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Abstract

Antibiotic resistant infections are predicted to claim 10 million lives annually by 2050.
Multi-drug resistant bacterial strains cause untreatable infections or necessitate last-
line antibiotics. Conjugative plasmids carry resistance genes and facilitate the
evolution of multidrug resistance by horizontal transfer of genetic material. Plasmids
have complex interactions with their bacterial hosts that are not fully understood.
Chapter 2 describes an analysis pipeline for untargeted metabolomics that was
developed and published to make this complex methodology more accessible, then
used throughout the thesis.

This thesis explores the metabolic relationship between the multi-drug resistant
plasmid pLL35 in diverse Escherichia coli strains across key stages: plasmid
acquisition, subsequent coevolution and exposure to antibiotics.

Chapter 3: Upon acquisition of the plasmid, metabolomics reveals strain specific
alterations in functions such as ubiquinone biosynthesis, central energy production and
amino acid biosynthesis.

Chapter 4: 3 strains that had been experimentally evolved in previous work were
compared to their ancestors and displayed metabolic alterations associated with
adaptation to lab conditions; amino acid biosynthesis, glycolysis and pyrimidine
biosynthesis. The strains had specific metabolic alterations according to evolutionary
treatment (plasmid carrying with and without cefotaxime selection) with a singular
exception: the global regulator cyclic AMP, which was consistently upregulated in
plasmid carriers in response to antibiotic selection. Functions affected by coevolution
and selection included amino acid biosynthesis, central energy production and stress
responses.

Chapter 5: 4 plasmid carrying strains are exposed to kanamycin, cefotaxime and
ciprofloxacin. Common stress and resistance responses are observed, but responses
at a pathway and metabolite level are strain specific in extent and direction of change.
Pathways affected include amino acid and nucleotide metabolism, energy production,
biosynthesis of cell wall and biofilm components and redox stress management,
providing insights into bacterial stress responses and resistance mechanisms beyond
plasmid-encoded genes. Thus, Escherichia coli adapt to plasmid carriage and

antibiotic exposure by subtle alterations of its metabolism on a network wide scale.
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Chapter 1 : Main Introduction

1.1 Introduction

WHO has declared antimicrobial resistance a top 10 global health threat. The
worldwide spread of resistance genes is central to this crisis, and hospitals are facing
an increasing number of untreatable infections (Antimicrobial Resistance, 2021).
Resistance increases mortality rates and hospitalisation duration of initial admission
infections and iatrogenic infections, and also increases risk factors for routine medical
procedures like surgery and treatment of immuno-compromised patients such as those

undergoing cancer treatment (Mathers, Peirano and Pitout, 2015).

One of the primary mechanisms for the dissemination of resistance genes is horizontal
gene transfer (HGT) facilitated by conjugative plasmids, semi autonomous mobile
genetic elements (MGEs) (Carattoli et al., 2013). Plasmids are circular pieces of DNA
that are formed by a functionally necessary backbone which carries genes for their
replication, maintenance and conjugation machinery, enabling DNA transfer through a
pilus that can circumvent species barriers (Hall, Brockhurst and Harrison, 2017). In
addition to this, plasmids encode accessory genes which often confer a fitness benefit
to bacteria by aiding survival of environmental stressors (Norman, Hansen and
Sgrensen, 2009; Smillie et al., 2010).

Plasmids are a mechanism for rapid adaptation because they can mobilise genes and
thus transfer new functions horizontally (Hall, Brockhurst and Harrison, 2017). This
facilitates evolution because the new functions can then be maintained and transferred
vertically, or incorporated into bacterial chromosomal DNA (Harrison and Brockhurst,
2012; Rodriguez-Beltran et al., 2021). Horizontal transfer of resistance genes is an
effective consequence to the selection pressure exerted by antibiotics (Hall, Brockhurst
and Harrison, 2017). The success of plasmids harbouring resistance genes means that
the antibiotic resistance crisis is a moving target that is incredibly difficult to contain or
treat (San Millan, 2018).

Successful plasmid transfer depends on a balance of costs and benéefits to the bacteria
upon acquisition. Plasmids can be advantageous in the right environmental contexts,

for example resistance genes in the presence of antibiotics, or heavy metals (Norman,
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Hansen and Sgrensen, 2009). However, plasmids are also frequently associated with
fithess costs. Costs can include translational load of additional genetic material,
induction of SOS responses, energy usage for pilus constructions and subsequent
exposure to phage, creation of cytotoxic gene products and manipulation of regulatory
networks (Hall, Brockhurst and Harrison, 2017; San Millan and MacLean, 2017; Dunn
et al., 2021; Billane et al., 2022). In some cases costs may be severe enough to impair
plasmid persistence in the absence of selection, as with pNUK73 in P, aeruginosa (San
Millan et al., 2014). Even when plasmids are costly, the source of these costs are not
clear, as demonstrated by a study challenging the prevailing hypothesis that plasmids
impose a burden on their hosts through the demand on bacterial translation machinery.
When ribosomes were hindered in E.coli K-12 MG1655 containing one of a series of
diverse, clinically relevant plasmids, costs did not increase (Rodriguez-Beltran et al.,
2022).

The severity of plasmid impact on a given bacterial host is dependent on compatibility
and hosts may have their fitness affected differently even by genetically similar
plasmids (Enne et al., 2004; De Gelder et al., 2007; Humphrey et al., 2012). A summary
of fithess changes associated with plasmid carriage cited a range of change in fithess
negatively from 1.1% to 27% and positively up to 5% (Carroll and Wong, 2018).
Comparing the impacts of an ecologically compatible plasmid pOXA-48 K8 to 25
isolates of E.coli and 25 of K.pneumoniae demonstrated a small overall phenotypic
trend of decreased growth. However when competition assays were conducted for
each isolate against plasmid free counterparts there was a spectrum of relative fitness
effects from the plasmid ranging from detrimental to beneficial, for both E. coli and K.
pneumoniae, demonstrating the variability and specificity of plasmid-bacterial

relationships (Alonso-del Valle et al., 2021).

Plasmid carriage is a series of cost and benefits trade-offs between accessory gene
advantage, fithess impact and environmental context. Evolutionary theory therefore
suggests that plasmids ought not to be as prevalent as they are because their loss
from bacterial populations should be selected for. In the absence of positive selection
the plasmid would be expected to be lost due to purifying selection, and even in
environmental contexts where accessory genes confer advantages, the movement of
plasmid genes into the bacterial chromosome and subsequent lysis or ejection of the

plasmid would be selected for (Carroll and Wong, 2018). However, plasmids are stable
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for long periods of time without positive selection (Santos-Lopez et al., 2017; Dunn et
al., 2021) and are able to transfer within and between bacterial species despite fithess
costs (Benz et al., 2021; Sezmis et al., 2023).

This discord between theory and observation has been termed the ‘plasmid paradox’,
for which answers have been found by looking at the relationship between plasmids
and their bacterial hosts through the lens of evolution, and by acknowledging that
plasmids play an active role in these relationships (San Millan et al., 2014; MacLean
and San Millan, 2015; Santos-Lopez et al., 2017; Brockhurst and Harrison, 2022;
Sezmis et al., 2023).

Plasmid maintenance in bacterial populations can be explained by ecological and
evolutionary mechanisms (Brockhurst and Harrison, 2022). This includes the
horizontal transfer of conjugative plasmids which keeps replication and dissemination
high enough for maintenance, a process sometimes co-opted by other mobile genetic
elements (Pena-Miller et al., 2015; Lopatkin et al., 2017; Che et al., 2021). This is aided
by plasmid induced permissiveness of a bacterial host to the carriage of further
plasmids (Dionisio, Zilhdo and Gama, 2019). The variability of plasmid impact allows
for their maintenance in a community and bacterial populations that can stably carry a
plasmid sometimes become a reservoir population from which plasmids can
continually transfer out of (Hall et al., 2016; Dunn et al., 2021). An evolutionary
mechanism for plasmid maintenance is genetic amelioration of costs where the
bacteria, plasmid or both mutate to resolve genetic conflicts (Harrison et al., 2015; Hall
et al., 2021; Carrilero, Dunn and Moran, 2023).

There is increasing evidence that plasmids also have an impact on the transcriptome
and affect bacterial phenotype more extensively than the provision of accessory gene

function.

This is explored in the following review.
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Conjugative plasmids play an important role in bacterial evolution by trans-
ferring niche-adaptive traits between lineages, thus driving adaptation and
genome diversification. It is increasingly clear, however, that in addition to
this evolutionary role, plasmids also manipulate the expression of a broad
range of bacterial phenotypes. In this review, we argue that the effects that
plasmids have on the expression of bacterial phenotypes may often represent
plasmid adaptations, rather than mere deleterious side effects. We begin by
summarizing findings from untargeted omics analyses, which give a picture
of the global effects of plasmid acquisition on host cells. Thereafter, because
many plasmids are capable of both vertical and horizontal transmission, we
distinguish plasmid-mediated phenotypic effects into two main classes
based upon their potential fitness benefit to plasmids: (i) those that promote
the competitiveness of the host cell in a given niche and thereby increase
plasmid vertical transmission, and (ii) those that promote plasmid conju-
gation and thereby increase plasmid horizontal transmission. Far from
being mere vehicles for gene exchange, we propose that plasmids often act
as sophisticated genetic parasites capable of manipulating their bacterial
hosts for their own benefit.

This article is part of the theme issue ‘The secret lives of microbial mobile
genetic elements’.

1. Introduction

Plasmids are semi-autonomous, self-replicating, non-chromosomal DNA
elements that are commonly present in bacterial genomes [1]. Many bacterial
genomes contain multiple plasmid replicons [2,3], and plasmids have been dis-
covered in the genomes of diverse bacterial taxa from a wide variety of ecological
niches, including environmental and clinical settings [4,5]. Plasmid genes can be
divided into those encoding either backbone or accessory functions [1,6]. The
backbone genes encode plasmid functions, including replication and mainten-
ance, whereas the accessory genes encode non-plasmid functions of potential
utility to the bacterial host cell [1,7].

Some plasmids enable the transfer of accessory genes between bacterial
strains and species, even between phylogenetically distant lineages [8]. Hori-
zontal gene transfer (HGT) is thus a major driving force in the evolution of
bacteria and has contributed significantly to the genomic and ecological diver-
sification of bacterial taxa [9-12]. Plasmid accessory genes encode a wide range
of ecological functions, including resistance to toxins, metabolic and catabolic
capabilities, and production of virulence factors and anticompetitor toxins
[13,14]. Plasmids thus enable their bacterial hosts to adapt to environmental
stresses, such as antibiotics and toxic metals, or to colonize new niches, for
example, through the exploitation of novel substrates or new hosts [8,15,16].
The huge number and diversity of accessory genes creates a vast pool of genetic

© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited. D)
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variation, enabling bacteria to undergo rapid evolutionary
innovation [8,17]. Given this important role in HGT, it is
understandable, therefore, that most studies of the ecological
and evolutionary impact of plasmids have focused on these
accessory functions.

It is becoming increasingly clear, however, that besides the
accessory gene functions they encode, plasmid acquisition
alters the expression of a wide range of bacterial phenotypes
[11,16,18]. These effects of plasmid carriage have typically
been studied as the underlying causes of fitness costs because,
at least in the laboratory, plasmid acquisition is frequently
associated with reduced growth of plasmid-bearers compared
with plasmid-free cells [11]. Costly side effects of plasmid car-
riage are thought to include: induction of SOS responses,
cytotoxic gene products, disruption of cellular homeostasis,
and the energetic burden of replicating, transcribing and trans-
lating new genetic material [11,19].

Nonetheless, plasmids have also been shown to cause
differential expression of chromosomal genes, altering the
expression of a wide variety of bacterial traits in ways that do
not always appear straightforwardly maladaptive. Indeed,
there is growing evidence to suggest that, in some cases,
these plasmid-mediated alterations to the bacterial phenotype
may have niche-adaptive fitness consequences that may well
be missed in highly simplified laboratory environments [18].
Plasmid manipulation of bacterial gene regulation could,
therefore, play an important role in the relationship between
plasmids and their bacterial hosts and, moreover, could
mediate the fitness effects of plasmid acquisition.

In this review, we argue that the effects that plasmids have
on the expression of bacterial phenotypes may often represent
plasmid adaptations, rather than mere deleterious side effects.
As self-replicating biological entities, plasmids are capable of
evolving adaptations to increase their own fitness. A plasmid’s
fitness can be defined as the sum of its vertical and horizontal
replication (i.e. at bacterial cell division and plasmid conju-
gation events, respectively). As such, the fitness interests of
plasmids need not necessarily always be aligned to those of
the bacterial host cell. We begin by summarizing findings
from untargeted omics analyses, which give a picture of the
global effects of plasmid acquisition on host cells. Thereafter,
because many plasmids are capable of both vertical and
horizontal transmission, we distinguish plasmid-mediated
phenotypic effects into two main classes of potential fitness
benefit: (i) those that promote the competitiveness of the host
cell in a given niche and thereby increase plasmid replication
through vertical transmission, and (ii) those that promote
plasmid conjugation and thereby increase plasmid replication
through horizontal transmission.

2. What is the ‘omic’ footprint of plasmid
acquisition upon the host cell?

Omics methods can provide an untargeted global view of
the impact of plasmid acquisition on the bacterial cell.
Transcriptomics, proteomics and metabolomics have each
been used to compare plasmid-carrying cells with plasmid-
free cells. These studies reveal extensive variation between
plasmid-host pairings, in terms of both the degree of altera-
tion caused by the plasmid and the range of cellular functions
that are affected (table 1). Whereas some plasmids affect the
expression or translation of several hundreds of genes and

many diverse functions, other plasmids have much more lim-
ited effects upon their host cell [15,20,21].

In transcriptomic studies, the percentage of differentially
expressed chromosomal genes ranges from 0.59 to 20%
across diverse plasmid-host interactions [15,20]. This typi-
cally includes both up- and downregulation, and where
very large numbers of chromosomal genes are affected,
is often linked to the plasmid altering the expression of
chromosomal regulators. For example, Coulson et al. [15]
demonstrated that two plasmid-encoded transcriptional
regulators affected expression of 18% of the bacterial
genome by altering expression of 31 chromosomal regulatory
genes, including transcriptional regulators, sigma factors and
an anti-termination regulator [15]. Similarly, Shintani et al.
[22] showed that the acquisition of pCART1 affected host tran-
scriptional regulators. In a related study, pCAR1 affected the
expression of 463 (8.08%) conserved open reading frames
(ORFs) in Pseudomonas putida KT2440, several of which are
involved in translation, transcription and DNA replication
cellular processes [21]. Plasmid acquisition can also lead to
very large fold-changes in the expression of specific chromo-
somal genes. For example, in P. putida KT2440, acquisition of
the plasmid pCAR1 led to 100-200-fold upregulation of the
chromosomal gene encoding the efflux system MexEF-
OprN (161.8-fold change for MexE, 186.5-fold change for
MexF and 113.0-fold change for OprN) [21,22] resulting in a
70-fold increase in the concentration of the MexF protein in
the cell (PP_3426) [23].

Chromosomal genes differentially expressed upon plas-
mid acquisition are involved in a wide variety of bacterial
cellular functions. These most commonly include metab-
olism, respiration, secretion systems, signalling, translation
and transcription, motility, the tricarboxylic acid (TCA)
cycle and iron acquisition (table 1). While these differen-
tially expressed functions may be common across diverse
bacterium—plasmid pairings, the specific genes affected tend
to differ. Metabolic pathways altered by plasmid acquisition
include amino acid and nucleotide metabolism, and metab-
olism of energy sources, carbohydrates, nitrogen and lipids
[20-24,26]. The direction of the effect of plasmid acquisition
upon the expression of secretion systems tends to vary by
secretion system, such that Type-IIl (T3SS) and Type-IV
(T4SS) secretion systems are usually upregulated, whereas
Type-VI (T6SS) secretion systems are usually downregulated
in plasmid carriers, though not exclusively [20,23-26]. All of
these secretion systems can have a variety of functions, but
generally T3SS and T4SS contribute to bacterial virulence,
with an added functional role in conjugation for T4SS [27].
By contrast, T6SS secretion is involved in bacterium-bacter-
ium communication and interaction, including toxin-
mediated killing of competitors [27]. Downregulation of
genes required for the flagellar complex may account for
observed reduction in motility for plasmid-bearers in some
cases [21,23]. Other notable bacterial functions affected by
plasmid acquisition include surface polysaccharides (e.g.
PNAG) and adhesion-related functions involved in biofilm
formation, which, for example, in the case of Acinetobacter
baumannii and Salmonella enterica, were downregulated in
plasmid-bearers [24,25].

Comparative studies where the same plasmid is intro-
duced into diverse bacterial strains or species reveal that a
given plasmid can have very different transcriptional effects
in different host backgrounds. For example, the A/C2
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Table 1. Bacterial cellular functions differently expressed following plasmid acquisition, compiled from untargeted proteomic, transcriptomics and metabolomics n

studies.

function

metabolism

amino acid
metabolism

nucleotide
metabolism

energy
metabolism

carbohydrate
metabolism

nitrogen
metabolism
lipid metabolism

respiration

secretion systems

Type-lll

Type-VI

signalling

translation and
transcription

bacteria

Escherichia coli DH10B, Escherichia coli AR060302, Salmonella
enterica SL317, Salmonella enterica SL486, Salmonella enterica
MH16125, Shewanella oneidensis MR-1

Pseudomonas aeruginosa

Pseudomonas putida KT2440

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAOT,
Pseudomonas fluorescens Pf0-1

Pseudomonas putida KT2440

Pseudomonas aeruginosa PAO1, Pseudomonas fluorescens Pf0-1

Pseudomonas aeruginosa

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1,
Pseudomonas fluorescens Pf0-1

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAQ1,
Pseudomonas fluorescens Pf0-1

Escherichia coli DH10B, Salmonella enterica SL317,

Pseudomonas aeruginosa

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAQT,
Pseudomonas putida KT2440
Pseudomonas aeruginosa

Pseudomonas aeruginosa

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1,
Pseudomonas fluorescens Pf0-1

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAQ1,
Pseudomonas fluorescens Pf0-1

Salmonella enterica MH16125, Shewanella oneidensis MR-1

Pseudomonas aeruginosa

Pseudomonas aeruginosa

Salmonella enterica SL317, Salmonella enterica SL486, Salmonella
enterica MH16125
Pseudomonas aeruginosa

Acinetobacter baumannii

Pseudomonas putida KT2440

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1,
Pseudomonas fluorescens Pf0-1

Pseudomonas aeruginosa

Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1,
Pseudomonas fluorescens Pf0-1

plasmid

A2

pBS228, Rms149, pAKD1,
pAMBL1, pAMBL2, pNUK73

pCAR1

pCAR1

pCAR1

pCAR1

pBS228, Rms149, pAKD1,
pAMBL1, pAMBL2, pNUK73

pCAR1

pCART

A/IQ2

pBS228, Rms149, pAKD1,
pAMBL1, pAMBL2, pNUK73

pCAR1

pCAR1

pBS228, Rms149, pAKD1,
pAMBL1, pAMBL2, pNUK73

pBS228, Rms149, pAKD1,
pAMBL1, pAMBL2, pNUK73

pCAR1

pCART

AQ

pBS228, Rms149, pAKD1,
pAMBL1, pAMBL2, pNUK73

pBS228, Rms149, pAKD1,
pAMBL1, pAMBL2, pNUK73

A/Q2

pBS228, Rms149, pAKD1,
pAMBL1, pAMBL2, pNUK73

pABS

pCAR1

pCAR1

pBS228, Rms149, pAKD1,
pAMBL1, pAMBL2, pNUK73
pCAR1

reference

[24]

[20]

(23]
[22]

23]
[22]
[20]
[22]

[21]

[24]
[20]

[22]

(23]

[20]

[20]

[22]

[21]

[24]
[20]

(201

[24]

(20]

[25]

[23]

[22]

[20]

[22]

(Continued.)
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Table 1. (Continued.)

function bacteria plasmid reference
motility Pseudomonas putida KT2440 pCAR1 [23]
Pseudomonas putida KT2440, Pseudomonas fluorescens Pf0-1 pCAR1 [22]
Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1, pCAR1 [21]
Pseudomonas fluorescens Pf0-1
Salmonella enterica SL317, Salmonella enterica SL486, Salmonella A2 [24]
enterica MH16125
biofilm formation Acinetobacter baumannii pABS [25]
and adherence Salmonella enterica SL317, Salmonella enterica SL486, Salmonella A2 [24]
enterica MH16125
TCA cycle Pseudomonas putida KT2440 pCAR1 [23]
Pseudomonas putida KT2440, Pseudomonas aeruginosa PAOT, pCAR1 [21]
Pseudomonas fluorescens Pf0-1
Escherichia coli DH10B, Shewanella oneidensis MR-1 AlQ [24]
iron acquisition Acinetobacter baumannii pABS [25]
Pseudomonas putida KT2440 pCAR1 [23]
Pseudomonas putida KT2440, Pseudomonas aeruginosa PAO1, pCAR1 [22]
Pseudomonas fluorescens Pf0-1
Salmonella enterica SL486, Salmonella enterica MH16125, Shewanella A/ [24]
oneidensis MR-1
transporters Acinetobacter baumannii pABS [25]
Pseudomonas aeruginosa pBS228, Rms149, pAKD1, [20]
pAMBL1, pAMBL2, pNUK73
Pseudomonas putida KT2440 pCAR1 [23]
Pseudomonas putida KT2440, Pseudomonas aeruginosa PAQT, pCAR1 [22]
Pseudomonas fluorescens Pf0-1
Salmonella enterica MH16125 A/ [24]

plasmid causes downregulation of pathogenicity islands
in Salmonella hosts, but primarily affects metabolism in Escher-
ichia coli strains and Shewanella oneidensis. Metabolic functions
affected in E. coli included: upregulation of 2-carbon and fatty
acid metabolism, glycolate metabolism and glycoxylate cycle,
amino acid degradation and downregulation of amino acid
biosynthesis [24]. Very few functions were affected consist-
ently by A/C2 acquisition across all bacterial hosts.
Upregulation of genes involved in oxidation/reduction reac-
tions, cellular metabolism and metal cofactor binding
occurred in all hosts, while only two genes were universally
downregulated, gacEA1 for a quaternary ammonium com-
pound-resistance protein and sull a sulfonamide-resistance
dihydropteroate synthase [24]. A comparative study of the
PCAR1 plasmid in three different Pseudomonas host species
(P. putida KT2440, Pseudomonas aeruginosa PAO1 and Pseudo-
monas fluorescens Pf0-1) showed large differences in the
extent of differential expression across species: 15.3% of
KT2440 genes, 2.7% of PAO1 genes and 0.7% of Pf0-1 chromo-
somal genes [21]. Only four genes were affected by plasmid
acquisition in all three host species, including one involved
in iron acquisition, and two possibly involved in acetate
metabolism that were in the same operon [21,22]. Interestingly,
the effect of pCART1 carriage on transcription was most similar

between KT2440 and PAOI, despite KT2440 being more
closely related to Pf0-1 phylogenetically, suggesting that tran-
scriptional effects do not scale straightforwardly with genetic
similarity of the host in this case.

Alternatively, changes in gene regulation have been quan-
tified for a given bacterial host carrying different plasmids: in
P. aeruginosa PAO1, a variety of plasmids altered regulation of
a few common functional groups, most prominently metab-
olism (of amino acid, energy production and nitrogen) and
secretion systems (Type-III and Type-VI) [20]. Furthermore,
38 chromosomal genes were consistently differentially tran-
scribed in plasmid-bearers carrying different plasmids [20].
The rest of the transcriptional profile varied, indicating that
despite these similarities, each plasmid also affected the
expression of distinct sets of host functions.

Metabolic analysis has shown that plasmid acquisition
can alter metabolic pathways such as glycolysis, the TCA
cycle and the pentose phosphate pathway in E. coli, corre-
sponding to transcriptomic data from other studies [27].
Untargeted metabolic analysis using mass spectrometry
showed the abundances of a large number of compounds
were affected in the same way by diverse plasmids in
P. aeruginosa PAO1. Out of the 5000 compounds that were
detected, the levels of 462 compounds were altered by
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plasmid acquisition across the sample set, of which the abun-
dance of 11 compounds was significantly different in plasmid
carriers for four of the six plasmids, which is much higher
than would be expected by chance [20]. Of particular note
were altered nucleotide abundances, particularly down-
regulated RNA nucleotides and upregulated (or unaltered)
deoxynucleotides [20]. However, relatively few compounds
could be identified (1.94%), so while metabolic analysis
using mass spectrometry appears promising, more studies
that cover a greater diversity of bacterial species and
plasmids will be needed to identify robust patterns.

The existing omics studies discussed here have some
limitations. First, it is rarely confirmed that the plasmid-
carrying transconjugants have not acquired other chromosomal
mutations that may alter chromosomal transcription indepen-
dently of the plasmid. This could be determined by curing
the plasmid and confirming that transcription returns to
wild-type levels, or by genome sequencing the transconjugant
to confirm no additional mutations are present [28]. More
studies with these additional controls would be valuable. The
studies discussed here also almost exclusively focus on gamma-
proteobacterial hosts, and it would be useful for future studies
to investigate the impact of plasmids in a broader taxonomic
range of bacterial hosts outside of this well-studied clade.

The diversity of plasmids is such that it may be difficult or
impossible to predict a priori how plasmid-encoded genes
interact with bacterial regulatory networks [11,29]. We might
expect that adaptive plasmid manipulation would cause rela-
tively consistent transcriptional effects across multiple host
genotypes encountered in the plasmid’s recent evolutionary
history. By contrast, among the few existing comparative
studies, it would appear that each bacterium and plasmid
pairing has a different, unique differential expression profile.
However, such studies typically use a few bacterial strains iso-
lated from different locations and habitats; meanwhile, the
natural host of the plasmid is often unknown. Future studies
are required, therefore, that compare the transcriptional effects
of plasmids upon hosts that they coexisted with in nature
within ecologically coherent communities, and thus are
likely to represent the recent selective environment for the
plasmid. In the studies highlighted above, although the
specific genes affected may vary, groups of cellular functions
commonly affected by plasmid carriage do begin to emerge,
for example, bacterial metabolism appears to be the most fre-
quently affected of these functions. While this could represent
adaptive manipulation by the plasmid, an alternative hypoth-
esis is that this could instead be a generic response of bacteria
to the acquisition of plasmids, and future studies should
attempt to distinguish between these competing hypotheses.
In future, it will also be valuable to study how the expression
of bacterial functions is affected by plasmid acquisition within
the context of relevant environmental niches to better under-
stand how plasmids shape the host bacterial phenotype and
fitness in nature.

3. Linking altered expression of bacterial
functions to plasmid fitness

Understanding the evolutionary impact of plasmid manipu-
lation of the expression of bacterial phenotypes requires an
understanding of how these different bacterial phenotypes
are linked to plasmid fitness. Plasmid fitness has two main

components, first, replication by vertical transmission to
daughter cells, and second, replication by horizontal trans-
mission through cell-to-cell conjugation. In the following
sections, we suggest ways in which plasmid manipulation
of the expression of chromosomally encoded bacterial traits
could potentially affect these plasmid fitness components.

(a) Bacterial phenotypes likely to affect plasmid vertical

transmission

Increased vertical plasmid transmission can result from
enhanced survival and/or growth of the host bacterium in a
given niche. We make the distinction between plasmid fitness
benefits deriving from the accessory genes encoded by the
plasmid and those caused by differential expression of chromo-
somally encoded bacterial genes, and focus here only on the
latter. To illustrate this idea, we highlight bacterial phenotypes
where plasmid-induced changes in expression of chromosomal
genes could cause niche-adaptive alterations benefiting both
the bacterium and the plasmid. We suggest that this evolution-
ary strategy could be evident in plasmid manipulation of
bacterial traits, including virulence, resistance to antimicrobials
and metabolism, that allow bacterial cells to survive stressors
or colonize new niches (figure 1).

(i) Increased resistance to antimicrobials

Although many plasmids encode antibiotic resistance genes, in
a number of cases, plasmid acquisition has been shown to alter
the expression of chromosomally encoded resistance determi-
nants. For example, acquisition of the pCAR1 plasmid causes
massive upregulation of the MexEF-Op1N efflux system in a
number of Pseudomonas host species [20]. The MexEF-OprN
efflux system provides resistance to a range of antibiotics,
including some quinolones, sulfonamides and chloram-
phenicols [21-23]. Carriage of pCARI1 is, therefore, likely to
increase bacterial resistance to antibiotics without itself encod-
ing antibiotic resistance genes, thus potentially enhancing the
survival of plasmid-carrying bacterial cells (and thus the
plasmid itself) in antibiotic-containing environments.

(i) Alternative energy sources

The most common differentially regulated bacterial function
affected by plasmid acquisition is metabolism. Often, multiple
aspects of metabolism are altered (e.g. carbohydrate, energy,
amino acid), with the direction of regulation often varying
among bacterium—plasmid pairings, sometimes for the same
functional group of genes [20]. An interesting example where
a consistent effect is observed across diverse host strains is
the plasmid pLL35, which causes the upregulation of bacterial
anaerobic metabolism genes in phylogenetically diverse E. coli
backgrounds [28]. Although the effect on bacterial growth is
unknown, it is possible that by shifting the host cell from
aerobic towards anaerobic metabolism, the plasmid may
potentiate gut colonization, and thereby promote the fitness
of both the bacterium and the plasmid in this niche.

(iii) Host colonization

Several plasmids have been shown to manipulate the
expression of traits likely to enhance bacterial survival within
eukaryotic hosts [30]. For example, certain extended spectrum
beta-lactamase (ESBL) plasmids upregulate genes (ompA, nha,
dnaj, arcA) and outer membrane proteins that enhance survival
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vertical plasmid fitness
dependent on bacterial survival

manipulation of virulence
promotes bacterial
exploitation of the host

use of new energy sources
provides resources with
less competition

increased resistance to
antimicrobials
increases likelihood of
bacterial survival

enabling bacterial
colonization of plant
and animal hosts
promotes survival of the
bacteria within the host

horizontal plasmid fitness
dependent on conjugation events

* decreased anticompetitor
secretion systems
* increase likelihood of
+ survival of conjugation
recipients

biofilm formation
promotes close proximity
of bacterial cells

increased conjugation
directly increasing
plasmid fitness through
horizontal transmission

reduced motility
promotes sustained

bacterial contact

Figure 1. A schematic of how the bacterial phenotypes altered by plasmid acquisition could affect plasmid fitness (created in BioRender.com). We distinguish
phenotypic effects according to their likely effects on the modes of plasmid inheritance, vertical from mother cell to daughter cell by replication, or horizontal

from cell to cell by conjugation.

of extra intestinal pathogenic E. coli in host serum [31,32]. The
plasmid pMAR2 upregulates expression of a chromosomal
adhesin in enteropathogenic E. coli, thus enhancing host coloni-
zation by promoting the formation of attaching and effacing
lesions in intestinal epithelial cells [33]. Finally, a Rhodoccocus
equi plasmid alters the expression of chromosomal virulence
regulators promoting macrophage colonization [15] by arrest-
ing phagosomal maturation [34]. In each of these cases, by
enhancing bacterial survival within the eukaryotic host, the
plasmids may increase their own fitness as well as that of
their bacterium in this niche.

(iv) Virulence

Plasmids can promote bacterial exploitation of eukaryotic
hosts by altering the production of chromosomally encoded
virulence factors. Several plasmids upregulate the bacterial
T3SS [20,24], which delivers toxins to degrade eukaryotic
cells, thus freeing up host resources for bacterial consumption.
In Chlamydia species, a plasmid-encoded transcriptional regu-
lator, Pgp4, controls expression of chromosomal genes
required for the bacterium to exit the host infected cell in
order to infect other cells, a fundamental stage in the Chlamydia
infection cycle [35-38].

(b) Bacterial phenotypes likely to affect plasmid

horizontal transmission
Many plasmids can transfer horizontally to new host cells by
conjugation. Even non-conjugative plasmids sometimes
undergo horizontal transfer by piggy-backing on the conju-
gation machinery of other coexisting plasmids, and this can
be vital to ensure their survival in the population [39]. The
rate of plasmid conjugation is usually plasmid-regulated in
a manner that is responsive to conditions in the host cell,
such as growth stage [40]. In addition, the rate of plasmid
conjugation varies across environments and, for example,
can be higher on surfaces that enable higher levels of cell-

cell contact than in planktonic culture [41,42]. In what fol-
lows, we highlight examples where plasmids induce
changes in bacterial phenotypes that could enhance plasmid
conjugation, promoting spread of the plasmid in the bacterial
population or community. Because conjugation is energeti-
cally expensive to host cells and exposes them to killing by
phages that bind the conjugation pilus, these phenotypic
changes may be to the detriment of host cell fitness. Bacterial
phenotypes that may potentially enhance plasmid horizontal
transmission include manipulation of motility, biofilm
formation, the T6SS and the DNA replication process
(figure 1).

(i) Motility

Plasmid acquisition is often associated with reduced bacterial
motility, sometimes caused by plasmid-mediated downregula-
tion of the flagellar complex [21,23,24,43,44]. Cell-to-cell
contact is vital for successful conjugation [41], and thus
reduced motility may increase the likelihood that bacterial
cells remain in contact long enough for the plasmid to undergo
conjugation [45], thus potentially enhancing the horizontal
transmission of the plasmid.

(i) Biofilm formation

Increased biofilm formation has been reported in a range
of bacterial taxa upon acquisition of conjugative plasmids [46—
48]. In Bacillus subtilis, increased biofilm formation is mediated
by a plasmid-encoded Rap protein (RapP), an intracellular
response regulator involved in biofilm formation and sporula-
tion, among other functions [48,49]. Similarly, in some strains
of enteropathogenic E. coli, ESBL plasmid acquisition is associ-
ated with increased production of extracellular biofilm
components [32]. Opportunities for plasmid conjugation are
expected to be increased in spatially structured populations
such as biofilms, presumably owing to increased cell-to-cell con-
tacts, and, therefore, increasing biofilm production may well
indirectly increase plasmid horizontal transmission.
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(i) Maintenance and transfer

Plasmid pCAR1 encodes three nucleoid-associated proteins
(NAPs). NAPs are global regulators in transcriptional
networks, affecting quorum-sensing systems, and bacterial
metabolism [50-53]. Intriguingly, plasmids that encode
NAPs are more likely to be conjugative [54], suggesting that
plasmids may use NAPs to manipulate host cell regulatory
networks in ways that promote horizontal plasmid fitness.

(iv) Altering bacterial competition

In A. baumannii, the plasmid pAB5 encodes a repressor that
deactivates the bacterium’s T6SS [55], which would otherwise
kill non-kin cells by injecting them with toxins. By deactivat-
ing the host cell’s T6SS, however, the plasmid ensures the
survival of transconjugants, thus increasing the success of
conjugation events [56] and thereby the plasmid’s rate of
horizontal transmission. Intriguingly, by leaving the original
host cell unable to deploy its T6SS apparatus in competition
with other bacteria, the plasmid may decrease its host’s own
fitness. This illustrates how plasmid fitness interests can con-
flict with the bacterial host’s fitness interests. Such traits can
be favoured provided that the resulting increase in horizontal
plasmid replication outweighs the loss of vertical plasmid
replication.

4. Future research directions

This review has highlighted some of the growing evidence that
the relationship between plasmids and bacteria may be more
subtle and manipulative than previously acknowledged. Plas-
mid manipulation of the expression of bacterial chromosomal
genes demonstrates the breadth of parasitic and mutualistic
evolutionary strategies plasmids use to maximize fitness.
Future studies should consider the following directions:

— How does plasmid manipulation vary across environ-
mental contexts? Laboratory conditions are unlikely to
reveal the full extent of niche-specific phenotypic effects
caused by plasmid manipulation. Some of the largest
effects on bacterial functions have been seen in studies
that assess fitness in macrophages or serum [15,31,32]. In
macrophages the plasmid affected expression of 20% of
bacterial chromosomal genes, including those that slowed
phagosome maturation, a key virulence strategy for survi-
val within the eukaryotic host. Future studies should be
conducted under conditions more similar to those encoun-
tered by the bacteria in nature.

— How does plasmid manipulation vary across a broader
taxonomic range of bacterial hosts? Most of the studies
discussed in this review have focused on gammaproteo-
bacterial hosts. In order to gain a fuller and more
representative view of the impact of plasmids on the
expression of bacterial phenotypes beyond this clade,
future studies should test a far broader diversity of
bacterial hosts and plasmids.

— How might integrated omics studies aid our understand-
ing of how differential regulation leads to altered
bacterial phenotypes? Untargeted omics approaches are
an efficient way of obtaining the molecular underpinning
of bacterial phenotype, and allow us to see nuanced
effects of plasmid acquisition. There are many more
metabolites than genes to encode their synthesis, and

metabolic pathways are complex and adaptable [57]. It [ 7 |

is nearly impossible to predict effects on the metabolome
from the wide array of genes that may be differentially
expressed upon plasmid acquisition. Therefore, an inte-
grated, multifaceted omics approach may reveal more of
the story.

— How does plasmid manipulation of bacteria evolve? One
obvious route for plasmid co-option of bacterial gene regu-
lation would be through duplication of bacterial regulatory
genes onto the plasmid, followed by divergence. Plasmids
(and other mobile elements) frequently acquire bacterial genes
through rearrangements [58]. However, it is unclear if such an
evolutionary path would be likely. Genes heavily embedded
into gene networks tend to be underrepresented on mobile
elements [59]. This may be explained by highly connected
genes causing far higher disruption to the cell regulatory net-
work [59]. Duplication of bacterial regulatory genes may,
therefore, face more significant fitness barriers to establish-
ment than, for example, the acquisition of an accessory trait.
Alternatively, plasmid manipulation may arise through non-
specific disruption of regulatory networks. Plasmid acqui-
sition can lead to widespread, subtle (and not so subtle)
shifts in bacterial gene expression [20-24]. Where these
shifts benefit the plasmid, they may be acted on by selection
to further embed this function. Further work will be needed
to determine what evolutionary trajectories lead to the orig-
ination of plasmid regulatory manipulation.

— What are the dynamics of plasmid manipulation traits in
bacterial populations and communities? The inheritance
of plasmid manipulation traits is likely to differ signifi-
cantly from inheritance of accessory traits. Plasmid
accessory traits are typically, perhaps necessarily [59],
self-contained regulatory units whereas manipulation of
bacterial gene regulation is likely to be dependent and con-
tingent upon the regulatory network(s) present in the
bacterial host. Following from this, we might predict that
bacterial manipulation traits may only function in a
narrow taxonomic range of hosts, explaining the high varia-
bility in the breadth and extent of regulatory effects across
hosts, whereas by contrast accessory genes are expected
to function similarly across taxonomically diverse hosts.

5. Condlusion

Plasmids can have effects on bacterial phenotypes that extend
beyond those conferred by the accessory gene cargo that they
encode, by manipulating the expression of genes encoded on
the bacterial chromosome. We identify two possible ways
that such manipulation could affect plasmid fitness: first, by
increasing the growth of the bacterial cell in a particular
niche and thus increasing the vertical transmission of the
plasmid, or second, by altering the phenotype of bacterial
cells in ways that increase the likelihood of conjugation of
the plasmid, thus increasing its horizontal transmission.
This dichotomy highlights the potential for plasmid manipu-
lation of bacterial phenotypes to result in both mutualistic
and parasitic interaction with the bacterial host. Identifying
the mechanisms of plasmid manipulation is challenging (cf.
[55]) but will be essential to better understand how and
why plasmid manipulation has evolved and the role it
plays in the evolutionary success of plasmids.
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1.3 Thesis Aims
This thesis aims to understand how E.coli metabolism is changed by acquisition of a

multi-drug resistant plasmid, subsequent co-evolution and exposure to antibiotic
stress. The data in this thesis complements previous studies conducted on the E.coli
strains and pLL35 plasmid which included phenotypic assays, a laboratory evolution
experiment, genomics and transcriptomics. The addition of metabolomics from this
research provides a more complete omics-based analysis of these strains,
contributing to future research area 3 as highlighted in the earlier review: ‘how might
integrated omics studies aid our understanding of how differential regulation leads to

altered bacterial phenotypes?’

Chapter 3 analyses the impact of the acquisition of the MDR plasmid pLL35 on 9
diverse E.coli strains from a range of ecological backgrounds. This chapter begins to
broaden the lineage diversity of strains studied by taking clinical and environmental
examples. By comparing the strain without pLL35 to isolates of those strains that had
pLL35 conjugated over recently (within 30 generations) this data can assess changes

in the bacterial metabolism as a consequence of plasmid acquisition.

Chapter 4 analyses a selection of the strains taken from the populations at the
endpoint of a 700-generation evolution experiment. To assess how the plasmid-
bacterial relationship had evolved, metabolomics of the post-evolution treatment
groups were compared to the ancestral state. Further to assess the metabolic
differences caused by treatment in the evolution experiment, the groups ‘plasmid
free’, ‘plasmid carrying’ and ‘plasmid carrying under antibiotic selection’ were
compared to each other. These analyses aimed to demonstrate how the presence of
a plasmid may alter the metabolic network of E.coli over evolutionary time, and
secondly separate the impacts of plasmid carriage alone, and plasmid carriage with
positive selection of the resistance genes. This chapter contributes to future research
area 4, as highlighted in the earlier review: ‘how does plasmid manipulation of

bacteria evolve?’

Chapter 5 assesses the effects of antibiotic stress on the metabolism of a selection of

E.coli strains, including 2 of a clinical background, which had recently (within 30
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generations) acquired pLL35, to aid our understanding of the resistance mechanisms
of the bacteria and plasmid as a unit, and the metabolic changes seen in the

previous chapters.

To obtain a comprehensive assay of intracellular E.coli metabolism, untargeted
metabolomics was conducted throughout this thesis using liquid chromatography
mass spectrometry. Metabolomics can be defined as a “systematic study of the
unique chemical fingerprints that specific cellular processes leave behind” (Di Minno
et al., 2021). By producing a highly detailed, precise view of the molecular
underpinning of cellular function, which is closely related to phenotype, metabolomics
is an invaluable tool for microbiology and medical research (Xu et al., 2014; Vincent
et al., 2016; Mardegan et al., 2021; Wei et al., 2021). Transcriptomics and genomics
are commonly used to study interactions between plasmids and bacteria, and have
done so extensively to great effect, but predicting metabolome effects solely from
differentially expressed genes is not straightforward (Billane et al., 2022). The
abundance of regulatory effects revealed by transcriptomics suggests plasmid’s
impact on their bacterial hosts is different at different biological levels (Billane et al.,
2022). Metabolomics may therefore help untangle the nuances of plasmid

acquisition.

Untargeted metabolomics comprehensively describes the metabolome and is used in
this study to avoid constraints on our hypothesis from previous assumptions, and
instead facilitate the generation of new hypotheses (Schrimpe-Rutledge et al., 2016;
Di Minno et al., 2021). This technique is particularly suited to identifying perturbations
in biological systems, and therefore ideal to study the impact of a plasmid on bacteria
(Want, Cravatt and Siuzdak, 2005; Vincent et al., 2016; Allwood et al., 2021; Di Minno
etal., 2021).

An understanding of how the bacterial metabolome changes upon plasmid acquisition
will contribute to the explanation of resistance plasmid success and persistence.
Together the data in this thesis will contribute to an information bank upon which further
questions will be based to fully understand the facets of plasmid- bacteria relationships.

This will facilitate the development of plasmid-targeting strategies to limit the
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pervasiveness of antibiotic resistance genes, an area which is currently

underdeveloped for in-vivo solutions (Buckner, Ciusa and Piddock, 2018).
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Chapter 2 : Metabolomics methodology development

Metabolomics is the comprehensive assay of all the metabolites in a biological system,
and is valuable for understanding biochemical underpinnings of phenotype as the
metabolism is the biological level most closely associated with function (Goodacre et
al., 2004; Ryan and Robards, 2006).

In this thesis, untargeted liquid-chromatography mass spectrometry is chosen for its
precision and broad detection range (Aldridge and Rhee, 2014). Untargeted
metabolomics are ideal for identifying perturbations in biological systems, especially
when effects are widespread, subtle or unexpected, making it a valuable tool for the
generation of novel hypotheses. (Want, Cravatt and Siuzdak, 2005; Vincent et al.,
2016; Allwood et al., 2021; Di Minno et al., 2021). In addition, bacteria are well suited
to metabolomics and have been used from first conception of the technique (Oliver et
al., 1998; Tweeddale, Notley-Mcrobb and Ferenci, 1998). This makes untargeted
metabolomics the ideal tool to understand the dynamics of bacterial and plasmid

relationships.

The challenges of processing untargeted metabolomic data are widely acknowledged
(Allwood et al., 2021). These challenges stem from the nature of the data itself, namely
that data processing has a steep learning curve due to the decisions required to
process and analyse a given dataset appropriately, such as peak picking and retention
time correction settings, filtering, normalisation and potentially the pitfalls that come
with overprocessing (Parker et al., 2023). Furthermore, putative identification of
metabolites from untargeted data is notoriously difficult (Xu et al., 2014), resulting in
thousands of unidentified signals in datasets (Allwood et al., 2021). In part this is due
to there being a huge number of metabolites compared to the number of genes
(Aldridge and Rhee, 2014). The barriers to engaging in metabolomics are in part
responsible for the lack of documentation to navigate these barriers, and together this
perpetuates the underutilisation of the technique (Allwood et al., 2021; Parker et al.,
2023).

COVID-19 restrictions necessitated the development of a data processing and analysis

method that would function off-site and did not rely on proprietary software.
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Furthermore, existing methods vary by mass spectrometer, type of mass spectrometry
and experimental design and navigating this as a novice is difficult. There is a lack of
documentation following a full data analysis process that explains how to make the
decisions to tailor data processing and analysis to a given experiment (Schrimpe-
Rutledge et al., 2016; Blazenovi¢ et al., 2018; Dudzik et al., 2018; Misra, 2018;
Chaleckis et al., 2019).

Collaborating with other students and staff at the University of Sheffield, we published
an untargeted metabolomics workflow that follows a worked example from laboratory

protocols through data processing to analysis (Parker et al., 2023).

The specific data analysis workflow used for this thesis, part of the published
methodology, is as follows (Fig 2.1). After sample collection (described pages 28-32)
the data was converted to the interoperable . mzml format using proteowizard. XCMS
online (parameter programme 84500) was then used to convert mass spectrometer
waves into singular peaks, detect and correct for retention time in the liquid
chromatography column and re-align the data to produce a list of masses and
intensities of the masses per sample. Formatting the XCMS output files followed the
published script (Parker et al., 2023). Data analysis was conducted using
metaboanalyst, based in R, and included principle component analysis, fold change
analysis and random forest analysis. Putative identifications for significant masses
were then investigated in a manual manner using the databases Metlin, KEGG and
ECMDB.

2.1 Statement of contribution

A successful funding application from the University of Sheffield enabled KCB, the
author of this thesis, and EJP to transform method development concerning untargeted
metabolomic data acquisition, processing and analysis into an open access guide. The
content was developed and written by EJP and KCB equally, and reviewed by new
users during workshops led by EJP and KCB.

