
Machine Learning Aided Finite
Element Non-uniform Mesh

Generation
Zheyan Zhang

Submitted in accordance with the requirements for the degree

of PhD. Computer Science

The University of Leeds

Faculty of Engineering and Physical Sciences

School of Computing

December 2023

Intellectual Property

The candidate confirms that the work submitted is his/her own and that appropriate credit has

been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material and that no

quotation from the thesis may be published without proper acknowledgement.

Some parts of the work in this thesis has been published in the following articles:

Zhang, Zheyan, Jimack, Peter K, and Wang, He (2021). “MeshingNet3D: Efficient generation

of adapted tetrahedral meshes for computational mechanics”. In: Advances in Engineering

Software 157, p. 103021.

Zhang, Zheyan, Wang, Yongxing, Jimack, Peter K, and Wang, He (2020). “MeshingNet: A new

mesh generation method based on deep learning”. In: Computational Science–ICCS 2020: 20th

International Conference, Amsterdam, The Netherlands, June 3–5, 2020, Proceedings, Part III

20. Springer, pp. 186–198

The above publication is primarily the work of the candidate.

© 2023 The University of Leeds, Zheyan Zhang

Signed

i

Acknowledgements

I would like to thank my supervisors Dr. He Wang and Prof. Peter Jimack for their support

during my PhD life. I thank Dr. Wang for give me direct methodology support on my project;

thanks also for his encouragement, suggestions and guidance, so that I can continuously do my

research; I thank Prof. Jimack for attendance my weekly meeting and the relevant conferences;

I appreciate their continuous support - the thesis is finished under their help.

I would also thank my parents for the financial and moral support. Without their support, I

could not have the courage to start and finish my PhD.

ii

Abstract

We present novel deep learning methods for guiding mesh generation during finite element

simulation. The finite element (FE) method is a general method for numerically solving partial

differential equations. Mesh generation is an essential and critical pre-process for the finite

element method. A high quality mesh ensures low time and memory cost while preserving

high accuracy. However, traditional methods for guiding non-uniform mesh generation are

time consuming. The state of the art requires multiple iterations of mesh generation, FE

solution, and a posteriori error estimation. We propose to use deep neural networks to replace

a posteriori error estimation to guide mesh refinement with reduced iterations. The training

data is generated using the conventional mesh refinement methods. After supervised learning,

the neural network predicts non-uniform element size distribution instantly. What we achieve

is generating a high quality non-uniform mesh with little time cost.

In this thesis, we present an introduction of finite element mesh refinement and deep learn-

ing, then a review of existing deep learning methods for solving partial differential equations

and generating meshes. Then we introduce our research for finite element mesh generation in

several categories of PDEs, including steady 2D, 3D and transient differential equations. The

proposed methods have been implemented for Poisson’s equation, linear elasticity problems and

the Navier-Stokes equations of fluid dynamics. In these test problems, the use of deep learning

significantly reduces the time cost and produces results with accuracy close to the traditional

methods. The potential and risks of the proposed methods have been discussed. The thesis

ends with a conclusion and a presentation of topics that will inspire further investigation.

iii

Contents

1 Introduction 1

2 Background 3

2.1 Finite element analysis . 3

2.1.1 Three steps of FEM . 3

2.1.2 Formulation of FE equations by Galerkin method 5

2.1.3 Formulation of FE equations by variational method 8

2.1.4 FEM error estimation . 9

2.1.5 Mesh generation . 12

2.2 Deep learning . 13

2.2.1 Artificial neural networks . 15

2.2.2 Convolutional neural networks . 17

2.2.3 Graph convolutional networks . 18

2.3 Machine learning for PDEs . 20

2.3.1 Machine learning based PDE solver . 20

2.3.2 Machine learning aided PDE solver . 22

2.4 Machine learning for mesh processing . 22

2.4.1 Machine learning for mesh generation . 22

2.4.2 Machine learning for mesh adaptation . 23

2.5 Mean value coordinates . 24

2.6 Summary . 26

3 Mesh adaptation for 2D static PDEs 27

3.1 Introduction . 27

iv

CONTENTS CONTENTS

3.2 Proposed methods . 30

3.2.1 Overview . 30

3.2.2 Component Details . 32

3.3 Validation results . 34

3.3.1 2D Poisson’s equation . 34

3.3.2 2D Linear elasticity . 35

3.4 Discussion . 38

4 Mesh for 3D elasticity 41

4.1 Introduction . 41

4.1.1 Non-uniform mesh generation . 42

4.1.2 Mean value coordinates . 44

4.2 Methodology . 44

4.2.1 Theory . 44

4.2.2 Software and evaluation . 45

4.2.3 Data generation . 46

4.2.4 Training and using the neural network . 48

4.3 Computational experiments . 49

4.3.1 Clamped beam . 49

4.3.2 Laminar material . 52

4.3.3 Hex-bolt with a hole . 54

4.3.4 Irregular polyhedron . 56

4.3.5 Discussion . 59

5 Mesh for transient PDEs 63

5.1 Introduction . 63

5.2 Methodology . 64

5.2.1 Theory . 65

5.2.2 Overview . 67

5.2.3 Architecture of the software . 69

5.2.4 Data generation . 70

5.2.5 Normalisation . 71

5.2.6 Training and applying the neural networks 72

v

CONTENTS CONTENTS

5.2.7 Evaluation . 73

5.3 Experiments . 73

5.3.1 Flow past by cylinders . 74

5.3.2 Two phase flow . 77

5.3.3 Compressible flow . 79

5.4 Discussion . 81

6 Conclusion and future work 94

6.1 Conclusion . 94

6.2 Future work . 95

References 96

vi

List of Figures

2.1 An example of convolution, top left is the input, top right is the kernel and

bottom is the output . 17

2.2 An undirected graph with its adjacency matrix, if a vertex connects with another

vertex, the corresponding entry of the adjacency is 1. When a vertex connects

with itself, the corresponding entry is 2. The adjacency matrix of an undirected

graph is symmetric. 18

2.3 Overview of graph convolution networks (Zhou et al. 2020), Graph neural net-

works (GNNs) are neural models that capture the dependence of graphs via

message passing between the nodes of graphs. Convolution is the mostly used

operator for GNN models. The main idea of convolution operators is to general-

ize convolutions from other domain to the graph domain. The two categories of

graph convolution are spectral and spatial approaches. 19

2.4 Star-shaped polygon, we care the MVC of point v0. 25

3.1 A high-level diagram of MeshingNet workflow showing the ANN alongside the

training regime (left) and testing regime (right). Grey, orange and blue arrows

represent data generation, training and testing processes. For each problem we

only use one fine mesh and one coarse mesh. 31

3.2 Our two residual networks, illustrated with 27 input parameters. ResNet1 is

a modification of the FCN with the output of the first hidden layer added to

the output of the last hidden layer. ResNet2 has all hidden layers of the same

dimension and the output of the first hidden layer is added to outputs of the

three front hidden layers. 34

vii

LIST OF FIGURES LIST OF FIGURES

3.3 For Poisson’s equation: the L1 error distribution for the LAS (left); the 4000

elements mesh generated by Triangle under the guidance of MeshingNet (middle);

and the uniform mesh with 4000 elements generated by Triangle (right). 35

3.4 For Poission’s problem, L1 error distribution on uniform meshes (4000 elements)

and MeshingNet meshes (4000 elements). Each bar shows the proportion of test

data meshes whose FE solution error is in the range of the bar: the uniform

meshes give FE errors between 0.0015 to 0.0025, whilst the MeshingNet meshes

give FE errors between 0.0007 and 0.0015. 36

3.5 L2 training loss on elasticity training dataset during 60 training epochs. Three

curves representing FCN (blue), ResNet1 (red) and ResNet2 (green) converge

individually. 37

3.6 Potential energy comparison of solving 2D elasticity test problems on 4000 el-

ement meshes: uniform element size (left); MeshingNet (using FCN) meshes

(centre); and ZZ refined meshes (right). We use the HAS energy as our baseline:

the MeshingNet mesh solutions have energies that are significantly closer to the

HAS energies than the ZZ mesh solutions and uniform mesh solutions (since a

greater proportion of results are distributed near zero). The rightmost bar rep-

resents the proportion of all tests where the energy difference is no smaller than

0.6. 38

3.7 FE error (top) relative to HAS on coarse uniform mesh, non-uniform mesh guided

by MeshingNet (middle) and non-uniform mesh refined by ZZ (bottom). The left

geometry is an octagon and other two are heptagons (defined by placing their

final vertex at the centre of edge 7). 39

4.1 Illustration of the training data for MeshingNet3D : each individual problem is

defined by the geometry G, the PDE parameters M and the boundary condition

parametersB (not shown here). However for each such problem there are multiple

sample points, X, in the domain, with the corresponding local mesh size S specified. 47

4.2 The geometry and boundary conditions for the Clamped beam, with constant

cross section along the z-axis. The gravity is uniformly distributed over the

volume. The surfaces bounded by four vertices with blue triangles are clamped. . 50

4.3 Training and validation loss of the clamped beam experiment 51

viii

LIST OF FIGURES LIST OF FIGURES

4.4 For the Clamped beam, FE energies of neural network (NN) generated meshes

versus uniform mesh FE energies and ground truth (GT) energies. The height

of each bar represents the proportion of experiment results in the energy range

shown on the x-axis (as a percentage of the ground truth energy). 51

4.5 For the Clamped beam, ground truth meshes (top) and NN-guided meshes (bot-

tom) for two test cases. 52

4.6 The boundary conditions and loads of the laminar material where the height of

the interface is random . 53

4.7 Training and validation loss of the laminar material experiment 53

4.8 For the Laminar material, FE energies of neural network (NN) generated meshes

versus uniform mesh FE energies and ground truth (GT) energies. The height

of each bar represents the proportion of experiment results in the energy range

shown on the x-axis (as a percentage of the ground truth energy). 54

4.9 (a)(c) and (b)(d) are two problems in the laminar material experiments. (a)

and (b) are ground truth meshes and (c) and (d) are non-uniform meshes guided

by the neural network. A comparison of (b) and (d) shows NN does not refines

well at the interface between two laminars. 55

4.10 The boundary conditions and loads of the hex−bolt (left) and irregular polyhedron

(right). On hex− bolt, eight surfaces of the hole are clamped, linear distributed

pressure is applied on top and bottom surfaces. 56

4.11 Training and validation loss of the hex-bolt with a hole experiment 56

4.12 For hex−bolt with a hole, FE energies of neural network (NN) generated meshes

versus uniform mesh FE energies and ground truth (GT) energies. The height

of each bar represents the proportion of experiment results in the energy range

shown on the x-axis (as a percentage of the ground truth energy). 57

4.13 Hex-bolt experiment, ground truth meshes (top) and NN meshes (bottom) , the

left and right are two problems that only have different geometries 58

4.14 Training and validation loss of the irregular experiment 59

4.15 For irregular polyhedron, FE energies of neural network (NN) generated meshes

versus uniform mesh FE energies and ground truth (GT) energies. The height

of each bar represents the proportion of experiment results in the energy range

shown on the x-axis (as a percentage of the ground truth energy). 59

ix

LIST OF FIGURES LIST OF FIGURES

4.16 A ground truth mesh (a, c and e) and corresponding NN mesh (b, d and f)

selected from 500 testing problems, they are in front (a and b), right (c and d)

and bottom (e and f) views. 62

5.1 A comparison of conventional FE with mesh adaptation process and our proposed

parallel framework. In one these fictitious fluid simulations, the conventional

method takes 4.1 seconds for a time step while the proposed parallel framework

only takes 2.1 seconds. GPU is not good at all the tasks (especially when working

with unstructured meshes) thus is only used for running the NN (inference). . . . 67

5.2 The original set up of the simulation with adaptive mesh 69

5.3 The architecture of our proposed model . 69

5.4 The geometry G1 (top) and G2 (bottom) . 75

5.5 The evolution vertical velocity of the flow past cylinders in time steps 2, 100, 200

and 300. 83

5.6 The L1 error of velocity per area during 300 time steps of simulation, all the

meshes are non-uniform and time dependent. The reference solution is from

“ground truth” mesh simulation . 84

5.7 The L1 error of velocity per area during 300 time steps of simulation, all the

meshes are non-uniform and time dependent. The reference solution is from

ultra fine “reference” mesh simulation. 84

5.8 From top to bottom are the background mesh, ground truth mesh, baseline mesh,

NN3 mesh, NN5 mesh and reference mesh. The reference mesh has around 440000

elements and other meshes have around 130000 elements. 85

5.9 The evolution of the sloping two phase flow in time steps 2, 10, 20, 30, 40, 50,

60, 70, 80, 90 and 100. The yellow region is filled with low density flow and the

red region is filled with high density flow. 86

5.10 The L1 error of density per area during 100 time steps of simulation, all the

meshes are non-uniform and time dependent. Initial fluid interface is y=0.25+0.3x. 87

5.11 The NN mesh of time step 10, 20, 40, 60, 80, 100,initial interface is y=0.25+0.6x. 88

5.12 The L1 error of density per area during 100 time steps of simulation, all the

meshes are non-uniform and time dependent. Initial fluid interface is y=0.1+0.375x. 88

x

LIST OF FIGURES LIST OF FIGURES

5.13 From top to bottom are the NN mesh at step 15, NN mesh at step 25 and ground

truth mesh at step 24. 89

5.14 Top is the NN mesh at step 23 and bottom is the NN mesh at step 24. The

mesh near the interface is not very anisotropic. This is perhaps because at the

interface the mesh is isotropic and other region in refined by smoothness. 90

5.15 The geometry of the compressible flow experiment 91

5.16 The evolution of density of the flow in time steps 0, 25, 50, 100, 150 and 200. . . 91

5.17 The L1 error of density per area during 200 time steps of simulation, all the

meshes are non-uniform and time dependent. 92

5.18 The L1 error of density per area during 200 time steps of simulation, all the

meshes are non-uniform and time dependent. The reference solution is from

“ground truth” mesh simulation . 92

5.19 From left top to bottom are the background mesh, ground truth mesh, baseline

mesh, NN mesh and reference mesh. We refine the mesh according to the Hessian

of the density. 93

xi

List of Tables

4.1 Comparison of 5 different fully connected NNs based upon normalised average

energies of the finite element solutions. NN3 gives the lowest average energy and

therefore provides the best mean performance. 60

5.1 A set of 6 training problems with different geometry and inlet velocity. They are

used to train 6 NNs from NN1 to NN6. 76

5.2 A set of 5 training problems with different initial condition. 78

xii

Chapter 1

Introduction

Deep learning has made great successes in the last decade. The widely known applications of

deep learning include image and natural language processing. Recently, people have begun to

investigate ways of using supervised and unsupervised deep learning to solve partial differential

equations (PDEs). Before giving the general introduction to the rest of the thesis, we need to

do an introduction of the general problem. We describe an investigation on machine learning

of PDE solvers in chapter 2 and list the progress and limitations of previous work. We ob-

serve researchers have difficulties in producing techniques that are as reliably accurate as the

conventional methods such as the finite element (FE) method. Hence we decided to look at

ways of using machine learning in combination with FE so as to maintain the reliability but

improve the efficiency. We turn our interest into using deep learning to accelerate finite element

mesh generation. Non-uniform mesh generation is critical where good mesh size distribution

promotes computing efficiency. However it is tolerant of some errors where mesh size distribu-

tion does not have to be very precise, which fits the current deep learning techniques where

deep learning usually suffers output accuracy problem. We reviewed previous attempts of using

machine learning techniques for mesh adaptation. We aim to use deep learning to guide mesh

adaptation without prior knowledge about where the mesh should be refined.

In the work reported in chapter 3 and chapter 4 we propose deep neural networks models,

MeshingNet and MeshingNet3D, to learn from the a posteriori error estimate on an initial

coarse uniform mesh and predict non-uniform mesh density for refinement, without the need for

solving an FE system and then computing the a posteriori error estimate. MeshingNet is trained

using an accurate error estimation strategy which can be expensive but is only computed offline.

1

Chapter 1. Introduction

Hence, the mesh generation process itself is extremely fast since it is able to make immediate

use of standard, highly-tuned, software to produce a high quality mesh at the first attempt

(at similiar cost to generating a uniform mesh with that number of elements). Rather than

using deep learning to predict PDE solutions, we only aim to use deep learning to predict mesh

size distribution, because we can provide more reliable predictions in this way, based upon the

observation that a greater variation in the quality of predictions can be tolerated for the mesh

size than for the solution itself. We further include research on the transient PDEs, specifically

fluid dynamic problems in chapter 5. We run accurate simulation to simulate fluids flow and

store the data on a relatively coarse background mesh. Using the sequences data to train a

graph convolution neural network by supervised learning, the network is able to predict a new

mesh density distribution and guide adaptive mesh refinement in parallel with the FE solution

and error estimation at the current time step. In this way we accelerate the overall simulation

time.

The remainder of this thesis is structured as follows. In Chapter 2, we introduce the background

knowledge of the techniques used in this thesis, such as finite element method. In Chapter 3

and Chapter 4 we introduce MeshingNet and MeshingNet3d to demonstrate how to use neural

networks to guide mesh generation with mean value coordinates for static problems. Finally, in

Chapter 5 we introduce the work that investigates generating the mesh for the next time step

in parallel with the FE solution and error estimation at the current time step in transient fluid

flow problems. In chapter 6 we conclude the above work and list several future works.

2

Chapter 2

Background

This chapter introduces the techniques that closely link this project such as finite element

analysis and deep learning. Then we review the literature on machine learning based mesh

processing.

2.1 Finite element analysis

Finite element (FE) analysis is a numerical approach to answer scientific questions and guide

engineering practice with partial differential equation solving or functional minimisation back-

grounds. The ideas of FE dates back to 1940s (Liu et al. 2022). FE basically uses assembly of

simple geometries such as triangles to approximate field equations. The simple geometries are

called elements where each element uses a low degree polynomial to approximate the solution.

When the size of elements becomes infinitesimally small, the approximated solution converges

to the analytical (exact) solution. On the other hand when finite elements are applied, the

error of numerical solution is tolerable by refining the meshes, which divide the domain to finite

elements. In this section, we introduce how FEM works, classical FEM applications and the

challenges remaining.

2.1.1 Three steps of FEM

Typical FEM works in 3 steps, pre-processing, solving the equation system and post-processing.

The first step of pre-processing is mesh generation, which divides the region into finite elements.

A mesh file usually contains coordinates of nodal points and connectivity of nodes. Because finite

3

2.1. Finite element analysis Chapter 2. Background

element models contain very large number of degrees of freedom, it is impossible to create meshes

fully manually. Structured meshes are typically composed of quadrilateral elements in 2D and

hexahedral elements in 3D. The advantage of such a mesh is that the points of an elemental cell

can be easily addressed by a double of indices (i, j) in two dimensions or a triple of indices (i,

j, k) in three dimensions. Generation of such meshes generally requires gross partitioning and

mapping blocks to simple geometries. Structured meshes require significantly less memory and

are more efficient (Bern and Plassmann 2000). Generating structured meshes on complicated

geometry is very difficult while unstructured meshes can be successfully applied. Triangle

elements in 2D and tetrahedral elements in 3D offers flexibility over complex domain geometry.

One of the important methods is Delaunay triangulation (Cheng et al. 2012) which allows

users to define mesh density distribution in arbitrary domains. After the mesh is generated,

interpolation functions should be selected. Usually polynomial functions are selected. Then the

matrix equation for the elements should be established. The nodal values and other parameters

are linked by the variational approach or weighted residual approach. The last step of pre-

processing is to assemble the element equations to global matrix equations. Boundary conditions

are imposed at this step.

The second step of FEM is solving the global equation. The equations are linear when the

PDE is linear. If the PDE is nonlinear the finite element system is a set of nonlinear algebraic

equations. Normally this is solved by a Newton’s method or some variant of it. They transfer

the non-linear problem to a sequence of linear problems. Usually the FE system is sparse where

the diagonals are generally nonzero and most elements of the matrices are zero.

One way to solve the sparse algebraic equations are the iterative methods. For large sparse

problems iterative methods are preferable because of less computing time and memory require-

ments. The conjugate gradient method (Golub and Van Loan 2013) is a successful iterative

method. When use conjugate gradient method to solve a linear system:

Ax = b (2.1)

An improved convergence rate can often be achieved by replacing the system by the precondi-

4

Chapter 2. Background 2.1. Finite element analysis

tioned system (Kaasschieter 1988):

M−1Ax = M−1b (2.2)

M is a symmetric positive definite matrix and the matrix M−1A has a more ‘favourable’

spectrum of eigenvalues than A. The conjugate gradient method is only suitable for symmetric

positive-definite and semi-definite systems. Most of the thesis (except for transient problems

in Chapter 5) we consider linear self-adjoint PDE systems and therefore the finite element

equations are symmetric positive-definite. For non-symmetric problems the iterative solvers

generally require more iterations to finish. Such solvers include GMRES (Saad and Schultz

1986) and BiCGstab (Sleijpen and Fokkema 1993).

Another way to solve the algebraic equations are the direct methods which are usually used for

problems with moderate size. Lower Diagonal Upper (LDU) methods factor a square matrix

into a product of a lower triangular matrix (L), a diagonal matrix (D) and a upper triangular

matrix (U). Solution of LDU method consists three stages: factorisation, farward solution

and back substitution (Nikishkov 2004). Other direct solvers include Cholesky (Higham 2009)

factorisation and MUMPS (Amestoy et al. 2000) parallel solver. The computational complexity

of most solvers is worse than linear. In some special cases, the computational work grows

linearly with the degrees of freedom (Notay 2010).

The last step of FEM is post-processing. The values of certain functions are obtained from

the solution. In many cases additional processing may be required. In elasticity problems

for example, strain and stress are critical for the safety of mechanical structures which can be

computed from the displacement field (which may be the actual solution). Usually, visualisation

of solutions are extremely helpful for the users of FEM. The visualisation are provided either

by FE software (Hecht 2012) or independent post-processing software (Ahrens et al. 2005).

2.1.2 Formulation of FE equations by Galerkin method

There are two ways of formulation of FE equations, direct solving variational method such as

Ritz method and weighted residual method such as Galerkin method. This subsection uses 1D

Poisson equation to introduce the formulation with linear elements by Galerkin method and

next subsection variational method (Nikishkov 2004). Suppose we solve equation below with

5

2.1. Finite element analysis Chapter 2. Background

two linear elements by Galerkin method:

a
d2u

dx2
+ b = 0, 0 ≤ x ≤ 2L (2.3)

with boundary conditions

u|x=0 = 0,

a
du

dx
|x=2L = R. (2.4)

On the left Dirichlet boundary condition is applied and on the right Neumann boundary con-

dition is applied. Each element has two nodes and we can approximate the function with nodal

values and shape function:

u = N1u1 +N2u2 (2.5)

Where u1 is the left nodal value and u2 is the right nodal value. When x1 and x2 are the left

and right nodal coordinates, the shape function is constructed:

N1 = 1− x− x1
x2 − x1

,

N2 =
x− x1
x2 − x1

. (2.6)

When u is approximated by the linear combination of the nodal values, the equation can be

expressed as:

a
d2

dx2
[N]{u}+ b = ψ (2.7)

[N] = [N1 N2] (2.8)

{u} = {u1 u2} (2.9)

where ψ is the residual representing the difference of the exact and approximated value in the

element. Galerkin method ensures the integration of the nonzero weighted residual over the

element to be zero. In the integration, the residual is weighted by the shape function (we still

6

Chapter 2. Background 2.1. Finite element analysis

work on a single element).

