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Abstract 
 
Antibiotic resistant infections are predicted to claim 10 million lives annually by 2050. 

Multi-drug resistant bacterial strains cause untreatable infections or necessitate last-

line antibiotics. Conjugative plasmids carry resistance genes and facilitate the 

evolution of multidrug resistance by horizontal transfer of genetic material. Plasmids 

have complex interactions with their bacterial hosts that are not fully understood. 

Chapter 2 describes an analysis pipeline for untargeted metabolomics that was 

developed and published to make this complex methodology more accessible, then 

used throughout the thesis. 

This thesis explores the metabolic relationship between the multi-drug resistant 

plasmid pLL35 in diverse Escherichia coli strains across key stages: plasmid 

acquisition, subsequent coevolution and exposure to antibiotics. 

Chapter 3: Upon acquisition of the plasmid, metabolomics reveals strain specific 

alterations in functions such as ubiquinone biosynthesis, central energy production and 

amino acid biosynthesis. 

Chapter 4: 3 strains that had been experimentally evolved in previous work were 

compared to their ancestors and displayed metabolic alterations associated with 

adaptation to lab conditions; amino acid biosynthesis, glycolysis and pyrimidine 

biosynthesis. The strains had specific metabolic alterations according to evolutionary 

treatment (plasmid carrying with and without cefotaxime selection) with a singular 

exception: the global regulator cyclic AMP, which was consistently upregulated in 

plasmid carriers in response to antibiotic selection. Functions affected by coevolution 

and selection included amino acid biosynthesis, central energy production and stress 

responses. 

Chapter 5: 4 plasmid carrying strains are exposed to kanamycin, cefotaxime and 

ciprofloxacin. Common stress and resistance responses are observed, but responses 

at a pathway and metabolite level are strain specific in extent and direction of change. 

Pathways affected include amino acid and nucleotide metabolism, energy production, 

biosynthesis of cell wall and biofilm components and redox stress management, 

providing insights into bacterial stress responses and resistance mechanisms beyond 

plasmid-encoded genes. Thus, Escherichia coli adapt to plasmid carriage and 

antibiotic exposure by subtle alterations of its metabolism on a network wide scale. 
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Chapter 1 : Main Introduction 
 

1.1 Introduction  
 
 WHO has declared antimicrobial resistance a top 10 global health threat. The 

worldwide spread of resistance genes is central to this crisis, and hospitals are facing 

an increasing number of untreatable infections (Antimicrobial Resistance, 2021). 

Resistance increases mortality rates and hospitalisation duration of initial admission 

infections and iatrogenic infections, and also increases risk factors for routine medical 

procedures like surgery and treatment of immuno-compromised patients such as those 

undergoing cancer treatment (Mathers, Peirano and Pitout, 2015). 

One of the primary mechanisms for the dissemination of resistance genes is horizontal 

gene transfer (HGT) facilitated by conjugative plasmids, semi autonomous mobile 

genetic elements (MGEs) (Carattoli et al., 2013). Plasmids are circular pieces of DNA 

that are formed by a functionally necessary backbone which carries genes for their 

replication, maintenance and conjugation machinery, enabling DNA transfer through a 

pilus that can circumvent species barriers (Hall, Brockhurst and Harrison, 2017). In 

addition to this, plasmids encode accessory genes which often confer a fitness benefit 

to bacteria by aiding survival of environmental stressors (Norman, Hansen and 

Sørensen, 2009; Smillie et al., 2010).  

Plasmids are a mechanism for rapid adaptation because they can mobilise genes and 

thus transfer new functions horizontally (Hall, Brockhurst and Harrison, 2017). This 

facilitates evolution because the new functions can then be maintained and transferred 

vertically, or incorporated into bacterial chromosomal DNA (Harrison and Brockhurst, 

2012; Rodríguez-Beltrán et al., 2021). Horizontal transfer of resistance genes is an 

effective consequence to the selection pressure exerted by antibiotics (Hall, Brockhurst 

and Harrison, 2017). The success of plasmids harbouring resistance genes means that 

the antibiotic resistance crisis is a moving target that is incredibly difficult to contain or 

treat (San Millan, 2018). 

Successful plasmid transfer depends on a balance of costs and benefits to the bacteria 

upon acquisition. Plasmids can be advantageous in the right environmental contexts, 

for example resistance genes in the presence of antibiotics, or heavy metals (Norman, 
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Hansen and Sørensen, 2009). However, plasmids are also frequently associated with 

fitness costs. Costs can include translational load of additional genetic material, 

induction of SOS responses, energy usage for pilus constructions and subsequent 

exposure to phage, creation of cytotoxic gene products and manipulation of regulatory 

networks (Hall, Brockhurst and Harrison, 2017; San Millan and MacLean, 2017; Dunn 

et al., 2021; Billane et al., 2022). In some cases costs may be severe enough to impair 

plasmid persistence in the absence of selection, as with pNUK73 in P. aeruginosa (San 

Millan et al., 2014). Even when plasmids are costly, the source of these costs are not 

clear, as demonstrated by a study challenging the prevailing hypothesis that plasmids 

impose a burden on their hosts through the demand on bacterial translation machinery. 

When ribosomes were hindered in E.coli K-12 MG1655 containing one of a series of 

diverse, clinically relevant plasmids, costs did not increase (Rodríguez-Beltrán et al., 

2022).  

The severity of plasmid impact on a given bacterial host is dependent on compatibility 

and hosts may have their fitness affected differently even by genetically similar 

plasmids (Enne et al., 2004; De Gelder et al., 2007; Humphrey et al., 2012). A summary 

of fitness changes associated with plasmid carriage cited a range of change in fitness 

negatively from 1.1% to 27% and positively up to 5% (Carroll and Wong, 2018). 

Comparing the impacts of an ecologically compatible plasmid pOXA-48_K8 to 25 

isolates of E.coli and 25 of K.pneumoniae demonstrated a small overall phenotypic 

trend of decreased growth. However when competition assays were conducted for 

each isolate against plasmid free counterparts there was a spectrum of relative fitness 

effects from the plasmid ranging from detrimental to beneficial, for both E. coli and K. 

pneumoniae, demonstrating the variability and specificity of plasmid-bacterial 

relationships (Alonso-del Valle et al., 2021).   

Plasmid carriage is a series of cost and benefits trade-offs between accessory gene 

advantage, fitness impact and environmental context. Evolutionary theory therefore 

suggests that plasmids ought not to be as prevalent as they are because their loss 

from bacterial populations should be selected for. In the absence of positive selection 

the plasmid would be expected to be lost due to purifying selection, and even in 

environmental contexts where accessory genes confer advantages, the movement of 

plasmid genes into the bacterial chromosome and subsequent lysis or ejection of the 

plasmid would be selected for (Carroll and Wong, 2018). However, plasmids are stable 
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for long periods of time without positive selection (Santos-Lopez et al., 2017; Dunn et 

al., 2021) and are able to transfer within and between bacterial species despite fitness 

costs (Benz et al., 2021; Sezmis et al., 2023).  

This discord between theory and observation has been termed the ‘plasmid paradox’, 

for which answers have been found by looking at the relationship between plasmids 

and their bacterial hosts through the lens of evolution, and by acknowledging that 

plasmids play an active role in these relationships (San Millan et al., 2014; MacLean 

and San Millan, 2015; Santos-Lopez et al., 2017; Brockhurst and Harrison, 2022; 

Sezmis et al., 2023). 

Plasmid maintenance in bacterial populations can be explained by ecological and 

evolutionary mechanisms (Brockhurst and Harrison, 2022). This includes the 

horizontal transfer of conjugative plasmids which keeps replication and dissemination 

high enough for maintenance, a process sometimes co-opted by other mobile genetic 

elements (Peña-Miller et al., 2015; Lopatkin et al., 2017; Che et al., 2021). This is aided 

by plasmid induced permissiveness of a bacterial host to the carriage of further 

plasmids (Dionisio, Zilhão and Gama, 2019). The variability of plasmid impact allows 

for their maintenance in a community and bacterial populations that can stably carry a 

plasmid sometimes become a reservoir population from which plasmids can 

continually transfer out of (Hall et al., 2016; Dunn et al., 2021). An evolutionary 

mechanism for plasmid maintenance is genetic amelioration of costs where the 

bacteria, plasmid or both mutate to resolve genetic conflicts (Harrison et al., 2015; Hall 

et al., 2021; Carrilero, Dunn and Moran, 2023). 

There is increasing evidence that plasmids also have an impact on the transcriptome 

and affect bacterial phenotype more extensively than the provision of accessory gene 

function. 

This is explored in the following review.
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1.2 Review Why do plasmids manipulate the expression of bacterial 
phenotypes? 
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1.3 Thesis Aims 
This thesis aims to understand how E.coli metabolism is changed by acquisition of a 

multi-drug resistant plasmid, subsequent co-evolution and exposure to antibiotic 

stress. The data in this thesis complements previous studies conducted on the E.coli 

strains and pLL35 plasmid which included phenotypic assays, a laboratory evolution 

experiment, genomics and transcriptomics. The addition of metabolomics from this 

research provides a more complete omics-based analysis of these strains, 

contributing to future research area 3 as highlighted in the earlier review: ‘how might 

integrated omics studies aid our understanding of how differential regulation leads to 

altered bacterial phenotypes?’ 

 

Chapter 3 analyses the impact of the acquisition of the MDR plasmid pLL35 on 9 

diverse E.coli strains from a range of ecological backgrounds. This chapter begins to 

broaden the lineage diversity of strains studied by taking clinical and environmental 

examples. By comparing the strain without pLL35 to isolates of those strains that had 

pLL35 conjugated over recently (within 30 generations) this data can assess changes 

in the bacterial metabolism as a consequence of plasmid acquisition. 

 

Chapter 4 analyses a selection of the strains taken from the populations at the 

endpoint of a 700-generation evolution experiment. To assess how the plasmid-

bacterial relationship had evolved, metabolomics of the post-evolution treatment 

groups were compared to the ancestral state. Further to assess the metabolic 

differences caused by treatment in the evolution experiment, the groups ‘plasmid 

free’, ‘plasmid carrying’ and ‘plasmid carrying under antibiotic selection’ were 

compared to each other. These analyses aimed to demonstrate how the presence of 

a plasmid may alter the metabolic network of E.coli over evolutionary time, and 

secondly separate the impacts of plasmid carriage alone, and plasmid carriage with 

positive selection of the resistance genes. This chapter contributes to future research 

area 4, as highlighted in the earlier review: ‘how does plasmid manipulation of 

bacteria evolve?’ 

 

Chapter 5 assesses the effects of antibiotic stress on the metabolism of a selection of 

E.coli strains, including 2 of a clinical background, which had recently (within 30 
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generations) acquired pLL35, to aid our understanding of the resistance mechanisms 

of the bacteria and plasmid as a unit, and the metabolic changes seen in the 

previous chapters. 

 

To obtain a comprehensive assay of intracellular E.coli metabolism, untargeted 

metabolomics was conducted throughout this thesis using liquid chromatography 

mass spectrometry. Metabolomics can be defined as a “systematic study of the 

unique chemical fingerprints that specific cellular processes leave behind” (Di Minno 

et al., 2021). By producing a highly detailed, precise view of the molecular 

underpinning of cellular function, which is closely related to phenotype, metabolomics 

is an invaluable tool for microbiology and medical research (Xu et al., 2014; Vincent 

et al., 2016; Mardegan et al., 2021; Wei et al., 2021). Transcriptomics and genomics 

are commonly used to study interactions between plasmids and bacteria, and have 

done so extensively to great effect, but predicting metabolome effects solely from 

differentially expressed genes is not straightforward (Billane et al., 2022). The 

abundance of regulatory effects revealed by transcriptomics suggests plasmid’s 

impact on their bacterial hosts is different at different biological levels (Billane et al., 

2022). Metabolomics may therefore help untangle the nuances of plasmid 

acquisition.  

Untargeted metabolomics comprehensively describes the metabolome and is used in 

this study to avoid constraints on our hypothesis from previous assumptions, and 

instead facilitate the generation of new hypotheses (Schrimpe-Rutledge et al., 2016; 

Di Minno et al., 2021). This technique is particularly suited to identifying perturbations 

in biological systems, and therefore ideal to study the impact of a plasmid on bacteria 

(Want, Cravatt and Siuzdak, 2005; Vincent et al., 2016; Allwood et al., 2021; Di Minno 

et al., 2021). 

An understanding of how the bacterial metabolome changes upon plasmid acquisition 

will contribute to the explanation of resistance plasmid success and persistence. 

Together the data in this thesis will contribute to an information bank upon which further 

questions will be based to fully understand the facets of plasmid- bacteria relationships. 

This will facilitate the development of plasmid-targeting strategies to limit the 
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pervasiveness of antibiotic resistance genes, an area which is currently 

underdeveloped for in-vivo solutions (Buckner, Ciusa and Piddock, 2018).  
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Chapter 2 : Metabolomics methodology development 
 
 

Metabolomics is the comprehensive assay of all the metabolites in a biological system, 

and is valuable for understanding biochemical underpinnings of phenotype as the 

metabolism is the biological level most closely associated with function (Goodacre et 

al., 2004; Ryan and Robards, 2006).  

 

In this thesis, untargeted liquid-chromatography mass spectrometry is chosen for its 

precision and broad detection range (Aldridge and Rhee, 2014). Untargeted 

metabolomics are ideal for identifying perturbations in biological systems, especially 

when effects are widespread, subtle or unexpected, making it a valuable tool for the 

generation of novel hypotheses. (Want, Cravatt and Siuzdak, 2005; Vincent et al., 

2016; Allwood et al., 2021; Di Minno et al., 2021). In addition, bacteria are well suited 

to metabolomics and have been used from first conception of the technique (Oliver et 

al., 1998; Tweeddale, Notley-Mcrobb and Ferenci, 1998). This makes untargeted 

metabolomics the ideal tool to understand the dynamics of bacterial and plasmid 

relationships. 

 

The challenges of processing untargeted metabolomic data are widely acknowledged 

(Allwood et al., 2021). These challenges stem from the nature of the data itself, namely 

that data processing has a steep learning curve due to the decisions required to 

process and analyse a given dataset appropriately, such as peak picking and retention 

time correction settings, filtering, normalisation and potentially the pitfalls that come 

with overprocessing (Parker et al., 2023). Furthermore, putative identification of 

metabolites from untargeted data is notoriously difficult (Xu et al., 2014), resulting in 

thousands of unidentified signals in datasets (Allwood et al., 2021). In part this is due 

to there being a huge number of metabolites compared to the number of genes 

(Aldridge and Rhee, 2014). The barriers to engaging in metabolomics are in part 

responsible for the lack of documentation to navigate these barriers, and together this 

perpetuates the underutilisation of the technique (Allwood et al., 2021; Parker et al., 

2023). 

COVID-19 restrictions necessitated the development of a data processing and analysis 

method that would function off-site and did not rely on proprietary software. 
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Furthermore, existing methods vary by mass spectrometer, type of mass spectrometry 

and experimental design and navigating this as a novice is difficult. There is a lack of 

documentation following a full data analysis process that explains how to make the 

decisions to tailor data processing and analysis to a given experiment (Schrimpe-

Rutledge et al., 2016; Blaženović et al., 2018; Dudzik et al., 2018; Misra, 2018; 

Chaleckis et al., 2019). 

 

Collaborating with other students and staff at the University of Sheffield, we published 

an untargeted metabolomics workflow that follows a worked example from laboratory 

protocols through data processing to analysis (Parker et al., 2023).  

 

The specific data analysis workflow used for this thesis, part of the published 

methodology, is as follows (Fig 2.1). After sample collection (described pages 28-32) 

the data was converted to the interoperable .mzml format using proteowizard. XCMS 

online (parameter programme 84500) was then used to convert mass spectrometer 

waves into singular peaks, detect and correct for retention time in the liquid 

chromatography column and re-align the data to produce a list of masses and 

intensities of the masses per sample. Formatting the XCMS output files followed the 

published script (Parker et al., 2023). Data analysis was conducted using 

metaboanalyst, based in R, and included principle component analysis, fold change 

analysis and random forest analysis. Putative identifications for significant masses 

were then investigated in a manual manner using the databases Metlin, KEGG and 

ECMDB. 

 
 

2.1 Statement of contribution 
 
A successful funding application from the University of Sheffield enabled KCB, the 

author of this thesis, and EJP to transform method development concerning untargeted 

metabolomic data acquisition, processing and analysis into an open access guide. The 

content was developed and written by EJP and KCB equally, and reviewed by new 

users during workshops led by EJP and KCB. 

The author of this thesis KCB has joint first authorship with EJP for the following 

publication https://doi.org/10.3390/metabo13040463 which describes software that 

https://doi.org/10.3390/metabo13040463
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was built based entirely on the aforementioned guide. KCB contributed to writing the 

original draft and creating figures and editing the manuscript during the review process.  

The software https://untargeted-metabolomics-workflow.netlify.app/ has the sections: 

00 – Overview of workflow 

01 – Metabolite extraction 

02 – Data acquisition  

03 – Converting data to open format 

04 – Data pre-processing 

05 – Extracting and formatting peak table and metadata 

06 – Multivariate analysis 

07 – Putative metabolite ID 

08 – Data archiving and reporting 

The author contributed to development and content creation throughout the writing of 

the software, but was particularly responsible for the following sections 

1. Overview of workflow 

2. Metabolite extraction. 

● Wet lab protocols to prepare Escherischia coli for this stage were 

developed solely by the author and were made available at the 

institute level but ultimately not included in the examples given in the 

software. The full protocol to follow. 

3. Converting data to open format 

● Proteowizard 

● MSConvert LCMS 

4. Data pre-processing 

● Processing LCMS 

5. Extracting and formatting peak table and metadata 

● Peak Table LCMS 

6. Multivariate analysis 

● Multivariate analysis 

● Metaboanalyst 

7. Putative metabolite ID 

● What are my metabolites? 

● METLIN 

● KEGG 

https://untargeted-metabolomics-workflow.netlify.app/
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The author was involved in editing and refinement of all other sections and ensuring 

the workflow allowed reproducibility in line with FAIR (Findability, Accessibility, 

Interoperability, Reusability) principles, just as other authors reviewed the author’s 

work. 
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Figure 2.1. A representation of the workflow specific to the author spanning the wet lab preparation of samples, through the data processing to data analysis. 
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2.2 Laboratory Protocol 
 

The following protocol was developed by the author and is the basis for all sample 

preparation for the data obtained throughout this thesis, with some modifications for 

later chapters. The bacterial isolation protocol was developed by the author and the 

metabolite extraction protocol was adapted from an in-house metabolomic sample 

preparation written by Dr. H J Walker and optimised for Escherischia coli. 

 

Method Development for untargeted metabolomic analysis of diverse 

Escherichia coli strains. 

This experiment used Escherichia coli isolate from the strains; ST131 derived from 

clinical bacteraemia, ST1122 and ST394 derived from river effluent and MG1655, a 

laboratory strain. The plasmid is pLL35, a 106kb incFII(K)-9 plasmid originating 

from Klebsiella pneumoniae. Cultures are grown in nutrient broth at 37°C in a shaking 

incubator. 

 

Bacterial isolation protocol for metabolite extraction 

Materials required per sample: 

2 Microcosms 

2 mL Safe-loc eppendorf 

0.22µm filter 

10 mL syringe 

5 mL syringe x 2 

7 mL M9 buffer 

 

Other Materials 

Agar 

Nutrient broth 

9cm petri dishes 

Sterile falcon tubes 

Inoculation loops 

Liquid nitrogen 
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Preparation 

Autoclave microcosms containing 10ml nutrient broth. 

Autoclave nutrient agar, pour and set plates. 

Prepare a master x10 concentration of M9 buffer solution 

● In 1L DH20: 

● 128g Sodium phosphate dibasic (67.8g if anhydrous) 

● 30g Monopotassium phosphate 

● 5g Sodium chloride 

● 10g Ammonium chloride 

Make a x1 working solution. 

Streak out E.coli strains from glycerol stocks into agar plates and incubate overnight 

at 37℃.  

Inoculate microcosms with a single colony using a loop. Leave lids slightly loose to 

allow oxygen into the microcosm. Grow in a shaking incubator at 37℃ and 180rpm for 

24 hours. 

Label 2nd set of microcosms and safe-loc eppendorfs. 

 

Procedure 

1. Inoculate fresh 10 mL nutrient broth microcosms with 1% (100µl) of 24 hour 

microcosms and grow in the shaking incubator at 37℃ and 180rpm for 3 hours. 

2. Gather 1x M9 working solution, syringes, filters, labelled eppendorfs, waste 

bottles and decant a small flask of liquid nitrogen. 

3. Using the 10 mL syringe, take up all of the contents of the microcosm and push 

through the filter. 

4. Follow this with 5 mL of M9 using the 5 mL syringe. 

5. Flip filter, move to the 2 mL safe-loc eppendorf and with a fresh 5 mL syringe 

use 2 mL M9 to wash bacteria out of the filter and into the eppendorf. 

6. Repeat steps 3-5 for each sample using sterile syringes and filters each time. 

7. Spin down in a centrifuge at 12,000g for 5 minutes. 
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8. Remove supernatant. 

9. Ensure lids are secure on the eppendorf and freeze in the liquid nitrogen.  

10.  After a short period of time carefully extract eppendorfs from the nitrogen and 

transfer to the -80℃ freezer. 

 

Metabolite extraction protocol for frozen bacterial samples   

Materials required:   

Sterile MilliQ H2O (H2O)  

Chloroform (CHCl3)  

Methanol (MeOH)  

Eppendorf tubes (2 per sample) 

Ice (and dry ice for transportation)   

Preparation:   

● Pre-chill some eppendorf racks in the -80℃ freezer. 

● Get a container of ice. 

● Pre-chill several mL of H2O to 0°C. 

● Pre-chill some pure CHCl3 to 0°C. 

● Make a several mL mixture (Mix A) of 2.5:1:1 MeOH:CHCl3:H2O and pre-chill 

to 0°C. 

● Pre-chill a centrifuge to 0-4°C.  

 

Procedure:   

1. Take the eppendorf containing the frozen bacterial sample. 

2. Add 180 µL Mix A to bacteria, vortex to resuspend and incubate on ice for 10 

minutes.   

3. Centrifuge at 12,000g for 5 minutes (0-4 °C).   



 
 

 36 

4. Vortex to resuspend pellet, incubate on ice for 10 minutes.   

5. Add 20 µL cold CHCl3, and add 30 µL of cold H2O, shake and mix.   

6. Centrifuge at 14,000g for 15 minutes (0-4 °C).   

7. You should have two clear phases, aqueous at the top and CHCl3 at the 

bottom of the tube. Remove 50-100 µL of aqueous phase and put in a fresh pre-

chilled tube. Quickly plunge the tip into CHCl3 phase, remove ~50 µL and put in 

a fresh pre-chilled  tube.  

8. Freeze all samples at -80°C, until ready for analysis.   

9. Keep the pellet in the eppendorf tubes and freeze. 

  



 
 

 37 

2.3 Article : Untangling the Complexities of Processing and Analysis for Untargeted LC-MS 
Data Using Open-Source Tools  
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Chapter 3 : Strain specific metabolic responses of diverse 
E.coli lineages to the acquisition of a multi-drug resistant 
plasmid. 
 
 

3.1 Abstract 
 
The antibiotic resistance crisis is presenting increasing numbers of infections that are 

near impossible to treat. Conjugative plasmids are the primary disseminators of 

resistance genes and have complex interactions with their bacterial hosts which are 

not fully understood. Metabolomics is an under-utilised tool that can provide valuable 

molecular insight to phenotypic observation. Metabolomics were conducted on 9 

Escherichia coli strains from a variety of backgrounds to understand the impact of 

acquisition of a multi-drug resistant plasmid pLL35. The impact is subtle and strain 

specific. A few key metabolic functions are affected such as ubiquinone biosynthesis, 

central energy production and amino acid biosynthesis but the direction and particular 

pathways highlighted remain strain specific. 

 
 

3.2 Introduction  
 

Plasmids are the primary facilitators for the worldwide dissemination of antibiotic 

resistance genes (Carattoli, 2013). E.coli cause common infections worldwide and the 

plasmid-mediated accumulation of multi-drug resistances are continually reducing the 

number of antibiotics able to combat them (Mathers, Peirano and Pitout, 2015; 

Stoesser et al., 2016; Dunn, Connor and McNally, 2019). E.coli strain group ST131 is 

an opportunistic pathogen of phylogenetic group B2 of high global concern that causes 

urinary tract infections (UTIs), bloodstream infections (BSIs), intra-abdominal 

infections (IAIs) and wound infections (Cantón, González-Alba and Galán, 2012; 

Alhashash et al., 2013; Lee Ventola, 2015; Mathers, Peirano and Pitout, 2015). ST131 

is globally the predominant extended spectrum beta lactamase (ESBL) producing 

E.coli and is frequently associated with multidrug resistances, including 

fluoroquinolone and aminoglycoside resistance (Lahlaoui, Ben Haj Khalifa and Ben 

Moussa, 2014; Mathers, Peirano and Pitout, 2015; Bevan, Jones and Hawkey, 2017; 

Peirano and Pitout, 2019). This strain is resistant to most available antibiotics and 
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forcing hospitals to use last resort antibiotics with increasing frequency such as 

ertapenem, with decreasing impact (Peirano and Pitout, 2019).  

Plasmid mediated horizontal gene transfer can drive the rapid evolution of multidrug 

resistant bacteria (Hawkey and Jones, 2009; Hall, Brockhurst and Harrison, 2017). 

Conjugative plasmids can carry large cargoes of accessory genes, including antibiotic 

resistance genes, which are beneficial to the bacteria in specific environments 

(Norman, Hansen and Sørensen, 2009). However bacteria-plasmid responses are 

highly strain dependent. Previous work has shown that both costs and phenotypic 

effects are dependent on the bacterial strain (Johnson et al., 2015; Lang and Johnson, 

2015; Takahashi et al., 2015; Porse et al., 2016a; Alonso-del Valle et al., 2021). Either 

as a cause or consequence of this the distribution of plasmids can vary significantly 

between lineages (Benz et al., 2021). Plasmids have natural compatibility host ranges, 

but even within these species, persistence is dependent on strain specific acquisition 

costs (Porse et al., 2016a; Prensky et al., 2021). 

The interactions between resistance plasmids and their bacterial hosts are complex. 

Plasmids induce a diverse range of phenotypic effects in bacteria over and above those 

encoded by accessory genes. Impacts can include fitness costs, ranging from 

negligible to severe and significant disruption to cellular processes such as altered 

expression of hundreds of genes (Coulson et al., 2015; Takahashi et al., 2015; San 

Millan et al., 2018). Outside of accessory genes plasmids can increase bacterial-

encoded antimicrobial resistance functions (Shintani et al., 2010; Takahashi et al., 

2015; San Millan et al., 2018; Vasileva et al., 2018), aid in colonisation of bacterial 

hosts (Gomez-Duarte and Kaper, 1995; Von Bargen et al., 2009; Coulson et al., 2015; 

Schaufler et al., 2016; Ronin et al., 2017; Ranjan et al., 2018) increase virulence (Song 

et al., 2013; Patton et al., 2018; San Millan et al., 2018; Vasileva et al., 2018) and 

facilitate utilisation of novel or alternative energy sources (San Millan et al., 2018; Dunn 

et al., 2021). These phenotypic traits may promote survival of the bacterium and 

therefore plasmid vertical transmission (Billane et al., 2022). Other plasmid associated 

traits meanwhile may promote plasmid fitness in a way that does not necessarily align 

with bacterial host fitness. For example a reduction of bacterial motility, increase in 

biofilm formation and inactivation of competitive bacterial T6SS, increasing the 

likelihood of bacterial cell to cell contact and therefore successful plasmid 

conjugation(Matsumoto et al., 1998; Valle et al., 2008; Shintani et al., 2010; Parashar 
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et al., 2013; Lang and Johnson, 2015; Takahashi et al., 2015; Schaufler et al., 2016; 

Jiang et al., 2017; Vasileva et al., 2018; Huang et al., 2020). Understanding the 

relationships between plasmid-bacterial interactions across diverse strains can thus 

help to inform how bacteria respond to plasmid acquisition and importantly, what 

conditions favour their loss and maintenance.  

The success of infection-causing E.coli can be partially explained by narrow host range 

IncF group plasmids, which are large 100-150 kbp plasmids limited to 

Enterobacteriaceae and have contributed significantly to the resistance levels 

(Mathers, Peirano and Pitout, 2015). Initial acquisition of IncF plasmids is thought to 

be costly but some plasmid and strain pairings appear to be more suited than others 

(Dunn, Connor and McNally, 2019). To promote their own maintenance, IncF plasmids 

use post-segregational killing and addiction systems but also carry many resistance 

genes which provide great survival benefits under antibiotic pressure (Mathers, 

Peirano and Pitout, 2015; Bevan, Jones and Hawkey, 2017).  

IncF group plasmids can contain blaCTX-M genes which produce enzymes that inactivate 

B-lactams (third and fourth generation cephalosporins and monobactams) by 

hydrolysis, thereby rendering the most frequently prescribed antibiotics in the world 

impotent (Lahlaoui, Ben Haj Khalifa and Ben Moussa, 2014; Peirano and Pitout, 2019). 

blaCTX-M genes originate from Kluyvera spp. but mobilised and transferred into other 

Enterobacteriaceae, which, since the early 2000s they have proliferated into some of 

the most treatment resistant infections (Canton and Coque, 2006).  BlaCTX-M-15, part of 

the BlaCTX-M-1 subfamily, was first described in 2001 and now the most prevalent 

variant, alongside BlaCTX-M-14 (Bevan, Jones and Hawkey, 2017).  

Previous work investigated the impact of MDR plasmid carriage on diverse strains of 

Escherichia coli. The plasmid pLL35, a 106kb incFII ESBL plasmid originally isolated 

from Klebsiella pneumoniae, was introduced to 9 strains spanning a diversity of 

lineages (Dunn et al., 2021). Dunn et al. 2021 showed that while the plasmid was stably 

maintained in all strains, acquisition induced variable responses at all biological levels 

studied. Most strains showed very little impact on bacterial growth but for some growth 

rate was significantly reduced while others actually increased growth rate after 

acquiring the plasmid. Similarly, the plasmid conferred different levels of resistance to 

the beta-lactam, Cefotaxime. However when transcriptomics were conducted the 
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number of genes significantly altered by plasmid acquisition was surprisingly low and 

did not correlate to the growth impact or resistance (Dunn et al., 2021). There was a 

consistent subtle differential regulation across the transcriptome, targeting a wide 

variety of bacterial functions including the cell wall, signal transduction, cell motility, 

energy production and conversion and carbohydrate transport and metabolism (Dunn 

et al., 2021). How these changes relate to observed phenotypic responses to plasmid 

carriage is unclear, meaning that the effects of plasmid carriage on hosts requires 

further interrogation. 

A range of transcriptomic studies showed the most commonly altered genes by plasmid 

presence were metabolism related, suggesting metabolomic perturbations associated 

with bacterial acclimatisation to plasmid carriage (Shintani et al., 2010; Lang and 

Johnson, 2015; Takahashi et al., 2015; San Millan et al., 2018; Vasileva et al., 2018). 

However, very few metabolomics studies have focused on the impact of plasmid 

acquisition on a bacterial host (Lang and Johnson, 2015; San Millan et al., 2018). San 

Millan et al (2018) found in Pseudomonas aeruginosa, metabolic evidence of increased 

RNA synthesis and differential metabolism of glutamine, central energy metabolites 

such as NADPH and citric acid, and coenzymes such as Pyridoxal-5’ phosphate (San 

Millan et al., 2018). Metabolomics, as the molecular basis of function, can add a level 

of biological detail inaccessible to genomics or transcriptomics to explain phenotype 

(Wang et al., 2016; San Millan et al., 2018; Ares-arroyo et al., 2022). The sensitivity of 

metabolomics can also identify flux in complex networks and add statistical strength to 

findings with other omics (Ares-arroyo et al., 2022; Radoš et al., 2022). 

Contemporary omic research tends to focus on laboratory strains, (Billane et al., 2022) 

therefore this study emphasised clinically relevant ST131 strains (clades A, B and C) 

of Escherichia coli, as well as the laboratory strain MG1655 and environmental E.coli 

from lineages in which multidrug resistance (MDR) plasmids have never been reported 

(Dunn et al., 2021). Here we use untargeted metabolomics to obtain a comprehensive, 

unbiased view of the metabolic profiles of diverse E.coli strains after acquisition of a 

plasmid, pLL35. Originating from Klebsiella pneumoniae, this plasmid encodes 
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multidrug resistances, including beta lactams, aminoglycosides and quinolones (Table 

3.1) (Fig 3.1). PLL35 is 106 kb long and belongs to the incFII(K)-9 plasmid group. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 Schematic of pLL35, a 106kb IncFII(K)-9 plasmid, originating from Klebsiella 
pneumoniae belonging to ST45. The plasmid encodes full conjugation machinery and 
contains resistance to beta-lactams (blaCTX-M-15 and blaTEM-112), aminoglycosides (aacA4, 
aacC2 and aacA1) and quinolones (qnrS1). The OXA-9 gene is truncated by a stop codon. The 
schematic is the work of Dr. S Dunn (Dunn et al., 2021). 
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3.3 Methods 
Mass Spectrometry 

This study used a total of 9 Escherichia coli strains (Table 3.1). After undergoing 

conjugation with the 106kbp pLL35 FII (K)-9 multidrug resistant plasmid (work by Dr. 

Carrilero) each strain has a plasmid carrying and plasmid free version (Dunn et al., 

2021).  

Table 3.1  E.coli strains used in this experiment and their origins. 

 

 

 

 

 

 

 

Full methods are described in chapter 2. The bacteria were grown in nutrient broth at 

37℃, 180 rpm to mid-exponential phase, isolated and frozen at -80℃. The samples 

were prepared for mass spectrometry with chloroform and methanol. Untargeted 

metabolome analysis was performed using HPLC-QToF MS to identify differentially 

expressed bacterial metabolites between bacteria with or without the MDR plasmid 

pLL35. The samples (50µl) were introduced to the Waters G2/G2Si Synapt mass 

spectrometer. The instrument settings are detailed in the supplementary material (S3). 

HPLC-QToF MS was performed using the aqueous phase of the samples for DESI MS 

in positive mode, with a scanning range of 50-1200m/z over 3 minutes. 

Data Processing and Analysis 

All data processing and analysis followed a standardised methodology based on 

open-source software, developed and collated into a full guide by the author and 

peers (https://untargeted-metabolomics-workflow.netlify.app/ accessed on 27 January 

2023) (Parker et al., 2023). 

 
All raw data files were converted to mzML format using the Proteowizard software 

MsConvert. XCMS online was used for peak alignment and retention time correction 

Strain E.coli clonal group Source 

F022 ST131 Clinical bacteremia 

F037 ST131 Clinical bacteremia 

F047 ST131 Clinical bacteremia 

F048 ST131 Clinical bacteremia 

F054 ST131 Clinical bacteremia 

F0104 ST131 Clinical bacteremia 

ELU39 ST1122 River effluent 

GU15 ST394 River effluent 

MG1655 K-12 Laboratory strain 

https://proteowizard.sourceforge.io/
https://xcmsonline.scripps.edu/landing_page.php?pgcontent=mainPage
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(parameters 84500, S3). An average was taken of the technical replicates and output 

XCMS data tidied in R (https://untargeted-metabolomics-workflow.netlify.app/). After 

peak alignment and retention time correction, over 1000 features were present in every 

profile. The data was processed to allow comparison of relative metabolite intensities 

in multigroup analyses across all strains and conditions. Additionally, a series of 

pairwise analysis by strain were conducted to analyse the relative amount of 

metabolites present in the ‘plasmid carrying’ and ‘plasmid free’ proflies thereby 

excluding metabolites arising from plasmid transcription and focusing solely on the 

bacterial metabolome. 

Metaboanalyst was used to perform statistical analysis. Data was normalised with 

pareto scaling (Figure S3.2 and S3.3).  

This study employs random forest analysis, a bootstrapping algorithm which combines 

ensemble learning methods with the decision tree framework to create multiple 

randomly drawn decision trees from the data and averaging the results. This analysis 

produces strong predictors of grouping, or treatment, ranked by variable importance. 

The analysis ran with 7 predictors and 500 trees. 

Metabolites are reported if present in all 5 biological replicates and for fold change 

data, must meet or exceed a threshold of +/- 2.0 were reported. Here we define 

‘significance’ as metabolites that have been differentially expressed by a fold change 

≥ +/- 2.0. 

 Any metabolites highlighted in statistical analysis were putatively identified using 

METLIN, KEGG and ECMD .The databases METLIN or ECMD were searched with the 

m/z values, and must be agreed upon by with the KEGG pathway metabolism map for 

E.coli in order to be reported. 

 

https://www.r-project.org/
https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage
https://www.genome.jp/kegg/
https://ecmdb.ca/
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3.4 Results  

Strain specific metabolic variability. 

Random Forest analysis demonstrated that strain differences dominate the variation 

between isolates and are greater than the impact of plasmid carriage. Of the 20 most 

variable masses across the dataset, just 3 were associated with plasmid carriage (Fig 

3.2, plots 1, 8 and 9. Table 3.2). Overall global metabolic profiles suggested differences 

between strains from different ecological backgrounds with environmental and lab 

strains (ELU39 and GU15) appearing to be distinct from the clinical strains (Fig 3.3) 

The metabolic signature of environmental strain ELU39 in particular is different to the 

rest of the strains (Fig 3.3), consistently demonstrated in the discriminating mass bins 

for the whole dataset (Fig 3.2, plots 4,5,8,9,12,16,17,19). However, variability between 

strains was driven more by large differences in specific metabolites as overall by strain, 

the metabolism of plasmid carriers were very similar to plasmid free bacteria (Fig S3.1). 

For example, in a principal component analysis the majority of the variation along PC1 

is driven by clinical strain F022, for which 107 metabolites were greatly upregulated 

compared to other strains (Fig 3.4), including 4 of the top 20 mass bins as highlighted 

by a Random Forest analysis (Fig 3.2). F022 carries 8 copies of an IS element which 

likely account for this very different profile. This interrupted the gene IrhA, which is a 

negative regulator of classes 1, 2 and 3 of the flagellar biosynthesis regulons (Dunn et 

al 2021). 

Plasmid acquisition was characterised by subtle, strain specific variation, affecting a 

comparatively small proportion of the metabolome; <1% of the metabolome 

significantly altered in 8 of 9 strains. Environmental strain ELU39 has the largest 

response to the plasmid with 1.36% of the metabolic profile significantly altered. 

The strains represent a continuum of metabolic responses. Some strains showed 

strong trends towards upregulation (E.g , ELU39 with 17 upregulated and 2 

downregulated) while others showed strong downregulation (F047 with 1 upregulated 

and 11 downregulated) (Fig 3.5). Both of the environmental strains favour upregulation. 

In other cases strains showed mixed (E.g strain F104 with 3 upregulated and 4 

downregulated) or minor responses (E.g F022, F037 and F048 had 3, 2 and 1 

significant metabolites respectively) (Fig 3.5).  
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The specific masses affected by plasmid carriage were largely specific to each strain. 

A total of 51 unique mass values were significantly differentially up or down regulated 

by plasmid acquisition, 46 of these were strain specific (Table S3.1). Only 7 unique 

masses could be identified and among these there is some functional parallelism 

where the same pathways are implicated in different strains and at times from different 

metabolites. At a detected mass level 5 masses are significant in up to 5 strains 

although functional categorization could not always be assigned. For instance, M/z 

136.0858 was upregulated in 4 strains F037, F104, ELU39 and GU15, notably over 

10-fold in F104 (FC 10.96) and ELU39 (FC 11.74) (Table 3.2). These masses are also 

not consistent in direction, emphasising strain specificity. 

Three main pathways stand out among the metabolites affected by plasmid 

carriage. 

Ubiquinone biosynthesis 

4-Hydroxy-3-polyprenyl benzoate (ppm36) was significantly affected in 4 strains (F022, 

F047, F054 and F104) (Table 3.2, Fig 3.6) and was the first hit in the Random Forest 

analysis (Fig 3.2 plot 1). As a result of plasmid acquisition this metabolite was 

upregulated in 3 strains, most notably by nearly 10-fold in F054, (FC 9.473) and 

downregulated in F047 (FC 0.37) (Table 3.2). 4-Hydroxy-3-polyprenyl benzoate is a 

key component of the ubiquinone biosynthesis pathway and is a precursory compound 

to ubiquinol. Furthermore, some of the potential identifications for the M/z 147.06438, 

which is downregulated in F022, are Benzyl-alcohol and 4-Cresol (ppm 39) (Table 3.2), 

both part of the toluene degradation pathway which is linked to ubiquinol as an 

alternative parent compound (Jindrova et al., 2002). 

Central energy production  

Masses linked to central carbohydrate metabolism were down regulated in 2 strains 

(F047 and F054) in response to plasmid carriage. The metabolite D-Glyceric acid (ppm 

36) was downregulated in F047 (FC 0.45) which is part of the pentose-phosphate 

pathway (Table 3.2). Methylamine (ppm 5) is upregulated in strain F054 (FC 2.03). This 

metabolite is part of the methane metabolism pathway but is also linked to D-Glyceric 

acid as a precursor (Table 3.2) (KEGG). 
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Amino acid biosynthesis   

Amino acid metabolism was associated with several significant metabolites. The 

metabolite N6-Acetyl-L-Lysine (ppm 25) is part of the lysine degradation pathway and 

is downregulated in F104 (FC 0.49) but upregulated in MG1655 (FC 2.19) (Table 3.2). 

There were 2 potential identifications for this mass, the second is decanoate (ppm37), 

a fatty acid (Ecocyc).  