The author of this thesis KCB has joint first authorship with EJP for the following
publication https://doi.org/10.3390/metabo13040463 which describes software that
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was built based entirely on the aforementioned guide. KCB contributed to writing the
original draft and creating figures and editing the manuscript during the review process.

The software https://untargeted-metabolomics-workflow.netlify.app/ has the sections:

00 — Overview of workflow

01 — Metabolite extraction

02 — Data acquisition

03 — Converting data to open format

04 — Data pre-processing

05 — Extracting and formatting peak table and metadata

06 — Multivariate analysis

07 — Putative metabolite ID

08 — Data archiving and reporting

The author contributed to development and content creation throughout the writing of

the software, but was particularly responsible for the following sections
1. Overview of workflow
2. Metabolite extraction.

e Wet lab protocols to prepare Escherischia coli for this stage were
developed solely by the author and were made available at the
institute level but ultimately not included in the examples given in the
software. The full protocol to follow.

3. Converting data to open format

e Proteowizard

e MSConvert LCMS

4. Data pre-processing
e Processing LCMS
5. Extracting and formatting peak table and metadata
e Peak Table LCMS
6. Multivariate analysis
e Multivariate analysis
e Metaboanalyst
7. Putative metabolite ID

e What are my metabolites?

e METLIN

o KEGG
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The author was involved in editing and refinement of all other sections and ensuring
the workflow allowed reproducibility in line with FAIR (Findability, Accessibility,
Interoperability, Reusability) principles, just as other authors reviewed the author’s

work.
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Figure 2.1. A representation of the workflow specific to the author spanning the wet lab preparation of samples, through the data processing to data analysis.
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2.2 Laboratory Protocol

The following protocol was developed by the author and is the basis for all sample
preparation for the data obtained throughout this thesis, with some modifications for
later chapters. The bacterial isolation protocol was developed by the author and the
metabolite extraction protocol was adapted from an in-house metabolomic sample

preparation written by Dr. H J Walker and optimised for Escherischia coli.

Method Development for untargeted metabolomic analysis of diverse
Escherichia coli strains.

This experiment used Escherichia coli isolate from the strains; ST131 derived from
clinical bacteraemia, ST1122 and ST394 derived from river effluent and MG1655, a
laboratory strain. The plasmid is pLL35, a 106kb incFlI(K)-9 plasmid originating
from Klebsiella pneumoniae. Cultures are grown in nutrient broth at 37°C in a shaking

incubator.

Bacterial isolation protocol for metabolite extraction
Materials required per sample:

2 Microcosms

2 mL Safe-loc eppendorf

0.22um filter

10 mL syringe

5 mL syringe x 2

7 mL M9 buffer

Other Materials
Agar

Nutrient broth

9cm petri dishes
Sterile falcon tubes
Inoculation loops

Liquid nitrogen
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Preparation

Autoclave microcosms containing 10ml nutrient broth.
Autoclave nutrient agar, pour and set plates.

Prepare a master x10 concentration of M9 buffer solution
In 1L DH20:

e 128g Sodium phosphate dibasic (67.8g if anhydrous)
e 30g Monopotassium phosphate

e 5g Sodium chloride

e 10g Ammonium chloride

Make a x1 working solution.

Streak out E.coli strains from glycerol stocks into agar plates and incubate overnight
at 37°C.

Inoculate microcosms with a single colony using a loop. Leave lids slightly loose to
allow oxygen into the microcosm. Grow in a shaking incubator at 37°C and 180rpm for
24 hours.

Label 2nd set of microcosms and safe-loc eppendorfs.

Procedure
1. Inoculate fresh 10 mL nutrient broth microcosms with 1% (100ul) of 24 hour

microcosms and grow in the shaking incubator at 37°C and 180rpm for 3 hours.

2. Gather 1x M9 working solution, syringes, filters, labelled eppendorfs, waste

bottles and decant a small flask of liquid nitrogen.

3. Using the 10 mL syringe, take up all of the contents of the microcosm and push
through the filter.

4. Follow this with 5 mL of M9 using the 5 mL syringe.

5. Flip filter, move to the 2 mL safe-loc eppendorf and with a fresh 5 mL syringe
use 2 mL M9 to wash bacteria out of the filter and into the eppendorf.

6. Repeat steps 3-5 for each sample using sterile syringes and filters each time.

7. Spin down in a centrifuge at 12,000g for 5 minutes.
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8. Remove supernatant.
9. Ensure lids are secure on the eppendorf and freeze in the liquid nitrogen.

10. After a short period of time carefully extract eppendorfs from the nitrogen and

transfer to the -80°C freezer.

Metabolite extraction protocol for frozen bacterial samples

Materials required:

Sterile MilliQ H20 (H20)
Chloroform (CHCI3)

Methanol (MeOH)

Eppendorf tubes (2 per sample)
Ice (and dry ice for transportation)
Preparation:

e Pre-chill some eppendorf racks in the -80°C freezer.
e Get a container of ice.

e Pre-chill several mL of H20 to 0°C.

e Pre-chill some pure CHCI3 to 0°C.

e Make a several mL mixture (Mix A) of 2.5:1:1 MeOH:CHCI3:H20 and pre-chill
to 0°C.

e Pre-chill a centrifuge to 0-4°C.

Procedure:
1. Take the eppendorf containing the frozen bacterial sample.

2. Add 180 uL Mix A to bacteria, vortex to resuspend and incubate on ice for 10

minutes.

3. Centrifuge at 12,0009 for 5 minutes (0-4 °C).
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4. Vortex to resuspend pellet, incubate on ice for 10 minutes.
5. Add 20 uL cold CHCI3, and add 30 L of cold H20, shake and mix.
6. Centrifuge at 14,0009 for 15 minutes (0-4 °C).

7. You should have two clear phases, aqueous at the top and CHCI3 at the
bottom of the tube. Remove 50-100 uL of aqueous phase and put in a fresh pre-
chilled tube. Quickly plunge the tip into CHCI3 phase, remove ~50 pL and put in

a fresh pre-chilled tube.

8. Freeze all samples at -80°C, until ready for analysis.

9. Keep the pellet in the eppendorf tubes and freeze.
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Abstract: Untargeted metabolomics is a powerful tool for measuring and understanding complex
biological chemistries. However, employment, bioinformatics and downstream analysis of mass
spectrometry (MS) data can be daunting for inexperienced users. Numerous open-source and free-
to-use data processing and analysis tools exist for various untargeted MS approaches, including
liquid chromatography (LC), but choosing the ‘correct’ pipeline isn't straight-forward. This tutorial,
in conjunction with a user-friendly online guide presents a workflow for connecting these tools
to process, analyse and annotate various untargeted MS datasets. The workflow is intended to
guide exploratory analysis in order to inform decision-making regarding costly and time-consuming
downstream targeted MS approaches. We provide practical advice concerning experimental design,
organisation of data and downstream analysis, and offer details on sharing and storing valuable MS
data for posterity. The workflow is editable and modular, allowing flexibility for updated/changing
methodologies and increased clarity and detail as user participation becomes more common. Hence,
the authors welcome contributions and improvements to the workflow via the online repository. We
believe that this workflow will streamline and condense complex mass-spectrometry approaches
into easier, more manageable, analyses thereby generating opportunities for researchers previously
discouraged by inaccessible and overly complicated software.

Keywords: metabolomics; untargeted; mass-spectrometry; open-source; bioinformatics

1. Introduction

Untargeted metabolomics is an increasingly popular tool for identifying perturbations
within a metabolome and revealing phenotypic complexity in systems [1-4]. It is commonly
the first part of a two-step research pipeline, where untargeted studies are used to gather
information, identify the metabolome, and generate hypotheses. This is followed by tar-
geted metabolomics which measures specific compounds and requires a priori knowledge
of the whole metabolome [1,4,5]. Key to a metabolomics workflow are the data processing
and handling steps, which take raw mass spectrometry data and convert them for use in
a wide array of multivariate and statistical methods. Currently there is no one standard-
ised pipeline for this step due to variation from sampling methods, instrumentation used,
analytical methods employed and the deficit of standardised guidelines [6-11].

After over a decade of experience with proprietary software, the challenge was to
address a number of issues with current common practices and embrace an open-source
approach to metabolomics data processing and analysis that can have a future legacy. As
well as navigating the plethora of analysis options available, with the advent of remote
working, it became apparent that researchers conducting untargeted metabolomics analysis
required resources to learn how to process mass spectrometry data remotely.

Metabolites 2023, 13, 463. https:/ /doi.org/10.3390/ metabo13040463
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The objective of this work was to develop a guide focussed on processing and anal-
ysis of mass spectrometry data, collected to address untargeted metabolomics questions,
primarily in the fields of environmental metabolomics and the study of complex plant
stress responses. However, the tutorial and workflow have been applied in a range of
experimental systems including E. coli, potato, barley, organic fertilisers, field soil samples,
human cervical mucus, and Chlorella. The aim is that the guide will help to move towards
standardised methodology and comparable research across the field of metabolomics.

The newly developed workflow presented here is designed to address the question:

Which compounds might be responsible for the difference in metabolomic fingerprint
between the classes (groups) of samples?

The workflow converts mass spectrometry data to open formats for experiments in
which a wide array of compounds are compared between two or more classes of samples.
The steps may not result in a definitive difference or unquestionable compound identifica-
tion, rather the workflow will direct further research and highlight potential compounds
to focus on for targeted analysis. This resource is aimed at non-experts, and early career
researchers who may not have extensive coding or analytical knowledge. Users are intro-
duced and guided through pre-processing options and data formatting steps which result
in a peak table data frame. This peak table forms the basis of the next steps in the workflow,
multivariate analysis and putative metabolite ID to give a list of potential compounds that
are differentially expressed between groups of samples which can inform the hypothesis
for downstream targeted analyses. Alongside some command-line interface, GUI software
has also been utilised in the workflow, which can be simpler to learn and easier to operate
for new and non-expert users of metabolomics data analysis software [12]. Notably, all
software approaches discussed here are free, as the authors believe it is important that the
discussed pipelines are accessible.

This collaborative and open-source workflow guide for untargeted metabolomics
addresses the need for data-handling tutorials [1] with the key aims of widespread use and
continuous improvement, ultimately encouraging integration with multi-omic workflows.

2. Materials and Methods
2.1. Overview and Workflow Diagram

This tutorial guides the user through the untargeted metabolomics workflow that
has been developed with some explanation of what each stage achieves. Further de-
tails are available in step-by-step guides on the associated website (https://untargeted-
metabolomics-workflow.netlify.app/ accessed on (27 January 2023)), which includes links
to relevant open-source tools, and our own interoperable code where appropriate. This
tutorial covers the steps required to process LC-ESI-MS data, however detailed instructions
for processing MALDI-ToF-MS and DI-ESI-MS using similar open-source tools are also
available on the associated website.

Anindex of openly-available datasets is provided at https: / /untargeted-metabolomics-
workflow.netlify.app/00_overview /06_demo-data/ (accessed on 9 March 2023). These
example datasets can be used to demonstrate the workflow presented here.

The workflow has been divided into stages. The following number codes are used
in the online guide as well as in the R [13] code and workflow diagram (for an abridged
version of this diagram see Figure 1).

00. Overviews, workflow diagram & useful information

01. Metabolite extraction

02. Data acquisition (Mass Spectrometry)

03. Converting data to open format

04. Data pre-processing

05. Extracting & formatting peak table & metadata

06. Multivariate analysis (PCA) & further analysis (if applicable)

07. Putative metabolite identification

08. Archiving data & citing resources
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Stages 01 and 02 are not covered in great detail in this documentation which focuses

primarily on data processing and analysis.

(a) (C) Convert data csv Peak table e
MSConvert — (samples as rows, = + .
> . Peak picking m/z as columns) file
« Scanevent
e \/
l (f) Undirected Analysis
Al Metaboanalyst
Open format + Load data & metadata
(centroid) « Scaling & normalisation
« PCA & interpretation
l « Directed analysis
A
(d) XCMSonline
(Peak picking, RT (g) Use detected masses of
correction, alignment, interest to  search
grouping) databases/ repositories
& literature
A
(e) -
Tidy in R tative identities,
’Cii rélzgort’ — of metabolites of
interest.

Figure 1. Workflow diagram for processing and analysis of untargeted LC-MS metabolomics data.
(a) sample selection and preparation. (b) Mass spectrometry analysis of samples. (c) Conversion of
data to open format. (d) Data pre-processing and (e) production of a feature matrix with experimental
information included. (f) Statistical analysis for selection of features of interest and (g) identification
of features of interest by comparison with literature and existing metabolite databases.

2.2. Experimental Design and Quality Control

Difficulties in analysis and/or workflows can arise from complexities in experimental
structure. Many terms are used interchangeably in different contexts. Most tools for
untargeted metabolomics are set up for one factor analysis with two or three levels e.g.,

e  Case vs. control
Wild-type vs. transgenic line
e  Strain 1 vs. strain 2 vs. strain 3

However, more complex experimental designs are quite often implemented e.g.,

Two factors with two or more levels in each such as +/ — treatment for two strains
e  Time course for one or two factors such as +/— treatment for two strains over three
time points

To begin, the expectations of which groups of metabolite fingerprints may differ from
one another must be considered, and to what extent.

e  What are the biological replicates being analysed and are they independent of each
other (or has the same organism/population been sampled multiple times)?

e  Are there technical replicates (i.e., repeated runs of the same sample)?

e  Are Quality Control (QC) samples required? Are analytical standards needed?

o  What groupings are required to answer the research questions outlined?

Quality control (QC) can mean different things to researchers from different fields.
There are a few simple quality control options for checking that there has not been subtle
(or not so subtle) variation accumulating during the run. Decisions must be made on which
one (or more) of these are necessary depending on the type of sample to be analysed and
the MS techniques employed:

e  Spike all prepared samples with a compound for which the m/z (and RT) is known
and which is unlikely to be otherwise present in the experimental samples;
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e  Prepare a pooled QC sample from an aliquot of each of the samples and include this
at regular intervals in the MS run;
Include blanks and/or extraction blanks at regular intervals in the MS run;
Use lock mass calibration (for Waters instruments).

There are some basic data quality control steps you can take to limit errors during
processing and analysis:

o  Check file sizes of .raw files across the MS run;
o  Check file sizes of converted .mzML files—reconvert any that are unexpected;
o  Compare spectra between technical replicates

2.3. Metabolite Extraction and Data Acquistion

Details of quenching, metabolite extraction or choice of mass spectrometry platform
are not covered here, as they will likely be specific to the organism and/or tissue in-
volved and the questions being addressed. Figure 2 provides a conceptual overview of
metabolite extraction and data acquisition from plant tissues. See [14,15] for introductory
guidance and [16] for a specific metabolite extraction method appropriate to plant tissues
for this workflow.

S
\

N e e
Rl

(b) (© (d)

Figure 2. Conceptual diagram of an untargeted metabolomics workflow, from leaf to mass spectrom-
etry analysis. After sample harvest (a), metabolic reactions in a sample tissue must be first quenched
(b); i.e., via liquid nitrogen immersion), cell walls lysed and the sample homogenised (c) to permit
extraction of compounds within the cells using a range of solvents (d). Extracts may then be diluted
and submitted to mass spectrometry analysis (e); e.g., UPLC-ESI-MS).

2.4. Preparing Metadata for Analysis

To process and analyse data using our workflow, two .csv files are required (these can
be created in excel, R, google sheets etc. depending on preference) as long as the order and
headings of the columns follow the pattern detailed below.

For samplelist.csv the following columns are required:

“Filename”: this is a list of the filenames of the .mzml files (the part before the .mzml)
“Filetext”: this is the name that has been manually added to the metadata of that
sample

e  “MSFile” or an equivalent column that contains either “pos” or “neg” within it. Any
other columns will be ignored in this file.

For treatments.csv at least two columns are required:

“Filetext”: this must contain all the distinct values of “Filetext” from samplelist.csv
“Variablel”: the naming of this column is left to the user. For example, in an MS run
comparing a wild-type to a control, this column could be named “treatment” and
filled with “WT” and “C” as appropriate

e  “Variable2” etc: further variables. This may include batch identifiers (for example if
many samples were run over multiple days), treatments or environmental variables

These are kept in a folder with the .mzml data files. Examples can be found on
the website at https:/ /untargeted-metabolomics-workflow.netlify.app /03_conversion-to-
open-format/05_samples-treatments/ (accessed on 27 January 2023).
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3. Results
3.1. Converting Data to Open Format Using Proteowizard

Converting proprietary data files (which contain a large amount of data and metadata
about the run in separate files) to a more manageable format, such as .mzML (the standard
open-data format for mass spectrometry [17]) is essential. We have developed this workflow
using .RAW files, which are specific to Waters software and are not compatible with
many open-source tools. To convert RAW to .mzML, Proteowizard software [18] is used.
Proteowizard is capable of converting many other proprietary file formats and guidance is
available through their extensive documentation at https:/ /proteowizard.sourceforge.io/
doc_users.html accessed on (20 February 2023). Proteowizard comprises two applications:
SeeMS and MSConvert.

SeeMS is useful for viewing chromatograms and spectra without access to proprietary
software like MassLynx. MSConvert performs conversion of the MS data but depending
on the type of MS used, different settings/parameters in MSConvert may be required,
detailed in the online step-by-step instructions to complete stage 03 (https:/ /untargeted-
metabolomics-workflow.netlify.app /03_conversion-to-open-format/03_msconvert-lems/
accessed on 27 January 2023).

It is critically important to check the size of .mzML files once converted. They should
all be similar. SeeMS can be used to check any that seem unusual and reconvert any with
an incongruous file size (problems in conversion can arise, for instance from intermittent
internet connection when converting files from a remote drive).

3.2. Preprocessing Data

Untargeted metabolomics datasets can be several GB in size! To get from compressed
.mzML files to a tractable peak table that can be interrogated with multivariate statistics, it
is necessary to “tidy” the data.

A peak table is a data-frame consisting of aligned spectra with concentration or
intensity values against a set of features—mass to charge ratio (1/z) or m/z with retention
time (RT). The file size will be dependent on sample number but will be smaller than the
.mzML files.

Different downstream tools for multivariate statistics will require the peak table in
slightly different formats, so the code included in this guide will help with formatting for
some common uses (e.g., MetaboAnalyst one factor and two factor peak tables) as well as
helping format treatment information as metadata so that peak tables can be interrogated.

Depending on the MS approach, different stages are involved but they broadly fall into:
Baseline correction and/or noise reduction (estimating what part of the detected
intensity is the sample and “cleaning” or adjusting the spectra to show only the signal
believed to be associated with the sample);

e Normalisation and/or standardisation (these can mean a range of different things to
different people but broadly cover accounting for differences in sample volume or
concentration or total intensity of the signal);

e  Grouping and peak picking (wave-form algorithms are used to determine which parts
of the spectra constitute separate peaks utilising their m/z value);

e Alignment or peak matching (assessing across samples to determine whether peaks
with slightly different m/z values are the same peak so that samples can be compared
more reliably).

e  The above criteria are very important when processing data as they can have a big
impact on data quality however the parameters may vary with different datasets
and different analysis methods. The importance of these factors have been discussed
previously by [19].

By the end of this stage, data will be processed into a single table containing all the
m/z and intensity values required for down-stream analysis. This stage relies on the use of
open-source software (XCMS online [20] for LC-ESI-MS and MassUp [21] for MALDI-ToF-
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MS and DI-ESI-MS) to process the data. These provide user interfaces for well-documented
R packages (XCMS [22] and MALDIquant [23] respectively) and provide the advantage of
coping well with large datasets and, in the case of XCMS online, being run remotely.

For detailed instructions on pre-processing, consult stage 04 of our online guide
(https:/ /untargeted-metabolomics-workflow.netlify.app/04_data-preprocessing/ accessed
on (27 January 2023)).

R code to extract a peak table from pre-processed data is available in stage 05 of
our online guide (https:/ /untargeted-metabolomics-workflow.netlify.app/05_extracting-
formatting-peak-table/ accessed on (27 January 2023)).

3.3. Multivariate Analysis
There are often two key questions when analysing a new untargeted metabolomics dataset:

e  Are the metabolomic fingerprints distinct classes (treatment groups) different from
each other?

e  Which features of the metabolomic fingerprint are causing them to be different from
each other?

To answer the first question, data ordination is required to provide a global overview
of the variability and patterns within the data. Principal Component Analysis (PCA) is a
commonly applied ordination tool that reduces the dimensionality of multivariate data
to display complex relationships between samples in 2 or 3 dimensions [15]. As it is
unsupervised the model is unaware of the classes to which the samples belong, so patterns
are unbiased by a priori knowledge of the experimental design. PERMANOVA can be
used to provide statistical corroboration of patterns observed in the PCA by statistically
evaluating if significant trends exist at the higher levels of the experimental design within
multivariate data i.e., if significant treatment and interaction effects are present. Finally,
where clear differences between classes in the PCA are apparent, pairwise comparisons
between classes (treatment groups) can be investigated via exploring the loadings or using a
pairwise analysis such as t-tests or volcano plots. These will provide the user with features
of interest that are most important at defining the statistical output [15].

Where patterns are less clear, supervised analysis, such as OPLS-DA (orthogonal
projections of latent structures) may be employed to mine for differences between any two
classes. The output of supervised analyses will highlight particularly highly abundant
features that differ between two randomly assigned classes that may be obscured in global
overview if the majority of the metabolome is conserved or unchanging (this can occur in
tissues where only small numbers of metabolites respond to a stimulus, but the majority
of the metabolome is unaffected). To limit false positives it is important to consider the
native separation in the data (i.e., through an unsupervised ordination, like PCA) to
provide a robust biological justification for comparing two particular classes. The analyses
exemplified here are by no means the only option, and it is highly recommended that
tools such as MetaboAnalyst [24] are employed by the researcher to explore all analytical
avenues available.

In the online guide, demonstration is given on how to perform these analyses using a
free online platform and how to run some alternative code in R. MetaboAnalyst is an online
platform on which untargeted metabolomics data can be loaded, normalised, analysed and
visualised. However, there is a strong emphasis on detailed statistics that may be more
appropriate for targeted analyses, so the user must have a clear understanding of their
objectives in choosing amongst the options.

MetaboAnalyst is interoperable with R and the underlying code can be accessed using
the button at the top left of the “Results” page. The advantage of running the code is that
the user can integrate it with other analyses (and formatting for figures). Examples of
figures produced with this approach can be found in Figure 3. In contrast, the advantage of
the MetaboAnalyst GUI is that it guides the user through the process and has some useful
sense-checks and vignettes available.
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Figure 3. Conceptual diagram of examples of multivariate analysis outputs of untargeted
metabolomics analysis, all produced using open-source or freely available software. (a) Princi-
pal component analysis (PCA) 2-D scores plot produced with pcaMethods and ggplot2 packages in
R; (b) OPLS-DA scores plot produced using the muma package in R; (c) scores plot created using
ggplot2 package and data produced by the muma package in R; (d) example list of features of interest
highlighted by an OPLS-DA using muma in R; (e) example of metabolites highlighted within a KEGG
pathways global Esterichia coli metabolism map.

Details can be found via the excellent tutorials and documentation provided by
MetaboAnalyst [25].

It is also possible to analyse the same peak tables using SIMCA (Umetrics) or other
proprietary softwares. However, it is much harder (and more costly) to use these remotely,
and it is harder to document any analysis for sharing with other researchers. Other software
worth considering includes MSDial, MetaboKit and MeV [26-28].

3.4. What Are My Metabolites?

It is very important to consider that this stage of the metabolomic process is not auto-
mated and can be incredibly time-consuming and challenging to do, so it is advisable that
the preceding analysis has been adequately assessed for its effectiveness before committing
time at this stage.

Annotating metabolomic features is challenging—there are some automated annota-
tions included with e.g., XCMS that rely on the CAMERA package [29] amongst others.
However, these often struggle with unusual experimental structures and/or large datasets,
or “unusual” (i.e.,, non-human) metabolites. Thus, reducing the number of metabolomic fea-
tures to those that are causing a significant (in terms of reliability and magnitude) difference
between two classes of samples is advisable.

To ascertain the identity of these features, comparing the m/z (or m/z at specific RT)
values highlighted by multivariate analysis with databases of reference m/z and with
experimental data from the literature (usually available in a publication or in repositories
like MetaboLights [30] and Metlin [31]) is key.

Stage 07 of the online guide provides guidance on using a range of databases to help
annotate “metabolites of interest” (https://untargeted-metabolomics-workflow.netlify.
app/07_putative-metabolite-id / accessed on (27 January 2023)). These include:

e  METLIN to search by m/z;
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e KEGG PATHWAY and KEGG COMPOUND [32] to corroborate likelihood of detecting
certain compounds in the study organism/sample and to gain insight on biologi-
cal function;
Data repositories such as MetaboLights;
Details of how to find other relevant databases (MassBank, PubChem, MetaCyc,
Metabolomics Workbench [33-36]);

e  Reporting Metabolomics Standards Initiative (MSI) identification levels (see also [37]).

3.5. Sharing Metabolomics Data

Metabolomics data from even a small study can be very large. It can also be very
complex. But there are ways of sharing it with the wider scientific community (and indeed
the public) without too much trouble. It is insufficient to only prepare a data availability
statement or simply share graphs or peak tables.

Metabolomics data can be analysed in lots of different ways, so it is important to
comply with the FAIR principles [38]:

Findable
Accessible
Interoperable
Reusable

Institution-based data repositories are an option, but they often require extra levels of
support to submit large datasets and there is no guarantee that access to other researchers
is feasible.

More useful is a field-specific repository where data will be made available together
with other relevant data sets. Furthermore, these repositories provide guidance on appro-
priate data formatting, allowing it to be compatible with other published data to form part
of potential future meta-analyses. Some journals will have specific guidelines on which
repository to use [39].

Time should be set aside from the outset of any project for submitting data to a
repository. It is not optional!

MetaboLights is a data repository specific to metabolomics studies [30]. Data from
NMR, GC-MS, LC-MS, and MALDI amongst others, may be submitted.

The repository is maintained and curated by the European Bioinformatics Institute
(EMBL-EBI) meaning that the data it holds is well-formatted and integrated with several
other standardised databases and ontologies (ways of describing methods, data and meta-
data). This “future-proofs” the data stored, making it not only open-access but also more
findable and reusable, as well as facilitating integration with other -omics data, if required.

MetaboLights has various stages of submission, validation and then curation by
experts to make sure each submission has all the relevant metadata needed to recreate the
analysis undertaken. Following curation, there is a review process and finally data can be
added to the repository and made available.

Because of the curation process, there can be a significant lag between submission and
data being available so early submission is advisable. However, once submitted, there is a
reference that can be linked to any publication [30].

Account creation is required, after which, a video tutorial guide on using the sub-
mission portal is available. Additional hints and tips on this can be found on the associ-
ated website (https:/ /untargeted-metabolomics-workflow.netlify.app/08_data-archiving-
citation/02_metabolights/ accessed on (27 January 2023)).

3.6. Citation of the Tools Used in the Workflow

Links to cite the following tools involved in the workflow can be found at https://
untargeted-metabolomics-workflow.netlify.app/08_data-archiving-citation/03_citing-tools/
accessed on (21 February 2023). These tools are regularly updated so it is important to cite
the version used and/or the date accessed:
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All R packages used;

R and RStudio versions;

Proteowizard (SeeMS and MSConvert);

Metaboanalyst;

XCMS online and METLIN;

MassUp;

MassBank (including access date);

ECMDB and any other organism specific metabolite databases used;
KEGG (including BRITE, COMPOUND and PATHWAY);

PubChem;

A data availability statement that links to your archived data (e.g., in MetaboLights).

4. Conclusions

At this point the choice in preparing and analysing metabolomics data is at the
discretion of the research group. This guide is a useful starting point that leads the reader
through an openly available, best-practice, pipeline. Complex data and analytical processes
can be overwhelming, but by engaging in discussion forums, sharing ideas, troubleshooting,
and having access to a community of like-minded researchers these processes can become
more accessible and facilitate exploration of exciting biological questions.
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Chapter 3 : Strain specific metabolic responses of diverse
E.coli lineages to the acquisition of a multi-drug resistant
plasmid.

3.1 Abstract

The antibiotic resistance crisis is presenting increasing numbers of infections that are
near impossible to treat. Conjugative plasmids are the primary disseminators of
resistance genes and have complex interactions with their bacterial hosts which are
not fully understood. Metabolomics is an under-utilised tool that can provide valuable
molecular insight to phenotypic observation. Metabolomics were conducted on 9
Escherichia coli strains from a variety of backgrounds to understand the impact of
acquisition of a multi-drug resistant plasmid pLL35. The impact is subtle and strain
specific. A few key metabolic functions are affected such as ubiquinone biosynthesis,
central energy production and amino acid biosynthesis but the direction and particular

pathways highlighted remain strain specific.

3.2 Introduction

Plasmids are the primary facilitators for the worldwide dissemination of antibiotic
resistance genes (Carattoli, 2013). E.coli cause common infections worldwide and the
plasmid-mediated accumulation of multi-drug resistances are continually reducing the
number of antibiotics able to combat them (Mathers, Peirano and Pitout, 2015;
Stoesser et al., 2016; Dunn, Connor and McNally, 2019). E.coli strain group ST131 is
an opportunistic pathogen of phylogenetic group B2 of high global concern that causes
urinary tract infections (UTIs), bloodstream infections (BSls), intra-abdominal
infections (IAls) and wound infections (Cantén, Gonzalez-Alba and Galan, 2012;
Alhashash et al., 2013; Lee Ventola, 2015; Mathers, Peirano and Pitout, 2015). ST131
is globally the predominant extended spectrum beta lactamase (ESBL) producing
E.coli and is frequently associated with multidrug resistances, including
fluoroquinolone and aminoglycoside resistance (Lahlaoui, Ben Haj Khalifa and Ben
Moussa, 2014; Mathers, Peirano and Pitout, 2015; Bevan, Jones and Hawkey, 2017;

Peirano and Pitout, 2019). This strain is resistant to most available antibiotics and
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forcing hospitals to use last resort antibiotics with increasing frequency such as

ertapenem, with decreasing impact (Peirano and Pitout, 2019).

Plasmid mediated horizontal gene transfer can drive the rapid evolution of multidrug
resistant bacteria (Hawkey and Jones, 2009; Hall, Brockhurst and Harrison, 2017).
Conjugative plasmids can carry large cargoes of accessory genes, including antibiotic
resistance genes, which are beneficial to the bacteria in specific environments
(Norman, Hansen and Sgrensen, 2009). However bacteria-plasmid responses are
highly strain dependent. Previous work has shown that both costs and phenotypic
effects are dependent on the bacterial strain (Johnson et al., 2015; Lang and Johnson,
2015; Takahashi et al., 2015; Porse et al., 2016a; Alonso-del Valle et al., 2021). Either
as a cause or consequence of this the distribution of plasmids can vary significantly
between lineages (Benz et al., 2021). Plasmids have natural compatibility host ranges,
but even within these species, persistence is dependent on strain specific acquisition
costs (Porse et al., 2016a; Prensky et al., 2021).

The interactions between resistance plasmids and their bacterial hosts are complex.
Plasmids induce a diverse range of phenotypic effects in bacteria over and above those
encoded by accessory genes. Impacts can include fithess costs, ranging from
negligible to severe and significant disruption to cellular processes such as altered
expression of hundreds of genes (Coulson et al., 2015; Takahashi et al., 2015; San
Millan et al., 2018). Outside of accessory genes plasmids can increase bacterial-
encoded antimicrobial resistance functions (Shintani et al., 2010; Takahashi et al.,
2015; San Millan et al., 2018; Vasileva et al., 2018), aid in colonisation of bacterial
hosts (Gomez-Duarte and Kaper, 1995; Von Bargen et al., 2009; Coulson et al., 2015;
Schaufler et al., 2016; Ronin et al., 2017; Ranjan et al., 2018) increase virulence (Song
et al., 2013; Patton et al., 2018; San Millan et al., 2018; Vasileva et al., 2018) and
facilitate utilisation of novel or alternative energy sources (San Millan et al., 2018; Dunn
et al., 2021). These phenotypic traits may promote survival of the bacterium and
therefore plasmid vertical transmission (Billane et al., 2022). Other plasmid associated
traits meanwhile may promote plasmid fithess in a way that does not necessarily align
with bacterial host fitness. For example a reduction of bacterial motility, increase in
biofilm formation and inactivation of competitive bacterial T6SS, increasing the
likelihood of bacterial cell to cell contact and therefore successful plasmid

conjugation(Matsumoto et al., 1998; Valle et al., 2008; Shintani et al., 2010; Parashar
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et al., 2013; Lang and Johnson, 2015; Takahashi et al., 2015; Schaufler et al., 2016;
Jiang et al., 2017; Vasileva et al., 2018; Huang et al., 2020). Understanding the
relationships between plasmid-bacterial interactions across diverse strains can thus
help to inform how bacteria respond to plasmid acquisition and importantly, what

conditions favour their loss and maintenance.

The success of infection-causing E.coli can be partially explained by narrow host range
IncF group plasmids, which are large 100-150 kbp plasmids Ilimited to
Enterobacteriaceae and have contributed significantly to the resistance levels
(Mathers, Peirano and Pitout, 2015). Initial acquisition of IncF plasmids is thought to
be costly but some plasmid and strain pairings appear to be more suited than others
(Dunn, Connor and McNally, 2019). To promote their own maintenance, IncF plasmids
use post-segregational killing and addiction systems but also carry many resistance
genes which provide great survival benefits under antibiotic pressure (Mathers,

Peirano and Pitout, 2015; Bevan, Jones and Hawkey, 2017).

IncF group plasmids can contain blactx-m genes which produce enzymes that inactivate
B-lactams (third and fourth generation cephalosporins and monobactams) by
hydrolysis, thereby rendering the most frequently prescribed antibiotics in the world
impotent (Lahlaoui, Ben Haj Khalifa and Ben Moussa, 2014; Peirano and Pitout, 2019).
blactx-m genes originate from Kluyvera spp. but mobilised and transferred into other
Enterobacteriaceae, which, since the early 2000s they have proliferated into some of
the most treatment resistant infections (Canton and Coque, 2006). BlacTx-m-15, part of
the BlacTtx-m-1 subfamily, was first described in 2001 and now the most prevalent
variant, alongside Blacrx-m-14 (Bevan, Jones and Hawkey, 2017).

Previous work investigated the impact of MDR plasmid carriage on diverse strains of
Escherichia coli. The plasmid pLL35, a 106kb incFIl ESBL plasmid originally isolated
from Klebsiella pneumoniae, was introduced to 9 strains spanning a diversity of
lineages (Dunn et al., 2021). Dunn et al. 2021 showed that while the plasmid was stably
maintained in all strains, acquisition induced variable responses at all biological levels
studied. Most strains showed very little impact on bacterial growth but for some growth
rate was significantly reduced while others actually increased growth rate after
acquiring the plasmid. Similarly, the plasmid conferred different levels of resistance to
the beta-lactam, Cefotaxime. However when transcriptomics were conducted the
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number of genes significantly altered by plasmid acquisition was surprisingly low and
did not correlate to the growth impact or resistance (Dunn et al., 2021). There was a
consistent subtle differential regulation across the transcriptome, targeting a wide
variety of bacterial functions including the cell wall, signal transduction, cell motility,
energy production and conversion and carbohydrate transport and metabolism (Dunn
et al., 2021). How these changes relate to observed phenotypic responses to plasmid
carriage is unclear, meaning that the effects of plasmid carriage on hosts requires

further interrogation.

Arange of transcriptomic studies showed the most commonly altered genes by plasmid
presence were metabolism related, suggesting metabolomic perturbations associated
with bacterial acclimatisation to plasmid carriage (Shintani et al., 2010; Lang and
Johnson, 2015; Takahashi et al., 2015; San Millan et al., 2018; Vasileva et al., 2018).
However, very few metabolomics studies have focused on the impact of plasmid
acquisition on a bacterial host (Lang and Johnson, 2015; San Millan et al., 2018). San
Millan et al (2018) found in Pseudomonas aeruginosa, metabolic evidence of increased
RNA synthesis and differential metabolism of glutamine, central energy metabolites
such as NADPH and citric acid, and coenzymes such as Pyridoxal-5" phosphate (San
Millan et al., 2018). Metabolomics, as the molecular basis of function, can add a level
of biological detail inaccessible to genomics or transcriptomics to explain phenotype
(Wang et al., 2016; San Millan et al., 2018; Ares-arroyo et al., 2022). The sensitivity of
metabolomics can also identify flux in complex networks and add statistical strength to

findings with other omics (Ares-arroyo et al., 2022; Rados et al., 2022).

Contemporary omic research tends to focus on laboratory strains, (Billane et al., 2022)
therefore this study emphasised clinically relevant ST131 strains (clades A, B and C)
of Escherichia coli, as well as the laboratory strain MG1655 and environmental E.coli
from lineages in which multidrug resistance (MDR) plasmids have never been reported
(Dunn et al., 2021). Here we use untargeted metabolomics to obtain a comprehensive,
unbiased view of the metabolic profiles of diverse E.coli strains after acquisition of a

plasmid, pLL35. Originating from Klebsiella pneumoniae, this plasmid encodes
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multidrug resistances, including beta lactams, aminoglycosides and quinolones (Table
3.1) (Fig 3.1). PLL35 is 106 kb long and belongs to the incFII(K)-9 plasmid group.
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Figure 3.1 Schematic of pLL35, a 106kb IncFlI(K)-9 plasmid, originating from Klebsiella
pneumoniae belonging to ST45. The plasmid encodes full conjugation machinery and
contains resistance to beta-lactams (blaCTX-M-15 and blaTEM-112), aminoglycosides (aacA4,
aacC2 and aacA1l) and quinolones (gnrS1). The OXA-9 gene is truncated by a stop codon. The
schematic is the work of Dr. S Dunn (Dunn et al., 2021).
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3.3 Methods
Mass Spectrometry

This study used a total of 9 Escherichia coli strains (Table 3.1). After undergoing
conjugation with the 106kbp pLL35 FIlI (K)-9 multidrug resistant plasmid (work by Dr.
Carrilero) each strain has a plasmid carrying and plasmid free version (Dunn et al.,
2021).

Table 3.1 E.coli strains used in this experiment and their origins.

Strain | E.coli clonal group Source
F022 ST131 Clinical bacteremia
FO37 ST131 Clinical bacteremia
FO47 ST131 Clinical bacteremia
F048 ST131 Clinical bacteremia
FO054 ST131 Clinical bacteremia
FO0104 ST131 Clinical bacteremia
ELU39 ST1122 River effluent
GU15 ST394 River effluent
MG1655 K-12 Laboratory strain

Full methods are described in chapter 2. The bacteria were grown in nutrient broth at
37°C, 180 rpm to mid-exponential phase, isolated and frozen at -80°C. The samples
were prepared for mass spectrometry with chloroform and methanol. Untargeted
metabolome analysis was performed using HPLC-QToF MS to identify differentially
expressed bacterial metabolites between bacteria with or without the MDR plasmid
pLL35. The samples (50ul) were introduced to the Waters G2/G2Si Synapt mass
spectrometer. The instrument settings are detailed in the supplementary material (S3).
HPLC-QToF MS was performed using the aqueous phase of the samples for DESI MS

in positive mode, with a scanning range of 50-1200m/z over 3 minutes.

Data Processing and Analysis

All data processing and analysis followed a standardised methodology based on
open-source software, developed and collated into a full guide by the author and
peers (https://untargeted-metabolomics-workflow.netlify.app/ accessed on 27 January
2023) (Parker et al., 2023).

All raw data files were converted to mzML format using the Proteowizard software
MsConvert. XCMS online was used for peak alignment and retention time correction
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(parameters 84500, S3). An average was taken of the technical replicates and output
XCMS data tidied in R (https://untargeted-metabolomics-workflow.netlify.app/). After
peak alignment and retention time correction, over 1000 features were present in every
profile. The data was processed to allow comparison of relative metabolite intensities
in multigroup analyses across all strains and conditions. Additionally, a series of
pairwise analysis by strain were conducted to analyse the relative amount of
metabolites present in the ‘plasmid carrying’ and ‘plasmid free’ proflies thereby
excluding metabolites arising from plasmid transcription and focusing solely on the

bacterial metabolome.

Metaboanalyst was used to perform statistical analysis. Data was normalised with

pareto scaling (Figure S3.2 and S3.3).

This study employs random forest analysis, a bootstrapping algorithm which combines
ensemble learning methods with the decision tree framework to create multiple
randomly drawn decision trees from the data and averaging the results. This analysis
produces strong predictors of grouping, or treatment, ranked by variable importance.

The analysis ran with 7 predictors and 500 trees.

Metabolites are reported if present in all 5 biological replicates and for fold change
data, must meet or exceed a threshold of +/- 2.0 were reported. Here we define
‘significance’ as metabolites that have been differentially expressed by a fold change
= +/- 2.0.

Any metabolites highlighted in statistical analysis were putatively identified using
METLIN, KEGG and ECMD .The databases METLIN or ECMD were searched with the

m/z values, and must be agreed upon by with the KEGG pathway metabolism map for

E.coli in order to be reported.
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3.4 Results

Strain specific metabolic variability.

Random Forest analysis demonstrated that strain differences dominate the variation
between isolates and are greater than the impact of plasmid carriage. Of the 20 most
variable masses across the dataset, just 3 were associated with plasmid carriage (Fig
3.2, plots 1, 8 and 9. Table 3.2). Overall global metabolic profiles suggested differences
between strains from different ecological backgrounds with environmental and lab
strains (ELU39 and GU15) appearing to be distinct from the clinical strains (Fig 3.3)
The metabolic signature of environmental strain ELU39 in particular is different to the
rest of the strains (Fig 3.3), consistently demonstrated in the discriminating mass bins
for the whole dataset (Fig 3.2, plots 4,5,8,9,12,16,17,19). However, variability between
strains was driven more by large differences in specific metabolites as overall by strain,
the metabolism of plasmid carriers were very similar to plasmid free bacteria (Fig S3.1).
For example, in a principal component analysis the majority of the variation along PC1
is driven by clinical strain F022, for which 107 metabolites were greatly upregulated
compared to other strains (Fig 3.4), including 4 of the top 20 mass bins as highlighted
by a Random Forest analysis (Fig 3.2). FO22 carries 8 copies of an IS element which
likely account for this very different profile. This interrupted the gene IrhA, which is a
negative regulator of classes 1, 2 and 3 of the flagellar biosynthesis regulons (Dunn et
al 2021).

Plasmid acquisition was characterised by subtle, strain specific variation, affecting a
comparatively small proportion of the metabolome; <1% of the metabolome
significantly altered in 8 of 9 strains. Environmental strain ELU39 has the largest
response to the plasmid with 1.36% of the metabolic profile significantly altered.

The strains represent a continuum of metabolic responses. Some strains showed
strong trends towards upregulation (E.g , ELU39 with 17 upregulated and 2
downregulated) while others showed strong downregulation (F047 with 1 upregulated
and 11 downregulated) (Fig 3.5). Both of the environmental strains favour upregulation.
In other cases strains showed mixed (E.g strain F104 with 3 upregulated and 4
downregulated) or minor responses (E.g F022, FO37 and F048 had 3, 2 and 1
significant metabolites respectively) (Fig 3.5).
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The specific masses affected by plasmid carriage were largely specific to each strain.
A total of 51 unique mass values were significantly differentially up or down regulated
by plasmid acquisition, 46 of these were strain specific (Table S3.1). Only 7 unique
masses could be identified and among these there is some functional parallelism
where the same pathways are implicated in different strains and at times from different
metabolites. At a detected mass level 5 masses are significant in up to 5 strains
although functional categorization could not always be assigned. For instance, M/z
136.0858 was upregulated in 4 strains FO37, F104, ELU39 and GU15, notably over
10-fold in F104 (FC 10.96) and ELU39 (FC 11.74) (Table 3.2). These masses are also

not consistent in direction, emphasising strain specificity.

Three main pathways stand out among the metabolites affected by plasmid

carriage.
Ubiquinone biosynthesis

4-Hydroxy-3-polyprenyl benzoate (ppm36) was significantly affected in 4 strains (F022,
F047, FO54 and F104) (Table 3.2, Fig 3.6) and was the first hit in the Random Forest
analysis (Fig 3.2 plot 1). As a result of plasmid acquisition this metabolite was
upregulated in 3 strains, most notably by nearly 10-fold in FO54, (FC 9.473) and
downregulated in F047 (FC 0.37) (Table 3.2). 4-Hydroxy-3-polyprenyl benzoate is a
key component of the ubiquinone biosynthesis pathway and is a precursory compound
to ubiquinol. Furthermore, some of the potential identifications for the M/z 147.064 38,
which is downregulated in F022, are Benzyl-alcohol and 4-Cresol (ppm 39) (Table 3.2),
both part of the toluene degradation pathway which is linked to ubiquinol as an
alternative parent compound (Jindrova et al., 2002).

Central energy production

Masses linked to central carbohydrate metabolism were down regulated in 2 strains
(FO47 and F054) in response to plasmid carriage. The metabolite D-Glyceric acid (ppm
36) was downregulated in FO47 (FC 0.45) which is part of the pentose-phosphate
pathway (Table 3.2). Methylamine (ppm 5) is upregulated in strain F054 (FC 2.03). This
metabolite is part of the methane metabolism pathway but is also linked to D-Glyceric
acid as a precursor (Table 3.2) (KEGG).
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Amino acid biosynthesis

Amino acid metabolism was associated with several significant metabolites. The
metabolite N6-Acetyl-L-Lysine (ppm 25) is part of the lysine degradation pathway and
is downregulated in F104 (FC 0.49) but upregulated in MG1655 (FC 2.19) (Table 3.2).
There were 2 potential identifications for this mass, the second is decanoate (ppm37),

a fatty acid (Ecocyc).

The mass 136.13162 was identified as creatinine (ppm 22) and was significantly
altered in 5 strains: F048 (FC 0.11), FO54 (FC 15.62), F104 (FC 2.74), GU15 (FC 0.09)
and ELU39 (FC 0.29). This metabolite is linked to the arginine and proline metabolism
pathway (Table 3.2 Fig 3.6). The response to plasmid carriage in this metabolite was
the most extreme observed across the strain collection, being both the most highly
upregulated (>15 fold in clinical strain FO54) and the most strongly down regulated
(>10 fold in environmental strain GU15). The plasmid induces downregulation of
creatinine in both environmental strains and F048 but is upregulated in the other two
clinical strains F054 and F104.
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Figure 3.2. The average ion intensities for discriminatory mass bins under 500 Da for all strains with and without the plasmid, from the results of a Random
Forest analysis. Strain names are shortened as follows: F104 = 104, F022 = 22, FO37 = 37, FO47 = 47, F048 = 48, F054 = 54, ELU39 = EL, GU15 = GU and
MG1655 = Mg. The symbols — and + indicate plasmid free and plasmid carrying respectively.
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Figure 3.3 A Heatmap showing the full metabolic profiles of 9 strains of Escherichia coli.
Intensities of detected masses have been scaled -3 to +3. Each strain is in a plasmid free (-)
and pLL35 plasmid containing (+) conditions. The biological replicates for each strain have
been pooled.
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symbolises plasmid carrying. The separation in the above plot is caused by the lineage difference of strain F022.
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Figure 3.5 Fold change maps highlighting the masses (m/z) that cross the fold change
threshold of 2.0 when the plasmid free and plasmid carrying bacterial metabolisms are
compared on an individual strain basis.