∫ x2

x1

[N]Ta
d2

dx2
[N]{u}dx+

∫ x2

x1

[N]T bdx = 0 (2.10)

Integrate by parts the discrete form becomes:

∫ x2

x1

[
dN

dx
]Ta[

dN

dx
]dx{u} −

∫ x2

x1

[N]T bdx− [N]Ta
du

dx
|x=x2 + [N]Ta

du

dx
|x=x1 = 0 (2.11)

If we work on the right element adu
dx |x=x2 is obtained from the Neumann boundary condition.

In solid mechanics the relation is presented as:

[k]{u} = {f}

[k] =

∫ x2

x1

[
dN

dx
]Ta[

dN

dx
]dx

{f} =

∫ x2

x1

[N]T bdx+ [N]Ta
du

dx
|x=x2 − [N]Ta

du

dx
|x=x1 (2.12)

Where [k] is stiffness matrix and {f} is load vector. For two elements:

[k1] = [k2] =
a

L

 1 −1

−1 1

{f1} =

bL

2

1

1

 {f2} =
bL

2

1

1

+

0

R

 (2.13)

The assembled global equation system is obtained by above two separate elements and their

equations:

a

L

1 −1 0

−1 2 −1

0 −1 1

u1

u2

u3

 =
bL

2

1

2

1

+

0

0

R

 (2.14)

7

2.1. Finite element analysis Chapter 2. Background

We apply the Dirichlet boundary condition and change the first row of the system:

a

L

1 0 0

−1 2 −1

0 −1 1

u1

u2

u3

 =
bL

2

0

2

1

+

0

0

R

 (2.15)

An alternative is to eliminate u1 from the system entirely.

2.1.3 Formulation of FE equations by variational method

In this subsection we derive the FE formulation of variational method (Zienkiewicz, Taylor,

et al. 2005). We consider the physical meaning of this problem is tension of one dimensional bar

with distributed load b and concentrated load R at x2. The Young’s Modulus is E and cross

section area is A. a = EA is the resistance to deformation. This linear elasticity problem can

be regarded as minimisation of the potential energy Π:

Π =

∫ 2L

0

1

2
a(
du

dx
)2dx−

∫ 2L

0
budx−Ru|x=2L (2.16)

The condition for the minimisation of the potential energy is:

∂Π

∂ui
= 0, i = 1, 2, 3 (2.17)

Where ui is the nodal displacement. Using shape function and two elements, the potential

energy of the right element is:

Π =

∫ x2

x1

1

2
a{u}T [dN

dx
]T [
dN

dx
]{u}dx−

∫ x2

x1

{u}T [N]T bdx− {u}T

0

R

 (2.18)

Where [dNdx] and [N] is the same as the ones in the Galerkin method. The finite element equation

of this element is:

∫ x2

x1

1

2
a[
dN

dx
]T [
dN

dx
]{u}dx−

∫ x2

x1

−[N]T bdx−

0

R

 = 0 (2.19)

This is the same as equation 2.11, and the assembled global system is the same as the system

of Galerkin method.

8

Chapter 2. Background 2.1. Finite element analysis

2.1.4 FEM error estimation

Finite element method as a numerical method involves several sources of numerical errors. This

thesis focuses on the discretisation error which is because of the limitation of the finite element

space to approximate the solution. The analysis of such error either gives the asymptotic

information or can be used to steer mesh refinement(spaces h-version adaptivity) or increasing

the order of the element polynomial degree chosen(spaces p-version adaptivity) (De SR Gago

et al. 1983). The former error is called a priori error and the latter is called a posteriori error

where the solution of FE analysis is employed. In this subsection we introduce a priori error

and the a posteriori error analysis which is used for the adaptive mesh generation in this thesis.

Consider a boundary value problem with two dimensional Poisson’s equation as model problem:

−∆u = f on Ω;

u = 0 on ΓD;

n · ∇u = g on ΓN ; (2.20)

where Γ = ΓD ∪ΓN and n is the unit vector outward to Γ. The variation form of such problem

could be:

a(u, v) = l(v) ∀v ∈ V

a(u, v) =

∫
Ω
∇u · ∇vdΩ

l(v) =

∫
Ω
fvdΩ+

∫
ΓN

gvds (2.21)

Where V is the space of all functions that are zero on the Dirchlet boundary and whose first

derivatives are square integrable over Ω, The form a(u, v) is assumed to be a bilinear form on

V (Ω)× V (Ω) and the linear functional l(v) is an element of the dual space V ′(Ω). The energy

norm is defined:

||v||E =
√
a(v, v) (2.22)

The existence and uniqueness of the solution is provided by the Lax-Milgram theorem (Ra-

9

2.1. Finite element analysis Chapter 2. Background

maswamy 1980):

|a(v, w)| ≤M ||v||V ||w||V ∀v, w ∈ V × V

a(v, v) ≥ α||v||2V (2.23)

Above are the conditions that guarantee existence of a unique solution. M and α are positive

constants independent of v and w. Solving the finite element find the solution uh ∈ Vh where

Vh is a subspace of V , the FE equation is:

a(uh, vh) = l(vh) ∀vh ∈ Vh (2.24)

The finite element error is eh = u− uh, then define the residual:

a(eh, v) = l(v)− a(uh, v) ∀v ∈ V (2.25)

Because of Galerkin orthogonality (Angermann 2002), the residual is 0 when the test function

is in the FE space.

a(eh, vh) = 0 (2.26)

A priori error does not offer the exact error of a given mesh at engineering practice but instead

as already outlined, it gives the general information of asymptotic behaviour (Grätsch and

Bathe 2005).

∥u− uh∥E = min∥u− vh∥E ∀v ∈ Vh (2.27)

It states that for error in the energy norm, the FE solution uh is the closest to the exact solution

u than any other solution vh in the FE space Vh.

Céa’s lemma (Chen and Křıžek 2006) asserts:

||u− uh||V ≤ m

α
inf

vh∈Vh

||u− vh||V (2.28)

V is a real Hilbert space with the norm || · ||. The error of FE solution in V-norm is of the same

10

Chapter 2. Background 2.1. Finite element analysis

order of the interpolation error. Further, errors measured in the H1 and L2 norm:

||u− uh||H1(Ω) ≤ chp||u||Hp+1(Ω)

||u− uh||L2(Ω) ≤ chp+1||u||Hp+1(Ω) (2.29)

||u||L2 = (
∫
u2dx)1/2 and ||u||Hp ==

∑p
i=0 ||Diu||L2. The finite element solution converges

in these norms in O(hp) and O(hp+1), where h denotes the element size and p denotes the

polynomial order.

Even though a priori error estimate provides the information of convergence, it does not point

out where in the domain the error is higher. It also applies only for uniform mesh refinement (so

that the mesh size is decreased at the same rate throughout the domain). To help the decision

of adaptive mesh refinement, we consider the a posteriori error. The early a posteriori errors

are for the energy norm (Babuška and Rheinboldt 1978) and later goal oriented errors (Oden

and Prudhomme 2001) are developed. Goal oriented methods are used when the energy norms

are not useful or when specific quantities are of interest.

In the energy norm methods, explicit error estimators directly use the data from finite element

estimation whereas implicit error estimators solve auxiliary problems. It is possible to quantify

almost the true error if we have the solution from an extremely fine mesh. However such solution

is too expensive in both memory and time costs. Solution difference estimators compare the

difference of two solutions but without requiring the fine mesh to be superfine. The difference

of solution from N elements and 2N elements mesh can be useful error indicator (Kita and

Kamiya 2001). Another explicit error estimator is based on the interior element residuals and

jumps (discontinuity of normal flux) at the element boundaries (Babuška and Rheinboldt 1978,

Lazarov et al. 2009). Where for the model problem, the interior element residual is

R = f +∆uh (2.30)

This does not work for piecewise linear finite elements as the residual is always equal to f in

this case.

Implicit error estimators (Bank and Weiser 1985, Prudhomme et al. 2004) approximate the

actual error by solving auxiliary problems. The problem is solved either on a single element

(element residual method) or on a small subdomain of elements (subdomain residual method)

11

2.1. Finite element analysis Chapter 2. Background

(Ainsworth and Oden 1997). Another type of energy norm error estimator other than explicit

and implicit estimators is recovery error estimator (Zhang and Naga 2005, Carstensen and

Funken 2001). It uses the fact that gradient of FE solution is generally not continuous on

inter-element edges. Then a post-processed (smoothed) gradient should be closer to the real

gradient than the original gradient from FE solution. The local error eh is estimated as the

difference of the recovered (M [uh]) and the original gradient (∇uh):

(eh)
2 = (M [uh]−∇uh)2 (2.31)

A widely used recovery estimator in the elasticity problems is called ZZ error estimator which

is based on super-convergence property (Zienkiewicz and Zhu 1992). For triangle elements, the

smoothed nodal gradients are calculated as the average of the surrounding elements’, which

contributes to the recovered elemental gradients. In this thesis we mainly use recovery-based

error estimates however the methods that we present are not restricted to this family of methods.

2.1.5 Mesh generation

Mesh generation here means the process of creating a mesh to be used for FEM. This process

is time consuming and error prone (Zienkiewicz, Taylor, et al. 2005). It is not surprising that

current engineering practices can use meshes with up to tens of billions nodes (Kato et al. 2020).

Hence, automatic mesh generation has been an active topic for decades (Ho-Le 1988, Baker 2005,

Owen 1998). Structured meshes usually present as a combination of quadrilateral in 2D and

hexahedral in 3D. Generating such meshes generally takes two steps: divide the geometry into

simple subregions such as blocks, map the subregions onto regular grids. The difficulty lies on

the first step where dividing the geometry is the manual work. Unstructured meshes usually use

triangle elements in 2D and tetrahedral elements in 3D. Generating such meshes most commonly

uses Delaunay triangulation (Caendish et al. 1985) or the advancing front method (Lo 1985).

A special type of unstructured mesh generator is hierarchical tree(Yerry and Shephard 1984) in

which quadrilateral and hexahedral elements (Ito et al. 2009) can be used.

The general concept of mesh generation also involves adaptive mesh refinement and mesh qual-

ity (Parthasarathy et al. 1994) enhancement. Adaptive mesh refinement is the technique that

modify the mesh according to the previous result. The refined mesh aims for either permissible

error with the least cost or best accuracy under prescribed cost. Note that even if mesh genera-

12

Chapter 2. Background 2.2. Deep learning

tion is automatic, the cost of memory and time is significant. The uniform mesh is generally far

from optimal when the error is non-uniformly distributed. An example is stress concentration in

elasticity problems, where the highest stress and error are usually on the location where load or

constraints are applied. Even though a non-uniform mesh can be designed manually by expert

knowledge, for a complex problem (such as multi-physics) and time dependent problems (such

as fluid dynamics), automatic refinement techniques are more useful. There are three types of

refinement:

1. h refinement: Keep the element type, adjust the element size.

2. p refinement: keep the original element size, increase the order of polynomial in elements.

3. r refinement: Keep the original nodes number, change the position of nodes (W. Huang

et al. 1994).

There are several ways to implement h-refinement such as subdivision and re-meshing. Complete

mesh regeneration can also be efficient. The key is to know where the mesh should be coarse

and where it should be fine. An ideal mesh for efficiency should have error equally distributed

(Zienkiewicz, Taylor, et al. 2005). One strategy is using mesh density or mesh size function.

Knowing the solution, mesh size distribution can be defined on either uniform background mesh

or previous non-uniform mesh. The state of art mesh size distribution is quantified by estimating

a posteriori error. For a prescribled target error, error estimating and mesh refinement could act

iteratively for several times. Likewise, p-refinement could require a sequence of steps. The joint

of h and p methods (hp-refinement) can be efficient. One of the method (Zienkiewicz, J. Zhu,

et al. 1989) is pursuing non-uniform h-refinement first to get error almost equal distribution,

then do uniform p refinement to increase accuracy globally. Moving mesh method (Baines et al.

2005) is r-refinement which suitable for moving boundary problems. r-refinement generally can

not guarantee the prescribed accuracy. It is difficult to use in practice. In this thesis we use the

approach of h-refinement.

2.2 Deep learning

Building an intelligent machine that can think is an ancient idea. Since the birth of electrical

computers, hopes of artificial intelligence fall on these programmable machines. In 20th century,

computers have shown strong ability and potential in problems that are formally describable.

13

2.2. Deep learning Chapter 2. Background

A good example is solving partial differential equations by finite element method which is ex-

tremely difficult for human beings. However, tasks without mathematical forms such as image

or speech recognition were challenging for early days of electrical computers. These mathemati-

cally vague tasks are easy for human where we can instantly recognise faces or animals when we

see and understand words when we hear. Early artificial intelligence is good at computational

expensive and application limited problems. For example, the chess player Deep Blue (Hsu

2002) is a successful rule based AI system whose operation is clearly defined by program. The

expert systems like Deep Blue obtain hard-coded knowledge from human experts. The rigid

knowledge limits the intelligence of machines when many tasks being undertaken are flexible.

The expert system can hardly deal with tasks such as objects detection.

For human beings our knowledge is learned from experiences rather than DNA. For example,

a child learns what is fruit by tasting fruits such as apples and oranges. To overcome the

above shortage of expert system, machines acquire knowledge by extracting patterns from raw

data (Goodfellow et al. 2016). We call this capability machine learning. Naive Bayes (Rish

et al. 2001) is a kind of machine learning algorithm that is good at classification tasks, such as

spam email filtering. Conventional machine learning techniques depend on the representation

of the data. Representation learning (Bengio et al. 2013) allows the machine to learn the way

to transforming raw data to representative features. Such features could be non-describable

to humans. Deep learning (LeCun et al. 2015) is a kind of tool that uses deep hierarchical

structural layers to extract features and solve AI problems. Despite the hierarchical structures

are designed by human, the parameters in each layer is generally adjustable. The process to

adapt the parameters to tasks is called training. Supervised training is very common where data

is labeled. For example photos for training are labeled ”cat” or ”dog” in animal classification.

Unsupervised and semi-supervised training requires less labelling work however the system is

harder to train. Deep learning has made great success in image and language understanding

and contributed to applications such as:

1. medical image analysing (Shen et al. 2017)

2. facial recognition (Guo and Zhang 2019)

3. natural language processing (Young et al. 2018, Otter et al. 2020)

4. self-driving cars (Rao and Frtunikj 2018)

14

Chapter 2. Background 2.2. Deep learning

5. products recommendation (Da’u and Salim 2020, Naumov et al. 2019)

In this section, we will introduce several models of deep learning such as convolutional neural

networks and briefly review the application of deep learning in scientific computing, especially

in mesh generation.

2.2.1 Artificial neural networks

Artificial neural networks (introduced in section 2.2.1) are the mathematical models that use a

network of “neurons” with activation functions to mimic biological neural networks. An ANN

is composed of a large number of free parameters which define the network that connects the

“neurons”. These trainable parameters are generally not explainable though there are machine

learning interpretability methods (Linardatos et al. 2020). However, with them ANNs can

approximate the mapping between inputs and outputs. A training loss function reflects how

well the predicted output an ANN performs for a given input. Furthermore, an ANN can be

trained by gradient decent methods because this loss function is generally differentiable with

respect to the network parameters. In recent years, with the developments of parallel hardware,

larger/deeper neural networks have been proven to supersede existing methods on various high-

level tasks such as object recognition (Krizhevsky et al. 2012). Within computational science,

DNNs have also been explored to solve ordinary differential equations and PDEs under both

supervised (Chen, Rubanova, et al. 2018; Long et al. 2018) and unsupervised (Han et al. 2018)

settings.

We mainly introduce neural networks that are applied in this thesis. Feedforward neural network

has no feedback connection which is used in the recurrent neural networks. The deep feedforward

neural network is composed of many layers of perceptrons. The network has strong capability

to approximate mappings. In the mapping y = f(x,θ), x and y are the input and output

tensors of the neural network. θ is the trainable parameters which adjust the neural network

to best approximate the desired mappings. The universal approximation theorem (Cybenko

1989) proves neural networks can approximate arbitrary function to any accuracy provided it

has sufficient parameters.

The feedforward neural network can be regarded as a chain of networks and the mapping

f(x) = fn(· · · f2(f1(x))) represents the n layers of the network where n is the depth of the

model. The first layer of the network is called input layer and the last (nth) is called output

15

2.2. Deep learning Chapter 2. Background

layer. The training data only gives the desired input and output therefore other layers are

called hidden layers. In each layer the number of neurons is the width of the layer. The neurons

in the same layer work in parallel as a function that inputs tensor and outputs a scalar. The

neurons are also called perceptrons and feed forward neural networks are also called multilayer

perceptrons. In the linear function f(x) = ωx+ b, ω is the weight acts on inputs and b is the

scalar bias. To enable neural networks to approximate nonlinear mappings, activition functions

are applied on neurons and the function becomes f(x) = a(ωx + b), where a is the nonlinear

activation function. Though a single layer network is sufficient to represent any function, using

deep models reduces the total neuron numbers and the generalisation error (Goodfellow et al.

2016). When designing an ideal architecture, experiments are necessary where validation error

is monitored.

When a neural network is designed, it is initialised far from representing the desired mappings.

Training is the process to fit the network to the mappings or desired tasks. Training can be re-

garded as an optimization procedure where a chosen cost function should be minimised. There

are several ways to define the distance between the model outputs and the desired outputs.

The choice of the cost function depends on the models. When the model defines a distribu-

tion p(y|x; θ), we use maximum likelihood, for example, negative log likelihood (Bosman and

Thierens 2000) (equivalent to cross-entropy likelihood) as cost function. When the model sim-

ply outputs statistic y given x, we can use mean square error or mean absolute error as cost

function. To find the global minimum of the cost function, gradient descend methods (Ruder

2016) are used. The efficient way to find the gradient of the model output y respecting to

the trainable parameters θ is back propagation (Werbos 1990). By the chain rule, information

flows from cost function backwards through the network for gradients. During training, rather

than feeding the network the entire training data, usually a subset of the data are used and the

subset is called a batch. A single pass of the entire training data is called an epoch. The entire

data is usually split into training, validation and test dataset. After training, if the model fail

to fit the training data, we call it under-fitting. If the model fits the training data well however

performs poorly on the validation data, we call it over-fitting. Over-fitting can be controlled by

regularisation techniques (Goodfellow et al. 2016).

16

Chapter 2. Background 2.2. Deep learning

Figure 2.1: An example of convolution, top left is the input, top right is the kernel and bottom
is the output

2.2.2 Convolutional neural networks

Convolutional neural networks (CNNs) (Gu et al. 2018) have made great success when applied

to problems involving grid topology data, such as those involving images. The concept of

convolution originates from the mathematical operation:

s(t) =

∫
x(a)w(t− a)da (2.32)

which is denoted as

s(t) = (x ∗ w)(t) (2.33)

When we use image I as input and undertaking a convolution on 2 axis by 2 dimensional kernel

K,

s(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m)(j − n) (2.34)

Where i, j are the horizontal and vertical index and variable of summation m and n depends

on the kernel size. Many deep learning libraries implement cross-correlation

s(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i+m)(j + n) (2.35)

but call it convolution where the difference is the flipped kernel. Figure 2.1 is a demonstration

of a 2x2 convolution. In each layer of fully connected networks, every output unit interacts

with every input unit. However in a single layer of convolutional networks, because the kernel is

generally much smaller than the input, every output only interacts with a small number of input

units. We call this sparse interactions which saves memory and is statistical efficient. Another

17

2.2. Deep learning Chapter 2. Background

Figure 2.2: An undirected graph with its adjacency matrix, if a vertex connects with another
vertex, the corresponding entry of the adjacency is 1. When a vertex connects with itself, the
corresponding entry is 2. The adjacency matrix of an undirected graph is symmetric.

property of convolutional networks is parameter sharing where the kernel is shared at different

position of inputs. Convolutional networks usually contains not only convolutional layers but

also pooling layers (Gholamalinezhad and Khosravi 2020). Pooling usually reduce the size by

outputting a summary stastic of nearby inputs.

2.2.3 Graph convolutional networks

Classic convolution are based on grid data. However, there are many applications for which

data is non-Euclidean structured. For example, social network and traffic networks have data

defined on graphs. A graph is defined as a set of vertices and a set of edges. An adjacency

matrix indicates the connections between vertices. Figure 2.2 demonstrates an undirected graph

and its adjacency matrix. The matrix is symmetric because the graph is undirected. There is

an entry of 2 in the (3,3) position because a edge connect node 3 at two sides. Graph neural

networks (Zhou et al. 2020) are deep learning based methods operating on graph domain, such as

graph convolutional networks (S. Zhang et al. 2019), graph attention networks (Lee et al. 2019,

Velickovic et al. 2017) and graph recurrent networks (Scarselli et al. 2008). Graph convolution

generalise the convolution operation to the graphs, with two categories: spectral (Bruna et al.

2013) and spatial (Duvenaud et al. 2015) approaches.

Figure 2.3 from (Zhou et al. 2020) demonstrates the rich development of graph neural networks

using convolution operations. In each categories models are ordered by published time. General

framework are proposed aiming to integrate different models into one single framework. In this

18

Chapter 2. Background 2.2. Deep learning

Figure 2.3: Overview of graph convolution networks (Zhou et al. 2020), Graph neural networks
(GNNs) are neural models that capture the dependence of graphs via message passing between
the nodes of graphs. Convolution is the mostly used operator for GNN models. The main idea
of convolution operators is to generalize convolutions from other domain to the graph domain.
The two categories of graph convolution are spectral and spatial approaches.

section we only introduce a spectral method call graph convolutional networks (GCN) (Kipf

and Welling 2017). Consider spectral convolution defined as the multiplication of a signal x

with a filter gθ = diag(θ) where trainable parameter θ is in the Fourier domain.

gθ ∗ x = UgθU
Tx (2.36)

Where U is the matrix of eigenvectors of the normalised graph Laplacian L = IN−D− 1
2AD− 1

2 =

UΛUT . A is the adjacency matrix and for diagonal matrix D Dii =
∑

j Aij . Λ is diagonal of

the eigenvalues of L. Eigendecomposition of L for large graph is too expensive. Hammond et al.

2011 suggests using truncated expansion in terms of Chebyshev polynomials Tk(x) up to kth

order to approximate gθ:

gθ′ ∗ x ≈
∑
k

θ′kTk(L̃)x (2.37)

θ′k is the trainable weight. The Chebyshev polynomials are defined as Tk(x) = 2xTk−1(x) −

Tk−2(x), with T0(x) = 1,T1(x) = x. L̃ = 2
λmaxL − IN , λ is the largest eigenvalue of L. The

expression is k localised i.e. it depends only on the nodes that are maximum kth steps away

from the central node.

19

2.3. Machine learning for PDEs Chapter 2. Background

2.3 Machine learning for PDEs

Machine learning has been applied with great success in tasks in computer vision and natural

language processing which used to be challenging for computers. These tasks are data rich

however computational models are frequently too expensive to provide more than a limited

amount of labeled data. On the contrary, many fundamental research disciplines are model rich

and classical computational methods are successful, such as computational physics. Recently, we

have seen exciting joint research of these fields with machine learning such as machine learning

with fluid mechanics (Brunton et al. 2020), chemistry, material science (Choudhary and al.

