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Abstract

The analogy between the Riemann zeta function and the topic of random

matrix theory was first established by Keating and Snaith [35]. Following

this, many mathematicians have attempted to answer number-theoretic ques-

tions using random matrix theory. One such question is the maximum of the

Riemann zeta function up to a height T along the critical line, and Farmer,

Gonek Hughes established a conjecture for this maximum [21].

Our work builds upon these ideas and goes further in that we compute

refined large deviations results for the characteristic polynomial of a random

CβE matrix, generalising the CUE results of Farmer, Gonek and Hughes.

We then apply these ideas to the Riemann zeta function, where we utilise

a Hybrid Euler-Hadamard result of Gonek, Hughes and Keating [26] and

compute refined large deviations results for each of these models separately.

Our results are consistent with the original works cited throughout this

thesis, however there are some difference between the results of the two mod-

els, which we attempt to clarify here. Numerical results are presented to

support (where possible) the results in this thesis.
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1 Introduction

1.1 The Riemann Zeta Function

The Riemann zeta function1 is defined for Re(s) > 1 as

ζ(s) =
∞∑
n=1

1

ns
(1)

=
∏

p prime

1

1− p−s
. (2)

The result in (2) is known as the Euler-product expansion, and is important in that

it gives an explicit connection between the zeta function and the prime numbers. By

analytic continuation one can extend ζ(s) to a meromorphic function on the entire

complex plane with the exception of a simple pole at s = 1; to achieve this Riemann

made use of the following expression in his seminal paper of 1859 (a translated

version of which is given in [20])2:

ζ(s) =
Γ(1− s)

2πi

∫
C

(−z)s−1

ez − 1
dz, s ∈ C\{1}. (3)

Here Γ(s) denotes Euler’s gamma function, while C denotes the complex contour

starting at positive infinity and going along the positive real axis, before encircling

once the origin at a radius r < 2π (to avoid the poles of ez−1) in a positive direction

and returning to positive infinity along the positive real axis.

By deforming this complex contour Riemann obtained the following functional

equation:

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s). (4)

This gives an explicit connection between points in the complex plane to the left and

right of the line s = 1
2

+ it: from the Euler-product expansion (2) it is immediate

that ζ(s) is non-zero for Re(s) > 1. By the functional equation (4), ζ(s) is also

non-zero for Re(s) < 0 (save for the trivial zeros, which we discuss below) since the

zeros of sin(πs
2

) cancel the poles of Γ(1 − s) when s = 2n, n ∈ N. In particular, if

we consider s = 2n+ 1, n ∈ N we have that

1Although the function is named after Riemann, it was first studied by Euler the century prior.
However, Euler did not have access to complex analysis at the time; by virtue of the results
Riemann was able to accomplish with access to these new mathematical tools, the function is now
synonymous with him.

2Note that Riemann uses a slightly modified definition of the Euler-gamma function, Π(s) =∫∞
0
e−xxsdx = Γ(s+ 1) which Edwards maintains throughout his publication for consistency. We

will not adopt this convention, and instead use the now standard notation for the Euler-gamma
function.
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ζ(2n+ 1) = 22n+1π2n sin
(
πn+

π

2

)
Γ(−2n)ζ(−2n).

The left-hand side is analytic and non-zero, therefore the same must also be true of

the right-hand side. To ensure this is indeed the case we must have ζ(−2n) = 0 for

n ∈ N to cancel the poles of the gamma function; these are the so-called “trivial”

zeros of the zeta function.

A more tasking problem concerns the location of the “non-trivial” zeros of the

Riemann zeta function; from the above calculations ζ(s) is non-zero for Re(s) > 1

and for Re(s) < 0 by the functional equation, which leaves the strip 0 ≤ Re(s) ≤ 1.

The statement that ζ(1+it) 6= 0 for real t is equivalent to the prime number theorem

which can be stated as follows: define π(X) = #{p prime : p ≤ X}. Then

π(X) ∼ X

logX

in the limit as X → ∞. This was proved independently by Hadamard and de la

Valée Poussin in 1896 [28, 17]. From the functional equation, ζ(s) is also non-zero

for Re(s) = 0. Therefore if there are any non-trivial zeros they must lie in the strip

0 < Re(s) < 1, and this is commonly known as the “critical strip”.

From (1), it is clear that ζ(s) = ζ(s̄), and so we find that the zeros come in

conjugate pairs. Furthermore, the functional equation tells us that if s is a zero, then

1−s must also be a zero. Thus if we can find one non-trivial zero s, we immediately

obtain three more: s̄, 1 − s, 1 − s̄, and these are symmetrically distributed about

the line Re(s) = 1/2. The Riemann hypothesis conjectures that all of the non-trivial

zeros lie on this line, which is commonly known as the “critical line”; in other words,

ζ(1
2

+ it) = 0 has non-trivial solutions only if t ∈ R.

Initial progress on this conjecture was made by Hardy and Littlewood (1921) [30]

who proved that there are infinitely many zeros on the critical line; work of Selberg

[48] (1942) showed that a positive proportion of zeros lie on the critical line. Levinson

[37] then proved (1974) that more than one third of the zeros lie on the critical line,

which was followed up by Conrey (1989) [13] who proved that at least two fifths of the

non-trivial zeros lie on the critical line, a result he subsequently improved (2011)

to 41.05% in collaboration with Bui and Young [11]. Using Levinson’s method,

Roy, Robles and Zaharescu (2016) [47] improved this result to 41.0725%. However,

predating this Shaoji Feng (2012) [22] utilised the methods of Selberg to show that

41.28% of the non-trivial zeros are on the critical line. More recently Pratt, Robles,

Zaharescu, Zeindler (2018) [46] improved these results to show that more than five

twelths of the non-trivial zeros lie on the critical line.

This problem cannot be understated, not only because of the connection to

the prime numbers via the Euler product in (2), but also because the Riemann

hypothesis is one of the millennium problems, a series of problems in mathematics

10



for which the Clay Mathematics Institute offers a prize of $1, 000, 000 for each correct

solution. More recent efforts to tackle this conjecture have led to the startling

connection between number theory and random matrix theory, and we explore this

notion in more detail here.

1.2 Connection to Random Matrix Theory

Before we can formally discuss the connection between number theory and random

matrix theory we must first discuss the notion of a random matrix, and what the

notion of ‘random’ means in this context.

When we say ‘random’ here, we mean that the entries of our matrix are chosen

with respect to some probability measure3. What this measure is will be revealed in

1.2.2, but we proceed in this section with a discussion on the circular β ensemble,

which bears the most relevance to our work here. We follow this with a brief reference

to other matrix ensembles before subsequently explaining how the worlds of number

theory and random matrix come together.

1.2.1 Circular β Ensemble

We begin our look at the classical compact groups by first looking at the circular

beta ensemble (or CβE). We introduce the physical construction, before considering

explicit choices of β which correspond to the classical circular matrix ensembles.

Its construction is as follows: consider N identically charged particles on the unit

circle U with logarithmic interaction potential and inverse temperature parameter

β (= 1/T ). This gives rise to a probability distribution

P (θ1, · · · , θN) =
1

(2π)NZN,β

∏
1≤j<k≤N

|eiθj − eiθk |β. (5)

Here ZN,β is a constant fixed under normalisation. Explicitly, it is given by (see

[35])

ZN,β =
Γ(1 +Nβ/2)

Γ(1 + β/2)N
. (6)

We will not discuss this point much further, but rewriting the probability distribu-

tion as

P (θ1, · · · , θN) =
1

(2π)NZN,β
exp(−βW ), (7)

whereW = −
∑

1≤j<k≤N log |eiθj−iθk |, demonstrates a connection to the two-dimensional

Coulomb gas model (see [19, 49] for more); here we see this logarithmic interaction

3This notion will be defined in Chapter 2
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potential in the variable W , whereby this logarithmic function comes into play if

one assumes a two-dimensional universe.

We relate this notion to random matrix theory by observing that the expression

(7) demonstrates the repulsion between eigenvalues, as represented by the variable

W ; the eigenvalues do not like to be close together and as such repel one another

logarithmically.

Choosing β explicitly, we arrive at some of the classical circular ensembles with

probability measure (resp. probability density function) corresponding to that in

(5). Namely:

• Circular Orthogonal Ensemble (COE) - Corresponding to β = 1, this is

the set of Unitary matrices U invariant under Orthogonal transformations

U → W TUW , where W is any N ×N unitary matrix.

• Circular Unitary Ensemble (CUE) - Corresponding to β = 2, this is the set of

all Unitary matrices with Haar measure4.

• Circular Symplectic Ensemble (CSE) - Corresponding to β = 4, this is the

set of Unitary matrices U invariant under Symplectic transformations U →
WRUW , where W here is any N × N unitary quaternion matrix. R denotes

the dual of W , WR = −ZW TZ, and we say that W is self-dual if WR = W .

The results that we present here are for the general CβE (see Chapter 3). For the

purposes of the Riemann zeta function we will be resticting our attention to the

circular unitary ensemble (β = 2), for reasons which will later become clear. One

can think of the circular unitary ensemble as the unitary group with an assigned

Haar measure, and the unitary group is an example of a classical compact group,

which we outline in the following Section.

1.2.2 Classical Compact Groups

If one considers any of the following classical matrix groups: the orthogonal group

O(N), the unitary group U(N) or the symplectic group Sp(2N), each of these forms

a compact Lie group. One can then make use of the following theorem5:

Theorem 1.1. If G is a compact topological group, there is a unique probability

measure6 µ which is invariant: that is, µ(VA) = µ(A) for every measurable subset

A ⊆ G and fixed V ∈ G.

This measure also satisfies µ(AV ) = µ(A) = µ(A−1).

4This is also the set of unitary matrices invariant under unitary transformations U → W ∗UW
(W is again unitary), but this coincides with the set of unitary matrices with Haar measure.

5The theorem is as stated in [38], with additional clarification where necessary.
6The notion of probability measure will formally be defined later.
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Here AV := {UV : U ∈ A} and similarly for VA. This theorem is true in more

generality; here we restrict our attention to the above compact groups, and for

these groups the measure in question is the called a Haar measure. The property

that µ(VA) = µ(A) is commonly referred to as left translation invariance, with

µ(AV ) = µ(A) the corresponding result for right translation invariance. For our

purposes both left and right translation invariance hold, so we omit these prefixes

and refer to this property simply as translation invariance7.

We conclude this section with a broader picture of random matrix theory by

including a discussion of the Gaussian ensembles.

1.2.3 Gaussian Ensembles

We’ve discussed above what can be thought of as the classical ensembles; we include

a small aside here to discuss a collection of different ensembles know as the Gaussian

ensembles. To motivate this discussion we should outline some of the physics which

underpins these ideas. This will by no means be a thorough overview of the subject,

and as a result some details are omitted (although one should consult [39] for more

details on these topics).

Initial interest in the Gaussian ensembles comes from the field of nuclear physics;

to be more concise, the excitation spectra of various nuclei is of great importance

to nuclear physicists. The study of the averages of various energy levels of atomic

nuclei are important in the study of nuclear reactions, and the interpretation in

quantum mechanics is that the energy levels of some system can (supposedly) be

described by the eigenvalues of a Hermitian operator, namely the Hamiltonian.

Since the only interest is the discrete part of the energy level schemes of various

quantum systems, one can approximate the Hilbert space by another space having a

finite (albeit large) number of dimensions. It was postulated by Wigner in the 1950’s

that the spacings between the lines in the spectrum of the nucleus of a heavy atom

should resemble the spacings between eigenvalues of a random matrix [54, 55], and

as such we can replace the Hermitian operator H with that of a Hermitian matrix.

For the purposes of this section the matrices considered will be N × N matrices,

where N is large but fixed.

In order to specify precisely the correlations among various elements of our ma-

trices, we need a careful analysis of the consequences of time-reversal invariance.

Time-reversal Invariance The material from this section is primarily taken from

a paper of Dyson [19] (although it is also included in Chapter 2 of [39]).

What do we mean when we say time-reversal invariance? A physical system

is said to be time-reversal invariant if the underlying laws of the system are not

7It is important to note that it is not true in general that left and right translation invariance
are equivalent when one looks at compact groups in more generality.
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sensitive to the direction of time. A rather simplified example of this would be two

billiard balls colliding with one another. If one were to record this event and play

the footage both forwards and backwards, to an external viewer it might not be

clear which direction the footage should be played. We do not discuss this idea in

more detail as it is not relevant to later calculations, but the concept of time-reversal

invariance will be key.

From physical considerations, it is required that the time-reversal operator T be

anti-unitary, and as such this can be expressed in the form

T = KC,

where K is a fixed unitary operator and the operator C takes the complex conjugate

of the expression which proceeds it. Therefore a state can be seen to transform under

time-reversal as

ψR = Tψ = (KC)ψ = K(Cψ) = Kψ̄.

Here ψR denotes transformation under time-reversal; ψ̄ denotes the complex conju-

gate of ψ. The operation of time-reversal applied to a matrix is defined as

AR = KATK−1,

where AT denotes the transpose of A and K−1 denotes the inverse of K. A is

called self-dual if AR = A, and the physical system is said to be invariant under

time-reversal if the Hamiltonian is self-dual: HR = H.

It is clear that applying the time-reversal operator T twice should leave the

physical system unchanged; therefore we have

T 2 = α · 11, |α| = 1.

Here 11 denotes the unit operator. From our initial equation for T we have

T 2ψ = (KCKC)ψ = KC(Kψ̄) = (KK̄)ψ = αψ.

Recalling that K is a unitary operator, we therefore have that

K̄KT = 11.

From these equations, we have that

Kψ = αKTψ = α(αKT )Tψ = α2Kψ.

Hence α2 = 1 and so α = ±1. This then leads to two cases:

14



KK̄ = 1,

KK̄ = −1.

The first of these equations results in the unitary operator K being symmetric,

corresponding to systems with even-spin. The latter of these equations results in K

being antisymmetric and this corresponds to odd-spin systems.

We defer the additional details and formally define the joint probability density

function for the Gaussian beta ensemble (GβE) for general beta, before considering

the ensembles where beta is made explicit.

Theorem 1.2. The joint probability density function for the eigenvalues of matrices

from the Gaussian beta ensemble is given by

PβN(x1, · · · , xN) = ZN,β exp

(
−β

2

N∑
j=1

x2
j

) ∏
1≤j<k≤N

|xj − xk|β ,

where the constant ZN,β is defined by

ZN,β = (2π)(1/2)Nβ−(1/2)N−(1/4)βN(N−1)
[
Γ
(
1 + 1

2
β
)]−N N∏

j=1

Γ
(
1 + 1

2
βj
)
.

If we choose β explicitly (as with the CβE), we arrive at the Gaussian ensembles.

Namely:

• Gaussian Orthogonal Ensemble (GOE) - Corresponding to β = 1, this is the set

of real Hermitian matrices invariant under real Orthogonal transformations.

Physically this corresponds to even-spin systems with time-reversal invariance.

• Gaussian Unitary Ensemble (GUE) - Corresponding to β = 2 this is the set

of all Hermitian matrices invariant under unitary transformations. Physically

this corresponds to a system without time-reversal invariance.

• Gaussian Symplectic Ensemble (GSE) - Corresponding to β = 4, this is the

set of self-dual Hermitian matrices invariant under symplectic transformations.

Physically this corresponds to odd-spin systems with time-reversal invariance

but no rotational symmetry.

As with the circular beta ensemble we see in Theorem 1.2 a connection to the two-

dimensional Coulomb gas model; writing the expression as
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PβN(x1, · · · , xN) = ZN,β exp

(
−β

2

N∑
j=1

x2
j + β

∑
1≤j<k≤N

log |xj − xk|

)
,

we see that the logarithmic potential is present in the second-term. The initial term

present in the joint PDF represents a Harmonic potential, and this comparison arises

when we make the identification

β = (kT )−1

where k denotes the Boltzmann constant.

We conclude our discussion of the Gaussian ensemble here, referring the reader

to [39] should more information be desired.

1.2.4 Number Theory Correspondence

We started this Chapter with a brief but formal introduction to the classical compact

groups in random matrix theory, but how does this material relate to the field of

number theory and the study of the Riemann zeta function? Before delving into the

results we present a historical overview which establishes the connection between

the two fields.

In the 1970s, Montgomery studied the two-point correlations of the zeros of the

zeta function [40]. Utilising the notation ρ = 1
2
+iγ to denote a non-trivial zero of the

zeta function, Montgomery’s aim was to investigate the distribution of the differences

γ − γ′ between the zeros (for which it would be thus desirable for Montgomery to

know the Fourier transform of the distribution function of the numbers γ − γ′). To

achieve this, he studied the following function:

F (α) = F (α, T ) =

(
T

2π
log T

)−1 ∑
0<γ≤T
0<γ′≤T

T iα(γ−γ′)w(γ − γ′), (8)

where α and T ≥ 2 are real, and w(u) = 4/(4 + u2) is a suitable weighting function.

Note that the sum in (7) includes terms where γ = γ′.

Conditionally on the Riemann hypothesis, he asserts the following

Theorem 1.3. Assume the Riemann Hypothesis. For real α, T ≥ 2, let F (α) be

defined by (8). Then F (α) is real, and F (α) = F (−α). If T > T0(ε) then F (α) ≥ −ε
for all α. For fixed α satisfying 0 ≤ α < 1,

F (α) = (1 + o(1))T−2α log T + α + o(1). (9)

In addition, Montgomery makes use of a few heuristic arguments to suggest that
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F (α) = 1 + o(1) (10)

for α ≥ 1, uniformly in bounded intervals. In order to investigate sums involving

γ−γ′, Montgomery need only convolve F (α) (as defined in (8)) with an appropriate

kernel r̂(α)8. Montgomery was able to show that

∑
0<γ≤T
0<γ′≤T

r

(
(γ − γ′) log T

2π

)
w(γ − γ′) =

(
T

2π
log T

)∫ ∞
−∞

F (α)r̂(α) dα (11)

by Multiplying (8) by r̂(α) and integrating both sides. Here r̂ denotes the Fourier

transform of r,

r̂(α) =

∫ ∞
−∞

r(u)e(−αu) du, (e(θ) = exp(2πiθ)).

With an appropriate use of (10) and a suitable choice of F (α), Montgomery conjec-

tured that for fixed α < β,

∑
0<γ≤T
0<γ′≤T

2πα/ log T≤γ−γ′≤2πβ/ log T

1 ∼

(∫ β

α

(
1−

(
sin πu

πu

)2
)

du+ δ(α, β)

)
T

2π
log T, (12)

as T tends to infinity; δ(α, β) = 1 if 0 ∈ [α, β] and 0 otherwise. Here γ, γ′ denote the

imaginary parts of two zeros on the critical line. The Dirac δ in the above equation

is a natural occurrence, since 0 ∈ [α, β] means the above sum includes terms where

γ = γ′.

The assertion here is that the two-point correlation of the zeros of the zeta

function is given by 1 − ((sin πu)/πu)2. If we consider now the n-level correlation

function of matrices in the CUE:

Rn(θ1, . . . , θn) =
N !

(N − n)!

∫ 2π

0

· · ·
∫ 2π

0

P (θ1, . . . , θN) dθn+1 · · · dθN (13)

= det[KN(θi, θj)]i,j=1,...,n (14)

where we use Gram’s result to rewrite this expression as a determinant. Here,

P (θ1, . . . , θN) is the joint PDF of matrices in the CUE as given in (5) with β = 2;

KN(θi, θj) is defined to be

8By ’appropriate’, we simply mean a kernel which, when convolved with F (α) produces the
desired information.
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KN(θi, θj) =
sin[1

2
N(θi − θj)]

2π sin[1
2
(θi − θj)]

. (15)

From this, one can compute the level densities to be KN(θ, θ) = N/2π, and further

the two-point correlation function is given by

R2(θ1, θ2) = det


N
2π

sin
[

1
2
N(θ1−θ2)

]
2π sin

[
1
2

(θ1−θ2)
]

sin
[

1
2
N(θ2−θ1)

]
2π sin

[
1
2

(θ2−θ1)
] N

2π


=

(
N

2π

)2

−
(

sin[1
2
N(θ1 − θ2)]

2π sin[1
2
(θ1 − θ2)]

)2

. (16)

Scaling θ1, θ2 by their level densities (so that Nθ1/2π = ξ and Nθ2/2π = η) and

taking the limit as the matrix size N →∞ gives

lim
N→∞

(
2π

N

)2

R2(θ1, θ2) =

(
1−

(
sin πr

πr

)2
)
, (17)

where r = |ξ − η|. From these calculations (see [39] for more detail) it can be seen

that the two-point correlation function for matrices in the CUE matches that of the

Riemann zeta function (12).

While at the Institute of Advanced Study in April 1972, Sarvadaman Chowla

noticed that Freeman Dyson was present, and asked Montgomery if he had met

him, to which Montgomery replied that he had not. Chowla insisted on introducing

them to one another, and this went back and forth for a while before Montgomery

eventually gave in.

After Chowla spoke to Dyson for a while, Dyson turned his attention to Mont-

gomery and asked him “So what are you thinking about?” After initially being

caught off guard by this question, Montgomery replied “I think the difference be-

tween the zeros of the zeta function are distributed with the density 1 minus the

quantity (sin(πu)/πu)2”. Almost immediately Dyson responded with “That’s the

pair correlation for the eigenvalues of a Hermitian matrix”9. Dyson later sent a

letter to Selberg, which can be seen in Figure 1 below.

This observation opened up a new line of attack to some unsolved problems

regarding the zeta function, with many hoping that by studying the eigenvalues of

random complex hermitian or unitary matrices, one might better understand the

behaviour of the zeros of the zeta function.

Today, the intricate connection between the seemingly disparate areas of random

matrices and the Riemann zeta function has only continued to hold weight, with

9These details were given by Montgomery during a talk at the Institute of Advanced Study in
June 2022, celebrating 50 years of Number Theory and Random Matrix Theory.
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Figure 1: Letter from Dyson to Selberg referencing Mehta’s work, which includes
the discussed result for pair-correlation function of a random complex hermitian (or
unitary) matrix of large order.

recent results in random matrix theory having number-theoretic analogues. In ad-

dition, numerical results of Odlyzko [44] as well as statistical results of Coram and

Diaconis [16] further display the connection between these two areas of research.

We explore this connection in more detail by looking at the moments of the zeta

function.

1.3 Extreme Value Theory

1.3.1 Moments of ζ(1/2 + it)

At an attempt to better understand the behaviour of the zeta function along the

critical line, Keating and Snaith (2000) [35] studied the characteristic polynomial

ΛU(θ) = det
(
I − Ue−iθ

)
(18)
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of a random CUE matrix10 of size N . A key subject of this paper concerned the

moments of the zeta function on the critical line:

Ik(T ) =
1

T

∫ T

0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2k dt. (19)

It was first proved in 1916 [29] by Hardy and Littlewood that

I1(T ) ∼ log T

as T →∞. It was subsequently proven by Ingham in 1926 [34] that

I2(T ) ∼ 1

2π2
(log T )4.

Following these results it was conjectured that

Ik(T ) ∼ ck(log T )k
2

for some positive constant ck. In a series of lectures given in the 1980’s, Conrey and

Ghosh expressed the moments in a more precise form; namely,

Ik(T ) ∼ a(k)g(k)

Γ(k2 + 1)
(log T )k

2

, (20)

where

a(k) =
∏
p

{(
1− 1

p

)k2
(
∞∑
m=0

(
Γ(k +m)

m!Γ(k)

)2

p−m

)}
(21)

exists. The product here is taken over all prime numbers p, and when k is an integer,

g(k) is also an integer. From the above results we see that the values of ck – and

thus g(k) – are known for k = 1 and 2. Explicitly, we have g(1) = 1 and g(2) = 2.

However, a plausible conjecture for the other values of g(k), k > 2 had yet to be

established.

Some progress on this problem was made in the early 1990’s; Conrey and Ghosh

[14] conjectured that g(3) = 42, and later Conrey and Gonek [15] conjectured that

g(4) = 24, 024. It is worth remarking that the methods employed by these authors

reproduce the previous values of g(k).

Motivated by the connection to Random matrix theory, Keating and Snaith

studied the moments of the characteristic polynomial

MN(k) = E
[
|ΛU(θ)|k

]
=

N∏
j=1

Γ(j)Γ(j + k)

(Γ(j + k/2))2
, Re(k) > −1/2, (22)

10In their original paper they used the notation Z(U, θ). We instead adopt the notation ΛU (θ),
although this is not to be confused with Λ(λ) used to denote the Logarithmic MGF in Large
Deviations, nor is it to be confused with Λ∗(x) used to denote the convex-dual. We later make use
of the von-Mangoldt function Λ(n), and it should be clear which function is used from the context.
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where this expectation is over the CUE of N × N unitary matrices. Considering

even moments, scaling by the degree of the polynomial and taking the limit as the

matrix size N tends to infinity, Keating and Snaith determined that

fCUE(k) = lim
N→∞

1

Nk2 E
[
|ΛU(θ)|2k

]
=
G2(k + 1)

G(2k + 1)
(23)

where G denotes the Barnes-G function [8] (some details about the Barnes G-

function can be found in Appendix B). Therefore we have, after rewriting this

expression,

E
[
|ΛU(θ)|2k

]
∼ G2(k + 1)

G(2k + 1)
Nk2

. (24)

For the values k = 1, 2, 3, 4, Keating and Snaith observed that

G2(k + 1)

G(2k + 1)
=

g(k)

Γ(k2 + 1)
.

Thus the leading conjecture regarding the moments of the zeta function, otherwise

known as the Keating-Snaith conjecture, is the following:

Conjecture 1.1. For fixed k with Re(k) > −1/2,

1

T

∫ T

0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2k dt ∼ a(k)
G2(k + 1)

G(2k + 1)
(log T )k

2

. (25)

We see from this conjecture that if N ∼ log T the even moments for the zeta function

match the results for the characteristic polynomial of a random unitary matrix. We

explore this relation between N and T further, but for now we study the value

distributions of the characteristic polynomial.

Keating-Snaith studied the value distributions of the real and imaginary parts

of the characteristic polynomial. In doing so, they obtained the following results:

Qn(N) = E [(Re log ΛU(θ))n] =
2n−1 − 1

2n−1

N∑
j=1

ψ(n−1)(j)

and

Rn(N) = E [(Im log ΛU(θ))n] =


(−1)1+n/2

2n−1

∑N
j=1 ψ

(n−1)(j) if n even,

0 if n odd.