Table 3.2 — Results from the pairwise ‘plasmid free’ and ‘plasmid containing’ analyses by strain. Mass values with a Fold Change of 2.0 or greater between the
2 treatment groups. Those with putative Identifications have been included here, full table in supplementary (Table S3.1)

Adduct
+Compound Monoisotopic | Chemical Fold
Strain Mass ID KEGG | ppm | Adduct M/Zz Mass Formula Change log2(FC)

F054 70.005 Methylamine C00218 5 M+K 70.0054 31.0422 CH5N 2.0299 1.0214

F048 136.13162 Creatinine C00791 22 M+Na 136.0481 113.0589 C4H7N30 0.11428 -3.1294

F054 136.13162 Creatinine C00791 22 M+Na 136.0481 113.0589 C4H7N30 15.621 3.9654

F104 136.13162 Creatinine C00791 22 M+Na 136.0481 113.0589 C4H7N30 2.7381 1.4532

ELU39 136.13162 Creatinine C00791 22 M+Na 136.0481 113.0589 C4H7N30 0.28535 -1.8092

GU15 136.13162 Creatinine C00791 22 M+Na 136.0481 113.0589 C4H7N30 0.085993 -3.5396

F022 147.06438 Pyrazinic acid C19915 10 M+Na 147.0165 124.0273 C5H4N202 0.42509 -1.2342

Benzyl-alcohol C00556 39 M+K 147.0207 108.0575 C7H80
4-Cresol C01468 39 M+K 147.0207 108.0575 C7H80
F104 211.1012 N6-Acetyl-L-Lysine C02727 25 M+Na 211.1053 188.1161 C8H16N203 0.49985 -1.0004
Decanoate C01571 37 M+K 211.1077 171.1385 C10H1902
MG1655 211.1012 N6-Acetyl-L-Lysine Cc02727 25 M+Na 211.1053 188.1161 C8H16N203 2.1908 1.1315
Decanoate C01571 37 M+K 211.1077 171.1385 C10H1902

F054 248.12694 Tetradecanoate 1" M+Na 248.1747 225.1855 C14H2502 0.4625 -1.1125

F047 251.06503 D-Glyceric acid C00258 36 M+H 251.0074 250.0002 C6H10Ca08 0.4477 -1.1594
4-Hydroxy-3-

F047 275.12669 polyprenylbenzoate C05848 36 M+H 275.1642 274.1569 C17H2203 0.37122 -1.4297
4-Hydroxy-3-

F104 275.12766 polyprenylbenzoate C05848 36 M+H 275.1642 274.1569 C17H2203 2.9549 1.5631
4-Hydroxy-3-

F054 275.13172 polyprenylbenzoate C05848 36 M+H 275.1642 274.1569 C17H2203 9.473 3.2438
4-Hydroxy-3-

F022 275.13489 polyprenylbenzoate C05848 36 M+H 275.1642 274.1569 C17H2203 2.2185 1.1496
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3.5 Discussion

Plasmid carriage induces subtle, strain specific metabolome rewiring in E.coli.

Untargeted metabolomic analysis showed a diverse set of E.coli strains have highly
variable metabolic profiles. The response of these strains to the acquisition of an MDR
ESBL plasmid, pLL35, is subtle and strain specific that affected both divergent and
shared metabolic pathways. Common pathways impacted by the plasmid related to
central energy metabolism, amino acid metabolism and ubiquinone biosynthesis.
Among common metabolites, direction of impact was also contingent on the specific

strain.

Untargeted metabolomic analysis showed that the response to the acquisition of the
plasmid pLL35 by E.coli is contingent upon the specific strain, aligning with previous
research. In the study conducted by Dunn et al 2021; the plasmid was stably
maintained in all strains, but otherwise induced variable responses in resistance to
cefotaxime, growth and transcriptomic effects (Dunn et al., 2021). There was a
consistent subtle differential regulation across the transcriptome, the most altered of
which were associated with; the cell wall, signal transduction, cell motility, energy
production and conversion and carbohydrate transport and metabolism (Dunn et al.,
2021). While each strain has a unique metabolic profile, there are some common
functions. Broadly, the results indicate that the plasmid affected central energy

metabolism and alternative energy sources for cellular function and growth.

Key metabolic processes affected by plasmid acquisition across strains were the
ubiquinone biosynthesis pathways, central energy metabolism and amino acid
metabolism (Table 3.2). In 4 strains; F022, FO47, FO54 and F104, the ubiquinone
biosynthesis pathway is highlighted. Ubiquinone is one of three quinones in E.coli and
is involved in aerobic respiration (Aussel et al., 2014; Nitzschke and Bettenbrock,
2018). Ubiquinone biosynthesis is a highly conserved pathway because it is essential
for aerobic growth, gene regulation and oxidative stress adaptation. The other
quinones are for anaerobic respiration, allowing E.coli to switch between the two
(Nitzschke and Bettenbrock, 2018; Arias-cartin et al., 2023). 3 of the strains; F022,
FO54 and F104 had this pathway upregulated, suggesting a greater rate of energy
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production. In FO47 this same pathway was downregulated, but this compliments the
transcriptomics which revealed an upregulation of anaerobic genes, suggesting a
switch to anaerobic respiration (Dunn et al., 2021).

F047 has the largest metabolic response of the clinical strains and is skewed towards
downregulation. A decrease in D-glyceric acid may reflect lower levels of glycolysis,
the pentose phosphate pathway or the TCA cycle which could be an indication of
stress-induced energy conservation (Wang et al., 2016; Zhao et al., 2019). F047 also
had lower levels of cefotaxime resistance, reduced growth and the biggest
transcriptional response (Dunn et al.,, 2021). The transcriptome indicated an
upregulation of stress responses, metabolic transport genes, anaerobic respiration
genes and the repressor (marR) of the mar antibiotic resistance and oxidative stress
response regulon, although this regulon itself was not significantly impacted (Dunn et
al., 2021).

Methane metabolism, fatty acid metabolism and metabolism of alternate sources of
energy were also affected pathways (Table 3; Jindrova et al., 2002; Guo AC et al.,
2012). Fatty acid metabolism is highlighted in strains F054, F104 and MG1655, and is
linked to ubiquinone (Agrawal et al., 2017). Long chain fatty acids are a source of
energy for E.coli but induce oxidative stress, something that ubiquinone helps to
counteract through reduction into ubiquinol because it is an electron carrier in the
electron transport chain (Agrawal et al., 2017). Of the strains in which the ubiquinone
biosynthesis pathway was highlighted, only FO54 and F104 demonstrate significance
in fatty acid metabolism.

Nonetheless, parallel responses are seen repeatedly throughout this dataset in the
metabolites impacted by the plasmid. Selection pressures tend to affect bacteria by
targeting function and not genes, so it follows that there are commonly affected
pathways across strains (Wang et al., 2016). While common areas of the metabolism
are affected, the direction of change caused by the plasmid is strain specific. In multiple
cases the same detected mass, significant in several strains, has displayed both
upregulation and downregulation, depending on specific strain. For example,
creatinine was identified in 5 strains, upregulated in 2 strains and downregulated in 3
(Table 3.2).
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Together the metabolic responses seen in this study may be reflective of stress and
energy conservation. Signs of stress in E.coli often involve energy metabolism, as
energy is a requisite resource for overcoming the underlying stressor (Zhao et al.,
2019). Among others, arginine and proline metabolism, methane metabolism,
glycolysis and the TCA cycle are all metabolic markers of stress in E.coli (Zhao et al.,
2019) and together may indicate a strategy of energy conservation or utilisation of
alternative energy sources. This ability to acclimate using a metabolic network that can
produce energy from lots of different sources and have a responsive regulatory system

to enable this is an E.coli survival strategy (Ishii et al., 2007).

The metabolomic data revealed trends in response to the plasmid related to ecological
background of the strains that were not apparent from the transcriptomics. For instance
the metabolome of the environmental strains ELU39 and GU15 responded similarly to
each other in masses affected and direction of change. Interestingly ELU39 had a
negligible change in growth rate and no significantly differentially expressed genes and
yet had the biggest metabolic response of the dataset. GU15 has a greater reduction
in growth than ELU39 but a smaller response metabolically, suggesting ELU39 may
be better suited to respond to energy demands of the plasmid (Figure 3.5) (Dunn et
al., 2021). The different response of the two environmental strains may be partially
explained by the likelihood that these strains and the plasmid would encounter each
other. Using naturally occurring combinations gleans different results, therefore
predictions based on laboratory strains may not be transferable to real-world scenarios
(Alonso-del Valle et al., 2021).

It is generally thought that when E.coli acquires a plasmid there will be a reduction in
fitness thanks to re-directed transcription and translation machinery away from
chromosomal operons, and that following this the plasmid will be degraded or adaptive
mutations will ameliorate costs (Dunn, Connor and McNally, 2019). However overall,
Dunn et al reports a very low proportion of the transcriptome differentially expressed
upon plasmid acquisition, and a small but varied growth response. GU15 and F047
displayed reduced growth and F022 and FO037 increased growth rate after acquiring
the plasmid. However, the scale of the transcriptomic response did not correlate to the
growth impact (Dunn et al., 2021). In all cases, only a small fraction of the metabolome

is changed in response to plasmid acquisition, concurring with the subtle effect seen
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in the transcriptomics. Since conjugation of plasmids belonging to incF are limited by
strain it cannot be ruled out that pLL35 has encountered E.coli before, despite
originating in K. pneumoniae, and has therefore already evolved for minimal disruption
(Benz et al., 2021). Alternatively, the clinical strains may already be more generally
adapted to plasmid carriage, if they carried other plasmids before conjugation of
pLL35, although at the time of conjugation, the strains contained no other MDR
plasmids (Dunn et al., 2021). Plasmid presence can increase bacterial permissiveness

to further plasmid carriage (San Millan, Heilbron and MacLean, 2014).

A strain specific, low impact of plasmid acquisition is not surprising given a growing
body of research demonstrating minimal fithess consequences of MDR plasmids on
E.coli (Fischer et al., 2019). This is repeated in other studies featuring non-lab strains,
highlighting the importance of studying these interactions in ecologically relevant
contexts (Alonso-del Valle et al., 2021).

Hernando-amado suggests genetic elements dictate the extent of a resistance
plasmid’s impact and that effects of plasmid acquisition could be positive as well as
deleterious (Hernando-amado et al., 2017). E.coli has a robust metabolic network that
can re-route in response to perturbations in its environment, consequently metabolic
impact is smaller than might be expected, which could also explain why the plasmid
does not have large phenotypic effects (Ishii et al., 2007). Furthermore, a multi-omic
study noted that changes in mMRNA and regulation of energy within E.coli were effective
enough that metabolite levels did not change a great deal, nor in particular patterns
(Ishii et al., 2007).

Identification of metabolites is an area widely recognised as challenging due to highly
variable MS techniques, machines and individual sample properties like retention time
in LC/MS. Although databases are improving, it is currently lagging behind other omics
technologies (Blazenovi¢ et al., 2018; Chaleckis et al., 2019). This raises the question
of whether m/z values which are only a few decimal places different, such as 136.0858
and 136.13162 (Table S3.1) could be the same metabolite, or a very similar one.
Although mass spectrometry measurements are very precise, secondary metabolites
are highly variable in structure, and overlap of the strains in which these m/z are

differentially present (+/- 2.0 FC) compared to plasmid containing groups may not be
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a coincidence, especially given the robust replication of the measurements. Although
the patterns in this data are backed by robust replication, better identification may

strengthen trends seen so far.

Together the results of untargeted metabolomics show acquisition of a large multidrug
resistant plasmid in a diverse set of E.coli strains has subtle effects that impact central

energy metabolism in strain specific ways that may indicate metabolic stress.

Future research should consider variable responses to plasmid acquisition in a
community context. Genotype by environment interactions allow the maintenance of
even deleterious alleles (Hasik and Siepielski, 2022), which can help to explain why
variation in fitness for plasmid and bacteria combinations allows for plasmid
persistence. Theoretically, even when a plasmid induces a fitness cost, plasmid by
bacteria fitness variation and bacterial genotype by environment interactions allow for
the maintenance of plasmids within a population. In eukaryotic hosts, parasite-
mediated variation in fitness is a driving factor of selection (Hasik and Siepielski, 2022),
the genetic parasitism of plasmids may play a similar role in bacteria. A small plasmid
impact on its bacterial host has a place in the spectrum between being too costly which
drives the loss of the edge accessory genes provided as alternative resistance
mechanisms are favoured (Bottery, Wood and Brockhurst, 2017), and positive impacts

which certainly exist (Dunn et al., 2021) but may be less likely.
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Chapter 4 : Strain specific/limited parallelism responses to
coevolution and antibiotic selection of diverse E.coli
lineages with a multidrug resistant plasmid.

4.1 Abstract

The antibiotic resistance crisis is costing increasing numbers of lives due to the
dissemination of multidrug resistant bacterial strains. This study conducts untargeted
metabolomics on 3 E.coli strains from the endpoint of an evolutionary experiment
having co-evolved with a plasmid, with and without cefotaxime selection. Metabolic
profiles varied by strain but showed parallelism across evolutionary treatment within
strains. The clinical strain had some of the most variable metabolic profiles. cCAMP was
a notable exception to the unique metabolic impacts across strains. Coevolution with
a plasmid altered amino acid metabolism and energy utilisation, while antibiotic

selection displayed stress responses related to the beta-lactam mechanism of action.

4.2 Introduction

Antibiotic resistance is a worldwide crisis set to claim increasing numbers of human
lives with untreatable infections (Lee Ventola, 2015). Conjugative plasmids are the
primary disseminators of resistance genes thus exacerbating this crisis. Of particular
concern are multidrug resistance (MDR) plasmids that can carry multiple resistance
genes often against different antibiotic classes and transfer horizontally across
bacterial species barriers (Hall, Brockhurst and Harrison, 2017). The emergence of
MDR lineages can therefore occur in a single evolutionary event, presenting an
extreme clinical challenge to find optimal treatment and to keep antibiotics effective for
the long term (MacLean and San Millan, 2019; Peirano and Pitout, 2019; Wu et al.,
2019).

Nevertheless, acquiring an MDR plasmid often comes at a fitness cost to the cell, such
costs may arise due to a wide range of causes including physiological burden and/or
genetic conflicts. The persistence of plasmids in bacterial populations has historically

been termed the ‘plasmid paradox’ because evolutionary theory suggests plasmid loss

73



should occur over time due to purifying selection acting on the cost of carriage
(Harrison and Brockhurst, 2012).

Many studies to date have shown that this paradox is often resolved via the co-
evolution of bacteria and plasmids. Specifically genetic amelioration of costs
(Brockhurst and Harrison, 2022), where compensatory mutations to ameliorate the
cost of plasmid carriage occur in the chromosome, plasmid or both (Hall et al., 2021).
Amelioration can take the form of mutations to increase fitness, lose costly functions
and to resolve genetic conflict (Porse et al., 2016b; Hernando-amado et al., 2017; Hall
et al., 2021). An example of this was revealed in E.coli carrying a tetracycline
resistance plasmid, where plasmid costs were compensated by mutations to acquire
chromosomal resistance and impairing plasmid encoded resistance machinery
(Bottery, Wood and Brockhurst, 2019). Compensation can also occur through changes
to transcription. For example through increased virulence, colonisation or energy
production (Ranjan et al., 2018; San Millan et al., 2018; Vasileva et al., 2018; Billane
et al., 2022). Coevolution with plasmids in P. aeruginosa induced fitness costs but
these were rapidly and repeatedly compensated by mutations to a bacterial regulatory
system (GacA/GacS), which then counteracted the genetic conflict, an example of a
combination of genetic mutation with downstream transcriptional effects (Harrison et
al., 2015; Hall et al., 2021). Compensation can sometimes take place through
metabolic mechanisms, as demonstrated in Haemophilus influenzae. Coevolution with
a ColE1-like plasmid pB1000 demonstrated amelioration could in part be achieved by
host alterations to the expression of certain metabolic pathways, such as amino acid

metabolism (Ares-arroyo et al., 2022).

As an alternative solution to the paradox, the plasmid may also enable horizontal
transfer through differential regulation by increasing biofilm formation and conjugation
and decreasing bacterial motility and anti-competitor systems, potentially costly
mechanisms to the bacterial host (Parashar et al., 2013; Jiang et al., 2017; Venanzio
et al., 2019; Huang et al., 2020; Billane et al., 2022).

Compensatory evolution has now been observed across a wide range of bacteria-

plasmid associations, but the physiological basis of amelioration is poorly understood.
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Moreover, whether the same pathways of amelioration for a given MDR plasmid are

taken in genetically diverse bacterial strains is unclear.

This chapter uses untargeted metabolomics to better understand the evolutionary
responses of E.coli strains following the acquisition of a multidrug resistant plasmid,
pLL35 encoding the extended-spectrum beta lactamase Blacrx-m-15 which provides
resistance to cefotaxime. In a previous study, 5 genetically diverse E.coli lineages
carrying pLL35 were experimentally evolved for approximately 700 generations with or
without cefotaxime selection, alongside plasmid free controls (Carrilero, Dunn and
Moran, 2023). Here, the metabolomes of the endpoint evolved populations from 3 of
the E.coli strains: the lab strain MG1655, the clinical strain F022, and the
environmental strain ELU39 are analysed. In each of these strains, the initial gain of
pLL35 caused a fitness cost associated with strain specific transcriptional changes
(Dunn et al., 2021).

After 700 generations of evolution the plasmid was maintained in all populations and
MG1655 and F022, but not ELU39, had improved in fitness relative to the plasmid
carrying ancestor. Populations evolved with sub-MIC antibiotic selection with
cefotaxime had a higher performance across growth kinetics than evolved plasmid free
clones (Carrilero, Dunn and Moran, 2023). Resistance levels to cefotaxime did not vary
with strain or selection and were largely unchanged but decreased in some plasmid
carrying replicates of MG1655 due to upregulation of H-NS and downregulation of the

resistance gene Blactx-m-15 (Carrilero, Dunn and Moran, 2023).

Genome sequencing of the endpoint evolved clones revealed a range of functions
targeted by selection in plasmid-carriers not observed in the plasmid-free controls,
suggesting that these may be involved in compensatory evolution. Among
chromosomal mutations in plasmid carriers evolved with and without antibiotic
selection, 22% of single nucleotide variations (SNVs) were parallel. The number of
nonsynonymous mutations remained consistent across strains and evolutionary
conditions. 14 loci were non-synonymously mutated in one or more evolved clones,
involving genes related to cellular metabolism, regulation of mobile genetic elements,

and conjugation (Carrilero, Dunn and Moran, 2023).
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Many of these functions were involved in metabolism. The functions of the loci mutated
in more than one independently evolved clone affected core metabolic functions such
as glycerol metabolism, the arginine transporter in F022 and ELU39, fatty acid
metabolism in ELU39 and stress response sigma factor in MG1655. MG1655 had
several strain specific mutations in aromatic compound metabolism. Other single SNVs
mostly related to transcriptional control or metabolism. In MG1655 and ELU39, the
transcriptional regulator controlling expression of the NhaA Na+/H+ antiporter protein
was mutated, which controls intracellular pH (Dimroth, 1987; Carrilero, Dunn and
Moran, 2023).

Transcriptional analysis of the endpoint evolved MG1655 clones revealed extensive
downregulation in plasmid carriers, impacting functions such as cellular structure and
motility, DNA damage response, efflux mechanisms, lipopolysaccharide (LPS)
production, outer membrane function, and biofilm formation (Carrilero, Dunn and
Moran, 2023).

This chapter builds on the work in Chapter 3 which investigated the immediate
metabolic response to plasmid acquisition, extending this analysis to understand how
evolution acts to resolve plasmid-mediated disruptions of cellular metabolism. This
work found that plasmid acquisition had a subtle, strain specific effect. Relatively
among the strains, the clinical strain had a low response, and the lab strain had an
intermediate response, however both were <1% of the recorded metabolome. The
environmental strain ELU39 had the highest metabolic response to plasmid
acquisition, which impacted 1.36% of the metabolome. Upon acquisition of the plasmid
the transcriptional response was also low, but much more significant in the evolved
lines, therefore more pronounced metabolic effects may be expected. Of the identified
functions in the previous chapter, there was no commonality between the 3 strains,
suggesting E.coli from different lifestyles may have different metabolic responses to

co-evolution with a plasmid.

Given the predominance of metabolic functions as targets of putative compensatory
evolution following gain of pLL35 across all 3 strains (Carrilero, Dunn and Moran,
2023), this chapter conducted untargeted metabolomics on 3 evolved strains from the
end point of the evolution experiment; clinical F022 strain, environmental ELU39 strain

and lab strain MG1655. More generally, the work in this chapter expands the
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application of metabolomics to experimental evolution, where previously it has proven
valuable in giving a more comprehensive and nuanced view of evolutionary responses

than genomics alone (San Millan et al., 2018; Ares-arroyo et al., 2022).
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4.3 Methods

Mass Spectrometry

This study used a total of 3 Escherichia coli strains representing 3 environmental
backgrounds (Table 4.1).

Table 4.1 Strain types and origins of the E.coli strains used in this chapter

Strain E.coli clonal Source
group
F022 ST131 Clinical bacteremia
ELU39 ST1122 River effluent
MG1655 K-12 Laboratory strain

These strains represent the endpoint of an evolution experiment conducted by Dr.

Laura Carrilero (please see Carrilero, Dunn, Moran 2023 for full methodology). 5

independent colonies from each of the E.coli strains were isolated as the ancestral
state from which all further cultures were taken. The 106kb FII(K)-9 multidrug
resistance plasmid pLL35 was conjugated from Klebsiella pneumoniae in static culture
into the E.coli strains to obtain 5 independent transconjugants per strain. Liquid NB
cultures were inoculated with the transconjugants and grown at 37°C for 24 hours to
create replication. The MIC varied by strain; FO37 had the lowest at ~750mg/L, and
several other strain exceeded 2000mg/L (Fig1 of Dunn et al., 2021). The evolution
experiment ran 5 independent lines of the strains with 4 biological replicates; plasmid-
free clones as the control group, and plasmid-carrying clones in 2 conditions, with or
without 4mg/ml cefotaxime treatment. This resulted in 75 lines that were serially

transferred daily for a total of 84 days.

The 5 clones of each evolved line of the 3 E.coli strains used here were, with 4
biological replicates, grown in nutrient broth at 37°C, 180rpm to mid-exponential phase,
isolated and frozen at -80°C. The samples were prepared for mass spectrometry with

chloroform and methanol following the method described in chapter 2.
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The samples (50ul) were introduced to the Waters G2/G2Si Synapt mass
spectrometer. The instrument settings are detailed in the supplementary material (S4).
HPLC-QToF MS was performed using the aqueous phase of the samples for DESI MS

in positive mode, with a scanning range of 50-1200m/z over 3 minutes.
Data Processing and Analysis

All data processing and analysis followed methodology developed into a user-friendly
guide and based on open-source software (Parker et al., 2023) (https://untargeted-

metabolomics-workflow.netlify.app/ accessed on 27 January 2023).

All raw data files were converted to mzML format using the Proteowizard software

MsConvert. XCMS online was used for peak alignment and retention time correction
(parameters detailed in supplementary_location). An average was taken of the
technical replicates and output XCMS data tidied in R (https://untargeted-

metabolomics-workflow.netlify.app/).

Metaboanalyst was used to perform statistical analysis. Data was normalised with

pareto scaling (Figure S4.2).

This study employs random forest analysis, a bootstrapping algorithm which combines
ensemble learning methods with the decision tree framework to create multiple
randomly drawn decision trees from the data and averaging the results. This analysis
produces strong predictors of grouping, or treatment, ranked by variable importance.

The analysis ran with 7 predictors and 1000 trees.

Metabolites are reported if present in all 5 biological replicates and for fold change
data, must meet or exceed a threshold of +/- 2.0 were reported. Here we define
‘significance’ as metabolites that have been differentially expressed by a fold change
= +/-2.0.

Any metabolites highlighted in statistical analysis were putatively identified using
METLIN, KEGG and ECMD .The databases METLIN or ECMD were searched with the

m/z values, and must be agreed upon by with the KEGG pathway metabolism map for

E.coli in ordered to be reported.
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Figure 4.1 trajectory principle component analysis of each strain, grouped by evolution conditions;
plasmid free (pink squares) plasmid carrying (blue triangles) and plasmid carrying exposed to
cefotaxime (purple stars) and compared against the ancestral state (black circles).

This study performed an untargeted metabolic analysis on the F022, ELU39 and
MG1655 strains, 5 replicate lines of each having been evolved for ~700 generation in
one of 3 conditions: plasmid free, plasmid carrying and plasmid carrying in the
presence of cefotaxime. The metabolome was measured in the same nutrient rich lab
medium as the strains had evolved in, without antibiotics therefore alterations seen
here are the underlying changes to the metabolic network after antibiotic selection

rather than a current response to antibiotic stress.
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How has metabolism changed over evolutionary time compared to the ancestor?

The endpoint evolved metabolomes had diverged from their respective ancestors
following ~700 generations. Evolutionary paths varied between strains (Fig 4.1, PC2)
and among replicates (Fig 4.1, PC1), but the evolved lines from different evolutionary
treatment groups overlapped, suggesting that the metabolic signal associated with
adaptation to the lab environment overwhelmed plasmid or antibiotic mediated

responses.

A random forest analysis was conducted to determine the top 20 metabolites driving
the variation between the ancestral metabolic state and the evolved lines from each of
the 3 evolutionary treatment groups per strain (Fig 4.2, 4.3 & 4.4). When comparing
the metabolomic data of the ancestral and evolved states of each strain, affected
metabolites showed common functions, namely amino acid biosynthesis, glycolysis
and pyrimidine biosynthesis indicating changes to transcription, translation and energy
metabolism (Tables 4.2, 4.3, 4.4). All of the strains showed increased levels of amino
acid biosynthesis or energy metabolism in the evolved lines. For F022 and MG1655
this agrees with the growth kinetics, conducted as part of the evolution experiment,
which were improved after co-evolution with the plasmid (Carrilero, Dunn and Moran,
2023).

Pyrimidine biosynthesis metabolites are a higher intensity in the ancestor for F022 (Fig
4.2 plots 3 and 8) but higher in the evolved lines for ELU39 (Fig 4.3 plot 8). Pyrimidine
biosynthesis is essential for synthesis of the bases thymine, cytosine and uracil (Berg
et al., 2019). In evolved lines, metabolites involved in this pathway were lower intensity
in the clinical strain F022 and higher in the environmental strain. Yet dGDP or ADP,
part of deoxyribonucleic acid biosynthesis, is much lower in the evolved environmental
strain ELU39. Both of these pathways are essential for transcription and translation,

making it difficult to determine a direction for these processes.

Amino acid biosynthesis metabolites are at higher intensities in the endpoint clones for
F022 (Fig 4.2, plots 16, 19, 20) and MG1655 (Fig 4.4 plot 11) versus their ancestor.
Metabolites involved in energy metabolism, namely glycolysis and the TCA cycle have
higher intensities in evolved lines for ELU39 (Fig 4.3, plots 3, 7) and MG1655 (Fig 4.4
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plot 15) versus their ancestor. ELU39 also has lower intensities for a metabolite relating
to DNA and RNA biosynthesis in the evolved lines (Fig 4.3 plot 11) versus their
ancestor. These patterns suggest that after evolution, the bacteria have increased
energy and amino acid biosynthesis and altered transcription and translation; however,
the differences between ancestral and treatment groups may represent general

adaptation of the strains to lab conditions rather than treatment-specific responses.
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Figure 4.2. Random Forest Analysis showing the top 20 mass values under 500Da which cause the most variation between the ancestral state of E. coli strain
F022 and the post-evolution clones that underwent 3 treatments of evolution; plasmid free, plasmid carrying and plasmid carrying with exposure to an

antibiotic, cefotaxime.
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Table 4.2. Random forest analysis rest of top 20 highest ranking masses under 500Da discriminating the ancestral and evolved groups of E.coli strain F022.

Masses have been putatively identified using ECMDB and KEGG.

F022 Mass ([Mean Decrease ID KEGG | MODULE | ppm | Adduct Adduct Monoisotopic| Chemical Function
Accuracy +Compound M/Z Mass Formula
1 158.9239 0.000664
299.0026 0.000604 Alpha-D-glucose 6- C00668 | M00001 33 M+K 298.9929 260.0297 C6H1309P Glycolysis
phosphate
D-Allose 6-phosphate | C02962 33 M+K 298.9929 260.0297 C6H1309P
D-Myo-inositol (1)- conr7 33 M+K 298.9929 260.0297 C6H1309P
monophosphate
-Myo-inositol 4- C03546 33 M+K 298.9929 260.0297 C6H1309P
phosphate
D-Tagatose 6- C01097 33 M+K 298.9929 260.0297 C6H1309P
phosphate
beta-D-Glucose 6- Cco1172 33 M+K 298.9929 260.0297 C6H1309P
phosphate
Glucose 6-phosphate | C00092 33 M+K 298.9929 260.0297 C6H1309P
Fructose 1-phosphate | C01094 33 M+K 298.9929 260.0297 C6H1309P
Myo-inositol 1- C04006 33 M+K 298.9929 260.0297 C6H1309P
phosphate
Fructose 6-phosphate | C00085 M0001 33 M+K 298.9929 260.0297 C6H1309P |Glycolysis. Nucleotide
sugar biosynthesis
UDP-N-acetyl-D-
glucosamine
biosynthesis,
prokaryotes
D-Mannose 1- C00636 33 M+K 298.9929 260.0297 C6H1309P
phosphate
Glucose 1-phosphate | C00103 33 M+K 298.9929 260.0297 C6H1309P
Galactose 1-phosphate | C00446 33 M+K 298.9929 260.0297 C6H1309P
3 309.0392 0.000567 Glycineamideribotide | C03838 | M00048 21 M+Na 309.0458 286.0566 |C7H15N208P De-novo purine
biosynthesis
dUMP C00365 | MO00938 29 M+H 309.0482 308.041 |C9H13N208P Pyrimidine
deoxyribonucleotide
biosynthesis
4 240.9279 0.000546
5 469.7693 0.000508
6 165.9728 0.000481
7 360.8926 0.000448
8 427.0024 0.000441 Uridine 5'-diphosphate | C00015 | M00938 26 M+Na 426.9914 404.0022 |C9H14N2012 Pyrimidine
MO00053 P2 deoxyribonucleotide
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M00052

and ribonucleotide
biosynthesis,
deoxyribonucleotide

synthesis
9 120.9683 0.000424
10 482.151 0.000417
11 490.821 0.000396
12 248.8956 0.000375
13 308.0994 0.000368 Glutathione C00051 | M00118 27 M+H 308.0911 307.0838 |C10H17N306 Glutathion
S biosynthesis
14 258.8079 0.000365
15 96.07998 0.000353
16 153.1064 0.000337 Agmatine C00179 | MO00133 31 M+Na 153.1111 130.1218 C5H14N4 Polyamine
biosynthesis
17 129.1389 0.000332
18 323.1804 0.000327 Retinal C00376 10 M+K 323.1772 284.214 C20H280
19 271.0779 0.000325 4-(Glutamylamino) C15767 | MO00136 32 M+K 271.0691 232.1059 | CO9H16N205 | GABA biosynthesis
butanoate
N2-Succinyl-L-ornithine | C03415 | M00879 32 M+K 271.0691 232.1059 | C9H16N205 Arginine
succinyltransferase
pathway
20 118.0905 0.000317 Betaine C00719 | MO00555 31 M+H 118.0868 118.0868 C5H12NO2 Serine and
threonine
biosynthesis
L-Valine C00183 | MO00019 36 M+H 118.0863 117.079 C5H11NO2 branched chain

amino acid
metabolism valine-

isoleucine

metabolism
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Figure 4.3. Random Forest Analysis showing the top 20 mass values under 500Da which cause the most variation between the ancestral state of E. coli strain
ELU39 and the post-evolution clones that underwent 3 treatments of evolution; plasmid free, plasmid carrying and plasmid carrying with exposure to an

antibiotic, cefotaxime.
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Table 4.3. Random forest analysis rest of top 20 highest ranking masses under 500Da discriminating the ancestral and evolved groups of E.coli strain ELU39.
Masses have been putatively identified using ECMDB and KEGG.

ELU39| Mass Mean ID KEGG | MODULE | ppm |Adduct Adduct Monoisotopi| Chemical Function
Decrease +Compound ¢ Mass Formula
Accuracy M/iZ
1 158.0337 | 0.000636
2 238.0862 | 0.000612 Dyspropterin C03684 31 M+H 238.0935 237.0862 |C9H11N503| Tetrahydrobiopterin
biosynthesis
3 203.057 0.000565 L-Rhamnonate C01934 22 | M+Na 203.0526 180.0634 | C6H1206
D-Allose C01487 22 | M+Na 203.0526 180.0634 | C6H1206
Inositol C00137 22 | M+Na 203.0526 180.0634 | C6H1206
alpha-D-Glucose C00267 | MO00001 22 | M+Na 203.0526 180.0634 | C6H1206
M000549
M00909
D-Fuctose C00095 22 | M+Na 203.0526 180.0634 | C6H1206
beta-D-glucose C00221 22 | M+Na 203.0526 180.0634 | C6H1206
D-Mannose C00159 22 | M+Na 203.0526 180.0634 | C6H1206
Alpha-D-Galactose C00984 | M00554 22 | M+Na 203.0526 180.0634 | C6H1206
M00632
D-Galactose C00124 | Mo00632 22 | M+Na 203.0526 180.0634 | C6H1206
D-Glucose C00031 22 | M+Na 203.0526 180.0634 | C6H1206
4 86.9541 0.000521
5 181.0518 | 0.000517 5-Methylthioribose C03089 6 M+H 181.0529 180.0456 | C6H1204S
Trans-2,3-Dihydroxycinnamate| C12623 | M00545 12 M+H 181.0495 180.0423 C9H804 Trans-cinnamate
degradation
4-Hydroxyphenylpyruvic acid | C01179 | MO00025 12 M+H 181.0495 180.0423 C9H804 tyrosine biosynthesis
6 275.5738 | 0.000507
7 156.9928 | 0.000475 Succinic acid C00042 | MO00009 19 | M+K 156.9898 118.0266 C4H604 |Citrate cycle, GABA shunt
MO00011 lysine degradation
M00027
M00956
8 405.0225 0.00047 Phosphoribosyl C04734 | M00048 4 M+K 405.02 366.0577 |C10H15N40 De novo purine
formamidocarboxamide 9P biosynthesis
Uridine 5'-diphosphate C00015| MO00938 32 | M+H 405.0095 404.0022 |C9H14N201 Pyrimidine
MO00053 2P2 deoxyribonucleotide and
M00052 ribonucleotide
biosynthesis,
deoxyribonucleotide
synthesis
9 152.9066 | 0.000467 Thiosulfate C00320 7 M+K 152.9077 113.9445 H203S82
10 | 356.8463 | 0.000434
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11 428.0495 | 0.000432 dGDP C00361| MO00053 30 | M+H 428.0367 427.0294 |C10H15N50| Deoxyribonucleotide
10P2 biosynthesis
ADP C00008 | MO00053 30 | M+H 428.0367 427.0294 |C10H15N50| Deoxyribonucleotide
10P2 biosynthesis
12 | 348.8654 | 0.000415
13 | 432.0338 0.00041
14 159.078 0.000394
15 | 431.0995 | 0.000392
16 | 493.8071 0.00039
17 | 250.8868 | 0.000382
18 | 425.1196 0.000378
19 | 314.0225 | 0.000374 2-Methyl-4-amino-5- co47 M00127 10 |M+NH4 314.0192 295.9854 |C6H8N3O7P Thiamine
hydroxymethylpyrimidine 2
diphosphate
20 | 457.1272 | 0.000373 FMNH(2) c01847 33 | M+H 457.1119 456.1046 |C17H21N40| Riboflavin biosynthesis
9P
Flavin Mononucleotide C00061 | MO00125 33 | M+H 457.1119 456.1046 |C17H21N40| Riboflavin biosynthesis
9P
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Figure 4.4. Random Forest Analysis showing the top 20 mass values under 500Da which cause the most variation between the ancestral state of E. coli

strain MG1655 and the post-evolution clones that underwent 3 treatments of evolution; plasmid free, plasmid carrying and plasmid carrying with exposure to
an antibiotic, cefotaxime.
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Table 4.4. Random forest analysis rest of top 20 highest ranking masses under 500Da discriminating the ancestral and evolved groups of E.coli strain
MG1655. Masses have been putatively identified using ECMDB and KEGG.

MG1655 Mass |Mean Decrease ID KEGG |MODULE| ppm |Adduct Adduct Monoisotopi| Chemical Function
Accuracy +Compound ¢ Mass Formula
M/Z
1 411.5344 0.001098
2 184.9373 0.000838
3 364.8681 0.000778
4 292.8574 0.00073
5 286.8633 0.000628
6 390.8541 0.000585
7 362.9447 0.000578
8 480.856 0.000576
9 382.8793 0.000561
10 313.0444 0.000549
11 197.0987 0.000548 L-ArginineC00062 C00062 | MO0844 | 11 M+Na 197.1009 174.1117 | C6H14N402 | Arginine biosynthesis
12 452.5326 0.000546
13 380.2166 0.000507
14 291.0784 0.000484 Inosine C00294 | M00958 | 29 M+Na 291.07 268.0808 |C10H12N405|Adenine ribonucleotide
degradation
2(alpha-D-Mannosyl)-D-| C11544 33 M+Na 291.0687 268.0794 C9H1609
glycerate
15 156.9928 0.000474 Succinic acid C00042 | MO0009 | 19 M+K 156.9898 118.0266 C4H604 Citrate cycle, GABA
MO00011 shunt lysine
M00027 degradation
M00956
16 246.0676 0.000467
17 242.008 0.000462
18 193.9369 0.000461
19 221.1266 0.000461
20 398.6116 0.000459
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Figure 4.5 Heatmap showing the full metabolic profiles of 3 strains of Escherichia coli, scaled by
intensity. Each strain is labelled by the conditions during evolution; plasmid free ‘Free’ and plasmid
containing ‘Plasmid’ and plasmid containing under antibiotic stress ‘Antibiotic’. The biological replicates
for each strain have been pooled. Strain names 22 = F022, EL = ELU39 and MG = MG1655.
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Metabolic responses vary by conditions they were evolved in.

To understand differences in the metabolome determined by evolutionary conditions,
a series of pairwise analyses was next performed contrasting evolved lines between
treatments per strain to understand differences in the metabolome determined by
evolutionary conditions. Together, these analyses help separate functional changes in
the metabolism as a result of plasmid carriage or of positive selection on the resistance

genes carried by the plasmid.

The impact of plasmid co-evolution both in the presence and absence of antibiotic
selection revealed distinct strain specific patterns in the scale and functions affected
(Fig4.5). When evolved plasmid carrying treatments with or without cefotaxime were
compared to the evolved plasmid-free control treatment, the cefotaxime treatment
group had fewer significantly differently expressed metabolites than did the plasmid
carrying treatment without antibiotic exposure (Fig 4.6 D-I). The clinical strain F022
had the largest response of the strains to coevolution with the pLL35 plasmid (2.6% of
the metabolome) (Fig 4.6 plot A).

Comparing the plasmid treatment groups reveals the impact of selection by cefotaxime
on plasmid carrying bacteria. The scale of impact varied and saw both the highest
(3.64% in FO022) and lowest (0.16% in MG1655) impacts on the metabolome. This may
be indicative of alterations to the metabolic network beyond cost of plasmid carriage
or stress of antibiotic exposure. Metabolic burden of plasmid carriage is measured and
defined by the adverse effects on bacterial growth (Silva, Queiroz and Domingues,
2012) yet after co-evolution, F022 and MG1655 show improved growth kinetics
compared to the ancestor (Carrilero, Dunn and Moran, 2023), suggesting that the
metabolic modifications may actually indicate a net positive impact of plasmid carriage

in these strains.

Masses reported in the fold change analyses between evolution treatments are mostly
different from those reported by random forest analysis. The singular exception to this
is the mass 96.07998, present in both the F022 random forest results (Fig 4.2 plots 1,
15) and the F022 plasmid carriage fold change results (Table S4.1), however this value

was not identified.
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Cyclic AMP is the singular commonly affected metabolite between strains.

Within strains, there were commonalities in the metabolic pathways impacted across
treatments occasionally with directional differences. There was no overlap of pathways
altered by evolution treatment between strains, except for one notable exception; the
global regulator cyclic adenosine monophosphate (CAMP) which appeared in all 3

strains.

The universal secondary messenger cAMP is highlighted in all 3 treatments, and when
looking solely at the effect of antibiotic selection, by comparing the treatments ‘plasmid
containing’ and ‘plasmid containing under antibiotic stress’, is present and upregulated
in all 3 strains simultaneously. This compound was downregulated (FC 0.43) in F022
when the plasmid co-evolved metabolome was compared with the plasmid free control.
There was an alternative identification (Tables 4.5, 4.6, 4.7) which is indistinguishable
by ppm but was nonetheless identified as a derivative of cAMP. cAMP was upregulated
(FC 4.77) in ELU39 when the cefotaxime treatment was compared to the plasmid free
control. Selection induced a common response in all 3 strains of upregulation of cAMP
by 2.22-3.40 fold. Together this suggests the plasmid-free CAMP level is intermediate,
and co-evolution with a plasmid induces downregulation of this, while selection with

cefotaxime induces upregulation.

Strain specific metabolic responses to co-evolution with a plasmid.

The difference in bacterial metabolome caused by long term plasmid carriage can be
seen by comparing the evolved datasets for plasmid free strains and plasmid carrying
strains. Each strain had a unique set of metabolites affected by plasmid selection.
The clinical strain F022 has the most differentially expressed metabolites when
coevolved with a plasmid compared to plasmid free controls (2.6% of the metabolome)
and primarily displays downregulation (Fig 4.6 plot A) which could imply increased
consumption of these metabolites as a result of plasmid carriage. Downregulation of
amino acid metabolism represents the majority of identified plasmid carriage impact
compared to plasmid free lines in strains F022 (Table 4.5). Amino acids have been
shown to be the primary source of carbon needed for biomass synthesis (Maser et al.,
2020). Pathways implicated include biosynthesis of; serine, threonine, valine-
isoleucine, leucine and lysine. Of the amino acids, serine is highly utilised for the TCA

cycle and acetate biosynthesis (Maser et al., 2020). Leucine is one of the most variable
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amino acids, alongside arginine, because they have control functions for the

biosynthesis of almost all other amino acids between them (RadoS et al., 2022).

Coevolution with a plasmid induced downregulation of a metabolite identifiable as
betaine or L-valine (Table 4.5). Betaine or valine appears downregulated 3 times in
F022 in different ionised states, meaning the differential expression of this pathway is
likely stronger than apparent from the individual metabolites alone. In every instance,
ppm determined that betaine is the more likely identification. Betaine is part of the
serine and threonine biosynthesis pathways (KEGG) and is an osmoprotectant whose
presence increases cell water content (Cayley, Lewis and Record, 1992; Metris et al.,
2014). A downregulation of Betaine would result in a reduction of intracellular water
(Cayley, Lewis and Record, 1992).

F022 also displays downregulation of the shikimate pathway, which produces
intermediaries for the biosynthesis of the aromatic amino acids phenylalanine, tyrosine

and tryptophan (Berg et al., 2019).

Ubiquinol, formed by reduction of ubiquinone as part of the electron transport chain,
was downregulated (FC 0.38). This implies that more ATP is being generated
aerobically in strain F022 evolved with the plasmid compared to the plasmid free

controls.

By contrast the environmental strain ELU39 had 15 upregulated metabolites (0.85% of
the metabolome) in evolved lines with the plasmid versus the plasmid free treatment.
Few metabolites of these could be identified (Table S4.1). The metabolite gamma-
Glutamyl-gamma-butraldehyde was identified, which is part of the Gamma-amino
Butyric acid (GABA) pathway (FC 4.7)(Table 4.5). GABA is a non-protein amino acid
involved in the tricarboxylic acid cycle (TCA) and aids in bacterial resistance to acidic

conditions (Sarasa et al., 2020).

MG1655 had 7 altered metabolites in total (0.35% of the metabolome) and favoured
downregulation. Just 1 of these could be identified, and this was involved in non-central
carbohydrate metabolism, specifically the UDP-N-acetyl-D-glucosamine biosynthesis
pathway and was downregulated in plasmid carrying lines relative to plasmid free
(Table 4.5). This pathway is involved in cell wall peptidoglycan synthesis,
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liposaccharide biosynthesis and biosynthesis and addition of sugars to proteins
(KEGG).

How does antibiotic selection change the metabolism of MDR plasmid carrying

bacteria?

Comparing the plasmid free control treatment with the plasmid carrier cefotaxime
treatment shows the effect of coevolution and antibiotic selection. Of the three
analyses, this pairing has the smallest count of significantly altered metabolites. In
response to antibiotic selection, MG1655, significant fold change differences in the
metabolome accounted for downregulation of 4 masses, or 0.2% of the metabolome.
ELU39 had 8 upregulated and 3 downregulated metabolites (0.63% of the
metabolome) and F022 had 3 upregulated and 5 downregulated metabolites (0.37%
of the metabolome) (Fig 4.6 plots D-F).

Many of the metabolites identified in the plasmid free versus plasmid carrying
comparison are also highlighted in the plasmid free versus antibiotic plasmid carrying
treatment comparison, indicating these differences in the bacterial metabolome are

likely driven by carriage of the plasmid (Tables 4.5, 4.6).

Unique features in the plasmid-free versus antibiotic plasmid carrying comparison
imply a combined effect of plasmid carriage and antibiotic selection. All identified
features are downregulated and include amino acid biosynthesis; phenylalanine in
ELU39, tyrosine in MG1655. A component of folate biosynthesis was also identified in
MG1655. Phosphoribosylamine, part of de-novo purine biosynthesis, was

downregulated in F022.

Direct comparison of plasmid carriers with versus without antibiotics show the effect of
antibiotic selection on the bacterial metabolome. Antibiotic exposure altered 3.64% of
the metabolome in a predominantly upregulated direction in the clinical strain F022 (78
metabolites upregulated and 3 downregulated), affecting amino acid and energy
metabolism (Fig 4.6 plots G-I and Table 4.7). Selection caused upregulation of all
metabolites related to amino acid metabolism, specifically the biosynthesis pathways

of lysine, arginine, leucine and valine-isoleucine.
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Glycerol, which feeds into glycolysis, was upregulated (FC 2.05) and propylene glycol,
a by-product of glycolysis, was downregulated. This could imply a reduction in

glycolysis but none of the identified metabolites were part of glycolysis directly.

In ELU39 1.3% of the metabolome is altered by selection, (6 metabolites upregulated
and 11 downregulated) and 0.16% in MG1655 (2 metabolites upregulated and 1 down

regulated). None of these metabolites were able to be identified, excepting cAMP.
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Figure 4.6 Fold change analysis highlighting in pink the masses that cross the fold change threshold of
+/- 2.0. Y axis is the Log2 of the fold change and the X axis are peak masses (mz/rt) corrected for
retention time. A-C Evolved plasmid carrying E.coli metabolic profiles compared to evolved plasmid
free E.coli metabolic profiles. D-F E.coli metabolic profiles evolved in antibiotic stress compared to the
evolved plasmid free E.coli metabolic profiles. G-I E.coli metabolic profiles evolved in antibiotic stress
compared to the evolved plasmid carrying E.coli metabolic profiles.