2022) and biology. Mathematics models used to play the important role in these fundamental

disciplines. In this thesis we are particularly interested in PDEs and look forward to seeing

machine learning help PDEs solving. The key motivation of this study is improving the efficiency

of PDE solving where deep learning acts as either an accelerator or replacer to the conventional

solver such as the finite element method. There is vast work on machine learning based PDE

solver and below we introduce some representable examples in categories of supervised learning

and unsupervised learning. Then we introduce the function of machine learning in aiding solving

PDEs especially in mesh generation.

2.3.1 Machine learning based PDE solver

In supervised learning, the machine learning model requires large volume of data. For PDE

driven fields such as computational physics, the data comes from sensors or simulation via

the conventional methods such as finite element, finite volume, finite difference and spectral

methods. Still, obtraining big data is expensive and difficult, which constrained the development

of machine learning in scientific problems. Physics informed machine learning (Karniadakis et

al. 2021) tackle this by training from additional information obtained by enforcing physical laws.

Physics informed neural networks (PINN) (Raissi et al. 2019,S. Cai et al. 2021) solve forward

and inverse problem in the same framework. The parameters of the networks are trained by

minimising a loss function that depends on the differential equation, boundary condition and

eventually some known data. Physics reinforced neural network (W. Chen et al. 2021) as an

efficient reduced order model, is more accurate than PINN for complex non-linear problem. The

full-order model is replaced with a low-dimensional reduced-order model to efficiently resolve the

main dynamics of the problem. Bar-Sinai et al. 2019 generate a training set of high-resolution

20

Chapter 2. Background 2.3. Machine learning for PDEs

data. The neural network estimates spatial derivatives to allow the use of resolution 4x to 8x

coarser than standard finite difference method when accuracy is ensured. PDENet (Long et al.

2018) approximates differential operations by convolutions with properly constrained filters. It

can uncover the hidden equation of the observed dynamics, and predict the dynamical behavior

for a relatively long time.

Unsupervised learning does not require labeled training data. Machine learning takes place

of the PDE solver. It is even possible to tackle problems that conventional methods cannot

solve, such as high-dimensional problems (Han et al. 2018). Different from (Lagaris et al. 1998)

using equidistant points on grid, Deep Galerkin Method (DGM)(Sirignano and Spiliopoulos

2018) is meshfree, which is claimed the key to solving high-dimensional PDEs. The solution is

approximated by the neural networks rather than a combination of basis function. The neural

networks are trained on random sampled time and points in space. The cost function measures

how well the approximated solution satisfies the differential operator, boundary condition and

initial condition. The risk of this method is the solution may converge to local minimum,

which is generally true for non-convex optimisation. Geneva and Zabaras 2020 use a deep auto-

regressive CNN to learn and surrogate model the dynamics of transient PDEs. Training used

physics constrained deep learning where equation of the system are used to formulate a loss

function. The model is trained without training data.

Machine learning based PDE solver has made great progress in the last few years. However,

we rarely find machine learning PDE solver other than reduced order method implemented in

engineering practice. The reason might be:

1. lack of data

2. lack of guarantee of accuracy

3. difficult in generalization

4. low and unpredicted efficiency

Item 2 is especially important in many cases where the accuracy of the solution is critical. Item

1 constrains supervised learning methods where the performance of models usually depends on

the amount of training data. Item 2 is common for both supervised and unsupervised learning.

The methodology such as the choice of activation function in PINN relates to the accuracy.

In unsupervised learning such as Deep Ritz method Yu et al. 2018 the solution sometimes

21

2.4. Machine learning for mesh processing Chapter 2. Background

converges to local minima. Item 3 is a problem for supervised learning and item 4 is a problem

for unsupervised learning where Deep Ritz method is much slower than FEM.

2.3.2 Machine learning aided PDE solver

Despite the success in high-dimensional PDEs, ML based PDE solvers currently are difficult to

replace the conventional solvers in fields such as computational physics. We therefore turn our

interest into a more conservative approach, using ML to aid rather than to replace the traditional

PDE solvers. For example, Kochkov et al. 2021 use ML for interpolation and correction in finite

volume method. It achieve the same accuracy when using much coarser resolution and perform

the computation 40 to 80X faster.

Now that we are aware of the lack of guaranteed accuracy of machine learning PDE solver, we

give machine learning the jobs where error is tolerable. Preconditioning for the solver (Götz

and Anzt 2018) and mesh generation give ML great opportunities. We consider ML related

mesh processing in detail.

2.4 Machine learning for mesh processing

Despite more than one hundred papers on Intelligent Mesh Generation (Lei et al. 2023), the

vast majority of them are not for PDE solving. Such as generating surface mesh for animation

and visualisation (Wang and Zhang 2022, Song et al. 2021), and for clinical applications (Kong

et al. 2021). In this section we only introduce mesh generation for PDE solving purpose. The

concept of mesh generation involves mesh processing techniques such as mesh generation, mesh

adaptation and mesh quality enhancement. The majority of ML aided mesh processing are in

category of mesh generation and adaptation. We have also seen the implementation of ML in

mesh quality assessing (Iqbal and Carey 2002, Chen, Liu, et al. 2020) and mesh partitioning for

parallel computing (Bahreininejad et al. 1996).

2.4.1 Machine learning for mesh generation

The application of machine learning to the mesh generation starts from the use of self-organizing

neural networks (Chang-Hoi et al. 1991, Manevitz, Yousef, et al. 1997). At each iteration, the

neurons compete against each other and the only the weights (point coordinates) linked with

the winner are updated. The meshing process starts from a fix grid topology and during

22

Chapter 2. Background 2.4. Machine learning for mesh processing

unsupervised learning, the locations of vertices change. To overcome the fixed grid size, Let-

it-grow neural networks (Alfonzetti et al. 1996) are proposed, where not only moving nodes

but also node insertion are applied. The neural network in self-organizing and let it grow both

differs from modern feed forward neural networks in aspects such as learning is not done by

minimising cost function. For self-organizing learning it is done by a selection of a node by a

competition and moving the node.

More recent work follows the latest developments of neural networks. Papagiannopoulos et al.

2021 uses three feed forward neural networks to predict the number of inner vertices of the

mesh, their location and the entries of the connection table. MGNet (X. Chen et al. 2022) is

a novel differential structured mesh generation method based on unsupervised neural network.

Mehendale and Soman 2021 use LSTM to generate coordinates of mesh grid points then employ

Delauny triangulation. FreeMesh-RL (Pan et al. 2023) formulates the mesh generation as a

Markov decision problem, using a soft actor-critic approach to automatically generate mesh

by reinforcement learning. These works generally produce good quality meshes however lack

evidence to demonstrate neural networks methods are superior than classical mesh generators.

In this thesis we do not develop mesh generator but use conventional mesh generators guided

by deep learning.

2.4.2 Machine learning for mesh adaptation

In the context of using ML to guide high-quality non-uniform mesh generation there are several

prior research. In Doľsak et al. 1994, for example, early knowledge-based approaches were

considered, though with limited success. Time-dependent remeshing is studied by Manevitz,

Bitar, et al. 2005, where an NN is used to undertake time-series predictions that identify areas

of greater (and less) refinement at different times, though on a domain with simple geometry.

In (Chedid and Najjar 1996, Dyck et al. 1992) NNs were applied successfully to generate high

quality finite element meshes for elliptic PDEs, however the input vectors are highly problem-

dependent: requiring specific a priori knowledge of the geometry being considered. They require

a priori knowledge such as the mesh density depends on the distance to certain position of the

magnetic device. The challenge of using DNNs to generate pseudo-optimal FE meshes on quite

general geometries was first considered in MeshingNet (Z. Zhang, Y. Wang, et al. 2020) for

selected two-dimensional PDEs. MeshingNet3D (Z. Zhang, Jimack, et al. 2021) extends these

ideas to problems in three dimensions, to consider PDE systems with rich variation in geometry,

23

2.5. Mean value coordinates Chapter 2. Background

boundary conditions and material properties. These works are described in detail in Chapter 3

and 4 respectively.

Since the publication of MeshingNet we have seen renewed interest in apply machine learning

for mesh adaptation. Some work uses machine learning as adaptive mesh refinement strategies.

Gillette et al. 2022 and Yang et al. 2023 regard adaptive mesh refinement as a Markov decision

process and use reinforcement learning for mesh adaptation. It is claimed reinforcement learning

policies can outperform widely used ZZ error estimation. Bohn and Feischl 2021 use recurrent

neural network as optimal mesh refinement strategies in element mark method, which can be

applied on problems with no optimal adaptive strategy known yet.

For applications, we have seen the use of machine learning based mesh refinement on problems

such as elasticity (Chan et al. 2022) and advection-diffusion (Falini and Sampoli 2021) problems.

For adaptive mesh generation, computation fluid dynamics (CFD) is an important problem.

Huang, Krügener, et al. 2021 used unsupervised trained U-net to predict static optimal CFD

mesh. Ojha 2022 use flow parameters as inputs to predict optimal static mesh for aeroelastic

simulation. Tingfan et al. 2022 use a regression model to predict flow fluid and improve and

efficency and accuracy of the solution in the process of moving mesh. Fidkowski and Chen 2021

use NN to predict the desired element aspect ratio from readily accessible features of the primal

and adjoint solutions. The challenge now is how to use machine learning to learn the dynamics

of the mesh since optimal meshes of CFD are generally time dependent.

2.5 Mean value coordinates

Mean value coordinates (MVC) (Floater 2003) is a generalisation of barycentric coordinates

which allows a vertex in a planar triangulation to be expressed as a convex combination of its

neighbouring vertices. The coordinates are motivated by the Mean Value Theorem for harmonic

functions and can be used to simplify and improve methods for parameterization and morphing.

Here we illustrate MVC in 2D. Let v0, v1, ..., vk be points in the plane with v1, ..., vk arranged

in an anticlockwise ordering around v0 as in Fig 2.4. The points v1, ..., vk form a star-shaped

polygon with v0 in its kernel. Our aim is to study sets of weights λ1, ..., λk ≥ 0 such that

24

Chapter 2. Background 2.5. Mean value coordinates

Figure 2.4: Star-shaped polygon, we care the MVC of point v0.

∑
k

λivi = v0 (2.38)

∑
k

λi = 1 (2.39)

In the simplest case k = 3, the weights λ1, λ2, λ3 are uniquely determined by Equation 2.38 and

2.39 alone; they are barycentric coordinates, and they are positive. This motivates calling any

set of non-negative weights satisfy Equation 2.38 and 2.39 for general k. For MVC, the weights

λi =
wi∑k
j=1wj

, wi =
tan(αi−1/2) + tan(αi/2)

||vi − v0||
(2.40)

These weights can be derived from an application of the mean value theorem for harmonic func-

tions, which suggests calling them mean value coordinates. They obviously depend smoothly

on the points v0, v1, ..., vk.

25

2.6. Summary Chapter 2. Background

2.6 Summary

The finite element method is a successful computational method for solving PDEs which is the

base for physical simulations. With the fast development of machine learning and intelligent sys-

tems we see new opportunities and challenges for solving PDEs. Supervised and unsupervised

trained artificial neural networks have shown strong capability in replacing the conventional

PDE solvers and solving high dimensional PDEs. However we have limited confidence in apply-

ing these novel methods in engineering practice, since they generally lack guarantee in accuracy.

The solution may has significant error or converge to local minima. We therefore turn to seek

using machine learning to aid the conventional solvers. Mesh generation is a complex however

error tolerable process where the mesh size distribution does not have to be highly precise. We

have seen renewed interest in mesh generation and adaptation by neural networks. And now

we face the new challenges for machine learning such as:

1. dynamic adaptive mesh for CFD

2. geometry partitioning and mapping for structured mesh generation

3. mesh generation for fluid structure interaction and multi-physics simulation

4. error estimation and 3D anisotropic mesh generation

26

Chapter 3

Mesh adaptation for 2D static PDEs

We introduce a novel approach to automatic unstructured mesh generation by using machine

learning to predict an optimal mesh element size distribution for a previously unseen problem.

The framework that we have developed is based around training an ANN to guide standard mesh

generation software, based upon a prediction of the required local mesh density throughout the

domain. We describe the training regime that is proposed, based upon the use of a posteriori

error estimation, and discuss the topologies of the ANNs (the way the neurons are connected)

that we have considered. We then illustrate performance using two standard test problems, a

single elliptic PDE and a system of PDEs associated with linear elasticity. We demonstrate the

effective generation of high quality meshes for arbitrary polygonal geometries and a range of

material parameters, using a variety of user-selected error norms.

3.1 Introduction

Mesh generation is a critical step in the numerical solution of a wide range of problems arising in

computational science. The use of unstructured meshes is especially common in domains such

as computational fluid dynamics (CFD) and computational mechanics, but also arises in the

application of finite element (FE) and finite volume (FV) methods for estimating the solutions

of general partial differential equations (PDEs): especially on domains with complex geometries.

The quality of the FE/FV solution depends critically on the nature of the underlying mesh. For

an ideal mesh the error in the FE solution (as discussed in chapter 2 we focuson the FE method

(FEM) in this thesis) will be distributed equally across the elements of the mesh, implying the

27

3.1. Introduction Chapter 3. Mesh adaptation for 2D static PDEs

need for larger elements where the local error is small and smaller elements where the local error

is large. This equidistribution property tends to ensure that a prescribed global error tolerance

(i.e. an acceptable error between the (unknown) true solution and the computed FE solution)

can be obtained with the fewest number of elements in the mesh (Dörfler 1996; Stevenson 2007).

This is a desirable feature since as discussed in Chapter 2 the computational work generally

grows at least linearly with the number of elements (in some special cases, this can be linear

(Notay 2010)).

The conventional approach to obtain high quality unstructured meshes involves multiple passes,

where a solution is initially computed on a relatively coarse uniform mesh then a post-processing

step, known as a posteriori error estimation (as introduced in section 2.1.4), is undertaken.

This typically involves solving many auxiliary problems (e.g. one per element or per patch of

elements) in order to estimate the local error in the initial solution. These local errors can be

combined to form an overall (global) error estimate but they can also be used to determine

where the local mesh density most needs to be increased (mesh refinement), and by how much,

and where the local mesh density may be safely decreased (mesh coarsening), and by how much.

A new mesh is then generated based upon this a posteriori error estimate and a new FE solution

is computed on this mesh. A further a posteriori error estimate may be computed on this new

mesh to determine whether the solution is satisfactory (i.e. has an error less than the prescribed

tolerance) or if further mesh refinement is required.

A necessary requirement for efficient a posteriori error estimators is that they should be rel-

atively cheap to compute. For example, the approaches of Ainsworth and Oden 1997; Apel,

Grosman, et al. 2004; Bank and Weiser 1985 each solve a supplementary local problem on each

finite element in order to estimate the 2-norm of the local error from the local residual. Al-

ternatively, recovery-based error estimators use local “superconvergence” properties of FE to

estimate the energy norm of the local error based purely on a locally recovered gradient: for ex-

ample the so called ZZ estimation (Zienkiewicz and Zhu 1992). Here the difference between the

original gradient and a patch-wise recovered gradient indicates the local error. In the context of

linear elasticity problems, the elasticity energy density of a computed solution is evaluated at

each element and the recovered energy density value at each vertex is defined to be the average

of its adjacent elements. The local error is then proportional to the difference between the

recovered piece-wise linear energy density and the original piece-wise constant values.

28

Chapter 3. Mesh adaptation for 2D static PDEs 3.1. Introduction

In this chapter we exploit data-driven methods to improve the efficiency of non-uniform mesh

generation compared with existing approaches. The core of non-uniform mesh generation is to

find an appropriate mesh density distribution in space and perhaps also time. If a model can

learn from the data, it no longer needs an FE solution and error estimator to predict a good

mesh density distribution, but instead can rely on learning from a set of similar problems for

prediction.

In the work reported here we propose a DNN model, MeshingNet, to learn from the a posteriori

error estimate on an initial(coarse) uniform mesh and predict non-uniform mesh density for

refinement, without the need for (or computational expense of) solving an FE system or com-

puting an a posteriori error estimate. MeshingNet is trained using an accurate error estimation

strategy which can be expensive but is only computed offline. Hence, the mesh generation

process itself is extremely fast since it is able to make immediate use of standard, highly-tuned,

software (in our case Shewchuk 2002) to produce a high quality mesh at the first attempt (at

similar cost to generating a uniform mesh with that number of elements). As already outlined,

it is not our intention in this work to use deep learning to solve the PDEs directly: instead we

simply aim to provide a standard FE solver with a high quality mesh, because we can provide

more reliable predictions in this way, based upon the observation that a greater variation in the

quality of predictions can be tolerated for the mesh than for the solution itself. For example,

in an extreme case where the DNN predicts a constant output for all inputs, the result would

be a uniform mesh (which is tolerable) however such a poor output would be completely unac-

ceptable in the case where the network is used to predict the solution itself. Both our work and

PINN (physics informed neural network) use supervised learning however we do not use NN to

solve the PDE directly and our NN ignores physics laws.

Formally, we propose, what is to the best of our knowledge, the first DNN-based predictor of a

posteriori error, that can:

1. efficiently generate non-uniform meshes with a desired speed

2. seamlessly work with existing mesh generators

3. generalize to different geometric domains with various governing PDEs, boundary condi-

tions (BCs) and parameters.

The remainder of this chapter is structured as follows. In the next section we describle our

29

3.2. Proposed methods Chapter 3. Mesh adaptation for 2D static PDEs

proposed deep learning algorithm. This is not the first time that researchers have attempted

to apply ANNs to mesh adaptation. However, previous attempts have been for quite specific

problems : Chedid and Najjar 1996; Lowther and Dyck 1993 and have therefore been able to

assume substantially more a priori knowledge than our approach. Consequently the novelty in

Sec. 3.2 comes through both the generality of the approach used in formulating the problem (i.e.

generality of the inputs and outputs of the DNN) as well as the network itself. In Sec. 3.3, we

demonstrate and assess the performance of our approach on two standard elliptic PDE problems.

These tests allow us to account for variations in the PDE system, the domain geometry, the

BCs, the physical problem parameters and the desired error norm when considering the efficacy

of our approach. Finally, in Sec. 3.4, we discuss our plans to further develop and apply this

deep learning approach.

3.2 Proposed methods

3.2.1 Overview

We consider a standard setting where the FEM is employed. Given a geometry and a mesh

generator, a low density uniform mesh (LDUM) can be easily computed, then refined non-

uniformly based on the a posteriori error distribution, for better accuracy. We propose a DNN-

based supervised learning method to replace the time consuming a posteriori error estimation.

Given a family of governing PDEs and material parameters (for elasticity), we assume that

there is a mapping

F : Γ, B,M,X → A(X) (3.1)

that can be learned, where Γ is a collection of domain geometries (x,y coordinates of the vertices

of the polygons), B is a set of BCs, M is a set of PDE parameters (e.g. material properties),

x ∈ X is a location in the domain and A(X) is the target area upper bound (area of triangle

elements should be smaller than this value at the locationX) distribution over the whole domain.

To represent an interior location, we use Mean Value Coordinates (Floater 2003) because they

provide translational and rotational invariance with respect to the boundary. Given Γ, B, M

and X, we aim to predict A(X) quickly. The mapping F is highly non-linear and is therefore

learned by our model, MeshingNet. Under the supervised learning scheme, we first build up

our training data set by computing high-accuracy solutions (HASs) on high-density uniform

30

Chapter 3. Mesh adaptation for 2D static PDEs 3.2. Proposed methods

Figure 3.1: A high-level diagram of MeshingNet workflow showing the ANN alongside the
training regime (left) and testing regime (right). Grey, orange and blue arrows represent data
generation, training and testing processes. For each problem we only use one fine mesh and one
coarse mesh.

meshes (HDUMs) using a standard FE solver. The same computation is also done on LDUMs

to obtain lower accuracy solutions (LAS). Then an a posteriori error distribution E(X) is

computed based upon interpolation between these solutions. According to E(X), we compute

A(X) for refinement. The training data is enriched by combining different geometries with

different parameters and BCs. Next, MeshingNet is trained, taking as input the geometry,

BCs and material properties, with the predicted local area upper bound A(X) as output. After

training, MeshingNet is used to predict A(X) over a new geometry with a LDUM. The final mesh

is generated either by refining the LDUM non-uniformly or using it to generate a completely

new mesh guided by the predicted target local area upper bound. Figure 3.1 illustrates the

whole workflow of our mesh generation system.

The approach that we propose has a number of components that are not fixed and may be

selected by the user. MeshingNet is agnostic about both the mesh generator and the particular

FE/FV solver that are used. It is designed to work with existing methods. Furthermore, the

a posteriori error can be computed using any user-defined norm (in this chapter we consider

L1 and energy norms respectively in our two validation tests). Some specific examples of

governing equations, geometries, boundary conditions and material parameters are illustrated

in the evaluation section. Prior to this however we provide some additional details of the

components used in this chapter.

31

3.2. Proposed methods Chapter 3. Mesh adaptation for 2D static PDEs

3.2.2 Component Details

Mesh generation

All meshes (LDUM, HDUM and the refined mesh) are created using the software triangle which

conducts Delaunay triangulation. Triangle (Shewchuk 2002) reads a planar graph, representing

the boundary of a two-dimensional polygonal domain as its input and the user may define a

single maximum element area across the entire polygon when a uniform mesh is desired. To

refine a mesh non-uniformly the user specifies, within each coarse element, what the element

area upper bound should be after refinement. Triangle ensures a smooth spatial variation of the

element size. The refinement is not nested since, although it does not eliminate the pre-existing

vertices of the original mesh, it does break the original edges.

Mesh refinement via error estimation

Broadly speaking, the finer the mesh is, the FE result is expected closer to the ground truth.

We regard the HAS (High resolution results) as the ground truth by ensuring that HDUMs

are always significantly finer than LDUMs. Linear interpolation is used to project the LAS to

the fine mesh to obtain LAS*, where LAS* has the same dimension as HAS. An error estimate

approximates the error E by comparing LAS* and HAS in the selected norm, on the HDUM.

After that the error is projected back to the original LDUM. Rather than defining the average

mesh area, the target area upper bound for the refined mesh within each LDUM element is then

computed to be inversely correlated with E. We are able to but do not predict the a posteriori

error estimate because it is the element area that directly controls mesh adaptivity. In this

chapter, we select K/E(xi)
α as the area upper bound for element number i of the LDUM (to

be refined), where xi is the center of the i th element, K and α determines the overall target

element number and, in the examples given here, we always choose α = 1. If choose α = 2

the nonuniform pattern would be more aggresive. By varying K appropriately it is possible to

adjust the refined mesh to reach a target total number of elements.

MeshingNet model and training

As outlined in the overview, for a given PDE system, MeshingNet approximates the target

local element area upper bound A(x) at a given point within a polygonal domain based upon

inputs which include: the coordinates of the polygon’s vertices, key parameters of the PDE

and the mean value coordinates of the specified point (mean value coordinates parameterizes

32

Chapter 3. Mesh adaptation for 2D static PDEs 3.2. Proposed methods

a location within a 2D polygon as a convex combination of polygon vertices). Two types of

DNNs are considered: a fully connected network (FCN) and two residual networks (ResNets).

The dimensions of our FCN layers are X-32-64-128-64-32-8-1 (where X represents the dimension

of the input and is problem-specific) and each hidden layer uses rectified linear units (ReLU)

as the activation function. To further improve and accelerate training, two ResNets are also

experimented with to enhance FCN (see Fig. 3.2) ResNet1 enhances FCN by adding multiple

residual connections from the first hidden layer to the output of the last one. Note that residual

connections can help to resolve the vanishing gradient problem in deep networks and improve

training (Veit et al. 2016). ResNet2 enhances FCN by adding multiple residual connections.

