolute weighted 2-colimit in L of a diagram which

factors through Y.

Remark 3.1.24. We can thus interpret density of a fully faithful I : Y → L as

the request that all objects of L are nice weighted 2-colimits of objects of Y . So

this is stronger than being a naive generator.

Example 3.1.25. Let C be a small 2-category. The Yoneda embedding y : C →

[C op,Cat ] is a dense generator. That is, representables form a dense generator of

the 2-category of 2-presheaves. Indeed it is well-known that every 2-presheaf is

a weighted 2-colimit of representables, weighted by itself. And y-absoluteness is

automatic as ỹ is essentially the identity.

In particular the singleton category 1 is a dense generator of Cat .
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3.2. Reduction of 2-classifiers to dense

generators

In this section, we present a novel reduction of the study of a 2-classifier to dense

generators. This is organized in the three Theorems 3.2.2, 3.2.5 and 3.2.8. More

precisely, we prove that all the conditions of 2-classifier (see Definition 3.1.10)

can just be checked on those objects F that form a dense generator (see Defini-

tion 3.1.20). The study of what is classified by a 2-classifier is similarly reduced

to a study over the objects that form a dense generator. We also give a concrete

recipe to build the characteristic morphisms.

This result offers great benefits. For example, applied to Cat , it reduces all the

major properties of the Grothendieck construction to the trivial observation that

everything works well over the singleton category (see Example 3.2.13).

In Chapter 5, we will apply our theorems of reduction to dense generators of this

section to the cases of prestacks and stacks; see also Section 3.3. This will allow

us to find a good 2-classifier in 2-presheaves that classifies all discrete opfibrations

with small fibres, and to restrict it to a good 2-classifier in stacks.

Throughout this section, we fix a discrete opfibration τ : Ω• → Ω in L . Recall

from Definition 3.1.10 that τ is a 2-classifier if for every F ∈ L the functor

Gτ,F : L (F,Ω)→ DOpFib (F )

is fully faithful. And that, provided that this is the case, the essential image of

such functors precisely represents which discrete opfibrations are classified.

The following proposition will often be useful.

Proposition 3.2.1. Let p : E → B be a discrete opfibration in L . For every pair

of composable morphisms H
y−→ F

z−→ B in L , the pseudonaturality of Gp,− (see

Proposition 3.1.9 ) gives isomorphisms

Gp,H(z ◦ y) ∼= y∗Gp,F (z) = GGp,F (z),H(y), (3.2)
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where y∗ is the functor DOpFib (y) defined in the proof of Proposition 3.1.8.

Moreover, given a diagram

H F B

y

y′

z

z′

α β

in L , the isomorphisms above form the following two commutative squares:

Gp,H(z ◦ y) GGp,F (z),H(y)

Gp,H(z ◦ y′) GGp,F (z),H(y
′)

Gp,H(zα)

≃

GGp,F (z),H(α)

≃

Gp,H(z ◦ y) GGp,F (z),H(y)

Gp,H(z
′ ◦ y) GGp,F (z′),H(y)

Gp,H(βy)

≃

y∗Gp,F (β)

≃

Proof. The proof is straightforward. The first square is given by the 2-dimensional

part of the pseudonaturality of Gp,− applied to the 2-cell α, whereas the second

square is given by the naturality in z of the isomorphisms of equation (3.2).

We now present the first of our three theorems of reduction to dense generators.

This reduces the study of the faithfulness of the functors Gτ,F . Such first theorem

is much easier than the other two and actually works with any naive generator

(Definition 3.1.19).

We also notice that injectivity on objects of the functors Gτ,F can be reduced in

a similar way, although this is less interesting for us.

Theorem 3.2.2. Let Y be a full sub-2-category of L . If for every Y ∈ Y

Gτ,Y : L (Y,Ω)→ DOpFib (Y )

is faithful, then for every F in the closure of Y in L under weighted 2-colimits,

Gτ,F : L (F,Ω)→ DOpFib (F )

is faithful.

In particular, if Y is a naive generator of L and Gτ,Y is faithful for every Y ∈ Y,

then Gτ,F is faithful for every F ∈ L .
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Proof. LetK : I → L be a 2-diagram which factors through Y and has a weighted

2-colimit F in L , with weight W : Iop → Cat . Call Λ: W =⇒ L (K(−), F ) the

universal cocylinder of such colimit.

In order to prove that Gτ,F is faithful, take two arbitrary 2-cells in L

F Ω

z

z′

α and F Ω

z

z′

α′

such that Gτ,F (α) = Gτ,F (α
′) : Gz → Gz′ . We prove that α = α′.

As F = colimWK with universal cocylinder Λ, it suffices to show that the two

modifications

W L (K(−), F ) L (K(−),Ω)Λ

z◦−

z′◦−

α∗−

and (α′ ∗ −)Λ are equal, as we then conclude by the (2-dimensional) universal

property of the weighted 2-colimit F .

It then suffices to prove that, given arbitrary i ∈ I and X ∈ W (i), K(i) F Ω
Λi(X)

z

z′

α

 =

 K(i) F Ω
Λi(X)

z

z′

α′


But as K(i) ∈ Y and Gτ,K(i) is faithful by assumption, it then suffices to show

that

Gτ,K(i) (αΛi(X)) = Gτ,K(i) (α
′ Λi(X)) . (3.3)

By Proposition 3.2.1, we can write Gτ,K(i) (αΛi(X)) as the composite

Gτ,K(i)(z◦Λi(X)) ∼= Λi(X)∗ (Gτ,F (z))
Λi(X)∗(Gτ,F (α))
−−−−−−−→ Λi(X)∗ (Gτ,F (z

′)) ∼= Gτ,K(i)(z
′◦Λi(X))

and analogously for α′. Since such composites for α and for α′ are equal, we

conclude that equation (3.3) holds.

Remark 3.2.3. In order to prove our second and third theorems of reduction to

dense generators, we apply our calculus of colimits in 2-dimensional slices, that

we explored in Chapter 2.
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We first need to compare, given p : E → B a discrete opfibration in L , the 2-

functor dom ◦Gp,F with dom ◦p∗, where

p∗ : L /lax B → L /lax E

is the change of base between lax slices introduced in Proposition 2.4.2.

For every z : F → B in L ,

dom(p∗z) = dom(Gp,F (z)).

Given (id, α) : z → z′ in L /lax B, which is just α : z =⇒ z′ : F → B, we have that

dom(p∗(id, α)) = dom(Gp,F (α))

by comparing the diagram of equation (3.1) with the similar one in the proof of

Proposition 2.4.2.

Given a general (α̂, α) : z → z′ in L /lax B, we can still express dom(p∗(α̂, α)) =

p̂∗α in terms of dom(Gp,F (α)). Indeed consider the total pullback R of p with the

composite z′ ◦ α̂ and the composite pullback S as below

S Gz′ E

F F ′ B

⌟
Gp(z′)∗α̂

GGp(z′)(α̂)
⌟

p∗z′

Gp(z′) p

α̂ z′

Call i the induced isomorphism between R and S. Comparing again the diagrams

of equations (3.1) and of the proof of Proposition 2.4.2, we obtain that

dom(p∗(α̂, α)) = Gp,F (z
′)∗α̂ ◦ i ◦ dom(Gp,F (α))

The following construction will be useful to prove our second and third theorems

of reduction to dense generators. It is based on our calculus of colimits in 2-

dimensional slices, explored in Chapter 2.

Construction 3.2.4. Let I : Y → L be a fully faithful dense generator of L ,

and let F ∈ L . By Theorem 3.1.23, there exist a 2-diagram J : I → L which

factors through Y and a weight W : Iop → Cat such that

F = colimW J
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in L and this colimit is I-absolute. By Theorem 1.1.22, the 2-diagram K :=

J ◦ G (W ) :
∫
W → L factors through Y and is such that

F = oplaxcart -colim∆1K.

Moreover this colimit is still I-absolute by Proposition 1.1.24. Call

Λ: ∆1 =====⇒
oplaxcart

L (K(−), F )

the universal cartesian-marked oplax cocone that presents such colimit.

Consider now a discrete opfibration p : E → B in L , a morphism z : F → B and

the chosen pullback in L
Gz E

F B

⌟
p∗z

Gp,F (z) p

z

We want to exhibit Gz as a cartesian-marked oplax conical colimit of a diagram

constructed from K and Λ.

By Theorem 2.1.21, we can construct from K and Λ a 2-diagram K ′
z =

K ′ :
∫
W → L /lax B and a universal cartesian-marked oplax cocone Λ′

z = Λ′

which exhibits

F

B

z =
oplaxcart -colim∆1K

B

z = oplaxcart -colim∆1K ′

in the lax slice L /lax B. Explicitly, K ′ is the 2-diagram that corresponds to the

cartesian-marked oplax cocone

λz : ∆1 =====⇒
oplaxcart

L (K(−), B) :
(∫

W
)op

→ Cat

associated to z. That is,

K ′ :
∫
W −→ E /lax B

(C,X)

(D,X ′)

(f,ν) 7→
K(C,X) K(D,X ′)

B

K(f,ν)

λz
(C,X) λz

(D,X′)

λzf,ν

δ 7→ F (δ)
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Considering the canonical F -category structure on
∫
W , with the tight part given

by the morphisms of type (f, id), we have that K ′ is an F -diagram.

The universal cartesian-marked oplax cocone Λ′ has component on (C,X) given

by the identity filled triangle (which is thus a tight morphism in L /lax B)

K(C,X) F

B

Λ(C,X)

λz
(C,X)

z

Then Λ′
f,ν = Λf,ν for every morphism (f, ν) in

∫
W .

By Theorem 2.4.6, the 2-functor

p∗ : L /lax B → L /lax E

preserves the colimit z = oplaxcart -colim∆1K ′, since K ′ is an F -diagram, Λ′

has tight components and the domain of such colimit is F = oplaxcart -colim∆1K,

which is I-absolute. Then by Proposition 2.3.14 (and Theorem 2.3.12) the domain

2-functor dom: L /lax E → L preserves the latter colimit p∗(z), since p∗ is an F -

functor. We obtain that dom ◦p∗◦Λ′ is a universal cartesian-marked oplax cocone

that presents

Gz = oplaxcart -colim∆1(dom ◦p∗ ◦K ′).

Explicitly, given (D,X ′)
(f,ν)←−− (C,X) in

∫
W , we have that dom

(
p∗
(
Λ′

(C,X)

))
is

the unique morphism into the pullback Gz induced by

Q(C,X)

Gz E

K(C,X)

F B

Gp(K′(C,X))

p∗K′(C,X)

p∗z

p

Λ(C,X)

K′(C,X)

Gp(z)

z

Then dom
(
p∗
(
Λ′
f,ν

))
is the unique lifting along the discrete opfibration Gp,F (z)

of the 2-cell Λf,ν ∗ Gp,K(C,X) (K
′(C,X)) to dom

(
p∗
(
Λ′

(C,X)

))
.

Notice that in particular this construction can be applied to z = idF , exhibiting

the domain of any discrete opfibration over F as a cartesian-marked oplax conical
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colimit (starting from K and Λ). Remember that we chose pullbacks in L such

that the change of base of an identity is always an identity. Notice also that,

given z : F → B,

λz = (z ◦ −) ◦ λid

Whence we can express the F -functor K ′
z constructed from z in terms of the one

constructed from id:

K ′
z = (z ◦ −) ◦K ′

id

Then the components and the structure 2-cells of Λ′
z and Λ′

id have the same

domains, which determine them.

We now present the second of our three theorems of reduction to dense generators.

This reduces the study of the fullness of the functors Gτ,F , provided that we

already know their faithfulness. Indeed such a theorem builds over Theorem 3.2.2.

Theorem 3.2.5. Let I : Y → L be a fully faithful dense generator of L . If for

every Y ∈ Y

Gτ,I(Y ) : L (I(Y ),Ω)→ DOpFib (I(Y ))

is fully faithful, then for every F ∈ L also

Gτ,F : L (F,Ω)→ DOpFib (F )

is full, and hence fully faithful by Theorem 3.2.2, so that τ is a 2-classifier in L .

Proof. Let F ∈ L ; we prove that Gτ,F is full. Consider then two morphisms

z, z′ : F → Ω in L and a morphism h : Gτ,F (z) → Gτ,F (z
′) in DOpFib (F ). We

search for a 2-cell α : z =⇒ z′ : F → Ω such that Gτ,F (α) = h. The idea is to write

F as a colimit and define α by giving its “components”, which we can produce

by the fullness of the functors Gτ,I(Y ) with the Y ’s in Y that generate F .

By Theorem 3.1.23, Theorem 1.1.22 and Proposition 1.1.24, there exists a 2-

diagram K :
∫
W → L which factors through Y and a universal cartesian-marked

oplax cocone

Λ: ∆1 =====⇒
oplaxcart

L (K(−), F )
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that exhibits F as the I-absolute cartesian-marked oplax conical colimit of K.

F = oplaxcart -colim∆1K

Then, in order to produce α, it suffices to give a modification

∆1 L (K(−),Ω)

(z◦−)◦Λ

(z′◦−)◦Λ

θ

Given (C,X) ∈
∫
W , we will have that K(C,X) F Ω

Λ(C,X)

z

z′

α

 = θ(C,X)

So, we will need to have that

Gτ,K(C,X)(θ(C,X)) = Gτ,K(C,X)(αΛ(C,X))

and, by Proposition 3.2.1 and the request that Gτ,F (α) = h, the right hand side

of such equation is equal to the composite

Gτ,K(C,X)(z◦Λ(C,X)) ∼= Λ(C,X)
∗ (Gτ,F (z))

Λ(C,X)
∗(h)

−−−−−−→ Λ(C,X)
∗ (Gτ,F (z

′)) ∼= Gτ,K(C,X)(z
′◦Λ(C,X))

Call hC,X such composite morphism in DOpFib (K(C,X)). Since K(C,X) ∈ Y ,

the functor Gτ,K(C,X) is fully faithful by assumption, and hence there exists a

unique 2-cell

K(C,X) Ω

z◦Λ(C,X)

z′◦Λ(C,X)

γC,X

in L such that Gτ,K(C,X)(γ
C,X) = hC,X . We define the component θ(C,X) of θ on

(C,X) to be such 2-cell γC,X . The faithfulness of the functors Gτ,K(C,X) guarantees

that θ becomes a modification. Indeed, given a morphism (f, ν) : (D,X ′) →

(C,X) in
∫
W , we need to prove that

1 L (K(C,X),Ω) 1 L (K(C,X),Ω)

1 L (K(D,X ′),Ω) 1 L (K(D,X ′),Ω)

z′◦Λ(C,X)

−◦K(f,ν)

z′◦Λ(C,X)

z◦Λ(C,X) −◦K(f,ν)z′◦Λ(D,X′)

z◦Λ(D,X′)

z′Λ(f,ν)

z◦Λ(D,X′)

zΛ(f,ν)

θ(C,X)

θ(D,X′)
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But since Gτ,K(D,X′) is faithful, it suffices to prove that

Gτ,K(D,X′)

(
z′Λ(f,ν) ◦ θD,X

′ )
= Gτ,K(D,X′)

(
θ(C,X)K(f, ν) ◦ zΛ(f,ν)

)
and hence that

Gτ,K(D,X′)

(
z′Λ(f,ν)

)
◦Gτ,K(D,X′)

(
θD,X

′ )
= Gτ,K(D,X′)

(
θ(C,X)K(f, ν)

)
◦Gτ,K(D,X′)

(
zΛ(f,ν)

)
At this point, it is straightforward to see that such equality is given by the natur-

ality square of DOpFib
(
Λ(f,ν)

)
(see Proposition 3.1.8) obtained considering the

morphism h : Gτ,F (z)→ Gτ,F (z
′) in DOpFib (F ). For this, one needs the pseud-

onaturality of Gτ,− (Proposition 3.1.9), the equation Gτ,K(C,X)(θ(C,X)) = kC,X

and the analogous one for (D,X ′), together with both the squares of Propos-

ition 3.2.1. The square on the right of Proposition 3.2.1 allows us to calculate

Gτ,K(D,X′)

(
θ(C,X)K(f, ν)

)
, whereas the square on the left allows us to compare the

components of DOpFib
(
Λ(f,ν)

)
on Gτ,F (z) and Gτ,F (z′) with Gτ,K(D,X′)

(
zΛ(f,ν)

)
and the analogous one with z′ instead of z.

Thus we conclude that θ is a modification, and by the universal property of the

colimit F we obtain an induced 2-cell F Ω

z

z′

α in L . It remains to prove

that Gτ,F (α) = h.

The idea is to conclude such equality by using the uniqueness part of the universal

property of a colimit. As Gτ,F (α) and h are morphisms Gτ,F (z) → Gτ,F (z
′) in

DOpFib (F ), both are totally determined by a morphism in L from Gz to Gz′ ;

we call respectively Gτ,F (α) and h such morphisms in L . By Construction 3.2.4,

applied to z = idF ,

Gz = oplaxcart -colim∆1(dom ◦Gτ,F (z)
∗ ◦K ′),

presented by the universal cartesian-marked oplax cocone dom ◦Gτ,F (z)
∗◦Λ′, with

Λ′ and K ′ constructed from Λ and K as in Construction 3.2.4.

Then, in order to conclude that Gτ,F (α) and h are equal, it suffices to show that

(Gτ,F (α) ◦ −) ◦ dom ◦Gτ,F (z)
∗ ◦ Λ′ = (h ◦ −) ◦ dom ◦Gτ,F (z)

∗ ◦ Λ′ (3.4)
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as cartesian-marked oplax natural transformations. And the last part of Con-

struction 3.2.4 gives us an explicit calculation of dom ◦Gτ,F (z)
∗ ◦ Λ′ in terms of

Λ. Precisely, given an arbitrary morphism (D,X ′)
(f,ν)←−− (C,X) in

∫
W ,

dom
(
Gτ,F (z)

∗ (Λ′
(C,X)

))
= Gτ,F (z)

∗ (Λ(C,X)

)
and dom

(
Gτ,F (z)

∗(Λ′
f,ν

))
is the unique lifting of the 2-cell Λf,ν ∗

GGτ,F (z),K(C,X)

(
Λ(C,X)

)
to Gτ,F (z)

∗ (Λ(C,X)

)
along Gτ,F (z). We now notice that

the following two squares are commutative:

G
Λ(C,X)

Gτ,F (z),K(C,X) Gz

G
Λ(C,X)

Gτ,F (z′),K(C,X) Gz′

Gτ,F (z)∗(Λ(C,X))

Λ(C,X)
∗(Gτ,F (α)) Gτ,F (α)

Gτ,F (z′)∗(Λ(C,X))

G
Λ(C,X)

Gτ,F (z),K(C,X) Gz

G
Λ(C,X)

Gτ,F (z′),K(C,X) Gz′

Gτ,F (z)∗(Λ(C,X))

Λ(C,X)
∗(h) h

Gτ,F (z′)∗(Λ(C,X))

Then, to prove that equation (3.4) holds on component (C,X), it suffices to show

that

Λ(C,X)
∗ (Gτ,F (α)) = Λ(C,X)

∗ (h)

as morphisms in DOpFib (K(C,X)). Using Proposition 3.2.1, we see that

Λ(C,X)
∗ (Gτ,F (α)) is equal to

Λ(C,X)
∗ (Gτ,F (z)) ∼= Gτ,F (z◦Λ(C,X))

Gτ,F (αΛ(C,X))−−−−−−−→ Gτ,F (z
′◦Λ(C,X)) ∼= Λ(C,X)

∗ (Gτ,F (z
′))

and thus is equal to Λ(C,X)
∗ (h) since αΛ(C,X) = θ(C,X), by construction of θ(C,X).

It only remains to prove that equation (3.4) holds on morphism component (f, ν).

But this is straightforward using the uniqueness of the liftings through a discrete

opfibration, that equation (3.4) holds on object components and the fact that

both Gτ,F (α) and h are morphisms of discrete opfibrations.

Remark 3.2.6. As anticipated in Remark 3.1.18, the possibility of defining the

functors Gτ,F to have as codomain a category of isomorphism classes of discrete

opfibrations does not work well with the reduction of the study of 2-classifiers to

generators. Theorem 3.2.5 is however the only delicate point one encounters. We

can define a category DOpFib (F )/∼= which has as objects isomorphism classes of
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discrete opfibrations and as morphisms collections of morphisms compatible with

every possible change of representative for the domain or the codomain. Notice

that we then have a full functor

DOpFib (F )
q−→
full

DOpFib (F )/∼=

The problem with Theorem 3.2.5 is that, from the assumption that for every

Y ∈ Y the composite

L (Y,Ω)
Gτ,Y−−→ DOpFib (Y )

q−→
full

DOpFib (Y )/∼=

is fully faithful, we cannot deduce the analogue of this for every F ∈ L . Indeed,

we can no longer have

Gτ,K(C,X)(θ(C,X)) = hC,X

in DOpFib (F ), but only in DOpFib (F )/∼=. Of course we then only need

Gτ,F (α) = h in DOpFib (F )/∼=, but it seems that there is no way to find the

isomorphisms that regulate Gτ,F (α) = h starting from the ones that regulate

Gτ,K(C,X)(θ(C,X)) = hC,X for every (C,X). One strategy could be to induce them

using the universal property of the colimit, but we cannot guarantee that the

isomorphisms that regulate all the Gτ,K(C,X)(θ(C,X)) = hC,X form a cocone.

We aim at the third of our three theorems of reduction to dense generators.

Theorem 3.2.2 and Theorem 3.2.5 allow to check the conditions for τ : Ω• → Ω

to be a 2-classifier just on a dense generator. We now want to similarly reduce to

dense generators the study of what τ classifies. The following construction will

be very important for this.

