
Random Graph Generation
in

Hyperedge Replacement Languages

Federico Vastarini

PhD

University of York
Computer Science

February 2024

Abstract

We present a novel approach for the random generation of graphs in context-free hy-
pergraph languages. It is obtained by adapting both of Mairson’s generation algorithms
for context-free string grammars to the setting of hyperedge replacement grammars. It
provides a concrete instrument for the generation of unbiased graph data where a solid
mathematical proof is required for the validation of procedures, filling an important gap in
the field of random testing. Our main result is that for non-ambiguous hyperedge replace-
ment grammars, the method is guaranteed to efficiently generate hypergraphs uniformly
at random in user-specified domains. It means that testing for the sought properties in the
generated graph is no longer required since they are directly inferred by the grammar. The
efficiency of the method is ensured by the proofs of polynomial time and space asymptotic
behaviors. Our secondary result is that it greatly extends the range of either context-free
and non-context-free string languages to sample from with a uniform distribution through
the use of string graph grammars. We prove how ambiguous string grammars can be
expressed with equivalent non-ambiguous hyperedge replacement grammars, overcoming
the current limitation for the achievement of the uniformity of the sampling. Our con-
tribution also proposes several case studies of relevant hyperedge replacement languages
proving the existence of a representative grammar for a uniform sampling, or, otherwise,
their inherent ambiguity by the analysis of particular structures. These languages form a
basis for a proof by reduction for more complex languages, greatly improving the possible
search for non-ambiguous solutions.

Contents

List of Figures 4

List of Tables 6

1 Introduction 9

2 Background and Context 11

2.1 Hyperedge Replacement . 12

2.2 Replacement Grammars and Languages . 17

2.3 Ambiguity . 21

2.4 Chomsky Normal Form . 26

3 Sampling in Hyperedge Replacement Languages 33

3.1 Mairson’s Generation Methods for Strings 34

3.2 First Method for Hypergraphs . 36

3.2.1 Pre-processing phase . 36

3.2.2 Generation phase . 40

3.2.3 First Method Running Example . 43

3.2.4 Uniform Probability Distribution . 48

3.2.5 Time and Space Complexity . 50

3.3 Second Method for Hypergraphs . 51

3.3.1 Huffman codes . 52

3.3.2 Pre-processing Phase . 53

3.3.3 Generation Phase . 54

3.3.4 Second Method Running Example 54

3.3.5 Uniform Probability Distribution . 59

3.3.6 Time and Space Complexity . 60

4 Case Studies 63

4.1 Discrete Hypergraph Languages . 63

4.2 Star Graph Languages . 66

4.3 Cycle Graph Languages . 70

4.4 Tree Languages . 72

4.5 Series Parallel Languages . 75

5 String Graph Languages 79

5.1 Context-Free String Grammars . 80

5.2 Non-Context-Free String Languages . 81

5.3 Inherently Ambiguous String Languages . 82

5.4 Non-ambiguous HRGs for Inherently Ambiguous String Languages 85

2

6 Conclusion and Future Work 91

7 Bibliography 94

3

List of Figures

2.1 Hypergraphs . 15

2.2 Isomorphic Hypergraphs . 16

2.3 Subgraphs . 17

2.4 Hyperedge replacement . 18

2.5 Productions . 18

2.6 Derivation . 19

2.7 Ambiguous term graphs grammar . 20

2.8 Example of size-12 term graphs . 21

2.9 term graphs ambiguous grammar derivations 22

2.10 Term graphs ambiguous grammar trees . 23

2.11 Non-ambiguous term graphs grammar . 23

2.12 Example of symmetric structures . 25

2.13 Example of non-symmetric structures . 26

2.14 CNF transformation: example grammar . 28

2.15 CNF transformation: case 1 . 28

2.16 CNF transformation: case 2 . 28

2.17 CNF transformation: case 3 . 29

2.18 CNF transformation: case 4 . 30

2.19 Gtg, CNF of the term graphs grammar . 30

2.20 Shuffler grammar . 31

2.21 Shuffler grammar: example graphs . 31

3.1 A derivation d = A• ⇒∗P H using the grammar of Figure 2.19 40

3.2 Ordered tree t for the derivation d in Fig. 3.1 43

3.3 Running example: grammar . 43

3.4 Running example: proof of ambiguity by ordered trees 44

3.5 Running example: proof of ambiguity by leftmost derivations 44

3.6 Running example: L7 lotal language lree . 45

3.7 Running example: leftmost derivation . 46

3.8 Running example: ordered derivation tree 47

3.9 Running example: probability tree . 49

3.10 Huffman encoding . 58

3.11 Huffman encoding for the sequence 20 . . . 23 62

4.1 Singly labelled discrete graph grammar . 63

4.2 Singly labelled discrete graph derivation . 64

4.3 Multiply labelled discrete graph grammar 64

4.4 Multiply labelled discrete graph derivation 65

4.5 Examples of star graphs . 66

4.6 Singly labelled star graph grammar . 66

4

4.7 Multiply labelled star graph grammar . 67
4.8 (ek)m stars graph grammar . 67
4.9 (en)k stars graph grammar . 68
4.10 (e∗)m stars graph language ambiguity . 68
4.11 (e∗)m ambiguous stars graph grammar . 69
4.12 (e∗)m derivations . 69
4.13 Example of cycle graphs . 70
4.14 Singly labelled cycle graph grammar . 70
4.15 Multiply labelled cycle graph grammar . 71
4.16 Cycle graph language ambiguity . 72
4.17 C2 derivations . 73
4.18 Example of tree graphs . 73
4.19 Ordered full binary tree grammar . 74
4.20 Singly labelled binary tree grammar . 74
4.21 Tree language ambiguity . 76
4.22 T1 derivations . 76
4.23 Series-parallel graph . 77
4.24 Series-parallel ambiguous grammar . 77
4.25 SP1 derivations . 78

5.1 Example of string graphs . 80
5.2 AB string graph grammar . 81
5.3 WW string graphs grammar . 82
5.4 WW derivations . 83
5.5 anbmcp, n = m or m = p HRG . 87
5.6 ABCH grammar . 89

5

List of Tables

3.1 Initialization of matrices . 39
3.2 Results of Pre for the term graphs grammar Gtg 39
3.3 First method short version productions . 46
3.4 Running Example: matrices M1 and M2 . 46
3.5 Short version of the productions of the equivalent grammar G′ for language

L7(G′) . 56
3.6 Matrix M3 and M4 resulting from running Pre(G′, 7). 57

4.1 Results of Pre for the single labelled discrete grammar D1 64
4.2 Results of Pre for the double labelled discrete grammar D2 65
4.3 Results of Pre for the stars graph language using grammar S∗,m 69
4.4 Results of Pre for the cycle graph language using grammar C2 72
4.5 Results of Pre for the tree graph language using grammar T1 75
4.6 Results of Pre for the tree graph language using grammar SP1 78

5.1 Results of Pre for the string graph language {anbn | n ≥ 0} 81
5.2 Results of Pre for the string graph language WW 84
5.3 Pre-processing phase for the string grammar ABCS 86
5.4 Results of Pre for the string graph language (ABCH) 90

6

Acknowledgements

Thanks to my Supervisor, Professor Detlef Plump, for the guidance and patience and
for proving that there is always some space for striving towards perfection.

Thanks to my Assessor, Professor Susan Stepney, for the listening and suggestions and
for helping me reach the end of this tunnel called PhD.

...in loving memory of my father.

7

Declaration

I declare that this thesis is a presentation of original work and I am the sole author.
This work has not previously been presented for a degree or other qualification at this
University or elsewhere. All sources are acknowledged as references.

A conference paper, referring to Chapter 3 on the adaptation of the first of Mairson’s
methods [57], presented at the 13th International Workshop on Developments in Compu-
tational Models in 2023, has been approved for publication and will appear soon in the
Electronic Proceedings in Theoretical Computer Science.

8

Chapter 1

Introduction

This work presents a novel approach for the generation of random hypergraphs in user-
specified domains. Our approach extends the methods of Mairson for generating strings
in context-free languages [47] to the setting of context-free hypergraph languages specified
by hyperedge replacement grammars [14, 33].

Graphs find their application in a vast variety of fields, their origin dating back to 17th
century with the formulation of the famous Seven Bridges of Königsberg problem [23].
They may be used to represent any kind of abstract or concrete relations and connections
among elements of any domain [21, 42].

The study of their random generation is constantly evolving [1, 6, 10]. Several algo-
rithms already exist for the sampling of graphs addressing specific problems. We must
consider three fundamental parameters when studying their stochastic processes:

• the range of graphs they can generate and if the properties of the resulting graph.

• the probability distribution of the sampling

• the termination of the generating algorithm

In [52], [58], [27] and [50] we may find powerful methods for the random generation of
graphs, but none of them guarantee all these parameters at once. For example relying on
edge rewriting drastically reduces the possibility of guaranteeing the sought properties of
the generated graph, while relying only on the probability of a graph transformation rule
to be applied does not guarantee the termination of the algorithm. We know that testing
for a sought property may be in some cases expensive, even more than the generating
process itself [44]. Obtaining a uniform distribution of the sampled graph instead of the
applied rules requires additional computation that cannot be solved by randomly assigning
a probability to the rules.

Our approach, instead, guarantees at the same time the termination of the algorithm,
the properties of the generated graph and a uniform distribution of the sampling, according
to the grammar and size of the generated graph specified by the user.

We know from [25, 36] that hypergraphs are decomposable structures, that is, they can
be deconstructed in simpler parts, usually referred to as subgraphs. As explained later in
this work, this is a fundamental notion for our methods to work, since the resulting graph
of our generation process is constructively assembled according to a list of rules.

In [12] it is proven that the concept of context-freeness is applicable to hyperedge
replacement languages. Our work focuses on context-free grammars, that is, a set of rules
that are applied to single edges of a graph independent of their surrounding elements.
The main advantage of working with such grammars is that it is possible to predict the

9

available productions at each step of the derivation. This is an indispensable requirement
for creating the data our generation process is based on.

This allows us to present a Chomsky normal form [9] similar to the one defined for
strings, for the representation of the input grammar that suits the needs of the generation
algorithm. We are reminded that a grammar is in normal form when only a definite
set of rules is allowed. In case of strings, we know that such a form only allows for the
productions to generate exactly 2 non-terminals or 1 terminal, with the exception of the
starting symbol that can also allow an empty production if it is not present in the right
hand side of any other production. In case of hypergraphs a similar Chomsky normal
form, based instead on the number of hyperedges created by each production, ensures the
termination of the generation algorithm.

We then focus our study on the probability distribution [45] of the results of our
sampling methods. In order to ensure that a graph is generated over a uniform distribution
a system is needed to discern among different graphs. Similarly to [18] we propose a system
to produce ordered derivation trees that allows the extension of the notion of leftmost
derivation to hyperedge replacement grammars. We can then relate the ambiguity [28] of
a grammar to the uniqueness of its leftmost derivations and, consequently, the probability
distribution of the sampling.

We prove that our methods have the same polynomial space and time complexity
as their string counterparts. Most importantly a proof of uniformity of the probability
distribution when using non-ambiguous grammars is given. This is crucial when a mathe-
matical proof is required for the validation of procedures relying on graph data, filling an
important gap in the field of random testing [8]. Similarly to the role of QuickCheck, a
tool used to produce random strings for testing functions and procedures for the Haskell
language [40], a random graph generator can be built for the purpose of graph based
software testing, offering an unbiased inspection of the functionality with the utmost ac-
curacy. For example, if we want to test the correctness or performance of a new program
working with term graphs, we may want to provide a sufficient variety of samples. An
insufficient number of test cases would not provide reliable information, but at the same
time having a large number of graphs that includes too many duplicates could even give
the misleading impression of the program operating correctly. Our method instead could
efficiently provide a large enough number of samples that also guarantees their complete
differentiation.

The original methods of Mairson are limited to non-ambiguous grammars if a uniform
sampling distribution is sought. Instead we prove how by using graph representations of
strings, in some cases it is possible to overcome these limitations, dramatically increasing
the range of grammars to sample from. This represents an actual gap in the literature
between grammars based on strings and their graph counterpart. We prove how the
inherently-ambiguous prototype language presented in [25] has instead an equivalent non-
ambiguous hyperedge replacement grammar and we also prove that there are still languages
for which all representative grammars are ambiguous even in the setting of hypergraphs.

Considering the ambiguity problem, known to be undecidable for context-free string
grammars [32], through the analysis of several cases, we introduce a novel notion of struc-
tural symmetry that helps solving the problem for hyperedge replacement grammars.
Intuitively, we may think of a symmetry as a contextualized automorphism, a way to
compare two hypergraphs that takes into account their surrounding elements. We prove
how the structure of hypergraphs presenting such a feature can be directly related to the
ambiguity of a grammar or even with the inherent ambiguity of a language. Moreover we
show how this concept can be extended to prove the ambiguity of complex grammars.

10

Chapter 2

Background and Context

We begin giving the fundamental definitions needed to understand the generation
process. The aim is to provide a solid background for the adaptation of Mairson’s methods
and the analysis of relevant cases. A running example, based on the language of term
graphs, is presented to help with the comprehension of each step. For an exhaustive
treatment of the theory of hyperedge replacement grammars and languages, please refer
to the works of Drewes et al. [14], Habel [33] and Engelfriet [18], also see Courcelle [12]
for a thorough analysis of context-freeness.

Analyzing the current literature, we notice that the concept of uniformity of a random
sampling is often related to the operations underlying the stochastic process. It represents
a rather static approach towards today’s needs of strong mathematical and computational
proofs. It is true, for example, that a pseudo-random number generator offers the most
computationally unbiased choice of a number in a certain range, but, when considering
more complicated processes, with several additional constraints, obtaining a uniform sam-
pling may not be that straightforward. First of all, we have to identify what we want to
apply the property of uniformity to. Then, we need to address the requirements of our
sampling method. Ultimately we need to understand how the method manages to adapt
to different scenarios.

A quick review of some of the known sampling methods is needed to help understanding
the importance of our work:

• A very simple method to sample graphs is to start from a set of nodes and then
apply a probability to each pair of them to be connected by an edge. Here the
uniformity of the sampling is bound to the probability of each edge to be generated.
If they all have the same probability we consider it uniform. The only requirements
are the provision of a set of nodes as input and a random number generator to
compute the probability for the generation of each edge. Beside the clear advantage
of generating any kind of graph, there are several disadvantages such as the complete
lack of control on the structure of the generated graph and the complexity of the
method when considering hyperedges instead of simple undirected edges. Examples
of this sampling logic can be found in [52] and [58]. We may also notice that these
methods prevent the graph from growing dynamically during the generation, while
this should be a common requirement for networks. These kinds of methods also
rely on the identities of the nodes to discern among different results.

• Moving a step closer to our method we may consider a generation process such as the
Gillespie algorithm [27] based on a Markov Chain Monte Carlo stochastic process.
Originally proposed for the study of molecules reaction, this algorithm can also be
applied to graph transformation rules. In this case the probability of a rule to be

11

applied is dynamically calculated among all the possible applicable rules during the
generation. This results in the advantage of having some sort of control to restrict
the range of graphs and the evolution of the size of the graph during the process.
On the other hand, this algorithm terminates when an arbitrary number of rules
have been applied rather than reaching a point when we can consider a graph to
be constructed. This also means that establishing a different goal, as for example
the production of a particular subgraph, would not guarantee the termination of the
algorithm. Also, it is not possible to decide which graph is the process converging
to. It may indeed converge to a particular shape or diverge from others depending
on the set of rules and how they are randomly applied. Ultimately, it is not trivial
to calculate at each step how many rules, and for each of them how many times, are
matched in the generating graph.

• A step further can be found in [50], where the probabilities are directly assigned
to the productions of context-free hyperedge replacement grammars. That is, each
production has a fixed probability to be chosen during the generation. If we assign
the same probability to each of them, we may consider it a uniform sampling, but in
terms of the productions rather than the hypergraphs themselves. Comparing this
method to the previous one, we may notice that now we can only produce graphs in
context-free hyperedge replacement languages. On the other hand it becomes easy
to decide which rules are available. The probabilities are arbitrarily assigned before
the sampling starts according to the limits given by a generating function to control
the termination of the algorithm. This time the resulting graph is guaranteed to hold
the properties derived by the rules of the grammar, but there is still no guarantee
whatsoever of the uniformity of the distribution.

Our approach instead, lets a user specify an arbitrary domain through a hyperedge
replacement grammar. Then, starting from a simple structure, it lets the graph grow up
to the size chosen by the user, according to the rules specified in the grammar. This way
the properties of the generated graph, the uniformity of the sampling are guaranteed and
the termination of the generating algorithm are all guaranteed.

2.1 Hyperedge Replacement

Hypergraphs[4] (Fig. 2.1) are a generalisation of the familiar concept of graphs [3], in
which edges, also called hyperedges, may simultaneously connect an arbitrary sequence of
vertices. In our setting, we consider hyperedges to be both labelled and typed, meaning
that each of them has a symbol and the number of its connected nodes is fixed. Hyper-
graphs can be easily adapted to represent relations in a wide variety of fields. We may
think, for example, of using a hypergraph to represent a ternary operation among some
a, b, c terms or the flow of an if,then,else statement or even the structure of a complex
molecule where the hyperedges are the atoms and the nodes their bonds. In contrast to
the classic representation of the Lewis structure [46], where the atoms are placed as nodes
of a graph and the edges their bonds, the advantage of this model is to provide additional
information on how each pair of atoms is mutually connected. It also allows us to describe
chemical reactions through means of hyperedge replacements, instead of more complex
node replacements.

Replacements represent the way a hypergraph evolves. With each replacement, one
or more parts of a hypergraph are substituted, transforming the original graph into a
different structure. The set of rules that can be applied to transform such a hypergraph

12

define a replacement grammar. We may imagine a network that grows adding more and
more servers and clients at each step according to some specified rules.