Here ψ(n−1)(j) denotes the polygamma function of order n−1. In particular, formally

evaluating Rn(N) for n = 2 gives the equation

R2(N) = Q2(N) =
1

2
logN +

1

2
(γ + 1) +

1

24N2
+O(N−4).
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Under the assumption of Montgomery’s conjecture and the Riemann Hypothesis,

Goldston [25] was able to prove that

1

T

∫ T

0

(
Im log ζ

(
1

2
+ it

))2

dt =
1

2
log log

T

2π
+

1

2
(γ+1)+

∞∑
m=2

∑
p

(1−m)

m2

1

pm
+o(1).

Making the identication N = log T
2π

(which comes from equating the mean density

of the eigenangles, N/2π with the mean density of the zeros of the zeta function

at a height T up the critical line, 1
2π

log T
2π

), we find that the first two terms are in

agreement. The third term demonstrates the prime contribution in the zeta case, and

this led Keating and Snaith to speculate the possible splitting of the zeta function

into a product of two terms; the first term a product over primes, the second term

a product over non-trivial zeros11. We return to this notion a little later on.

With the identification N = log T
2π

, their results about the value distributions of

the real and imaginary parts of the characteristic polynomial:

lim
N→∞

1

N
P

 log ΛU(θ)√
1
2

logN
∈ E

 =
1

2π

∫ ∫
E

e−(x2+y2)/2 dx dy

align with the following result of Selberg for the logarithm of the zeta function at

values on the critical line [44, 53]: for any rectangle E ∈ R2

lim
T→∞

1

T

∣∣∣∣∣
{
t : T ≤ t ≤ 2T,

log |ζ(1
2

+ it)|√
(1/2) log log T

∈ E

}∣∣∣∣∣
=

1

2π

∫ ∫
E

e−(x2+y2)/2 dx dy.

In other words, the value distributions of the real and imaginary parts of the zeta

function (after scaling by
√

(1/2) log log T ) converge independently to a Gaussian

with mean 0 and variance 1. We return to Selberg’s theorem when we later discuss

the maximum of the zeta function along the critical line.

By this point we’ve looked at results concerning the value distribution of the real

and imaginary parts of the characteristic polynomial, as well as Selberg’s theorem

which details the value distribution of the real and imaginary parts of the zeta

function, but what about the distribution of the zeros of the zeta function?

If one assumes the Riemann hypothesis, we know everything about the horizontal

distribution of the zeros as the hypothesis places all of the non-trivial zeros on the

critical line. The vertical distribution of the zeros still remains an open problem;

while computation has allowed mathematicians to place the first 100 trillion or so

11This was left as a brief comment in their seminal paper on the zeta function and random
matrix theory.
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zeros on the critical line, the exact positions of the non-trivial zeros are yet to be

determined.

Another discussion point is the following: we’ve seen Selberg’s result above which

gives results for the value distribution of the real and imaginary parts of ζ(1
2

+ it),

but what if one were to look at the zeta function over a different range, say [0, T ] or

a smaller range such as [T, T + 1]? It is questions like these that motivate some of

the main results in this thesis.

Before we can proceed by looking at these results, we continue to delve into the

history; the results we list in the sections that follow are key results to keep in mind

when looking at the results of Chapter 2.

1.3.2 Fyodorov-Hiary-Keating

Continuing with our previous discussion, Fyodorov, Hiary, Keating [23, 24] contin-

ued to explore the connections between random matrix theory and the zeta function.

As such, the authors studied the value distribution of (the maximum of) the modu-

lus of the characteristic polynomial of a random unitary matrix; these results were

then applied to the topic of the zeta function, leading to a conjectured result for

large values taken by the zeta function over stretches of the critical line. In their

papers they sought to connect these two research areas to a third: the statistical

mechanics of disordered landscapes.

The focus taken by the authors here is the following: they were concerned with

the maximum values of the characteristic polynomials of individual matrices (as

opposed to a large number of matrices; we discuss this approach in more detail in

later chapters), and they obtain the full value distribution of the maxima in the limit

as the matrix size N tends to infinity. The outcome of this method was a model

for the distribution of the maximum values of |ζ(1
2

+ it+ ih)| over 0 ≤ h ≤ 1 where

T ≤ t ≤ 2T . This is in the limit T →∞, where they make the usual identification

between N and T , N = log T
2π

.

In particular, they conjecture the following:

Conjecture 1.2 (Fyodorov-Hiary-Keating). There exists a cumulative distribution

function F such that, for any y, as T →∞,

1

T
meas

{
T ≤ t ≤ 2T : max

0≤h≤1

∣∣∣∣ζ (1

2
+ it+ ih

)∣∣∣∣ ≤ ey
log T

(log log T )3/4

}
∼ F (y). (26)

Moreover, as y → ∞ the right-tail decay is 1 − F (y) ∼ Cye−2y for some positive

constant C.

We see here a model which conjectures the behaviour of the zeta function up to

sub-leading order, as well as give some indication of the decay rate for the right-

tail. This is not the only model available for the zeta function however, and we
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examine now another model which generates an interesting discussion regarding the

behaviour of the zeta function along the critical line.

1.3.3 The 1/4 Model

The model for the zeta function introduced here assumes that the values of the zeta

function on the critical line are correlated at short range, and we see that this leads

to a noticeable difference between the results of this model and the results from

the Fyodorov-Hiary-Keating conjecture. For clarity we include this to illustrate the

the differences in comparison with the model introduced by Fyodorov, Hiary and

Keating. We will not be making use of this model going forward.

Up to height T on the critical line, there are asymptotically T
2π

log T zeros. There-

fore the average spacing between zeros is T/( T
2π

log T ) = 2π/ log T for t ≈ T . We

therefore expect that the behaviour of ζ(1
2

+ it) changes completely if we shift by

2π/ log T . We also expect that ζ(1
2

+ it) is more or less constant if we instead shift

by 2πε/ log T for small ε > 0.

From Selberg’s Theorem log |ζ(1
2

+ it)| has a Gaussian distribution. It is thus

reasonable to expect in this model that the joint distribution of{
log

∣∣∣∣ζ (1

2
+ it+

2πik

log T

)∣∣∣∣}
|k|< 1

2π
log T

is that of 1
π

log T independent Gaussians with mean 0 and variance 1
2

log log T .

Were this a valid model, then for typical t ∈ [T, 2T ]

max
|h|≤1

log |ζ(1
2

+ it+ ih)|

would be accurately modelled by

max
i
Gi

where i ∈ {1, · · · ,
[

1
π

log T
]
} and the Gi are independent Gaussians with mean 0

and variance 1
2

log log T .

This now becomes a simple exercise in probability. The steps performed here are

the same as those we utilise throughout this thesis; for this reason we include these

calculations.

Since M(T ) is the maximum we seek, one way to interpret this is to say we want

the largest M(T ) for which

P
(
∀i ≤ 1

π
log T : Gi < M(T )

)
= o(1),

in other words we are looking for the largest M(T ) for which there exists a Gi with

i ∈ {1, · · · ,
[

1
π

log T
]
} such that Gi > M(T ) with probability 1 − o(1). The Gi are
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independent, so this amounts to finding asymptotically the largest M(T ) such that

P(G < M(T ))[log T/π] = o(1),

where G is a Gaussian with mean 0 and variance 1
2

log log T .

Rewriting this amounts to solving

P(G < M(T ))[log T/π] = (1− P(G > M(T )))[log T/π]

=

(
1− 1

2
erfc

(
M(T )√
log log T

))[log T/π]

= o(1).

Using the asymptotic expansion of the complementary error function (assuming

M(T ) is of order larger than
√

log log T ) and taking logarithms, the above expression

gives

[
log T

π

]
log

(
1− 1

2
erfc

(
M(T )√
log log T

))
∼ − log T

π
× 1

2
erfc

(
M(T )√
log log T

)
= − log T

π
×
√

log log T

2
√
πM(T )

exp

(
− M(T )2

log log T

)
+ · · ·

= − log T
√

log log T

2π3/2M(T )
× exp

(
− M(T )2

log log T

)
+ · · · .

It is now a case of balancing this expression (at leading order), which simply involves

solving for M(T ) the expression

exp

(
M(T )2

log log T

)
=

log T
√

log log T

2π3/2M(T )
.

Taking logarithms and solving on the left for M(T ) gives

M(T ) =

(
(log log T )2 +

1

2
log log T log log log T − log log T logM(T )

− log 2π3/2 log log T + · · ·

)1/2

.

If we then take the logarithm of this expression, we obtain

logM(T ) = log log log T +
1

4

log log log T

log log T
+ · · · .

Plugging this into the expression for M(T ) and simplifying the expression gives the

solution
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M(T ) =

(
(log log T )2 − 1

2
log log T log log log T − log 2π3/2 log log T + · · ·

)1/2

= log log T

(
1− log log log T

2 log log T
− log 2π3/2

log log T
+ · · ·

)1/2

= log log T

[
1− log log log T

4 log log T
− log 2π3/2

2 log log T
+ · · ·

]
.

This suggests that M(T ) = log log T − 1
4

log log log T +O(1). However we need to be

careful here, since we have taken logarithms in our equation for the probability that

G is smaller than M(T ), and so the right-hand side is now log o(1) which approaches

negative infinity as T gets large.

If we instead take M(T ) = log log T − 1
4

log log log T + ψ(T ) where ψ(T ) tends

to infinity at a slower rate than log log log T then we have, after plugging this into

the above expression for the probability,

− log T
√

log log T

2π3/2 log log T

[
1 +

log log log T

4 log log T
+

ψ(T )

log log T
+ · · ·

]
× exp(− log log T )

× exp(1
2

log log log T )× exp(2ψ(T ))× · · ·

and this expression cancels to give (at leading order) the result

−exp(2ψ(T ))

2π3/2

[
1 +

log log log T

4 log log T
+

ψ(T )

log log T
+ · · ·

]
.

This implies that the left-hand side of our expression for G (after taking loga-

rithms) also tends to negative infinity. Thus our solution for M(T ) can be writ-

ten in the above form with ψ(T ), or alternatively in the form M(T ) = log log T −
1
4

log log log T + o(log log log T ).

Writing these results in the context of the zeta function we have the following:

for t chosen uniformly in [T, 2T ],

max
|h|≤1

log

∣∣∣∣ζ (1

2
+ it+ ih

)∣∣∣∣ = log log T − 1
4

log log log T + o(log log log T )

as T → ∞. Observe here that in this model for the zeta function, the constant on

the subleading term is −1/4 as opposed to the −3/4 factor predicted by Fyodorov,

Hiary, Keating. We now have the question of which model is the correct one, and

whether there might be some way to transition between the two models, the first

model considering no short-range correlations between the zeros while the second

model considers short-range correlations between the values on the critical line.
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1.3.4 3/4 versus 1/4

We have two competing models for the maximum value of the zeta function in a short

interval on the critical line, and we have a connection to random matrix theory first

established by Montgomery and Dyson. It is natural then to consider the random

matrix analogue of this problem to see whether this model agrees with the 3/4 case

or the 1/4 case, and in fact this is what Fyodorov, Hiary, and Keating did.

Precisely, the connection they develop between the fields of random matrix theory

and number theory to the statistical eigenvalues of disordered landscapes suggests

that the maximum value of the modulus of the characteristic polynomial ΛU(θ) of

a random unitary matrix (a matrix in the CUE) for θ in the interval [0, 2π) is given

by

max
θ∈[0,2π)

log |ΛU(θ)| = logN − 3

4
log logN + o(1) (27)

as the matrix size N → ∞ (recall from earlier that the results are rendered in

agreement with those of the zeta function once the identification N = log T
2π

is

made). This suggests that the model as conjectured by Fyodorov, Hiary, Keating is

likely the correct one, although a better indication of this comes from studying the

literature. We outline the key results and contributions below.

Progress towards the conjectured random matrix analogue was first made by

Arguin, Belius and Bourgade [1] who established the leading order behaviour

lim
N→∞

maxθ∈[0,2π) log |ΛU(θ)|
logN

= 1 in probability.

The second order,

lim
N→∞

maxθ∈[0,2π) log |ΛU(θ)| − logN + 3
4

log logN

log logN
= 0 in probability,

was first proved by Paquette and Zeitouni [45], although they were unable to estab-

lish tightness of the o-term. This was later established by means of the following:

max
θ∈[0,2π)

log |ΛU(θ)| = logN − 3

4
log logN +O(ψ(N))

with probability one, as N →∞ for any ψ(N) tending to infinity arbitrarily slowly.

This result was due to Chhaibi, Madaule and Najnudel [12]. With these results

firmly established, it is increasingly likely that the result of Fyodorov-Hiary-Keating

is the correct result. This is the best we have on the random matrix side, so we

now return to the Riemann zeta function to explore the progress made towards the

conjecture of Fyodoroy-Hiary-Keating.

The first result was computed in 2016 by Arguin, Belius, Bourgade, Radziwi l l
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and Soundararajan [2], who established the leading order behaviour

max
|h|≤1

log

∣∣∣∣ζ (1

2
+ it+ ih

)∣∣∣∣ ∼ log log T

on a set t ∈ [T, 2T ] of measure T + o(T ). In the same year and independently of the

above authors, Najnudel also obtained the leading order behaviour, conditionally on

the Riemann hypothesis [42].

The upper bound with the sub-leading behaviour was established by Harper in

2019 [32]:

max
|h|≤1

log

∣∣∣∣ζ (1

2
+ it+ ih

)∣∣∣∣ ≤ log log T − 3

4
log log log T +

3

2
log log log log T + g(T )

for a set T ≤ t ≤ 2T of measure T +o(T ), where g(T ) is any real function tending to

infinity with T . While this matches the result of Fyodorov, Hiary, Keating at both

leading and sub-leading order, this result is not sharp due to the sub-subleading

term.

Recently, Arguin, Bourgade and Radziwi l l [4] were able to express the upper

bound of the conjecture in a strong form.

Theorem 1.4 (Arguin-Bourgade-Radziwi l l). There exists a constant C > 0 such

that uniformly in T > 3 and y ≥ 1,

1

T
meas
T≤t≤2T

{
max
|h|≤1

∣∣∣∣ζ (1

2
+ it+ ih

)∣∣∣∣ > log T

(log log T )3/4
ey
}
≤ Cye−2y.

This result is strong in that it reproduces the previous results, but goes further in

that it gives the limiting behaviour in terms of y which agrees with the conjectured

growth of Fyodorov, Hiary, Keating (see Conjecture 1.2).

The result in this theorem is expected to be sharp in the range y = O(
√

log log T ).

For larger y (in the range y ∈ [1, log log T ]), it is expected that the sharp decay rate

is instead

� ye−2y exp

(
− y2

log log T

)
.

This limiting behaviour is interesting in that it suggests the older conjecture as

seen in [53] is perhaps closer to the truth, since the result of Arguin, Bourgade and

Radziwi l l would suggest that when one conditions on large values as opposed to

typical values the growth appears to be exponential.

We see later that this contrasts the results of Farmer, Gonek and Hughes in

Section 1.4 since their results suggest that the growth for large values is Gaussian

rather than exponential, and it is these results which play a key role in studying the

transition between the 1/4 and 3/4 regimes.
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1.3.5 Phase Transition

We’ve seen the arguments made for 1/4 and 3/4, with results strongly suggesting

that the 3/4 argument is the correct one.

To add further weight to the 3/4 case we look at the following: in a paper of

Harper [31] which builds upon ideas of Soundararajan [52], he includes the following

proposition, giving a suitable model (conditional on the Riemann hypothesis) for

large height T along the critical line:

Proposition 1.1 (Harper). Assume the Riemann hypothesis, and let T be large.

Then for any T ≤ t ≤ 2T we have

log |ζ(1/2+it)| ≤ R(
∑
p≤T

1

p1/2+1/ log T+it

log(T/p)

log T
+
∑
p2≤T

(1/2)

p1+2/ log T+2it

log(T 2/p)

log T
)+O(1).

Moreover, there exists a set H ⊂ {T, T + 2π}, of measure at least 1.99π such that

log

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣ = Re

(∑
p≤T

1

p1/2+it

log(T/p)

log T

)
+O(1) ∀t ∈ H.

The use of H corresponds to the initial study of maxT≤t≤T+2π |ζ(1/2 + it)| by Fyo-

dorov and Keating12.

With this initial model for zeta, the authors in [3] utilise the argument that the

finite-dimensional distribution of the process (p−it, p primes), t sampled uniformly in

[0, T ], converges as T →∞ to a sequence of independent random variables uniformly

distributed on the unit circle; this motivates the use of the following model to study

the large values of log |ζ| in some short interval I:

WT (h) =
∑
p≤T

Re(Upp
−ih)

p1/2
, h ∈ I.

Note that we are looking to study the large values of log |ζ| here which is real,

and so it is necessary that the real part is looked at in the expression WT (h).

Looking at the maximum of WT (h) Arguin, Belius and Harper were able to verify

the leading and subleading terms in the Fyodorov-Hiary-Keating conjecture. What

is perhaps interesting about this approach is that the proof of their main result uses

an approximate tree structure, which is both present in the model and in the zeta

function itself. The idea for this implementation came from the observation that

the leading and subleading orders of the maximum in the conjecture of Fyodorov,

Hiary, Keating correspond exactly to those of the maximum of a branching random

walk (a collection of correlated random walks indexed by the leaves of a tree).

12Note that when we referred to the Fyodorov-Hiary-Keating conjecture earlier, we used a dif-
ferent albeit equivalent formulation than what is mentioned here.
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These ideas and approach were first developed by Bramson [10] in his seminal

work on the maximum of branching Brownian motion, and we will mention these

ideas again shortly.

Returning to the 3/4 result, the techniques developed in establishing these results

can also be used to investigate large values in intervals whose lengths vary with T .

In [6], it was conjectured that for intervals of size (log T )θ (where θ > 0 is fixed) the

maximum is

max
|h|≤(log T )θ

∣∣∣∣ζ (1

2
+ it+ ih

)∣∣∣∣ =
(log T )

√
1+θ

(log log T )
1

4
√

1+θ

eMθ(T ),

where (Mθ(T ), T > 1) is a tight sequence of random variables.

The authors prove the leading order (log T )
√

1+θ behaviour. The interesting thing

to note here is the exponent 1
4
√

1+θ
of the log log T term here, as it would seem to

suggest that as we let θ → 0 there is a jump-discontinuity in the exponent, as it

approaches 1/4 and not 3/4 as previous results would appear to suggest.

A recent publication of Arguin, Dubach and Hartung [5] sheds some light on this

issue, as well as demonstrating a smooth transition from the 1/4 regime to the 3/4

regime.

In their publication, rather than consider the model WT (h) of Arguin, Belius and

Harper, they studied a Gaussian variant of this model; here the U ′ps are replaced by

standard complex Gaussian:

XT (h) =
∑
p≤T

Re(Gpp
−ih)

p1/2
, h ∈ I.

Here I is some short interval, while the G′ps are i.i.d standard complex Gaussian

variables.

We include here the three main results of their paper, as well as indicate the

important role that these results play in regards to the overall picture. The first

of these results concerns intervals of length (log T )θ (where θ > 0 is fixed) and is a

verification of the leading and subleading behaviour in the conjectured result in [5].

Theorem 1.5 (Arguin-Dubach-Hartung). For θ > 0 fixed, we have

lim
T→∞

max
|h|≤(log T )θ

XT (h)−
√

1 + θ log log T

log log log T
=

−1

4
√

1 + θ
in probability.

An equivalent way of writing this result is to say that

max
|h|≤(log T )θ

XT (h) =
√

1 + θ log log T − 1

4
√

1 + θ
log log log T + o(log log log T ).

The key thing to note in this result is that the sub-leading term has coefficient
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− 1
4
√

1+θ
so for small θ this is effectively −1/4.

The second of these results allows one to interpolate between the 1/4 and 3/4

regimes, provided θ tends to zero at a suitable rate.

Theorem 1.6. For α ∈ (0, 1) and θ = (log log T )−α, we have

lim
T→∞

max
|h|≤(log T )θ

XT (h)−
√

1 + θ log log T

log log log T
= −1 + 2α

4
in probability.

An equivalent way of writing this is

max
|h|≤(log T )θ

XT (h) =
√

1 + θ log log T − 1 + 2α

4
log log log T + o(log log log T ).

With this, we observe that if we let α → 0 (so θ > 0) we have the 1/4 regime seen

prior. In the case where α → 1 (so θ is small, since T is large), we have the 3/4

regime. So this result neatly provides a smooth transition between the two regimes.

A key ingredient to their proof is the following result, which harks back to Theorem

1.4 and sheds more light on the conjectured result of Farmer, Gonek and Hughes.

Theorem 1.7. Let y > 0 and y = o(log log T ). Then we have

P
(

max
|h|≤1

XT (h) > log log T − 3

4
log log log T + y

)
≤ Cye−2ye−y

2/ log log T ,

for some constant C > 0.

This refined result adds more weight to the conjectured result of Farmer, Gonek

and Hughes; the reason here being that, as y gets larger we see a transition from an

exponential regime to a Gaussian regime. Because of this transition to a Gaussian

regime, it adds more weight to the conjectured Gaussian result of Farmer, Gonek

and Hughes.

1.3.6 Farmer-Gonek-Hughes

The notions of Large Deviations Theory were later applied by Farmer, Gonek and

Hughes [21] to compute the maximum value of the zeta function.

The questions they posed, which we reintroduce here, are the following:

“How does the Riemann zeta function grow on the critical line?

What can we say about the value distribution of ζ(1/2 + it) as we vary t?”

An initial result, conditional on the Riemann hypothesis, is the following (see [53]):
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ζ

(
1

2
+ it

)
= O

(
exp

(
C

log t

log log t

))
(28)

for some positive constant C. Additionally, results of the form

ζ

(
1

2
+ it

)
= Ω

(
exp

(
C ′

√
log t

log log t

))
(29)

have also been established; as before C ′ is a positive constant. Various improvements

and refinements have been made regarding the possible values C ′ can take here, and

we provide references to these improvements and refinements here [41, 7, 51, 36].

Here, Ω refers to the fact that the function ζ(1
2

+ it) takes the argument inside the

brackets infinitely often. Therefore the maximum size of the zeta function on the

critical line must lie somewhere between these two exponential terms in (28) and

(29). A natural question to then ask – given this information – is the following:

which of (28) or (29) is closer to the truth?

A more recent result of Bondarenko and Seip [9] provides some clarity regarding

this problem:

Theorem 1.8 (Bondarenko-Seip). Let 0 ≤ β < 1 be given and let c be a positive

number less than
√

1− β. If T is sufficiently large, there exists a t, T β ≤ t ≤ T ,

such that

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣ ≥ exp

(
c

√
log T log log log T

log log T

)
.

The implication of this result is that |ζ(1/2+it)| = Ω
(

exp
(

(1 + o(1))
√

log T log log log T
log log T

))
.

This result therefore suggests that equation (29) is closer to the truth.

Farmer, Gonek and Hughes also sought to give a definitive answer to the above

question (in fact, their work predates that of Bondarenko and Seip), and their

conjectured answer (while also indicating that (29) is closer to the truth) suggests

a larger maximum; their calculations utilise the model we discuss below.

1.3.7 Hybrid Euler-Hadamard Product

Recall the Keating-Snaith conjecture given in (25):

1

T

∫ T

0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣ dt ∼ a(k)
G2(k + 1)

G(2k + 1)
(log T )k

2

.

From the product on the right-hand side, it can be observed that there is an arith-

metic contribution in the form of the term a(k). However, when we consider the

random matrix analogue in the form of the characteristic polynomial, we see that

there is no arithmetic contribution. The prime numbers do not appear in the ran-
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dom matrix computations of the moments, and instead must be inserted in an ad

hoc manner.

Given the explicit connection between the zeta function and the primes (as il-

lustrated by the Euler-product expansion), it becomes abundantly clear that any

model for the zeta function should incorporate the primes in some manner.

From the earlier result of Goldston, Keating and Snaith remarked about the

possible splitting of the moments of zeta as a product over the primes times a

product over the zeros of zeta. This idea was more properly realised by Gonek,

Hughes and Keating [26] in the following product:

Theorem 1.9 (Gonek-Hughes-Keating). Let s = σ + it with σ ≥ 0 and |t| > 2,

let X ≤ 2 be a real parameter, and let K be any fixed positive integer. Let f(x)

be a non-negative C∞-function of mass one supported in [0, 1], and set u(x) =

Xf(X log(x/e)+1)/x. Thus u(x) is a function of mass one supported in [e1−1/X , e].

Set

U(z) =

∫ ∞
0

u(x)E1(z log x) dx, (30)

where E1(z) =
∫∞
z
e−w/w dw is the exponential integral. Then

ζ(s) = PX(s)ZX(s)

(
1 +O

(
X2−σ+K

(|t| logX)K

)
+O(X−σ logX)

)
, (31)

where

PX(s) = exp

(∑
n≤X

Λ(n)

ns log n

)
, (32)

Λ(n) is the von-Mangoldt function, and

ZX(s) = exp

(
−
∑
ρn

U((s− ρn) logX)

)
. (33)

The constants implied by the O-terms depend on f and K.

Here ρn denotes the non-trivial zeroes of the zeta function.

The intuition behind this model is the following: the PX term can be viewed as a

product over the primes, while the ZX term can be seen as a product over the zeros,

as seen below. Therefore one can derive results from the zeta function by computing

separately results for the product over the primes and the product over the zeros

and subsequently combining them. This is the approach Farmer, Gonek and Hughes

utilised to compute the maximum size of the zeta function, and we adopt this same

approach here. For this, some observations were key, and we document these below.

The parameter X in the Hybrid Euler-Hadamard product controls the relative

influence of both the primes and the zeros. If the parameter X is large, the number

of primes picked up in PX is larger and the zeros closest to s will affect the product.
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The justification here stems from the following: since u(x) has support which is

concentrated around e, U(z) is roughly E1(z), which is asymptotic to −γ − log z as

z → 0. If one assumes the Riemann hypothesis, with s = 1
2

+ it we have that

ZX

(
1

2
+ it

)
= exp

(
−
∑
γn

U(i(t− γn) logX)

)
≈
∏
γn

i(t− γn)eγ logX.

From this expression it soon becomes clear that the zeros very close to s will affect

the product. If, on the contrary X is small, it is the zeros furthest from s that

will most greatly impact ZX(s), but by reducing the value of X we diminish the

contribution from the primes. In particular, as the value of X decreases the prime

contribution lessens, with the main contribution coming from the zeros. Thus the

model used here approaches that of the characteristic polynomial model in random

matrix theory.