Recall that we denote as DOpFib P
(F ) the full subcategory of DOpFib (F ) on

the discrete opfibrations that satisfy a fixed pullback-stable property P (in our

examples, P will be the property of having small fibres).

Construction 3.2.7. Let I : Y → L be a fully faithful dense generator of L .

Assume that τ satisfies a pullback-stable property P and that for every Y ∈ Y

Gτ,I(Y ) : L (I(Y ),Ω)→ DOpFib P
(I(Y ))
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is an equivalence of categories. Let then φ : G → F be a discrete opfibration

in L that satisfies the property P. We would like to construct a characteristic

morphism z : F → Ω for φ. That is, a z such that Gτ,F (z) is isomorphic to φ, so

that φ gets classified by τ .

There exist a 2-diagram K :
∫
W → L which factors through Y and a universal

cartesian-marked oplax cocone Λ that exhibits F as the I-absolute

F = oplaxcart -colim∆1K

We would like to induce z via the universal property of the colimit F . The idea

is condensed in the following diagram:

H(C,X) G Ω•

K(C,X) F Ω

⌟
Gφ(Λ(C,X)) φ τ

G−1
τ (Gφ(Λ(C,X)))

Λ(C,X) z

For every (C,X) in
∫
W , the change of base Gφ,K(C,X)(ΛC,X) of φ along ΛC,X

satisfies the property P and is thus in the essential image of Gτ,K(C,X). We can

then consider the oplax natural transformation χ given by the composite

∆1
Λ

=====⇒
oplaxcart

L (K(−), F )
Gφ,K(−)
====⇒
pseudo

DOpFib P
(K(−))

Gτ,K(−)
−1

======⇒
pseudo

L (K(−),Ω) ,

where every Gτ,K(C,X)
−1 is a right adjoint quasi-inverse of Gτ,K(C,X) giving an

adjoint equivalence. The action of such Gτ,K(C,X)
−1 on morphisms h : ψ → ψ′ is

exhibited by the naturality squares of the counit ε

Gτ,K(C,X)

(
Gτ,K(C,X)

−1(ψ)
)

ψ

Gτ,K(C,X)

(
Gτ,K(C,X)

−1(ψ′)
)

ψ′

Gτ,K(C,X)(Gτ,K(C,X)
−1(h))

∼=
εψ

h

∼=
εψ′

We are also using that for every morphism (f, ν) : (D,X ′) ←− (C,X) in
∫
W the

functor DOpFib (K(f, ν)) = K(f, ν)∗ restricts to a functor between the essential

image of Gτ,K(D,X′) and the essential image of Gτ,K(C,X). Moreover, using Propos-

ition 3.1.9, we have that G−1
τ,K(−) extends to a pseudonatural transformation. Its
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structure 2-cell on any (f, ν) : (D,X ′)←− (C,X) in
∫
W is given by the pasting

DOpFib P(
KD,X′) L

(
KD,X′

,Ω
)

L
(
KC,X ,Ω

)
DOpFib P(

KD,X′) DOpFib P(
KC,X

)
L
(
KC,X ,Ω

)
∼=
ε−1

Gτ−1

Gτ

−◦K(f,ν)

Gτ
(Gτ,K(f,ν))

−1

K(f,ν)∗

∼=
η−1

Gτ−1

where η is the unit of the adjoint equivalence, and we denoted K(C,X) as KC,X .

The composite χ above is readily seen to be a sigma natural transformation (of

Descotte, Dubuc and Szyld’s [15], w.r.t. the cartesian marking). That is, χ is

an oplax natural transformation with the structure 2-cells χf,id being isomorph-

isms for every morphism of type (f, id) in
(∫
W

)op
. If we were in a bicategorical

context, this would then be enough to induce a morphism z : F → Ω, as we will ex-

plore in detail in future work. In our strict 2-categorical context, we further need

to be able to “normalize” such sigma natural transformation, ensuring that the

structure 2-cells on the morphisms (f, id) are identities. So that the morphisms

G−1
τ

(
Gφ

(
Λ(C,X)

))
yield a cartesian-marked oplax cocone. Essentially, this means

that we can choose good quasi-inverses of the Gτ,K(C,X)’s. Such an extra hypo-

thesis is satisfied by 2-dimensional presheaves (i.e. prestacks), see Theorem 5.1.14.

By Theorem 5.2.9, it is then satisfied by nice sub-2-categories of prestacks, such

as the 2-category of stacks (Theorem 5.3.22).

We now present the third of our three theorems of reduction to dense generators.

Building over Theorem 3.2.2 and Theorem 3.2.5, we reduce to dense generators

the study of what a 2-classifier τ : Ω• → Ω classifies. The proof is construct-

ive, based on Construction 3.2.7, so that we also give a concrete recipe for the

characteristic morphisms.

Theorem 3.2.8. Let I : Y → L be a fully faithful dense generator of L . Assume

that τ satisfies a pullback-stable property P and that for every Y ∈ Y

Gτ,I(Y ) : L (I(Y ),Ω)→ DOpFib P
(I(Y ))

is an equivalence of categories. Assume further that, for every discrete opfibration

φ : G→ F in L that satisfies the property P, the sigma natural transformation χ
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produced in Construction 3.2.7 (starting from φ and some K and Λ ) is isomorphic

to a cartesian-marked oplax natural transformation ℵ (i.e. can be normalized ).

Then for every F ∈ L

Gτ,F : L (F,Ω)→ DOpFib P
(F )

is essentially surjective, and hence an equivalence of categories by Theorem 3.2.5.

Proof. Let φ : G → F be a discrete opfibration in L that satisfies the property

P. Consider the associated χ and ℵ as in the statement. Let z : F → Ω be

the unique morphism induced by ℵ via the universal property of the colimit

F = oplaxcart -colim∆1K. We prove that z is a characteristic morphism for φ

with respect to τ .

Consider the pullback

V Ω•

F Ω

⌟
z̃

Gτ,F (z) τ

z

We want to prove that there is an isomorphism j : G ∼= V such that Gτ,F (z)◦j = φ.

Applying Construction 3.2.4 to φ and idF , we construct K ′ = K ′
id and Λ′ = Λ′

id

that exhibits

G = oplaxcart -colim∆1(dom ◦φ∗ ◦K ′).

Applying again Construction 3.2.4 to τ and z : F → Ω we obtain

V = oplaxcart -colim∆1(dom ◦τ ∗ ◦ (z ◦ −) ◦K ′).

We show that

dom ◦τ ∗ ◦ (z ◦ −) ◦K ′ ∼= dom ◦φ∗ ◦K ′.

Notice that (z ◦ −) ◦K ′ is the 2-functor
∫
W → L /lax Ω associated to the oplax

natural transformation ℵ, as described in Construction 3.2.4. Since ℵ ∼= χ, we

obtain that (z ◦ −) ◦K ′ ∼= U where U is the 2-functor
∫
W → L /lax Ω associated

to the sigma natural transformation χ. Moreover the general component tC,X
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on (C,X) ∈
∫
W of such isomorphism has first component equal to the identity.

This produces an isomorphism

dom ◦τ ∗ ◦ (z ◦ −) ◦K ′ ∼= dom ◦τ ∗ ◦ U

whose general component on (C,X) is over K(C,X). Indeed by Remark 3.2.3

dom
(
τ ∗

(
t(C,X)

))
= dom

(
Gτ,K(C,X) (pr2 (tC,X))

)
and is thus an isomorphism that makes the following triangle commute:

dom
(
Gτ,K(C,X)

(
ℵ(C,X)

))
dom

(
Gτ,K(C,X)

(
χ(C,X)

))
K(C,X)

≃

Gτ,K(C,X)(ℵ(C,X)) Gτ,K(C,X)(χ(C,X))

In this way, we have handled the isomorphisms given by the normalization process.

We now show that

dom ◦τ ∗ ◦ U ∼= dom ◦φ∗ ◦K ′.

Given (C,X) ∈
∫
W , by Remark 3.2.3 and by construction of χ we have

dom
(
τ ∗

(
χ(C,X)

))
= dom

(
Gτ,K(C,X)

(
χ(C,X)

)) ∼= dom
(
Gφ,K(C,X)

(
Λ(C,X)

))
=

= dom
(
φ∗ (Λ(C,X)

))
.

So the counits of the adjoint equivalences Gτ,K(C,X) ⊣ Gτ,K(C,X)
−1 give isomorph-

isms

ξ(C,X) : Q
(C,X) = (dom ◦τ ∗ ◦ U) (C,X)

≃−−→ (dom ◦φ∗ ◦K ′) (C,X) = H(C,X)

over K(C,X), where the map to K(C,X) from the right hand side is

Gφ,K(C,X)

(
Λ(C,X)

)
. We prove that these isomorphisms form a 2-natural trans-

formation ξ. Take then (f, ν) : (C,X) → (D,X ′) in
∫
W . By Remark 3.2.3, we

can express the action of dom ◦τ ∗ on the morphism

U(f, ν) =

K(C,X) K(D,X ′)

Ω

K(f,ν)

χ(C,X) χ(D,X′)

χf,ν
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in terms of dom
(
Gτ,K(C,X)(χf,ν)

)
. Analogously, we express

dom (φ∗ (K(f, ν),Λf,ν)) in terms of dom
(
Gφ,K(C,X) (Λf,ν)

)
. Consider the

composite pullbacks

SH H(D,X′) G

K(C,X) K(D,X ′) F

⌟ ⌟
Gφ(Λ(D,X′)) φ

K(f,ν) Λ(D,X′)

SQ Q(D,X′) Ω•

K(C,X) K(D,X ′) Ω

⌟ ⌟
Gτ(χ(D,X′)) τ

K(f,ν) χ(D,X′)

and call RH and RQ respectively the pullbacks of φ and of τ along the composites.

By construction of χ and by the action of Gτ,K(C,X)
−1 on morphisms, we calculate

that Gτ,K(C,X)(χf,ν) is precisely the composite

Q(C,X) ≃−−−→
ξ(C,X)

H(C,X)
Gφ,K(C,X)(Λf,ν)−−−−−−−−−−→ RH ∼= SH

≃−−−−−−−−−→
K(f,ν)∗ξ−1

(D,X′)

SQ ∼= RQ

Notice that we also need one triangular equality of the adjoint equival-

ence Gτ,K(C,X) to handle the η−1 part of G−1
τ,K(f,ν). In order to obtain

dom (τ ∗ (K(f, ν), χf,ν)), by Remark 3.2.3, we compose Gτ,K(C,X)(χf,ν) with

RQ ∼= SQ −→ Q(D,X′)

We conclude the naturality of ξ by definition of K(f, ν)∗ξ−1
(D,X′). To prove that ξ

is 2-natural, consider a 2-cell δ : (f, ν) =⇒ (f ′, ν ′) : (C,X)→ (D,X ′) in
∫
W . Both

ξ(D,X′) ∗ (dom ◦τ ∗ ◦ U) (δ)

(dom ◦φ∗ ◦K ′) (δ) ∗ ξC,X

give the unique lifting of K(δ)∗Gτ,K(C,X)

(
χ(C,X)

)
to ξ(D,X′) ◦ (dom ◦τ ∗ ◦ U) (f, ν)

along Gφ,K(D,X′)

(
Λ(D,X′)

)
. Thus ξ is 2-natural. We then obtain a 2-natural

isomorphism

ζ : dom ◦τ ∗ ◦ (z ◦ −) ◦K ′ ∼= dom ◦φ∗ ◦K ′

whose general component on (C,X) ∈
∫
W is over K(C,X).

As a consequence, there is an isomorphism j : G ∼= V , respecting the universal
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cartesian-marked oplax cocones ΘG and ΘV that exhibit the two as colimits:

∆1 L ((dom ◦φ∗ ◦K ′) (−), G)

L ((dom ◦τ ∗ ◦ (z ◦ −) ◦K ′) (−), V ) L ((dom ◦φ∗ ◦K ′) (−), V )

ΘG

oplaxcart

ΘV oplaxcart j◦−

−◦ζ−1
(−)

We want to show that the following triangle is commutative:

G V

F

≃
j

φ Gτ,F (z)
(3.5)

Since G is a cartesian-marked oplax conical colimit, it suffices to show that

(φ ◦ −) ◦ΘG = (Gτ,F (z) ◦ −) ◦ (j ◦ −) ◦ΘG

Whence it suffices to show that

(φ ◦ −) ◦ΘG =
(

Gτ,F (z) ◦ − ◦ ζ−1
(−)

)
◦ΘV

Given (C,X) ∈
∫
W , the two have equal components on (C,X) since by Con-

struction 3.2.4

Gτ,F (z)◦ΘV
(C,X)◦ζ−1

(C,X) = Λ(C,X)◦Gτ,K(C,X)

(
ℵ(C,X)

)
◦ζ−1

(C,X) = Λ(C,X)◦Gφ,K(C,X)

(
Λ(C,X)

)
,

using that ζ(C,X) is over K(C,X). Given (f, ν) : (D,X ′) ←− (C,X) in
∫
W , also

the structure 2-cells of the two cartesian-marked oplax natural transformations

on (f, ν) are equal, since by Construction 3.2.4

Gτ,F (z)∗ΘV
(f,ν)∗ζ−1

(C,X) = Λf,ν∗
(

Gτ,K(C,X)

(
ℵ(C,X)

)
◦ ζ−1

(C,X)

)
= Λf,ν∗Gφ,K(C,X)

(
Λ(C,X)

)
.

Therefore the triangle of equation (3.5) is commutative and φ is in the essential

image of Gτ,F .

Remark 3.2.9. In the proof of Theorem 3.2.8, we have actually proved the fol-

lowing sharper result, that involves the classification of single discrete opfibrations

φ. We also show that the operation of normalization described in Theorem 3.2.8

is necessary.
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Corollary 3.2.10 (of the proof of Theorem 3.2.8). Let I : Y → L be a fully

faithful dense generator of L . Assume that τ : Ω• → Ω is a 2-classifier in L , and

let φ : G→ F be an arbitrary discrete opfibration in L . Consider K and Λ as in

Construction 3.2.7. The following properties are equivalent:

(i) φ is classified by τ , i.e. φ is in the essential image of Gτ,F ;

(ii) for every (C,X) ∈
∫
W the change of base Gφ,K(C,X)(ΛC,X) of φ along ΛC,X

is in the essential image of Gτ,K(C,X), and the operation of normalization

described in Theorem 3.2.8 starting from φ is possible.

Proof. The proof of (ii) =⇒ (i) is exactly as the proof of Theorem 3.2.8, using the

essential image of Gτ,K(C,X) in place of DOpFib P
(K(C,X)).

We prove (i) =⇒ (ii). By assumption, there exists a characteristic morphism z

for φ. For every (C,X), we then have that z ◦ Λ(C,X) is a characteristic morph-

ism for Gφ,K(C,X)(ΛC,X). It remains to prove that the operation of normaliz-

ation described in Theorem 3.2.8 starting from φ is possible. We can choose

the quasi-inverse of Gτ,K(C,X) (restricted to its essential image) so that for every

b : K(C,X)→ F in L

G−1
τ,K(C,X)(Gφ,K(C,X)(b)) = z ◦ b

and the component of the counit on Gφ,K(C,X)(b) is given by the pseudofunctori-

ality of the pullback. Then for every morphism (f, id) : (D,F (f)(X)) ←− (C,X)

in
∫
W

χ(C,X) = z ◦ Λ(C,X) = z ◦ Λ(D,F (f)(X)) ◦K(f, id) = χ(D,F (f)(X)) ◦K(f, id).

In order to prove that χf,id = id, it suffices to prove that Gτ,K(C,X)(χf,id) = id. It

is straightforward to see that this holds, using the recipe described in the proof of

Theorem 3.2.8. Indeed it is just given by the compatibilities of a pullback along

a composite of three morphisms with the composite pullbacks.

Corollary 3.2.11. Let I : Y → L be a fully faithful dense generator of L . Let

ω : 1 → Ω be a morphism in L such that the lax limit of the arrow ω satisfies a
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fixed pullback-stable property P. If for every Y ∈ Y

Ĝω,I(Y ) : L (I(Y ),Ω)→ DOpFib P
(I(Y ))

is an equivalence of categories and the operation of normalization described in

Theorem 3.2.8 (starting from every φ ) is possible, then ω is a good 2-classifier

in L with respect to P.

Proof. By Remark 3.1.13, taking τ to be the lax limit of the arrow ω, we have

that Ĝω,F = Gτ,F for every F ∈ L . We conclude by Theorem 3.2.8.

Remark 3.2.12. The theorems of reduction of the study of 2-classifiers to dense

generators offer great benefits. To have an idea of this, we can look at the

following example.

In Chapter 5, we will then apply the theorems of reduction to dense generators

to the cases of 2-presheaves (i.e. prestacks) and stacks; see also Section 3.3.

Example 3.2.13. The theorems of reduction to dense generators allow us to

deduce all the major properties of the Grothendieck construction (or category

of elements) from the trivial observation that everything works well over the

singleton category.

Indeed the singleton category 1 is a dense generator in Cat . So we can just

look at the discrete opfibrations over 1. Let ω = 1: 1 → Set . The lax limit

τ : Set • → Set certainly has small fibres. In fact one immediately sees that any

comma object from ω, say to F : B → Set , gives a discrete opfibration with small

fibres, since the fibre over B ∈ B is isomorphic to Set (1, F (B)). Let P = s be

the property of having small fibres.

The functor

Ĝω,1 : Cat (1, Set )→ DOpFib s
(1) ∼= Set

sends a functor 1 → Set to the set it picks, so it is clearly an equivalence of

categories. By the theorems of reduction to dense generators, we deduce that the

construction of the category of elements is fully faithful and classifies all discrete
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opfibrations with small fibres (deducing thus the whole Example 3.1.15). Indeed,

let p : E → B be a discrete opfibration with small fibres. The density of 1 allows

us to express B as a cartesian-marked oplax conical colimit of the constant at

1 functor ∆1. By Example 1.1.25 we know that the universal cartesian-marked

oplax cocone Λ is given by

∀
B′

B

f in B
1 B

1

B

B′

f

Following Construction 3.2.7 and the proof of Corollary 3.2.11, we consider the

sigma natural transformation χ given by the composite

∆1
Λ

=====⇒
oplaxcart

Cat (∆1(−),B)
Gp,∆1(−)
=====⇒
pseudo

DOpFib s
(∆1(−))

Ĝ−1
ω,∆1(−)

=====⇒
pseudo

Cat (∆1(−), Set ) .

But Gp,∆1(−) is strict 2-natural (thanks to our choice of pullbacks). Similarly,

also Ĝω,∆1(−) and hence its quasi-inverse are strict 2-natural. So that χ is already

cartesian-marked oplax natural. Explicitly, χ is given by

∀
B′

B

f in B
1 Set

1

(p)B

(p)B′

f∗

where (p)B is the fibre of p on B, since the pullback of p along each B : 1 → B

gives precisely the fibre over B. This induces the known characteristic morphism

B → Set for p, collecting together the fibres of p. So the concrete recipe for

characteristic morphisms described in the proof of Theorem 3.2.8 recovers the

usual recipe for the quasi-inverse of the category of elements construction.

3.3. Towards a 2-classifier in prestacks

In this section, we start looking at the possibility to apply our theorems of re-

duction to dense generators to the case of prestacks. Our theorems offer great

benefits here, allowing us to consider the classification just over representables.

We find a problem that will be solved by the work of Chapter 4. In Chapter 5,
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we will then produce a good 2-classifier in prestacks and restrict it to a good

2-classifier in stacks.

Remark 3.3.1. We consider the 2-category L = [C op,Cat ] of 2-presheaves on a

small category C (that is, prestacks on C ). Notice that this 2-category is complete

and cocomplete, since Cat is so.

Construction 3.3.2. We search for a good 2-classifier ω : 1 → Ω in [C op,Cat ].

Looking at the archetypal example of Cat , we expect such a good 2-classifier

to classify all discrete opfibrations in [C op,Cat ] that have, in some sense, small

fibres. The work of Section 4.2, in Chapter 4, will allow us to define having small

fibres for a discrete opfibration in prestacks. We will denote such a pullback-

stable property as s. Anyway, another problem appears, as we show below. This

problem will as well be solved in Chapter 4.

By Example 3.1.25, representables form a dense generator

I = y: C → [C op,Cat ] .

Then, by our theorems of reduction to dense generators (see Corollary 3.2.11),

we will be able to look just at the functors

Ĝω,y(C) : [C op,Cat ] (y(C),Ω)→ DOpFib s
(y(C))

with C ∈ C . Notice that the left hand side is isomorphic to Ω(C), by the Yoneda

lemma. As we want all the Ĝω,y(C)’s with C ∈ C to be equivalences of categories

(forming then a pseudonatural equivalence by Proposition 3.1.9), the assignment

of Ω is forced up to equivalence to be

C
Ω7−→ DOpFib s

(y(C)) .

Remark 3.3.3. This is a nice generalization of what happens in dimension 1.

Indeed recall that the subobject classifier in 1-dimensional presheaves sends C

to the set of sieves on C. And sieves on C are equivalently the subfunctors of

y(C). In line with the philosophy to upgrade subobjects to discrete opfibrations
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(discussed in 3.1.1), discrete opfibrations over y(C) generalize the concept of sieve

to dimension 2. Notice that Ω coincides with the composite

C op yop−−→ [C op,Cat ]op
DOpFib s

(−)
−−−−−−−→ CAT

and is thus a pseudofunctor by Proposition 3.1.8. We then take as ω : 1→ Ω the

pseudonatural transformation with component on C ∈ C that picks the identity

idy(C) on y(C). However, Ω is not a strict 2-functor and, a priori, does not land

in Cat ; so Ω cannot be a 2-classifier in [C op,Cat ]. Thanks to Chapter 4, we will

be able to produce a nice concrete strictification of Ω. Although it was already

known that any pseudofunctor can be strictified, by the theory developed by

Power in [40] and later by Lack in [29], the work of Chapter 4 can be applied

to produce an explicit and easy to handle strictification of Ω, which in addition

lands in Cat . Moreover, as we will present in Chapter 5, such strictification can

also be restricted in a natural way to a good 2-classifier in stacks.