Given a set of rules, all the hypergraphs that can be generated by such a set define
a language. Although hypergraphs may potentially represent any kind of relation, it is
important noticing that the range of possible languages is limited by the type of rules we
choose to use. We focus our work on the type of rules describing context-free[12] languages.

We briefly highlight some of the mathematical notions used in the fundamental defi-
nitions underlying this work.

N0: The set N ∪ {0} of all natural numbers including 0 is denoted as N0.

Sequence: A sequence, denoted as S = (a1, . . . , an), is an ordered set of n elements
indexed from 1 to n. A sequence can contain the same element, indexed differently, more
than once. We denote an empty sequence with the symbol λ. S∗ denotes the set of all
possible sequences over S.

Typing function: A typing function f : A → N0 is a function associating a natural
number to each element in A. f(a) is referred to as the type of a. Such a function is used
to define the number of nodes a hyperedge connects to.

Free symbolwise extension: Given a map f : A → B its free symbolwise extension
f∗ : A∗ → B∗ is defined as f(a1 . . . an) = f(a1) . . . f(an). Intuitively we may consider
it a mapping from a sequence to another. In case of the empty sequence, its extension
f∗(λ) = λ.

(Discrete) Uniform probability distribution: Given a set S with |S| = n, where Ei
represents the event for an element ei ∈ S, with 1 ≤ i ≤ n, to be chosen, a probability
distribution is defined as uniform if each event Ei has the same probability P (Ei) = 1/n
to be observed.

To understand the structure of a hypergraph and its components, let’s begin with its
formal definition:

Definition 2.1.1 (Hypergraph). Let type : C → N0 be a typing function for a fixed set of
labels C, then a hypergraph over C is a tuple H = (VH , EH , attH , labH , extH) where:

• VH is a finite set of vertices

• EH is a finite set of hyperedges

• attH : EH → V ∗H is a mapping assigning a sequence of attachment nodes to each
e ∈ EH

• labH : EH → C is a function that maps each hyperedge to a label such that
type(labH(e)) = |attH(e)|

• extH ∈ V ∗H is a sequence of pairwise distinct external nodes.

If the context is clear, the subscript H may be dropped from the tuple. The external
nodes are only used as interface during the application of a replacement operation as
explained later in Section 2.2.

When drawing hypergraphs we adopt the following conventions:

13

• Internal nodes are depicted as empty circles, along with a natural number, if needed,
representing their identity.

• External nodes are depicted as full circles, along with a natural number representing
their identity.

• Hyperedges are depicted as squares, with their label in the centre. Their identity
and mark are represented next to them when needed.

• Non-terminal hyperedges are depicted with a white background. We use capital
roman letters as non-terminal labels.

• Terminal hyperedges are depicted with a grey background, they may contain any
terminal symbol.

• The connections of a hyperedge to its attachment nodes are depicted with continuous
lines. The index of the node in the attachment sequence is represented by a smaller
font natural number close to the line.

We denote e an m-hyperedge if type(lab(e)) = m. Also, type(e) = m is used instead of
type(labH(e)) if the context is clear. The ith vertex in a sequence of attachment nodes is
denoted as attH(e)i where 1 ≤ i ≤ type(e). For example, in Figure 2.1, the edge e2 has
att(e2) = (2, 5, 3, 2), it is a 4-hyperedge having att(e2)1 = att(e2)4 = 2. We may think of a
conventional graph as a hypergraph in which every edge e has type(e) = 2, meaning that
each edge connects exactly 2 vertices.

The mapping lab(e) assigns a label l ∈ C to each hyperedge e ∈ EH . One of the
fundamental functions of labels is to identify the subject of the replacement during the
application of a production. Please note that edges with the same label also have the same
type.

For a given type : C → N0, the class of all hypergraphs over C is denoted by HC .
The set EXH = {e ∈ E | labH(e) ∈ X} denotes the subset of EH with labels in X ⊆ C.
As described later in this work, we distinguish between the subset ENH of non-terminal
hyperedges with labels in N ⊆ C and the subset EΣ

H of terminal hyperedges, with labels
in Σ ⊆ C.

We use the notation type(H) for a length |extH | and we call H an n-hypergraph if
type(H) = n. The ith external node of H, with 1 ≤ i ≤ type(H), is denoted by extH,i. As
explained later, hyperedges are only allowed to be replaced by hypergraphs of the same
type.

If a n-hypergraph has exactly 1 hyperededge and all its nodes are external and con-
nected to the hyperedge, that is EH = {e}, |VH | = n and extH ⊆ att(e), it is called
the handle induced by e and denoted by Ie. Moreover if lab(e) = A, type(e) = n and
extH = att(e) such a hypergraph is called the handle induced by A and denoted by A•.
Handles are used as starting structures for the generation of the hypergraphs in the chosen
domain.

In order to implement Mairson’s methods, as thoroughly explained in section 3.2.2, we
need to define a measure for the hypergraphs to be generated. Among all possible choices,
to ease the transition from strings to graphs, we choose to define the size of a hypergraph
as follows:

Definition 2.1.2 (Size of a Hypergraph). Let H = (VH , EH , attH , labH , extH) be a hy-
pergraph. We define |H| = |VH |+ |EH | as the size of H.

We call H a size-n-hypergraph if |H| = n.
Figure 2.1 shows some examples of hypergraphs:

14

1

2

3

1

2

3

4

A
e1

b
e2

1 2

34

56

H

1

2

3

C
e1

1

2

34

H ′

1 2

H ′′

b
e1

H ′′′

1

2

S
e1

1

2

S•

1

2 3

1

2

3

1
2

3

1
2

3

1

1

+

∗

1

∗

+

1

T

Figure 2.1: Examples of hypergraphs

H: a size-8-hypergraph having ext = (1, 2, 3, 4), type(H) = |ext| = 4, composed of a non-
terminal hyperedge e1, with lab(e1) = A, att(e1) = (1, 5, 4), type(e1) = |att(e1)| = 3
and a terminal hyperedges e2 with lab(e2) = b, att(e2) = (2, 5, 3, 2), type(e2) =
|att(e2)| = 4.

H ′: a size-5-hypergraph having ext = (1, 2), type(H ′) = |ext| = 2, composed of one non-
terminal hyperedge e1 with lab(e1) = C, att(e1) = (3, 1, 2), type(e1) = |att(e1)| = 3.

H ′′: a size-3-hypergraph having E = ∅, ext = (1, 2), type(H ′′) = |ext| = 2.

H ′′′: a size-1-hypergraph having V = ∅, ext = λ, type(H ′′′) = |ext| = 0 composed of one
terminal hyperedge e1 with lab(e1) = b, att(e1) = λ, type(e1) = |att(e1)| = 0.

S•: a size-3-hypergraph having ext = (1, 2), type(S•) = |ext| = 2. It is the handle induced
by S composed of one non-terminal hyperedge e1 with lab(e1) = S, att(e1) = (1, 2),
type(e1) = |att(e1)| = 2.

T : a size-12-hypergraph composed of 6 terminal hyperedges and 6 nodes. It is an
example of Term graph, a form of acyclic hypergraphs that represent functional
expressions with possibly shared subexpressions. (See [51] for an introduction to
the area of term graph rewriting.) The terminal hyperedges are labelled with the
function symbols ∗, + and the integer constant 1. The domain of term graphs will
serve as the basis of one of the running example that will follow the description of
the work.

We have chosen to show examples of planar hypergraphs only to simplify the reading
of the images. We are reminded that each hyperedge in a hypergraph can potentially
connect any number of nodes even more than once.

When sampling over a uniform distribution we need a way to decide if two generated
elements are the same. While for strings we may simply compare their symbols from
left to right, we rely on the notion of isomorphism to distinguish between equivalent
hypergraphs. Such a notion takes into consideration the labels and the attachment nodes
of the hyperedges, but ignores the identities of both of their edges and nodes.

15

Definition 2.1.3 (Isomorphism). Two hypergraphs H,H ′ ∈ HC are isomorphic, denoted
H ∼= H ′, if there are bijective mappings hV : VH → VH′ and hE : EH → EH′ such that:

• h∗V (attH(e)) = attH′(hE(e)) and labH(e) = labH′(hE(e)) for each e ∈ EH

• h∗V (extH) = extH′

This definition is substantially different from the one usually adopted by classic meth-
ods in which a sampling is still considered uniform if two graphs have, for example, the
same “shape”, but differ by the identity of nodes. Our definition is stricter, so, when
considering a uniform distribution, it is not possible to obtain two hypergraphs having
the same shape, with their hyperedges having the same labels, but connected to the
nodes in a different order. For example Figure 2.2 shows two isomorphic hypergraphs.
Even if H and H ′ differ by the identity of their nodes and edges, a pair of mappings
hV , hE can relate the components of H to the ones of H ′. In this case: hE(e1) = e2 and
hE(e2) = e1, so that labH(e1) = labH′(e2) = A and labH(e2) = labH′(e1) = b. Moreover
h∗H(1, 2, 3, 4, 5, 6) = (3, 1, 6, 2, 4, 5) so that attH(e1) = (1, 5, 4) maps to the sequence of
nodes attH′(e2) = (3, 4, 2) and attH(e2) = (2, 5, 3, 2) maps to attH′(e1) = (1, 4, 6, 1). As
for the external nodes: h∗H(1, 2, 3, 4) = (3, 1, 6, 2). The aim is to provide the generation
of structurally different graphs rather than variations of identities of the same structure.
If needed, once the graph is generated, node identities can be reassigned using a simple
permutation algorithm. In software testing, for example, we want to provide a range
of different shapes to test how a program responds towards a correctness or complexity
analysis.

1

2

3

1

2

3

4

A
e1

b
e2

1 2

34

56

H

1

2 3

1

2

34
b

e1

A
e2

1

2

3

4

5

6

H ′

Figure 2.2: Isomorphic hypergraphs

H and H ′ are isomorphic and then considered as the same in the context of our
generation method. We may also observe that the subgraph of H consisting of e2 with
nodes 2, 3 and 5 is isomorphic to the corresponding subgraph of H ′ formed by the edge
equivalently labelled as b and its attachment nodes.

Accordingly, we give the following definition of subgraph:

Definition 2.1.4 (Subgraph). A hypergraph H is a subgraph of H ′, denoted as H ⊆ H ′,
if there are bijective mappings hV : V ′H ⊆ VH → VH′ and hE : E′H ⊆ EH′ → EH′ such that:
h∗V (attH(e)) = attH′(hE(e)) and labH(e) = labH′(hE(e)) for each e ∈ E′H .

Figure 2.3 shows the hypergraph H ′ as a subgraph of H. The mappings hE(e3) = e1

and h∗V (1, 2, 5, 6) = (1, 3, 2, 4) are such that labH(e3) = labH′(e1) = C and attH(e3) =
(2, 1, 5) maps to attH′(e2) = (3, 1, 2).

16

1

2

3

1

2

3

4

12

3

A

e1

b
e2

C
e3

1 2

34

56

H

1

2

3

C
e1

1

2

34

H ′

Figure 2.3: Subgraph

2.2 Replacement Grammars and Languages

In context-free string grammars the generation of a word is based on the local substitu-
tions of non-terminals with sequences of symbols. In the context of hypergraphs instead,
the equivalent operation is called replacement . To satisfy the dangling condition [34], a
replacement can only happen between elements of the same type such as an n-hyperedge
and an n-hypergraph, the rationale behind it being that all the connections of the re-
placed element should not be left “hanging” so that each attachment node of the edge
must match the external node of its counterpart. Intuitively, considering the simple case
of a n-hyperedge e ∈ EH and a n-hypergraph R, firstly e is removed from H, then R is
added to H and finally the external nodes of R are merged with the attachment nodes
of e. In the general case, a thorough definition of replacement takes into account the
substitution of multiple elements at once:

Definition 2.2.1 (Replacement). Let H ∈ HC and B ⊆ EH and let repl : B → HC be
a mapping with type(repl(e)) = type(e) for each e ∈ B. Then the replacement of the
hyperedges in B with respect to repl(e) is defined by the operations:

1. Remove the subset B of hyperedges from EH .

2. For each e ∈ B, disjointly add the vertices and the hyperedges of repl(e).

3. For each e ∈ B and 1 ≤ i ≤ type(e), fuse the ith external node extrepl(e),i with the
ith attachment node attB(e)i.

We denote the resulting hypergraph by H[e1/R1, . . . , en/Rn], where B = {e1, . . . , en}
and repl(ei) = Ri for 1 ≤ i ≤ n. If the context is clear, we may simply write H[repl]. The
replacement preserves the external nodes, thus extH[repl] = extH .

The example in Figure 2.4 shows the replacement of the hyperedge e2 ∈ EH with the
hypergraph R:

1. The hyperegde e2 ∈ EH is removed from H leaving behind a trace of the order of
its attachment nodes.

2. The elements of R are disjointly added to H. The sequence of external nodes of R
is positioned to match the order of the attachment nodes of e2.

3. The external nodes of R are fused with the attachment nodes of e2 generating the
hypergraph H ′ = H[e2/R].

17

1

2

3

1

2

3

a B
e2

H

12

3

4

C
e1

1

2

3

R

1

2

3

1,2

3

a

1

1

2

3

1,2

3

1

2

3

4

a C
e1

1
2

3

2

1

2

3 1

2

3

4

a C

3

Figure 2.4: Replacement of the hyperedge e2 with the hypergraph R

The consinstency of the result of a replacement, despite the order in which the hyper-
edges are substituted, is ensured by the confluence, sequentialization and parallelization
properties of hyperedge replacement grammars described in [14]. It is fundamental to
understand that due to these properties, two replacements that only differ in the order
in which the elements are replaced will yield two isomorphic hypergraphs. Later, these
properties will play a crucial role in the definition of ordered derivation trees. Since we dis-
tinguish between terminal and non-terminal hyperedges it is clear that only non-terminals
can be the subject of a replacement.

The replacements applied during the generation of a hypergraph are defined in pro-
ductions. Similarly to the string case, each production has the subject of the substitution,
the hyperedge e indicated by the label lab(e), on its left hand side (lhs) and the object,
the replacement hypergraph repl(e), on its right hand side (rhs).

Definition 2.2.2 (Production). Let N ⊆ C be a set of non-terminals. p = (A,R) is
a production over N , where lhs(p) = A ∈ N is the label of the replaced hyperedge and
rhs(p) = R ∈ HC is a hypergraph with type(R) = type(A).

If |extR| = |VR| and ER = ∅, then p is said to be empty. Clearly, the size of a
hypergraph cannot be increased by the application of an empty production.

A ::=

1

2

3

1

2

3

4

A b

1 2

3

P1

B ::=
1

2

3

c

1

2

P2

E ::=

1

2

1

2

D

D

1

2

P3

1

2

P4

Figure 2.5: Example of productions

Figure 2.5 shows an example of productions over a set of labels C = {A,B,D,E, b, c}
with N = {A,B,D,E}:

P1: Represents a replacement of the hyperedge labelled as A with the hypergraph on
its rhs. As we can clearly see, the type of the hypergraph matches the type of

18

the hyperedge. Since the hypergraph contains a non-terminal hyperedge a further
replacement is possible.

P2: Represents a replacement of the hyperedge labelled as B with a the hypergraph on its
rhs. From the number of external nodes we can deduce that the hyperedges labelled
as B are of type = 2. Since the hypergraph contains only a terminal hyperedge, no
further replacements are possible.

P3: Is one of the possible replacement of the hypereges labelled as E. It is clearly a
non-terminal production.

P4: Is the other possible replacement of the hypereges labelled as E. Since the rhs is
composed by only external nodes, this is an empty production.

The application of the replacement specified in a production to a hypergraph, repre-
sents a direct derivation:

Definition 2.2.3 (Direct Derivation). Let H ∈ HC and let p = (lab(e), R), with e ∈ EH ,
then a direct derivation H ⇒p H

′ is obtained by the replacement H ′ = H[e/R].

A sequence d of direct derivations H0 ⇒p1 · · · ⇒pk Hk of length k with (p1, . . . , pk) ∈ P
is denoted asH ⇒k Hk orH ⇒∗P Hk if the length is not relevant. We denote it asH ⇒∗ Hk

if the sequence is clear from the context. A derivation H ⇒∗ H ′ of length 0 is given if
H ∼= H ′.

1

2

3

1

2

A
e1

B
e2

H

P1
=⇒

1

2

3

1

2

3

4

1

2

A
e3

b
e4

B
e2

H ′

P2
=⇒

1

2

3

1

2

3

4
1

23

A
e3

b
e4

c
e5

H ′′

Figure 2.6: Example of derivation

Considering that each production represents a replacement, we may directly extend
the confluence, sequentialization and parallelization properties to productions. As a con-
sequence, distinct derivations, in which the same productions are applied in different
order, yield isomorphic hypergraphs. Figure 2.6 shows a two steps derivation H ⇒P1

H ′ ⇒P2 H
′′ involving the production P1 and P2 from Figure 2.5. Given P1 = (A,R1)

and P2 = (B,R2), we may as well express the transformation from H to H ′′ with the
following equivalent replacements:

• H ′′ = H[e1/R1, e2/R2], simultaneously replacing both hyperedges e1, e2 ∈ H.

• H ′′ = H[e1/R1][e2/R2], considering the replacement of e1 ∈ H followed by the
replacement of e2 ∈ H ′, since H ′ = H[e1/R1]. This is the replacement depicted in
Figure 2.6.

• H ′′ = H[e2/R2][e1/R1], as the previous case, but replacing e2 before e1.