In the intermediate range, it is expected that both ZX and PX contribute inde-

pendently, and Gonek, Hughes and Keating provide evidence of this.

1.3.8 Large Deviations for Zeta

With the model above formally introduced, Farmer, Gonek and Hughes used this

model to conjecture large values of zeta. In particular, they computed separately

the large values of ZX and PX , and by performing a convolution argument they

computed the large values of zeta in the intermediary region, where both terms

contribute to the expression.

For the case where the dominant contribution comes from ZX , we are looking

at a function of the zeros of zeta, and thus the correspondence to random matrix

theory provides an effective approach for computing these maximal values.

In this case they are looking at extreme values of the characteristic polynomial,

so naturally the tools and techniques from large deviations theory are effective at

computing the maximal values.

For the characteristic polynomial of a random unitary matrix (that is, a random

CUE matrix), they compute the following result:

Lemma 1.1 (Farmer-Gonek-Hughes). If δ > 0 is fixed and δ ≤ λ ≤ 1− δ, then

P
{

max
θ
|ΛU(θ)| ≥ exp(Nλ)

}
= exp

(
− N2λ

(1− λ) logN
(1 + o(1))

)
. (34)

We will not discuss the steps here as the techniques will be applied later to obtain

refined results for the characteristic polynomial. By refined here, we mean that we

give a more explicit expression for the o(1) term present in (36).

Upon applying the results of the characteristic polynomial to the product over

zeros ZX they derive the following conjecture:
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Conjecture 1.3 (Farmer-Gonek-Hughes). If 2 < X < logA T , then

max
t∈[0,T ]

∣∣∣∣ZX (1

2
+ it

)∣∣∣∣ = exp

(
(1 + o(1))

√
1

2
log T log log T

)
.

For the case of PX , the first observation is that

PX

(
1

2
+ it

)
= exp

(∑
n≤X

Λ(n)

n1/2+it log n

)
= exp

(∑
p≤X

1

p1/2+it

)
× exp(O(log logX))

= exp

(
P ∗X

(
1

2
+ it

))
× exp(O(log logX)).

Here

P ∗X (s) = exp

(∑
p≤X

1

ps

)
=
∏
p≤X

1

ps
.

For the leading order results of PX it is therefore sufficient to compute the results

for large values of P ∗X . For this the authors use what is essentially a modified central

limit theorem to show that the distribution of P ∗X(1
2

+ it) converges as X → ∞ to

a Gaussian with mean 0 and variance 1
2

log logX. The randomness in this model

comes from treating the p−it as independent random variables due to the logarithm

of the primes, log p being linearly independent for distinct primes.

In the regime where PX is the dominant contribution to the Hybrid product,

taking X = exp(
√

log T ) and independently choosing T logc T values of t yields the

following conjecture

Conjecture 1.4. If X = exp(
√

log T ), then

max
t∈[0,T ]

∣∣∣∣PX (1

2
+ it

)∣∣∣∣ = exp

(
(1 + o(1))

√
1

2
log T log log T

)
.

What is our motivation for taking X = exp(
√

log T )? Recall from Section 1.3.1

that ζ(1
2

+ it) tends to a Gaussian with mean 0 and variance 1
2

log log T as T gets

large (by a simple reformulation of Selberg’s result). In the regime where PX is the

dominant contribution, it is reasonable to choose X such that the two results have

matching variance. Thus from making the identification log logX ↔ 1
2

log log T we

get X = exp(
√

log T ).

We see from this result that in the two regimes where the dominant contribu-

tions to the product come from PX and ZX respectively, the conjectured maxima are

in agreement. The final step in their calculation was to consider the intermediate

regime, where both functions contribute to the product. In the intermediate regime
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where the value of X is not too large, it is expected that PX and ZX behave inde-

pendently, and Gonek, Hughes and Keating [26] give evidence that this is indeed

the case.

We defer some of the details until later, but we remark that in the intermediate

case, they obtain the conjectured result that

Conjecture 1.5.

max
t∈[0,T ]

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣ = exp

(
(1 + o(1))

√
1

2
log T log log T

)
.

Therefore in all possible regimes the results are in agreement, thus adding weight to

the conjecture.

1.4 Overview of Thesis

This thesis is split into seven chapters. Chapter 2 introduces the necessary tools and

material from the theory of large deviations, and it is in this Chapter that we prove

a more general result for the large deviations principle, predicated on a number of

assumptions. This result is utilised throughout and essentially forms the backbone

of this thesis.

In Chapter 3 we apply this large deviations result to the circular beta ensemble,

obtaining a general result for the maximum of the characteristic polynomial of a CβE

matrix. These results go much further than Farmer, Gonek and Hughes outlined in

their results (as seen in Chapter 1.3.6), who focused their attention exclusively on

the circular unitary (β = 2) ensemble.

This leads naturally into the computation of refined large deviations results for

the zeta function in Chapter 4, which we separate according to the product over

primes and the product over zeros. Here we propose an alternative model for PX

than that in the original literature, and we use this to go further and obtain refined

results for the product over primes.

That this alternate model is suitable for our purposes is documented in Chapter

5 where we provide theoretical evidence, as well as numerical evidence, to support

our argument.

The use of these two models leads to some inconsistency in the results, with the

refined behaviour for these models not in agreement with one another. We discuss

this in Chapter 6, where we discuss the possible reasons for this difference as well

as discuss which results we align with here.

We provide a number of theoretic results in this paper, and in Chapter 7 we

perform some numerics to further demonstrate the validity and consistency of our

findings, as well as support the refined results we propose for the zeta function.
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Additional calculations and details are provided in the Appendices, where we

clarify some of the subtleties that arose during research.

1.5 Things Not Considered Here

The research presented here was completed with the Riemann zeta function being

the main focus. As such, there is scope for further research to be done, and there

are various directions and branches that this research could take as a result. We

highlight some of the notable ones here, but note that this is by no means an

exhaustive list.

• In Chapter 3 we present more general results for the large deviations principle,

predicated on a series of assumptions which we detail in Chapter 2. Is the result

we obtain in Chapter 2 the best we can do given the current mathematical

framework, or can we refine this? Can we obtain more terms in our large

deviations result? Is it possible to remove some of our assumptions, or replace

these with more general assumptions that allow us to apply our results to more

settings?

• We computed refined large deviations results here, predicated on a number of

assumptions which we then apply to the circular beta ensemble. It is plausible

that the results here can be applied to other matrix ensemble and groups:

the Gaussian ensembles, orthogonal and symplectic groups (the relevance and

significance of such results is unclear). Is this achievable with our current re-

sults, or does the computation of results for different matrix ensembles require

additional assumptions?

• We have applied our findings to the Riemann zeta function, but is it possible

that these results can be applied further? For example, can we utilise some of

these ideas and concepts and apply them to other number-theoretic concepts

such as other L-functions? What about in a broader context such as number

fields or elliptic curves? Is there motivation for doing this, and were we to

apply these ideas to other scenarios, what would these results mean in the

context of those other mathematical disciplines?
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2 Large Deviations Theory

The focus of this Chapter is to lay the groundwork for the improvement of results

in [21], and to achieve this we begin by first introducing some basic theory from the

theory of large deviations; we later implement this theory to obtain more general

large deviations results.

The results in this Chapter are predicated on some assumptions and we outline

these below. Before doing so we first introduce the necessary concepts and ideas for

obtaining these results, and these concepts stem from probability theory.

2.1 Basic Probability Theory

The following concepts, although not always stated explicitly, will be utilised through-

out this thesis.

Definition 2.1. Let X be a topological space, and let P(X ) denote the set of all

subsets of X . We say that A ⊂ P(X ) is a σ-algebra if the following three conditions

are satisfied:

(i) ∅ ∈ A;

(ii) For all A ∈ A, Ac also lies in A (closure under complements);

(iii) If (An)n∈N is a collection of sets such that An ∈ A for each n ∈ N, then⋃
n∈NAn ∈ A (closure under countable unions).

For the context of our results here, X will denote the topological space (R, τ), where

the topology τ on R is the usual topology. That is, open sets are identified with

open intervals and closed sets sets with closed intervals.

Definition 2.2. We define B as the σ-algebra generated by the collection of open

subsets of R. The sets contained in B are known as the Borel sets.

Definition 2.3. A probability measure is a map P : X → [0,∞] which satisfies the

following properties:

(i) P(∅) = 0 and P(X ) = 1;

(ii) For a collection (An)n∈N of pairwise-disjoint sets,

P

(⋃
n∈N

An

)
=
∑
n∈N

P(An).

With this definition, it now becomes clear what we mean when we think of Haar

measure as being a probability measure.

Next we introduce the necessary tools and techniques from large deviations the-

ory that will be essential to us throughout this thesis.
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2.2 Introductory Concepts

Large deviations theory is the study of increasingly unlikely events. These ideas and

techniques play an integral role in the work that follows, for our intentions here are

to study the maximum values attained by various functions. Here, these maxima are

extremely rare, to the point that detecting them numerically is often difficult; large

deviations theory is effective for such scenarios. Therefore before we can continue,

we must introduce the necessary concepts and ideas.

Note that the following results stated here are for the one-dimensional case.

However, they generalise to higher dimensions (see [18] for more details).

Definition 2.4. A rate function Λ∗ is a lower semicontinuous mapping Λ∗ : X →
[0,∞] (such that for all α ∈ [0,∞), the level set ψΛ∗(α) = {x : Λ∗(x) ≤ α} is a

closed subset of X ).

A good rate function is a rate function for which the level sets ψΛ∗(α) are compact

subsets of X .

Definition 2.5. The sequence of random variables (XN)N∈N satisfies the large de-

vation principle (LDP) with rate function Λ∗ and speed B(N) if, for all Γ ∈ B:

− inf
x∈Γo

Λ∗(x) ≤ lim inf
N→∞

1

B(N)
logP(XN ∈ Γ) ≤ lim sup

N→∞

1

B(N)
logP(XN ∈ Γ) ≤ − inf

x∈Γ̄
Λ∗(x).

We refer to the function B(N) here as the speed since it determines the rate of

convergence of the logarithmic moment generating function (MGF), as highlighted

in the following assumption:

Assumption 2.1. For all λ ∈ R the logarithmic MGF, defined as the limit

Λ(λ) = lim
N→∞

1

B(N)
logE

[
eλB(N)XN

]
(35)

exists as an extended real number, that is, in R ∪ {∞}.

Definition 2.6. A convex function Λ : R → (−∞,∞] is essentially smooth if the

following properties are satisfied:

(i) DoΛ is non-empty. Here, DΛ = {λ ∈ R : Λ(λ) < ∞} is known as the effective

domain13;

(ii) Λ is differentiable on DoΛ;

(iii) limn→∞ |Λ′(λn)| =∞ whenever {λn} is a sequence in DoΛ converging to a point

on the boundary of DoΛ. If Λ satisfies this property, we say that Λ is a steep

function.

13As will be seen from Assumption 2.3, this is automatically satisfied for our choice of Λ.
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We can be confident in our statement of the convexity of Λ given the following result

(see Lemma 2.3.9 of [18]).

Lemma 2.1. Let Assumption 2.1 hold.

(i) Λ(λ) is a convex function, Λ(λ) > −∞ everywhere, and Λ∗(x) is a good convex

rate function;

(ii) Suppose that x = Λ′(λ̄) for some λ̄ ∈ DoΛ. Then

Λ∗(x) = λ̄x− Λ(λ̄).

We omit the proof, but this result will be essential to later calculations.

Assumption 2.2. Λ(λ) is an essentially smooth lower semi-continuous function.

Note that with Assumption 2.2, part (ii) of Lemma 2.1 is now reasonable, since

Λ(λ) being essentially smooth means that it is differentiable on its effective domain,

via Definition 2.6.

Assumption 2.3. 0 belongs to the interior of DΛ = {λ ∈ R : Λ(λ) <∞}.

In the case where the probability density functions (PDFs) pN corresponding to the

XN are independent and identically distributed (IID), Assumption 2.3 tells us that

Assumption 2.1 holds (see for example Page 43 of [18]).

In addition, with Lemma 2.1 included here, we see that it is indeed sensible for us

to discuss the notion of essentially smooth since our given Λ(λ) is convex. Further,

Λ(λ) > −∞, so Λ : R→ (−∞,∞] makes sense in the statement of Definition 2.6.

With Assumptions 2.1, 2.2 and 2.3, the Gärtner-Ellis theorem [18] tells us that

the sequence of random variables {XN}N∈N satisfies the Large Deviation Principle

(LDP) with good rate function

Λ∗(x) = sup
λ∈R

(λx− Λ(λ)). (36)

Given we are working in the one-dimensional case with Γ = (x,∞] as our set in

Definition 2.5, we then have that Γo = (x,∞] and Γ̄ = [x,∞]. For the infima in this

statement the difference in these two sets is not significant, and these results allow

us to write this large deviations principle more concisely as

lim
N→∞

1

B(N)
logP(XN ≥ x) = −Λ∗(x); (37)

Λ∗(x) is known as the Fenchel-Legendre transform (or convex dual) of Λ(λ). With

this notation, (37) is equivalent to saying that P(XN ≥ x) = e−B(N)Λ∗(x)(1+o(1)) as

N → ∞. This is the weakest statement we have; our goal is to obtain a much

stronger result.

Let us return to (35). One additional assumption needed here is the following:
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Assumption 2.4. There exists a probability density function (pdf) pN(x) which

decays in such a way that it satisfies the following integral relation:

E
[
eλB(N)XN

]
=

∫ ∞
−∞

eλB(N)xpN(x) dx. (38)

2.3 Refined Large Deviations Results

With the tools and techniques of Large Deviations Theory formally introduced, we

seek to refine and improve the weak result in (37) so that we can obtain something

more applicable for our purposes.

The theory of large deviations coupled with Assumptions 2.1 - 2.4 allow us to

conclude the following:

Theorem 2.1. With Λ(λ) defined as in (35) with corresponding pdf pN(x), we have

that

pN(x) =
B(N)√
2πf ′′(λ̄)

ef(λ̄) + ox(1) (39)

as N → ∞, where f(λ) = −B(N)λx + logE[eλB(N)XN ] and λ̄ satisfies f ′(λ̄) = 0.

Further, suppose our logarithmic expectation takes the following form:

logE
[
eλB(N)XN

]
= B(N)Λ(λ) + C(N)Λ̃(λ) + o(C(N))

where C(N) = o(B(N)) and Λ̃(λ) is some function of λ. Then we can conclude that

logP(XN ≥ x) = −B(N)Λ∗(x) + C(N)Λ̃(λ̄)− 1
2

logB(N) +Ox(1).

It should be noted that it is not clear from the statement of Theorem 2.1 that

the second derivative f ′′ exists. From Lemma 2.1 it follows that the function f is

convex, and so by the Alexandrov theorem (see Theorem 3.11.2 of [43] for more) the

second derivative exists almost everywhere; that is, except for a null set, which is a

set of Lebesgue measure zero. The range we are working with is λ ∈ R (a non-null

set) and so f ′′ exists.

Proof of Theorem 2.1. From Assumption 2.4 we can write

E
[
eλB(N)XN

]
=

∫ ∞
−∞

eλB(N)xpN(x)dx = B[pN(x);−λB(N)]

where B denotes the bilateral Laplace transform. Therefore we can invert this to

give
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pN(x) =
1

2πi

∫ c+i∞

c−i∞
e−λB(N)xE

[
eλB(N)XN

]
dB(N)λ

=
B(N)

2πi

∫ c+i∞

c−i∞
e−λB(N)xE

[
eλB(N)XN

]
dλ

in the common region of convergence. Utilising the saddle-point method, we express

the probability density function in the form

pN(x) =
B(N)

2πi

∫ c+i∞

c−i∞
ef(λ)dλ,

where f(λ) = −B(N)λx+logE
[
eλB(N)XN

]
. Letting λ̄ denote the solution to f ′(λ) =

0, it is clear that λ̄ satisfies the equation

x =
E
[
XNe

λ̄B(N)XN

]
E
[
eλ̄B(N)XN

] , (40)

where the solution λ̄ is unique by convexity of logE[eλB(N)XN ] (recalling Lemma

2.1). Note that we make use of Assumption 2.2 that Λ(λ) is an essentially smooth

function, and is thus differentiable on DoΛ. The leading contribution to this integral

for pN(x) comes from a small interval of length 2ε (where ε is to be made explicit)

around the saddle point, so we have

pN(x) =
B(N)

2πi

∫ λ̄+iε

λ̄−iε
ef(λ) dλ+

B(N)

2πi

∫ λ̄−iε

c−i∞
ef(λ) dλ+

B(N)

2πi

∫ c+i∞

λ̄+iε

ef(λ) dλ.

Here our interval around the saddle point is vertical in the complex plane because

f ′′(λ) = d2

dλ2 logE[eλB(N)XN ] > 0 for all λ by convexity, again from Lemma 2.1.

Consider the second integral (the following arguments also apply to the third

integral): by rewriting the integrand and performing integration by parts, we have

B(N)

2πi

∫ λ̄−iε

c−i∞
ef(λ)dλ =

B(N)

2πi

∫ λ̄−iε

c−i∞

f ′(λ)

f ′(λ)
ef(λ) dλ

=
B(N)

2πi

([
ef(λ)

f ′(λ)

]λ̄−iε
c−i∞

+

∫ λ̄−iε

c−i∞

f ′′(λ)

(f ′(λ))2
ef(λ) dλ

)
.

We are able to do this as the integrand is analytic, since we are working away from

λ = λ̄. To evaluate this we consider only the dominant contribution, which comes

from the leading term in these brackets. For the evaluation at λ̄ − iε, we evaluate

the exponential term by performing a Taylor expansion around the point λ̄:
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f(λ̄− iε) = f(λ̄) + (λ̄− iε− λ̄)f ′(λ̄) +
(λ̄− iε− λ̄)2

2
f ′′(λ̄) + · · ·

�λ̄,N −λ̄B(N)x+ logE[eλ̄B(N)XN ]− ε2

2
B(N)Λ′′(λ̄).

By splitting the term inside the integral, we can perform an additional application

of integration by parts,

∫ λ̄−iε

c−i∞

f ′′(λ)

(f ′(λ))2
ef(λ) dλ =

[
ef(λ)

(f ′(λ))3

]λ̄−iε
c−i∞

+

∫ λ̄−iε

c−i∞
ef(λ)

[
f ′′′(λ)2 − f ′′(λ)f (4)(λ)

(f ′′(λ))2

]
dλ

and we see after further applications of integration by parts that the terms of our

expression decrease in magnitude. Therefore our expression for the integral can be

bounded above by some multiple of the first term. Combining this with the fact

that f ′(λ̄) is zero (so f ′(λ̄− iε) is of order B(N)ε near λ̄) gives the result

B(N)

2πi

∫ λ̄−iε

c−i∞
ef(λ)dλ�ε,N

B(N)ef(λ̄−iε)

f ′(λ̄− iε)

= O

(
exp(−λ̄B(N)x+ logE[eλ̄B(N)XN ]−B(N)Λ′′(λ̄)ε2/2)

ε

)
.

Returning to the original integral, we Taylor expand around the saddle point, giving

B(N)

2πi

∫ λ̄+iε

λ̄−iε
ef(λ) dλ =

B(N)

2πi
ef(λ̄)

∫ λ̄+iε

λ̄−iε
e

(λ−λ̄)2

2
f ′′(λ̄)dλ

+
B(N)

2πi
ef(λ̄)

∫ λ̄+iε

λ̄−iε

∞∑
l=1

1

l!

(
∞∑
k=3

(λ− λ̄)k

k!
f (k)(λ̄)

)l

e
(λ−λ̄)2

2
f ′′(λ̄)dλ.

Here the sub-leading term is, after a change of variable λ → λ + λ̄ followed by

another change of variable λ→ iλ,

B(N)

2π
ef(λ̄)

∫ ε

−ε

∞∑
l=1

1

l!

(
∞∑
k=3

(iλ)k

k!
f (k)(λ̄)

)l

e−
λ2

2
f ′′(λ̄)dλ

= O
(
B(N)2|Λ(4)(λ̄)| exp

(
−λ̄B(N)x+ logE

[
eλ̄B(N)XN

])
ε5
)
.

We have made use of the fact that, in the case where k is odd, the expression inside

the integral is odd and so the resulting integral is 0. So we need to consider the

smallest value of k for which we get a non-zero integrand for our error term, which

comes from the case k = 4. This gives a contribution of ε4, which in addition to the

range 2ε we are integrating over gives an overall contribution of ε5 to the error term.
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It is important to note that we are assuming that Λ(4)(λ̄) exists. If this is zero, we

do not have an upper bound on ε in our later calculations.

The remaining components inside the big-O term follow from the same ideas

utilised earlier. The leading term – following the changes of variable λ→ λ+ λ̄ and

λ→ iλ – can be written as

B(N)

2π
ef(λ̄)

∫ ε

−ε
e−λ

2/2 dλ.

We now let ε approach infinity; the reason for this is that the exponential decays

rapidly away from λ̄. Some care is needed however, as we need to ensure that our

error terms do not get too large in the limit. Overall, we have

pN(x) =
B(N)

2π
ef(λ̄)

∫ ε

−ε
e−λ

2/2dλ

+O

exp
(
−λ̄B(N)x+ logE

[
eλ̄B(N)XN

]
−B(N)Λ′′(λ̄)ε2/2

)
ε


+O

(
B(N)2|Λ(4)(λ̄)| exp

(
−λ̄B(N)x+ logE

[
eλ̄B(N)XN

])
ε5
)
.

For the first of these error terms, recall that logE[eλ̄B(N)XN ] behaves roughly like

B(N)Λ(λ̄) for large N , so −λ̄B(N)x + logE[eλ̄B(N)XN ] behaves like −B(N)Λ∗(x)

for large N (note that we are letting N tend to infinity, so this leading order ap-

proximation is sufficient for our purposes). With this in mind, Taylor expanding the

exponential gives in the O-term

exp (−B(N)Λ∗(x))
(
1−B(N)Λ′′(λ̄)ε2 + · · ·

)
ε

.

Therefore in order to ensure that both sub-leading terms stay small in ε and N , we

require that

ε� −1−
√

1 + 2B(N)Λ′′(λ̄) exp(−2B(N)Λ∗(x))

exp(−B(N)Λ∗(x))B(N)Λ′′(λ̄)

or

ε� −1 +
√

1 + 2B(N)Λ′′(λ̄) exp(−2B(N)Λ∗(x))

exp(−B(N)Λ∗(x))B(N)Λ′′(λ̄)
,

in addition to the condition that

ε�
(

eB(N)Λ∗(x)

B(N)2|Λ(4)(λ̄)|

)1/5

.

If we therefore choose ε such that
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−1 +
√

1 + 2B(N)Λ′′(λ̄) exp(−2B(N)Λ∗(x))

exp(−B(N)Λ∗(x))B(N)Λ′′(λ̄)
� ε�

(
eB(N)Λ∗(x)

B(N)2|Λ(4)(λ̄)|

)1/5

our error terms do not get large as we let ε approach infinity, and therefore we can

say that the error terms are of order o(1) as we let N approach infinity. So after

evaluating the leading order integral we have the result that

pN(x) =
B(N)√
2πf ′′(λ̄)

ef(λ̄) + ox(1),

thus completing the first part of the Theorem. With this result, we now compute

the probability

P(XN ≥ x) =

∫ ∞
x

pN(u) du

=
B(N)√
2πf ′′(λ̄)

∫ ∞
x

ef(λ̄) + ox(1) du

=
B(N)√
2πf ′′(λ̄)

∫ ∞
x

e−g(u) du+ ox(1).

Note that our o-term is with respect to N , and since we are integrating with re-

spect to the variable u here this term is unchanged by the integration. Here we

set −g(u) = f(λ̄) = −B(N)λ̄u + logE[eλ̄B(N)XN ]. Rewriting this equation and

performing integration by parts gives

B(N)√
2πf ′′(λ̄)

∫ ∞
x

−g′(u)

−g′(u)
e−g(u) du =

B(N)√
2πf ′′(λ̄)

[
−e
−g(u)

g′(u)

]∞
x

=
B(N)√
2πf ′′(λ̄)

e−g(x)

g′(x)
,

where the integral vanishes since g′′(u) = 0. Taking logarithms of both sides of the

equation, we have

logP(XN ≥ x) = logB(N)− 1
2

log 2π − 1
2

log f ′′(λ̄)− g(x)− log g′(x) + ox(1)

= logB(N)− 1
2

log 2π − 1
2

logB(N)− 1
2

log Λ′′(λ̄)

−B(N)λ̄x+ logE
[
eλ̄B(N)XN

]
− logB(N)− log

(
dλ̄
dx
x+ λ̄

)
+Ox(1)

= logE
[
eλ̄B(N)XN

]
−B(N)λ̄x− 1

2
logB(N) +Ox(1)

= B(N)Λ(λ̄) + C(N)Λ̃(λ̄) + o(C(N))−B(N)λ̄x− 1
2

logB(N) +Ox(1)

= −B(N)Λ∗(x) + C(N)Λ̃(λ̄)− 1
2

logB(N) +Ox(1)

as desired. We have yet to fully justify some of the final steps in the proof, so we
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include this justification here.

In going from the second line to the third, we’ve introduced a Ox(1) term into

our calculations. This comes from the fact that the terms in x are of constant order,

so we absorb them into a Ox(1) term to tidy up the expression. For the 1
2

log f ′′(λ̄)

term, utilising our assumption for the expression in Theorem 2.1 and differentiating

this expression gives

1
2

log f ′′(λ̄) = 1
2

log(B(N)Λ(λ̄) + C(N)Λ(1)(λ̄) + o(C(N)))

= 1
2

logB(N) +Ox(1)

at leading order. Therefore the steps of the proof are valid. One could also obtain

this without having to resort to the logarithmic expectation taking the assumed

form, instead attaining this expression for the second derivative of f ′′ by looking

purely at the leading order behaviour.
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3 Refined Large Deviations for the Circular β En-

semble

In this Chapter, we utilise the large deviations result from Chapter 2 and apply this

to the circular beta ensemble (CβE). This allows us to compute explicit results for

the circular unitary ensemble (CUE) by setting β = 2, which we utilise in Chapter

4 to compute refined large deviations results for the Riemann zeta function.