This is inspired by recent densely connected convolutional networks (Huang and al. 2017) which

shows superior data-fitting capacity with a relatively small number of parameters. The training

data set samples over geometries, BCs and parameter values. Each geometry with fixed BCs and

parameters uniquely defines a problem. In a problem, each LDUM element centroid (represented

by its mean value coordinates) and its target A(x) forms an input-output training pair. We

randomly generated 3800 problems of which 3000 are used for training and 800 for testing

(because each LDUM contains approximately 1000 elements, there are over 3 million training

pairs). We then use stochastic gradient descent, with a batch size 128, to optimize the network.

We use mean square error as the loss function and Adam (Kingma and Ba 2015) as the optimizer.

The implementation is done using Keras (Chollet et al. 2015) on Tensorflow (Martın and al.

2015) and the training is conducted on a single NVIDIA Tesla K40c graphics card.

Guiding mesh generation via MeshingNet

After training, the network is able to predict the target distribution A(x) on a previously unseen

polygonal domin. Given a problem, a LDUM is first generated; next, MeshingNet predicts the

local target area upper bound, A(x)i at the centre, x, of the i th element; Triangle then refines

the LDUM to generate the non-uniform mesh based upon KA(x)i within each element of the

LDUM (to be refined). Optionally, this last step may be repeated with an adjusted value of K to

ensure that the refined mesh has a desired total number of elements (this allows an automated

approximation to “the best possible mesh with X elements”).

Error norms

Error estimation provides means of quantifying both the local and the global error in an initial

solution. However the precise magnitude and distribution of the error depends on the choice

33

3.3. Validation results Chapter 3. Mesh adaptation for 2D static PDEs

Figure 3.2: Our two residual networks, illustrated with 27 input parameters. ResNet1 is a
modification of the FCN with the output of the first hidden layer added to the output of the
last hidden layer. ResNet2 has all hidden layers of the same dimension and the output of the
first hidden layer is added to outputs of the three front hidden layers.

of the norm used to compute the difference between the LAS and the HAS. Different norms

lead to different non-uniform meshes. Consequently, for any given PDE system, a single norm

should be selected in order to determine A from Γ, B and M . The appropriate choice of norm

is a matter for the user to decide, similar to the choice of specific a posteriori error estimate in

the conventional adaptive approach. In the following section two different norms are considered

for the purposes of illustration.

3.3 Validation results

We now assess the performance of the 2D static mesh generation system through two compu-

tational example: a single PDE, for which we consider only the effect of the domain geometry

on the optimal mesh; and a system of PDEs, for which we consider the influence of geometry,

boundary conditions and material parameters on the optimal mesh.

3.3.1 2D Poisson’s equation

We solve Poisson’s equation (∇2u+1 = 0) on a simply connected polygon Ω with boundary ∂Ω

(on which u = 0). The polygons in our data set are all octagons, generated randomly, subject

to constraints on the polar angle between consecutive vertices and on the radius being between

34

Chapter 3. Mesh adaptation for 2D static PDEs 3.3. Validation results

Figure 3.3: For Poisson’s equation: the L1 error distribution for the LAS (left); the 4000
elements mesh generated by Triangle under the guidance of MeshingNet (middle); and the
uniform mesh with 4000 elements generated by Triangle (right).

100 to 200 (so the polygons are size bounded). The L1 norm relative error estimate is

E =

∣∣∣∣uLAS − uHAS

uHAS

∣∣∣∣ . (3.2)

Where uLAS and uHAS come from the coarse and fine mesh in Fig 3.1. As expected, in Figure 3.3

(which shows a typical test geometry), the mesh generated by MeshingNet is dense where the

error for the LAS is high and coarse where it is low. Figure 3.4 quantifies the improvement of

MeshingNet relative to an uniform mesh (Figure 3.3 right) by showing, for the entire test data

set, the error distributions of the computed FE solutions (relative to the ground truth solution)

in each case. We only apply a fully connected neural network with 6 hidden layers and each

layer has 32, 32, 64, 128, 64, 32 neurons.

3.3.2 2D Linear elasticity

We solve 2D plane stress problems on a set of different polygons (6-8 edges). Each polygon

edge is associated with one of three possible BCs. BC1: zero displacement; BC2: uniformly

distributed pressure or traction (with random amplitude up to 1000); and BC3: unconstrained.

For different geometries, we number the vertexes and edges anti-clockwise with the first vertex

always on the positive x-axis, without loss of generality. To get a combinations of BCs, we

always apply BC1 on the first edge, BC2 on the fourth and fifth edges and BC3 on the rest. We

also allow different (homogeneous) material properties: density up to a value of 1 and Poisson’s

35

3.3. Validation results Chapter 3. Mesh adaptation for 2D static PDEs

Figure 3.4: For Poission’s problem, L1 error distribution on uniform meshes (4000 elements)
and MeshingNet meshes (4000 elements). Each bar shows the proportion of test data meshes
whose FE solution error is in the range of the bar: the uniform meshes give FE errors between
0.0015 to 0.0025, whilst the MeshingNet meshes give FE errors between 0.0007 and 0.0015.

ratio between 0 to 0.48. The error approximation uses energy norm

E = (ϵL − ϵH) : (σL − σH) (3.3)

where ϵL and ϵH are strains of LAS* and HAS, σL and σH are stresses of LAS* and HAS.

This is the “natural norm” for this problem since the PDEs are the Euler-Lagrange equations

for the minimization of the following energy functional:

Ep =

∫
1

2
ϵ : σ − F · udΩ−

∫
σ · udΓ (3.4)

where F is the body force and u is the displacement. Due to the linearity of the problem, the

relative accuracy of two FE solutions may be determined equivalently by which has the lower

error in the energy norm or which has the lower total potential energy (we exploit this in our

validation below).

There are 27 dimensions in MeshingNet’s input: 16 for the polygon vertices, 8 for the mean

value coordinates of the target point, and 1 each for the traction BC magnitude, density and

Poisson’s ratio. If the polygon has less than 8 faces, we allocate the additional vertices onto

the last face. We train FCN, Resnet1 and Resnet2 for 50 epochs, each taking 142, 134 and

141 minutes respectively. Figure 3.5 shows that the training processes all converge. After

36

Chapter 3. Mesh adaptation for 2D static PDEs 3.3. Validation results

Figure 3.5: L2 training loss on elasticity training dataset during 60 training epochs. Three
curves representing FCN (blue), ResNet1 (red) and ResNet2 (green) converge individually.

training, predicting the target A (on all LDUM elements) for one problem takes 0.046 seconds

on average, which is over 300 times faster than using the a posteriori error method that generates

the training data set.

Figure 3.6 shows a comparison of FE results computed on MeshingNet meshes, uniform meshes

of the same number of elements (4000 elements) and non-uniform meshes (also of the same

number of elements) computed based upon local refinement following ZZ error estimation. The

former meshes have FE solutions with potential energy significantly lower than the uniform mesh

and ZZ refined mesh (and much closer to the HAS potential energy). The ZZ refined meshes are

not the absolutely best meshes. MeshingNet learns from a large volume of ZZ meshes therefore

is possible to outperform a single ZZ error estimation. Figure 3.7 illustrates some typical meshes

obtained using MeshingNet: the non-uniform meshes correspond to the error distributions in

the LAS. We also find that the traction-to-density ratio impacts the non-uniform mesh most

significantly. Overall, this example shows that MeshingNet can generate high quality meshes

that not only account for geometry but also the given material properties and BCs.

Finally we compare different DNN models, using the average potential energy on the testing

data set. The baseline is from the HDUMs, whose FE solutions have a mean energy of -7.7293,

followed by the meshes from ResNet2 (mean energy -7.6816), ResNet1 (-7.6815), and FCN (-

37

3.4. Discussion Chapter 3. Mesh adaptation for 2D static PDEs

Figure 3.6: Potential energy comparison of solving 2D elasticity test problems on 4000 element
meshes: uniform element size (left); MeshingNet (using FCN) meshes (centre); and ZZ refined
meshes (right). We use the HAS energy as our baseline: the MeshingNet mesh solutions have
energies that are significantly closer to the HAS energies than the ZZ mesh solutions and uniform
mesh solutions (since a greater proportion of results are distributed near zero). The rightmost
bar represents the proportion of all tests where the energy difference is no smaller than 0.6.

7.6813). The lower the better. These are all far superior to the uniform meshes of the same size

(4000 elements), which yield FE solutions with a mean energy of -7.6030. Note that ResNet

not only shortens the training time over FCN but, on average, produces better solutions.

3.4 Discussion

In this chapter, we have proposed a new non-uniform mesh generation method based on DNN.

The approach is designed for general PDEs with a range of geometries, BCs and problem

parameters. We have implemented a two-dimensional prototype and validated it on two test

problems: Poisson’s equation and linear elasticity. These tests have shown the potential of the

technique to successfully learn the impact of domain geometries, BCs and material properties

on the optimal finite element mesh. Quantitatively, meshes generated by MeshingNet are shown

to be more accurate than uniform meshes and non-uniform ZZ meshes of the same number of

elements. Most significantly, MeshingNet avoids the expense of a posteriori error estimation

whilst still predicting these errors efficiently. Even though generating the training data set is

expensive, it is offline and is thus acceptable in practice.

The meshes generated via MeshingNet may be used in a variety of ways. If our goal is to obtain

a high quality mesh with a desired number of elements then the approach described in this

paper provides a cost-effective means of achieving this. If however the goal is to produce a

solution with an estimated a posteriori error that is smaller than a desired tolerance, then the

generated mesh may not meet this criterion. This may be addressed either by regenerating the

38

Chapter 3. Mesh adaptation for 2D static PDEs 3.4. Discussion

Figure 3.7: FE error (top) relative to HAS on coarse uniform mesh, non-uniform mesh guided
by MeshingNet (middle) and non-uniform mesh refined by ZZ (bottom). The left geometry is
an octagon and other two are heptagons (defined by placing their final vertex at the centre of
edge 7).

39

3.4. Discussion Chapter 3. Mesh adaptation for 2D static PDEs

mesh based upon a higher target number of elements in the final mesh, or through the use of a

traditional a posteriori error estimate on the computed solution in order to guide further mesh

refinement. In the latter case we can view MeshingNet as a means to obtaining an improved

initial mesh within a traditional mesh adaptivity workflow.

In the next chapters, we generalize MeshingNet onto more general problems: 3D geometries,

more complex PDE systems and BCs and time-dependent cases. In the future, it would be

desirable to develop an interface to enable the mesh generator to read geometries from standard

computer aided design software.

Finally, we note that the ANNs used in this initial investigation are relatively simple in their

structure. In the future and later chapters the use of new DNN models, such as Convolution-

al/Graph Neural Networks, should be considered. These are appropriate for time dependent

problems or problems with larger data sets, such as arising from more general geometries and

BCs.

40

Chapter 4

Mesh for 3D elasticity

In this chapter we build upon, and extend, the two-dimensional work described in Chapter 3 to

develop a novel algorithm for the generation of high quality tetrahedral meshes using artificial

neural networks. The goal is to generate close-to-optimal meshes in the sense that the error in

the computed FE solution is as small as it could be for a prescribed number of nodes or elements

in the mesh. In this chapter we illustrate and investigate our proposed approach by considering

the equations of linear elasticity, solved on a variety of three-dimensional geometries. This class

of PDE is selected due to its equivalence to an energy minimization problem, which therefore

allows a quantitative measure of the relative accuracy of different meshes (by comparing the

energy associated with the respective FE solutions on these meshes). Once the algorithm has

been introduced it is evaluated on a variety of test problems, each with its own distinctive

features and geometric constraints, in order to demonstrate its effectiveness and computational

efficiency.

4.1 Introduction

As discussed in the previous chapter, the finite element method (FEM) is one of the most widely

used approaches for solving PDEs, which arise across multiple applications in computational

mechanics. The key feature in determining the efficiency of the FEM on any given problem is

the quality of the mesh: in general terms, the finer the mesh the better the solution but the

greater the computational cost of obtaining it. This trade-off has led to vast body of research

into the generation of high-quality FE meshes over decades. In this chapter, the objective is to

41

4.1. Introduction Chapter 4. Mesh for 3D elasticity

predict the mesh size distribution in order to generate the best possible non-uniform tetrahedral

mesh for a predetermined number of degrees of freedom.

Interest in the use of data driven methods to obtain solutions has grown significantly in recent

years. In this work however, we do not aim to apply NNs to estimate PDE solutions directly:

instead we continue to consider their use to estimate optimal meshes with which to compute

traditional FE approximations. We present a universal deep-learning-based mesh generation

system, MeshingNet3D, that extends our initial 2D ideas (last chapter), by building upon

classical a posteriori error estimation techniques and adopting a new local coordinate system.

Consequently, MeshingNet3D is able to guide non-uniform mesh generation for a wide range of

PDE systems with rich variations of geometries, BCs and PDE parameters.

4.1.1 Non-uniform mesh generation

As outlined in Chapter 2, when applying FEM to approximate the solution of a computational

mechanics problem, it is necessary to define both the type of elements and the computational

mesh upon which the approximation is sought. In this subsection we expand this discussion,

and that provided in Section 3.1, by describing in more detail the typical work flow that is used

for adaptive mesh generation for elliptic problems in three dimensions.

The simplest elements are piecewise linear functions on simplexes (triangle in 2D and tetrahedra

in 3D) however other choices are widely used. In 3D, these include higher order Lagrange

elements (also defined on tetrahedra), trilinear and triquadratic elements (defined on octahedra)

and more general elements associated with discontinuous Galerkin methods, which may be

applied on hybrid meshes (J. Chan et al. 2016). In this chapter we restrict our consideration

to unstructural tetrahedral meshes (Si 2015; Geuzaine and Remacle 2009). Structured meshes

of octahedra do have some advantages, such as requiring less memory, however they are less

flexible when considering complex geometries or when targeting highly non-uniform meshes,

with optimal approximation properties, which is the goal of this work. When the volumes of

the elements in a given mesh are approximately equal, and the aspect ratio of each tetrahedron

is bounded by a small constant, we refer to the mesh as being uniform. Theoretical results

about the asymptotic convergence of the FEM typically hold for sequences of finer and finer

uniform meshes (Strang and Fix 1973). For many problems such meshes are not the best

choice however: since the error in the corresponding FE solution may be much greater on some

42

Chapter 4. Mesh for 3D elasticity 4.1. Introduction

elements than on others. In such cases it would usually be far better to have more elements in

the “high error” regions and fewer elements in the “low error” regions. The resulting mesh may

have the same number of elements in total (with a non-uniform size distribution) but permit a

much more accurate FE representation of the true solution. Ideally, we would like to identify

an element size distribution to ensure that a prescribed global error tolerance can be obtained

with the fewest possible number of elements. In practice this is attempted through the use of

prior knowledge to control the mesh size distribution (e.g. geometrical information or a priori

analysis Apel, Benedix, et al. 2011) or through an iterative process based around a posteriori

error estimates for intermediate solutions (Stevenson 2007).

This iterative approach to mesh generation consists of three steps: (i) compute an FE solution

on a coarse mesh (for some problems this method might miss features if the mesh is excessively

coarse but for linear elasiticity it works fine); (ii) estimate the error locally throughout this

solution; (iii) adapt the mesh based upon this estimate. At the next iteration these steps are

repeated, beginning with the mesh produced in (iii).

There is a large body of work on the development of cheap and reliable a posteriori error

estimates. Popular approaches include those which involve solving a set of local problems on

each element, or on small patches of elements, to directly estimate the error function (Ainsworth

and Oden 2011; Bank and Weiser 1985), and those based upon the recovery of derivatives of

the solution field by sampling at particular points and then interpolating with a higher degree

polynomial (Zienkiewicz and Zhu 1987; Zienkiewicz and Zhu 1992). For example, in the context

of linear elasticity problems, the elasticity energy density of a computed solution is evaluated

at each element and the recovered energy density value at each vertex is defined to be the

average of its adjacent elements. The local stress error is then proportional to the difference

between the recovered piece-wise linear energy density and the original piece-wise constant

values, (Zienkiewicz and Zhu 1987). Considering its wide application in engineering practice,

this “ZZ error estimate” has been used as the baseline in our work, to generate comparative data

(and meshes) from which MeshingNet3D will be trained, and against which it will be evaluated.

On the third step no matter the type of refinement (h or r), the iterative process will generally

require multiple passes to obtain a high quality final mesh. This therefore becomes a time-

consuming pre-processing step - which we seek to avoid in this work.

43

4.2. Methodology Chapter 4. Mesh for 3D elasticity

4.1.2 Mean value coordinates

An important feature of our algorithm is the use of mean value coordinates (MVCs). These are

a generalization of the barycentric coordinate system for simplexes (Hormann and Floater 2006;

Floater 2003), to polygons in 2D and polyhedra with triangular faces in 3D (Floater et al. 2005),

whereby the coordinates of any point within the polygon/polyhedron may be expressed as a

convex combination of the positions of the boundary vertices. Consequently, all interior points

in the neighbourhood of an arbitrary boundary vertex have a high value of the corresponding

MVC component. MVCs also have a number of properties that make them attractive choices

as input parameters to a DNN, for example their local smoothness with respect to spatial

variations, as well as being both scale and and rotationally invariant.

4.2 Methodology

The goal of this research is to develop a robust, and widely applicable mesh generation procedure

for the efficient FE solution of systems of elliptic PDEs in three space dimensions. Our particular

emphasis here is on the equations of linear elasticity, however the approach described in this

section may equally be applied to any family of problems for which a reliable a posteriori local

error estimator is available to support the training phase for our neural network. In the first

subsection we provide an overview of our methodology, with further details on the software

design, training data generation and the training of the deep network given in the following

subsections. Wherever possible we have maintained notations introduced for the 2D case in

Chapter 3.

4.2.1 Theory

We seek to automatically generate high quality FE meshes for arbitrary instances within a given

family of PDE problems, where each instance is defined by the domain geometry G (from a

predefined family of possible geometries), the PDE parameters M, and the applied boundary

conditions B. For any given mesh, the corresponding FE solution is assumed to be a unique

solution, for which we have available a means of determining the local error. This computed

a posteriori error is also assumed to be unique, and provides a mechanism for determining a

desired FE element size for each location within the domain. Consequently, in order to generate

a pseudo-optimal FE mesh we seek to estimate a mapping F that represents an ideal spatial

44

Chapter 4. Mesh for 3D elasticity 4.2. Methodology

ditribution of the FE element sizes:

F : X → S (4.1)

Here, X is the specified location in the domain and S is the target element isotropic size (for

example average edge length) at X. This is precisely the information required by a 3D mesh

generator in order to generate a non-uniform, unstructured finite element mesh. Noting that

we define each instance by its specific geometry, parameter values and boundary conditions, we

may express this mapping more precisely as:

F : X → S(G,B,M ;X) (4.2)

Our goal is to make use of offline training to create a neural network that is able to learn the

mapping

F : G,B,M,X → S (4.3)

After training, the NN is able to predict a pseudo-optimal mesh size distribution for unseen

problems. Specifically, given G,B,M for any problem, and an arbitrary sample point X, the

NN outputs a target element size at the sample point. This is demonstrated in Figure 4.1 that

G,B,M,X are inputs and s is output of the NN.

4.2.2 Software and evaluation

In this chapter we use Tetgen (Si 2015) for tetrahedral mesh generation, and FreeFem++

(Hecht 2012) to assemble and solve the corresponding global FE systems. The input to Tetgen

includes a .poly file containing vertices and edges of polygons that define the boundary of the

computational domain. From this file Tetgen is able to generate a uniform mesh based upon a

single parameter, indicating a constant target element size. To generate a non-uniform mesh,

Tetgen reads a background mesh from .b.ele, .b.node and .b.face files, and an element size list file

.b.mtr, that defines target element sizes corresponding to the vertices of the background mesh.

Having defined a valid mesh, FreeFem++ is able to solve variational problems that are user

defined. To do this it executes a .edp script file containing information such as: how to import

the mesh; what type of finite element to use, what the specific variational form is; and which

solver to apply. In this chapter all examples are based upon the use of linear tetrahedral elements

(as generated by Tetgen) and the Lamé solver (user customised solver for the equations of linear

45

4.2. Methodology Chapter 4. Mesh for 3D elasticity

elasticity). For the mass production of training problems a simple script has been produced that

allows an appropriate .poly file to be generated for a given geometry G. Then, for each geometry

this calls FreeFem++ to obtain linear elasticity solutions for a range of material parameters (M)

and boundary conditions (B). Note that FreeFem++ not only solves the elasticity equations

but also computes the total stored energy (see Equation 3.6), which may be used to evaluate

the quality of a given FE solution. This is because the underlying PDE system corresponds to

an energy minimization problem, so the analytic solution minimizes the energy function over

all functions from the appropriate Soblov space ((H1
E)

3 in this case). On the other hand, the

FE solution minimizes the energy over all functions in the space of piecewise linear functions on

the given tetrahedral mesh. Since this is a subspace of (H1
E)

3, the energy corresponding to the

FE solution is always greater than the energy of the analytic solution. Therefore, the lower the

energy associated with the computed FE solution the better the solution. Consequently, the

quality of any given set of tetrahedral meshes, for a particular problem, may be ranked based

upon the computed energy corresponding to the finite element solution on each mesh: the lower

the energy the better the mesh. We will again use this observation as part of the evaluation of

our approach.

4.2.3 Data generation

Training data is required in order to sample the mapping of equation 4.2. Each training problem

is defined by parameters that uniquely define the geometry (G), PDE parameters (M) and

boundary conditions (B). For each such problem, multiple training data are generated by

specifying numerous points, X, at which the target mesh size is given. This is illustrated in

Figure 4.1: for which there are 3000 test problems, each of which generates multiple inputs,

corresponding to different points X in the domain. The precise number of points X is problem-

dependent which should be sufficient to represent the spatial mesh size variation throughout

the domain (too many points will not decrease the training performance but will slow down

the data generation). For each input the generated output, used to train the NN, is the target

mesh size, S, for that point and that problem.

The value of S is computed using a variation of the iterative approach to mesh generation,

based upon a posteriori error estimation (see Subsection 4.1.1). For each problem we generate a

relatively coarse uniform mesh and compute the corresponding FE solution and error estimate.

In this work we use the “ZZ” energy estimate. However, for different problems or different

46

Chapter 4. Mesh for 3D elasticity 4.2. Methodology

Figure 4.1: Illustration of the training data for MeshingNet3D : each individual problem is
defined by the geometry G, the PDE parameters M and the boundary condition parameters B
(not shown here). However for each such problem there are multiple sample points, X, in the
domain, with the corresponding local mesh size S specified.

quantities of interest, other choices are possible. For each sample point, X, the estimated local

error, E(X), can be converted to a target element size using an inverse relationship such as

S(X) =
K

E(X)
, (4.4)

for some scaling coefficient K. This is the value of S(X) used to define Equation 4.2, as

illustrated in Figure 4.1. The effect of the scaling coefficient is to control the total number of

elements in the non-uniform mesh that is generated based upon the target local size distribution

S(X). Hence, for each test problem, K may be adjusted iteratively in order to obtain a target

number of elements in the non-uniform mesh (or a target total error in the FE solution). There

is mesh optimisation for the training data.

Note that the precise definition of the input vector in Figure 4.1 has to be problem dependent: a

parameterization of the family of domains is required to define G; the number of free parameters

in the PDE systems has to be predetermined; and the possible boundary conditions must also be

parameterized. For each example shown in the experiments section of this chapter a different

input vector has therefore been prescribed. Nevertheless, the methodology described here is

shown to work robustly in all settings of different inputs.