100



Table 4.5 Fold change summary of the masses (mz/rt) that cross the fold change threshold of +/- 2.0 comparing the plasmid carrying profiles against the
lasmid free profiles by strain. Putative identifications made using KEGG and ECMDB. Full table, including masses not identified in the supplementary (S4.1).

Strain M/z ID KEGG |ppm | Adduct Adduct Monoisotopi| Chemical FC |log2(FC Function
+Compound M/Z| ¢ Mass Formula )
F022 | 118.09047 Betaine C00719 | 31 M+H 118.0868 118.0868 C5H12NO2 | 0.36273 | -1.463 Serine and threonine
biosynthesis
L-Valine C00183 | 36 M+H 118.0863 117.079 C5H12NO2 Branched chain amino acid
metabolism valine-
isoleucine metabolism
F022 | 140.07101 Betaine C00719 | 16 M+Na 118.0868 C5H12NO2 | 0.36083 [-1.4706 Serine and threonine
biosynthesis
L-Valine C00183 | 20 M+Na 117.079 C5H12NO2 Branched chain amino acid
metabolism
F022 |153.04427 Xanthine C00385 | 23 M+H 0.46548 |-1.1032 Adenine and guanine
metabolism
2-Keto-3-methyl-valerate | C00671 | 48 | M+Na 153.0517 129.0552 C6H903 Branched chain amino acid
metabolism valine-
isoleucine metabolism
F022 |153.07936 Ribitol C00474 | 24 M+H 153.0757 152.0685 C5H1205 0.47956 |-1.0602
L-Arabitol C00532 | 24 M+H 153.0757 152.0685 C5H1205
F022 | 156.04794 Betaine C00719 | 34 M+K 156.0427 118.0868 C5H12NO2 | 0.30117 |-1.7313 Serine and threonine
biosynthesis
L-Valine C00183 | 37 M+K 156.0421 117.079 C5H11NO2 Branched chain amino acid
metabolism
F022 |213.02325 3-Carboxy-3-hydroxy- C02504 | 34 M+K 213.016 174.0528 C7H1005 0.48593 |-1.0412 | Branched chain amino acid
isocaproate metabolism leucine
biosynthesis
2-Isopropyl-3-oxosuccinate | C04236 | 34 M+K 213.016 174.0528 C7H1005 Branched chain amino acid
metabolism leucine
biosynthesis
Shikimic acid C00493 | 34 M+K 213.016 174.0528 C7H1005 Shikimate pathway
ELU39 | 217.11175 | gamma-Glutamyl-gamma- | C15700 | 30 M+H 216.111 217.1183 CO9H16N204 | 2.544 | 1.3471 GABA biosynthesis
butyraldehyde
ELU39 | 226.9613 | 2,5-Dichloro-4-oxohex-2- | C12835 | 46 M+H 226.9509 225.9436 C6H4CI205 | 2.2061 | 1.1415
enedioate
F022 |270.15899 Ubiquinol-1 C00390 | 41 | M+NH4 270.17 252.1362 C14H2004 | 0.33108 [-1.5948| Ubiquinone biosynthesis
MG1655| 277.08735 Nicotinamide riboside C03150 | 26 M+Na 277.08 255.0981 | C11H15N205 | 0.44779 |-1.1591
D-Galactosamine 6- C06377 | 28 | M+NH4 277.0795 259.0457 | C6H14NO8P
phosphate
alpha-D-Glucosamine 1- | C06156 | 28 | M+NH4 277.0795 259.0457 | C6H14NO8P UDP-N-acetyl-D-
phosphate glucosamine biosynthesis
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Glucosamine-1P C04501 | 28 | M+NH4 277.0795 259.0457 | C6H14NO8P UDP-N-acetyl-D-
glucosamine biosynthesis
Glucosamine 6-phosphate | C00352 | 28 | M+NH4 277.0795 259.0457 | C6H14NO8P UDP-N-acetyl-D-
glucosamine biosynthesis
F022 |329.07394 N-Succinyl-L,L-2,6- C04421 2 M+K 329.0746 290.1114 | C11H18N207 | 0.43099 |-1.2143 Lysine metabolism
diaminopimelate
Argininosuccinic acid C03406 | 36 M+K 329.0858 290.1226 | C10H18N406 Arginine biosynthesis
2-Succinyl-5-enolpyruvyl-6- | C16519 | 39 M+H 329.0867 328.0794 C14H1609 Menaquinone biosynthesis
hydroxy-3-cyclohexene-1-
carboxylate
F022 |347.08038 Adenosine 2',3'-cyclic C02353 | 17 | M+NH4 347.0863 329.0525 |C10H12N506P| 0.42755 |-1.2258| Precursor to adenosine,
phosphate derivative of 2'3'-Cyclic AMP
Cyclic AMP C00575 | 17 | M+NH4 347.0863 329.0525 |C10H12N506P Biofilm Formation
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Table 4.6 Fold change summary of the masses (mz/rt) that cross the fold change threshold of +/- 2.0 comparing the antibiotic selection profiles against the
plasmid free profiles by strain. Putative identifications made using KEGG and ECMDB. Full table, including masses not identified in the supplementary (S4.2).

Strain M/z ID KEGG ppm | Adduct Adduct Monoisotopic Chemical FC Log2(FC) Function
+Compound Mass Formula
M/Zz
F022 |118.09047 Betaine Cc0o0719| 31 M+H 118.0868 118.0868 C5H12NO2 | 0.39376 | -1.3446 Serine and threonine
biosynthesis
L-Valine C00183| 36 M+H 118.0863 117.079 C5H11NO2 Branched cahin amino acid
metabolism
F022 |156.04794 Betaine Co00719| 34 M+K 156.0427 118.0868 C5H12NO2 | 0.34037 | -1.5548 Serine and threonine
biosynthesis
L-Valine C00183| 37 M+K 156.0421 117.079 C5H11NO2 Branched cahin amino acid
metabolism
ELU39 | 166.0853 D-Phenylalanine C02265| 6 M+H 166.0863 165.079 C9H11NO2 0.48577 | -1.0417 Phenyalanine biosythesis
L-Phenylalanine C00079| 6 M+H 166.0863 165.079 C9H11NO2 Phenyalanine biosythesis
MG1655| 174.94267 0.4903 | -1.0283
MG1655| 198.04356 [7-Cyano-7-carbaguanine|C15996| 25 M+Na 198.0386 175.0494 C7H5N50 0.41098 | -1.2829 Folate biosynthesis
ELU39 | 217.10864 gamma-Glutamyl- |C15700| 44 M+H 217.1183 216.11 C9H16N204 | 4.7016 2.2332 GABA biosynthesis
gamma-butyraldehyde
MG1655| 220.0286 L-Tyrosine C00082| 38 M+K 220.0371 181.0739 C9H11NO3 0.47746 | -1.0666 Tyrosine biosythesis,
thyamine biosynthesis
F022 |247.06603 | -Phosphoribosylamine [C03090| 12 |M+NH4| 247.069 229.0351 C5H12NO7P | 0.35436 | -1.4967 | Denovo purine biosynthesis
F022 |270.15827 Ubiquinol-1 C00390| 43 |M+NH4 270.17 252.1362 C14H2004 0.38333 | -1.3834 Ubiquinone biosynthesis
ELU39 | 347.08318 | Adenosine 2',3'-cyclic |C02353| 9 M+NH4| 347.0863 329.0525 C10H12N506P | 4.7682 2.2534 Precursor to adenosine,
phosphate derivative of 2'3'-Cyclic AMP
Cyclic AMP C00575] 9 M+NH4| 347.0863 329.0525 C10H12N506P Biofilm Formation
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Table 4.7. Fold change summary of the masses (mz/rt) that cross the fold change threshold of +/- 2.0 comparing the antibiotic selection profiles against the
plasmid carrying profiles by strain. Putative identifications made using KEGG and ECMDB. Full table, including masses not identified in the supplementary

S4.3).
(Strair)1 M/z ID KEGG ppm | Adduct | Adduct -'I-vtltl;mpound Monoisotopic Mass (.I‘.:hemiclal FC Log2(FC) Function
ormula
F022 |99.04636 Propylene glycol C00583 | 48 | M+Na 99.0416 76.0524 C3H802 0.3453 | -1.5341 by-product of glycolysis
F022 | 115.0412 Glycerol C00116 | 40 | M+Na 115.0366 92.0473 C3H803 2.0506 1.036 feeds into glycolysis
F022 | 135.069 |R)-2,3-Dihydroxy-isovalerate | C04272 | 28 | M+H 135.0652 134.0579 C5H1004 | 2.1982 1.1363 Valine/isoleucine branched
chain amino acid metabolism
Deoxyribose C01801| 28 | M+H 135.0652 134.0579 C5H1004
F022 | 153.0794 Ribitol C00474| 24 | M+H 153.0757 152.0685 C5H1205 | 2.0533 1.038
L-Arabitol C00532| 24 | M+H 153.0757 152.0685 C5H1205
MG165(174.9427 0.47841| -1.0637
5
F022 | 195.0083 Glycerol 3-phosphate C00093 | 28 | M+Na 195.0029 172.0137 C3H906P | 2.1478 1.1028
F022 |213.0233 3-Carboxy-3-hydroxy- C02504 | 34 | M+K 213.016 174.0528 C7H1005 | 2.2291 1.1565 branched chain amino acid
isocaproate metabolism leucine
biosynthesis
2-Isopropyl-3-oxosuccinate | C04236 | 34 | M+K 213.016 174.0528 C7H1005 branched chain amino acid
metabolism leucine
biosynthesis
Shikimic acid C00493 | 34 | M+K 213.016 174.0528 C7H1005 shikimate pathway
F022 | 329.0711 N-Succinyl-L,L-2,6- Cco4421| 11 | M+K 329.0746 290.1114  |C11H18N207| 2.2688 1.1819 Lysine metabolism
diaminopimelate
Argininosuccinic acid C03406 | 45 | M+K 329.0858 290.1226  |C10H18N406 arginine biosynthesis
2-Succinyl-5-enolpyruvyl-6- | C16519 | 47 | M+H 329.0867 328.0794 C14H1609 menaquinone biosynthesis
hydroxy-3-cyclohexene-1-
carboxylate
F022 | 347.0599 2.8285 1.5001
ELU39|347.0818 Adenosine 2',3'-cyclic C02353 | 13 |M+NH4 347.0863 329.0525 C10H12N506| 3.4007 1.7658 precursor to adenosine,
phosphate P derivative of 2'3'-Cyclic AMP
Cyclic AMP C00575| 13 |[M+NH4 347.0863 329.0525 |C10H12N506 Biofilm Formation
P
MG165|347.0851 Adenosine 2',3'-cyclic C02353| 4 |M+NH4 347.0863 329.0525 |C10H12N506| 2.5321 1.3403 precursor to adenosine,
5 phosphate P derivative of 2'3'-Cyclic AMP
Cyclic AMP C00575| 4 |M+NH4 347.0863 329.0525 |C10H12N506 Biofilm Formation
P
F022 |347.0879 Adenosine 2',3'-cyclic C02353| 4 |M+NH4 347.0863 329.0525 C10H12N506| 2.2155 1.1476 precursor to adenosine,
phosphate P derivative of 2'3'-Cyclic AMP
Cyclic AMP C00575| 4 |M+NH4 347.0863 329.0525 |C10H12N506 Biofilm Formation
P
F022 |347.5848 2.3 1.2016
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Figure 4.7. All possible putative identifications of metabolites and pathways affected by plasmid carriage compared to plasmid free lineages in all 3 strains,
F022, ELU39 and MG1655, as described in Table 1 (pink). Visualised on the KEGG metabolic pathways map for E.coli K-12 MG1655 (green).
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Figure 4.8. All possible putative identifications of metabolites and pathways affected by antibiotic selection of a plasmid compared to plasmid free lineages in
all 3 strains, F022, ELU39 and MG1655, as described in Table 2 (pink). Visualised on the KEGG metabolic pathways map for E.coli K-12 MG1655 (green).
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Figure 4.9. Putative identifications of significant metabolites and pathways comparing plasmid carriers with and without selection in strains F022, ELU39 and
MG1655, as described in table 3 (pink). Visualised on KEGG metabolic pathways map for E.coli K-12 MG1655 (green).
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4.5 Discussion

Metabolomics were used to understand the metabolic responses of 3 diverse E.coli
strains to an MDR plasmid and the antibiotic cefotaxime following 700 generations of
evolution. The E.coli strains are from a clinical (F022), environmental (ELU39) or
laboratory (MG1655) background, and were each evolved in a plasmid free state,
plasmid carrying, and plasmid carrying with antibiotic selection. Comparison of evolved
lines to their ancestor revealed large-scale changes in metabolism that were consistent
among treatments within strains, indicating pervasive metabolic changes associated
with adaptation to the lab environment, including amino acid metabolism and
glycolysis. Targeted pairwise contrasts were then used to determine the metabolic
responses to the selection treatments per strain. Each strain had specific aspects of
the metabolism altered by evolutionary conditions, (Fig 4.7, 4.8 and 4.9) and the only
commonly changed metabolite was global regulator cAMP. Within strains, common
altered pathways were often seen in plasmid carriers evolved both with and without
antibiotic, but sometimes changing in opposing directions (Tables 4.5, 4.6, 4.7). The
clinical strain F022 showed the largest metabolic impact as a result of coevolution with

a plasmid, with and without antibiotic selection.

Functions changed by plasmid carriage or antibiotic selection

The metabolic responses to evolutionary conditions were strain specific. Although
common broad functions were affected, such as amino acid metabolism, the specific
pathways affected were unique to each strain. For example, the environmental strain
ELU39 saw changes in phenylalanine metabolism, whereas the lab strain MG1655
showed altered levels of tyrosine and the clinical strain F022 showed altered levels of

lysine and leucine metabolism (Tables 4.5, 4.6, 4.7).

Within strains a degree of functional consistency was observed between the evolution
treatment groups but the analysis was able to distinguish metabolic effects derived
from plasmid carriage and those derived from additional antibiotic selection. Many of
the functions affected by antibiotic exposure were associated with metabolic stress,
such as arginine, proline, serine, threonine and methane metabolism, glycolysis, and
the TCA cycle (Zhao et al., 2019).
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The functions affected by plasmids acquisition (Chapter 3) are all present in the post
evolution data. Plasmid acquisition caused a very low metabolic response in F022,
lower than either ELU39 or MG1655 but FO022 had the most metabolic changes after
co-evolution with the plasmid. The clinical strain F022 showed the most change in the
metabolome after ~700 generations of plasmid carriage and was the strain with the
most differences caused by antibiotic exposure. This strain also demonstrated some
of the highest levels of mutations and transcriptional alterations (Carrilero, Dunn and
Moran, 2023).

Cyclic AMP is the singular commonly affected metabolite between strains.

In previous work, genomics showed that over a fifth of mutations acquired by evolved
clones were common between the strains (Carrilero, Dunn and Moran, 2023), there
was only one commonly affected metabolite in all 3 strains, cyclic AMP, which was
altered in response to coadaptation with a plasmid under antibiotic exposure. Cyclic
AMP responds to environmental stimuli and in pathogenic bacteria and has several
important regulatory functions, including virulence, type Il secretion, carbon
metabolism and biofilm formation (McDonough and Rodriguez, 2012). cAMP is

synthesised from ATP at low glucose concentration (Shimizu, 2013).

cAMP is downregulated in the plasmid carrying treatment without cefotaxime and
upregulated in all 3 strains in the cefotaxime treatment. As a regulator, accumulation
of cCAMP may indicate an increase in downstream processes regulated by cAMP.
These include biofilms which can reduce sensitivity to antibiotics (Crabbé et al., 2019).
Together, this suggests the accumulation of cAMP may induce biofilm formation as an
additional defense response by the bacteria against cefotaxime, despite being evolved
in liquid shaken conditions that would normally be expected to disfavour biofilms
(Carrilero, Dunn and Moran, 2023). Additional experimental work would be required to
definitively prove the link between the observed changes in cAMP levels and biofilm

production.

Evidence of beta-lactam specific metabolic responses
Several altered metabolic functions were consistent with the cell stresses induced by

beta-lactam antibiotics. By impeding cell wall synthesis and initiating a futile cycle of
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peptidoglycan degradation, beta-lactams induce an energy demand and systemic
cellular toxicity associated with ROS (Cho, Uehara and Bernhardt, 2014; Dwyer et al.,
2014; Adolfsen and Brynildsen, 2015). Despite containing Blactx-m-15 which can
degrade the antibiotic, the altered metabolites in the evolutionary treatment with
cefotaxime highlight alterations to energy and redox regulation through cAMP,

glycolysis and alternative energy sources and the electron acceptor ubiquinol.

Additionally, cefotaxime selection led to a potential decrease in glycolysis because the
by-product propylene glycol is downregulated but glycerol, which supplies glycolysis,
is upregulated in F022. This accumulation of the supply and reduction in by-product
suggests the central reaction is not as active. As none of the metabolites identified are
directly part of glycolysis it remains difficult to determine the energy dynamics (Table
4.7). Furthermore, evolved MG1655 and F022 plasmid carriers had notably higher
growth rates compared to their ancestors indicating compensatory evolution for
plasmid fitness costs (Carrilero, Dunn and Moran, 2023). This may have been
associated with improved energy efficiency, as this strain also contained a mutation in
glycerol metabolism genes in plasmid carriers (Carrilero, Dunn and Moran, 2023) but
metabolic efficiency and growth rate are not proportionally linked (Metris et al., 2014).
Alternatively, the increase in metabolites part of amino acid metabolism and alternative
carbon sources may instead point to alternative ways of supplying the TCA cycle. As
the most efficient method of energy production in bacterial cells, a demand on energy
imposed by stressors would increase catabolism of metabolites to supply the TCA
(Arense et al., 2010; Rui et al., 2010; Passalacqua, Charbonneau and O’Riordan,
2016).

Ubiquinol is downregulated by plasmid carriage and antibiotic selection. A reduced
abundance of a metabolite can indicate its consumption (Lavifia et al., 2020), therefore
in plasmid carrying F022 ubiquinol may be actively consumed as part of the electron
transport chain in aerobic respiration (Aussel et al., 2014; Agrawal et al., 2017;
Nitzschke and Bettenbrock, 2018). Ubiquinol also has a role in counteracting redox
stress because as a reducing agent ubiquinol is reduced to form ubiquinone. Therefore
a decrease in ubiquinol in the clinical strain F022 may reflect consumption of ubiquinol
to facilitate ATP production and aid in combating cefotaxime-induced redox stress. The

ubiquinone biosynthesis pathway was also implicated as being affected by plasmid
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acquisition in the ancestral clones of F022 (Chapter 3), suggesting this quinone is
important in both short term and long term responses to the cellular impacts of plasmid

carriage.

Amino acid metabolism

Comparison of the mutations acquired by the evolved lines reported by Carrilero et al.
with the metabolomics data reported here reveals some overlapping functions
(Carrilero, Dunn and Moran, 2023). Plasmid carrying MG1655 acquired mutations in
aromatic amino acid metabolism. Tyrosine is one of the aromatic amino acids and is

downregulated by plasmid carriage with cefotaxime selection.

Upon acquisition of the plasmid, the lysine degradation pathway is upregulated in
MG1655. Lysine metabolism is upregulated in F022 when the plasmid carrying
treatment groups with and without cefotaxime selection were compared. This same
metabolite was identified in the plasmid free and plasmid carrying comparison but was
down regulated. This implies that plasmid carriage reduced lysine metabolism in F022,
but it was driven up again by positive selection to a level not significantly different from
the plasmid free group. However, this metabolite has an alternative identification
involved in arginine biosynthesis, and the arginine transporter gene art P was mutated
in plasmid carrying F022 and ELU39 (Carrilero, Dunn and Moran, 2023).

The mutated functions do not, however, match perfectly with changes in metabolites.
For example, ELU39, F022 and MG1655 evolved plasmid carriers all gained mutations
in operons involved in anaerobic respiration and fatty acid metabolism (Carrilero, Dunn
and Moran, 2023) but these functions were not altered in the metabolome. This is likely
to reflect the fact that these experiments were performed in aerobic conditions and
thus these pathways may not have been expressed. Some caution is required
however, because a large proportion of the significant masses were unable to be
identified, so future improvements in identification systems may uncover these

functions.

In certain instances, pathways highlighted in this evolutionary analysis were

differentially expressed upon plasmid acquisition in other strains analysed in Chapter
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3. For example, formylglutathione was upregulated following evolution under antibiotic
selection in F022 here, and methylamine was upregulated following plasmid
acquisition in FO54 in Chapter 3. Both metabolites belong to the methane metabolism

pathway, and both strains are of a clinical background.
Conclusions

The metabolome of E. coli at the endpoint of an evolution experiment demonstrated
distinct strain specific profiles. While overarching functions were shared across strains,
the particular pathways impacted were unique to individual strains. The singular
exception to this was the global regulator cAMP which was altered in all strains as a
consequence of evolution under antibiotic selection with plasmid pLL35. The large
metabolic changes seen in the clinical strain F022 coupled with improved growth
kinetics relative to the ancestor following evolution, demonstrates compensatory
evolution for plasmid carriage and resisting antibiotics occurs at all biological levels.
Furthermore, the evidence of metabolic responses to beta-lactam-specific stresses
within the antibiotic selection treatment group highlights the importance of metabolic
responses for cells to mitigate effects of exposure to antibiotics even when they carry

the relevant resistance genes.
Further questions

Future studies should consider how the nature of plasmid carrying bacteria changes
when confronted with antibiotics, with an emphasis on replicating or using common
plasmid and bacterial combinations and their natural environmental conditions,
because metabolic signatures of antibiotic stress are seen even in bacteria carrying
the relevant resistance genes. Lab conditions are not representative of real-world
scenarios, and with such specific responses this is important to replicate. For instance,
there is a difference in metabolic response dependent on planktonic or biofilm states
which has implications for infection conditions (Zhao et al., 2019) More specifically and
relevant here is the fact the gut is anaerobic and that related functions appear to be
important but not seen here due to aerobic experiments; expanding the conditions to
make them more host relevant is key priority. (Dunn et al., 2021; Carrilero, Dunn and
Moran, 2023).
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Chapter 5 : Metabolic responses of 4 E.coli strains carrying
a multidrug-resistant plasmid to antibiotic exposure.

5.1 Abstract

Multidrug-resistant (MDR) bacterial strains pose a significant threat to public health,
leading to increased mortality rates and prolonged hospitalisation. Conjugative
plasmids facilitate the rapid dissemination of resistance genes, contributing to the
accumulation of multidrug resistances in bacterial pathogens. Understanding the
metabolic consequences of antibiotic stress is valuable for identifying potential drug
targets and treatment strategies. Untargeted metabolomics were performed to
understand the metabolic impacts of antibiotic stress on 4 Escherichia coli strains from
diverse ecological backgrounds. The strains were carrying the MDR plasmid pLL35,
originating from Klebsiella pneumoniae which conferred resistance to 3 classes of
antibiotics. The strains were stressed with a sub-MIC concentration of kanamycin,
cefotaxime and ciprofloxacin. The metabolic responses to antibiotic displayed parallel
functions across strains, but the extent and direction of change in particular pathways
and metabolites were strain specific. Broadly, functions affected included alterations in
amino acid and nucleotide metabolism, energy production pathways and cofactor
biosynthesis. Notably, redox stress mitigation mechanisms were observed across all
strains in the ciprofloxacin treatment, and cell wall and biofilm biosynthesis was
indicated in all treatments, suggesting bacterial resistance mechanisms were active
alongside plasmid-encoded resistance. Strain specificity has implications for future

research on innovative combination therapies.
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5.2 Introduction

Multidrug-resistant (MDR) bacterial strains pose a severe threat to public health,
contributing to increased mortality rates and prolonged hospitalisation for both initial
admission infections and iatrogenic infections (Antimicrobial Resistance, 2021). MDR
plasmids enable the rapid spread of multiple resistance genes by inter and intraspecies
conjugation (Carattoli, 2013; Hall, Brockhurst and Harrison, 2017; San Millan, 2018).
While a given strain can accumulate plasmids conferring different resistances over
time, multidrug resistant plasmids can confer resistance to multiple classes of antibiotic
in a singular transfer event, posing a particular clinical threat to combination antibiotic
therapies (Carattoli, 2013). For example, E.coli, which commonly causes a wide range
of serious human and animal infections worldwide, frequently carry MDR plasmids and
consequently are becoming increasingly challenging to treat due to the diminishing
effectiveness of available antibiotics (Mathers, Peirano and Pitout, 2015; Stoesser et
al., 2016; Dunn, Connor and McNally, 2019). Multidrug resistant plasmids have been
integral to the evolution of the predominant MDR E.coli lineage ST131, the globally
disseminated strain that can produce extended-spectrum beta-lactamases (ESBLs)
and are resistant to frontline antibiotics such as carbapenems and cephalosporins
(Stoesser et al., 2016; Dunn, Connor and McNally, 2019). Such MDR plasmids are
often stably maintained by toxin-antitoxin systems and compensatory amelioration of
costs mediated by both the bacterial host and the plasmids (Carattoli, 2013; Porse et
al., 2016).

The rate of novel antimicrobial development is not fast enough to keep up with the
evolution and dissemination of resistance (Krell and Matilla, 2022). Understanding the
relationship between bacteria and their MDR plasmids and thus devising interventions
to control plasmid spread is therefore a vital part of tackling the global AMR crisis.
Analysing metabolic profiles under antibiotic stress offers valuable insights for
identifying potential metabolic targets in the development of treatment strategies. For
example, revealing metabolites that are suppressed by the bacteria in response to
antibiotics allows development of combination therapies. The proposed treatment
would deliver metabolites that are normally suppressed, enhancing susceptibility to the

antibiotics, alongside the antibiotic itself (Peng et al., 2015). Redirecting metabolism to
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prevent or diminish resistance phenotypes emerges as a promising future strategy to
re-sensitise bacteria to antibiotics (Meylan, Andrews and Collins, 2018; Crabbé et al.,
2019). However, a significant challenge lies in the current lack of understanding
regarding the metabolic workings of clinical strains that could serve as viable treatment
targets (Kok et al., 2022). This is especially relevant for cases where the resistance is
plasmid encoded because plasmids induce a range of disruptions to bacterial
metabolism phenotypes that could act as potential therapeutic targets (Coulson et al.,
2015; Takahashi et al., 2015; San Millan et al., 2018; Billane et al., 2022).

While metabolic fingerprints reliably relate to antibiotic mechanisms of action (Hoerr et
al., 2016), the interaction between environment, and plasmid associated changes to
the metabolome has not been investigated. There is a need for biological systems-
wide studies as increasingly, bacterial responses to antibiotic stress are acknowledged
to be a combination of resistance genes and cell-wide network dependent responses
involving global transcriptional regulators (Deter, Hossain and Butzin, 2021). Bacteria
employ responses on a network scale to antibiotic stress in addition to resistance
provided by accessory genes on plasmids (Deter, Hossain and Butzin, 2021; Kok et
al., 2022). The transcriptional response to ampicillin in E.coli affected hundreds of
genes - notably the most frequently affected functional groups were amino acid
transport and metabolism, energy production and conversion and protein synthesis,

modification, and degradation (Deter, Hossain and Butzin, 2021).

To further the understanding of intracellular dynamics of E.coli harbouring an MDR
plasmid, this chapter uses untargeted metabolomics to obtain a comprehensive view
of the metabolic changes in multiple E.coli strains carrying MDR plasmid pLL35 under
antibiotic stress. The metabolome, as the molecular underpinning of phenotype,
reveals early responses to antibiotic stress and the genetic and molecular
consequences of adaptations necessary for sustaining resistance mechanisms (Kok
et al., 2022). Therefore, this is a vital tool to aid the discovery of emerging drug targets
and treatment strategies associated with metabolism (Kok et al., 2022). Previous work
presented in this thesis has shown that the acquisition of the MDR plasmid pLL35
induced subtle, strain specific metabolic impacts. Acquisition affected energy
metabolism, fatty acid metabolism, amino acid metabolism and oxidative
phosphorylation (Chapter 3). Experimental evolution of the bacteria plasmid

relationship in the presence of an antibiotic - where the plasmid is essential for bacterial
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survival - resulted in amelioration of plasmid costs through genetic mutations and
alterations in the transcriptome and metabolome (Carrilero, Dunn and Moran, 2023;
and Chapter 4). This suggests that plasmid associated disruption to the bacteria

continues in the presence of antibiotics, despite providing a net fithess benefit.

The interaction between antibiotic exposure and carriage of an MDR plasmid pLL35
on the bacterial metabolome has not been rigorously tested. Moreover, although data
in Chapter 4 suggests metabolic impacts of cefotaxime exposure, pLL35 confers
resistance to 2 additional classes of antibiotic; aminoglycoside and fluoroquinolone.
The mechanisms of resistance to each class of antibiotic differ markedly. The
bactericidal mechanism of aminoglycosides involves inhibition of protein synthesis by
binding to parts of the ribosomal complex (Kotra, Haddad and Mobashery, 2000).
Mechanisms of resistance include phosphorylation, nucleotidylation, efflux, altering of
the target and acetylation (Dunn, Connor and McNally, 2019). The aacA4, aadA1 and
aacC2d genes on the plasmid (Table 5.1), modify the kanamycin molecule by
acetylation or adenylation and reduce its affinity for the ribosomal complex (Kotra,
Haddad and Mobashery, 2000). Beta-lactams disrupt the biosynthesis of cell walls
(Padda and Nagalli, 2022) and the resistance mechanisms act in the form of
hydrolysis, efflux and alteration of the target (Dunn, Connor and McNally, 2019). CTX-
M-15 and TEM-112 code for beta-lactamase enzymes that hydrolyse beta-lactam
antibiotics. CTX-M enzymes can lyse cephalosporins like cefotaxime and have
disseminated worldwide, causing near untreatable infections (Poole, 2004; Cantén,
Gonzalez-Alba and Galan, 2012; Bevan, Jones and Hawkey, 2017). In particular E.coli
ST131 carrying blactx-m genes is considered a high risk clone (Peirano and Pitout,
2019). Fluoroquinolones disrupt DNA replication, repair and supercoiling by targeting
DNA gyrase and topoisomerases. The resistance mechanisms to combat quinolones
include efflux, alteration of the target and acetylation (Dunn, Connor and McNally,
2019). Ciprofloxacin targets DNA topoisomerase Il (Ojkic et al., 2020), and the qnrS1
gene encoded by the plasmid produces the QnrS1 protein which interferes with the
antibiotic by binding to DNA topoisomerase and therefore altering the target
(Strahilevitz et al., 2009).

In this study, the impact of different antibiotic exposures on 4 plasmid carrying strains
was investigated. For my metabolomic experiments, Kanamycin, Cefotaxime and

Ciprofloxacin were chosen as representatives of the classes of AMR gene carried by
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pLL35. E. coli strains MG1655 (lab strain), ELU39 (environmentally derived strain),
F054 and F022 (clinically derived strains) carrying pLL35 were grown aerobically in

nutrient rich media, with sub-minimum inhibitory concentrations of the 3 antibiotics,

alongside antibiotic free controls. The impact of antibiotic exposure on the metabolic

profile of these strains collectively (see disclaimer) was analysed, showing that

bacteria exhibit stress responses and resistance mechanisms outside of plasmid

encoded resistance genes.

Table 5.1 Table summarising the resistance genes on the plasmid pLL35. See Fig 3.1 for full

schematic.
Gene Resistance
aacA4 Aminoglycosides
aacC2d Aminoglycosides
aadA1 Aminoglycosides
blactx-um-15 Beta-lactams
blatem-112 Beta-lactams
qnrS1 Quinolones
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5.3 Methods

E.coli strains MG1655, ELU39, F022 and F054 carrying plasmid pLL35 were grown in
nutrient broth at 37°C, 180 rpm, for 24 hours. 1% of the population was then transferred
and grown for 3 hours to mid-exponential phase, followed by exposure to sub-minimum
inhibitory concentrations of the antibiotics. The cefotaxime MIC >1024 pg/mL,
kanamycin 102.4 yg/mL and ciprofloxacin 102.4 pg/mL. After testing shock duration
and checking survival rate, it was decided the concentrations of antibiotic would be:
Kanamycin (5ug/ml), Cefotaxime (5ug/ml) or Ciprofloxacin (2ug/ml) for 1 hour, along
with an antibiotic free control. The samples were then isolated and frozen at -80°C.
Prepared for mass spectrometry with chloroform and methanol, following the method

described in chapter 2.

The samples (50ul) were introduced to the Waters G2/G2Si Synapt mass
spectrometer. The instrument settings are detailed in the supplementary material (S5)
HPLC-QToF MS was performed using the aqueous phase of the samples for DESI MS

in positive mode, with a scanning range of 50-1200m/z over 3 minutes.
Data Processing and Analysis

All data processing and analysis followed methodology developed into a user-friendly
guide and based on open source software (Parker et al., 2023) (https://untargeted-
metabolomics-workflow.netlify.app/ accessed on 27 January 2023).

All raw data files were converted to mzML format using the Proteowizard software

MsConvert. XCMS online was used for peak alignment and retention time correction
(parameters 84500). An average was taken of the technical replicates and output

XCMS data tidied in R (https://untargeted-metabolomics-workflow.netlify.app/).

Metaboanalyst was used to perform statistical analysis of each antibiotic treatment
against the antibiotic free control. Data was normalised with pareto scaling (Figure
S5.1).

A random forest analysis is used to identify significantly affected metabolites using a
bootstrapping algorithm which combines ensemble learning methods with the decision
tree framework to create multiple randomly drawn decision trees from the data and

averaging the results. This analysis produces strong predictors of grouping, or
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treatment, ranked by variable importance. The analysis ran with 7 predictors and 1000

trees.

Metabolites are reported if present in all 5 biological replicates and for fold change
data, must meet or exceed a threshold of +/- 2.0 to be reported. Here we define
‘significance’ as metabolites that have been differentially expressed by a fold change
> +/-2.0.

Any metabolites highlighted in statistical analysis were putatively identified using
METLIN, KEGG and ECMD . The databases METLIN or ECMD were searched with

the m/z values, and must be agreed upon by with the KEGG pathway metabolism map

for E.coli in ordered to be reported.

Using this method, the total across strains of the significant metabolites in the
identifiable range by treatment are as follows: Ciprofloxacin, 79.55 %. Cefotaxime,
93.97 %. Kanamycin, 78.36 %.

Of the metabolites in the identifiable range, the percentage of those with a putative
identification by treatment are as follows: Ciprofloxacin, 33.33 %. Cefotaxime, 30.07
%. Kanamycin, 19.01 %.

It should be noted that masses representing these metabolic pathways sometimes
have multiple putative identifications which have identical or close ppm, making the
compound identity indistinguishable between the options, meaning the exact identity
of some of the metabolites is uncertain. In every instance, the identification with the

lowest ppm possible is used.
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5.4 Results

In this study, 4 E.coli strains into which an MDR plasmid had recently (within 30
generations) been conjugated, were exposed to 4 treatment conditions; a sub-MIC of
one of 3 antibiotics and an antibiotic-free control. The treatments were ciprofloxacin,
cefotaxime and kanamycin, representing 3 antibiotic classes. The metabolome was
arrested during exposure to the treatment, and untargeted metabolomic analysis
performed to obtain an unbiased assay of the bacterial metabolome under active
antibiotic stress. All treatment groups were different to the antibiotic-free control (PCAs
supp S5.5, S5.6, S5.7, S5.8) and had significant differences to the control

metabolome, when significance is defined as a fold change = +/- 2.0.

Antibiotic induced disruption varies by strain.

Overall, when all strain responses were totalled for each antibiotic treatment,
ciprofloxacin caused the most metabolic disruption and significantly altered 624
metabolites. This was much higher than Kanamycin, which caused differential
expression of 357 metabolites, and nearly twice the 315 metabolites altered by
cefotaxime treatment. This correlated with the resistance encoded on pLL35, which
encoded 1 gene for quinolones, compared to 2 for beta-lactams and 3 for

aminoglycosides (Table 5.1).

The metabolic responses of each E.coli strain to antibiotic exposure varied by
antibiotic class and were strain specific (Fig 5.1, 5.2, 5.3, 5.4). For 3 out of 4 strains
ciprofloxacin induced the largest metabolic responses, altering 10.71-12.42% of the
recorded metabolome (Table 5.2). The exception was strain F022, where just 4.92%
of the recorded metabolome was significantly altered in response to ciprofloxacin (Fig
5.1 Table 5.2). This strain was most impacted by cefotaxime, which induced a
significant response in 5.26% of the recorded metabolome and was the highest
response to cefotaxime across any of the strains (Fig 5.1 FC Table 5.2). The response
to kanamycin was the lowest of the antibiotics in 3 of 4 strains, altering 2.7 — 3.95% of
the recorded metabolome (Table 5.2). The exception to this is the second clinical

strain, FO54 which had 10.71% of the recorded metabolome altered by kanamycin, the
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highest response to this treatment across any of the strains (Fig 5.2 Table 5.2). These
data demonstrate differing levels of disruption in the metabolic network in a strain

dependent manner, despite carrying the same resistance plasmid.

Functional parallelism

Overall, these results highlight commonly affected functional groups between
treatment groups and between strains in each treatment group. Within antibiotic
treatments, the proportion of identified metabolites that were common in 2 strains or
more was 37.93% in the ciprofloxacin treatment, 27.12% in the cefotaxime treatment
and 10.42% in the kanamycin treatment. However, the specific pathways, direction of
change and extent of change is variable by strain and treatment. Among all treatment
groups, the main metabolic function categories were amino acid metabolism,
nucleotides metabolism, energy metabolism and cofactor metabolism (Fig 5.5, 5.6,
5.7) but the distribution of affected metabolites across these categories was highly

strain specific.

Amino Acid Metabolism

Amino acid metabolism commonly features in bacterial stress responses (Zhao et al.,
2019) and in these data amino acid biosynthesis and catabolism was featured in all
strains and treatments (Fig 5.5, 5.6, 5.7). Most of the amino acid metabolism pathways
identified in the dataset were featured in every antibiotic treatment. Common to all
treatments was metabolism of: valine, cysteine, arginine, tryptophan, phenylalanine,
lysine, ornithine, proline, isoleucine, methionine. Common to ciprofloxacin and
cefotaxime treatments only was metabolism of serine, threonine and histidine.
Common to ciprofloxacin and kanamycin treatments only was metabolism of leucine

and tyrosine and unique to kanamycin was metabolism of alanine.

There are some examples of a uniform parallel response, for example L-tryptophan is
upregulated to similar levels (FC range 2.3 — 3.7) in all 4 strains in response to
cefotaxime (Table S5.2). However, as in the case of the arginine biosynthesis pathway,
the same metabolite can be present in multiple strains and treatment groups but is

altered in a different way in different strains.

122



Arginine metabolism was highlighted in all antibiotic treatments and in particular the
metabolites pyrroline hydrocarboxylic acid and citrulline were seen repeatedly.
Although sometimes these masses had other potential identifications, the
identifications discussed here had the lowest ppm and are therefore the most likely.
Targeted metabolomic analysis would be needed to determine these identifications
with certainty. Citrulline, a key component of the arginine biosynthesis pathway, was
identified in multiple strains and treatments. In strains ELU39, F022 and MG1655
citrulline was downregulated in response to ciprofloxacin (Table S5.3). In ELU39 alone,
citrulline was upregulated in response to kanamycin (Table S5.1). In the environmental
strain ELU39 Pyrroline hydrocarboxylic acid was upregulated in response to
kanamycin but downregulated in response to ciprofloxacin (Tables S5.1, S5.3). This
same metabolite was downregulated in the FO054 response to kanamycin, an example
of an opposite response to the same stressor by a clinical strain compared to the
environmental strain (Table S5.1). In the identified metabolome this metabolite did not
appear in F022, demonstrating the highly strain specific ways the metabolism can

change even when the strains have historically been exposed to a similar environment.

All strains responding to ciprofloxacin had a downregulated (FC range 0.09 — 0.41)
metabolite, 4(Glutamylamino)butanoate, which is involved in GABA biosynthesis,
suggesting a demand on GABA (Table S5.3). However, this was indistinguishable from
N2-succinyl-L-ornithine, which is involved in the arginine succinyltransferase pathway.
In contrast, ELU39 upregulated the same metabolite (FC 2.16) in response to
kanamycin (Table S5.1). GABA has a role as an acidity protectant, which arginine
succinyltransferase is essential for aerobic arginine catabolism in E.coli and is one
way of catabolizing ornithine. The downregulated metabolites in arginine and proline

metabolism in response to ciprofloxacin indicate cellular stress (Zhao et al., 2019).

Energy metabolism

All treatments indicated an increased demand on energy needed to overcome
antibiotic stress. Cell wall modifications and increased expression of efflux pumps,
among other resistance mechanisms, create an energy demand (Wagner et al., 2007;
Parsons and Rock, 2013; Da Silva and Domingues, 2017; Pacheco et al., 2017; Zhao
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et al., 2019). Central energy metabolism is heavily featured in the response to
cefotaxime (Fig 5.6). Downregulation of components of the TCA cycle such as malic
acid (Table S5.2) may indicate energy consumption (Lavifia et al., 2020). Amino acid
degradation may also form part of the response to a demand in energy as carbon
skeletons from degradation of amino acids can feed into the biosynthesis of essential

coenzymes and intermediates for the TCA cycle.

Further evidence for an increase in energy consumption is that deoxyadenosine
monophosphate, a by-product of the ATP-ADP reaction is a commonly upregulated
metabolite. Deoxyadenosine monophosphate (AAMP) was significantly altered in all 4
strains in the ciprofloxacin treatment and all but ELU39 in the cefotaxime and
kanamycin treatments. MG1655 had dAMP upregulated the most out of the strains,
particularly in the ciprofloxacin treatment (FC 83.56) and the cefotaxime treatment (FC
373.07) (Table S5.2, S5.3). F054 again displays directional divergence from the trend,
and had dAMP downregulated in the kanamycin (FC 0.44) and cefotaxime (FC 0.027)
treatments (Table S5.1 S5.2).

Differentially regulated components of aerobic respiration are indicative of an
energetic demand caused by induction of resistance mechanisms. Key components
of oxidative phosphorylation were affected in all the treatments. Ubiquinone which is
upregulated 40-fold in MG1655 in response to cefotaxime (FC 40.24), over 50-fold in
response to kanamycin (FC 56.01) (Table S5.2, S5.3). In the MG1655 response to
ciprofloxacin, ubiquinone is upregulated (FC 126.29), while simultaneously ubiquinol-
1 is downregulated (FC 0.086). The downregulation of ubiquinol implies oxidative
phosphorylation is taking place, because to produce energy ubiquinol is reduced to
form ubiquinone, which is upregulated indicating an ongoing reaction at a higher rate

than the control.

Pantothenic acid is a precursor of Coenzyme A, and a downregulation of pantothenic
acid implies a demand on coenzyme A (Lopez-Samano et al., 2020). Pantothenic acid
is downregulated in all strains in response to ciprofloxacin (FC range 0.14 — 0.49)
(Table S5.3). Strain F054 also downregulated pantothenic acid (FC 0.49) and an

additional metabolite involved in coenzyme A biosynthesis, pantetheine 4’-phosphate

124



in response to cefotaxime, which together suggest a demand on coenzyme A
biosynthesis (Table S5.2). In contrast, ELU39 upregulated pantothenic acid (FC 2.16)

in response to kanamycin (Table S5.1).

Pyridoxal-P, PLP is essential for phosphorolytic cleavage of glycogen and amino acid
degradation (Berg et al., 2019). In the cefotaxime treatment, a metabolite involved in
its biosynthesis, O-phospho-4-hydroxy-L-threonine is downregulated to very similar
levels in ELU39 and F054 (FC 0.493 and 0.497 respectively), suggesting a demand
on PLP in these strains (Table S5.2). In the ciprofloxacin treatment, 2-Amino-3-oxo-4-
phosphonooxybutyrate is upregulated in MG1655 and F022 (FC 2.04 and 2.59
respectively) and twice in ELU39 (FC 2.49 and 3.49) (Table S5.3). However in this
untargeted analysis, this mass is indistinguishable from 2-Aspartyl-4-phosphate,
which is involved in the lysine, threonine and methionine biosynthesis pathway.

Biotin is an essential cofactor of carboxylases, decarboxylases and transcarboxylases,
enzymes involved in fatty acid synthesis, gluconeogenesis and amino acid metabolism
(Sirithanakorn and Cronan, 2021). Biotin was a unique metabolite to the ciprofloxacin
response, and was upregulated in the strains ELU39, F022 and MG1655 (FC range
2.44 — 4.84) (Table S5.3).

Nucleotide Metabolism

There are parallel responses in nucleotide and energy metabolism reflected in
significant changes in purine and pyrimidine metabolism in every antibiotic treatment.
Purine metabolism was highlighted 5, 7 and 10 times in the kanamycin, cefotaxime
and ciprofloxacin treatments respectively. Pyrimidine metabolism was highlighted 5, 4
and 13 times in the kanamycin, cefotaxime and ciprofloxacin treatments respectively.
Pyrimidine and purine are fundamental parts of DNA and RNA synthesis as essential
components of nucleic acids and are essential to ATP structure and signal transduction
(Berg et al., 2019). Furthermore, in the response to ciprofloxacin, cytidine and its
precursor cytosine are identified multiple times due to different ionisation adducts such
as hydrogen or sodium, or slightly different recorded masses (<0.01 m/z). Cytosine is
upregulated in all 4 of the strains (FC 2.62 — 9.65) and cytidine is upregulated in F054,
F022 and MG1655 (FC 2.12 — 7.89) (Table S5.3). An exception is one of the 4
instances of cytidine in F022 is instead downregulated (FC 0.43) (Table S5.3).
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Accumulation of a metabolite can be an indication of redundancy (Lavifa et al., 2020).
Therefore, accumulation of cytidine suggests a decreased use of this metabolite for
nucleotide biosynthesis. This suggests interrupted transcription or replication which

would follow given ciprofloxacin binds to DNA toiposomerase (Ojkic et al., 2020).

Bacterial resistance mechanisms occur alongside plasmid-encoded resistance.

Peptidoglycan is a key component of the bacterial cell wall and its amplification is one
of the mechanisms of resistance to aminoglycosides (Plumbridge, 2015; Garneau-
Tsodikovaa and Labby, 2016). N-acetyl-D-muramoate, a precursor for peptidoglycan
biosynthesis, was upregulated over 500-fold (FC 565.44) in response to Kanamycin in
clinical strain F022 (Table S5.1). This metabolite was unique to strain F022. This
contrasts with the plasmid-encoded resistance, which focuses on modification of the
kanamycin molecule. N-acetyl-D-muramoate was also upregulated in all 4 strains in
the ciprofloxacin treatment, but the fold change varied drastically. F022, ELU39 and
MG1655 all had several hundred-fold upregulation of this metabolite: FC 423.59 in
F022, FC 628.07 in ELU39 and FC 841.6 in MG1655, the biggest alteration of any
single metabolite seen throughout this thesis (Table S5.3). Contrastingly, strain F054
had a fold change of 3.43 for N-acetyl-D- muramoate (Table S5.3).