To compute generalised results for the CβE we take the result introduced in (5)

and average over the eigenphases, leading to the following result as stated in [35]:

MN(β, s) = E [|ΛU,β(θ)|s]

=
1

(2π)NZN,β

∫ 2π

0

· · ·
∫ 2π

0

dθ1 . . . dθN ·
∏

1≤j<m≤N

∣∣eiθj − eiθm∣∣β × ∣∣∣∣∣
N∏
p=1

(
1− ei(θp−θ)

)∣∣∣∣∣
s

=
N−1∏
j=0

Γ(1 + jβ/2)Γ(1 + s+ jβ/2)

(Γ(1 + s/2 + jβ/2))2
,

where ΛU,β(θ) denotes the characteristic polynomial of a random CβE matrix (β =

1, 2, 4). By taking logarithms of this result, we obtain the following result:

Theorem 3.1. For MN(β, s) = E [|ΛU,β(θ)|s] and for s� N we have the following

result for β = 1, 2, 4:

logMN(β, s) =
s2

2β
logN − s2

2β
log s− s2

β
log 2 +

s2

2β
log β +

3s2

4β
+ o(s2).

Proof of Theorem 3.1. We begin by taking logarithms of the above result forMN(β, s),

which gives the following result:

logMN(β, s) =
N−1∑
j=0

log Γ(1 + jβ/2) + log Γ(1 + s+ jβ/2)− 2 log Γ(1 + s/2 + jβ/2).

Isolating the j = 0 terms and making use of Stirling’s formula:

log Γ(1 + z) = z log z − z +
1

2
log z +

1

2
log 2π +O

(
1

z

)
,

the logarithmic expectation becomes
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logMN(β, s) = log Γ(1 + s)− 2 log Γ(1 + s/2) +
N−1∑
j=1

log Γ(1 + jβ/2)

+ log Γ(1 + s+ jβ/2)− 2 log Γ(1 + s/2 + jβ/2)

=

(
s log s− s+

1

2
log s+

1

2
log 2π +O

(
1

s

))
− 2

(
s

2
log
(s

2

)
− s

2

+
1

2
log
(s

2

)
+

1

2
log 2π +O

(
1

s

))
+

N−1∑
j=1

(
jβ

2
log

(
jβ

2

)
− jβ

2

+
1

2
log

(
jβ

2

)
+

1

2
log 2π +O

(
2

jβ

))
+

((
s+

jβ

2

)
log

(
s+

jβ

2

)
−
(
s+

jβ

2

)
+

1

2
log

(
s+

jβ

2

)
+

1

2
log 2π +O

(
1

s+ jβ/2

))
− 2

((
s

2
+
jβ

2

)
log

(
s

2
+
jβ

2

)
−
(
s

2
+
jβ

2

)
+

1

2
log

(
s

2
+
jβ

2

)
+

1

2
log 2π +O

(
2

s+ jβ

))
.

The first two terms simplify to give s log 2− 1
2

log s+ log 2− 1
2

log 2π +O(1/s). For

the summation we split this expression into three parts, with each part represented

by the bracketed expressions above. We then evaluate each part individually before

combining them again to obtain the result in the theorem.

3.1 First Part of Sum

The first part of the sum gives (after collecting terms)

N−1∑
j=1

(
1

2
+
jβ

2

)
log

(
jβ

2

)
− jβ

2
+

1

2
log 2π +O

(
2

jβ

)

=
1

2
log((N − 1)!) +

N − 1

2
log β − N − 1

2
log 2 +

(
N−1∑
j=1

jβ

2
log j

)
+
N(N − 1)

4
β log β

− N(N − 1)

4
β log 2− N(N − 1)

4
β +

N − 1

2
log 2π +O(logN)

=
1

2
log((N − 1)!) +

N

2
log β − N

2
log 2 +

(
N−1∑
j=1

jβ

2
log j

)
+
N(N − 1)

4
β log β − N(N − 1)

4
β log 2

− N(N − 1)

4
β +

N

2
log 2π +O(logN).

3.2 Second Part of Sum

For the second part of the sum, we have
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N−1∑
j=1

(
1

2
+ s+

jβ

2

)
log

(
s+

jβ

2

)
− s− jβ

2
+

1

2
log 2π +O

(
1

s+ jβ/2

)
.

Here a little more care is needed. For our purposes, s is a function of N which grows

at a rate slower than N (so s� N). However, we need to be careful when evaluating

this sum as some terms in j may be smaller than s; when does this occur?

A quick check shows that the change occurs at [2s/β], where [·] denotes the

integer part. Splitting the sum appropriately gives

[2s/β]∑
j=1

(
1

2
+ s+

jβ

2

)
log s+

(
1

2
+ s+

jβ

2

)[
jβ

2s
− j2β2

8s2
+ · · ·

]
− s− jβ

2
+

1

2
log 2π

+O

(
1

s

)
+

N−1∑
[2s/β]+1

(
1

2
+ s+

jβ

2

)
log

(
jβ

2

)
+

(
1

2
+ s+

jβ

2

)[
2s

jβ
− 2s2

j2β2
+ · · ·

]
− s− jβ

2

+
1

2
log 2π +O

(
2

jβ

)
.

We evaluate both of these sums separately; the same idea applies to either sum.

Before we can formally evaluate this first sum, we first need to consider the second

term. Our aim is to compute refined large deviations results up to the o(s2) term14.

It can be seen that terms of the form jn+1βn+1/sn (after evaluating) give terms of

order s2, while others are absorbed by the o(s2) term.

Looking at these terms, we have the following expression:

(
1

2
+ s+

jβ

2

)[
jβ

2s
− j2β2

8s2
+ · · ·

]
=
jβ

2
+
j2β2

4s
− j2β2

8s
− j3β3

16s2
+
j3β3

24s2
+ · · ·

=
jβ

2
+
j2β2

8s
− j3β3

48s2
+ · · ·

=
jβ

2
+ s

∞∑
n=2

(−1)n

n(n− 1)

(
jβ

2s

)n
.

Here we have two sums: the sum over n and the sum over j. The sum over j is finite

and so converges absolutely; we need only check that the sum over n here converges

absolutely, and this can be seen by comparison with ζ(2) (here the sum is for integer

14While it may be possible to go further with the techniques on display here it would require a
great deal of work which we do not go into in this thesis (we will later see that our results for the
maximum of the product over primes PX do not extend beyond the subleading term, so while we
could obtain further terms here we do not have additional terms in PX to compare against and
verify). We hence restrict our results to terms of order exceeding s2.
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j in [1, [2s/β]] and so j < 2s/β, i.e. jβ/2s < 1). We therefore have

[2s/β]∑
j=1

jβ

2
+ s

∞∑
n=2

(−1)n

n(n− 1)

(
jβ

2s

)n

=
[2s/β]([2s/β] + 1)

4
β + s

∞∑
n=2

(−1)n

n(n− 1)

(
β

2s

)n [2s/β]∑
j=1

jn

=
[2s/β]([2s/β] + 1)

4
β + s

∞∑
n=2

(−1)n

n(n− 1)

(
β

2s

)n [
[2s/β]n+1

(n+ 1)
+

[2s/β]n

2
+ · · ·

]
=

[2s/β]([2s/β] + 1)

4
β +

2s2

β

∞∑
n=2

(−1)n

(n− 1)n(n+ 1)
+ o(s2),

where we make use of Faulhaber’s formula in the third line. Therefore the first of

these two sums evaluates to give

[2s/β]

2
log s+ [2s/β]s log s+

[2s/β]([2s/β] + 1)

4
β log s+

[2s/β]([2s/β] + 1)

4
β

+
2s2

β

∞∑
n=2

(−1)n

(n− 1)n(n+ 1)
+ o(s2)− [2s/β]s− [2s/β]([2s/β] + 1)

4
β

=[2s/β]s log s+
[2s/β]2

4
β log s+

2s2

β

∞∑
n=2

(−1)n

(n− 1)n(n+ 1)
− [2s/β]s+ o(s2).

We now look to evaluate the second of our sums. As before, we need to consider the

second term; here the terms of interest are those of the form sn+1/jnβn.

Focusing on these specific terms, we have the following:

(
1

2
+ s+

jβ

2

)[
2s

jβ
− 2s2

j2β2
+ · · ·

]
= s+

2s2

jβ
− s2

jβ
− 2s3

j2β2
+

4s3

3j2β2
+ · · ·

= s+
s2

jβ
− 4s3

6j2β2
+

8s4

12j3β3
+ · · ·

= s+
s2

jβ
+ s

∞∑
n=2

(−1)n+1

n(n+ 1)

(
2s

jβ

)n
.

As before we are summing over both j and n here, but since both sums converge

absolutely by the same argument as before, we can freely interchange summands.

This gives the following:
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N−1∑
j=[2s/β]+1

s+
s2

jβ
+ s

∞∑
n=2

(−1)n+1

n(n+ 1)

(
2s

jβ

)n

=s(N − 1)− [2s/β]s+
s2

β
log(N − 1)− s2

β
log([2s/β]) + s

∞∑
n=2

(−1)n+1

n(n+ 1)

(
2s

β

)n N−1∑
j=[2s/β]

1

jn

=s(N − 1)− [2s/β]s+
s2

β
log(N − 1)− s2

β
log([2s/β])

+ s
∞∑
n=2

(−1)n+1

n(n+ 1)

(
2s

β

)n [
1

(n− 1)[2s/β]n−1
− 1

(n− 1)(N − 1)n−1

]
=s(N − 1)− [2s/β]s+

s2

β
log(N − 1)− s2

β
log([2s/β]) +

2s2

β

∞∑
n=2

(−1)n+1

(n− 1)n(n+ 1)
+ o(s2).

Here the second term in the sum over n is absorbed by the o-term. Therefore the

second sum here gives the result

1

2
log((N − 1)!) +

N − 1

2
log β − N − 1

2
log 2 + s log((N − 1)!)− s log([2s/β]!)

+(N − 1)s log β − [2s/β]s log β − (N − 1)s log 2 + [2s/β]s log 2 +
N−1∑

[2s/β]+1

jβ

2
log j

+
N(N − 1)

4
β log β − [2s/β]([2s/β] + 1)

4
β log β − N(N − 1)

4
β log 2

+
[2s/β]([2s/β] + 1)

4
β log 2 + s(N − 1)− [2s/β]s+

s2

β
log(N − 1)− s2

β
log([2s/β])

+
2s2

β

∞∑
n=2

(−1)n+1

(n− 1)n(n+ 1)
+ o(s2)− s(N − 1) + [2s/β]s− N(N − 1)

4
β

+
[2s/β]([2s/β] + 1)

4
β

=
1

2
log((N − 1)!) +

N

2
log β − N

2
log 2 + s log((N − 1)!)− s log([2s/β]!) +Ns log β

−[2s/β]s log β −Ns log 2 + [2s/β]s log 2 +
N−1∑

[2s/β]+1

jβ

2
log j +

N(N − 1)

4
β log β

− [2s/β]2

4
β log β − N(N − 1)

4
β log 2 +

[2s/β]2

4
β log 2 +

s2

β
logN − s2

β
log([2s/β])

+
2s2

β

∞∑
n=2

(−1)n+1

(n− 1)n(n+ 1)
+ o(s2)− N(N − 1)

4
β +

[2s/β]2

4
β.

3.3 Third Part of Sum

For the third part of the sum, we have (accounting for the factor of −2)
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N−1∑
j=1

(−1− s− jβ) log

(
s

2
+
jβ

2

)
+ s+ jβ − log 2π +O

(
2

s+ jβ

)
.

As before, we need to account for the size of j here and for what values jβ/2 is

smaller than s/2, and in the third part of the sum this change occurs at [s/β]. So

we write this as

[s/β]∑
j=1

(−1− s− jβ) log
(s

2

)
+ (−1− s− jβ)

[
jβ

s
− j2β2

2s2
+ · · ·

]
+ s+ jβ − log 2π

+O

(
2

s

)
+

N−1∑
j=[s/β]+1

(−1− s− jβ) log

(
jβ

2

)
+ (−1− s− jβ)

[
s

jβ
− s2

2j2β2
+ · · ·

]

+ s+ jβ − log 2π +O

(
2

jβ

)
.

As before, in the first of these sums we have to once again consider the second term;

those terms of interest are of the form jn+1βn+1/sn. Here we have

(−1− s− jβ)

[
jβ

s
− j2β2

2s2
+ · · ·

]
= −jβ − j2β2

s
+
j2β2

2s
+
j3β3

2s2
− j3β3

3s2
+ · · ·

= −jβ − j2β2

2s
+
j3β3

6s2
+ · · ·

= −jβ + s
∞∑
n=2

(−1)n−1

n(n− 1)

(
jβ

s

)n
.

As before both sums over j and n converge absolutely, so we can interchange sum-

mands in this step, giving the result

[s/β]∑
j=1

−jβ + s
∞∑
n=2

(−1)n−1

n(n− 1)

(
jβ

s

)n

=− [s/β]([s/β] + 1)

2
β + s

∞∑
n=2

(−1)n−1

n(n− 1)

(
β

s

)n [s/β]∑
j=1

jn

=− [s/β]([s/β] + 1)

2
β + s

∞∑
n=2

(−1)n−1

n(n− 1)

(
β

s

)n [
[s/β]n+1

n+ 1
+

[s/β]n

2
+ · · ·

]
=− [s/β]([s/β] + 1)

2
β +

s2

β

∞∑
n=2

(−1)n−1

(n− 1)n(n+ 1)
+ o(s2).

The first sum then evaluates to give
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−[s/β]s log s+ [s/β]s log 2− [s/β]2

2
β log s+

[s/β]2

2
β log 2 +

s2

β

∞∑
n=2

(−1)n−1

(n− 1)n(n+ 1)

+[s/β]s+O(1).

We repeat the same procedure for the second sum: for this expression, isolating the

sn/jn−1βn−1 terms gives

(−1− s− jβ)

[
s

jβ
− s2

2j2β2
+

s3

3j3β3
+ · · ·

]
= −s− s2

jβ
+

s2

2jβ
+

s3

2j2β2
− s3

3j2β2
+ · · ·

= −s− s2

2jβ
+

s3

6j2β2
− s4

12j4β4
+ · · ·

= −s− s2

2jβ
+ s

∞∑
n=2

(−1)n

n(n+ 1)

(
s

jβ

)n
.

As before we are summing over both n and j, and since both sums converge abso-

lutely we can interchange these sums at will, which gives

N−1∑
j=[s/β]+1

−s− s2

2jβ
+ s

∞∑
n=2

(−1)n

n(n+ 1)

(
s

jβ

)n

=− (N − 1)s+ [s/β]s− s2

2β
log(N − 1) +

s2

2β
log([s/β]) + s

∞∑
n=2

(−1)n

n(n+ 1)

(
s

β

)n N−1∑
j=[s/β]+1

jn

=− (N − 1)s+ [s/β]s− s2

2β
log(N − 1) +

s2

2β
log([s/β])

+ s
∞∑
n=2

(−1)n

n(n+ 1)

(
s

β

)n [
1

(n− 1)[s/β]n−1
− 1

(n− 1)(N − 1)n−1
+ · · ·

]
=− (N − 1)s+ [s/β]s− s2

2β
log(N − 1) +

s2

2β
log([s/β]) +

s2

β

∞∑
n=2

(−1)n

(n− 1)n(n+ 1)
+ o(s2).

The second sum therefore evaluates to

− log((N − 1)!)−N log β +N log 2− s log((N − 1)!) + s log([s/β]!)−Ns log β

+[s/β]s log β +Ns log 2− [s/β]s log 2−
N−1∑

j=[s/β]+1

jβ log j − N(N − 1)

2
β log β

+
[s/β]2

2
β log β +

N(N − 1)

2
β log 2− [s/β]2

2
β log 2− s2

2β
log(N − 1) +

s2

2β
log([s/β])

+
s2

β

∞∑
n=2

(−1)n

(n− 1)n(n+ 1)
+ o(s2) +

N(N − 1)

2
β − [s/β]2

2
β.
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3.4 Combining Cases

Now that we have the results for each individual case, we combine these and simplify

where necessary; with some rewriting as well as the use of Stirling’s formula once

again, we arrive at the following:

logMN(β, s) =

[s/β]∑
j=1

jβ log j −
[2s/β]∑
j=1

jβ

2
log j +

s2

2β
logN +

s2

2β
+ o(s2).

Finally, we apply Euler-Maclaurin summation to the two sums which gives

logMN(β, s) =
s2

2β
logN − s2

2β
log s− s2

β
log 2 +

s2

2β
log β +

3s2

4β
+ o(s2).

which is the result in Theorem 3.1.

We’ve obtained here a result for the logarithmic expectation, but with this result

we can go further; we would like a result for the maximum of the characteristic

polynomial of a random CβE matrix, and for this we utilise a result from [21]: in

this paper, Farmer, Gonek and Hughes used Large Deviations Theory to prove in the

Appendix a statement regarding the tails of the distribution of maxθ |ΛU(θ)|. This

is the result in Lemma 1.1, which we recall here: If δ > 0 is fixed and δ ≤ λ ≤ 1− δ,
then

P
{

max
θ
|ΛU(θ)| ≥ exp(Nλ)

}
= exp

(
− N2λ

(1− λ) logN
(1 + o(1))

)
.

In the proof of this statement, the authors derive the following expression for the

maximum of the characteristic polynomial:

MN(2k) ≤ E
[
e2k log maxθ |ΛU (θ)|] ≤ π(2k + 1)NMN(2k),

Note that this result is for the characteristic polynomial of a CUE (β = 2) matrix,

however a clear inspection of the steps involved apply to a general characteristic

polynomial, and thus apply to the characteristic polynomial of a CβE matrix. The

CβE analogue reads as

MN(β, s) ≤ E
[
es log maxθ |ΛU,β(θ)|] ≤ π(s+ 1)NMN(β, s). (41)

Taking logarithms of this expression, we see that the left and right-hand sides of

this set of inequalities agree up to order logN (as our focus is s� N).

If we choose s = λB(N)/A(N) (where A(N) and B(N) are to be determined),

our aim is to ensure a finite limit as we scale by B(N) and take the limit as N tends
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to infinity. Using the result in Theorem 3.1 this now reads

logE
[
es log maxθ |ΛU,β(θ)|] =

λ2B(N)2

2βA(N)2
logN − λ2B(N)2

2βA(N)2
log

(
λB(N)

A(N)

)
− λ2B(N)2

βA(N)2
log 2

+
λ2B(N)2

2βA(N)2
log β +

3λ2B(N)2

4βA(N)2
+ o

(
B(N)2

A(N)2

)
.

By choosing A(N) = Nµ with δ < λ < 1 − δ and scaling by 1/N , we find that

in order for the limit as N tends to infinity to be finite, we must have B(N) =

N2µ/(1− µ) logN . This gives the result

lim
N→∞

1

N
logE

[
es log maxθ |ΛU,β(θ)|] =

λ2

2β
.

By comparing with Assumption 2.1, we conclude that the logarithm of (41) satisfies

a large deviations principle with rate function Λ(λ) = λ2

2β
.

As we’ve obtained a result for logMN(β, s) with a subleading term of o(s2), the

choice of s ensures we have an exact equality for the expectation in (41).

Large deviations theory tells us that

Λ∗(x) = sup
λ

(
λx− λ2

2β

)
=

1

2
βx2

and this is attained at λ̄ = βx. Looking at the standard result from large deviations

(37) gives

P
(

max
θ
|ΛU,β(θ)| ≥ exp (xNµ)

)
= exp

(
− βx2N2µ

2(1− µ) logN
(1 + o(1))

)
.

This now allows us to find the maximum over the circular beta ensemble, and the

initial steps here follow those seen in [21].

Theorem 3.2. Fix η > 0. Let M = exp(N δ), with η < δ < 2− η, and set

Kε(N) = exp

((√
2

β

(
1− 1

2
δ

)
+ ε

)√
logM

√
logN

)
.

If U1, . . . , UM are chosen independently from the CβE, then as N →∞,

P
(

max
1≤j≤M

max
θ
|ΛU,β| ≤ Kε(N)

)
→ 1

for all ε > 0 and for no ε < 0. Here, s is chosen as above.

Proof of Theorem 3.2. We have chosen the U1, . . . , UM independently. Therefore we

can rewrite the probability to give
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P
(

max
1≤j≤M

max
θ
|ΛU,β| ≤ Kε(N)

)
= P

(
max
θ
|ΛU,β| ≤ Kε(N)

)M
.

If one were to take logarithms of this expression, this probability having limit one

would be equivalent to the limit as N tends to infinity of the logarithm

logP
(

max
θ
|ΛU,β| ≤ Kε(N)

)M
= M log

(
1− P

(
max
θ
|ΛU,β| > Kε(N)

))
= −MP

(
max
θ
|ΛU,β(θ)| > Kε(N)

)
+ (Lower Order Terms)

being equal to 0. For this to have limit 0, it is sufficient for the leading-order term

to approach 0 in the limit. We can use our result from Theorem 3.1 if we make a

suitable change of variable here. If we take µ = log logKε(N)/ logN and set x = 115,

this gives (neglecting the negative sign16)

0 = M exp

(
− β log2Kε(N)

2(logN − log logKε(N))
+

β log2Kε(N)

2(logN − log logKε(N))2
log logN

− β log2Kε(N)

2(logN − log logKε(N))2

(
2 log 2− 3

2

)
+

β log2Kε(N)

2(logN − log logKε(N))2
log

(
1− log logKε(N)

logN

)
+ o

(
log2Kε(N)

(logN − log logKε(N))2

))
.

Balancing the leading-order term gives

M = exp

(
β log2Kε(N)

2(logN − log logKε(N))

)
=⇒ logM =

β log2Kε(N)

2(logN − log logKε(N))

=⇒ log2Kε(N) =
2

β
logM(logN − log logKε(N))

=⇒ Kε(N) = exp

(√
2

β
logM(logN − log logKε(N))

)
.

Iterating this expression and recalling that M = exp(N δ) gives

15The justification for why we can do this is provided in the Appendix A.
16As this will have limit 0, neglecting the negative sign will not have an impact on the results.
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2 log logKε(N) = log(2/β) + log logM + log(logN − log logKε(N))

=⇒ log logKε(N) =
1

2
log(2/β) +

1

2
log logM +

1

2
log(logN − log logKε(N))

=
1

2
log(2/β) +

δ

2
logN +

1

2
log

((
1− δ

2

)
logN − 1

2
log β − · · ·

)
=
δ

2
logN +

1

2
log logN +

1

2
log

(
2

β

(
1− δ

2

))
+

1

2
log

(
1− log β

(2− δ) logN
− · · ·

)
.

Substituting this expression into our expression for Kε(N) gives

Kε(N) = exp

(√
2

β
logM(logN − log logKε(N))

)
= exp

(√
2

β

(
1− δ

2

)
logM logN + (Lower Order Terms)

)
.

Note the necessity for η < δ < 2− η in order for the leading term to have a positive

coefficient, which here is

exp

(√
2

β

(
1− δ

2

)√
logM

√
logN

)
. (42)

The result from Theorem 3.2 follows.

In fact, our refined large deviations results allow us to go further, and obtain more

than simply a leading-order expression for the maximum of the characteristic poly-

nomial of a CβE matrix:

Theorem 3.3. Fix η > 0. Let M = exp(N δ), with η < δ < 2 − η as in Theorem

3.1. If U1, . . . , UM are chosen independently from the CβE, then as the matrix size

N tends to infinity,

P
(

max
1≤j≤M

max
θ
MN(β, s) ≤ K

)
→ 1,

where MN(β, s) = E [|ΛU,β(θ)|s] and
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K = exp

((
2

β

(
1− δ

2

)
logM logN +

1

β
logM log logN

− 1

β
logM

(
4 log 2− 3 + log

(
2

β

)
− log

(
1− δ

2

))
+ o(logM)

)1/2)
.

Proof of Theorem 3.3. From the proof of Theorem 2.1 we have the expression

logP(XN ≥ x) = logE
[
eλ̄B(N)XN

]
−B(N)λ̄x− 1

2
logB(N) +O(1).

Adapting this expression to account for the scaling factor A(N), we then have

logP
(

log max
θ
|ΛU,β(θ)| ≥ A(N)x

)
= logE

[
eλ̄

B(N)
A(N)

maxθ|ΛU,β(θ)|
]
−B(N)λ̄x− 1

2
logB(N) +O(1)

=
λ̄2B(N)2

2βA(N)2
logN − λ̄2B(N)2

2βA(N)2
log

(
λ̄B(N)

A(N)

)
− λ̄2B(N)2

βA(N)2
log 2 +

λ̄2B(N)2

2βA(N)2
log β +

3λ̄2B(N)2

4βA(N)2

+ o

(
B(N)2

A(N)2

)
−B(N)λ̄x− 1

2
logB(N) +O(1).

Using B(N) = N2µ/(1− µ) logN , A(N) = Nµ and λ̄ = βx as before gives

logP
(

log max
θ
|ΛU,β(θ)| ≥ A(N)x

)
= − βx2N2µ

2(1− µ) logN
+

βx2N2µ

2(1− µ)2 logN
log logN

− βx2N2µ

2(1− µ)2 log2N

(
log x+ 2 log 2− 3

2

)
+

βx2N2µ

2(1− µ)2 log2N
log(1− µ) + o

(
N2µ

(1− µ)2 log2N

)
.

We want to find the maximum over the CβE, so we set µ = log logK/ logN and

x = 1 to give the following17:

17We again refer to the Appendix A for why this choice of variables is justified.
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P
(

max
θ
|ΛU,β(θ)| ≥ K

)
= exp

(
− β log2K

2(logN − log logK)
+

β log2K

2(logN − log logK)2
log logN

− β log2K

2(logN − log logK)2

(
2 log 2− 3

2

)
+

β log2K

2(logN − log logK)2
log

(
1− log logK

logN

)
+ o

(
log2K

(logN − log logK)2

))
.

Again we choose U1, . . . , UM independently from the CβE, and this gives

logP
(

max
θ
|ΛU,β| ≤ K

)M
= −MP

(
max
θ
|ΛU,β(θ)| > K

)
= M exp

(
− β log2K

2(logN − log logK)
+

β log2K

2(logN − log logK)2
log logN

− β log2K

2(logN − log logK)2

(
2 log 2− 3

2

)
+

β log2K

2(logN − log logK)2
log

(
1− log logK

logN

)
+ o

(
log2K

(logN − log logK)2

))
.

From this, balancing leading order terms gives the result in Theorem 3.2 (minus the

epsilon term). We are able to go further due to the addition of more terms in our

expression for the large deviations. Taking

K = exp

(√
2

β

(
1− δ

2

)
logM logN + ε

)
,

this gives

log2K =
2

β

(
1− δ

2

)
logM logN + ε,
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logN − log logK = logN − 1

2
log

(
2

β

(
1− δ

2

))
− 1

2
log logM − 1

2
log logN

− 1

2
log

(
1− ε

2
β
(1− δ

2
) logM logN

)
+ . . .