The mass 136.13162 was identified as creatinine (ppm 22) and was significantly 

altered in 5 strains: F048 (FC 0.11), F054 (FC 15.62), F104 (FC 2.74), GU15 (FC 0.09) 

and ELU39 (FC 0.29). This metabolite is linked to the arginine and proline metabolism 

pathway (Table 3.2 Fig 3.6). The response to plasmid carriage in this metabolite was 

the most extreme observed across the strain collection, being both the most highly 

upregulated (>15 fold in clinical strain F054) and the most strongly down regulated 

(>10 fold in environmental strain GU15). The plasmid induces downregulation of 

creatinine in both environmental strains and F048 but is upregulated in the other two 

clinical strains F054 and F104.  
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Figure 3.2. The average ion intensities for discriminatory mass bins under 500 Da for all strains with and without the plasmid, from the results of a Random 
Forest analysis. Strain names are shortened as follows: F104 = 104, F022 = 22, F037 = 37, F047 = 47, F048 = 48, F054 = 54, ELU39 = EL, GU15 = GU and 
MG1655 = Mg. The symbols – and + indicate plasmid free and plasmid carrying respectively. 
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Figure 3.3 A Heatmap showing the full metabolic profiles of 9 strains of Escherichia coli. 
Intensities of detected masses have been scaled -3 to +3. Each strain is in a plasmid free (-) 
and pLL35 plasmid containing (+) conditions. The biological replicates for each strain have 
been pooled.  
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Figure 3.4 – Principle component analysis (PCA) of all metabolomic data. Principle component (PC) 1 (36.9%) and 
2 (21.8%) (above) and PC 3 (16.4%) and PC2 (21.8%) (below). A circle represents plasmid free strains and the + 
symbolises plasmid carrying. The separation in the above plot is caused by the lineage difference of strain F022. 
The 
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Figure 3.5 Fold change maps highlighting the masses (m/z) that cross the fold change 
threshold of 2.0 when the plasmid free and plasmid carrying bacterial metabolisms are 
compared on an individual strain basis. 
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Table 3.2 – Results from the pairwise ‘plasmid free’ and ‘plasmid containing’ analyses by strain. Mass values with a Fold Change of 2.0 or greater between the 

2 treatment groups. Those with putative Identifications have been included here, full table in supplementary (Table S3.1) 

Strain Mass ID KEGG ppm Adduct 

Adduct 
+Compound 

M/Z 
Monoisotopic 

Mass 
Chemical 
Formula 

Fold 
Change log2(FC) 

F054 70.005 Methylamine C00218 5 M+K 70.0054 31.0422 CH5N 2.0299 1.0214 

F048 136.13162 Creatinine C00791 22 M+Na 136.0481 113.0589 C4H7N30 0.11428 -3.1294 

F054 136.13162 Creatinine C00791 22 M+Na 136.0481 113.0589 C4H7N30 15.621 3.9654 

F104 136.13162 Creatinine C00791 22 M+Na 136.0481 113.0589 C4H7N30 2.7381 1.4532 

ELU39 136.13162 Creatinine C00791 22 M+Na 136.0481 113.0589 C4H7N30 0.28535 -1.8092 

GU15 136.13162 Creatinine C00791 22 M+Na 136.0481 113.0589 C4H7N30 0.085993 -3.5396 

F022 147.06438 Pyrazinic acid C19915 10 M+Na 147.0165 124.0273 C5H4N2O2 0.42509 -1.2342 

  Benzyl-alcohol C00556 39 M+K 147.0207 108.0575 C7H8O   

  4-Cresol C01468 39 M+K 147.0207 108.0575 C7H8O   

F104 211.1012 N6-Acetyl-L-Lysine C02727 25 M+Na 211.1053 188.1161 C8H16N2O3 0.49985 -1.0004 

  Decanoate C01571 37 M+K 211.1077 171.1385 C10H19O2   

MG1655 211.1012 N6-Acetyl-L-Lysine C02727 25 M+Na 211.1053 188.1161 C8H16N2O3 2.1908 1.1315 

  Decanoate C01571 37 M+K 211.1077 171.1385 C10H19O2   

F054 248.12694 Tetradecanoate  11 M+Na 248.1747 225.1855 C14H25O2 0.4625 -1.1125 

F047 251.06503 D-Glyceric acid C00258 36 M+H 251.0074 250.0002 C6H10CaO8 0.4477 -1.1594 

F047 275.12669 
4-Hydroxy-3-

polyprenylbenzoate C05848 36 M+H 275.1642 274.1569 C17H22O3 0.37122 -1.4297 

F104 275.12766 
4-Hydroxy-3-

polyprenylbenzoate C05848 36 M+H 275.1642 274.1569 C17H22O3 2.9549 1.5631 

F054 275.13172 
4-Hydroxy-3-

polyprenylbenzoate C05848 36 M+H 275.1642 274.1569 C17H22O3 9.473 3.2438 

F022 275.13489 
4-Hydroxy-3-

polyprenylbenzoate C05848 36 M+H 275.1642 274.1569 C17H22O3 2.2185 1.1496 
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Figure 3.6 – KEGG map of E. coli metabolites significantly altered by the presence of the pLL35 plasmid. The putative identifications have been summed 

across all 9 strains and highlighted.



 
 

 68 

3.5 Discussion
 
Plasmid carriage induces subtle, strain specific metabolome rewiring in E.coli. 

 

Untargeted metabolomic analysis showed a diverse set of E.coli strains have highly 

variable metabolic profiles. The response of these strains to the acquisition of an MDR 

ESBL plasmid, pLL35, is subtle and strain specific that affected both divergent and 

shared metabolic pathways. Common pathways impacted by the plasmid related to 

central energy metabolism, amino acid metabolism and ubiquinone biosynthesis. 

Among common metabolites, direction of impact was also contingent on the specific 

strain. 

 

Untargeted metabolomic analysis showed that the response to the acquisition of the 

plasmid pLL35 by E.coli is contingent upon the specific strain, aligning with previous 

research. In the study conducted by Dunn et al 2021; the plasmid was stably 

maintained in all strains, but otherwise induced variable responses in resistance to 

cefotaxime, growth and transcriptomic effects (Dunn et al., 2021). There was a 

consistent subtle differential regulation across the transcriptome, the most altered of 

which were associated with; the cell wall, signal transduction, cell motility, energy 

production and conversion and carbohydrate transport and metabolism (Dunn et al., 

2021). While each strain has a unique metabolic profile, there are some common 

functions. Broadly, the results indicate that the plasmid affected central energy 

metabolism and alternative energy sources for cellular function and growth. 

 

Key metabolic processes affected by plasmid acquisition across strains were the 

ubiquinone biosynthesis pathways, central energy metabolism and amino acid 

metabolism (Table 3.2). In 4 strains; F022, F047, F054 and F104, the ubiquinone 

biosynthesis pathway is highlighted. Ubiquinone is one of three quinones in E.coli and 

is involved in aerobic respiration (Aussel et al., 2014; Nitzschke and Bettenbrock, 

2018). Ubiquinone biosynthesis is a highly conserved pathway because it is essential 

for aerobic growth, gene regulation and oxidative stress adaptation. The other 

quinones are for anaerobic respiration, allowing E.coli to switch between the two 

(Nitzschke and Bettenbrock, 2018; Arias-cartin et al., 2023). 3 of the strains; F022, 

F054 and F104 had this pathway upregulated, suggesting a greater rate of energy 
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production. In F047 this same pathway was downregulated, but this compliments the 

transcriptomics which revealed an upregulation of anaerobic genes, suggesting a 

switch to anaerobic respiration (Dunn et al., 2021). 

F047 has the largest metabolic response of the clinical strains and is skewed towards 

downregulation. A decrease in D-glyceric acid may reflect lower levels of glycolysis, 

the pentose phosphate pathway or the TCA cycle which could be an indication of 

stress-induced energy conservation (Wang et al., 2016; Zhao et al., 2019). F047 also 

had lower levels of cefotaxime resistance, reduced growth and the biggest 

transcriptional response (Dunn et al., 2021). The transcriptome indicated an 

upregulation of stress responses, metabolic transport genes, anaerobic respiration 

genes and the repressor (marR) of the mar antibiotic resistance and oxidative stress 

response regulon, although this regulon itself was not significantly impacted (Dunn et 

al., 2021). 

 

Methane metabolism, fatty acid metabolism and metabolism of alternate sources of 

energy were also affected pathways (Table 3; Jindrova et al., 2002; Guo AC et al., 

2012). Fatty acid metabolism is highlighted in strains F054, F104 and MG1655, and is 

linked to ubiquinone (Agrawal et al., 2017). Long chain fatty acids are a source of 

energy for E.coli but induce oxidative stress, something that ubiquinone helps to 

counteract through reduction into ubiquinol because it is an electron carrier in the 

electron transport chain (Agrawal et al., 2017). Of the strains in which the ubiquinone 

biosynthesis pathway was highlighted, only F054 and F104 demonstrate significance 

in fatty acid metabolism.  

 

Nonetheless, parallel responses are seen repeatedly throughout this dataset in the 

metabolites impacted by the plasmid.  Selection pressures tend to affect bacteria by 

targeting function and not genes, so it follows that there are commonly affected 

pathways across strains (Wang et al., 2016). While common areas of the metabolism 

are affected, the direction of change caused by the plasmid is strain specific. In multiple 

cases the same detected mass, significant in several strains, has displayed both 

upregulation and downregulation, depending on specific strain. For example, 

creatinine was identified in 5 strains, upregulated in 2 strains and downregulated in 3 

(Table 3.2).  
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Together the metabolic responses seen in this study may be reflective of stress and 

energy conservation. Signs of stress in E.coli often involve energy metabolism, as 

energy is a requisite resource for overcoming the underlying stressor (Zhao et al., 

2019). Among others, arginine and proline metabolism, methane metabolism, 

glycolysis and the TCA cycle are all metabolic markers of stress in E.coli (Zhao et al., 

2019) and together may indicate a strategy of energy conservation or utilisation of 

alternative energy sources. This ability to acclimate using a metabolic network that can 

produce energy from lots of different sources and have a responsive regulatory system 

to enable this is an E.coli survival strategy (Ishii et al., 2007). 

 

The metabolomic data revealed trends in response to the plasmid related to ecological 

background of the strains that were not apparent from the transcriptomics. For instance 

the metabolome of the environmental strains ELU39 and GU15 responded similarly to 

each other in masses affected and direction of change. Interestingly ELU39 had a 

negligible change in growth rate and no significantly differentially expressed genes and 

yet had the biggest metabolic response of the dataset. GU15 has a greater reduction 

in growth than ELU39 but a smaller response metabolically, suggesting ELU39 may 

be better suited to respond to energy demands of the plasmid (Figure 3.5) (Dunn et 

al., 2021). The different response of the two environmental strains may be partially 

explained by the likelihood that these strains and the plasmid would encounter each 

other. Using naturally occurring combinations gleans different results, therefore 

predictions based on laboratory strains may not be transferable to real-world scenarios 

(Alonso-del Valle et al., 2021). 

 

It is generally thought that when E.coli acquires a plasmid there will be a reduction in 

fitness thanks to re-directed transcription and translation machinery away from 

chromosomal operons, and that following this the plasmid will be degraded or adaptive 

mutations will ameliorate costs (Dunn, Connor and McNally, 2019). However overall, 

Dunn et al reports a very low proportion of the transcriptome differentially expressed 

upon plasmid acquisition, and a small but varied growth response. GU15 and F047 

displayed reduced growth and F022 and F037 increased growth rate after acquiring 

the plasmid. However, the scale of the transcriptomic response did not correlate to the 

growth impact (Dunn et al., 2021). In all cases, only a small fraction of the metabolome 

is changed in response to plasmid acquisition, concurring with the subtle effect seen 
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in the transcriptomics. Since conjugation of plasmids belonging to incF are limited by 

strain it cannot be ruled out that pLL35 has encountered E.coli before, despite 

originating in K. pneumoniae, and has therefore already evolved for minimal disruption 

(Benz et al., 2021). Alternatively, the clinical strains may already be more generally 

adapted to plasmid carriage, if they carried other plasmids before conjugation of 

pLL35, although at the time of conjugation, the strains contained no other MDR 

plasmids (Dunn et al., 2021). Plasmid presence can increase bacterial permissiveness 

to further plasmid carriage  (San Millan, Heilbron and MacLean, 2014). 

 

A strain specific, low impact of plasmid acquisition is not surprising given a growing 

body of research demonstrating minimal fitness consequences of MDR plasmids on 

E.coli (Fischer et al., 2019). This is repeated in other studies featuring non-lab strains, 

highlighting the importance of studying these interactions in ecologically relevant 

contexts (Alonso-del Valle et al., 2021).  

 

Hernando-amado suggests genetic elements dictate the extent of a resistance 

plasmid’s impact and that effects of plasmid acquisition could be positive as well as 

deleterious (Hernando-amado et al., 2017).  E.coli has a robust metabolic network that 

can re-route in response to perturbations in its environment, consequently metabolic 

impact is smaller than might be expected, which could also explain why the plasmid 

does not have large phenotypic effects (Ishii et al., 2007). Furthermore, a multi-omic 

study noted that changes in mRNA and regulation of energy within E.coli were effective 

enough that metabolite levels did not change a great deal, nor in particular patterns 

(Ishii et al., 2007). 

 

Identification of metabolites is an area widely recognised as challenging due to highly 

variable MS techniques, machines and individual sample properties like retention time 

in LC/MS. Although databases are improving, it is currently lagging behind other omics 

technologies (Blaženović et al., 2018; Chaleckis et al., 2019). This raises the question 

of whether m/z values which are only a few decimal places different, such as 136.0858 

and 136.13162 (Table S3.1) could be the same metabolite, or a very similar one. 

Although mass spectrometry measurements are very precise, secondary metabolites 

are highly variable in structure, and overlap of the strains in which these m/z are 

differentially present (+/- 2.0 FC) compared to plasmid containing groups may not be 
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a coincidence, especially given the robust replication of the measurements. Although 

the patterns in this data are backed by robust replication, better identification may 

strengthen trends seen so far. 

Together the results of untargeted metabolomics show acquisition of a large multidrug 

resistant plasmid in a diverse set of E.coli strains has subtle effects that impact central 

energy metabolism in strain specific ways that may indicate metabolic stress.  

Future research should consider variable responses to plasmid acquisition in a 

community context. Genotype by environment interactions allow the maintenance of 

even deleterious alleles (Hasik and Siepielski, 2022), which can help to explain why 

variation in fitness for plasmid and bacteria combinations allows for plasmid 

persistence. Theoretically, even when a plasmid induces a fitness cost, plasmid by 

bacteria fitness variation and bacterial genotype by environment interactions allow for 

the maintenance of plasmids within a population. In eukaryotic hosts, parasite-

mediated variation in fitness is a driving factor of selection (Hasik and Siepielski, 2022), 

the genetic parasitism of plasmids may play a similar role in bacteria. A small plasmid 

impact on its bacterial host has a place in the spectrum between being too costly which 

drives the loss of the edge accessory genes provided as alternative resistance 

mechanisms are favoured (Bottery, Wood and Brockhurst, 2017), and positive impacts 

which certainly exist (Dunn et al., 2021) but may be less likely. 
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Chapter 4 : Strain specific/limited parallelism responses to 
coevolution and antibiotic selection of diverse E.coli 
lineages with a multidrug resistant plasmid. 
 
 

4.1 Abstract  
 
The antibiotic resistance crisis is costing increasing numbers of lives due to the 

dissemination of multidrug resistant bacterial strains. This study conducts untargeted 

metabolomics on 3 E.coli strains from the endpoint of an evolutionary experiment 

having co-evolved with a plasmid, with and without cefotaxime selection. Metabolic 

profiles varied by strain but showed parallelism across evolutionary treatment within 

strains. The clinical strain had some of the most variable metabolic profiles. cAMP was 

a notable exception to the unique metabolic impacts across strains. Coevolution with 

a plasmid altered amino acid metabolism and energy utilisation, while antibiotic 

selection displayed stress responses related to the beta-lactam mechanism of action. 

 
 

4.2 Introduction  
 

Antibiotic resistance is a worldwide crisis set to claim increasing numbers of human 

lives with untreatable infections (Lee Ventola, 2015). Conjugative plasmids are the 

primary disseminators of resistance genes thus exacerbating this crisis. Of particular 

concern are multidrug resistance (MDR) plasmids that can carry multiple resistance 

genes often against different antibiotic classes and transfer horizontally across 

bacterial species barriers (Hall, Brockhurst and Harrison, 2017). The emergence of 

MDR lineages can therefore occur in a single evolutionary event, presenting an 

extreme clinical challenge to find optimal treatment and to keep antibiotics effective for 

the long term (MacLean and San Millan, 2019; Peirano and Pitout, 2019; Wu et al., 

2019). 

Nevertheless, acquiring an MDR plasmid often comes at a fitness cost to the cell, such 

costs may arise due to a wide range of causes including physiological burden and/or 

genetic conflicts. The persistence of plasmids in bacterial populations has historically 

been termed the ‘plasmid paradox’ because evolutionary theory suggests plasmid loss 
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should occur over time due to purifying selection acting on the cost of carriage 

(Harrison and Brockhurst, 2012). 

Many studies to date have shown that this paradox is often resolved via the co-

evolution of bacteria and plasmids.  Specifically genetic amelioration of costs 

(Brockhurst and Harrison, 2022), where compensatory mutations to ameliorate the 

cost of plasmid carriage occur in the chromosome, plasmid or both (Hall et al., 2021). 

Amelioration can take the form of mutations to increase fitness, lose costly functions 

and to resolve genetic conflict (Porse et al., 2016b; Hernando-amado et al., 2017; Hall 

et al., 2021). An example of this was revealed in E.coli carrying a tetracycline 

resistance plasmid, where plasmid costs were compensated by mutations to acquire 

chromosomal resistance and impairing plasmid encoded resistance machinery 

(Bottery, Wood and Brockhurst, 2019). Compensation can also occur through changes 

to transcription. For example through increased virulence, colonisation or energy 

production (Ranjan et al., 2018; San Millan et al., 2018; Vasileva et al., 2018; Billane 

et al., 2022). Coevolution with plasmids in P. aeruginosa induced fitness costs but 

these were rapidly and repeatedly compensated by mutations to a bacterial regulatory 

system (GacA/GacS), which then counteracted the genetic conflict, an example of a 

combination of genetic mutation with downstream transcriptional effects (Harrison et 

al., 2015; Hall et al., 2021). Compensation can sometimes take place through 

metabolic mechanisms, as demonstrated in Haemophilus influenzae. Coevolution with 

a ColE1-like plasmid pB1000 demonstrated amelioration could in part be achieved by 

host alterations to the expression of certain metabolic pathways, such as amino acid 

metabolism (Ares-arroyo et al., 2022). 

 

As an alternative solution to the paradox, the plasmid may also enable horizontal 

transfer through differential regulation by increasing biofilm formation and conjugation 

and decreasing bacterial motility and anti-competitor systems, potentially costly 

mechanisms to the bacterial host (Parashar et al., 2013; Jiang et al., 2017; Venanzio 

et al., 2019; Huang et al., 2020; Billane et al., 2022).  

 

Compensatory evolution has now been observed across a wide range of bacteria-

plasmid associations, but the physiological basis of amelioration is poorly understood. 
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Moreover, whether the same pathways of amelioration for a given MDR plasmid are 

taken in genetically diverse bacterial strains is unclear. 

 

This chapter uses untargeted metabolomics to better understand the evolutionary 

responses of E.coli strains following the acquisition of a multidrug resistant plasmid, 

pLL35 encoding the extended-spectrum beta lactamase BlaCTX-M-15 which provides 

resistance to cefotaxime. In a previous study, 5 genetically diverse E.coli lineages 

carrying pLL35 were experimentally evolved for approximately 700 generations with or 

without cefotaxime selection, alongside plasmid free controls (Carrilero, Dunn and 

Moran, 2023). Here, the metabolomes of the endpoint evolved populations from 3 of 

the E.coli strains: the lab strain MG1655, the clinical strain F022, and the 

environmental strain ELU39 are analysed. In each of these strains, the initial gain of 

pLL35 caused a fitness cost associated with strain specific transcriptional changes 

(Dunn et al., 2021).  

After 700 generations of evolution the plasmid was maintained in all populations and 

MG1655 and F022, but not ELU39, had improved in fitness relative to the plasmid 

carrying ancestor. Populations evolved with sub-MIC antibiotic selection with 

cefotaxime had a higher performance across growth kinetics than evolved plasmid free 

clones (Carrilero, Dunn and Moran, 2023). Resistance levels to cefotaxime did not vary 

with strain or selection and were largely unchanged but decreased in some plasmid 

carrying replicates of MG1655 due to upregulation of H-NS and downregulation of the 

resistance gene BlaCTX-M-15 (Carrilero, Dunn and Moran, 2023). 

Genome sequencing of the endpoint evolved clones revealed a range of functions 

targeted by selection in plasmid-carriers not observed in the plasmid-free controls, 

suggesting that these may be involved in compensatory evolution. Among 

chromosomal mutations in plasmid carriers evolved with and without antibiotic 

selection, 22% of single nucleotide variations (SNVs) were parallel. The number of 

nonsynonymous mutations remained consistent across strains and evolutionary 

conditions. 14 loci were non-synonymously mutated in one or more evolved clones, 

involving genes related to cellular metabolism, regulation of mobile genetic elements, 

and conjugation (Carrilero, Dunn and Moran, 2023).  
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Many of these functions were involved in metabolism. The functions of the loci mutated 

in more than one independently evolved clone affected core metabolic functions such 

as glycerol metabolism, the arginine transporter in F022 and ELU39, fatty acid 

metabolism in ELU39 and stress response sigma factor in MG1655. MG1655 had 

several strain specific mutations in aromatic compound metabolism. Other single SNVs 

mostly related to transcriptional control or metabolism. In MG1655 and ELU39, the 

transcriptional regulator controlling expression of the NhaA Na+/H+ antiporter protein 

was mutated, which controls intracellular pH (Dimroth, 1987; Carrilero, Dunn and 

Moran, 2023). 

Transcriptional analysis of the endpoint evolved MG1655 clones revealed extensive 

downregulation in plasmid carriers, impacting functions such as cellular structure and 

motility, DNA damage response, efflux mechanisms, lipopolysaccharide (LPS) 

production, outer membrane function, and biofilm formation (Carrilero, Dunn and 

Moran, 2023). 

This chapter builds on the work in Chapter 3 which investigated the immediate 

metabolic response to plasmid acquisition, extending this analysis to understand how 

evolution acts to resolve plasmid-mediated disruptions of cellular metabolism. This 

work found that plasmid acquisition had a subtle, strain specific effect. Relatively 

among the strains, the clinical strain had a low response, and the lab strain had an 

intermediate response, however both were <1% of the recorded metabolome. The 

environmental strain ELU39 had the highest metabolic response to plasmid 

acquisition, which impacted 1.36% of the metabolome. Upon acquisition of the plasmid 

the transcriptional response was also low, but much more significant in the evolved 

lines, therefore more pronounced metabolic effects may be expected. Of the identified 

functions in the previous chapter, there was no commonality between the 3 strains, 

suggesting E.coli from different lifestyles may have different metabolic responses to 

co-evolution with a plasmid.  

Given the predominance of metabolic functions as targets of putative compensatory 

evolution following gain of pLL35 across all 3 strains (Carrilero, Dunn and Moran, 

2023), this chapter conducted untargeted metabolomics on 3 evolved strains from the 

end point of the evolution experiment; clinical F022 strain, environmental ELU39 strain 

and lab strain MG1655. More generally, the work in this chapter expands the 
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application of metabolomics to experimental evolution, where previously it has proven 

valuable in giving a more comprehensive and nuanced view of evolutionary responses 

than genomics alone (San Millan et al., 2018; Ares-arroyo et al., 2022).
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4.3 Methods 
 

Mass Spectrometry 

This study used a total of 3 Escherichia coli strains representing 3 environmental 

backgrounds (Table 4.1). 

Table 4.1 Strain types and origins of the E.coli strains used in this chapter 

Strain E.coli clonal 

group 

Source 

F022 ST131 Clinical bacteremia 

ELU39 ST1122 River effluent 

MG1655 K-12 Laboratory strain 

 

These strains represent the endpoint of an evolution experiment conducted by Dr. 

Laura Carrilero (please see Carrilero, Dunn, Moran 2023 for full methodology). 5 

independent colonies from each of the E.coli strains were isolated as the ancestral 

state from which all further cultures were taken. The 106kb FII(K)-9 multidrug 

resistance plasmid pLL35 was conjugated from Klebsiella pneumoniae in static culture 

into the E.coli strains to obtain 5 independent transconjugants per strain. Liquid NB 

cultures were inoculated with the transconjugants and grown at 37℃ for 24 hours to 

create replication. The MIC varied by strain; F037 had the lowest at ~750mg/L, and 

several other strain exceeded 2000mg/L (Fig1 of Dunn et al., 2021). The evolution 

experiment ran 5 independent lines of the strains with 4 biological replicates; plasmid-

free clones as the control group, and plasmid-carrying clones in 2 conditions, with or 

without 4mg/ml cefotaxime treatment. This resulted in 75 lines that were serially 

transferred daily for a total of 84 days.  

The 5 clones of each evolved line of the 3  E.coli strains used here were, with 4 

biological replicates, grown in nutrient broth at 37℃, 180rpm to mid-exponential phase, 

isolated and frozen at -80℃. The samples were prepared for mass spectrometry with 

chloroform and methanol following the method described in chapter 2. 

mailto:l.carrilero@sheffield.ac.uk
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The samples (50µl) were introduced to the Waters G2/G2Si Synapt mass 

spectrometer. The instrument settings are detailed in the supplementary material (S4). 

HPLC-QToF MS was performed using the aqueous phase of the samples for DESI MS 

in positive mode, with a scanning range of 50-1200m/z over 3 minutes. 

Data Processing and Analysis 

All data processing and analysis followed methodology developed into a user-friendly 

guide and based on open-source software (Parker et al., 2023) (https://untargeted-

metabolomics-workflow.netlify.app/ accessed on 27 January 2023). 

 

All raw data files were converted to mzML format using the Proteowizard  software 

MsConvert. XCMS online was used for peak alignment and retention time correction 

(parameters detailed in supplementary_location). An average was taken of the 

technical replicates and output XCMS data tidied in R (https://untargeted-

metabolomics-workflow.netlify.app/). 

Metaboanalyst was used to perform statistical analysis. Data was normalised with 

pareto scaling (Figure S4.2).  

This study employs random forest analysis, a bootstrapping algorithm which combines 

ensemble learning methods with the decision tree framework to create multiple 

randomly drawn decision trees from the data and averaging the results. This analysis 

produces strong predictors of grouping, or treatment, ranked by variable importance. 

The analysis ran with 7 predictors and 1000 trees.  

Metabolites are reported if present in all 5 biological replicates and for fold change 

data, must meet or exceed a threshold of +/- 2.0 were reported. Here we define 

‘significance’ as metabolites that have been differentially expressed by a fold change 

≥ +/- 2.0. 

 Any metabolites highlighted in statistical analysis were putatively identified using 

METLIN, KEGG and ECMD .The databases METLIN or ECMD were searched with the 

m/z values, and must be agreed upon by with the KEGG pathway metabolism map for 

E.coli in ordered to be reported.

https://proteowizard.sourceforge.io/
https://xcmsonline.scripps.edu/landing_page.php?pgcontent=mainPage
https://www.r-project.org/
https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage
https://www.genome.jp/kegg/
https://ecmdb.ca/
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4.4 Results  
 
 

 
Figure 4.1 trajectory principle component analysis of each strain, grouped by evolution conditions; 
plasmid free (pink squares) plasmid carrying (blue triangles) and plasmid carrying exposed to 
cefotaxime (purple stars) and compared against the ancestral state (black circles).   

 
This study performed an untargeted metabolic analysis on the F022, ELU39 and 

MG1655 strains, 5 replicate lines of each having been evolved for ~700 generation in 

one of 3 conditions: plasmid free, plasmid carrying and plasmid carrying in the 

presence of cefotaxime. The metabolome was measured in the same nutrient rich lab 

medium as the strains had evolved in, without antibiotics therefore alterations seen 

here are the underlying changes to the metabolic network after antibiotic selection 

rather than a current response to antibiotic stress. 
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How has metabolism changed over evolutionary time compared to the ancestor? 

The endpoint evolved metabolomes had diverged from their respective ancestors 

following ~700 generations. Evolutionary paths varied between strains (Fig 4.1, PC2) 

and among replicates (Fig 4.1, PC1), but the evolved lines from different evolutionary 

treatment groups overlapped, suggesting that the metabolic signal associated with 

adaptation to the lab environment overwhelmed plasmid or antibiotic mediated 

responses. 

 

A random forest analysis was conducted to determine the top 20 metabolites driving 

the variation between the ancestral metabolic state and the evolved lines from each of 

the 3 evolutionary treatment groups per strain (Fig 4.2, 4.3 & 4.4). When comparing 

the metabolomic data of the ancestral and evolved states of each strain, affected 

metabolites showed common functions, namely amino acid biosynthesis, glycolysis 

and pyrimidine biosynthesis indicating changes to transcription, translation and energy 

metabolism (Tables 4.2, 4.3, 4.4). All of the strains showed increased levels of amino 

acid biosynthesis or energy metabolism in the evolved lines. For F022 and MG1655 

this agrees with the growth kinetics, conducted as part of the evolution experiment, 

which were improved after co-evolution with the plasmid (Carrilero, Dunn and Moran, 

2023). 

 

Pyrimidine biosynthesis metabolites are a higher intensity in the ancestor for F022 (Fig 

4.2  plots 3 and 8) but higher in the evolved lines for ELU39 (Fig 4.3 plot 8). Pyrimidine 

biosynthesis is essential for synthesis of the bases thymine, cytosine and uracil (Berg 

et al., 2019). In evolved lines, metabolites involved in this pathway were lower intensity 

in the clinical strain F022 and higher in the environmental strain. Yet dGDP or ADP, 

part of deoxyribonucleic acid biosynthesis, is much lower in the evolved environmental 

strain ELU39. Both of these pathways are essential for transcription and translation, 

making it difficult to determine a direction for these processes. 

 

Amino acid biosynthesis metabolites are at higher intensities in the endpoint clones for 

F022 (Fig 4.2, plots 16, 19, 20) and MG1655 (Fig 4.4 plot 11) versus their ancestor. 

Metabolites involved in energy metabolism, namely glycolysis and the TCA cycle have 

higher intensities in evolved lines for ELU39 (Fig 4.3, plots 3, 7) and MG1655 (Fig 4.4 
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plot 15) versus their ancestor. ELU39 also has lower intensities for a metabolite relating 

to DNA and RNA biosynthesis in the evolved lines (Fig 4.3 plot 11) versus their 

ancestor. These patterns suggest that after evolution, the bacteria have increased 

energy and amino acid biosynthesis and altered transcription and translation; however, 

the differences between ancestral and treatment groups may represent general 

adaptation of the strains to lab conditions rather than treatment-specific responses. 
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`F022 
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F022 
 

Figure 4.2. Random Forest Analysis showing the top 20 mass values under 500Da which cause the most variation between the ancestral state of E. coli strain 
F022 and the post-evolution clones that underwent 3 treatments of evolution; plasmid free, plasmid carrying and plasmid carrying with exposure to an 
antibiotic, cefotaxime. 
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Table 4.2. Random forest analysis rest of top 20 highest ranking masses under 500Da discriminating the ancestral and evolved groups of E.coli strain F022. 
Masses have been putatively identified using ECMDB and KEGG. 

 
F022 Mass Mean Decrease 

Accuracy 
ID KEGG MODULE ppm Adduct Adduct 

+Compound M/Z 
Monoisotopic 

Mass 
Chemical 
Formula 

Function 

1 158.9239 0.000664          

2 299.0026 0.000604 Alpha-D-glucose 6-
phosphate 

C00668 M00001 33 M+K 298.9929 260.0297 C6H13O9P Glycolysis 

   D-Allose 6-phosphate C02962  33 M+K 298.9929 260.0297 C6H13O9P  

   D-Myo-inositol (1)-
monophosphate 

C01177  33 M+K 298.9929 260.0297 C6H13O9P  

   -Myo-inositol 4-
phosphate 

C03546  33 M+K 298.9929 260.0297 C6H13O9P  

   D-Tagatose 6-
phosphate 

C01097  33 M+K 298.9929 260.0297 C6H13O9P  

   beta-D-Glucose 6-
phosphate 

C01172  33 M+K 298.9929 260.0297 C6H13O9P  

   Glucose 6-phosphate C00092  33 M+K 298.9929 260.0297 C6H13O9P  

   Fructose 1-phosphate C01094  33 M+K 298.9929 260.0297 C6H13O9P  

   Myo-inositol 1-
phosphate 

C04006  33 M+K 298.9929 260.0297 C6H13O9P  

   Fructose 6-phosphate C00085 M0001 33 M+K 298.9929 260.0297 C6H13O9P Glycolysis. Nucleotide 
sugar biosynthesis 
UDP-N-acetyl-D-

glucosamine 
biosynthesis, 
prokaryotes 

   D-Mannose 1-
phosphate 

C00636  33 M+K 298.9929 260.0297 C6H13O9P  

   Glucose 1-phosphate C00103  33 M+K 298.9929 260.0297 C6H13O9P  

   Galactose 1-phosphate C00446  33 M+K 298.9929 260.0297 C6H13O9P  

3 309.0392 0.000567 Glycineamideribotide C03838 M00048 21 M+Na 309.0458 286.0566 C7H15N2O8P De-novo purine 
biosynthesis 

   dUMP C00365 M00938 29 M+H 309.0482 308.041 C9H13N2O8P Pyrimidine 
deoxyribonucleotide 

biosynthesis 

4 240.9279 0.000546          

5 469.7693 0.000508          

6 165.9728 0.000481          

7 360.8926 0.000448          

8 427.0024 0.000441 Uridine 5'-diphosphate C00015 M00938 
M00053 

26 M+Na 426.9914 404.0022 C9H14N2O12
P2 

Pyrimidine 
deoxyribonucleotide  
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M00052 and ribonucleotide 
biosynthesis, 

deoxyribonucleotide 
synthesis 

9 120.9683 0.000424          

10 482.151 0.000417          

11 490.821 0.000396          

12 248.8956 0.000375          

13 308.0994 0.000368 Glutathione C00051 M00118 27 M+H 308.0911 307.0838 C10H17N3O6
S 

Glutathion 
biosynthesis 

14 258.8079 0.000365          

15 96.07998 0.000353          

16 153.1064 0.000337 Agmatine C00179 M00133 31 M+Na 153.1111 130.1218 C5H14N4 Polyamine 
biosynthesis 

17 129.1389 0.000332          

18 323.1804 0.000327 Retinal C00376  10 M+K 323.1772 284.214 C20H28O  

19 271.0779 0.000325 4-(Glutamylamino) 
butanoate 

C15767 M00136 32 M+K 271.0691 232.1059 C9H16N2O5 GABA biosynthesis 

   N2-Succinyl-L-ornithine C03415 M00879 32 M+K 271.0691 232.1059 C9H16N2O5 Arginine 
succinyltransferase 

pathway 

20 118.0905 0.000317 Betaine C00719 M00555 31 M+H 118.0868 118.0868 C5H12NO2 Serine and 
threonine 

biosynthesis 

   L-Valine C00183 M00019 36 M+H 118.0863 117.079 C5H11NO2 branched chain 
amino acid 

metabolism valine-
isoleucine 

metabolism 
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ELU39 
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ELU39 
 

 
 
Figure 4.3. Random Forest Analysis showing the top 20 mass values under 500Da which cause the most variation between the ancestral state of E. coli strain 
ELU39 and the post-evolution clones that underwent 3 treatments of evolution; plasmid free, plasmid carrying and plasmid carrying with exposure to an 
antibiotic, cefotaxime. 
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Table 4.3. Random forest analysis rest of top 20 highest ranking masses under 500Da discriminating the ancestral and evolved groups of E.coli strain ELU39. 
Masses have been putatively identified using ECMDB and KEGG. 

 
ELU39 Mass Mean 

Decrease 
Accuracy 

ID KEGG MODULE ppm Adduct Adduct 
+Compound 

M/Z 

Monoisotopi
c Mass 

Chemical 
Formula 

Function 

1 158.0337 0.000636          

2 238.0862 0.000612 Dyspropterin C03684  31 M+H 238.0935 237.0862 C9H11N5O3 Tetrahydrobiopterin 
biosynthesis 

3 203.057 0.000565 L-Rhamnonate C01934  22 M+Na 203.0526 180.0634 C6H12O6  

   D-Allose C01487  22 M+Na 203.0526 180.0634 C6H12O6  

   Inositol C00137  22 M+Na 203.0526 180.0634 C6H12O6  

   alpha-D-Glucose C00267 M00001 
M000549 
M00909 

22 M+Na 203.0526 180.0634 C6H12O6  

   D-Fuctose C00095  22 M+Na 203.0526 180.0634 C6H12O6  

   beta-D-glucose C00221  22 M+Na 203.0526 180.0634 C6H12O6  

   D-Mannose C00159  22 M+Na 203.0526 180.0634 C6H12O6  

   Alpha-D-Galactose C00984 M00554 
M00632 

22 M+Na 203.0526 180.0634 C6H12O6  

   D-Galactose C00124 M00632 22 M+Na 203.0526 180.0634 C6H12O6  

   D-Glucose C00031  22 M+Na 203.0526 180.0634 C6H12O6  

4 86.9541 0.000521          

5 181.0518 0.000517 5-Methylthioribose C03089  6 M+H 181.0529 180.0456 C6H12O4S  

   Trans-2,3-Dihydroxycinnamate C12623 M00545 12 M+H 181.0495 180.0423 C9H8O4 Trans-cinnamate 
degradation 

   4-Hydroxyphenylpyruvic acid C01179 M00025 12 M+H 181.0495 180.0423 C9H8O4 tyrosine biosynthesis 

6 275.5738 0.000507          

7 156.9928 0.000475 Succinic acid C00042 M00009 
M00011 
M00027 
M00956 

19 M+K 156.9898 118.0266 C4H6O4 Citrate cycle, GABA shunt 
lysine degradation 

8 405.0225 0.00047 Phosphoribosyl 
formamidocarboxamide 

C04734 M00048 4 M+K 405.02 366.0577 C10H15N4O
9P 

De novo purine 
biosynthesis 

   Uridine 5'-diphosphate C00015 M00938 
M00053 
M00052 

32 M+H 405.0095 404.0022 C9H14N2O1
2P2 

Pyrimidine 
deoxyribonucleotide  and 

ribonucleotide 
biosynthesis, 

deoxyribonucleotide 
synthesis 

9 152.9066 0.000467 Thiosulfate C00320  7 M+K 152.9077 113.9445 H2O3S2  

10 356.8463 0.000434          
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11 428.0495 0.000432 dGDP C00361 M00053 30 M+H 428.0367 427.0294 C10H15N5O
10P2 

Deoxyribonucleotide 
biosynthesis 

   ADP C00008 M00053 30 M+H 428.0367 427.0294 C10H15N5O
10P2 

Deoxyribonucleotide 
biosynthesis 

12 348.8654 0.000415          

13 432.0338 0.00041          

14 159.078 0.000394          

15 431.0995 0.000392          

16 493.8071 0.00039          

17 250.8868 0.000382          

18 425.1196 0.000378          

19 314.0225 0.000374 2-Methyl-4-amino-5-
hydroxymethylpyrimidine 

diphosphate 

C047 M00127 10 M+NH4 314.0192 295.9854 C6H8N3O7P
2 

Thiamine 

20 457.1272 0.000373 FMNH(2) C01847  33 M+H 457.1119 456.1046 C17H21N4O
9P 

Riboflavin biosynthesis 

   Flavin Mononucleotide C00061 M00125 33 M+H 457.1119 456.1046 C17H21N4O
9P 

Riboflavin biosynthesis 
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MG1655 
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MG1655 
 
 

Figure 4.4.  Random Forest Analysis showing the top 20 mass values under 500Da which cause the most variation between the ancestral state of E. coli 
strain MG1655 and the post-evolution clones that underwent 3 treatments of evolution; plasmid free, plasmid carrying and plasmid carrying with exposure to 
an antibiotic, cefotaxime. 
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. 
Table 4.4. Random forest analysis rest of top 20 highest ranking masses under 500Da discriminating the ancestral and evolved groups of E.coli strain 
MG1655. Masses have been putatively identified using ECMDB and KEGG. 

 
MG1655 Mass Mean Decrease 

Accuracy 
ID KEGG MODULE ppm Adduct Adduct 

+Compound 
M/Z 

Monoisotopi
c Mass 

Chemical 
Formula 

Function 

1 411.5344 0.001098          

2 184.9373 0.000838          

3 364.8681 0.000778          

4 292.8574 0.00073          

5 286.8633 0.000628          

6 390.8541 0.000585          

7 362.9447 0.000578          

8 480.856 0.000576          

9 382.8793 0.000561          

10 313.0444 0.000549          

11 197.0987 0.000548 L-ArginineC00062 C00062 M00844 11 M+Na 197.1009 174.1117 C6H14N4O2 Arginine biosynthesis 

12 452.5326 0.000546          

13 380.2166 0.000507          

14 291.0784 0.000484 Inosine C00294 M00958 29 M+Na 291.07 268.0808 C10H12N4O5 Adenine ribonucleotide 
degradation 

   2(alpha-D-Mannosyl)-D-
glycerate 

C11544  33 M+Na 291.0687 268.0794 C9H16O9  

15 156.9928 0.000474 Succinic acid C00042 M00009 
M00011 
M00027 
M00956 

19 M+K 156.9898 118.0266 C4H6O4 Citrate cycle, GABA 
shunt lysine 
degradation 

16 246.0676 0.000467          

17 242.008 0.000462          

18 193.9369 0.000461          

19 221.1266 0.000461          

20 398.6116 0.000459          
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Figure 4.5 Heatmap showing the full metabolic profiles of 3 strains of Escherichia coli, scaled by 
intensity. Each strain is labelled by the conditions during evolution; plasmid free ‘Free’ and plasmid 
containing ‘Plasmid’ and plasmid containing under antibiotic stress ‘Antibiotic’. The biological replicates 
for each strain have been pooled. Strain names 22 = F022, EL = ELU39 and MG = MG1655. 

 
 
 
 
 
 



 
 

 95 

 

Metabolic responses vary by conditions they were evolved in. 

To understand differences in the metabolome determined by evolutionary conditions, 

a series of pairwise analyses was next performed contrasting evolved lines between 

treatments per strain to understand differences in the metabolome determined by 

evolutionary conditions. Together, these analyses help separate functional changes in 

the metabolism as a result of plasmid carriage or of positive selection on the resistance 

genes carried by the plasmid. 

 

The impact of plasmid co-evolution both in the presence and absence of antibiotic 

selection revealed distinct strain specific patterns in the scale and functions affected 

(Fig4.5). When evolved plasmid carrying treatments with or without cefotaxime were 

compared to the evolved plasmid-free control treatment, the cefotaxime treatment 

group had fewer significantly differently expressed metabolites than did the plasmid 

carrying treatment without antibiotic exposure (Fig 4.6 D-I). The clinical strain F022 

had the largest response of the strains to coevolution with the pLL35 plasmid (2.6% of 

the metabolome) (Fig 4.6 plot A). 