4. Indexed Grothendieck

construction

This chapter is based on our joint work with Caviglia [12].

In this chapter, we produce an indexed version of the Grothendieck construction,

that does not seem to appear in the literature. The Grothendieck construction

is a fundamental tool in category theory that has had numerous applications in

geometry, logic and algebra. It gives the possibility to exploit the advantages

of both indexed categories and Grothendieck fibrations. Moreover, also the con-

struction itself has important and useful consequences, such as the conicalization

of all weighted Set -enriched (i.e. ordinary) limits and the famous explicit formula

for ordinary Kan extensions.

So we believe that an indexed version of the Grothendieck construction can be

very fruitful as well. Our motivating application is to produce a nice candidate

for a good 2-classifier in the 2-category [Aop,Cat ] of 2-presheaves (i.e. prestacks)

that classifies all discrete opfibrations with small fibres, towards a 2-dimensional

elementary topos structure on prestacks and stacks. Recall from Section 3.1

that a 2-classifier, which is a generalization of the concept of subobject classifier

to dimension 2, can also be thought of as a Grothendieck construction inside

a 2-category. So it is natural to expect an indexed version of the Grothen-

dieck construction to give a 2-classifier in the 2-category of 2-presheaves. Our

indexed Grothendieck construction will allow us to solve the problem we found

in Section 3.3, producing a concrete and easy to handle strictification Ω̃ of the

pseudofunctor Ω of Construction 3.3.2 that clearly lands in small categories. We
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describe this in Example 4.4.9. We will show in Chapter 5 that such Ω̃ is a

good 2-classifier in prestacks and that it can be restricted to a good 2-classifier

in stacks.

Our main results (Theorem 4.3.7 and Theorem 4.3.9) are condensed in the follow-

ing theorem. Op and non-split variations are also considered in Remark 4.3.12

and Remark 4.3.13.

Theorem 4.0.1. Let A be a small category and consider the functor 2-category

[A ,Cat ]. For every 2-functor F : A → Cat , there is an equivalence of categories

OpFib [A ,Cat ] (F ) ≃
[∫
F,Cat

]
between split opfibrations in the 2-category [A ,Cat ] over F and 2-(co )presheaves

on the Grothendieck construction
∫
F of F .

This restricts to an equivalence of categories

DOpFib s
[A ,Cat ] (F ) ≃

[∫
F, Set

]
between discrete opfibrations in [A ,Cat ] over F with small fibres and 1-

copresheaves on
∫
F .

Moreover, both the equivalences of categories above are pseudonatural in F .

When A = 1, we recover the usual Grothendieck construction. Indeed [A ,Cat ]

reduces to Cat , a 2-functor F : 1→ Cat is just a small category C and
∫
F = C .

So we find

OpFib (C ) ≃ [C ,Cat ] .

But we introduce an indexed version of the Grothendieck construction that allows

A to be an arbitrary small category and F : A → Cat to be an arbitrary 2-functor.

Interestingly, the data of the opfibrations in [A ,Cat ] over F are still packed in a

Cat -valued copresheaf, now on the Grothendieck construction of F .

We can think of the indexed Grothendieck construction as a simultaneous

Grothendieck construction on every index A ∈ A , taking into account the bonds
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between different indexes. Indeed, an opfibration φ in [A ,Cat ] is, in particu-

lar, a natural transformation such that every component φA is a Grothendieck

opfibration (in Cat ); see Section 4.2. Our construction essentially applies the

quasi-inverse of the usual Grothendieck construction to every component of φ at

the same time. All the obtained copresheaves in Cat are then collected into a

single total copresheaf, exploiting the usual Grothendieck construction on F .

The restricted equivalence of categories

DOpFib s
[A ,Cat ] (F ) ≃

[∫
F, Set

]
further reduces, when F : A → Set , to the well-known equivalence

[A , Set ]/F ≃
[∫
F, Set

]
.

When F is a representable y(A) : A → Set , this is the famous equivalence

[A , Set ]
/
y(A) ≃

[A /A, Set
]

between slices of (co)presheaves and (co)presheaves on slices. Our theorem also

guarantees its pseudonaturality in A, which does not seem to be stated in the

literature.

The last equivalence between slices of (co)presheaves and (co)presheaves on slices

had many applications in geometry and logic. In particular, it is the archetypal

case of the fundamental theorem of elementary topos theory, showing that every

slice of a Grothendieck topos is a Grothendieck topos. Our equivalence

OpFib [A ,Cat ] (F ) ≃
[∫
F,Cat

]
gives a 2-dimensional generalization of this, and we thus expect it to be very

fruitful. Indeed, the concept of (op)fibrational slice has recently been proposed

as the correct upgrade of slices to dimension 2. Rather than taking all maps

into a fixed element, we restrict to the (op)fibrations over that element. This

idea appears in Ahrens, North and van der Weide’s [2], where it is attributed

to Shulman, but was already implicit in previous literature (e.g. in the work of
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Quillen). Our equivalence can be thought of as saying that every (op)fibrational

slice of a Grothendieck 2-topos is again a Grothendieck 2-topos.

The strategy to prove our main theorem will be to use that the Grothendieck

construction of a 2-functor F : A → Cat is equivalently the oplax colimit of F .

So that we will be able to apply the usual Grothendieck construction on every

index A ∈ A . We will then show that all the opfibrations produced for each A

can be collected into an opfibration in [A ,Cat ] over F . For this, we will also

need to prove that the usual Grothendieck construction is pseudonatural in the

base category. The chain of abstract processes above will then be very useful to

conclude the pseudonaturality in F of the indexed Grothendieck construction.

We will also give an explicit description of the indexed Grothendieck construction,

in Construction 4.3.8, so that it can be applied more easily.

We will conclude showing some interesting examples, choosing particular A ’s and

F ’s in Theorem 4.0.1. Among them, we will consider the cases A = 2 (arrows

between opfibrations) and A = ∆ (cosimplicial categories).

Outline of the chapter

In Section 4.1, we recall that the Grothendieck construction can be equivalently

expressed as an oplax colimit. We prove that the equivalence of categories given

by the Grothendieck construction is pseudonatural in the base category.

In Section 4.2, after recalling the notion of opfibration in a 2-category, we show

an equivalent characterization of opfibrations in [A ,Cat ]. This also allows us to

define having small fibres for a discrete opfibration in [A ,Cat ]. We produce a

pseudofunctor F 7→ OpFib [A ,Cat ] (F ).

In Section 4.3, we present our main theorems, proving an equivalence of categories

between (split) opfibrations in [A ,Cat ] over F and 2-copresheaves on
∫
F . We

also show that such equivalence is pseudonatural in F . We present the explicit

indexed Grothendieck construction.
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In Section 4.4, we show some interesting examples. In particular, we obtain a nice

candidate for a good 2-classifier in prestacks that classifies all discrete opfibrations

with small fibres.

4.1. Some properties of the Grothendieck

construction

In this section, we recall that the Grothendieck construction can be equivalently

expressed as an oplax colimit. As we could not find a proof of this in the literature,

we show a proof below (Theorem 4.1.7). It will also be important to recall from

Theorem 1.3.8 that the Grothendieck construction is as well equivalently given

by a lax comma object (or by a strict 3-pullback) in 2-Cat lax.

We then prove that the equivalence of categories given by the Grothendieck con-

struction is pseudonatural in the base category.

Remark 4.1.1. In this chapter, we focus on the Grothendieck construction

of (strict) 2-functors F : C → Cat with C a small category, which correspond

with split opfibrations over C . We will consider variations of this setting in

Remark 4.3.12 (fibrations) and Remark 4.3.13 (C a 2-category and non-split op-

fibrations).

We denote as OpFib (C ) the subcategory of Cat /C on split opfibrations over C

and cleavage preserving morphisms. We denote as DOpFib s
(C ) its full subcat-

egory on discrete opfibrations over C with small fibres; recall that any functor

over C between discrete opfibrations over C is automatically cleavage preserving.

Remark 4.1.2. The pullback H∗p : H∗E → D of a split opfibration p : E → C

along H : D → C is a split opfibration. We can choose the cleavage of H∗p to

make the universal square that exhibits the pullback into a cleavage preserving

morphism.

Remark 4.1.3. Let F : C → Cat be a functor with C small. Recall that every

morphism (f, α) : (C,X) → (D,X ′) in the Grothendieck construction
∫
F of F
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can be factorized as

(C,X)
(f,id)−−−→ (D,F (f)(X))

(id,α)−−−→ (D,X ′)

That is, as a cartesian morphism of the cleavage followed by a morphism which

is over the identity (also called vertical morphism).

This means that the Grothendieck construction of F is somehow given by col-

lecting all F (C) together, where we have the morphisms (id, α), and adding the

morphisms (f, id) to handle change of index. This idea will be made precise in

Theorem 4.1.7.

The following fundamental theorem is due to Grothendieck [22] (see also Bor-

ceux’s [8]).

Theorem 4.1.4 ([22]). The Grothendieck construction extends to an equivalence

of categories

G (−) : [C ,Cat ] ∼→ OpFib (C )

Given a natural transformation γ : F =⇒ G : C → Cat , the functor G (γ) :
∫
F →∫

G is defined to send (C,X) to (C, γ(X)) and (f, α) : (C,X) → (D,X ′) to

(f, γD(α)).

The quasi-inverse is given by taking fibres on every C ∈ C .

Moreover, the equivalence above restricts to an equivalence of categories

G (−) : [C , Set ] ∼→ DOpFib s
(C )

Aiming at proving that the Grothendieck construction is equivalently given by

an oplax colimit, we recall the definition of oplax colimit.

Definition 4.1.5. Let F : C → D be a 2-functor with C small. The oplax

(conical ) colimit of F , denoted as oplax -colimF , is (if it exists) an object K ∈ D

together with an isomorphism of categories

D (K, U) ∼= [C op,Cat ]oplax (∆1,D (F (−), U))
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2-natural in U ∈ D, where [C op,Cat ]oplax is the 2-category of 2-functors, oplax

natural transformations and modifications from C op to Cat . ∆1 is the functor

which is constant at singleton category 1 and the right hand side of the isomorph-

ism above should be thought of as the category of oplax cocones on F with vertex

U . Indeed we also have an isomorphism

[C op,Cat ]oplax (∆1,D (F (−), U)) ∼= [C ,D]lax (F,∆U)

2-natural in U , where [C ,D]lax is the 2-category of 2-functors, lax natural trans-

formations and modifications, and ∆U is the functor which is constant at U .

Remark 4.1.6. When oplax -colimF exists, taking U = K and considering the

identity on K gives us in particular a lax natural transformation

λ : F =⇒
lax

∆K

which is called the universal oplax cocone on F .

An equivalent way to show that K = oplax -colimF is to exhibit such a lax

natural transformation λ that is universal in the following 2-categorical sense:

(i) for every lax natural transformation σ : F =⇒
lax

∆U , there exists a unique

morphism s : K → U in D such that ∆s ◦ λ = σ;

(ii) for every s, t : K → U in D and every modification Ξ: ∆s ◦ λ ≡⇛ ∆t ◦ λ,

there exists a unique 2-cell χ : s =⇒ t in D such that ∆χ ⋆ λ = Ξ.

We will need the following known characterization of the Grothendieck construc-

tion. As we could not find a proof of this in the literature, we show a proof

here.

Theorem 4.1.7. Let C be a small category and let F : C → Cat be a 2-functor.

The Grothendieck construction
∫
F of F is equivalently the oplax (conical) colimit

of the 2-diagram F : ∫
F = oplax -colimF
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Proof. Following Remark 4.1.6, we produce a lax natural transformation

inc : F =⇒
lax

∆
∫
F and prove that it is universal in the 2-categorical sense. For

every C ∈ C we define the component of inc on C to be the functor

incC : F (C) −→
∫
F

X

X ′
α 7→

(C,X)

(C,X ′)

(id,α)

For every morphism f : C → D in C , we define the structure 2-cell of inc on f to

be the natural transformation

F (C)
∫
F

F (D)

F (f)

incC

incf

incD

that has components (incf )X = (f, id) for every X ∈ F (C). The naturality of

incf expresses

(f, id) ◦ (id, α) = (id, F (f)(α)) ◦ (f, id).

As explained with more detail in Construction 1.1.4, to get the whole
∫
F we just

need the two kinds of morphisms (id, α) and (f, id) as building blocks. This is

what will ensure the universality of inc. Composition of morphisms of type (id, α)

corresponds with the functoriality of incC . While composition of morphisms of

type (f, id) corresponds with the lax naturality of inc. We could then define

general morphisms to be formal composites (id, α) ◦ (f, id), following the factor-

ization of morphisms in
∫
F described in Remark 4.1.3. And the equation above,

that swaps the two kinds of morphisms, tells how to reduce every composition to

this form.

We prove that inc is universal in the 2-categorical sense. Given a lax natural

transformation σ : F =⇒
lax

∆U , we show that there exists a unique s :
∫
F → U such

that ∆s ◦ inc = σ. These conditions impose to define for every (f, α) : (C,X)→

(D,X ′) in
∫
F

s(C,X) = (s ◦ incC) (X) = σC(X)

s(idD, α) = (s ◦ incD) (α) = σD(α)
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s(f, id) = s
(
(incf )X

)
= (σf )X

So by the factorization described in Remark 4.1.3, we need to define

s(f, α) = s(id, α) ◦ s(f, id) = σD(α) ◦ (σf )X .

s is a functor by naturality of σg, functoriality of σE and lax naturality of σ. And

∆s ◦ inc = σ by construction.

Take now s, t :
∫
F → U and a modification Ξ: ∆s ◦ inc ≡⇛ ∆t ◦ inc. Ξ has as

components on C natural transformations ΞC : s ◦ incC =⇒ t ◦ incC . We show that

there exists a unique natural transformation χ : s =⇒ t such that ∆χ ⋆ inc = Ξ.

We need to define

χ(C,X) = (χ ⋆ incC)X = ΞC,X

and this works. So inc is universal.

Remark 4.1.8. Let C be a small category and let F : C → Cat be a 2-functor.∫
F is also the oplax (conical) colimit, with respect to the enrichment over CAT ,

of the 2-diagram C F−→ Cat ↪→ CAT . Indeed the Grothendieck construction of

the latter composite is clearly just
∫
F .

We can now prove that the Grothendieck construction is pseudonatural in the

base category. Such result does not seem to appear in the literature. We will use

Theorem 1.3.8 from Chapter 1.

Proposition 4.1.9. The equivalence of categories

GC : [C ,Cat ] ∼→ OpFib (C )

of Theorem 4.1.4 given by the Grothendieck construction is pseudonatural in C ∈

Cat op.

Proof. The assignment C 7→ OpFib (C ) extends to a pseudofunctor

OpFib (−) : Cat op → CAT

that on the underlying category of the domain Cat op is a restriction of the pseudo-

functor that does the pullback. So given H : D → C and a split opfibration
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p : E → C , we define the action of OpFib (−) on H to be the pullback functor

H∗.

H∗E E

D C

H̃

H∗p p

H

Given a natural transformation α : H =⇒ K : D → C , we use the cleavage of p to

define OpFib (α) = α∗ as the natural transformation that has as component on

p the functor

α∗p : H∗E → K∗E

that sends (D,E) ∈ H∗E to (D, (αD)∗E) ∈ K∗E . We will prove that OpFib (−)

is indeed a pseudofunctor in Proposition 4.2.9, for general split opfibrations in a

2-category. In that general setting, we can define α∗ by lifting a 2-cell along an

opfibration. This point of view is helpful to apply below the universal property

of the lax comma object, using Theorem 1.3.8.

We define a pseudonatural transformation

G− : [−,Cat ] ===⇒
pseudo

OpFib (−)

that has component on C given by GC . Given a functor H : D → C , we define

the structure 2-cell GH to be the natural isomorphism

[C ,Cat ] OpFib (C )

[D,Cat ] OpFib (D)

≃

−◦H H∗∼=
GH

≃

that is given by the pseudofunctoriality of the pullback (or actually by the fact

that the pullback of a lax comma is isomorphic to the lax comma with the com-

posite), thanks to Theorem 1.3.8:∫
(F ◦H)

H∗ ∫ F ∫
F Cat •,lax

D C Cat

∼=(GH)−1
F

G(F◦H) H∗G(F ) G(F ) τ

H F
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GH is indeed a natural transformation thanks to the universal property of the

lax comma object. And G− satisfies the 1-dimensional condition of pseudonatural

transformation by the pseudofunctoriality of the pullback (choosing the pullbacks

along identities to be the identity).

Take now a natural transformation α : H =⇒ K : D → C . In order to prove the

2-dimensional condition of pseudonatural transformation for G−, we need to show

that the following square is commutative for every F : C → Cat :

H∗ ∫ F K∗ ∫ F
∫
(F ◦H)

∫
(F ◦K)

α∗
G(F )

(GH)F (GK)F

G(F⋆α)

This is shown by the universal property of the lax comma object (or of the

pullback)
∫
F . For this we use the fact that the chosen cleavage on G (F ) :

∫
F →

C (with f
(C,X)

= (f, id)) makes the square∫
F Cat •,lax

C Cat

⌟
G(F ) τ

F

into a cleavage preserving morphism.

4.2. Opfibrations in the 2-category of

2-presheaves

In this section, after recalling the notion of opfibration in a 2-category, we charac-

terize the opfibrations in the functor 2-category [A ,Cat ] with A a small category.

We will show that such characterization restricts to one of discrete opfibrations

as well. This will allow us to define having small fibres for a discrete opfibration

in [A ,Cat ] (Definition 4.2.7).

The definition of (op)fibration in a 2-category is due to Street [41], in terms of
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algebras for a 2-monad. It is known that we can equivalently define (op)fibrations

in a 2-category by representability, as done in Weber’s [51].

Definition 4.2.1. Let L be a 2-category. A split opfibration in L is a morphism

φ : G→ F in L such that for every X ∈ L the functor

φ ◦ − : L (X, G)→ L (X, F )

induced by φ between the hom-categories is a split Grothendieck opfibration (in

Cat ) and for every morphism λ : K → X in L the commutative square

L (X, G) L (K, G)

L (X, F ) L (K, F )

−◦λ

φ◦− φ◦−

−◦λ

is cleavage preserving.

We call φ a discrete opfibration in L if for every X the functor φ ◦ − above is

a discrete opfibration (in Cat ). In this case, the second condition is automatic.

This is in line with Definition 3.1.2.

Given split opfibrations φ : G → F and ψ : H → F in L over F , a cleavage

preserving morphism from φ to ψ is a morphism ξ : φ→ ψ in L /F such that for

every X ∈ L the triangle

L (X, G) L (X, H)

L (X, F )

ξ◦−

φ◦− ψ◦−

is cleavage preserving.

If φ and ψ are discrete opfibrations, any morphism in L /F is cleavage preserving.

Split opfibrations in L over F and cleavage preserving morphisms form a category

OpFibL (F ). We denote the full subcategory on discrete opfibrations in L as

DOpFibL (F ) (again, this is in line with Definition 3.1.2).

Remark 4.2.2. By definition, a (split) opfibration φ : G → F in L is required

to lift every 2-cell θ : φ ◦ α =⇒ β to a cartesian 2-cell θ
α
: α =⇒ θ∗α. We can draw
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the following diagram to say that φ ◦ θ∗α = β and φ ⋆ θ
α
= θ.

X G

G
X F

α

θ∗α
φ

φα

β

θ
α

θ

θ
α
cartesian means that for every 2-cell ρ : α =⇒ α′ and 2-cell σ : β =⇒ φ ◦ α′,

there exists a unique 2-cell ν : θ∗α =⇒ α′ such that φ ⋆ ν = σ and ν ◦ θα = ρ.

Analogously, we can express being split in these terms.

The second condition of Definition 4.2.1 then requires the chosen lifting of θ ⋆ λ

to be θ
α
⋆ λ (i.e. the chosen lifting of θ whiskered with λ).

φ is a discrete opfibration in L when the liftings θ
α
are unique.

Remark 4.2.3. Pullbacks of split opfibrations are split opfibrations, because

L (X,−) preserves pullbacks (as it preserves all limits) and pullbacks of split

opfibrations in Cat are split opfibrations in Cat . We are also using (for the second

condition) that we can choose the cleavage of the pullback of a split opfibration in

L so that the universal square that exhibits the pullback is cleavage preserving.

Remark 4.2.4. We can of course apply Definition 4.2.1 to L = Cat . The

produced notion is equivalent to the usual notion of Grothendieck opfibration.

This is essentially because for L = Cat it suffices to ask the above liftings for

X = 1. We are then able to lift entire natural transformations θ as a consequence,

componentwise. Analogously with discrete opfibrations in L = Cat .

We extend this idea below and characterize opfibrations in [A ,Cat ].

The following proposition does not seem to appear in the literature.

Proposition 4.2.5. Let A be a small category and consider a morphism φ : G→

F in [A ,Cat ] (i.e. a natural transformation ). The following facts are equivalent:

(i) φ : G→ F is a split opfibration in [A ,Cat ];
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(ii) for every A ∈ A the component φA : G(A) → F (A) of φ on A is a split

opfibration (in Cat ) and for every morphism h : A→ B in A the naturality

square

G(A) G(B)

F (A) F (B)

G(h)

φA φB

F (h)

is cleavage preserving.