The final component required for the data generation is the algorithm to select the sample points

X for each of the training problems. This is achieved via two steps: first an initial non-uniform

47

4.2. Methodology Chapter 4. Mesh for 3D elasticity

mesh with predefined target element number is generated (e.g. by Tetgen) based upon the a

posteriori error computed on the coarse uniform mesh; Then we sample (each element of the

non-uniform mesh has the same possibility been chosen) a fixed percentage of the elements of

this mesh (we find that 10% is adequate), choosing each X to be the MVCs of the centroids of

the sampled elements. Note that the advantage of sampling from the non-uniform, rather than

the uniform, mesh is that the training data is weighted based upon the error distribution: our

experiments show this to be advantageous. Though we sample elements for training, we have

to predict target element size for all coarse mesh element when tested on unseen problems.

4.2.4 Training and using the neural network

The deep learning platform that we use in this work is Keras based on Tensorflow. Our networks

are fully connected, typically with six hidden layers, though we find that our results are not

especially sensitive to the number of layers or the precise number of neurons per layer. We

do observe however that it is advantageous to first increase and then decrease the number of

neurons per layer as we pass forward through the network. There is always only one neuron in

the output layer. The activation functions selected in this model are rectified linear function

(ReLU) for hidden units, with linear activation in the output layer. It is known from the

study of PINNs that ReLU can lead to models that train very poorly (Zhao et al. 2023, Wang,

Peng, et al. 2022) as the model is biased towards expressing the low-frequency spatial modes

of the solutions and neglects the higher-order modes. However, we find ReLU performs good

enough for out task. Before training, the input data is linearly normalised and 10% is selected

for validation (monitoring the validation loss during training can help to identify and prevent

over-fitting). The training itself uses mean square error loss and the stochastic gradient descent

optimiser, Adam, with batch sizes of 128: for each of the examples considered in this paper this

takes no longer than 3 hours on a Nvidia RTX 2070 graphic card.

Once trained, the NN can be used to guide mesh generation for unseen problems in real time.

Given a new problem, defined by G, M and B, a uniform background mesh is generated based

upon G alone. For each element in this background mesh we compute the MVC of its centre

and concatenate this with the problem parameters to form an input vector for the NN. The

corresponding output is the target element size at the centre of that element. The background

mesh, with its associated target element size distribution, is then used to allow Tetgen to

generate the desired non-uniform mesh. If the total number of elements in this mesh is outside

48

Chapter 4. Mesh for 3D elasticity 4.3. Computational experiments

the required range then each S(X) may be scaled linearly before generating an updated non-

uniform mesh. In this way, an adapted tetrahedral mesh of a specified size is generated directly,

without the need to compute a sequence of FE solutions and a posteriori error estimates, as

would otherwise be the case. Our framework can generalise over different numbers of input

nodes becuase each time NN only predicts element size at one location.

4.3 Computational experiments

We present four computational tests which allow us to analyse the performing of MeshingNet3D

across a range of different problems, geometries, boundary conditions and PDE parameters. The

first and the third case involve prismatic geometries, which permit the description of spatial

locations based upon “2.5D MVCs”. These are composed of regular 2D MVCs in the x-y planes

plus an additional z-coordinate, whilst the final example uses general polyhedral geometries and

fully 3D MVCs.

For each of the examples we provide a brief description of the problem, followed by a discussion

of the network topology used (including the specific input vector) and the training undertaken.

We then present results based upon 500 unseen test problems. These results compare the FE

solutions computed on the NN-guided mesh with those computed on a “ground truth” mesh of

similar size, generated using the same ZZ a posteriori error estimator that was applied to train

the network. We also compare against the FE solution computed on a uniform mesh with a

similar number of elments. To facilitate these comparisons, for each of the 500 test problems, we

compute the difference between the total energy of the FE solution on the NN-guided mesh with

that of the FE solution on the comparison mesh. We then provide a histogram to illustrate the

proportion of the test cases in different binned error ranges. A negative value of the difference

indicates that the solution on the NN-based mesh has a lower energy and is therefore superior.

4.3.1 Clamped beam

We consider the problem of an over-hanging beam (under gravity), with different cross sections

(G) and variable boundary conditions (B). In this case the material parameters (M) are not

varied (the specific inputs to the Lamé solver in FreeFEM++ being: density = 8000, Young’s

modulus = 210× 109 and Poisson’s ratio = 0.27).

49

4.3. Computational experiments Chapter 4. Mesh for 3D elasticity

Problem specification

The beam is a right prism with a convex quadrilateral cross section as illustrated in Figure 4.2.

This cross section has vertices at (x0, y0) = (0, 0) and (x1, y1) = (0, 2), and also at (x2, y2) and

(x3, y3) which are randomly sampled within x2 ∈ (1.5, 2.5), y2 ∈ (1.5, 2.5), x3 ∈ (−0.5, 0.5) and

y3 ∈ (1.5, 2.5) for each problem. The length of the beam is fixed (0 ≤ z ≤ 6) and a boundary

shear, with components (fx, fy, 0), is applied at the face z = 6. The face z = 0 is clamped and

the bottom face is clamped between z = 0 and z = ζ, where 2 < ζ < 4 (randomly sampled for

each problem). All other boundaries are free, subject to zero normal stress. Hence the input

vector for this problem requires values for x2, y2, x3, y3, ζ, fx and fy, along with the MVCs of

the point at which the mesh spacing is required. In these examples, the parameters fx and fy

are constrained to lie in the range (−106, 106).

Figure 4.2: The geometry and boundary conditions for the Clamped beam, with constant cross
section along the z-axis. The gravity is uniformly distributed over the volume. The surfaces
bounded by four vertices with blue triangles are clamped.

Network information

In this example our fully-connected network has six hidden layers with 32, 64, 128, 64, 32 and 8

neurons respectively. Training data is generated based upon solving 3000 individual problems,

each of which is obtained using a random choice for each input parameter (selected uniformly

from its range), leading to 10, 740, 746 individual input-output pairs. Of these, 10% are selected

for validation and the remainder are used for training using a batch size of 128. The training

takes 10 epochs, meaning that each item of data has been used an average of 10 times. Figure 4.3

50

Chapter 4. Mesh for 3D elasticity 4.3. Computational experiments

shows the rates of convergence for the training, along with the corresponding validation curve.

Figure 4.3: Training and validation loss of the clamped beam experiment

Results

Figure 4.4 demonstrates that the NN-guided meshes generally perform at least as well as the

ground truth meshes (generated from explicitly-computed a posteriori error estimates) and, as

expected, much better than uniform meshes. Two typical examples are shown in Figure 4.5,

which compares NN-guided meshes (bottom) with their ground-truth counterparts (top). In

each case the high mesh density near y = 0 and z = ζ is easily captured. More significantly

however, high and low mesh density regions are captured well throughout the domain, with a

smooth variation between these regions.

Figure 4.4: For the Clamped beam, FE energies of neural network (NN) generated meshes
versus uniform mesh FE energies and ground truth (GT) energies. The height of each bar
represents the proportion of experiment results in the energy range shown on the x-axis (as a
percentage of the ground truth energy).

51

4.3. Computational experiments Chapter 4. Mesh for 3D elasticity

Figure 4.5: For the Clamped beam, ground truth meshes (top) and NN-guided meshes (bottom)
for two test cases.

4.3.2 Laminar material

In this example we consider a variation of the previous problem for which the material parame-

ters (M) are now permitted to vary but the geometry (G) and the boundary conditions (B) are

kept fixed.

Problem specification

A beam of dimensions 1×1×5 is composed of two horizontal layers, as illustrated in Figure 4.6.

Each layer has a Young’s modulus (Etop and Ebot) between 109 and 1011, and a Poisson’s ratio

(νtop and νbot) between 0.05 and 0.45. The densities of the two materials are both 8000 and

the interface between the layers is at a height y = h ∈ (0.2, 0.8). Half of the bottom surface

(y = 0, 0 < z < 2.5) is clamped, as is the surface z = 0. On the surface z = 5 a traction of

amplitude 10000 is applied in the x direction, with all other boundaries free to displace under

zero normal-stress conditions. Hence the input vector for this problem requires values for Etop,

Ebot, νtop, νbot and h, along with the coordinates of the point at which the mesh spacing

is required. We actually use log10 (Etop) and log10 (Ebot) as the first two input parameters.

This is because a large variation in Young’s modulus results in a relatively small variation in

52

Chapter 4. Mesh for 3D elasticity 4.3. Computational experiments

the mesh size and using logarithm eases the learning of the neural networks.

Figure 4.6: The boundary conditions and loads of the laminar material where the height of
the interface is random

Network information

In this example our fully-connected network has five hidden layers with 32, 64, 32, 16 and 8

neurons respectively. Training data is generated based upon solving 3000 individual problems,

each of which is obtained using a random choice for each input parameter (selected uniformly

from its range), leading to 19, 719, 750 individual input-output pairs. Of these, 10% are selected

for validation and the remainder are used for training using a batch size of 128. The training

takes 15 epochs, and Figure 4.7 shows the rates of convergence for this training, along with the

corresponding validation curve.

Figure 4.7: Training and validation loss of the laminar material experiment

Results

Figure 4.8 demonstrates that, as in the previous example, the NN-guided meshes typically

perform on a par with the ground truth meshes, and much better than uniform meshes. Two

typical examples are shown in Figure 4.9: in the case (a) and (c)

(log10 (Etop), log10 (Ebot), νtop, νbot, h) = (10.82, 9.17, 0.34, 0.20, 0.34) ,

53

4.3. Computational experiments Chapter 4. Mesh for 3D elasticity

and for (b) and (d)

(log10 (Etop), log10 (Ebot), νtop, νbot, h) = (9.17, 10.33, 0.44, 0.21, 0.41) .

In the first example the top layer has the higher Young’s modulus, which leads to a higher

mesh density in this layer (for both the NN-guided and the ground-truth meshes). Conversely,

in the second example the bottom material is stiffer than the top and we see a very different

distribution of the element size. In each case there is a strong correlation between the NN-guided

mesh and the ground-truth case.

Figure 4.8: For the Laminar material, FE energies of neural network (NN) generated meshes
versus uniform mesh FE energies and ground truth (GT) energies. The height of each bar
represents the proportion of experiment results in the energy range shown on the x-axis (as a
percentage of the ground truth energy).

4.3.3 Hex-bolt with a hole

We consider the problem of a hex-bolt (under torque), with different cross sections (G). In

this case the material parameters (M) are not varied (the specific inputs to the Lamé solver in

FreeFEM++ being: density = 8000, Young’s modulus = 210× 109 and Poisson’s ratio = 0.27).

Problem specification

A regular hexagonal prism has an octagonal prism hole inside it where the height of the prism

is h = 4 (Figure 4.10 left). On the cross section, the edge length of the regular hexagon is 4

and the octagon is coaxial with the hexagon. The eight vertices of the octagon lie on the same

circle, whose radius varies r ∈ (0.2, 1.0). The arc angles between vertices are random. Linear

distributed pressures are applied to create a torque on the top (p = −10000x + 10000) and

54

Chapter 4. Mesh for 3D elasticity 4.3. Computational experiments

Figure 4.9: (a)(c) and (b)(d) are two problems in the laminar material experiments. (a) and
(b) are ground truth meshes and (c) and (d) are non-uniform meshes guided by the neural
network. A comparison of (b) and (d) shows NN does not refines well at the interface between
two laminars.

bottom (p = −10000x− 10000) surfaces. The eight surfaces of the hole are clamped. The input

vectors for this problem include the position of the octagon’s eight vertices and the MVCs of

the target point expressed with respect to both the vertices of the outer hexagon and the inner

octagon (combined with its z coordinate, z ∈ (−1.0, 0.0)).

Network information

In this example our fully-connected network has four hidden layers with 32, 64, 16 and 8 neurons

respectively. Training data is generated based upon solving 3000 individual problems, each of

which is obtained using a random choice for each input parameter (selected uniformly from

its range), leading to 10, 748, 618 individual input-output pairs. Of these, 10% are selected for

validation and the remainder are used for training using a batch size of 128. The training takes

10 epochs and Figure 4.11 shows the convergence for this training, along with the corresponding

validation curve.

Results

Figure 4.12 shows that theMeshingNet3D meshes are again better than uniform meshes and that

the NN mesh energies are very close to those of the ground truth. As illustrated in Figure 4.13,

55

4.3. Computational experiments Chapter 4. Mesh for 3D elasticity

Figure 4.10: The boundary conditions and loads of the hex−bolt (left) and irregular polyhedron
(right). On hex − bolt, eight surfaces of the hole are clamped, linear distributed pressure is
applied on top and bottom surfaces.

Figure 4.11: Training and validation loss of the hex-bolt with a hole experiment

the NN can successfully guide non-uniform mesh generation on very different geometries. This

example also illustrates the success of the proposed approach on non-simply-connected domains.

Note that the second problem (on the right) in Figure 4.13 illustrates one of the worst performing

cases for the NN mesh relative to the ground truth: here, the NN mesh is more uniform than

the ground truth (though still a vast improvement on a standard uniform mesh).

4.3.4 Irregular polyhedron

We now consider the problem of mesh generation on arbitrary twelve-faced polyhedra, with

a range of geometries (G) and variable boundary conditions (B). In this case the material

parameters (M) are not varied (the specific inputs to the Lamé solver in FreeFEM++ being:

density = 8000, Young’s modulus = 210× 109 and Poisson’s ratio = 0.27).

56

Chapter 4. Mesh for 3D elasticity 4.3. Computational experiments

Figure 4.12: For hex− bolt with a hole, FE energies of neural network (NN) generated meshes
versus uniform mesh FE energies and ground truth (GT) energies. The height of each bar
represents the proportion of experiment results in the energy range shown on the x-axis (as a
percentage of the ground truth energy).

Problem specification

An irregular polyhedron with twelve triangular faces and eight vertices is illustrated in Fig 4.10

(right). The four “bottom” vertices are constrained to be co-planar and one of the two bottom

triangular surfaces (i.e. the two triangles whose union is bounded by the four co-planar vertices)

is clamped. In all training and testing problems the geometries are subject to the restriction

that the four bottom vertices always lie in the same plane. A normal pressure of amplitude

10000 is applied on the two “top” surfaces (i.e. the triangular faces whose union is bounded

by the other four vertices) and zero normal stress is applied on the other nine triangular faces.

The input vectors for this problem define the Cartesian coordinates of the eight vertices and

the corresponding MVCs of the point at which the mesh spacing is required.

Network information

In this example our fully-connected network has four hidden layers with 32, 64, 32, 16, and 8

neurons respectively. Training data is generated based upon solving 3000 individual problems,

each of which is obtained using a random choice for each input parameter, leading to 7, 383, 999

individual input-output pairs. Of these, 10% are selected for validation and the remainder are

used for training using a batch size of 128. We use the network after training 10 epochs and

Figure 4.14 shows the convergence for this training, along with the corresponding validation

curve.

57

4.3. Computational experiments Chapter 4. Mesh for 3D elasticity

Figure 4.13: Hex-bolt experiment, ground truth meshes (top) and NN meshes (bottom) , the
left and right are two problems that only have different geometries

Results

From Figure 4.15 it is clear that the MeshingNet3D meshes are significantly better than uniform

meshes and that the solution energies are relatively close to those of the ground truth: though

in a very small number of cases the ground truth mesh is slightly superior. One such example

is shown in Figure 4.16 (three views of the same problem), where we see that the NN mesh

appears to be more conservative in some aspects of its local refinement. Nevertheless, even in

this worst-case scenario, the MeshingNet3D mesh generally has the same regions of refinement

as the ground truth mesh.

58

Chapter 4. Mesh for 3D elasticity 4.3. Computational experiments

Figure 4.14: Training and validation loss of the irregular experiment

Figure 4.15: For irregular polyhedron, FE energies of neural network (NN) generated meshes
versus uniform mesh FE energies and ground truth (GT) energies. The height of each bar
represents the proportion of experiment results in the energy range shown on the x-axis (as a
percentage of the ground truth energy).

4.3.5 Discussion

Across the four experiments described in this section we have shown results over a range of

geometries, boundary conditions and material parameters. For each different family of geome-

tries, we need to train a NN separately. Further work could be done to make the framework

more generalisable than this. For each problem the input layer of the NN is necessarily of a

different dimension, which is dependent on the problem specification (along with the MVCs of

the target point), whereas the output is always a single value representing the predicted mesh

spacing at the target point. The number and size of the hidden layers is not a critical choice,

but does naturally have some impact on the performance of the network.

As an example, to illustrate this, Table 4.1 shows the performance of five different networks

when applied to the fourth of the test problems above. In each case the networks have been

trained on the same data set, with validation losses having converged after 10 epochs. The

59

4.3. Computational experiments Chapter 4. Mesh for 3D elasticity

NN NN structure training epochs normalised average energy

NN1 32-16-8 10 9.0× 10−3

NN2 32-64-16-8 10 8.1× 10−3

NN3 32-64-32-16-8 10 7.9× 10−3

NN4 32-64-128-32-16-8 10 8.1× 10−3

NN5 32-64-128-64-32-16-8 10 8.6× 10−3

Table 4.1: Comparison of 5 different fully connected NNs based upon normalised average ener-
gies of the finite element solutions. NN3 gives the lowest average energy and therefore provides
the best mean performance.

networks are then used to compute meshes on the same testing set of 500 unseen problems and

the finite element solutions computed on all meshes. The energy of each solution is normalised

against the energy of the finite element solution computed on the “ground truth” mesh so as

to allow a meaningful average to be taken across all 500 cases. This is the value shown in

the “normalised average energy” column of Table 4.1: so, the lower this energy the better the

meshes are on average. The results shown in Subsection 4.3.4 are generated using NN3 from

the table but NN2 and NN4 produced meshes of very similar quality. The network denoted by

NN1 appears to have too few degrees of freedom to be able to model the non-uniform mesh

patterns satisfactorily, whereas the network denoted by NN5 likely has too many degrees of

freedom for the size of our training data set. Table 4.1 shows that NN3 has the lowest energy

and best results. With the number of layers increases or decreases the energies both increase.

If the degree of freedom is too low the NN can hardly model the complexity mapping. If the

degree of freedom is too high, very large volume of training data is needed otherwise the trained

NN performs poorly.

Note that our NNs are always “spindly”, with the greatest number of neurons in the inner layers.

We find from experiments that this kind of network appears to have the best performance for

the set of tasks considered in this work. Given that our problems have a relatively small number

of inputs and a very small number of outputs (typically one) this is perhaps not surprising: to

capture the highly nonlinear relationships between the inputs and the mesh spacing across the

domain, significant complexity must be introduced into the network between the input and

output layers.

Finally, we note that MeshingNet3D has the potential to make simulations more efficient for

designers who use pre-built 3D models provided within Computer Aidd Design (CAD) software

to accelerate design. From screws and bolts, to washers and bearings, CAD can not only define

60

Chapter 4. Mesh for 3D elasticity 4.3. Computational experiments

geometries but also materials. Embedding pre-trained MeshingNet3D in these CAD libraries

could save meshing cost and provide high-quality non-uniform meshes. Similarly, MeshingNet3D

can help parametric design where the NN is pre-trained for each geometry topology: under

the guidance of the NN an appropriate mesh is generated in response to each iteration of the

design. To implement this efficiently the challenge will be in defining suitable family of boundary

conditions as NN inputs, where forces due to interacting objects are unknown a priori. However,

for components in a specific assembly, if contacts are defined, the load may be inferred by data-

driven methods.

61

4.3. Computational experiments Chapter 4. Mesh for 3D elasticity

Figure 4.16: A ground truth mesh (a, c and e) and corresponding NN mesh (b, d and f) selected
from 500 testing problems, they are in front (a and b), right (c and d) and bottom (e and f)
views.

62

Chapter 5

Mesh for transient PDEs

In Chapter 3 and Chapter 4 we have used supervised trained neural networks to guide non-

uniform mesh generation for steady PDEs. The success of instant high quality non-uniform

mesh generation encourages us to explore deep learning guided mesh adaptation for transient

PDEs, which is the topic of this chapter.

5.1 Introduction

For transient PDEs, the choice of the time step, initial conditions are critical. Compared with

steady PDEs, transient PDEs are generally solved step by step through time incrementally and

incur significant computational time cost. There are solutions for multiple time steps therefore

rich data can be collected when solving transient PDEs.

Transient PDEs include linear cases such as the heat equation and the wave equation and non-

linear cases such as the Navier-Stokes equations and the Hamilton-Jacobi equations. Transient

PDEs are usually solved by discretizing separately in space and time. The time domain is dis-

cretized into uniform or nonuniform intervals then there are finite time steps. The finite element

approximation only needs to cover the spatial part of the domain (but with time dependent

coefficients). A single uniformly spaced spatial mesh can be used for solving transient PDEs

however it may be far from optimal depending on the nature of the solution. The solution in

space changes with time and therefore the nature of the solution can alter significantly through-

out a simulation. A good mesh at one time step may not be a good mesh at a later step. For a

new time step, if the solution varies significantly, mesh adapted to the latest solution is required.

63

5.2. Methodology Chapter 5. Mesh for transient PDEs

In this chapter we use deep learning to predict a mesh that is adapted to the latest solution

without seeing the latest solution but knowing the previous solutions. We first introduce the

methodology of the framework then present three experiments.

In this chapter we focus on the CFD applications. As introduced in subsection 2.4.2, machine

learning for CFD mesh adaptation has been actively studied in recent years. Most of these

research aims to generate static non-uniform mesh even through the optimal meshes for many

CFD applications are generally transient. Neural networks can map a boundary geometry to

a non-uniform mesh by supervised learning. However, to capture the transient flow structure,

such as vortex, shock and fluid interface is very difficult without seeing the solution. To tackle

this challenge, we use the data of previous time steps and apply graph convolution networks for

spatio-temporal prediction. Because we can predict an adaptive mesh before the FE solution,

mesh adaptation and the solver of FE are possible to run in parallel. This novel framework has

the potential to significantly accelerate the simulation. The goal of this chapter is to develop a

new framework for the efficient generation of adaptive unstructured FE meshes for the systems

of transient PDEs.

5.2 Methodology

Our particular emphasis here is on fluid dynamics, however the approach described in this

section may equally be applied to other transient problems for which a reliable a posteriori

local estimator is available to support the training phase for our neural network. The most well

known PDEs for fluid dynamics are the Navier-Stokes (N-S) equations:

ρ(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
) = ρfx −

∂p

∂x
+ µ(

∂2u

∂x2
+
∂2u

∂y2
)

ρ(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
) = ρfy −

∂p

∂y
+ µ(

∂2v

∂x2
+
∂2v

∂y2
) (5.1)

u and v are the horizontal and vertical velocity. ρ is the density and µ is the viscosity. fx and

fy are the external force. p is the pressure. The density is not time-dependent since the fluid is

incompressible.

In the first subsection we provide an overview of our methodology, with further details on the

64

Chapter 5. Mesh for transient PDEs 5.2. Methodology

software design, training data generation and the training of the deep network given in the

following subsections.

5.2.1 Theory

In the conventional mesh adaptive FE-CFD process, FE and adaptive mesh generation work in

serial. Generally there are 4 steps:

1. Computing to obtain solution (u, v, ρ)t on FE space V t
h

2. Error estimation, (u, v, ρ)t → Et

3. Mesh generation, Et → T t+1
h

4. Read mesh and interpolate (u, v, ρ)t onto new FE space V t+1
h

In the first step, the FE space V t
h is defined by the spatial mesh T t

h and the selected finite

elements for each variable. For the time step t, (u, v, ρ)t−1 is known and the velocity and density

is updated to (u, v, ρ)t by solving the weak form of the N-S equation (the weak formulation does

not absolutely hold the equations but instead with respects to certain test functions).