 

Comparing the plasmid treatment groups reveals the impact of selection by cefotaxime 

on plasmid carrying bacteria. The scale of impact varied and saw both the highest 

(3.64% in F022) and lowest (0.16% in MG1655) impacts on the metabolome. This may 

be indicative of alterations to the metabolic network beyond cost of plasmid carriage 

or stress of antibiotic exposure. Metabolic burden of plasmid carriage is measured and 

defined by the adverse effects on bacterial growth (Silva, Queiroz and Domingues, 

2012) yet after co-evolution, F022 and MG1655 show improved growth kinetics 

compared to the ancestor (Carrilero, Dunn and Moran, 2023), suggesting that the 

metabolic modifications may actually indicate a net positive impact of plasmid carriage 

in these strains. 

 

Masses reported in the fold change analyses between evolution treatments are mostly 

different from those reported by random forest analysis. The singular exception to this 

is the mass 96.07998, present in both the F022 random forest results (Fig 4.2 plots 1, 

15) and the F022 plasmid carriage fold change results (Table S4.1), however this value 

was not identified. 



 
 

 96 

 

Cyclic AMP is the singular commonly affected metabolite between strains. 

Within strains, there were commonalities in the metabolic pathways impacted across 

treatments occasionally with directional differences. There was no overlap of pathways 

altered by evolution treatment between strains, except for one notable exception; the 

global regulator cyclic adenosine monophosphate (cAMP) which appeared in all 3 

strains. 

The universal secondary messenger cAMP is highlighted in all 3 treatments, and when 

looking solely at the effect of antibiotic selection, by comparing the treatments ‘plasmid 

containing’ and ‘plasmid containing under antibiotic stress’, is present and upregulated 

in all 3 strains simultaneously. This compound was downregulated (FC 0.43) in F022 

when the plasmid co-evolved metabolome was compared with the plasmid free control. 

There was an alternative identification (Tables 4.5, 4.6, 4.7) which is indistinguishable 

by ppm but was nonetheless identified as a derivative of cAMP. cAMP was upregulated 

(FC 4.77) in ELU39 when the cefotaxime treatment was compared to the plasmid free 

control. Selection induced a common response in all 3 strains of upregulation of cAMP 

by 2.22-3.40 fold. Together this suggests the plasmid-free cAMP level is intermediate, 

and co-evolution with a plasmid induces downregulation of this, while selection with 

cefotaxime induces upregulation.  

Strain specific metabolic responses to co-evolution with a plasmid. 

The difference in bacterial metabolome caused by long term plasmid carriage can be 

seen by comparing the evolved datasets for plasmid free strains and plasmid carrying 

strains. Each strain had a unique set of metabolites affected by plasmid selection. 

The clinical strain F022 has the most differentially expressed metabolites when 

coevolved with a plasmid compared to plasmid free controls (2.6% of the metabolome) 

and primarily displays downregulation (Fig 4.6 plot A) which could imply increased 

consumption of these metabolites as a result of plasmid carriage. Downregulation of 

amino acid metabolism represents the majority of identified plasmid carriage impact 

compared to plasmid free lines in strains F022 (Table 4.5). Amino acids have been 

shown to be the primary source of carbon needed for biomass synthesis (Maser et al., 

2020). Pathways implicated include biosynthesis of; serine, threonine, valine-

isoleucine, leucine and lysine. Of the amino acids, serine is highly utilised for the TCA 

cycle and acetate biosynthesis (Maser et al., 2020). Leucine is one of the most variable 
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amino acids, alongside arginine, because they have control functions for the 

biosynthesis of almost all other amino acids between them (Radoš et al., 2022). 

 

Coevolution with a plasmid induced downregulation of a metabolite identifiable as 

betaine or L-valine (Table 4.5). Betaine or valine appears downregulated 3 times in 

F022 in different ionised states, meaning the differential expression of this pathway is 

likely stronger than apparent from the individual metabolites alone. In every instance, 

ppm determined that betaine is the more likely identification. Betaine is part of the 

serine and threonine biosynthesis pathways (KEGG) and is an osmoprotectant whose 

presence increases cell water content (Cayley, Lewis and Record, 1992; Metris et al., 

2014). A downregulation of Betaine would result in a reduction of intracellular water 

(Cayley, Lewis and Record, 1992).  

F022 also displays downregulation of the shikimate pathway, which produces 

intermediaries for the biosynthesis of the aromatic amino acids phenylalanine, tyrosine 

and tryptophan (Berg et al., 2019).  

Ubiquinol, formed by reduction of ubiquinone as part of the electron transport chain, 

was downregulated (FC 0.38). This implies that more ATP is being generated 

aerobically in strain F022 evolved with the plasmid compared to the plasmid free 

controls.  

By contrast the environmental strain ELU39 had 15 upregulated metabolites (0.85% of 

the metabolome) in evolved lines with the plasmid versus the plasmid free treatment. 

Few metabolites of these could be identified (Table S4.1). The metabolite gamma-

Glutamyl-gamma-butraldehyde was identified, which is part of the Gamma-amino 

Butyric acid (GABA) pathway (FC 4.7)(Table 4.5). GABA is a non-protein amino acid 

involved in the tricarboxylic acid cycle (TCA) and aids in bacterial resistance to acidic 

conditions (Sarasa et al., 2020). 

 

MG1655 had 7 altered metabolites in total (0.35% of the metabolome) and favoured 

downregulation. Just 1 of these could be identified, and this was involved in non-central 

carbohydrate metabolism, specifically the UDP-N-acetyl-D-glucosamine biosynthesis 

pathway and was downregulated in plasmid carrying lines relative to plasmid free 

(Table 4.5). This pathway is involved in cell wall peptidoglycan synthesis, 
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liposaccharide biosynthesis and biosynthesis and addition of sugars to proteins 

(KEGG).  

 

How does antibiotic selection change the metabolism of MDR plasmid carrying 

bacteria? 

 Comparing the plasmid free control treatment with the plasmid carrier cefotaxime 

treatment shows the effect of coevolution and antibiotic selection. Of the three 

analyses, this pairing has the smallest count of significantly altered metabolites. In 

response to antibiotic selection, MG1655, significant fold change differences in the 

metabolome accounted for downregulation of 4 masses, or 0.2% of the metabolome. 

ELU39 had 8 upregulated and 3 downregulated metabolites (0.63% of the 

metabolome) and F022 had 3 upregulated and 5 downregulated metabolites (0.37% 

of the metabolome) (Fig 4.6 plots D-F). 

Many of the metabolites identified in the plasmid free versus plasmid carrying 

comparison are also highlighted in the plasmid free versus antibiotic plasmid carrying 

treatment comparison, indicating these differences in the bacterial metabolome are 

likely driven by carriage of the plasmid (Tables 4.5, 4.6). 

 

Unique features in the plasmid-free versus antibiotic plasmid carrying comparison 

imply a combined effect of plasmid carriage and antibiotic selection. All identified 

features are downregulated and include amino acid biosynthesis; phenylalanine in 

ELU39, tyrosine in MG1655. A component of folate biosynthesis was also identified in 

MG1655. Phosphoribosylamine, part of de-novo purine biosynthesis, was 

downregulated in F022. 

Direct comparison of plasmid carriers with versus without antibiotics show the effect of 

antibiotic selection on the bacterial metabolome. Antibiotic exposure altered 3.64% of 

the metabolome in a predominantly upregulated direction in the clinical strain F022 (78 

metabolites upregulated and 3 downregulated), affecting amino acid and energy 

metabolism (Fig 4.6 plots G-I and Table 4.7). Selection caused upregulation of all 

metabolites related to amino acid metabolism, specifically the biosynthesis pathways 

of lysine, arginine, leucine and valine-isoleucine. 



 
 

 99 

 Glycerol, which feeds into glycolysis, was upregulated (FC 2.05) and propylene glycol, 

a by-product of glycolysis, was downregulated. This could imply a reduction in 

glycolysis but none of the identified metabolites were part of glycolysis directly. 

 In ELU39 1.3% of the metabolome is altered by selection, (6 metabolites upregulated 

and 11 downregulated) and 0.16% in MG1655 (2 metabolites upregulated and 1 down 

regulated). None of these metabolites were able to be identified, excepting cAMP. 
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Figure 4.6 Fold change analysis highlighting in pink the masses that cross the fold change threshold of 
+/- 2.0. Y axis is the Log2 of the fold change and the X axis are peak masses (mz/rt) corrected for 
retention time. A-C Evolved plasmid carrying E.coli metabolic profiles compared to evolved plasmid 
free E.coli metabolic profiles. D-F E.coli metabolic profiles evolved in antibiotic stress compared to the 
evolved plasmid free E.coli metabolic profiles. G-I E.coli metabolic profiles evolved in antibiotic stress 
compared to the evolved plasmid carrying E.coli metabolic profiles.
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Table 4.5 Fold change summary of the masses (mz/rt) that cross the fold change threshold of +/- 2.0 comparing the plasmid carrying profiles against the 
plasmid free profiles by strain. Putative identifications made using KEGG and ECMDB. Full table, including masses not identified in the supplementary (S4.1). 

Strain M/z ID KEGG ppm Adduct Adduct 
+Compound M/Z 

Monoisotopi
c Mass 

Chemical 
Formula 

FC log2(FC
) 

Function 

F022 118.09047 Betaine C00719 31 M+H 118.0868 118.0868 C5H12NO2 0.36273 -1.463 Serine and threonine 
biosynthesis 

  L-Valine C00183 36 M+H 118.0863 117.079 C5H12NO2   Branched chain amino acid 
metabolism valine-

isoleucine metabolism 

F022 140.07101 Betaine C00719 16 M+Na  118.0868 C5H12NO2 0.36083 -1.4706 Serine and threonine 
biosynthesis 

  L-Valine C00183 20 M+Na  117.079 C5H12NO2   Branched chain amino acid 
metabolism 

F022 153.04427 Xanthine C00385 23 M+H    0.46548 -1.1032 Adenine and guanine 
metabolism 

  2-Keto-3-methyl-valerate C00671 48 M+Na 153.0517 129.0552 C6H9O3   Branched chain amino acid 
metabolism valine-

isoleucine metabolism 

F022 153.07936 Ribitol C00474 24 M+H 153.0757 152.0685 C5H12O5 0.47956 -1.0602  

  L-Arabitol C00532 24 M+H 153.0757 152.0685 C5H12O5    

F022 156.04794 Betaine C00719 34 M+K 156.0427 118.0868 C5H12NO2 0.30117 -1.7313 Serine and threonine 
biosynthesis 

  L-Valine C00183 37 M+K 156.0421 117.079 C5H11NO2   Branched chain amino acid 
metabolism 

F022 213.02325 3-Carboxy-3-hydroxy-
isocaproate 

C02504 34 M+K 213.016 174.0528 C7H10O5 0.48593 -1.0412 Branched chain amino acid 
metabolism leucine 

biosynthesis 

  2-Isopropyl-3-oxosuccinate C04236 34 M+K 213.016 174.0528 C7H10O5   Branched chain amino acid 
metabolism leucine 

biosynthesis 

  Shikimic acid C00493 34 M+K 213.016 174.0528 C7H10O5   Shikimate pathway 

ELU39 217.11175 gamma-Glutamyl-gamma-
butyraldehyde 

C15700 30 M+H 216.111 217.1183 C9H16N2O4 2.544 1.3471 GABA biosynthesis 

ELU39 226.9613 2,5-Dichloro-4-oxohex-2-
enedioate 

C12835 46 M+H 226.9509 225.9436 C6H4Cl2O5 2.2061 1.1415  

F022 270.15899 Ubiquinol-1 C00390 41 M+NH4 270.17 252.1362 C14H20O4 0.33108 -1.5948 Ubiquinone biosynthesis 

MG1655 277.08735 Nicotinamide riboside C03150 26 M+Na 277.08 255.0981 C11H15N2O5 0.44779 -1.1591  

  D-Galactosamine 6-
phosphate 

C06377 28 M+NH4 277.0795 259.0457 C6H14NO8P    

  alpha-D-Glucosamine 1-
phosphate 

C06156 28 M+NH4 277.0795 259.0457 C6H14NO8P   UDP-N-acetyl-D-
glucosamine biosynthesis 
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  Glucosamine-1P C04501 28 M+NH4 277.0795 259.0457 C6H14NO8P   UDP-N-acetyl-D-
glucosamine biosynthesis 

  Glucosamine 6-phosphate C00352 28 M+NH4 277.0795 259.0457 C6H14NO8P   UDP-N-acetyl-D-
glucosamine biosynthesis 

F022 329.07394 N-Succinyl-L,L-2,6-
diaminopimelate 

C04421 2 M+K 329.0746 290.1114 C11H18N2O7 0.43099 -1.2143 Lysine metabolism 

  Argininosuccinic acid C03406 36 M+K 329.0858 290.1226 C10H18N4O6   Arginine biosynthesis 

  2-Succinyl-5-enolpyruvyl-6-
hydroxy-3-cyclohexene-1-

carboxylate 

C16519 39 M+H 329.0867 328.0794 C14H16O9   Menaquinone biosynthesis 

F022 347.08038 Adenosine 2',3'-cyclic 
phosphate 

C02353 17 M+NH4 347.0863 329.0525 C10H12N5O6P 0.42755 -1.2258 Precursor to adenosine, 
derivative of 2'3'-Cyclic AMP 

  Cyclic AMP C00575 17 M+NH4 347.0863 329.0525 C10H12N5O6P   Biofilm Formation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
` 
 
 
 



 
 

 103 

Table 4.6 Fold change summary of the masses (mz/rt) that cross the fold change threshold of +/- 2.0 comparing the antibiotic selection profiles against the 
plasmid free profiles by strain. Putative identifications made using KEGG and ECMDB. Full table, including masses not identified in the supplementary (S4.2). 
 

Strain M/z ID KEGG ppm Adduct Adduct 
+Compound 

M/Z 

Monoisotopic 
Mass 

Chemical 
Formula 

FC Log2(FC) Function 

F022 118.09047 Betaine C00719 31 M+H 118.0868 118.0868 C5H12NO2 0.39376 -1.3446 Serine and threonine 
biosynthesis 

  L-Valine C00183 36 M+H 118.0863 117.079 C5H11NO2   Branched cahin amino acid 
metabolism 

F022 156.04794 Betaine C00719 34 M+K 156.0427 118.0868 C5H12NO2 0.34037 -1.5548 Serine and threonine 
biosynthesis 

  L-Valine C00183 37 M+K 156.0421 117.079 C5H11NO2   Branched cahin amino acid 
metabolism 

ELU39 166.0853 D-Phenylalanine C02265 6 M+H 166.0863 165.079 C9H11NO2 0.48577 -1.0417 Phenyalanine biosythesis 

  L-Phenylalanine C00079 6 M+H 166.0863 165.079 C9H11NO2   Phenyalanine biosythesis 

MG1655 174.94267        0.4903 -1.0283  

MG1655 198.04356 7-Cyano-7-carbaguanine C15996 25 M+Na 198.0386 175.0494 C7H5N5O 0.41098 -1.2829 Folate biosynthesis 

ELU39 217.10864 gamma-Glutamyl-
gamma-butyraldehyde 

C15700 44 M+H 217.1183 216.111 C9H16N2O4 4.7016 2.2332 GABA biosynthesis 

MG1655 220.0286 L-Tyrosine C00082 38 M+K 220.0371 181.0739 C9H11NO3 0.47746 -1.0666 Tyrosine biosythesis, 
thyamine biosynthesis 

F022 247.06603 -Phosphoribosylamine C03090 12 M+NH4 247.069 229.0351 C5H12NO7P 0.35436 -1.4967 Denovo purine biosynthesis 

F022 270.15827 Ubiquinol-1 C00390 43 M+NH4 270.17 252.1362 C14H20O4 0.38333 -1.3834 Ubiquinone biosynthesis 

ELU39 347.08318 Adenosine 2',3'-cyclic 
phosphate 

C02353 9 M+NH4 347.0863 329.0525 C10H12N5O6P 4.7682 2.2534 Precursor to adenosine, 
derivative of 2'3'-Cyclic AMP 

  Cyclic AMP C00575 9 M+NH4 347.0863 329.0525 C10H12N5O6P   Biofilm Formation 
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Table 4.7. Fold change summary of the masses (mz/rt) that cross the fold change threshold of +/- 2.0 comparing the antibiotic selection profiles against the 
plasmid carrying profiles by strain. Putative identifications made using KEGG and ECMDB. Full table, including masses not identified in the supplementary 
(S4.3). 
Strain M/z ID KEGG ppm Adduct Adduct +Compound 

M/Z 
Monoisotopic Mass Chemical 

Formula 
FC Log2(FC) Function 

F022 99.04636 Propylene glycol C00583 48 M+Na 99.0416 76.0524 C3H8O2 0.3453 -1.5341 by-product of glycolysis 

F022 115.0412 Glycerol C00116 40 M+Na 115.0366 92.0473 C3H8O3 2.0506 1.036 feeds into glycolysis 

F022 135.069 R)-2,3-Dihydroxy-isovalerate C04272 28 M+H 135.0652 134.0579 C5H10O4 2.1982 1.1363 Valine/isoleucine branched 
chain amino acid metabolism 

  Deoxyribose C01801 28 M+H 135.0652 134.0579 C5H10O4    

F022 153.0794 Ribitol C00474 24 M+H 153.0757 152.0685 C5H12O5 2.0533 1.038  

  L-Arabitol C00532 24 M+H 153.0757 152.0685 C5H12O5    

MG165
5 

174.9427        0.47841 -1.0637  

F022 195.0083 Glycerol 3-phosphate C00093 28 M+Na 195.0029 172.0137 C3H9O6P 2.1478 1.1028  

F022 213.0233 3-Carboxy-3-hydroxy-
isocaproate 

C02504 34 M+K 213.016 174.0528 C7H10O5 2.2291 1.1565 branched chain amino acid 
metabolism leucine 

biosynthesis 

  2-Isopropyl-3-oxosuccinate C04236 34 M+K 213.016 174.0528 C7H10O5   branched chain amino acid 
metabolism leucine 

biosynthesis 

  Shikimic acid C00493 34 M+K 213.016 174.0528 C7H10O5   shikimate pathway 

F022 329.0711 N-Succinyl-L,L-2,6-
diaminopimelate 

C04421 11 M+K 329.0746 290.1114 C11H18N2O7 2.2688 1.1819 Lysine metabolism 

  Argininosuccinic acid C03406 45 M+K 329.0858 290.1226 C10H18N4O6   arginine biosynthesis 

  2-Succinyl-5-enolpyruvyl-6-
hydroxy-3-cyclohexene-1-

carboxylate 

C16519 47 M+H 329.0867 328.0794 C14H16O9   menaquinone biosynthesis 

F022 347.0599        2.8285 1.5001  

ELU39 347.0818 Adenosine 2',3'-cyclic 
phosphate 

C02353 13 M+NH4 347.0863 329.0525 C10H12N5O6
P 

3.4007 1.7658 precursor to adenosine, 
derivative of 2'3'-Cyclic AMP 

  Cyclic AMP C00575 13 M+NH4 347.0863 329.0525 C10H12N5O6
P 

  Biofilm Formation 

MG165
5 

347.0851 Adenosine 2',3'-cyclic 
phosphate 

C02353 4 M+NH4 347.0863 329.0525 C10H12N5O6
P 

2.5321 1.3403 precursor to adenosine, 
derivative of 2'3'-Cyclic AMP 

  Cyclic AMP C00575 4 M+NH4 347.0863 329.0525 C10H12N5O6
P 

  Biofilm Formation 

F022 347.0879 Adenosine 2',3'-cyclic 
phosphate 

C02353 4 M+NH4 347.0863 329.0525 C10H12N5O6
P 

2.2155 1.1476 precursor to adenosine, 
derivative of 2'3'-Cyclic AMP 

  Cyclic AMP C00575 4 M+NH4 347.0863 329.0525 C10H12N5O6
P 

  Biofilm Formation 

F022 347.5848        2.3 1.2016  
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F022 358.0724 S-Formylglutathione C01031 12 M+Na 358.0679 335.0787 C11H17N3O7
S 

2.0873 1.0617 Methane metabolism 
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Figure 4.7. All possible putative identifications of metabolites and pathways affected by plasmid carriage compared to plasmid free lineages in all 3 strains, 
F022, ELU39 and MG1655, as described in Table 1 (pink). Visualised on the KEGG metabolic pathways map for E.coli K-12 MG1655 (green). 
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Figure 4.8. All possible putative identifications of metabolites and pathways affected by antibiotic selection of a plasmid compared to plasmid free lineages in 
all 3 strains, F022, ELU39 and MG1655, as described in Table 2 (pink). Visualised on the KEGG metabolic pathways map for E.coli K-12 MG1655 (green). 
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Figure 4.9. Putative identifications of significant metabolites and pathways comparing plasmid carriers with and without selection in strains F022, ELU39 and 
MG1655, as described in table 3 (pink). Visualised on KEGG metabolic pathways map for E.coli K-12 MG1655 (green). 
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4.5 Discussion 
 

Metabolomics were used to understand the metabolic responses of 3 diverse E.coli 

strains to an MDR plasmid and the antibiotic cefotaxime following 700 generations of 

evolution. The E.coli strains are from a clinical (F022), environmental (ELU39) or 

laboratory (MG1655) background, and were each evolved in a plasmid free state, 

plasmid carrying, and plasmid carrying with antibiotic selection. Comparison of evolved 

lines to their ancestor revealed large-scale changes in metabolism that were consistent 

among treatments within strains, indicating pervasive metabolic changes associated 

with adaptation to the lab environment, including amino acid metabolism and 

glycolysis. Targeted pairwise contrasts were then used to determine the metabolic 

responses to the selection treatments per strain.  Each strain had specific aspects of 

the metabolism altered by evolutionary conditions, (Fig 4.7, 4.8 and 4.9) and the only 

commonly changed metabolite was global regulator cAMP. Within strains, common 

altered pathways were often seen in plasmid carriers evolved both with and without 

antibiotic, but sometimes changing in opposing directions (Tables 4.5, 4.6, 4.7). The 

clinical strain F022 showed the largest metabolic impact as a result of coevolution with 

a plasmid, with and without antibiotic selection. 

 

Functions changed by plasmid carriage or antibiotic selection 

The metabolic responses to evolutionary conditions were strain specific. Although 

common broad functions were affected, such as amino acid metabolism, the specific 

pathways affected were unique to each strain. For example, the environmental strain 

ELU39 saw changes in phenylalanine metabolism, whereas the lab strain MG1655 

showed altered levels of tyrosine and the clinical strain F022 showed altered levels of 

lysine and leucine metabolism (Tables 4.5, 4.6, 4.7). 

 

Within strains a degree of functional consistency was observed between the evolution 

treatment groups but the analysis was able to distinguish metabolic effects derived 

from plasmid carriage and those derived from additional antibiotic selection. Many of 

the functions affected by antibiotic exposure were associated with metabolic stress, 

such as arginine, proline, serine, threonine and methane metabolism, glycolysis, and 

the TCA cycle (Zhao et al., 2019).  
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The functions affected by plasmids acquisition (Chapter 3) are all present in the post 

evolution data. Plasmid acquisition caused a very low metabolic response in F022, 

lower than either ELU39 or MG1655 but F022 had the most metabolic changes after 

co-evolution with the plasmid. The clinical strain F022 showed the most change in the 

metabolome after ~700 generations of plasmid carriage and was the strain with the 

most differences caused by antibiotic exposure. This strain also demonstrated some 

of the highest levels of mutations and transcriptional alterations (Carrilero, Dunn and 

Moran, 2023). 

 

Cyclic AMP is the singular commonly affected metabolite between strains. 

In previous work, genomics showed that over a fifth of mutations acquired by evolved 

clones were common between the strains (Carrilero, Dunn and Moran, 2023), there 

was only one commonly affected metabolite in all 3 strains, cyclic AMP, which was 

altered in response to coadaptation with a plasmid under antibiotic exposure. Cyclic 

AMP responds to environmental stimuli and in pathogenic bacteria and has several 

important regulatory functions, including virulence, type II secretion, carbon 

metabolism and biofilm formation (McDonough and Rodriguez, 2012). cAMP is 

synthesised from ATP at low glucose concentration (Shimizu, 2013). 

 

cAMP is downregulated in the plasmid carrying treatment without cefotaxime and 

upregulated in all 3 strains in the cefotaxime treatment. As a regulator, accumulation 

of cAMP may indicate an increase in downstream processes regulated by cAMP. 

These include biofilms which can reduce sensitivity to antibiotics (Crabbé et al., 2019). 

Together, this suggests the accumulation of cAMP may induce biofilm formation as an 

additional defense response by the bacteria against cefotaxime, despite being evolved 

in liquid shaken conditions that would normally be expected to disfavour biofilms 

(Carrilero, Dunn and Moran, 2023). Additional experimental work would be required to 

definitively prove the link between the observed changes in cAMP levels and biofilm 

production. 

 

Evidence of beta-lactam specific metabolic responses 

Several altered metabolic functions were consistent with the cell stresses induced by 

beta-lactam antibiotics. By impeding cell wall synthesis and initiating a futile cycle of 
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peptidoglycan degradation, beta-lactams induce an energy demand and systemic 

cellular toxicity associated with ROS (Cho, Uehara and Bernhardt, 2014; Dwyer et al., 

2014; Adolfsen and Brynildsen, 2015). Despite containing BlaCTX-M-15 which can 

degrade the antibiotic, the altered metabolites in the evolutionary treatment with 

cefotaxime highlight alterations to energy and redox regulation through cAMP, 

glycolysis and alternative energy sources and the electron acceptor ubiquinol. 

 

Additionally, cefotaxime selection led to a potential decrease in glycolysis because the 

by-product propylene glycol is downregulated but glycerol, which supplies glycolysis, 

is upregulated in F022. This accumulation of the supply and reduction in by-product 

suggests the central reaction is not as active. As none of the metabolites identified are 

directly part of glycolysis it remains difficult to determine the energy dynamics (Table 

4.7). Furthermore, evolved MG1655 and F022 plasmid carriers had notably higher 

growth rates compared to their ancestors indicating compensatory evolution for 

plasmid fitness costs (Carrilero, Dunn and Moran, 2023). This may have been 

associated with improved energy efficiency, as this strain also contained a mutation in 

glycerol metabolism genes in plasmid carriers (Carrilero, Dunn and Moran, 2023) but 

metabolic efficiency and growth rate are not proportionally linked (Metris et al., 2014). 

Alternatively, the increase in metabolites part of amino acid metabolism and alternative 

carbon sources may instead point to alternative ways of supplying the TCA cycle. As 

the most efficient method of energy production in bacterial cells, a demand on energy 

imposed by stressors would increase catabolism of metabolites to supply the TCA 

(Arense et al., 2010; Rui et al., 2010; Passalacqua, Charbonneau and O’Riordan, 

2016). 

 

Ubiquinol is downregulated by plasmid carriage and antibiotic selection. A reduced 

abundance of a metabolite can indicate its consumption (Laviña et al., 2020), therefore 

in plasmid carrying F022 ubiquinol may be actively consumed as part of the electron 

transport chain in aerobic respiration (Aussel et al., 2014; Agrawal et al., 2017; 

Nitzschke and Bettenbrock, 2018). Ubiquinol also has a role in counteracting redox 

stress because as a reducing agent ubiquinol is reduced to form ubiquinone. Therefore 

a decrease in ubiquinol in the clinical  strain F022 may reflect consumption of ubiquinol 

to facilitate ATP production and aid in combating cefotaxime-induced redox stress. The 

ubiquinone biosynthesis pathway was also implicated as being affected by plasmid 
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acquisition in the ancestral clones of F022 (Chapter 3), suggesting this quinone is 

important in both short term and long term responses to the cellular impacts of plasmid 

carriage. 

 

 

Amino acid metabolism 

Comparison of the mutations acquired by the evolved lines reported by Carrilero et al. 

with the metabolomics data reported here reveals some overlapping functions 

(Carrilero, Dunn and Moran, 2023). Plasmid carrying MG1655 acquired mutations in 

aromatic amino acid metabolism. Tyrosine is one of the aromatic amino acids and is 

downregulated by plasmid carriage with cefotaxime selection. 

 

Upon acquisition of the plasmid, the lysine degradation pathway is upregulated in 

MG1655. Lysine metabolism is upregulated in F022 when the plasmid carrying 

treatment groups with and without cefotaxime selection were compared. This same 

metabolite was identified in the plasmid free and plasmid carrying comparison but was 

down regulated. This implies that plasmid carriage reduced lysine metabolism in F022, 

but it was driven up again by positive selection to a level not significantly different from 

the plasmid free group. However, this metabolite has an alternative identification 

involved in arginine biosynthesis, and the arginine transporter gene art P was mutated 

in plasmid carrying F022 and ELU39 (Carrilero, Dunn and Moran, 2023).  

 

The mutated functions do not, however, match perfectly with changes in metabolites. 

For example, ELU39, F022 and MG1655 evolved plasmid carriers all gained mutations 

in operons involved in anaerobic respiration and fatty acid metabolism (Carrilero, Dunn 

and Moran, 2023) but these functions were not altered in the metabolome. This is likely 

to reflect the fact that these experiments were performed in aerobic conditions and 

thus these pathways may not have been expressed. Some caution is required 

however, because a large proportion of the significant masses were unable to be 

identified, so future improvements in identification systems may uncover these 

functions. 

In certain instances, pathways highlighted in this evolutionary analysis were 

differentially expressed upon plasmid acquisition in other strains analysed in Chapter 
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3. For example, formylglutathione was upregulated following evolution under antibiotic 

selection in F022 here, and methylamine was upregulated following plasmid 

acquisition in F054 in Chapter 3. Both metabolites belong to the methane metabolism 

pathway, and both strains are of a clinical background.  

Conclusions 

The metabolome of E. coli at the endpoint of an evolution experiment demonstrated 

distinct strain specific profiles. While overarching functions were shared across strains, 

the particular pathways impacted were unique to individual strains. The singular 

exception to this was the global regulator cAMP which was altered in all strains as a 

consequence of evolution under antibiotic selection with plasmid pLL35. The large 

metabolic changes seen in the clinical strain F022 coupled with improved growth 

kinetics relative to the ancestor following evolution, demonstrates compensatory 

evolution for plasmid carriage and resisting antibiotics occurs at all biological levels. 

Furthermore, the evidence of metabolic responses to beta-lactam-specific stresses 

within the antibiotic selection treatment group highlights the importance of metabolic 

responses for cells to mitigate effects of exposure to antibiotics even when they carry 

the relevant resistance genes. 

Further questions 

Future studies should consider how the nature of plasmid carrying bacteria changes 

when confronted with antibiotics, with an emphasis on replicating or using common 

plasmid and bacterial combinations and their natural environmental conditions, 

because metabolic signatures of antibiotic stress are seen even in bacteria carrying 

the relevant resistance genes. Lab conditions are not representative of real-world 

scenarios, and with such specific responses this is important to replicate. For instance, 

there is a difference in metabolic response dependent on planktonic or biofilm states 

which has implications for infection conditions (Zhao et al., 2019) More specifically and 

relevant here is the fact the gut is anaerobic and that related functions appear to be 

important but not seen here due to aerobic experiments; expanding the conditions to 

make them more host relevant is key priority. (Dunn et al., 2021; Carrilero, Dunn and 

Moran, 2023).  
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Chapter 5 : Metabolic responses of 4 E.coli strains carrying 
a multidrug-resistant plasmid to antibiotic exposure.  
 
 

5.1 Abstract  
 
 
Multidrug-resistant (MDR) bacterial strains pose a significant threat to public health, 

leading to increased mortality rates and prolonged hospitalisation. Conjugative 

plasmids facilitate the rapid dissemination of resistance genes, contributing to the 

accumulation of multidrug resistances in bacterial pathogens. Understanding the 

metabolic consequences of antibiotic stress is valuable for identifying potential drug 

targets and treatment strategies. Untargeted metabolomics were performed to 

understand the metabolic impacts of antibiotic stress on 4 Escherichia coli strains from 

diverse ecological backgrounds. The strains were carrying the MDR plasmid pLL35, 

originating from Klebsiella pneumoniae which conferred resistance to 3 classes of 

antibiotics. The strains were stressed with a sub-MIC concentration of kanamycin, 

cefotaxime and ciprofloxacin. The metabolic responses to antibiotic displayed parallel 

functions across strains, but the extent and direction of change in particular pathways 

and metabolites were strain specific. Broadly, functions affected included alterations in 

amino acid and nucleotide metabolism, energy production pathways and cofactor 

biosynthesis. Notably, redox stress mitigation mechanisms were observed across all 

strains in the ciprofloxacin treatment, and cell wall and biofilm biosynthesis was 

indicated in all treatments, suggesting bacterial resistance mechanisms were active 

alongside plasmid-encoded resistance. Strain specificity has implications for future 

research on innovative combination therapies. 
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5.2 Introduction 
 
 

Multidrug-resistant (MDR) bacterial strains pose a severe threat to public health, 

contributing to increased mortality rates and prolonged hospitalisation for both initial 

admission infections and iatrogenic infections (Antimicrobial Resistance, 2021). MDR 

plasmids enable the rapid spread of multiple resistance genes by inter and intraspecies 

conjugation (Carattoli, 2013; Hall, Brockhurst and Harrison, 2017; San Millan, 2018). 

While a given strain can accumulate plasmids conferring different resistances over 

time, multidrug resistant plasmids can confer resistance to multiple classes of antibiotic 

in a singular transfer event, posing a particular clinical threat to combination antibiotic 

therapies (Carattoli, 2013). For example, E.coli, which commonly causes a wide range 

of serious human and animal infections worldwide, frequently carry MDR plasmids and 

consequently are becoming increasingly challenging to treat due to the diminishing 

effectiveness of available antibiotics (Mathers, Peirano and Pitout, 2015; Stoesser et 

al., 2016; Dunn, Connor and McNally, 2019). Multidrug resistant plasmids have been 

integral to the evolution of the predominant MDR E.coli lineage ST131, the globally 

disseminated strain that can produce extended-spectrum beta-lactamases (ESBLs) 

and are resistant to frontline antibiotics such as carbapenems and cephalosporins 

(Stoesser et al., 2016; Dunn, Connor and McNally, 2019). Such MDR plasmids are 

often stably maintained by toxin-antitoxin systems and compensatory amelioration of 

costs mediated by both the bacterial host and the plasmids (Carattoli, 2013; Porse et 

al., 2016). 

The rate of novel antimicrobial development is not fast enough to keep up with the 

evolution and dissemination of resistance (Krell and Matilla, 2022). Understanding the 

relationship between bacteria and their MDR plasmids and thus devising interventions 

to control plasmid spread is therefore a vital part of tackling the global AMR crisis. 

Analysing metabolic profiles under antibiotic stress offers valuable insights for 

identifying potential metabolic targets in the development of treatment strategies. For 

example, revealing metabolites that are suppressed by the bacteria in response to 

antibiotics allows development of combination therapies. The proposed treatment 

would deliver metabolites that are normally suppressed, enhancing susceptibility to the 

antibiotics, alongside the antibiotic itself (Peng et al., 2015). Redirecting metabolism to 
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prevent or diminish resistance phenotypes emerges as a promising future strategy to 

re-sensitise bacteria to antibiotics (Meylan, Andrews and Collins, 2018; Crabbé et al., 

2019). However, a significant challenge lies in the current lack of understanding 

regarding the metabolic workings of clinical strains that could serve as viable treatment 

targets (Kok et al., 2022). This is especially relevant for cases where the resistance is 

plasmid encoded because plasmids induce a range of disruptions to bacterial 

metabolism phenotypes that could act as potential therapeutic targets (Coulson et al., 

2015; Takahashi et al., 2015; San Millan et al., 2018; Billane et al., 2022).  

While metabolic fingerprints reliably relate to antibiotic mechanisms of action (Hoerr et 

al., 2016), the interaction between environment, and plasmid associated changes to 

the metabolome has not been investigated. There is a need for biological systems-

wide studies as increasingly, bacterial responses to antibiotic stress are acknowledged 

to be a combination of resistance genes and cell-wide network dependent responses 

involving global transcriptional regulators (Deter, Hossain and Butzin, 2021). Bacteria 

employ responses on a network scale to antibiotic stress in addition to resistance 

provided by accessory genes on plasmids (Deter, Hossain and Butzin, 2021; Kok et 

al., 2022). The transcriptional response to ampicillin in E.coli affected hundreds of 

genes - notably the most frequently affected functional groups were amino acid 

transport and metabolism, energy production and conversion and protein synthesis, 

modification, and degradation (Deter, Hossain and Butzin, 2021). 

To further the understanding of intracellular dynamics of E.coli harbouring an MDR 

plasmid, this chapter uses untargeted metabolomics to obtain a comprehensive view 

of the metabolic changes in multiple E.coli strains carrying MDR plasmid pLL35 under 

antibiotic stress. The metabolome, as the molecular underpinning of phenotype, 

reveals early responses to antibiotic stress and the genetic and molecular 

consequences of adaptations necessary for sustaining resistance mechanisms (Kok 

et al., 2022). Therefore, this is a vital tool to aid the discovery of emerging drug targets 

and treatment strategies associated with metabolism (Kok et al., 2022). Previous work 

presented in this thesis has shown that the acquisition of the MDR plasmid pLL35 

induced subtle, strain specific metabolic impacts. Acquisition affected energy 

metabolism, fatty acid metabolism, amino acid metabolism and oxidative 

phosphorylation (Chapter 3). Experimental evolution of the bacteria plasmid 

relationship in the presence of an antibiotic - where the plasmid is essential for bacterial 
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survival - resulted in amelioration of plasmid costs through genetic mutations and 

alterations in the transcriptome and metabolome (Carrilero, Dunn and Moran, 2023; 

and Chapter 4). This suggests that plasmid associated disruption to the bacteria 

continues in the presence of antibiotics, despite providing a net fitness benefit. 

The interaction between antibiotic exposure and carriage of an MDR plasmid pLL35 

on the bacterial metabolome has not been rigorously tested. Moreover, although data 

in Chapter 4 suggests metabolic impacts of cefotaxime exposure, pLL35 confers 

resistance to 2 additional classes of antibiotic; aminoglycoside and fluoroquinolone. 

The mechanisms of resistance to each class of antibiotic differ markedly. The 

bactericidal mechanism of aminoglycosides involves inhibition of protein synthesis by 

binding to parts of the ribosomal complex (Kotra, Haddad and Mobashery, 2000). 

Mechanisms of resistance include phosphorylation, nucleotidylation, efflux, altering of 

the target and acetylation (Dunn, Connor and McNally, 2019). The aacA4, aadA1 and 

aacC2d genes on the plasmid (Table 5.1), modify the kanamycin molecule by 

acetylation or adenylation and reduce its affinity for the ribosomal complex (Kotra, 

Haddad and Mobashery, 2000). Beta-lactams disrupt the biosynthesis of cell walls 

(Padda and Nagalli, 2022) and the resistance mechanisms act in the form of 

hydrolysis, efflux and alteration of the target (Dunn, Connor and McNally, 2019). CTX-

M-15 and TEM-112 code for beta-lactamase enzymes that hydrolyse beta-lactam 

antibiotics. CTX-M enzymes can lyse cephalosporins like cefotaxime and have 

disseminated worldwide, causing near untreatable infections (Poole, 2004; Cantón, 

González-Alba and Galán, 2012; Bevan, Jones and Hawkey, 2017). In particular E.coli 

ST131 carrying blaCTX-M genes is considered a high risk clone (Peirano and Pitout, 

2019). Fluoroquinolones disrupt DNA replication, repair and supercoiling by targeting 

DNA gyrase and topoisomerases. The resistance mechanisms to combat quinolones 

include efflux, alteration of the target and acetylation (Dunn, Connor and McNally, 

2019). Ciprofloxacin targets DNA topoisomerase II (Ojkic et al., 2020), and the qnrS1 

gene encoded by the plasmid produces the QnrS1 protein which interferes with the 

antibiotic by binding to DNA topoisomerase and therefore altering the target 

(Strahilevitz et al., 2009). 

In this study, the impact of different antibiotic exposures on 4 plasmid carrying strains 

was investigated. For my metabolomic experiments, Kanamycin, Cefotaxime and 

Ciprofloxacin were chosen as representatives of the classes of AMR gene carried by 
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pLL35. E. coli strains MG1655 (lab strain), ELU39 (environmentally derived strain), 

F054 and F022 (clinically derived strains) carrying pLL35 were grown aerobically in 

nutrient rich media, with sub-minimum inhibitory concentrations of the 3 antibiotics, 

alongside antibiotic free controls. The impact of antibiotic exposure on the metabolic 

profile of these strains collectively (see disclaimer) was analysed, showing that 

bacteria exhibit stress responses and resistance mechanisms outside of plasmid 

encoded resistance genes. 

 
 
 
Table 5.1 Table summarising the resistance genes on the plasmid pLL35. See Fig 3.1 for full 
schematic. 

Gene Resistance 

aacA4 Aminoglycosides 

aacC2d Aminoglycosides 

aadA1 Aminoglycosides 

blaCTX-M-15 Beta-lactams 

blaTEM-112 Beta-lactams 

qnrS1 Quinolones 
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5.3 Methods 
 
E.coli strains MG1655, ELU39, F022 and F054 carrying plasmid pLL35 were grown in 

nutrient broth at 37℃, 180 rpm, for 24 hours. 1% of the population was then transferred 

and grown for 3 hours to mid-exponential phase, followed by exposure to sub-minimum 

inhibitory concentrations of the antibiotics. The cefotaxime MIC >1024 µg/mL, 

kanamycin 102.4 µg/mL and ciprofloxacin 102.4 µg/mL. After testing shock duration 

and checking survival rate, it was decided the concentrations of antibiotic would be: 

Kanamycin (5µg/ml), Cefotaxime (5µg/ml) or Ciprofloxacin (2µg/ml) for 1 hour, along 

with an antibiotic free control. The samples were then isolated and frozen at -80℃. 

Prepared for mass spectrometry with chloroform and methanol, following the method 

described in chapter 2. 

The samples (50µl) were introduced to the Waters G2/G2Si Synapt mass 

spectrometer. The instrument settings are detailed in the supplementary material (S5) 

HPLC-QToF MS was performed using the aqueous phase of the samples for DESI MS 

in positive mode, with a scanning range of 50-1200m/z over 3 minutes. 

Data Processing and Analysis 

All data processing and analysis followed methodology developed into a user-friendly 

guide and based on open source software (Parker et al., 2023) (https://untargeted-

metabolomics-workflow.netlify.app/ accessed on 27 January 2023). 

All raw data files were converted to mzML format using the Proteowizard  software 

MsConvert. XCMS online was used for peak alignment and retention time correction 

(parameters 84500). An average was taken of the technical replicates and output 

XCMS data tidied in R (https://untargeted-metabolomics-workflow.netlify.app/). 