Analogously with discrete opfibrations in [A ,Cat ], where the condition on the

naturality square of (ii) is automatic.

Proof. We prove (i) =⇒ (ii). Let A ∈ A . Taking X = y(A) in Definition 4.2.1

with L = [A ,Cat ], we obtain that

φ ◦ − : [A ,Cat ] (y(A), G)→ [A ,Cat ] (y(A), F )

is a split opfibration in Cat . By Yoneda lemma, we have isomorphisms that form

a commutative square

[A ,Cat ] (y(A), G) G(A)

[A ,Cat ] (y(A), F ) F (A)

∼=

φ◦− φA

∼=

We can then choose a cleavage on φA that makes it into a split opfibration in

Cat such that the above square is cleavage preserving. Given h : A→ B in A we

have that the naturality square of φ on h is equal to the pasting

G(A) [A ,Cat ] (y(A), G) [A ,Cat ] (y(B), G) G(B)

F (A) [A ,Cat ] (y(A), F ) [A ,Cat ] (y(B), F ) F (B)

φA

∼=

φ◦−

−◦y(h) ∼=

φ◦− φB

∼= −◦y(h)
∼=

and is thus cleavage preserving.

When φ is a discrete opfibration, φA is discrete as well for every A ∈ A .
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We now prove (ii) =⇒ (i). Let X ∈ [A ,Cat ], α : X → G, β : X → F and consider

θ : φ ◦ α =⇒ β. We need to produce a cartesian lifting θ
α
: α =⇒ θ∗α of θ to α.

X G

G
X F

α

θ∗α
φ

φα

β

θ
α

θ

As θ∗α is a natural transformation and θ
α
is a modification, we can define them

on components. Given A ∈ A and Z ∈ X(A), we define the image of the functor

(θ∗α)A on Z and the morphism (θ
α
)A,Z inG(A) to be given by the chosen cartesian

lifting along φA of θA,Z to αA(Z):

αA(Z) (θ∗α)A(Z)

φA(αA(Z)) βA(Z)

(θ
α
)A,Z

φA φA

θA,Z

Given a morphism f : Z → Z ′ in X(A), we define (θ∗α)A(f) by cartesianity of

(θ
α
)A,Z , making by construction (θ

α
)A into a natural transformation. (θ∗α)A is

then automatically a functor. In order to prove that θ∗α is a natural transform-

ation, we need to show that for every h : A → B in A the following square is

commutative:

X(A) G(A)

X(B) G(B)

(θ∗)A

X(h) G(h)

(θ∗)B

This is straightforward using the hypothesis that (G(h), F (h)) is cleavage pre-

serving. The argument shows at the same time that θ
α
is a modification. θ

α
is

then a lifting of θ to α by construction, as this can be checked on components.

It is straightforward to show that it is cartesian as well, inducing the required

morphism on components by the cartesianity of all the (θ
α
)A,Z . Coherences are

shown using again that (G(h), F (h)) is cleavage preserving. φ is split because all

φA are split.
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Given λ : K → X in [A ,Cat ], we prove that

L (X, G) L (K, G)

L (X, F ) L (K, F )

−◦λ

φ◦− φ◦−

−◦λ

is cleavage preserving. This means that

K X G

G
K X F

λ

α

θ∗α
φ

φ

λ

α

β

θ
α

θ

exhibits the chosen cartesian lifting of θ ⋆ λ to α ◦λ. This works by construction,

as the lifting of every 2-cell along φ is reduced to lift morphisms of F (A) along

φA for every A ∈ A .

When φA is a discrete opfibration for every A ∈ A , the argument above produces

the needed cartesian liftings. We only need to show that such liftings are unique.

But any lifting θ
α
needs to have as component (θ

α
)A,Z on A ∈ A and Z ∈ X(A)

the unique lifting of θA,Z to αA(Z) along φA.

Proposition 4.2.6. Let A be a small category and consider φ, ψ ∈

OpFib [A ,Cat ] (F ). Let then ξ : φ → ψ be a morphism in [A ,Cat ]/F . The fol-

lowing facts are equivalent:

(i) ξ : φ→ ψ is cleavage preserving;

(ii) for every A ∈ A , the component ξA : φA → ψA is cleavage preserving

(between split opfibrations in Cat ).

Proof. We prove (i) =⇒ (ii). Given A ∈ A we have that

G(A) [A ,Cat ] (y(A), G) [A ,Cat ] (y(A), H) H(A)

F (A) [A ,Cat ] (y(A), F ) [A ,Cat ] (y(A), F ) F (A)

φA

∼=

φ◦−

ξ◦− ∼=

ψ◦− ψA

∼= ∼=
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is cleavage preserving.

We prove (ii) =⇒ (i). The equality of modifications that we need to prove can be

checked on components, where it holds by hypothesis.

Thanks to Proposition 4.2.5, we can define having small fibres for a discrete

opfibration in [A ,Cat ].

Definition 4.2.7. Let A be a small category. A discrete opfibration φ : G→ F

in [A ,Cat ] has small fibres if for every A ∈ A the component φA of φ on A has

small fibres.

We denote as DOpFib s
[A ,Cat ] (F ) the full subcategory of DOpFib [A ,Cat ] (F ) on the

discrete opfibrations with small fibres.

Remark 4.2.8. The property of having small fibres for a discrete opfibration in

[A ,Cat ] is stable under pullbacks. Indeed taking components on A ∈ A preserves

2-limits in 2-presheaves and discrete opfibrations in Cat with small fibres are

stable under pullbacks.

We will also need the following result.

Proposition 4.2.9. Let L be a 2-category. The assignment F ∈ L 7→

OpFibL (F ) ∈ CAT extends to a pseudofunctor

OpFibL (−) : Lop → CAT .

Moreover, this pseudofunctor restricts to a pseudofunctor

OpFib P
L (−) : Lop → CAT

that sends F ∈ L to the full subcategory of OpFibL (F ) on the split opfibrations

that satisfy a fixed pullback-stable property P (e.g. being discrete opfibrations ).

Proof. On the underlying category of Lop, we define OpFibL (−) as the restriction

of the pseudofunctor given by the pullback (to consider opfibrations rather than

general morphisms). So given α : F ′ → F in L , we have

OpFibL (α) = α∗ : OpFibL (F )→ OpFibL (F ′)
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We are also using Remark 4.2.3. We immediately get also the isomorphisms that

regulate the image of identities and compositions.

Given a 2-cell δ : α =⇒ β : F ′ → F in L , we define OpFibL (δ) = δ∗ as the natural

transformation with component on a split opfibration φ : G → F in L given by

the morphism δ∗φ : α
∗φ→ β∗φ induced by lifting δ ⋆ α∗φ along φ:

α∗G

β∗G G

F ′ F

α∗φ

δ∗φ
δ⋆α∗φ

β∗φ φ

α

β

δ

Indeed the codomain of the lifting of δ ⋆ α∗φ along φ induces the morphism δ∗φ

by the universal property of the pullback β∗G. δ∗ is a natural transformation

because the morphisms in OpFibL (F ) are cleavage preserving.

OpFibL (−) preserves identity 2-cells and vertical compositions of 2-cells because

the objects of OpFibL (F ) are split. We already know that the isomorphisms

that regulate the image of identities and compositions satisfy the 1-dimensional

coherences. It only remains to prove their naturality (actually, only the one for

compositions). This essentially means that it preserves whiskerings, up to pasting

with the isomorphisms that regulate the image of compositions. For whiskering

on the left, this is true by the second condition of Definition 4.2.1. For whiskerings

on the right, we use that the universal square that exhibits a pullback is cleavage

preserving.

Thus we conclude that OpFibL (−) is a pseudofunctor. It then readily restricts

to a pseudofunctor OpFib P
L (−).

4.3. Indexed Grothendieck construction

In this section, we present our main results. We prove an equivalence of categories

between split opfibrations in [A ,Cat ] over F and 2-copresheaves on
∫
F . This
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equivalence restricts to one between discrete opfibrations in [A ,Cat ] over F with

small fibres and Set -valued copresheaves on
∫
F . We also show that both such

equivalences are pseudonatural in F .

We introduce the explicit indexed Grothendieck construction and show how our

results recover known useful results. In particular, we recover the equivalence

between slices of presheaves over F : A → Set and presheaves on
∫
F , that shows

how the slice of a Grothendieck topos is a Grothendieck topos. We interpret our

main theorem as a 2-dimensional generalization of this.

Let A be a small category and consider the functor 2-category [A ,Cat ].

Remark 4.3.1. We aim at proving that for every 2-functor F : A → Cat , there

is an equivalence of categories

OpFib [A ,Cat ] (F ) ≃
[∫
F,Cat

]
between split opfibrations in [A ,Cat ] over F (see Proposition 4.2.5) and 2-

copresheaves on the Grothendieck construction
∫
F of F .

Our strategy will be to use Theorem 4.1.7, that states that the Grothendieck

construction
∫
F of F is equivalently the oplax colimit of the 2-diagram F : A →

Cat . Notice that a (strict) 2-functor from a category to Cat is the same thing as

a functor into the underlying category Cat 0 of Cat . In Remark 4.3.13, we will say

what we could do to extend our results to A a 2-category or F a pseudofunctor.

Proposition 4.3.2. There is an isomorphism of categories[∫
F,Cat 0

]
∼= [Aop,CAT ]oplax (∆1, [F (−),Cat 0])

which is (strictly ) 2-natural in F .

Proof. We obtain the isomorphism of categories in the statement by The-

orem 4.1.7, that proves that
∫
F = oplax -colimF (see also Remark 4.1.8 and

Definition 4.1.5). The isomorphism is 2-natural in F by a general result on

weighted colimits, see Kelly’s [28, Section 3.1]. We can apply this result on an

oplax colimit as well because by Street’s [42, Theorem 11] any oplax colimit is

also a weighted one.
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Remark 4.3.3. Thanks to Proposition 4.3.2, we can reduce ourselves to apply

the usual Grothendieck construction on every index. For this we also need the

pseudonaturality of the Grothendieck construction (Proposition 4.1.9).

Proposition 4.3.4. There is an equivalence of categories

[Aop,CAT ]oplax (∆1, [F (−),Cat 0]) ≃ Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (F (−))

)
which is pseudonatural in F , where Ps [Aop,CAT ]oplax is the 2-category of pseudo-

functors, oplax natural transformations and modifications.

Proof. Notice that

[Aop,CAT ]oplax (∆1, [F (−),Cat 0]) ∼= Ps [Aop,CAT ]oplax (∆1, [F (−),Cat 0])

So it suffices to exhibit an equivalence

[F (−),Cat 0] ≃ OpFib (F (−))

in the (large) 2-category Ps [Aop,CAT ]oplax. Indeed, for a general (large) 2-

category, postcomposing with a morphism that is an equivalence in the 2-category

gives a functor between hom-categories that is an equivalence of categories. The

left hand side is certainly a 2-functor, while the right hand side is a pseudo-

functor by Proposition 4.2.9. We have that the Grothendieck construction gives

a pseudonatural adjoint equivalence

G− : [−,Cat 0] ≃ OpFib (−) ,

by Proposition 4.1.9. Whiskering it with F op on the left gives another pseudo-

natural adjoint equivalence, that is then also an equivalence in the 2-category

Ps [Aop,CAT ]oplax as needed. The quasi-inverse is given by extending to a pseudo-

natural transformation the quasi-inverses of the Grothendieck construction on

every component. This can always be done by choosing as structure 2-cells the

pasting of the inverse of the structure 2-cells of the Grothendieck construction

with unit and counit of the adjoint equivalences on components. The triangular

equalities then guarantee that we have an equivalence in Ps [Aop,CAT ]oplax (we

have that the two composites are isomorphic to the identity).
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We now prove that the equivalence of categories

GF (−)◦− : [Aop,CAT ]oplax (∆1, [F (−),Cat 0]) ≃ Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (F (−))

)
that we have produced is pseudonatural in F .

We show that Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (+(−))

)
: [A ,Cat ]op → CAT is

a pseudofunctor. Given α : F ′ → F in [A ,Cat ], we define the image on α to be

α∗
− ◦ −, where

α∗
− : OpFib (F (−)) ===⇒

pseudo
OpFib (F ′(−)) : Aop → CAT

is the pseudonatural transformation described as follows. For every A ∈ A , we

define (α∗
−)A := α∗

A (see Proposition 4.2.9). For every h : A→ B in A , we define

the structure 2-cell (α∗
−)h to be the pasting

OpFib (F (B)) OpFib (F ′(B))

OpFib (F (A)) OpFib (F ′(A))

∼=

∼=
(F (h)◦αA)∗F (h)∗

α∗
B

F ′(h)∗

α∗
A

where the two isomorphisms are the ones given by the pseudofunctoriality of

OpFib (−) (see Proposition 4.2.9). We are using that F (h) ◦ αA = αB ◦ F ′(h)

by naturality of α. Then α∗
− is a pseudonatural transformation because

OpFib (−) is a pseudofunctor. As α∗
− is a morphism in the (large) 2-category

Ps [Aop,CAT ]oplax, we have that α
∗
− ◦− is a functor. Considering F ′′ α′

−→ F ′ α−→ F

in [A ,Cat ], there is a an invertible modification

(α′
−)

∗ ◦ α∗
−
∼= (α ◦ α′)

∗
−

with components given by the pseudofunctoriality of OpFib (−). And then

whiskering with this gives the natural isomorphism that regulates the image on

the composite α ◦ α′.

Given δ : α =⇒ β : F ′ → F in [A ,Cat ], we define the image on δ to be δ∗− ⋆ −,

where δ∗− is the modification that has components δ∗A on every A ∈ A (see Proposi-

tion 4.2.9). This forms indeed a modification by pseudofunctoriality of OpFib (−).
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It is straightforward to check that Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (+(−))

)
is a

pseudofunctor.

We prove that GF (−) ◦ − is pseudonatural in F ∈ [A ,Cat ]op. Given α : F ′ → F

in [A ,Cat ], we define the structure 2-cell on α to be Gα− ⋆ −, where Gα− is the

invertible modification

[F (−),Cat 0] OpFib (F (−))

[F ′(−),Cat 0] OpFib (F ′(−))

≃
GF (−)

−◦α α∗
−∼=

Gα−

≃
GF ′(−)

with components defined by the pseudonaturality of the Grothendieck construc-

tion in the base (see Proposition 4.1.9). The latter pseudonaturality also guar-

antees that Gα− is a modification. Whence Gα− ⋆ − is a natural isomorphism.

We then conclude that GF (−) ◦ − is pseudonatural in F ∈ [A ,Cat ]op because

the needed equalities of modifications can be checked on components, where

everything holds because the Grothendieck construction is pseudonatural in the

base (we also need the 2-dimensional condition of this pseudonaturality).

Remark 4.3.5. An object of Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (F (−))

)
is essen-

tially a collection of opfibrations on every index A ∈ A together with a compact

information on how to move between different indexes. The last ingredient that

we need in order to prove our main result is that we can pack these data in terms

of an opfibration in [A ,Cat ] over F .

Proposition 4.3.6. There is an isomorphism of categories

Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (F (−))

) ∼= OpFib [A ,Cat ] (F )

which is pseudonatural in F (with the structure 2-cells being identities ).

Proof. Given φ : G→ F an opfibration in [A ,Cat ], we produce an oplax natural

[φ] : ∆1 ===⇒
oplax

OpFibCat (F (−)) : Aop → CAT .
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For every A ∈ A , we define [φ]A := φA, thanks to Proposition 4.2.5. For every

h : A→ B in A , the structure 2-cell [φ]h is the functor φA → F (h)∗(φB) defined

by the universal property of the pullback in Cat :

G(A)

F (h)∗(G(B)) G(B)

F (A) F (B)

G(h)

φA

[φ]h

F (h)∗(φB)
⌟

φB

F (h)

[φ]h is cleavage preserving because (G(h), F (f)) and the universal square that

exhibits the pullback are cleavage preserving, thanks to Proposition 4.2.5. [φ] is

an oplax natural transformation by the universal property of the pullback, using

also the pseudofunctoriality of the pullback.

Given

γ : ∆1 ===⇒
oplax

OpFibCat (F (−)),

we produce an opfibration γ̂ : G → F in [A ,Cat ]. We define the (2-)functor G

sending A ∈ A to dom(γA) and h : A→ B to the composite above of the diagram

dom(γA) F (h)∗ dom(γB) dom(γB)

F (A) F (A) F (B)

γh

γA
⌟

F (h)∗(γB) γB

F (h)

G is a functor because γ is oplax natural. For every A ∈ A , we define γ̂A := γA.

Then γ̂ is a natural transformation by construction of G. And the naturality

squares of γ̂ are cleavage preserving because every γh and every universal square

that exhibits a pullback are cleavage preserving. By Proposition 4.2.5, we con-

clude that γ̂ is a split opfibration in [A ,Cat ].

We can extend both constructions to functors, that will be inverses of each other.

Given a cleavage preserving morphism ξ : φ → ψ between split opfibrations in

[A ,Cat ] over F , we produce a modification [ξ] : [φ] ≡⇛ [ψ]. For every A ∈ A ,

we define [ξ]A := ξA, thanks to Proposition 4.2.6. It is straightforward to prove
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that this is a modification using the universal property of the pullback. Then

[−] is readily seen to be a functor, because the conditions can be checked on

components. Given a modification

ζ : γ ≡⇛ δ : ∆1 ===⇒
oplax

OpFibCat (F (−)),

we produce a cleavage preserving morphism ζ̂ : γ̂ → δ̂. For every A ∈ A , we

define ζ̂A := ζA, and this is then clearly cleavage preserving. ζ̂ is a natural

transformation because ζ is a modification. By Proposition 4.2.6, we conclude

that ζ̂ is a cleavage preserving morphism. Then −̂ is readily seen to be a functor

because the conditions can be checked on components. It is straightforward to

check that [−] and −̂ are inverses of each other.

We now prove the pseudonaturality in F , with the structure 2-cells being iden-

tities, of the isomorphism of categories we have just produced. The left hand

side extends to a pseudofunctor by the proof of Proposition 4.3.4, while the right

hand side extends to a pseudofunctor by Proposition 4.2.9. Given a morphism

α : F ′ → F in [A ,Cat ], we show that the following square is commutative:

OpFib [A ,Cat ] (F ) Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (F (−))

)
OpFib [A ,Cat ] (F

′) Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (F

′(−))
)

≃

α∗ α∗
−◦−

≃

Let φ : G→ F be a split opfibration in [A ,Cat ]. For every A ∈ A , since pullbacks

in [A ,Cat ] are calculated pointwise,

(α∗
− ◦ [φ])A = α∗

A(φA) = (α∗φ)A = [α∗φ]A.

For every h : A→ B in A , we have that [α∗φ]h is equal to the pasting

1 OpFib (F (B))] OpFib (F ′(B))

1 OpFib (F (A)) OpFib (F ′(A))

φB

∼=

∼=
(F (h)◦αA)∗F (h)∗

α∗
B

F ′(h)∗
[φ]h

φA α∗
A

by the universal property of the pullback, using again that pullbacks in [A ,Cat ]

are calculated pointwise. It is then easy to see that the square above is commut-

ative on morphisms ξ : φ → ψ as well, since it can be checked on components

A ∈ A .
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We prove that identities are the structure 2-cells of an isomorphic pseudonatural

transformation

OpFib [A ,Cat ] (+) ∼= Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (+(−))

)
: [A ,Cat ]op → CAT

This means that the isomorphisms that regulate the image of the two pseudo-

functors on identities and compositions are compatible, and that the two pseudo-

functors agree on 2-cells. The first condition holds because it can be checked

on components and pullbacks in [A ,Cat ] are calculated pointwise (choosing pull-

backs along identities to be the identity). The second condition is, for every

δ : α =⇒ β : F ′ → F in [A ,Cat ],

[−] ⋆ δ∗ = (δ∗− ⋆−) ⋆ [−]

This can be checked on components φ : G → F (split opfibration in [A ,Cat ]).

On such components we need to prove an equality of modifications, that can be

then checked on components A ∈ A . So we need to show

(δ∗φ)A = δ∗A(φA).

This holds because the components of the liftings along φ are the liftings along

the components of φ. Indeed, for a general θ as below,

y(A) X G

G
y(A) X F

x

α

θ∗α
φ

φ

x

α

β

θ
α

θ

the second condition of Definition 4.2.1 ensures that the lifting of θA,x along φ is

equal to θ
α

A,x. But the former is also the lifting of θA,x (seen as a morphism in

F (A)) along φA, thanks to Proposition 4.2.5. And everything works on morph-

isms f : x → x′ in X(A) as well by cartesianity arguments, using the naturality

of θ
α

A.

We are now ready to prove our main result.
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Theorem 4.3.7. Let A be a small category and consider the functor 2-category

[A ,Cat ]. For every 2-functor F : A → Cat , there is an equivalence of categories

OpFib [A ,Cat ] (F ) ≃
[∫
F,Cat

]
between split opfibrations in [A ,Cat ] over F and 2-copresheaves on the Grothen-

dieck construction
∫
F of F . Moreover this equivalence is pseudonatural in F .

Proof. It suffices to compose the equivalences of categories of Proposition 4.3.2,

Proposition 4.3.4 and Proposition 4.3.6.

[∫
F,Cat 0

]
∼= [Aop,CAT ]oplax (∆1, [F (−),Cat 0]) ≃

≃ Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (F (−))

) ∼= OpFib [A ,Cat ] (F )

Notice that a 2-functor from a category into Cat is the same thing as its under-

lying functor. As all three equivalences are pseudonatural in F ∈ [A ,Cat ]op, so

is the composite.