So, to show that different derivations cannot produce isomorphic hypergraphs when
considering a uniform distribution, we implement an ordering function to mark each of the
hyperedges in the right hand side of a production. In [18] Engelfriet gives an induction
based definition of derivation trees where the children of each node are arranged according

19

to an arbitrary order. In our case, we exploit the order of hyperedges given by the marking
to achieve a similar result. Such a marking in the rhs of each production, as shown in Figure
2.7, represents the order in which the replacements are carried out (α1, α2, . . . , αn−1, αn).
It is important to notice that the choice of the order does not affect the uniqueness of the
derivation as long as it is kept consistent throughout the derivation. Given an ordered set
{α1, . . . , αn} where ai < aj if i < j ∈ N we define a hyperedge replacement grammar as
follows:

Definition 2.2.4 (Hyperedge Replacement Grammar). A hyperedge replacement gram-
mar , or HRG , is a tuple G = (N,Σ, P, S, (markp)p∈P) where:

- N ⊆ C is a finite set of non-terminal labels

- Σ ⊆ C is a finite set of terminal labels with N ∩ Σ = ∅
- P is a finite set of productions

- S ∈ N is the starting symbol

- (markp)p∈P is a family of functions markp : ER → {α1, . . . , αn} assigning a mark to
each hyperedge in the right-hand side of a production p. For each pair ei, ej ∈ ER
with i 6= j, mark(ei) 6= mark(ej)

We denote as PA ⊆ P the subset of productions where lhs(p) = A. We call a production
p = (A,R) ∈ PN non-terminal if ENR 6= ∅ or terminal if p = (A,R) ∈ PΣ, where,
accordingly, PN , PΣ ⊆ P , with PN ∩ PΣ = ∅, are the disjoint subsets of non-terminal and
terminal productions.

A ::=

1
2 3

1 1
B

α2 A

α3

A

α1

1

P1

1
2 3

1

B

α1

A
α2

1

P2

1

1

1

P3

B ::=

1
2

3
1

2

3

B

α1B

α2

1

2 3

P4

1

2

3

1

2

3

B

α1 B

α2

1

2 3

P5

1
2 3

+

1

2 3

P6

1
2 3∗

1

2 3

P7

Figure 2.7: An ambiguous hyperedge replacement grammar for term graphs

The set of hypergraphs generated by a hyperedge replacement grammar G defines a
hyperedge replacement language L(G). As for the string case, different equivalent gram-
mars may generate the same language. In drawings, we omit the marking on the terminal
hyperedges, since they do not take part in further replacements.

Definition 2.2.5 (Hyperedge Replacement Language). The hyperedge replacement lan-
guage (HRL) generated by a HRG G = (N,Σ, P, S, (markp)p∈P) is the set L(G) = {H ∈
HΣ | S• ⇒∗P H}. We define for each A ∈ N , LA(G) = {H ∈ HΣ | A• ⇒∗P H}. We also
define for n ∈ N, LAn (G) = {H ∈ HΣ | A• ⇒∗P H ∧|H| = n}. Clearly LAn (G) ⊆ LA(G).

Since we are interested in sampling from the slice of a language, that is, the subset of
all members of a language having a specific size, it is important to notice that even if the
set of hypergraphs generated by G is infinite, we only consider the subset Ln(G) of all the
size-n-hypergraphs in L. Such a subset, even if potentially very large is still finite. We
denote as |LAn | the size of the set of all size-n-hypergraphs in L that can be derived from
A•.

Figure 2.8 shows 3 of the 3920 different size-12-hypergraphs of the slice of the language
of term graphs L12.

20

1

2 3

1

2

3

1
2

3

1
2

3

1

1

+

∗

1

∗

+

1 H1

1

2 3

1

2

3

1
2

3

1
2

3

1

1

1

+

+

∗

∗

1H2

. . .

1

2 3

1
2 3

1

1
2 3

1

1

+

1 1

∗

+

1

H3920

Figure 2.8: Some members of L12 term graphs

2.3 Ambiguity

In the setting of strings, a grammar G is considered ambiguous when there exists
a word in L(G) for which there are two different derivation trees or, equivalently, two
different lefmost derivations. To translate both concepts to the settings of hypergraphs we
rely on the ordering of the hyperedges presented in the previous section. Thus, given a set
of productions P , we denote by TP the set of all ordered trees over P which is inductively
defined as follows:

1. for each p ∈ P , p ∈ TP

2. for t1, . . . , tn ∈ TP and p ∈ PN , p(t1, . . . , tn) ∈ TP , for (e1, . . . , en) non-terminals in
rhs(p).

Definition 2.3.1 (Ordered Derivation Tree). Given a HRG G = (N,Σ, P, S, (markp)p∈P),
an ordered derivation tree t for e such that lab(e) = X ∈ N , is a tree p(tα1 , . . . , tαn) in
TP , such that p = (X,R) is a production in P , and tα1 , . . . , tαn are derivation trees for
e1 . . . en, such that X1 . . . Xn are the labels of the non-terminal hyperedges in R marked
with α1 . . . αn, respectively.

The adjective ordered has been added to highlight the fact that its shape depends on
the order of the marking chosen in the production of the grammar, since it is not possible
to assign to a graph an implicit order as in the case of strings.

We define the yield of t, denoted with yield(t), as the hypergraph resulting from the
sequence of replacements: yield(p(tα1 , . . . , tαn)) = rhs(p)[e1/yield(tα1), . . . , en/yield(tαn)].

We need to ensure that different derivations yielding isomorphic hypergraphs are pro-
duced by the ambiguity of the grammar and not by an arbitrary order of the application
of the productions. Otherwise, the simple assignment of a different marking during the
derivation may produce different derivation trees. To obtain the sequence ω of pairs (e, p),
where e is the hyperedge replaced in production p, from the pre-order traversal [53] of t,
denoted as trav(t), we use the algorithm Trav (Alg. 1).

The reverse of ω corresponds to a recursive replacement sequence given in [18], but
also identifies a unique ordering for the productions in the derivation.

There are
∏
pN∈P |E

N
R |! possible different ways of marking the productions of a gram-

mar. Sampling a hypergraph using two identical grammars G,G′ that only differ from
their marking function generates two different ordered sequences ω, ω′, but also yields two
isomorphic results H ∼= H ′. For this reason, the marking of the rhs of the productions is
defined as part of the grammar and is kept consistent throughout the derivation.

Intuitively, the ordering of the edges in the productions is somehow inherited by the
elements of the generated hypergraph. To what extent it may help improving the problem
of parsing, as presented in [49], may be a subject for further investigations. Nevertheless

21

Algorithm 1: Trav - Pre-order Traversal

Given: a grammar G = (N,Σ, P, S, (markp)p∈P) and an ordered derivation tree
t ∈ TP , where each node represents the application of a production p ∈ P to a
hyperedge e in a sentential form in the derivation corresponding to t

Input: an ordered derivation tree t ∈ TP
Output: ω, a sequence of pairs (e, p) corresponding to the pre-order traversal of t

Let ω be an empty sequence. Recursively traverse the derivation tree t and add the
traversed nodes to ω starting from the root with (ω, getRoot(t))

function traverseTree (sequence ω, node n):
Append it to the sequence
appendNode(ω, n);
Continue the recursion for all the childs of n
while c← getNextChild(n) do

traverseTree(ω, c);
end

we may already give a definition of leftmost derivation, equivalent to the conventional one
used for strings. We remind that a derivation for string is called “leftmost” when, for
each production of the derivation steps, the replaced non-terminal is the first to appear in
the sentential form, ordering the symbols from left to right. In the context of hyperedge
replacement grammars, we define as leftmost a derivation corresponding to the pre-order
traversal of t:

Definition 2.3.2 (Leftmost Derivation). Let G = (N,Σ, P, S, (markp)p∈P) be a hyper-
edge replacement grammar and let t be an ordered derivation tree for a hypergraph H
obtained from a derivation d = S• ⇒∗P H and trav(t) its pre-ordered visit. Then d is said
to be a leftmost derivation, denoted as lmd(H), if and only if the order of the applied
productions of d corresponds to trav(t).

d :

1

A P1⇒ 1

1
2 3

1

A

B

A

P4⇒ 1

1
2

3

1
2

3

1

A

B

A

B

P4⇒ 1

1
2

3
1

2

3

1
2

3

1

A

B

A

B

B

P6⇒ 1

1
2

3
1

2

3

1
2

3

1

A

B

A

+

B

∗⇒ 1

1
2

3
1

2

3

1
2

3

1

1

∗

1

+

∗

d′ :

1

A P1⇒ 1

1
2 3

1

A

B

A

P4⇒ 1

1
2

3

1
2

3

1

A

B

A

B

P6⇒ 1

1
2

3

1
2

3

1

A

B

A

+

P4⇒ 1

1
2

3
1

2

3

1
2

3

1

A

B

A

+

B

∗⇒ 1

1
2

3
1

2

3

1
2

3

1

1

∗

1

+

∗

Figure 2.9: Pair of leftmost derivations showing the ambiguity of the term graphs grammar in
Figure 2.7

The derivations d and d′ in Figure 2.9 show the applications of the productions from
the term graph grammar in Figure 2.7 yielding two size-10-hypergraphs H and H ′. From
rhs(P4) in d we choose to apply again P4 to the edge marked as α1 and then replace the
result with terminal hyperedges, while in d′ we first use P6 on the edge marked as α1 and
then P4 on α2. Since the replacements has been made according to the ordering of the

22

hyperedges, both derivations are considered as leftmost. The final replacements for the
terminal hyperedges have been skipped for clarity. Figure 2.10 shows instead the ordered
derivation trees t and t1 with yield(t) = H and yield(t′) = H ′. Moreover, considering their
traversal, trav(t) = lmd(H) = d and trav(t′) = lmd(H ′) = d′. Since H ∼= H ′, it means that
the same hypergraph can be generated applying either sequences of productions.

B A A

B B

B B

P1

P4 P3 P3

P4 P7

P6 P7

A

t

B A A

B B

B B

P1

P4 P3 P3

P6 P4

P7 P7

A

t′

Figure 2.10: Pair of ordered trees showing the ambiguity of the therm graph grammar in Figure
2.7

Finally, using the notions of isomorphism, ordered derivation tree and leftmost deriva-
tion we give the following definition of an ambiguous grammar:

Definition 2.3.3 (Ambiguous Grammar). A HRG G = (N,Σ, P, S, (markp)p∈P) is am-
biguous if there are ordered derivation trees t1, t2 ∈ TP , such that t1 6= t2 and yield(t1) ∼=
yield(t2). If yield(t1), yield(t2) ∈ Ln(G) we say that G is n-ambiguous.

Corollary 2.3.1. A hyperedge replacement grammar G = (N,Σ, P, S, (markp)p∈P) is
ambiguous if and only if there exist H,H ′ ∈ L(G) such that H ∼= H ′ and lmd(H) 6=
lmd(H ′).

Proof. Let t 6= t′ be ordered derivation trees with isomorphic yieldings yield(t) ∼= yield(t′).
Let lmd(yield(t)) = trav(t) and lmd(yield(t′)) = trav(t′) be leftmost derivations obtained
by their pre-order traversals. Then, lmd(yield(t)) 6= lmd(yield(t′)) are distinct derivations
yielding isomorphic results.

A ::=

1
2 3

1 1
B

α2 A

α3

A

α1

1

P1

1
2 3

1

B

α1

A
α2

1

P2

1

1

1

P3

B ::=

1
2

3
1

2

3

D

α1B

α2

1

2 3

P4

1

2

3

1

2

3

D

α1 B

α2

1

2 3

P5

1
2 3

+

1

2 3

P6

1
2 3∗

1

2 3

P7

D ::=

1
2 3

+

1

2 3

P8

1
2 3∗

1

2 3

P9

Figure 2.11: A non-ambiguous version of the hyperedge replacement grammar for term graphs

Figure 2.11 shows a non-ambiguous version of the term graph grammar previously
presented in Figure 2.7. The ambiguity derived by the productions P4 and P5, featuring

23

two B labelled hyperedges, has been resolved introducing a new non-terminal D and two
new productions P8 and P9.

Moreover we can observe that a derivation S• ⇒∗P H ⇒∗P H ′ is a unique leftmost
derivation if and only if both S• ⇒∗P H and H ⇒∗P H ′ are unique leftmost derivations.

Since we are generating size-n-hypergraphs in Ln(G), a particular attention should be
given to the fact that even if a grammar is ambiguous, its restriction to Ln(G) can still
be non-ambiguous. that is, considering the size of the hypergraphs, the sampling can still
be achieved uniformly at random.

On the other hand, since an n-ambiguous grammar is also generally ambiguous, our
method may also be used to explore and detect the ambiguity of grammars.

Knowing that the ambiguity problem is undecidable for strings, we may wonder if the
same applies to graphs. The problem can be formulated as follows: Is there an algorithm
that is able to decide, in general, if a context-free HRG is ambiguous?

Theorem 2.3.1. The ambiguity problem for hyperedge replacement grammars is undecid-
able in general.

Proof. Let HA be the ambiguity problem for hyperedge replacement grammars defined as
follows:

• Input: A context-free hyperedge replacement grammar G.

• Question: Is G ambiguous?

Let SA be the corresponding ambiguity problem for context-free string grammars. We
have the following facts:

• It has been proven in [32] that SA is undecidable in general.

• For every context-free string grammar Gs there is an HRG GH such that L(GH)
consists of all string graphs representing strings in L(Gs), see Section 5.2.

Then Theorem 2.3.1 is proven by contradiction based on the following reduction from SA
to HA:

Let ETM be an encoder from a string grammar S into an equivalent hyperedge replace-
ment grammar H as shown in Proposition 5.1.1. Let HATM be a decider for a hyperedge
replacement grammar that on input H returns true if H is ambiguous or false otherwise.
We then build a Turing machine SATM that on input S, encodes S into H, runs HATM

on H and finally outputs true if the output of HATM is true or false otherwise. SATM

would then be a decider for SA, but, since SA is undecidable, then HATM cannot exists
and consequently HA must also be undecidable.

One more feature we have to take into account when considering the ambiguity of
an HRG is the structure of the graphs involved in the generation. While strings are
an ordered sequence of symbols for which the ambiguity of a grammar is based on the
arrangement of such symbols on a line, graphs allows for a wide variety of different shapes
to base the arrangements on. It means that the ambiguity of an HRG may be directly
caused by the shape of the graphs [22] involved in the derivation. For example, the regular
string language L = {w ∈ {a∗}}, composed by linear sequences of a single symbol, can
be represented by the simple non-ambiguous context-free grammar S −→ aS|λ. Instead
a graph language representing trees where every edge has the same symbol is proven to
be inherently ambiguous. Identifying the basic structures that lead to the ambiguity of
grammar is important to help solving the ambiguity problem for more complex languages.

24

So, along with well-known methods already used for strings, we introduce the concept of
structural symmetries.

First of all we define the set of hypergraphs that can be obtained by the replacement
applied to a particular hyperedge while keeping the rest of the structure intact. These
hypergraphs are not necessarily terminal. Such a set is defined as follows:

Definition 2.3.4 (Local Generating Power). Let G = (N,Σ, P, S, (markp)p∈P) and let
H be a hypergraph such that e ∈ EH , then the local generating power of e is the set Πe

H

defined as:

for each R so that Ie =⇒∗P R then H[e/R] ∈ Πe
H .

That is, the set of hypergraphs based on H and having subgraphs obtained by all the
possible derivations from Ie. As usual the set Πe

H can be finite or infinite according to
the productions in P . Also Note that if lab(e) = A, the set of subgraphs derived from Ie
corresponds to LA if and only if Ie = A•.

Considering two distinct hyperedges e, e′ we compare their generating powers according
to the following definition:

Definition 2.3.5 (Hyperedge Symmetry). Two hyperedges e, e′ ∈ H are defined as sym-
metric, denoted as e ≈ e′, if and only if Πe

H = Πe′
H . We define them as partially symmetric,

denoted as e ' e′, if Πe
H ∩Πe′

H 6= ∅.

We call a symmetry non-finite if Πe
H and Πe′

H are infinite, finite otherwise. We also
refer to a hyperedge symmetry in the structure of a hypergraph as a structural symmetry.
Moreover, if the presence of a symmetry causes the ambiguity of a grammar, we refer to
it as a structural ambiguity.

Symmetries can be found in productions, sentential forms or the members of a language
themselves. Figure 2.12 shows some examples of hypergraphs potentially leading to a
symmetry during a derivation. We must be careful with extending this concept directly
to the rhs of productions, since they may be applied to a specific part of a hypegraph
preventing the creation of a symmetry. Using the word potentially we want to stress that
it is important to remember that, all the hyperedges in a hypergraph must be considered
when searching for a symmetry. Also, differently from automorphism, we consider a
comparison on the whole sets of graphs that can be generated by the involved hyperedges.

A

α1

A

α2

H1

1
1

A

α1

A

α2

1

2

H2

1

1
A

α1

A

α2

1

H3

1

2
1

2

A

α1

A

α2

1

2

H4

1

2

1

2

A

α1

A

α2

1

2

H5

Figure 2.12: Examples of structures, potentially generating a symmetry.

The hypergraphs in Figure 2.13 do not directly represent symmetries. Even if both
hyperedges labelled with A have an equal generative power, the hyperedge labelled with
B breaks the symmetry. For example there could be a production for S1 replacing the
hyperedge marked as α3 with a hypergraph featuring a B labelled hyperedge in the op-
posite direction or in S2 the hyperedge marked as α1 may generate another 1-hyperedge
labelled as B and attached to the same node. This is outside the scope of our definition,
since the ambiguity of a grammar can indeed manifest itself through different sequences of
productions. This means that while the lack of symmetries is not sufficient to claim that
a grammar is non-ambiguous, it still stands that the presence of symmetries is sufficient
to claim that a grammar is ambiguous.

25

1

1 2

1

A
α1

B
α2

A
α3

1 2

S1

1

2

1

2

1
A

α1

A
α2

B
α3

1

S2

Figure 2.13: Example of structures that do not directly generate a symmetry.