Metaboanalyst was used to perform statistical analysis of each antibiotic treatment 

against the antibiotic free control. Data was normalised with pareto scaling (Figure 

S5.1).  

A random forest analysis is used to identify significantly affected metabolites using a 

bootstrapping algorithm which combines ensemble learning methods with the decision 

tree framework to create multiple randomly drawn decision trees from the data and 

averaging the results. This analysis produces strong predictors of grouping, or 

https://proteowizard.sourceforge.io/
https://xcmsonline.scripps.edu/landing_page.php?pgcontent=mainPage
https://www.r-project.org/
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treatment, ranked by variable importance. The analysis ran with 7 predictors and 1000 

trees.  

Metabolites are reported if present in all 5 biological replicates and for fold change 

data, must meet or exceed a threshold of +/- 2.0 to be reported. Here we define 

‘significance’ as metabolites that have been differentially expressed by a fold change 

≥ +/- 2.0. 

Any metabolites highlighted in statistical analysis were putatively identified using 

METLIN, KEGG and ECMD . The databases METLIN or ECMD were searched with 

the m/z values, and must be agreed upon by with the KEGG pathway metabolism map 

for E.coli in ordered to be reported. 

Using this method, the total across strains of the significant metabolites in the 

identifiable range by treatment are as follows: Ciprofloxacin, 79.55 %. Cefotaxime, 

93.97 %. Kanamycin, 78.36 %. 

Of the metabolites in the identifiable range, the percentage of those with a putative 

identification by treatment are as follows: Ciprofloxacin, 33.33 %. Cefotaxime, 30.07 

%. Kanamycin, 19.01 %. 

It should be noted that masses representing these metabolic pathways sometimes 

have multiple putative identifications which have identical or close ppm, making the 

compound identity indistinguishable between the options, meaning the exact identity 

of some of the metabolites is uncertain. In every instance, the identification with the 

lowest ppm possible is used. 

 

  

 

https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage
https://www.genome.jp/kegg/
https://ecmdb.ca/
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5.4 Results  
 
 
In this study, 4 E.coli strains into which an MDR plasmid had recently (within 30 

generations) been conjugated, were exposed to 4 treatment conditions; a sub-MIC of 

one of 3 antibiotics and an antibiotic-free control. The treatments were ciprofloxacin, 

cefotaxime and kanamycin, representing 3 antibiotic classes. The metabolome was 

arrested during exposure to the treatment, and untargeted metabolomic analysis 

performed to obtain an unbiased assay of the bacterial metabolome under active 

antibiotic stress. All treatment groups were different to the antibiotic-free control (PCAs 

supp S5.5, S5.6, S5.7, S5.8) and had significant differences to the control 

metabolome, when significance is defined as a fold change ≥ +/- 2.0. 

 

Antibiotic induced disruption varies by strain. 

 

Overall, when all strain responses were totalled for each antibiotic treatment, 

ciprofloxacin caused the most metabolic disruption and significantly altered 624 

metabolites. This was much higher than Kanamycin, which caused differential 

expression of 357 metabolites, and nearly twice the 315 metabolites altered by 

cefotaxime treatment. This correlated with the resistance encoded on pLL35, which 

encoded 1 gene for quinolones, compared to 2 for beta-lactams and 3 for 

aminoglycosides (Table 5.1). 

 

The metabolic responses of each E.coli strain to antibiotic exposure varied by 

antibiotic class and were strain specific (Fig 5.1, 5.2, 5.3, 5.4). For 3 out of 4 strains 

ciprofloxacin induced the largest metabolic responses, altering 10.71-12.42% of the 

recorded metabolome (Table 5.2). The exception was strain F022, where just 4.92% 

of the recorded metabolome was significantly altered in response to ciprofloxacin (Fig 

5.1 Table 5.2). This strain was most impacted by cefotaxime, which induced a 

significant response in 5.26% of the recorded metabolome and was the highest 

response to cefotaxime across any of the strains (Fig 5.1 FC Table 5.2). The response 

to kanamycin was the lowest of the antibiotics in 3 of 4 strains, altering 2.7 – 3.95% of 

the recorded metabolome (Table 5.2). The exception to this is the second clinical 

strain, F054 which had 10.71% of the recorded metabolome altered by kanamycin, the 
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highest response to this treatment across any of the strains (Fig 5.2 Table 5.2). These 

data demonstrate differing levels of disruption in the metabolic network in a strain 

dependent manner, despite carrying the same resistance plasmid. 

 

Functional parallelism  

 

Overall, these results highlight commonly affected functional groups between 

treatment groups and between strains in each treatment group. Within antibiotic 

treatments, the proportion of identified metabolites that were common in 2 strains or 

more was 37.93% in the ciprofloxacin treatment, 27.12% in the cefotaxime treatment 

and 10.42% in the kanamycin treatment. However, the specific pathways, direction of 

change and extent of change is variable by strain and treatment. Among all treatment 

groups, the main metabolic function categories were amino acid metabolism, 

nucleotides metabolism, energy metabolism and cofactor metabolism (Fig 5.5, 5.6, 

5.7) but the distribution of affected metabolites across these categories was highly 

strain specific. 

 

Amino Acid Metabolism 

Amino acid metabolism commonly features in bacterial stress responses (Zhao et al., 

2019) and in these data amino acid biosynthesis and catabolism was featured in all 

strains and treatments (Fig 5.5, 5.6, 5.7). Most of the amino acid metabolism pathways 

identified in the dataset were featured in every antibiotic treatment. Common to all 

treatments was metabolism of: valine, cysteine, arginine, tryptophan, phenylalanine, 

lysine, ornithine, proline, isoleucine, methionine. Common to ciprofloxacin and 

cefotaxime treatments only was metabolism of serine, threonine and histidine. 

Common to ciprofloxacin and kanamycin treatments only was metabolism of leucine 

and tyrosine and unique to kanamycin was metabolism of alanine. 

 

There are some examples of a uniform parallel response, for example L-tryptophan is 

upregulated to similar levels (FC range 2.3 – 3.7) in all 4 strains in response to 

cefotaxime (Table S5.2). However, as in the case of the arginine biosynthesis pathway, 

the same metabolite can be present in multiple strains and treatment groups but is 

altered in a different way in different strains.  
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Arginine metabolism was highlighted in all antibiotic treatments and in particular the 

metabolites pyrroline hydrocarboxylic acid and citrulline were seen repeatedly. 

Although sometimes these masses had other potential identifications, the 

identifications discussed here had the lowest ppm and are therefore the most likely. 

Targeted metabolomic analysis would be needed to determine these identifications 

with certainty. Citrulline, a key component of the arginine biosynthesis pathway, was 

identified in multiple strains and treatments. In strains ELU39, F022 and MG1655 

citrulline was downregulated in response to ciprofloxacin (Table S5.3). In ELU39 alone, 

citrulline was upregulated in response to kanamycin (Table S5.1). In the environmental 

strain ELU39 Pyrroline hydrocarboxylic acid was upregulated in response to 

kanamycin but downregulated in response to ciprofloxacin (Tables S5.1, S5.3). This 

same metabolite was downregulated in the F054 response to kanamycin, an example 

of an opposite response to the same stressor by a clinical strain compared to the 

environmental strain (Table S5.1). In the identified metabolome this metabolite did not 

appear in F022, demonstrating the highly strain specific ways the metabolism can 

change even when the strains have historically been exposed to a similar environment. 

 

All strains responding to ciprofloxacin had a downregulated (FC range 0.09 – 0.41) 

metabolite, 4(Glutamylamino)butanoate, which is involved in GABA biosynthesis, 

suggesting a demand on GABA (Table S5.3). However, this was indistinguishable from 

N2-succinyl-L-ornithine, which is involved in the arginine succinyltransferase pathway. 

In contrast, ELU39 upregulated the same metabolite (FC 2.16) in response to 

kanamycin (Table S5.1). GABA has a role as an acidity protectant, which arginine 

succinyltransferase is essential for aerobic arginine catabolism in E.coli and is one 

way of catabolizing ornithine. The downregulated metabolites in arginine and proline 

metabolism in response to ciprofloxacin indicate cellular stress (Zhao et al., 2019).  

 

 

Energy metabolism 

All treatments indicated an increased demand on energy needed to overcome 

antibiotic stress. Cell wall modifications and increased expression of efflux pumps, 

among other resistance mechanisms, create an energy demand (Wagner et al., 2007; 

Parsons and Rock, 2013; Da Silva and Domingues, 2017; Pacheco et al., 2017; Zhao 
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et al., 2019). Central energy metabolism is heavily featured in the response to 

cefotaxime (Fig 5.6). Downregulation of components of the TCA cycle such as malic 

acid (Table S5.2) may indicate energy consumption (Laviña et al., 2020). Amino acid 

degradation may also form part of the response to a demand in energy as carbon 

skeletons from degradation of amino acids can feed into the biosynthesis of essential 

coenzymes and intermediates for the TCA cycle. 

 

Further evidence for an increase in energy consumption is that deoxyadenosine 

monophosphate, a by-product of the ATP-ADP reaction is a commonly upregulated 

metabolite. Deoxyadenosine monophosphate (dAMP) was significantly altered in all 4 

strains in the ciprofloxacin treatment and all but ELU39 in the cefotaxime and 

kanamycin treatments. MG1655 had dAMP upregulated the most out of the strains, 

particularly in the ciprofloxacin treatment (FC 83.56) and the cefotaxime treatment (FC 

373.07) (Table S5.2, S5.3). F054 again displays directional divergence from the trend, 

and had dAMP downregulated in the kanamycin (FC 0.44) and cefotaxime (FC 0.027) 

treatments (Table S5.1 S5.2).  

 

Differentially regulated components of aerobic respiration are indicative of an 

energetic demand caused by induction of resistance mechanisms. Key components 

of oxidative phosphorylation were affected in all the treatments. Ubiquinone which is 

upregulated 40-fold in MG1655 in response to cefotaxime (FC 40.24), over 50-fold in 

response to kanamycin (FC 56.01) (Table S5.2, S5.3). In the MG1655 response to 

ciprofloxacin, ubiquinone is upregulated (FC 126.29), while simultaneously ubiquinol-

1 is downregulated (FC 0.086). The downregulation of ubiquinol implies oxidative 

phosphorylation is taking place, because to produce energy ubiquinol is reduced to 

form ubiquinone, which is upregulated indicating an ongoing reaction at a higher rate 

than the control. 

 

Pantothenic acid is a precursor of Coenzyme A, and a downregulation of pantothenic 

acid implies a demand on coenzyme A (López-Sámano et al., 2020). Pantothenic acid 

is downregulated in all strains in response to ciprofloxacin (FC range 0.14 – 0.49) 

(Table S5.3). Strain F054 also downregulated pantothenic acid (FC 0.49) and an 

additional metabolite involved in coenzyme A biosynthesis, pantetheine 4’-phosphate 
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in response to cefotaxime, which together suggest a demand on coenzyme A 

biosynthesis (Table S5.2). In contrast, ELU39 upregulated pantothenic acid (FC 2.16) 

in response to kanamycin (Table S5.1). 

 

Pyridoxal-P, PLP is essential for phosphorolytic cleavage of glycogen and amino acid 

degradation (Berg et al., 2019). In the cefotaxime treatment, a metabolite involved in 

its biosynthesis, O-phospho-4-hydroxy-L-threonine is downregulated to very similar 

levels in ELU39 and F054 (FC 0.493 and 0.497 respectively), suggesting a demand 

on PLP in these strains (Table S5.2). In the ciprofloxacin treatment, 2-Amino-3-oxo-4-

phosphonooxybutyrate is upregulated in MG1655 and F022 (FC 2.04 and 2.59 

respectively) and twice in ELU39 (FC 2.49 and 3.49) (Table S5.3). However in this 

untargeted analysis, this mass is indistinguishable from 2-Aspartyl-4-phosphate, 

which is involved in the lysine, threonine and methionine biosynthesis pathway. 

Biotin is an essential cofactor of carboxylases, decarboxylases and transcarboxylases, 

enzymes involved in fatty acid synthesis, gluconeogenesis and amino acid metabolism 

(Sirithanakorn and Cronan, 2021). Biotin was a unique metabolite to the ciprofloxacin 

response, and was upregulated in the strains ELU39, F022 and MG1655 (FC range 

2.44 – 4.84) (Table S5.3). 

 

Nucleotide Metabolism 

There are parallel responses in nucleotide and energy metabolism reflected in 

significant changes in purine and pyrimidine metabolism in every antibiotic treatment.  

Purine metabolism was highlighted 5, 7 and 10 times in the kanamycin, cefotaxime 

and ciprofloxacin treatments respectively. Pyrimidine metabolism was highlighted 5, 4 

and 13 times in the kanamycin, cefotaxime and ciprofloxacin treatments respectively. 

Pyrimidine and purine are fundamental parts of DNA and RNA synthesis as essential 

components of nucleic acids and are essential to ATP structure and signal transduction 

(Berg et al., 2019). Furthermore, in the response to ciprofloxacin, cytidine and its 

precursor cytosine are identified multiple times due to different ionisation adducts such 

as hydrogen or sodium, or slightly different recorded masses (<0.01 m/z). Cytosine is 

upregulated in all 4 of the strains (FC 2.62 – 9.65) and cytidine is upregulated in F054, 

F022 and MG1655 (FC 2.12 – 7.89) (Table S5.3). An exception is one of the 4 

instances of cytidine in F022 is instead downregulated (FC 0.43) (Table S5.3). 
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Accumulation of a metabolite can be an indication of redundancy (Laviña et al., 2020). 

Therefore, accumulation of cytidine suggests a decreased use of this metabolite for 

nucleotide biosynthesis. This suggests interrupted transcription or replication which 

would follow given ciprofloxacin binds to DNA toiposomerase (Ojkic et al., 2020). 

 

Bacterial resistance mechanisms occur alongside plasmid-encoded resistance. 

 

Peptidoglycan is a key component of the bacterial cell wall and its amplification is one 

of the mechanisms of resistance to aminoglycosides (Plumbridge, 2015; Garneau-

Tsodikovaa and Labby, 2016). N-acetyl-D-muramoate, a precursor for peptidoglycan 

biosynthesis, was upregulated over 500-fold (FC 565.44) in response to Kanamycin in 

clinical strain F022 (Table S5.1). This metabolite was unique to strain F022. This 

contrasts with the plasmid-encoded resistance, which focuses on modification of the 

kanamycin molecule. N-acetyl-D-muramoate was also upregulated in all 4 strains in 

the ciprofloxacin treatment, but the fold change varied drastically. F022, ELU39 and 

MG1655 all had several hundred-fold upregulation of this metabolite: FC 423.59 in 

F022, FC 628.07 in ELU39 and FC 841.6 in MG1655, the biggest alteration of any 

single metabolite seen throughout this thesis (Table S5.3). Contrastingly, strain F054 

had a fold change of 3.43 for N-acetyl-D- muramoate (Table S5.3). 

 

In the cefotaxime treatment, all 4 strains displayed a similar level (FC 3.12 – 5.42) of 

upregulation for a mass whose identity could not be distinguished by ppm between 3’-

AMP, AMP or dGMP (Table S5.2). 3’AMP is a derivative of cAMP, which has a role in 

biofilm regulation. Biofilm formation is a common response to antibiotic exposure that 

increases bacterial tolerance to antimicrobials (Crabbé et al., 2019). This metabolite 

was also upregulated in strains F022 and ELU39 (FC 3.02 and 2.08 respectively) in 

the kanamycin treatment (Table S5.1). cAMP or a derivative also appears 

downregulated (FC 0.49) in strain F022 and a derivative of cAMP is upregulated (FC 

2.0) in strain F054 in the ciprofloxacin treatment (Table S5.3). The appearance of this 

metabolite in all 3 treatments for strain F022 suggests altering this pathway is 

important in the response to antibiotic stress for this strain, although the direction of 

change varies with the antibiotic. 
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Table 5.2 A table detailing the percentage of the recorded metabolome by strain that was significantly (+/- 2.0 
Fold Change) impacted by the antibiotic treatment of ciprofloxacin, cefotaxime and kanamycin when compared 
to the antibiotic free control. The numbers of the significantly altered metabolites that are up or downregulated 
compared to the control are also recorded. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Treatment Strain % Metabolome Upregulated Downregulated 

Ciprofloxacin F054 12.42 % 31 124 

Ciprofloxacin MG1655 12.22 % 45 126 

Kanamycin F054 10.71 % 12 144 

Ciprofloxacin ELU39 10.20 % 76 106 

Cefotaxime F022 5.26 % 116 6 

Cefotaxime ELU39 5.21% 59 43 

Ciprofloxacin F022 4.92 % 60 56 

Kanamycin MG1655 3.95 % 67 13 

Cefotaxime MG1655 3.83 % 18 30 

Cefotaxime F054 3.43 % 8 35 

Kanamycin F022 3.32 % 66 8 

Kanamycin ELU39 2.7 % 45 2 
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Figure 5.1. Fold change maps for 

strain F022 of the metabolomes 

exposed to the antibiotic treatment 

ciprofloxacin, cefotaxime and 

kanamycin each compared to the 

control group for that strain, 

highlighting significant metabolites. 

The threshold for significance is 

defined as the fold change +/- 2.0. 

See table 5.2 for further values. 
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Figure 5.2. Fold change maps for 

strain F054 of the metabolomes 

exposed to the antibiotic treatment 

ciprofloxacin, cefotaxime and 

kanamycin each compared to the 

control group for that strain, 

highlighting significant metabolites. 

The threshold for significance is 

defined as the fold change +/- 2.0. 

See table 5.2 for further values. 
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Figure 5.3. Fold change maps for 

strain ELU39 of the metabolomes 

exposed to the antibiotic treatment 

ciprofloxacin, cefotaxime and 

kanamycin each compared to the 

control group for that strain, 

highlighting significant metabolites. 

The threshold for significance is 

defined as the fold change +/- 2.0. 

See table 5.2 for further values. 
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Figure 5.4. Fold change maps for 

strain MG1655 of the metabolomes 

exposed to the antibiotic treatment 

ciprofloxacin, cefotaxime and 

kanamycin each compared to the 

control group for that strain, 

highlighting significant metabolites. 

The threshold for significance is 

defined as the fold change +/- 2.0. 

See table 5.2 for further values. 
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Figure 5.5. A bar chart of the functional categories of identified metabolites significantly altered by the 

ciprofloxacin treatment, coloured by strain: purple MG1655, green ELU39, orange F054 and blue F022. 

 
 
 

 
Figure 5.6. A bar chart of the functional categories of identified metabolites significantly altered by the 

cefotaxime treatment, coloured by strain: purple MG1655, green ELU39, orange F054 and blue F022. 
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Figure 5.7. A bar chart of the functional categories of identified metabolites significantly altered by the 

kanamycin treatment, coloured by strain: purple MG1655, green ELU39, orange F054 and blue F022. 
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5.5 Discussion  

 

Trends in antibiotic disruption 

The metabolic effects of antibiotic exposure were assessed in 4 E.coli strains from 

different ecological backgrounds carrying the MDR plasmid pLL35. For most of the 

strains, the ciprofloxacin treatment caused the largest disruption to the metabolic 

network, followed by the cefotaxime treatment and the kanamycin treatment, which 

correlates to the number of plasmid-encoded resistance genes for each antibiotic 

class. The clinical strains diverged from this trend in different treatments. Strain F022 

displayed less than half the disruption in response to ciprofloxacin than the other 

strains. Clinical strain F054 displayed a 10.71% disruption in response to kanamycin, 

which is 2-3 times the proportion altered by this treatment in the other strains. 

 

Of the recorded metabolomes in the identifiable range, 19.01-33.33% of significant 

metabolites were assigned a putative identification. Despite extensive advancements 

in metabolomics techniques over recent years, full identification of microbial 

metabolomes is not yet possible (Kok et al., 2022). The identifiable metabolome is 

reflective of an energetic demand, perturbations to amino acid, nucleotide and cofactor 

metabolism and the activity of bacterial resistance mechanisms. 

 

Parallel functions  

Within each treatment, the metabolic functions altered by antibiotic stress displayed a 

high degree (10-37%) of parallelism between strains. Since all the strains studied here 

belong to the same bacterial species this is not unexpected. Additionally, broad 

functions such as amino acid metabolism, energy metabolism, nucleotide metabolite 

and cofactors were common to all 3 treatment groups. This illustrates general stress 

responses, rather than a response to a specific antibiotic. Some of these functions 

were also present in the plasmid acquisition metabolome (Chapter 3) and in the 

metabolomes of strains evolved under cefotaxime selection (Chapter 4). The extent of 

disruption caused by antibiotic exposure is generally higher, up to 12.42% of the 

metabolome, compared to plasmid acquisition, up to 1.36 % or coevolution with a 

plasmid, up to 2.6% (Table 5.2, Chapters 3 and 4). However, there remains a high 
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degree of strain specificity when assessing the pathways and metabolites affected, 

and the extent and direction in which they are affected. 

 

Amino acid metabolism is a function affected by antibiotic exposure in this data in 

every strain and treatment, and it was also a consistent feature of plasmid acquisition 

and co-evolution (Chapter 3 and Chapter 4). Lysine is one of the few amino acids that 

features throughout this thesis. In the plasmid acquisition data, lysine degradation is 

upregulated in MG1655 and downregulated in one of the clinical strains, F104. In the 

clinical strain F022 lysine metabolism is downregulated as a result of long-term 

plasmid carriage and upregulated after long term exposure to cefotaxime. In the same 

strain, F022, lysine biosynthesis is upregulated in response to cefotaxime. This 

suggests lysine is important in maintenance of a plasmid and responses to some 

stressors. Further investigations would be needed to fully understand its role. 

 

The GABA biosynthesis pathway was downregulated in all strains in the ciprofloxacin 

treatment, which is indicative of a demand on the end product to combat ciprofloxacin. 

In metabolomics, a lower intensity can mean that function is in demand and therefore 

the free form of the metabolite is decreased as it is transformed through use (Laviña 

et al., 2020). However, in a different treatment, the same metabolite in ELU39 was 

upregulated instead. In the post evolution data, a metabolite in the same pathway was 

altered in the same direction in the same strain (Chapter 4). In combination with the 

data from Chapter 4, this instead suggests that this pathway in the strain ELU39 may 

be more associated with plasmid carriage than antibiotic stress. 

 

Evidence of an energetic demand 

The metabolomes of all strains in each treatment displayed evidence of an energetic 

demand. This was evidenced by differentially expressed amounts of metabolites 

belonging to the TCA cycle, aerobic respiration and the biosynthesis of coenzymes 

which facilitate those reactions. Aerobic respiration, production of ATP through 

glycolysis and the TCA cycle is the most efficient energy production pathway in 

bacterial metabolism (Passalacqua, Charbonneau and O’Riordan, 2016). This 

pathway is evidenced by cofactors such as PLP and biotin, which have roles in energy 

production, biosynthesis of CoA and malic acid, which are key to the TCA, and finally 
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the by-product of ATP consumption. In addition, energy production was a function 

impacted by the acquisition of a plasmid, implying increased energetic demands 

(Chapter 3). Energy is needed to overcome stressors, so it follows that the bacteria 

increased the production of energy to combat both the antibiotics and the costs of 

plasmid acquisition (Zhao et al., 2019).  

 

While all treatments displayed significant alteration in these metabolites, the 

cefotaxime and ciprofloxacin treatments seemed particularly affected, for example 

PLP and biotin are unique to these two treatment groups. Some caution is required 

with this inference however, as kanamycin also had the lowest proportion of assigned 

identifications. Pyridoxal-P, (PLP) is an important cofactor for regulating energy 

production from glycogen and amino acids because it is essential for phosphorolytic 

cleavage of glycogen and amino acid degradation. The biosynthesis of PLP is 

highlighted by downregulation of PLP precursors in ELU39 and F054 strain in the 

cefotaxime treatment, and upregulation of the same metabolite in ELU39, F022 and 

MG1655 in the ciprofloxacin treatment. Further confirmation of this identification would 

be necessary however because there are alternative identifications related to amino 

biosynthesis that are equally likely per this analysis.  

 

Ciprofloxacin induced upregulation of biotin which can suggest energy is being derived 

from fatty acid metabolism. The cofactor biotin is essential for some carboxylases 

involved in fatty acid metabolism, amino acid metabolism and carbohydrate 

metabolism (Tong, 2013; Sirithanakorn and Cronan, 2021). Acquisition of the plasmid 

induced mutations in genes involved in anaerobic metabolism, of which fatty acid 

metabolism is a part (Dunn et al., 2021). This was reflected in the plasmid acquisition 

metabolomics of 3 strains (F054, F104 and MG1655) (Chapter 3). Coevolution with a 

plasmid also resulted in mutations in anaerobic metabolism and fatty acid metabolism 

(Carrilero, Dunn and Moran, 2023) although this was not reflected in the metabolome 

(Chapter 4). 

 

Ubiquinol and ubiquinone are integral parts of the electron transport chain, which both 

facilitates aerobic respiration and maintains redox homeostasis within the cell (Berg et 

al., 2019). Ubiquinone is consistently featured throughout the data in this thesis as a 
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molecule important to E.coli for acclimating to plasmid carriage upon acquisition and 

over evolutionary time (Chapter 3 and 4). The active reaction is clear in strain MG1655 

in the ciprofloxacin treatment group which saw significant downregulation of ubiquinol 

because it is reduced and transformed into ubiquinone, which was upregulated over 

100-fold. It can be inferred that other changes of these molecules in the same direction 

are indicative of this metabolic reaction. Further, it confirms that downregulation of a 

metabolite is indicative of a demand on the process of product that requires its 

alteration, and is therefore consumed, agreeing with Laviña et al (2020). 

 

Intracellular conditions are reduced and proteins are kept in the reduced state to 

facilitate DNA synthesis, energy production and protein repair (Arnér and Holmgren, 

2000). Furthermore, redox stress is both a consequence of antibiotics and a factor that 

increases lethality (Brynildsen et al., 2013; Dwyer et al., 2014). Metabolically active 

cells experience increased bactericidal effects from fluoroquinolones due to the 

formation of reactive oxygen species (ROS) during oxidative phosphorylation 

(Gutierrez et al., 2017). Additionally, impeding cell wall synthesis and initiating a futile 

cycle of peptidoglycan degradation, beta-lactams induce an energy demand and 

systemic cellular toxicity associated with ROS (Cho, Uehara and Bernhardt, 2014; 

Dwyer et al., 2014; Adolfsen and Brynildsen, 2015). 

 

Although many of the energy production pathways are common between strains, strain 

specificity remains prominent. For example, strain F022 has alterations to the amounts 

of metabolites that supply glycolysis, which is a consistent feature for this strain only 

in every treatment group. Many of the metabolites related to glycolysis have numerous 

putative identifications that are indistinguishable from each other, but the broader 

function of glycolysis supply is agreed upon, and is different than for example energy 

production from amino acid catabolism and therefore changes unique to this strain to 

the production of energy within the cell can be inferred. The clinical strains often 

respond differently to the same stressor throughout the dataset. While there are two 

strains that come from a similar background of clinical bacteremia, these environments 

could still have been vastly different and therefore the way the metabolic network 

adapted to respond to the same stressors is different. Interestingly, only F022 

displayed an increased growth rate upon acquisition of the plasmid and after 
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coevolution under cefotaxime selection (Dunn et al., 2021; Carrilero, Dunn and Moran, 

2023). 

 

There is a high level of parallelism of the functions impacted when E.coli is exposed 

to antibiotics, but strain specificity is present at the pathway and metabolite level in the 

extent and direction in which they are changed. Such diversity in response, even within 

the same species and plasmid pairing, emphasizes the challenge faced by the 

research of novel combination therapies. So far, this avenue of research is promising, 

and aims to use metabolites to manage resistant infections and re-sensitize bacteria 

to antibiotics (Peng et al., 2015; Meylan, Andrews and Collins, 2018; Crabbé et al., 

2019). This data demonstrates the importance of building a metabolomic database to 

develop clearer trends and allow hypotheses to be formed for treatment research (Kok 

et al., 2022).  

 

Bacterial resistance occurs alongside plasmid-encoded genes 

There is evidence in the metabolome of active bacterial resistance mechanisms, which 

are being upregulated by the bacteria alongside plasmid encoded resistance. This 

demonstrates that bacterial resistance mechanisms are not redundant upon 

acquisition of an MDR plasmid. 

Biofilm formation is a bacterial strategy that reduces sensitivity to antibiotics (Crabbé 

et al., 2019). Metabolomics revealed metabolites repeatedly identified as components 

of the cell wall and biofilm regulator molecules or their direct derivatives. In the 

cefotaxime treatment all four strains have a higher level of a cyclic AMP (cAMP) 

derivative than the controls, potentially indicating higher cAMP use. The common 

response in the clinical and environmental strains as well as MG1655 after evolution 

under cefotaxime selection (Chapter 4) was also an upregulation of cAMP. 

 

Cyclic AMP has multiple regulatory roles in E.coli including virulence, biofilm formation, 

type II secretion and carbon metabolism (Berg et al., 2019). Biofilm formation has been 

shown to be influenced by plasmid carriage in E.coli (Shin and Ko, 2015; Schaufler et 

al., 2016) and is a bacterial resistance mechanism (Jolivet-Gougeon and Bonnaure-

Mallet, 2014) that is impaired by beta lactamase production (Gallant et al., 2005). This 

would explain an increase of cAMP in response to cefotaxime but not the other 
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antibiotics, where the same metabolites were present in some of the strains. F022 in 

particular had the cAMP derivative upregulated in every treatment. Selection induced 

upregulation of cAMP in MG1655, F022 and ELU39, showing this altering of the 

metabolome remained as a consequence of long-term cefotaxime exposure, as these 

data were measured in the absence of an antibiotic (Chapter 4). 

 

Peptidoglycan biosynthesis was also upregulated in the Kanamycin and ciprofloxacin 

treatments, evidenced by upregulation of precursor metabolites. N-Acetyl-D-

muramoate was the most dramatically upregulated of these metabolites, 

approximately 400-800 fold by 3 of the 4 strains. This is by far the largest change to a 

single metabolite seen throughout this thesis. F054 stood apart in the ciprofloxacin 

treatment with just a 3-fold upregulation of this metabolite. Since ciprofloxacin does 

not target the cell wall, the strength of this response was perhaps surprising. N-Acetyl-

D-muramoate is a precursor molecule of the two repetitive backbone units of 

peptidoglycan, NAM. The second of these, NAG is formed by N-Acetyl-D-

Glucosamine, which is not in the data except as an alternative identification for a mass 

that had more likely identifications based on ppm (Table S5.3). While present in all 

strains, these masses were also not upregulated to the same extent as N-Acetyl-D- 

muramoate. F022 and MG1655 had this mass upregulated 2.6-fold and 4.6-fold 

respectively, and it was downregulated in ELU39 and F054 0.43-fold and 0.46-fold 

respectively. Further research would be necessary to understand the dynamics of the 

cell wall components in this setting. 

 

Many of the significantly altered metabolites seen in this chapter are intermediates, 

precursors and derivatives of essential metabolites. This is similar to previous chapters 

in this thesis and is unsurprising because metabolite levels are highly conserved in 

E.coli even when faced with perturbations the flexible metabolic network can use 

alternative pathways to minimise disruption (Ishii et al., 2007; Bennett et al., 2010). 

This is one of the qualities which allow E. coli to acclimate to the difference in 

conditions in different areas of the human body (Mann et al., 2017). Additionally in this 

chapter, the amounts, relative to the control groups, of some essential metabolites 

were altered. Examples of these metabolites include L-tryptophan, cytidine and biotin. 

This is reflective of the larger metabolic disruption caused by antibiotic exposure. 
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This study examined E.coli in the mid-log phase, which was necessary to compare 

this data with that of previous chapters. It has been suggested that the stationary 

phase is the optimal growth phase for observation of changes in the metabolome in 

response to different stress treatments (Szymanski, Jedrzej Jozefczuk et al., 2009). 

However, this study was focused on temperature, oxidation and lactose diauxic 

stressors rather than antibiotics (Szymanski, Jedrzej Jozefczuk et al., 2009). 

 

This data shows that bacteria carrying resistance plasmids still deploy chromosomally 

encoded resistance mechanisms to mitigate the impact of the antibiotic. Gain of 

resistance through plasmid transfer is not an evolutionary endpoint as the bacteria will 

contribute to respond to the stresses of antibiotics and selection. This helps to explain 

why resistance mutations continue to evolve in the chromosome after plasmid gain 

(Bottery, Wood and Brockhurst, 2019) and how antibiotics fuel a cycle of mutation and 

horizontal transfer that allows resistance gene accumulation and therefore the 

evolution of multidrug resistance (Coluzzi et al., 2023).  

 

The E.coli strains F022, F054, ELU39 and MG1655, carrying the MDR plasmid pLL35 

were exposed to antibiotic treatments of 3 different classes; beta-lactam, 

aminoglycoside and fluoroquinolone. The metabolome of the strains was analysed 

using untargeted LC-MS metabolomics, which revealed a multi-layered response to 

antibiotic stress that evidences cellular disruption, energetic demands and bacterial 

resistance mechanisms.  

While many functions, pathways and specific metabolites within these pathways are 

commonly affected in the strains, the extent and direction of the perturbation is strain 

specific. This demonstrates the complexity of a metabolic network and the nuance in 

the response to a common stressor. This has implications for future research on 

innovative combination therapies. 
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Chapter 6 : General Discussion 
 

6.1 Overview 
 

Antimicrobial resistant infections are predicted to claim 10 million lives a year by 2050 

(Antimicrobial Resistance, 2021). Understanding the evolutionary mechanisms of 

AMR emergence is important if we are to create actionable interventions to the AMR 

crisis. Increased use of antimicrobial drugs is not a viable long-term strategy because 

it increases the selection pressure for the evolution of resistance (Cantón, González-

Alba and Galán, 2012). New mechanisms of resistance evolve continuously, such as 

the New Dehli metallo-B-lactamase (NDM) which is able to hydrolyze almost all B-

lactams and is already found on plasmids carried by Escherischia coli and Klebsiella 

pneumoniae (Wu et al., 2019). Moreover, the rate of discovery of novel antibiotics has 

slowed in recent decades, as antibiotic discovery platforms are largely spent, and no 

longer producing many antibiotics that reach approval succeeding clinical trials (da 

Cunha, Fonseca and Calado, 2019). 

 

This global health crisis is exacerbated by the horizontal spread of AMR genes by 

plasmids. In particular, E.coli carrying multidrug resistance plasmids commonly from 

the IncF family have emerged as some of the most difficult to treat infections in humans 

and animals globally, driving wider use of last resort antibiotics in hospitals. Plasmids 

accelerate the evolution of multidrug resistance (MDR) because they can carry 

multiple resistance genes often against different antibiotic classes and transfer these 

horizontally between bacterial lineages (Hall, Brockhurst and Harrison, 2017).  Thus, 

new strategies that minimize or even block plasmid transmission between lineages 

are being investigated. This could involve methods such as plasmid curing or 

interrupting the process of plasmid dissemination (Buckner, Ciusa and Piddock, 2018; 

Ragheb et al., 2019). However, the development of interventions, from individual 

treatments to limiting the spread of resistance on a global scale, require a full 

understanding of the relationship dynamics between plasmids and their bacterial hosts 

(Ragheb et al., 2019; Krell and Matilla, 2022).  
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Metabolomics is proving a useful tool for gaining a systems level understanding of how 

bacterial cells respond to stressors, including antibiotics. For example, uncovering 

physiological strategies used by bacteria to tolerate antibiotics with a view of exploiting 

them to increase the efficacy of existing antibiotics (Peng et al., 2015; Meylan, 

Andrews and Collins, 2018). To date, metabolomics has been under utilized to 

understand how bacteria respond to gaining MDR plasmids and subsequently how 

this is altered by evolution and exposure to antibiotics. 

 

This thesis has explored the metabolic responses of E. coli strains carrying the IncF 

MDR plasmid pLL35 across important stages in the life history of the bacteria-plasmid 

relationship; upon acquisition of the plasmid (Chapter 3), following subsequent 

coevolution (Chapter 4) and during exposure to antibiotics (Chapter 5). This work 

builds on previous work describing the transcriptome and evolutionary responses to 

pLL35 acquisition, together building a comprehensive multi-omics picture of bacterial-

plasmid interactions in a clinically important system. Untargeted metabolomics was 

used throughout, as a method to obtain a comprehensive picture of all the metabolites 

in a biological system. In the following sections I briefly summarise the key findings of 

this thesis: 

 

6.2 Chapter 2 | Metabolomics methodology development 
 

To achieve this, I collaborated on the development of a new analytical pathway which 

brought together multiple tools into one streamlined methodology and removed the 

dependence of users on proprietary software (Parker et al., 2023). An online, open 

access guide was created to help other researchers use untargeted metabolomics. 

This informs and aids decision making from wet lab protocols, obtaining metabolomic 

data and the processing and analysis that follows. This technology is valuable for 

understanding biochemical underpinnings of phenotype as the metabolism is the 

biological level most closely associated with function (Goodacre et al., 2004; Ryan and 

Robards, 2006). Using this toolkit, I have discovered novel aspects of bacteria-plasmid 

interactions as mediated through metabolism.  
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6.3 Chapter 3 | Strain specific metabolic responses of diverse E.coli 
lineages to the acquisition of a multi-drug resistant plasmid. 

 

Chapter 3 conducted untargeted metabolomics on 9 E.coli strains from clinical (6), 

environmental (2) and lab (1) backgrounds to determine their immediate response to 

pLL35 acquisition. These bacterial hosts had previously been shown to have different 

relationships with the plasmid ranging from costly to beneficial and involving different 

degrees of transcriptomic alteration. By comparing plasmid free and plasmid carrying 

clones, the analysis revealed the metabolic impact of the acquisition of the MDR 

plasmid pLL35 on the bacterial metabolome. The results showed subtle effects, 

impacting <2% of the metabolome of each strain. Of the identified metabolites, 

commonly affected pathways emerged across strains, associated with ubiquinone 

biosynthesis, energy production, and amino acid metabolism. Yet, the direction of 

change was not consistent, meaning the precise ways in which even these commonly 

affected pathways were altered remained strain specific. The results suggest slight 

adjustments of the bacterial metabolism upon plasmid acquisition to conserve or 

produce energy and thus mitigate the impact on the cell. These findings suggest that 

metabolic adaptation can negate significant costs to plasmid carriage and the 

necessity for genetic amelioration through mutations. Taken together with previous 

studies on these strains, this reveals a picture of a multi-layered response to plasmid 

acquisition. Understanding the flexibility of the bacterial metabolic network at the 

regulatory level to a new genetic element is thus shown to be important and worthy of 

study in other systems. 

 

6.4 Chapter 4 | Strain specific responses to coevolution and 
antibiotic selection of diverse E.coli lineages with a multidrug 
resistant plasmid. 

 

In Chapter 4 a subset of these strains were studied to understand the metabolic 

response to bacteria-plasmid coevolution. Evolved clones of 3 strains - F022 (clinical), 

ELU39 (environmental) and MG1655 (lab) - which had evolved for 700 generations 

either in the absence of the plasmid, carrying the plasmid or with the plasmid under 

cefotaxime selection (Carrilero, Dunn and Moran, 2023). This previous work observed 

that compensatory evolution involving genetic and transcriptomic changes targeting 
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metabolic pathways played a key role in amelioration of fitness costs. Untargeted 

metabolomics revealed that compared to their ancestors, all evolved clones displayed 

metabolomic alterations associated with adaptation to lab conditions. Although these 

were consistent among replicates, the magnitude and metabolites altered varied 

among strains, with the clinical strain demonstrating the most alterations to its 

metabolome. Amino acid biosynthesis, glycolysis, and pyrimidine biosynthesis were 

the functions most commonly altered following lab adaptation.  

 

Bacteria-plasmid coevolution affected the metabolome in strain-specific ways, 

consistent with the findings of Chapter 3. Key affected functions included amino acid 

metabolism, nucleotide metabolism and ubiquinone biosynthesis. Moreover, addition 

of antibiotics during coevolution caused some metabolic changes, including amino 

acid metabolism, acidity protectants, glycolysis, and ubiquinone biosynthesis. Only the 

global regulator cyclic AMP (cAMP) was consistently affected across all strains, 

suggesting a role for regulated downstream functions in response to antibiotic 

selection.  

 

6.5 Chapter 5 |  Metabolic responses of 4 E.coli strains carrying a 
multidrug-resistant plasmid to antibiotic exposure. 

 

In Chapter 5 four of the plasmid-carrying E. coli strains - F054, F022, ELU39 and 

MG1655 - were exposed to 3 different classes of antibiotics against which pLL35 

encodes resistance genes: aminoglycosides, beta-lactams and fluoroquinolones 

represented by kanamycin, cefotaxime and ciprofloxacin. Untargeted metabolomics 

allowed a comprehensive assessment of the bacterial metabolome under sublethal 

antibiotic stress. The E.coli strains demonstrated a range of stress responses to 

antibiotic exposure and alterations to metabolites associated with bacterial resistance 

mechanisms. For the majority of strains, ciprofloxacin caused the most metabolic 

disruption, followed by cefotaxime and kanamycin, but the clinical strains deviated 

from these trends at times. There was also considerable functional overlap among 

strains and between treatments, but the extent and direction of change in particular 

pathways and metabolites were strain specific. Commonly affected pathways include 

amino acid and nucleotide metabolism, energy production pathways and cofactor 

biosynthesis. Interestingly, ubiquinone and ubiquinol were affected in the ciprofloxacin 
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treatment, suggesting bacterial management of redox stress. Together these data 

suggest that even after gaining resistance genes, bacteria still experience cell stress 

upon exposure to a range of antibiotics and use shifts in their metabolic network to 

mitigate these detrimental effects.  

 

6.6 Common themes across chapters 
 

One of the main themes in this thesis was that changes in the metabolome in response 

to plasmid acquisition and coevolution were strain specific. Fitness effects of plasmids 

on bacteria have been shown to vary by genotype, so a reflection of this in the 

metabolome is expected (Humphrey et al., 2012). The variation in bacterial 

communities caused by plasmid carriage and the strain specific interactions of genes 

demonstrates further the properties of plasmids as facilitators of bacterial evolution, 

because this variation provides an evolutionary landscape for selection to act upon. 

This may be part of the reason the ‘plasmid paradox’ defies theory; the reasoning that 

due to the costs they incur, plasmids would be lost from bacterial populations through 

purifying selection.  

 

A low impact on the host, such as is seen in the plasmid carriage data in this thesis, 

would prevent plasmid-carrying bacteria suffering from competitive exclusion (Fischer 

et al., 2019), especially important for the clinically relevant, narrow host range ESBL 

plasmids. These plasmids sometimes induce no significant fitness cost at all in the 

native hosts (Palkovicova et al., 2021). 