We can extract the explicit indexed Grothendieck construction from the proof of

Theorem 4.3.7.

Construction 4.3.8 (Indexed Grothendieck construction). We can follow the

chain of equivalences of the proof of Theorem 4.3.7 to get its explicit action. Let

φ : G → F be a split opfibration in [A ,Cat ] over F . We first produce the oplax

natural transformation

[φ] : ∆1 ===⇒
oplax

OpFibCat (F (−))

with [φ]A := φA for every A ∈ A and

G(A)

F (h)∗(G(B)) G(B)

F (A) F (B)

G(h)

φA

[φ]h

F (h)∗(φB)
⌟

φB

F (h)
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for every h : A → B in A . Then we produce the oplax natural transformation

with components on A ∈ A and structure 2-cells on h : A → B defined by the

pasting

1 OpFib (F (B)) [F (B),Cat 0]

1 OpFib (F (A)) [F (A),Cat 0]

φB

F (h)∗

G ′
F (B)

−◦F (h)
[φ]h

φA G ′
F (A)

∼=G ′
F (h)

where G ′
− is the quasi-inverse of the Grothendieck construction. We have that

G ′
F (A)(φA) sends every X ∈ F (A) to the fibre (φA)X of φA over X and every

morphism α : X → X ′ in F (A) to the functor

α∗ : (φA)X → (φA)X′

that lifts α (on morphisms, it is defined by cartesianity). The structure 2-cell on

h is the natural transformation with component on X ∈ F (A) given by

(φA)X
[φ]h−−→ (F (h)∗(φB))X ∼= (φB)F (h)(X)

which coincides with G(h).

Finally, we induce the 2-functor

G ′ (φ) :
∫
F −→ Cat

(A,X)

(B,F (h)(X))

(B,X ′)

(h,α)

(h,id)

(id,α)

7→

(φA)X

(φB)F (h)(X)

(φB)X′

G(h)

α∗

using the universal property of the oplax colimit
∫
F , as in the proof of The-

orem 4.1.7.

Let Z :
∫
F → Cat be a 2-functor. We produce the oplax natural transformation

γ with components on A ∈ A and structure 2-cells on h : A→ B in A defined by
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the pasting

1 [F (B),Cat 0] OpFib (F (B))

1 [F (A),Cat 0] OpFib (F (A))

Z◦incB

−◦F (h)

GF (B)

F (h)∗
Z⋆inch

Z◦incA GF (A)

∼=GF (h)

We have that GF (A) ◦ Z ◦ incA : G(A) → F (A) is the Grothendieck construction

of the 2-functor F (A) → Cat that sends every object X ∈ F (A) to Z(A,X)

and every morphism α : X → X ′ in F (A) to Z(id, α). Its domain G(A) has the

following description:

an object is a pair (X, ξ) with X ∈ F (A) and ξ ∈ Z(A,X);

a morphism (X, ξ)→ (X ′, ξ′) is a pair (α,Ξ) with α : X → X ′ in F (A) and

Ξ: Z(id, α)(ξ)→ ξ′ in Z(A,X ′).

These are then collected as a split opfibration G (Z) : G → F in [A ,Cat ] over

F whose components on every A are the projections G(A) → F (A) on the first

component. For every h : A → B in A , the functor G(h) is defined by the

composite above in the diagram

G(A) F (h)∗G(B) G(B)

F (A) F (A) F (B)

γh

G(Z)A
⌟

F (h)∗(G(Z)B) G(Z)B

F (h)

Explicitly,

G(h) : G(A) −→ G(B)

(X, ξ)

(X ′, ξ′)

(α,Ξ) 7→
(F (h)(X), Z(h, id)(ξ))

(F (h)(X ′), Z(h, id)(ξ′))

(F (h)(α),Z(h,id)(Ξ))

We can see how this construction is indeed an indexed Grothendieck construction.

We essentially collect together triples (A,X, ξ) with A ∈ A , X ∈ F (A) and

ξ ∈ Z(A,X).
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Theorem 4.3.9. Let A be a small category. For every 2-functor F : A → Cat ,

the equivalence of categories

OpFib [A ,Cat ] (F ) ≃
[∫
F,Cat

]
of Theorem 4.3.7 restricts to an equivalence of categories

DOpFib s
[A ,Cat ] (F ) ≃

[∫
F, Set

]
between discrete opfibrations in [A ,Cat ] over F with small fibres and Set -valued

copresheaves on
∫
F . Moreover this equivalence is pseudonatural in F .

Proof. The isomorphism of Proposition 4.3.2 restricts to one with Set on both

sides in the place of Cat 0 by 2-naturality in U of the isomorphism given by an

oplax colimit (see Definition 4.1.5). Pseudonaturality in F still holds by the same

general argument that guaranteed it with Cat 0 on both sides.

The equivalence of Proposition 4.3.4 restricts to one with Set in the place of Cat 0

on the left hand side and discrete opfibrations with small fibres in the place of

opfibrations in the right hand side. Indeed the following is a commutative square

of pseudonatural transformations:

[F (−), Set ] DOpFib s
(F (−))

[F (−),Cat 0] OpFib (F (−))

GF (−)

GF (−)

On components A ∈ A , this is true by the classical Theorem 4.1.4. And it is

straightforward to check that it is true on structure 2-cells as well, since struc-

ture 2-cells are given by the pseudofunctoriality of the pullback. Then pseud-

onaturality in F holds for the restricted equivalence as well, as one can readily

check.

The isomorphism of Proposition 4.3.6 restricts to one with discrete opfibrations

with small fibres on both sides in the place of opfibrations, because it suffices to

look at the components. Then pseudonaturality in F holds as well, precomposing

the pseudonatural transformation produced in the proof of Proposition 4.3.6 with

the inclusion of discrete opfibrations with small fibres into opfibrations.
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Remark 4.3.10. When F : A → Set , the equivalence of categories

DOpFib s
[A ,Cat ] (F ) ≃

[∫
F, Set

]
becomes the well-known

[A , Set ]/F ≃
[∫
F, Set

]
.

Indeed any discrete opfibration φ : G → F in [A ,Cat ] over F : A → Set with

small fibres needs to have G : A → Set , and all functors G → F in [A , Set ]

are discrete opfibrations with small fibres. Our theorem guarantees that this

equivalence is pseudonatural in F , which does not seem to appear in the literature.

When F is a representable y(A) : A → Set , we obtain the famous equivalence

[A , Set ]
/
y(A) ≃

[A /A, Set
]

between slices of (co)presheaves and (co)presheaves on slices. We will apply its

pseudonaturality in F in Example 4.4.9 to get a nice candidate for a Hofmann–

Streicher universe (see [25]) in 2-presheaves.

Remark 4.3.11. The equivalence

[A , Set ]/F ≃
[∫
F, Set

]
is very useful in topos theory. It has also been applied to geometry, for example

by Artin, Grothendieck and Verdier in [3, Section IV.5] (where they call “topos

induit” the slice of a topos). It is the archetypal case of the fundamental theorem

of elementary topos theory, as it shows that every slice of a Grothendieck topos

is a Grothendieck topos.

We can interpret our main theorem as a 2-dimensional generalization of this.

Indeed it has recently been proposed that, in dimension 2, the correct analogue

of the slice is an (op)fibrational slice (e.g. Ahrens, North and van der Weide’s [2]).

Our equivalence

OpFib [A ,Cat ] (F ) ≃
[∫
F,Cat

]
says that every opfibrational slice of a Grothendieck 2-topos is again a Grothen-

dieck 2-topos.
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We can now explore some variations on the indexed Grothendieck construction.

Remark 4.3.12. We can change A to Aop and get the 2-category [Aop,Cat ] of 2-

presheaves. Then F : Aop → Cat . Be careful that, for opfibrations in [Aop,Cat ],

we still need to apply the Grothendieck construction to F as if we did not know

that the domain of F is an opposite category. We write
∫ op

F for this Grothen-

dieck construction on F , to emphasize that it is not the most natural one for a

2-functor Aop → Cat . We obtain

OpFib [Aop,Cat ] (F ) ≃
[∫ op

F,Cat
]

The most natural Grothendieck construction
∫
F of a contravariant 2-functor

F : Aop → Cat appears instead to handle fibrations in the place of opfibrations.

Such Grothendieck construction
∫
F is the lax colimit of F . Then −op : Cat →

Cat co, where Cat co is the dualization on 2-cells of Cat , preserves this colimit. We

obtain that
(∫
F
)op

is the lax colimit in Cat co of F (−)op, which means that

(∫
F
)op

= oplax -colim(F (−)op)

in Cat . Then we have the following chain of equivalences of categories:

[(∫
F
)op
,Cat 0

]
∼= [A ,CAT ]oplax (∆1, [F (−)op,Cat 0]) ≃

≃ Ps [A ,CAT ]oplax
(
∆1, FibCat (F (−))

) ∼= Fib [Aop,Cat ] (F )

Remark 4.3.13. We believe that, when A is a 2-category, one can still obtain

an equivalence of categories

OpFib [A ,Cat ] (F ) ≃
[∫
F,Cat

]
where

∫
F is now the 2-category of elements (or 2-Set -enriched Grothendieck con-

struction), introduced by Street in [42] and explored more in detail in Chapter 1.

In order to adapt our proof of Theorem 4.3.7 to this setting, one would need
∫
F

to be a kind of oplax colimit in 2-Cat . We believe that F is the 2-oplax colimit

of F followed by the inclusion i of Cat into 2-Cat , where a 2-oplax natural trans-

formation is a Crans’s [14] oplax 1-transfor. Such transformations have the same
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1-dimensional conditions of an oplax natural transformation but now also have

structure 3-cells on every 2-cell in A . Having as codomain 2-Cat , they compose

well. The added structure 3-cells are precisely what one needs in order to encode

the 2-cells

δX : (f, F (δ)X) =⇒ (g, id) : (A,X)→ (B,F (g)(X))

in
∫
F for every δ : f =⇒ g : A→ B in A . As explained in Construction 1.1.4, every

2-cell in
∫
F is a whiskering of such particular 2-cells (in some sense, these 2-cells

are the only ones we need). The middle equivalence of the chain that proves our

Theorem 4.3.7 would then be given by the 2-category of elements construction.

Finally, the last part of the chain would probably work as well, with the structure

3-cells managing to encode the action of G on 2-cells. However, we have not

checked these details.

Such generalization would be helpful also to handle non-split opfibrations and

pseudofunctors from
∫
F into Cat , for which we cannot reduce to functors into

Cat 0. Of course, for this, one could also extend the explicit indexed Grothendieck

construction.

For the restriction to copresheaves and discrete opfibrations, we need to be careful

that

2-Cat
(∫

F , i(Set )
)
∼= Cat

(
π∗
∫
F , Set

)
where π∗ is the left adjoint of i : Cat → 2-Cat . So a quotient of

∫
F by its 2-cells

appears: morphisms in
∫
F that were connected via a 2-cell becomes equal.

4.4. Examples

In this section, we show some interesting examples. We can vary both A and F

in our main results. We start with A = 1, that recovers the usual Grothendieck

construction. A = 2 represents the simultaneous Grothendieck construction of

two opfibrations connected by an arrow. While A = ∆ considers (co)simplicial

categories. We also explore other examples. In particular, we obtain a nice

candidate for a Hofmann–Streicher universe in 2-presheaves.
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Remark 4.4.1 (A = 1). When A = 1, the 2-category [A ,Cat ] reduces to Cat . A

2-functor F : 1→ Cat is just a small category C and
∫
F = C . So Theorem 4.3.7

gives the classical

OpFib (C ) ≃ [C ,Cat ] .

The explicit indexed Grothendieck construction becomes the usual Grothendieck

construction. Indeed the first part and the last part of the chain become trivial,

while the middle part is the Grothendieck construction on the unique index ∗ ∈ 1.

Example 4.4.2 (A discrete). When A is discrete, the 2-category [A ,Cat ] is a

product of copies of Cat . A 2-functor F : A → Cat just picks as many categories

as the cardinality of A , without bonds. Since the diagram F is parametrized by

a discrete category, we have that
∫
F = oplax -colimF becomes the coproduct

of the categories picked by F . And
[∫
F,Cat

]
is then a collection of functors

from every such category into Cat . On the other hand, by Proposition 4.2.5, a

split opfibration in [A ,Cat ] is just a collection of as many opfibrations as the

cardinality of A , without bonds. The indexed Grothendieck construction[∫
F,Cat

]
≃ OpFib [A ,Cat ] (F )

is the simultaneous Grothendieck construction of all the functors into Cat that

are collected as a single functor from the coproduct. This shows the indexed

nature of the indexed Grothendieck construction.

Example 4.4.3 (A = 2). When A = 2, the 2-category [A ,Cat ] is the arrow

category of Cat and F : 2 → Cat is a functor F̃ : C → D. The Grothendieck

construction
∫
F has as objects the disjoint union of the objects of C and of D,

denoted respectively (0, C) and (1, D) with C ∈ C and D ∈ D. The morphisms

of
∫
F are of three kinds: morphisms in C (over 0), morphisms in D (over 1)

and morphisms over 0→ 1 that represents the objects (C,D, F̃ (C)→ D) of the

comma category F̃ /D . On the other hand, given G : 2 → Cat corresponding

to G̃ : E → L , a split opfibration φ : G → F in [2,Cat ] is a cleavage preserving
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morphism

E L

C D

G̃

φ0 φ1

F̃

between split opfibrations φ0 and φ1. So Theorem 4.3.7 gives an equivalence of

categories between morphisms of (classical) split opfibrations (in Cat ) which have

F̃ as second component and 2-copresheaves on a category that collects together

C , D and the comma category F̃ /D .

Following Construction 4.3.8, we get the explicit (quasi-inverse of the) indexed

Grothendieck construction in this case. The arrow above between split opfibra-

tions φ0 and φ1 can be reorganized as the functor
∫
F → Cat that sends

(i) (0, C) to the fibre of φ0 on C and every morphism f in C to the functor f∗

that lifts it along φ0;

(ii) (1, D) to the fibre of φ1 on D and every morphism g in D to the functor g∗

that lifts it along φ1;

(iii) every morphism corresponding to an object (C,D, α : F̃ (C) → D) of the

comma category F̃ /D to the composite functor

(φ0)C
G̃−→ (φ1)F̃ (C)

α∗−→ (φ1)D.

In the particular case in which F : 2 → Set , we have that F̃ : S → T is a function

between sets. Then
∫
F is a poset with objects the disjoint union of the objects

of S and of T and such that (0, s) ≤ (1, t) with s ∈ S and t ∈ T if and only if

F̃ (s) = t. On the other hand, a split opfibration in [2,Cat ] over F is precisely a

commutative square in Set with bottom leg equal to F̃ .

Example 4.4.4 (A = I). When A is the walking isomorphism I, we have that

F : I → Cat is an invertible functor F̃ : C → D. Then
∫
F is similar to the one

of Example 4.4.3, but there is now a fourth kind of morphisms, that represents

the objects (D,C, F̃−1(D)→ C) of the comma category F̃−1 /C .
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If F : I → Set , the partial order of the poset constructed as in Example 4.4.3

now becomes an equivalence relation. Every object is in relation precisely with

itself and with its copy in the other set.

Example 4.4.5 (A = ∆). When A is the simplex category ∆, we have that

F : ∆→ Cat is a cosimplicial category. This is equivalently a cosimplicial object

in Cat or an internal category in cosimplicial sets. The Grothendieck construction∫
F collects together all the cosimplexes in a total category, taking into account

faces and degeneracies. Theorem 4.3.7 gives an equivalence of categories between

split opfibrations between cosimplicial categories over F and functors into Cat

from the total category that collects all the cosimplexes given by F .

Example 4.4.6 (F = ∆1). Given any small category A , we can consider F =

∆1: A → Cat the functor constant at the terminal 1. We have that
∫
∆1 = A .

So Theorem 4.3.7 gives an equivalence of categories

OpFib [A ,Cat ] (∆1) ≃ [A ,Cat ] .

Indeed, as being opfibred over 1 means nothing, a split opfibration φ : G → ∆1

is a collection of categories G(A) and of functors G(h) for every h : A→ B in A .

This forms a functor A → Cat because φ is split.

Putting together this equivalence with that of Example 4.4.1, we obtain

OpFib [A ,Cat ] (∆1) ≃ OpFibCat (A)

Example 4.4.7 (F = ∆B). Given any small category A , we can consider F =

∆B : A → Cat the functor constant at a fixed category B . We have that
∫
∆B =

A × B and G (∆B) is the projection A × B → A . Theorem 4.3.7 characterizes

functors A ×B → Cat , and hence the Cat -enriched profunctors, in terms of split

opfibrations in [A ,Cat ] over ∆B .

Example 4.4.8 (semidirect product of groups). Let A be the one-object category

BG corresponding to a group G. Consider then F : BG → Cat that sends the

unique object of BG to the one-object category that corresponds to a group

H. Functoriality of F corresponds precisely to giving a group homomorphism
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ρ : G → Aut(H) where Aut(H) is the group of automorphisms of H. Then

the Grothendieck construction
∫
F is a one-object category corresponding to the

semidirect product H⋊ρG. Thus Theorem 4.3.7 characterizes functors H⋊ρG→

Cat in terms of opfibrations in [BG,Cat ] over the functor F that corresponds with

ρ : G→ Aut(H).

Example 4.4.9 (Hofmann–Streicher universe in 2-presheaves). We apply The-

orem 4.3.7 (and Theorem 4.3.9) to solve the problem we found in Section 3.3 and

get a nice candidate for a Hofmann–Streicher universe (see [25]) in the 2-category

[Aop,Cat ] of 2-presheaves (i.e. prestacks). In Chapter 5, we will then show that

such candidate is indeed a good 2-classifier in [Aop,Cat ] that classifies all dis-

crete opfibrations with small fibres, towards a 2-dimensional elementary topos

structure on [Aop,Cat ]. This was the starting motivation for the work of this

chapter.

Recall from Construction 3.3.2 that, by our theorems of reduction of the study of

a 2-classifier to dense generators, a good 2-classifier in [Aop,Cat ] that classifies

all discrete opfibrations with small fibres is forced up to equivalence to be the

pseudofunctor

Aop yop−−→ [Aop,Cat ]op
DOpFib s

(−)
−−−−−−−→ CAT ,

that assigns A
Ω7−→ DOpFib s

[Aop,Cat ] (y(A)). By Remark 3.3.3, such Ω nicely gener-

alizes to dimension 2 the subobject classifier of 1-dimensional presheaves . How-

ever, it has the problem of not being a strict 2-functor and not clearly landing in

Cat , so that it cannot be a 2-classifier in [Aop,Cat ].

Theorem 4.3.7 (together with Theorem 4.3.9 and Remark 4.3.12) offers a nice

way to replace such pseudofunctor Ω with a concrete strict 2-functor Ω̃ that

lands in Cat . Although it was already known that any pseudofunctor can be

strictified, by the theory developed by Power in [40] and later by Lack in [29],

the work of this chapter provides an explicit and easy to handle strictification of

Ω, which in addition lands in Cat . Moreover, as we will present in Chapter 5,

such strictification can also be restricted in a natural way to a good 2-classifier

in stacks.
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Theorem 4.3.9 gives an equivalence of categories

DOpFib s
[Aop,Cat ] (y(A)) ≃

[∫ op
y(A) , Set

]
that is pseudonatural in A ∈ Aop, by precomposing the equivalence that is

pseudonatural in F ∈ [Aop,Cat ]op with yop : Aop → [Aop,Cat ]op. So the right

hand side of the equivalence above gives a strict 2-functor Ω̃ that is pseudo-

naturally equivalent to Ω and lands in Cat .

When A is a 1-category,∫ op
y(A) =

(A /A
)op

and Ω̃(A) =
[(A /A

)op
, Set

]
.

Ω̃ acts on morphisms by postcomposition. Notice that in this case y(A) : Aop →

Set and so the left hand side of the equivalence above simplifies to

[Aop, Set ]
/
y(A) , but we still need the pseudonaturality in A, that does not seem

to appear in the literature. Our Theorem 4.3.9 (with Theorem 4.3.7) guarantees

such pseudonaturality and therefore that we get a strict 2-functor Ω̃ pseudo-

naturally equivalent to Ω. This is a Hofmann–Streicher universe, in line with the

ideas of [25] and with Awodey’s recent work [4]. In Chapter 5, we will show that

Ω̃ is indeed a good 2-classifier in [Aop,Cat ] that classifies all discrete opfibrations

with small fibres, using our theorems of reduction of the study of a 2-classifier to

dense generators. We will then restrict this good 2-classifier to one in stacks.

When A is a 2-category, the 2-category of elements gives∫ op
y(A) =

(A /oplax A
)op

Checking the details of the strategy proposed in Remark 4.3.13, we would get a

refined strict 2-functor Ω̃ defined by

Ω̃(A) =
[
π∗
(A /oplax A

)op
, Set

]
(recall the definition of π∗ from Remark 4.3.13). Interestingly, such quotients of

(op)lax slices give the right weights to represent (op)lax (co)limits as weighted

ones, by Street’s [42, Theorem 11].
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5. Hofmann–Streicher universe in

stacks

This chapter is based on the second half of our [37].

In this chapter, we contribute to expand further 2-dimensional elementary topos

theory, introduced by Weber in [51]; see also Chapter 3. Recall from Defini-

tion 3.1.12 the notion of good 2-classifier, that captures well-behaved Weber’s

2-classifiers (Definition 3.1.10) and generalizes the concept of subobject classifier

to dimension 2. The archetypal good 2-classifier is given by the construction of

the category of elements (or Grothendieck construction), that exhibits Cat as the

archetypal elementary 2-topos.