In the cefotaxime treatment, all 4 strains displayed a similar level (FC 3.12 — 5.42) of
upregulation for a mass whose identity could not be distinguished by ppm between 3’-
AMP, AMP or dGMP (Table S5.2). 3’AMP is a derivative of cAMP, which has a role in
biofilm regulation. Biofilm formation is a common response to antibiotic exposure that
increases bacterial tolerance to antimicrobials (Crabbé et al., 2019). This metabolite
was also upregulated in strains F022 and ELU39 (FC 3.02 and 2.08 respectively) in
the kanamycin treatment (Table S5.1). cAMP or a derivative also appears
downregulated (FC 0.49) in strain FO22 and a derivative of cCAMP is upregulated (FC
2.0) in strain FO54 in the ciprofloxacin treatment (Table S5.3). The appearance of this
metabolite in all 3 treatments for strain F022 suggests altering this pathway is
important in the response to antibiotic stress for this strain, although the direction of
change varies with the antibiotic.
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Table 5.2 A table detailing the percentage of the recorded metabolome by strain that was significantly (+/- 2.0
Fold Change) impacted by the antibiotic treatment of ciprofloxacin, cefotaxime and kanamycin when compared
to the antibiotic free control. The numbers of the significantly altered metabolites that are up or downregulated
compared to the control are also recorded.

Treatment Strain % Metabolome Upregulated Downregulated
Ciprofloxacin F054 12.42 % 31 124
Ciprofloxacin MG1655 12.22 % 45 126

Kanamycin F054 10.71 % 12 144
Ciprofloxacin ELU39 10.20 % 76 106
Cefotaxime F022 5.26 % 116 6
Cefotaxime ELU39 5.21% 59 43
Ciprofloxacin F022 4.92 % 60 56
Kanamycin MG1655 3.95 % 67 13
Cefotaxime MG1655 3.83 % 18 30
Cefotaxime F054 3.43 % 8 35
Kanamycin F022 3.32 % 66 8
Kanamycin ELU39 27 % 45 2
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Figure 5.1. Fold change maps for
strain F022 of the metabolomes
exposed to the antibiotic treatment
ciprofloxacin, cefotaxime and
kanamycin each compared to the
control group for that strain,
highlighting significant metabolites.
The threshold for significance is
defined as the fold change +/- 2.0.

See table 5.2 for further values.
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Figure 5.2. Fold change maps for
strain F054 of the metabolomes
exposed to the antibiotic treatment
ciprofloxacin, cefotaxime  and
kanamycin each compared to the
group that

highlighting significant metabolites.
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The threshold for significance is
defined as the fold change +/- 2.0.

See table 5.2 for further values.
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Functions of Metabolites Altered by Ciprofloxacin Treatment
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Figure 5.5. A bar chart of the functional categories of identified metabolites significantly altered by the

ciprofloxacin treatment, coloured by strain: purple MG1655, green ELU39, orange F054 and blue F022.
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Figure 5.6. A bar chart of the functional categories of identified metabolites significantly altered by the

cefotaxime treatment, coloured by strain: purple MG1655, green ELU39, orange F054 and blue F022.
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Figure 5.7. A bar chart of the functional categories of identified metabolites significantly altered by the

kanamycin treatment, coloured by strain: purple MG1655, green ELU39, orange F054 and blue F022.
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5.5 Discussion

Trends in antibiotic disruption

The metabolic effects of antibiotic exposure were assessed in 4 E.coli strains from
different ecological backgrounds carrying the MDR plasmid pLL35. For most of the
strains, the ciprofloxacin treatment caused the largest disruption to the metabolic
network, followed by the cefotaxime treatment and the kanamycin treatment, which
correlates to the number of plasmid-encoded resistance genes for each antibiotic
class. The clinical strains diverged from this trend in different treatments. Strain F022
displayed less than half the disruption in response to ciprofloxacin than the other
strains. Clinical strain F054 displayed a 10.71% disruption in response to kanamycin,

which is 2-3 times the proportion altered by this treatment in the other strains.

Of the recorded metabolomes in the identifiable range, 19.01-33.33% of significant
metabolites were assigned a putative identification. Despite extensive advancements
in metabolomics techniques over recent years, full identification of microbial
metabolomes is not yet possible (Kok et al., 2022). The identifiable metabolome is
reflective of an energetic demand, perturbations to amino acid, nucleotide and cofactor

metabolism and the activity of bacterial resistance mechanisms.

Parallel functions

Within each treatment, the metabolic functions altered by antibiotic stress displayed a
high degree (10-37%) of parallelism between strains. Since all the strains studied here
belong to the same bacterial species this is not unexpected. Additionally, broad
functions such as amino acid metabolism, energy metabolism, nucleotide metabolite
and cofactors were common to all 3 treatment groups. This illustrates general stress
responses, rather than a response to a specific antibiotic. Some of these functions
were also present in the plasmid acquisition metabolome (Chapter 3) and in the
metabolomes of strains evolved under cefotaxime selection (Chapter 4). The extent of
disruption caused by antibiotic exposure is generally higher, up to 12.42% of the
metabolome, compared to plasmid acquisition, up to 1.36 % or coevolution with a
plasmid, up to 2.6% (Table 5.2, Chapters 3 and 4). However, there remains a high
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degree of strain specificity when assessing the pathways and metabolites affected,

and the extent and direction in which they are affected.

Amino acid metabolism is a function affected by antibiotic exposure in this data in
every strain and treatment, and it was also a consistent feature of plasmid acquisition
and co-evolution (Chapter 3 and Chapter 4). Lysine is one of the few amino acids that
features throughout this thesis. In the plasmid acquisition data, lysine degradation is
upregulated in MG1655 and downregulated in one of the clinical strains, F104. In the
clinical strain F022 lysine metabolism is downregulated as a result of long-term
plasmid carriage and upregulated after long term exposure to cefotaxime. In the same
strain, F022, lysine biosynthesis is upregulated in response to cefotaxime. This
suggests lysine is important in maintenance of a plasmid and responses to some

stressors. Further investigations would be needed to fully understand its role.

The GABA biosynthesis pathway was downregulated in all strains in the ciprofloxacin
treatment, which is indicative of a demand on the end product to combat ciprofloxacin.
In metabolomics, a lower intensity can mean that function is in demand and therefore
the free form of the metabolite is decreased as it is transformed through use (Lavifia
et al., 2020). However, in a different treatment, the same metabolite in ELU39 was
upregulated instead. In the post evolution data, a metabolite in the same pathway was
altered in the same direction in the same strain (Chapter 4). In combination with the
data from Chapter 4, this instead suggests that this pathway in the strain ELU39 may

be more associated with plasmid carriage than antibiotic stress.

Evidence of an energetic demand

The metabolomes of all strains in each treatment displayed evidence of an energetic
demand. This was evidenced by differentially expressed amounts of metabolites
belonging to the TCA cycle, aerobic respiration and the biosynthesis of coenzymes
which facilitate those reactions. Aerobic respiration, production of ATP through
glycolysis and the TCA cycle is the most efficient energy production pathway in
bacterial metabolism (Passalacqua, Charbonneau and O’Riordan, 2016). This
pathway is evidenced by cofactors such as PLP and biotin, which have roles in energy

production, biosynthesis of CoA and malic acid, which are key to the TCA, and finally
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the by-product of ATP consumption. In addition, energy production was a function
impacted by the acquisition of a plasmid, implying increased energetic demands
(Chapter 3). Energy is needed to overcome stressors, so it follows that the bacteria
increased the production of energy to combat both the antibiotics and the costs of

plasmid acquisition (Zhao et al., 2019).

While all treatments displayed significant alteration in these metabolites, the
cefotaxime and ciprofloxacin treatments seemed particularly affected, for example
PLP and biotin are unique to these two treatment groups. Some caution is required
with this inference however, as kanamycin also had the lowest proportion of assigned
identifications. Pyridoxal-P, (PLP) is an important cofactor for regulating energy
production from glycogen and amino acids because it is essential for phosphorolytic
cleavage of glycogen and amino acid degradation. The biosynthesis of PLP is
highlighted by downregulation of PLP precursors in ELU39 and F054 strain in the
cefotaxime treatment, and upregulation of the same metabolite in ELU39, F022 and
MG1655 in the ciprofloxacin treatment. Further confirmation of this identification would
be necessary however because there are alternative identifications related to amino

biosynthesis that are equally likely per this analysis.

Ciprofloxacin induced upregulation of biotin which can suggest energy is being derived
from fatty acid metabolism. The cofactor biotin is essential for some carboxylases
involved in fatty acid metabolism, amino acid metabolism and carbohydrate
metabolism (Tong, 2013; Sirithanakorn and Cronan, 2021). Acquisition of the plasmid
induced mutations in genes involved in anaerobic metabolism, of which fatty acid
metabolism is a part (Dunn et al., 2021). This was reflected in the plasmid acquisition
metabolomics of 3 strains (F054, F104 and MG1655) (Chapter 3). Coevolution with a
plasmid also resulted in mutations in anaerobic metabolism and fatty acid metabolism
(Carrilero, Dunn and Moran, 2023) although this was not reflected in the metabolome
(Chapter 4).

Ubiquinol and ubiquinone are integral parts of the electron transport chain, which both
facilitates aerobic respiration and maintains redox homeostasis within the cell (Berg et

al., 2019). Ubiquinone is consistently featured throughout the data in this thesis as a
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molecule important to E.coli for acclimating to plasmid carriage upon acquisition and
over evolutionary time (Chapter 3 and 4). The active reaction is clear in strain MG1655
in the ciprofloxacin treatment group which saw significant downregulation of ubiquinol
because it is reduced and transformed into ubiquinone, which was upregulated over
100-fold. It can be inferred that other changes of these molecules in the same direction
are indicative of this metabolic reaction. Further, it confirms that downregulation of a
metabolite is indicative of a demand on the process of product that requires its

alteration, and is therefore consumed, agreeing with Lavifia et al (2020).

Intracellular conditions are reduced and proteins are kept in the reduced state to
facilitate DNA synthesis, energy production and protein repair (Arnér and Holmgren,
2000). Furthermore, redox stress is both a consequence of antibiotics and a factor that
increases lethality (Brynildsen et al., 2013; Dwyer et al., 2014). Metabolically active
cells experience increased bactericidal effects from fluoroquinolones due to the
formation of reactive oxygen species (ROS) during oxidative phosphorylation
(Gutierrez et al., 2017). Additionally, impeding cell wall synthesis and initiating a futile
cycle of peptidoglycan degradation, beta-lactams induce an energy demand and
systemic cellular toxicity associated with ROS (Cho, Uehara and Bernhardt, 2014;
Dwyer et al., 2014; Adolfsen and Brynildsen, 2015).

Although many of the energy production pathways are common between strains, strain
specificity remains prominent. For example, strain F022 has alterations to the amounts
of metabolites that supply glycolysis, which is a consistent feature for this strain only
in every treatment group. Many of the metabolites related to glycolysis have numerous
putative identifications that are indistinguishable from each other, but the broader
function of glycolysis supply is agreed upon, and is different than for example energy
production from amino acid catabolism and therefore changes unique to this strain to
the production of energy within the cell can be inferred. The clinical strains often
respond differently to the same stressor throughout the dataset. While there are two
strains that come from a similar background of clinical bacteremia, these environments
could still have been vastly different and therefore the way the metabolic network
adapted to respond to the same stressors is different. Interestingly, only F022

displayed an increased growth rate upon acquisition of the plasmid and after
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coevolution under cefotaxime selection (Dunn et al., 2021; Carrilero, Dunn and Moran,
2023).

There is a high level of parallelism of the functions impacted when E.coli is exposed
to antibiotics, but strain specificity is present at the pathway and metabolite level in the
extent and direction in which they are changed. Such diversity in response, even within
the same species and plasmid pairing, emphasizes the challenge faced by the
research of novel combination therapies. So far, this avenue of research is promising,
and aims to use metabolites to manage resistant infections and re-sensitize bacteria
to antibiotics (Peng et al., 2015; Meylan, Andrews and Collins, 2018; Crabbé et al.,
2019). This data demonstrates the importance of building a metabolomic database to
develop clearer trends and allow hypotheses to be formed for treatment research (Kok
et al., 2022).

Bacterial resistance occurs alongside plasmid-encoded genes

There is evidence in the metabolome of active bacterial resistance mechanisms, which
are being upregulated by the bacteria alongside plasmid encoded resistance. This
demonstrates that bacterial resistance mechanisms are not redundant upon
acquisition of an MDR plasmid.

Biofilm formation is a bacterial strategy that reduces sensitivity to antibiotics (Crabbé
et al., 2019). Metabolomics revealed metabolites repeatedly identified as components
of the cell wall and biofilm regulator molecules or their direct derivatives. In the
cefotaxime treatment all four strains have a higher level of a cyclic AMP (cAMP)
derivative than the controls, potentially indicating higher cAMP use. The common
response in the clinical and environmental strains as well as MG1655 after evolution

under cefotaxime selection (Chapter 4) was also an upregulation of CAMP.

Cyclic AMP has multiple regulatory roles in E.coli including virulence, biofilm formation,
type Il secretion and carbon metabolism (Berg et al., 2019). Biofilm formation has been
shown to be influenced by plasmid carriage in E.coli (Shin and Ko, 2015; Schaufler et
al., 2016) and is a bacterial resistance mechanism (Jolivet-Gougeon and Bonnaure-
Mallet, 2014) that is impaired by beta lactamase production (Gallant et al., 2005). This

would explain an increase of cAMP in response to cefotaxime but not the other
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antibiotics, where the same metabolites were present in some of the strains. F022 in
particular had the cAMP derivative upregulated in every treatment. Selection induced
upregulation of cAMP in MG1655, F022 and ELU39, showing this altering of the
metabolome remained as a consequence of long-term cefotaxime exposure, as these

data were measured in the absence of an antibiotic (Chapter 4).

Peptidoglycan biosynthesis was also upregulated in the Kanamycin and ciprofloxacin
treatments, evidenced by upregulation of precursor metabolites. N-Acetyl-D-
muramoate was the most dramatically upregulated of these metabolites,
approximately 400-800 fold by 3 of the 4 strains. This is by far the largest change to a
single metabolite seen throughout this thesis. F054 stood apart in the ciprofloxacin
treatment with just a 3-fold upregulation of this metabolite. Since ciprofloxacin does
not target the cell wall, the strength of this response was perhaps surprising. N-Acetyl-
D-muramoate is a precursor molecule of the two repetitive backbone units of
peptidoglycan, NAM. The second of these, NAG is formed by N-Acetyl-D-
Glucosamine, which is not in the data except as an alternative identification for a mass
that had more likely identifications based on ppm (Table S5.3). While present in all
strains, these masses were also not upregulated to the same extent as N-Acetyl-D-
muramoate. F022 and MG1655 had this mass upregulated 2.6-fold and 4.6-fold
respectively, and it was downregulated in ELU39 and F054 0.43-fold and 0.46-fold
respectively. Further research would be necessary to understand the dynamics of the

cell wall components in this setting.

Many of the significantly altered metabolites seen in this chapter are intermediates,
precursors and derivatives of essential metabolites. This is similar to previous chapters
in this thesis and is unsurprising because metabolite levels are highly conserved in
E.coli even when faced with perturbations the flexible metabolic network can use
alternative pathways to minimise disruption (Ishii et al., 2007; Bennett et al., 2010).
This is one of the qualities which allow E. coli to acclimate to the difference in
conditions in different areas of the human body (Mann et al., 2017). Additionally in this
chapter, the amounts, relative to the control groups, of some essential metabolites
were altered. Examples of these metabolites include L-tryptophan, cytidine and biotin.

This is reflective of the larger metabolic disruption caused by antibiotic exposure.
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This study examined E.coli in the mid-log phase, which was necessary to compare
this data with that of previous chapters. It has been suggested that the stationary
phase is the optimal growth phase for observation of changes in the metabolome in
response to different stress treatments (Szymanski, Jedrzej Jozefczuk et al., 2009).
However, this study was focused on temperature, oxidation and lactose diauxic

stressors rather than antibiotics (Szymanski, Jedrzej Jozefczuk et al., 2009).

This data shows that bacteria carrying resistance plasmids still deploy chromosomally
encoded resistance mechanisms to mitigate the impact of the antibiotic. Gain of
resistance through plasmid transfer is not an evolutionary endpoint as the bacteria will
contribute to respond to the stresses of antibiotics and selection. This helps to explain
why resistance mutations continue to evolve in the chromosome after plasmid gain
(Bottery, Wood and Brockhurst, 2019) and how antibiotics fuel a cycle of mutation and
horizontal transfer that allows resistance gene accumulation and therefore the

evolution of multidrug resistance (Coluzzi et al., 2023).

The E.coli strains F022, F054, ELU39 and MG1655, carrying the MDR plasmid pLL35
were exposed to antibiotic treatments of 3 different classes; beta-lactam,
aminoglycoside and fluoroquinolone. The metabolome of the strains was analysed
using untargeted LC-MS metabolomics, which revealed a multi-layered response to
antibiotic stress that evidences cellular disruption, energetic demands and bacterial
resistance mechanisms.

While many functions, pathways and specific metabolites within these pathways are
commonly affected in the strains, the extent and direction of the perturbation is strain
specific. This demonstrates the complexity of a metabolic network and the nuance in
the response to a common stressor. This has implications for future research on

innovative combination therapies.
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Chapter 6 : General Discussion

6.1 Overview

Antimicrobial resistant infections are predicted to claim 10 million lives a year by 2050
(Antimicrobial Resistance, 2021). Understanding the evolutionary mechanisms of
AMR emergence is important if we are to create actionable interventions to the AMR
crisis. Increased use of antimicrobial drugs is not a viable long-term strategy because
it increases the selection pressure for the evolution of resistance (Canton, Gonzalez-
Alba and Galan, 2012). New mechanisms of resistance evolve continuously, such as
the New Dehli metallo-B-lactamase (NDM) which is able to hydrolyze almost all B-
lactams and is already found on plasmids carried by Escherischia coli and Klebsiella
pneumoniae (Wu et al., 2019). Moreover, the rate of discovery of novel antibiotics has
slowed in recent decades, as antibiotic discovery platforms are largely spent, and no
longer producing many antibiotics that reach approval succeeding clinical trials (da
Cunha, Fonseca and Calado, 2019).

This global health crisis is exacerbated by the horizontal spread of AMR genes by
plasmids. In particular, E.coli carrying multidrug resistance plasmids commonly from
the IncF family have emerged as some of the most difficult to treat infections in humans
and animals globally, driving wider use of last resort antibiotics in hospitals. Plasmids
accelerate the evolution of multidrug resistance (MDR) because they can carry
multiple resistance genes often against different antibiotic classes and transfer these
horizontally between bacterial lineages (Hall, Brockhurst and Harrison, 2017). Thus,
new strategies that minimize or even block plasmid transmission between lineages
are being investigated. This could involve methods such as plasmid curing or
interrupting the process of plasmid dissemination (Buckner, Ciusa and Piddock, 2018;
Ragheb et al., 2019). However, the development of interventions, from individual
treatments to limiting the spread of resistance on a global scale, require a full
understanding of the relationship dynamics between plasmids and their bacterial hosts
(Ragheb et al., 2019; Krell and Matilla, 2022).
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Metabolomics is proving a useful tool for gaining a systems level understanding of how
bacterial cells respond to stressors, including antibiotics. For example, uncovering
physiological strategies used by bacteria to tolerate antibiotics with a view of exploiting
them to increase the efficacy of existing antibiotics (Peng et al., 2015; Meylan,
Andrews and Collins, 2018). To date, metabolomics has been under utilized to
understand how bacteria respond to gaining MDR plasmids and subsequently how

this is altered by evolution and exposure to antibiotics.

This thesis has explored the metabolic responses of E. coli strains carrying the IncF
MDR plasmid pLL35 across important stages in the life history of the bacteria-plasmid
relationship; upon acquisition of the plasmid (Chapter 3), following subsequent
coevolution (Chapter 4) and during exposure to antibiotics (Chapter 5). This work
builds on previous work describing the transcriptome and evolutionary responses to
pLL35 acquisition, together building a comprehensive multi-omics picture of bacterial-
plasmid interactions in a clinically important system. Untargeted metabolomics was
used throughout, as a method to obtain a comprehensive picture of all the metabolites
in a biological system. In the following sections | briefly summarise the key findings of

this thesis:

6.2 Chapter 2 | Metabolomics methodology development

To achieve this, | collaborated on the development of a new analytical pathway which
brought together multiple tools into one streamlined methodology and removed the
dependence of users on proprietary software (Parker et al., 2023). An online, open
access guide was created to help other researchers use untargeted metabolomics.
This informs and aids decision making from wet lab protocols, obtaining metabolomic
data and the processing and analysis that follows. This technology is valuable for
understanding biochemical underpinnings of phenotype as the metabolism is the
biological level most closely associated with function (Goodacre et al., 2004; Ryan and
Robards, 2006). Using this toolkit, | have discovered novel aspects of bacteria-plasmid

interactions as mediated through metabolism.
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6.3 Chapter 3 | Strain specific metabolic responses of diverse E.coli
lineages to the acquisition of a multi-drug resistant plasmid.

Chapter 3 conducted untargeted metabolomics on 9 E.coli strains from clinical (6),
environmental (2) and lab (1) backgrounds to determine their immediate response to
pLL35 acquisition. These bacterial hosts had previously been shown to have different
relationships with the plasmid ranging from costly to beneficial and involving different
degrees of transcriptomic alteration. By comparing plasmid free and plasmid carrying
clones, the analysis revealed the metabolic impact of the acquisition of the MDR
plasmid pLL35 on the bacterial metabolome. The results showed subtle effects,
impacting <2% of the metabolome of each strain. Of the identified metabolites,
commonly affected pathways emerged across strains, associated with ubiquinone
biosynthesis, energy production, and amino acid metabolism. Yet, the direction of
change was not consistent, meaning the precise ways in which even these commonly
affected pathways were altered remained strain specific. The results suggest slight
adjustments of the bacterial metabolism upon plasmid acquisition to conserve or
produce energy and thus mitigate the impact on the cell. These findings suggest that
metabolic adaptation can negate significant costs to plasmid carriage and the
necessity for genetic amelioration through mutations. Taken together with previous
studies on these strains, this reveals a picture of a multi-layered response to plasmid
acquisition. Understanding the flexibility of the bacterial metabolic network at the
regulatory level to a new genetic element is thus shown to be important and worthy of

study in other systems.

6.4 Chapter 4 | Strain specific responses to coevolution and
antibiotic selection of diverse E.coli lineages with a multidrug
resistant plasmid.

In Chapter 4 a subset of these strains were studied to understand the metabolic
response to bacteria-plasmid coevolution. Evolved clones of 3 strains - F022 (clinical),
ELU39 (environmental) and MG1655 (lab) - which had evolved for 700 generations
either in the absence of the plasmid, carrying the plasmid or with the plasmid under
cefotaxime selection (Carrilero, Dunn and Moran, 2023). This previous work observed

that compensatory evolution involving genetic and transcriptomic changes targeting
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metabolic pathways played a key role in amelioration of fitness costs. Untargeted
metabolomics revealed that compared to their ancestors, all evolved clones displayed
metabolomic alterations associated with adaptation to lab conditions. Although these
were consistent among replicates, the magnitude and metabolites altered varied
among strains, with the clinical strain demonstrating the most alterations to its
metabolome. Amino acid biosynthesis, glycolysis, and pyrimidine biosynthesis were

the functions most commonly altered following lab adaptation.

Bacteria-plasmid coevolution affected the metabolome in strain-specific ways,
consistent with the findings of Chapter 3. Key affected functions included amino acid
metabolism, nucleotide metabolism and ubiquinone biosynthesis. Moreover, addition
of antibiotics during coevolution caused some metabolic changes, including amino
acid metabolism, acidity protectants, glycolysis, and ubiquinone biosynthesis. Only the
global regulator cyclic AMP (cAMP) was consistently affected across all strains,
suggesting a role for regulated downstream functions in response to antibiotic

selection.

6.5 Chapter 5| Metabolic responses of 4 E.coli strains carrying a
multidrug-resistant plasmid to antibiotic exposure.

In Chapter 5 four of the plasmid-carrying E. coli strains - F054, F022, ELU39 and
MG1655 - were exposed to 3 different classes of antibiotics against which pLL35
encodes resistance genes: aminoglycosides, beta-lactams and fluoroquinolones
represented by kanamycin, cefotaxime and ciprofloxacin. Untargeted metabolomics
allowed a comprehensive assessment of the bacterial metabolome under sublethal
antibiotic stress. The E.coli strains demonstrated a range of stress responses to
antibiotic exposure and alterations to metabolites associated with bacterial resistance
mechanisms. For the majority of strains, ciprofloxacin caused the most metabolic
disruption, followed by cefotaxime and kanamycin, but the clinical strains deviated
from these trends at times. There was also considerable functional overlap among
strains and between treatments, but the extent and direction of change in particular
pathways and metabolites were strain specific. Commonly affected pathways include
amino acid and nucleotide metabolism, energy production pathways and cofactor

biosynthesis. Interestingly, ubiquinone and ubiquinol were affected in the ciprofloxacin
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treatment, suggesting bacterial management of redox stress. Together these data
suggest that even after gaining resistance genes, bacteria still experience cell stress
upon exposure to a range of antibiotics and use shifts in their metabolic network to

mitigate these detrimental effects.

6.6 Common themes across chapters

One of the main themes in this thesis was that changes in the metabolome in response
to plasmid acquisition and coevolution were strain specific. Fitness effects of plasmids
on bacteria have been shown to vary by genotype, so a reflection of this in the
metabolome is expected (Humphrey et al., 2012). The variation in bacterial
communities caused by plasmid carriage and the strain specific interactions of genes
demonstrates further the properties of plasmids as facilitators of bacterial evolution,
because this variation provides an evolutionary landscape for selection to act upon.
This may be part of the reason the ‘plasmid paradox’ defies theory; the reasoning that
due to the costs they incur, plasmids would be lost from bacterial populations through

purifying selection.

A low impact on the host, such as is seen in the plasmid carriage data in this thesis,
would prevent plasmid-carrying bacteria suffering from competitive exclusion (Fischer
et al., 2019), especially important for the clinically relevant, narrow host range ESBL
plasmids. These plasmids sometimes induce no significant fitness cost at all in the

native hosts (Palkovicova et al., 2021).

In chapters 4 and 5 of this thesis the impacts of plasmid acquisition and coevolution
have had relatively small effects on the metabolome (< 2.6%). There may be several
explanations for this.

The majority of absolute concentrations of metabolites in a bacterial metabolome at
any given time is very low. In an analysis that measured the absolute amounts of 103
metabolites, the 10 most abundant metabolites make up 77% of the observed
metabolome. The least abundant half makes up just 1.3% of the metabolome,
glutamate, glutathione, fructose, ATP, UDP, hexose, UTP, GTP, dTTP, and aspartate.
This includes most of the pathways highlighted in the results of this thesis, therefore
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any of these as fold changes would be a major change in their normal proportion in
the metabolome. Thus changes that appear small in terms of fold change may have a

large biological impact (Bennett et al., 2010).

Biosynthesis and catabolism pathways of amino acids were highlighted consistently
throughout the chapters in this thesis. Amino acids comprise a large fraction of the
metabolome, just under half, followed by nucleotides and central carbon (Bennett et
al., 2010). Amounts of nucleotides and amino acids are tightly regulated, even in
response to a variety of conditions and stressors, they vary consistently less than 30%,
which is 0.3 in fold change terms (Rados et al., 2022). E.coli metabolism can adjust to
deletion of even major biosynthetic pathways to continue producing essential
molecules (Cotton et al., 2020). This suggests that differentially expressed amino acids

may be indicative of a bigger metabolic response than previously thought.

In a community setting fithess variation in bacterial hosts may be advantageous for
the plasmids, by creating a stable pool of resistance in some strains or species to
persist and coevolve intensively with their bacterial hosts, one of the ecological
solutions to the paradox (Clarke et al., 2020; Brockhurst and Harrison, 2022; Newbury
et al., 2022). Given this stability in communities, limiting infection spread may be an
increasing component of the clinical management strategy rather than a cessation of
antibiotic use, because alone this will not promote re-susceptibility, thanks to genetic
linkage of resistance genes and stable plasmids (Enne et al., 2004; Peirano and Pitout,
2019; Newbury et al., 2022).
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Figure 6.1 An edited version of the figure published in (Billane et al., 2022), summarising common
phenotypic effects of plasmids on their bacterial hosts, and how this may relate to different replication

strategies of the plasmid. Greyed out are the functions not reflected in the metabolomics of this thesis.

This work extends previous work interrogating these strains which again, show subtle
strain specific changes - but the targets differ (Dunn et al., 2021; Carrilero, Dunn and
Moran, 2023). This shows a multi-layered, complex pattern of bacterial responses.
Plasmid mediated alterations to the metabolome without antibiotic selection fall in line
with some of the phenotypic effects common to diverse plasmid and bacteria

relationships (Covered Chapter 1, Billane et al., 2022).

In the metabolome, plasmid carriage was associated with use of alternative energy
sources, such as catabolism of amino acids, indicators of anaerobic metabolism and
aromatic compounds (Chapter 3). Coevolution with a plasmid and exposure to
antibiotics induced expression of bacterial resistance mechanisms in tandem with

resistance genes harboured on the plasmid (Chapters 4 & 5). This also saw the
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alteration of the global regulator cAMP which has multiple regulatory functions within
the bacteria, including virulence factors and biofilm formation (McDonough and
Rodriguez, 2012) (Chapter 4). An increased rate of aerobic respiration is indicated by
ubiquinone and ubiquinol, which facilitate oxidative phosphorylation and are molecules
highlighted in every chapter of this thesis, suggesting it's importance for E.coli
acclimating to plasmid carriage and subsequent coevolution, and combatting antibiotic
stress (Chapter 3, 4 & 5).

E.coli undergo metabolic changes within a human host from non-virulent high nutrient
and sugar intestinal niche to the low-nutrient urinary tract, where it switches to
catabolism of amino acids and peptides and increased virulence (Alteri and Mobley,
2012). Different amino acid utilisation and synthesis pathways are activated at different
infection stages. Metabolites associated with virulence include pathogenicity carbon
metabolism, gluconeogenesis, amino acid metabolism B-galactosidase, sorbitol.
Purine and pyrimidine synthesis are also vital for host colonisation and growth (Mann
etal., 2017).

Together, the functional impacts of plasmid carriage complement the other phenotypic
impacts observed in myriad pairings of plasmids and bacteria, observed through the

lens of omic technologies (Figure 1).

6.7 Hypothesis Generation

The metabolome reveals different information than genomics and transcriptomics.
This may be important to consider for future studies as historically transcriptomics are
used to predict phenotype (Long et al., 2019). However, metabolic disruption is not
necessarily reflective of the transcriptomic disruption due to redundancy at different
functional levels (Ishii et al., 2007; Jozefczuk et al., 2010). It is increasingly appreciated
that combined multi-omic studies are the best way to obtain a comprehensive
understanding of a biological system. Different levels reveal different information, and
one cannot necessarily be used to predict another. Untargeted metabolomics is often

used as a hypothesis generating tool (Di Minno et al., 2021).
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Based on the results of this thesis, further research should investigate the following:

Could plasmid impact include adaptive effects?

Future work should aim to untangle the effects of stress from either the plasmid or
antibiotic and explore the possibility that plasmid carriage may induced a preparatory
effect within the bacterial metabolome. The biosynthesis and use of the cellular
regulator cAMP was featured repeatedly in the metabolome of E.coli that had
coevolved with a plasmid with and without antibiotic selection and in the metabolomes
of the ancestral plasmid carriers upon exposure to antibiotics. CAMP levels were
altered in all strains studied in Chapter 4 and indicated that plasmid carriage induced
downregulation, when compared to plasmid free strains, and cefotaxime exposure
induced upregulation, compared to plasmid free strains. Chapter 5 showed that cAMP
was important in the bacterial response to antibiotic stress. The plasmid has an impact
on cAMP that is opposite to the cAMP response when the bacteria encounters
antibiotics. Further assessment of this pathway should test if this represents an
adaptive effect, where the plasmid alters some aspects of the bacterial metabolome
to conserve or accumulate metabolic products required for the survival of the bacteria

during exposure to stressors.

A number of pathways highlighted in the untargeted metabolomics throughout this

thesis are candidates for further, targeted analysis.

Examining the dynamics of these pathways may further our understanding of plasmid
persistence and the continued evolution of resistance. In response to plasmid
acquisition, co-evolution and antibiotic exposure, significant changes are consistently
seen throughout this thesis to ubiquinone and ubiquinol, and metabolism of amino
acids such as lysine, arginine and tryptophan. Targeted analysis to examine the full
pathway would determine whether these are potential targets for metabolite based
combination therapies (Meylan, Andrews and Collins, 2018; Crabbé et al., 2019).
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Additionally, the upregulation of NAM, part of peptidoglycan biosynthesis in response
to ciprofloxacin was the largest metabolic alternation to a single metabolite in multiple
strains in the data. While untargeted metabolomics facilitated this discovery,
understanding of this remains incomplete. The gain of resistance does not mean that
the bacteria cease to respond to selection. Instead the compounding tolerance by
plasmid acquisition and chromosomal resistance mutations each facilitate the other
(Coluzzi et al., 2023). This contributes to the evolution of multidrug resistance and so
understanding key metabolic pathways that change during bacterial-plasmid
coevolution, or plasmid carrier responses to survive antibiotics, are important to aid

the mitigation of the dissemination of multi-drug resistance.

6.8 Conclusions

This thesis demonstrates, by use of untargeted metabolomics, that plasmid carriage
induced strain specific responses in E. coli which have broad functional
commonalities. Adjusting the metabolism of amino acids, production of energy
including utilisation of alternative sources or a switch to anaerobic metabolism. These
functions continued to be affected by evolution, which impacted amino acid, energy
and nucleotide metabolism as the strains adapted to laboratory conditions.
Coevolution with a plasmid had a varied scale of impact among the strains when
compared to plasmid free controls and affected amino acid metabolism, nucleotide
metabolism and energy production in the clinical strains, while the environmental strain
altered fatty acid metabolism and acid protectants to adapt to plasmid carriage.
Antibiotic selection induced a range of stress responses, highlighted by the altered
regulation of energy production, amino acid metabolism and nucleotide metabolism.
Bacterial resistance mechanisms are also induced, highlighted by altered regulation
of cell wall and biofilm component biosynthesis and redox stress regulation, which has
roles in both stress and resistance responses of the bacteria. This shows the bacteria
continue to respond to stressors in tandem with plasmid-encoded resistance genes.
Thus Escherichia coli adapt to plasmid carriage and antibiotic exposure by subtle

alterations of its metabolism on a network wide scale.
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Supplementary Materials

Supplementary Chapter 3
S3 - Data Tables

Table S3.1 — Mass values (Da) with a Fold Change of 2.0 or greater and putative Identifications where possible for 9 E.coli strains when the plasmid carrying profiles were
compared against plasmid free controls.

Adduct
+Compound Monoisotopic | Chemical Fold
Strain Mass ID KEGG | ppm | Adduct M/Z Mass Formula Change log2(FC)
C0021
F054 70.005 Methylamine 8 5 M+K 70.0054 31.0422 CH5N 2.0299 1.0214
FO037 136.0858 - 2.4148 1.2719
F104 136.0858 10.959 3.4541
ELU39 136.0858 11.741 3.5534
GU15 136.0858 2.399 1.2624
C0079
F048 136.13162 Creatinine 1 22 M+Na 136.0481 113.0589 C4H7N30 0.11428 -3.1294
C0079
F054 136.13162 Creatinine 1 22 M+Na 136.0481 113.0589 C4H7N30 15.621 3.9654
C0079
F104 136.13162 Creatinine 1 22 M+Na 136.0481 113.0589 C4H7N30 2.7381 1.4532
C0079
ELU39 136.13162 Creatinine 1 22 M+Na 136.0481 113.0589 C4H7N30 0.28535 -1.8092
C0079
GU15 136.13162 Creatinine 1 22 M+Na 136.0481 113.0589 C4H7N30 0.085993 -3.5396
F054 146.15521 3.11F054 1.6394
C1991
F022 147.06438 Pyrazinic acid 5 10 M+Na 147.0165 124.0273 C5H4N202 | 0.42509 -1.2342
C0055
Benzyl-alcohol 6 39 M+K 147.0207 108.0575 C7H80
C0146
4-Cresol 8 39 M+K 147.0207 108.0575 C7H80
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N6-Acetyl-L- C0272 C8H16N20
F104 211.1012 Lysine 7 25 M+Na 211.1053 188.1161 3 0.49985 -1.0004
Co0157
Decanoate 1 37 M+K 211.1077 171.1385 C10H1902
MG165 N6-Acetyl-L- | C0272 C8H16N20
5 211.1012 Lysine 7 25 M+Na 211.1053 188.1161 3 2.1908 1.1315
Co0157
Decanoate 1 37 M+K 211.1077 171.1385 C10H1902
F047 233.1467 0.47428 -1.0762
F104 233.14876 0.24024 -2.0575
F054 247.12517 0.33153 -1.5928
F104 247.12517 0.4166 -1.2633
F054 248.12694 | Tetradecanoate 11 M+Na 248.1747 225.1855 C14H2502 0.4625 -1.1125
C0025 C6H10Ca0
FO47 | 251.06503 | D-Glyceric acid 8 36 M+H 251.0074 250.0002 8 0.4477 -1.1594
FO47 266.18066 0.29143 -1.7788
4-Hydroxy-3-
polyprenylbenzo | C0584
FO47 275.12669 ate 8 36 M+H 275.1642 274.1569 C17H2203 | 0.37122 -1.4297
4-Hydroxy-3-
polyprenylbenzo | C0584
F104 275.12766 ate 8 36 M+H 275.1642 274.1569 C17H2203 2.9549 1.5631
4-Hydroxy-3-
polyprenylbenzo | C0584
F054 275.13172 ate 8 36 M+H 275.1642 274.1569 C17H2203 9.473 3.2438
4-Hydroxy-3-
polyprenylbenzo | C0584
F022 275.13489 ate 8 36 M+H 275.1642 274.1569 C17H2203 2.2185 1.1496
MG165
5 280.95598 11.716 3.5505
F054 286.14576 2.0658 1.0467
F047 296.95104 2.6433 1.4024
GU15 | 296.95127 0.29292 -1.7714
F104 296.95246 0.46937 -1.0912
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FO37 | 307.22445 0.49981 -1.0006
GU15 | 308.14917 3.793 1.9234
ELU39 | 308.14924 4.6182 2.2073

FO47 | 313.27234 0.48324 -1.0492
GU15 | 313.27234 2.2325 1.1587
GU15 | 313.39844 2.2256 1.1542
GU15 | 314.27759 2.0088 1.0064
ELU39 | 353.32385 2.3799 1.2509

FO47 | 354.40425 0.45746 -1.1283

FO47 | 356.28549 0.40282 -1.3118

FO54 | 365.06347 2.1756 1.1214

FO47 | 371.26914 0.41866 -1.2562

FO54 | 415.16229 0.4571 -1.1294
MG165 | 481.2796

5 0.48633 -1.04
MG165
5 525.31009 0.39106 -1.3545

GU15 | 540.74636 2.7599 1.4646

FO47 | 607.97027 0.47358 -1.0783
MG165

5 613.36561 0.3985 -1.3274
MG165

5 629.2655 0.4906 -1.0274
ELU39 | 662.51522 2.1303 1.0911
ELU39 | 664.52067 2.0728 1.0516

FO47 | 683.57686 0.38913 -1.3617
ELU39 | 688.53377 2.3932 1.259
ELU39 | 690.54459 3.3654 1.7508
ELU39 | 691.54931 2.5932 1.3747
ELU39 | 692.55674 2.0569 1.0405

F022 | 693.24188 4.3015 2.1048
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ELU39 | 701.58616 0.39151 -1.3529
ELU39 | 704.56329 2.8312 1.5014
ELU39 | 705.56621 2.2565 1.1741
FO47 | 711.61334 0.39569 -1.3376
ELU39 | 712.53027 2.5051 1.3249
ELU39 | 716.55932 2.4449 1.2897
ELU39 | 717.56305 3.3521 1.745
ELU39 | 718.57616 3.0266 1.5977
ELU39 | 719.57945 2.2581 1.1751
ELU39 | 744.57516 2.1704 1.1179
GU15 | 746.55976 2.6058 1.3817
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S3 - Principle Component Analysis
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Figure S3.1. Principle component analysis for each of 9 E.coli strains comparing the plasmid free
metabolome to the plasmid carrying metabolome.

175



S3 - Mass Spectrometry Parameters
Parameters for C:\MassLynx\Heather. PRO\ACQUDB\esi_pos_sens.EXP
Created by 4.2 SCN983

Lock Spray Configuration:

Tuning on Analyte

Temperature Correction:

Temperature Correction Disabled

Instrument Configuration:

Lteff 1800.0

Veff 7199.60
Resolution 10000

Min Points in Peak 2

Acquisition Device WatersADC
Acquisition Algorithm ADC Mode
ADC Trigger Threshold (V) 1.00
ADC Input Offset (V) -1.50
Average Single lon Intensity 24
ADC Amplitude Threshold 3

ADC Centroid Threshold -1
ADC lon Area Threshold 3

ADC lon Area Offset 10
ADC Pushes Per IMS Increment 1

EDC Delay Coefficient 1.4100
EDC Delay Offset 0.4000

Experimental Instrument Parameters

Instrument
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Parameter Filename

C:\MassLynx\Heather.PRO\ACQUDB\190221.IPR (MODIFIED)

Polarity

Capillary (kV)

Source Temperature (°C)
Sampling Cone

Source Offset

Source Gas Flow (mL/min)
Desolvation Temperature (°C)
Cone Gas Flow (L/Hr)
Desolvation Gas Flow (L/Hr)
Nebuliser Gas Flow (Bar)

LM Resolution

HM Resolution

Aperture 1

Pre-filter

lon Energy

Manual Trap Collision Energy

Trap Collision Energy

Manual Transfer Collision Energy

Transfer Collision Energy
Manual Gas Control
Trap Gas Flow (mL/min)
HeliumCellGasFlow

IMS Gas Flow (mL/min)
Detector

DetectorCache

Sample Infusion Flow Rate (uL/min)

Sample Flow State
Sample Fill Volume (uL)

Sample Reservoir

LockSpray Infusion Flow Rate (uL/min)

LockSpray Flow State

ES+
3.6000
100
80.0000
20.0000
0.00
280
0.0
500.0
2.5
4.4
15.0
0.0
2.0
1.0
FALSE
4.0
FALSE
2.0
FALSE
2.00
180.00
90.00
3400
LC
250
Wash
10
Infusion
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LockSpray Reservoir B
LockSpray Capillary (kV) 3.0

Use Manual LockSpray Collision Energy FALSE
Collision Energy 4.0
Acceleration1 70.0
Acceleration2 200.0
Aperture2 40.0
Transport1 70.0
Transport2 70.0

Steering -0.75

Tube Lens 72

Pusher 1900.0
Pusher Offset -0.30
Puller 1370.0
Pusher Cycle Time (us) Automatic
Pusher Width (ps) Automatic
Collector 50

Collector Pulse 10.0
Stopper 10
Stopper Pulse 20.0
Entrance 62

Static Offset 180

Puller Offset 0.00
Reflectron Grid (kV) 1.470

Flight Tube (kV) 10.00
Reflectron (kV) 3.780
Use Manual Trap DC FALSE
Trap DC Entrance 1.0

Trap DC Bias 2.0
Trap DC -2.0
Trap DC Exit 0.0

Use Manual IMS DC FALSE
IMS DC Entrance -20.0
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Helium Cell DC

Helium Exit

IMSBias

IMS DC Exit

USe Manual Transfer DC
Transfer DC Entrance
Transfer DC Exit

Trap Manual Control

Trap Wave Velocity (m/s)
Trap Wave Height (V)

IMS Manual Control

IMS Wave Velocity (m/s)

IMS Wave Height (V)
Transfer Manual Control
Transfer Wave Velocity (m/s)
Transfer Wave Height (V)
Step Wave 1 In Manual Control
Enable Reverse Operation
Step Wave 1 In Velocity (m/s)
Step Wave 1 In Height

Step Wave 1 Out Manual Control
Step Wave 1 Out Velocity (m/s)
Step Wave 1 Out Height
Step Wave 2 Manual Control
Step Wave 2 Velocity (m/s)
Step Wave 2 Height

Use Manual Step Wave DC
Step Wave TransferOffset
Step Wave DiffAperture
Step Wave DiffAperture2

Use Automatic RF Settings
StepWave1RFOffset
StepWave2RFOffset

-20.0

20.0

15.0

300

OFF

0.2

OFF

25.0

1.0

2.0

FALSE
5.0

OFF

0.5

300
0.0
OFF
247

OFF

300.0
15.0

OFF

300.0
15.0

OFF

300.0
1.0

OFF

3.0
0.0
TRUE
300.0
350.0
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Target Enhancement Enabled

Target Enhancement Mode

Target Enhancement Mass

Target Enhancement Trap Height (V)
Target Enhancement Extract Height (V)

Mobility Trapping Manual Release Enabled

Mobility Trapping Release Time (us)
Mobility Trap Height (V)

Mobility Extract Height (V)

Trag Gate LUT table enabled
Triwave Trap Gate LookUp Table
Using Drift Time Trimming

Drift Time Bins

Using Mobility Delay after Trap Release
IMS Wave Delay (us)

Variable Wave Height Enabled
Wave Height Ramp Type

Wave Height Start (V)

Wave Height End (V)

Wave Height Using Full IMS
Wave Height Ramp (%)

Wave Height Look Up Table
Variable Wave Velocity Enabled
Wave Velocity Ramp Type

Wave Velocity Start (m/s)

Wave Velocity End (m/s)

Wave Velocity Using Full IMS
Wave Velocity Ramp (%)

Wave Velocity Look Up Table
Backing

Source

Sample Plate

Trap

FALSE
EDC
785.0
4.0
15.0
FALSE
500
15.0
0.0
FALSE

FALSE
0
TRUE
1000
FALSE
Linear
10.0
40.0
TRUE
100.0

FALSE

Linear
1000.0

300.0

TRUE

100.0

2.92e0

7.25e-3

1.19e3
8.67e-3
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Helium Cell

IMS

Transfer

TOF

IMSRFOffset
IMSMobilityRFOffset
TrapRFOffset

Use Automatic RF Settings
AutoStepWave 1RFOffset
AutoStepWave2RFOffset
TransferRFOffset

MS Profile Type
MSProfileMass1
MSProfileDwellTime1
MSProfileRampTime1
MSProfileMass2
MSProfileDwellTime2
MSProfileRampTime2
MSProfileMass3
Pusherinterval
PusherOffset
LockMassValidSigma

Acquisition mass range
Start mass
End mass
Calibration mass range
Start mass

End mass

9.97e-5
9.84e-5
7.66e-3
4.45e-7
300
250
300
TRUE
300
300
350
Auto P
100
20
20
300
20
40
500
54.000000
0.250000
5

50.000

1200.000

0.000
0.000

Experiment Reference Compound Name: N/A

Function Parameters - Function 1 - TOF MS FUNCTION

181



Scan Time (sec)

Interscan Time (sec)

Start Mass

End Mass

Start Time (mins)

End Time (mins)

Data Format

Analyser

ADC Sample Frequency (GHz)
ADC Pusher Frequency (us)
ADC Pusher Width (us)

Use Tune Page Cone Voltage

Using Auto Trap Collision Energy (eV)

1.000
0.014
50.0
1200.0
0.00
3.00
Continuum

Sensitivity Mode

Using Auto Transfer Collision Energy (eV) 2.000000

Sensitivity

Dynamic Range

Save Collapsed Retention Time Data
Use Rule File Filtering
FragmentationMode

Calibration

S3 - XCMS online Parameters
Feature Detection method

Ppm 30
Minimum peak width

Maximum peak width

Retention Time Correction method
Alignment

Bw 5
Minfrac

Mzwid 0.025

3.0
54.0
1.50
YES
4.000000
Normal
Normal
No
No
CID
Dynamic 2
Centwave
10
60
Obiwarp
0.5
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S3 - Normalisation of Data

MG1655 F022 FO37

Figure S3.2 — Graphs showing the density and intensity of the data before and after normalization.
Normalized by Pareto scaling to retain the shape of the data.
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Figure S3.3 — Graphs showing the density and intensity of the data before and after normalization.
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Supplementary Chapter 4

S4 - Data Tables
Table S4.1 Fold change summary of the total masses (Da) that cross the fold change threshold of +/- 2.0 when comparing the plasmid carrying profiles against

the plasmid free profiles by strain. Metabolites were identified using KEGG and ECMDB.