=

(
1− δ

2

)
logN − 1

2
log logN − 1

2
log

(
2

β

(
1− δ

2

))
+ . . .

and therefore

1

logN − log logK
=

1

(1− δ
2
) logN

[
1− log logN

(2−δ) logN
−

log

(
2
β

(
1− δ

2

))
(2−δ) logN

+ · · ·

]

=
2

(2− δ) logN

[
1 +

log logN

(2− δ) logN
+

log
(

2
β

(
1− δ

2

))
(2− δ) logN

+
(log logN)2

(2− δ)2 log2N
+ · · ·

]
.

Plugging this all into our refined large deviations result gives the following:

1 = M exp

(
− β

(
2
β

(
1− δ

2

)
logM logN + ε

)
(2− δ) logN

[
1 +

log logN

(2− δ) logN
+ · · ·

]

+ 2β

(
2
β
(1− δ

2
) logM logN + ε

)
(2− δ)2 log2N

+O

(
− exp

(
− logM

logN

))
= M exp

(
− logM − βε

(2− δ) logN
− logM log logN

(2− δ) logN
+

2 logM log logN

(2− δ) logN
+ · · ·

+O

(
exp

(
− logM

logN

)))
.

The M and the exp(− logM) terms balance one another, so we balance the next

two terms which gives

0 = − βε

(2− δ) logN
+

logM log logN

(2− δ) logN

=⇒ ε =
1

β
logM log logN.

This gives us the second term in our result in Theorem 3.3.

We now look to find the next term in this expression so we set
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K = exp

(√
2

β

(
1− δ

2

)
logM logN +

1

β
logM log logN + ε

)
.

If we then plug this result into our expression (now factoring in the first three terms)

and simplify we get the following:

1 = M exp

(
− βε

(2− δ) logN
−

logM log( 2
β
(1− δ

2
))

(2− δ) logN
− logM(4 log 2− 3)

(2− δ) logN

+
2 logM

(2− δ) logN
log

(
1− δ

2

)
+O

(
logM

logN

))
.

Balancing terms gives

ε = − 1

β
logM

(
4 log 2− 3− log

(
1− δ

2

))
.

We are unable to obtain more terms at this point as we have no terms, but with

this final term we arrive at the result in Theorem 3.3.

3.4.1 Physical Interpretation

Looking at our result for the maximum for the CβE, K, it is reasonable to ask if

this results makes sense in the context of the circular ensembles.

More precisely, should we expect that as we vary β from β = 1 (COE) to β = 2

(CUE) and β = 4 (CSE) the conjectured maximum decreases? We claim that this

is indeed to be expected, and for this we implement the following ideas...

Fundamentally, the orthogonal matrices are those matrices U for which the in-

verse U−1 is the transpose of U, UT , which we immediately recognise as the real-

unitary matrices RU(N) (since U∗ = UT for real U).

Recalling the definition of the circular orthogonal ensemble, this is the set of uni-

tary matrices invariant under orthogonal transformations. From the above reasoning

every orthogonal matrix is unitary; therefore the orthogonal group is a subgroup of

the unitary group. As such, the set of unitary matrices invariant under unitary

transformations is a subset of the set of unitary matrices invariant under orthogonal

transformations,

CUE ⊆ COE,

and we should thus expect that the maximum of the characteristic polynomial of

a matrix from the circular orthogonal ensemble will be greater than or equal to

the maximum of the characteristic polynomial of a matrix from the circular unitary

ensemble.
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Similarly, the unitary group is a subgroup of the symplectic group, and so ap-

plying the same reasoning as above we should expect that

CSE ⊆ CUE ⊆ COE.

Thus the maximum over the circular unitary ensemble is at least that of the max-

imum over the circular symplectic ensemble. So we conclude that our conjectured

result for the maximum K is reasonable.

It is clear that the above conjecture is sensible in the context of random matrix

theory, but how does one interpret this result in the context of mathematical physics?

We mentioned briefly before that the model for the CβE aligns with that of the

two-dimensional Coulomb gas model with inverse temperature parameter β (= 1/T ).

From the viewpoint of particle interactions, increasing the temperature leads to

increased energy per particle, which leads to an increased likelihood of collisions

occurring.

This increase in temperature also leads to increased repulsion between particles

(as seen in the logarithmic interaction parameter, see Chapter 1.2.1) thereby re-

sulting in a larger joint probability distribution function and by extension a larger

maximum for K. This is because an increase in P (θ1, · · · , θN) leads to an increase

in the expectation (or MGF). This corresponds to our result for K since we have a

factor of β−1 in our result and β is the inverse temperature parameter. Therefore if

the temperature T approaches infinity, we expect that K should approach infinity

also.

In the opposing regime (zero temperature, taking the limit β → ∞), we expect

no collisions to occur between particles in the gas. Therefore the position of the

particles would be fixed and P (θ1, · · · , θN) goes from continuous to discrete, with

it being equal to 1 when the particle is found at (θ1, · · · , θN) and 0 otherwise. The

overall maximum ends up being 1 in this regime, aligning with our results. Therefore

in both cases, our results make sense if we look at the physical interpretation.
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4 Refined Large Deviations for the Riemann Zeta

Function

4.1 The Characteristic Polynomial of a Random Unitary

Matrix

In the previous Chapter we computed refined large deviations results for the general

circular beta ensemble; here we provide an equivalent method of computing the

large deviations results for the circular unitary (β = 2) ensemble; the steps here

align with those of Farmer, Gonek and Hughes in their paper [21].

We recall once again the definition of the characteristic polynomial:

ΛU(θ) = det
(
I − Ue−iθ

)
=

N∏
n=1

(
1− ei(θn−θ)

)
.

Since we are now looking at the CUE, here U denotes a random CUE matrix.

As was the case in Chapter 3 our aim here is to determine the rate of growth

of log maxθ |ΛU(θ)|. In the language of large deviations, with XN denoting the dis-

tribution of log maxθ |ΛU(θ)|, we are looking at the logarithmic moment generating

function

logE
[
e
λB(N)
A(N)

XN
]

= logE
[
max
θ
|ΛU(θ)|

λB(N)
A(N)

]
. (43)

With this, we prove the following result:

Theorem 4.1. Let k = λB(N)
A(N)

and let XN denote the distribution of log max
θ
|ΛU(θ)|,

where A(N) is some scaling factor which ensures that Assumption 2.1 holds; further,

assume that | k
N
| < 1. If A(N) = Nµ, B(N) = N2µ

(1−µ) logN
, where δ < µ < 1−δ (δ > 0),

the following holds:

logE
[
e
λB(N)
A(N)

XN
]

=
λ2B(N)2

4A(N)2
logN − λ2B(N)2

4A(N)2
log

(
λB(N)

A(N)

)
+

3λ2B(N)2

8A(N)2

− λ2B(N)2

4A(N)2
log 2 +O

(
B(N)

log2N

)
.

The context behind why this result is significant stems from Section 1.3.7: recalling

the expression (31) in Theorem 1.9:

ζ(s) = PX(s)ZX(s)

(
1 +O

(
X2−σ+K

(|t| logX)K

)
+O(X−σ logX)

)
,

we split the zeta function as a product of two terms, ZX and PX . As we vary the

value of X we vary the influence of the primes and the zeros. For small X the number

63



of primes less than or equal to X is diminished and so the dominant contribution

comes from the zeros, namely the ZX term in the expression.

With the dominant contribution coming from the zeros, the product over zeros

ZX can be effectively modelled via the characteristic polynomial of a random unitary

matrix. Hence computing the maximum of the characteristic polynomial gives the

maximum of the product over zeros ZX , therefore when the prime contribution

is diminished the maximum for the characteristic polynomial (and thus ZX) also

applies to the maximum of the zeta function.

Note that, as we should expect, the expression in Theorem 4.1 agrees with our

result in Theorem 3.2 for logMN(β, s) when we set β = 2, s = λB(N)
A(N)

. In addition

to the refined large deviations result of Theorem 2.1, we establish the following:

Corollary 4.1. We deduce the following expression for x in the tails of the distri-

bution:

logP
(

log max
θ
|ΛU(θ)| ≥ Nµx

)
= − x2N2µ

(1− µ) logN
+

x2N2µ

(1− µ)2 log2N
log logN

+
3x2N2µ

2(1− µ)2 log2N
− 2x2N2µ

(1− µ)2 log2N
log 2

− x2N2µ

(1− µ)2 log2N
log x+

x2N2µ

(1− µ)2 log2N
log(1− µ)

+O

(
N2µ

log3N

)
.

Before proving these results we first clarify again our above line of thinking: we

have introduced a scaling term A(N) in (43) because, given the distribution XN we

cannot be sure that Assumption 2.1 holds. What this scaling does is ensure that

Λ(λ) = lim
N→∞

1

B(N)
logE

[
e
λB(N)
A(N)

XN
]

exists and is indeed finite, as in Chapter 3.4. With this clarification, we now prove

the result in Theorem 4.1.

Proof of Theorem 4.1. To prove this we study the asymptotic behaviour of logE
[
|ΛU(θ)|

λB(N)
A(N)

]
=

logE
[
e
λB(N)
A(N)

log |ΛU (θ)|
]
, for which Keating and Snaith [33] give the following: for

k > −1/2,

MN(2k) = E
[
|ΛU(θ)|2k

]
=
G2(k + 1)

G(2k + 1)
× G(N + 1)G(N + 2k + 1)

G2(N + k + 1)
. (44)

Here G denotes the Barnes-G function. Our reason for introducing the Barnes-G

function stems from the following bound first derived in [21]:
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logE
[
|ΛU(θ)|2k

]
≤ logE

[
e2k log maxθ |ΛU (θ)|] ≤ logE

[
|ΛU(θ)|2k

]
+logN+log (2k + 1)+log π.

(45)

The context behind this expression will be made clear later. Taking logarithms and

setting 2k = λB(N)/A(N) in (44) gives:

logE
[
e
λB(N)
A(N)

log |ΛU (θ)|
]

= 2 logG

(
λB(N)

2A(N)
+ 1

)
+ logG(N + 1) + logG

(
N +

λB(N)

A(N)
+ 1

)
− logG

(
λB(N)

A(N)
+ 1

)
− 2 logG

(
N +

λB(N)

2A(N)
+ 1

)
;

so knowledge of the asymptotic behaviour of logE[e
λB(N)
A(N)

log |ΛU (θ)|] requires knowledge

of the asymptotics of the Barnes G-function. For large positive values of N we have

the following result for small k [8]:

logG(N + k + 1) =
N + k

2
log 2π + ζ ′(−1)− 3N2

4
− kN +

(
N2

2
− 1

12
+
k2

2
+ kN

)
logN

+O

(
1

N

)
.

For large k < N , the resulting asymptotic expression is necessary (the derivation of

which can be found in Appendix B):

logG(N + k + 1) =
N + k

2
log 2π + ζ ′(−1)− 3N2

4
− kN +

(
N2

2
− 1

12
+
k2

2
+ kN

)
logN

+O

(
k3

N

)
.

The above formulae combined with (44) gives the following simplified expression:

logE
[
e
λB(N)
A(N)

log |ΛU (θ)|
]

=
λ2B(N)2

4A(N)2
logN − λ2B(N)2

4A(N)2
log

(
λB(N)

A(N)

)
+

3λ2B(N)2

8A(N)2

− λ2B(N)2

4A(N)2
log 2− 1

12
log

(
λB(N)

A(N)

)
+

1

6
log 2 + ζ ′(−1)

+O

(
max

{
1

N
,
A(N)

B(N)
,
B(N)3

NA(N)3

})
.

We now choose an appropriate A(N) such that

lim
N→∞

1

B(N)
logE

[
e
λB(N)
A(N)

log maxθ |ΛU (θ)|
]
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exists and is finite. Hughes, Keating and O’Connell [33] have shown that if A(N) =

Nµ with δ < µ < 1− δ and

B(N) =
N2µ

(1− µ) logN
,

then for λ ≥ 0,

lim
N→∞

1

B(N)
logE

[
e
λB(N)
A(N)

log maxθ |ΛU (θ)|
]

=
1

4
λ2, (46)

and indeed this is the case with the above result for the logarithmic MGF; therefore

Assumption 2.1 holds18, with the implementation of a scaling factor A(N) = Nµ.

With these results, we then arrive at the following:

logE
[
e
λB(N)
A(N)

log |ΛU (θ)|
]

=
λ2B(N)2

4A(N)2
logN − λ2B(N)2

4A(N)2
log

(
λB(N)

A(N)

)
+

3λ2B(N)2

8A(N)2

− λ2B(N)2

4A(N)2
log 2− 1

12
log

(
λB(N)

A(N)

)
+O

(
max

{
1

N
,
A(N)

B(N)
,
B(N)3

NA(N)3

})
.

If we combine this with the result from Farmer, Gonek and Hughes’ paper (45) this

gives the following upper bound:

logE
[
e
λB(N)
A(N)

log maxθ |ΛU (θ)|
]
≤ λ2B(N)2

4A(N)2
logN − λ2B(N)2

4A(N)2
log

(
λB(N)

A(N)

)
+

3λ2B(N)2

8A(N)2

− λ2B(N)2

4A(N)2
log 2− 1

12
log

(
λB(N)

A(N)

)
+ logN + log π

+ log

(
λB(N)

A(N)
+ 1

)
+O

(
max

{
1

N
,
A(N)

B(N)
,
B(N)3

NA(N)3

})
=
λ2B(N)2

4A(N)2
logN − λ2B(N)2

4A(N)2
log

(
λB(N)

A(N)

)
+

3λ2B(N)2

8A(N)2

− λ2B(N)2

4A(N)2
log 2 +O

(
B(N)

log2N

)
.

This proves Theorem 4.1 as both upper and lower bounds in (45) are of the form

above. Note also that B(N)/ log2N > B(N)3/NA(N)3 for δ < µ < 1 − δ, and so

our choice of O-term here is sensible.

From here the proof of Corollary 4.1 is straightforward.

18Recall from the introduction that the rate function is denoted Λ(λ) and so our parameter here
would normally be λ. We have renamed λ to µ in A(N) and B(N) here to avoid overuse of the
variable λ and to avoid any confusion or ambiguity.
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Proof of Corollary 4.1. Making use of Theorem 2.1 we have

logP(XN ≥ x) = logE
[
eλ̄B(N)XN

]
−B(N)λ̄x− 1

2
logB(N) + o(1),

where λ̄ satisfies the equation Λ′(λ̄) = x.

Replacing XN with log maxθ |ΛU(θ)|/A(N) and substituting the result from The-

orem 4.1 gives a new expression for the large deviations:

logP
(

log max
θ
|ΛU(θ)| ≥ A(N)x

)
= logE

[
e
λ̄B(N)
A(N)

log maxθ |ΛU (θ)|
]
−B(N)λ̄x− 1

2
logB(N)

+ o(1)

=
λ̄2B(N)2

4A(N)2
logN − λ̄2B(N)2

4A(N)2
log

(
λ̄B(N)

A(N)

)
+

3λ̄2B(N)2

8A(N)2
− λ̄2B(N)2

4A(N)2
log 2−B(N)λ̄x

+O

(
B(N)

log2N

)
.

Setting A(N) = Nµ, B(N) = N2µ

(1−µ) logN
and separating the logarithmic term gives

the following:

logP(log max
θ
|ΛU(θ)| ≥ Nµx) =

N2µ

(1− µ) logN

(
λ̄2

4
− λ̄x

)
+

λ̄2N2µ

4(1− µ)2 log2N
log logN

+
λ̄2N2µ

(1− µ)2 log2N

(
3

8
+

log(1− µ)

4
− log(λ̄)

4
− log 2

4

)
+O

(
N2µ

log3N

)
.

Recall that Λ∗(x) = supλ∈R(λx− Λ(λ)); from the above expression,

lim
N→∞

1

B(N)
logP

(
log max

θ
|ΛU(θ)| ≥ A(N)x

)
= −

(
λ̄x− λ̄2

4

)
which is our expression for Λ∗(x). Since we have an explicit expression for Λ(λ) we

need only solve the equation

Λ∗(x) = sup
λ∈R

(
λx− λ2

4

)
= λ̄x− λ̄2

4
(47)

for λ, which solves to give Λ∗(x) = x2 for λ̄ = 2x; thus
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logP
(

log max
θ
|ΛU(θ)| ≥ Nµx

)
= − x2N2µ

(1− µ) logN
+

x2N2µ

(1− µ)2 log2N
log logN

+
3x2N2µ

2(1− µ)2 log2N
− 2x2N2µ

(1− µ)2 log2N
log 2

− x2N2µ

(1− µ)2 log2N
log x+

x2N2µ

(1− µ)2 log2N
log(1− µ)

+O

(
N2µ

log3N

)
which is the result in Corollary 4.1.

4.2 Refined Large Deviations Results for ZX

With the results for the characteristic polynomial established, we next apply these

results to compute refined large deviations results for ZX . These results can then

be applied to obtain a conjecture for the maximum of the zeta function.

Deriving these refined large deviations results for the zeta function comes by way

of the same observation first made by Gonek, Hughes and Keating. We outline the

ideas at play below.

So far we have computed refined large deviations results for the characteristic

polynomial of a matrix taken from the CβE. For the applications to the zeta function,

we restrict our attention here to the CUE (β = 2).

Before we can continue there is a small matter which we need to address: the

large deviations result computed above is for the characteristic polynomial of a single

unitary matrix U ; we desire an equivalent result for a collection of CUE matrices.

To be precise, choosing independently M random unitary matrices U1, . . . , UM we

aim to compute the maximum Kε(N) such that

P
{

max
1≤j≤M

max
θ
|ΛUj(θ)| ≤ Kε(N)

}
→ 1

as N →∞ for all ε > 0 and no ε < 0. By independence of the U1, . . . , UM and the

Taylor expansion of the logarithm, we can write this as

M log
(

1− P
{

max
θ
|ΛU(θ)| > Kε(N)

})
= −MP

{
max
θ
|ΛU(θ)| > Kε(N)

}
+ (Lower order terms),

where we want this result to approach zero as the matrix dimension N gets large.

Farmer, Gonek and Hughes applied this philosophy to ZX , and we replicate this

idea with our refined results for the circular ensembles.
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In the publication of Gonek, Hughes and Keating, the key purpose of splitting

the zeta function as a product over primes times a product over zeros was to compute

the moments of the zeta function by computing separately the moments for ZX and

PX . For this they conjectured that for T →∞ (and X →∞, where X is carefully

chosen with respect to T ) the moments of zeta split as a product of the moments of

PX and ZX .

In their calculations for the moments of the product over zeros ZX they conjec-

tured the following:

Conjecture 4.1 (Gonek-Hughes-Keating). Suppose that X, T → ∞ with X =

O((log T )2−ε). Then for any fixed k > −1/2, we have

1

T

∫ 2T

T

∣∣∣∣ZX (1

2
+ it

)∣∣∣∣2k dt ∼ G2(k + 1)

G(2k + 1)

(
log T

eγ logX

)k2

.

If we compare this with the moments result for the characteristic polynomial (24),

we see that there is a correspondence between these results if one makes the identi-

fication

N = [log T/eγ logX]. (48)

Proceeding with this line of reasoning, this suggests that if we make the above

identification we can model the characteristic polynomial ΛU(θ) by ZX and apply

our refined large deviations results to ZX , and subsequently the zeta function; some

care is needed however.

The largest value of |ΛU(θ)| is 2N , and this occurs when the matrix U is in

a small neighbourhood of scalar multiples of the identity matrix. If we take N

as in (48), then for X = exp(o(log log T )) this violates the maximum as given in

(28). Therefore the method utilised by the authors (which is utilised here) must

do something different than simply take the maximum of |ΛU(θ)| over all matrices

U ∈ U(N).

The range of values of t for which we can look at ZX(1
2

+ it) is T/Xeγ < t < T ,

since the random matrix model allows us to model the zeta function at large height

along the critical line with random matrices of large size N . With this choice of t,

a slight rewriting gives

log T

eγ logX
− 1 <

log t

eγ logX
<

log T

eγ logX

and so this range of t ensures that the random matrix model is a good fit for the

zeta function. Naturally, we are looking for the maximum of ZX for t ∈ [0, T ] rather

than t ∈ [T/Xeγ , T ], so we need to take some care here. However, if we let X →∞
the interval [T/Xeγ , T ] should cover almost all of [0, T ], and so it should cover the

maximum.
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For now we are focused on the regime where the dominant contribution to the

zeta function comes from the product over zeros ZX . For this we require that X be

small to ensure the number of primes in the product PX is diminished. With this

line of reasoning we consider the case where N is of size log T . From our results

for the zeta function we know that up to height T there are (neglecting constants)

T log T zeros on the critical line.

From the correspondence between zeros of zeta and eigenvalues of random uni-

tary matrices, we therefore want T log T eigenvalues. To ensure this is the case we

take M = T log T/N = T matrices.

Making the change of variable µ = log logK/ logN with N = log T leads to the

following results for ZX :

T · P
(

max
t∈[0,T ]

∣∣∣∣ZX (1

2
+ it

)∣∣∣∣ ≥ K

)
= T · exp

(
− log2K

log log T − log logK

+
log2K

(log log T − log logK)2
log log log T +

3 log2K

2(log log T − log logK)2

− 2 log2K

(log log T − log logK)2
log 2 +O

(
log2K

(log log T )3

))
.

We now balance this expression, and we explain this notion by showing the principal

step in the evaluation: our aim is to find the smallest possible K which satisfies

1 = T · exp

(
− log2K

log log T − log logK

)
.

The reason for this is as follows: from our earlier calculations we want the left-hand

side of our above expression, T · P(maxt∈[0,T ] |ZX(1
2

+ it)| ≥ K), to vanish in the

large T limit; therefore the same must also be true of the right-hand side. K is a

function of T and our goal is to determine the smallest value of K for which this

expression vanishes, so we begin by equating leading order terms on the right-hand

side of our expression. This is the same idea that was employed in Chapter 1.3.3.

If we choose 2 < X < (log T )A, we recover the conjectured result

max
t∈[0,T ]

∣∣∣∣ZX (1

2
+ it

)∣∣∣∣ = exp

(
(1 + o(1))

√
1

2
log T log log T

)
given by Farmer, Gonek and Hughes; the lower bound on X comes from the hybrid

Euler-Hadamard product as given in Theorem 1.7 which is conditional on X ≥ 2.

The upper limit comes from Conjecture 4.1, where X < log T 2−ε and so logX <

log TA.

In their original paper, due to the limitations of only having the leading order

behaviour they were unable to compute beyond the leading order behaviour for the

maximum of the product ZX .
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We are now in a position to do so, since we have not only the leading order

behaviour in the large devations results, but the subleading and sub-subleading

behaviour. If we repeat the ideas above, taking into account the additional terms

present in the large deviations results, we arrive at the following:

Conjecture 4.2. If 2 < X < (log T )A, then

max
t∈[0,T ]

∣∣∣∣ZX (1

2
+ it

)∣∣∣∣ = exp

((
1

2
log T log log T +

1

2
log T log log log T

− 1

2
(5 log 2− 3) log T + o(log T )

)1/2)
.

We omit the steps in obtaining this result, as the steps are identical to those in the

proof of Theorem 3.3. (Note: that this result aligns with that result for β = 2,

δ = 1.)

With this result we are able to determine that in the regime where ZX is the

dominant contribution, the contribution from PX is negligible; for X = O(log T ) (as

is the case here),

∣∣∣∣PX (1

2
+ it

)∣∣∣∣ ≤ exp

(∑
n≤X

Λ(n)√
n log n

)

= exp

(∑
p≤X

1
√
p

+
∑
p≤X

1

2p
+ · · ·

)

= exp

(
2
√
X

logX
+
∑
p≤X

1

2p
+ · · ·

)
= O

(
exp

(
3
√
X

logX

))
.

Therefore the contribution from PX does not affect our results up to subsubleading

order. This leads to the following:

Consequence 4.1. Provided our results for ZX in this regime are suitable for mod-

elling zeta, we have that

max
t∈[0,T ]

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣ = exp

((
1

2
log T log log T +

1

2
log T log log log T

− 1

2
(5 log 2− 3) log T + o(log T )

)1/2)
.

We perform some numerics to accompany these results and verify their validity, and

these are provided in Chapter 7.
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4.3 Refined Large Deviations Results for PX

We now turn our attention towards PX . For this, we discuss two approaches for

computing refined large deviations results for PX , one of which is based upon prior

results and utilises Gaussian behaviour, while the other approach comes from adopt-

ing an alternative model for the prime contribution; we argue later that this is an

effective model for PX , whilst also discussing the shortcomings of this approach.

4.3.1 Gaussian Approach

The first approach towards computing refined large deviations results for PX comes

from looking at the following material of Granville and Soundararajan (as seen in

[21]): by isolating the dominant behaviour in the primes, PX can be expressed as

the product of two exponential terms,

PX

(
1

2
+ it

)
= exp

(∑
p≤X

1

p1/2+it

)
× exp(O(log logX))

= exp

(
P ∗X

(
1

2
+ it

))
× exp(O(log logX)). (49)

It follows immediately from (49) that we can compute refined large deviations results

for PX by computing refined large deviations results for P ∗X , provided of course our

results exceed the O-term in the second exponential.

One potential approach might be to utilise the argument of Farmer, Gonek and

Hughes, which stems from the following:

Theorem 4.2 (Farmer, Gonek, Hughes [21], Lemma 4.2). Let {zj} be a sequence of

independent random variables distributed uniformly on the unit circle and let {aj}
be a sequence of bounded real numbers such that for all n ≥ 3,

1

V
n
2
J

∑
1≤j≤J

anj → 0

as J →∞, where

VJ :=
∑

1≤j≤J

a2
j .

Then as J →∞, the distribution of

YJ := Re
∑

1≤j≤J

ajzj

tends to a Gaussian with mean 0 and variance 1
2
VJ .
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This result suggests that it might be possible to obtain refined large deviations

results for |PX(1
2

+ it)| by modelling the distribution as a Gaussian; for taking

absolute values in (49) gives∣∣∣∣PX (1

2
+ it

)∣∣∣∣ = exp

(
Re

(
P ∗X

(
1

2
+ it

)))
× exp(O(log logX)),

so applying Theorem 4.2 with zj = p−itj and aj = 1/
√
pj we see that VJ ∼ log logX.

However if we try this approach, we find that the sub-leading contribution from the

Gaussian is absorbed by the O(log logX) term in the second exponential. Hence we

cannot obtain more refined results from this method, and thus a different approach

is required.