We then strictly consider the study of the symmetries limited primarily to the com-
parison of the set of graphs generated by the symmetric hyperedges e and e′, leaving the
extension of the cases involving the neighbor hyperedges to further studies.

Lemma 2.3.1. Given a grammar G = (N,Σ, P, S, (markp)p∈P). If there is a derivation
S• ⇒∗P H ⇒∗P H ′ and e, e′ ∈ EH such that e ' e′, then G is ambiguous.

Proof. Let’s consider a sentential form F in a derivation S• ⇒∗P F ⇒∗P H with H ∈ L(G)
and two distinct hyperedges e, e′ ∈ EF . Consequently there exist two different derivations
containing the steps F ⇒∗P F ′ ⇒∗P H and F ⇒∗P F ′′ ⇒∗P H ′ with F ′ ∼= F ′′. Since the
application of the productions is strictly ordered the productions applied to e and e′ belong
to two different paths of a derivation tree. Suppose e ' e′, then there exist two different
derivation trees t and t′ with yield(t) ∼= yield(t′) obtained by switching the paths of e and
e′. By definition 2.3.3, such grammar is ambiguous.

By extending the concept of symmetries directly to the components of the members
of a language, we conjecture that in particular cases it is possible to infer the inherent
ambiguity of the language directly from the structure of its members. Examples of such
languages include:

• The language of unbounded points stars.

• The language of multiply labelled cycles.

• The language of singly labelled binary trees.

• The language of series-parallel graphs.

Theorem 2.3.2. A HRL having non-finite structural symmetries in its members is in-
herently ambiguous.

Please refer to Chapter 4 for a thorough analysis of these cases and the proof of the
theorem.

2.4 Chomsky Normal Form

The original Mairson’s methods work on string grammars in Chomsky normal form.
The productions of this particular form can only be in one of the following formats:

• A −→ BC where B and C are non-terminal symbols.

• A −→ a where a is a terminal symbol.

• S −→ ε where S is the starting symbol and ε is the empty string, but in this case,
S must not appear in the rhs of any other production.

26

In Section 3.2 of [18] Engelfriet introduces a method to convert hyperedge replacement
grammars in a normal form that has at most two hyperedges in the rhs of each of their
productions. Also he shows a method to remove empty productions. In order to work with
Mairosn’s methods we need a slightly different form closer to the classic one for strings,
that restricts non-terminal productions to have exactly two non-terminal hyperedges and
non-empty terminal productions to have exactly one terminal hyperedge or just internal
nodes in their right hand side.

Definition 2.4.1 (Chomsky Normal Form). We define a Chomsky normal form (CNF)
for hyperedge replacement grammars as a tuple GCNF = (N,Σ, P, S, (markp)p∈P) where:

• N ⊆ C is a finite set of non-terminal labels

• Σ ⊆ C is a finite set of terminal labels with N ∩ Σ = ∅

• P is a finite set of productions

• S ∈ N is the starting symbol

• (markp)p∈P is a family of functions markp : ER → {α, β} assigning a mark to each
hyperedge in the right-hand side of a production p

Each production p = (A,R) ∈ P satisfies one of the following constraints:

• ER = {e1, e2} where lab(e1), lab(e2) ∈ N and mark(e1) 6= mark(e2), in which case
the replacement is firstly carried out on the hyperedge marked with α, then on the
one marked with β

• ER = {e1} where lab(e1) ∈ Σ and mark(e1) = α

• ER = ∅, |VR| > |extR|

• A = S, p is the empty production and for each q ∈ P , for each e ∈ rhs(q), lab(e) 6= S

Note that in the first two cases, rhs(p) contains either exactly two non-terminal hy-
peredges or a single terminal hyperedge and may also contain isolated nodes. Productions
according to the third case are considered as terminal productions. The last case speci-
fies that the empty production is only allowed if there is no other production having the
starting symbol in its right-hand side.

Lemma 2.4.1. There exist an algorithm that for every hyperedge replacement grammar
G produces a grammar G′ in Chomsky normal form such that L(G) = L(G′).

Proof. We present a set of rules to transform any grammar G, into an equivalent grammar
G′ such that, for each direct derivation H ⇒p H

′ with p ∈ PG, it exists an equivalent
derivation H ⇒∗Q H ′ with Q ⊆ PG′ . The proof is provided with a running example showing
the application of the rules. The grammar in Figure 2.14 contains productions that are not
in Chomsky normal form: P1 has more than 2 hyperedges; P2 has a single non-terminal
hyperedge; P3 is an empty production, but its lhs is not S; P4 has 2 hyperedges one of
which is terminal.

For a production p = (A,R) ∈ P , that is not already in CNF, we consider the following
set of rules, applied in this order, to obtain a corresponding equivalent set of productions
P ′ in CNF :

27

S ::=

1

2

3

1

23

1

2

B

B

C
1

2

P1

B ::=

1

2

C

1

2

3

P2

1

2

3

P3

C ::=

1

2

1

2
a

S

1

2

P4

1

2

c

1

2

P5

Figure 2.14: Example grammar for the proof of CNF equivalence

1. If p is the empty production, for each production q = (B,X) ∈ P having e ∈ EX
with lab(e) = A in its rhs, for each production q′ = (A, Y) ∈ P having A in its lhs we
apply the substitution R′ = X[e, Y] and add the productions p = (B,R′). We then
remove the productions that are no longer needed. The proof of equivalence of the
derivations H ⇒q H

′ ⇒q′ H
′′ and H ⇒p′ H

′′ is the following: if e′ with lab(e′) = B
is the hyperedge involved in the derivation H ⇒q H

′ then H ′′ = H[e′/X[e/Y]] =
H[e′/R′] since R′ = X[e, Y].

S ::=

1

2

1

2

1

2

C

C

C
1

2

P6

1

2

C

1

2

P7

C ::=

1

2

1

2
a

S

1

2

P4

1

2

c

1

2

P5

Figure 2.15: Removal of the empty production P3

In order to remove the empty production P3 (Fig. 2.15) we apply the replacements
of all the productions having B as their lhs to all the productions having a hyperedge
labelled as B in their rhs. We remove P1 and introduce the productions P6 and P7.
We then remove P2 and P3 since they are not longer needed.

2. If ER = {e′} with lab(e′) ∈ N for each production q = (lab(e′), X) ∈ P we add the
production p′ = (lab(e), R′) with R′ = R[e′/X]. If ER′ = {e′′} with lab(e′′) ∈ N
this step is iterated and terminates when |ER′ | > 1 or ER′ = {et} with lab(et) ∈ Σ
or |ER′ | = 0 and |VR′ | > extR′ . The proof of equivalence of the derivations H ⇒p

H ′ ⇒q H
′′ and H ⇒p′ H

′′ is the following: if e′ is the hyperedge involved in the
derivation H ′ ⇒q H

′′ then H ′′ = H ′[e/R[e′/X]] = H[e/R′] since R′ = R[e′/X].

S ::=

1

2

1

2

1

2

C

C

C
1

2

P6

1

2

1

2
a

S

1

2

P8

1

2

c

1

2

P9

C ::=

1

2

1

2
a

S

1

2

P4

1

2

c

1

2

P5

Figure 2.16: Removal of production P7

Since P7 has a single non-terminal hyperedge C (Fig. 2.16), we apply a replacement
for each production that has C on its lhs. In our case, using the replacements of P4
and P5, we obtain P8 and P9. The production P7 is removed from the grammar.

28

3. If |ER| = k > 2 we consider the subgraph X of R composed by the subset EX ⊂ ER
of hyperedges e2, . . . , ek and their attachment nodes. We introduce a new label T so
that N ′ = N ∪{T} and a new handle T • of eT with ext(eT) =

⋃
2≤i≤k

att(ei) such that

type(eT) = type(X). We then consider the hypergraph R′ composed by R\X and T •

where VR′ = VR\X ∪ VT • and ER′ = ER\X ∪ ET • . Finally we add the productions
p′ = (A,R′), p′′ = (T,X) to P ′. If |EX | > 2 this step is iterated. The proof of
equivalence of the derivations H ⇒p H

′ and H ⇒∗P ′ H ′ is the following: if ea is the
handle of the lhs of p we consider the following equivalence of the replacements then
H ′ = H[ea/R] = H[ea/R

′[eT /X]] since R = R′[eT /X].

S ::=

2

3

1
1

2

T

C
1

2

P10

1

2

1

2
a

S

1

2

P8

1

2

c

1

2

P9

C ::=

1

2

1

2
a

S

1

2

P4

1

2

c

1

2

P5

T ::=

1

2

1

2

C

C

1

2

3

P11

Figure 2.17: Removal of production P6

Since production P6 has three non-terminal hyperedges (Fig. 2.17), we create a new
label T , a new handle T • and the production P11. Then we add the production P10
so that the replacement of the hyperedge labelled as T by the rhs of P11 results in
the rhs of P6. The production P6 is then removed from the grammar.

4. If |ER| > 1 and exists e′ ∈ ER such that lab(e′) ∈ Σ a new label T is introduced so
that N ′ = N ∪{T}. We add 2 new productions p′ = (A,R′) to P ′ where R′ = R with
lab(e′) = T and p′′ = (T, e

′•). This step is repeated for each e′ ∈ ER with lab(e′) ∈ Σ.
Due to the confluency property of HRGs the order in which the terminal hyperedges
are chosen is irrelevant. The proof of equivalence of the derivations H ⇒p H

′′ and
H ⇒p′ H

′ ⇒p′′ H
′′ is the following: if e′ ∈ ER with lab(e′) ∈ Σ is the hyperedge

involved in the derivation H ⇒p H
′′ then H ′ = H[e/R] = H[e/R′[e′/e

′•]] since
R = R′[e′/e

′•].

Both rhs of productions P4 and P8 are composed by a terminal and a non-terminal
hyperedge. We introduce a new label A and a its handle A• along with the produc-
tion P14 (Fig. 2.18). We then add the productions P12 and P13 resulting from
the substitution of the terminal hyperedges labelled with a by the non-terminal
hyperedges labelled with A. Productions P4 and P8 are then removed from the
grammar.

29

S ::=

2

3

1
1

2

T

C
1

2

P10

1

2

1

2
A

S

1

2

P12

1

2

c

1

2

P9

C ::=

1

2

1

2
A

S

1

2

P13

1

2

c

1

2

P5

T ::=

1

2

1

2

C

C

1

2

3

P11

A ::=

1

2

a

1

2

P14

Figure 2.18: Removal of production P8 and P4

From this point on, if not explicitly specified, we always refer to an HRG as an HRG in
CNF. We stress that the input of the method must be already provided in this form, that
is, the time required for the transformation is not taken into account during the evaluation
of the time complexity.

The grammar in Figure 2.19 is the Chomsky normal form of the term graph grammar
in Figure 2.11.

A ::=

1
2 3

1
C

α
A

β

1

P1

1
2 3

1

B

α

A
β

1

P2

1

1

1

P3

B ::=

1
2 3

1
2

3

D

α
B

β

1

2 3

P4

1
2 3

1

2

3

D

α
B

β

1

2 3

P5

1
2 3

+

1

2 3

P6

1
2 3∗

1

2 3

P7

C ::=

1
2 3

1
B

α
A

β

1

2
3

P8

D ::=

1
2 3

+

1

2 3

P9

1
2 3∗

1

2 3

P10

Figure 2.19: Gtg, Chomsky normal form of the term graphs grammar in Figure 2.11

In order to complete the adaptation of the grammar we propose a more suitable short-
hand representation of the productions that only extracts the necessary information. For
calculating the probabilities of the productions to be chosen, we can safely discard the
topological data of the replacements. We are only interested in which hyperedge is re-
placed, specified by its label, the labels of the hyperedges that are generated and the
number of additional nodes that are created, if any. We can safely discard any other infor-
mation and keep just a pointer to the original production, to use during the replacement
process. For each p = (A,R) ∈ P and i ∈ N0 we use the following notations:

• A p−→ BC, i for a non-terminal production where B,C ∈ N are the labels of the
marked hyperedges eα, eβ ∈ R with mark(eα) = α, mark(eβ) = β and i = |VR\extR|.

30

• A p−→ a, i for a terminal production where a ∈ Σ is the label of the marked hyperedge
eα ∈ R and i = |VR\extR|.

• A p−→ λ, i for a terminal production where ER = ∅ and i = |VR\extR|.

It is important to notice that if the original grammar is non-ambiguous this method
runs in polynomial time and results in a polynomial space expansion of the grammar.
In case of an ambiguous grammar, let’s consider the one in Figure 2.20. The first step
of the derivation from S creates the hypergraph on the rhs of P1. From that point any
combination of any number of P2 and P3 result in one of the possible combination of the
ordering of the hyperedges a, b and c, terminated by the application of P4.

S ::=

1

2

3

1

1

1

T

a

b

c

1

2

3

P1

T ::=

2

3

1

T

1

2

3

P2

2

1

3

T

1

2

3

P3

1

2

3

t

1

2

3

P4

Figure 2.20: Shuffler grammar

Applying the rules for the transformation in Chomsky normal form, we have to take
into account all the possible permutations given by P2 and P3. Since type(T) = 3 the
new productions generated are type(T)! = 6. We should also notice that if a grammar
presents such kind of productions, it is also ambiguous. There are indeed infinite ways of
combining P2 and P3 to obtain the same hypergraph.

1

2

3

1

1

1

t

a

b

c

Habc

1

3

2

1

1

1

t

a

b

c

Hacb

2

1

3

1

1

1

t

a

b

c

Hbac

2

3

1

1

1

1

t

a

b

c

Hbca

3

1

2

1

1

1

t

a

b

c

Hcab

3

2

1

1

1

1

t

a

b

c

Hcba

Figure 2.21: The 6 different combinations deriving from the grammar in Figure 2.20

Finally, we extend the concept of non-contracting, or monotonic, to the settings of
hyperedge replacement grammars. This concept has been introduced by Chomsky in [9]
to describe the behavior of productions in context sensitive grammars, also defined as
Type 1. It states that for a derivation αNβ =⇒ αwβ the length of a sentential form is
always greater or equal than the length of the previous one. Moreover, a string grammar
is defined as essentially non-contracting if there is a production from the starting symbol
to the empty string S ::= ε.

For example, if we want to generate a word of length 4 using the following string
grammar:

S ::= AB | ε

A ::= a

B ::= BA | b

31

we may notice that the length of the sentential forms does not decrease throughout the
derivation:

S =⇒ AB =⇒ aB =⇒ aBA =⇒ aBAA =⇒ abAA =⇒ abaA =⇒ abaa

Equivalently, we define a hyperedge replacement grammar as non-contracting if the
size of the sentential form does not decrease during the derivation. The only difference
with the strings counterpart is that there isn’t an upper bound for the growth of the
generated hypergraph during each step. Each production may indeed increase the size
of the subsequent sentential form by more than 1. As in the string case, we consider a
hyperedge replacement grammar to be essentially non-contracting if there is a production
from the starting symbol to the empty graph. Formally:

Definition 2.4.2 (Non-contracting HRG). A HRG G = (N,Σ, P, S, (markp)p∈P) is de-
fined as non-contracting if for each derivation H ⇒p H

′, |H| ≤ |H ′|. Also, it is defined
as essentially non-contracting if there exists p = (S,R) ∈ P such that p is the empty
production.

32

Chapter 3

Sampling in Hyperedge
Replacement Languages

A naive way to sample a graph is to enumerate a set of graphs in advance and then pick
one at random. Even if it may seem, trivially, the best way to solve the problem achieving
a uniform distribution, the very difficult task of building such a set still remains. It may
indeed be a very large set, completely beyond our computational power as shown for the
series-parallel graphs in [38] and we should also take care of carefully enumerating all the
graphs to avoid counting the same element twice. We may think about the difference
between adding a graph to the set and adding all the correct ones as solving a single
instance of a problem and counting all the possible solutions for such an instance.

In 1979 L. G. Valiant showed that, despite the decision problem for the perfect match-
ing can be solved in polynomial time, calculating all the possible matching for the same
instance of the problem belongs to a different class, which he presented as #P-complete
[55]. Comparing it to our settings, it means that the aforementioned naive solution would
require an initial calculation of all possible graphs in the set, before starting the sam-
pling process. Formally, given a function f , #P is the class of function problems of the
form “compute f(x)”, f equals the number of accepting paths of a polynomial-time non-
deterministic Turing machine. A function problem F is classified as #P-hard if there exists
a polynomial reduction for every problem in #P to F . So, for all the problems F in the
#P-complete class it holds that:

• F is in #P .

• F is #P-hard, that is, there exists a polynomial reduction to every other problem in
#P-complete.

The canonical problem for the #P-complete class is #SAT. Its f(x) consists in finding
all the satisfying assignments of a boolean expression x and is the counterpart of the
common SAT problem for the NP-complete class.

So, for our naive solution, the definition of #P-completeness suggests that this ap-
proach, although being statistically correct, is infeasible even for relatively small instances
of the problem [56]. Nevertheless, it has been proved in [41] by Jerrum et al. that there
exists a complexity gap between counting and sampling. There are problems for which
counting all the admissible solutions and generating a single possible solution uniformly at
random fall into two different complexity classes. It means that there exist cases in which
we do not need to generate and enumerate all the members of a set in order to produce a
uniform sampling.

33

We may think about a graph generation process as a set of rules for constructing a
structure composed of vertices and edges. It is important to notice that the properties
of the generated graph may or may not be directly dependent on the procedure used to
assemble such a structure. Usually, if one of more of these rules are part of a stochastic
process, we say that a graph is generated at random.