We present a good 2-classifier in prestacks that classifies all discrete opfibrations

with small fibres. We then restrict this good 2-classifier to one in stacks. This is

the main part of a proof that Grothendieck 2-topoi are elementary 2-topoi. The

reason why we focus on 2-classifiers is that the rest of the definition of elementary

2-topos proposed by Weber is yet to be ascertained. We hope that this thesis will

contribute to reach a universally accepted notion of elementary 2-topos.

In order to produce a good 2-classifier in prestacks, we apply our theorems of re-

duction of the study of a 2-classifier to dense generators, presented in Chapter 3.

This allows us to consider the classification just over representables. As explained

in Section 3.3, Yoneda lemma determines up to equivalence the construction of

a good 2-classifier in prestacks that classifies all discrete opfibrations with small

fibres. Recall from Remark 3.3.3 that the assignment involves a natural no-

tion of 2-dimensional sieve, generalizing the subobject classifier of 1-dimensional
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presheaves. The work of Chapter 4 has then solved all the problems we described

in Remark 3.3.3. Indeed, the indexed Grothendieck construction allowed us to

produce a nice candidate Ω̃ for a good 2-classifier in prestacks that is strictly

2-functorial and moreover lands in Cat rather than just in large categories. Ex-

plicitly, the 2-functor Ω̃ takes presheaves on slices (see Example 4.4.9). Recall

also that Section 4.2 allowed us to define the property of having small fibres for

a discrete opfibration in prestacks, in Definition 4.2.7.

In Theorem 5.1.14, we prove that the candidate Ω̃ produced in Example 4.4.9 is

indeed a good 2-classifier in prestacks that classifies all discrete opfibrations with

small fibres. A partial result on this direction is already in Weber’s [51]. Our

result is in line with Hofmann and Streicher’s [25], that uses a similar idea to

lift Grothendieck universes to presheaves, in order to interpret Martin-Löf type

theory in a presheaf topos. It is also in line with the recent Awodey’s [4], that

captures the construction of the Hofmann and Streicher’s universe in presheaves

in a conceptual way. Our proof goes through a bicategorical classification process

that, over representables, is exactly the Yoneda lemma. Although some points

would be smoother in a bicategorical context, we believe that it is important to

show how strict the theory can be. In the case of prestacks, the strict classification

process, which involves an indexed Grothendieck construction, actually seems

more interesting than the bicategorical one, which reduces to the Yoneda lemma.

In future work, we will adapt the results of this chapter to the bicategorical

context, using a suitable bicategorical notion of classifier.

Finally, in Theorem 5.3.22, we restrict our good 2-classifier in prestacks to a good

2-classifier in stacks, classifying again all discrete opfibrations with small fibres.

We achieve this by proving a general result of restriction of good 2-classifiers

to nice sub-2-categories, in Theorem 5.2.9, involving factorization arguments and

our theorems of reduction to dense generators. Stacks are a bicategorical general-

ization of sheaves and they were introduced by Giraud in [18]. Like sheaves, they

are able to glue together families of objects that are compatible under descent.

But such descent compatibilities are only asked up to isomorphism. And the pro-
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duced global data then equally recovers the starting local data up to isomorphism.

Stacks are the right notion to use to generalize Grothendieck topoi to dimension

2. Our result is thus the main part of a proof that Grothendieck 2-topoi are ele-

mentary 2-topoi. As explained in Remark 5.3.10, we consider strictly functorial

stacks with respect to a subcanonical Grothendieck topology. So that they form a

full sub-2-category of the 2-category of 2-presheaves. While our good 2-classifier

in prestacks involves a 2-dimensional notion of sieves, our good 2-classifier in

stacks involves a 2-dimensional notion of closed sieves. The idea is to select, out

of all the presheaves on slices considered in the definition of the good 2-classifier

in prestacks, the sheaves with respect to the Grothendieck topology induced on

the slices. This restriction is tight enough to give a stack ΩJ but at the same time

loose enough to still host the classification process of prestacks. We prove that

ΩJ is a good 2-classifier in stacks. Our result solves a problem posed by Hofmann

and Streicher in [25]. Indeed, in a different context, they considered the same

natural idea to restrict their analogue of Ω̃ by taking sheaves on slices. However,

this did not work for them, as it does not give a sheaf. Our results show that

such a restriction yields nonetheless a stack and a good 2-classifier in stacks. The

idea is that, in order to increase the dimension of the fibres of the morphisms to

classify, one should also increase the dimension of the ambient. And thus stacks

behave better than sheaves for the classification of small families.

Outline of the chapter

In Section 5.1, we apply our theorems of reduction of the study of a 2-classifier

to dense generators to the case of prestacks. We thus produce a good 2-

classifier in prestacks that classifies all discrete opfibrations with small fibres

(Theorem 5.1.14). We also show a concrete recipe for the characteristic morph-

isms (Remark 5.1.16).

In Section 5.2, we prove a general result of restriction of good 2-classifiers to

nice sub-2-categories (Theorem 5.2.9), involving factorization arguments and our

theorems of reduction to dense generators.
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In Section 5.3, we apply the results of Section 5.2 to restrict our good 2-classifier in

prestacks to a good 2-classifier in stacks, classifying again all discrete opfibrations

with small fibres (Theorem 5.3.22).

5.1. A 2-classifier in prestacks

In this section, we apply our theorems of reduction of the study of 2-classifiers

to dense generators to the case of prestacks. Our theorems allow us to con-

sider just the classification over representables, which is essentially given by the

Yoneda lemma (see Proposition 5.1.12). We show that the normalization pro-

cess required by Theorem 3.2.8 is possible in prestacks (Theorem 5.1.14 and

Remark 5.1.15). Whence, by Theorem 5.2.9, it is also possible in any nice sub-2-

category of prestacks (such as the 2-category of stacks, see Theorem 5.3.22).

We thus produce a good 2-classifier in prestacks that classifies all discrete opfibra-

tions with small fibres, in Theorem 5.1.14 (see also Definition 3.1.12). Our result

is in line with Hofmann and Streicher’s [25], and with the recent Awodey’s [4],

see Remark 5.1.4. We conclude the section extracting from the constructive proof

of Theorem 3.2.8 a concrete recipe for the characteristic morphisms in prestacks

(Remark 5.1.16).

In Section 5.3, we will restrict the good 2-classifier in prestacks to a good 2-

classifier in stacks (Theorem 5.3.22, using Theorem 5.2.9).

Throughout the rest of this chapter, we consider the 2-category L = [C op,Cat ]

of 2-presheaves on a small category C (that is, prestacks on C ). Notice that this

2-category is complete and cocomplete, since Cat is so. Recall from Section 4.2

the characterization of discrete opfibrations in [C op,Cat ] and the definition of

discrete opfibration in [C op,Cat ] with small fibres.

Notation 5.1.1. Given p : E → B a discrete opfibration in Cat with small fibres,

we denote as (p)B the fibre of p on B ∈ B .
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Remark 5.1.2. Recall from Construction 3.3.2 that a good 2-classifier in

prestacks that classifies all discrete opfibrations with small fibres needs to be

pseudonaturally equivalent to the the pseudofunctor Ω defined by the composite

C op yop−−→ [C op,Cat ]op
DOpFib s

(−)
−−−−−−−→ CAT

We also consider the pseudonatural transformation ω : 1 → Ω with component

on C ∈ C that picks the identity idy(C) on y(C).

Recall then that the work of Chapter 4 solved all the problems shown in Re-

mark 3.3.3. We summarize this in the following proposition.

Proposition 5.1.3 (Chapter 4). The pseudofunctor Ω: C 7→ DOpFib s
(y(C)) is

pseudonaturally equivalent to the 2-functor

Ω̃ : C op −→ Cat

C 7→
[(C /C

)op
, Set

]
(C

f←− D) 7→ − ◦ (f◦ =)op

The pseudonatural equivalence j : Ω̃ ≃ Ω is given by the indexed Grothendieck

construction. Explicitly, a discrete opfibration ψ : H → y(C) with small fibres

corresponds with the presheaf

j−1
C (ψ) :

(C /C
)op −→ Set

(D
f−→ C) 7→ (ψD)f

(f
g←− f ◦ g) 7→ H(g)

Remark 5.1.4. Call j−1 the quasi-inverse of j described in Construction 4.3.8

and hinted above (that transforms ψ into j−1
C (ψ)). The composite 1

ω−→ Ω
j−1

−−→ Ω̃ is

(isomorphic to) a 2-natural transformation ω̃. Explicitly, the component ω̃C : 1→

Ω̃(C) of ω̃ on C ∈ C picks the constant at 1 presheaf ∆1:
(C /C

)op → Set .

We will prove in Theorem 5.1.14 that ω̃ : 1→ Ω̃ is a good 2-classifier in [C op,Cat ]

that classifies all discrete opfibrations with small fibres. This is in line with Hof-

mann and Streicher’s [25], where a similar idea is used to construct a universe in

1-dimensional presheaves for small families, in order to interpret Martin-Löf type
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theory in a presheaf topos. See also the recent Awodey’s [4], that constructs Hof-

mann and Streicher’s universe in 1-dimensional presheaves in a more conceptual

way.

Remark 5.1.5. In Example 4.4.9 (using Remark 4.3.13), we also suggest

a strategy to prove that, for C a 2-category, what works is Ω̃ : C 7→[
π∗
(C /oplax C

)op
, Set

]
, where π∗ is the left adjoint of the inclusion Cat ↪→ 2-Cat .

Proposition 5.1.6. The lax limit τ̃ : Ω̃• → Ω̃ of the arrow ω̃ : 1→ Ω̃ is a discrete

opfibration in [C op,Cat ] with small fibres.

As a consequence, for every F ∈ [C op,Cat ], the functor

Ĝω̃,F : [C op,Cat ]
(
F, Ω̃

)
→ DOpFib (F )

lands in DOpFib s
(F ).

Proof. By Remark 3.1.13 any comma object from ω̃ can be expressed as a pullback

of τ̃ , and by Remark 4.2.8 the property of having small fibres is stable under pull-

back. So we can just look at τ̃ . Since comma objects in [C op,Cat ] are calculated

pointwise, for every C ∈ C the component τ̃C of τ̃ on C is given by the comma

object in Cat from ω̃C = ∆1 to idΩ̃(C). Given Z ∈ Ω̃(C) =
[(C /C

)op
, Set

]
,

(τ̃C)Z
∼= Ω̃(C) (∆1, Z) =

[(C /C
)op
, Set

]
(∆1, Z) ∼= Z(idC)

and thus τ̃C has small fibres. Indeed a natural transformation from ∆1 to Z is the

same thing as an element in Z(idC), by the naturality condition. This is similar

to the proof of the Yoneda lemma; see also Remark 5.1.9.

Remark 5.1.7. Ω̃• is a pointed version of Ω̃. The “points” of Z ∈ Ω̃(C) are the

elements of Z(idC).

It will be useful to consider the bicategorical classification process produced by

the pseudofunctor Ω.

Remark 5.1.8. We need to consider the 2-category (actually CAT -enriched cat-

egory) Ps [C op,CAT ] of pseudofunctors from C op to CAT , pseudonatural trans-

formations and modifications. We can of course extend the definition of discrete
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opfibration in a 2-category to one in any CAT -enriched category, considering

CAT in the place of Cat .

By Bird, Kelly, Power and Street’s [7, Remark 7.4], Ps [C op,CAT ] has all bilimits

and all flexible limits, calculated pointwise. In particular, it has all comma ob-

jects, the terminal object and all pullbacks along discrete opfibrations, calculated

pointwise. Indeed, for the latter, recall that in CAT pullbacks along discrete op-

fibrations exhibit bi-iso-comma objects (the idea is similar to that of the diagram

of equation (3.1)). So, given p : E → B and z : F → B in Ps [C op,CAT ] with

p a discrete opfibration, we can construct (pointwise) a bi-iso-comma object G

of p and z whose universal square is filled with an identity. This is obtained by

choosing the pullbacks as representatives for the bi-iso-comma objects in CAT

on every component. It follows that G is also a pullback in Ps [C op,CAT ], using

that discrete opfibrations lift identities to identities.

Remark 5.1.9. As hinted in the proof of Proposition 5.1.6, the Yoneda lemma

is the reason why that proposition holds. Consider the pseudofunctor Ω and the

lax limit τ of the arrow ω : 1→ Ω in Ps [C op,CAT ]. For every C ∈ C and every

discrete opfibration ψ : H → y(C) in [C op,Cat ] with small fibres, by the Yoneda

lemma

(τC)ψ
∼= Ω(C)

(
idy(C), ψ

) ∼= (ψC)idC .

Thus τC has small fibres.

Proposition 5.1.10. For every F ∈ [C op,Cat ], taking comma objects from

ω : 1→ Ω extends to a functor

Ĝω,F : Ps [C op,CAT ] (F,Ω)→ DOpFib s
[Cop,Cat ] (F )

Proof. Taking comma objects from the morphism ω : 1 → Ω in Ps [C op,CAT ]

certainly extends to a functor

Ĝω,F : Ps [C op,CAT ] (F,Ω)→ DOpFibPs[Cop,CAT ] (F )
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by Remark 3.1.13. But, given z : F → Ω, the comma object

L 1

F Ω

s ω
comma

z

in Ps [C op,CAT ] is calculated pointwise. Since 1 and F are both strict 2-functors,

the universal property of the comma object induces a strict 2-functor L and a

strict 2-natural transformation s. The functor Ĝω,F also sends modifications

between F and Ω to strict 2-natural transformations over F . Moreover, every

component sC of s on C ∈ C needs to be a discrete opfibration in CAT with

small fibres, by Remark 5.1.9 and the fact that the property of having small fibres

is pullback-stable. Since F (C) ∈ Cat , it follows that sC is a discrete opfibration

in Cat with small fibres. And then s is a discrete opfibration in [C op,Cat ] with

small fibres, by Proposition 4.2.5 (and Definition 4.2.7).

Remark 5.1.11. The following proposition shows how the bicategorical classi-

fication process in prestacks is essentially given by the Yoneda lemma.

Proposition 5.1.12. For every C ∈ C , the functor

Ĝω,y(C) : Ps [C op,CAT ] (y(C),Ω)→ DOpFib s
[Cop,Cat ] (y(C)) = Ω(C)

is isomorphic to the Yoneda lemma’s equivalence of categories.

Thus Ĝω,y(C) is an equivalence of categories.

Proof. Given z : y(C) → Ω, call z : G → y(C) the corresponding element in

Ω(C) via the Yoneda lemma and s : L → y(C) the morphism on the left of the

comma object

L 1

y(C) Ω

s ωcomma

z

in Ps [C op,CAT ]. We show that there is a 2-natural isomorphism L ∼= G over

y(C). Given D ∈ C , we have that L(D) ∼= G(D) over C (D, C) because of the
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following bijection between the fibres, which is natural in f : D → C

(sD)f
∼= Ω(D)

(
idy(D), zD(f)

) ∼= Ω(D)
(
idy(D), y(f)

∗ z
) ∼= ((y(f)∗ z)D)idD

∼= (zD)f

The first isomorphism is given by the explicit construction of comma objects

in CAT . It is natural by construction of the structure of discrete opfibration

on s induced by the comma object (see Remark 3.1.13). The second natural

isomorphism is given by pseudonaturality of z. The third one is given by the

Yoneda lemma and trivially natural. The fourth one is given by the explicit

construction of pullbacks in Cat and is natural by construction of Gz,y(D) on

morphisms. It is straightforward to show that the isomorphism L(D) ∼= G(D) is

2-natural over y(C) and to conclude the proof.

We are ready to prove that, at least over representables, ω̃ : 1 → Ω̃ satisfies the

conditions of a good 2-classifier in prestacks that classifies all discrete opfibrations

with small fibres.

Proposition 5.1.13. For every C ∈ C , the functor

Ĝω̃,y(C) : [C op,Cat ]
(
y(C), Ω̃

)
→ DOpFib s

(y(C))

is an equivalence of categories.

Proof. We prove that there is an isomorphism

[C op,Cat ]
(
y(C), Ω̃

)
DOpFib s

[Cop,Cat ] (y(C))

Ps [C op,CAT ] (y(C),Ω)

Ĝω̃,y(C)

j◦−
∼=

Ĝω,y(C)

(5.1)

Given z : y(C)→ Ω̃, consider the comma objects

L̃ 1

y(C) Ω̃

s̃ ω̃
λ̃

z

L 1

Ω̃

y(C) Ω̃ Ω

s
λ

ω̃

j

z j

respectively in [C op,Cat ] and in Ps [C op,CAT ]. Notice that the left hand side

comma is also a comma object in Ps [C op,CAT ] because commas are calculated
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pointwise in both 2-categories. We have that L̃(D) ∼= L(D) over C (D, C) for

every D ∈ C , since jD is an equivalence of categories. Indeed (j ∗ λ̃)D exhibits

the comma object on the right hand side in component D. It is straightforward

to show that the isomorphism L̃(D) ∼= L(D) is 2-natural in D ∈ C over y(C) and

to conclude the isomorphism of equation (5.1). Notice that j ◦ ω̃ is isomorphic to

ω, whence Ĝω,y(C) is isomorphic to Ĝj◦ω̃,y(C).

By Proposition 5.1.12, the functor Ĝω,y(C) is an equivalence of categories. By the

Yoneda lemma, also j ◦ − is an equivalence of categories. Indeed the following

square is commutative:

[C op,Cat ]
(
y(C), Ω̃

)
Ps [C op,CAT ] (y(C),Ω)

Ω̃(C) Ω(C)

∼=

j◦−

≃

jC

And thus j ◦ − is an equivalence of categories by the two out of three property.

Therefore also Ĝω̃,y(C) is an equivalence of categories.

We now apply the theorems of reduction of 2-classifiers to dense generators to

prove that ω̃ : 1→ Ω̃ is a good 2-classifier in prestacks that classifies all discrete

opfibrations with small fibres. The partial result that (the lax limit of the arrow)

ω̃ gives a 2-classifier can be obtained from Weber’s [51, Example 4.7]. However,

Weber’s paper does not address the problem of which discrete opfibrations get

classified.

Theorem 5.1.14. The 2-natural transformation ω̃ from 1 to

Ω̃ : C op −→ Cat

C 7→
[(C /C

)op
, Set

]
(C

f←− D) 7→ − ◦ (f◦ =)op

that picks the constant at 1 presheaf on every component is a good 2-classifier in

[C op,Cat ] that classifies all discrete opfibrations with small fibres.

Proof. Consider the fully faithful dense generator y : C → [C op,Cat ] formed by

representables. By Proposition 5.1.6, the lax limit of the arrow ω̃ has small fibres.
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By Proposition 5.1.13, we have that for every C ∈ C the functor

Ĝω̃,y(C) : [C op,Cat ]
(
y(C), Ω̃

)
→ DOpFib s

(y(C))

is an equivalence of categories. In order to prove that ω̃ : 1 → Ω̃ is a good 2-

classifier in [C op,Cat ] with respect to the property of having small fibres, by

Corollary 3.2.11, it only remains to prove that the operation of normalization

described in Theorem 3.2.8 is possible.

So let φ : G → F be a discrete opfibration in [C op,Cat ] with small fibres. Using

the dense generator y : C → [C op,Cat ], we express F as a cartesian-marked oplax

colimit of representables. By Example 1.1.25,

F ∼= colimF y ∼= oplaxcart -colim∆1(y ◦G (F )),

whence K = y ◦G (F ), with the universal cartesian-marked oplax cocone Λ given

by

∀
(D,X ′)

(C,X)

(f,ν) in
∫
F

y(C) F

y(D)

⌈X⌉

y(f)

⌈X′⌉

⌈ν⌉

Looking at the proof of Corollary 3.2.11 (and Construction 3.2.7), we consider

the sigma natural transformation χ given by the composite

∆1
Λ

=====⇒
oplaxcart

[C op,Cat ] (K(−), F )
Gφ,K(−)
===⇒
pseudo

DOpFib s
(K(−))

Ĝ−1
ω̃,K(−)
===⇒
pseudo

[C op,Cat ]
(
K(−), Ω̃

)
.

We can visualize it as follows:

H(C,X) G 1

y(C) F Ω̃

⌟
Gφ(Λ(C,X)) φ ω̃

Ĝ−1
ω̃ (Gφ(Λ(C,X)))

Λ(C,X) z

For this, we need to choose an adjoint quasi-inverse of Ĝω̃,K(C,X) = Ĝω̃,y(C) for

every (C,X) ∈
∫
F . By Proposition 5.1.13, we can construct such a quasi-inverse

by taking quasi-inverses of j ◦ − and Ĝω,y(C). Both the latter are given by the

Yoneda lemma, respectively by the proof of Proposition 5.1.13 and by Proposi-

tion 5.1.12. So given ψ : H → y(C), we can take Ĝ−1
ω̃,y(C)(ψ) to be the morphism
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y(C)→ Ω̃ which corresponds to j−1
C (ψ) (see Proposition 5.1.3). With this choice,

χ(C,X) would be the morphism y(C)→ Ω̃ which corresponds to

j−1
C

(
Gφ

(
Λ(C,X)

))
:

(C /C
)op −→ Set

(D
f−→ C) 7→

(
Gφ

(
Λ(C,X)

)
D

)
f

(f
g←− f ◦ g) 7→ H(C,X)(g)

Using the explicit construction of pullbacks in Cat to calculate
(
Gφ

(
Λ(C,X)

)
D

)
f
,

we do not obtain a cartesian-marked oplax natural transformation χ. This is due

to the unnecessary keeping track of the morphisms f : D → C other than the

objects of G(D).