4.3.2 Alternative Method

With this in mind we try the following: we see from (49) that PX is given by

∣∣∣∣PX (1

2
+ it

)∣∣∣∣ = exp

(
Re

(∑
p≤X

1

p1/2+it

))
× exp(O(log logX)).

For the leading term we consider the following model: let RX denote the distribution

of R(
∑

p≤X
zp√
p
); here zp are independent variables uniformly distributed on the unit

circle.

The motivation behind this idea comes from the same intuition adopted by Ar-

guin, Belius and Harper in [3]: for distinct primes p we have that log p are linearly

independent, so by computing moments one can show that the finite-dimensional

distributions of the process (p−it, p primes) converges as T → ∞ to a sequence

of independent random variables uniformly distributed on the unit circle. Is this

applicable for our purposes? We argue that this is indeed the case.

For the case where the dominant contribution to the zeta function comes from

the prime term PX , we take X = exp(
√

log T ), and so as we let T →∞ we increase

the prime contribution in RX albeit at a sub-linear rate. We argue in Chapter 6

however that this is not an issue.

Considering then T logc T (where c > 0) copies of RX (our reasoning for this will

become clear later), the large deviations are given by

P
(

max
j∈{1,...,T logc T}

R
(j)
X ≤ logK

)
= P (RX ≤ logK)T logc T

and we want this probability to tend to 1 in the limit as T →∞. This is equivalent

to saying that we want
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T logc T · log

(
1− P

(
exp

(
Re
∑
p≤X

zp√
p

)
> K

))

to tend to zero as T →∞.

For this we require an expression for the large deviations of RX . For this we

prove the following result:

Theorem 4.3. Let k = λB(N)
A(N)

and let RX denote the distribution of R(
∑

p≤X
zp√
p
),

where A(N) is some scaling factor which ensures that Assumption 2.1 holds. If

A(N) = Xµ/2, B(N) = Xµ, where 0 < µ < 1. Then we have

logE
[
e
λB(X)
A(X)

RX
]

=
λ2B(X)2

4A(X)2
log logX − λ2B(X)2

4A(X)2
log log

(
λ2B(X)2

A(X)2

)
+O

(
B(X)2

A(X)2 log(B(X)/A(X))

)
.

From this, we derive the following Corollary:

Corollary 4.2. For 0 < µ < 1 we have

logP
(
(RX ≥ xXµ/2 log(1/µ)

)
= −x2Xµ log(1/µ) +O

(
Xµ

µ logX

)
.

Proof of Theorem 4.3. As we have done previously, writing everything in the lan-

guage of large deviations gives

logE
[
e
λB(X)
A(X)

RX
]

= logE
[
e
λB(X)
A(X)

∑
p≤X

R(zp)
√
p

]
=
∑
p≤X

logE
[
e
R
(
λB(X)
A(X)

√
p
zp
)]
,

since the zp are independent; as before we introduce a scaling term A(X). Hence

for λ > 0 we have

logE
[
e
λB(X)
A(X)

RX
]

=
∑
p≤X

log I0

(
λB(X)

A(X)
√
p

)
.

Here, I0( λB(X)
A(X)

√
p
) = E[e

R(
λB(X)
A(X)

√
p
zp)

] denotes the modified Bessel function (see [27] for

example); zp is a random variable equidistributed on the unit circle19. Thus one can

determine the refined large deviations of RX (and thus of PX(1
2

+ it)) by studying

the behaviour of the modified Bessel function as X →∞.
19Note that we have used X and RX here instead of N and XN to avoid confusion with prior

notation.
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The following results for the large-argument asymptotics (for fixed ν) will be

essential here:

Iν(z) ∼ ez

(2πz)1/2

∞∑
k=0

(−1)k
ak(ν)

zk
; ak(ν) =

(4ν2 − 12)(4ν2 − 32) · · · (4ν2 − (2k − 1)2)

k!8k
,

(50)

as z →∞. Here a0(0) = 1.

This asymptotic result is valid provided |arg(z)| < π/2. This is indeed the case

for us as we are working in the case where our argument λB(X)/A(X)
√
p is real

and positive, so has argument 0 in the complex plane. Further, the function I0(z)

is real and positive here, so taking the logarithm of I0 is well-defined.

We also require knowledge of the small-argument asymptotics (again for fixed

ν):

Iν(z) ∼
(z

2

)ν [ 1

Γ(ν + 1)
+

(1
4
z2)

Γ(ν + 2)

]
(51)

as z → 0.

To formally compute the refined large deviations results for RX we split into cases

subject to the size of p, as well as the size of X; if for example
√
p is large the argu-

ment λB(X)/A(X)
√
p will be small and different asymptotics must be considered.

Taking logarithms and splitting into cases gives

1

B(X)
logE

[
e
λB(X)
A(X)

RX
]

=
∑
p≤X√

p�λB(X)/A(X)

1

B(X)
log I0

(
λB(X)

A(X)
√
p

)
(52)

+
∑
p≤X√

p�λB(X)/A(X)

1

B(X)
log I0

(
λB(X)

A(X)
√
p

)
(53)

+
∑
p≤X√

p�λB(X)/A(X)

1

B(X)
log I0

(
λB(X)

A(X)
√
p

)
. (54)

It should be clear above that in the first summation, the argument inside the mod-

ified Bessel function will be large and so large argument asymptotics will be neces-

sary, whilst in the third summation the argument is small and there small-argument

asymptotics will be essential here.

Having split this according to the size of p subject to X (resp. λB(X)/A(X)
√
p)

we must now consider the resulting summations subject to the size of X. This idea

will become clear when we consider the following three cases.
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4.3.3 Case X � (λB(X)/A(X))2

The summation in (52) gives, using the appropriate asymptotics:

∑
p≤X√

p�λB(X)/A(X)

1

B(X)
log I0

(
λB(X)

A(X)
√
p

)
∼

∑
p≤X√

p�λB(X)/A(X)

λ

A(X)
√
p

(55)

− 1

2B(X)
log

(
2πλB(X)

A(X)
√
p

)
+

1

B(X)
log

(
∞∑
k=0

(−1)k
ak(0)

√
pkA(X)k

λkB(X)k

)
.

Applying a strong form of the prime number theorem and isolating the leading order

term inside the logarithm, we see that (55) can be written as

∑
p≤X√

p�λB(X)/A(X)

1

B(X)
log I0

(
λB(X)

A(X)
√
p

)
=

λ

A(X)

2
√
X

logX
− log 2πλ

2B(X)

X

logX

− logB(X)

2B(X)

X

logX
+

logA(X)

2B(X)

X

logX
+

X

4B(X)
+

A(X)

12λB(X)2

X3/2

logX

+O

(
A(X)2X2

B(X)3 logX

)
.

The O-term here comes from examining the subleading term inside the final loga-

rithmic term in (55).

For X � (λB(X)/A(X))2, the second and third sums (52) and (53) both equal

zero, since X � (λB(X)/A(X))2 implies there are no primes p such that p ≤ X

and
√
p� λB(X)/A(X).

4.3.4 Case X � (λB(X)/A(X))2

Since the magnitude of X is at least that of the first case, the first sum (52) gives

the same results as before.

In (53), the argument within the modified Bessel function is of constant order,

thus when we divide through by B(X) and take the limit as X →∞ we expect the

limit here to be zero. Hence we write this term as O(1/B(X)) or o(1).

The third sum (54) can be shown to equal zero by applying the same argument

to (53) and (54) as seen in the first case.

4.3.5 Case X � (λB(X)/A(X))2

For the sum in (52), when using the same methods as above all terms in the expres-

sion are of the same order, so we simply write this as
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∑
p≤X√

p�λB(X)/A(X)

1

B(X)
log

(
I0

(
λB(X)

A(X)
√
p

))
= O

(
B(X)

A(X)2 log(B(X)/A(X))

)
.

As before, the sum in (53) is equal to O(1/B(X)).

For (54), taking the Taylor expansion of the logarithm and again utilising a

strong form of the prime number theorem, as well as the asymptotic result in (51),

gives

∑
p≤X

1

B(X)
log

(
1 +

λ2B(X)2

4A(X)2p

)
=
λ2B(X)

4A(X)2
log logX − λ2B(X)

4A(X)2
log log

(
λ2B(X)2

A(X)2

)
+O

(
B(X)

A(X)2
e−c
√

logX

)
.

We therefore conclude in this case that

1

B(X)
logE

[
e
λB(X)
A(X)

RX
]

=
λ2B(X)

4A(X)2
log logX − λ2B(X)

4A(X)2
log log

(
λ2B(X)2

A(X)2

)
+O

(
B(X)

A(X)2 log(B(X)/A(X))

)
.

We are working in the caseX � (λB(X)/A(X))2; in other words, we have (λB(X)/A(X))2 =

λ2Xµ, 0 < µ < 1. With this in mind, we see to balance the leading order term in

the above equation.

Taking (λB(X)/A(X))2 = λ2Xµ gives in the two leading terms

λ2B(X)

4A(X)2
log logX − λ2B(X)

4A(X)2
log log

(
λ2B(X)2

A(X)2

)
=
λ2B(X)

4A(X)2
log logX − λ2B(X)

4A(X)2
log log(λ2Xµ)

=
λ2B(X)

4A(X)2
log logX − λ2B(X)

4A(X)2
log (µ logX)− λ2B(X)

4A(X)2
log

(
1 +

log λ2

µ logX

)
=
λ2B(X)

4A(X)2
log logX − λ2B(X)

4A(X)2
log µ− λ2B(X)

4A(X)2
log logX − λ2B(X)

4A(X)2
log

(
1 +

log λ2

µ logX

)
=
λ2B(X)

4A(X)2
log(1/µ)− λ2B(X)

4A(X)2
log

(
1 +

log λ2

µ logX

)
.

So we seek to balance the leading term, which is simply a case of ensuring that

A(X)2 = B(X) log(1/µ). We have two equations to solve:
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(B(X)/A(X))2 = Xµ

A(X)2 = B(X) log(1/µ).

Solving these yields the solution A(X) = Xµ/2 log(1/µ), B(X) = Xµ log(1/µ). With

these choices of A(X) and B(X), the sequence of random variables RX satisfies the

large deviation principle with rate function Λ(λ) = λ2

4
.

Putting it all together, we have

logE
[
e
λB(X)
A(X)

RX
]

=
λ2B(X)2

4A(X)2
log logX − λ2B(X)2

4A(X)2
log log

(
λ2B(X)2

A(X)2

)
+O

(
B(X)2

A(X)2 log(B(X)/A(X))

)
and this is the result in Theorem 4.3.

The proof of Corollary 4.2 follows directly from this.

Proof of Corollary 4.2. Using results from large deviations theory, we have

logP(RX ≥ A(X)x) = logE
[
e
λB(X)
A(X)

RX
]
−B(X)λ̄x− 1

2
logB(X) + o(1)

=
λ̄2B(X)2

4A(X)2
log logX − λ̄2B(X)2

4A(X)2
log log

(
λ̄2B(X)2

A(X)2

)
+O

(
B(X)2

A(X)2 log(B(X)/A(X))

)
−B(X)λ̄x− 1

2
logB(X) + o(1).

Here λ̄ is the solution to the equation

−Λ∗(x) = sup
λ

(λx− Λ(λ)) = sup
λ

(
λx− λ2

4

)
= λ̄− λ̄2

4
.

As we see in Chapter 4.1 this gives the result λ̄ = 2x. Plugging this back into the

above equation gives the results

logP
(
RX ≥ Xµ/2 log(1/µ)

)
= −x2Xµ log(1/µ)− x2Xµ log

(
1 +

2 log 2x

µ logX

)
+O

(
Xµ

µ logX

)
− µ

2
logX − 1

2
log log(1/µ) + o(1).

Expanding the logarithmic term and simplifying gives the following:
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logP
(
RX ≥ xXµ/2 log(1/µ)

)
= −x2Xµ log(1/µ) +O

(
Xµ

µ logX

)
.

and this is the result in Corollary 4.2.

These results are in agreement with those in [21] since the central limit regime

gives a limiting Gaussian, hence we should expect a quadratic rate function. Further,

as with the characteristic polynomial the above result is invariant under a change

of variable, and the details of this are included in Appendix A.

If we consider the case where the main contribution comes from PX , taking

X = exp(
√

log T ) and choosing T logc T values of t, we want the expression

1− P

exp

Re
∑

p≤exp(
√

log T )

zp√
p

 > K

T logc T

to approach 1 as T →∞. Taking logarithms and making a change of variable in µ

such that Xµ/2 log(1/µ)→ logK gives the following:

Xµ/2 log(1/µ) = logK =⇒ Xµ/2 =
logK

log(1/µ)

=⇒ µ

2
logX = log logK − log log(1/µ)

=⇒ µ =
2 log logK − 2 log log(1/µ)

logX

=
2 log logK

logX
− 2 log log logX

logX
+ · · · .

With µ as above and X = exp(
√

log T ), plugging these into our equation gives the

following:

T logc T · P

exp

Re
∑

p≤exp(
√

log T )

zp√
p

 > K


= T logc T · exp

(
− 2 log2K

log log T

[
1 +

2

log log T
log(2(log logK − log log(1/µ)) + · · ·

]

+O

(
log2K

(log log T )2

))
.

We seek to balance leading order terms, i.e. to find K which satisfies
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T logc T = exp

(
2 log2K

log log T

)
.

Balancing this expression gives the leading order solution

K = max
θ∈[0,2π)

exp(RX) = exp

(√
1

2
log T log log T (1 + o(1))

)
.

as T tends to infinity. However, with these refined results for the large deviations

of RX (and respectively PX) we can compute more terms in this expression for the

maximum, which leads to the following:

Theorem 4.4. For X = exp(
√

log T ), we have

max
θ∈[0,2π)

exp(RX) = exp

(√
1

2
log T log log T − log T log log log T + o(log T log log log T )

)
.

Proof of Theorem 4.4. The method is identical to that displayed in the proof of

Theorem 3.3.

With the values of µ and X mentioned above,

µ =
2 log logK

logX
− 2 log logX

logX
+ · · ·

X = exp(
√

log T ),

we seek to balance the following expression:

1 = T logc T · exp

(
−Xµ log(1/µ) +O

(
Xµ

µ logX

))
= T logc T · exp

(
− 2 log2K

log log T

[
1 +

2 log log logK

log log T
+ · · ·

]
+O

(
log2K

(log log T )3

))
.

Balancing leading order terms gives the leading order result

K = exp

(√
1

2
log T log log T +

c

2
(log log T )2

)
.

As in the proof of Theorem 3.3 we set

K = exp

(√
1

2
log T log log T +

c

2
(log log T )2 + ε

)
and plug this expression into our large deviations result, which gives
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1 = T logc T · exp

(
− 2 log2K

log log T

[
1 +

2 log log logK

log log T

]
+O

(
log2K

(log log T )3

))

= T logc T · exp

(
− log T − c

2
log log T − 2ε

log log T
− 2 log T log log log T

log log T

+O

(
log T

(log log T )2

))
.

Balancing leading order terms gives ε = − log T log log log T , so we have the refined

expression for K

K = exp

(√
1

2
log T log log T − log T log log log T + o(log T log log log T )

)

which is the result in Theorem 4.4.

Note that we are able to go further as we have not yet exceeded the the value of

the O-term. However, additional terms will not be of much use to us in computing

refined large deviations results for the Riemann zeta function as we require the same

number of terms in our large deviations results for both PX and ZX .

In this regime where the dominant contribution comes from the product over primes

PX , the contribution from the product over zeros is given by

O
(

exp
(√

log T
))

.

Combining these results together leads to the following:

Conjecture 4.3. Provided that RX is a suitable model for PX , we have

max
t∈[0,T ]

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣ = exp

(√
1

2
log T log log T − log T log log log T + o(log T log log log T )

)
.

With refined large deviations results computed for both ZX and PX (resp. RX) we

now proceed by applying these results directly to the zeta function.

4.4 Refined Large Deviations Results for Zeta

We now apply our results to the Riemann zeta function, and to do this we look

back to the theory surrounding the hybrid Euler-Hadamard product. We discussed
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in Chapter 1.3.7 how in the regime where X is large, the prime contribution is

increased and only the zeros away from s affect the product ZX , so in this regime

the prime contribution is the dominant contribution; on the other hand, for small

X the prime contribution is diminished and the dominant contribution comes from

ZX .

We now look at the intermediate values where both ZX and PX contribute.

Evidence that both ZX and PX contribute in this regime is given by Gonek, Hughes

and Keating (see again [26]). We summarise the method utilised here, which again

follow those in [21].

First and foremost, we consider X = exp(logα T ) with 0 < α < 1/2; here the

value of α ensures that as we vary α we transition between the two previous regimes,

and by considering now the intermediate regime we should be able to demonstrate

that the results attained above are indeed consistent. Note that if we were to take

N = log T/ logX (so that we can model ZX by the characteristic polynomial ΛU(θ))

and M = T logX (so that we sample enough characteristic polynomials to cover the

critical line up to height T ), the analysis of the previous Sections tells us that at

leading order, |ZX(1
2

+ it)| gets as large as

exp

(
1√
2

√
(1− 2α) log T log log T

)

while |PX(1
2

+ it)| gets as large as

exp
(√

α log T log log T
)
.

What is the significance of these results? If one combines them to look at the results

for zeta, the resulting product exceeds that of the conjectured maximum for zeta.

This is reasonable; given that the two dominant regimes (PX and ZX) occur for

differing values of X (see Chapter 1.3.7) we should not expect that ZX and PX

attain their maxima simultaneously, as we discussed in our calculations in Chapters

4.1 and 4.2.

Our approach comes from studying the distribution of the large values of |ZXPX |.
Assuming statistical independence of the tails of the distributions of ZX and PX , we

expect that the distribution of log |ZX | + log |PX | can be evaluated by the convolu-

tion of the two distributions. With this idea, and with the additional terms attained

from our analysis, we should be able to compute refined large deviations results for

zeta.

For large K, we expect that
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1

T
meas

{
0 < t < T : log

∣∣∣∣PX (1

2
+ it

)∣∣∣∣+ log

∣∣∣∣ZX (1

2
+ it

)∣∣∣∣ ≥ logK

}
=

∫ ∞
−∞

exp

(
− x2

(1− α) log log T − log x

+
x2

((1− α) log log T − log x)2
log log log T +

x2
(

3
2

+ log(1− α)− 2 log 2
)

((1− α) log log T − log x)2

+
x2

((1− α) log log T − log x)2
log

(
1− log x

(1− α) log log T

)
+O

(
x2

(log log T )3

))
× exp

(
− (logK − x)2

α log log T
− (logK − x)2

(α log log T )2
log(2 log(logK − x))

+O

(
(logK − x)2

(log log T )2 log(logK − x)

))
dx

=

∫ ∞
−∞

exp(−fK(x)) dx,

where fK(x) is the negative function inside the exponent (the minus sign is included

here for convention). Here we utilise our refined large deviations results for both ZX

and PX (resp. exp(RX)).

By the saddle point method this result equals

exp(−fK(x0))

where x0 is the solution to the equation f ′K(x0) = 0. That is, x0 satisfies the equation

0 = f ′K(x0) =
2x

(1− α) log log T − log x
+

x

((1− α) log log T − log x)2

− 2x

((1− α) log log T − log x)2
log log log T − 2x

((1− α) log log T − log x)3
log log log T

+
2x
(

3
2

+ log(1− α)− 2 log 2
)

((1− α) log log T − log x)2
+

2x
(

3
2

+ log(1− α)− 2 log 2
)

((1− α) log log T − log x)3
+O

(
x

(log log T )3

)
− 2(logK − x)

α log log T
− 2(logK − x)

(α log log T )2
log(2 log(logK − x))

+O

(
logK − x

(log log T )2 log(logK − x)

)
.

Taking K = exp
(
d
√

log T log log T
)

(as this is the conjectured order of the maxi-

mum) and balancing the leading order contributions from PX and ZX gives

0 = fK(x0) =
2x0

(1− α) log log T − log x0

− 2(d
√

log T log log T − x0)

α log log T
.

Solving this equation gives the solution
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x0 = d(1− 2α)
√

log T log log T − 2αd
√

log T log log T log log log T

log log T

− 4αd log(d(1− 2α))
√

log T log log T

log log T
− 2αd

√
log T log log T (log log log T )2

(log log T )2

+O

(√
log T log log T log log log T

(log log T )2

)
.

Here the O-term comes from evaluating the order of the sub-leading contributions

from both PX and ZX . Substituting this back into our expression for fK(x0) and

making use of the fact that

log

(
1− x0

(1− α) log log T

)
= log

(
1− 1

2(1− α)
− log log log T

2(1− α) log log T
+ · · ·

)
= log

(
1− 2α

2(1− α)

)
+ log

(
1− log log log T

(1− 2α) log log T
+ · · ·

)
.

When multiplied by the corresponding term in fK this second logarithmic term is

absorbed by the O-term, while the constant terms in the logarithm combine with

the other terms in our expression. Upon simplifying, this gives

fK(x0) = 2d2 log T +
2d2 log T log log log T

log log T
+

4d2(log d− 3
2

+ 3 log 2) log T

log log T

+
2d2 log T (log log log T )2

(log log T )2
+O

(
log T log log log T

(log log T )2

)
.

As we see, there is no α present in the final expression for fK(x0). This is what

we should expect, as the maximum value attained by the zeta function should be

independent of the value of α.

This expression for fK(x0) enables us to conjecture the following:

Conjecture 4.4. For d > 0 fixed and T →∞, we have

1

T
meas

{
0 < t < T :

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣ > exp
(
d
√

log T log log T
)}

= exp

(
− 2d2 log T − 2d2 log T log log log T

log log T
−

4d2(log d− 3
2

+ 3 log 2) log T

log log T

− 2d2 log T (log log log T )2

(log log T )2
+O

(
log T log log log T

(log log T )2

))
.

This conjecture allows us to compute refined large deviations results for zeta. Pro-

vided our results for PX (resp. RX) and ZX are valid we can balance both sides of
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this expression as we have done throughout this thesis: at a height T up the critical

line, we know that there are (neglecting constants) T log T zeros; multiplying both

sides of the above expression by T log T gives

P
(∣∣∣∣ζ (1

2
+ it

)∣∣∣∣ > exp
(
d
√

log T log log T
))

= T log T exp

(
− 2d2 log T

− 2d2 log T log log log T

log log T
−

4d2(log d− 3
2

+ 3 log 2) log T

log log T

− 2d2 log T (log log log T )2

(log log T )2
+O

(
log T log log log T

(log log T )2

))
.

If we then balance this equation and solve for d, we obtain (at leading order)

d =

√
1

2
+

log log T

log T

and so we recover the original conjecture at leading order for the maximum of

ζ(1
2

+ it) along the critical line. Once again, the presence of these additional terms

enables us to go further and obtain a refined solution for d:

d =

√
1

2
− 1

2

log log log T

log log T
+

log log T

log T
.

Balancing the above probability and solving for the maximum, we can then plug

our solution for d into this expression to obtain the following final result:

Consequence 4.2. If our models for PX and ZX are both suitable, then

max
t∈[0,T ]

|ζ(1
2
+it)| = exp(

√
1
2

log T log log T − 1
2

log T log log log T + o(log T log log log T )).

A reasonable question here is to ask whether this result is feasible given the results

we have for PX and ZX . The subleading term here in the result for the maximum of

zeta is the sum of the subleading parts from both the PX and ZX case. While both

are contributing here to the results for the zeta function, we should be anticipating

some consistency between results.

This implies that in the three regimes, the maximum of the zeta function varies.

This is unreasonable, since the maximum of zeta is not dependent on the parameter

X. We therefore must ask ourselves the question of what is going on here, and

is there some way we can still obtain a more precise answer as to the subleading

behaviour in the maximum of the zeta function if the result above is to not be

believed?

We propose an answer to this final question in Chapter 6, while Chapter 5 is

dedicated to showing that RX is a suitable model for the product over primes PX ,

and therefore we can believe the results we attain for this are a good representation
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for the maximum of the zeta function.
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5 Mathematical Justification for the use of RX as

a Model for P ∗X

We’ve introduced and implemented an alternative model, RX , for computing refined

large deviations results for P ∗X ; but is this model valid, and for what values of X is

this the case?

As we saw in Section 4.3.2 we model P ∗X by the summand RX , and it is there

we assert that RX is a good model for P ∗X . The question we seek to answer in this

Chapter is: can we formally verify that this is indeed the case?

To do this, we utilise a notion from the theory of probability, and we discuss this

in detail in the following Section.

5.1 The Hamburger Moment Problem

The Hamburger Moment problem asks the following question: when is a distribution

completely determined by its moments? That is, if we know all the moments of a

distribution, when does this allow us to completely determine what that distribution

must be?

To help us answer this question, we rely on the following result of Carlemann,

which is stated in [50] as follows:

Theorem 5.1 (Theorem 1.10, Carlemann). A sufficient condition that the Ham-

burger moment problem be determined is that

∞∑
n=1

µ
−1/2n
2n =∞.

More generally, it is sufficient that

∞∑
n=1

γ
−1/2n
2n =∞

where

γ2n = inf
ν≥n

(µ2ν)
1/2ν .

Here the µ2n denotes the 2nth moment. How can we make use of this result? If we

were able to determine that both PX and RX were determined by their moments,

showing that PX aligns with RX in the limit as T tends to infinity amounts to

showing that the moments of these two distributions agree with one another in the

limit.

Formally, we have the following expressions for P ∗X and RX :
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R

(∑
p≤X

1

p1/2+it

)
and R

(∑
p≤X

zp√
p

)
,

where zp is an i.i.d random variable uniformly distributed on the unit circle. If we

are able to show for all natural numbers k that

E

(R∑
p≤X

1

p1/2+it

)k
 → E

(R∑
p≤X

zp√
p

)k


as the variable T tends to infinity (where t ∈ [0, T ] and X = exp(
√

log T ) as before),

and that the result in Theorem 5.1 holds, then we can say that P ∗X converges to RX

in distribution.

Some care is needed when evaluating these expectations, however; the first of

these is evaluated with respect to t, while the second is evaluated with respect to

the variable zp. As integrals then, we aim to prove that for k ∈ N we have

1

T

∫ T

0

(
R
∑
p≤X

p−it
√
p

)k

dt → 1

2π

∫ 2π

0

(
R
∑
p≤X

eiθp
√
p

)k

dθp (56)

as T approaches infinity.

For this, we proceed by evaluating the moments of P ∗X and RX for values of k on

a case-by-case basis and determining whether these expressions agree in the limit.