For example, the following is a classic procedure for the generation of a graph with n
vertices uniformly at random:

1. Start from a complete graph G = (V,E) with |V | = n

2. For each pair vi, vj ∈ V with i > j remove the edge ei,j ∈ E with probability 1/2

We should notice that in this particular case we take into consideration the identities
of the nodes. That is, two graphs with the same shape are still considered distinct towards
the uniformity of the sampling if their nodes have different identities. Although it may
seem a good starting point, among the limitations of this method there is a particularly
noticeable one: is there a way to generate a graph where a certain property holds? Of
course we may think of another ad-hoc method to sample a graph with our sought property,
but this would require to study a new algorithm, prove its complexity and distribution
and test its limits. There exist several methods already to generate graphs with peculiar
properties, but the aim of this work is to create one where only the properties should be
chosen, if available, without changing the method itself. There could be properties harder
to test, requiring extensive resources, thus the testing could not always be considered a
feasible solution, for example consider the use of this classic method to sample k-clique
graphs with k ≤ n. Testing the existence of a complete subgraph of k nodes, also called
a k-clique, is in general a hard problem [44]. The stochastic process of removing edges
according to an arbitrary probability does not ensure that the resulting graph contains
such a subgraph. Of course, lowering the probability of deletion increases the probability of
finding larger groups of nodes connected to each other, but only a complete graph ensures
the presence of a k-clique. That is, even if the sampling method is efficient, testing if the
sought property holds is not.

On the other hand, the question “does a graph G have an Eulerian cycle[23]?” or
equivalently “is a sampled graph G Eulerian?” can be answer by running any known
algorithm that attempts to solve this problem. Carl Hierholzer in [37] not only provided
an efficient algorithm to solve this problem, but proved that in order to be Eulerian, a
graph must be connected and have only vertices of even degree. That is, considering the
language of connected graphs LC and the language of graphs with even degree vertices L2,
the language of Eulerian graphs is defined as LE = LC ∩ L2. In our case, if the property
can be expressed by a context-free hyperedge replacement language, it is directly included
into a representative grammar.

What about term graphs? Is there an efficient way to test if the generated graph
is a valid term graph? Instead of trying to answer this question, differently from the
classic methods, we start from a language and sample a graph directly in that specific
domain. The only requirement is for the language to be represented by a context-free
hyperedge replacement grammar and, if seeking a uniform probability distribution, for
such a grammar to be non-ambiguous.

3.1 Mairson’s Generation Methods for Strings

In 1994 H. G. Mairson proposed a pair of efficient methods [47] based on the studies of
T. Hickey and J. Cohen [36] for the sampling of strings from context-free grammars. His

34

approach required, as input, a grammar G in Chomsky normal form and the length of the
word to be sampled. Conceptually the method used a progressive construction of the word
by recursively choosing a production from the grammar at each step and ensuring that
the length of the sentential forms didn’t decrease. He also proved that, if the grammar is
non-ambiguous, such a word is generated uniformly at random.

Let G(CNF) = (V, T, P, S) be a string grammar in Chomsky normal form where:

• V is a set of non-terminals.

• T is a set of terminals, with V ∩ T = ∅.

• P is a set of productions.

• S ∈ V is the starting symbol.

Each production p ∈ P is in one of the following forms:

• A −→ BC

• A −→ a

• S −→ ε

with A,B,C ∈ V , a ∈ T and ε being the empty string.

Let PA ⊆ P be the subset of productions where lhs(p) = A ∈ N , PV ⊆ P the subset
of non-terminal productions and PT ⊆ P the subsets of terminal productions.

Let L` be the `th slice of the language, that is, the subset of L consisting of all the
words in L of length |w| = `.

For each non-terminal A ∈ V let LA be the set of all words w, such that there exists
a derivation A⇒∗ w.

Then, for each non-terminal A ∈ V let ||A||` define the number of all possible leftmost
derivations from A to words of length `. If the grammar is non-ambiguous, such words are
pairwise distinct, that is ||A||` = |LA` |. Equally, each word in the language has a distinct
leftmost derivation.

For each non-terminal production A −→ BC ∈ P we also define ||A −→ BC||` as the
number of leftmost derivations yielding a word of length ` beginning with the application
of A −→ BC.

The method is presented as a pair of algorithms Pre and Gen, the former being a
pre-processing phase where the grammar is analyzed and the structures needed for the
generation are built and the latter being the actual generation phase, where the word is
recursively constructed.

Let n ∈ N be the length of a word w ∈ Ln we would like to generate. The pre-processing
phase consists of the computation of ||A||` for each A ∈ V , for each ` in 1 ≤ ` ≤ n and
the computation of ||A −→ BC||` for each A −→ BC ∈ P , for each ` in 2 ≤ ` ≤ n. This,
according to [47], can be achieved by linear programming in O(n) time and O(n) space.

The generation phase begins by choosing any non-terminal A in V and the length ` of
the word to be generated with 2 ≤ ` ≤ n. If ||A||` = 0, meaning that there is no word that
can be generated from A in the `th slice of the language, the algorithm fails, otherwise it
proceeds recursively according to the following cases:

1. If ` = 1 then p ∈ PAT is chosen uniformly at random with probability 1/||A||` and
rhs(p) is returned.

35

2. If ` > 1 then p ∈ PAV is chosen with probability ||A −→ BC||`/||A||`. Since we
konw that the grammar is in Chomsky normal form, it means that a non-terminal
production has exactly 2 non-terminals on its rhs. We can then decide the lengths of
the substrings of the words that are consequently generated by the first and second
non-terminal. This is called a “split”. Such a split 0 < k < ` is chosen with
probability ||B||k · ||C||`−k/||A −→ BC||`. Finally, the result of the concatenation of
the words obtained by recursively applying the algorithm on B for a word of length
k and C for a word of length `− k is returned.

If the grammar is non-ambiguous, the word w, derived from A, is generated uniformly
at random among all the possible words in LA` . This is a direct consequence of having a
distinct leftmost derivation for each word.

The time complexity of this algorithm is proven to be O(n2). The quadratic behavior
is due to the cost of the choice of the split in Gen. This behavior is improved by the
second method, which can generate a word in time O(n) and space O(n2), requiring the
computation of an equivalent grammar and binary trees to store the additional data to
avoid the choice of the split.

3.2 First Method for Hypergraphs

For the settings of hyperedge replacement we begin with the adaptation of the first
method that allows the random generation of a size-n-hypergraph in a user specified
domain represented by a HRG in Chomsky normal form. Such a hypergraph is also
generated uniformly at random in Ln(G) if G is n-unambiguous. We present both proofs
of quadratic time complexity and termination for the generation phase along with the
proof of uniformity of distribution. As for the pre-processing phase, since we use the short-
hand form of the productions presented in section 2.4, the time and space complexity are
equivalent to the string method. Since the generation phase uses the structures derived
from the previous phase, we only take into account the space needed to construct the
hypergraph. It may be intended both as the sequence of replacements that needs to be
applied to the initial handle in order to transform it into the final graph, or the concrete
structure of the final graph itself. Clearly it cannot exceed the size of the generated graph.

To better understand the application of the method we use two relevant examples:
the domain of term graphs and a simple ad-hoc grammar highlighting all the details of
the procedure. To make the transition from strings easier we keep the name Pre and
Gen for the algorithms. From now on, unless specified, all the reference to the methods,
algorithms and functions will always be to the hyperedge replacement versions.

3.2.1 Pre-processing phase

The pre-processing phase is used to analyse the grammar and construct the structures
needed in the generation phase. Since we do not need the full structure of the rhs of
the applied productions, we can use the short-hand version of the grammar, presented in
Section 2.4 as input. For each type of production of the Chomsky normal form, we need
to keep track of:

• the id of the production

• the label and type of the replaced hyperedge in the lhs

• the labels of the non-terminals and the number of additional nodes in the rhs

36

In this phase, we may discard all the topological information of the rhs of the produc-
tions, such as the attachment nodes of the hyperedges or how these are arranged.

We also need as input an integer n representing the size of the hypergraph we want
to generate. Since we know that the empty graph can only be generated if the grammar
contains an empty production from the starting graph, we avoid this trivial case and
suppose that the input size is greater than 0. So we build our tables for a size from 1 to
n. We use two different tables to better highlight the difference between the number of
graphs that can be generated during the process when the choice of a non-terminal or the
choice of a production is required. We also include the terminal productions even if they
can produce only one size of graph. We have chosen this format for a better clarity.

Formally, let G = (N,Σ, P, S, (markp)p∈P) be an HRG in CNF and let n ∈ N be the
size of the hypergraph H ∈ Ln(G) to be generated, then Pre (Alg. 2) produces the pair
of matrices M1,M2 required for the generation phase.

We begin initializing the entries of two matrices M1 = (N × N) and M2 = (P × N)
to 0 (Tab. 3.1). Each entry (A, `) of M1, also denoted as A[`], represents the number
of derivations yielding a hypergraph of size ` + type(A), from a non-terminal A ∈ N .
Each entry (p, `) of M2, also denoted as p[`] represents the number of derivations yielding
a hypergraph of size ` + |extR|, from a production p ∈ P . According to the type of
production they are also denoted as:

• A p−→ BC, i[`] for a non-terminal production

• A p−→ a, i[`] for terminal productions

• A p−→ λ, i[`] for terminal productions containing only nodes

Considering each terminal production p ∈ PT , either yielding a single terminal hyper-
edge A

p−→ a, i or at least a single isolated node A
p−→ λ, i, the corresponding M2 entry

p[i+ 1] in the former case, or p[i] in the latter, is set to 1.

Then, for each ` ∈ N in 1 ≤ ` ≤ n, for each non-terminal A ∈ N , A[`] =
∑

p∈PA p[`]
and for each production p ∈ PN , p[`] =

∑
0<k<`B, [k] · C[`− k].

The matrices can be used to generate hypergraphs in LA(G) of size `+ type(A), with
1 ≤ ` ≤ n from any non-terminal A ∈ N . If the non-terminal A is chosen before the
pre-processing phase we can reduce the size of the tables to n− type(A). The gaps present
in these matrices, represented by zero entries, are due to the possibility of a production to
increase the size of the resulting hypergraph by more than 1. In the strings case instead,
the application of each production contributes to the final length of the word by exactly
1 additional symbol, producing a matrix without zero entries. Even if in the context of
hypergraphs a sparse matrix results in some of the splits being unavailable due to the
impossibility to continue the derivation using a particular size from a non-terminal, the
complexity of their choice remains the same. As in the string case, the entry of the tables
can be used to deduce the ambiguity of a grammar if the size of the slice of the language
is already known [43, 59].

Table 3.2 shows the result of algorithm Pre using as input the term graphs grammar
Gtg in Figure 2.19 and 12 as the size of the sampled hypergraph. We should remember that
since the handle induced by A is of type(1), one node is already added at the beginning of
the derivation, so the total number of size-12-hypergraphs in L12(Gtg) are 3920, as shown
in the entry A[11] of M1.

37

Algorithm 2: Pre - Pre-Process

Given: the short-hand version of a CNF grammar G = (N,Σ, P, S, (markp)p∈P)
Input: (G,n), where n ∈ N, n ≥ 1 is the size of the hypergraph to be sampled;
Such a size also represents the maximum size of a hypergraph that can be
generated from any non-terminal in G using the resulting tables

Output: Two tables 〈M1,M2〉 respectively representing the number of
hypergraphs of size up to n that can be generated either from each non-terminal
A ∈ N or a non-terminal production p ∈ PN

Initialize tables M1 and M2 for each size ` from 1 to n
for 1 ≤ ` ≤ n do

For each non-terminal A ∈ N
foreach A ∈ N do

Initialize the corresponding entry of M1 for A and a size ` to 0
A[`] := 0;

end
For each non-terminal production p ∈ PN
foreach p ∈ P do

Initialize the corresponding entry of M2 for p and a size ` to 0
p[`] := 0;

end
end
Set the initial entries of M1 and M2 for each terminal production p ∈ PΣ having a
terminal hyperedge a on its rhs

foreach A
p−→ a, i ∈ PΣ do

Set the corresponding entry of M2 for p and a size i+ 1 to 1

A
p−→ a, i[i+ 1] := 1;

end
For each terminal production p ∈ PΣ| having only internal nodes in its rhs

foreach A
p−→ λ, i ∈ PΣ do

Set the corresponding entry of M2 for p and a size i to 1

A
p−→ λ, i[i] := 1;

end
Fill the remaining entries of M1 and M2 for each size ` from 1 to n
for 1 ≤ ` ≤ n do

For each non-terminal A
foreach A ∈ N do

For each production having A on its lhs
foreach p ∈ PA do

Add the entry of M2 for the production p and size ` to the
corresponding entry of M1 for A and the same size `
A[`] := A[`] + p[`];

end
end
For each non-terminal production p

foreach A
p−→ BC, i ∈ PN do

For each split represented by a size k from 1 to `− 1
for 1 ≤ k < ` do

Add the entry of M1 for the first non-terminal B and size k and the
second non-terminal C and size `− k to the corresponding entry of M2
for p and size `+ i

A
p−→ BC, i[`+ i] := A

p−→ BC, i[`+ i] +B[k] · C[`− k];
end

end
end

38

Table 3.1: Example of initialization of matrices M1 and M2.

M1 M2

N 1 2 · · · n-1 n

S 0 0 · · · 0 0
A 0 0 · · · 0 0
...

...
...

. . .
...

...

P 1 2 · · · n-1 n

S
P1−→ AB, i 0 0 · · · 0 0

A
P2−→ BC, i 0 0 · · · 0 0

...
...

...
. . .

...
...

A
Pu−→ a, 2 0 1 · · · 0 0

...
...

...
. . .

...
...

Table 3.2: Matrices M1 and M2 resulting from Pre(Gtg, 12)

M1

N 1 2 3 4 5 6 7 8 9 10 11 12

A 1 0 2 0 14 0 92 0 616 0 3920 0
B 2 0 8 0 32 0 128 0 256 0 512 0
C 0 0 2 0 32 0 76 0 488 0 2928 0
D 2 0 0 0 0 0 0 0 0 0 0 0

M2

P 1 2 3 4 5 6 7 8 9 10 11 12

A
P1−→ CA, 1 0 0 0 0 2 0 16 0 128 0 992 0

A
P2−→ BA, 1 0 0 2 0 12 0 76 0 488 0 2928 0

B
P4−→ DB, 1 0 0 4 0 16 0 64 0 128 0 256 0

B
P5−→ DB, 1 0 0 4 0 16 0 64 0 128 0 256 0

C
P8−→ BA, 1 0 0 2 0 12 0 76 0 488 0 2928 0

A
P3−→ 1, 0 1 0 0 0 0 0 0 0 0 0 0 0

B
P6−→ +, 0 1 0 0 0 0 0 0 0 0 0 0 0

B
P7−→ ∗, 0 1 0 0 0 0 0 0 0 0 0 0 0

D
P9−→ +, 0 1 0 0 0 0 0 0 0 0 0 0 0

D
P10−→ ∗, 0 1 0 0 0 0 0 0 0 0 0 0 0

39

3.2.2 Generation phase

The generation phase uses the structures produced by the pre-processing phase to
construct a hypergraph of a chosen size. Even if the matrices allow for the process to
begin from any non-terminal for any of the pre-calculated sizes, for the examples we use
the starting symbol of the input grammar and as size the same one chosen to run the
pre-processing algorithm.

Formally, a non-terminal Ā ∈ N is chosen and a size-n̄-hypergraph H, with 1 ≤ n̄ ≤
n+ type(A), is generated using the data collected in the matrices M1, M2 and a pseudo-
random number generator RNG. Gen (Alg. 3) describes this process.

On input Gen(G, 〈M1,M2〉, Ā, n̄ − type(A)), if Ā[n̄ − type(A)] = 0 the generating
algorithm fails, otherwise, having Ā• as a basis, the algorithm recursively calls the function
derH proceeding through the following steps:

1. The RNG is used to choose a production p ∈ PA with probability p[`]/A[`].

2. If p ∈ PAΣ , the replacement of e, the handle of A, with the hypergraph R in rhs(p) is
returned.

3. If p ∈ PAT the Random Number Generator is used again to choose a “split” 0 < k < `′

with `′ = ` − i and probability B[k] · C[`′ − k]/A
p−→ BC, i[`]. The hypergraph

rhs(p)[eα/derH(B, k), eβ/derH(C, `′ − k)] produced by the replacement of eα with
the result on the recursive function on input derH(B, k) and the replacement of
eβ with the result of the recursive function on input derH(C, `′ − k) is computed.
Then, the replacement of the hyperedge e, the handle of A, with the aforementioned
hypergraph is returned. We use the notation BkC`′−k to indicate such a split.

The derivation d = A• ⇒∗P H in Figure 3.1 corresponds to the sequence of replacements
computed by the recursive function derH to generate the size-12-hypergraph T in Figure
2.1, using as input the grammar Gtg, the matrices in Table 3.2, the non-terminal A and
12 as size.