 

In chapters 4 and 5 of this thesis the impacts of plasmid acquisition and coevolution 

have had relatively small effects on the metabolome (≤ 2.6%). There may be several 

explanations for this.  

The majority of absolute concentrations of metabolites in a bacterial metabolome at 

any given time is very low. In an analysis that measured the absolute amounts of 103 

metabolites, the 10 most abundant metabolites make up 77% of the observed 

metabolome. The least abundant half makes up just 1.3% of the metabolome, 

glutamate, glutathione, fructose, ATP, UDP, hexose, UTP, GTP, dTTP, and aspartate. 

This includes most of the pathways highlighted in the results of this thesis, therefore 
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any of these as fold changes would be a major change in their normal proportion in 

the metabolome. Thus changes that appear small in terms of fold change may have a 

large biological impact (Bennett et al., 2010). 

 

Biosynthesis and catabolism pathways of amino acids were highlighted consistently 

throughout the chapters in this thesis. Amino acids comprise a large fraction of the 

metabolome, just under half, followed by nucleotides and central carbon (Bennett et 

al., 2010). Amounts of nucleotides and amino acids are tightly regulated, even in 

response to a variety of conditions and stressors, they vary consistently less than 30%, 

which is 0.3 in fold change terms (Radoš et al., 2022). E.coli metabolism can adjust to 

deletion of even major biosynthetic pathways to continue producing essential 

molecules (Cotton et al., 2020). This suggests that differentially expressed amino acids 

may be indicative of a bigger metabolic response than previously thought. 

 

In a community setting fitness variation in bacterial hosts may be advantageous for 

the plasmids, by creating a stable pool of resistance in some strains or species to 

persist and coevolve intensively with their bacterial hosts, one of the ecological 

solutions to the paradox (Clarke et al., 2020; Brockhurst and Harrison, 2022; Newbury 

et al., 2022). Given this stability in communities, limiting infection spread may be an 

increasing component of the clinical management strategy rather than a cessation of 

antibiotic use, because alone this will not promote re-susceptibility, thanks to genetic 

linkage of resistance genes and stable plasmids (Enne et al., 2004; Peirano and Pitout, 

2019; Newbury et al., 2022). 
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Figure 6.1 An edited version of the figure published in (Billane et al., 2022), summarising common 

phenotypic effects of plasmids on their bacterial hosts, and how this may relate to different replication 

strategies of the plasmid. Greyed out are the functions not reflected in the metabolomics of this thesis. 

 

 

This work extends previous work interrogating these strains which again, show subtle 

strain specific changes - but the targets differ (Dunn et al., 2021; Carrilero, Dunn and 

Moran, 2023). This shows a multi-layered, complex pattern of bacterial responses. 

Plasmid mediated alterations to the metabolome without antibiotic selection fall in line 

with some of the phenotypic effects common to diverse plasmid and bacteria 

relationships (Covered Chapter 1, Billane et al., 2022). 

 

In the metabolome, plasmid carriage was associated with use of alternative energy 

sources, such as catabolism of amino acids, indicators of anaerobic metabolism and 

aromatic compounds (Chapter 3). Coevolution with a plasmid and exposure to 

antibiotics induced expression of bacterial resistance mechanisms in tandem with 

resistance genes harboured on the plasmid (Chapters 4 & 5). This also saw the 
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alteration of the global regulator cAMP which has multiple regulatory functions within 

the bacteria, including virulence factors and biofilm formation (McDonough and 

Rodriguez, 2012) (Chapter 4). An increased rate of aerobic respiration is indicated by 

ubiquinone and ubiquinol, which facilitate oxidative phosphorylation and are molecules 

highlighted in every chapter of this thesis, suggesting it’s importance for E.coli 

acclimating to plasmid carriage and subsequent coevolution, and combatting antibiotic 

stress (Chapter 3, 4 & 5). 

 

E.coli undergo metabolic changes within a human host from non-virulent high nutrient 

and sugar intestinal niche to the low-nutrient urinary tract, where it switches to 

catabolism of amino acids and peptides and increased virulence (Alteri and Mobley, 

2012). Different amino acid utilisation and synthesis pathways are activated at different 

infection stages. Metabolites associated with virulence include pathogenicity carbon 

metabolism, gluconeogenesis, amino acid metabolism B-galactosidase, sorbitol. 

Purine and pyrimidine synthesis are also vital for host colonisation and growth (Mann 

et al., 2017). 

 

Together, the functional impacts of plasmid carriage complement the other phenotypic 

impacts observed in myriad pairings of plasmids and bacteria, observed through the 

lens of omic technologies (Figure 1).  

 

 

6.7 Hypothesis Generation 
 

The metabolome reveals different information than genomics and transcriptomics. 

This may be important to consider for future studies as historically transcriptomics are 

used to predict phenotype (Long et al., 2019). However, metabolic disruption is not 

necessarily reflective of the transcriptomic disruption due to redundancy at different 

functional levels (Ishii et al., 2007; Jozefczuk et al., 2010). It is increasingly appreciated 

that combined multi-omic studies are the best way to obtain a comprehensive 

understanding of a biological system. Different levels reveal different information, and 

one cannot necessarily be used to predict another. Untargeted metabolomics is often 

used as a hypothesis generating tool (Di Minno et al., 2021).  
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Based on the results of this thesis, further research should investigate the following: 

 

Could plasmid impact include adaptive effects? 

 

Future work should aim to untangle the effects of stress from either the plasmid or 

antibiotic and explore the possibility that plasmid carriage may induced a preparatory 

effect within the bacterial metabolome. The biosynthesis and use of the cellular 

regulator cAMP was featured repeatedly in the metabolome of E.coli that had 

coevolved with a plasmid with and without antibiotic selection and in the metabolomes 

of the ancestral plasmid carriers upon exposure to antibiotics. cAMP levels were 

altered in all strains studied in Chapter 4 and indicated that plasmid carriage induced 

downregulation, when compared to plasmid free strains, and cefotaxime exposure 

induced upregulation, compared to plasmid free strains. Chapter 5 showed that cAMP 

was important in the bacterial response to antibiotic stress. The plasmid has an impact 

on cAMP that is opposite to the cAMP response when the bacteria encounters 

antibiotics. Further assessment of this pathway should test if this represents an 

adaptive effect, where the plasmid alters some aspects of the bacterial metabolome 

to conserve or accumulate metabolic products required for the survival of the bacteria 

during exposure to stressors. 

 

 

A number of pathways highlighted in the untargeted metabolomics throughout this 

thesis are candidates for further, targeted analysis.  

 

Examining the dynamics of these pathways may further our understanding of plasmid 

persistence and the continued evolution of resistance. In response to plasmid 

acquisition, co-evolution and antibiotic exposure, significant changes are consistently 

seen throughout this thesis to ubiquinone and ubiquinol, and metabolism of amino 

acids such as lysine, arginine and tryptophan. Targeted analysis to examine the full 

pathway would determine whether these are potential targets for metabolite based 

combination therapies (Meylan, Andrews and Collins, 2018; Crabbé et al., 2019).  



 
 

 
 
 

151 

Additionally, the upregulation of NAM, part of peptidoglycan biosynthesis in response 

to ciprofloxacin was the largest metabolic alternation to a single metabolite in multiple 

strains in the data. While untargeted metabolomics facilitated this discovery, 

understanding of this remains incomplete. The gain of resistance does not mean that 

the bacteria cease to respond to selection. Instead the compounding tolerance by 

plasmid acquisition and chromosomal resistance mutations each facilitate the other 

(Coluzzi et al., 2023). This contributes to the evolution of multidrug resistance and so 

understanding key metabolic pathways that change during bacterial-plasmid 

coevolution, or plasmid carrier responses to survive antibiotics, are important to aid 

the mitigation of the dissemination of multi-drug resistance. 

 

 

6.8 Conclusions 
 

This thesis demonstrates, by use of untargeted metabolomics, that plasmid carriage 

induced strain specific responses in E. coli which have broad functional 

commonalities. Adjusting the metabolism of amino acids, production of energy 

including utilisation of alternative sources or a switch to anaerobic metabolism. These 

functions continued to be affected by evolution, which impacted amino acid, energy 

and nucleotide metabolism as the strains adapted to laboratory conditions. 

Coevolution with a plasmid had a varied scale of impact among the strains when 

compared to plasmid free controls and affected amino acid metabolism, nucleotide 

metabolism and energy production in the clinical strains, while the environmental strain 

altered fatty acid metabolism and acid protectants to adapt to plasmid carriage. 

Antibiotic selection induced a range of stress responses, highlighted by the altered 

regulation of energy production, amino acid metabolism and nucleotide metabolism. 

Bacterial resistance mechanisms are also induced, highlighted by altered regulation 

of cell wall and biofilm component biosynthesis and redox stress regulation, which has  

roles in both stress and resistance responses of the bacteria. This shows the bacteria 

continue to respond to stressors in tandem with plasmid-encoded resistance genes. 

Thus Escherichia coli adapt to plasmid carriage and antibiotic exposure by subtle 

alterations of its metabolism on a network wide scale. 
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Supplementary Materials 
 

Supplementary Chapter 3  
S3 – Data Tables 
 
Table S3.1 – Mass values (Da) with a Fold Change of 2.0 or greater and putative Identifications where possible for 9 E.coli strains when the plasmid carrying profiles were 
compared against plasmid free controls. 

Strain Mass ID KEGG ppm Adduct 

Adduct 
+Compound 

M/Z 
Monoisotopic 

Mass 
Chemical 
Formula 

Fold 
Change log2(FC) 

F054 70.005 Methylamine 
C0021

8 5 M+K 70.0054 31.0422 CH5N 2.0299 1.0214 
F037 136.0858 -       2.4148 1.2719 

F104 136.0858        10.959 3.4541 

ELU39 136.0858        11.741 3.5534 

GU15 136.0858        2.399 1.2624 

F048 136.13162 Creatinine 
C0079

1 22 M+Na 136.0481 113.0589 C4H7N30 0.11428 -3.1294 

F054 136.13162 Creatinine 
C0079

1 22 M+Na 136.0481 113.0589 C4H7N30 15.621 3.9654 

F104 136.13162 Creatinine 
C0079

1 22 M+Na 136.0481 113.0589 C4H7N30 2.7381 1.4532 

ELU39 136.13162 Creatinine 
C0079

1 22 M+Na 136.0481 113.0589 C4H7N30 0.28535 -1.8092 

GU15 136.13162 Creatinine 
C0079

1 22 M+Na 136.0481 113.0589 C4H7N30 0.085993 -3.5396 

F054 146.15521        3.11F054 1.6394 

F022 147.06438 Pyrazinic acid 
C1991

5 10 M+Na 147.0165 124.0273 C5H4N2O2 0.42509 -1.2342 

  Benzyl-alcohol 
C0055

6 39 M+K 147.0207 108.0575 C7H8O   

  4-Cresol 
C0146

8 39 M+K 147.0207 108.0575 C7H8O   
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F104 211.1012 
N6-Acetyl-L-

Lysine 
C0272

7 25 M+Na 211.1053 188.1161 
C8H16N2O

3 0.49985 -1.0004 

  Decanoate 
C0157

1 37 M+K 211.1077 171.1385 C10H19O2   

MG165
5 211.1012 

N6-Acetyl-L-
Lysine 

C0272
7 25 M+Na 211.1053 188.1161 

C8H16N2O
3 2.1908 1.1315 

  Decanoate 
C0157

1 37 M+K 211.1077 171.1385 C10H19O2   

F047 233.1467        0.47428 -1.0762 

F104 233.14876        0.24024 -2.0575 

F054 247.12517        0.33153 -1.5928 

F104 247.12517        0.4166 -1.2633 

F054 248.12694 Tetradecanoate  11 M+Na 248.1747 225.1855 C14H25O2 0.4625 -1.1125 

F047 251.06503 D-Glyceric acid 
C0025

8 36 M+H 251.0074 250.0002 
C6H10CaO

8 0.4477 -1.1594 

F047 266.18066        0.29143 -1.7788 

F047 275.12669 

4-Hydroxy-3-
polyprenylbenzo

ate 
C0584

8 36 M+H 275.1642 274.1569 C17H22O3 0.37122 -1.4297 

F104 275.12766 

4-Hydroxy-3-
polyprenylbenzo

ate 
C0584

8 36 M+H 275.1642 274.1569 C17H22O3 2.9549 1.5631 

F054 275.13172 

4-Hydroxy-3-
polyprenylbenzo

ate 
C0584

8 36 M+H 275.1642 274.1569 C17H22O3 9.473 3.2438 

F022 275.13489 

4-Hydroxy-3-
polyprenylbenzo

ate 
C0584

8 36 M+H 275.1642 274.1569 C17H22O3 2.2185 1.1496 

MG165
5 280.95598 

       

11.716 3.5505 

F054 286.14576        2.0658 1.0467 

F047 296.95104        2.6433 1.4024 

GU15 296.95127        0.29292 -1.7714 

F104 296.95246        0.46937 -1.0912 
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F037 307.22445        0.49981 -1.0006 

GU15 308.14917        3.793 1.9234 

ELU39 308.14924        4.6182 2.2073 

F047 313.27234        0.48324 -1.0492 

GU15 313.27234        2.2325 1.1587 

GU15 313.39844        2.2256 1.1542 

GU15 314.27759        2.0088 1.0064 

ELU39 353.32385        2.3799 1.2509 

F047 354.40425        0.45746 -1.1283 

F047 356.28549        0.40282 -1.3118 

F054 365.06347        2.1756 1.1214 

F047 371.26914        0.41866 -1.2562 

F054 415.16229        0.4571 -1.1294 

MG165
5 

481.2796        

0.48633 -1.04 

MG165
5 525.31009 

       

0.39106 -1.3545 

GU15 540.74636        2.7599 1.4646 

F047 607.97027        0.47358 -1.0783 

MG165
5 613.36561 

       

0.3985 -1.3274 

MG165
5 629.2655 

       

0.4906 -1.0274 

ELU39 662.51522        2.1303 1.0911 

ELU39 664.52067        2.0728 1.0516 

F047 683.57686        0.38913 -1.3617 

ELU39 688.53377        2.3932 1.259 

ELU39 690.54459        3.3654 1.7508 

ELU39 691.54931        2.5932 1.3747 

ELU39 692.55674        2.0569 1.0405 

F022 693.24188        4.3015 2.1048 
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ELU39 701.58616        0.39151 -1.3529 

ELU39 704.56329        2.8312 1.5014 

ELU39 705.56621        2.2565 1.1741 

F047 711.61334        0.39569 -1.3376 

ELU39 712.53027        2.5051 1.3249 

ELU39 716.55932        2.4449 1.2897 

ELU39 717.56305        3.3521 1.745 

ELU39 718.57616        3.0266 1.5977 

ELU39 719.57945        2.2581 1.1751 

ELU39 744.57516        2.1704 1.1179 

GU15 746.55976        2.6058 1.3817 
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S3 – Principle Component Analysis 

 
Figure S3.1. Principle component analysis for each of 9 E.coli strains comparing the plasmid free 
metabolome to the plasmid carrying metabolome. 
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S3 - Mass Spectrometry Parameters  

Parameters for C:\MassLynx\Heather.PRO\ACQUDB\esi_pos_sens.EXP 

Created by 4.2 SCN983 

  

Lock Spray Configuration: 

Tuning on     Analyte 

  

Temperature Correction: 

Temperature Correction    Disabled 

  

Instrument Configuration: 

Lteff      1800.0 

Veff      7199.60 

Resolution     10000 

Min Points in Peak    2 

Acquisition Device    WatersADC 

Acquisition Algorithm    ADC Mode 

ADC Trigger Threshold (V)   1.00 

ADC Input Offset (V)    -1.50 

Average Single Ion Intensity   24 

ADC Amplitude Threshold    3 

ADC Centroid Threshold    -1 

ADC Ion Area Threshold    3 

ADC Ion Area Offset    10 

ADC Pushes Per IMS Increment   1 

EDC Delay Coefficient    1.4100 

EDC Delay Offset    0.4000 

  

Experimental Instrument Parameters 

Instrument  
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Parameter Filename  

 C:\MassLynx\Heather.PRO\ACQUDB\190221.IPR (MODIFIED) 

Polarity     ES+ 

Capillary (kV)     3.6000 

Source Temperature (°C)    100 

Sampling Cone     80.0000 

Source Offset     20.0000 

Source Gas Flow (mL/min)   0.00 

Desolvation Temperature (°C)   280 

Cone Gas Flow (L/Hr)    0.0 

Desolvation Gas Flow (L/Hr)   500.0 

Nebuliser Gas Flow (Bar)   2.5 

LM Resolution     4.4 

HM Resolution     15.0 

Aperture 1     0.0 

Pre-filter     2.0 

Ion Energy     1.0 

Manual Trap Collision Energy   FALSE 

Trap Collision Energy    4.0 

Manual Transfer Collision Energy  FALSE 

Transfer Collision Energy   2.0 

Manual Gas Control    FALSE 

Trap Gas Flow (mL/min)    2.00 

HeliumCellGasFlow    180.00 

IMS Gas Flow (mL/min)    90.00 

Detector     3400 

DetectorCache     0 

Sample Infusion Flow Rate (µL/min)  5 

Sample Flow State    LC 

Sample Fill Volume (µL)    250 

Sample Reservoir    Wash 

LockSpray Infusion Flow Rate (µL/min)  10 

LockSpray Flow State    Infusion 
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LockSpray Reservoir    B 

LockSpray Capillary (kV)   3.0 

Use Manual LockSpray Collision Energy  FALSE 

Collision Energy    4.0 

Acceleration1     70.0 

Acceleration2     200.0 

Aperture2     40.0 

Transport1     70.0 

Transport2     70.0 

Steering     -0.75 

Tube Lens     72 

Pusher      1900.0 

Pusher Offset     -0.30 

Puller      1370.0 

Pusher Cycle Time (µs)    Automatic 

Pusher Width (µs)    Automatic 

Collector     50 

Collector Pulse     10.0 

Stopper      10 

Stopper Pulse     20.0 

Entrance     62 

Static Offset     180 

Puller Offset     0.00 

Reflectron Grid (kV)    1.470 

Flight Tube (kV)    10.00 

Reflectron (kV)     3.780 

Use Manual Trap DC    FALSE 

Trap DC Entrance    1.0 

Trap DC Bias     2.0 

Trap DC      -2.0 

Trap DC Exit     0.0 

Use Manual IMS DC    FALSE 

IMS DC Entrance     -20.0 
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Helium Cell DC     1.0 

Helium Exit     -20.0 

IMSBias      2.0 

IMS DC Exit     20.0 

USe Manual Transfer DC    FALSE 

Transfer DC Entrance    5.0 

Transfer DC Exit    15.0 

Trap Manual Control    OFF 

Trap Wave Velocity (m/s)   300 

Trap Wave Height (V)    0.5 

IMS Manual Control    OFF 

IMS Wave Velocity (m/s)    300 

IMS Wave Height (V)    0.0 

Transfer Manual Control    OFF 

Transfer Wave Velocity (m/s)   247 

Transfer Wave Height (V)   0.2 

Step Wave 1 In Manual Control   OFF 

Enable Reverse Operation   OFF 

Step Wave 1 In Velocity (m/s)   300.0 

Step Wave 1 In Height    15.0 

Step Wave 1 Out Manual Control   OFF 

Step Wave 1 Out Velocity (m/s)   300.0 

Step Wave 1 Out Height    15.0 

Step Wave 2 Manual Control   OFF 

Step Wave 2 Velocity (m/s)   300.0 

Step Wave 2 Height    1.0 

Use Manual Step Wave DC    OFF 

Step Wave TransferOffset   25.0 

Step Wave DiffAperture1    3.0 

Step Wave DiffAperture2    0.0 

Use Automatic RF Settings   TRUE 

StepWave1RFOffset    300.0 

StepWave2RFOffset    350.0 
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Target Enhancement Enabled   FALSE 

Target Enhancement Mode    EDC 

Target Enhancement Mass    785.0 

Target Enhancement Trap Height (V)  4.0 

Target Enhancement Extract Height (V)  15.0 

Mobility Trapping Manual Release Enabled FALSE 

Mobility Trapping Release Time (µs)  500 

Mobility Trap Height (V)   15.0 

Mobility Extract Height (V)   0.0 

Trag Gate LUT table enabled   FALSE 

TriWave Trap Gate LookUp Table   

Using Drift Time Trimming   FALSE 

Drift Time Bins     0 

Using Mobility Delay after Trap Release  TRUE 

IMS Wave Delay (µs)    1000 

Variable Wave Height Enabled   FALSE 

Wave Height Ramp Type    Linear 

Wave Height Start (V)    10.0 

Wave Height End (V)    40.0 

Wave Height Using Full IMS   TRUE 

Wave Height Ramp (%)    100.0 

Wave Height Look Up Table    

Variable Wave Velocity Enabled   FALSE 

Wave Velocity Ramp Type    Linear 

Wave Velocity Start (m/s)   1000.0 

Wave Velocity End (m/s)    300.0 

Wave Velocity Using Full IMS   TRUE 

Wave Velocity Ramp (%)    100.0 

Wave Velocity Look Up Table    

Backing      2.92e0 

Source      7.25e-3 

Sample Plate     1.19e3 

Trap      8.67e-3 
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Helium Cell     9.97e-5 

IMS      9.84e-5 

Transfer     7.66e-3 

TOF      4.45e-7 

IMSRFOffset     300 

IMSMobilityRFOffset    250 

TrapRFOffset     300 

Use Automatic RF Settings   TRUE 

AutoStepWave1RFOffset    300 

AutoStepWave2RFOffset    300 

TransferRFOffset    350 

MS Profile Type     Auto P 

MSProfileMass1     100 

MSProfileDwellTime1    20 

MSProfileRampTime1    20 

MSProfileMass2     300 

MSProfileDwellTime2    20 

MSProfileRampTime2    40 

MSProfileMass3     500 

PusherInterval     54.000000 

PusherOffset     0.250000 

LockMassValidSigma    5 

  

Acquisition mass range 

Start mass     50.000 

End mass     1200.000 

Calibration mass range 

Start mass     0.000 

End mass     0.000 

  

Experiment Reference Compound Name: N/A 

  

Function Parameters - Function 1 - TOF MS FUNCTION 
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Scan Time (sec)     1.000 

Interscan Time (sec)    0.014 

Start Mass     50.0 

End Mass     1200.0 

Start Time (mins)    0.00 

End Time (mins)     3.00 

Data Format     Continuum 

Analyser     Sensitivity Mode 

ADC Sample Frequency (GHz)   3.0 

ADC Pusher Frequency (µs)   54.0 

ADC Pusher Width (µs)    1.50 

Use Tune Page Cone Voltage   YES 

Using Auto Trap Collision Energy (eV)  4.000000 

Using Auto Transfer Collision Energy (eV) 2.000000 

Sensitivity     Normal 

Dynamic Range     Normal 

Save Collapsed Retention Time Data  No 

Use Rule File Filtering    No 

FragmentationMode    CID 

Calibration     Dynamic 2 

 

 

S3 - XCMS online Parameters 

Feature Detection method   Centwave 

Ppm     30 

Minimum peak width    10 

Maximum peak width    60 

Retention Time Correction method Obiwarp 

Alignment 

Bw     5 

Minfrac     0.5 

Mzwid     0.025 
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S3 - Normalisation of Data 

 

 

 
 
Figure S3.2 – Graphs showing the density and intensity of the data before and after normalization. 

Normalized by Pareto scaling to retain the shape of the data. 
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Figure S3.3 – Graphs showing the density and intensity of the data before and after normalization. 

Normalized by Pareto scaling to retain the shape of the data. 
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Supplementary Chapter 4  
S4 – Data Tables 
Table S4.1 Fold change summary of the total masses (Da) that cross the fold change threshold of +/- 2.0 when comparing the plasmid carrying profiles against 
the plasmid free profiles by strain. Metabolites were identified using KEGG and ECMDB. 

 
Strain M/z ID KEGG ppm Adduct Adduct 

+Compound M/Z 
Monoisotopi

c Mass 
Chemical 
Formula 

FC log2(FC
) 

Function 

F022 96.07998        0.43264 -1.2088  

F022 118.09047 Betaine C00719 31 M+H 118.0868 118.0868 C5H12NO2 0.36273 -1.463 Serine and threonine 
biosynthesis 

  L-Valine C00183 36 M+H 118.0863 117.079 C5H12NO2   Branched chain amino acid 
metabolism valine-

isoleucine metabolism 

F022 119.09351        0.39633 -1.3352  

F022 140.07101 Betaine C00719 16 M+Na  118.0868 C5H12NO2 0.36083 -1.4706 Serine and threonine 
biosynthesis 

  L-Valine C00183 20 M+Na  117.079 C5H12NO2   Branched chain amino acid 
metabolism 

F022 153.04427 Xanthine C00385 23 M+H    0.46548 -1.1032 Adenine and guanine 
metabolism 

  2-Keto-3-methyl-valerate C00671 48 M+Na 153.0517 129.0552 C6H9O3   Branched chain amino acid 
metabolism valine-

isoleucine metabolism 

F022 153.07936 Ribitol C00474 24 M+H 153.0757 152.0685 C5H12O5 0.47956 -1.0602  

  L-Arabitol C00532 24 M+H 153.0757 152.0685 C5H12O5    

F022 156.04794 Betaine C00719 34 M+K 156.0427 118.0868 C5H12NO2 0.30117 -1.7313 Serine and threonine 
biosynthesis 

  L-Valine C00183 37 M+K 156.0421 117.079 C5H11NO2   Branched chain amino acid 
metabolism 

F022 213.02325 3-Carboxy-3-hydroxy-
isocaproate 

C02504 34 M+K 213.016 174.0528 C7H10O5 0.48593 -1.0412 Branched chain amino acid 
metabolism leucine 

biosynthesis 

  2-Isopropyl-3-oxosuccinate C04236 34 M+K 213.016 174.0528 C7H10O5   Branched chain amino acid 
metabolism leucine 

biosynthesis 

  Shikimic acid C00493 34 M+K 213.016 174.0528 C7H10O5   Shikimate pathway 

ELU39 217.11175 gamma-Glutamyl-gamma-
butyraldehyde 

C15700 30 M+H 216.111 217.1183 C9H16N2O4 2.544 1.3471 GABA biosynthesis 

ELU39 226.9613 2,5-Dichloro-4-oxohex-2-
enedioate 

C12835 46 M+H 226.9509 225.9436 C6H4Cl2O5 2.2061 1.1415  
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F022 230.24096        0.39979 -1.3227  

ELU39 230.24292        3.7446 1.9048  

MG1655 250.88692        0.43583 -1.1982  

ELU39 254.84663        3.5313 1.8202  

F022 254.84667        2.2911 1.196  

F022 260.90304        0.49388 -1.0178  

MG1655 261.1383        0.47497 -1.0741  

F022 262.87619        0.44241 -1.1765  

MG1655 262.87666        2.2873 1.1936  

F022 270.15899 Ubiquinol-1 C00390 41 M+NH4 270.17 252.1362 C14H20O4 0.33108 -1.5948 Ubiquinone biosynthesis 

MG1655 277.08735 Nicotinamide riboside C03150 26 M+Na 277.08 255.0981 C11H15N2O5 0.44779 -1.1591  

  D-Galactosamine 6-
phosphate 

C06377 28 M+NH4 277.0795 259.0457 C6H14NO8P    

  alpha-D-Glucosamine 1-
phosphate 

C06156 28 M+NH4 277.0795 259.0457 C6H14NO8P   UDP-N-acetyl-D-
glucosamine biosynthesis 

  Glucosamine-1P C04501 28 M+NH4 277.0795 259.0457 C6H14NO8P   UDP-N-acetyl-D-
glucosamine biosynthesis 

  Glucosamine 6-phosphate C00352 28 M+NH4 277.0795 259.0457 C6H14NO8P   UDP-N-acetyl-D-
glucosamine biosynthesis 

F022 329.07394 N-Succinyl-L,L-2,6-
diaminopimelate 

C04421 2 M+K 329.0746 290.1114 C11H18N2O7 0.43099 -1.2143 Lysine metabolism 

  Argininosuccinic acid C03406 36 M+K 329.0858 290.1226 C10H18N4O6   Arginine biosynthesis 

  2-Succinyl-5-enolpyruvyl-6-
hydroxy-3-cyclohexene-1-

carboxylate 

C16519 39 M+H 329.0867 328.0794 C14H16O9   Menaquinone biosynthesis 

F022 347.05896        0.12 -3.0589  

F022 347.08038 Adenosine 2',3'-cyclic 
phosphate 

C02353 17 M+NH4 347.0863 329.0525 C10H12N5O6P 0.42755 -1.2258 Precursor to adenosine, 
derivative of 2'3'-Cyclic AMP 

  Cyclic AMP C00575 17 M+NH4 347.0863 329.0525 C10H12N5O6P   Biofilm Formation 

F022 347.58478        0.49322 -1.0197  

ELU39 362.94504        2.157 1.109  

F022 385.07204        0.45366 -1.1403  

ELU39 404.93512        2.5603 1.3563  

ELU39 412.77255        2.1846 1.1273  

ELU39 426.84985        2.0265 1.019  

ELU39 430.936        2.0084 1.0061  

F022 499.15677        0.44123 -1.1804  

F022 520.11624        0.41277 -1.2766  

MG1655 520.13006        0.35585 -1.4907  

F022 520.63378        0.4467 -1.1626  

F022 521.13348        0.4868 -1.0386  
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F022 541.1        0.41977 -1.2523  

ELU39 546.76873        2.141 1.0983  

F022 578.14658        0.495 -1.0145  

ELU39 590.75225        2.0206 1.0148  

F022 596.15631        0.4947 -1.0154  

MG1655 638.6573        0.44215 -1.1774  

MG1655 693.16966        0.20921 -2.257  

F022 693.17004        0.44041 -1.1831  

ELU39 693.17201        2.1898 1.1308  

F022 694.17386        0.44444 -1.1699  

F022 695.17316        0.40985 -1.2868  

ELU39 742.7783        2.2841 1.1916  

ELU39 764.75922        2.0853 1.0602  

ELU39 796.68474        2.5129 1.3293  

F022 808.54628        0.40686 -1.2974  

F022 815.86261        0.39291 -1.3477  

F022 823.86119        0.49104 -1.0261  

F022 866.21927        0.3994 -1.3241  

F022 888.17153        0.49332 -1.0194  

F022 1039.2673        0.26872 -1.8958  

F022 1040.26905        0.33133 -1.5936  

F022 1062.25633        0.49898 -1.003  
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Table S4.2 Fold change summary of the total masses (Da) that cross the fold change threshold of +/- 2.0 when comparing the antibiotic selection profiles 
against the plasmid free profiles by strain. Metabolites were identified using KEGG and ECMDB 

Strain M/z ID KEGG ppm Adduct Adduct 
+Compound 

M/Z 

Monoisotopic 
Mass 

Chemical 
Formula 

FC Log2(FC) Function 

F022 118.09047 Betaine C00719 31 M+H 118.0868 118.0868 C5H12NO2 0.39376 -1.3446 Serine and threonine 
biosynthesis 

  L-Valine C00183 36 M+H 118.0863 117.079 C5H11NO2   Branched cahin amino acid 
metabolism 

F022 156.04794 Betaine C00719 34 M+K 156.0427 118.0868 C5H12NO2 0.34037 -1.5548 Serine and threonine 
biosynthesis 

  L-Valine C00183 37 M+K 156.0421 117.079 C5H11NO2   Branched cahin amino acid 
metabolism 

ELU39 166.0853 D-Phenylalanine C02265 6 M+H 166.0863 165.079 C9H11NO2 0.48577 -1.0417 Phenyalanine biosythesis 

  L-Phenylalanine C00079 6 M+H 166.0863 165.079 C9H11NO2   Phenyalanine biosythesis 

MG1655 174.94267        0.4903 -1.0283  

MG1655 198.04356 7-Cyano-7-carbaguanine C15996 25 M+Na 198.0386 175.0494 C7H5N5O 0.41098 -1.2829 Folate biosynthesis 

ELU39 217.10864 gamma-Glutamyl-
gamma-butyraldehyde 

C15700 44 M+H 217.1183 216.111 C9H16N2O4 4.7016 2.2332 GABA biosynthesis 

MG1655 220.0286 L-Tyrosine C00082 38 M+K 220.0371 181.0739 C9H11NO3 0.47746 -1.0666 Tyrosine biosythesis, 
thyamine biosynthesis 

ELU39 230.24152        2.0834 1.0589  

ELU39 242.04925        0.41289 -1.2762  

F022 247.06603 -Phosphoribosylamine C03090 12 M+NH4 247.069 229.0351 C5H12NO7P 0.35436 -1.4967 Denovo puring biosynthesis 

F022 254.84738        2.8627 1.5174  

F022 270.15827 Ubiquinol-1 C00390 43 M+NH4 270.17 252.1362 C14H20O4 0.38333 -1.3834 Ubiquinone biosynthesis 

F022 338.89928        2.1589 1.1103  

F022 347.05936        0.47002 -1.0892  

ELU39 347.08318 Adenosine 2',3'-cyclic 
phosphate 

C02353 9 M+NH4 347.0863 329.0525 C10H12N5O6P 4.7682 2.2534 Precursor to adenosine, 
derivative of 2'3'-Cyclic AMP 

  Cyclic AMP C00575 9 M+NH4 347.0863 329.0525 C10H12N5O6P   Biofilm Formation 

MG1655 404.80551        0.49128 -1.0254  

ELU39 404.93164        0.31718 -1.6566  

F022 436.87816        2.5865 1.371  

ELU39 660.64963        2.5848 1.3701  

ELU39 682.73257        2.2513 1.1708  

ELU39 693.1525        5.0024 2.3226  

ELU39 715.13273        4.0504 2.0181  

ELU396 764.73754        2.2546 1.1729  
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Table S4.3. Total masses (Da) that cross the fold change threshold of +/-2.0 comparing the antibiotic selection profiles against the plasmid carrying profiles by 
strain. Metabolites were identified using KEGG and ECMDB 
Strain M/z ID KEGG ppm Adduct Adduct +Compound 

M/Z 
Monoisotopic Mass Chemical 

Formula 
FC Log2(FC) Function 

F022 99.04636 Propylene glycol C00583 48 M+Na 99.0416 76.0524 C3H8O2 0.3453 -1.5341 By-product of glycolysis 

F022 115.0412 Glycerol C00116 40 M+Na 115.0366 92.0473 C3H8O3 2.0506 1.036 Feeds into glycolysis 

F022 135.069 R)-2,3-Dihydroxy-isovalerate C04272 28 M+H 135.0652 134.0579 C5H10O4 2.1982 1.1363 Valine/isoleucine branched 
chain amino acid metabolism 

  Deoxyribose C01801 28 M+H 135.0652 134.0579 C5H10O4    

F022 153.0794 Ribitol C00474 24 M+H 153.0757 152.0685 C5H12O5 2.0533 1.038  

  L-Arabitol C00532 24 M+H 153.0757 152.0685 C5H12O5    

MG165
5 

174.9427        0.47841 -1.0637  

F022 195.0083 Glycerol 3-phosphate C00093 28 M+Na 195.0029 172.0137 C3H9O6P 2.1478 1.1028  

F022 213.0233 3-Carboxy-3-hydroxy-
isocaproate 

C02504 34 M+K 213.016 174.0528 C7H10O5 2.2291 1.1565 Branched chain amino acid 
metabolism leucine 

biosynthesis 

  2-Isopropyl-3-oxosuccinate C04236 34 M+K 213.016 174.0528 C7H10O5   Branched chain amino acid 
metabolism leucine 

biosynthesis 

  Shikimic acid C00493 34 M+K 213.016 174.0528 C7H10O5   Shikimate pathway 

ELU39 242.0494        0.35686 -1.4866  

F022 247.1377        0.48772 -1.0359  

ELU39 254.8458        0.46021 -1.1196  

F022 260.9036        2.2249 1.1538  

F022 304.9481        2.3769 1.2491  

MG165
5 

316.8844        2.5795 1.3671  

F022 329.0711 N-Succinyl-L,L-2,6-
diaminopimelate 

C04421 11 M+K 329.0746 290.1114 C11H18N2O7 2.2688 1.1819 Lysine metabolism 

  Argininosuccinic acid C03406 45 M+K 329.0858 290.1226 C10H18N4O6   Arginine biosynthesis 

  2-Succinyl-5-enolpyruvyl-6-
hydroxy-3-cyclohexene-1-

carboxylate 

C16519 47 M+H 329.0867 328.0794 C14H16O9   Menaquinone biosynthesis 

F022 347.0599        2.8285 1.5001  

ELU39 347.0818 Adenosine 2',3'-cyclic 
phosphate 

C02353 13 M+NH4 347.0863 329.0525 C10H12N5O6
P 

3.4007 1.7658 Precursor to adenosine, 
derivative of 2'3'-Cyclic AMP 

  Cyclic AMP C00575 13 M+NH4 347.0863 329.0525 C10H12N5O6
P 

  Biofilm Formation 
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MG165
5 

347.0851 Adenosine 2',3'-cyclic 
phosphate 

C02353 4 M+NH4 347.0863 329.0525 C10H12N5O6
P 

2.5321 1.3403 Precursor to adenosine, 
derivative of 2'3'-Cyclic AMP 

  Cyclic AMP C00575 4 M+NH4 347.0863 329.0525 C10H12N5O6
P 

  Biofilm Formation 

F022 347.0879 Adenosine 2',3'-cyclic 
phosphate 

C02353 4 M+NH4 347.0863 329.0525 C10H12N5O6
P 

2.2155 1.1476 Precursor to adenosine, 
derivative of 2'3'-Cyclic AMP 

  Cyclic AMP C00575 4 M+NH4 347.0863 329.0525 C10H12N5O6
P 

  Biofilm Formation 

F022 347.5848        2.3 1.2016  

F022 358.0724 S-Formylglutathione C01031 12 M+Na 358.0679 335.0787 C11H17N3O7
S 

2.0873 1.0617 Methane metabolism 

F022 369.0697        2.5728 1.3634  

ELU39 398.8441        3.1552 1.6577  

ELU39 404.9322        0.11981 -3.0612  

F022 409.1748        2.0805 1.0569  

F022 462.445        2.1938 1.1334  

F022 469.7692        2.1208 1.0846  

F022 499.1608        2.1493 1.1039  

F022 500.1609        2.0636 1.0452  

ELU39 502.85        0.45617 -1.1324  

F022 520.1261        2.285 1.1922  

F022 520.6239        2.2336 1.1594  

F022 521.1231        2.2784 1.188  

F022 531.109        2.4302 1.281  

F022 531.6092        2.3913 1.2578  

ELU39 534.8558        0.49959 -1.0012  

F022 541.0803        2.3724 1.2463  

ELU39 546.8318        0.32046 -1.6418  

F022 561.1086        2.0018 1.0013  

F022 577.8001        2.2354 1.1605  

F022 578.136        2.363 1.2406  

F022 578.5359        2.3221 1.2154  

F022 585.1369        2.2843 1.1918  

F022 585.4745        2.0176 1.0126  

F022 592.4567        2.1904 1.1312  

F022 606.6503        2.1267 1.0886  

F022 606.8986        2.0521 1.0371  

ELU39 660.6517        3.038 1.6031  

F022 675.1639        3.2815 1.7144  

F022 676.1462        2.0865 1.0611  

ELU39 676.8052        0.35836 -1.4805  
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ELU39 682.7312        3.2472 1.6992  

ELU39 682.7544        0.41454 -1.2704  

F022 684.164        2.1138 1.0799  

ELU39 693.1537        2.2797 1.1888  

F022 693.1585        2.2049 1.1407  

F022 693.4101        2.0616 1.0437  

F022 693.6755        2.127 1.0888  

F022 694.1806        2.21 1.1441  

F022 695.1583        2.3347 1.2233  

F022 696.1748        2.0056 1.004  

F022 700.484        2.1951 1.1343  

ELU39 700.7594        0.4963 -1.0107  

F022 701.1654        2.8292 1.5004  

F022 704.1633        3.8042 1.9276  

F022 704.6641        2.4489 1.2921  

F022 707.8293        2.2233 1.1527  

F022 708.4742        2.0593 1.0421  

F022 712.1524        2.1136 1.0797  

F022 713.1514        2.0255 1.0183  

ELU39 715.1322        4.5337 2.1807  

F022 715.4912        2.118 1.0827  

F022 732.1231        2.0764 1.0541  

ELU39 742.7792        0.45989 -1.1207  

ELU39 764.7592        0.31643 -1.66  

F022 779.9226        2.3799 1.2509  

F022 785.4189        2.0549 1.0391  

F022 808.5463        2.0878 1.062  

F022 809.2014        2.0247 1.0177  

F022 815.8646        2.7339 1.451  

F022 816.1998        2.2517 1.171  

F022 816.5364        2.2072 1.1422  

F022 828.4881        2.0754 1.0534  

F022 831.7824        2.0436 1.0311  

F022 845.2236        0.48066 -1.0569  

F022 866.2215        2.199 1.1368  

F022 866.4733        2.174 1.1203  

F022 866.7228        2.1086 1.0763  

F022 888.1718        2.2862 1.1929  

F022 888.709        2.1651 1.1144  

F022 889.1985        2.0353 1.0252  
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F022 896.1966        2.0443 1.0316  

F022 923.8691        2.1241 1.0869  

F022 931.8987        2.0533 1.0379  

F022 932.8868        2.0026 1.0019  

F022 968.9474        2.0696 1.0493  

F022 1031.287        2.0307 1.022  

F022 1040.274        2.2722 1.1841  

F022 1061.246        2.3537 1.235  

F022 1061.747        2.1563 1.1085  

F022 1062.212        2.0094 1.0068  

F022 1062.249        2.5801 1.3674  
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S4 – Principle Component Analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure S4.1, Principle component analysis of the 
metabolic profiles of each strain grouped by 
evolutionary treatment. A – F022. B- ELU39. C – 
MG1655. Antibio – plasmid carrying with 
cefotaxime selection. Plas – plasmid carrying. 
Free – plasmid free. 
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S4 – Normalisation of Data 
 

 
S4. 2 Graphs showing the density and intensity of the data before and after normalization. Normalized 
by Pareto scaling to retain the shape of the data. 
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S4 –Mass Spectrometry Parameters  
Parameters for C:\MassLynx\Heather.PRO\ACQUDB\esi_pos_sens_3min.EXP 

Created by 4.2 SCN983 

  

Lock Spray Configuration: 

Tuning on     Analyte 

  