Instead, we choose Ĝ−1
ω̃,y(C) on the objects Gφ

(
Λ(C,X)

)
so that χ(C,X) is the morph-

ism y(C)→ Ω̃ which corresponds to

⌈χ(C,X)⌉ :
(C /C

)op −→ Set

(D
f−→ C) 7→ (φD)F (f)(X)

(f
g←− f ◦ g) 7→ G(g)

This is the operation of normalization that we need. Notice that

(φD)F (f)(X) = (φD)Λ(C,X)(f)
∼=

(
Gφ(Λ(C,X))D

)
f

and that such isomorphism is natural in f ∈
(C /C

)op
. So that, thanks

to the argument above, Ĝω̃,y(C)(χ(C,X)) : Q
(C,X) → y(C) is indeed isomorphic

to Gφ

(
Λ(C,X)

)
: H(C,X) → y(C). We then extend Ĝ−1

ω̃,y(C) to a right adjoint

quasi-inverse of Ĝω̃,y(C), choosing the components of the counit on the objects

Gφ

(
Λ(C,X)

)
to be the just obtained isomorphisms.

We prove that χ is cartesian-marked oplax natural. Given a morphism

(f, id) : (D,X ′)←− (C,F (f)(X ′)) in
∫
F , it is straightforward to show that

χ(D,X′) ◦ y(f) = χ(C,F (f)(X′))

using that F is a strict 2-functor. We still need to show that χf,id = id. For this,

it is straightforward to prove that

Ĝω̃,y(C)(χf,id) = id,
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following the recipe given in the proof of Theorem 3.2.8. So we conclude using

the fully faithfulness of Ĝω̃,y(C).

Remark 5.1.15. Looking at the proof of Theorem 5.1.14, we see that the idea

of the operation of normalization in prestacks is the following. Rather than

considering the “local fibres” of the Gφ(Λ(C,X))’s, that are not compatible with

each other, we express all of them in terms of the “global fibres” of φ.

Remark 5.1.16. The proof of Theorem 5.1.14 also gives us a recipe for the char-

acteristic morphism z : F → Ω̃ of a discrete opfibration φ : G → F in [C op,Cat ]

with small fibres.
G 1

F Ω̃

φ ω̃
comma

z

We obtain that z is the 2-natural transformation whose component on C ∈ C is

the functor zC that sends X ∈ F (C) to

zC(X) :
(C /C

)op −→ Set

(D
f−→ C) 7→ (φD)F (f)(X)

(f
g←− f ◦ g) 7→ G(g)

Given ν : X → X ′ in F (C), we have that zC(ν) is the natural transformation

whose component on f : D → C is the function

F (f)(ν)∗ : (φD)F (f)(X) → (φD)F (f)(X′)

that calculates the codomain of the liftings along φD of F (f)(ν).

It is interesting to compare our result with what happens in dimension 1. The

characteristic morphism for a subobject G ↪→ F in 1-dimensional presheaves has

component on C that sends X ∈ F (C) to⋃
D∈C

{
D

f−→ C | F (f)(X) ∈ G(D)
}
.

While in dimension 1 the fibre on F (f)(X) can only be either empty or a singleton,

in dimension 2 we need to handle the general sets formed by such fibres.
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5.2. Restricting good 2-classifiers to nice

sub-2-categories

In this section, we present two general results (Proposition 5.2.6 and The-

orem 5.2.9) that describe a strategy to restrict a good 2-classifier in L to a

good 2-classifier in a nice sub-2-category M of L . Such a strategy will involve

factorization arguments and our theorems of reduction of the study of 2-classifiers

to dense generators. The key idea is to restrict Ω ∈ L to some ΩM ∈M so that

the characteristic morphisms in L of discrete opfibrations in M factor through

ΩM . This is the strategy that we will follow in Section 5.3 to restrict our good

2-classifier in prestacks to one in stacks.

An advantage of producing a good 2-classifier following the results of this section

is that the normalization process described in Theorem 3.2.8 is not required.

Theorem 5.2.9 shows indeed that the normalization process is automatic for nice

sub-2-categories of 2-categories with a good 2-classifier. Since the normalization

process is possible in prestacks (Theorem 5.1.14 and Remark 5.1.15), then by

Theorem 5.2.9 it is also possible in any nice sub-2-category of prestacks, such as

in particular the 2-category of stacks, see Theorem 5.3.22.

Notation 5.2.1. Throughout this section, we fix an arbitrary 2-category L with

pullbacks along discrete opfibrations, comma objects and terminal object. We

then fix a choice of such pullbacks in L such that the change of base of an

identity is always an identity.

We also fix P an arbitrary pullback-stable property P for discrete opfibrations

in L . We assume of course that P only depends on the isomorphism classes of

discrete opfibrations.

Definition 5.2.2. A fully faithful 2-functor i : M ↪−→
ff

L will be called nice if it

lifts pullbacks along discrete opfibrations, comma objects and the terminal object

(that is, such limits exist in M and are calculated in L ) and preserves discrete

opfibrations.
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A sub-2-category i : M ⊆ L (that is, an injective on objects and fully faithful

2-functor i : M ↪−→
ff

L) will be called nice if i is nice.

Example 5.2.3. Any reflective sub-2-category is nice. Indeed notice that any

right 2-adjoint preserves discrete opfibrations thanks to the natural isomorphism

between hom-categories given by the adjunction.

Remark 5.2.4. Given a nice fully faithful 2-functor i : M ↪−→
ff

L , we will say that

a discrete opfibration φ in M satisfies P if i(φ) does so.

We will need the notions of fully faithful morphism and of chronic morphism in

L .

Definition 5.2.5. A morphism l : F → B in L is fully faithful if for every X ∈ L

the functor l ◦− : L (X, F )→ L (X, B) is fully faithful. l is chronic if every l ◦−

is injective on objects and fully faithful.

We are ready to present the first result of restriction. Rather than restricting a

good 2-classifier, we start from a morphism ω : 1→ Ω in L such that its lax limit

τ is a 2-classifier in L . By Remark 3.1.13, this condition is weaker than being a

good 2-classifier. Indeed it means that for every F ∈ L

Ĝω,F : L (F,Ω)→ DOpFibL (F )

is fully faithful. Of course, the result can then be applied to a starting good

2-classifier in L as well.

Proposition 5.2.6. Let i : M ↪−→
ff

L be a nice fully faithful 2-functor (Defini-

tion 5.2.2 ). Let then ω : 1 → Ω in L such that its lax limit τ is a 2-classifier

in L . Finally, let ΩM ∈ M such that there exists a fully faithful morphism

ℓ : i(ΩM ) ↪−→
ff

Ω in M and ω factors through ℓ; call ωM : 1 → ΩM the resulting

morphism. Then the lax limit τM of the arrow ωM is a 2-classifier in M .

In addition to this, if τ satisfies P then also τM satisfies P.
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Moreover, given φ a discrete opfibration in M , if i(φ) is classified by τ via a

characteristic morphism z that factors through ℓ then φ is classified by τM .

1

i(ΩM ) Ω

i(ωM ) ω

ℓ

ΩM ,• 1

ΩM ΩM

τM
ωM

comma

i(G) Ω•

i(F ) Ω

i(ΩM )

⌟
i(φ) τ

z

∃i(zM ) ℓ

Proof. We prove that, for every F ′ ∈ L , there is an isomorphism

L (F ′, i(ΩM )) DOpFibL (F ′)

L (F ′,Ω)

Ĝi(ωM ),F ′

ℓ◦−
∼=

Ĝω,F ′

(5.2)

Given z : F ′ → i(ΩM ), consider the comma objects

LM 1

F ′ i(ΩM )

sM i(ωM )
λM

z

L 1

i(ΩM )

F ′ i(ΩM ) Ω

s
λ

i(ωM )

ℓ

z ℓ

in L . It is straightforward to see that, since ℓ is a fully faithful morphism, ℓ ∗λM

exhibits the comma object on the right hand side. Then LM
∼= L over F ′, and

such isomorphism is natural in z by the universal property of the comma object.

ℓ◦− is fully faithful by definition of fully faithful morphism in L . Hence Ĝi(ωM ),F ′

is fully faithful.

Moreover, we obtain that if τ satisfies P then the lax limit ξ of the arrow i(ωM )

satisfies P. Since i lifts comma objects and the terminal objects, the lax limit τM

of the arrow ωM can be calculated in L . So i(τM ) = ξ satisfies P as well.

Let now F ∈M . Since i preserves discrete opfibrations, i induces a fully faithful

functor

i : DOpFibM (F )→ DOpFibL (i(F )) .
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Notice then that the following square is commutative:

M (F,ΩM ) DOpFibM (F )

L (i(F ), i(ΩM )) DOpFibL (i(F ))

ĜωM ,F

∼=

i i

Ĝi(ωM ),i(F )

(5.3)

Indeed by assumption i lifts comma objects and the terminal object. Whence

ĜωM ,F is fully faithful and τM is a 2-classifier.

Consider now a discrete opfibration φ in M . Following the diagrams of equa-

tions (5.2) and (5.3), we obtain that if i(φ) is classified by τ via a characteristic

morphism z that factors through ℓ then φ is classified by τM . This can also be

seen from the diagram on the right in the statement, using the pullbacks lemma,

after Remark 5.2.7.

Remark 5.2.7. τM can be equivalently produced, in L , as the pullback of τ

along the fully faithful ℓ : i(ΩM ) ↪−→
ff

Ω̃. Indeed the lax limit τM of the arrow ωM

corresponds with the lax limit of the arrow i(ωM ) in L . By whiskering with ℓ,

we then see that the latter is equivalently given by the comma object from ω to

ℓ, which is also the pullback along ℓ of the lax limit of the arrow ω. However, by

producing τM as the lax limit of the arrow ωM in M , it is guaranteed that τM is

a morphism in M .

We would like to show that we can check the factorizations of the characteristic

morphisms in L of discrete opfibrations in M just on a dense generator. The

following construction helps with this.

Construction 5.2.8. Let i : M ↪−→
ff

L be a fully faithful 2-functor. Consider then

I : Y →M a fully faithful 2-functor such that i ◦ I : Y → L is a dense generator

of L . By Kelly’s [28, Theorem 5.13], then I is a fully faithful dense generator of

M .

Moreover, let F ∈ M . We want to exhibit F as a nice colimit of the objects

that form the dense generator I. By Construction 3.2.4, there exist a 2-diagram
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J : A → L which factors through i ◦ I and a weight W : Aop → Cat such that,

calling K := J ◦ G (W ),

i(F ) = oplaxcart -colim∆1K

and this colimit is (i ◦ I)-absolute. Call Λ the universal cartesian-marked oplax

cocone that presents such colimit. Notice that, as K factors through i ◦ I, it

also factors through i. Call KM :
∫
W → M the resulting diagram; so that

i ◦KM = K. It is clear that KM factors through I. Take ΛM to be the unique

cartesian-marked oplax cocone such that i ◦ΛM = Λ. Then, since a fully faithful

2-functor reflects colimits (see also Proposition 1.1.24),

F = oplaxcart -colim∆1KM ,

exhibited by ΛM . Moreover, this colimit is I-absolute, as Ĩ ∼= (̃i ◦ I) ◦ i.

Building over Proposition 5.2.6, we now present a general result of restriction of

good 2-classifiers in L to nice sub-2-categories M of L . We show that the fac-

torization of the characteristic morphisms in L of discrete opfibrations in M can

be checked just on a dense generator of the kind described in Construction 5.2.8.

Then our theorems of reduction of the study of a 2-classifier to dense generators

(Corollary 3.2.11) guarantee that we find a good 2-classifier in M . For this, we

need to ensure that the operation of normalization described in Theorem 3.2.8

(starting from every φ) is possible. We show that we can just do the normaliza-

tion process in L , where it is certainly possible since we have a good 2-classifier;

see Corollary 3.2.10.

Theorem 5.2.9. Let i : M ⊆ L be a nice sub-2-category (Definition 5.2.2 ). Let

ω : 1→ Ω in L be a good 2-classifier in L with respect to P. Let then ΩM ∈M

such that there exists a chronic arrow (Definition 5.2.5 ) ℓ : i(ΩM ) ↪−→
ff

Ω in M

and ω factors through ℓ; call ωM : 1 → ΩM the resulting morphism. Finally, let

I : Y →M be a fully faithful 2-functor such that i ◦ I is a dense generator of L .

Assume that for every ψ : H → I(Y ) a discrete opfibration in M that satisfies P

over I(Y ) with Y ∈ Y, every characteristic morphism of i(ψ) with respect to ω

factors through ℓ. Then ωM is a good 2-classifier in M with respect to P.
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Proof. By Construction 5.2.8, I : Y → M is a fully faithful dense generator of

M . By Proposition 5.2.6, the lax limit of the arrow ωM satisfies P and for every

Y ∈ Y

ĜωM ,I(Y ) : M (I(Y ),ΩM )→ DOpFib P
(I(Y ))

is an equivalence of categories. Indeed ĜωM ,I(Y ) is fully faithful and, given ψ : H →

I(Y ) a discrete opfibration in M that satisfies P, any characteristic morphism of

i(ψ) in L factors through ℓ : i(ΩM ) ↪−→
ff

Ω. In order to prove that ωM : 1→ ΩM is

a good 2-classifier in M , by Corollary 3.2.11, it only remains to prove that the

operation of normalization described in the proof of Theorem 3.2.8 is possible.

So let φ : G → F be a discrete opfibration in M that satisfies P. By Construc-

tion 5.2.8, we express

F = oplaxcart -colim∆1KM ,

exhibited by ΛM . Looking at the proof of Corollary 3.2.11 (and Construc-

tion 3.2.7), we consider the sigma natural transformation χM given by the com-

posite

∆1
ΛM=====⇒

oplaxcart
M (KM (−), F )

Gφ,KM (−)

====⇒
pseudo

DOpFib P
M (KM (−))

Ĝ−1
ωM ,KM (−)

=====⇒
pseudo

M (KM (−),ΩM ) .

We can visualize it as follows:

H
(C,X)

M G 1

KM (C,X) F ΩM

⌟
Gφ(ΛM ,(C,X)) φ ωM

Ĝ−1
ωM (Gφ(ΛM ,(C,X)))

ΛM ,(C,X) zM

For this, we need to choose an adjoint quasi-inverse of ĜωM ,KM (C,X) for every

(C,X) ∈
∫
W . Let then ψ : H → KM (C,X) be a discrete opfibration in

M that satisfies P. By assumption, the “normalized” characteristic morph-

ism Ĝ−1
ω,i(KM (C,X))(i(ψ)) = t defined as in the proof of Corollary 3.2.10 start-

ing from i(φ) and K and Λ, factors through ℓ : i(ΩM ) ↪−→
ff

Ω. We define

Ĝ−1
ωM ,KM (C,X)(ψ) = tM to be the morphism in M corresponding to the result-

ing morphism i(KM (C,X)) → i(ΩM ) in L given by the factorization. So that
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ℓ ◦ i(tM ) = t. We then extend Ĝ−1
ωM ,KM (C,X) to a right adjoint quasi-inverse of

ĜωM ,KM (C,X), choosing the components of the counit on the objects ψ to be the

isomorphism corresponding to the one in L from the comma of i(ωM ) and i(tM )

to the comma of ω = ℓ ◦ i(ωM ) and t = ℓ ◦ i(tM ) composed with the counit of

Ĝω,K(C,X) ⊣ Ĝ−1
ω,K(C,X).

We prove that χM is cartesian-marked oplax natural. It suffices to prove that

(ℓ ◦ −) ◦ i ◦ χM = χ

where χ is the cartesian-marked (i.e. “normal”) oplax natural transformation

produced as in the proof of Corollary 3.2.10, starting from i(φ) and K and Λ.

Indeed ℓ is a chronic arrow and i is injective on objects and fully faithful. So we

show that the following diagram of oplax natural transformations is commutative:

∆1 M (KM (−), F ) DOpFib P
M (KM (−)) M (KM (−),ΩM )

∆1 L (K(−), i(F )) DOpFib P
L (K(−)) L (K(−),Ω) .

ΛM

i

Gφ,KM (−)

i

Ĝ−1
ωM ,KM (−)

(ℓ◦−)◦i

Λ Gi(φ),K(−) Ĝ−1
ω,K(−)

The square on the left is commutative by construction of ΛM . The square in the

middle is commutative because pullbacks along opfibrations in M are calculated

in L , by assumption. We also use that the structure of a discrete opfibration in

M is just given by the structure of the underlying discrete opfibration in L . We

prove that the square on the right is commutative as well. Let (C,X) ∈
∫
W .

Given ψ : H → KM (C,X) a discrete opfibration in M that satisfies P,

ℓ ◦ i
(

Ĝ−1
ωM ,y(C)(ψ)

)
= Ĝ−1

ω,i(KM (C,X))(i(ψ))

by construction of Ĝ−1
ωM ,KM (C,X). Given θ : ψ → ψ′ in DOpFib P

M (KM (C,X)),

ℓ ∗ i
(

Ĝ−1
ωM ,KM (C,X)(θ)

)
= Ĝ−1

ω,i(KM (C,X))(i(θ))

because they are equal after applying the fully faithful Ĝω,i(KM (C,X)), by con-

struction of the counit of ĜωM ,KM (C,X) ⊣ Ĝ−1
ωM ,KM (C,X) (together with the proof

of Proposition 5.2.6). Finally, let (f, ν) : (D,X ′) ←− (C,X) in
∫
W . The two



5.3. A 2-classifier in stacks 213

composite oplax natural transformations of the square on the right also have the

same structure 2-cells on (f, ν). Indeed it suffices to show it after applying the

fully faithful Ĝω,i(KM (C,X)). And this is straightforward to prove, following (part

of) the recipe for Gτ (χf,ν) described in the proof of Theorem 3.2.8 (together with

the construction of the counit of ĜωM ,KM (C,X) ⊣ Ĝ−1
ωM ,KM (C,X) and the proof of

Proposition 5.2.6). We conclude that χM is cartesian-marked oplax natural.

Remark 5.2.10. Theorem 5.2.9 offers another strategy to produce a good 2-

classifier in a 2-category via a dense generator. Indeed, this is what we will do

in Section 5.3 to produce our good 2-classifier in stacks. An advantage of this

strategy is that we do not have to do the normalization process described in

Theorem 3.2.8. By Kelly’s [28, Proposition 5.16], any 2-category M equipped

with a fully faithful dense generator I : Y → M is equivalent to a full sub-2-

category of [Yop,Cat ] containing the representables. So, after Section 5.1, the

strategy described in Theorem 5.3.22 can be very helpful.

Notice that the proof of Theorem 5.2.9 shows that we just need to be able to

factorize the “normalized” characteristic morphisms produced as in the proof of

Corollary 3.2.10 (starting from every φ).

5.3. A 2-classifier in stacks

In this section, after recalling the notion of stack, we restrict our good 2-classifier

in prestacks (Theorem 5.1.14) to a good 2-classifier in stacks that classifies all

discrete opfibrations with small fibres (Theorem 5.3.22). We follow the strategy

described in the general Theorem 5.2.9 to restrict a good 2-classifier to a nice

sub-2-category. The idea is to select, out of all the presheaves on slice categories

involved in the definition of Ω̃, the sheaves with respect to the Grothendieck

topology induced on the slices. This restriction of Ω̃ is tight enough to give a

stack ΩJ , but at the same time loose enough to still host the classification process

of prestacks.

Our result solves a problem posed by Hofmann and Streicher in [25]. Indeed, in a
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different context, they considered the same natural idea to restrict their analogue

of Ω̃ by taking sheaves on slices. However, this did not work for them, as it does

not give a sheaf. Our results show that such a restriction yields nonetheless a

stack and a good 2-classifier in stacks.

Remark 5.3.1. As explained in Remark 5.3.10, we take strictly functorial stacks

with respect to a subcanonical topology J . We consider Cat -valued stacks that,

for simplicity, have a 1-category as domain. The stacks we consider have the

usual gluing condition that gives an equivalence of categories between the image

on an object C and each category of descent data on C. We recall below the

explicit gluing conditions.

We will use the language of sieves, rather than the one of covering families.

This simplifies the form of the conditions of stack and will make it easier for

us to prove that our 2-classifier in stacks is indeed a stack. Moreover, sieves

are also what forms the subobject classifier of sheaves, in dimension 1. The

less standard equivalent definition of stack that we write below can be obtained

unravelling Street’s [43] abstract definition of stack, in the (more usual) case of

a 1-dimensional Grothendieck topology.

We fix C a small category.

Definition 5.3.2. A sieve S on C ∈ C is a collection of morphisms with codomain

C that is closed under precomposition with any morphism of C .

Equivalently, a sieve S on C is a subfunctor of the representable y(C).

The maximal sieve is the collection of all morphisms with codomain C, or equi-

valently the identity on y(C).

Notation 5.3.3. Given a pseudofunctor F : C op → Cat and a morphism g : D′ →

D in C , we denote as g∗ the functor F (g).

The following definition upgrades the concept of matching family to dimension

2. The compatibility under descent of the local data is up to isomorphism.
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Definition 5.3.4. Let F : C op → Cat be a pseudofunctor and let S be a sieve

on C ∈ C . A descent datum for F with respect to S is an assignment

(D
f−→ C) ∈ S m7−→ Mf ∈ F (D)

together with, for all composable morphisms D′ g−→ D
f−→ C with f ∈ S, an

isomorphism

φf,g : g∗Mf
≃−−→Mg◦f

such that, for all composable morphisms D′′ h−→ D′ g−→ D
f−→ C with f ∈ S, the

following cocycle condition holds:

h∗g∗Mf h∗Mf◦g

(g ◦ h)∗Mf Mf◦g◦h.