1

A P1⇒
1

2 3

1
C

A

Step 1
P1 (992/3920)
C7A3 (152/992)

P8⇒ 1

1
2 3

1

A

B

A

Step 2
P8 (76/76)
B5A1 (32/76)

P5⇒ 1

1

2

3

1

2

3

1

A

B

A

D

Step 3
P5 (16/32)
D1B3 (16/16)

P10⇒ 1

1

2

3

1

2

3

1

A

B

A

∗

Step 4
P10 (1/2)
No split

P4⇒ 1

1

2

3

1
2

3

1
2

3

1

A

B

A

∗

D

Step 5
P4 (4/8)
D1B1 (4/4)

P9⇒ 1

1

2

3

1
2

3

1
2

3

1

A

B

A

∗

+

Step 6
P9 (1/2)
No split

P7⇒

P7⇒ 1

1

2

3

1
2

3

1
2

3

1

A

∗

A

∗

+

Step 7
P7 (1/2)
No split

P3⇒ 1

1

2

3

1
2

3

1
2

3

1

A

∗

1

∗

+

Step 8
P3 (1/1)
No split

P2⇒ 1

2 3

1

2

3

1
2

3

1
2

3

1

1

B

∗

1

∗

+

A

Step 9
P2 (2/2)
B1A1 (2/2)

P6⇒ 1

2 3

1

2

3

1
2

3

1
2

3

1

1

+

∗

1

∗

+

A

Step 10
P6 (1/2)
No split

P3⇒ 1

2 3

1

2

3

1
2

3

1
2

3

1

1

+

∗

1

∗

+

1

Step 11
P3 (1/1)
No split

Figure 3.1: A derivation d = A• ⇒∗P H using the grammar of Figure 2.19

For each step we show the probability of the production p to be chosen and the choice
of the split along with its probability if p ∈ PN . Since Gtg is non-ambiguous, the first step
shows that |L12(Gtg)| = 3920, that is, there are 3920 unique size-12-hypergraphs to choose
from, each having a different ordered derivation tree. Figure 3.2 shows the tree t for which
yield(t) = H, so that trav(t), or equivalently lmd(H), corresponds to the unique sequence

40

Algorithm 3: Gen - Generate

Given: A grammar G = (N,Σ, P, S, (markp)p∈P) in Chomsky normal form
Input: (〈M1,M2〉, Ā, n̄), where 〈M1,M2〉 are the tables resulting from running Pre
(Alg. 2) on input (G,n), Ā ∈ N is the chosen non-terminal to begin the generation
from and n̄ ∈ N, 1 ≤ n̄ ≤ n+ type(Ā) is the size of the sought hypergraph

Output: A size-Ā-hypergraph H ∈ LĀn̄ (G)

Set ` as the size of the elements that needs to be generated, that is, the input size
minus the number of vertices of the handle induced by the non-terminal hyperedge
induced by Ā
` = n̄− type(Ā)
If the slice of the language LĀn̄ (G) is empty
if Ā[`] = 0 then

Terminate the algorithm
return ⊥;

end
Recursively generate the sought hypergraph H using (Ā, `) as first input as follows:
function derH (A, `):

Use the RNG for generating an integer in the interval [1, A[`]] to select the
corresponding production p among all the productions having A on their lhs
with probability p[`]/A[`]
p← RNG with p ∈ PA and probability p[`]/A[`];
If it is a terminal production
if p ∈ PΣ then

Return the replacement of the hyperedge e labelled as A by the terminal
hypergraph R

return A•[e/R];

else
Subtract the number of internal nodes of p to the remaining size of the
generating hypergraph
`′ = `− i;
Use the RNG for generating an integer in the interval [1, (A

p−→ BC, i)[`]] to
select the corresponding split among all the possible splits B[k], C[`′ − k],
that is, the sizes of the subgraphs that will be generated from the first and
second hyperedges in rhs(p)

k ← RNG with 0 < k < `′ and probability B[k] · C[`′ − k]/(A
p−→ BC, i)[`];

Continue the recursion replacing the first non-terminal B with the
hypergraph resulting from the function derH for a size k and the second
non-terminal C with the hypergraph resulting from the function derH for
a size `′ − k

return A•[e/R[eα/derH(B, k), eβ/derH(C, `′ − k)]];

end
end function

41

of productions applied by the generation algorithm to produce H. In the figure are also
indicated the starting symbol A and the replaced hyperedges eα and eβ, respectively on
the edges connecting the left and right child of each node.

To stress the difference with other algorithms, suppose we use the grammar in Figure
2.19 in a stochastic process where, at each step, each production is chosen uniformly at
random among all the available ones. Since the grammar is context-free, we may assign
these probabilities directly to the productions before the sampling, since the only require-
ment for their availability is the presence of a hyperedge with the label corresponding
to their lhs. So, P1, P2 and P3 have 1/3 of probability to be chosen, P4, P5, P6 and
P7 have 1/4, P9 and P10 have 1/2. Since P8 is the only production for C it is always
chosen. First of all we may notice that the algorithm is not ensured to terminate. For
example, both P1 and P2 generate another hyperedge labelled as A. It means that there
is a probability of 2/3 that for the next step another choice needs to be made among the
same productions, even if this probability gradually tends to 0. We may also notice that
there is no way to ensure that the resulting graph has the chosen size.

Suppose now that the process generates the same hypergraph of Figure 3.1. The prob-
ability to obtain such a graph is 1/82944 according to the probability of each production
to be selected for replacing the correct labelled hyperedge and considering each choice to
be independent from the previous one. This result is clearly not correct.

For a process similar to Gillespie algorithm instead, we may discard the part describing
the time since we are interested in terminating the algorithm when a terminal graph
is generated. As before we may notice again that there is no guaranteed termination.
Considering all productions to have the same reaction rate of 1, the graph in Figure
3.1 is generated with an overall probability of 1/653184000. In this case, we haven’t
considered any order of the replacement, because restricting the order would result in a
process equivalent to the previous one. We may also notice that nothing prevents us from
generating an isomorphic graph by following another order of replacements.

Lemma 3.2.1. Given a grammar G = (N,Σ, P, S, (markp)p∈P), Algorithm Gen termi-
nates on any input (〈M1,M2〉, Ā, n̄).

The proof of termination of the generation algorithm is based on the assumption that
the input grammar is non-contractive:

Proof. Let’s consider a measure equivalent to the size of a hypergraph |H|. To each
application of the recursive function derH in each step of Gen (Alg. 3), corresponds a
direct derivation between two sentential forms F ⇒ F ′ such that |F | ≤ |F ′|. Since the
grammar is in CNF, at each step there are two possible cases:

1. derH chooses a non-terminal production. In this case a single hyperedge e ∈ F is
replaced with a hypergraph R ⊆ F ′ containing 2 hyperedges and 0 or more inter-
nal nodes. Clearly |F | < |F ′|, meaning that the size of the sentential forms gets
progressively close to n.

2. derH chooses a terminal production. A hyperedge is replaced by a terminal hyper-
edge or a single node and 0 or more additional internal nodes. In this case |F | ≤ |F ′|.
Even if the size is not incremented, being a terminal production, the recursion does
not progress any further.

If it is not possible to generate a size-n-hypergraph using the input grammar G the
algorithm trivially ends in one step.

42

C A

B A B A

D B

D B

P1

P8 P2

P5 P3 P6 P3

P10 P4

P9 P7

A

Figure 3.2: Ordered tree t for the derivation d in Fig. 3.1

3.2.3 First Method Running Example

This example is built on a very simple ad-hoc grammar presenting all the characteristic
traits described so far providing a better understanding of the aspects of the generation
process.

Let’s consider the grammar Gr = (N,Σ, P, S, (markp)p∈P), where the set of non-
terminals N = {S,C,D}, the set of terminals Σ = {c, d}, S is the starting symbol and P
is the set of productions shown in Figure 3.3. Since every production has either two non-
terminals or one terminal on its rhs, we know that this grammar is already in Chomsky
normal form. thus it is ready to be used for our generation process.

S ::=

1

23

1

2

C
α

D
β

1

2

P1

1

2

3
1

2

C
α

D
β

1

2

P2

C ::=

1

23

1

2
C

α

D
β

1

2

3

P3

1

2

3

c

1

2

3

P4

1

2

d

2

1

3

P5

D ::=
1 2

3

1

2

C
β

D
α

1

2

P6

1

2

d

1

2

P7

Figure 3.3: Running example grammar RE for Mairson’s generation methods.

In order to achieve a sampling over a uniform distribution we also need to know if
RE is non-ambiguous. Please note that this part of the example has only been shown for
proving the uniform result of the sampling, but it is not required for the generation itself.
Figure 3.4 shows the compact visualization of two ordered derivation trees for two size-6-

43

hypergraphs in L6(RE). The root represents the production applied to the starting symbol,
while the other nodes represent the production applied to the non-terminal marked with
α for the left child and with β for the right child. Figure 3.5 instead shows two leftmost
derivations obtained by the pre-ordered visit of those trees. Since the yielded hypergraphs
are isomorphic, while both the leftmost derivations and ordered trees are different, the
grammar is ambiguous.

C D

D C

P2

P5 P6

P7 P5

S

C D

C D

P2

P3 P7

P5 P7

S

Figure 3.4: Ordered trees proving the ambiguity of the grammar RE.

1

2

S P2
=⇒

1

2

3
1

2

C
α

D
β

1

2

P5
=⇒

1

2
1

2

d

D
β

P6
=⇒

1

2

1

21

2

3

d D
α

C
β

1,2
P7

=⇒
1

2

1

21

2

3

d d

C
β

P5
=⇒

1

2

1

2

1

2

d d

d

1

2

S P2
=⇒

1

2

3
1

2

C
α

D
β

1

2

P3
=⇒

1

2 3

1
2

1

2
C

α

D
β

D
β

1,2

3

P5
=⇒

1 2

1
2

1

2
d

D
β

D
β

P7
=⇒

1 2

1
2

1

2
d

d

D
β

P7
=⇒

1 2

1
2

1

2
d

d

d

Figure 3.5: Derivations proving the ambiguity of the grammar RE.

Nevertheless if we consider the slice L7(RE) we notice that RE is also 7-unambiguous.
To prove it, we can build the total language tree of the slice LS7 (RE). Figure 3.6 shows
each possible derivation from the handle S• to each of the 6 different size-7-hypergraph in
the slice. The edges also show the applied production for each step of the derivation.

To begin the generation, first we extract all the information we need from the grammar
and present it as their short version. Table 3.3 shows the short version of the 7 productions
of RE. We may notice that each entry contains the labels, identifier and additional nodes
of the original production.

For example C
P3−→ CD, 1 shows that the original production is P3, C is the label

of the 3-hyperedge on its lhs, C and D are the hyperedges marked as α and β and the
hypergraph on its rhs also contains an additional node.

We use the pre-processing algorithm on input (RE, 7) yielding the matrices 〈M1,M2〉 in
Table 3.4. Let’s remember that we need to take into account the type of the handle of the
starting symbol when calculating the number of derivable graphs. So, for example, since
type(S) = 2, the entry S[5] = 6, indicates that there are 6 different ways to generate a |7|-

44

1

2

S

1

23

1

2

C
α

D
β

1

2

1

2 3

1

2

1

2

C
α

D
β

D
β

1

3

2

1

23

1

2

c

D
β

12

1

2

d

D
β

1

2 3

1

2

1

2

c

D
β

D
β

1 2

1

2

1

2

d

D
β

D
β

1

23

1

2

1

2
3

c

D

α

C

β

1

2

12

1

2

1

2
3

d

D

α

C

β

1

2

1

2 3

1

2

1

2

c

d

D
β

1 2

1

2

1

2

d

d

D
β

1

23

1

2

1

2
3

c

d

C

β

12

1

2

1

2
3

d

d

C

β

1

2 3

1

2

1

2

c

d

d

1 2

1

2

1

2

d

d

d

1

23

1

2

1

2
3

c

d

c
1

23

1

2
1

2

c

d

d

12

1

2

1

2
3

d

d

c

12

1

2
1

2

d

d

d

P1

P3 P4 P5

P4 P5 P6 P6

P7 P7 P7 P7

P7 P7 P4 P5 P4 P5

Figure 3.6: Total language tree for the slice of the language LS
7 (RE)

45

Table 3.3: Short version of the productions for the grammar RE

S
P1−→ CD, 1 C

P3−→ CD, 1 D
P6−→ DC, 1

S
P2−→ CD, 0 C

P4−→ c, 0 D
P7−→ d, 0

C
P5−→ d, 0

hypergraph from the starting symbol S, while S[7] = 22 actually refers to the hypergraphs

in L9. Equivalently for the productions, S
P2−→ CD, 0[4] = 6, indicates that there are 6

different ways to generate a |6|-hypergraph applying P2 as first production.

Table 3.4: Matrices M1 and M2 resulting from running Pre(RE, 7)

M1 M2

N 1 2 3 4 5 6 7

S 0 2 2 6 6 22 22
C 2 0 2 0 6 0 22
D 1 0 2 0 6 0 22

P 1 2 3 4 5 6 7

S
P1−→ CD, 1 0 0 2 0 6 0 22

S
P2−→ CD, 0 0 2 0 6 0 22 0

C
P3−→ CD, 1 0 0 2 0 6 0 22

D
P6−→ DC, 1 0 0 2 0 6 0 22

C
P4−→ c, 0 1 0 0 0 0 0 0

C
P5−→ d, 0 1 0 0 0 0 0 0

D
P7−→ d, 0 1 0 0 0 0 0 0

We then use the generation algorithm on input Gen(RE, 〈M1,M2〉, S, 7), to construct
uniformly at random the derivation shown in Figure 3.7. Each step shows the production
that has been applied and, in parentheses, the probability it has been chosen with. For
non-terminal productions the chosen splits and their probabilities are also indicated.

1

2

S P1
=⇒

1

23

1

2

C
α

D
β

1

2

Step 1
Prod.: P1 (6/6)
Split: C1D3 (4/6)

P4
=⇒

1

23

1

2

c

D
β

Step 2
Prod.: P4 (1/2)

No split

P6
=⇒

1

23

1

2

1

2
3

c

D

α

C

β

1

2

Step 3
Prod.: P6 (2/2)
Split: D1C1 (2/2)

P7
=⇒

1

23

1

2

1

2
3

c

d

C

β

Step 4
Prod.: P7 (1/1)

No split

P5
=⇒

1

23

1

2
1

2

c

d

d

Step 5
Prod.: P5 (1/2)

No split

Figure 3.7: Leftmost derivation corresponding to the output of generation phase

Figure 3.8 shows the compact visualization of the ordered derivation tree corresponding
to the derivation in Figure 3.7. Each node represents the production applied to the non-
terminal on the rhs of its parent node. The non-terminal marked with α is shown on the
left edge while the one marked with β on the right. Next to each node the probability of
the choice of the production is reported, along with the one of the chosen split in case of
it being non-terminal.

The generating process is described in details by the following steps:

46

C D

D C

P1

P4 P6

P7 P5

S

Prod.: 6/6
Split: 4/6

Prod.: 1/2
Prod.: 2/2
Split: 2/2

Prod.: 1/1 Prod.: 1/2

Figure 3.8: Ordered derivation tree corresponding to the output of the generation phase

Step 1 On input Gen(S,G, 〈M1,M2〉, 7), since type(S) = 2 then ` = 5. S[5] = 6 in M1,
so there are 6 different derivations yielding a |7|-hypergraph from S. The algorithm
proceeds calling the recursive function on input derH(S, 5). There is only one

production S
P1−→ CD, 1[5] = 6 in M2 yielding a |7|-hypergraph having S on its

lhs, so P1 is chosen with probability 6/6. Since the rhs of P1 includes 1 internal
node then `′ = ` − 1 = 4. There are two possible split to chose from: C1D3 with

probability C[1] · D[3]/S
P1−→ CD, 1[5] = 2 · 2/6 = 4/6 and C3D1 with probability

C[3] · D[1]/S
P1−→ CD, 1[5] = 2 · 1/6 = 2/6. We suppose that the RNG chooses

C1D3. The algorithm then recursively calls the function on input derH(C, 1) and
derH(D, 3) and returns the replacement corresponding to P1.

Step 2 On input derH(C, 1), the function finds 2 possible derivations for C[1]. There are
also 2 possible productions, P4 and P5, having the same probability to be chosen:

C
P4−→ c, 0[1]/C[1] = 1/2 for the former and C

P5−→ d, 0[1]/C[1] = 1/2 for the latter.
We suppose that the RNG chooses P4, since it is a terminal production the result
of the hyperedge replacement corresponding to P4 is returned.

Step 3 On input derH(D, 3), the function finds 2 possible derivations for D[3]. There is
only one production to choose with probability 2/2, that is P6. Since i = 1 then
`′ = 2. The only possible split is D1C1 with probability 2/2. The algorithm then
recursively calls the function on input derH(D, 1) and derH(C, 1) and returns the
replacement corresponding to P6.

Step 4 On input derH(D, 1), the function finds only 1 possible derivation for D[1] and only
one production with probability 1/1, that is P7. Since it is a terminal production
the result of the hyperedge replacement corresponding to P4 is returned.

Step 5 On input derH(C, 1), as we have seen in Step 2, the function finds 2 possible deriva-
tions for C[1]. We suppose that this time the RNG chooses P5 with probability
1/2. Since it is a terminal production the result of the hyperedge replacement cor-
responding to P5 is returned.

Let H be the |7|-hypergraph generated by the algorithm, the reconstruction of the
recursive steps taken by derH in Equation (3.1) proves the correctness of our method.

H = S•[eα/rhs(P1)[eα/rhs(P4), eβ/rhs(P6)[eα/rhs(P7), eβ/rhs(P5)]]] (3.1)

The probability to generate this hypergraph is:

6

6

4

6

1

2

1

1

2

2

2

2

1

2
=

1

6
(3.2)

47

As expected, this result corresponds to the entry S[5] = 6 of Table 3.4, as proven in
Section 3.2.4.

3.2.4 Uniform Probability Distribution

We now state our first main result, the uniform generation guarantee for Algorithm
Gen.

Theorem 3.2.1. Given a grammar G = (N,Σ, P, S, (markp)p∈P), Algorithm Gen gen-
erates from every non-terminal A ∈ N a size-n-hypergraph H ∈ LAn (G), provided that
LAn (G) 6= ∅. If G is n-unambiguous and RNG is a uniform random number generator, the
hypergraph is chosen uniformly at random.

Proof. Let G be a n-unambiguous grammar in CNF, the recursive function derH derives
a hypergraph H ∈ LĀn̄ (G) simulating trav(t) where yield(t) = H and let P (cj) denote the
probability of the jth choice c made using the RNG at each step of the recursion, for a
production or a split, according to lmd(H).

Let’s remind that for the parallelization, confluence and associativity properties of
context-free hyperedge replacement grammars [12], the sequence of replacements associ-
ated to a derivation preserves the result of the derivation, despite of the order in which
the replacements are applied. Thus, we are able to discuss each of its steps independently.