Strain M/z ID KEGG |ppm | Adduct Adduct Monoisotopi| Chemical FC |log2(FC Function
+Compound M/Z| c Mass Formula )
F022 | 96.07998 0.43264 |-1.2088
F022 | 118.09047 Betaine C00719 | 31 M+H 118.0868 118.0868 C5H12NO2 | 0.36273 | -1.463 Serine and threonine
biosynthesis
L-Valine C00183 | 36 M+H 118.0863 117.079 C5H12NO2 Branched chain amino acid
metabolism valine-
isoleucine metabolism
F022 | 119.09351 0.39633 |-1.3352
F022 |140.07101 Betaine C00719 | 16 M+Na 118.0868 C5H12NO2 | 0.36083 |-1.4706 Serine and threonine
biosynthesis
L-Valine C00183 | 20 M+Na 117.079 C5H12NO2 Branched chain amino acid
metabolism
F022 | 153.04427 Xanthine C00385 | 23 M+H 0.46548 |-1.1032 Adenine and guanine
metabolism
2-Keto-3-methyl-valerate | C00671 | 48 M+Na 153.0517 129.0552 C6H903 Branched chain amino acid
metabolism valine-
isoleucine metabolism
F022 |153.07936 Ribitol C00474 | 24 M+H 153.0757 152.0685 C5H1205 0.47956 |-1.0602
L-Arabitol C00532 | 24 M+H 153.0757 152.0685 C5H1205
F022 |156.04794 Betaine C00719 | 34 M+K 156.0427 118.0868 C5H12NO2 | 0.30117 |-1.7313 Serine and threonine
biosynthesis
L-Valine C00183 | 37 M+K 156.0421 117.079 C5H11NO2 Branched chain amino acid
metabolism
F022 |213.02325 3-Carboxy-3-hydroxy- C02504 | 34 M+K 213.016 174.0528 C7H1005 0.48593 |-1.0412 | Branched chain amino acid
isocaproate metabolism leucine
biosynthesis
2-Isopropyl-3-oxosuccinate | C04236 | 34 M+K 213.016 174.0528 C7H1005 Branched chain amino acid
metabolism leucine
biosynthesis
Shikimic acid C00493 | 34 M+K 213.016 174.0528 C7H1005 Shikimate pathway
ELU39 | 217.11175 | gamma-Glutamyl-gamma- | C15700 | 30 M+H 216.111 217.1183 C9H16N204 | 2.544 | 1.3471 GABA biosynthesis
butyraldehyde
ELU39 | 226.9613 | 2,5-Dichloro-4-oxohex-2- | C12835 | 46 M+H 226.9509 225.9436 C6H4CI205 | 2.2061 | 1.1415
enedioate
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F022 | 230.24096 0.39979 |-1.3227
ELU39 | 230.24292 3.7446 | 1.9048
MG1655| 250.88692 0.43583 |-1.1982
ELU39 | 254.84663 3.5313 | 1.8202
F022 | 254.84667 2.2911 | 1.196
F022 |260.90304 0.49388 |-1.0178
MG1655| 261.1383 0.47497 |-1.0741
F022 |262.87619 0.44241 |-1.1765
MG1655| 262.87666 2.2873 | 1.1936
F022 |270.15899 Ubiquinol-1 C00390 | 41 | M+NH4 270.17 252.1362 C14H2004 | 0.33108 |-1.5948| Ubiquinone biosynthesis
MG1655| 277.08735 Nicotinamide riboside C03150 | 26 | M+Na 277.08 255.0981 | C11H15N205 | 0.44779 |-1.1591
D-Galactosamine 6- C06377 | 28 | M+NH4 277.0795 259.0457 | C6H14NO8P
phosphate
alpha-D-Glucosamine 1- | C06156 | 28 | M+NH4 277.0795 259.0457 | C6H14NO8P UDP-N-acetyl-D-
phosphate glucosamine biosynthesis
Glucosamine-1P C04501 | 28 | M+NH4 277.0795 259.0457 | C6H14NO8P UDP-N-acetyl-D-
glucosamine biosynthesis
Glucosamine 6-phosphate | C00352 | 28 | M+NH4 277.0795 259.0457 | C6H14NO8P UDP-N-acetyl-D-
glucosamine biosynthesis
F022 |329.07394 N-Succinyl-L,L-2,6- C04421 2 M+K 329.0746 290.1114 | C11H18N207 | 0.43099 (-1.2143 Lysine metabolism
diaminopimelate
Argininosuccinic acid C03406 | 36 M+K 329.0858 290.1226 | C10H18N406 Arginine biosynthesis
2-Succinyl-5-enolpyruvyl-6- | C16519 | 39 M+H 329.0867 328.0794 C14H1609 Menaquinone biosynthesis
hydroxy-3-cyclohexene-1-
carboxylate
F022 | 347.05896 0.12 |-3.0589
F022 |347.08038 Adenosine 2',3'-cyclic C02353 | 17 | M+NH4 347.0863 329.0525 |C10H12N506P| 0.42755 |-1.2258| Precursor to adenosine,
phosphate derivative of 2'3'-Cyclic AMP
Cyclic AMP C00575 | 17 | M+NH4 347.0863 329.0525 |C10H12N506P Biofilm Formation
F022 | 347.58478 0.49322 |-1.0197
ELU39 | 362.94504 2.157 | 1.109
F022 |385.07204 0.45366 |-1.1403
ELU39 | 404.93512 2.5603 | 1.3563
ELU39 | 412.77255 2.1846 | 1.1273
ELU39 | 426.84985 2.0265 | 1.019
ELU39 | 430.936 2.0084 | 1.0061
F022 |499.15677 0.44123 |-1.1804
F022 |520.11624 0.41277 |-1.2766
MG1655| 520.13006 0.35585 |-1.4907
F022 |520.63378 0.4467 |-1.1626
F022 |521.13348 0.4868 |-1.0386
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F022 541.1 0.41977 [-1.2523
ELU39 | 546.76873 2.141 | 1.0983
F022 |578.14658 0.495 |-1.0145
ELU39 | 590.75225 2.0206 | 1.0148
F022 |596.15631 0.4947 |-1.0154
MG1655| 638.6573 0.44215 [-1.1774
MG1655| 693.16966 0.20921 | -2.257
F022 |693.17004 0.44041 [-1.1831
ELU39 | 693.17201 2.1898 | 1.1308
F022 |694.17386 0.44444 |-1.1699
F022 |695.17316 0.40985 |-1.2868
ELU39 | 742.7783 2.2841 | 1.1916
ELU39 | 764.75922 2.0853 | 1.0602
ELU39 | 796.68474 2.5129 | 1.3293
F022 | 808.54628 0.40686 |-1.2974
F022 |815.86261 0.39291 |-1.3477
F022 |823.86119 0.49104 |-1.0261
F022 |866.21927 0.3994 |-1.3241
F022 |888.17153 0.49332 |-1.0194
F022 |1039.2673 0.26872 |-1.8958
F022 [1040.26905 0.33133 |-1.5936
F022 [1062.25633 0.49898 | -1.003
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Table S4.2 Fold change summary of the total masses (Da) that cross the fold change threshold of +/- 2.0 when comparing the antibiotic selection profiles

against the plasmid free profiles by strain. Metabolites were identified using KEGG and ECMDB

Strain M/z ID KEGG | ppm |Adduct Adduct Monoisotopic Chemical FC Log2(FC) Function
+Compound Mass Formula
M/Zz
F022 |118.09047 Betaine Cc0o0719| 31 M+H 118.0868 118.0868 C5H12NO2 | 0.39376 | -1.3446 Serine and threonine
biosynthesis
L-Valine C00183| 36 M+H 118.0863 117.079 C5H11NO2 Branched cahin amino acid
metabolism
F022 |156.04794 Betaine C0o0719| 34 M+K 156.0427 118.0868 C5H12NO2 | 0.34037 | -1.5548 Serine and threonine
biosynthesis
L-Valine C00183| 37 M+K 156.0421 117.079 C5H11NO2 Branched cahin amino acid
metabolism
ELU39 | 166.0853 D-Phenylalanine C02265| 6 M+H 166.0863 165.079 C9H11NO2 0.48577 | -1.0417 Phenyalanine biosythesis
L-Phenylalanine C00079| 6 M+H 166.0863 165.079 C9H11NO2 Phenyalanine biosythesis
MG1655| 174.94267 0.4903 | -1.0283
MG1655| 198.04356 [7-Cyano-7-carbaguanine|C15996| 25 M+Na 198.0386 175.0494 C7H5N50 0.41098 | -1.2829 Folate biosynthesis
ELU39 | 217.10864 gamma-Glutamyl-  [C15700| 44 M+H 217.1183 216.111 C9H16N204 | 4.7016 2.2332 GABA biosynthesis
gamma-butyraldehyde
MG1655| 220.0286 L-Tyrosine C00082| 38 M+K 220.0371 181.0739 C9H11NO3 0.47746 | -1.0666 Tyrosine biosythesis,
thyamine biosynthesis
ELU39 | 230.24152 2.0834 1.0589
ELU39 | 242.04925 0.41289 | -1.2762
F022 |247.06603 | -Phosphoribosylamine [C03090| 12 |M+NH4| 247.069 229.0351 C5H12NO7P | 0.35436 | -1.4967 | Denovo puring biosynthesis
F022 |254.84738 2.8627 1.5174
F022 |270.15827 Ubiquinol-1 C00390| 43 |M+NH4 270.17 252.1362 C14H2004 0.38333 | -1.3834 Ubiquinone biosynthesis
F022 |338.89928 2.1589 1.1103
F022 |347.05936 0.47002 | -1.0892
ELU39 | 347.08318 | Adenosine 2',3'-cyclic [C02353| 9 M+NH4| 347.0863 329.0525 C10H12N506P | 4.7682 2.2534 Precursor to adenosine,
phosphate derivative of 2'3'-Cyclic AMP
Cyclic AMP Co0575| 9 M+NH4| 347.0863 329.0525 C10H12N506P Biofilm Formation
MG1655|404.80551 0.49128 | -1.0254
ELU39 | 404.93164 0.31718 | -1.6566
F022 |436.87816 2.5865 1.371
ELU39 | 660.64963 2.5848 1.3701
ELU39 | 682.73257 2.2513 1.1708
ELU39 | 693.1525 5.0024 2.3226
ELU39 |715.13273 4.0504 2.0181
ELU396|764.73754 2.2546 1.1729
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Table S4.3. Total masses (Da) that cross the fold change threshold of +/-2.0 comparing the antibiotic selection profiles against the plasmid carrying profiles by
strain. Metabolites were identified using KEGG and ECMDB

Strain M/z ID KEGG ppm | Adduct | Adduct -'I-vtltlgmpound Monoisotopic Mass (.I‘.:hemiclal FC Log2(FC) Function
ormula
F022 199.04636 Propylene glycol C00583 | 48 | M+Na 99.0416 76.0524 C3H802 0.3453 | -1.5341 By-product of glycolysis
F022 |115.0412 Glycerol C00116 | 40 | M+Na 115.0366 92.0473 C3H803 2.0506 1.036 Feeds into glycolysis
F022 | 135.069 |R)-2,3-Dihydroxy-isovalerate | C04272 | 28 | M+H 135.0652 134.0579 C5H1004 | 2.1982 1.1363 Valine/isoleucine branched
chain amino acid metabolism
Deoxyribose C01801| 28 | M+H 135.0652 134.0579 C5H1004
F022 |153.0794 Ribitol C00474 | 24 | M+H 153.0757 152.0685 C5H1205 | 2.0533 1.038
L-Arabitol C00532| 24 | M+H 153.0757 152.0685 C5H1205
MG165(174.9427 0.47841| -1.0637
5
F022 | 195.0083 Glycerol 3-phosphate C00093 | 28 | M+Na 195.0029 172.0137 C3H906P | 2.1478 1.1028
F022 (213.0233 3-Carboxy-3-hydroxy- C02504 | 34 | M+K 213.016 174.0528 C7H1005 | 2.2291 1.1565 Branched chain amino acid
isocaproate metabolism leucine
biosynthesis
2-Isopropyl-3-oxosuccinate | C04236 | 34 | M+K 213.016 174.0528 C7H1005 Branched chain amino acid
metabolism leucine
biosynthesis
Shikimic acid C00493 | 34 | M+K 213.016 174.0528 C7H1005 Shikimate pathway
ELU39|242.0494 0.35686 | -1.4866
F022 |247.1377 0.48772| -1.0359
ELU39|254.8458 0.46021| -1.1196
F022 |260.9036 2.2249 1.1538
F022 |304.9481 2.3769 1.2491
MG165|316.8844 2.5795 1.3671
5
F022 |329.0711 N-Succinyl-L,L-2,6- C04421| 11 | M+K 329.0746 290.1114  |C11H18N207| 2.2688 1.1819 Lysine metabolism
diaminopimelate
Argininosuccinic acid C03406 | 45 | M+K 329.0858 290.1226  |C10H18N406 Arginine biosynthesis
2-Succinyl-5-enolpyruvyl-6- | C16519 | 47 | M+H 329.0867 328.0794 C14H1609 Menaquinone biosynthesis
hydroxy-3-cyclohexene-1-
carboxylate
F022 |347.0599 2.8285 1.5001
ELU39(347.0818 Adenosine 2',3'-cyclic C02353 | 13 |M+NH4 347.0863 329.0525 |C10H12N506| 3.4007 1.7658 Precursor to adenosine,
phosphate P derivative of 2'3'-Cyclic AMP
Cyclic AMP C00575| 13 |M+NH4 347.0863 329.0525 |C10H12N506 Biofilm Formation
P
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MG165| 347.0851 Adenosine 2',3'-cyclic C02353| 4 |M+NH4 347.0863 329.0525 C10H12N506| 2.5321 1.3403 Precursor to adenosine,
5 phosphate P derivative of 2'3'-Cyclic AMP
Cyclic AMP C00575| 4 |M+NH4 347.0863 329.0525 |C10H12N506 Biofilm Formation
P
F022 |347.0879 Adenosine 2',3'-cyclic C02353| 4 |M+NH4 347.0863 329.0525 |C10H12N506| 2.2155 1.1476 Precursor to adenosine,
phosphate P derivative of 2'3'-Cyclic AMP
Cyclic AMP C00575| 4 |M+NH4 347.0863 329.0525 |C10H12N506 Biofilm Formation
P
F022 |347.5848 2.3 1.2016
F022 |358.0724 S-Formylglutathione C01031| 12 | M+Na 358.0679 335.0787 |C11H17N307| 2.0873 1.0617 Methane metabolism
S
F022 |369.0697 2.5728 1.3634
ELU39|398.8441 3.1552 1.6577
ELU39|404.9322 0.11981| -3.0612
F022 [409.1748 2.0805 1.0569
F022 | 462.445 2.1938 1.1334
F022 [469.7692 2.1208 1.0846
F022 [499.1608 2.1493 1.1039
F022 |500.1609 2.0636 1.0452
ELU39| 502.85 0.45617| -1.1324
F022 [520.1261 2.285 1.1922
F022 [520.6239 2.2336 1.1594
F022 |521.1231 2.2784 1.188
F022 | 531.109 2.4302 1.281
F022 [531.6092 2.3913 1.2578
ELU39|534.8558 0.49959| -1.0012
F022 [541.0803 2.3724 1.2463
ELU39|546.8318 0.32046 | -1.6418
F022 |561.1086 2.0018 1.0013
F022 [577.8001 2.2354 1.1605
F022 | 578.136 2.363 1.2406
F022 |578.5359 2.3221 1.2154
F022 [585.1369 2.2843 1.1918
F022 |585.4745 2.0176 1.0126
F022 |592.4567 2.1904 1.1312
F022 |606.6503 2.1267 1.0886
F022 |606.8986 2.0521 1.0371
ELU39(660.6517 3.038 1.6031
F022 [675.1639 3.2815 1.7144
F022 |676.1462 2.0865 1.0611
ELU39|676.8052 0.35836| -1.4805
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ELU39|682.7312 3.2472 1.6992
ELU39|682.7544 0.41454 | -1.2704
F022 | 684.164 2.1138 1.0799
ELU39|693.1537 2.2797 1.1888
F022 |693.1585 2.2049 1.1407
F022 1693.4101 2.0616 1.0437
F022 1693.6755 2.127 1.0888
F022 1694.1806 2.21 1.1441
F022 |695.1583 2.3347 1.2233
F022 |696.1748 2.0056 1.004
F022 | 700.484 2.1951 1.1343
ELU39|700.7594 0.4963 | -1.0107
F022 |701.1654 2.8292 1.5004
F022 |704.1633 3.8042 1.9276
F022 |704.6641 2.4489 1.2921
F022 |707.8293 2.2233 1.1627
F022 |708.4742 2.0593 1.0421
F022 |712.1524 2.1136 1.0797
F022 |713.1514 2.0255 1.0183
ELU39|715.1322 4.5337 2.1807
F022 |715.4912 2.118 1.0827
F022 |732.1231 2.0764 1.0541
ELU39|742.7792 0.45989 | -1.1207
ELU39|764.7592 0.31643 -1.66
F022 |779.9226 2.3799 1.2509
F022 |785.4189 2.0549 1.0391
F022 |808.5463 2.0878 1.062
F022 |809.2014 2.0247 1.0177
F022 |815.8646 2.7339 1.451
F022 |816.1998 2.2517 1.171
F022 |816.5364 2.2072 1.1422
F022 |828.4881 2.0754 1.0534
F022 |831.7824 2.0436 1.0311
F022 |845.2236 0.48066 | -1.0569
F022 |866.2215 2.199 1.1368
F022 |866.4733 2.174 1.1203
F022 |866.7228 2.1086 1.0763
F022 |888.1718 2.2862 1.1929
F022 | 888.709 2.1651 1.1144
F022 |889.1985 2.0353 1.0252
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F022 |896.1966 2.0443 1.0316
F022 |923.8691 2.1241 1.0869
F022 |931.8987 2.0533 1.0379
F022 |932.8868 2.0026 1.0019
F022 |968.9474 2.0696 1.0493
F022 |1031.287 2.0307 1.022
F022 | 1040.274 2.2722 1.1841
F022 | 1061.246 2.3537 1.235
F022 |1061.747 2.1563 1.1085
F022 |1062.212 2.0094 1.0068
F022 11062.249 2.5801 1.3674
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S4 - Principle Component Analysis

PC2(18.7%)
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Figure S4.1, Principle component analysis of the
metabolic profiles of each strain grouped by
evolutionary treatment. A — F022. B- ELU39. C -
MG1655. Antibio — plasmid carrying with
cefotaxime selection. Plas — plasmid carrying.
Free — plasmid free.
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S4 — Normalisation of Data
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S4. 2 Graphs showing the density and intensity of the data before and after normalization. Normalized
by Pareto scaling to retain the shape of the data.
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S4 —-Mass Spectrometry Parameters
Parameters for C:\MassLynx\Heather. PRO\ACQUDB\esi_pos_sens_3min.EXP

Created by 4.2 SCN983

Lock Spray Configuration:

Tuning on Analyte

Temperature Correction:

Temperature Correction Disabled

Instrument Configuration:

Lteff 1800.0

Veff 7199.60
Resolution 10000

Min Points in Peak 2

Acquisition Device WatersADC
Acquisition Algorithm ADC Mode
ADC Trigger Threshold (V) 1.00
ADC Input Offset (V) -1.50
Average Single lon Intensity 29
ADC Amplitude Threshold 3

ADC Centroid Threshold -1
ADC lon Area Threshold 3

ADC lon Area Offset 10
ADC Pushes Per IMS Increment 1

EDC Delay Coefficient 1.4100
EDC Delay Offset 0.4000

Experimental Instrument Parameters
Instrument Parameter Filename
C:\MassLynx\Heather.PRO\ACQUDB\esi241121.IPR (MODIFIED)
Polarity ES+
Capillary (kV) 3.2000
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Source Temperature (°C) 100
Sampling Cone 10.0000
Source Offset 40.0000
Source Gas Flow (mL/min) 0.00
Desolvation Temperature (°C) 280
Cone Gas Flow (L/Hr) 0.0
Desolvation Gas Flow (L/Hr) 600.0
Nebuliser Gas Flow (Bar) 7.0

LM Resolution 4.4

HM Resolution 15.0
Aperture 1 0.0

Pre-filter 2.0

lon Energy 1.0

Manual Trap Collision Energy FALSE
Trap Collision Energy 4.0
Manual Transfer Collision Energy FALSE
Transfer Collision Energy 2.0

Manual Gas Control FALSE
Trap Gas Flow (mL/min) 2.00
HeliumCellGasFlow 180.00

IMS Gas Flow (mL/min) 90.00
Detector 3375
DetectorCache

Sample Infusion Flow Rate (uL/min)

Sample Flow State LC

Sample Fill Volume (pL) 250
Sample Reservoir B

LockSpray Infusion Flow Rate (uL/min) 10
LockSpray Flow State Infusion
LockSpray Reservoir B
LockSpray Capillary (kV) 3.0

Use Manual LockSpray Collision Energy FALSE
Collision Energy 4.0
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Acceleration1
Acceleration2
Aperture2
Transport1
Transport2
Steering

Tube Lens

Pusher

Pusher Offset
Puller

Pusher Cycle Time (us)
Pusher Width (us)
Collector

Collector Pulse
Stopper

Stopper Pulse
Entrance

Static Offset

Puller Offset
Reflectron Grid (kV)
Flight Tube (kV)
Reflectron (kV)

Use Manual Trap DC
Trap DC Entrance
Trap DC Bias

Trap DC

Trap DC Exit

Use Manual IMS DC
IMS DC Entrance
Helium Cell DC
Helium Exit
IMSBias

IMS DC Exit

70.0
200.0
40.0
70.0
70.0
-0.83
77
1900.0
-0.55
1370.0
Automatic
Automatic
50
10.0
10
20.0
68
180
0.00
1.469
10.00
3.780
FALSE
1.0
2.0
-2.0
0.0
FALSE
-20.0
1.0
-20.0
2.0
20.0
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USe Manual Transfer DC FALSE

Transfer DC Entrance 5.0
Transfer DC Exit 15.0

Trap Manual Control OFF
Trap Wave Velocity (m/s) 300

Trap Wave Height (V) 0.5
IMS Manual Control OFF

IMS Wave Velocity (m/s) 300
IMS Wave Height (V) 0.0
Transfer Manual Control OFF
Transfer Wave Velocity (m/s) 247
Transfer Wave Height (V) 0.2

Step Wave 1 In Manual Control OFF
Enable Reverse Operation OFF

Step Wave 1 In Velocity (m/s) 300.0
Step Wave 1 In Height 15.0
Step Wave 1 Out Manual Control OFF
Step Wave 1 Out Velocity (m/s) 300.0
Step Wave 1 Out Height 15.0
Step Wave 2 Manual Control OFF
Step Wave 2 Velocity (m/s) 300.0
Step Wave 2 Height 1.0
Use Manual Step Wave DC OFF
Step Wave TransferOffset 25.0

Step Wave DiffAperture1 3.0
Step Wave DiffAperture2 0.0
Use Automatic RF Settings TRUE
StepWave1RFOffset 300.0
StepWave2RFOffset 350.0
Target Enhancement Enabled FALSE
Target Enhancement Mode EDC
Target Enhancement Mass 785.0
Target Enhancement Trap Height (V) 4.0
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Target Enhancement Extract Height (V)

15.0

Mobility Trapping Manual Release Enabled  FALSE

Mobility Trapping Release Time (us)

Mobility Trap Height (V)

Mobility Extract Height (V)

Trag Gate LUT table enabled
Triwave Trap Gate LookUp Table
Using Drift Time Trimming

Drift Time Bins

Using Mobility Delay after Trap Release

IMS Wave Delay (us)
Variable Wave Height Enabled
Wave Height Ramp Type
Wave Height Start (V)

Wave Height End (V)

Wave Height Using Full IMS
Wave Height Ramp (%)
Wave Height Look Up Table
Variable Wave Velocity Enabled
Wave Velocity Ramp Type
Wave Velocity Start (m/s)
Wave Velocity End (m/s)
Wave Velocity Using Full IMS
Wave Velocity Ramp (%)
Wave Velocity Look Up Table
Backing

Source

Sample Plate

Trap

Helium Cell

IMS

Transfer

TOF

500
15.0

0.0

FALSE

FALSE
0
TRUE
1000
FALSE
Linear
10.0
40.0
TRUE
100.0

FALSE

Linear
1000.0

300.0

TRUE

100.0

2.63e0

6.52e-3

1.25e3
8.78e-3
1.00e-4
9.84e-5
7.71e-3
4.40e-7
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IMSRFOffset 300

IMSMobilityRFOffset 250
TrapRFOffset 300
Use Automatic RF Settings TRUE
AutoStepWave 1RFOffset 300
AutoStepWave2RFOffset 300
TransferRFOffset 350

MS Profile Type Auto P
MSProfileMass1 100
MSProfileDwellTime1 20
MSProfileRampTime1 20
MSProfileMass2 300
MSProfileDwellTime2 20
MSProfileRampTime2 40
MSProfileMass3 500
Pusherinterval 54.000000
PusherOffset 0.250000
LockMassValidSigma 5
Acquisition mass range

Start mass 50.000

End mass 1200.000
Calibration mass range

Start mass 0.000

End mass 0.000

Experiment Reference Compound Name: N/A

Function Parameters - Function 1 - TOF MS FUNCTION

Scan Time (sec)
Interscan Time (sec)
Start Mass

End Mass

1.000
0.014
50.0
1200.0
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Start Time (mins) 0.00

End Time (mins) 3.00
Data Format Continuum
Analyser Sensitivity Mode
ADC Sample Frequency (GHz) 3.0

ADC Pusher Frequency (us) 54.0
ADC Pusher Width (us) 1.50

Use Tune Page Cone Voltage YES
Using Auto Trap Collision Energy (eV) 4.000000
Using Auto Transfer Collision Energy (eV) 2.000000
Sensitivity Normal
Dynamic Range Normal
Save Collapsed Retention Time Data No

Use Rule File Filtering No
FragmentationMode CID
Calibration Dynamic 2
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Supplementary Chapter 5

S5 — Normalisation of Data
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Fig S5.1 Normalisation plots for strain F022 for pairwise comparisons of the 3 treatments against the antibiotic free control. A) ciprofloxacin. B)

cefotaxime. C) kanamycin. The data was pareto scaled.
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Fig S5.2 Normalisation plots for strain F054 for pairwise comparisons of the 3 treatments against the antibiotic free control. A) ciprofloxacin. B)
cefotaxime. C) kanamycin. The data was pareto scaled.
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cefotaxime. C) kanamycin. The data was pareto scaled.
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S5 — Principle Component Analysis

F022 Ciprofloxacin Treatment vs Control
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Figure S5.5 A) Principle component analysis (PCA) of strain F022 treated with ciprofloxacin compared
to the control. Above, loading scores for the first 5 principle components, and below PC1 vs PC2 and
PC1 vs PC3. CIP = ciprofloxacin, in pink. CTRL = control, in green.
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PC 2 (11.5 %)
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Figure S5.5 B) Principle component analysis (PCA) of strain F022 treated with cefotaxime compared
to the control. Above, loading scores for the first 5 principle components, and below PC1 vs PC2 and
PC1 vs PC3. CTX = cefotaxime, in blue. CTRL = control, in green.
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PC2(11.1%)

F022 Kanamycin Treatment vs Control
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Figure S5.5 C) Principle component analysis (PCA) of strain F022 treated with kanamycin compared
to the control. Above, loading scores for the first 5 principle components, and below PC1 vs PC2 and
PC1 vs PC3. CTX = kanamycin, in yellow. CTRL = control, in green.
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PC 2(15.2 %)
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Figure S5.6 A) Principle component analysis (PCA) of strain FO54 treated with ciprofloxacin compared
to the control. Above, loading scores for the first 5 principle components, and below PC1 vs PC2 and

PC1 vs PC3. CIP = ciprofloxacin, in pink. CTRL = control, in green.
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PC 2(27.2%)

-10000 -5000 0 5000 10000 15000

-15000

F054 Cefotaxime Treatment vs Control

S000 o 2000 Logon 3000 w00 0 1000
1 i ) A P
By = a A & o & o
8
g
I o
. A a B
PC1 L g
59.7 % ’
o
HE
a a a & bl
=
g
s s s s
]
E PC 2
3 27.2%
A - A a
A s - A
4
Els A a -
ré
a a PC 3 a a + g
5.8 % s
a A a a -
s - A a L
o
AR . 5B
AR a B
g
- & a a a
: . . s PC4 .
E 3.5%
g
L A A A A
a
4 a a & a8
g
o
s o a s e
PC5 _
o 4 a a 2.2%
]
=
s - - A 2
— — — — " §
-15000 E003 0 5000 3000 -1000 1000 2000 2000 -1000 o 1000 2000
A CTRL + CTX
Scores Plot Scores Plot
® CTRL
CTX
o
[=J.
[=]
wn
®
3
o
w ®
=4
o o4
. o
[ ]
®
- °
@
2
3
L
T T T T T T T T T T T T T T
30000 -20000  -10000 0 10000 20000 30000 30000 -20000  -10000 0 10000 20000 30000
PC 1 (58.7 %) PC 1(59.7 %)

Figure S5.6 B) Principle component analysis (PCA) of strain F054 treated with cefotaxime compared
to the control. Above, loading scores for the first 5 principle components, and below PC1 vs PC2 and
PC1 vs PC3. CTX = cefotaxime, in blue. CTRL = control, in green.
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Figure S5.6 C) Principle component analysis (PCA) of strain F054 treated with kanamycin compared
to the control. Above, loading scores for the first 5 principle components, and below PC1 vs PC2 and
PC1 vs PC3. CTX = kanamycin, in yellow. CTRL = control, in green.
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Figure S5.7 A) Principle component analysis (PCA) of strain ELU39 treated with ciprofloxacin
compared to the control. Above, loading scores for the first 5 principle components, and below PC1 vs
PC2 and PC1 vs PC3. CIP = ciprofloxacin, in pink. CTRL = control, in green.
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Figure S5.7 C) Principle component analysis (PCA) of strain ELU39 treated with kanamycin compared
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Figure S5.8 A) Principle component analysis (PCA) of strain MG1655 treated with ciprofloxacin
compared to the control. Above, loading scores for the first 5 principle components, and below PC1 vs
PC2 and PC1 vs PC3. CIP = ciprofloxacin, in pink. CTRL = control, in green.
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Figure S5.8 C) Principle component analysis (PCA) of strain MG1655 treated with kanamycin
compared to the control. Above, loading scores for the first 5 principle components, and below PC1 vs
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S5 — Data Tables

Table S5.1 Identification table of metabolites significantly affected by the kanamycin treatment in the 4 E.coli strains. Masses were identified
using ECMDB and cross referenced with KEGG metabolism database for E.coli K-12 MG1655.

Kanamycin
/Adduct +
Compound Monoisotopi [Chemical |Fold
Strain Mass ID KEGG MODULE ppm |Adduct M/Z c Mass Formula |Change |log2(FC)Function
Dissimilatory nitrate

MG1655 [81.02721 |Nitrate C00244 [M00530 28 |M+NH4[81.0295 62.9956 HNO3 3.1371  [1.6494 |reduction

ELU39 [84.00504 |Carbamate C01563 7 M+NA [84.0056 61.0164 CH3NO2 [3.0182 [1.5937 |Pyrimidine metabolism

F022 98.05503 [Trimethylamine N-Oxide |C01104 27 |M+Na [98.0576 75.0684 C3HINO [2.5827 [1.3689 |Methane metabolism

F022 99.0387 |Propylene glycol C00583 30 M+Na [99.0416 76.0524 C3H802 [18.923 #4.2421 |Propanoate metabolsim

ELU39 [101.00322 Dimethyl sulfoxide C11143 1 M+Na [101.0032 78.0139 C2H60S [2.0164 [1.0118 |Sulfur metabolism

ELU39 [112.00041 [Oxamate C01444 1 M+Na [112.0005 89.0113 C2H3NO3 [2.1051 [1.0739 |DEM

F022 113.01904 |D-Lactic acid C00256 17  |[M+Na [113.0209 90.0317 C3H603 [2.2133 [1.1462 |Pyruvate metabolism
3-Hydroxypropanoate  |C01013 |[M00939 [17 M+Na [113.0209 90.0317 C3H603 Pyrimidine degradation
L-Lactic acid C00186 17 M+Na [113.0209 90.0317 C3H603 Pyruvate metabolism
Glycerone C00184 17 M+Na [113.0209 90.0317 C3H603 Glycerolipid metabolism

ELU39 [|123.0519 |Niacinamide C00153 28 |M+H [123.0553 122.048 C6H6N20 |11.39 3.5097 |Precursor to NAD

ELU39 [124.03439 [Nicotinic acid C00253 M00115 40 |M+H [124.0393 123.032 C6H5NO2 [2.0319 [1.0228 |Precursor to NAD

Adenine ribonucleotide

ELU39 |137.04485 Hypoxanthine C00262 [M00958 |7 M+H  [137.0458 136.0385 |C5H4N40 [2.6448 |1.4032 |degradation
(S)-b-aminoisobutyric Valine, Leucine,

F054 142.02567 |acid C03284 6 M+K  |142.0265 103.0633  |C4HINO2 [0.46601 |-1.1016 |Isoleucine degradation
gamma-Aminobutyric MO00027 GABA shunt GABA
acid C00334 [M00136 |6 M+K  |142.0265 103.0633  |C4HI9NO2 biosynthesis
Pyrroline Arginine and proline

ELU39 [152.02783 |hydroxycarboxylic acid [C04281 26 |M+Na |152.0318 129.0426  |C5H7NO3 2.1923 [1.1325 |metabolism
Pyrroline Arginine and proline

F054 152.02783 |hydroxycarboxylic acid |C04281 26 |M+Na [152.0318 129.0426  |C5H7NO3|0.16968 [-2.5591 |metabolism

MO00009
F054 152.04936 |L-Malic acid C00149 M00168 [39  |[M+NH4[152.0553 134.0215 |C4H605 [0.41629 |-1.2643 |[TCA cycle, CAM
Guanine ribonucleotide
Guanine C00242 M00959 48 |M+H [152.0567 151.0494 |C5H5N50 degradation
MO00028 C5H12N2 Ornithine biosynthesis

F054 155.07854 |L-Ornithine C00077 |M00844 4 M+Na [155.0791 132.0899 |02 0.45198 [1.1457 |arginine biosynthesis

2-Aminobenzoic acid C00108 M00023 |19  |M+NH4[155.0815 137.0477 |C7TH7NO2 Tryptophan biosynthesis
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p-Aminobenzoic acid C00568 19 M+NH4[155.0815 137.0477 |C7TH7NO2 Folate biosynthesis
Cysteine and
MG1655 |158.95654 [3-Mercaptopyruvic acid |C00957 33 M+K  [158.9513 119.9881 |C3H403S 2.2524 [1.1714 |methionine metabolism
C6H12N2 D-amino acid
F022 161.08798 D-Alanine C00993 25 |M+H ]161.0921 160.0848 |03 4.6502 [2.2173 |metabolism
4-Amino-5-
hydroxymethyl-2-
F022 162.0701 |methylpyrimidine C01279 39 |M+Na [162.0638 139.0746  |C6HIN30 [2.1322 [1.0924 [Thiamine biosynthesis
C7H15NO
MG1655 |162.10899 [L-Carnitine C00318 21 M+H  |162.1125 161.1052 3 0.44987 |-1.1524
C7H16NO
Carnitine C00487 25 M+H  [162.113 162.113 3 Lysine degradation
2-Aceto-2-hydroxy- MO00019 Valine, Isoleucine
F022 164.088 |butyrate C06006 [M00570 23  |[M+NH4[164.0917 146.0579 |C6H1004 [2.578  |1.3662 |biosynthesis
Pantothenate
biosynthesis, Coenzyme
2-Dehydropantoate C00966 [M00119 23  |[M+NH4[164.0917 146.0579 |C6H1004 A biosynthesis
Trans-cinamate
F022 165.05116 [3-Hydroxycinnamic acid |[C12621 |[M00545 [21 M+H  |165.0546 164.0473 |C9H803 [2.9987 [1.5843 |degradation
Phenylalanine
Phenylpyruvic acid C00166 |[C00024 |21 M+H  |165.0546 164.0473 |C9H803 biosynthesis
C8H11NO
F054 187.10301 |Pyridoxine C00314 25  |M+NH4|187.1077 169.0739 3 0.42562 |-1.2324
C8H12N2
F022 191.07056 |Pyridoxamine C00534 45  [M+Na [191.0791 168.0899 |02 3.4079 [1.7689
C7H14N2
ELU39 [197.09073 [N-Acetylornithine C00437 [M00028 5 M+Na [197.0897 174.1004 |03 3.1626 [1.6611 |Ornithine metabolism
C6H13N3
ELU39 |198.08473 Citrulline C00327 [M000844/1 M+Na |198.0849 175.0957 |03 2.4705 [1.3048 |Arginine biosynthesis
C6H1204 Cysteine and
5-Methylthioribose C03089 27  |[M+NH4[198.0795 180.0456 |S methionine metabolism
Trans-2,3- Trans-cinamate
Dihydroxycinnamate C12623 M00545 44  |M+NH4[198.0761 180.0423 |C9H804 degradation
4-Hydroxyphenylpyruvic
acid C01179 [M00025 44  |M+NH4[198.0761 180.0423 |C9H804 Tyrosine biosythesis
3,4-Dihydroxy-L- CO9H11NO
phenylalanine C00355 44  M+H  |198.0761 197.0688 ¥4 Tyrosine biosythesis
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5-Dehydro-4-deoxy-D-

MG1655 |199.0258 [glucuronate C04053 23 |M+Na |199.0213 176.0321 |C6H806 [0.249  |-2.0058
(4S)-4,6-Dihydroxy-2,5-
dioxohexanoate C04349 23  |M+Na [199.0213 176.0321  |C6H806
Ascorbate C00072 M00550 23  |M+Na [199.0213 176.0321  |C6H806 Ascorbate degradation
C5H8N20 de novo pyrimidine
Ureidosuccinic acid C00438 [M00051 [34  |M+Na [199.0325 176.0433 5 biosynthesis
Glycolysis. Nucleotide
sugar biosynthesis
UDP-N-acetyl-D-
glucosamine
biosynthesis,
F022 203.04874 |L-Rhamnonate C01934 19 |M+Na [203.0526 180.0634 |C6H1206 [15.833 [3.9848 |prokaryotes
D-Allose C01487 19 |M+Na [203.0526 180.0634 |C6H1206
Inositol C00137 19 |M+Na [203.0526 180.0634 |C6H1206
MO00001
M000549
alpha-D-Glucose C00267 [M00909 (19 |M+Na [203.0526 180.0634 |C6H1206
Nucleotide sugar
biosynthesis and
galactose degradation
D-Fuctose C00095 19 |M+Na [203.0526 180.0634 |C6H1206 leloir pathway
beta-D-glucose C00221 19 |M+Na [203.0526 180.0634 |C6H1206
D-Mannose C00159 19 |M+Na [203.0526 180.0634 |C6H1206
M00554
Alpha-D-Galactose C00984 M00632 (19  |M+Na [203.0526 180.0634 |C6H1206
D-Galactose C00124 M00632 (19  |[M+Na [203.0526 180.0634 |C6H1206
D-Glucose C00031 19 |M+Na [203.0526 180.0634 |C6H1206
MO00025 CO9H11NO Tyrosine biosythesis,
F022 204.06075 |L-Tyrosine C00082 [M00127 |12  |M+Na [204.0631 181.0739 3 15.088 [3.9153 [thyamine biosynthesis
3,4-Dihydroxy-L- CO9H11NO
ELU39 [215.09645 [phenylalanine C00355 29  |M+NH4[215.1026 197.0688 4 2.1 1.0772 [Tyrosine biosythesis
2,5-Dichloro-4-oxohex- C6H4CI20
F054 226.94615 |2-enedioate C12835 21 M+H  [226.9509 2259436 5 0.23421 -2.0941
4-(Glutamylamino) COH16N2
ELU39 [233.10867 jputanoate C16757 M00136 [19 |M+H [233.1132 232.1059 |05 2.4439 [1.2892 |GABA biosynthesis
N2-Succinyl-L-ornithine |C03415 |M00879 19 |M+H [233.1132 232.1059 |C9H16N2 Arginine
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05

succinyltransferase
pathway

C10H14N
F022 243.09913 [Thymidine C00214 7 M+H  [243.0975 242.0903 205 2.1891 [1.1303 |Pyrimidine metabolism
C10H14N Porphyrin precursor,
F054 244.12412 |Porphobilinogen C00931 21 M+NH4[244.1292 226.0954 204 0.4843 [1.046 |heme biosynthesis
C7H14N2
F022 245.05527 |L-Cystathionine C02291 M00017 |6 M+Na [245.0566 222.0674 |04S 6.3849 2.6747 |Methionine biosynthesis
L-Glutamic acid 5- C5H10NO
phosphate C03287 [M00015 8 M+NH4[245.0533 227.0195 [7P Proline biosynthesis
Pantothenate
MO00019 CO9H17NO biosynthesis, Coenzyme
ELU39 [258.0697 [Pantothenic acid C00864 [M00120 (16 |M+K [258.0738 219.1107 5 2.16 1.111 _ |A biosynthesis
C6H12N2 Cysteine and
L-Cystine C00491 47 M+NH4[258.0577 240.0238 |04S2 methionine metabolism
3-Deoxy-D-manno-
F054 261.05267 |octulosonate C01187 [M00063 |21 M+Na [261.0581 238.0689 |C8H1408 |0.28609 [1.8054 CMP-KDO biosynthesis
3-Deoxy-D-manno-
F022 261.05488 |octulosonate C01187 [M00063 [12 |M+Na [261.0581 238.0689 |C8H1408 [2.5994 [1.3782 |CMP-KDO biosynthesis
C9H13N3
F022 261.12267 |Cytidine C00475 13 [M+NH4[261.1193 243.0855 |05 9.8906 [3.3061 |Precursor of cytosine
C14H180 Oxidative
MG1655 [268.14909 |Ubiquinone C00399 M00117 20  |[M+NH4[268.1543 250.1205 4 56.008 [6.8076 |phosphorylation
Arginine
CO9H13NO succinyltransferase
F054 270.0579 |N-Succinyl-L-glutamate |C05931 |M00879 |2 M+Na [270.0584 247.0692 |7 0.10311 [-3.2778 |pathway
Oxidative
ELU39 |275.12967 |Ubiquinol-1 C00390 [M0O0117 (16  |M+Na [275.1254 252.1362 [14H2004 [2.4115 [1.2699 |phosphorylation
Arginine
C10H18N succinyltransferase
N2-Succinyl-L-arginine  |C03296 [M00879 |19 |M+H [275.135 2741277 405 pathway
D-Galactosamine 6- C6H14NO
F022 282.03422 [phosphate C06377 2 M+Na [282.0349 259.0457 8P 2.2943 [1.1981 |Galactose metabolism
UDP-N-acetyl-D-
alpha-D-Glucosamine 1- C6H14NO glucosamine
phosphate C06156 2 M+Na [282.0349 259.0457 |8P biosynthesis
Glucosamine-1P C04501 2 M+Na [282.0349 259.0457 |C6H14NO UDP-N-acetyl-D-
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8P

glucosamine
biosynthesis

UDP-N-acetyl-D-

Glucosamine 6- C6H14NO glucosamine
phosphate C00352 2 M+Na [282.0349 259.0457 18P biosynthesis
C10H13N
F022 306.063  |Deoxyguanosine C00330 10  M+K [306.0599 267.0968 504 2.9246 |1.5482 |Purine metboalism
Adenine ribonucleotide
C10H13N degradation, purine
/Adenosine C00212 [M00958 [10 |M+K [306.0599 267.0968 504 metabolism
ADP-L-glycero-D-
D-Glycero-D-manno- C7H1301 manno-heptose
heptose 1-phosphate  |C07838 |M00064 [15 M+NH4[306.0585 288.0246 |OP biosynthesis
2-Dehydro-3-deoxy-D-
arabino-heptonate 7- C7H1301
phosphate C04691 M00022 [15 |M+NH4[306.0585 288.0246  |OP Shikimate pathway
C9H12N3
2',3'-Cyclic CMP C02354 47  M+H  [306.0486 305.0413 |O7P Pyrimidine metabolism
N-Succinyl-L,L-2,6- C11H18N2
ELU39 [308.13422 diaminopimelate C04421 M00016 [36  |[M+NH4[308.1452 290.1114 |07 0.046116[-4.4386 |Lysine biosynthesis
C11H19N Nucleotide sugar
ELU39 [310.12488 [N-acetylneuraminate C00270 37  |M+H [310.1133 309.106 09 2.3382 [1.2254 |metabolism
Phosphoribosylformylgly C8H16N3 De novo purine
F054 314.08564 [cineamidine C04640 M00048 (35 |M+H [314.0748 313.0675 |O8P 2.7652 |1.4674 |biosynthesis
Precursor for
C11H19N peptidoglycan
F022 332.0679 |N-Acetyl-D-muramoate |C02713 19  |M+K [332.0742 293.1111 08 565.44 9.1432 piosynthesis
C10H14N
dAMP C00360 23 |M+H [332.0754 331.0682 |506P ADP derivative
Precursor to adenosine,
C10H14N derivative of 2'3'-Cyclic
ELU39 [348.06578 [3'-AMP C01367 13 |M+H [348.0704 347.0631 |507P 2.0801 [1.0567 |AMP
2'-Deoxyguanosine 5'- C10H14N
monophosphate dGMP |C00362 13 M+H [348.0704 347.0631 |507P Purine metabolism
Adenine ribonucleotide
MO00049 C10H14N biosynthesis and
AMP C00020 [M00958 |13 [M+H [348.0704 347.0631 |507P degradation
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C10H14N

MG1655 [354.04634 dAMP C00360 31 M+Na [354.0574 331.0682 |506P 4.0476 [2.0171 |ADP derivative
C10H14N
F054 354.049 |dAMP C00360 24  |M+Na [354.0574 331.0682 |506P 0.44358 [-1.1728 |ADP derivative
C10H14N
F022 354.04957 [dAMP C00360 22 |M+Na [354.0574 331.0682 |506P 2.2074 [1.1423 |ADP derivative
Precursor to adenosine,
C10H14N derivative of 2'3'-Cyclic
F022 370.05309 [3'-AMP C01367 2 M+Na [370.0523 347.0631 |507P 3.015 [1.5922 |AMP
2'-Deoxyguanosine 5'- C10H14N
monophosphate dGMP |C0362 2 M+Na [370.0523 347.0631 |507P Purine metabolism
Adenine ribonucleotide
M00049 C10H14N biosynthesis and
AMP C00020 [M00958 2 M+Na [370.0523 347.0631 |507P degradation
C12H230 Other carbohydrate
MG1655 423.09397 [Trehalose 6-phosphate |C00689 10 |M+H 1423.0898 422.0825 |14P 0.28785 -1.7966 metabolism
S- C14H20N
IAdenosylhomocysteine |C00021 22 M+K  1423.0847 384.1216  |605S Methionine degradation
C12H230 Other carbohydrate
MG1655 445.07639 [Trehalose 6-phosphate [C00689 10 M+Na {445.0718 422.0825 [14P 0.36537 [1.4526 Imetabolism
C10H15N Deoxyribonucleotide
dGDP C00361 M00053 |30 |M+NH4445.0632 427.0294  |5010P2 biosynthesis
C10H15N Deoxyribonucleotide
ADP C00008 M00053 |30 |M+NH4445.0632 427.0294  |5010P2 biosynthesis
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Table S5.2 Identification table of metabolites significantly affected by the cefotaxime treatment in the 4 E.coli strains. Masses were identified
using ECMDB and cross referenced with KEGG metabolism database for E.coli K-12 MG1655.