Temperature Correction: 

Temperature Correction    Disabled 

  

Instrument Configuration: 

Lteff      1800.0 

Veff      7199.60 

Resolution     10000 

Min Points in Peak    2 

Acquisition Device    WatersADC 

Acquisition Algorithm    ADC Mode 

ADC Trigger Threshold (V)   1.00 

ADC Input Offset (V)    -1.50 

Average Single Ion Intensity   29 

ADC Amplitude Threshold    3 

ADC Centroid Threshold    -1 

ADC Ion Area Threshold    3 

ADC Ion Area Offset    10 

ADC Pushes Per IMS Increment   1 

EDC Delay Coefficient    1.4100 

EDC Delay Offset    0.4000 

  

Experimental Instrument Parameters 

Instrument Parameter Filename  

 C:\MassLynx\Heather.PRO\ACQUDB\esi241121.IPR (MODIFIED) 

Polarity     ES+ 

Capillary (kV)     3.2000 
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Source Temperature (°C)    100 

Sampling Cone     10.0000 

Source Offset     40.0000 

Source Gas Flow (mL/min)   0.00 

Desolvation Temperature (°C)   280 

Cone Gas Flow (L/Hr)    0.0 

Desolvation Gas Flow (L/Hr)   600.0 

Nebuliser Gas Flow (Bar)   7.0 

LM Resolution     4.4 

HM Resolution     15.0 

Aperture 1     0.0 

Pre-filter     2.0 

Ion Energy     1.0 

Manual Trap Collision Energy   FALSE 

Trap Collision Energy    4.0 

Manual Transfer Collision Energy  FALSE 

Transfer Collision Energy   2.0 

Manual Gas Control    FALSE 

Trap Gas Flow (mL/min)    2.00 

HeliumCellGasFlow    180.00 

IMS Gas Flow (mL/min)    90.00 

Detector     3375 

DetectorCache     0 

Sample Infusion Flow Rate (µL/min)  5 

Sample Flow State    LC 

Sample Fill Volume (µL)    250 

Sample Reservoir    B 

LockSpray Infusion Flow Rate (µL/min)  10 

LockSpray Flow State    Infusion 

LockSpray Reservoir    B 

LockSpray Capillary (kV)   3.0 

Use Manual LockSpray Collision Energy  FALSE 

Collision Energy    4.0 
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Acceleration1     70.0 

Acceleration2     200.0 

Aperture2     40.0 

Transport1     70.0 

Transport2     70.0 

Steering     -0.83 

Tube Lens     77 

Pusher      1900.0 

Pusher Offset     -0.55 

Puller      1370.0 

Pusher Cycle Time (µs)    Automatic 

Pusher Width (µs)    Automatic 

Collector     50 

Collector Pulse     10.0 

Stopper      10 

Stopper Pulse     20.0 

Entrance     68 

Static Offset     180 

Puller Offset     0.00 

Reflectron Grid (kV)    1.469 

Flight Tube (kV)    10.00 

Reflectron (kV)     3.780 

Use Manual Trap DC    FALSE 

Trap DC Entrance    1.0 

Trap DC Bias     2.0 

Trap DC      -2.0 

Trap DC Exit     0.0 

Use Manual IMS DC    FALSE 

IMS DC Entrance     -20.0 

Helium Cell DC     1.0 

Helium Exit     -20.0 

IMSBias      2.0 

IMS DC Exit     20.0 
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USe Manual Transfer DC    FALSE 

Transfer DC Entrance    5.0 

Transfer DC Exit    15.0 

Trap Manual Control    OFF 

Trap Wave Velocity (m/s)   300 

Trap Wave Height (V)    0.5 

IMS Manual Control    OFF 

IMS Wave Velocity (m/s)    300 

IMS Wave Height (V)    0.0 

Transfer Manual Control    OFF 

Transfer Wave Velocity (m/s)   247 

Transfer Wave Height (V)   0.2 

Step Wave 1 In Manual Control   OFF 

Enable Reverse Operation   OFF 

Step Wave 1 In Velocity (m/s)   300.0 

Step Wave 1 In Height    15.0 

Step Wave 1 Out Manual Control   OFF 

Step Wave 1 Out Velocity (m/s)   300.0 

Step Wave 1 Out Height    15.0 

Step Wave 2 Manual Control   OFF 

Step Wave 2 Velocity (m/s)   300.0 

Step Wave 2 Height    1.0 

Use Manual Step Wave DC    OFF 

Step Wave TransferOffset   25.0 

Step Wave DiffAperture1    3.0 

Step Wave DiffAperture2    0.0 

Use Automatic RF Settings   TRUE 

StepWave1RFOffset    300.0 

StepWave2RFOffset    350.0 

Target Enhancement Enabled   FALSE 

Target Enhancement Mode    EDC 

Target Enhancement Mass    785.0 

Target Enhancement Trap Height (V)  4.0 
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Target Enhancement Extract Height (V)  15.0 

Mobility Trapping Manual Release Enabled FALSE 

Mobility Trapping Release Time (µs)  500 

Mobility Trap Height (V)   15.0 

Mobility Extract Height (V)   0.0 

Trag Gate LUT table enabled   FALSE 

TriWave Trap Gate LookUp Table   

Using Drift Time Trimming   FALSE 

Drift Time Bins     0 

Using Mobility Delay after Trap Release  TRUE 

IMS Wave Delay (µs)    1000 

Variable Wave Height Enabled   FALSE 

Wave Height Ramp Type    Linear 

Wave Height Start (V)    10.0 

Wave Height End (V)    40.0 

Wave Height Using Full IMS   TRUE 

Wave Height Ramp (%)    100.0 

Wave Height Look Up Table    

Variable Wave Velocity Enabled   FALSE 

Wave Velocity Ramp Type    Linear 

Wave Velocity Start (m/s)   1000.0 

Wave Velocity End (m/s)    300.0 

Wave Velocity Using Full IMS   TRUE 

Wave Velocity Ramp (%)    100.0 

Wave Velocity Look Up Table    

Backing      2.63e0 

Source      6.52e-3 

Sample Plate     1.25e3 

Trap      8.78e-3 

Helium Cell     1.00e-4 

IMS      9.84e-5 

Transfer     7.71e-3 

TOF      4.40e-7 
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IMSRFOffset     300 

IMSMobilityRFOffset    250 

TrapRFOffset     300 

Use Automatic RF Settings   TRUE 

AutoStepWave1RFOffset    300 

AutoStepWave2RFOffset    300 

TransferRFOffset    350 

MS Profile Type     Auto P 

MSProfileMass1     100 

MSProfileDwellTime1    20 

MSProfileRampTime1    20 

MSProfileMass2     300 

MSProfileDwellTime2    20 

MSProfileRampTime2    40 

MSProfileMass3     500 

PusherInterval     54.000000 

PusherOffset     0.250000 

LockMassValidSigma    5 

  

Acquisition mass range 

Start mass     50.000 

End mass     1200.000 

Calibration mass range 

Start mass     0.000 

End mass     0.000 

  

Experiment Reference Compound Name: N/A 

  

Function Parameters - Function 1 - TOF MS FUNCTION 

Scan Time (sec)     1.000 

Interscan Time (sec)    0.014 

Start Mass     50.0 

End Mass     1200.0 
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Start Time (mins)    0.00 

End Time (mins)     3.00 

Data Format     Continuum 

Analyser     Sensitivity Mode 

ADC Sample Frequency (GHz)   3.0 

ADC Pusher Frequency (µs)   54.0 

ADC Pusher Width (µs)    1.50 

Use Tune Page Cone Voltage   YES 

Using Auto Trap Collision Energy (eV)  4.000000 

Using Auto Transfer Collision Energy (eV) 2.000000 

Sensitivity     Normal 

Dynamic Range     Normal 

Save Collapsed Retention Time Data  No 

Use Rule File Filtering    No 

FragmentationMode    CID 

Calibration     Dynamic 2 
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 Supplementary Chapter 5 
 
S5 – Normalisation of Data 
 

 
Fig S5.1 Normalisation plots for strain F022 for pairwise comparisons of the 3 treatments against the antibiotic free control. A) ciprofloxacin. B) 
cefotaxime. C) kanamycin. The data was pareto scaled. 
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Fig S5.2 Normalisation plots for strain F054 for pairwise comparisons of the 3 treatments against the antibiotic free control. A) ciprofloxacin. B) 
cefotaxime. C) kanamycin. The data was pareto scaled. 
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Fig S5.3 Normalisation plots for strain ELU39 for pairwise comparisons of the 3 treatments against the antibiotic free control. A) ciprofloxacin. B) 
cefotaxime. C) kanamycin. The data was pareto scaled. 
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Fig S5.4 Normalisation plots for strain MG1655 for pairwise comparisons of the 3 treatments against the antibiotic free control. A) ciprofloxacin. 
B) cefotaxime. C) kanamycin. The data was pareto scaled.
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S5 – Principle Component Analysis 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure S5.5 A) Principle component analysis (PCA) of strain F022 treated with ciprofloxacin compared 
to the control. Above, loading scores for the first 5 principle components, and below PC1 vs PC2 and 
PC1 vs PC3. CIP = ciprofloxacin, in pink. CTRL = control, in green. 
 
 
 
 

F022 Ciprofloxacin Treatment vs Control 
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Figure S5.5 B) Principle component analysis (PCA) of strain F022 treated with cefotaxime compared 
to the control. Above, loading scores for the first 5 principle components, and below PC1 vs PC2 and 
PC1 vs PC3. CTX = cefotaxime, in blue. CTRL = control, in green. 

 
 

F022 Cefotaxime Treatment vs Control 
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Figure S5.5 C) Principle component analysis (PCA) of strain F022 treated with kanamycin compared 
to the control. Above, loading scores for the first 5 principle components, and below PC1 vs PC2 and 
PC1 vs PC3. CTX = kanamycin, in yellow. CTRL = control, in green. 

 
 

F022 Kanamycin Treatment vs Control 
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Figure S5.6 A) Principle component analysis (PCA) of strain F054 treated with ciprofloxacin compared 
to the control. Above, loading scores for the first 5 principle components, and below PC1 vs PC2 and 
PC1 vs PC3. CIP = ciprofloxacin, in pink. CTRL = control, in green. 

 
 
 

F054 Ciprofloxacin Treatment vs Control 
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Figure S5.6 B) Principle component analysis (PCA) of strain F054 treated with cefotaxime compared 
to the control. Above, loading scores for the first 5 principle components, and below PC1 vs PC2 and 
PC1 vs PC3. CTX = cefotaxime, in blue. CTRL = control, in green. 

 
 
 

F054 Cefotaxime Treatment vs Control 
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Figure S5.6 C) Principle component analysis (PCA) of strain F054 treated with kanamycin compared 
to the control. Above, loading scores for the first 5 principle components, and below PC1 vs PC2 and 
PC1 vs PC3. CTX = kanamycin, in yellow. CTRL = control, in green. 

 
 
 

F054 Kanamycin Treatment vs Control 
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Figure S5.7 A) Principle component analysis (PCA) of strain ELU39 treated with ciprofloxacin 
compared to the control. Above, loading scores for the first 5 principle components, and below PC1 vs 
PC2 and PC1 vs PC3. CIP = ciprofloxacin, in pink. CTRL = control, in green. 
 
 

ELU39 Ciprofloxacin Treatment vs Control 
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Figure S5.7 B) Principle component analysis (PCA) of strain ELU39 treated with cefotaxime compared 
to the control. Above, loading scores for the first 5 principle components, and below PC1 vs PC2 and 
PC1 vs PC3. CTX = cefotaxime, in blue. CTRL = control, in green. 

 
 

ELU39 Cefotaxime Treatment vs Control 
 



 
 

 
 
 

214 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S5.7 C) Principle component analysis (PCA) of strain ELU39 treated with kanamycin compared 
to the control. Above, loading scores for the first 5 principle components, and below PC1 vs PC2 and 
PC1 vs PC3. CTX = kanamycin, in yellow. CTRL = control, in green. 
 
 
 

ELU39 Kanamycin Treatment vs Control 
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Figure S5.8 A) Principle component analysis (PCA) of strain MG1655 treated with ciprofloxacin 
compared to the control. Above, loading scores for the first 5 principle components, and below PC1 vs 
PC2 and PC1 vs PC3. CIP = ciprofloxacin, in pink. CTRL = control, in green. 

 
 
 

MG1655 Ciprofloxacin Treatment vs Control 
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Figure S5.8 B) Principle component analysis (PCA) of strain MG1655 treated with cefotaxime 
compared to the control. Above, loading scores for the first 5 principle components, and below PC1 vs 
PC2 and PC1 vs PC3. CTX = cefotaxime, in blue. CTRL = control, in green. 
 
 

 

MG1655 Cefotaxime Treatment vs Control 
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Figure S5.8 C) Principle component analysis (PCA) of strain MG1655 treated with kanamycin 
compared to the control. Above, loading scores for the first 5 principle components, and below PC1 vs 
PC2 and PC1 vs PC3. CTX = kanamycin, in yellow. CTRL = control, in green. 
 
 

MG1655 Kanamycin Treatment vs Control 
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S5 – Data Tables 
Table S5.1 Identification table of metabolites significantly affected by the kanamycin treatment in the 4 E.coli strains. Masses were identified 
using ECMDB and cross referenced with KEGG metabolism database for E.coli K-12 MG1655.  

 Kanamycin            

Strain Mass ID KEGG MODULE ppm Adduct 

Adduct + 
Compound 
M/Z 

Monoisotopi
c Mass 

Chemical 
Formula 

Fold 
Change log2(FC) Function 

MG1655 81.02721 Nitrate C00244 M00530 28 M+NH4 81.0295 62.9956 HNO3 3.1371 1.6494 
Dissimilatory nitrate 
reduction 

ELU39 84.00504 Carbamate C01563  7 M+NA 84.0056 61.0164 CH3NO2 3.0182 1.5937 Pyrimidine metabolism 
F022 98.05503 Trimethylamine N-Oxide C01104  27 M+Na 98.0576 75.0684 C3H9NO 2.5827 1.3689 Methane metabolism 
F022 99.0387 Propylene glycol C00583  30 M+Na 99.0416 76.0524 C3H8O2 18.923 4.2421 Propanoate metabolsim 
ELU39 101.00322 Dimethyl sulfoxide C11143  1 M+Na 101.0032 78.0139 C2H6OS 2.0164 1.0118 Sulfur metabolism 
ELU39 112.00041 Oxamate C01444  1 M+Na 112.0005 89.0113 C2H3NO3 2.1051 1.0739 DEM 
F022 113.01904 D-Lactic acid C00256  17 M+Na 113.0209 90.0317 C3H6O3 2.2133 1.1462 Pyruvate metabolism 
  3-Hydroxypropanoate C01013 M00939 17 M+Na 113.0209 90.0317 C3H6O3   Pyrimidine degradation 
  L-Lactic acid C00186  17 M+Na 113.0209 90.0317 C3H6O3   Pyruvate metabolism 
  Glycerone C00184  17 M+Na 113.0209 90.0317 C3H6O3   Glycerolipid metabolism 
ELU39 123.0519 Niacinamide C00153  28 M+H 123.0553 122.048 C6H6N2O 11.39 3.5097 Precursor to NAD 
ELU39 124.03439 Nicotinic acid C00253 M00115 40 M+H 124.0393 123.032 C6H5NO2 2.0319 1.0228 Precursor to NAD 

ELU39 137.04485 Hypoxanthine C00262 M00958 7 M+H 137.0458 136.0385 C5H4N4O 2.6448 1.4032 
Adenine ribonucleotide 
degradation 

F054 142.02567 
(S)-b-aminoisobutyric 
acid C03284  6 M+K 142.0265 103.0633 C4H9NO2 0.46601 -1.1016 

Valine, Leucine, 
Isoleucine degradation 

  
gamma-Aminobutyric 
acid C00334 

M00027 
M00136 6 M+K 142.0265 103.0633 C4H9NO2   

GABA shunt GABA 
biosynthesis 

ELU39 152.02783 
Pyrroline 
hydroxycarboxylic acid C04281  26 M+Na 152.0318 129.0426 C5H7NO3 2.1923 1.1325 

Arginine and proline 
metabolism 

F054 152.02783 
Pyrroline 
hydroxycarboxylic acid C04281  26 M+Na 152.0318 129.0426 C5H7NO3 0.16968 -2.5591 

Arginine and proline 
metabolism 

F054 152.04936 L-Malic acid C00149 
M00009 
M00168 39 M+NH4 152.0553 134.0215 C4H6O5 0.41629 -1.2643 TCA cycle, CAM 

  Guanine C00242 M00959 48 M+H 152.0567 151.0494 C5H5N5O   
Guanine ribonucleotide 
degradation 

F054 155.07854 L-Ornithine C00077 
M00028 
M00844 4 M+Na 155.0791 132.0899 

C5H12N2
O2 0.45198 -1.1457 

Ornithine biosynthesis 
arginine biosynthesis 

  2-Aminobenzoic acid C00108 M00023 19 M+NH4 155.0815 137.0477 C7H7NO2   Tryptophan biosynthesis 
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  p-Aminobenzoic acid C00568  19 M+NH4 155.0815 137.0477 C7H7NO2   Folate biosynthesis 

MG1655 158.95654 3-Mercaptopyruvic acid C00957  33 M+K 158.9513 119.9881 C3H4O3S 2.2524 1.1714 
Cysteine and 
methionine metabolism 

F022 161.08798 D-Alanine C00993  25 M+H 161.0921 160.0848 
C6H12N2
O3 4.6502 2.2173 

D-amino acid 
metabolism 

F022 162.0701 

4-Amino-5-
hydroxymethyl-2-
methylpyrimidine C01279  39 M+Na 162.0638 139.0746 C6H9N3O 2.1322 1.0924 Thiamine biosynthesis 

MG1655 162.10899 L-Carnitine C00318  21 M+H 162.1125 161.1052 
C7H15NO
3 0.44987 -1.1524  

  Carnitine C00487  25 M+H 162.113 162.113 
C7H16NO
3   Lysine degradation 

F022 164.088 
2-Aceto-2-hydroxy-
butyrate C06006 

M00019 
M00570 23 M+NH4 164.0917 146.0579 C6H10O4 2.578 1.3662 

Valine, Isoleucine 
biosynthesis 

  2-Dehydropantoate C00966 M00119 23 M+NH4 164.0917 146.0579 C6H10O4   

Pantothenate 
biosynthesis, Coenzyme 
A biosynthesis 

F022 165.05116 3-Hydroxycinnamic acid C12621 M00545 21 M+H 165.0546 164.0473 C9H8O3 2.9987 1.5843 
Trans-cinamate 
degradation 

  Phenylpyruvic acid C00166 C00024 21 M+H 165.0546 164.0473 C9H8O3   
Phenylalanine 
biosynthesis 

F054 187.10301 Pyridoxine C00314  25 M+NH4 187.1077 169.0739 
C8H11NO
3 0.42562 -1.2324  

F022 191.07056 Pyridoxamine C00534  45 M+Na 191.0791 168.0899 
C8H12N2
O2 3.4079 1.7689  

ELU39 197.09073 N-Acetylornithine C00437 M00028 5 M+Na 197.0897 174.1004 
C7H14N2
O3 3.1626 1.6611 Ornithine metabolism 

ELU39 198.08473 Citrulline C00327 M000844 1 M+Na 198.0849 175.0957 
C6H13N3
O3 2.4705 1.3048 Arginine biosynthesis 

  5-Methylthioribose C03089  27 M+NH4 198.0795 180.0456 
C6H12O4
S   

Cysteine and 
methionine metabolism 

  
Trans-2,3-
Dihydroxycinnamate C12623 M00545 44 M+NH4 198.0761 180.0423 C9H8O4   

Trans-cinamate 
degradation 

  
4-Hydroxyphenylpyruvic 
acid C01179 M00025 44 M+NH4 198.0761 180.0423 C9H8O4   Tyrosine biosythesis 

  
3,4-Dihydroxy-L-
phenylalanine C00355  44 M+H 198.0761 197.0688 

C9H11NO
4   Tyrosine biosythesis 
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MG1655 199.0258 
5-Dehydro-4-deoxy-D-
glucuronate C04053  23 M+Na 199.0213 176.0321 C6H8O6 0.249 -2.0058  

  
(4S)-4,6-Dihydroxy-2,5-
dioxohexanoate C04349  23 M+Na 199.0213 176.0321 C6H8O6    

  Ascorbate C00072 M00550 23 M+Na 199.0213 176.0321 C6H8O6   Ascorbate degradation 

  Ureidosuccinic acid C00438 M00051 34 M+Na 199.0325 176.0433 
C5H8N2O
5   

de novo pyrimidine 
biosynthesis 

F022 203.04874 L-Rhamnonate C01934  19 M+Na 203.0526 180.0634 C6H12O6 15.833 3.9848 

Glycolysis. Nucleotide 
sugar biosynthesis 
UDP-N-acetyl-D-
glucosamine 
biosynthesis, 
prokaryotes 

  D-Allose C01487  19 M+Na 203.0526 180.0634 C6H12O6    

  Inositol C00137  19 M+Na 203.0526 180.0634 C6H12O6    

  alpha-D-Glucose C00267 

M00001 
M000549 
M00909 19 M+Na 203.0526 180.0634 C6H12O6    

  D-Fuctose C00095  19 M+Na 203.0526 180.0634 C6H12O6   

Nucleotide sugar 
biosynthesis and 
galactose degradation 
leloir pathway 

  beta-D-glucose C00221  19 M+Na 203.0526 180.0634 C6H12O6    

  D-Mannose C00159  19 M+Na 203.0526 180.0634 C6H12O6    

  Alpha-D-Galactose C00984 
M00554 
M00632 19 M+Na 203.0526 180.0634 C6H12O6    

  D-Galactose C00124 M00632 19 M+Na 203.0526 180.0634 C6H12O6    

  D-Glucose C00031  19 M+Na 203.0526 180.0634 C6H12O6    

F022 204.06075 L-Tyrosine C00082 
M00025 
M00127 12 M+Na 204.0631 181.0739 

C9H11NO
3 15.088 3.9153 

Tyrosine biosythesis, 
thyamine biosynthesis 

ELU39 215.09645 
3,4-Dihydroxy-L-
phenylalanine C00355  29 M+NH4 215.1026 197.0688 

C9H11NO
4 2.11 1.0772 Tyrosine biosythesis 

F054 226.94615 
2,5-Dichloro-4-oxohex-
2-enedioate C12835  21 M+H 226.9509 225.9436 

C6H4Cl2O
5 0.23421 -2.0941  

ELU39 233.10867 
4-(Glutamylamino) 
butanoate C16757 M00136 19 M+H 233.1132 232.1059 

C9H16N2
O5 2.4439 1.2892 GABA biosynthesis 

  N2-Succinyl-L-ornithine C03415 M00879 19 M+H 233.1132 232.1059 C9H16N2   Arginine 
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O5 succinyltransferase 
pathway 

F022 243.09913 Thymidine C00214  7 M+H 243.0975 242.0903 
C10H14N
2O5 2.1891 1.1303 Pyrimidine metabolism 

F054 244.12412 Porphobilinogen C00931  21 M+NH4 244.1292 226.0954 
C10H14N
2O4 0.4843 -1.046 

Porphyrin precursor, 
heme biosynthesis 

F022 245.05527 L-Cystathionine C02291 M00017 6 M+Na 245.0566 222.0674 
C7H14N2
O4S 6.3849 2.6747 Methionine biosynthesis 

  
L-Glutamic acid 5-
phosphate C03287 M00015 8 M+NH4 245.0533 227.0195 

C5H10NO
7P   Proline biosynthesis 

ELU39 258.0697 Pantothenic acid C00864 
M00019 
M00120 16 M+K 258.0738 219.1107 

C9H17NO
5 2.16 1.111 

Pantothenate 
biosynthesis, Coenzyme 
A biosynthesis 

  L-Cystine C00491  47 M+NH4 258.0577 240.0238 
C6H12N2
O4S2   

Cysteine and 
methionine metabolism 

F054 261.05267 
3-Deoxy-D-manno-
octulosonate C01187 M00063 21 M+Na 261.0581 238.0689 C8H14O8 0.28609 -1.8054 CMP-KDO biosynthesis 

F022 261.05488 
3-Deoxy-D-manno-
octulosonate C01187 M00063 12 M+Na 261.0581 238.0689 C8H14O8 2.5994 1.3782 CMP-KDO biosynthesis 

F022 261.12267 Cytidine C00475  13 M+NH4 261.1193 243.0855 
C9H13N3
O5 9.8906 3.3061 Precursor of cytosine 

MG1655 268.14909 Ubiquinone C00399 M00117 20 M+NH4 268.1543 250.1205 
C14H18O
4 56.008 5.8076 

Oxidative 
phosphorylation 

F054 270.0579 N-Succinyl-L-glutamate C05931 M00879 2 M+Na 270.0584 247.0692 
C9H13NO
7 0.10311 -3.2778 

Arginine 
succinyltransferase 
pathway 

ELU39 275.12967 Ubiquinol-1 C00390 M00117 16 M+Na 275.1254 252.1362 14H20O4 2.4115 1.2699 
Oxidative 
phosphorylation 

  N2-Succinyl-L-arginine C03296 M00879 19 M+H 275.135 274.1277 
C10H18N
4O5   

Arginine 
succinyltransferase 
pathway 

F022 282.03422 
D-Galactosamine 6-
phosphate C06377  2 M+Na 282.0349 259.0457 

C6H14NO
8P 2.2943 1.1981 Galactose metabolism 

  
alpha-D-Glucosamine 1-
phosphate C06156  2 M+Na 282.0349 259.0457 

C6H14NO
8P   

 UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  Glucosamine-1P C04501  2 M+Na 282.0349 259.0457 C6H14NO    UDP-N-acetyl-D-
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8P glucosamine 
biosynthesis 

  
Glucosamine 6-
phosphate C00352  2 M+Na 282.0349 259.0457 

C6H14NO
8P   

 UDP-N-acetyl-D-
glucosamine 
biosynthesis 

F022 306.063 Deoxyguanosine C00330  10 M+K 306.0599 267.0968 
C10H13N
5O4 2.9246 1.5482 Purine metboalism 

  Adenosine C00212 M00958 10 M+K 306.0599 267.0968 
C10H13N
5O4   

Adenine ribonucleotide 
degradation, purine 
metabolism 

  
D-Glycero-D-manno-
heptose 1-phosphate C07838 M00064 15 M+NH4 306.0585 288.0246 

C7H13O1
0P   

ADP-L-glycero-D-
manno-heptose 
biosynthesis 

  

2-Dehydro-3-deoxy-D-
arabino-heptonate 7-
phosphate C04691 M00022 15 M+NH4 306.0585 288.0246 

C7H13O1
0P   Shikimate pathway 

  2',3'-Cyclic CMP C02354  47 M+H 306.0486 305.0413 
C9H12N3
O7P   Pyrimidine metabolism 

ELU39 308.13422 
N-Succinyl-L,L-2,6-
diaminopimelate C04421 M00016 36 M+NH4 308.1452 290.1114 

C11H18N2
O7 0.046116 -4.4386 Lysine biosynthesis 

ELU39 310.12488 N-acetylneuraminate C00270  37 M+H 310.1133 309.106 
C11H19N
O9 2.3382 1.2254 

Nucleotide sugar 
metabolism 

F054 314.08564 
Phosphoribosylformylgly
cineamidine C04640 M00048 35 M+H 314.0748 313.0675 

C8H16N3
O8P 2.7652 1.4674 

De novo purine 
biosynthesis 

F022 332.0679 N-Acetyl-D-muramoate C02713  19 M+K 332.0742 293.1111 
C11H19N
O8 565.44 9.1432 

Precursor for 
peptidoglycan 
biosynthesis 

  dAMP C00360  23 M+H 332.0754 331.0682 
C10H14N
5O6P   ADP derivative 

ELU39 348.06578 3'-AMP C01367  13 M+H 348.0704 347.0631 
C10H14N
5O7P 2.0801 1.0567 

Precursor to adenosine, 
derivative of 2'3'-Cyclic 
AMP 

  
2'-Deoxyguanosine 5'-
monophosphate dGMP C00362  13 M+H 348.0704 347.0631 

C10H14N
5O7P   Purine metabolism 

  AMP C00020 
M00049 
M00958 13 M+H 348.0704 347.0631 

C10H14N
5O7P   

Adenine ribonucleotide 
biosynthesis and 
degradation 
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MG1655 354.04634 dAMP C00360  31 M+Na 354.0574 331.0682 
C10H14N
5O6P 4.0476 2.0171 ADP derivative 

F054 354.049 dAMP C00360  24 M+Na 354.0574 331.0682 
C10H14N
5O6P 0.44358 -1.1728 ADP derivative 

F022 354.04957 dAMP C00360  22 M+Na 354.0574 331.0682 
C10H14N
5O6P 2.2074 1.1423 ADP derivative 

F022 370.05309 3'-AMP C01367  2 M+Na 370.0523 347.0631 
C10H14N
5O7P 3.015 1.5922 

Precursor to adenosine, 
derivative of 2'3'-Cyclic 
AMP 

  
2'-Deoxyguanosine 5'-
monophosphate dGMP C0362  2 M+Na 370.0523 347.0631 

C10H14N
5O7P   Purine metabolism 

  AMP C00020 
M00049 
M00958 2 M+Na 370.0523 347.0631 

C10H14N
5O7P   

Adenine ribonucleotide 
biosynthesis and 
degradation 

MG1655 423.09397 Trehalose 6-phosphate C00689  10 M+H 423.0898 422.0825 
C12H23O
14P 0.28785 -1.7966 

Other carbohydrate 
metabolism 

  
S-
Adenosylhomocysteine C00021  22 M+K 423.0847 384.1216 

C14H20N
6O5S   Methionine degradation 

MG1655 445.07639 Trehalose 6-phosphate C00689  10 M+Na 445.0718 422.0825 
C12H23O
14P 0.36537 -1.4526 

Other carbohydrate 
metabolism 

  dGDP C00361 M00053 30 M+NH4 445.0632 427.0294 
C10H15N
5O10P2   

Deoxyribonucleotide 
biosynthesis 

  ADP C00008 M00053 30 M+NH4 445.0632 427.0294 
C10H15N
5O10P2   

Deoxyribonucleotide 
biosynthesis 
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Table S5.2 Identification table of metabolites significantly affected by the cefotaxime treatment in the 4 E.coli strains. Masses were identified 
using ECMDB and cross referenced with KEGG metabolism database for E.coli K-12 MG1655.  

 Cefotaxime            

Strain Mass ID KEGG MODULE ppm Adduct Adduct + 
Compound 
M/Z 

Monoisotopic 
Mass 

Chemical 
Formula 

Fold 
Change 

log2(FC) Function 

MG1655 81.02721 Nitrate C0244 M00530 28 
M+NH4 81.0295 62.9956 HNO3 

2.7669 1.4683 
Dissimilatory nitrate 
reduction 

F022 98.05503 
Trimethylamine N-
Oxide C01104  27 

M+Na 98.0576 75.0684 C3H9NO 
2.4716 1.3054 Methane metabolism 

F022 99.0387 Propylene glycol C00583  30 M+Na 99.0416 76.0524 C3H8O2 27.171 4.764  

ELU39 122.02266 D-Cysteine C00793  36 M+H 122.027 121.0197 C3H7NO2S 0.44027 -1.1835  

  L-Cysteine C00097 M00021 36 M+H 122.027 121.0197 C3H7NO2S   Cysteine biosynthesis 
F054 122.02266 D-Cysteine C00793  36 M+H 122.027 121.0197 C3H7NO2S 0.37352 -1.4207  

  L-Cysteine C00097 M00021 36 M+H 122.027 121.0197 C3H7NO2S   Cysteine biosynthesis 
ELU39 123.0519 Nicotinamide C00153  28 M+H 123.0553 122.048 C6H6N2O 0.41856 -1.2565 Precursor to NAD 
ELU39 135.02364 (R)-Malate C00497  38 M+H 135.0288 134.0215 C4H6O5 0.44063 -1.1824  

  
L-Malic acid 

C00149 
M00009 
M00168 38 

M+H 135.0288 134.0215 C4H6O5 
  TCA cycle, CAM 

MG1655 135.02364 (R)-Malate C00497  38 M+H 135.0288 134.0215 C4H6O5 0.47397 -1.0771  

  
L-Malic acid 

C00149 
M00009 
M00168 38 

M+H 135.0288 134.0215 C4H6O5 
  TCA cycle, CAM 

F054 140.06606 

L-Valine 

C00183 M00019 15 

M+Na 140.0682 117.079 C5H11NO2 

0.4831 -1.0496 

Branched chain amino 
acid metabolism valine-
isoleucine metabolism 

  
Betaine C00719 

M00555 
19 M+Na 140.0687 118.0868 C5H12NO2 

  
Serine and threonine 
biosynthesis 

F054 141.0649 Nicotinic acid C00253 M00115 7 M+NH4 141.0659 123.032 C6H5NO2 0.45893 -1.1236 Precursor to NAD 
ELU39 145.12727 Caprylic acid C06423  34 M+H 145.1223 144.115 C8H16O2 0.48219 -1.0523 Fatty acid biosynthesis 

MG1655 152.02783 

Pyrroline 
hydroxycarboxylic 
acid C04281  26 

M+Na 152.0318 129.0426 C5H7NO3 

0.46901 -1.0923 
Arginine and proline 
metabolism 

F022 152.04936 (R)-Malate C00497  39 M+NH4 152.0553 134.0215 C4H6O5 2.1557 1.1081  

  
L-Malic acid 

C00149 
M00009 
M00168 39 

M+NH4 152.0553 134.0215 C4H6O5 
  TCA cycle, CAM 

  Guanine C00242 M00959 48 M+H 152.0567 151.0494 C5H5N5O   Guanine ribonucleotide 
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degradation 
F054 152.04936 (R)-Malate C00497  39 M+NH4 152.0553 134.0215 C4H6O5 0.455 -1.1361  

  
L-Malic acid 

C00149 
M00009 
M00168 39 

M+NH4 152.0553 134.0215 C4H6O5 
  TCA cycle, CAM 

  
Guanine 

C00242 M00959 48 
M+H 152.0567 151.0494 C5H5N5O 

  
Guanine ribonucleotide 
degradation 

MG1655 152.04936 (R)-Malate C00497  39 M+NH4 152.0553 134.0215 C4H6O5 0.39755 -1.3308  

  
L-Malic acid 

C00149 
M00009 
M00168 39 

M+NH4 152.0553 134.0215 C4H6O5 
  TCA cycle, CAM 

  
Guanine 

C00242 M00959 48 
M+H 152.0567 151.0494 C5H5N5O 

  
Guanine ribonucleotide 
degradation 

ELU39 152.05475 (R)-Malate C00497  4 M+NH4 152.0553 134.0215 C4H6O5 0.31948 -1.6462  

  
L-Malic acid 

C00149 
M00009 
M00168 4 

M+NH4 152.0553 134.0215 C4H6O5 
  TCA cycle, CAM 

  
Guanine 

C00242 M00959 13 
M+H 152.0567 151.0494 C5H5N5O 

  
Guanine ribonucleotide 
degradation 

F022 152.98198 
3-Sulfinylpyruvic 
acid C05527  21 

M+H 152.9852 151.9779 C3H4O5S 
2.1627 1.1128 

Cysteine and methionine 
metabolism 

F022 155.0731 
L-Ornithine 

C00077 
M00028 
M00844 39 

M+Na 155.0791 132.0899 C5H12N2O2 
2.1584 1.1099 

Ornithine biosynthesis 
arginine biosynthesis 

ELU39 156.03674 Ureidoglycine C02091  8 M+Na 156.038 133.0487 C3H7N3O3 0.49383 -1.0179 Purine metabolism 

  

L-Valine 

C00183 M00019 35 

M+K 

156.0421 

117.079 C5H11NO2 

  

Branched chain amino 
acid metabolism valine-
isoleucine metabolism 

  
Betaine C00719 

M00555 
38 M+K 

156.0427 
118.0868 C5H12NO2 

  
Serine and threonine 
biosynthesis 

MG1655 156.03674 Ureidoglycine C02091  8 M+Na 156.038 133.0487 C3H7N3O3 0.45925 -1.1226 Purine metabolism 

  

L-Valine 

C00183 M00019 35 

M+K 

156.0421 

117.079 C5H11NO2 

  

Branched chain amino 
acid metabolism valine-
isoleucine metabolism 

  
Betaine C00719 

M00555 
38 M+K 

156.0427 
118.0868 C5H12NO2 

  
Serine and threonine 
biosynthesis 

F054 157.04164 

(R)-2,3-Dihydroxy-
isovalerate 

C04272 M00019 35 

M+Na 157.0471 134.0579 C5H10O4 

0.40286 -1.3116 

Branched chain amino 
acid metabolism valine-
isoleucine metabolism 

  
Deoxyribose 

C01801  
35 M+Na 157.0471 134.0579 C5H10O4 

  
Carbohydrate, pentose 
phosphate supply 
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F054 158.02782 L-Homocysteine C00155 M00017 20 M+Na 158.0246 135.0354 C4H9NO2S 0.49186 -1.0237 Methionine biosynthesis 

  
L-Allothreonine 

C05519  
41 M+K 158.0214 119.0582 C4H9NO3 

  
Glycine, serine threonine 
metabolism 

  
L-Homoserine 

C00263 
M00017 
M00018 41 

M+K 158.0214 119.0582 C4H9NO3 
  

Methionine biosynthesis, 
threonine biosynthesis 

  

Acetylphosphate 

C00227 M00759 

41 M+NH4 158.0213 139.9875 C2H5O5P 

  

Phosphate 
acetyltransferase-
acetate kinase pathway 

  L-Threonine C00188 M00018 41 M+K 158.0214 119.0582 C4H9NO3   Threonine biosynthesis 

ELU39 158.95654 
3-Mercaptopyruvic 
acid C00957  

33 M+K 158.9513 119.9881 C3H4O3S 
3.1552 1.6578 

Cysteine and methionine 
metabolism 

MG1655 158.95654 
3-Mercaptopyruvic 
acid C00957  

33 M+K 158.9513 119.9881 C3H4O3S 
2.1357 1.0947 

Cysteine and methionine 
metabolism 

ELU39 162.01451 

Pimeloyl-[acyl-
carrier protein] 

C19845 
M00123 
M00572 

10 M+Na 162.0162 139.0269 C6H5NO3 

0.48498 -1.044 

Biotin biosynthesis, 
Pimeloyl-ACP 
biosynthesis, BioC-BioH 
pathway 

F054 162.01451 

Pimeloyl-[acyl-
carrier protein] 

C19845 
M00123 
M00572 

10 M+Na 162.0162 139.0269 C6H5NO3 

0.4813 -1.055 

Biotin biosynthesis, 
Pimeloyl-ACP 
biosynthesis, BioC-BioH 
pathway 

MG1655 162.01451 

Pimeloyl-[acyl-
carrier protein] 

C19845 
M00123 
M00572 

10 M+Na 162.0162 139.0269 C6H5NO3 

0.48857 -1.0334 

Biotin biosynthesis, 
Pimeloyl-ACP 
biosynthesis, BioC-BioH 
pathway 

MG1655 162.10899 L-Carnitine C00318  21 M+H 162.1125 161.1052 C7H15NO3 0.47731 -1.067  

  Carnitine C00487  25 M+H 162.113 162.113 C7H16NO3   Lysine degradation 
F022 170.03444 D-Glutamic acid C00217  47 M+Na 170.0424 147.0532 C5H9NO4 2.6711 1.4174  

  O-Acetylserine C00979 C00021 47 M+Na 170.0424 147.0532 C5H9NO4   Cysteine biosynthesis 

  

L-Glutamate 

C00025 
M00015, 
M00027 47 

M+Na 170.0424 147.0532 C5H9NO4 

  

Arginine and proline 
metabolism, GABA 
shunt 

F022 176.05777 
7-Cyano-7-
carbaguanine C15996  6 

M+H 176.0567 175.0494 C7H5N5O 
2.0323 1.0231 Folate biosynthesis 

  
2-Maleylacetate 

C02222  14 
M+NH4 176.0553 158.0215 C6H6O5 

  
Degradation of aromatic 
compounds 

F054 179.04156 L-Histidinal C01929 M00026 22 M+K 179.0455 140.0824 C6H10N3O 0.49326 -1.0196 Histidine biosynthesis 
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Cysteinylglycine 

C01419  39 
M+H 179.0485 178.0412 C5H10N2O3

S   Glutathione biosynthesis 
MG1655 179.04156 L-Histidinal C01929 M00026 22 M+K 179.0455 140.0824 C6H10N3O 0.49741 -1.0075 Histidine biosynthesis 

  
Cysteinylglycine 

C01419  39 
M+H 179.0485 178.0412 C5H10N2O3

S   Glutathione biosynthesis 

F054 180.04759 
D-4-Hydroxy-2-
oxoglutarate C05946  15 

M+NH4 180.0503 162.0164 C5H6O6 
0.46187 -1.1144 

Arginine and proline 
Metabolism 

  

4-Hydroxy-2-
oxoglutaric acid 

C01127  15 

M+NH4 180.0503 162.0164 C5H6O6 

  

Glyoxylate and 
dicarboxylate 
metabolism 

  L-Histidinol C00860 M00026 32 M+K 180.0534 141.0902 C6H11N3O   Histidine biosynthesis 
F054 188.06555 D-Phenylalanine C02265  14 M+Na 188.0682 165.079 C9H11NO2 0.4438 -1.172  

  
L-Phenylalanine 

C00079 M00024 14 
M+Na 188.0682 165.079 C9H11NO2 

  
Phenyalanine 
biosythesis 

F022 189.07858 
Tetrahydrodipicolina
te C03972 M00016 44 

M+NH4 189.087 171.0532 C7H9NO4 
2.0359 1.0257 Lysine biosynthesis 

F022 190.00407 Quinolinate C03722 M00115 37 M+Na 190.0111 167.0219 C7H5NO4 2.1427 1.0995 NAD biosynthesis 

  Guanine C00242 M00959 45 
M+K 190.0126 151.0494 C5H5N5O 

  
Guanine ribonucleotide 
degradation 

MG1655 199.0258 
5-Dehydro-4-deoxy-
D-glucuronate C04053  23 

M+Na 199.0213 176.0321 C6H8O6 
0.37459 -1.4166  

  
(4S)-4,6-Dihydroxy-
2,5-dioxohexanoate C04349  23 

M+Na 199.0213 176.0321 C6H8O6 
   

  Ascorbate C00072 M00550 23 M+Na 199.0213 176.0321 C6H8O6   Ascorbate degrdation 

  
Ureidosuccinic acid 

C00483 M00051 34 
M+Na 199.0325 176.0433 C5H8N2O5 

  
De novo pyrimidine 
biosynthesis 

F022 203.04874 

L-Rhamnonate 

C01934  19 

M+Na 203.0526 180.0634 C6H12O6 

2.7621 1.4658 

Glycolysis. Nucleotide 
sugar biosynthesis UDP-
N-acetyl-D-glucosamine 
biosynthesis, 
prokaryotes 