By definition, since the grammar is n-unambiguous, for any non-terminal A ∈ N
we know that the set of hypergraphs that can be generated using different productions
p ∈ PA are pairwise distinct. Otherwise, there would exist trav(t′) 6= trav(t′′) for which
yield(t′) ∼= yield(t′′).

From Pre (Alg. 2) we know that
∑

p∈PA p[`] = A[`] and so the probability of the
choice cj of each production in lmd(H) can be expressed by P (cj) = p[`]/A[`]. Also, if
p ∈ PN , since the grammar is n-unambiguous the subsets of hypergraphs that can be
derived by choosing different splits are also pairwise distinct. For a production p ∈ PN
then

∑
0<k<`B[k] ·C[`′ − k] = A

p−→ BC, i[`], thus a split can be chosen with probability
P (cj) = B[k] · C[`′ − k]/p[`].

Knowing that for an lmd, if the grammar is n-unambiguous, both the choices of produc-
tions and splits are made from independent sets, considering the corresponding derivation
tree t, the probabilities associated to the choice of a node P (c) and the ones associated to
its children P (c′) and P (c′′) are of the form m

q , m
′

q′ and m′′

q′′ with m,m′,m′′, q, q′, q′′ ∈ N and

q′q′′ = m. Moreover, the probabilities of two consecutive choices P (c) and P (c′) are bound
to the law of compound probabilities [45], that is, the choice of a node given the choice of
its parent is of the form P (c′|c) = P (c′ ∩ c)/P (c). Then, considering their independence,
P (c′|c) = (P (c′)P (c))/P (c) = P (c′). The same applies for P (c′′). The overall probability
of the choice of a node and its children is then P (c)P (c′)P (c′′) = m

q
m′

q′
m′′

q′′ = m′m′′

q .

Finally, considering the chain of probabilities described by an lmd, since for Ā q =
|Ln̄(G)| and for each terminal production p ∈ PΣ m = 1, then for each H ∈ Ln̄(G) we can
define its probability P (H) to be generated as the productory of independent choices:

P (H) =

k∏
j=1

P (cj) =
m1

|Ln̄(G)|
· m2

q2
· mk−1

qk−1
. . .

1

qk
=

1

|Ln̄(G)|

Each hypergraph H ∈ Ln̄(G) is generated over a uniform distribution given the uni-
formity of the sampling of the underlying RNG.

48

6/6

2/6 4/6

2/2 1/2 1/2

2/2 2/2 2/2

1/2 1/2 2/2 2/2

1/1 1/1 1/1 1/1

1/1 1/1 1/2 1/2 1/2 1/2

P1

C3D1 C1D3

P3 P4 P5

C1D1 P6 P6

P4 P4 D1C1 D1C1

P7 P7 P7 P7

P7 P7 P4 P5 P4 P5

S

Figure 3.9: Graphical representation of all the possible choices of Gen (Alg. 3)

49

Figure 3.9 is a graphical visualization of a tree representing all possible outcomes
of algorithm Gen with input (Gr, 〈M1,M2〉, S, 7). Each node represents the choice of
a production and the subsequent choice of a split. The value on the edges represents
the probability of the production or a split to be chosen, while the path taken by the
running example is highlighted in bold. We may also notice the similarity with the total
language tree for LS7 (Gr) in Figure 3.6. Merging the nodes representing the choices of
splits into their parent node, representing the choice of a production, results indeed into
an isomorphic tree.

3.2.5 Time and Space Complexity

For the complexity analysis we consider that the input grammar is already provided
in a correct Chomsky normal form and the query to the random number generator as well
as the replacement operations are performed in unit time.

Let’s first consider the complexity analysis of the pre-processing Algorithm Pre. Since
we have used a short-hand version of the productions (Tab. 3.3) we may notice that the
only difference with the string counterpart is the addition of the number of internal nodes
i. We may also notice that the fewer internal nodes we have in the rhs of a production,
the more it takes to reach the sought size n.

Lemma 3.2.2. Algorithm Pre produces the tables M1 and M2 needed for the generation
of a size-n-hypergraph in time O(n).

Proof. Considering the worst case being a production that doesn’t generate any internal
nodes, this corresponds exactly to the string case. That is, the time required to populate
the pre-processing tables is the same of the one presented in [47], which is already proven
to be linear in n by means of dynamic programming.

As for the space required to store the tables, we may notice that the gaps present in
the tables (for example Tab. 3.4), that are not encountered in string method, are due to
the possibility of a production to increase the size of the sentential form by more than 1
in a single step. Again, in the absence of internal nodes, we have a complexity equivalent
to the string case.

Lemma 3.2.3. The space required by Algorithm Pre to store the tables M1 and M2 needed
for the generation of a size-n-hypergraph is in O(n).

Proof. For the short-hand version of a Context-free HRG in Chomsky normal form pre-
sented in Chapter 2, we know that no additional space is required to describe the produc-
tions besides the integer indicating the number of internal nodes. Considering the size of
the grammar as a constant, we may easily understand that the tables only grow linearly
in one direction according to the input size n, resulting in a linear asymptotic behavior
O(n).

In this work, to ease the understanding of the generation process we try to show, when
possible, the full tables, but it is easy to see how they could be contracted in case of 0-filled
columns or terminal productions.

For the generation phase we consider the space required as the total size of data
that is necessary to describe the generated hypergraph, which, according to our process,
it is considered as the structure built by the recursion function DerH. Since such a
hypergraph can be concretely described by either its nodes and edges or, equivalently, by
the sequence of replacements described by the applied productions from the original handle
to its terminal form, and, considering that each step increases the size of the sentential

50

form of at least one, we state that the space required by the generation algorithm is linear
in n.

The time complexity of the generation phase is expressed in the following theorem:

Theorem 3.2.2. With the assumptions of Theorem 3.2.1, the size-n-hypergraph H is
generated by Gen (Alg. 3) in time O(n2).

Proof. The proof of Theorem 3.2.2 is based on the analysis of the following recurrence
relation for the function derH: T (n) ≤ cn + max

1≤k<(n−i)
[T (k) + T (n − k − i)], where T (k)

and T (n − k − i) are the computational steps required to process the result of the split
and i is the number of internal nodes of the current production. In the worst case, we
consider that i = 0 and that k = 1. A simple example is the discrete hypergraph language
in which every iteration may generate a terminal hyperedge from eα and the rest of the
resulting hypergraph from eβ without adding any node. Since the choice of the production
is constant, while the choice of a split is linear in n, choosing a split n times leads to a
quadratic behavior.

Since i� n, we may rewrite the recursion as:

T (n) ≤ cn+ max
1≤k<n

[T (k) + T (n− k)]

Then, considering the worst case k = 1, for the next step of the recursion we obtain:

T (n− 1) ≤ c(n− 1) + max
1≤k<(n−1)

[T (k) + T (n− k − 1)]

That is, at each step the choice of a split happens on an input of size n− 1. Since this
choice requires linear time and it is taken n times, the relation has solution O(n2).

Lemma 3.2.4. The space required by Algorithm Gen for the generation of a size-n-
hypergraph is in O(n).

Proof. The analysis of the space complexity of Gen (Alg. 3) takes into account all the
data that is dynamically constructed during the production of the hypergraph. That
excludes the tables needed for holding the number of derivable graphs, which space has
already being accounted for the pre-processing phase. Considering the data needed by
each replacement described by the recursive function DerH for a size-n-hypergraph as a
constant, in the worst case, the number of steps required is equivalent to the nodes of the
derivation tree and such data is held until the hypergraph is fully constructed. Since it is
a binary tree, we know that there are exactly 2n − 1 nodes, that is, the space needed is
linear in n. Additionally considering the space required to hold the data of the hypergraph
to be trivially n, the overall space required by the algorithm is clearly O(n).

3.3 Second Method for Hypergraphs

We now move to the adaptation of the second method presented by Mairson allowing
for the generation of hypergraphs in linear time using quadratic space. As we see in
Section 3.2, the bottleneck of the first method is the choice of the split for a non-terminal
production. Once a number is generated by the RNG, it required linear time to go through
the available splits and pick one of them. The improvement presented in the second
method is a faster selection of the split, at the cost of the space required to hold additional
structures. To achieve this result we make use of the encoding proposed by Huffman in
[39]. As for the pre-processing tables, once these structures have been computed there is no

51

need to generate them again and will be available to use throughout the whole generation
process. For this reason, we consider the time required to calculate them as well as the
space to hold them as part of the pre-processing phase.

3.3.1 Huffman codes

Originally designed to work on the compression of messages for a more efficient trans-
mission, its importance rapidly spread across all fields of computer science. The encoding
is based on the concept that symbols with a high frequency, that is, more often to be
found in a message, should be encoded using shorter codes, while less frequent symbols
may be represented by longer codes. Knowing the frequency of each symbol is the only
requirement for both the encoding and decoding of a message. Without loss of generality,
let the frequency be indicated by a positive integer weight wn ∈ N for a node n, then the
underlying structure is a weighted ordered full binary tree called Huffman tree. In details:

• Full Binary: the tree is rooted and every internal node has exactly two children.

• Ordered: the children of each node are ordered. In the original Huffman coding
algorithm, the left child is indexed by 0, while the right one by 1. We keep this
ordering to represent the sequence corresponding to the path leading to the chosen
split. In our case we are more interested in the length of such a sequence rather than
the values it contains.

• Weighted: every node has an additional attribute. Originally, it represents the
frequency of the symbols in a string. In our case it is the number of hypergraphs
that can be derived by a split.

It is important for us to consider how the size and height of a full binary tree vary
according to the number of leaves: larger trees require more space for being stored while
higher trees require longer to be traversed.

Proposition 3.3.1 (Size of a Full Binary Tree). If t is a full binary tree and n is the
number of its leaves, the tree has exactly 2n− 1 nodes.

Proof. Let |t| be the size of a full binary tree t represented by the number of its nodes and
n the number of its leaves, then, inductively:

1. If t is composed by a single node, its only leaf, then trivially |t| = 2n− 1 = 1.

2. Adding a pair of leaves as children of an existing leaf of t increases the number of
nodes by 2, but it also turns the parent leaf into an internal node, increasing the
number of leaves only by 1. Thus, if t′ is a full binary tree obtained by growing t
by a pair of leaves then n′ = n + 2 − 1 = n + 1 while its size |t′| = 2n − 1 + 2 =
2(n+ 1)− 1 = 2n′ − 1.

Notably, adding one leaf only, results in the need of a new internal node to preserve
the binary and fullness constraints.

Proposition 3.3.2 (Height of a Full Binary Tree). If t is a full binary tree, n is the
number of its leaves and h is its height, then dlog2ne+ 1 ≤ h ≤ n.

Proof. Let h be the height of a full binary tree h and n the number of its leaves, then each
leaf can potentially be the parent of a new pair. That is, in a complete binary tree, there
are 2(h−1) leaves.

52

1. If t is composed by a single node, its only leaf, then h = dlog21e+ 1 = 1.

2. Adding a pair of leaves as children of each existing leaf of t results in doubling their
number. Thus, if t′ is a full binary tree obtained by adding 2 leaves to each leaf of t
then n′ = 2n and h′ = dlog22ne+ 1 = log22 + dlog2ne+ 1 = 1 + dlog2ne+ 1 = h+ 1.

That is, at each step the height of the complete binary tree is increased by 1 when
adding 2n leaves to all the preexisting ones.

On the other hand, let now h be the height of an unbalanced full binary tree in which
for every pair of child nodes at most one has further children, then h = n.

1. If t is composed by a single node, its only leaf, then h = n = 1.

2. Adding a new pair of leaves as children of an existing leaf of t increases both the
number of leaves and height by 1, since we cannot add a new pair to a sibling that
already has children. Thus, if t′ is a new full binary tree obtained by adding 2 new
leaves to each leaf of t then n′ = n+ 1 and h′ = n′ = n+ 1 = h+ 1.

We can now define a Huffman tree as follows:

Definition 3.3.1 (Huffman Tree). Let wv represent the frequency for a node v, then a
Huffman tree h is inductively defined as follows:

1. A tree h composed by a single node v having weight wv is a Huffman tree.

2. If h0 and h1 are Huffman trees with roots v0 and v1 having weights wv0 ≤ wv1 , then
a tree h composed by a node v and h0 and h1 as its left and right subtrees, so that
the roots v0 and v1 are respectively the left and right child of v and wv = wv0 +wv1 ,
is also a Huffman tree.

The property of the Huffman trees we are most interested in, allowing us to improve
our generation method, is the ability to produce an optimal encoding. Since we are not
working exactly with codes and frequencies, but rather with paths and splits, we construct
our proof starting from the one given in [11]. We want to prove that if a split can derive a
greater number of hypergraphs, it can also be chosen following a shorter path in the tree
and also that such a tree gives an optimal ratio among the overall numbers of hypergraphs
of each split and the corresponding paths.

3.3.2 Pre-processing Phase

In the second method the pre-processing phase is extended for accommodating the
additional data structure needed to speed up the generation of the hypergraph. In order
to simplify this approach, we begin with the construction of an equivalent grammar to
take into account all the possible splits for each production. Since the choice of the split
happens after the choice of the production and only affects the next recursive steps of the
generation for the non-terminal hyperedges in the rhs of such a production, we can safely
state that all different splits are based on the same replacement. Without a topological
change in the application of a production with different splits, we can then directly work
on the short-hand version of the productions presented in Section 2.4.

Given the short-hand version of a grammar G = (N,Σ, P, S, (markp)p∈P) and tables
〈M1,M2〉 resulting from running Pre(G,n), an equivalent short-hand version of grammar
G′ = (N ′,Σ, P ′, S′, (markp)p∈P ′) such that Ln(G) = Ln(G′) can be computed by the
following steps:

53

1. for each A ∈ N , for each 0 < j ≤ n, if A[j] 6= 0 define Aj ∈ N ′.

2. for each A
p−→ BC, i ∈ PN , for each 2 ≤ j ≤ n, if A

p−→ BC, i[j] 6= 0, for each

0 < j − i ≤ n, if B[k] 6= 0 and C[j − i− k] 6= 0 define Aj
p−→ BkC`′−k, i ∈ P ′N ′ , with

0 < k < j − i.

3. for each A
p−→ a, i ∈ PΣ, if A[j] 6= 0 define Aj

p−→ a, i ∈ P ′Σ.

The original grammar G is still referenced for the application of the replacements
during the generation phase, while G′ is only used in the pre-processing algorithm, where,
this time, each entry indicates the number of hypergraphs that can be obtained not only
by each production but also by each split. For each production p ∈ PN , a Huffman tree
denoted as h`[p], with 2 ≤ ` ≤ n, is constructed using Enc (Alg. 4). Each leaf represents
a possible choice of a split BkC`′−k while its weight is the number of hypergraphs that can
be derived choosing such a split B[k] · C[`′ − k].

3.3.3 Generation Phase

The generation phase presents a significant change, comparing to the first method, in
the way the split is selected during the following step:

k ← RNG with 0 < k < `′ and probability B[k] · C[`′ − k]/(A
p−→ BC, i)[`];

In this modified algorithm, Gen’, instead of going through all the available splits, we
use the Huffman trees produced in the pre-processing phase, to quickly select the split
corresponding to the interval that includes the integer generated by the RNG. Once a
production is chosen, we navigate the tree from the root to a leaf, if the generated number
is lesser or equal than the weight of the left child we follow the path to the left, otherwise
the one to the right. We repeat this operation until a leaf is reached, its label representing
the chosen split. Sel (Alg. 5) recursively performs such a selection.

3.3.4 Second Method Running Example

Running Pre with input (G′, 7) yields the matrices M3 and M4 in Table 3.6. We

then proceed, as described in [47], to build the binary trees τ`[A
p−→ BC, i], also denoted

as τ`[p], for each production p ∈ PN and 2 ≤ ` ≤ n used to optimize the selection of
the splits. Each leaf of the tree represents a possible split BkC`′−k and has a weight
w = B[k] · C[`′ − k]. Each internal node’s weight is equal to the sum of the weight of its
left and right children w = w′ + w′′. To build such tree we can use the same approach
proposed by Huffman in [39].

For example, to produce the tree τ6[P2], for selecting a split BkC`−k, with ` = 6−0 = 6
and 1 ≤ k < `, we proceed according to the following steps described in Figure 3.10.

Step 1 The weight corresponding to the possible splits C1D5, C3D3 and C5D1 are arranged
in a sequence of single node trees according to their weight in ascending order.

Step 2 The trees having the roots with the lowest weight, 4 and 6, are removed from the
sequence and added as the left and right child of a new subtree having 4 + 6 = 10
as root.

Step 3 The trees having root 10 and the 12, are joined into a single tree having 10+12 = 22
as root. Since the original forest has been reduced to a single binary tree, our
structure is now complete.

54

Algorithm 4: Enc - Splits Encoding

Given: the short-hand version of a grammar G′ = (N ′,Σ′, P ′, S′, (markp)p∈P ′); the
output 〈M1,M2〉 resulting from Pre(G′, n); a set of splits represented by the rhs

of a set of productions Ax
p−→ BjCk, i ∈ P ′N ′ referring to the same production p

and having the same lhs = Ax.
Input: a labelled weighted discrete graph D where each node v represents a
distinct split, with BjCk being its label and w = Ax

p−→ BjCk, i[x], the value of
the corresponding entry of M2, its weight.

Output: a weighted ordered binary tree constructed from D having its nodes as
leaves and each internal node having its weight equal to the sum of the weights of
its children.