5.1.1 Case k = 1

We begin by looking at the first moment calculation for P ∗X . For this integral

expression, this evaluates to

1

T

∑
p≤X

∫ T

0

cos(t log p)
√
p

dt =
1

T

∑
p≤X

[
sin(t log p)
√
p log p

]T
0

=
1

T

∑
p≤X

sin(T log p)
√
p log p

Since both sum and integral are finite we can interchange integral and summation

at will; we then see that this expression vanishes in the limit T →∞ as

1

T

∑
p≤X

sin(T log p)
√
p log p

� 1

T

∑
p≤X

1
√
p
∼ 1

T
· 2
√
X

logX

and for X = exp(
√

log T ) this expression approaches zero in the limit. Therefore in

the k = 1 case, this expression vanishes.

If we consider now the first moment calculation forRX , we find that this evaluates

to give
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E

[
R
∑
p≤X

zp√
p

]
=

1

2π

∑
p≤X

∫ 2π

0

cos(θp)√
p

dθp =
1

2π

∑
p≤X

[
sin(θp)√

p

]2π

0

= 0,

and so we see clear agreement between the models in the large T limit for the first

moment.

5.1.2 Case k = 2

The steps for the second moment calculation are the same as above, only a little

more work is required in the k = 2 case. Our reasons for considering the second

moment separately will become clear when we later look at higher moments, as there

are some subtleties that present themselves for higher order moments which are not

on display here.

Beginning with the second moment for P ∗X we find that this is equal to

E

(∑
p≤X

cos(t log p)
√
p

)2
 = E

∑
p≤X

cos2(t log p)

p
+
∑
p,p′≤X
p 6=p′

cos(t log p) cos(t log p′)√
pp′



= E

[∑
p≤X

cos2(t log p)

p

]
+ E

 ∑
p,p′≤X
p 6=p′

cos(t log p) cos(t log p′)√
pp′

 .
For this, we evaluate both terms individually; the first of these gives

E

[∑
p≤X

cos2(t log p)

p

]
=

1

T

∑
p≤X

∫ T

0

cos2(t log p)

p
dt =

1

T

∑
p≤X

∫ T

0

1 + cos(2t log p)

2p
dt

=
1

T

∑
p≤X

[
t

2p
+

sin(2t log p)

4p log p

]T
0

=
∑
p≤X

1

2p
+

1

T

∑
p≤X

sin(2T log p)

4p log p
.

The first of these terms does not vanish in the limit, instead growing like log logX.

The second term vanishes as the sum is bounded above by another of order equal

to that of the first,
∑

p≤X 1/p, which we previously stated is order log logX ∼
1
2

log log T as X = exp(
√

log T ); therefore the 1/T scaling present ensures that this

vanishes in the limit.

If we look at the second term in the second moment, we find that
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E

 ∑
p,p′≤X
p 6=p′

cos(t log p) cos(t log p′)√
pp′

 =
1

T

∑
p,p′≤X
p 6=p′

∫ T

0

cos(t log p) cos(t log p′)√
pp′

dt

=
1

T

∑
p,p′≤X
p 6=p′

∫ T

0

cos(t(log p+ log p′)) + cos(t(log p− log p′))

2
√
pp′

dt

=
1

T

∑
p,p′≤X
p 6=p′

sin(T (log p+ log p′))

2
√
pp′(log p+ log p′)

+
sin(T (log p− log p′))

2
√
pp′(log p− log p′)

.

Numerically, these two terms appear to vanish in the large T limit, but our aim is

to formally prove this.

Our approach is to bound each term by other terms which vanish in the large T

limit. In fact the argument implemented here can be applied to either term; looking

at the first term, without loss of generality we evaluate the sum first in terms of p

by utilising an upper bound which allows us to split the double sum into two sums;

following which we then apply an Euler-Maclaurin argument with respect to the

variable p:

1

T

∑
p,p′≤X
p 6=p′

sin(T (log p+ log p))

2
√
pp′(log p+ log p′)

� 1

T

∑
p′≤X

∑
p≤X

1

2
√
pp′ log p

� 1

T

∑
p′≤X

∑
p≤X

1

2
√
pp′

=
1

T

∑
p′≤X

[
1

2
√

2p′
+

1

2
√
p′

∫ X

2

1√
t log t

dt

]

=
1

T

∑
p′≤X

1

2
√

2p′
+

1

2
√
p′
· 2
√
X

logX
+O

( √
X

√
p(logX)2

)

=
1

T

(
2X

(logX)2
+O

(
X

(logX)3

))
,

Looking at the first of these terms we see that this vanishes in the limit as X =

exp(
√

log T ) is sublinear. We therefore see from this expression that this double

sum vanishes in the large T limit.

We now look at the second of these terms, and for this we cannot utilise the

same arguments. Since p and p′ are not equal we split this term into two dominant

sums:
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1

T

∑
p,p′≤X
p 6=p′

sin(T (log p− log p′))

2
√
pp′(log p− log p′)

=
1

T

∑
p′<p≤X

sin(T (log p− log p′))

2
√
pp′(log p− log p′)

+
1

T

∑
p<p′≤X

sin(T (log p− log p′))

2
√
pp′(log p− log p′)

=
1

T

∑
p′≤X

sin(T (log(p′ + 2)− log p′))

2
√
p′(p′ + 2)(log(p′ + 2)− log p′)

+
1

T

∑
p′≤X

sin(T (log(p′ − 2)− log p′))

2
√
p′(p′ − 2)(log(p′ − 2)− log p′)

+ (Subleading Terms).

Here, our calculations stem from the fact that we can split the sum in terms of p

both exceeding and not exceeding p′, since we have the added restriction that p 6= p.

We then observe that the dominant contributions come from making log p − log p′

as small as possible (since this expression with the 1/T -scaling is the well-known

sinc function and sinc(x) gets larger as the variable x gets smaller). We therefore

want log p− log p′ as small as possible, and this occurs when the primes are closest

together (which for general primes is when p and p′ are separated by a distance of

2).

From here we upper bound this expression, collect logarithms and expand. The

first sum gives

1

T

∑
p′≤X

sin(T (log(p′ + 2)− log p′))

2
√
p′(p′ + 2)(log(p′ + 2)− log p′)

� 1

T

∑
p′≤X

1

2
√
p′(p′ + 2)(log(p′ + 2)− log p′)

=
1

T

∑
p′≤X

1

2
√
p′(p′ + 2)(2/p′ + · · · )

=
1

T

∑
p′≤X

p′

4
√
p′(p′ + 2)

[
1 +

1

p′
+ · · ·

]
.

The leading term here is constant order, which when summing over all primes p′ ≤ X

gives a factor of X/ logX, which for X = exp(
√

log T ) vanishes due to the 1/T

scaling present. This argument also applies to the second of these terms, albeit with

some sign changes present.

Turning our attention now to the second moment for RX we find that this is

significantly easier to evaluate; here we have
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E

(∑
p≤X

cos(θp)√
p

)2
 = E

∑
p≤X

cos2(θp)

p
+
∑
p,p′≤X
p 6=p′

cos(θp) cos(θp′)√
pp′



= E

[∑
p≤X

cos2(θp)

p

]
+ E

 ∑
p,p′≤X
p6=p′

cos(θp) cos(θp′)√
pp′

 .
The first of these expressions evaluates to give

E

[∑
p≤X

cos2(θp)

p

]
=

1

2π

∑
p≤X

∫ 2π

0

cos2(θp)

p
dθp =

1

2π

∑
p≤X

∫ 2π

0

1 + cos(2θp)

2p

=
1

2π

∑
p≤X

[
θp
2p

+
sin(2θp)

4p

]2π

0

=
∑
p≤X

1

2p
.

So we see agreement in the initial terms for the second moment; we now verify this

for the subleading term. Evaluating this we find that

E

 ∑
p,p′≤X
p 6=p′

cos(θp) cos(θp′)√
pp′

 =
1

(2π)2

∑
p,p′≤X
p 6=p′

∫ 2π

0

∫ 2π

0

cos(θp) cos(θp′)√
pp′

dθpdθp′

=
1

(2π)2

∑
p,p′≤X
p 6=p′

∫ 2π

0

cos(θp)√
p

dθp

∫ 2π

0

cos(θp′)√
p′

dθp′

= 0

upon evaluating either integral. Therefore we see agreement also in the case k = 2.

5.1.3 Case k > 2 for P ∗X

For the kth (k > 2) moment a little more care is needed as there may be additional

terms which do not vanish in the limit; we consider the kth moments for both P ∗X
and RX separately. Before looking at these terms we go through the main steps for

P ∗X .

Starting with P ∗X , we have the following for the higher moments:
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E

(∑
p≤X

cos(t log p)
√
p

)k
 = E

∑
p≤X

cosk(t log p)
√
pk

+
∑
p,p′≤X
p 6=p′

cosk−1(t log p) cos(t log p′)
√
pk−1√p′

+ · · ·



= E

[∑
p≤X

cosk(t log p)
√
pk

]
+ E

 ∑
p,p′≤X
p 6=p′

cosk−1(t log p) cos(t log p′)
√
pk−1√p′


+ · · · .

For the initial term in the expression, the limit of the evaluation depends on whether

or not k is odd or even. What do we mean by this?

For even k > 2 we find that cosk(x) can be written as a sum of cos(lx) terms for

even l ≤ k, with non-zero constant term. We arrive at this result via the following

argument: using Euler’s theorem and the Binomial theorem we can rewrite the nth

power of cosine as

cosn(x) =

(
eix + e−ix

2

)n
=

1

2n

n∑
k=0

(
n

k

)
eikxe−i(n−k)x =

1

2n

n∑
k=0

(
n

k

)
ei(2k−n)x

=
1

2n

[
e−inx +

(
n

1

)
ei(2−n)x +

(
n

2

)
ei(4−n)x + · · ·+

(
n

n− 1

)
ei(n−2)x + einx

]
.

There are n + 1-terms in this expression, so for odd n the terms combine with one

another to give

cosn(x) =
1

2n−1

n∑
k=

n+1
2

(
n

k

)
cos((2k − n)x)

and there is no constant term in this expression. If n is even, there are an odd

number of terms in the above expression and the k = (n/2)th term gives a constant

term equal to 1
2n−1

(
n
n/2

)
.

Looking then at the leading moment for even k, performing this integration over

the interval [0, T ] means that the cosine terms vanish and the factor of T picked

up from integrating the constant term cancels with the 1/T scaling. Therefore the

leading term in the expectation is equal to

1

2k−1

(
k

k/2

)∑
p≤X

1
√
pk

= O(1) for k > 2.

In the case where we are looking at odd k > 2, using the expression for cosine above

we see that there is no constant term in this expression and the other terms in the
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expression integrate to become sine terms, which vanish in the large T limit due to

the 1/T scaling present.

We now consider the sub-leading terms in the expression for PX , and we again

split this based on whether k is odd or even.

If k is odd, in each sub-leading term at least one of the cosine terms is odd. This

means that, in each of the sub-leading terms, there is no constant present. Using

our formula above for the kth power of cosine, all terms can be decomposed into

products of cosine terms. Using also the fact that

cos(x) cos(y) =
1

2
(cos(x+ y) + cos(x− y)),

we can apply this result repeatedly to decompose these products of cosines into

sums of single cosines with exponent 1. After integrating, these all then become sine

terms and thus vanish in the limit due to the 1/T scaling. We conclude then that

all sub-leading terms for the odd kth moment have limit 0, and there are therefore

no sub-leading terms for PX when k is odd.

If k is even we can apply the same ideas from the odd case. If there are any odd

powers of cosine in the sub-leading terms, there are no constant terms present and

as in the odd case these terms vanish in the large-T limit. If all the cosine terms in

any of the sub-leading terms are even, there is a constant in each term which cancels

with the 1/T -scaling. Therefore any terms with all even powers gives a constant,

and since the powers add to make k, after integrating and looking at the large T

limit each of these terms is equal to

∏
ki

1

2ki−1

(
ki
ki/2

)∑
p≤X

1
√
pki
.

The kth moment is given by the sum of these terms, and is therefore given by

k/2∑
i=1

i∑
j=1


∏

kij even∑
kij

=k/2

1

2kij−1

(
kij
kij/2

)∑
p≤X

1
√
pkij


Thus we have deduced the limit of each term in the expansion for the kth moment

of PX .

Case k > 2 for RX

We now turn our attention to the kth moment for RX . As was the case with P ∗X
we consider the leading term first for both odd and even k, before looking at the

subleading terms.

For the kth moment for RX , we find the following:
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E

(∑
p≤X

cos(θp)√
p

)k
 = E

∑
p≤X

cosk(θp)
√
pk

+
∑
p,p′≤X
p 6=p′

cosk−1(θp) cos(θp′)
√
pk−1√p′

+ · · ·



= E

[∑
p≤X

cosk(θp)
√
pk

]
+ E

 ∑
p,p′≤X
p6=p′

cosk−1(θp) cos(θp′)
√
pk−1√p′

+ · · · .

As before the evaluation of this expression depends on the value of k; if k is odd,

the expectation evaluates to give

E

[∑
p≤X

cosk(θp)
√
pk

]
=

1

2π

∑
p≤X

∫ 2π

0

cosk(θp)
√
pk

dθp

= 0.

That this is the case can be seen graphically. If one looks at the plot of cosk(x) for

x ∈ [0, 2π] the area under the curve, x ∈ [π/2, 3π
2

] is equal to the sum of the areas

under the curve for x ∈ [0, π
2
] and x ∈ [3π

2
, 2π], so these contributions cancel to give

resulting integral zero.

In the case where k > 2 is even, there is a constant term in the expression for

cosk(x), which as we see above is

1

2k−1

(
k

k/2

)∑
p≤X

1
√
pk

= O(1) as T → ∞,

and thus these initial terms for k > 2 agree in the large T limit.

What about the sub-leading terms? Again, whether k is odd or even will come

into play here.

We consider the case where k is odd first: if k is odd, in each of the sub-leading

terms at least one of the powers of cosine which makes up the product must be odd.

Otherwise there will be a term where the sums of the powers of the cosine terms

will be even, contradicting the fact that we are looking at the odd kth moment.

That is, if we have terms of the form

cosk1(θp1) · · · coski(θpi)

where k1 + · · · + ki = n, at least one of the ki must be odd otherwise the sum will

be even.

For these powers of cosine for which the exponent is odd, we know from looking

at the leading term that this will integrate to give zero. Therefore every sub-leading
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term in the odd k case integrates to zero, and we thus see agreement between P ∗X
and RX for the odd kth moment.

In the case where k is even, we can apply a similar argument. If there are

any terms of the form cosl(x) where l is odd we know from looking at the leading

term that these integrate to zero. Therefore any non-zero terms in the even k case

occur when all cosine terms which make up the product in each term all have even

exponent. Therefore the value of the kth moment here is the product

k/2∑
i=1

i∑
j=1


∏

kij even∑
kij

=k/2

1

2kij−1

(
kij
kij/2

)∑
p≤X

1
√
pkij


Therefore we see the agreement between the moments of P ∗X and RX .

5.1.4 Verifying Carlemann’s Theorem

Having verified that the moments of P ∗X and RX agree with one another in the large

T limit, all that remains is to verify the condition in Carlemann’s theorem; that is,

if we can show that

∞∑
n=1

γ
−1/2n
2n =∞

for γ2n = infν≥n(µ2ν)
1/2ν , then we have all the information needed to verify agree-

ment between the two models.

As the moments for P ∗X and RX are the same, we need not verify this by consid-

ering P ∗X and RX separately. Proving this for one of P ∗X and RX leads to the same

conclusion for the other.

We want to show that this series is divergent, and this follows from showing that

the limit

lim
n→∞

γ
−1/2n
2n

exists and is 0, which is equivalent to showing that the limit

lim
n→∞

− log γ2n

2n

is negative infinity. The infimum in the expression for γ2n occurs when (µ2n)1/2n is

at its smallest, and we can determine this by looking at the ratio
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log

(
(µ2n+2)2n+2

(µ2n)2n

)
= (2n+ 2) log µ2n+2 − 2n log µ2n

= 2n log

(
µ2n+2

µ2n

)
+ 2 log µ2n+2.

We consider this expression since the logarithm is a convex function, and so the limit

of this expression will be equal to the logarithm of the limit limn→∞(µ2n+2)2n+2/(µ2n)2n.

We show that this limit is −∞: consider again the expressions for P ∗X and RX :

P ∗X =
∑
p≤X

cos(−t log p)
√
p

,

RX =
∑
p≤X

cos(θp)√
p

.

The denominator within the sums is increasing with p and the numerator lies in the

interval [−1, 1] for fixed t in the case of P ∗X . Taking random θp or t log p generally

leads to values of cosine not equal to ±1, and due to the cosine function fluctuating

between positive and negative, we do not expect that these sums will produce values

exceeding either ±1. Using now the result from Probability Theory which states that

x > y implies E[x] > E[y], we conclude that

µ2n+2 < µ2n,

and as a result this first logarithm term is negative (since the ratio of moments is less

than 1) and therefore tends to negative infinity in the limit due to the multiplying

factor of 2n. The second term, 2 log µ2n+2 also tends to negative infinity, since the

sequence µ2n decreases for ν > 2n with limit 0.

This is useful as we have demonstrated that µ2n is decreasing, and therefore the

infimum for γ2n is given by the limit

lim
n→∞

(µ2n)1/2n.

Given both µ2n and 1/2n have limit zero as n→∞, we have three possibilities. The

first is that the infimum (and hence the above limit) is zero, and this occurs when

µ2n approaches zero at a faster rate than the exponent; the second possibility is that

the infimum is 1, which occurs when the exponent approaches zero at a faster rate

than the 2nth moment; the final case is where the two approach zero at a similar

rate and the limit is some constant which lies between 0 and 1.

In each of these cases, we arrive at the result we need. We know that if expression

inside the sum
∑∞

n=1 γ
−1/2n
2n does not converge to zero then the sum diverges. If the

value of the infimum is 1, each term inside the sum is simply 1 and so we have
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an infinite sum of 1’s which diverges and so the result follows; if the value is a

constant between 0 and 1, since the exponent is negative we find that each term

inside the sum is of the form 1/cn and this again has limit 1. Finally we consider if

the expression has infimum 0; because we are looking at the even moments (since

we saw above that these are the only ones with non-zero moments) it means that

we approach the infimum as n gets large from the positive direction. Hence the

reciprocal of this expression would approach positive infinity, and in all three cases

the series diverges.

We can therefore conclude that Carlemann’s theorem holds for our purposes,

and as such PX and RX are determined by their respective moments. Since we

have demonstrated that the moments of these two distributions are the same, we

conclude that these two distributions align with one another in the large T limit.

5.2 Numerical Support

We’ve presented some mathematical support for why the random model RX is a

good fit for P ∗X in the large X (resp. large T ) limit, but we now include some

numerics to further support our argument here. There are some subtleties at play,

which we outline below.

As the model RX includes a random variable uniformly distributed on the unit

circle, every realisation of RX generates a different value/output due to the random

nature. Therefore attempting to compare the numerics of these two models directly

is challenging, as there is not a direct one-to-one correspondence between P ∗X and

RX .

Instead we look to show that the range of values covered by both P ∗X and RX is

comparable in the large T limit. While this does not say anything about the validity

of the RX model in the large T limit, it does supplement the above theory to suggest

there is some credibility to our conjecture.

How then should we proceed? We return to the literature of Farmer, Gonek

and Hughes for inspiration: in their original paper they utilised a Gaussian model

to determine the leading order behaviour for the maximum of PX , and for their

modelling they took T logc T values of t.

With this in mind, we use the following code:

P[X_,t_] := Re[Sum[1/(Prime[i])^(1/2+I*t), {i,1,PrimePi[X]}]];
R[X_] := Re[Sum[RandomReal[-1,1]/(Sqrt[Prime[i]]), {i,1,PrimePi[X]}]];

T = 100000;

r = T*100;

A = ConstantArray[0,T];
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dX = Range[0,T,T/r];

dP = P[Exp[Sqrt[Log[T]]],dX];

dQ = Sort[dP,Less];

For[i = 1, i <= Length[A], i++, A[[i]] = R[Exp[Sqrt[Log[T]]]]];

B=Sort[A,Less];

ListPlot[dQ, B, PlotLegends->{Subscript[P, X], Subscript[R, X]}]

We summarise now what we our code is doing: for our first sum over primes P ∗X
we evaluate it for a fixed X, X = exp(

√
log T ), as t ranges from 0 to T . For RX

we perform T iterations of this model to match the number of points we evaluate

P ∗X at, and we then numerically order both sets of points and plot them against one

another.

These figures allow us to compare and contrast the range of values between the

models in order to determine whether these seem reasonable, as well as determine

how the increase in T affects how well matched the two models are. This is especially

important due to the fact that we propose that the maximum for RX aligns with

that of PX , and so a significant difference in the data sets would quickly dispel such

an argument.

Figure 2: Listplot of P ∗X(1
2

+ it) against RX for T = 10000.

Comparing the results for P ∗X and RX in Figure 2 below where we take T = 10000,

we see that the range of values covered by both functions closely align, although

PX attains marginally higher peaks and troughs. This is reassuring, although this

marginal difference may grow with T , and so it is important that we try other values

of T to make sure that this is not something that occurs.
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Figure 3: Listplot of P ∗X(1
2

+ it) against RX for T = 100000.

Comparing the results in Figure 3 and Figure 2 we see that the range of values

covered by both functions closely align, and in this case the two ranges more closely

align than the previous data set. It is desirable to go beyond this, however we were

unable to go beyond r = 10× T in Figure 3 due to numerical limitations.

It is worth mentioning however that in both of these graphs we do notice a slight

difference between the two models at the tails which does not vanish as we increase

the value of T in our model, despite the two curves more closely aligning with one

another. This is something that we will discuss in more detail in Chapter 6.
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6 PX vs ZX

We’ve computed refined large deviations results for both the product over primes

PX and the product over zeros ZX , but there remains some ambiguity which we

need to address, as well as the reasons for why this ambiguity persists.

If we look at the results for the maximum of the zeta function in these two

regimes we see a slight difference between the two models. We recall these results

here: in the regime where the dominant contribution comes from the product over

zeros ZX , we find that (up to subleading order)

max
t∈[0,T ]

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣ = exp

(√
1

2
log T log log T +

1

2
log T log log log T + o(log T log log log T )

)

as T → ∞; while our results in Chapter 4.2 are for ZX these results should also

model zeta since we are in the regime where the contribution from the product

over primes is diminished, and therefore does not contribute significantly to the

maximum. In the regime where the dominant contribution comes from the product

over the primes PX we argue that, provided our alternate model RX is suitable, that

max
t∈[0,T ]

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣ = exp

(√
1

2
log T log log T − log T log log log T + o(log T log log log T )

)

as T → ∞. In the intermediate regime where both PX and ZX contribute (the

convolution case present in Chapter 4.4), our results suggest that

max
t∈[0,T ]

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣ = exp

(√
1

2
log T log log T − 1

2
log T log log log T + o(log T log log log T )

)

The issue which presents itself arises when looking at the subleading behaviour.

With both ZX and PX being models for the zeta function in their respective regimes,

we should expect that the results these models generate are in agreement with one

another. However we see a difference in the subleading term, and this raises a

few natural and instinctive questions which we must consider: why do we witness

this difference between the two models, and which model (if any) do we favour for

providing accurate refined large deviations results for the zeta function?

These are questions we attempt to answer in this section, starting first with the

difference between the results of the models utilised in this thesis.
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6.1 The Difference in the Models

The first question to consider is why there is a difference between the two models,

and whether we determine the mathematical understanding as to why this difference

persists. There are a number of possible justifications for the results above, and it

is our aim here to determine which of these arguments is the correct one.

The first possibility here comes from studying the Euler-Hybrid Hadamard prod-

uct, and looking at whether PX is a good model for the zeta function in the large X

regime. A quick look at the work of Gonek, Hughes and Keating [26] quickly dispels

this possibility, since the results the authors present in their paper are theoretical (as

opposed to conjectural) and unconditional. Furthermore splitting the zeta function

as a product of two terms, ZX and PX , and agreeing with the results of the former

term ZX but not the latter PX seems like an unreasonable conclusion. If RX is in-

deed a perfectly valid model for PX , given the theoretical nature of Gonek, Hughes

and Keating’s work the results should align between the two products, which as we

saw in Chapter 4 is clearly not the case for the results we present here.

The second possibility is simply that, while PX is an effective model for the zeta

function, RX is ill-fitted as a model for PX (resp. P ∗X), and this possibility is far

more feasible than the first.

In Chapter 5.2 we computed some numerics which compared the value distri-

butions of both RX and P ∗X , and while the two models fit reasonably well we did

observe a slight difference between the plots which doesn’t seem to disappear as

T gets larger (although we were unable to explore this discrepancy further due to

numerical limitations). This could lead one to believe there is some deficiency stem-

ming from the alternate model RX , and it is this line of thinking that we find believe

to be the most plausible, and are therefore in agreement with.

Elaborating more on this, in Chapter 5.1 we utilised the method of moments to

show that our alternate model RX converges in distribution to P ∗X in the large T

limit. While this is sufficient to determine convergence of distributions, it could be

speculated that the two models in question agree only at leading order (and thus

in the large T limit since only the leading order contributes anything of significance

here) and we then encounter some divergence in the results of the two models at the

subleading order.

This would certainly explain why we see alignment between the two models at

the leading order but a lack of alignment beyond this. This also aligns with the fact

that our numerical results for PX in Chapter 7.2 do not seem to align well, adding

credence to the idea that RX is not suitably fitted for large (but not extremely large)

values of T .
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6.2 Choice of Model

Having discussed potential reasons for the differences between the results, we now

have the matter of which results we agree with, as discussed in Chapter 6.1.

When it comes to choosing between the two models (ZX and PX), first impres-

sions would be that the logical and mathematically reasonable decision would be to

favour the results generated from the product over zeros, ZX . The reasons for why

this choice might seem the most rational are as follows.

Both models rely on conjecture here; ZX relies on the conjecture of Gonek,

Hughes and Keating to model ZX via the characteristic polynomial provided we

take the right choice of matrix size, N (see Conjecture 3 of [26]). In the case of PX ,

we rely on the conjecture that the alternative model which we introduce, RX , is a

good model for PX (resp. P ∗X).

Of the two conjectures that are relied upon here, Gonek, Hughes and Keating

provide a great deal of support for the conjecture for ZX (Chapter 4 of [26]), and as

we outlined in Chapter 6.1 it is our belief that the difference in results between the

two models most likely stems from some deficiency in the RX model at subleading

behaviour.