∼=
h∗φf,g

φf◦g,h

φf,g◦h

The following definition upgrades the concept of amalgamation for a matching

family to dimension 2. The global data produced only recovers the starting local

data up to isomorphism.

Definition 5.3.5. In the notation of Definition 5.3.4, a descent datum m for F

with respect to S is effective if there exists an object M ∈ F (C) together with,

for every morphism f : D → C in S, an isomorphism

ψf : f ∗M
≃−−→Mf

such that, for all composable morphisms D′ g−→ D
f−→ C with f ∈ S

g∗f ∗M g∗Mf

(f ◦ g)∗M Mf◦g.

∼=

g∗ψf

φf,g

ψf◦g

Remark 5.3.6. Notice that the square in Definition 5.3.5 is very similar to the

one of Definition 5.3.4. An object M that makes a descent datum m effective

plays the role of an Mid , although the identity belongs to the sieve if and only if

the sieve is maximal.
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Definition 5.3.7. Let C be a category equipped with a Grothendieck topology

J . A pseudofunctor F : C op → Cat is a stack (with respect to J ) if it satisfies the

following three conditions for every C ∈ C and covering sieve in J on C:

(i) (gluing of objects) every descent datum for F with respect to S is effective;

(ii) (gluing of morphisms) for all X, Y ∈ F (C) and for every assignment to

each f : D → C in S of a morphism hf : f
∗X → f ∗Y in F (D) such that

g∗(hf ) = hf◦g for all composable morphisms D′ g−→ D
f−→ C, there exists a

morphism h : X → Y such that f ∗h = hf ;

(iii) (uniqueness of gluings of morphisms) for all X, Y ∈ F (C) and morphisms

h, k : X → Y such that f ∗h = f ∗k for every f : D → C in S, it holds that

h = k.

Remark 5.3.8. Conditions (ii) and (iii) of Definition 5.3.7 may be interpreted

as saying that F is a sheaf on morphisms.

Theorem 5.3.9 (Street [43, Section 2]). Stacks form a bireflective sub-2-category

of the 2-category Ps [C op,Cat ] of pseudofunctors, pseudonatural transformations

and modifications.

Remark 5.3.10. Throughout the rest of this section, as the notion of 2-classifier

is rather strict, we will consider strictly functorial stacks, so that they form a full

sub-2-category of the functor 2-category [C op,Cat ]. We will also take a subcanon-

ical Grothendieck topology J , so that all representables are sheaves (and hence

stacks). We keep however the usual gluing conditions written above, that give

an equivalence of categories between F (C) and each category of descent data on

C with respect to a covering sieve S. In future work, we will produce a suitable

classifier for the usual pseudofunctorial stacks.

Notation 5.3.11. We denote as i : St (C , J) ⊆ [C op,Cat ] the full sub-2-category

of [C op,Cat ] on stacks. Notice that i is indeed an injective on objects and fully

faithful 2-functor.



5.3. A 2-classifier in stacks 217

We want to show that i satisfies all the assumptions of Theorem 5.2.9, so that

we can restrict our good 2-classifier in prestacks to one in stacks.

The following proposition does not seem to appear in the literature.

Proposition 5.3.12. The 2-category StPs (C , J) of pseudofunctorial stacks has

all bilimits and all flexible limits, calculated in Ps [C op,Cat ] and hence pointwise.

St (C , J) has all flexible limits (thus all comma objects and the terminal object )

and all pullbacks along discrete opfibrations, calculated in [C op,Cat ] and hence

pointwise.

Proof. By Theorem 5.3.9, StPs (C , J) is a bireflective sub-2-category of

Ps [C op,Cat ]. So by Remark 5.1.8 it has all bilimits, calculated in Ps [C op,Cat ].

Consider then a flexible weight W and a 2-diagram F in StPs (C , J). Then the

flexible limit of F weighted by W exists in Ps [C op,Cat ], by Remark 5.1.8. In

particular, by flexibility of W , it satisfies the universal property of a bilimit of

a 2-diagram that factors through StPs (C , J). And it is then a pseudofunctorial

stack. It follows that it is the flexible limit of F weighted by W in StPs (C , J),

since fully faithful 2-functors reflect 2-limits.

Consider now a 2-diagram F in St (C , J) and a flexible weight W . The flexible

limit of F weighted by W exists in [C op,Cat ], calculated pointwise. Then it is

also the flexible limit in Ps [C op,Cat ], as the latter is as well calculated pointwise.

So it is a stack, as the 2-diagram in Ps [C op,Cat ] factors through StPs (C , J).

Whence we have produced the flexible limit of F weighted by W in St (C , J).

Finally, consider p : E → B and z : F → B in St (C , J), with p a discrete opfibra-

tion. The pullback of p and z exists in [C op,Cat ], calculated pointwise. Then it

is also the bi-iso-comma object of p and z in Ps [C op,Cat ], by Remark 5.1.8. We

conclude that it is a stack and hence the pullback of p and z in St (C , J), by the

argument above.

Proposition 5.3.13. A morphism in St (C , J) is a discrete opfibration if and

only if its underlying morphism in [C op,Cat ] is so. In particular, i : St (C , J) ↪−→
ff

[C op,Cat ] preserves discrete opfibrations.
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Proof. The “if” part is clear by the fact that St (C , J) ↪−→
ff

[C op,Cat ] is fully

faithful. The “only if” part follows from Proposition 4.2.5, since J is subcanonical.

Remark 5.3.14. Putting together Proposition 5.3.12 and Proposition 5.3.13,

we have thus proved that i : St (C , J) ⊆ [C op,Cat ] is a nice sub-2-category

(Definition 5.2.2).

Definition 5.3.15. We say that a discrete opfibration φ in St (C , J) has small

fibres if i(φ) has small fibres. Notice that this is in line with Remark 5.2.4.

Proposition 5.3.16. Let l : F → B be a morphism in [C op,Cat ] (that is, a 2-

natural transformation l ). l is a fully faithful morphism if and only if for every

C ∈ C the component lC of l on C is a fully faithful functor.

l is chronic (Definition 5.2.5 ) if and only if for every C ∈ C the component lC

of l on C is an injective on objects and fully faithful functor.

Proof. The proof is straightforward.

Construction 5.3.17. We want to produce the object ΩM of Theorem 5.2.9 in

our case with i : St (C , J) ⊆ [C op,Cat ]. That is, a stack, which we will call ΩJ ,

that is a nice restriction of the good 2-classifier Ω̃ in prestacks. Recall that, in

dimension 1, the subobject classifier in sheaves is given by taking closed sieves.

We produce a 2-categorical notion of closed sieve.

We have already said in Remark 3.3.3 that discrete opfibrations over represent-

ables generalize the concept of sieve to dimension 2; we call them 2-sieves. Thanks

to Proposition 5.1.3 (indexed Grothendieck construction, explored in Chapter 4),

we can equivalently consider presheaves on slice categories. We now need to

generalize closedness of a sieve to dimension 2. The indexed Grothendieck con-

struction can be restricted to a bijection between 1-dimensional sieves on C ∈ C

and presheaves
(C /C

)op → 2. It can be shown that closed 1-sieves correspond

with sheaves
(C /C

)op → 2, and that the closure of a sieve corresponds to the

sheafification of the corresponding presheaves. So we define closed 2-sieves to be
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the sheaves
(C /C

)op → Set (with respect to the Grothendieck topology induced

by J on the slices, that we call again J). And we use them to restrict our good

2-classifier ω : 1 → Ω̃ in prestacks to a good 2-classifier ωJ : 1 → ΩJ in stacks

(Theorem 5.3.22).

Remark 5.3.18. The “maximal” 2-sieve idy(C), associated with ω̃C =

∆1:
(C /C

)op → Set (see Remark 5.1.4), is a closed 2-sieve.

Closed 2-sieves are stable under pullbacks. Indeed if F :
(C /C

)op → Set is a

sheaf and f : D → C is a morphism in C then also F ◦ (f◦ =):
(C /D

)op → Set

is a sheaf.

Proposition 5.3.19. The 2-functor

ΩJ : C op −→ Cat

C 7→ Sh
(C /C , J

)
(C

f←− D) 7→ − ◦ (f◦ =)op

is a stack with respect to the Grothendieck topology J .

Moreover, the inclusions Sh
(C /C , J

)
↪−→
ff

[(C /C
)op
, Set

]
form a chronic arrow

ℓ : i(ΩJ) ↪−→
ff

Ω̃ in [C op,Cat ]. And ω̃ : 1 → Ω̃ factors through ℓ; call ωJ : 1 → ΩJ

the resulting morphism.

Proof. The second part of the statement is clear after Proposition 5.3.16 and

Remark 5.3.18.

We prove that ΩJ is a stack (recall from Definition 5.3.7 the definition). So let

C ∈ C and S ∈ J(C) a covering sieve on C.

We first prove the uniqueness of gluings of morphisms. Let M,N ∈ Sh
(C /C , J

)
and let α, β : M =⇒ N two natural transformations such that f ∗α = f ∗β for every

(D
f−→ C) ∈ S. We show that α = β. Given (D

f−→ C) ∈ S,

αf = (f ∗α)idD = (f ∗β)idD = βf .

Let now g : E → C in C and consider g∗S ∈ J(g) = J(E). Since M is a sheaf,

M(g) ∼= MatchM (g∗S)
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where the right hand side denotes the set of matching families forM with respect

to the covering sieve g∗S. And this holds analogously for N . We produce a

commutative square

M(g) N(g)

MatchM (g∗S) MatchN (g∗S)

∼=

αg

∼=

[αg ]

and analogously for β. We define [αg] to send a matching family (h ∈ g∗S) m7−→

(xh ∈M(g ◦ h)) to the matching family (h ∈ g∗S) 7→ (αg◦h(xh) ∈ N(g ◦ h)). The

latter is indeed a matching family by naturality of α. The square above commutes

since, for every m ∈ MatchM (g∗S), calling X the amalgamation of m, we have

that αg(X) is an amalgamation of [αg](m). Notice now that [αg] = [βg], as for

every h ∈ g∗S we have that g ◦ h ∈ S and hence αg◦h = βg◦h. Thus αg = βg.

We prove that we have the gluings of morphisms. Let M,N ∈ Sh
(C /C , J

)
and

consider a matching family

(D
f−→ C) ∈ S 7→ (αf : f

∗M =⇒ f ∗N) in Sh
(C /D, J

)
So that for every D′ l−→ D

f−→ C with f ∈ S it holds that l∗αf = αf◦l. We produce

a natural transformation λ : M =⇒ N such that f ∗λ = αf for every (D
f−→ C) ∈ S.

Given (D
f−→ C) ∈ S, we would like to define λf := (αf )idD . Let g : E → C in C .

We define λg to be the composite

M(g) ∼= MatchM (g∗S)
[λg ]−−→ MatchN (g∗S) ∼= N(g)

where [λg] sends a matching family (h ∈ g∗S) m7−→ (xh ∈M(g◦h)) to the matching

family (h ∈ g∗S) 7→ ((αg◦h)id(xh) ∈ N(g ◦ h)). The latter is indeed a matching

family by naturality of αg◦h. It is then straightforward to prove that λ is natural.

Given (D
f−→ C) ∈ S, we have that λf = (αf )idD , since idD ∈ f ∗S and hence

the amalgamation of any matching family on f ∗S is just the datum on idD. So

f ∗λ = αf . Indeed for every l : D′ → D in C

(f ∗λ)l = λf◦l = (αf◦l)idE = (l∗αf )idE = (αf )l.
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It remains to prove that we have the gluing of objects. So consider a descent

datum

(D
f−→ C) ∈ S 7→ Mf ∈ Sh

(C /D, J
)

with φf,h : h∗Mf
∼= Mf◦h such that the cocycle condition

k∗h∗Mf k∗Mf◦h

(h ◦ k)∗Mf Mf◦h◦k.

∼=

k∗φf,h

φf◦h,k

φf,h◦k

holds for every D′′ k−→ D′ h−→ D
f−→ C with f ∈ S. We produce M ∈ Sh

(C /C , J
)

and for every (D
f−→ C) ∈ S isomorphisms ψf : f ∗M ∼= Mf such that

h∗f ∗M h∗Mf

(f ◦ h)∗M Mf◦h.

∼=

h∗ψf

φf,h

ψf◦h

for every D′ h−→ D
f−→ C with f ∈ S. We construct the presheaf

Z :
(C /C

)op −→ Set

D C

D′

f∈S

h
f ′

7−→
Mf (idD)

Mf ′(idD′)

Z(h)

(
D

g/∈S−−→ C
)
7−→ ∅

where Z(h) is the composite

Mf (idD)
Mf (h)−−−→Mf (h) = (h∗Mf )(idD′)

≃−−−→
φf,hidD′

Mf◦h(idD′).

Z is indeed a functor, by the cocycle condition. Moreover, it is straightforward

to show that f ∗Z ∼= Mf for every (D
f−→ C) ∈ S. However, Z is not a sheaf. So

we define M := Z++, where Z+ is the plus construction of Z and hence Z++ is

the sheafification of Z. It is straightforward to check that (f ∗Z)+ ∼= f ∗(Z+), by

the explicit plus construction. Thus, using that f ∗Z ∼= Mf , we define ψf to be

the composite

f ∗(Z++) ∼= (f ∗Z+)+ ∼= (f ∗Z)++ ∼= (Mf )
++ ∼= Mf ,
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where the last isomorphism is given by the fact that Mf is a sheaf. It is then

straightforward to show that the isomorphisms ψf satisfy the required condition.

Remark 5.3.20. Representables form a fully faithful dense generator y : C →

St (C , J) of the kind described in Construction 5.2.8. We want to apply The-

orem 5.2.9 on such a dense generator. So we need to factorize the characteristic

morphisms in [C op,Cat ] of discrete opfibrations with small fibres in St (C , J) over

representables.

Proposition 5.3.21. For every ψ : H → y(C) a discrete opfibration in St (C , J)

with small fibres, with C ∈ C , every characteristic morphism of i(ψ) with respect

to ω̃ factors through ℓ : i(ΩJ) ↪−→
ff

Ω̃.

Proof. It suffices to prove that the characteristic morphism z for i(φ) with respect

to ω̃ produced in Remark 5.1.16 (and Theorem 5.1.14) factors through ℓ. Indeed

such factorization only depends on the isomorphism class of z, by the Yoneda

lemma, as any presheaf isomorphic to a sheaf is a sheaf. By Remark 5.1.16, z is

the 2-natural transformation y(C)→ Ω̃ that corresponds with the functor

zC(idC) :
(C /C

)op −→ Set

(D
f−→ C) 7→ (φD)f

(f
g←− f ◦ g) 7→ H(g)

So it suffices to prove that such functor is a sheaf. Let f : D → C in C and R a

covering sieve on f : D → C, i.e. R ∈ J(D). Consider then a matching family

D′

D C

g

f

∈ R m−7−→ Xg ∈ (φD′)f◦g

on R for zC(idC). We need to show that there is a unique X ∈ (φD)f such that

H(g)(X) = Xg for every
(
D′ g−→ D

)
∈ R. Notice that m is also a matching family

on R ∈ J(D) for H, as (φD′)f◦g ⊆ H(D′) and the action of zC(idC) on morphisms

is given by the action of H. Since y(C) : C op → Set , also H : C op → Set . As H
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is a stack, it then needs to be a sheaf. So there is a unique X ∈ H(D) such that

H(g)(X) = Xg for every
(
D′ g−→ D

)
∈ R. It remains to prove that φD(X) = f .

Since y(C) is separated, it suffices to prove that φD(X) ◦ g = f ◦ g for every(
D′ g−→ D

)
∈ R. But by naturality of φ

φD(X) ◦ g = φD′(H(g)(X)) = φD′(Xg) = f ◦ g.

We thus conclude that zC(idC) is a sheaf.

We can now apply Theorem 5.2.9 (based on our theorems of reduction of the

study of a 2-classifier to dense generators) to guarantee that we have produced a

good 2-classifier in stacks that classifies all discrete opfibrations with small fibres.

The following theorem is original.

Theorem 5.3.22. The 2-natural transformation ωJ from 1 to

ΩJ : C op −→ Cat

C 7→ Sh
(C /C , J

)
(C

f←− D) 7→ − ◦ (f◦ =)op

that picks the constant at 1 sheaf on every component is a good 2-classifier in

St (C , J) that classifies all discrete opfibrations with small fibres.

Proof. By Theorem 5.2.9, the restriction ωJ of the good 2-classifier ω̃ in [C op,Cat ]

along i : St (C , J) ↪−→
ff

[C op,Cat ] is a good 2-classifier in St (C , J) with respect to

the property of having small fibres. We can apply Theorem 5.2.9 thanks to

Remark 5.3.14, Theorem 5.1.14, Proposition 5.3.19, Remark 5.3.20 and Proposi-

tion 5.3.21.

Remark 5.3.23. We can extract from Theorem 5.2.9 and Remark 5.1.16 a recipe

for the characteristic morphism zJ : F → ΩJ of a discrete opfibration φ : G→ F

in St (C , J) with small fibres.

G 1

F ΩJ

φ ωJ
comma

zJ



224 5. Hofmann–Streicher universe in stacks

Recall that we denote as i the inclusion St (C , J) ⊆ [C op,Cat ]. We obtain that

zJ corresponds to the 2-natural transformation i(zJ) : i(F ) → i(ΩJ) whose com-

ponent on C ∈ C is the functor i(zJ)C that sends X ∈ i(F )(C) to the sheaf

i(zJ)C(X) :
(C /C

)op −→ Set

(D
f−→ C) 7→ (i(φ)D)i(F )(f)(X)

(f
g←− f ◦ g) 7→ i(G)(g)
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We conclude with a summary of the results of this thesis and some possible

directions for future work.

In Chapter 1, we have studied the 2-category of elements from an abstract point

of view, thanks to an original notion of pointwise Kan extension in 2-Cat lax
and a refined notion of lax comma object. We have conceived the 2-category

of elements as the archetypal 3-dimensional classification process and at the

same time as the 2-Set -enriched Grothendieck construction. It would be very

interesting to study 3-dimensional classifiers further, extracting a definition from

the ideas of Chapter 1. We should thus upgrade discrete opfibrations to dis-

crete 2-opfibrations and comma objects to lax comma objects. Interestingly,

the archetypal 3-dimensional classifier has been crucial in this thesis to study

2-dimensional elementary topos theory. It would be very interesting as well to

generalize fibrations and the Grothendieck construction to the general enriched

setting. This is work in progress, and we believe it would have many fruitful

applications. Some examples of enriched fibrations would be additive fibrations,

graded fibrations, metric fibrations and general quantale-enriched fibrations.

In Chapter 2, we have developed a calculus of colimits in 2-dimensional slices,

thanks to an original notion of colim fibration and the reduction of weighted 2-

colimits to cartesian-marked oplax conical ones. This calculus has been a crucial

tool in this thesis to reach our theorems of reduction of the study of 2-classifiers to

dense generators. We believe that it could be fruitfully applied to other contexts

as well.

In Chapter 3, we have introduced the notion of good 2-classifier, that captures
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well-behaved 2-classifiers and is closer to the point of view of logic. We believe

this will be helpful to explore the 2-dimensional logic internal to an elementary

2-topos. We intend to investigate this in the near future. The main result of

Chapter 3 is a novel technique of reduction of the study of 2-classifiers to dense

generators. Our results substantially reduce the effort needed to prove that some-

thing is a 2-classifier or to study which morphisms get classified by a 2-classifier.

In the cases of prestacks and stacks, our theorems have allowed us to look just

at the classification over representables. In future work, we will explore more

examples of elementary 2-topoi, and we believe that our technique of reduction

will be an asset for this.

In Chapter 4, we have presented an indexed version of the Grothendieck construc-

tion. This helped us reach a nice candidate for a good 2-classifier in prestacks.

It would be surely interesting to explore further applications of this construction.

We believe it could be useful in geometry and algebra. We can interpret our

indexed Grothendieck construction as the the result that every (op)fibrational

slice of a Grothendieck 2-topos is a Grothendieck 2-topos. This generalizes to

dimension 2 the Grothendieck topoi case of the fundamental theorem of element-

ary topos theory. In future work, we will extend our results to consider arbitrary

elementary 2-topoi, reaching a complete 2-dimensional generalization of the fun-

damental theorem of elementary topos theory.

In Chapter 5, we have applied our theorems of reduction of the study of 2-

classifiers to dense generators to produce a good 2-classifier in prestacks that

classifies all discrete opfibrations with small fibres. This involves a 2-categorical

generalization of the notion of sieve. In future work, we would like to apply our

good 2-classifier in prestacks to reach a 2-categorical generalization of the fruitful

concept of Grothendieck topology. This would bring to an extended notion of

stack, with relevance in geometry. In Chapter 5, we have also restricted our good

2-classifier in prestacks to one in stacks, classifying again all discrete opfibrations

with small fibres. The strategy has been to use factorization arguments and

our theorems of reduction to dense generators. Our result is the main part of
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a proof that Grothendieck 2-topoi are elementary 2-topoi. We believe that this

thesis could contribute to reach a universally accepted notion of elementary 2-

topos. We can indeed look at the preeminent example of stacks to understand

which conditions an elementary 2-topos should satisfy. In future work, we would

like to adapt the results of this thesis to the bicategorical context, and thus to

pseudofunctorial stacks, using a suitable bicategorical notion of classifier. Other

ideas for future research are capturing and generalizing classifying topoi as well

as geometrical classification processes.
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