In the second step, the state of the art error estimation is based on the FE solution (u, v, ρ)t,

so called a posteriori error. There are many possible choices of error estimator and we describe

one specfic example as used in FreeFem++ (Hecht 2012). Hessian (Huang 2005, Wessner et al.

2003) is the default anisotropic mesh matrix builder in FreeFem++ and we use it for error

estimation in this chapter. The error is used to compute the metric for automatic non-uniform

mesh generation. As we are interested in information on element shapes as well as sizes, we

need to convert the solution to at each point x ∈ Ω three parameters. A metric tensor M is

given at every point x ∈ Ω by

M(x) = R(x)

γ1 0

0 γ2

R(x)−1 (5.2)

where γ1 > 0 and γ2 > 0 are the eigenvalues ofM(x) and R(x) is a rotation matrix. We need to

choose a metric tensor that has the property that its eigenvalues are similar when the solution

field is isotropic and very different when it is anisotropic. We can then use this to construct

a mesh that aligns with any local anisotropy in the solution. Suppose we only work with one

variable denoted η. Assume that a first solution has been computed over a given mesh and let

65

5.2. Methodology Chapter 5. Mesh for transient PDEs

η be continuous piecewise quadratic interpolated. Then the interpolation error depends on the

Hessian matrix of η (Castro-Dıaz et al. 1997).

H(x) =

 ∂2η/∂x2 ∂2η/∂x∂y

∂2η/∂x∂y ∂2η/∂y2

 = R(x)

λ1 0

0 λ2

R(x)−1 (5.3)

and the matrix tensor M is defined by

M(x) = R(x)

|λ1| 0

0 |λ2|

R(x)−1 (5.4)

The interpolation error is characterized by the p+1st derivates. Error equidistribution yields

the mesh stretching as

hi
hj

= (|λj |/|λi|)1/(p+1) (5.5)

hi and hj are mesh sizes at two perpendicular directions and p is the order of the element.

In the third step, the mesh is globally regenerated. The anisotropic mesh size control is based on

the error distribution Et(x) which in this chapter is the metric M(x). In most cases the metric

is defined on the non-uniform mesh T t
h however it can also be defined on a uniform background

mesh Tb. The background mesh should be moderate fine so that can hold the solution and

mesh size metric. The FreeFem++ embeded mesh generator BAMG (Hecht 1998) applys the

adjustable smoothing procedure and limits the maximum subdivision of a background edge.

BAMG uses M(x) which we introduced above, to generate 2D anisotropic adaptive mesh.

In the fourth step, the nonuniform mesh T t+1
h (generated by BAMG) is read and a new FE

space V t+1
h is built upon this new mesh. The solution (u, v, ρ)t is interpolated from FE space V t

h

to V t+1
h . FreeFem++ provides automatic solution interpolation. The Barycentric interpolation

(using Barycentric coordinates as interpolation weights which is very efficient) does not conform

mass conservation therefore frequent interpolation could be a source of error. We always adapt

the mesh for every time step and there is no big change in the solution between time steps.

Figure 5.1 top demonstrates a breakdown of a single time step for a typical actual fluids sim-

ulation case where error estimation and mesh generation takes significant time (note that the

timings given are ficticious but intended to be representative). This motivates us to find a new

66

Chapter 5. Mesh for transient PDEs 5.2. Methodology

framework (Figure 5.1 bottom) letting FE and adaptive mesh generation work in parallel (they

are not coupled). A problem arise when we do mesh generation for t+1 before FE solution for

step t comes out: we can only estimate the error for t-1 where the optimal mesh for t+1 requires

error estimate for t. Our proposed solution is to approximate the error for t using a sequence

of history of error estimates. In this chapter we use a pretrained DNN to predict the error at

time t based upon the error estimates at time t-2 and t-1. This will allow us to generate the

mesh for the next time step in parallel with computing the solution at the current time step.

Figure 5.1: A comparison of conventional FE with mesh adaptation process and our proposed
parallel framework. In one these fictitious fluid simulations, the conventional method takes 4.1
seconds for a time step while the proposed parallel framework only takes 2.1 seconds. GPU is
not good at all the tasks (especially when working with unstructured meshes) thus is only used
for running the NN (inference).

5.2.2 Overview

As outlined above, the requirement is to predict what the error estimator distribution, M(x),

will be at the end of the current time step prior to actually computing the N-S solution for that

time step. We proposed to do this using a trained DNN whose input is the actual M(x) at the

previous two time steps. Since this investigation is intended as a proof of concept, we have not

actually implemented it in parallel as shown in Figure 5.1.

We apply a data driven model, based upon a graph convolutional network to make predictions.

The supervised trained network reads previously estimated error and predicts new error dis-

67

5.2. Methodology Chapter 5. Mesh for transient PDEs

tribution instantly. In the new framework, parallel computing starts at the finish of FE (0s

at Figure 5.1) and ends (synchronise) at the completion of new mesh generation and FE (2.1s

at Figure 5.1). The mesh reading, solution interpolation and FE work on CPU 0. The error

estimation and mesh generation work on CPU 1 and the neural network works on the GPU.

The parallel speedup gets highest when the two CPUs or CPU threads require similar execution

times at each time step.

We use graph neural network because the data structure is non-Euclidean. Graph is a structure

made of vertices and edges. An FE mesh can be regarded as an undirected graph. The nodes

of the FE mesh corresponds to the vertices of the graph and the edges of FE mesh elements

corresponds to the edges of the graph. We use graph convolutional networks (GCN) (use the

background mesh as the graph) to make spatio-temporal predictions for mesh metric distribution

M :

M t = GCN(M t−2,M t−1) (5.6)

which is applied at every node all coupled. M t is not always positive definite. Different from

autoregressive model, the output variable depends on its previous values non-linearly. We

assume that the variation of the metric distribution is continuous across time steps. This is

because the evolution of fluids structures are generally continuous. For example, if we know

where a shock is at more than one previous time step, we know how fast it moves and can

predict where it is likely to be at the new time step. It is possible to access more than two

previous time steps however we think using only two time steps is adequate for this proof of

concept.

We use first order truncated expansion in terms of Chebyshev polynomials to approximate a

graph convolution layer (introduced in Subsection 2.3):

gθ′ ⋆ (M
t−2,M t−1) ≈ θ′kTk(L̃)(M

t−2,M t−1) (5.7)

Where L̃ = 2
λmax

L − IN . λmax denotes the largest eigenvalue of the graph Laplacian L (M t−2

and M t−1 must have a same graph). The Chebyshev polynomials are recursively defined as

Tk(x) = 2xTk−1 − Tk−2(x), with T0(x) = 1 and T1(x) = x. Note that the expression is k

localized (the output nodal value depends on inputs value of the nodes within k distance) since

68

Chapter 5. Mesh for transient PDEs 5.2. Methodology

it is a kth-order polynomial in the Laplacian. We use k = 1, for the first GCN layer the

output depends on M t−2(x), M t−2(x′), M t−1(x) and M t−1(x′) where when x is the location

of the target nodes, x′ is the location of nodes connected the target nodes with only one edge

(graph convolution is done discretely in space). During graph convolution, there is information

exchange on the edges and for each layer information only move 0 or 1 edge distance. When the

GCN is composed of N layers, M t(x) depends M t−1 and M t−2 nodes within N edges distance

of x. The closer the nodes to the target node, the stronger the dependency.

5.2.3 Architecture of the software

Figure 5.2: The original set up of the simulation with adaptive mesh

Figure 5.3: The architecture of our proposed model

In this chapter we use BAMG (the mesh generation module of FreeFem++) for 2D anisotropy

mesh generation and FreeFem++ to assemble and solve the corresponding global FE systems.

69

5.2. Methodology Chapter 5. Mesh for transient PDEs

BAMG is guided by the Hessian metric at each point on the background mesh.

Figure 5.2 demonstrates the setup of simulation with adaptive mesh. “original” means this is

based upon the approach implemented in FreeFem++. simulation.edp is the executable script

of FreeFem++. clock stores the time step. Simulation of each time step generates solutions in

u/ and v/. The solutions are interpolated onto the background mesh Tb.mesh. BAMG read the

solution on the background mesh and generates adaptive mesh in mesh/. Finally simulation.edp

reads the adaptive mesh.

Figure 5.3 shows the software architecture of the project. The project is published at Z. Zhang

2023. FreeFem++ scripts train.edp and test.edp generates training data and test the trained NN.

The two .edp scripts are the core of the model. First, a geometry is defined and a background

mesh Tb.mesh is established on the geometry. Then dapro.cpp converts Tb.mesh to a sparse

Laplacian matrix of the corresponding graph. An iterative solver is defined for the specific fluid

dynamic problem. At the finish of FE computing of each time step, the solution is stored in the

operation folder. clock stores the time step. In train.edp, operation/train.cpp is called where

error estimation, mesh adaption and data generation take place. In test.edp, transfer.cpp is

called which use gcn/predict.py to predict a new mesh.

Our data-driven model is allocated in the folder gcn. In gcn/pycode/module.py, the neural

network is defined by composition of layers. gcn/pycode/multi graph cnn layer.py and gc-

n/pycode/graph ops.py defines the graph convolution layer. gcn/pycode/filters.py and gcn/py-

code/norm.py are used for computing filters based on graph Laplacian and do normalisation

(introduced in Subsection 5.2.5). gcn/train.py reads data from operation/data to train the

model and save at gcn/model.

5.2.4 Data generation

Data is required to train the model that predicts the error distribution. Each training problem

is uniquely defined by geometry, PDE parameters and boundary conditions. For each problem,

multiple training data are generated at different time steps t, at which error distributions (decide

mesh size metric which is the key to mesh refinement) of t-2, t-1 (as input data) and t (as output

data) are given. The weights of the NN are constant for different time steps. In a single sample,

errors on all vertices of the background mesh are included. We may use data from different

problems (but the same geometry) to train a network. For such case, all the problem are based

70

Chapter 5. Mesh for transient PDEs 5.2. Methodology

on the same background mesh because they share the same filters in the graph convolution

layers.

The a posteriori error estimation is used for both input and output data. First, the latest solu-

tion is interpolated onto the background mesh. Then, the error metric is constructed from the

Hessian of the solution on the background mesh. The Hessian for each node of the background

mesh is composed of three independent values to control the anisotropic mesh size. Note that

our framework is agnostic to the specific choice of error estimator, other choices may work for

different problems where we only have tested Hessian. When we prescribe the range of total

element number of meshes, we use a global scaling coefficient K which multiplies the metric. For

each time step, K may be adjusted iteratively in order to obtain a target number of elements

in the non-uniform mesh. It is possible to predict K directly considering the ratio of current

and expected elements number.

5.2.5 Normalisation

Normalisation is the process of translating data into the range [0,1] and is necessary for our

deep learning model. The way to translate mesh metric M to Mnormalised is linear:

Mnormalised
i,j = (Mi,j −mini,j)/(maxi,j −mini,j) (5.8)

where the key is to find the upper bound maxi,j and lower bound mini,j for M . Because when

testing the entire solution is unknown before simulation, the bounds are discovered during the

simulation. maxglobal and minglobal are the global maximum and minimum metric find during

the simulation (initialise max by a very negative value, update max if find a value is greater

than the current max). max(x) andmin(x) are the local maximum and minimum metric find at

the location x. Therefore we have global and local normalisation strategy. Local normalisation

is better at enhancing the performance of our deep learning model, where maximum and min-

imum are spatio-temporal dependent distributions. In local normalisation, the range between

maximum and minimum at each location is smaller than global normalisation. Learning and

predictions in a smaller range is more precise.

71

5.2. Methodology Chapter 5. Mesh for transient PDEs

5.2.6 Training and applying the neural networks

We use Keras based on TensorFlow as the deep learning platform. Our networks are typically

constructed with five hidden graph convolution layers. We use first order Chebyshev polynomial

(the basis of graph convolution algorithm) for the filter wherein each layer information passing

distance is one (the output value on a vertex depends on the input value of the same vertex

and its connected neighbours). Using multiple graph convolution layers enables longer distance

information passing. We observe that using an adequate number of layers is important and using

higher order Chebyshev polynomial does not help when only using a small number of layers.

This means there is little direct dependency of long distance neighbours in spatio-temporal

prediction. It is advantageous to first increase then decrease the number of channels (in each

channel we have data on the graph) per layer as we pass forward through the network. We set

8-16-32-16-8 channels in the hidden layers. The activation functions selected in the model are

rectified linear functions. The training uses mean square error loss and the stochastic gradient

descent optimiser, Adam (Kingma and Ba 2015), with batch sizes of 8-32 for different problems.

For each of examples considered in this chapter training takes no longer than 10 hours on a

Nvidia RTX 2070 graphic card. The bottleneck of training is the memory size of the graphic

card which limits the total size of the training data that the graphic card can load in.

Once trained, the NN can be used to predict mesh metrics and guide non-uniform mesh gen-

eration for unseen problems. Given a new problem, defined by geometry, PDE parameter,

boundary condition and initial condition, a uniform background mesh is generated based on the

geometry alone. The background mesh is generally coarser than the actual FE mesh and is the

basis for graph convolution. The graph convolution filter is computed according to the graph

Laplacian of the background mesh. The neural network reads the previous metrics defined on

the background mesh and uses the convolution filter to predict the new metric to guide mesh

adaptation. If we prescribe the target element number of the non-uniform mesh, we adjust the

element size proportionally to reach the target element number. Even though we proposed the

parallel computing framework, the main focus of this chapter is to show the supervised learning

performance. We use serial computing to simulate the parallel computing and emphasis on

demonstrating the application of the concept rather than rate of accelerating.

72

Chapter 5. Mesh for transient PDEs 5.3. Experiments

5.2.7 Evaluation

We evaluate the performance of the target mesh by constructing reference meshes. The reference

meshes are the very highly refined nonuniform adaptive meshes. In each time step, we compute

the target solution and reference solution based on the two meshes. The target solution is

interpolated onto the reference mesh. Then we compute the root mean square (RMS) difference

of the target solution and the reference solution as the error of the target solution. The RMS

error is sensitive to outliers.

For best evaluating the accuracy of the NN predicted mesh, we also set up the ground truth

mesh, something we refer to as the “baseline” mesh and their corresponding solutions. At time

step t, the NN mesh for t+1 is predicted based on the error estimation of t-1 and t-2. The

ground truth mesh is based on the error estimation of t, which requires the solution of t and

mesh generation cannot work in parallel with FE. The baseline mesh (nonuniform) for t+1 is

based on the error estimation of t-1. In the baseline method mesh generation and FE can work

in parallel without extra techniques. Our goal is that the NN mesh outperforms the baseline

mesh and closely reproduces the ground truth mesh.

5.3 Experiments

We present three computational tests which allow us to analyse the performance of the new

framework across different problems, geometries, boundary conditions and initial conditions. We

choose test problems with significant flow structure where mesh adaptation is needed. The first

problem is incompressible flow past cylinders with the famous Von Karman vortices in the wake

of cylinders. The second test considers the interacting flow of two immiscible incompressible

fluids. The final case is for the supersonic flow of a compressible fluid around an obstacle.

For each of the examples we provide a description of the problem, followed by a discussion of

neural network used. We then present the results based on unseen test problems. These results

compare the solutions computed on the NN-guided mesh with those computed on the “ground

truth” and “baseline” mesh of similar size.

73

5.3. Experiments Chapter 5. Mesh for transient PDEs

5.3.1 Flow past by cylinders

The following experiment considers incompressible flow with parabolic inflow velocity past cylin-

ders in a channel. The Reynolds numbers of the experiment sets are 100, 200 and 400. In this

range, the flow develops a Karman vortex street, which results from periodic vortex shedding.

This demonstrates the performance of our model on incompressible unsteady laminar flow.

An Newtonian, incompressible viscous fluid satisfies:

∂tu+ u · ∇u+∇p− ν∆u = 0 in Ω

∇ · u = 0 in Ω (5.9)

Where u is the velocity, p is the pressure and ν is the viscosity coefficient. We use a projec-

tion algorithm solver provided by FreeFem++ official document to solve N-S equation. The

algorithm proposed by Chorin (Chorin 1967, Chorin 1968) is:

1

δt
[ut+1 − utoXt] +∇pt − ν∆ut = 0

ν∂nu|Γout = 0

−∆pt+1 = −∇ · utoXt (5.10)

where δt is the time step interval and n is the normal direction of the boundary. uoX=u(x-

u(x)δt) since ∂tu+ u · ∇u is approximated by method of characteristics. t denotes the current

time step.

We use Chorin’s algorithm with free boundary condition at outlet, to compute a correction q,

to the pressure.

−∆q = ∇ · u

q = 0 on Γout (5.11)

and define

ut+1 = ũ+ P∇qδt

pt+1 = pt − q (5.12)

74

Chapter 5. Mesh for transient PDEs 5.3. Experiments

where P is the L2 projection with mass lumping. ũ is the (ut+1, vt+1) of Chorin’s algorithm.

P1 elements are used. Above equations is provided by FreeFem++ official document case ”A

Projection Algorithm for the Navier-Stokes equations”.

To generate a non-uniform mesh, we first interpolate the solution onto the background mesh

then do error estimation on the background mesh. This is suitable when there is no abrupt

discontinuity in mesh size.

Problem specification

Figure 5.4: The geometry G1 (top) and G2 (bottom)

We do experiments on two geometries G1 (single cylinder) and G2 (double cylinders) (Figure

5.4) who share the same outer boundary but have different inner boundaries and topology. The

outer boundary crops a rectangle Γ1 : x ∈ [−2, 8], y ∈ [−1, 1]. G1 has inner boundary Γ2:

x = 0.5 + cos(s)/8, y = sin(s)/8. G2 has inner boundary Γ3: x = 0.5 + cos(s)/8, y =

−0.3 + sin(s)/8 and Γ4: x = 0.5 + cos(s)/8, y = 0.3 + sin(s)/8.

The boundary conditions are u = 0, v = 0 at y = 1 ∪ y = −1 ∪ Γ2 ∪ Γ3 ∪ Γ4, v = 0 at x = 8,

u = −ky2 + k, v = 0 at x = −2. k is the amplitude of the parabolic inlet velocity which we

choose 0.5, 1 and 2 in our experiments. The viscosity ν = 0.00125 and the time step δt = 0.05.

The Reynolds number Re = uL
ν = 200k.

Network information

In this example we choose the following six problems in Table 5.1 to train six NNs. In each

problem 500 time steps are used to train the NN. Training takes 3000 epochs and the batch

75

5.3. Experiments Chapter 5. Mesh for transient PDEs

problem NN geometry inlet velocity

1 NN1 G2 -y2 + 1

2 NN2 G2 -2y2 + 2

3 NN3 G2 -0.5y2 + 0.5

4 NN4 G1 -y2 + 1

5 NN5 G1 -2y2 + 2

6 NN6 G1 -0.5y2 + 0.5

Table 5.1: A set of 6 training problems with different geometry and inlet velocity. They are
used to train 6 NNs from NN1 to NN6.

sizes are 32. The input dimension is (498,9320,6) and output dimension is (498,9320,3). The

first entry is 498 because the last data contains time steps 498, 499 and 500. The second 9320

is the number of nodes in the background mesh. The third entries are 6 and 3 because input

has two time steps of 3 anisotropic metrics and the output has the single time step of three

metrics. Even though the input and output dimension seems massive, NN runs instantly, thus

the framework is highly practical. We use local normalisation in this test problem. Training

use Adam optimizer and mean square error loss. The output channel dimensions of each layer

are 8, 16, 32, 16, 8 and 3.

Results

We only use problem 1 in Table 5.1 as the test problem and test NN1-NN6 with a comparison

against baseline mesh and ground truth mesh, using ultra fine mesh as reference. The ultra fine

mesh is nonuniform based upon Hessian of the solution and the error tolerance is very low so

that the mesh is globally highly refined. There are about 400000 vertices in the ultra fine mesh.

The details of evaluation methods are in Subsection 5.2.7. Figure 5.5 demonstrates the flow

evolution of the test problem. The Reynolds number of the test problem is 200. The vortices

generates at the cylinders. The clock wise and anticlockwise vortices alternately shedding and

shape the vortex street. A high quality adaptive mesh should be refined at the vortices. We

find the Hessian error estimator refines the mesh at the boundaries of the vortices rather than

the center of the vortices (See Figure 5.8 ground truth mesh).

A visual comparison of meshes are in Figure 5.8 for time step 300. The reference mesh is

almost uniformly using the finest elements and is globally finer than the other meshes. The

ground truth mesh is fine near the cylinders and at the boundary of vortices. Compared with

the ground truth mesh, the NN meshes have some region at the centre of the vortices that the

76

Chapter 5. Mesh for transient PDEs 5.3. Experiments

elements are larger. The overall quality of the NN mesh is good and there is no case that fails

completely.

Figure 5.7 shows the error of ground truth, baseline and NN meshes solutions. Each of the NNs

performs well where NN1 and NN5 even outperforms the ground truth. The difference of 6 NNs

is that they are trained on different data. This demonstrates the NN has strong generalization

capability regarding different geometries and boundary conditions. When work on a different

geometry, we only need to change the convolution filter corresponds to the graph of the new

geometry. Note that for this specific test the baseline solution is better than the ground truth.

The reason is perhaps the Hessian is not the best metric for mesh adaptation and perhaps

refining at the boundaries of vortices is not the best strategy. A better strategy is refine at

the centre of the vortices according to vorticity and reinforcement learning may provide insight

about what is good refinement. Figure 5.6 shows the velocity error of NN5 mesh and baseline

mesh using this ground truth solution as reference. It shows NN mesh is closer to the ground

truth mesh than the baseline mesh which means the NN learns the ground truth very well. In

conclusion, this test case shows NN can learn the mesh adaptation strategy very well though

the ground truth meshes may not always be based upon an optimal strategy themselves in this

particular case.

5.3.2 Two phase flow

Multiphase flows are of high interest in fluid engineering where they arise in many applications.

The non-uniform mesh can be very efficient where the fluid boundary should be refined. We

consider a simple test case which two immiscible incompressible fluids are sloshing in a closed

box. This test case and the solving method comes from De Vuyst 2013.

To generate a nonuniform mesh, we first do error estimation then interpolate the error onto the

background mesh. This is suitable because on the fluid interface there is abrupt discontinuity

in mesh size and the refined region is very “sharp”. This has the risk that the mesh size jumps

across time steps at some regions.

Problem specification

Let us consider two Newtonian viscous incompressible immiscible fluids k = 1,2 with respective

density ρk, k = 1, 2 and constant viscosity νk. A spatial bounded domain Ω is filled up by

77

5.3. Experiments Chapter 5. Mesh for transient PDEs

problem initial ψ

1 0.2+0.3x-y

2 0.2+0.35x-y

3 0.1+0.3x-y

4 0.1+0.35x-y

5 0.1+0.4x-y

Table 5.2: A set of 5 training problems with different initial condition.

the two fluids. The surface tension forces at fluid interface is neglected in this study. In many

applications the surface tension is a critical driving force but we are not considering it here for

simplicity due to the focus on mesh adaptivity. A level set function is used for front tracking.

We consider a levelset variable ψ such that ψ < 0 in Ωt
1 and ψ > 0 in Ωt

2. The level ψ = 0

exactly tracks the fluid interface σ.