Further, the refined large deviations results we computed for the CUE in Chapter

3 are theoretic as oppposed to conjectural, providing a more solid foundation for

believing in these results.

If we also look at the numerical results which we present in Chapter 7, the results

for ZX align closely with the conjectured maximum which we have computed. On

the contrary, the numerical results for RX do not appear to match well the maximum

for PX for the values of T used, suggesting that RX and PX agree at leading order

only and so they only see close alignment for extremely large values of T ; values of

which are beyond our computational ability.

There are however reasons to not ultimately trust in the results of ZX , which we

must also take into account. As we later see in Chapter 7 it is not as clear cut that

one of these solutions for the maximum of the zeta function must be the correct one.

There is the possibility, although we believe it to be unlikely given the strength of

our results in Chapters 3 and 4, that neither the results for ZX or PX are reasonable.

Without further research, it is unclear which results (if any) are true.

What is clear however, is that despite the differences in the coefficients of the

subleading term in all three regimes, the order of magnitude of the subleading term

remains the same throughout, namely log T log log log T .

With this in mind, while it is my personal belief that the true answer is closer

to that of the results of ZX (although how much closer is not clear and remains to

be seen) we put forward here the following broader conjecture:
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Conjecture 6.1.

max
t∈[0,T ]

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣ = exp

(√
1

2
log T log log T + c log T log log log T + o(log T log log log T )

)
,

where c is a constant yet to be determined.

Numerical results in Chapter 7 support this idea, and seem to suggest that the con-

stant c lies between −1/2 and 1/2. However, we do not make a definitive conclusion

due to the limitations of our numerical results, and we defer the rest of the details

until Chapter 7. This is an improvement over the previous conjecture from Farmer,

Gonek and Hughes.
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7 Numerical Results

Having computed refined large deviations results for the circular beta ensemble and

the zeta function we now compare our theoretical findings against the numerical

data in order to determine if the theory aligns with the data; while we can argue

this is certainly the case for the circular beta ensemble due to this being a theorem,

the results for the product over primes, product over zeros and the zeta function are

all without formal proof and are conjectural or are the results of conjectures; having

viable numerical data would provide invaluable support for these results.

We summarise the numerical methods on display here, before discussing what

the data shows when compared to the theory.

7.1 Numerical Results for the CβE

We begin by looking at the numerics for the circular beta ensemble, all of which are

computed and run using Wolfram Mathematica Version 13.1. For these numerics

we used the values M = T , N = log T , aligning with the theory in Chapter 3. Our

results from the theory of large deviations suggest the following maxima:

• The proposed maximum for the characteristic polynomial of a matrix from the

COE (β = 1) is:

exp
(√

log T log log T + log T log log log T − log T (6 log 2− 3) + o(log T )
)
.

• For β = 2 we propose that the maximum of the characteristic polynomial of a

matrix from the CUE is:

exp

(√
1

2
log T log log T +

1

2
log T log log log T − 1

2
log T (5 log 2− 3) + o(log T )

)
.

• For β = 4 we propose that the maximum of the characteristic polynomial of a

matrix from the CSE is:

exp

(√
1

4
log T log log T +

1

4
log T log log log T − 1

4
log T (4 log 2− 3) + o(log T )

)
.

We first outline the theory behind our numerics: recall from Section 4.2 that the

characteristic polynomial of a random unitary matrix can be used to model ZX ,

provided we take N to be [log T/eγ logX]. For our purposes, we take matrices of
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size N = [log T ]. Asymptotically we know there are T log T zeros along the critical

line up to height T , and we need to ensure that we are matching the number of zeros

with the number of eigenvalues, M = [T log T/N ] = T .

With these values of M and N we should expect that our CUE (β = 2) results

for the characteristic polynomial align with those for the product over zeros ZX . As

for the other circular ensembles (β = 1 and β = 4), computing numerics for these

ensembles will enable us to compare against the case β = 2 as well as confirm if

these values exceed or do not exceed those of the circular unitary ensemble, harking

back to our discussion in Chapter 3.4.1.

To implement these numerically we take M and N as above, with the purpose

being to look at the maxima of the characteristic polynomial which here comes

from extreme values. Taking an N × N matrix from the corresponding circular

ensemble, we compute its characteristic polynomial and evaluate this at r points

equidistributed around the unit circle (r is defined below). From these entries we

take the maximum, which gives one point in our data set. We then repeat this

procedure until we have M points.

Finally, these M points are numerically ordered and plotted against the pro-

posed maximum for the CβE, where we produce this plot for each of value of β

corresponding to one of the circular ensembles.

7.1.1 Circular Orthogonal Ensemble (β = 1)

For the circular orthogonal ensemble, the following code is implemented:

T = 10000;

n = IntegerPart[Log[T]];

r = 50;

m = T;

A = ConstantArray[0,m];

Li = ConstantArray[0,r];

b = 1;

For[i=1, i<=m, i++,

For[j=1, j<=r, j++,

L = RandomVariate[CircularOrthogonalMatrixDistribution[n]];

f[x_] := Abs[CharacteristicPolynomial[L,y] /. y -> Exp[I*(2*Pi*x)/r]];

Li[[j]] = Max[Table[f[k], {k,1,r}]];];
A[[i]] = Max[Li]]

B = Sort[A, Less];

Show[Plot[Exp[Sqrt[(1/b)*Log[T]*Log[Log[T]] + (1/b)*Log[T]*Log[Log[Log[T]]]
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- (2/b)*Log[T]*((5/2)*Log[2] + (1/2)*Log[2/b] - 3/2)]], {x,0,Length[B]},
PlotLegends -> {"Proposed Result"}], ListPlot[B, PlotLegends -> {"RMT"}],
PlotRange -> Full, AxesOrigin -> True]

Figure 4: Listplot of T valuations of COE matrices of dimension [log T ], where T =
10, 000 and the characteristic polynomials are evaluated at r = 50 equally spaced
points around the unit circle. The horizontal blue line represents our proposed result
for the maximum, while the dotted line represents the the Random Matrix data.

Looking at the results produced in Figure 4 for T = 10, 000, first impressions would

be that these results don’t appear particularly illuminating. What is clear from the

data, however, is that our proposed result for the maximum in the COE case inter-

sects the random matrix theory data somewhere between the 9, 500th and 10, 000th

data points, indicating that more than 95% of our extreme maxima lie below the

result proposed by our theorem.

If we compare those results with the results in Figure 5 we see an increased

proportion of the maxima lie below the proposed result for the maximum compared

to Figure 4, indicating that in the large T limit 100% of the data lies beneath our

proposed result, as expected by our theorem.

7.1.2 Circular Unitary Ensemble (β = 2)

For the circular unitary ensemble, the following code is implemented:

T = 10000;

n = IntegerPart[Log[T]];

r = 50;

m = T;

A = ConstantArray[0,m];

Li = ConstantArray[0,r];
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Figure 5: Listplot of T valuations of COE matrices of dimension [log T ], where T =
100, 000 and the characteristic polynomials are evaluated at r = 50 equally spaced
points around the unit circle. The horizontal blue line represents our proposed result
for the maximum, while the dotted line represents the the Random Matrix data.

b = 2;

For[i = 1, i <= m, i++,

For[j = 1, j <= r, j++,

L = RandomVariate[CircularUnitaryMatrixDistribution[n]];

f[x_] := Abs[CharacteristicPolynomial[L,y] /. y -> Exp[I*(2*Pi*x)/r]];

Li[[j]] = Max[Table[f[k], {k,1,r}]];];
A[[i]] = Max[Li]]

B = Sort[A, Less];

Show[Plot[Exp[Sqrt[(1/b)*Log[T]*Log[Log[T]]]],

Exp[Sqrt[(1/b)*Log[T]*Log[Log[T]] + (1/b)*Log[T]*Log[Log[Log[T]]]

- (2/b)*Log[T]*((5/2)*Log[2] + (1/2)*Log[2/b] - 3/2)]], {x,0,Length[B]},
PlotLegends -> {"FGH", "Refined Result"}],
ListPlot[B, PlotLegends -> {"RMT"}], PlotRange -> Full,

AxesOrigin -> True]

Here some slight modifications to the code have been made in comparison to the

code for the circular orthogonal ensemble. As we use random unitary matrices to

effectively model the zeta function, here we compare not only against our proposed

result but the initial result of Farmer, Gonek and Hughes from which our results

stem. This enables us to determine not only whether this result is a good fit, but

also whether or not our result is a suitable refinement of the result of Farmer, Gonek
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and Hughes as we initially claim.

Figure 6: Listplot of T valuations of CUE matrices of dimension [log T ], where T =
10, 000 and the characteristic polynomials are evaluated at r = 50 equally spaced
points around the unit circle. The horizontal blue line represents the conjecture of
Farmer, Gonek and Hughes, while the orange line represents our refined conjecture.

Looking at the data in Figure 6 we see that our refined Large Deviations result

more closely captures the random matrix theory (RMT) data. In order to get a

better understanding as to whether this refined result is reasonable we again evaluate

this for larger T . As our result is conjectured for T tending to infinity, we should

expect fewer points in our RMT data to lie above the horizontal line. The results

for this are located in Figure 7.

7.1.3 Circular Symplectic Ensemble (β = 4)

For the circular symplectic ensemble, the following code is implemented:

T = 10000;

n = IntegerPart[Log[T]];

r = 50;

m = T;

A = ConstantArray[0,m];

Li = ConstantArray[0,r];

b = 4;

For[i = 1, i <= m, i++,

For[j = 1, j <= r, j++,

L = RandomVariate[CircularUnitaryMatrixDistribution[n]];

f[x_] := Abs[Sqrt[CharacteristicPolynomial[L,y] /. y -> Exp[I*(2*Pi*x)/r]]];
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Figure 7: Listplot of T valuations of CUE matrices of dimension [log T ], where
T = 100, 000 and the characteristic polynomials are evaluated at r = 50 equally
spaced points around the unit circle. The horizontal blue line represents the origi-
nal conjecture of Farmer, Gonek and Hughes, while the orange line represents our
proposed refined result.

Li[[j]] = Max[Table[f[k], {k,1,r}]];];
A[[i]] = Max[Li]]

B = Sort[A, Less];

Show[Plot[Exp[Sqrt[(1/b)*Log[T]*Log[Log[T]] + (1/b)*Log[T]*Log[Log[Log[T]]]

- (2/b)*Log[T]*((5/2)*Log[2] + (1/2)*Log[2/b] - 3/2)]], {x,0,Length[B]},
PlotLegends -> {"Proposed Result"}], ListPlot[B, PlotLegends -> {"RMT"}],
PlotRange -> Full, AxesOrigin -> True]

It should be noted that with the code for the circular symplectic ensemble, a slight

adjustment has been made: rather than study the absolute value of the characteristic

polynomial, here we study the absolute value of the square root of the characteristic

polynomial, and we outline here why we are doing this.

For the results of Keating and Snaith, they studied the characteristic polynomial

of an N ×N matrix taken from one of the circular ensembles, giving the result seen

earlier:
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MN(β, s) = E [|ΛU,β(θ)|s]

=
1

(2π)NZN,β

∫ 2π

0

· · ·
∫ 2π

0

dθ1 . . . dθN ·
∏

1≤j<m≤N

∣∣eiθj − eiθm∣∣β × ∣∣∣∣∣
N∏
p=1

(
1− ei(θp−θ)

)∣∣∣∣∣
s

=
N−1∏
j=0

Γ(1 + jβ/2)Γ(1 + s+ jβ/2)

(Γ(1 + s/2 + jβ/2))2
.

However, when one uses the in-built command CircularSymplecticMatrixDistribu-

tion[N] in Wolfram Mathematica, this generates a 2N×2N matrix as opposed to an

N × N matrix. Fortunately, a simple observation allows us to obtain the required

results.

For 2N ×2N CSE matrices, each eigenvalue occurs with multiplicity two, mean-

ing that there are N eigenvalues each of which is twice accounted for. If one com-

putes the characteristic polynomial for this matrix, this generates a characteristic

polynomial of degree N raised to the power of 2.

Keating and Snaith’s work centred on a N × N matrix with N distinct eigen-

values, and to ensure that our numerics align with the theory discussed in Section

3.4.1 we need to take the square root of the characteristic polynomial in our code.

The results for this are given below.

Figure 8: Listplot of T valuations of CSE matrices of dimension [log T ], where T =
10, 000 and the characteristic polynomials are evaluated at r = 50 equally spaced
points around the unit circle. The horizontal blue line represents the conjecture of
Farmer, Gonek and Hughes, while the dotted line represents the Random Matrix
data.

Looking at the result in Figure 8 we find that after taking the square root of the

characteristic polynomial in our code, the numerics reasonably match the result in
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Theorem 3.2 with M and N as above.

Figure 9: Listplot of T valuations of CSE matrices of dimension [log T ], where
T = 10000 and the characteristic polynomials are evaluated at r = 50 equally spaced
points around the unit circle. The horizontal blue line represents the conjecture of
Farmer, Gonek and Hughes, while the dotted line represents the Random Matrix
data.

Looking now at the data in Figure 9 we arrive at the same conclusion as prior

ensembles, in which the increase in T leads to a larger proportion of the data being

smaller than the refined maximum, thus aligning with the theory.

7.2 Numerical Results for PX

We now focus our attention on the numerical results for PX (resp. RX). For this,

we take a fairly direct approach.

We take a collection of evenly spaced points - of spacing size m - in the interval

[0, T ] and evalute |PX(1
2

+ it)| at these points. We then numerically order these eval-

uations and plot these against the original estimate of Farmer, Gonek and Hughes,

as well as our the consequential result for the maximum in this regime,

max
t∈[0,T ]

∣∣∣∣PX (1

2
+ it

)∣∣∣∣ = exp

(√
1

2
log T log log T − log T log log log T + o(log T log log log T )

)
.

The code which was implemented for this is as follows:

T = 10000;

m = 0.01;

PX[t_] := Exp[Sum[1/(Prime[i]^(1/2 + I*t)),

{i,1,PrimePi[Exp[Sqrt[Log[T]]]]}]];
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V = Range[0,T,m];

A = Abs[PX[V]];

B = Sort[A,Less];

Show[Plot[Exp[Sqrt[(1/2)*Log[T]*Log[Log[T]]]],

Exp[Sqrt[(1/2)*Log[T]*Log[Log[T]] - Log[T]*Log[Log[Log[T]]]]],

{x,0,Length[V]}, PlotLegends -> {"FGH", "Refined Result"}],
ListPlot[B,PlotLegends -> {Subscript[P,"X"]}], PlotRange -> All,

AxesOrigin -> True]

Figure 10: Listplot of 1, 000, 000 evaluations of |PX(1
2
+it)| for T = 10, 000, m = 0.01

against the estimate of Farmer, Gonek and Hughes as well as our refined estimate.

In the first of these plots (Figure 10) we see that the refined result exceeds > 95%

of points, and that for the list of points we’ve included here none of them exceed

the original conjecture of Farmer, Gonek and Hughes.

If we then compare the results of Figure 11 against those of Figure 10, we see that

the percentage of points exceeding our refined result is smaller, suggesting that as we

consider larger and larger T our results are aligning with our conjecture (provided

we take enough points in the interval [0, T ]).

7.3 Numerical Results for Zeta

With the results for both ZX and PX computed and seen to be in agreement with

our theoretical results, we now turn to computing numerical results for zeta. This

will help determine whether our results from Chapter 4.4 are reasonable.

For these numerics, we implement the following code, computed in Wolfram

Mathematica Version 13.1:
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Figure 11: Listplot of 10, 000, 000 evaluations of |PX(1
2

+ it)| for T = 100, 000,
m = 0.01 against the estimate of Farmer, Gonek and Hughes as well as our refined
estimate.

T = 10000;

m = 0.01;

v = Range[0,T,m];

w = Abs[Zeta[1/2+I*v]];

z = Sort[w, Less];

Show[Plot[Exp[Sqrt[(1/2)*Log[T]*Log[Log[T]]]],

Exp[Sqrt[(1/2)*Log[T]*Log[Log[T]] + (1/2)*Log[T]*

Log[Log[Log[T]]] - (1/2)*Log[T]*(5*Log[2]-3)]],

Exp[Sqrt[(1/2)*Log[T]*Log[Log[T]] - Log[T]*Log[Log[Log[T]]]]],

Exp[Sqrt[(1/2)*Log[T]*Log[Log[T]] - (1/2)*Log[T]*

Log[Log[Log[T]]]]], {x,0,Length[v]},
PlotLegends -> {"FGH",Subscript[Z,X], Subscript[P,X],"Convolution"}],
ListPlot[z,PlotLegends -> {Zeta[1/2 + it]}],
PlotRange -> All, AxesOrigin -> True]

These results are straightforward, but we nevertheless summarise our methods. As

we are looking for the maximum of |ζ(1
2

+ it)| for t in [0, T ] we take a collection of

equally spaced points in this interval, evaluate these and order them numerically. We

then plot these points against the initial conjecture of Farmer, Gonek and Hughes,

as well as our refined conjecture.

Looking at these results for T = 10, 000 (Figure 12) we see that the proposed

maximum stemming from the product over zeros ZX significantly exceeds the max-
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Figure 12: Listplot of |ζ(1
2

+ it)| for points t ∈ [0, T ] for T = 10, 000 with spacing
m = 0.001 between points. The horizontal lines correspond to the proposed maxima
in each of the three regimes, as well as the conjectured maximum of Farmer, Gonek
and Hughes.

imum from our data set. The same applies to the result of Farmer, Gonek and

Hughes here.

Figure 13: Listplot of |ζ(1
2

+ it)| for points t ∈ [0, T ] for T = 100, 000 with spacing
m = 0.01 between points. The horizontal lines correspond to the proposed maxima
in each of the three regimes, as well as the conjectured maximum of Farmer, Gonek
and Hughes.

Turning our attention to Figure 13 we see little difference in what is presented

when compared to Figure 12. Given that the maximum of the zeta function is shown

in Figures 12 and 13 to lie between the conjectured results for the maximum of ZX

and the zeta function (using the convolution method in Chapter 4.4),
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exp

(√
1

2
log T log log T +

1

2
log T log log log T + o(log T log log log T )

)
,

exp

(√
1

2
log T log log T − 1

2
log T log log log T + o(log T log log log T )

)
,

this suggests that the constant c in our conjectured maximum in Chapter 6.2 lies in

the range −1
2
< c < 1

2
, with the data in Figure 13 placing it closer to −1

2
.
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A Consistency Check

We noted here that the results for PX and ZX are consistent, but what do we mean

when we discuss consistency for our results?

Consider the following expression first computed in Chapter 3.4:

P
(

log max
θ
|ΛU,β(θ)| ≥ Nµx

)
= exp

(
− βx2N2µ

2(1− µ) logN
+

βx2N2µ

2(1− µ)2 log2N
log logN

− βx2N2µ

2(1− µ)2 log2N

(
log x+ 2 log 2− 3

2

)
+

βx2N2µ

2(1− µ)2 log2N
log(1− µ) + o

(
Nµ

(1− µ)2 log2N

))
.

Making a change of variable x→ cx as well as the change of variable µ→ µ− log c
logN

results in the expression Nµx on the left-hand side of this expression being un-

changed. With the above equation being an equality we should therefore expect

that the right-hand side is unchanged also. So when talking about equations be-

ing consistent, what we mean is that the refined Large Deviations results we have

computed are consistent under a (suitable) change of variable.

If we make the above changes of variable, we find that N2µ → N2µ/c2, and x2 →
c2x2. Thus the factors of c cancel in the numerator. For the denominator of terms

in this expression, we have that

1

(1− µ) logN
→ 1

(1− µ+ log c
logN

) logN
=

1

(1− µ) logN [1 + log c
(1−µ) logN

]

=
1

(1− µ) logN

[
1− log c

(1− µ) logN
+ · · ·

]
.

Plugging these into the above expression gives
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P
(

log max
θ
|ΛU,β(θ)| ≥ Nµx

)
= exp

(
− βx2N2µ

2(1− µ) logN

[
1− log c

(1− µ) logN
+ · · ·

]
+

βx2N2µ

2(1− µ)2 log2N
log logN

[
1− log c

(1− µ) logN
+ · · ·

]2

+
3βx2N2µ

4(1− µ)2 log2N

[
1− log c

(1− µ) logN
+ · · ·

]2

− βx2N2µ

(1− µ)2 log2N
log 2

[
1− log c

(1− µ) logN
+ · · ·

]2

− βx2N2ν

(1− µ)2 log2N
log cx

[
1− log c

(1− µ) logN
+ · · ·

]2

+
βx2N2µ

2(1− µ) log2N

[
1− log c

(1− µ) logN
+ · · ·

]2

log

(
1− µ+

log c

logN

)
+ o

(
N2µ

(1− µ)2 log2N

))
.

Expanding and collecting terms, we find that this is equal to

P
(

log max
θ
|ΛU,β(θ)| ≥ Nµx

)
= exp

(
− βx2N2µ

2(1− µ) logN
+

βx2N2µ

2(1− µ)2 log2N
log logN

+
3βx2N2µ

4(1− µ)2 log2N
− βx2N2µ

(1− µ)2 log2N
log 2

− βx2N2µ

(1− µ)2 log2N
log x+

βx2N2µ

(1− µ)2 log2N
log

(
1− µ+

log c

logN

)
+ o

(
N2µ

(1− µ)2 log2N

))
.

For the final term, we split the logarithm as log(1−µ+ log c
logN

) = log(1−µ) + log(1 +
log c

(1−µ) logN
), at which point we can use the series expansion of the logarithm to give

x2N2µ

(1− µ)2 log2N
log

(
1− µ+

log c

logN

)
=

x2N2µ

(1− µ)2 log2N
log (1− µ)

+
x2N2µ

(1− µ)2 log2N

[
− log c

(1− µ) logN
+ · · ·

]
=

x2N2µ

(1− µ)2 log2N
log (1− µ) +

x2N2µ

(1− µ)3 log3N
log c

+ · · ·

From this, we see that the sub-leading term and all subsequent lower order terms

are absorbed by the o-term in our large deviations result. Therefore we see that the
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formula is consistent under a change of variable.

We now verify that the formula for RX computed in Chapter 4.3 is consistent;

Recall the result from Corollary 4.2: for 0 < µ < 1,

logP
(
(RX ≥ xXµ/2 log(1/µ)

)
= −x2Xµ log(1/µ) +O

(
Xµ

µ logX

)
.

Suppose we make the change of variable x→ cx. To ensure that the left-hand side

remains unchanged, we need to find the change of variable µ′ such that

Xµ′/2 log(1/µ′) =
1

c
Xµ/2 log(1/µ).

Solving this gives the solution

µ′ = µ− 2 log c

logX
− 2

logX

[
1

log(1/µ)
log

(
1 +

2 log c

µ logX
+ · · ·

)
+ · · ·

]
.

With this choice the left-hand side of the result is unchanged. We therefore

expect that the right-hand side is unchanged also when these changes of variable

are made. If we consider then the right-hand side of Theorem 4.2 we find that

−x2Xµ log(1/µ)→ −c2x2Xµ−2 log c/ logX+ ···
(

log(1/µ)− log

(
1− 2 log c

µ logX
+ · · ·

))
= −c2x2Xµ 1

c2
exp

(
− 2

log(1/µ)
log

(
1 +

2 log c

µ logX
+ · · ·

))
×
[
log(1/µ)− log

(
1− 2 log c

µ logX
+ · · ·

)]
If one simplifies the above expression and performs a Taylor expansion of the expo-

nential term, it can be seen that any subleading terms are absorbed by the O-term.

We therefore conclude that our calculations for PX are consistent under a change of

variable.

With these being the key large deviations results, we conclude that our large

deviations results are consistent.

B Barnes G-Function

The Barnes G-function was introduced in [8] as the function which satisfies the

difference equation

G(N + 1) = Γ(N)G(N).
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Here, Γ(z) is the Euler-gamma function. The Barnes G-function can be expressed

via the formula

G(N + 1) = (2π)N/2 exp

(
−N + (γ + 1)N2

2

) ∞∏
k=1

[(
1 +

N

k

)k
exp

(
−N +

N2

2k

)]
.

In particular when N is real, large and positive, we have the following asymptotic

expansion for the logarithm:

logG(N + k + 1) =
N + k

2
log 2π + ζ ′(−1)− 3N2

4
− kN +

(
N2

2
− 1

12
+
k2

2
+ kN

)
logN

+O

(
1

N

)
.

In this expression, |k| is small. For the purpose of our findings we consider the case

where |k| is large and dependent on N(albeit smaller than N).

Looking then at |k| < N and treating N + k as N in the above asymptotic

expression, we have

logG(N + k + 1) =
N + k

2
log 2π + ζ ′(−1)− 3(N + k)2

4
+

(
(N + k)2

2
− 1

12

)
log(N + k)

+O

(
1

N

)
=
N + k

2
log 2π + ζ ′(−1)− 3N2

4
− 3kN

2
− 3k2

4

+

(
N2

2
− 1

12
+
k2

2
+ kN

)
log(N + k) +O

(
1

N

)
.

For the logarithm term, we know that N is the dominant term, so rewriting this

term and using the Taylor expansion of log(1 + x) gives
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logG(N + k + 1) =
N + k

2
log 2π + ζ ′(−1)− 3N2

4
− 3kN

2
− 3k2

4

+

(
N2

2
− 1

12
+
k2

2
+ kN

)
logN +

(
N2

2
− 1

12
+
k2

2
+ kN

)(
k

N

− k2

2N2
+

k3

3N3
+ · · ·

)
+O

(
1

N

)
=
N + k

2
log 2π + ζ ′(−1)− 3N2

4
− 3kN

2
− 3k2

4

+

(
N2

2
− 1

12
+
k2

2
+ kN

)
logN +

(
kN

2
− k

12N
+

k3

2N
+ k2 − k2

4

− k2

24N2
+

k3

6N
− k3

36N3
+

k5

6N3
+

k4

3N2
+ · · ·

)
+O

(
1

N

)
.

and this simplifies to give the expression

logG(N + k + 1) =
N + k

2
log 2π + ζ ′(−1)− 3N2

4
− kN +

(
N2

2
− 1

12
+
k2

2
+ kN

)
logN

+O

(
k3

N

)
where the adjusted O-term is to account for the largest order term stemming from

the Taylor expansion of the logarithm. We utilise this result to compute refined

large deviations results for the characteristic polynomial (and subsequently ZX) in

Chapter 4.1.
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