[Cefotaxime
Strain Mass ID KEGG |[MODULE ppm |Adduct |Adduct + Monoisotopic [Chemical Fold log2(FC) [Function
Compound [Mass Formula Change
M/Z
M+NH4(81.0295 62.9956 HNO3 Dissimilatory nitrate
MG1655 [81.02721 |Nitrate C0244 |M00530 |28 2.7669 |1.4683 reduction
Trimethylamine N- M+Na [98.0576 75.0684 C3HIONO
F022 98.05503 |Oxide C01104 27 2.4716 [1.3054 |Methane metabolism
F022 99.0387 |Propylene glycol C00583 30 |M+Na [99.0416 76.0524 C3H802 27171 |4.764
ELU39 [122.02266|D-Cysteine C00793 36 |M+H [122.027 121.0197 C3H7NO2S 0.44027 -1.1835
L-Cysteine C00097 M00021 |36 |M+H  [122.027 121.0197 C3H7NO2S Cysteine biosynthesis
F054 122.02266 D-Cysteine C00793 36 |M+H [122.027 121.0197 C3H7NO2S 0.37352 [-1.4207
L-Cysteine C00097 M00021 |36 |M+H  [122.027 121.0197 C3H7NO2S Cysteine biosynthesis
ELU39 [123.0519 |Nicotinamide C00153 28 |M+H [123.0553 [122.048 C6HEN20  0.41856 |-1.2565 |Precursor to NAD
ELU39 [135.02364|(R)-Malate C00497 38 |M+H [135.0288 [134.0215 C4H605 0.44063 |-1.1824
L-Malic acid MO0009 M+H [135.0288 |134.0215 C4H605
C00149 M00168 |38 TCA cycle, CAM
MG1655 |135.02364 |(R)-Malate C00497 38 |M+H [135.0288 [134.0215 C4H605 0.47397 |-1.0771
L-Malic acid MO00009 M+H [135.0288 |134.0215 C4H605
C00149 M00168 38 TCA cycle, CAM
L-Valine M+Na [140.0682 |117.079 C5H11NO2 Branched chain amino
acid metabolism valine-
F054 140.06606 C00183 |M00019 [15 0.4831 [1.0496 |isoleucine metabolism
Betaine C00719 19 M+Na [140.0687 |118.0868 C5H12NO2 Serine and threonine
MO00555 biosynthesis
F054 141.0649 |Nicotinic acid C00253 M00115 |7 M+NH4[141.0659 |123.032 C6HS5NO2  0.45893 |1.1236 |Precursor to NAD
ELU39 [145.12727|Caprylic acid C06423 34 M+H [145.1223 [144.115 C8H1602 0.48219 |-1.0523 |Fatty acid biosynthesis
Pyrroline M+Na [152.0318 |129.0426 C5H7NO3
hydroxycarboxylic )Arginine and proline
MG1655 |152.02783 |acid C04281 26 0.46901 |-1.0923 |metabolism
F022 152.04936 [(R)-Malate C00497 39 |M+NH4[152.0553 [134.0215 C4H605 2.1557 [1.1081
L-Malic acid MO0009 M+NH4[152.0553 |134.0215 C4H605
C00149 |M00168 |39 TCA cycle, CAM
Guanine C00242 M00959 48 |M+H [152.0567 [151.0494 C5H5N50 Guanine ribonucleotide
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degradation

F054 152.04936 [(R)-Malate C00497 39 M+NH4[152.0553 |134.0215 C4H605 0.455 [-1.1361
L-Malic acid MO0009 M+NH4[(152.0553 |134.0215 C4H605
C00149 M00168 |39 TCA cycle, CAM
Guanine M+H [152.0567 |151.0494 C5H5N50 Guanine ribonucleotide
C00242 |M00959 48 degradation
MG1655 |152.04936|(R)-Malate C00497 39 M+NH4[152.0553 |134.0215 C4H605 0.39755 |-1.3308
L-Malic acid MO0009 M+NH4[(152.0553 |134.0215 C4H605
C00149 M00168 (39 TCA cycle, CAM
Guanine M+H [152.0567 |151.0494 C5H5N50 Guanine ribonucleotide
C00242 M00959 48 degradation
ELU39 [152.05475|(R)-Malate C00497 4 M+NH4[152.0553 |134.0215 C4H605 0.31948 -1.6462
L-Malic acid MO0009 M+NH4[(152.0553 |134.0215 C4H605
C00149 M00168 |4 TCA cycle, CAM
Guanine M+H [152.0567 [151.0494 C5H5N50 Guanine ribonucleotide
C00242 [M00959 |13 degradation
3-Sulfinylpyruvic M+H [152.9852 |151.9779 C3H405S Cysteine and methionine
F022 152.98198 |acid C05527 21 2.1627 [1.1128 |metabolism
L-Ornithine MO00028 M+Na [155.0791 |132.0899 C5H12N202 Ornithine biosynthesis
F022 155.0731 C00077 |M00844 (39 2.1584 [1.1099 jarginine biosynthesis
ELU39 |156.03674|Ureidoglycine C02091 8 M+Na [156.038 133.0487 C3H7N303 1|0.49383 [1.0179 |Purine metabolism
L-Valine M+K 117.079 C5H11NO2 Branched chain amino
acid metabolism valine-
C00183 |M00019 (35 156.0421 isoleucine metabolism
Betaine C00719 38 M+K 118.0868 C5H12NO2 Serine and threonine
MO00555 156.0427 biosynthesis
MG1655 |156.03674 |Ureidoglycine C02091 8 M+Na [156.038 133.0487 C3H7N303 10.45925 [1.1226 |Purine metabolism
L-Valine M+K 117.079 C5H11NO2 Branched chain amino
acid metabolism valine-
C00183 |M00019 35 156.0421 isoleucine metabolism
Betaine C00719 38 M+K 118.0868 C5H12NO2 Serine and threonine
MO00555 156.0427 biosynthesis
(R)-2,3-Dihydroxy- M+Na [157.0471 |134.0579 C5H1004 Branched chain amino
isovalerate acid metabolism valine-
F054 157.04164 C04272 |M00019 35 0.40286 -1.3116 |isoleucine metabolism
Deoxyribose 35 |M+Na [157.0471 [134.0579 C5H1004 Carbohydrate, pentose
C01801 phosphate supply
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F054 158.02782 |L.-Homocysteine C00155 |M00017 20  |M+Na [158.0246 [135.0354 C4HONO2S [0.49186 |1.0237 Methionine biosynthesis
L-Allothreonine 41 M+K  [158.0214 |119.0582 C4HONO3 Glycine, serine threonine
C05519 metabolism
L-Homoserine MO00017 M+K |158.0214 |119.0582 C4HONO3 Methionine biosynthesis,
C00263 |M00018 41 threonine biosynthesis
Acetylphosphate 41 M+NH4(158.0213  |139.9875 C2H505P Phosphate
acetyltransferase-
C00227 |M00759 acetate kinase pathway
L-Threonine C00188 M00018 41 M+K  [158.0214 |119.0582 C4HINO3 Threonine biosynthesis
3-Mercaptopyruvic 33 M+K [158.9513 |119.9881 C3H403S Cysteine and methionine
ELU39 |158.95654 |acid C00957 3.1552 [1.6578 |metabolism
3-Mercaptopyruvic 33 M+K  [158.9513 [|119.9881 C3H403S Cysteine and methionine
MG1655 |158.95654 |acid C00957 2.1357 [1.0947 metabolism
Pimeloyl-[acyl- 10 M+Na [162.0162 |139.0269 C6H5NO3 Biotin biosynthesis,
carrier protein] Pimeloyl-ACP
M00123 biosynthesis, BioC-BioH
ELU39 [162.01451 C19845 M00572 0.48498 |-1.044 |pathway
Pimeloyl-[acyl- 10 M+Na [162.0162 |139.0269 C6H5NO3 Biotin biosynthesis,
carrier protein] Pimeloyl-ACP
MO00123 biosynthesis, BioC-BioH
F054 162.01451 C19845 M00572 0.4813 [-1.055 |pathway
Pimeloyl-[acyl- 10 |M+Na [162.0162 [139.0269 C6H5NO3 Biotin biosynthesis,
carrier protein] Pimeloyl-ACP
MO00123 biosynthesis, BioC-BioH
MG1655 [162.01451 C19845 M00572 0.48857 |-1.0334 |pathway
MG1655 [162.10899|L-Carnitine C00318 21 M+H [162.1125 [161.1052 C7H15NO3  [0.47731 1.067
Carnitine C00487 25 |M+H [162.113 162.113 C7H16NO3 Lysine degradation
F022 170.03444 D-Glutamic acid C00217 47  |M+Na |170.0424 |147.0532 C5HIONO4  2.6711 [1.4174
O-Acetylserine C00979 |C00021 47 |M+Na [170.0424 [147.0532 C5HINO4 Cysteine biosynthesis
L-Glutamate M+Na [(170.0424 |147.0532 C5HI9NO4 )Arginine and proline
MO00015, metabolism, GABA
C00025 |M00027 47 shunt
7-Cyano-7- M+H |176.0567 |175.0494 C7H5N50
F022 176.05777 |carbaguanine C15996 6 2.0323 [1.0231 |Folate biosynthesis
2-Maleylacetate M+NH4({176.0553 |158.0215 C6H605 Degradation of aromatic
C02222 14 compounds
F054 179.04156 |L-Histidinal C01929 M00026 22 |M+K [179.0455 [140.0824 C6H10N30O [0.49326 1.0196 Histidine biosynthesis
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Cysteinylglycine M+H |179.0485 |178.0412 C5H10N203
C01419 39 S Glutathione biosynthesis
MG1655 |179.04156 |L-Histidinal C01929 M00026 22 |M+K [179.0455 [140.0824 C6H10N30O [0.49741 1.0075 Histidine biosynthesis
Cysteinylglycine M+H |179.0485 |178.0412 C5H10N203
C01419 39 S Glutathione biosynthesis
D-4-Hydroxy-2- M+NH4(180.0503 |162.0164 C5H606 /Arginine and proline
F054 180.04759 joxoglutarate C05946 15 0.46187 |-1.1144 |Metabolism
4-Hydroxy-2- M+NH4({180.0503 [162.0164 C5H606 Glyoxylate and
oxoglutaric acid dicarboxylate
C01127 15 metabolism
L-Histidinol C00860 |M00026 32 |M+K |180.0534 |141.0902 C6H11N30 Histidine biosynthesis
F054 188.06555 D-Phenylalanine C02265 14 |M+Na [188.0682 [165.079 CO9H11INO2 |0.4438 [-1.172
L-Phenylalanine M+Na (188.0682 |165.079 COH11NO2 Phenyalanine
C00079 |M00024 |14 biosythesis
Tetrahydrodipicolina M+NH4|189.087 171.0532 C7HINO4
F022 189.07858 fte C03972 |M00016 44 2.0359 |1.0257 |Lysine biosynthesis
F022 190.00407 Quinolinate C03722 M00115 |37  |[M+Na |190.0111 167.0219 C7HS5NO4  2.1427 [1.0995 |NAD biosynthesis
M+K  [190.0126 |151.0494 C5H5N50 Guanine ribonucleotide
Guanine C00242 |[M00959 45 degradation
5-Dehydro-4-deoxy- M+Na [199.0213 |176.0321 C6H806
MG1655 [199.0258 |D-glucuronate C04053 23 0.37459 -1.4166
(4S)-4,6-Dihydroxy- M+Na [199.0213 |176.0321 C6H806
2,5-dioxohexanoate |[C04349 23
Ascorbate C00072 M00550 23  |[M+Na [199.0213 [176.0321 C6H806 )Ascorbate degrdation
Ureidosuccinic acid M+Na [199.0325 |176.0433 C5H8N205 De novo pyrimidine
C00483 |M00051 [34 biosynthesis
L-Rhamnonate M+Na [203.0526 |180.0634 C6H1206 Glycolysis. Nucleotide
sugar biosynthesis UDP-
N-acetyl-D-glucosamine
biosynthesis,
F022 203.04874 C01934 19 2.7621 |1.4658 |prokaryotes
D-Allose C01487 19 |M+Na [203.0526 |180.0634 C6H1206
Inositol C00137 19 |M+Na [203.0526 |180.0634 C6H1206
alpha-D-Glucose MO00001 M+Na [203.0526 |180.0634 C6H1206
M000549
C00267 |[M00909 19
D-Fructose C00095 19 |M+Na [203.0526 |180.0634 C6H1206 Nucleotide sugar
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biosynthesis and
galactose degradation
leloir pathway

beta-D-glucose C00221 19 |M+Na [203.0526 |180.0634 C6H1206
D-Mannose C00159 19 |M+Na [203.0526 |180.0634 C6H1206
Alpha-D-Galactose MO00554 M+Na [203.0526 |180.0634 C6H1206
C00984 |M00632 |19
D-Galactose C00124 |M00632 |19  |M+Na [203.0526 [180.0634 C6H1206
D-Glucose C00031 19 |M+Na [203.0526 |180.0634 C6H1206
L-Rhamnonate M+Na [203.0526 |180.0634 C6H1206 Glycolysis. Nucleotide
sugar biosynthesis UDP-
N-acetyl-D-glucosamine
biosynthesis,
MG1655 [203.04874 C01934 19 2.3044 |1.2044 |prokaryotes
D-Allose C01487 19 |M+Na [203.0526 |180.0634 C6H1206
Inositol C00137 19 |M+Na [203.0526 |180.0634 C6H1206
alpha-D-Glucose MO00001 M+Na [203.0526 |180.0634 C6H1206
MO000549
C00267 |M00909 |19
D-Fuctose M+Na [203.0526 |180.0634 C6H1206 Nucleotide sugar
biosynthesis and
galactose degradation
C00095 19 leloir pathway
beta-D-glucose C00221 19 |M+Na [203.0526 |180.0634 C6H1206
D-Mannose C00159 19 |M+Na [203.0526 |180.0634 C6H1206
/Alpha-D-Galactose MO00554 M+Na [203.0526 |180.0634 C6H1206
C00984 |M00632 |19
D-Galactose C00124 |M00632 |19  |M+Na [203.0526 [180.0634 C6H1206
D-Glucose C00031 19 |M+Na [203.0526 |180.0634 C6H1206
F022 207.99861 |O-Phospho L-serine [C01005 |[M00020 |2 M+Na [207.9981 [185.0089 C3H8NOGP [2.0082 [1.0059 [Serine biosynthesis
(2S,4S)-4-Hydroxy- M+Na [210.0373 |187.0481 C7HIONO5
2,3,4,5-
tetrahydrodipicolinat
F022 210.04333 e C20258 |[M00016 |29 2.1332 |1.093  |Lysine biosynthesis
F022 211.10117 2.3356  |1.2238
2-Amino-3-oxo0-4- M+H [214.0111 [213.0038 C4HBNO7P
F022 214.00194 phosphonooxybutyr [C07335 M00124 43 2.4879 [1.3149 |Pyridoxal-P biosynthesis

228




ate

L-Aspartyl-4- M00016 M+H [214.0111 [213.0038 C4HB8NO7P
phosphate MO00017 Lysine threonine
C03082 |M00018 43 methionine biosynthesis
2,5-Dichloro-4- M+H [226.9509 [225.9436 C6H4CI205
ELU39 [226.94624 |oxohex-2-enedioate [C12835 20 2.7032 |1.4347
N2-Succinyl-L- M+H [232.0816 [231.0743 COH13NO6 Arginine
glutamic acid 5- succinyltransferase
F054 232.0775 |semialdehyde C05932 |M00879 |18 0.4473 |1.1607 |pathway
O-Phospho-4- M+NH4[233.0533 [215.0195 C4H10NO7P
ELU39 [233.05536 |hydroxy-L-threonine |C06055 |M00124 9 0.49301 |1.0203 |Pyridoxal-P biosynthesis
O-Phospho-4- M+NH4(233.0533 [215.0195 C4H10NO7P
F054 233.05536 |hydroxy-L-threonine [C06055 |[M00124 |9 0.49726 |-1.0079 |Pyridoxal-P biosynthesis
Pantothenic acid M+Na [242.099 219.1107 COH17NO5 Pantothenate
MO00019 biosynthesis, Coenzyme
F054 242.09407 C00864 [M00120 [24 0.49066 |-1.0272 |A biosynthesis
F022 243.04403 |L-Tryptophan C00078 |M00023 |37 |M+K [243.053 204.0899 C11H12N202[3.729  [1.8988 [Tryptophan biosynthesis
MG1655 [243.04561 |L-Tryptophan C00078 |M00023 |31 M+K  [243.053 204.0899 C11H12N20212.3137 [1.2102 [Tryptophan biosynthesis
F054 243.04811 |L-Tryptophan C00078 |M00023 20 |M+K [243.053 204.0899 C11H12N202[3.143  [1.6521 [Tryptophan biosynthesis
ELU39 [243.04876 |L-Tryptophan C00078 |M00023 |18 |M+K [243.053 204.0899 C11H12N202[2.5429 [1.3465 [Tryptophan biosynthesis
N2-Succinyl-L- M+NH4 231.0743 COH13NO6 /Arginine
glutamic acid 5- succinyltransferase
F022 249.11471 |semialdehyde C05932 |M00879 26 249.1081 2.0904 [1.0638 |pathway
ELU39 [251.0629 |Deoxyuridine C00526 4 M+Na [251.0638 [228.0746 CO9H12N205 |0.43449 1.2026 |Pyrimidine metabolism
gamma- M+H [251.0696 [250.0623 C8H14N205
Glutamylcysteine  |C00669 27 S Glutathione biosynthesis
MG1655 [251.06321 |Deoxyuridine C00526 3 M+Na [251.0638 [228.0746 CO9H12N205 |0.44029 1.1835 |Pyrimidine metabolism
gamma- M+H [251.0696 [250.0623 C8H14N205
Glutamylcysteine  |[C00669 26 S Glutathione biosynthesis
F054 251.06333 |Deoxyuridine C00526 2 M+Na [251.0638 [228.0746 C9H12N205 |0.31389 1.6717 [Pyrimidine metabolism
gamma- M+H [251.0696 [250.0623 C8H14N205
Glutamylcysteine  |C00669 25 S Glutathione biosynthesis
3-Deoxy-D-manno- M+Na [261.0581 [238.0689 C8H1408
F022 261.04796 joctulosonate C01187 |M00063 |39 0.45913 |1.123 |CMP-KDO biosynthesis
/Alpha-D-glucose 6- MO00001 M+H [261.037 260.0297 C6H1309P Glycolysis, pentose
phosphate C00668 [M00004 42 phosphate pathway
D-Allose 6- C02962 42  M+H  |261.037 260.0297 C6H1309P Sugar metabolism

229




phosphate

D-Myo-inositol (1)- M+H [261.037 260.0297 C6H1309P Inisitol phosphate
monophosphate co1177 42 metabolism
D-Myo-inositol 4- M+H [261.037 260.0297 C6H1309P Inisitol phosphate
phosphate C03546 42 metabolism
F022 265.07602 [Thymidine C00214 13 |M+Na [265.0795 [242.0903 C10H14N205]2.0458 [1.0327 |Pyrimidine metabolism
F022 266.06812 Cytidine C00475 25 |M+Na [266.0747 [243.0855 COH13N305 [2.1572 [1.1092 |Precursor of cytosine
F054 268.10123 [Deoxyguanosine  |C00330 10 |M+H |268.104 267.0968 C10H13N504(0.43378 |1.205  |Purine metabolism
/Adenosine M+H [268.104 267.0968 C10H13N504 IAdenine ribonucleotide
degradation, purine
C00212 |M00958 [10 metabolism
gamma- M+NH4[268.0962  [250.0623 C8H14N205
Glutamylcysteine  |C00669 19 S Glutathione biosynthesis
Ubiquinone 00399 M+NH4[268.1543  [250.1205 C14H1804 Oxidative
MG1655 [268.14253 MO00117 44 40.235 |5.3304 |phosphorylation
N-Succinyl-L- M+Na [270.0584 [247.0692 COH13NO7 /Arginine
glutamate succinyltransferase
F022 270.05703 C05931 |M00879 |5 2.0074 [1.0053 |pathway
N-Succinyl-L- M+Na [270.0584 [247.0692 COH13NO7 Arginine
glutamate succinyltransferase
F054 270.05725 C05931 |M00879 4 0.38031 |-1.3948 |pathway
gamma- M+Na [273.0516 [250.0623 C8H14N205
F054 273.04743 |Glutamylcysteine  |C00669 15 S 0.40901 |-1.2898 |Glutathione biosynthesis
N2-succinyl-L- M+H [274.1277 [273.1204 C10H17N405 Arginine
arginine C03296 succinyltransferase
F054 274.13535 MO00879 [28 2.2295 [1.1567 |pathway
D-Galactosamine 6- M+Na [282.0349 [259.0457 C6H14NO8P
F022 282.02832 phosphate C06377 23 2.3247 [|1.217  |Galactose metabolism
alpha-D- M+Na [282.0349 [259.0457 C6H14NO8P UDP-N-acetyl-D-
Glucosamine 1- glucosamine
phosphate C06156 23 biosynthesis
Glucosamine-1P M+Na [282.0349 [259.0457 C6H14NO8P UDP-N-acetyl-D-
glucosamine
C04501 |M00909 23 biosynthesis
Glucosamine 6- M+Na [282.0349 [259.0457 C6H14NO8P UDP-N-acetyl-D-
phosphate glucosamine
C00352 [M00909 23 biosynthesis
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1,6-Anhydro-N- M+Na [298.0897 [275.1005 C11H17NO7
acetyl-beta- Nucleotide sugar
F022 298.09128 muramate C19769 5 2.8229 [1.4972 |iosynthesis
5'- M+H [298.0968 [297.0896 C11H15N503
Methylthioadenosin S
e C00170 19 Methionine salvage
3-phospho-D- MO00001 M+K [304.9224 [265.9593 C3H80O10P2
glyceroyl phosphate M00002 Glycolysis,
F022 304.93312 C00236 |M00003 |35 2.4357 [1.2843 |Gluconeogenesis
Phosphoribosylform M+H (314.0748 [313.0675 C8H16N308 De novo purine
F054 314.0835 |ylglycineamidine C04640 |M00048 |28 P 4.687  |2.2287 |iosynthesis
M+H [332.0754 [331.0682 C10H14N506
F054 332.06703 |[dAMP C00360 25 P 0.0272081-5.1998 |ADP derivative
M+H [332.0754 [331.0682 C10H14N506
MG1655 [332.06769|dAMP C00360 23 P 373.07 8.5433 |ADP derivative
AICAR M+H [339.07 338.0627 CO9H15N408 De novo purine
ELU39 [339.0752 C04677 |M00048 |15 P 2.6455 [1.4035 |biosynthesis
dAMP M+Na 331.0682 C10H14N506
F022 354.04832 C00360 26 354.0574 P 2.715 1.441 IADP derivative
dAMP M+Na 331.0682 C10H14N506
MG1655 [354.04958 C00360 22 354.0574 P 2.1291 [1.0902 |ADP derivative
5-Amino-6-(5'- M+H [355.0649 [354.0577 C9H15N409
phosphoribosylamin P Riboflavin biosynthesis,
ELU39 [355.07215|o)uracil C01268 20 0.44466 |-1.1692 |plants and bacteria
AICAR M+Na (338.0627 [361.052 CO9H15N408 De novo purine
F022 361.06578 C04677 |M00048 |38 P 2.4847 [1.3131 |biosynthesis
ELU39 [361.07054 3.7509 [1.9072
Xanthylic acid M+H [365.0493 [364.042 C10H13N409 Guanine ribonucleotide
ELU39 [365.0533 C00655 |C00050 |11 P 2.4734 [1.3065 |biosynthesis
3'-AMP M+Na 347.0631 C10H14N507 Precursor to adenosine,
P derivative of 2'3'-Cyclic
F022 370.05291 C01367 2 370.0523 3.2259 [1.6897 |AMP
2'-Deoxyguanosine M+Na 347.0631 C10H14N507
5'-monophosphate P
dGMP C0362 2 370.0523 Purine metabolism
MO00049 M+Na 347.0631 C10H14N507 IAdenine ribonucleotide
AMP C00020 |M00958 2 370.0523 P biosynthesis and
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degradation

3'-AMP M+Na 347.0631 C10H14N507 Precursor to adenosine,
P derivative of 2'3'-Cyclic
MG1655 |370.06138 C01367 25 370.0523 3.6903 [1.8837 |AMP
2'-Deoxyguanosine M+Na 347.0631 C10H14N50O7
5'-monophosphate P
dGMP C0362 25 370.0523 Purine metabolism
M+Na 347.0631 C10H14N507 IAdenine ribonucleotide
MO00049 P biosynthesis and
AMP C00020 |M00958 |25 370.0523 degradation
3'-AMP M+Na 347.0631 C10H14N507 Precursor to adenosine,
P derivative of 2'3'-Cyclic
ELU39 |370.06139 C01367 25 370.0523 5.4155 [2.4371 |AMP
2'-Deoxyguanosine M+Na 347.0631 C10H14N507
5'-monophosphate P
dGMP C0362 25 370.0523 Purine metabolism
M+Na 347.0631 C10H14N507 IAdenine ribonucleotide
MO00049 P biosynthesis and
AMP C00020 |M00958 |25 370.0523 degradation
3'-AMP M+Na 347.0631 C10H14N507 Precursor to adenosine,
P derivative of 2'3'-Cyclic
F054 370.0618 C01367 26 370.0523 3.1206 [1.6418 |AMP
2'-Deoxyguanosine M+Na 347.0631 C10H14N507
5'-monophosphate P
dGMP C0362 26 370.0523 Purine metabolism
M+Na 347.0631 C10H14N507 IAdenine ribonucleotide
MO00049 P biosynthesis and
AMP C00020 |M00958 [26 370.0523 degradation
S-Lactoylglutathione M+H [380.1122  [379.1049 C13H21N308
F022 380.11062 C03451 4 S 2.1522 [1.1058 |Pyruvate metabolism
S-Lactoylglutathione M+H [380.1122  [379.1049 C13H21N308
F054 380.11601 C03451 10 S 0.37298 |-1.4228 |Pyruvate metabolism
Trehalose 6- M+H 1423.0898 422.0825 C12H23014P Other carbohydrate
F054 423.09392 phosphate C00689 10 0.29864 |-1.7435 |metabolism
S- M+K 423.0847 [384.1216 C14H20N605
/Adenosylhomocyste S
ine C00021 22 Methionine degradation

232




Trehalose 6- M+H |423.0898 [422.0825 C12H23014P Other carbohydrate
MG1655 423.09494 phosphate C00689 12 0.39329 |-1.3463 |metabolism
S- M+K 423.0847 [384.1216 C14H20N60O5
/Adenosylhomocyste S
ine C00021 24 Methionine degradation
Trehalose 6- M+H |423.0898 [422.0825 C12H23014P Other carbohydrate
ELU39 1423.09581 phosphate C00689 14 0.45199 |-1.1456 |metabolism
S- M+K 423.0847 [384.1216 C14H20N60O5
/Adenosylhomocyste S
ine C00021 26 Methionine degradation
dGDP M+H |428.0367 |427.0294 C10H15N501 Deoxyribonucleotide
ELU39 1428.03494 C00361 |M00053 4 0P2 0.47244 -1.0818 |biosynthesis
ADP M+H |428.0367 |427.0294 C10H15N501 Deoxyribonucleotide
C00008 |M00053 4 0P2 biosynthesis
IAdenosine M+H 428.0272 |427.0199 C10H14N501 IAssimilatory sulfate
phosphosulfate C00224 M00176 |18 0PS reduction
F022 442.14173 [Folate C00504 12 |M+H  442.147 441.1397 C19H19N706[2.2108 [1.1445 [Folate metabolism
Trehalose 6- M+Na [423.0898 |422.0825 C12H23014P Other carbohydrate
MG1655 445.07722 |phosphate C00689 12 0.49373 |-1.0182 |metabolism
Tetrahydrofolic acid 37 M+K 484.1341 445171 Tetrahydrofolate
biosynthesis, glycine
ELU39 484.11616 C00101 |M00621 C19H23N706/0.44373 [1.1722 |cleavage system
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Table S5.3 Identification table of metabolites significantly affected by the ciprofloxacin treatment in the 4 E.coli strains. Masses were identified
using ECMDB and cross referenced with KEGG metabolism database for E.coli K-12 MG1655.

Ciprofloxacin
Strain Mass ID KEGG MODULE [ppm |Adduct Adduct + Monoisotopic [Chemical Fold log2(FC) |Function
Compound M/Z [Mass Formula Change
M+NH4 (81.0295 62.9956 HNO3 Dissimilatory nitrate
MG1655 [81.02721 |Nitrate C0244 |M00530 |28 2.422  |1.2762 |reduction
F054 97.02252 |D-Lactaldehyde C00937 36 [M+Na [97.026 74.0368 C3H602  [2.3258 [1.2177 |Purine metabolism
(S)-Lactaldehyde C00424 36 [M+Na [97.026 74.0368 C3H602 Pyruvate metabolism
Propanoate C00163 36 M+Na [97.026 74.0368 C3H602
Trimethylamine N- M+Na [98.0576 75.0684 C3HONO
F054 98.05503 |Oxide C01104 27 0.38252 [-1.3864 [Methane metabolism
F022 99.03870 |Propylene glycol C00583 30 M+Na [99.0416 76.0524 C3H802 41.95 [5.3906 |Propanoate metabolsim
F054 101.00322 Dimethyl sulfoxide  |C11143 1 M+Na |101.0032 78.0139 C2H60S  [2.4843 [1.3128 [Sulfur metabolism
MG1655 |110.02734 Hypotaurine C00519 3 M+H 110.027 109.0197 |C2H7NO2S 2.5364 [1.3428 |Hypotaurine metabolism
ELU39 [112.00041 [Oxamate C01444 1 M+Na  [112.0005 89.0113 C2H3NO3 [2.5124 [1.3291 DEM
F022 112.00041 |Oxamate C01444 1 M+Na  [112.0005 89.0113 C2H3NO3 [0.14032 |-2.8332 DEM
ELU39 [112.04662 [Cytosine C00380 35 |M+H 112.0505 111.0433  |C4H5N30O [3.9367 [1.977 |Pyrimidine metabolism
F022 112.04662 [Cytosine C00380 35 |M+H 112.0505 111.0433  |C4H5N30O 4.1877 [2.0662 Pyrimidine metabolism
F054 112.04662 [Cytosine C00380 35 |M+H 112.0505 111.0433  |C4H5N30O |3.7353 [1.9012 pyrimidine metabolism
MG1655 [|112.04662 [Cytosine C00380 35 |M+H 112.0505 111.0433  |C4H5N30O [9.6471 [3.2701 |Pyrimidine metabolism
F022 113.01904 D-Lactic acid C00256 17 M+Na |113.0209 90.0317 C3H603 2166  [1.1151 |Pyruvate metabolism
3-Hydroxypropanoate|C01013 |M00939 [17 |M+Na |113.0209 90.0317 C3H603 Pyrimidine degradation
L-Lactic acid C00186 17 M+Na |113.0209 90.0317 C3H603 Pyruvate metabolism
Glycerone C00184 17 M+Na |113.0209 90.0317 C3H603 Glycerolipid metabolism
MO00015 M+H 116.0706 115.0633 |C5HINO2 Proline biosynthesis and
MG1655 [|116.06499 |L-Proline C00148 M00970 48 0.25605 [1.9655 [degradation
ELU39 [122.02266 D-Cysteine C00793 36 |M+H 122.027 121.0197 |C3H7NO2S |0.37521 |-1.4142
L-Cysteine C00097 M00021 [36  |M+H 122.027 121.0197 |C3H7NO2S Cysteine biosynthesis
ELU39 ]124.03682 [Nicotinic acid C00253 M00115 20  |M+H 124.0393 123.032 C6H5NO2 |0.24075 |-2.0544 |Precursor to NAD
F054 134.02625 [Cytosine C00380 46  [M+Na  |134.0325 111.0433  |C4H5N30O [3.9408 [1.9785 Pyrimidine metabolism
MG1655 [134.02625 [Cytosine C00380 46  [M+Na  |134.0325 111.0433 |C4H5N30O 4.8452 [2.2766 |Pyrimidine metabolism
MG1655 [|134.02625 [Cytosine C00380 46  [M+Na |134.0325 111.0433 |C4H5N30O [2.8788 [1.5255 Pyrimidine metabolism
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ELU39 [134.02878 [Cytosine C00380 28 |M+Na [134.0325 111.0433  |C4H5N30 [2.6177 [1.3883 |Pyrimidine metabolism
L-Lysine C00047 |M00016 M+H 147.1128 146.1055 |C6H14N20
ELU39 [147.10596 MO00956 47 2 0.40812 [1.2929|Lysine metabolism
L-Lysine C00047 |M00016 M+H 147.1128 146.1055 |C6H14N20
F054 147.10596 MO00956 47 2 0.43228 1.21  |Lysine metabolism
Pyrroline M+Na [152.0318 129.0426 |C5H7NO3
hydroxycarboxylic Arginine and proline
ELU39 [152.02783 |acid C04281 26 0.40057 -1.3199 metabolism
Pyrroline M+Na [152.0318 129.0426 |C5H7NO3
hydroxycarboxylic Arginine and proline
MG1655 |152.02783 jacid C04281 26 0.38598 [1.3734 metabolism
ELU39 [152.05475 [(R)-Malate C00497 4 M+NH4 [152.0553 134.0215 |C4H605 |0.382  |-1.3884
L-Malic acid MO00009 M+NH4 (152.0553 134.0215 |C4H605
C00149 |M00168 4 TCA cycle, CAM
Guanine M+H 152.0567 151.0494  |C5H5N50 Guanine ribonucleotide
C00242 M00959 [13 degradation
F022 156.03674 |Ureidoglycine C02091 3 M+Na [156.038 133.0487 |C3H7N303 |0.29715 [-1.7507 |Purine metabolism
L-Valine M+K 117.079 C5H11NO2 Branched chain amino
acid metabolism valine-
C00183 |M00019 [35 156.0421 isoleucine metabolism
Betaine C00719 38 M+K 118.0868 |C5H12NO2 Serine and threonine
MO00555 156.0427 biosynthesis
F054 156.03674 [Ureidoglycine C02091 8 M+Na  [156.038 133.0487 |C3H7N303 |0.32213 [-1.6343 [Purine metabolism
L-Valine M+K 117.079 C5H11NO2 Branched chain amino
acid metabolism valine-
C00183 |M00019 |35 156.0421 isoleucine metabolism
Betaine C00719 38 [M+K 118.0868 |C5H12NO2 Serine and threonine
MO00555 156.0427 biosynthesis
ELU39 ]156.99240 [Succinic acid C00042 M00009 17 M+K 156.9898 118.0266  |C4H604  10.35049 [1.5126 TCA cycle
Phosphoglycolic acid [C00988 18 |M+H 156.9897 155.9824 |C2H506P Glycoxylate metabolism
(R)-2,3-Dihydroxy- M+Na [157.0471 134.0579 |C5H1004 \Valine leucine isoleucine
F022 157.04164 |isovalerate C04272 M00019 [35 0.48546 [-1.0426 biosynthesis
Deoxyribose M+Na  [157.0471 134.0579 |C5H1004 Pentose phosphate
C01801 35 pathway
(R)-2,3-Dihydroxy- M+Na  [157.0471 134.0579 |C5H1004 \Valine leucine isoleucine
F054 157.04164 |isovalerate C04272 |M00019 |35 0.33495 [1.578 |biosynthesis
Deoxyribose C01801 35 M+Na |[157.0471 134.0579 |C5H1004 Pentose phosphate
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pathway

3-Mercaptopyruvic 33  [M+K 158.9513 119.9881 |C3H403S Cysteine and
ELU39 [158.95654 |acid C00957 3.3835 [1.7585 methionine metabolism
F054 162.10899 |L-Carnitine C00318 21 M+H 162.1125 161.1052 |C7H15NO3 |0.48448 -1.0455
Carnitine C00487 25 |M+H 162.113 162.113 C7H16NO3 Lysine degradation
MG1655 |162.10899 |L-Carnitine C00318 21 M+H 162.1125 161.1052 |C7H15NO3 |0.35419 -1.4974
Carnitine C00487 25 |M+H 162.113 162.113 C7H16NO3 Lysine degradation
3-(3- M+H 167.0703 166.063 COH1003
Hydroxyphenyl)propa Phenylalanine
ELU39 [167.07620 |noic acid C11457 35 4.5255 [2.1781 |metabolism
D-Xylulose M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
ELU39 |173.03587 C00310 36 2.5327 [1.3406 |interconversions
L-Ribulose M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
C00508 36 interconversions
L-Threo-2-pentulose M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
C00312 36 interconversions
M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
interconversions,
nucleotide sugar
L-Arabinose C00259 36 metabolism
M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
D-Ribulose C00309 36 interconversions
M+Na [173.042 150.0528 |C5H1005 Pentose phosphate
Ribose C00121 36 pathway
M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
interconversions,
nucleotide sugar
D-Xylose C00181 36 metabolism
D-Xylulose M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
ELU39 [173.03587 C00310 36 2.4196 |1.2748 |interconversions
L-Ribulose M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
C00508 36 interconversions
L-Threo-2-pentulose M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
C00312 36 interconversions
M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
interconversions,
L-Arabinose C00259 36 nhucleotide sugar
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metabolism

M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
D-Ribulose C00309 36 interconversions
M+Na [173.042 150.0528 |C5H1005 Pentose phosphate
Ribose C00121 36 pathway
M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
interconversions,
nucleotide sugar
D-Xylose C00181 36 metabolism
D-Xylulose M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
F022 173.03587 C00310 36 3.4751 [1.797 |interconversions
L-Ribulose M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
C00508 36 interconversions
L-Threo-2-pentulose M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
C00312 36 interconversions
M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
interconversions,
nucleotide sugar
L-Arabinose C00259 36 metabolism
M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
D-Ribulose C00309 36 interconversions
M+Na [173.042 150.0528 |C5H1005 Pentose phosphate
Ribose C00121 36 pathway
M+Na [173.042 150.0528 |C5H1005 Pentose glucuronate
interconversions,
nucleotide sugar
D-Xylose C00181 36 metabolism
M+NH4 (174.0509 156.0171 |C5H4N204 De novo pyrimidine
ELU39 [174.05946 [Orotate C00295 |[M00051 49 3.8135 [1.9311 |piosynthesis
3-Carboxy-3-hydroxy- M+H 175.0601 174.0528 |C7H1005
MG1655 |175.06296 fisocaproate C02504 |M00432 |16 0.049516-4.3359 |Leucine biosynthesis
2-1sopropyl-3- M+H 175.0601 174.0528 |C7H1005 \Valine leucine isoleucine
oxosuccinate C04236 16 biosynthesis
Shikimate C00493 16 |M+H 175.0601 174.0528 |C7H1005 Shikimate pathway
MG1655 |178.05 L-Histidine C00135 49 |M+Na [178.0587 155.0695 |C6HIN302 2.6523 [1.4073 Histidine biosynthesis
F054 187.10301 Pyridoxine C00314 25 |M+NH4 [187.1077 169.0739 |C8H11NO3 |0.46975 [1.09
F054 188.06256 |D-Phenylalanine C02265 30 |M+Na [188.0682 165.079 C9H11NO2 |0.48901 }1.0321
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L-Phenylalanine M+Na [188.0682 165.079 CO9H11NO2 Phenyalanine
C00079 |M00024 |30 biosythesis
Pyridoxamine M+Na [191.0791 168.0899 |C8H12N20
ELU39 [191.07056 C00534 45 2 3.6178 [1.8551
Pyridoxamine M+Na [191.0791 168.0899 |C8H12N20
F022 191.07056 C00534 45 2 3.563  [1.8331
Pyridoxamine M+Na [191.0791 168.0899 |C8H12N20
F054 191.07056 C00534 45 2 2.3541 |1.2352
ELU39 ]194.93953 Phosphoglycolic acid |[C00988 31 M+K 194.9455 155.9824 |C2H506P 10.43363 [-1.2055 Glycoxylate metabolism
MG1655 |194.93953 Phosphoglycolic acid |[C00988 31 M+K 194.9455 155.9824 |C2H506P 0.45834 [-1.1255 Glycoxylate metabolism
N-Acetylornithine M+Na [(197.0897 174.1004 |C7H14N20
ELU39 [197.09073 C00437 |M00028 |5 3 0.15218 [2.7162 |Ornithine metabolism
7-Cyano-7- M+Na [198.0386 175.0494 |C7H5N50
MG1655 |198.02945 [carbaguanine C15996 46 0.47332 [1.0791 [Folate biosynthesis
Citrulline M+Na [198.0849 175.0957 |C6H13N30
ELU39 [198.08473 C00327 |M000844/1 3 0.18702 [-2.4187 |Arginine biosynthesis
5-Methylthioribose M+NH4 (198.0795 180.0456 |C6H1204S Cysteine and
C03089 27 methionine metabolism
Trans-2,3- M+NH4 [198.0761 180.0423 |C9H80O4 Trans-cinamate
Dihydroxycinnamate |C12623 M00545 44 degradation
4- M+NH4 [198.0761 180.0423 |C9H804
Hydroxyphenylpyruvi
c acid C01179 |M00025 44 Tyrosine biosythesis
3,4-Dihydroxy-L- M+H 198.0761 197.0688 |CO9H11NO4
phenylalanine C00355 44 Tyrosine biosythesis
Citrulline M+Na [198.0849 175.0957 |C6H13N30
F022 198.08473 C00327 |M000844/1 3 0.49651 1.0101 |Arginine biosynthesis
5-Methylthioribose M+NH4 (198.0795 180.0456 |C6H1204S Cysteine and
C03089 27 methionine metabolism
Trans-2,3- M+NH4 [198.0761 180.0423 |C9H80O4 Trans-cinamate
Dihydroxycinnamate [C12623 |M00545 44 degradation
4- M+NH4 [198.0761 180.0423 |C9H80O4
Hydroxyphenylpyruvi
c acid C01179 |M00025 44 Tyrosine biosythesis
3,4-Dihydroxy-L- M+H 198.0761 197.0688 |CO9H11NO4
phenylalanine C00355 44 Tyrosine biosythesis
MG1655 |198.08473 [Citrulline C00327 |M000844/1 M+Na  [198.0849 175.0957 |C6H13N30 |0.23133 [2.112 |Arginine biosynthesis
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5-Methylthioribose M+NH4 (198.0795 180.0456 |C6H1204S Cysteine and
C03089 27 methionine metabolism
Trans-2,3- M+NH4 [198.0761 180.0423 |C9H80O4 Trans-cinamate
Dihydroxycinnamate [C12623 |M00545 44 degradation
4- M+NH4 [198.0761 180.0423 |C9H80O4
Hydroxyphenylpyruvi
c acid C01179 |M00025 44 Tyrosine biosythesis
3,4-Dihydroxy-L- M+H 198.0761 197.0688 |CO9H11NO4
phenylalanine C00355 44 Tyrosine biosythesis
5-Dehydro-4-deoxy- M+Na (199.0213 176.0321 |C6H806
MG1655 |199.0258 |D-glucuronate C04053 23 0.19532 |-2.3561
(4S)-4,6-Dihydroxy- M+Na [199.0213 176.0321 |C6H806
2,5-dioxohexanoate |C04349 23
Ascorbate C00072 |M00550 [23 M+Na [199.0213 176.0321 |C6H806 IAscorbate degrdation
Ureidosuccinic acid M+Na [199.0325 176.0433 |C5H8N205 De novo pyrimidine
C00438 M00051 [34 biosynthesis
D-4-Hydroxy-2- M+K 200.9796 162.0164 |C5H606 Arginine and proline
F054 200.97037 |oxoglutarate C05946 46 2.6789 [1.4216 |metabolism
4-Hydroxy-2- M+K 200.9796 162.0164 |C5H606
oxoglutaric acid C01127 46 Glycoxylate metabolism
cis-3-(Carboxy-ethyl)- M+NH4 [202.1074 184.0736 |C9H1204
3,5-cyclo-hexadiene- Phenyalanine
MG1655 [202.10439 [1,2-diol C11588 15 0.41202 [-1.2792 |metabolism
L-Rhamnonate M+Na [203.0526 180.0634 |C6H1206 Glycolysis. Nucleotide
sugar biosynthesis
UDP-N-acetyl-D-
glucosamine
biosynthesis,
MG1655 [203.04874 C01934 19 0.37483 [1.4157 prokaryotes
D-Allose C01487 19  |M+Na [203.0526 180.0634 |C6H1206
Inositol C00137 19  |M+Na [203.0526 180.0634 |C6H1206
alpha-D-Glucose MO00001 M+Na [203.0526 180.0634 |C6H1206
M000549
C00267 |M00909 |19
D-Fructose M+Na [203.0526 180.0634 |C6H1206 Nucleotide sugar
C00095 19 biosynthesis and
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galactose degradation
leloir pathway