  D-Allose C01487  19 M+Na 203.0526 180.0634 C6H12O6    

  Inositol C00137  19 M+Na 203.0526 180.0634 C6H12O6    

  

alpha-D-Glucose 

C00267 

M00001 
M000549 
M00909 19 

M+Na 203.0526 180.0634 C6H12O6 

   

  D-Fructose C00095  19 M+Na 203.0526 180.0634 C6H12O6   Nucleotide sugar 
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biosynthesis and 
galactose degradation 
leloir pathway 

  beta-D-glucose C00221  19 M+Na 203.0526 180.0634 C6H12O6    

  D-Mannose C00159  19 M+Na 203.0526 180.0634 C6H12O6    

  
Alpha-D-Galactose 

C00984 
M00554 
M00632 19 

M+Na 203.0526 180.0634 C6H12O6 
   

  D-Galactose C00124 M00632 19 M+Na 203.0526 180.0634 C6H12O6    

  D-Glucose C00031  19 M+Na 203.0526 180.0634 C6H12O6    

MG1655 203.04874 

L-Rhamnonate 

C01934  19 

M+Na 203.0526 180.0634 C6H12O6 

2.3044 1.2044 

Glycolysis. Nucleotide 
sugar biosynthesis UDP-
N-acetyl-D-glucosamine 
biosynthesis, 
prokaryotes 

  D-Allose C01487  19 M+Na 203.0526 180.0634 C6H12O6    

  Inositol C00137  19 M+Na 203.0526 180.0634 C6H12O6    

  

alpha-D-Glucose 

C00267 

M00001 
M000549 
M00909 19 

M+Na 203.0526 180.0634 C6H12O6 

   

  

D-Fuctose 

C00095  19 

M+Na 203.0526 180.0634 C6H12O6 

  

Nucleotide sugar 
biosynthesis and 
galactose degradation 
leloir pathway 

  beta-D-glucose C00221  19 M+Na 203.0526 180.0634 C6H12O6    

  D-Mannose C00159  19 M+Na 203.0526 180.0634 C6H12O6    

  
Alpha-D-Galactose 

C00984 
M00554 
M00632 19 

M+Na 203.0526 180.0634 C6H12O6 
   

  D-Galactose C00124 M00632 19 M+Na 203.0526 180.0634 C6H12O6    

  D-Glucose C00031  19 M+Na 203.0526 180.0634 C6H12O6    

F022 207.99861 O-Phospho L-serine C01005 M00020 2 M+Na 207.9981 185.0089 C3H8NO6P 2.0082 1.0059 Serine biosynthesis 

F022 210.04333 

(2S,4S)-4-Hydroxy-
2,3,4,5-
tetrahydrodipicolinat
e C20258 M00016 29 

M+Na 210.0373 187.0481 C7H9NO5 

2.1332 1.093 Lysine biosynthesis 
F022 211.10117         2.3356 1.2238  

F022 214.00194 
2-Amino-3-oxo-4-
phosphonooxybutyr C07335 M00124 43 

M+H 214.0111 213.0038 C4H8NO7P 
2.4879 1.3149 Pyridoxal-P biosynthesis 
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ate 

  

L-Aspartyl-4-
phosphate 

C03082 

M00016 
M00017 
M00018 43 

M+H 214.0111 213.0038 C4H8NO7P 

  
Lysine threonine 
methionine biosynthesis 

ELU39 226.94624 
2,5-Dichloro-4-
oxohex-2-enedioate C12835  20 

M+H 226.9509 225.9436 C6H4Cl2O5 
2.7032 1.4347  

F054 232.0775 

N2-Succinyl-L-
glutamic acid 5-
semialdehyde C05932 M00879 18 

M+H 232.0816 231.0743 C9H13NO6 

0.4473 -1.1607 

Arginine 
succinyltransferase 
pathway 

ELU39 233.05536 
O-Phospho-4-
hydroxy-L-threonine C06055 M00124 9 

M+NH4 233.0533 215.0195 C4H10NO7P 
0.49301 -1.0203 Pyridoxal-P biosynthesis 

F054 233.05536 
O-Phospho-4-
hydroxy-L-threonine C06055 M00124 9 

M+NH4 233.0533 215.0195 C4H10NO7P 
0.49726 -1.0079 Pyridoxal-P biosynthesis 

F054 242.09407 

Pantothenic acid 

C00864 
M00019 
M00120 24 

M+Na 242.099 219.1107 C9H17NO5 

0.49066 -1.0272 

Pantothenate 
biosynthesis, Coenzyme 
A biosynthesis 

F022 243.04403 L-Tryptophan C00078 M00023 37 M+K 243.053 204.0899 C11H12N2O2 3.729 1.8988 Tryptophan biosynthesis 
MG1655 243.04561 L-Tryptophan C00078 M00023 31 M+K 243.053 204.0899 C11H12N2O2 2.3137 1.2102 Tryptophan biosynthesis 
F054 243.04811 L-Tryptophan C00078 M00023 20 M+K 243.053 204.0899 C11H12N2O2 3.143 1.6521 Tryptophan biosynthesis 
ELU39 243.04876 L-Tryptophan C00078 M00023 18 M+K 243.053 204.0899 C11H12N2O2 2.5429 1.3465 Tryptophan biosynthesis 

F022 249.11471 

N2-Succinyl-L-
glutamic acid 5-
semialdehyde C05932 M00879 26 

M+NH4 

249.1081 

231.0743 C9H13NO6 

2.0904 1.0638 

Arginine 
succinyltransferase 
pathway 

ELU39 251.0629 Deoxyuridine C00526  4 M+Na 251.0638 228.0746 C9H12N2O5 0.43449 -1.2026 Pyrimidine metabolism 

  
gamma-
Glutamylcysteine C00669  27 

M+H 251.0696 250.0623 C8H14N2O5
S   Glutathione biosynthesis 

MG1655 251.06321 Deoxyuridine C00526  3 M+Na 251.0638 228.0746 C9H12N2O5 0.44029 -1.1835 Pyrimidine metabolism 

  
gamma-
Glutamylcysteine C00669  26 

M+H 251.0696 250.0623 C8H14N2O5
S   Glutathione biosynthesis 

F054 251.06333 Deoxyuridine C00526  2 M+Na 251.0638 228.0746 C9H12N2O5 0.31389 -1.6717 Pyrimidine metabolism 

  
gamma-
Glutamylcysteine C00669  25 

M+H 251.0696 250.0623 C8H14N2O5
S   Glutathione biosynthesis 

F022 261.04796 
3-Deoxy-D-manno-
octulosonate C01187 M00063 39 

M+Na 261.0581 238.0689 C8H14O8 
0.45913 -1.123 CMP-KDO biosynthesis 

  
Alpha-D-glucose 6-
phosphate C00668 

M00001 
M00004 42 

M+H 261.037 260.0297 C6H13O9P 
  

Glycolysis, pentose 
phosphate pathway 

  D-Allose 6- C02962  42 M+H 261.037 260.0297 C6H13O9P   Sugar metabolism 
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phosphate 

  
D-Myo-inositol (1)-
monophosphate C01177  42 

M+H 261.037 260.0297 C6H13O9P 
  

Inisitol phosphate 
metabolism 

  
D-Myo-inositol 4-
phosphate C03546  42 

M+H 261.037 260.0297 C6H13O9P 
  

Inisitol phosphate 
metabolism 

F022 265.07602 Thymidine C00214  13 M+Na 265.0795 242.0903 C10H14N2O5 2.0458 1.0327 Pyrimidine metabolism 
F022 266.06812 Cytidine C00475  25 M+Na 266.0747 243.0855 C9H13N3O5 2.1572 1.1092 Precursor of cytosine 
F054 268.10123 Deoxyguanosine C00330  10 M+H 268.104 267.0968 C10H13N5O4 0.43378 -1.205 Purine metabolism 

  

Adenosine 

C00212 M00958 10 

M+H 268.104 267.0968 C10H13N5O4 

  

Adenine ribonucleotide 
degradation, purine 
metabolism 

  
gamma-
Glutamylcysteine C00669  19 

M+NH4 268.0962 250.0623 C8H14N2O5
S   Glutathione biosynthesis 

MG1655 268.14253 
Ubiquinone 

C00399 
M00117 44 

M+NH4 268.1543 250.1205 C14H18O4 
40.235 5.3304 

Oxidative 
phosphorylation 

F022 270.05703 

N-Succinyl-L-
glutamate 

C05931 M00879 5 

M+Na 270.0584 247.0692 C9H13NO7 

2.0074 1.0053 

Arginine 
succinyltransferase 
pathway 

F054 270.05725 

N-Succinyl-L-
glutamate 

C05931 M00879 4 

M+Na 270.0584 247.0692 C9H13NO7 

0.38031 -1.3948 

Arginine 
succinyltransferase 
pathway 

F054 273.04743 
gamma-
Glutamylcysteine C00669  15 

M+Na 273.0516 250.0623 C8H14N2O5
S 0.40901 -1.2898 Glutathione biosynthesis 

F054 274.13535 

N2-succinyl-L-
arginine C03296 

M00879 28 

M+H 274.1277 273.1204 C10H17N4O5 

2.2295 1.1567 

Arginine 
succinyltransferase 
pathway 

F022 282.02832 
D-Galactosamine 6-
phosphate C06377  23 

M+Na 282.0349 259.0457 C6H14NO8P 
2.3247 1.217 Galactose metabolism 

  

alpha-D-
Glucosamine 1-
phosphate C06156  23 

M+Na 282.0349 259.0457 C6H14NO8P 

  

 UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  

Glucosamine-1P 

C04501 M00909 23 

M+Na 282.0349 259.0457 C6H14NO8P 

  

 UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  

Glucosamine 6-
phosphate 

C00352 M00909 23 

M+Na 282.0349 259.0457 C6H14NO8P 

  

 UDP-N-acetyl-D-
glucosamine 
biosynthesis 
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F022 298.09128 

1,6-Anhydro-N-
acetyl-beta-
muramate C19769  5 

M+Na 298.0897 275.1005 C11H17NO7 

2.8229 1.4972 
Nucleotide sugar 
biosynthesis  

  

5'-
Methylthioadenosin
e C00170  19 

M+H 298.0968 297.0896 C11H15N5O3
S 

  Methionine salvage 

F022 304.93312 

3-phospho-D-
glyceroyl phosphate 

C00236 

M00001 
M00002 
M00003 35 

M+K 304.9224 265.9593 C3H8O10P2 

2.4357 1.2843 
Glycolysis, 
Gluconeogenesis 

F054 314.0835 
Phosphoribosylform
ylglycineamidine C04640 M00048 28 

M+H 314.0748 313.0675 C8H16N3O8
P 4.687 2.2287 

De novo purine 
biosynthesis 

F054 332.06703 dAMP C00360  25 
M+H 332.0754 331.0682 C10H14N5O6

P 0.027208 -5.1998 ADP derivative 

MG1655 332.06769 dAMP C00360  23 
M+H 332.0754 331.0682 C10H14N5O6

P 373.07 8.5433 ADP derivative 

ELU39 339.0752 
AICAR 

C04677 M00048 15 
M+H 339.07 338.0627 C9H15N4O8

P 2.6455 1.4035 
De novo purine 
biosynthesis 

F022 354.04832 
dAMP 

C00360  26 
M+Na 

354.0574 
331.0682 C10H14N5O6

P 2.715 1.441 ADP derivative 

MG1655 354.04958 
dAMP 

C00360  22 
M+Na 

354.0574 
331.0682 C10H14N5O6

P 2.1291 1.0902 ADP derivative 

ELU39 355.07215 

5-Amino-6-(5'-
phosphoribosylamin
o)uracil C01268  20 

M+H 355.0649 354.0577 C9H15N4O9
P 

0.44466 -1.1692 
Riboflavin biosynthesis, 
plants and bacteria 

F022 361.06578 
AICAR 

C04677 M00048 38 
M+Na 338.0627 361.052 C9H15N4O8

P 2.4847 1.3131 
De novo purine 
biosynthesis 

ELU39 361.07054         3.7509 1.9072  

ELU39 365.0533 
Xanthylic acid 

C00655 C00050 11 
M+H 365.0493 364.042 C10H13N4O9

P 2.4734 1.3065 
Guanine ribonucleotide 
biosynthesis 

F022 370.05291 

3'-AMP 

C01367  2 

M+Na 

370.0523 

347.0631 C10H14N5O7
P 

3.2259 1.6897 

Precursor to adenosine, 
derivative of 2'3'-Cyclic 
AMP 

  

2'-Deoxyguanosine 
5'-monophosphate 
dGMP C0362  2 

M+Na 

370.0523 

347.0631 C10H14N5O7
P 

  Purine metabolism 

  AMP C00020 
M00049 
M00958 2 

M+Na 
370.0523 

347.0631 C10H14N5O7
P   

Adenine ribonucleotide 
biosynthesis and 
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degradation 

MG1655 370.06138 

3'-AMP 

C01367  25 

M+Na 

370.0523 

347.0631 C10H14N5O7
P 

3.6903 1.8837 

Precursor to adenosine, 
derivative of 2'3'-Cyclic 
AMP 

  

2'-Deoxyguanosine 
5'-monophosphate 
dGMP C0362  25 

M+Na 

370.0523 

347.0631 C10H14N5O7
P 

  Purine metabolism 

  AMP C00020 
M00049 
M00958 25 

M+Na 

370.0523 

347.0631 C10H14N5O7
P 

  

Adenine ribonucleotide 
biosynthesis and 
degradation 

ELU39 370.06139 

3'-AMP 

C01367  25 

M+Na 

370.0523 

347.0631 C10H14N5O7
P 

5.4155 2.4371 

Precursor to adenosine, 
derivative of 2'3'-Cyclic 
AMP 

  

2'-Deoxyguanosine 
5'-monophosphate 
dGMP C0362  25 

M+Na 

370.0523 

347.0631 C10H14N5O7
P 

  Purine metabolism 

  AMP C00020 
M00049 
M00958 25 

M+Na 

370.0523 

347.0631 C10H14N5O7
P 

  

Adenine ribonucleotide 
biosynthesis and 
degradation 

F054 370.0618 

3'-AMP 

C01367  26 

M+Na 

370.0523 

347.0631 C10H14N5O7
P 

3.1206 1.6418 

Precursor to adenosine, 
derivative of 2'3'-Cyclic 
AMP 

  

2'-Deoxyguanosine 
5'-monophosphate 
dGMP C0362  26 

M+Na 

370.0523 

347.0631 C10H14N5O7
P 

  Purine metabolism 

  AMP C00020 
M00049 
M00958 26 

M+Na 

370.0523 

347.0631 C10H14N5O7
P 

  

Adenine ribonucleotide 
biosynthesis and 
degradation 

F022 380.11062 
S-Lactoylglutathione 

C03451  4 
M+H 380.1122 379.1049 C13H21N3O8

S 2.1522 1.1058 Pyruvate metabolism 

F054 380.11601 
S-Lactoylglutathione 

C03451  10 
M+H 380.1122 379.1049 C13H21N3O8

S 0.37298 -1.4228 Pyruvate metabolism 

F054 423.09392 
Trehalose 6-
phosphate C00689  10 

M+H 423.0898 422.0825 C12H23O14P 
0.29864 -1.7435 

Other carbohydrate 
metabolism 

  

S-
Adenosylhomocyste
ine C00021  22 

M+K 423.0847 384.1216 C14H20N6O5
S 

  Methionine degradation 
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MG1655 423.09494 
Trehalose 6-
phosphate C00689  12 

M+H 423.0898 422.0825 C12H23O14P 
0.39329 -1.3463 

Other carbohydrate 
metabolism 

  

S-
Adenosylhomocyste
ine C00021  24 

M+K 423.0847 384.1216 C14H20N6O5
S 

  Methionine degradation 

ELU39 423.09581 
Trehalose 6-
phosphate C00689  14 

M+H 423.0898 422.0825 C12H23O14P 
0.45199 -1.1456 

Other carbohydrate 
metabolism 

  

S-
Adenosylhomocyste
ine C00021  26 

M+K 423.0847 384.1216 C14H20N6O5
S 

  Methionine degradation 

ELU39 428.03494 
dGDP 

C00361 M00053 4 
M+H 428.0367 427.0294 C10H15N5O1

0P2 0.47244 -1.0818 
Deoxyribonucleotide 
biosynthesis 

  
ADP 

C00008 M00053 4 
M+H 428.0367 427.0294 C10H15N5O1

0P2   
Deoxyribonucleotide 
biosynthesis 

  
Adenosine 
phosphosulfate C00224 M00176 18 

M+H 428.0272 427.0199 C10H14N5O1
0PS   

Assimilatory sulfate 
reduction 

F022 442.14173 Folate C00504  12 M+H 442.147 441.1397 C19H19N7O6 2.2108 1.1445 Folate metabolism 

MG1655 445.07722 
Trehalose 6-
phosphate C00689  12 

M+Na 423.0898 422.0825 C12H23O14P 
0.49373 -1.0182 

Other carbohydrate 
metabolism 

ELU39 484.11616 

Tetrahydrofolic acid 

C00101  M00621 

37 M+K 484.1341 445.171 

C19H23N7O6 0.44373 -1.1722 

Tetrahydrofolate 
biosynthesis, glycine 
cleavage system 
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Table S5.3 Identification table of metabolites significantly affected by the ciprofloxacin treatment in the 4 E.coli strains. Masses were identified 
using ECMDB and cross referenced with KEGG metabolism database for E.coli K-12 MG1655.  

 Ciprofloxacin            

Strain Mass ID KEGG MODULE ppm Adduct Adduct + 
Compound M/Z 

Monoisotopic 
Mass 

Chemical 
Formula 

Fold 
Change 

log2(FC) Function 

MG1655 81.02721 Nitrate C0244 M00530 28 
M+NH4 81.0295 62.9956 HNO3 

2.422 1.2762 
Dissimilatory nitrate 
reduction 

F054 97.02252 D-Lactaldehyde C00937  36 M+Na 97.026 74.0368 C3H6O2 2.3258 1.2177 Purine metabolism 
  (S)-Lactaldehyde C00424  36 M+Na 97.026 74.0368 C3H6O2   Pyruvate metabolism 
  Propanoate C00163  36 M+Na 97.026 74.0368 C3H6O2    

F054 98.05503 
Trimethylamine N-
Oxide C01104  27 

M+Na 98.0576 75.0684 C3H9NO 
0.38252 -1.3864 Methane metabolism 

F022 99.03870 Propylene glycol C00583  30 M+Na 99.0416 76.0524 C3H8O2 41.95 5.3906 Propanoate metabolsim 
F054 101.00322 Dimethyl sulfoxide C11143  1 M+Na 101.0032 78.0139 C2H6OS 2.4843 1.3128 Sulfur metabolism 
MG1655 110.02734 Hypotaurine C00519  3 M+H 110.027 109.0197 C2H7NO2S 2.5364 1.3428 Hypotaurine metabolism 
ELU39 112.00041 Oxamate C01444  1 M+Na 112.0005 89.0113 C2H3NO3 2.5124 1.3291 DEM 
F022 112.00041 Oxamate C01444  1 M+Na 112.0005 89.0113 C2H3NO3 0.14032 -2.8332 DEM 
ELU39 112.04662 Cytosine C00380  35 M+H 112.0505 111.0433 C4H5N3O 3.9367 1.977 Pyrimidine metabolism 
F022 112.04662 Cytosine C00380  35 M+H 112.0505 111.0433 C4H5N3O 4.1877 2.0662 Pyrimidine metabolism 
F054 112.04662 Cytosine C00380  35 M+H 112.0505 111.0433 C4H5N3O 3.7353 1.9012 pyrimidine metabolism 
MG1655 112.04662 Cytosine C00380  35 M+H 112.0505 111.0433 C4H5N3O 9.6471 3.2701 Pyrimidine metabolism 
F022 113.01904 D-Lactic acid C00256  17 M+Na 113.0209 90.0317 C3H6O3 2.166 1.1151 Pyruvate metabolism 
  3-Hydroxypropanoate C01013 M00939 17 M+Na 113.0209 90.0317 C3H6O3   Pyrimidine degradation 
  L-Lactic acid C00186  17 M+Na 113.0209 90.0317 C3H6O3   Pyruvate metabolism 
  Glycerone C00184  17 M+Na 113.0209 90.0317 C3H6O3   Glycerolipid metabolism 

MG1655 116.06499 L-Proline C00148 
M00015 
M00970 48 

M+H 116.0706 115.0633 C5H9NO2 
0.25605 -1.9655 

Proline biosynthesis and 
degradation  

ELU39 122.02266 D-Cysteine C00793  36 M+H 122.027 121.0197 C3H7NO2S 0.37521 -1.4142  
  L-Cysteine C00097 M00021 36 M+H 122.027 121.0197 C3H7NO2S   Cysteine biosynthesis 
ELU39 124.03682 Nicotinic acid C00253 M00115 20 M+H 124.0393 123.032 C6H5NO2 0.24075 -2.0544 Precursor to NAD 
F054 134.02625 Cytosine C00380  46 M+Na 134.0325 111.0433 C4H5N3O 3.9408 1.9785 Pyrimidine metabolism 
MG1655 134.02625 Cytosine C00380  46 M+Na 134.0325 111.0433 C4H5N3O 4.8452 2.2766 Pyrimidine metabolism 
MG1655 134.02625 Cytosine C00380  46 M+Na 134.0325 111.0433 C4H5N3O 2.8788 1.5255 Pyrimidine metabolism 
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ELU39 134.02878 Cytosine C00380  28 M+Na 134.0325 111.0433 C4H5N3O 2.6177 1.3883 Pyrimidine metabolism 

ELU39 147.10596 
L-Lysine C00047 M00016 

M00956 47 
M+H 147.1128 146.1055 C6H14N2O

2 0.40812 -1.2929 Lysine metabolism 

F054 147.10596 
L-Lysine C00047 M00016 

M00956 47 
M+H 147.1128 146.1055 C6H14N2O

2 0.43228 -1.21 Lysine metabolism 

ELU39 152.02783 

Pyrroline 
hydroxycarboxylic 
acid C04281  26 

M+Na 152.0318 129.0426 C5H7NO3 

0.40057 -1.3199 
Arginine and proline 
metabolism 

MG1655 152.02783 

Pyrroline 
hydroxycarboxylic 
acid C04281  26 

M+Na 152.0318 129.0426 C5H7NO3 

0.38598 -1.3734 
Arginine and proline 
metabolism 

ELU39 152.05475 (R)-Malate C00497  4 M+NH4 152.0553 134.0215 C4H6O5 0.382 -1.3884  

  
L-Malic acid 

C00149 
M00009 
M00168 4 

M+NH4 152.0553 134.0215 C4H6O5 
  TCA cycle, CAM 

  
Guanine 

C00242 M00959 13 
M+H 152.0567 151.0494 C5H5N5O 

  
Guanine ribonucleotide 
degradation 

F022 156.03674 Ureidoglycine C02091  8 M+Na 156.038 133.0487 C3H7N3O3 0.29715 -1.7507 Purine metabolism 

  

L-Valine 

C00183 M00019 35 

M+K 

156.0421 

117.079 C5H11NO2 

  

Branched chain amino 
acid metabolism valine-
isoleucine metabolism 

  
Betaine C00719 

M00555 
38 M+K 

156.0427 
118.0868 C5H12NO2 

  
Serine and threonine 
biosynthesis 

F054 156.03674 Ureidoglycine C02091  8 M+Na 156.038 133.0487 C3H7N3O3 0.32213 -1.6343 Purine metabolism 

  

L-Valine 

C00183 M00019 35 

M+K 

156.0421 

117.079 C5H11NO2 

  

Branched chain amino 
acid metabolism valine-
isoleucine metabolism 

  
Betaine C00719 

M00555 
38 M+K 

156.0427 
118.0868 C5H12NO2 

  
Serine and threonine 
biosynthesis 

ELU39 156.99240 Succinic acid C00042 M00009 17 M+K 156.9898 118.0266 C4H6O4 0.35049 -1.5126 TCA cycle  
  Phosphoglycolic acid C00988  18 M+H 156.9897 155.9824 C2H5O6P   Glycoxylate metabolism 

F022 157.04164 
(R)-2,3-Dihydroxy-
isovalerate C04272 M00019 35 

M+Na 157.0471 134.0579 C5H10O4 
0.48546 -1.0426 

Valine leucine isoleucine 
biosynthesis 

  
Deoxyribose 

C01801  35 
M+Na 157.0471 134.0579 C5H10O4 

  
Pentose phosphate 
pathway 

F054 157.04164 
(R)-2,3-Dihydroxy-
isovalerate C04272 M00019 35 

M+Na 157.0471 134.0579 C5H10O4 
0.33495 -1.578 

Valine leucine isoleucine 
biosynthesis 

  Deoxyribose C01801  35 M+Na 157.0471 134.0579 C5H10O4   Pentose phosphate 
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pathway 

ELU39 158.95654 
3-Mercaptopyruvic 
acid C00957  

33 M+K 158.9513 119.9881 C3H4O3S 
3.3835 1.7585 

Cysteine and 
methionine metabolism 

F054 162.10899 L-Carnitine C00318  21 M+H 162.1125 161.1052 C7H15NO3 0.48448 -1.0455  
  Carnitine C00487  25 M+H 162.113 162.113 C7H16NO3   Lysine degradation 
MG1655 162.10899 L-Carnitine C00318  21 M+H 162.1125 161.1052 C7H15NO3 0.35419 -1.4974  
  Carnitine C00487  25 M+H 162.113 162.113 C7H16NO3   Lysine degradation 

ELU39 167.07620 

3-(3-
Hydroxyphenyl)propa
noic acid C11457  35 

M+H 167.0703 166.063 C9H10O3 

4.5255 2.1781 
Phenylalanine 
metabolism 

ELU39 173.03587 
D-Xylulose 

C00310  36 
M+Na 173.042 150.0528 C5H10O5 

2.5327 1.3406 
Pentose glucuronate 
interconversions 

  
L-Ribulose 

C00508  36 
M+Na 173.042 150.0528 C5H10O5 

  
Pentose glucuronate 
interconversions 

  
L-Threo-2-pentulose 

C00312  36 
M+Na 173.042 150.0528 C5H10O5 

  
Pentose glucuronate 
interconversions 

  L-Arabinose C00259  36 

M+Na 173.042 150.0528 C5H10O5 

  

Pentose glucuronate 
interconversions, 
nucleotide sugar 
metabolism 

  D-Ribulose C00309  36 
M+Na 173.042 150.0528 C5H10O5 

  
Pentose glucuronate 
interconversions 

  Ribose C00121  36 
M+Na 173.042 150.0528 C5H10O5 

  
Pentose phosphate 
pathway 

  D-Xylose C00181  36 

M+Na 173.042 150.0528 C5H10O5 

  

Pentose glucuronate 
interconversions, 
nucleotide sugar 
metabolism 

ELU39 173.03587 
D-Xylulose 

C00310  36 
M+Na 173.042 150.0528 C5H10O5 

2.4196 1.2748 
Pentose glucuronate 
interconversions 

  
L-Ribulose 

C00508  36 
M+Na 173.042 150.0528 C5H10O5 

  
Pentose glucuronate 
interconversions 

  
L-Threo-2-pentulose 

C00312  36 
M+Na 173.042 150.0528 C5H10O5 

  
Pentose glucuronate 
interconversions 

  L-Arabinose C00259  36 

M+Na 173.042 150.0528 C5H10O5 

  

Pentose glucuronate 
interconversions, 
nucleotide sugar 
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metabolism 

  D-Ribulose C00309  36 
M+Na 173.042 150.0528 C5H10O5 

  
Pentose glucuronate 
interconversions 

  Ribose C00121  36 
M+Na 173.042 150.0528 C5H10O5 

  
Pentose phosphate 
pathway 

  D-Xylose C00181  36 

M+Na 173.042 150.0528 C5H10O5 

  

Pentose glucuronate 
interconversions, 
nucleotide sugar 
metabolism 

F022 173.03587 
D-Xylulose 

C00310  36 
M+Na 173.042 150.0528 C5H10O5 

3.4751 1.797 
Pentose glucuronate 
interconversions 

  
L-Ribulose 

C00508  36 
M+Na 173.042 150.0528 C5H10O5 

  
Pentose glucuronate 
interconversions 

  
L-Threo-2-pentulose 

C00312  36 
M+Na 173.042 150.0528 C5H10O5 

  
Pentose glucuronate 
interconversions 

  L-Arabinose C00259  36 

M+Na 173.042 150.0528 C5H10O5 

  

Pentose glucuronate 
interconversions, 
nucleotide sugar 
metabolism 

  D-Ribulose C00309  36 
M+Na 173.042 150.0528 C5H10O5 

  
Pentose glucuronate 
interconversions 

  Ribose C00121  36 
M+Na 173.042 150.0528 C5H10O5 

  
Pentose phosphate 
pathway 

  D-Xylose C00181  36 

M+Na 173.042 150.0528 C5H10O5 

  

Pentose glucuronate 
interconversions, 
nucleotide sugar 
metabolism 

ELU39 174.05946 Orotate C00295 M00051 49 
M+NH4 174.0509 156.0171 C5H4N2O4 

3.8135 1.9311 
De novo pyrimidine 
biosynthesis 

MG1655 175.06296 
3-Carboxy-3-hydroxy-
isocaproate C02504 M00432 16 

M+H 175.0601 174.0528 C7H10O5 
0.049516 -4.3359 Leucine biosynthesis 

  
2-Isopropyl-3-
oxosuccinate C04236  16 

M+H 175.0601 174.0528 C7H10O5 
  

Valine leucine isoleucine 
biosynthesis 

  Shikimate C00493  16 M+H 175.0601 174.0528 C7H10O5   Shikimate pathway 
MG1655 178.05 L-Histidine C00135  49 M+Na 178.0587 155.0695 C6H9N3O2 2.6523 1.4073 Histidine biosynthesis 
F054 187.10301 Pyridoxine C00314  25 M+NH4 187.1077 169.0739 C8H11NO3 0.46975 -1.09  

F054 188.06256 D-Phenylalanine C02265  30 M+Na 188.0682 165.079 C9H11NO2 0.48901 -1.0321  
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L-Phenylalanine 

C00079 M00024 30 
M+Na 188.0682 165.079 C9H11NO2 

  
Phenyalanine 
biosythesis 

ELU39 191.07056 
Pyridoxamine 

C00534  45 
M+Na 191.0791 168.0899 C8H12N2O

2 3.6178 1.8551  

F022 191.07056 
Pyridoxamine 

C00534  45 
M+Na 191.0791 168.0899 C8H12N2O

2 3.563 1.8331  

F054 191.07056 
Pyridoxamine 

C00534  45 
M+Na 191.0791 168.0899 C8H12N2O

2 2.3541 1.2352  

ELU39 194.93953 Phosphoglycolic acid C00988  31 M+K 194.9455 155.9824 C2H5O6P 0.43363 -1.2055 Glycoxylate metabolism 
MG1655 194.93953 Phosphoglycolic acid C00988  31 M+K 194.9455 155.9824 C2H5O6P 0.45834 -1.1255 Glycoxylate metabolism 

ELU39 197.09073 
N-Acetylornithine 

C00437 M00028 5 
M+Na 197.0897 174.1004 C7H14N2O

3 0.15218 -2.7162 Ornithine metabolism 

MG1655 198.02945 
7-Cyano-7-
carbaguanine C15996  46 

M+Na 198.0386 175.0494 C7H5N5O 
0.47332 -1.0791 Folate biosynthesis 

ELU39 198.08473 
Citrulline 

C00327 M000844 1 
M+Na 198.0849 175.0957 C6H13N3O

3 0.18702 -2.4187 Arginine biosynthesis 

  
5-Methylthioribose 

C03089  27 
M+NH4 198.0795 180.0456 C6H12O4S 

  
Cysteine and 
methionine metabolism 

  
Trans-2,3-
Dihydroxycinnamate C12623 M00545 44 

M+NH4 198.0761 180.0423 C9H8O4 
  

Trans-cinamate 
degradation 

  

4-
Hydroxyphenylpyruvi
c acid C01179 M00025 44 

M+NH4 198.0761 180.0423 C9H8O4 

  Tyrosine biosythesis 

  
3,4-Dihydroxy-L-
phenylalanine C00355  44 

M+H 198.0761 197.0688 C9H11NO4 
  Tyrosine biosythesis 

F022 198.08473 
Citrulline 

C00327 M000844 1 
M+Na 198.0849 175.0957 C6H13N3O

3 0.49651 -1.0101 Arginine biosynthesis 

  
5-Methylthioribose 

C03089  27 
M+NH4 198.0795 180.0456 C6H12O4S 

  
Cysteine and 
methionine metabolism 

  
Trans-2,3-
Dihydroxycinnamate C12623 M00545 44 

M+NH4 198.0761 180.0423 C9H8O4 
  

Trans-cinamate 
degradation 

  

4-
Hydroxyphenylpyruvi
c acid C01179 M00025 44 

M+NH4 198.0761 180.0423 C9H8O4 

  Tyrosine biosythesis 

  
3,4-Dihydroxy-L-
phenylalanine C00355  44 

M+H 198.0761 197.0688 C9H11NO4 
  Tyrosine biosythesis 

MG1655 198.08473 Citrulline C00327 M000844 1 M+Na 198.0849 175.0957 C6H13N3O 0.23133 -2.112 Arginine biosynthesis 
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3 

  
5-Methylthioribose 

C03089  27 
M+NH4 198.0795 180.0456 C6H12O4S 

  
Cysteine and 
methionine metabolism 

  
Trans-2,3-
Dihydroxycinnamate C12623 M00545 44 

M+NH4 198.0761 180.0423 C9H8O4 
  

Trans-cinamate 
degradation 

  

4-
Hydroxyphenylpyruvi
c acid C01179 M00025 44 

M+NH4 198.0761 180.0423 C9H8O4 

  Tyrosine biosythesis 

  
3,4-Dihydroxy-L-
phenylalanine C00355  44 

M+H 198.0761 197.0688 C9H11NO4 
  Tyrosine biosythesis 

MG1655 199.0258 
5-Dehydro-4-deoxy-
D-glucuronate C04053  23 

M+Na 199.0213 176.0321 C6H8O6 
0.19532 -2.3561  

  
(4S)-4,6-Dihydroxy-
2,5-dioxohexanoate C04349  23 

M+Na 199.0213 176.0321 C6H8O6 
   

  Ascorbate C00072 M00550 23 M+Na 199.0213 176.0321 C6H8O6   Ascorbate degrdation 

  
Ureidosuccinic acid 

C00438 M00051 34 
M+Na 199.0325 176.0433 C5H8N2O5 

  
De novo pyrimidine 
biosynthesis 

F054 200.97037 
D-4-Hydroxy-2-
oxoglutarate C05946  46 

M+K 200.9796 162.0164 C5H6O6 
2.6789 1.4216 

Arginine and proline 
metabolism 

  
4-Hydroxy-2-
oxoglutaric acid C01127  46 

M+K 200.9796 162.0164 C5H6O6 
  Glycoxylate metabolism 

MG1655 202.10439 

cis-3-(Carboxy-ethyl)-
3,5-cyclo-hexadiene-
1,2-diol C11588  15 

M+NH4 202.1074 184.0736 C9H12O4 

0.41202 -1.2792 
Phenyalanine 
metabolism 

MG1655 203.04874 

L-Rhamnonate 

C01934  19 

M+Na 203.0526 180.0634 C6H12O6 

0.37483 -1.4157 

Glycolysis. Nucleotide 
sugar biosynthesis 
UDP-N-acetyl-D-
glucosamine 
biosynthesis, 
prokaryotes 

  D-Allose C01487  19 M+Na 203.0526 180.0634 C6H12O6    

  Inositol C00137  19 M+Na 203.0526 180.0634 C6H12O6    

  

alpha-D-Glucose 

C00267 

M00001 
M000549 
M00909 19 

M+Na 203.0526 180.0634 C6H12O6 

   

  
D-Fructose 

C00095  19 
M+Na 203.0526 180.0634 C6H12O6 

  
Nucleotide sugar 
biosynthesis and 
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galactose degradation 
leloir pathway 

  beta-D-glucose C00221  19 M+Na 203.0526 180.0634 C6H12O6    

  D-Mannose C00159  19 M+Na 203.0526 180.0634 C6H12O6    

  
Alpha-D-Galactose 

C00984 
M00554 
M00632 19 

M+Na 203.0526 180.0634 C6H12O6 
   

  D-Galactose C00124 M00632 19 M+Na 203.0526 180.0634 C6H12O6    

  D-Glucose C00031  19 M+Na 203.0526 180.0634 C6H12O6    

ELU39 203.05495 

L-Rhamnonate 

C01934  12 

M+Na 203.0526 180.0634 C6H12O6 

8.0756 3.0136 

Glycolysis. Nucleotide 
sugar biosynthesis 
UDP-N-acetyl-D-
glucosamine 
biosynthesis, 
prokaryotes 

  D-Allose C01487  12 M+Na 203.0526 180.0634 C6H12O6    

  Inositol C00137  12 M+Na 203.0526 180.0634 C6H12O6    

  

alpha-D-Glucose 

C00267 

M00001 
M000549 
M00909 12 

M+Na 203.0526 180.0634 C6H12O6 

   

  

D-Fructose 

C00095  12 

M+Na 203.0526 180.0634 C6H12O6 

  

Nucleotide sugar 
biosynthesis and 
galactose degradation 
leloir pathway 

  beta-D-glucose C00221  12 M+Na 203.0526 180.0634 C6H12O6    

  D-Mannose C00159  12 M+Na 203.0526 180.0634 C6H12O6    

  
Alpha-D-Galactose 

C00984 
M00554 
M00632 12 

M+Na 203.0526 180.0634 C6H12O6 
   

  D-Galactose C00124 M00632 12 M+Na 203.0526 180.0634 C6H12O6    

  D-Glucose C00031  12 M+Na 203.0526 180.0634 C6H12O6    

MG1655 203.05495 

L-Rhamnonate 

C01934  12 

M+Na 203.0526 180.0634 C6H12O6 

17.601 4.1376 

Glycolysis. Nucleotide 
sugar biosynthesis 
UDP-N-acetyl-D-
glucosamine 
biosynthesis, 
prokaryotes 

  D-Allose C01487  12 M+Na 203.0526 180.0634 C6H12O6    

  Inositol C00137  12 M+Na 203.0526 180.0634 C6H12O6    
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alpha-D-Glucose 

C00267 

M00001 
M000549 
M00909 12 

M+Na 203.0526 180.0634 C6H12O6 

   

  

D-Fructose 

C00095  12 

M+Na 203.0526 180.0634 C6H12O6 

  

Nucleotide sugar 
biosynthesis and 
galactose degradation 
leloir pathway 

  beta-D-glucose C00221  12 M+Na 203.0526 180.0634 C6H12O6    

  D-Mannose C00159  12 M+Na 203.0526 180.0634 C6H12O6    

  
Alpha-D-Galactose 

C00984 
M00554 
M00632 12 

M+Na 203.0526 180.0634 C6H12O6 
   

  D-Galactose C00124 M00632 12 M+Na 203.0526 180.0634 C6H12O6    

  D-Glucose C00031  12 M+Na 203.0526 180.0634 C6H12O6    

F022 205.06905 Galactitol C01697  4 M+Na 205.0683 182.079 C6H14O6 11.645 3.5417 Galactose metabolism 

  
Sorbitol 

C00794  4 
M+Na 205.0683 182.079 C6H14O6 

  
Fructose mannose 
metabolism 

  
Mannitol 

C00392  4       
Fructose mannose 
metabolism 

ELU39 207.04280 Methylisocitric acid C04593  34 M+H 207.0499 206.0427 C7H10O7 0.41139 -1.2814 Propanoate metabolsim 
  Methylcitric acid C02225  34 M+H 207.0499 206.0427 C7H10O7   Propanoate metabolsim 

  
Lipoic acid 

C16241  39 
M+H 207.0508 206.0435 C8H14O2S

2   Lipoic acid metabolism 
MG1655 207.0428 Methylisocitric acid C04593  34 M+H 207.0499 206.0427 C7H10O7 0.43417 -1.2037 Propanoate metabolsim 
  Methylcitric acid C02225  34 M+H 207.0499 206.0427 C7H10O7   Propanoate metabolsim 

  
Lipoic acid 

C16241  39 
M+H 207.0508 206.0435 C8H14O2S

2   Lipoic acid metabolism 
ELU39 211.10117         0.45633 -1.1318  
F054 212.84886         0.41356 -1.2738  

ELU39 214.00095 

2-Amino-3-oxo-4-
phosphonooxybutyrat
e C07335 M00124 47 

M+H 214.0111 213.0038 C4H8NO7P 

2.4866 1.3141 Pyridoxal-P biosynthesis 

  

L-Aspartyl-4-
phosphate 

C03082 

M00016 
M00017 
M00018 47 

M+H 214.0111 213.0038 C4H8NO7P 

  
Lysine threonine 
methionine biosynthesis 

ELU39 214.00245 

2-Amino-3-oxo-4-
phosphonooxybutyrat
e C07335 M00124 40 

M+H 214.0111 213.0038 C4H8NO7P 

3.4922 1.8042 Pyridoxal-P biosynthesis 
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L-Aspartyl-4-
phosphate 

C03082 

M00016 
M00017 
M00018 40 

M+H 214.0111 213.0038 C4H8NO7P 

  
Lysine threonine 
methionine biosynthesis 

  
7-Cyano-7-
carbaguanine C15996  47 

M+K 214.0126 175.0494 C7H5N5O 
  Folate biosynthesis 

MG1655 220.11236 Panthothenic acid 
C00864 M00019 

M00120 25 

M+H 220.1179 219.1107 C9H17NO5 

0.24982 -2.0011 

Pantothenate 
biosynthesis, Coenzyme 
A biosynthesis 

ELU39 220.11247 Panthothenic acid 
C00864 M00019 

M00120 25 

M+H 220.1179 219.1107 C9H17NO5 

0.24338 -2.0387 

Pantothenate 
biosynthesis, Coenzyme 
A biosynthesis 

F022 226.94615 
2,5-Dichloro-4-
oxohex-2-enedioate C12835  21 

M+H 226.9509 225.9436 C6H4Cl2O5 
2.1431 1.0997  

MG1655 231.03858 

2-Amino-3-oxo-4-
phosphonooxybutyrat
e C07335 M00124 4 

M+NH4 

231.0377 

213.0038 C4H8NO7P 

2.0392 1.028 Pyridoxal-P biosynthesis 

  

L-Aspartyl-4-
phosphate 

C03082 

M00016 
M00017 
M00018 4 

M+NH4 

231.0377 

213.0038 C4H8NO7P 

  
Lysine threonine 
methionine biosynthesis 

F022 231.03876 

2-Amino-3-oxo-4-
phosphonooxybutyrat
e C07335 M00124 5 

M+NH4 

231.0377 

213.0038 C4H8NO7P 

2.59 1.373 Pyridoxal-P biosynthesis 

  

L-Aspartyl-4-
phosphate 

C03082 

M00016 
M00017 
M00018 5 

M+NH4 

231.0377 

213.0038 C4H8NO7P 

  
Lysine threonine 
methionine biosynthesis 

ELU39 233.10867 
4-(Glutamylamino) 
butanoate C16757 

M00136 19 
M+H 233.1132 232.1059 C9H16N2O

5 0.15072 -2.73 GABA biosynthesis 

  

N2-Succinyl-L-
ornithine C03415 

M00879 19 

M+H 233.1132 232.1059 C9H16N2O
5 

  

Arginine 
succinyltransferase 
pathway 

F022 233.10867 
4-(Glutamylamino) 
butanoate C16757 

M00136 19 
M+H 233.1132 232.1059 C9H16N2O

5 0.30835 -1.6974 GABA biosynthesis 

  

N2-Succinyl-L-
ornithine C03415 

M00879 19 

M+H 233.1132 232.1059 C9H16N2O
5 

  

Arginine 
succinyltransferase 
pathway 

F054 233.10867 
4-(Glutamylamino) 
butanoate C16757 

M00136 19 
M+H 233.1132 232.1059 C9H16N2O

5 0.26788 -1.9004 GABA biosynthesis 
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N2-Succinyl-L-
ornithine C03415 

M00879 19 

M+H 233.1132 232.1059 C9H16N2O
5 

  

Arginine 
succinyltransferase 
pathway 

MG1655 233.10867 
4-(Glutamylamino) 
butanoate C16757 

M00136 19 
M+H 233.1132 232.1059 C9H16N2O

5 0.096314 -3.3761 GABA biosynthesis 

  

N2-Succinyl-L-
ornithine C03415 

M00879 19 

M+H 233.1132 232.1059 C9H16N2O
5 

  

Arginine 
succinyltransferase 
pathway 

ELU39 238.97545 
D-Erythrose 4-
phosphate C00279 M00004 15 

M+K 238.9717 200.0086 C4H9O7P 
0.48106 -1.0557 

Pentose phosphate 
pathway 

ELU39 242.03727 

4-Amino-2-methyl-5-
phosphomethylpyrimi
dine C04556 M00127 30 

M+Na 242.0301 219.0409 C6H10N3O
4P 

0.38553 -1.3751 Thiamine biosynthesis 

F054 242.09427 

Pantothenic acid 

C00864 
M00019 
M00120 23 

M+Na 242.099 219.1107 C9H17NO5 

0.30349 -1.7203 

Pantothenate 
biosynthesis, Coenzyme 
A biosynthesis 

F022 242.09576 

Pantothenic acid 

C00864 
M00019 
M00120 17 

M+Na 242.099 219.1107 C9H17NO5 

0.49079 -1.0268 

Pantothenate 
biosynthesis, Coenzyme 
A biosynthesis 

MG1655 242.09613 

Pantothenic acid 

C00864 
M00019 
M00120 16 

M+Na 242.099 219.1107 C9H17NO5 

0.13989 -2.8376 

Pantothenate 
biosynthesis, Coenzyme 
A biosynthesis 

ELU39 242.09695 

Pantothenic acid 

C00864 
M00019 
M00120 12 

M+Na 242.099 219.1107 C9H17NO5 

0.17271 -2.5335 

Pantothenate 
biosynthesis, Coenzyme 
A biosynthesis 

MG1655 243.04241 
L-Tryptophan 

C00078 M00023 44 
M+K 243.053 204.0899 C11H12N2

O2 2.9903 1.5803 Tryptophan biosynthesis 

MG1655 243.09647 
Thymidine 

C00214  4 
M+H 243.0975 242.0903 C10H14N2

O5 0.44753 -1.1599 Pyrimidine metabolism 

MG1655 244.08578 
Isochorismate 

C00885 
M00116 17 

M+NH4 244.0816 226.0477 C10H10O6 
4.6008 2.2019 

Menaquinone 
biosynthesis 

  

Prephenate 
C00254 M00024, 

M00025 17 

M+NH4 244.0816 226.0477 C10H10O6 

  

Tyrosine biosythesis 
phenylalanine 
biosynthesis 

  

Chorismate 

C00251 

M00022, 
M00023, 
M00024, 
M00025, 17 

M+NH4 244.0816 226.0477 C10H10O6 

  

Central to aromatic 
amino acid metabolism. 
Shikimate pathways, 
tryptophan, tyrosine, 
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M00116 
M00117 

phenylalanine 
biosynthesis. 