The geometry of the closed box is a 2 × 1 rectangle, the density of the two fluids are ρ1 = 1,

ρ2 = 8 and the viscosity are ν1 = 0.05, ν2 = 0.01. The fluids are under gravity and the gravity

is 9.81. The initial condition is problem dependent by setting the function of psi. The mesh is

adapted according to the Hessian of the density.

Network information

We constructed five training problems with different initial condition (Table 5.2). Because each

training problem has only 100 steps, we combine the data from 5 training problems to train a

neural network. Training takes 2000 epochs and the batch size is 32. We use local normalisation

in this test problem. Training uses Adam optimizer and mean square error as loss. The output

channel dimensions of each layer are 8, 16, 32, 16, 8 and 3.

Results

We have done two experiments, one with initial fluid interface y=0.25+0.3x, one with interface

y=0.1+0.375x. Figure 5.9 demonstrates the evolution of the flow with initial boundary y=0.1

+0.375x. The interface is straight at the beginning. At time steps 10-30 the both ends of the

interface is curve, the middle of the interface is almost straight and the slope is getting lower

and lower. At time steps 50-90 the interface is high at the left and low at the right. At time step

100 the whole interface is almost flat. For experiment with initial interface y=0.25+0.3x, Figure

5.10 shows the L1 per area density error of the ground truth, baseline and NN meshes solution.

The error is computed using ultra fine mesh result as reference. At first 50 steps, NN solutions

78

Chapter 5. Mesh for transient PDEs 5.3. Experiments

are close to ground truth solutions and better than the baseline. At time step 50-100 all three

meshes solution are very close. Figure 5.11 demonstrates NN meshes at this experiment. We

created a single NN in this case based upon training from multiple initial configurations. At the

first 50 steps the fluid interface moves very fast therefore NN and ground truth solutions are

significantly better than the baseline. At 50-100, the fluid interface is flater and moves slower

therefore all three solutions are close.

For experiment with initial interface y=0.1+0.375x, Figure 5.12 shows the density error of

ground truth, baseline and NN meshes solution. In steps 1-30, NN error is lower than baseline

and close to the ground truth. In steps 31 -70, NN error is close to the baseline and higher than

the ground truth. In steps 71-100, error of all three meshes are very close. In this experiment

NN does not work as well as last experiment and we will analyse in the next paragraph.

From Figure 5.13 we can find at step 15 the mesh is refined at the fluid interface very well.

However in step 25 the mesh is not fine enough inside the red circle. This is the reason that

from step 25 the NN solution error arises compared with the ground truth. We try to find

reasons that NN fail to make good spatio-temporal predictions here. Firstly, the ground truth

mesh is relatively coarse in the red circle. Secondly, because the fluid interface is very sharp, the

error estimation is done on the non-uniform mesh then error is interpolate onto the background

mesh. Figure 5.14 shows in step 23 in red circle the mesh is relatively coarse (this is reasonable

because the ground truth mesh is also relatively coarse here). Because the local mesh is coarse

the error is high. In step 24 the mesh is relatively fine and thus the error is relatively low. By

spatio-temporal prediction NN reads the error of step 23 and 24 to predict error of step 25.

From step 23 to 24 there is a strong tendency that local error decrease therefore the predicted

error of 25 is low. The local mesh size of step 25 is large since the predicted error is low. This

mechanism results in the jump of mesh size and error.

5.3.3 Compressible flow

The following experiment tests compressible supersonic flow past an obstacle. The Mach num-

bers of the experiment sets are 1.5-2. In this range, the flow develops shock, which is sharp

variation of density and velocity. This demonstrates the performance of our model on compress-

ible flow. The solver used is from FreeFem++ example “a flow with shocks”. Compressible Euler

equations can be discretized with FEM with flux up-winding scheme but it is not implemented in

79

5.3. Experiments Chapter 5. Mesh for transient PDEs

FreeFem++. Nevertheless acceptable results can be obtained with the method of characteristics

provided that the mean values f̄ = 1
2(f

+ + f−) are used at shocks in the scheme.

∂tρ+ ū∇ρ+ ρ̄∇ · u = 0

ρ̄∂tu+
ρ̄u

ρ̄
∇u+∇p = 0

∂tρ+ ū∇p+ (γ − 1)p̄∇ · u = 0 (5.13)

Where γ is the ratio of the heat capacity. p̄ = 1
2(p

+ + p−). One solving possibility (used by

FreeFem++) is to couple u, p and then update ρ.

To generate a non-uniform mesh, we first interpolate the solution onto the background mesh

then do error estimation onto the background mesh.

Problem specification

We do experiments on a fixed geometry (Figure 5.15). The geometry is a 2x1 channel with a

radius 0.2 half circle obstacle whose center is at (0.9,0). The inlet is x = 0 and the outlet is

x = 2. The angle of attack is 0. The time step for training problem is δt = 0.005 and for testing

problem is δt = 0.004. This test the generalizability of the NN to work on a different time step

to that with which is was trained. For the training problem the Mach number is 2. For the

testing problem, the Mach number is 1.5 at the beginning and increases to 2.0 at step 25 and

keeps to step 200. Figure 5.16 demonstrates the density evolution of the test problem. There

is a shock (an abrupt discontinuity in the flow field) at the left of the obstacle. With the time

increases, the shock moves towards the obstacle and gets straight. A good mesh should be fine

and highly anisotropic (the element size along the shock should be significantly larger) at the

shock.

Network information

In this example we use only one problem to generate training data. Training takes 3000 epochs

and the batch sizes are 32. The input dimension is (298, 16386, 6) and output dimension is

(298, 16386, 3). We use local normalisation in this test problem. Training uses mean square

error as loss function and Adam as optimizer. The output channel dimensions of each layer are

80

Chapter 5. Mesh for transient PDEs 5.4. Discussion

8, 16, 32, 16, 8 and 3.

Results

A visual comparison of meshes are in Figure 5.19 for time step 200. The background mesh is

isotropic and finer near the obstacle. The ground truth, baseline mesh and NN mesh are very

similar where the meshes are globally coarse but refined at the shock on the left of the obstacle

and at the area behind the obstacle. The NN mesh is relatively coarser on the left of the shock.

The reference mesh is globally much finer than the other meshes.

Figure 5.17 shows the root mean square density error of NN mesh, ground mesh and baseline

mesh solutions using ultra fine mesh solution as reference. The NN and baseline mesh both

performs very close to the ground truth. The baseline is good because the optimal meshes of

adjacent time steps are very close. This is because the solver requires the time step to be very

small and the shock hardly moves between time steps. Figure 5.18 is a comparison of NN and

baseline against the ground truth. At time steps 1-150 the baseline is closer to the ground truth

and at 150-200 NN is closer to the ground truth. In conclusion, NN performs good in this test

case but the baseline is also good enough.

5.4 Discussion

In this chapter we have introduced a novel parallel computing framework for FE with adaptive

mesh refinement. In the conventional method only CPUs are applied for parallel computing

of mesh generation and FE computing. We find an opportunity to apply GPU and machine

learning to accelerate FE simulation. Our framework allows non-uniform mesh generation and

FE computing run in parallel which is potentially highly efficient especially when we have

abundant computing resources. In our experiments we have not compared the computational

costs of the methods.

Our framework shows different performance at different test cases. In the flow past cylinder

case, the NN learns the ground truth very well. The baseline method (the baseline method

use last time step solution for mesh adaptation) outperforms the ground truth method. The

reason might be the Hessian is not the optimal method for mesh refinement. The NN learns the

ground truth better than the baseline reproduces the ground truth. In the two phase flow case,

NN guided meshes are close to the ground truth mesh and are better than the baseline meshes.

81

5.4. Discussion Chapter 5. Mesh for transient PDEs

In the compressible flow case, the movement of the shock is very slow. In this condition, the

ground truth solution, baseline solution and NN solution all have close performance. The NN

learns the ground truth very well and the baseline also does a good job. The efficient way to

do such simulation is to use the baseline method which uses the previous solution to guide new

mesh generation. Our approach shows advantage when the optimal mesh varies significantly

across time steps.

Some settings are flexible yet critical in this chapter. The choice of background mesh is problem

dependent. We recommend to try different background mesh and perhaps more than one mesh

work well. We only use uniform background mesh though non-uniform background mesh could

also work. The element size should be comparable with the movement of fluid structure in

one time step. If the element size of the background mesh is too large, it is hard to guide

mesh adaptation. If the element size is too small, it is hard for NN to make spatio-temporal

prediction and the computational expense is high. The choice of mesh generator parameters

such as smoothness factor is also problem dependent. We set the parameters to ensure the mesh

size varies smoothly on the computational domain. The smoothness factor is not too high so

that non-uniform mesh is efficient, with the ground truth mesh outperforms the baseline mesh.

The work in this chapter also explores the potential of deep learning. Supervised learning usually

requires large volume of training data which creates a problem space. After training, the neural

network is expected to solve problems in the problem space. However, in our first experiment,

only a sequence of 300 time steps simulation data are used to train a NN. The trained NN is

successfully applied on an unseen problem. NNs do not need large volume of training data to

converge, a single sequence data with a hundred time steps seems adequate. We only use NN

to extrapolate from t-2, t-1 to t in time steps however more options are possible for example

from t-4, t-2 to t. Note that even the geometry of the training problem and test problem can

be different. When apply on a new problem with new geometry, we can use the trained NN

with fixed weights. However the filter should be changed. The reason of the high generalisation

ability is the NN learns the relation between features of adjacent time steps rather than directly

learning the features. And the relation to learn is consistent so that only a small number of

training data supports the good learning results.

82

Chapter 5. Mesh for transient PDEs 5.4. Discussion

Figure 5.5: The evolution vertical velocity of the flow past cylinders in time steps 2, 100, 200
and 300.

83

5.4. Discussion Chapter 5. Mesh for transient PDEs

Figure 5.6: The L1 error of velocity per area during 300 time steps of simulation, all the meshes
are non-uniform and time dependent. The reference solution is from “ground truth” mesh
simulation

Figure 5.7: The L1 error of velocity per area during 300 time steps of simulation, all the meshes
are non-uniform and time dependent. The reference solution is from ultra fine “reference” mesh
simulation.

84

Chapter 5. Mesh for transient PDEs 5.4. Discussion

Figure 5.8: From top to bottom are the background mesh, ground truth mesh, baseline mesh,
NN3 mesh, NN5 mesh and reference mesh. The reference mesh has around 440000 elements
and other meshes have around 130000 elements.

85

5.4. Discussion Chapter 5. Mesh for transient PDEs

Figure 5.9: The evolution of the sloping two phase flow in time steps 2, 10, 20, 30, 40, 50, 60,
70, 80, 90 and 100. The yellow region is filled with low density flow and the red region is filled
with high density flow.

86

Chapter 5. Mesh for transient PDEs 5.4. Discussion

Figure 5.10: The L1 error of density per area during 100 time steps of simulation, all the meshes
are non-uniform and time dependent. Initial fluid interface is y=0.25+0.3x.

87

5.4. Discussion Chapter 5. Mesh for transient PDEs

Figure 5.11: The NN mesh of time step 10, 20, 40, 60, 80, 100,initial interface is y=0.25+0.6x.

Figure 5.12: The L1 error of density per area during 100 time steps of simulation, all the meshes
are non-uniform and time dependent. Initial fluid interface is y=0.1+0.375x.

88

Chapter 5. Mesh for transient PDEs 5.4. Discussion

Figure 5.13: From top to bottom are the NN mesh at step 15, NN mesh at step 25 and ground
truth mesh at step 24.

89

5.4. Discussion Chapter 5. Mesh for transient PDEs

Figure 5.14: Top is the NN mesh at step 23 and bottom is the NN mesh at step 24. The mesh
near the interface is not very anisotropic. This is perhaps because at the interface the mesh is
isotropic and other region in refined by smoothness.

90

Chapter 5. Mesh for transient PDEs 5.4. Discussion

Figure 5.15: The geometry of the compressible flow experiment

Figure 5.16: The evolution of density of the flow in time steps 0, 25, 50, 100, 150 and 200.

91

5.4. Discussion Chapter 5. Mesh for transient PDEs

Figure 5.17: The L1 error of density per area during 200 time steps of simulation, all the meshes
are non-uniform and time dependent.

Figure 5.18: The L1 error of density per area during 200 time steps of simulation, all the
meshes are non-uniform and time dependent. The reference solution is from “ground truth”
mesh simulation

92

Chapter 5. Mesh for transient PDEs 5.4. Discussion

Figure 5.19: From left top to bottom are the background mesh, ground truth mesh, baseline
mesh, NN mesh and reference mesh. We refine the mesh according to the Hessian of the density.

93

Chapter 6

Conclusion and future work

Machine learning for solving PDEs is an open question that is attracting significant research

interest. There are opportunities in supervised and unsupervised PDE solvers. In this thesis

we choose instead to use traditional finite element solvers but to make use of machine learning

to support high-quality non-uniform mesh generation. Early research along these lines usually

requires expert knowledge and can be only used for very specific problems. Recently, ML aided

CFD mesh generation (Huang, Krügener, et al. 2021, Tingfan et al. 2022) has been studied

where transient mesh adaptation is very difficult.

6.1 Conclusion

In this thesis we have studied deep learning guided non-uniform FE mesh generation. For 2D

steady PDEs, we used the idea of previous studies that use neural networks to predict element

size distribution. With the implementation of mean value coordinates, we use NN for instant

non-uniform mesh generation, with respecting to domain geometry and PDE parameters. By

analysing the FE solution of different meshes, the NN mesh is close to the ground truth (meshes

refined by a posteriori error estimate) and much better than the uniform mesh. Our framework

does not require prior knowledge such as the mesh should be fine at the corner and can be

applied on a wide range of steady PDEs. We have extended our framework to 3D and tested it

on 4 different 3D linear elasticity problems. NNs work well when predicting meshes regarding

different geometries, boundary conditions and material propeerties. Althrough we only applied

above framework to linear PDE systems, the approach should be equally applicable to nonlinear

94

Chapter 6. Conclusion and future work 6.2. Future work

PDE systems too.

For transient PDE, we use GCN (graph convolutional networks) to do spatio-temporal prediction

and predict mesh metric from previous mesh metrics. Our approach enables mesh generation

for next time step in parallel with computing the solution in the current step. The meshes

guided by NN have potential to be better than the baseline non-uniform mesh and close to

the ground truth. Our method first utilises the data produced from previous time steps and

therefore succeeds on transient mesh generation.

6.2 Future work

There are many potential ways in which the research undertake in this thesis could be extended

in the future. Some specific examples include the following suggestions.

1. For steady PDEs, only polygons in 2D and polyhedra in 3D have been meshed. A wider

range of geometries such as geometries with curves and curved surface should be considered

and more complex NNs should be used to realise this target.

2. For steady PDEs, embedding pre-trained NNs in computer aided design (CAD) software

could save meshing costs. It is a question how to use CAD format as the input to the

NNs.

3. For transient PDEs, we use serial computing to simulate parallel computing as a proof

of concept. We run all the processes on a single CPU thread. In the future, real parallel

computing should be applied and accelerating performace should be tested.

4. For transient PDEs, we only solve problems with fixed domain geometries, it is a challenge

problem to solve problems with variant domain geometries. The way to use the background

mesh should be changed since the background mesh is no longer fixed.

95

References

Ahrens, James, Geveci, Berk, Law, Charles, Hansen, C, and Johnson, C (2005). “36-paraview:

An end-user tool for large-data visualization”. In: The visualization handbook 717, pp. 50038–

1.

Ainsworth, Mark and Oden (1997). “A posteriori error estimation in finite element analysis”.

In: Computer methods in applied mechanics and engineering 142.1-2, pp. 1–88.

– (2011). A posteriori error estimation in finite element analysis. Vol. 37. John Wiley & Sons.

Alfonzetti, S, Coco, S, Cavalieri, S, and Malgeri, M (1996). “Automatic mesh generation by the

let-it-grow neural network”. In: IEEE transactions on magnetics 32.3, pp. 1349–1352.

Amestoy, Patrick R, Duff, Iain S, L’Excellent, Jean-Yves, and Koster, Jacko (2000). “MUMPS:

a general purpose distributed memory sparse solver”. In: International Workshop on Applied

Parallel Computing. Springer, pp. 121–130.

Angermann, Lutz (2002). “A posteriori error estimates for FEM with violated Galerkin orthog-

onality”. In: Numerical Methods for Partial Differential Equations: An International Journal

18.2, pp. 241–259.

Apel, Thomas, Benedix, Olaf, Sirch, Dieter, and Vexler, Boris (2011). “A priori mesh grading

for an elliptic problem with Dirac right-hand side”. In: SIAM journal on numerical analysis

49.3, pp. 992–1005.

Apel, Thomas, Grosman, Sergei, Jimack, Peter K, and Meyer, Arnd (2004). “A new method-

ology for anisotropic mesh refinement based upon error gradients”. In: Applied Numerical

Mathematics 50.3-4, pp. 329–341.

96

REFERENCES REFERENCES

Babuška, Ivo and Rheinboldt, Werner C (1978). “A-posteriori error estimates for the finite

element method”. In: International journal for numerical methods in engineering 12.10,

pp. 1597–1615.

Bahreininejad, A, Topping, BHV, and Khan, AI (1996). “Finite element mesh partitioning using

neural networks”. In: Advances in Engineering Software 27.1-2, pp. 103–115.

Baines, Mike J, Hubbard, ME, and Jimack, PK (2005). “A moving mesh finite element algo-

rithm for the adaptive solution of time-dependent partial differential equations with moving

boundaries”. In: Applied Numerical Mathematics 54.3-4, pp. 450–469.

Baker, Timothy J (2005). “Mesh generation: Art or science?” In: Progress in Aerospace Sciences

41.1, pp. 29–63.

Bank, Randolph E and Weiser, Alan (1985). “Some a posteriori error estimators for elliptic

partial differential equations”. In: Mathematics of computation 44.170, pp. 283–301.

Bar-Sinai, Yohai, Hoyer, Stephan, Hickey, Jason, and Brenner, Michael P (2019). “Learning

data-driven discretizations for partial differential equations”. In: Proceedings of the National

Academy of Sciences 116.31, pp. 15344–15349.

Bengio, Yoshua, Courville, Aaron, and Vincent, Pascal (2013). “Representation learning: A

review and new perspectives”. In: IEEE transactions on pattern analysis and machine intel-

ligence 35.8, pp. 1798–1828.

Bern, Marshall W and Plassmann, Paul E (2000). “Mesh Generation.” In: Handbook of compu-

tational geometry 38.

Bohn, Jan and Feischl, Michael (2021). “Recurrent neural networks as optimal mesh refinement

strategies”. In: Computers & Mathematics with Applications 97, pp. 61–76.

Bosman, Peter AN and Thierens, Dirk (2000). “Negative log-likelihood and statistical hypothesis

testing as the basis of model selection in IDEAs”. In.

Bruna, Joan, Zaremba, Wojciech, Szlam, Arthur, and LeCun, Yann (2013). “Spectral networks

and locally connected networks on graphs”. In: arXiv preprint arXiv:1312.6203.

97

REFERENCES REFERENCES

Brunton, Steven L, Noack, Bernd R, and Koumoutsakos, Petros (2020). “Machine learning for

fluid mechanics”. In: Annual review of fluid mechanics 52, pp. 477–508.

Caendish, James C, Field, David A, and Frey, William H (1985). “An apporach to automatic

three-dimensional finite element mesh generation”. In: International journal for numerical

methods in engineering 21.2, pp. 329–347.

Cai, Shengze, Mao, Zhiping, Wang, Zhicheng, Yin, Minglang, and Karniadakis, George Em

(2021). “Physics-informed neural networks (PINNs) for fluid mechanics: A review”. In: Acta

Mechanica Sinica 37.12, pp. 1727–1738.

Carstensen, Carsten and Funken, Stefan A (2001). “Averaging technique for FE–a posteriori

error control in elasticity. Part I: Conforming FEM”. In: Computer Methods in Applied Me-

chanics and Engineering 190.18-19, pp. 2483–2498.

Castro-Dıaz, MJ, Hecht, Frédéric, Mohammadi, Bijan, and Pironneau, O (1997). “Anisotropic

unstructured mesh adaption for flow simulations”. In: International Journal for Numerical

Methods in Fluids 25.4, pp. 475–491.

Chan, Jesse, Wang, Zheng, Modave, Axel, Remacle, Jean-Francois, and Warburton, Tim (2016).

“GPU-accelerated discontinuous Galerkin methods on hybrid meshes”. In: Journal of Com-

putational Physics 318, pp. 142–168.

Chan, Scholz, Felix, and Takacs, Thomas (2022). “Locally refined quad meshing for linear

elasticity problems based on convolutional neural networks”. In: Engineering with Computers

38.5, pp. 4631–4652.

Chang-Hoi, Ahn, Sang-Soo, Lee, Hyuek-Jae, Lee, and Soo-Young, Lee (1991). “A self-organizing

neural network approach for automatic mesh generation”. In: IEEE transactions on magnetics

27.5, pp. 4201–4204.

Chedid, Riad and Najjar, Nayeff (1996). “Automatic finite-element mesh generation using artifi-

cial neural networks-Part I: Prediction of mesh density”. In: IEEE Transactions on Magnetics

32.5, pp. 5173–5178.

98

REFERENCES REFERENCES

Chen and Křıžek, Michal (2006). “What is the smallest possible constant in Céa’s lemma?” In:

Applications of Mathematics 51.2, pp. 129–144.

Chen, Liu, Pang, Yufei, Chen, Jie, Chi, Lihua, and Gong, Chunye (2020). “Developing a new

mesh quality evaluation method based on convolutional neural network”. In: Engineering

Applications of Computational Fluid Mechanics 14.1, pp. 391–400.

Chen, Rubanova, Yulia, Bettencourt, Jesse, and Duvenaud, David K (2018). “Neural ordinary

differential equations”. In: Advances in neural information processing systems, pp. 6571–6583.

Chen, Wenqian, Wang, Qian, Hesthaven, Jan S, and Zhang, Chuhua (2021). “Physics-informed

machine learning for reduced-order modeling of nonlinear problems”. In: Journal of compu-

tational physics 446, p. 110666.

Chen, Xinhai, Li, Tiejun, Wan, Qian, He, Xiaoyu, Gong, Chunye, Pang, Yufei, and Liu, Jie

(2022). “MGNet: a novel differential mesh generation method based on unsupervised neural

networks”. In: Engineering with Computers 38.5, pp. 4409–4421.

Cheng, Siu-Wing, Dey, Tamal K, and Shewchuk, Jonathan (2012). Delaunay mesh generation.

CRC Press.

Chollet, François et al. (2015). Keras. https://keras.io.

Chorin, Alexandre Joel (1967). “The numerical solution of the Navier-Stokes equations for an

incompressible fluid”. In: Bulletin of the American Mathematical Society 73.6, pp. 928–931.

– (1968). “Numerical solution of the Navier-Stokes equations”. In: Mathematics of computation

22.104, pp. 745–762.

Choudhary and al., et (2022). “Recent advances and applications of deep learning methods in

materials science”. In: npj Computational Materials 8.1, p. 59.

Cybenko, George (1989). “Approximation by superpositions of a sigmoidal function”. In: Math-

ematics of control, signals and systems 2.4, pp. 303–314.

99

https://keras.io

REFERENCES REFERENCES

Da’u, Aminu and Salim, Naomie (2020). “Recommendation system based on deep learning

methods: a systematic review and new directions”. In: Artificial Intelligence Review 53.4,

pp. 2709–2748.