beta-D-glucose C00221 19 |M+Na [203.0526 180.0634 |C6H1206
D-Mannose C00159 19 |M+Na [203.0526 180.0634 |C6H1206
Alpha-D-Galactose MO00554 M+Na [203.0526 180.0634 |C6H1206
C00984 |M00632 |19
D-Galactose C00124 |M00632 |19  M+Na [203.0526 180.0634 |C6H1206
D-Glucose C00031 19 |M+Na [203.0526 180.0634 |C6H1206
L-Rhamnonate M+Na [203.0526 180.0634 |C6H1206 Glycolysis. Nucleotide
sugar biosynthesis
UDP-N-acetyl-D-
glucosamine
biosynthesis,
ELU39 [203.05495 C01934 12 8.0756 [3.0136 |prokaryotes
D-Allose C01487 12  |M+Na [203.0526 180.0634 |C6H1206
Inositol C00137 12  |M+Na [203.0526 180.0634 |C6H1206
alpha-D-Glucose MO00001 M+Na [203.0526 180.0634 |C6H1206
M000549
C00267 |M00909 |12
D-Fructose M+Na [203.0526 180.0634 |C6H1206 Nucleotide sugar
biosynthesis and
galactose degradation
C00095 12 leloir pathway
beta-D-glucose C00221 12 |M+Na [203.0526 180.0634 |C6H1206
D-Mannose C00159 12 |M+Na [203.0526 180.0634 |C6H1206
Alpha-D-Galactose M00554 M+Na [203.0526 180.0634 |C6H1206
C00984 |M00632 |12
D-Galactose C00124 |M00632 |12  M+Na [203.0526 180.0634 |C6H1206
D-Glucose C00031 12 |M+Na [203.0526 180.0634 |C6H1206
L-Rhamnonate M+Na [203.0526 180.0634 |C6H1206 Glycolysis. Nucleotide
sugar biosynthesis
UDP-N-acetyl-D-
glucosamine
biosynthesis,
MG1655 [203.05495 C01934 12 17.601 4.1376 |prokaryotes
D-Allose C01487 12 |M+Na [203.0526 180.0634 |C6H1206
Inositol C00137 12 |M+Na |203.0526 180.0634 |C6H1206
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alpha-D-Glucose MO00001 M+Na [203.0526 180.0634 |C6H1206
M000549
C00267 |M00909 |12
D-Fructose M+Na [203.0526 180.0634 |C6H1206 Nucleotide sugar
biosynthesis and
galactose degradation
C00095 12 leloir pathway
beta-D-glucose C00221 12 |M+Na [203.0526 180.0634 |C6H1206
D-Mannose C00159 12 |M+Na [203.0526 180.0634 |C6H1206
Alpha-D-Galactose M00554 M+Na [203.0526 180.0634 |C6H1206
C00984 |M00632 |12
D-Galactose C00124 |M00632 |12  M+Na [203.0526 180.0634 |C6H1206
D-Glucose C00031 12 |M+Na [203.0526 180.0634 |C6H1206
F022 205.06905 |Galactitol C01697 4 M+Na [205.0683 182.079 C6H1406 |11.645 [3.5417 Galactose metabolism
Sorbitol M+Na [205.0683 182.079 C6H1406 Fructose mannose
C00794 4 metabolism
Mannitol Fructose mannose
C00392 4 metabolism
ELU39 [207.04280 Methylisocitric acid  |C04593 34 |M+H 207.0499 206.0427 |C7H1007 [0.41139 |-1.2814 |Propanoate metabolsim
Methylcitric acid C02225 34 |M+H 207.0499 206.0427 |C7H1007 Propanoate metabolsim
Lipoic acid M+H 207.0508 206.0435 [C8H1402S
C16241 39 2 Lipoic acid metabolism
MG1655 [207.0428 |Methylisocitric acid  |C04593 34 |M+H 207.0499 206.0427 |C7H1007 [0.43417 |-1.2037 |Propanoate metabolsim
Methylcitric acid C02225 34 |M+H 207.0499 206.0427 |C7H1007 Propanoate metabolsim
Lipoic acid M+H 207.0508 206.0435 [C8H1402S
C16241 39 2 Lipoic acid metabolism
ELU39 [211.10117 0.45633 |-1.1318
F054 212.84886 0.41356 |-1.2738
2-Amino-3-oxo0-4- M+H 214.0111 213.0038 |[C4HBNOT7P
phosphonooxybutyrat
ELU39 [214.00095 e C07335 |M00124 47 2.4866 [1.3141 |Pyridoxal-P biosynthesis
L-Aspartyl-4- MO00016 M+H 214.0111 213.0038 |[C4H8NOT7P
phosphate MO00017 Lysine threonine
C03082 |M00018 47 methionine biosynthesis
2-Amino-3-o0xo0-4- M+H 214.0111 213.0038 |[C4H8NOT7P
phosphonooxybutyrat
ELU39 [214.00245 C07335 M00124 40 3.4922 [1.8042 |Pyridoxal-P biosynthesis
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L-Aspartyl-4- M00016 M+H 214.0111 213.0038 |[C4HBNOT7P
phosphate MO0017 Lysine threonine
C03082 |M00018 40 methionine biosynthesis
7-Cyano-7- M+K 214.0126 175.0494 |C7H5N50
carbaguanine C15996 47 Folate biosynthesis
M+H 220.1179 219.1107  |CO9H17NO5 Pantothenate
C00864 |[M00019 biosynthesis, Coenzyme
MG1655 [220.11236 [Panthothenic acid M00120 25 0.24982 [-2.0011 |A biosynthesis
M+H 220.1179 219.1107  |CO9H17NO5 Pantothenate
C00864 [M00019 biosynthesis, Coenzyme
ELU39 [220.11247 |Panthothenic acid M00120 25 0.24338 |-2.0387 |A biosynthesis
2,5-Dichloro-4- M+H 226.9509 225.9436 |C6H4CI205
F022 226.94615 |oxohex-2-enedioate  |C12835 21 2.1431 [1.0997
2-Amino-3-oxo-4- M+NH4 213.0038 |[C4H8NOT7P
phosphonooxybutyrat
MG1655 [231.03858 e C07335 |[M00124 4 231.0377 2.0392 [1.028 |Pyridoxal-P biosynthesis
L-Aspartyl-4- M00016 M+NH4 213.0038 |[C4H8NOT7P
phosphate MO00017 Lysine threonine
C03082 |M00018 4 231.0377 methionine biosynthesis
2-Amino-3-oxo-4- M+NH4 213.0038 |C4HBNOT7P
phosphonooxybutyrat
F022 231.03876 e C07335 |M00124 |5 231.0377 2.59 1.373 |Pyridoxal-P biosynthesis
L-Aspartyl-4- MO00016 M+NH4 213.0038 |C4H8NOT7P
phosphate MO00017 Lysine threonine
C03082 |M00018 |5 231.0377 methionine biosynthesis
4-(Glutamylamino) C16757 M+H 233.1132 232.1059 |C9H16N20
ELU39 [233.10867 jputanoate M00136 [19 5 0.15072 |-2.73 |GABA biosynthesis
N2-Succinyl-L- M+H 233.1132 232.1059 |C9H16N20 Arginine
ornithine C03415 5 succinyltransferase
MO00879 19 pathway
4-(Glutamylamino) 16757 M+H 233.1132 232.1059 |C9H16N20
F022 233.10867 |pbutanoate M00136 [19 5 0.30835 |-1.6974 |GABA biosynthesis
N2-Succinyl-L- M+H 233.1132 232.1059 |C9H16N20 Arginine
ornithine C03415 5 succinyltransferase
M00879 19 pathway
4-(Glutamylamino) 16757 M+H 233.1132 232.1059 |CO9H16N20
F054 233.10867 |pbutanoate M00136 19 5 0.26788 [-1.9004 GABA biosynthesis
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N2-Succinyl-L- M+H 233.1132 232.1059 |C9H16N20 Arginine
ornithine C03415 5 succinyltransferase
MO00879 19 pathway
4-(Glutamylamino) 16757 M+H 233.1132 232.1059 |C9H16N20
MG1655 [233.10867 putanoate MO00136 19 5 0.096314[-3.3761 |GABA biosynthesis
N2-Succinyl-L- M+H 233.1132 232.1059 |C9H16N20 Arginine
ornithine C03415 5 succinyltransferase
MO00879 19 pathway
D-Erythrose 4- M+K 238.9717 200.0086 |C4H9O7P Pentose phosphate
ELU39 [238.97545 phosphate C00279 |M00004 |15 0.48106 [1.0557 pathway
4-Amino-2-methyl-5- M+Na [242.0301 219.0409 |C6H10N30O
phosphomethylpyrimi 4P
ELU39 [242.03727 dine C04556 |M00127 |30 0.38553 [1.3751 [Thiamine biosynthesis
Pantothenic acid M+Na [242.099 219.1107 |C9H17NO5 Pantothenate
MO00019 biosynthesis, Coenzyme
F054 242.09427 C00864 |[M00120 |23 0.30349 [1.7203 A biosynthesis
Pantothenic acid M+Na [242.099 219.1107 |C9H17NO5 Pantothenate
M00019 biosynthesis, Coenzyme
F022 242.09576 C00864 M00120 [17 0.49079 [1.0268 A biosynthesis
Pantothenic acid M+Na  [242.099 219.1107 |C9H17NO5 Pantothenate
M00019 biosynthesis, Coenzyme
MG1655 [242.09613 C00864 |M00120 |16 0.13989 [-2.8376 A biosynthesis
Pantothenic acid M+Na  [242.099 219.1107 |C9H17NO5 Pantothenate
M00019 biosynthesis, Coenzyme
ELU39 [242.09695 C00864 M00120 [12 0.17271 [-2.5335 A biosynthesis
L-Tryptophan M+K 243.053 204.0899 |C11H12N2
MG1655 [243.04241 C00078 |M00023 44 02 2.9903 [1.5803 [Tryptophan biosynthesis
Thymidine M+H 243.0975 242.0903 |[C10H14N2
MG1655 [243.09647 C00214 4 05 0.44753 [1.1599 |Pyrimidine metabolism
Isochorismate 00885 M+NH4 [244.0816 226.0477 |C10H1006 Menaquinone
MG1655 [244.08578 M00116 17 4.6008 [2.2019 |biosynthesis
Prephenate M+NH4 [244.0816 226.0477 |C10H1006 Tyrosine biosythesis
C00254 |M00024, phenylalanine
MO00025 17 biosynthesis
Chorismate M00022, M+NH4 [244.0816 226.0477 |C10H1006 Central to aromatic
00251 MO00023, am_inp acid metabolism.
M00024, Shikimate pathways,
M00025, 17 tryptophan, tyrosine,
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M00116

phenylalanine

MO00117 biosynthesis.
N- M+Na [244.0792 221.0899 |C8H15NO6 Nucleotide sugar
. C00645 . .
Acetylmannosamine 27 biosynthesis
N-Acetyl-D- M+Na [244.0792 221.0899 |C8H15NO6 Nucleotide sugar
. C00140 . .
glucosamine 27 biosynthesis
Cytidine M+H 244.0928 243.0855 |CO9H13N30O
C00475 .
29 5 Precursor of cytosine
Isochorismate 00885 M+NH4 [244.0816 226.0477 |C10H1006 Menaquinone
F022 244.08637 M00116 |20 2.6577 [1.4102 |biosynthesis
Prephenate M+NH4 [244.0816 226.0477 |C10H1006 Tyrosine biosythesis
C00254 |[M00024, phenylalanine
M00025 20 biosynthesis
Chorismate M00022, M+NH4 [244.0816 226.0477 |C10H1006 Central to aromatic
M00023, amino aid metabolism.
M00024, Shikimate pathways,
C00251 M00025, tryptophan, tyrosine,
MO00116 phenylalanine
MO00117 20 biosynthesis.
N- M+Na  [244.0792 221.0899 |C8H15NO6 Nucleotide sugar
. C00645 . .
Acetylmannosamine 26 biosynthesis
N-Acetyl-D- M+Na [244.0792 221.0899 |C8H15NO6 Nucleotide sugar
. C00140 . .
glucosamine 26 biosynthesis
Cytidine M+H 244.0928 243.0855 |C9H13N30O
C00475 .
30 5 Precursor of cytosine
Porphobilinogen M+NH4 244.1292 226.0954 |C10H14N2 Porphyrin precursor,
MG1655 [244.12243 C00931 28 04 3.1315 [1.6468 |heme biosynthesis
L-Glutamic acid 5- 03287 M+NH4 [245.0533 227.0195 |C5H10NO7
F022 245.05476 phosphate MO00015 |6 P 2.9897 [1.58  Proline biosynthesis
L-Cystathionine 02291 M+Na [245.0566 222.0674 |C7H14N20
MO00017 |8 4S Methionine biosynthesis
Deoxyuridine M+Na [251.0638 228.0746  |C9H12N20
ELU39 [251.06318 C00526 3 5 0.36025 [1.4729 Pyrimidine metabolism
gamma- M+H 251.0696 250.0623 |C8H14N20
Glutamylcysteine C00669 26 5S Glutathione biosynthesis
gamma-Glutamyl- M+K 255.0742 216.111 CI9H16N20
ELU39 [255.06808 gamma- C15700 24 4 0.35003 [1.5145 GABA biosynthesis
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butyraldehyde

4-(Glutamylamino) M+Na  [255.0951 232.1059 |C9H16N20
F022 255.09020 |butanoate C15767 M00136 [19 5 0.40841 [1.2919|GABA biosynthesis
N2-Succinyl-L- M+Na  [255.0951 232.1059 |C9H16N20 Arginine
ornithine 5 succinyltransferase
C03415 |M00879 |19 pathway
Nicotinamide riboside M+H 255.0981 255.0981 |C11H15N2
C03150 31 05 Nicotinate metabolism
3-Deoxy-D-manno- M+NH4 [256.1027 238.0689 |C8H1408
MG1655 [256.09664 joctulosonate C01187 |M00063 |24 0.47483 1.0745|CMP-KDO biosynthesis
7,8-Dihydroneopterin M+H 256.104 255.0968 |C9H13N50 Tetrahydrofolate
C04874 M00126 |29 4 biosynthesis
gamma-Glutamyl-L- M+K 256.1058 217.1426  |[CO9H19N30
putrescine C15699 36 3 GABA biosynthesis
3-Deoxy-D-manno- M+NH4 [256.1027 238.0689 |C8H1408
ELU39 [256.09774 joctulosonate C01187 |M00063 |19 0.3554 [-1.4925|CMP-KDO biosynthesis
7,8-Dihydroneopterin M+H 256.104 255.0968 |C9H13N50 Tetrahydrofolate
C04874 25 4 biosynthesis
gamma-Glutamyl-L- M+K 256.1058 217.1426  |[CO9H19N30O
putrescine C15699 31 3 GABA biosynthesis
Pantothenic acid M+K 258.0738 219.1107 |C9H17NO5 Pantothenate
M00019 biosynthesis, Coenzyme
MG1655 [258.06909 C00864 |[M00120 |18 0.43038 [1.2163 |A biosynthesis
L-Cystine M+NH4 [258.0577 240.0238 |C6H12N20 Cysteine and
C00491 44 4S2 methionine metabolism
Pantothenic acid M+K 258.0738 219.1107 |CO9H17NO5 Pantothenate
M00019 biosynthesis, Coenzyme
ELU39 [258.06970 C00864 |M00120 |16 0.4556 [-1.1341 |A biosynthesis
L-Cystine M+NH4 [258.0577 240.0238 |C6H12N20 Cysteine and
C00491 47 4S2 methionine metabolism
D-Galactosamine 6- M+H 260.053 259.0457 |C6H14NO8
F054 260.04756 phosphate C06377 21 P 0.46553 [1.1031 |Galactose metabolism
N- M+K 260.0531 221.0899 |C8H15NO6
Acetylmannosamine |C00645 21
N-Acetyl-D- M+K 260.0531 221.0899 |C8H15NO6
glucosamine C00140 21
alpha-D-Glucosamine/C06156 21 M+H 260.053 259.0457 |C6H14NO8 UDP-N-acetyl-D-
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1-phosphate P glucosamine
biosynthesis
Glucosamine-1P M+H 260.053 259.0457 |C6H14NO8 UDP-N-acetyl-D-
P glucosamine
C04501 |M00909 |21 biosynthesis
Glucosamine 6- M+H 260.053 259.0457 |C6H14NO8 UDP-N-acetyl-D-
phosphate P glucosamine
C00352 |M00909 |21 biosynthesis
D-Galactosamine 6- M+H 260.053 259.0457 |C6H14NO8
ELU39 [260.04817 [phosphate C06377 18 P 0.43899 [1.1877 Galactose metabolism
alpha-D-Glucosamine M+H 260.053 259.0457 |C6H14NO8 UDP-N-acetyl-D-
1-phosphate P glucosamine
C06156 18 biosynthesis
Glucosamine-1P M+H 260.053 259.0457 |C6H14NO8 UDP-N-acetyl-D-
P glucosamine
C04501 |M00909 [18 biosynthesis
Glucosamine 6- M+H 260.053 259.0457 |C6H14NO8 UDP-N-acetyl-D-
phosphate P glucosamine
C00352 |M00909 |18 biosynthesis
N- M+K 260.0531 221.0899 |C8H15NO6
Acetylmannosamine |C00645 19
N-Acetyl-D- M+K 260.0531 221.0899 |C8H15NO6
glucosamine C00140 19
3-Deoxy-D-manno- M+Na 238.0689 |C8H1408
F054 261.05221 |octulosonate C01187 |M00063 |23 261.0581 0.40559 1.3019|CMP-KDOQO biosynthesis
3-Deoxy-D-manno- M+Na 238.0689 |C8H1408
F022 261.05340 |octulosonate C01187 |M00063 [18 261.0581 0.30007 [1.7367 CMP-KDO biosynthesis
Cytidine 00475 M+NH4 243.0855 |C9H13N30O
F022 261.12235 12 261.1193 5 0.43245 1.2094 Precursor of cytosine
Cytidine 00475 M+Na 243.0855 |C9H13N30O
MG1655 [266.06812 25 266.0747 5 7.2813 [2.8642 Precursor of cytosine
Cytidine 00475 M+Na 243.0855 |C9H13N30O
F022 266.06826 24 266.0747 5 3.4269 [1.7769 PPrecursor of cytosine
Cytidine 00475 M+Na 243.0855 |C9H13N30O
F022 266.06913 21 266.0747 5 4.3931 |2.1352 |Precursor of cytosine
Cytidine 00475 M+Na 243.0855 |C9H13N30O
F054 266.06932 20 266.0747 5 4.3531 [2.122 |Precursor of cytosine
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Pseudouridine M+Na [267.0588 244.0695 |CO9H12N20
F022 267.06411 C02067 20 6 2.1683 [1.1166 |Pyridoxal-P biosynthesis
Uridine M+Na [267.0588 244.0695 |CO9H12N20
C00299 20 6 Pyrimidine metabolism
Pyridoxine 5'- M+NH4 [267.074 249.0402 |C8H12NO6
phosphate C00627 M00124 [37 P Pyridoxal-P biosynthesis
Pyridoxine 5'- M+NH4 [267.074 249.0402 |C8H12NO6
MG1655 [267.07108 phosphate C00627 |M00124 |37 P 2.9295 [1.5507 |Pyridoxal-P biosynthesis
Biotin 24  [M+Na [267.0774 244.0882 |C10H16N2
C00120 |M00123 O3S Biotin biosynthesis
Deoxyguanosine M+H 268.104 267.0968 |C10H13N5
ELU39 [268.10123 C00330 10 04 0.48254 -1.0513 |Purine metboalism
/Adenosine M+H 268.104 267.0968 |C10H13N5 IAdenine ribonucleotide
04 degradation, purine
C00212 |M00958 |10 metabolism
gamma- M+NH4 [268.0962 250.0623 |C8H14N20
Glutamylcysteine C00669 19 5S Glutathione biosynthesis
Deoxyguanosine M+H 268.104 267.0968 |C10H13N5
MG1655 [268.10123 C00330 10 04 0.44203 [1.1778 |Purine metboalism
/Adenosine M+H 268.104 267.0968 |C10H13N5 IAdenine ribonucleotide
04 degradation, purine
C00212 |M00958 |10 metabolism
gamma- M+NH4 [268.0962 250.0623 |C8H14N20
Glutamylcysteine C00669 19 5S Glutathione biosynthesis
Ubiquinone 00399 M+NH4 [268.1543 250.1205 [C14H1804 Oxidative
MG1655 [268.14788 M00117 24 126.29 [6.9806 |phosphorylation
N-Succinyl-L- M+Na [270.0584 247.0692 |CO9H13NO7 Arginine
glutamate succinyltransferase
F054 270.05583 C05931 |M00879 |10 0.15059 [2.7313 pathway
N-Succinyl-L- M+Na [270.0584 247.0692 |CO9H13NO7 Arginine
glutamate succinyltransferase
F022 270.05789 C05931 |M00879 2 3.5914 [1.8445 |pathway
Deoxyadenosine M+Na [274.0911 251.1018 |C10H13N5
F022 274.09410 C00559 11 03 7.7967 [2.9629 |Purine metabolism
Deoxyadenosine M+Na [274.0911 251.1018 |C10H13N5
ELU39 [274.09525 C00559 15 03 4.4405 [2.1507 |Purine metabolism
ELU39 |275.12967 |Ubiquinol-1 C00390 M00117 |16 M+Na [275.1254 252.1362 [14H2004 |0.39219 -1.3504 |Oxidative
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phosphorylation

N2-Succinyl-L- M+H 275.135 274.1277 |C10H18N4 Arginine
arginine C03296 05 succinyltransferase
MO00879 19 pathway
Ubiquinol-1 M+Na  [275.1254 252.1362 [14H2004 Oxidative
F022 275.12967 C00390 |M00117 |16 3.5261 [1.8181 |phosphorylation
N2-Succinyl-L- M+H 275.135 274.1277 |C10H18N4 Arginine
arginine C03296 05 succinyltransferase
MO00879 19 pathway
Ubiquinol-1 M+Na [275.1254 252.1362 [14H2004 Oxidative
MG1655 [275.12967 C00390 |M00117 |16 0.0862251-3.5358 [phosphorylation
N2-Succinyl-L- M+H 275.135 274.1277 |C10H18N4 Arginine
arginine C03296 05 succinyltransferase
MO00879 19 pathway
D-Galactosamine 6- M+NH4 259.0457 |C6H14NO8
F022 277.07352 phosphate C06377 22 277.0795 P 0.25373 [-1.9787 Galactose metabolism
alpha-D-Glucosamine M+NH4 259.0457 |C6H14NO8 UDP-N-acetyl-D-
1-phosphate P glucosamine
C06156 22 277.0795 biosynthesis
Glucosamine-1P M+NH4 259.0457 |C6H14NO8
C04501 22 277.0795 P
Glucosamine 6- M+NH4 259.0457 |C6H14NO8
phosphate C00352 22 277.0795 P
Nicotinamide riboside M+Na 255.0981 [C11H15N2
C03150 24 277.08 05
D-Galactosamine 6- M+NH4 259.0457 |C6H14NO8
ELU39 [277.07424 phosphate C06377 19 277.0795 P 0.30109 [1.7317 |Galactose metabolism
alpha-D-Glucosamine M+NH4 259.0457 |C6H14NO8 UDP-N-acetyl-D-
1-phosphate P glucosamine
C06156 19 277.0795 biosynthesis
Glucosamine-1P M+NH4 259.0457 |C6H14NO8 UDP-N-acetyl-D-
P glucosamine
C04501 19 277.0795 biosynthesis
Glucosamine 6- M+NH4 259.0457 |C6H14NO8 UDP-N-acetyl-D-
phosphate P glucosamine
C00352 19 277.0795 biosynthesis
Nicotinamide riboside|C03150 21 M+Na [277.08 255.0981 |C11H15N2

248




05

D-Galactosamine 6- M+Na 259.0457 |C6H14NO8
ELU39 [282.03374 phosphate C06377 4 282.0349 P 0.41491 1.2691 |Galactose metabolism
alpha-D-Glucosamine M+Na 259.0457 |C6H14NO8 UDP-N-acetyl-D-
1-phosphate P glucosamine
C06156 4 282.0349 biosynthesis
Glucosamine-1P M+Na 259.0457 |C6H14NO8 UDP-N-acetyl-D-
P glucosamine
C04501 4 282.0349 biosynthesis
Glucosamine 6- M+Na 259.0457 |C6H14NO8 UDP-N-acetyl-D-
phosphate P glucosamine
C00352 4 282.0349 biosynthesis
Cytidine 00475 M+K 243.0855 |C9H13N30O
MG1655 [282.04398 17 282.0487 5 7.8545 [2.9735 PPrecursor of cytosine
D-Galactosamine 6- M+Na 259.0457 |C6H14NO8
phosphate C06377 32 282.0349 P Galactose metabolism
alpha-D-Glucosamine M+Na 259.0457 |C6H14NO8 UDP-N-acetyl-D-
1-phosphate P glucosamine
C06156 32 282.0349 biosynthesis
Glucosamine-1P M+Na 259.0457 |C6H14NO8 UDP-N-acetyl-D-
P glucosamine
C04501 32 282.0349 biosynthesis
Glucosamine 6- M+Na 259.0457 |C6H14NO8 UDP-N-acetyl-D-
phosphate P glucosamine
C00352 32 282.0349 biosynthesis
Cytidine 00475 M+K 243.0855 |C9H13N30O
F022 282.04537 12 282.0487 5 2.9404 [1.556 |Precursor of cytosine
D-Galactosamine 6- M+Na 259.0457 |C6H14NO8
phosphate C06377 37 282.0349 P Galactose metabolism
alpha-D-Glucosamine M+Na 259.0457 |C6H14NO8 UDP-N-acetyl-D-
1-phosphate P glucosamine
C06156 37 282.0349 biosynthesis
Glucosamine-1P M+Na 259.0457 |C6H14NO8 UDP-N-acetyl-D-
P glucosamine
C04501 37 282.0349 biosynthesis
Glucosamine 6- M+Na 259.0457 |C6H14NO8 UDP-N-acetyl-D-
phosphate C00352 37 282.0349 P glucosamine
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biosynthesis

Cytidine 00475 M+K 243.0855 |CO9H13N30O
F054 282.0456 11 282.0487 5 3.5104 [1.8116 |Precursor of cytosine
D-Galactosamine 6- M+Na 259.0457 |C6H14NO8
phosphate C06377 38 282.0349 P Galactose metabolism
alpha-D-Glucosamine M+Na 259.0457 |C6H14NO8 UDP-N-acetyl-D-
1-phosphate P glucosamine
C06156 38 282.0349 biosynthesis
Glucosamine-1P M+Na 259.0457 |C6H14NO8 UDP-N-acetyl-D-
P glucosamine
C04501 |M00909 |38 282.0349 biosynthesis
Glucosamine 6- M+Na 259.0457 |C6H14NO8 UDP-N-acetyl-D-
phosphate P glucosamine
C00352 |M00909 |38 282.0349 biosynthesis
Biotin 16  M+K 244.0882 |C10H16N2
F022 283.04688 C00120 |M00123 283.0513 03S 2.6511 [1.4066 Biotin biosynthesis
Biotin 12 M+K 244.0882 |C10H16N2
MG1655 [283.0478 C00120 |M00123 283.0513 03S 4.8496 [2.2779 Biotin biosynthesis
Biotin 10 |M+K 244.0882 |C10H16N2
ELU39 [283.04863 C00120 |M00123 283.0513 O3S 2.4458 [1.2903 Biotin biosynthesis
Sorbitol 6-phosphate M+Na [285.0346 262.0454 |C6H1509P Fructose mannose
ELU39 [285.03283 C01096 6 2.1176  |1.0824 |metabolism
Galactitol 1- M+Na [285.0346 262.0454 |C6H1509P
phosphate C06311 6 Galactose metabolism
2-[(2R,5Z)-2- M+NH4 [285.0305 266.9966 |C7H10NOG6
Carboxy-4- PS
methylthiazol-5(2H)-
ylidene]ethyl
phosphate C20246 M00127 |8 Thiamine biosynthesis
ELU39 [287.24039 [Retinol C00473 12 |M+H 287.2369 286.2297 |C20H300 [3.0787 [1.6223
Deoxyguanosine M+Na 267.0968 |C10H13N5
F054 290.0835 C00330 9 290.086 04 2.3329 [1.2221 |Purine metboalism
/Adenosine M+Na 267.0968 |C10H13N5 IAdenine ribonucleotide
04 degradation, purine
C00212 |M00958 9 290.086 metabolism
N-Succinyl-2-amino- M+H 290.087 289.0798 [C11H15NO
6-ketopimelate C04462 M00016 [12 8 Lysine metabolism
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Inosine M+Na [291.07 268.0808 [C10H12N4 Adenine ribonucleotide
05 degradation, AMP =>
F054 291.07189 C00294 |C00958 |7 3.0891 [1.6272 |Urate
2(alpha-D-Mannosyl)- M+Na [291.0687 268.0794 |C9H1609 Other carbohydrate
D-glycerate C11544 11 metabolism
4-Hydroxy-3- M+NH4 [292.1907 2741569 |C17H2203
MG1655 [292.19351 polyprenylbenzoate |C04858 M00117 [10 0.29761 [-1.7485|Ubiquinone biosynthesis
6-Phosphogluconic M+NH4 [294.0585 276.0246 |C6H13010 Pentose phosphate
MG1655 [294.05436 jacid C00345 |M00004 |14 P 0.44697 [1.1617 pathway
7,8-Dihydroneopterin M+K 294.0599 255.0968 |C9H13N50 Tetrahydrofolate
C04874 M00126 |19 4 biosynthesis
2-C-Methyl-D- M+NH4 [296.0284 275.98 C5H1009P C5 isoprenoid
erythritol-2,4- 2 biosynthesis, non-
ELU39 [296.02692 [cyclodiphosphate C11453 |M00096 5 0.46943 |1.091 |mevalonate pathway
N2-Succinyl-L- M+Na [297.1169 274.1277 |C10H18N4 Arginine
arginine 05 succinyltransferase
MG1655 [297.11148 C03296 |M00879 |18 0.31368 [1.6726 pathway
5'- M+H 298.0968 297.0896 [C11H15N5
ELU39 [298.09456 Methylthioadenosine |C00170 8 O3S 2.1401  [1.0977 |Methionine salvage
1,6-Anhydro-N- M+Na [298.0897 275.1005 |C11H17NO
acetyl-beta- 7 Nucleotide sugar
muramate C19769 16 biosynthesis
Deoxyguanosine M+K 306.0599 267.0968 |C10H13N5
F054 306.0669 C00330 10 04 2.0087 [1.0063 |Purine metboalism
/Adenosine M+K 306.0599 267.0968 |C10H13N5 Adenine ribonucleotide
04 degradation, purine
C00212 |M00958 |10 metabolism
D-Glycero-D-manno- M+NH4 (306.0585 288.0246 |C7H13010 ADP-L-glycero-D-
heptose 1-phosphate P manno-heptose
C07838 M00064 [15 biosynthesis
2-Dehydro-3-deoxy- M+NH4 (306.0585 288.0246 [C7H13010
D-arabino-heptonate P
7-phosphate C04691 M00022 |15 Shikimate pathway
N-Succinyl-L,L-2,6- M+NH4 (308.1452 290.1114  |C11H18N2
MG1655 [308.13193 [diaminopimelate C04421 |M00016 43 o7 0.42316 [-1.2407 Lysine biosynthesis
N-Succinyl-L,L-2,6- M+NH4 (308.1452 290.1114  |C11H18N2
ELU39 [308.13545 [diaminopimelate C04421 M00016 [32 o7 0.46571 [1.1025|Lysine biosynthesis
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5'- M+Na (309.0458 286.0566 |C7H15N20
Phosphoribosylglycin 8P De novo purine
MG1655 [309.03751 jamide C03838 |M00048 |27 0.31888 [-1.6489 biosynthesis
dUMP M+H 309.0482 308.041 C9H13N20
C00365 |M00938 |35 8P Pyrimidine biosynthesis
N-acetylneuraminate M+H 310.1133 309.106 C11H19NO Nucleotide sugar
MG1655 [310.12643 C00270 42 9 2.3554 [1.236 |metabolism
N-acetylneuraminate M+H 310.1133 309.106 C11H19NO Nucleotide sugar
F022 310.12735 C00270 45 9 5.3758 [2.4265 |metabolism
N-acetylneuraminate M+H 310.1133 309.106 C11H19NO Nucleotide sugar
ELU39 [310.12870 C00270 50 9 3.4383 [1.7817 |metabolism
Phosphoribosylformyl M+H 314.0748 313.0675 |C8H16N30 De novo purine
F054 314.08428 [glycineamidine C04640 |M00048 |30 8P 4.8928 [2.2906 |biosynthesis
alpha-D-Ribose 1- M+Na (330.9954 308.0062 [C6H14010
methylphosphonate P2
ELU39 [331.00252 |5-phosphate C20423 21 0.42935 |1.2198 [Energy intermediates
N-Acetyl-D- M+K 332.0742 293.1111 C11H19NO Precurosr for
muramoate 8 peptidoglycan
F022 332.06653 C02713 23 423.59 [8.7265 |piosynthesis
dAMP M+H 332.0754 331.0682 |C10H14N5
C00360 27 O6P IADP derivative
N-Acetyl-D- M+K 332.0742 293.1111 C11H19NO Precursor for
muramoate 8 peptidoglycan
F054 332.06662 C02713 23 3.4326 [1.7793 |piosynthesis
dAMP M+H 332.0754 331.0682 |C10H14N5
C00360 27 O6P IADP derivative
N-Acetyl-D- M+K 332.0742 293.1111 C11H19NO Precursor for
muramoate 8 peptidoglycan
MG1655 [332.06715 C02713 21 841.6 [9.717 |pbiosynthesis
dAMP M+H 332.0754 331.0682 |C10H14N5
C00360 25 O6P ADP derivative
N-Acetyl-D- M+K 332.0742 293.1111 C11H19NO Precursor for
muramoate 8 peptidoglycan
ELU39 [332.06765 C02713 20 628.07 19.2948 |biosynthesis
dAMP M+H 332.0754 331.0682 |C10H14N5
C00360 23 O6P ADP derivative
F022 347.07336 |Adenosine 2',3'-cyclic|C02353 37 M+NH4 [347.0863 329.0525 [C10H12N5 (0.49262 |-1.0215 |Precursor to adenosine,
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phosphate O6P derivative of 2'3'-Cyclic
AMP
Cyclic AMP M+NH4 (347.0863 329.0525 |C10H12N5
C00575 37 O6P Biofilm Formation
N-acetylneuraminate M+H 310.1133 309.106 C11H19NO Precursor to adenosine,
9 derivative of 2'3'-Cyclic
F054 348.06611 C00270 9 2.0074 [1.0053 AMP
M+H 348.0704 347.0631 |C10H14N5
AMP C00020 12 O7P Purine metabolism
3'-AMP M+H 348.0704 347.0631 |C10H14N5 Adenine ribonucleotide
M00049 o7P biosynthesis and
C01367 |M00958 [12 degradation
dAMP M+Na 331.0682 |C10H14N5
F054 354.04809 C00360 26 354.0574 O6P 5.2314 [2.3872 |ADP derivative
dAMP M+Na 331.0682 |C10H14N5
MG1655 [354.04857 C00360 25 354.0574 O6P 83.557 [6.3847 |ADP derivative
dAMP M+Na 331.0682 |C10H14N5
F022 354.05001 C00360 21 354.0574 O6P 12.156 [3.6036 |ADP derivative
dAMP M+Na 331.0682 |C10H14N5
MG1655 [354.05018 C00360 20 354.0574 O6P 6.601 2.7227 |ADP derivative
dAMP M+Na 331.0682 |C10H14N5
ELU39 [354.05025 C00360 20 354.0574 O6P 5.1729 [2.371 |ADP derivative
S- M+NH4 [337.0944 355.1282 [C11H19N3
(Hydroxymethyl)gluta O7S
F054 355.12234 thione C14180 16 4.7877 [2.2593 |Methane metabolism
S- M+NH4 [337.0944 355.1282 [C11H19N3
(Hydroxymethyl)gluta O7S
ELU39 [355.12236 thione C14180 16 14.059 [3.8135 |Methane metabolism
N1-(5-Phospho-a-D- M+H 359.1003 358.093 C14H19N2
ribosyl)-5,6- O7P
dimethylbenzimidazol
ELU39 [359.10149 C04778 3 0.37619 [1.4105
Pantetheine 4'- M+H 359.1036 358.0964 |C11H23N2 Coenzyme A
phosphate C01134 |M00120 |6 O7PS biosynthesis
Pantetheine 4'- M+Na [377.0918 358.0964 |C11H23N2 Coenzyme A
F022 377.10660 [phosphate C01134 |M00120 |39 O7PS 2.2189 [1.1499 |iosynthesis
MG1655 [377.14328 Riboflavin C00255 |M00125 6 M+H 377.1456 376.1383 |C17H20N4 [0.45113 |-1.1484 Riboflavin biosynthesis
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06
S- M+Na  377.1372 355.1552 |C14H23N6
/Adenosylmethionina 03S
mine C01137 16 Methionine salvage
S-Lactoylglutathione M+H 380.1122 379.1049 |C13H21N3
F054 380.11626 C03451 11 08S 0.40164 [1.316 |Pyruvate metabolism
Pantetheine 4'- M+K 393.0657 358.0964 |C11H23N2 Coenzyme A
F022 393.08125 phosphate C01134 |M00120 40 O7PS 2.0558 [1.0397 |piosynthesis
Trehalose 6- M+H 423.0898 422.0825 |C12H23014 Other carbohydrate
F054 423.09437 phosphate C00689 11 P 0.42387 [-1.2383 metabolism
S- M+K 423.0847 384.1216  |[C14H20N6
IAdenosylhomocystei 058
ne C00021 23 Methionine degradation
Trehalose 6- M+H 423.0898 422.0825 |C12H23014 Other carbohydrate
MG1655 423.09528 phosphate C00689 13 P 0.26025 [1.942 |metabolism
S- M+K 423.0847 384.1216  |[C14H20N6
IAdenosylhomocystei 058
ne C00021 25 Methionine degradation
Trehalose 6- M+H 423.0898 422.0825 |C12H23014 Other carbohydrate
ELU39 1423.09606 [phosphate C00689 15 P 0.22658 [-2.1419 metabolism
S- M+K 423.0847 384.1216 |C14H20N6
/Adenosylhomocystei 05S
ne C00021 27 Methionine degradation
Folate M+H 442.147 441.1397 |C19H19N7
F054 442.14369 C00504 7 06 0.33397 [-1.5822 Folate metabolism
Trehalose 6- M+Na (423.0898 422.0825 |C12H23014 Other carbohydrate
MG1655 445.07635 phosphate C00689 10 P 0.31285 [1.6764 metabolism
dGDP M+NH4 445.0632 427.0294 |C10H15N5 Deoxyribonucleotide
C00361 |M00053 |29 010P2 biosynthesis
ADP M+NH4 445.0632 427.0294 |C10H15N5 Deoxyribonucleotide
C00008 |M00053 |20 010P2 biosynthesis
Trehalose 6- M+Na 1423.0898 422.0825 |C12H23014 Other carbohydrate
ELU39 1445.07657 phosphate C00689 11 P 0.35723 [1.4851 metabolism
dGDP M+NH4 (445.0632 427.0294  |C10H15N5 Deoxyribonucleotide
C00361 |M00053 |30 010P2 biosynthesis
ADP M+NH4 (445.0632 427.0294  |C10H15N5 Deoxyribonucleotide
C00008 |M00053 |30 010P2 biosynthesis
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MG1655

483.99196

CTP

C00063

MO00052

M+H

483.9918

482.9845

CI9H16N30
14P3

3.2484

1.6997

Pyrimidine
ribonucleotide
biosynthesis
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S5 — Mass Spectrometry Parameters

Parameters for C:\MassLynx\Heather.PRO\ACQUDB\esi_pos_sens_3min_600.EXP

Created by 4.2 SCN983

Lock Spray Configuration:

Tuning on Analyte

Temperature Correction:

Temperature Correction Disabled

Instrument Configuration:

Lteff 1800.0

Veff 7199.60
Resolution 10000

Min Points in Peak 2

Acquisition Device WatersADC
Acquisition Algorithm ADC Mode
ADC Trigger Threshold (V) 1.00
ADC Input Offset (V) -1.50
Average Single lon Intensity 19
ADC Amplitude Threshold 3

ADC Centroid Threshold -1
ADC lon Area Threshold 3

ADC lon Area Offset 10
ADC Pushes Per IMS Increment 1

EDC Delay Coefficient 1.4100
EDC Delay Offset 0.4000

Experimental Instrument Parameters

Instrument Parameter Filename
C:\MassLynx\Heather.PRO\ACQUDB\esi060423.IPR (MODIFIED)

Polarity ES+
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Capillary (kV)

Source Temperature (°C)
Sampling Cone

Source Offset

Source Gas Flow (mL/min)
Desolvation Temperature (°C)
Cone Gas Flow (L/Hr)
Desolvation Gas Flow (L/Hr)
Nebuliser Gas Flow (Bar)

LM Resolution

HM Resolution

Aperture 1

Pre-filter

lon Energy

Manual Trap Collision Energy

Trap Collision Energy

Manual Transfer Collision Energy

Transfer Collision Energy
Manual Gas Control
Trap Gas Flow (mL/min)
HeliumCellGasFlow

IMS Gas Flow (mL/min)
Detector

DetectorCache

Sample Infusion Flow Rate (uL/min)

Sample Flow State
Sample Fill Volume (pL)

Sample Reservoir

LockSpray Infusion Flow Rate (uL/min)

LockSpray Flow State
LockSpray Reservoir
LockSpray Capillary (kV)

2.4300
100
9.0000
28.0000
0.00
280
0.0
731.0
7.0
4.4
15.0
0.0
2.0
0.2
FALSE
4.0
FALSE
2.0
FALSE
2.00
180.00
90.00
3300
LC
250
Wash
10
Infusion
B
3.0
FALSE

Use Manual LockSpray Collision Energy
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Collision Energy
Acceleration1
Acceleration2
Aperture2
Transport1
Transport2
Steering

Tube Lens
Pusher

Pusher Offset

Puller

Pusher Cycle Time (us)

Pusher Width (ps)
Collector

Collector Pulse
Stopper

Stopper Pulse
Entrance

Static Offset

Puller Offset
Reflectron Grid (kV)
Flight Tube (kV)
Reflectron (kV)

Use Manual Trap DC
Trap DC Entrance
Trap DC Bias

Trap DC

Trap DC Exit

Use Manual IMS DC
IMS DC Entrance
Helium Cell DC
Helium Exit
IMSBias

4.0
70.0
200.0
40.0
70.0
70.0
-0.20
45
1900.0
-0.28
1370.0

Automatic

Automatic
60
10.0
10
20.0
62
180
0.00
1.471
10.00
3.780
FALSE
1.0
2.0
-2.0
0.0
FALSE
-20.0
1.0
-20.0
2.0
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IMS DC Exit

USe Manual Transfer DC
Transfer DC Entrance
Transfer DC Exit

Trap Manual Control
Trap Wave Velocity (m/s)
Trap Wave Height (V)
IMS Manual Control

IMS Wave Velocity (m/s)
IMS Wave Height (V)
Transfer Manual Control
Transfer Wave Velocity (m/s)
Transfer Wave Height (V)

Step Wave 1 In Manual Control

Enable Reverse Operation
Step Wave 1 In Velocity (m/s)
Step Wave 1 In Height

Step Wave 1 Out Manual Control
Step Wave 1 Out Velocity (m/s)

Step Wave 1 Out Height
Step Wave 2 Manual Control
Step Wave 2 Velocity (m/s)
Step Wave 2 Height

Use Manual Step Wave DC
Step Wave TransferOffset
Step Wave DiffAperture1
Step Wave DiffAperture?2
Use Automatic RF Settings
StepWave1RFOffset
StepWave2RFOffset

Target Enhancement Enabled
Target Enhancement Mode

Target Enhancement Mass

20.0

15.0

300

OFF

0.2

OFF

25.0

FALSE
5.0

OFF

0.5

300
0.0
OFF
247

OFF

300.0
15.0

OFF

300.0
15.0

OFF

300.0
1.0

OFF

3.0

-0.0

TRUE

300.0

350.0

FALSE
EDC
785.0
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Target Enhancement Trap Height (V)
Target Enhancement Extract Height (V)

4.0
15.0

Mobility Trapping Manual Release Enabled  FALSE

Mobility Trapping Release Time (us)

Mobility Trap Height (V)
Mobility Extract Height (V)
Trag Gate LUT table enabled

Triwave Trap Gate LookUp Table

Using Drift Time Trimming
Drift Time Bins

Using Mobility Delay after Trap Release

IMS Wave Delay (us)
Variable Wave Height Enabled
Wave Height Ramp Type
Wave Height Start (V)

Wave Height End (V)

Wave Height Using Full IMS
Wave Height Ramp (%)
Wave Height Look Up Table
Variable Wave Velocity Enabled
Wave Velocity Ramp Type
Wave Velocity Start (m/s)
Wave Velocity End (m/s)
Wave Velocity Using Full IMS
Wave Velocity Ramp (%)
Wave Velocity Look Up Table
Backing

Source

Sample Plate

Trap

Helium Cell

IMS

Transfer

500
15.0
0.0

FALSE

FALSE
0
TRUE
1000
FALSE
Linear
10.0
40.0
TRUE
100.0

FALSE

Linear
1000.0

300.0

TRUE

100.0

2.75e0

6.85e-3

1.24e3
8.83e-3
1.00e-4
9.90e-5
7.85e-3
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TOF

IMSRFOffset
IMSMobilityRFOffset
TrapRFOffset

Use Automatic RF Settings
AutoStepWave 1RFOffset
AutoStepWave2RFOffset
TransferRFOffset

MS Profile Type
MSProfileMass1
MSProfileDwellTime1
MSProfileRampTime1
MSProfileMass2
MSProfileDwellTime2
MSProfileRampTime2
MSProfileMass3
Pusherinterval
PusherOffset
LockMassValidSigma

Acquisition mass range
Start mass
End mass
Calibration mass range
Start mass

End mass

4.52e-7
300
250
300
TRUE
300
300
350
Auto P
100
20
20
300
20
40
500
39.000000
0.250000
5

50.000

600.000

0.000
0.000

Experiment Reference Compound Name: N/A

Function Parameters - Function 1 - TOF MS FUNCTION

Scan Time (sec)
Interscan Time (sec)
Start Mass

1.000
0.014
50.0
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End Mass 600.0

Start Time (mins) 0.00

End Time (mins) 3.00
Data Format Continuum
Analyser Sensitivity Mode
ADC Sample Frequency (GHz) 3.0

ADC Pusher Frequency (us) 39.0
ADC Pusher Width (us) 1.00

Use Tune Page Cone Voltage YES
Using Auto Trap Collision Energy (eV) 4.000000
Using Auto Transfer Collision Energy (eV) 2.000000
Sensitivity Normal
Dynamic Range Normal
Save Collapsed Retention Time Data No

Use Rule File Filtering No
FragmentationMode CID
Calibration Dynamic 2
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