  
N-
Acetylmannosamine C00645 

 27 
M+Na 244.0792 221.0899 C8H15NO6 

  
Nucleotide sugar 
biosynthesis 

  
N-Acetyl-D-
glucosamine C00140 

 27 
M+Na 244.0792 221.0899 C8H15NO6 

  
Nucleotide sugar 
biosynthesis 

  
Cytidine 

C00475 
 29 

M+H 244.0928 243.0855 C9H13N3O
5   Precursor of cytosine 

F022 244.08637 
Isochorismate 

C00885 
M00116 20 

M+NH4 244.0816 226.0477 C10H10O6 
2.6577 1.4102 

Menaquinone 
biosynthesis 

  

Prephenate 
C00254 M00024, 

M00025 20 

M+NH4 244.0816 226.0477 C10H10O6 

  

Tyrosine biosythesis 
phenylalanine 
biosynthesis 

  

Chorismate 

C00251 

M00022, 
M00023, 
M00024, 
M00025, 
M00116 
M00117 20 

M+NH4 244.0816 226.0477 C10H10O6 

  

Central to aromatic 
amino aid metabolism. 
Shikimate pathways, 
tryptophan, tyrosine, 
phenylalanine 
biosynthesis. 

  
N-
Acetylmannosamine C00645 

 26 
M+Na 244.0792 221.0899 C8H15NO6 

  
Nucleotide sugar 
biosynthesis 

  
N-Acetyl-D-
glucosamine C00140 

 26 
M+Na 244.0792 221.0899 C8H15NO6 

  
Nucleotide sugar 
biosynthesis 

  
Cytidine 

C00475 
 30 

M+H 244.0928 243.0855 C9H13N3O
5   Precursor of cytosine 

MG1655 244.12243 
Porphobilinogen 

C00931  28 
M+NH4 244.1292 226.0954 C10H14N2

O4 3.1315 1.6468 
Porphyrin precursor, 
heme biosynthesis 

F022 245.05476 
L-Glutamic acid 5-
phosphate C03287 

M00015 6 
M+NH4 245.0533 227.0195 C5H10NO7

P 2.9897 1.58 Proline biosynthesis 

  
L-Cystathionine 

C02291 
M00017 8 

M+Na 245.0566 222.0674 C7H14N2O
4S   Methionine biosynthesis 

ELU39 251.06318 
Deoxyuridine 

C00526  3 
M+Na 251.0638 228.0746 C9H12N2O

5 0.36025 -1.4729 Pyrimidine metabolism 

  
gamma-
Glutamylcysteine C00669  26 

M+H 251.0696 250.0623 C8H14N2O
5S   Glutathione biosynthesis 

ELU39 255.06808 
gamma-Glutamyl-
gamma- C15700  24 

M+K 255.0742 216.111 C9H16N2O
4 0.35003 -1.5145 GABA biosynthesis 
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butyraldehyde 

F022 255.09020 
4-(Glutamylamino) 
butanoate C15767 M00136 19 

M+Na 255.0951 232.1059 C9H16N2O
5 0.40841 -1.2919 GABA biosynthesis 

  

N2-Succinyl-L-
ornithine 

C03415 M00879 19 

M+Na 255.0951 232.1059 C9H16N2O
5 

  

Arginine 
succinyltransferase 
pathway 

  
Nicotinamide riboside 

C03150  31 
M+H 255.0981 255.0981 C11H15N2

O5   Nicotinate metabolism 

MG1655 256.09664 
3-Deoxy-D-manno-
octulosonate C01187 M00063 24 

M+NH4 256.1027 238.0689 C8H14O8 
0.47483 -1.0745 CMP-KDO biosynthesis 

  
7,8-Dihydroneopterin 

C04874 M00126 29 
M+H 256.104 255.0968 C9H13N5O

4   
Tetrahydrofolate 
biosynthesis 

  
gamma-Glutamyl-L-
putrescine C15699  36 

M+K 256.1058 217.1426 C9H19N3O
3   GABA biosynthesis 

ELU39 256.09774 
3-Deoxy-D-manno-
octulosonate C01187 M00063 19 

M+NH4 256.1027 238.0689 C8H14O8 
0.3554 -1.4925 CMP-KDO biosynthesis 

  
7,8-Dihydroneopterin 

C04874  25 
M+H 256.104 255.0968 C9H13N5O

4   
Tetrahydrofolate 
biosynthesis 

  
gamma-Glutamyl-L-
putrescine C15699  31 

M+K 256.1058 217.1426 C9H19N3O
3   GABA biosynthesis 

MG1655 258.06909 

Pantothenic acid 

C00864 
M00019 
M00120 18 

M+K 258.0738 219.1107 C9H17NO5 

0.43038 -1.2163 

Pantothenate 
biosynthesis, Coenzyme 
A biosynthesis 

  
L-Cystine 

C00491  44 
M+NH4 258.0577 240.0238 C6H12N2O

4S2   
Cysteine and 
methionine metabolism 

ELU39 258.06970 

Pantothenic acid 

C00864 
M00019 
M00120 16 

M+K 258.0738 219.1107 C9H17NO5 

0.4556 -1.1341 

Pantothenate 
biosynthesis, Coenzyme 
A biosynthesis 

  
L-Cystine 

C00491  47 
M+NH4 258.0577 240.0238 C6H12N2O

4S2   
Cysteine and 
methionine metabolism 

F054 260.04756 
D-Galactosamine 6-
phosphate C06377  21 

M+H 260.053 259.0457 C6H14NO8
P 0.46553 -1.1031 Galactose metabolism 

  
N-
Acetylmannosamine C00645  21 

M+K 260.0531 221.0899 C8H15NO6 
   

  
N-Acetyl-D-
glucosamine C00140  21 

M+K 260.0531 221.0899 C8H15NO6 
   

  alpha-D-Glucosamine C06156  21 M+H 260.053 259.0457 C6H14NO8   UDP-N-acetyl-D-
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1-phosphate P glucosamine 
biosynthesis 

  

Glucosamine-1P 

C04501 M00909 21 

M+H 260.053 259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  

Glucosamine 6-
phosphate 

C00352 M00909 21 

M+H 260.053 259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

ELU39 260.04817 
D-Galactosamine 6-
phosphate C06377  18 

M+H 260.053 259.0457 C6H14NO8
P 0.43899 -1.1877 Galactose metabolism 

  

alpha-D-Glucosamine 
1-phosphate 

C06156  18 

M+H 260.053 259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  

Glucosamine-1P 

C04501 M00909 18 

M+H 260.053 259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  

Glucosamine 6-
phosphate 

C00352 M00909 18 

M+H 260.053 259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  
N-
Acetylmannosamine C00645  19 

M+K 260.0531 221.0899 C8H15NO6 
   

  
N-Acetyl-D-
glucosamine C00140  19 

M+K 260.0531 221.0899 C8H15NO6 
   

F054 261.05221 
3-Deoxy-D-manno-
octulosonate C01187 M00063 23 

M+Na 
261.0581 

238.0689 C8H14O8 
0.40559 -1.3019 CMP-KDO biosynthesis 

F022 261.05340 
3-Deoxy-D-manno-
octulosonate C01187 M00063 18 

M+Na 
261.0581 

238.0689 C8H14O8 
0.30007 -1.7367 CMP-KDO biosynthesis 

F022 261.12235 
Cytidine 

C00475 
 12 

M+NH4 
261.1193 

243.0855 C9H13N3O
5 0.43245 -1.2094 Precursor of cytosine 

MG1655 266.06812 
Cytidine 

C00475 
 25 

M+Na 
266.0747 

243.0855 C9H13N3O
5 7.2813 2.8642 Precursor of cytosine 

F022 266.06826 
Cytidine 

C00475 
 24 

M+Na 
266.0747 

243.0855 C9H13N3O
5 3.4269 1.7769 Precursor of cytosine 

F022 266.06913 
Cytidine 

C00475 
 21 

M+Na 
266.0747 

243.0855 C9H13N3O
5 4.3931 2.1352 Precursor of cytosine 

F054 266.06932 
Cytidine 

C00475 
 20 

M+Na 
266.0747 

243.0855 C9H13N3O
5 4.3531 2.122 Precursor of cytosine 
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F022 267.06411 
Pseudouridine 

C02067  20 
M+Na 267.0588 244.0695 C9H12N2O

6 2.1683 1.1166 Pyridoxal-P biosynthesis 

  
Uridine 

C00299  20 
M+Na 267.0588 244.0695 C9H12N2O

6   Pyrimidine metabolism 

  
Pyridoxine 5'-
phosphate C00627 M00124 37 

M+NH4 267.074 249.0402 C8H12NO6
P   Pyridoxal-P biosynthesis 

MG1655 267.07108 
Pyridoxine 5'-
phosphate C00627 M00124 37 

M+NH4 267.074 249.0402 C8H12NO6
P 2.9295 1.5507 Pyridoxal-P biosynthesis 

  
Biotin 

C00120 M00123 
24 M+Na 267.0774 244.0882 C10H16N2

O3S   Biotin biosynthesis 

ELU39 268.10123 
Deoxyguanosine 

C00330  10 
M+H 268.104 267.0968 C10H13N5

O4 0.48254 -1.0513 Purine metboalism 

  

Adenosine 

C00212 M00958 10 

M+H 268.104 267.0968 C10H13N5
O4 

  

Adenine ribonucleotide 
degradation, purine 
metabolism 

  
gamma-
Glutamylcysteine C00669  19 

M+NH4 268.0962 250.0623 C8H14N2O
5S   Glutathione biosynthesis 

MG1655 268.10123 
Deoxyguanosine 

C00330  10 
M+H 268.104 267.0968 C10H13N5

O4 0.44203 -1.1778 Purine metboalism 

  

Adenosine 

C00212 M00958 10 

M+H 268.104 267.0968 C10H13N5
O4 

  

Adenine ribonucleotide 
degradation, purine 
metabolism 

  
gamma-
Glutamylcysteine C00669  19 

M+NH4 268.0962 250.0623 C8H14N2O
5S   Glutathione biosynthesis 

MG1655 268.14788 
Ubiquinone 

C00399 
M00117 24 

M+NH4 268.1543 250.1205 C14H18O4 
126.29 6.9806 

Oxidative 
phosphorylation 

F054 270.05583 

N-Succinyl-L-
glutamate 

C05931 M00879 10 

M+Na 270.0584 247.0692 C9H13NO7 

0.15059 -2.7313 

Arginine 
succinyltransferase 
pathway 

F022 270.05789 

N-Succinyl-L-
glutamate 

C05931 M00879 2 

M+Na 270.0584 247.0692 C9H13NO7 

3.5914 1.8445 

Arginine 
succinyltransferase 
pathway 

F022 274.09410 
Deoxyadenosine 

C00559  11 
M+Na 274.0911 251.1018 C10H13N5

O3 7.7967 2.9629 Purine metabolism 

ELU39 274.09525 
Deoxyadenosine 

C00559  15 
M+Na 274.0911 251.1018 C10H13N5

O3 4.4405 2.1507 Purine metabolism 
ELU39 275.12967 Ubiquinol-1 C00390 M00117 16 M+Na 275.1254 252.1362 14H20O4 0.39219 -1.3504 Oxidative 
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phosphorylation 

  

N2-Succinyl-L-
arginine C03296 

M00879 19 

M+H 275.135 274.1277 C10H18N4
O5 

  

Arginine 
succinyltransferase 
pathway 

F022 275.12967 
Ubiquinol-1 

C00390 M00117 16 
M+Na 275.1254 252.1362 14H20O4 

3.5261 1.8181 
Oxidative 
phosphorylation 

  

N2-Succinyl-L-
arginine C03296 

M00879 19 

M+H 275.135 274.1277 C10H18N4
O5 

  

Arginine 
succinyltransferase 
pathway 

MG1655 275.12967 
Ubiquinol-1 

C00390 M00117 16 
M+Na 275.1254 252.1362 14H20O4 

0.086225 -3.5358 
Oxidative 
phosphorylation 

  

N2-Succinyl-L-
arginine C03296 

M00879 19 

M+H 275.135 274.1277 C10H18N4
O5 

  

Arginine 
succinyltransferase 
pathway 

F022 277.07352 
D-Galactosamine 6-
phosphate C06377  22 

M+NH4 
277.0795 

259.0457 C6H14NO8
P 0.25373 -1.9787 Galactose metabolism 

  

alpha-D-Glucosamine 
1-phosphate 

C06156  22 

M+NH4 

277.0795 

259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  
Glucosamine-1P 

C04501  22 
M+NH4 

277.0795 
259.0457 C6H14NO8

P    

  
Glucosamine 6-
phosphate C00352  22 

M+NH4 
277.0795 

259.0457 C6H14NO8
P    

  
Nicotinamide riboside 

C03150  24 
M+Na 

277.08 
255.0981 C11H15N2

O5    

ELU39 277.07424 
D-Galactosamine 6-
phosphate C06377  19 

M+NH4 
277.0795 

259.0457 C6H14NO8
P 0.30109 -1.7317 Galactose metabolism 

  

alpha-D-Glucosamine 
1-phosphate 

C06156  19 

M+NH4 

277.0795 

259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  

Glucosamine-1P 

C04501  19 

M+NH4 

277.0795 

259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  

Glucosamine 6-
phosphate 

C00352  19 

M+NH4 

277.0795 

259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  Nicotinamide riboside C03150  21 M+Na 277.08 255.0981 C11H15N2    



 
 

 
 
 

249 

O5 

ELU39 282.03374 
D-Galactosamine 6-
phosphate C06377  4 

M+Na 
282.0349 

259.0457 C6H14NO8
P 0.41491 -1.2691 Galactose metabolism 

  

alpha-D-Glucosamine 
1-phosphate 

C06156  4 

M+Na 

282.0349 

259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  

Glucosamine-1P 

C04501  4 

M+Na 

282.0349 

259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  

Glucosamine 6-
phosphate 

C00352  4 

M+Na 

282.0349 

259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

MG1655 282.04398 
Cytidine 

C00475 
 17 

M+K 
282.0487 

243.0855 C9H13N3O
5 7.8545 2.9735 Precursor of cytosine 

  
D-Galactosamine 6-
phosphate C06377  32 

M+Na 
282.0349 

259.0457 C6H14NO8
P   Galactose metabolism 

  

alpha-D-Glucosamine 
1-phosphate 

C06156  32 

M+Na 

282.0349 

259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  

Glucosamine-1P 

C04501  32 

M+Na 

282.0349 

259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  

Glucosamine 6-
phosphate 

C00352  32 

M+Na 

282.0349 

259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

F022 282.04537 
Cytidine 

C00475 
 12 

M+K 
282.0487 

243.0855 C9H13N3O
5 2.9404 1.556 Precursor of cytosine 

  
D-Galactosamine 6-
phosphate C06377  37 

M+Na 
282.0349 

259.0457 C6H14NO8
P   Galactose metabolism 

  

alpha-D-Glucosamine 
1-phosphate 

C06156  37 

M+Na 

282.0349 

259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  

Glucosamine-1P 

C04501  37 

M+Na 

282.0349 

259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  
Glucosamine 6-
phosphate C00352  37 

M+Na 
282.0349 

259.0457 C6H14NO8
P   

UDP-N-acetyl-D-
glucosamine 
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biosynthesis 

F054 282.0456 
Cytidine 

C00475 
 11 

M+K 
282.0487 

243.0855 C9H13N3O
5 3.5104 1.8116 Precursor of cytosine 

  
D-Galactosamine 6-
phosphate C06377  38 

M+Na 
282.0349 

259.0457 C6H14NO8
P   Galactose metabolism 

  

alpha-D-Glucosamine 
1-phosphate 

C06156  38 

M+Na 

282.0349 

259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  

Glucosamine-1P 

C04501 M00909 38 

M+Na 

282.0349 

259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

  

Glucosamine 6-
phosphate 

C00352 M00909 38 

M+Na 

282.0349 

259.0457 C6H14NO8
P 

  

UDP-N-acetyl-D-
glucosamine 
biosynthesis 

F022 283.04688 
Biotin 

C00120 M00123 
16 M+K 

283.0513 
244.0882 C10H16N2

O3S 2.6511 1.4066 Biotin biosynthesis 

MG1655 283.0478 
Biotin 

C00120 M00123 
12 M+K 

283.0513 
244.0882 C10H16N2

O3S 4.8496 2.2779 Biotin biosynthesis 

ELU39 283.04863 
Biotin 

C00120 M00123 
10 M+K 

283.0513 
244.0882 C10H16N2

O3S 2.4458 1.2903 Biotin biosynthesis 

ELU39 285.03283 
Sorbitol 6-phosphate 

C01096  6 
M+Na 285.0346 262.0454 C6H15O9P 

2.1176 1.0824 
Fructose mannose 
metabolism 

  
Galactitol 1-
phosphate C06311  6 

M+Na 285.0346 262.0454 C6H15O9P 
  Galactose metabolism 

  

2-[(2R,5Z)-2-
Carboxy-4-
methylthiazol-5(2H)-
ylidene]ethyl 
phosphate C20246 M00127 8 

M+NH4 285.0305 266.9966 C7H10NO6
PS 

  Thiamine biosynthesis 
ELU39 287.24039 Retinol C00473  12 M+H 287.2369 286.2297 C20H30O 3.0787 1.6223  

F054 290.0835 
Deoxyguanosine 

C00330  9 
M+Na 

290.086 
267.0968 C10H13N5

O4 2.3329 1.2221 Purine metboalism 

  

Adenosine 

C00212 M00958 9 

M+Na 

290.086 

267.0968 C10H13N5
O4 

  

Adenine ribonucleotide 
degradation, purine 
metabolism 

  
N-Succinyl-2-amino-
6-ketopimelate C04462 M00016 12 

M+H 290.087 289.0798 C11H15NO
8   Lysine metabolism 
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F054 291.07189 

Inosine 

C00294 C00958 7 

M+Na 291.07 268.0808 C10H12N4
O5 

3.0891 1.6272 

Adenine ribonucleotide 
degradation, AMP => 
Urate 

  
2(alpha-D-Mannosyl)-
D-glycerate C11544  11 

M+Na 291.0687 268.0794 C9H16O9 
  

Other carbohydrate 
metabolism 

MG1655 292.19351 
4-Hydroxy-3-
polyprenylbenzoate C04858 M00117 10 

M+NH4 292.1907 274.1569 C17H22O3 
0.29761 -1.7485 Ubiquinone biosynthesis 

MG1655 294.05436 
6-Phosphogluconic 
acid C00345 M00004 14 

M+NH4 294.0585 276.0246 C6H13O10
P 0.44697 -1.1617 

Pentose phosphate 
pathway 

  
7,8-Dihydroneopterin 

C04874 M00126 19 
M+K 294.0599 255.0968 C9H13N5O

4   
Tetrahydrofolate 
biosynthesis 

ELU39 296.02692 

2-C-Methyl-D-
erythritol-2,4-
cyclodiphosphate C11453 M00096 5 

M+NH4 296.0284 275.98 C5H10O9P
2 

0.46943 -1.091 

C5 isoprenoid 
biosynthesis, non-
mevalonate pathway 

MG1655 297.11148 

N2-Succinyl-L-
arginine 

C03296 M00879 18 

M+Na 297.1169 274.1277 C10H18N4
O5 

0.31368 -1.6726 

Arginine 
succinyltransferase 
pathway 

ELU39 298.09456 
5'-
Methylthioadenosine C00170  8 

M+H 298.0968 297.0896 C11H15N5
O3S 2.1401 1.0977 Methionine salvage 

  

1,6-Anhydro-N-
acetyl-beta-
muramate C19769  16 

M+Na 298.0897 275.1005 C11H17NO
7 

  
Nucleotide sugar 
biosynthesis  

F054 306.0669 
Deoxyguanosine 

C00330  10 
M+K 306.0599 267.0968 C10H13N5

O4 2.0087 1.0063 Purine metboalism 

  

Adenosine 

C00212 M00958 10 

M+K 306.0599 267.0968 C10H13N5
O4 

  

Adenine ribonucleotide 
degradation, purine 
metabolism 

  

D-Glycero-D-manno-
heptose 1-phosphate 

C07838 M00064 15 

M+NH4 306.0585 288.0246 C7H13O10
P 

  

ADP-L-glycero-D-
manno-heptose 
biosynthesis 

  

2-Dehydro-3-deoxy-
D-arabino-heptonate 
7-phosphate C04691 M00022 15 

M+NH4 306.0585 288.0246 C7H13O10
P 

  Shikimate pathway 

MG1655 308.13193 
N-Succinyl-L,L-2,6-
diaminopimelate C04421 M00016 43 

M+NH4 308.1452 290.1114 C11H18N2
O7 0.42316 -1.2407 Lysine biosynthesis 

ELU39 308.13545 
N-Succinyl-L,L-2,6-
diaminopimelate C04421 M00016 32 

M+NH4 308.1452 290.1114 C11H18N2
O7 0.46571 -1.1025 Lysine biosynthesis 
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MG1655 309.03751 

5'-
Phosphoribosylglycin
amide C03838 M00048 27 

M+Na 309.0458 286.0566 C7H15N2O
8P 

0.31888 -1.6489 
De novo purine 
biosynthesis 

  
dUMP 

C00365 M00938 35 
M+H 309.0482 308.041 C9H13N2O

8P   Pyrimidine biosynthesis 

MG1655 310.12643 
N-acetylneuraminate 

C00270  42 
M+H 310.1133 309.106 C11H19NO

9 2.3554 1.236 
Nucleotide sugar 
metabolism 

F022 310.12735 
N-acetylneuraminate 

C00270  45 
M+H 310.1133 309.106 C11H19NO

9 5.3758 2.4265 
Nucleotide sugar 
metabolism 

ELU39 310.12870 
N-acetylneuraminate 

C00270  50 
M+H 310.1133 309.106 C11H19NO

9 3.4383 1.7817 
Nucleotide sugar 
metabolism 

F054 314.08428 
Phosphoribosylformyl
glycineamidine C04640 M00048 30 

M+H 314.0748 313.0675 C8H16N3O
8P 4.8928 2.2906 

De novo purine 
biosynthesis 

ELU39 331.00252 

alpha-D-Ribose 1-
methylphosphonate 
5-phosphate C20423  21 

M+Na 330.9954 308.0062 C6H14O10
P2 

0.42935 -1.2198 Energy intermediates 

F022 332.06653 

N-Acetyl-D-
muramoate 

C02713  23 

M+K 332.0742 293.1111 C11H19NO
8 

423.59 8.7265 

Precurosr for 
peptidoglycan 
biosynthesis 

  
dAMP 

C00360  27 
M+H 332.0754 331.0682 C10H14N5

O6P   ADP derivative  

F054 332.06662 

N-Acetyl-D-
muramoate 

C02713  23 

M+K 332.0742 293.1111 C11H19NO
8 

3.4326 1.7793 

Precursor for 
peptidoglycan 
biosynthesis 

  
dAMP 

C00360  27 
M+H 332.0754 331.0682 C10H14N5

O6P   ADP derivative  

MG1655 332.06715 

N-Acetyl-D-
muramoate 

C02713  21 

M+K 332.0742 293.1111 C11H19NO
8 

841.6 9.717 

Precursor for 
peptidoglycan 
biosynthesis 

  
dAMP 

C00360  25 
M+H 332.0754 331.0682 C10H14N5

O6P   ADP derivative 

ELU39 332.06765 

N-Acetyl-D-
muramoate 

C02713  20 

M+K 332.0742 293.1111 C11H19NO
8 

628.07 9.2948 

Precursor for 
peptidoglycan 
biosynthesis 

  
dAMP 

C00360  23 
M+H 332.0754 331.0682 C10H14N5

O6P   ADP derivative  
F022 347.07336 Adenosine 2',3'-cyclic C02353  37 M+NH4 347.0863 329.0525 C10H12N5 0.49262 -1.0215 Precursor to adenosine, 
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phosphate O6P derivative of 2'3'-Cyclic 
AMP 

  
Cyclic AMP 

C00575  37 
M+NH4 347.0863 329.0525 C10H12N5

O6P   Biofilm Formation 

F054 348.06611 

N-acetylneuraminate 

C00270  9 

M+H 310.1133 309.106 C11H19NO
9 

2.0074 1.0053 

Precursor to adenosine, 
derivative of 2'3'-Cyclic 
AMP 

  AMP C00020  12 
M+H 348.0704 347.0631 C10H14N5

O7P   Purine metabolism 

  

3'-AMP 

C01367 
M00049 
M00958 12 

M+H 348.0704 347.0631 C10H14N5
O7P 

  

Adenine ribonucleotide 
biosynthesis and 
degradation 

F054 354.04809 
dAMP 

C00360  26 
M+Na 

354.0574 
331.0682 C10H14N5

O6P 5.2314 2.3872 ADP derivative 

MG1655 354.04857 
dAMP 

C00360  25 
M+Na 

354.0574 
331.0682 C10H14N5

O6P 83.557 6.3847 ADP derivative 

F022 354.05001 
dAMP 

C00360  21 
M+Na 

354.0574 
331.0682 C10H14N5

O6P 12.156 3.6036 ADP derivative 

MG1655 354.05018 
dAMP 

C00360  20 
M+Na 

354.0574 
331.0682 C10H14N5

O6P 6.601 2.7227 ADP derivative 

ELU39 354.05025 
dAMP 

C00360  20 
M+Na 

354.0574 
331.0682 C10H14N5

O6P 5.1729 2.371 ADP derivative 

F054 355.12234 

S-
(Hydroxymethyl)gluta
thione C14180  16 

M+NH4 337.0944 355.1282 C11H19N3
O7S 

4.7877 2.2593 Methane metabolism 

ELU39 355.12236 

S-
(Hydroxymethyl)gluta
thione C14180  16 

M+NH4 337.0944 355.1282 C11H19N3
O7S 

14.059 3.8135 Methane metabolism 

ELU39 359.10149 

N1-(5-Phospho-a-D-
ribosyl)-5,6-
dimethylbenzimidazol
e C04778  3 

M+H 359.1003 358.093 C14H19N2
O7P 

0.37619 -1.4105  

  
Pantetheine 4'-
phosphate C01134 M00120 6 

M+H 359.1036 358.0964 C11H23N2
O7PS   

Coenzyme A 
biosynthesis 

F022 377.10660 
Pantetheine 4'-
phosphate C01134 M00120 39 

M+Na 377.0918 358.0964 C11H23N2
O7PS 2.2189 1.1499 

Coenzyme A 
biosynthesis 

MG1655 377.14328 Riboflavin C00255 M00125 6 M+H 377.1456 376.1383 C17H20N4 0.45113 -1.1484 Riboflavin biosynthesis 



 
 

 
 
 

254 

O6 

  

S-
Adenosylmethionina
mine C01137  16 

M+Na 377.1372 355.1552 C14H23N6
O3S 

  Methionine salvage 

F054 380.11626 
S-Lactoylglutathione 

C03451  11 
M+H 380.1122 379.1049 C13H21N3

O8S 0.40164 -1.316 Pyruvate metabolism 

F022 393.08125 
Pantetheine 4'-
phosphate C01134 M00120 40 

M+K 393.0657 358.0964 C11H23N2
O7PS 2.0558 1.0397 

Coenzyme A 
biosynthesis 

F054 423.09437 
Trehalose 6-
phosphate C00689  11 

M+H 423.0898 422.0825 C12H23O14
P 0.42387 -1.2383 

Other carbohydrate 
metabolism 

  

S-
Adenosylhomocystei
ne C00021  23 

M+K 423.0847 384.1216 C14H20N6
O5S 

  Methionine degradation 

MG1655 423.09528 
Trehalose 6-
phosphate C00689  13 

M+H 423.0898 422.0825 C12H23O14
P 0.26025 -1.942 

Other carbohydrate 
metabolism 

  

S-
Adenosylhomocystei
ne C00021  25 

M+K 423.0847 384.1216 C14H20N6
O5S 

  Methionine degradation 

ELU39 423.09606 
Trehalose 6-
phosphate C00689  15 

M+H 423.0898 422.0825 C12H23O14
P 0.22658 -2.1419 

Other carbohydrate 
metabolism 

  

S-
Adenosylhomocystei
ne C00021  27 

M+K 423.0847 384.1216 C14H20N6
O5S 

  Methionine degradation 

F054 442.14369 
Folate 

C00504  7 
M+H 442.147 441.1397 C19H19N7

O6 0.33397 -1.5822 Folate metabolism 

MG1655 445.07635 
Trehalose 6-
phosphate C00689  10 

M+Na 423.0898 422.0825 C12H23O14
P 0.31285 -1.6764 

Other carbohydrate 
metabolism 

  
dGDP 

C00361 M00053 29 
M+NH4 445.0632 427.0294 C10H15N5

O10P2   
Deoxyribonucleotide 
biosynthesis 

  
ADP 

C00008 M00053 20 
M+NH4 445.0632 427.0294 C10H15N5

O10P2   
Deoxyribonucleotide 
biosynthesis 

ELU39 445.07657 
Trehalose 6-
phosphate C00689  11 

M+Na 423.0898 422.0825 C12H23O14
P 0.35723 -1.4851 

Other carbohydrate 
metabolism 

  
dGDP 

C00361 M00053 30 
M+NH4 445.0632 427.0294 C10H15N5

O10P2   
Deoxyribonucleotide 
biosynthesis 

  
ADP 

C00008 M00053 30 
M+NH4 445.0632 427.0294 C10H15N5

O10P2   
Deoxyribonucleotide 
biosynthesis 
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MG1655 483.99196 CTP C00063 M00052 0 

M+H 483.9918 482.9845 C9H16N3O
14P3 

3.2484 1.6997 

Pyrimidine  
ribonucleotide 
biosynthesis 
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S5 – Mass Spectrometry Parameters 
 

Parameters for C:\MassLynx\Heather.PRO\ACQUDB\esi_pos_sens_3min_600.EXP 

Created by 4.2 SCN983 

  

Lock Spray Configuration: 

Tuning on     Analyte 

  

Temperature Correction: 

Temperature Correction    Disabled 

  

Instrument Configuration: 

Lteff      1800.0 

Veff      7199.60 

Resolution     10000 

Min Points in Peak    2 

Acquisition Device    WatersADC 

Acquisition Algorithm    ADC Mode 

ADC Trigger Threshold (V)   1.00 

ADC Input Offset (V)    -1.50 

Average Single Ion Intensity   19 

ADC Amplitude Threshold    3 

ADC Centroid Threshold    -1 

ADC Ion Area Threshold    3 

ADC Ion Area Offset    10 

ADC Pushes Per IMS Increment   1 

EDC Delay Coefficient    1.4100 

EDC Delay Offset    0.4000 

  

Experimental Instrument Parameters 

Instrument Parameter Filename  

 C:\MassLynx\Heather.PRO\ACQUDB\esi060423.IPR (MODIFIED) 

Polarity     ES+ 
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Capillary (kV)     2.4300 

Source Temperature (°C)    100 

Sampling Cone     9.0000 

Source Offset     28.0000 

Source Gas Flow (mL/min)   0.00 

Desolvation Temperature (°C)   280 

Cone Gas Flow (L/Hr)    0.0 

Desolvation Gas Flow (L/Hr)   731.0 

Nebuliser Gas Flow (Bar)   7.0 

LM Resolution     4.4 

HM Resolution     15.0 

Aperture 1     0.0 

Pre-filter     2.0 

Ion Energy     0.2 

Manual Trap Collision Energy   FALSE 

Trap Collision Energy    4.0 

Manual Transfer Collision Energy  FALSE 

Transfer Collision Energy   2.0 

Manual Gas Control    FALSE 

Trap Gas Flow (mL/min)    2.00 

HeliumCellGasFlow    180.00 

IMS Gas Flow (mL/min)    90.00 

Detector     3300 

DetectorCache     0 

Sample Infusion Flow Rate (µL/min)  5 

Sample Flow State    LC 

Sample Fill Volume (µL)    250 

Sample Reservoir    Wash 

LockSpray Infusion Flow Rate (µL/min)  10 

LockSpray Flow State    Infusion 

LockSpray Reservoir    B 

LockSpray Capillary (kV)   3.0 

Use Manual LockSpray Collision Energy  FALSE 
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Collision Energy    4.0 

Acceleration1     70.0 

Acceleration2     200.0 

Aperture2     40.0 

Transport1     70.0 

Transport2     70.0 

Steering     -0.20 

Tube Lens     45 

Pusher      1900.0 

Pusher Offset     -0.28 

Puller      1370.0 

Pusher Cycle Time (µs)    Automatic 

Pusher Width (µs)    Automatic 

Collector     60 

Collector Pulse     10.0 

Stopper      10 

Stopper Pulse     20.0 

Entrance     62 

Static Offset     180 

Puller Offset     0.00 

Reflectron Grid (kV)    1.471 

Flight Tube (kV)    10.00 

Reflectron (kV)     3.780 

Use Manual Trap DC    FALSE 

Trap DC Entrance    1.0 

Trap DC Bias     2.0 

Trap DC      -2.0 

Trap DC Exit     0.0 

Use Manual IMS DC    FALSE 

IMS DC Entrance     -20.0 

Helium Cell DC     1.0 

Helium Exit     -20.0 

IMSBias      2.0 
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IMS DC Exit     20.0 

USe Manual Transfer DC    FALSE 

Transfer DC Entrance    5.0 

Transfer DC Exit    15.0 

Trap Manual Control    OFF 

Trap Wave Velocity (m/s)   300 

Trap Wave Height (V)    0.5 

IMS Manual Control    OFF 

IMS Wave Velocity (m/s)    300 

IMS Wave Height (V)    0.0 

Transfer Manual Control    OFF 

Transfer Wave Velocity (m/s)   247 

Transfer Wave Height (V)   0.2 

Step Wave 1 In Manual Control   OFF 

Enable Reverse Operation   OFF 

Step Wave 1 In Velocity (m/s)   300.0 

Step Wave 1 In Height    15.0 

Step Wave 1 Out Manual Control   OFF 

Step Wave 1 Out Velocity (m/s)   300.0 

Step Wave 1 Out Height    15.0 

Step Wave 2 Manual Control   OFF 

Step Wave 2 Velocity (m/s)   300.0 

Step Wave 2 Height    1.0 

Use Manual Step Wave DC    OFF 

Step Wave TransferOffset   25.0 

Step Wave DiffAperture1    3.0 

Step Wave DiffAperture2    -0.0 

Use Automatic RF Settings   TRUE 

StepWave1RFOffset    300.0 

StepWave2RFOffset    350.0 

Target Enhancement Enabled   FALSE 

Target Enhancement Mode    EDC 

Target Enhancement Mass    785.0 
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Target Enhancement Trap Height (V)  4.0 

Target Enhancement Extract Height (V)  15.0 

Mobility Trapping Manual Release Enabled FALSE 

Mobility Trapping Release Time (µs)  500 

Mobility Trap Height (V)   15.0 

Mobility Extract Height (V)   0.0 

Trag Gate LUT table enabled   FALSE 

TriWave Trap Gate LookUp Table   

Using Drift Time Trimming   FALSE 

Drift Time Bins     0 

Using Mobility Delay after Trap Release  TRUE 

IMS Wave Delay (µs)    1000 

Variable Wave Height Enabled   FALSE 

Wave Height Ramp Type    Linear 

Wave Height Start (V)    10.0 

Wave Height End (V)    40.0 

Wave Height Using Full IMS   TRUE 

Wave Height Ramp (%)    100.0 

Wave Height Look Up Table    

Variable Wave Velocity Enabled   FALSE 

Wave Velocity Ramp Type    Linear 

Wave Velocity Start (m/s)   1000.0 

Wave Velocity End (m/s)    300.0 

Wave Velocity Using Full IMS   TRUE 

Wave Velocity Ramp (%)    100.0 

Wave Velocity Look Up Table    

Backing      2.75e0 

Source      6.85e-3 

Sample Plate     1.24e3 

Trap      8.83e-3 

Helium Cell     1.00e-4 

IMS      9.90e-5 

Transfer     7.85e-3 
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TOF      4.52e-7 

IMSRFOffset     300 

IMSMobilityRFOffset    250 

TrapRFOffset     300 

Use Automatic RF Settings   TRUE 

AutoStepWave1RFOffset    300 

AutoStepWave2RFOffset    300 

TransferRFOffset    350 

MS Profile Type     Auto P 

MSProfileMass1     100 

MSProfileDwellTime1    20 

MSProfileRampTime1    20 

MSProfileMass2     300 

MSProfileDwellTime2    20 

MSProfileRampTime2    40 

MSProfileMass3     500 

PusherInterval     39.000000 

PusherOffset     0.250000 

LockMassValidSigma    5 

  

Acquisition mass range 

Start mass     50.000 

End mass     600.000 

Calibration mass range 

Start mass     0.000 

End mass     0.000 

  

Experiment Reference Compound Name: N/A 

  

Function Parameters - Function 1 - TOF MS FUNCTION 

Scan Time (sec)     1.000 

Interscan Time (sec)    0.014 

Start Mass     50.0 
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End Mass     600.0 

Start Time (mins)    0.00 

End Time (mins)     3.00 

Data Format     Continuum 

Analyser     Sensitivity Mode 

ADC Sample Frequency (GHz)   3.0 

ADC Pusher Frequency (µs)   39.0 

ADC Pusher Width (µs)    1.00 

Use Tune Page Cone Voltage   YES 

Using Auto Trap Collision Energy (eV)  4.000000 

Using Auto Transfer Collision Energy (eV) 2.000000 

Sensitivity     Normal 

Dynamic Range     Normal 

Save Collapsed Retention Time Data  No 

Use Rule File Filtering    No 

FragmentationMode    CID 

Calibration     Dynamic 2 

 
 
 
 
 
 