De SR Gago, JP, Kelly, Donald W, Zienkiewicz, Olgierd C, and Babuska, I (1983). “A posteriori

error analysis and adaptive processes in the finite element method: Part II—Adaptive mesh

refinement”. In: International journal for numerical methods in engineering 19.11, pp. 1621–

1656.

De Vuyst, Florian (2013). “Numerical modeling of transport problems using freefem++ software–

with examples in biology, CFD, traffic flow and energy transfer”. In.

Doľsak, Bojan, Jezernik, Anton, and Bratko, Ivan (1994). “A knowledge base for finite element

mesh design”. In: Artificial intelligence in engineering 9.1, pp. 19–27.

Dörfler, Willy (1996). “A convergent adaptive algorithm for Poisson’s equation”. In: SIAM

Journal on Numerical Analysis 33.3, pp. 1106–1124.

Duvenaud, David K, Maclaurin, Dougal, Iparraguirre, Jorge, Bombarell, Rafael, Hirzel, Timo-

thy, Aspuru-Guzik, Alán, and Adams, Ryan P (2015). “Convolutional networks on graphs for

learning molecular fingerprints”. In: Advances in neural information processing systems 28.

Dyck, DN, Lowther, DA, and McFee, S (1992). “Determining an approximate finite element

mesh density using neural network techniques”. In: IEEE transactions on magnetics 28.2,

pp. 1767–1770.

Falini, Antonella and Sampoli, Maria Lucia (2021). “Adaptive Refinement in Advection–Diffusion

Problems by Anomaly Detection: A Numerical Study”. In: Algorithms 14.11, p. 328.

Fidkowski, Krzysztof J and Chen (2021). “Metric-based, goal-oriented mesh adaptation using

machine learning”. In: Journal of Computational Physics 426, p. 109957.

Floater, Michael S (2003). “Mean value coordinates”. In: Computer aided geometric design 20.1,

pp. 19–27.

Floater, Michael S, Kós, Géza, and Reimers, Martin (2005). “Mean value coordinates in 3D”.

In: Computer Aided Geometric Design 22.7, pp. 623–631.

100

REFERENCES REFERENCES

Geneva, Nicholas and Zabaras, Nicholas (2020). “Modeling the dynamics of PDE systems with

physics-constrained deep auto-regressive networks”. In: Journal of Computational Physics

403, p. 109056.

Geuzaine, Christophe and Remacle, Jean-François (2009). “Gmsh: A 3-D finite element mesh

generator with built-in pre-and post-processing facilities”. In: International journal for nu-

merical methods in engineering 79.11, pp. 1309–1331.

Gholamalinezhad, Hossein and Khosravi, Hossein (2020). “Pooling methods in deep neural

networks, a review”. In: arXiv preprint arXiv:2009.07485.

Gillette, Andrew, Keith, Brendan, and Petrides, Socratis (2022). “Learning robust marking

policies for adaptive mesh refinement”. In: arXiv preprint arXiv:2207.06339.

Golub, Gene H and Van Loan, Charles F (2013). Matrix computations. JHU press.

Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron (2016). Deep learning. MIT press.

Götz, Markus and Anzt, Hartwig (2018). “Machine learning-aided numerical linear algebra: Con-

volutional neural networks for the efficient preconditioner generation”. In: 2018 IEEE/ACM

9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (scalA).

IEEE, pp. 49–56.

Grätsch, Thomas and Bathe, Klaus-Jürgen (2005). “A posteriori error estimation techniques in

practical finite element analysis”. In: Computers & structures 83.4-5, pp. 235–265.

Gu, Jiuxiang, Wang, Zhenhua, Kuen, Jason, Ma, Lianyang, Shahroudy, Amir, Shuai, Bing,

Liu, Ting, Wang, Xingxing, Wang, Gang, Cai, Jianfei, et al. (2018). “Recent advances in

convolutional neural networks”. In: Pattern recognition 77, pp. 354–377.

Guo, Guodong and Zhang (2019). “A survey on deep learning based face recognition”. In:

Computer vision and image understanding 189, p. 102805.

Hammond, David K, Vandergheynst, Pierre, and Gribonval, Rémi (2011). “Wavelets on graphs

via spectral graph theory”. In: Applied and Computational Harmonic Analysis 30.2, pp. 129–

150.

101

REFERENCES REFERENCES

Han, Jiequn, Jentzen, Arnulf, and E, Weinan (2018). “Solving high-dimensional partial differ-

ential equations using deep learning”. In: Proceedings of the National Academy of Sciences

115.34, pp. 8505–8510.

Hecht, Frédéric (1998). “BAMG: bidimensional anisotropic mesh generator”. In: User Guide.

INRIA, Rocquencourt 17.

– (2012). “New development in FreeFem++”. In: Journal of numerical mathematics 20.3-4,

pp. 251–266.

Higham, Nicholas J (2009). “Cholesky factorization”. In: Wiley interdisciplinary reviews: com-

putational statistics 1.2, pp. 251–254.

Hormann, Kai and Floater, Michael S (2006). “Mean value coordinates for arbitrary planar

polygons”. In: ACM Transactions on Graphics (TOG) 25.4, pp. 1424–1441.

Hsu, Feng-Hsiung (2002). Behind Deep Blue: Building the computer that defeated the world

chess champion. Princeton University Press.

Huang (2005). “Metric tensors for anisotropic mesh generation”. In: Journal of computational

physics 204.2, pp. 633–665.

Huang and al., et (July 2017). “Densely Connected Convolutional Networks”. In: 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269.

Huang, Krügener, Moritz, Brown, Alistair, Menhorn, Friedrich, Bungartz, Hans-Joachim, and

Hartmann, Dirk (2021). “Machine learning-based optimal mesh generation in computational

fluid dynamics”. In: arXiv preprint arXiv:2102.12923.

Huang, Weizhang, Ren, Yuhe, and Russell, Robert D (1994). “Moving mesh methods based

on moving mesh partial differential equations”. In: Journal of Computational Physics 113.2,

pp. 279–290.

Iqbal, Saeed and Carey, Graham F (2002). “Neural nets for mesh assessment”. In: TICAM

Report, pp. 02–02.

102

REFERENCES REFERENCES

Ito, Yasushi, Shih, Alan M, and Soni, Bharat K (2009). “Octree-based reasonable-quality hex-

ahedral mesh generation using a new set of refinement templates”. In: International Journal

for Numerical Methods in Engineering 77.13, pp. 1809–1833.

Kaasschieter, Erik F (1988). “Preconditioned conjugate gradients for solving singular systems”.

In: Journal of Computational and Applied mathematics 24.1-2, pp. 265–275.

Karniadakis, George Em, Kevrekidis, Ioannis G, Lu, Lu, Perdikaris, Paris, Wang, Sifan, and

Yang, Liu (2021). “Physics-informed machine learning”. In: Nature Reviews Physics 3.6,

pp. 422–440.

Kato, Chisachi, Yamade, Yoshinobu, Nagano, Katsuhiro, Kumahata, Kiyoshi, Minami, Kazuo,

and Nishikawa, Tatsuo (2020). “Toward realization of numerical towing-tank tests by wall-

resolved large eddy simulation based on 32 billion grid finite-element computation”. In: SC20:

International Conference for High Performance Computing, Networking, Storage and Analy-

sis. IEEE, pp. 1–13.

Kingma, Diederik P and Ba, Jimmy (2015). “Adam: A method for stochastic optimization”.

In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,

USA, May 7-9, 2015, Conference Track Proceedings.

Kipf, Thomas N and Welling, Max (2017). “Semi-supervised classification with graph convolu-

tional networks”. In: 5th International Conference on Learning Representations, ICLR 2017,

Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.

Kita, Eisuke and Kamiya, Norio (2001). “Error estimation and adaptive mesh refinement in

boundary element method, an overview”. In: Engineering Analysis with Boundary Elements

25.7, pp. 479–495.

Kochkov, Dmitrii, Smith, Jamie A, Alieva, Ayya, Wang, Qing, Brenner, Michael P, and Hoyer,

Stephan (2021). “Machine learning–accelerated computational fluid dynamics”. In: Proceed-

ings of the National Academy of Sciences 118.21, e2101784118.

Kong, Fanwei, Wilson, Nathan, and Shadden, Shawn (2021). “A deep-learning approach for

direct whole-heart mesh reconstruction”. In: Medical image analysis 74, p. 102222.

103

REFERENCES REFERENCES

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E (2012). “Imagenet classification with

deep convolutional neural networks”. In: Advances in neural information processing systems,

pp. 1097–1105.

Lagaris, Isaac E, Likas, Aristidis, and Fotiadis, Dimitrios I (1998). “Artificial neural networks for

solving ordinary and partial differential equations”. In: IEEE transactions on neural networks

9.5, pp. 987–1000.

Lazarov, Raytcho, Repin, Sergey, and Tomar, Satyendra K (2009). “Functional a posteriori

error estimates for discontinuous Galerkin approximations of elliptic problems”. In: Numerical

Methods for Partial Differential Equations 25.4, pp. 952–971.

Ho-Le, K (1988). “Finite element mesh generation methods: a review and classification”. In:

Computer-aided design 20.1, pp. 27–38.

LeCun, Yann, Bengio, Yoshua, and Hinton, Geoffrey (2015). “Deep learning”. In: nature 521.7553,

pp. 436–444.

Lee, John Boaz, Rossi, Ryan A, Kim, Sungchul, Ahmed, Nesreen K, and Koh, Eunyee (2019).

“Attention models in graphs: A survey”. In: ACM Transactions on Knowledge Discovery from

Data (TKDD) 13.6, pp. 1–25.

Lei, Na, Li, Zezeng, Xu, Zebin, Li, Ying, and Gu, Xianfeng (2023). “What’s the Situation

With Intelligent Mesh Generation: A Survey and Perspectives”. In: IEEE Transactions on

Visualization and Computer Graphics.

Linardatos, Pantelis, Papastefanopoulos, Vasilis, and Kotsiantis, Sotiris (2020). “Explainable

ai: A review of machine learning interpretability methods”. In: Entropy 23.1, p. 18.

Liu, Li, Shaofan, and Park, Harold S (2022). “Eighty years of the finite element method: Birth,

evolution, and future”. In: Archives of Computational Methods in Engineering 29.6, pp. 4431–

4453.

Lo, SH0587 (1985). “A new mesh generation scheme for arbitrary planar domains”. In: Inter-

national journal for numerical methods in engineering 21.8, pp. 1403–1426.

104

REFERENCES REFERENCES

Long, Zichao, Lu, Yiping, Ma, Xianzhong, and Dong, Bin (2018). “Pde-net: Learning pdes from

data”. In: International conference on machine learning. PMLR, pp. 3208–3216.

Lowther, DA and Dyck, DN (1993). “A density driven mesh generator guided by a neural

network”. In: IEEE transactions on magnetics 29.2, pp. 1927–1930.

Manevitz, Larry, Bitar, Akram, and Givoli, Dan (2005). “Neural network time series forecasting

of finite-element mesh adaptation”. In: Neurocomputing 63, pp. 447–463.

Manevitz, Larry, Yousef, Malik, and Givoli, Dan (1997). “Finite–element mesh generation using

self–organizing neural networks”. In: Computer-Aided Civil and Infrastructure Engineering

12.4, pp. 233–250.

Martın, Abadi and al., et (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems. Software available from tensorflow.org. url: http://tensorflow.org/.

Mehendale, Ninad and Soman, Sumedh (2021). “Finite Element (FE) Mesh Generation for 2D

Shapes using Multiple Long Short-Term Memory Networks”. In: SSRN 3968782 (2021).

Naumov, Maxim, Mudigere, Dheevatsa, Shi, Hao-Jun Michael, Huang, Jianyu, Sundaraman,

Narayanan, Park, Jongsoo, Wang, Xiaodong, Gupta, Udit, Wu, Carole-Jean, Azzolini, Alis-

son G, et al. (2019). “Deep learning recommendation model for personalization and recom-

mendation systems”. In: arXiv preprint arXiv:1906.00091.

Nikishkov, GP (2004). “Introduction to the finite element method”. In: 2009 Lecture Notes,

University of Aizu, pp. 1–70.

Notay, Yvan (2010). “An aggregation-based algebraic multigrid method”. In: Electronic trans-

actions on numerical analysis 37.6, pp. 123–146.

Oden and Prudhomme, Serge (2001). “Goal-oriented error estimation and adaptivity for the

finite element method”. In: Computers & mathematics with applications 41.5-6, pp. 735–756.

Ojha, Vivek (2022). “Goal-Oriented Mesh Adaptation for High-Fidelity Aeroelastic Simula-

tions”. PhD thesis. University of Michigan.

105

http://tensorflow.org/

REFERENCES REFERENCES

Otter, Daniel W, Medina, Julian R, and Kalita, Jugal K (2020). “A survey of the usages of

deep learning for natural language processing”. In: IEEE transactions on neural networks

and learning systems 32.2, pp. 604–624.

Owen, Steven J (1998). “A survey of unstructured mesh generation technology.” In: IMR

239.267, p. 15.

Pan, Jie, Huang, Jingwei, Cheng, Gengdong, and Zeng, Yong (2023). “Reinforcement learning for

automatic quadrilateral mesh generation: A soft actor–critic approach”. In: Neural Networks

157, pp. 288–304.

Papagiannopoulos, Alexis, Clausen, Pascal, and Avellan, Francois (2021). “How to teach neural

networks to mesh: Application on 2-D simplicial contours”. In: Neural Networks 136, pp. 152–

179.

Parthasarathy, VN, Graichen, CM, and Hathaway, AF (1994). “A comparison of tetrahedron

quality measures”. In: Finite Elements in Analysis and Design 15.3, pp. 255–261.

Prudhomme, Serge, Nobile, Fabio, Chamoin, Ludovic, and Oden, J Tinsley (2004). “Analysis

of a subdomain-based error estimator for finite element approximations of elliptic problems”.

In: Numerical Methods for Partial Differential Equations: An International Journal 20.2,

pp. 165–192.

Raissi, Maziar, Perdikaris, Paris, and Karniadakis, George E (2019). “Physics-informed neural

networks: A deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations”. In: Journal of Computational physics 378, pp. 686–

707.

Ramaswamy, S (1980). “The Lax-Milgram theorem for Banach spaces, I”. In.

Rao, Qing and Frtunikj, Jelena (2018). “Deep learning for self-driving cars: Chances and chal-

lenges”. In: Proceedings of the 1st international workshop on software engineering for AI in

autonomous systems, pp. 35–38.

Rish, Irina et al. (2001). “An empirical study of the naive Bayes classifier”. In: IJCAI 2001

workshop on empirical methods in artificial intelligence. Vol. 3. 22, pp. 41–46.

106

REFERENCES REFERENCES

Ruder, Sebastian (2016). “An overview of gradient descent optimization algorithms”. In: arXiv

preprint arXiv:1609.04747.

Saad, Youcef and Schultz, Martin H (1986). “GMRES: A generalized minimal residual algorithm

for solving nonsymmetric linear systems”. In: SIAM Journal on scientific and statistical com-

puting 7.3, pp. 856–869.

Scarselli, Franco, Gori, Marco, Tsoi, Ah Chung, Hagenbuchner, Markus, and Monfardini, Gabriele

(2008). “The graph neural network model”. In: IEEE transactions on neural networks 20.1,

pp. 61–80.

Shen, Dinggang, Wu, Guorong, and Suk, Heung-Il (2017). “Deep learning in medical image

analysis”. In: Annual review of biomedical engineering 19, pp. 221–248.

Shewchuk, Jonathan Richard (2002). “Delaunay refinement algorithms for triangular mesh gen-

eration”. In: Computational geometry 22.1-3, pp. 21–74.

Si, Hang (2015). “TetGen, a Delaunay-based quality tetrahedral mesh generator”. In: ACM

Transactions on Mathematical Software (TOMS) 41.2, p. 11.

Sirignano, Justin and Spiliopoulos, Konstantinos (2018). “DGM: A deep learning algorithm for

solving partial differential equations”. In: Journal of computational physics 375, pp. 1339–

1364.

Sleijpen, Gerard LG and Fokkema, Diederik R (1993). “BiCGstab (ell) for linear equations

involving unsymmetric matrices with complex spectrum”. In: Electronic Transactions on Nu-

merical Analysis. 1, pp. 11–32.

Song, Chaoyue, Wei, Jiacheng, Li, Ruibo, Liu, Fayao, and Lin, Guosheng (2021). “3D pose trans-

fer with correspondence learning and mesh refinement”. In: Advances in Neural Information

Processing Systems 34, pp. 3108–3120.

Stevenson, Rob (2007). “Optimality of a standard adaptive finite element method”. In: Foun-

dations of Computational Mathematics 7.2, pp. 245–269.

107

REFERENCES REFERENCES

Strang, Gilbert and Fix, George J (1973). “An analysis of the finite element method(Book- An

analysis of the finite element method.)” In: Englewood Cliffs, N. J., Prentice-Hall, Inc., 1973.

318 p.

Tingfan, WU, Xuejun, LIU, Wei, AN, Huang, Zenghui, and Hongqiang, LYU (2022). “A mesh

optimization method using machine learning technique and variational mesh adaptation”. In:

Chinese Journal of Aeronautics 35.3, pp. 27–41.

Veit, Andreas, Wilber, Michael J, and Belongie, Serge (2016). “Residual networks behave like

ensembles of relatively shallow networks”. In: Advances in neural information processing sys-

tems, pp. 550–558.

Velickovic, Petar, Cucurull, Guillem, Casanova, Arantxa, Romero, Adriana, Lio, Pietro, Bengio,

Yoshua, et al. (2017). “Graph attention networks”. In: stat 1050.20, pp. 10–48550.

Wang, Peng, Xingjie, Chen, Zhang, Zhou, Bingyan, Zhou, Yajin, and Zhou, Nan (2022). “Sur-

rogate modeling for neutron diffusion problems based on conservative physics-informed neu-

ral networks with boundary conditions enforcement”. In: Annals of Nuclear Energy 176,

p. 109234.

Wang and Zhang (2022). “A Survey of Deep Learning-Based Mesh Processing”. In: Communi-

cations in Mathematics and Statistics 10.1, pp. 163–194.

Werbos, Paul J (1990). “Backpropagation through time: what it does and how to do it”. In:

Proceedings of the IEEE 78.10, pp. 1550–1560.

Wessner, Wilfried, Ceric, Hajdin, Heitzinger, Clemens, Hössinger, Andreas, and Selberherr,

Siegfried (2003). Anisotropic mesh adaption governed by a Hessian matrix metric. na.

Yang, Jiachen, Dzanic, Tarik, Petersen, Brenden, Kudo, Jun, Mittal, Ketan, Tomov, Vladimir,

Camier, Jean-Sylvain, Zhao, Tuo, Zha, Hongyuan, Kolev, Tzanio, et al. (2023). “Reinforce-

ment learning for adaptive mesh refinement”. In: International Conference on Artificial In-

telligence and Statistics. PMLR, pp. 5997–6014.

108

REFERENCES REFERENCES

Yerry, Mark A and Shephard, Mark S (1984). “Automatic three-dimensional mesh generation by

the modified-octree technique”. In: International journal for numerical methods in engineering

20.11, pp. 1965–1990.

Young, Tom, Hazarika, Devamanyu, Poria, Soujanya, and Cambria, Erik (2018). “Recent trends

in deep learning based natural language processing”. In: ieee Computational intelligenCe

magazine 13.3, pp. 55–75.

Yu, Bing et al. (2018). “The deep Ritz method: a deep learning-based numerical algorithm for

solving variational problems”. In: Communications in Mathematics and Statistics 6.1, pp. 1–

12.

Zhang and Naga, Ahmed (2005). “A new finite element gradient recovery method: supercon-

vergence property”. In: SIAM Journal on Scientific Computing 26.4, pp. 1192–1213.

Zhang, Si, Tong, Hanghang, Xu, Jiejun, and Maciejewski, Ross (2019). “Graph convolutional

networks: a comprehensive review”. In: Computational Social Networks 6.1, pp. 1–23.

Zhang, Zheyan (2023). meshingnet. url: https://gitlab.com/meshingnet.

Zhang, Zheyan, Jimack, Peter K, and Wang, He (2021). “MeshingNet3D: Efficient generation

of adapted tetrahedral meshes for computational mechanics”. In: Advances in Engineering

Software 157, p. 103021.

Zhang, Zheyan, Wang, Yongxing, Jimack, Peter K, and Wang, He (2020). “MeshingNet: A new

mesh generation method based on deep learning”. In: Computational Science–ICCS 2020:

20th International Conference, Amsterdam, The Netherlands, June 3–5, 2020, Proceedings,

Part III 20. Springer, pp. 186–198.

Zhao, Ding, Xueying, and Prakash, B Aditya (2023). “PINNsFormer: A Transformer-Based

Framework For Physics-Informed Neural Networks”. In: arXiv preprint arXiv:2307.11833.

Zhou, Jie, Cui, Ganqu, Hu, Shengding, Zhang, Zhengyan, Yang, Cheng, Liu, Zhiyuan, Wang,

Lifeng, Li, Changcheng, and Sun, Maosong (2020). “Graph neural networks: A review of

methods and applications”. In: AI open 1, pp. 57–81.

109

https://gitlab.com/meshingnet

REFERENCES REFERENCES

Zienkiewicz, Taylor, Robert Leroy, and Zhu, Jian Z (2005). The finite element method: its basis

and fundamentals. Elsevier.

Zienkiewicz and Zhu (1987). “A simple error estimator and adaptive procedure for practical

engineerng analysis”. In: International journal for numerical methods in engineering 24.2,

pp. 337–357.

– (1992). “The superconvergent patch recovery and a posteriori error estimates. Part 1: The

recovery technique”. In: International Journal for Numerical Methods in Engineering 33.7,

pp. 1331–1364.

Zienkiewicz, Zhu, JZ, and Gong, NG (1989). “Effective and practical h–p-version adaptive

analysis procedures for the finite element method”. In: International Journal for Numerical

Methods in Engineering 28.4, pp. 879–891.

110

	Introduction
	Background
	Finite element analysis
	Three steps of FEM
	Formulation of FE equations by Galerkin method
	Formulation of FE equations by variational method
	FEM error estimation
	Mesh generation

	Deep learning
	Artificial neural networks
	Convolutional neural networks
	Graph convolutional networks

	Machine learning for PDEs
	Machine learning based PDE solver
	Machine learning aided PDE solver

	Machine learning for mesh processing
	Machine learning for mesh generation
	Machine learning for mesh adaptation

	Mean value coordinates
	Summary

	Mesh adaptation for 2D static PDEs
	Introduction
	Proposed methods
	Overview
	Component Details

	Validation results
	2D Poisson's equation
	2D Linear elasticity

	Discussion

	Mesh for 3D elasticity
	Introduction
	Non-uniform mesh generation
	Mean value coordinates

	Methodology
	Theory
	Software and evaluation
	Data generation
	Training and using the neural network

	Computational experiments
	Clamped beam
	Laminar material
	Hex-bolt with a hole
	Irregular polyhedron
	Discussion

	Mesh for transient PDEs
	Introduction
	Methodology
	Theory
	Overview
	Architecture of the software
	Data generation
	Normalisation
	Training and applying the neural networks
	Evaluation

	Experiments
	Flow past by cylinders
	Two phase flow
	Compressible flow

	Discussion

	Conclusion and future work
	Conclusion
	Future work

	References