Let ω be an empty sequence of pointers to nodes of the graph D and |ω| its length.
Insert a pointer to each node of D into ω, in descendant order according to their
weights:

foreach node v in D do
insertSort(ω, v);

end
Until there are less than 2 pointers in the sequence ω:
while |ω| > 1 do

Create a new node v̂ in D:
v̂ ← addNode(D);
Set the weight of v̂ to the weight of the node pointed by the last element of the
sequence:
v̂.w = getLast(ω).w;
Append the node pointed by the last element of the sequence as the left child of
v̂:

appendLeftChild(D, v̂, getLast(ω));
Remove the last element of the sequence, so that the sequence has a new last
pointer:

removeLast(ω);
Add to the weight of v̂ the weight of the node pointed by the last element of the
sequence:
v̂.w = v̂.w + getLast(ω).w;
Append the node pointed by the last element of the sequence as the right child
of v̂:

appendRightChild(D, v̂, getLast(ω));
Remove the last element of the sequence:
removeLast(ω);
Insert a pointer to the new node v̂ into ω:
insertSort(ω, v̂);

end

55

Algorithm 5: Sel - Select Split

Given: the short-hand version of a grammar G′ = (N ′,Σ′, P ′, S′, (markp)p∈P ′); the
output 〈M1,M2〉 resulting from Pre(G′, n); a set of splits represented by the rhs

of a set of productions Ax
p−→ BjCk, i ∈ P ′N ′ referring to the same production p

and having the same lhs = Ax
Input: an ordered weighted binary tree h representing the possible splits, where
each leaf represents a distinct split for p, with l = BjCk being its label and

w = Ax
p−→ BjCk, i[x], the value of the corresponding entry of M2, its weight; a

uniformly generated at random number r ←− RNG in the range 0 < r ≤ `′
Output: the label of a leaf representing the chosen split

Recursively navigate h and return the label of the first encountered leaf, starting
from the values (getRoot(h), r)

function selectSplit (v, n):
If v has no children
if isLeaf(v) then

return v.l;
else

If the weight of the left child is less or equal than n
if v.w ≤ n then

Continue the recursion on the left child of v with n
return selectSplit(getLeftChild(v), n);

else
Continue the recursion on the right child of v with subtracting the
weight of the left child of v from n

return selectSplit(getRightChild(v), n− getLeftChild(v).w);

end

end
end function

Table 3.5: Short version of the productions of the equivalent grammar G′ for language L7(G′)

S3
P1−→ C1D1, 1 C3

P3−→ C1D1, 1 D3
P6−→ D1C1, 1

S5
P1−→ C1D3, 1 C5

P3−→ C1D3, 1 D5
P6−→ D1C3, 1

S5
P1−→ C3D1, 1 C5

P3−→ C3D1, 1 D5
P6−→ D3C1, 1

S7
P1−→ C1D5, 1 C7

P3−→ C1D5, 1 D7
P6−→ D1C5, 1

S7
P1−→ C3D3, 1 C7

P3−→ C3D3, 1 D7
P6−→ D3C3, 1

S7
P1−→ C5D1, 1 C7

P3−→ C5D1, 1 D7
P6−→ D5C1, 1

S2
P2−→ C1D1, 0 C1

P4−→ c, 0 D1
P7−→ d, 0

S4
P2−→ C1D3, 0 C1

P5−→ d, 0

S4
P2−→ C3D1, 0

S6
P2−→ C1D5, 0

S6
P2−→ C3D3, 0

S6
P2−→ C5D1, 0

56

Table 3.6: Matrix M3 and M4 resulting from running Pre(G′, 7).

M3 M4

N 1 2 3 4 5 6 7

S2 0 2 0 0 0 0 0
S3 0 0 2 0 0 0 0
S4 0 0 0 6 0 0 0
S5 0 0 0 0 6 0 0
S6 0 0 0 0 0 22 0
S7 0 0 0 0 0 0 22
C1 2 0 0 0 0 0 0
C3 0 0 2 0 0 0 0
C5 0 0 0 0 6 0 0
C7 0 0 0 0 0 0 22
D1 1 0 0 0 0 0 0
D3 0 0 2 0 0 0 0
D5 0 0 0 0 6 0 0
D7 0 0 0 0 0 0 22

P 1 2 3 4 5 6 7

S3
P1−→ C1D1, 1 0 0 2 0 0 0 0

S5
P1−→ C1D3, 1 0 0 0 0 4 0 0

S5
P1−→ C3D1, 1 0 0 0 0 2 0 0

S7
P1−→ C1D5, 1 0 0 0 0 0 0 12

S7
P1−→ C3D3, 1 0 0 0 0 0 0 4

S7
P1−→ C5D1, 1 0 0 0 0 0 0 6

S2
P2−→ C1D1, 0 0 2 0 0 0 0 0

S4
P2−→ C1D3, 0 0 0 0 4 0 0 0

S4
P2−→ C3D1, 0 0 0 0 2 0 0 0

S6
P2−→ C1D5, 0 0 0 0 0 0 12 0

S6
P2−→ C3D3, 0 0 0 0 0 0 4 0

S6
P2−→ C5D1, 0 0 0 0 0 0 6 0

C3
P3−→ C1D1, 1 0 0 2 0 0 0 0

C5
P3−→ C1D3, 1 0 0 0 0 4 0 0

C5
P3−→ C3D1, 1 0 0 0 0 2 0 0

C7
P3−→ C1D5, 1 0 0 0 0 0 0 12

C7
P3−→ C3D3, 1 0 0 0 0 0 0 4

C7
P3−→ C5D1, 1 0 0 0 0 0 0 6

D3
P6−→ D1C1, 1 0 0 2 0 0 0 0

D5
P6−→ D1C3, 1 0 0 0 0 2 0 0

D5
P6−→ D3C1, 1 0 0 0 0 4 0 0

D7
P6−→ D1C5, 1 0 0 0 0 0 0 6

D7
P6−→ D3C3, 1 0 0 0 0 0 0 4

D7
P6−→ D5C1, 1 0 0 0 0 0 0 12

C1
P4−→ c, 0 1 0 0 0 0 0 0

C1
P5−→ d, 0 1 0 0 0 0 0 0

D1
P7−→ d, 0 1 0 0 0 0 0 0

57

4 6 12

C3D3 C5D1 C1D5

1 2 3

ω = ()

4 6 12

C3D3 C5D1 C1D5

1 2 3

ω = (1)

4 6 12

C3D3 C5D1 C1D5

1 2 3

ω = (2, 1)

4 6 12

C3D3 C5D1 C1D5

1 2 3

ω = (3, 2, 1)

12

4 6

C3D3 C5D1

C1D5
1 2

34

ω = (3, 2, 1)

4 12

4 6

C3D3 C5D1

C1D5
1 2

34

ω = (3, 2, 1)

4 12

4 6

C3D3 C5D1

C1D5
1 2

34

ω = (3, 2, 1)

4 12

4 6

C3D3 C5D1

C1D5
1 2

34

ω = (3, 2)

10 12

4 6

C3D3 C5D1

C1D5
1 2

34

ω = (3, 2)

10 12

4 6

C3D3 C5D1

C1D5
1 2

34

ω = (3, 2)

10 12

4 6

C3D3 C5D1

C1D5
1 2

34

ω = (3)

10 12

4 6

C3D3 C5D1

C1D5
1 2

34

ω = (3, 4)

10 12

4 6

C3D3 C5D1

C1D5
1 2

34

5

ω = (3, 4)

10

10 12

4 6

C3D3 C5D1

C1D5
1 2

34

5

ω = (3, 4)

10

10 12

4 6

C3D3 C5D1

C1D5
1 2

34

5

ω = (3, 4)

10

10 12

4 6

C3D3 C5D1

C1D5
1 2

34

5

ω = (3)

22

10 12

4 6

C3D3 C5D1

C1D5
1 2

34

5

ω = (3)

22

10 12

4 6

C3D3 C5D1

C1D5
1 2

34

5

ω = (3)

22

10 12

4 6

C3D3 C5D1

C1D5
1 2

34

5

ω = ()

22

10 12

4 6

C3D3 C5D1

C1D5
1 2

34

5

ω = (5)

Figure 3.10: Example of Huffman encoding for the production S
P2−→ CD, 0

58

To select the split for production S
P2−→ CD, 0 we follow the path from the root of the

binary tree to one of its leaves. For each internal node, having weight w, the left child,
having weight w′, has a probability w′/w to be chosen, while the right one, having weight
w′′, has a probability of w′′/w = 1− w′/w.

For example, starting from the root, w = 22, we may select its left child with probability
10/22 and then the split C5D1 with probability 6/10. As expected, the overall probability
to choose this split is 10/22 · 6/10 = 6/22.

3.3.5 Uniform Probability Distribution

For the second method, we focus the analysis of the uniformity of the sampling to show
that the modifications introduced for the choice of the split do not affect the probability
distribution of the generation. In the first method the RNG is used to select a split
BkC`′−k, among all the available ones for a given production p, each of them having

probability B[k] · C[`′ − k]/(A
p−→ BC, i)[`], that is, the number of hypergraphs that can

be derived using that split over the number of hypergraphs that can be derived using their
relative production. We have already proven that choosing a split requires linear time,
but, before getting rid of this bottleneck, it is fundamental to prove that the uniformity
of the sampling is preserved when using the trees constructed with the Huffman coding.

Theorem 3.3.1. Let Gen’ be a modified algorithm obtained by selecting the splits in
Algorithm Gen using Huffman trees, then given a grammar G = (N,Σ, P, S, (markp)p∈P),
Gen’ generates from every non-terminal A ∈ N a size-n-hypergraph H ∈ LAn (G), provided
that LAn (G) 6= ∅. If G is n-unambiguous and RNG is a uniform random number generator,
the hypergraph is chosen uniformly at random.

Proof. Given a grammar G = (N,Σ, P, S, (markp)p∈P), let p ∈ PN be a non-terminal
production and BkC`′−k a split for p.

Let Nsj = B[k] ·C[`′ − k] be the number of hypergraphs that can be derived from the

jth split and Np = (A
p−→ BC, i)[`] be the number of hypergraphs that can be derived

from p so that the probability of a split to be chosen is P (sj) = Nsj/Np, with
∑

j Nsj = Np.
In the first method, for choosing the split, a random integer r in the interval [1, p[`]] is
generated and all the splits are evaluated until the jth split for which

∑
1≤i≤j Nsi ≥ r is

reached.
Let h be a Huffman tree for p and a size ` where each leaf has its weight Nsj =

B[k] ·C[`′ − k], that is, the number of hypergraphs that can be derived choosing the split.
Let vsj be the leaf corresponding to the jth split having weight Nsj and let vp be the root
of h having weight Np. Each node has a probability to be chosen equal to Nv/Nparent(v).

From Sel (Alg. 5) we know that the probability of traversing the tree from the root vp
to vsj is given by the productory of all the probabilities of the nodes in the path vp → vsj
having length m to be chosen. Let v0 = vp and vm = vsj , then the overall probability of
the path to be traversed is:∏

1≤i≤m

Nvi

Nvi−1

=
Nvj

Nvm−1

Nvm−1

Nvm−2

· · · Nv1

Np
=
Nvj

Np
=

B[k] · C[`′ − k]

(A
p−→ BC, i)[`]

(3.3)

That corresponds to the choice of the split B[k] · C[`′ − k].

A simple and practical example of this proof is the following: let’s consider the first and
the last graphs of Figure 3.10. Since in a uniform distribution the order of the elements
doesn’t affect their probability to be sampled, let’s arrange them as they are found in the

59

pre-order visit of the Huffman encoded tree. Thus let’s consider the result of the RNG
to be 8. In the first case we have a sequence of intervals, that is, the frequencies of the
elements, of 4, 6 and 12. Going through them we skip the first element because 4 < 8,
so it lies outside the first interval and then we know that 8 falls into the second one for
5 ≤ 8 ≤ 10, that is, the sampled element is the split C5D1. Now let’s consider the same
elements arranged in the tree. Navigating from the root, the first choice we encounter is
between the intervals [1, 10] and [11, 22]. 8 falls into the first interval so we follow the path
on the left. The next choice is between the intervals [1, 4] and [5.10]. Clearly, as in the
previous case, it falls into the second interval, resulting in the choice of the right path,
that is, the split C5D1.

As we can see, Huffman encoded trees are merely a way to enhance the time for the
choice of a split, but they do not alter the probability distribution of the generation.

3.3.6 Time and Space Complexity

The analysis of the complexity of the second method is mostly based on the shifting of
part of the computational weight from the generation to the pre-processing phase. Even
if at a first glance it may appear that the number of additional operation outweighs its
advantages, or may even lean towards longer generation times, we should remember that
we suppose that the size of the generated graphs to be sufficiently larger than the grammar
describing their language and that the size of the grammar itself is consider as a constant.

Lemma 3.3.1. The structures needed for the generation of a size-n-hypergraph in the
second method can be produced by Algorithms Pre and Enc in O(n2) time.

Proof. Lemma 3.2.2 proves that the pre-processing tables for a grammar G and a size n
can be produced in linear time O(n). The data needed for the Huffman encoding, that
is, the splits and the number of hypergraphs that can be derived from each one of them,
can be also retrieved while running the same algorithm. Indeed, during the computation
of the number of hypergraphs that can be derived from a non-terminal A, we have to
go through all the available splits for a production having A on its lhs. Alternatively,
we can first produce an equivalent grammar G′ input (G′, n), with L(G) = L(G′), for all
the possible splits an then run Pre (Alg. 2) to produce them. The table can then be
easily condensed again into the standard one for an input (G,n) calculating the sum of
all the entries generated for the same referenced production. As for the time complexity
of Enc (Alg. 4), we consider that for an entry p[`] a production has at most `− 1 splits.
Without loss of generality let’s consider the case of n− 1 splits. To produce the encoded
tree the splits are arranged into a graph and a sequence is constructed to order them
in their ascending order. This can be done in O(n log n) time by a simple binary sort
algorithm. Adding a new node to the graph and its weight to the sequence can be done
in constant time. Joining the first 2 nodes with the least weight as children of the new
node and removing their weight from the sequence can also be done in constant time. All
the actions involving the resize of both the tree and the sequence are performed exactly
n− 1 times. Reordering the sequence for a single new value can be done in O(log n) time.
Since in the worst case we need to produce n − 1 trees for each production, considering
the size of the grammar as a constant the time complexity of the whole process is bound
to be O(n2).

Lemma 3.3.2. The space needed by Algorithm Pre and Algorithm Enc to store the data
structures used by the modified generation algorithm for producing a size-n-hypergraph is
bounded by O(n2).

60

Proof. Let G = (N,Σ, P, S, (markp)p∈P) be an HRG and n the size of the hypergraph to
be generated. Lemma 3.2.3 proves that tables M1 and M2 resulting from running Pre
(Alg. 2) on input (G,n) need O(n) space to be stored. Let’s consider the worst case in
which all non-terminal productions p ∈ PN do not produce any internal nodes and can
derive all size-`-hypergraphs for 2 ≤ ` ≤ n. Moreover, let’s consider that for each size `,
all possible `− 1 splits are available. We recall that for Proposition 3.3.1 a Huffman tree
with k leaves has exactly 2k − 1 nodes, that is to represent all the trees for all the splits
of all productions. Considering both algorithms, the total space needed is:

c

n∑
`=2

2(`− 1)− 1 + cn = c

n∑
`=2

2`− 3 + cn = 2c

n∑
`=2

`− c
n∑
`=2

3 + cn =

= 2c(
n(n+ 1)

2
− 1)− 3c(n− 1) + cn = cn2 + cn− 2c− 3cn+ 3c+ cn = c(n2 − n+ 1)

(3.4)

The result of Equation 3.4 is in O(n2) for any positive integer n ∈ N.

To analyze the complexity of the generation algorithm used in the second method we
consider its amortised time. While a thorough explanation of this subject can be found
in [11], we stress that such a complexity must not be confused with the “average” time
of the execution of an algorithm. The radical difference is in that while the average time
is based on the probability of such an algorithm to perform better according to the input
or the results of its stochastic processes, the amortized time guarantees the average time
of execution by sharing the overall computational weight among all its operations. This
is due to the fact that operations are guaranteed to balance each others, that is, if any of
them has a longer execution time, it unconditionally results in the shortening of another.
The group of operations is so considered and analyzed as a whole, rather than as a single
construct.

Theorem 3.3.2. With the assumptions of Theorem 3.3.1, the size-n-hypergraph H is
generated by Gen’ in amortized time O(n).

Proof. Given a grammar G = (N,Σ, P, S, (markp)p∈P), let p ∈ PN be a non-terminal pro-
duction and BkC`′−k a split for p. Let Nsj = B[k] ·C[`′ − k] be the number of hypergraphs

that can be derived from the jth split and Np = (A
p−→ BC, i)[`].

Algorithm Gen’, the modified version of Algorithm 3 uses the Huffman trees con-
structed in the pre-processing phase to select the splits. In the first method we had to
go through all the possible splits of a production and then pick one according to the re-
sult of the RNG, this clearly required linear time in n, that is, the size of the generated
hypergraph. Proposition 3.3.2 states that the height h of a full binary tree, being s the
number of its leaves is dlog2se + 1 ≤ h ≤ s, thus, in the worst case, the height of such a
tree is equal to the number of leaves. That could easily mislead to consider Gen’ to have
the same asymptotic behavior of its original counterpart. The proof consists instead in
showing that even if a single choice may fall in the worst case, it will eventually improve
the time needed for choosing the next ones. That is, the computational weight is shared
among the choices.

Let’s first consider that since a derivation tree for the generation of a size-n-hypergraph
has exactly n− 1 internal nodes representing the choice of a production, we need n− 1 +
log2A[`] computational steps to produce the whole hypergraph traversing all the necessary
binary trees, taking into account the additional time for choosing the splits. As shown

61

in Algorithm 4, at each step of the encoding the two nodes with the lowest weights are
joined together as child of a new node having the weight equal to the sum of both. and
then the resulting node is added and reordered in the sequence. In order to have this node
picked again, increasing the height of the tree at each step, its weight must be again one
of the lowest ones. Without loss of generality, let’s consider a sequence of nodes v1 . . . v`′

with weights w1 = 20 . . . w`′ = 2`
′−1. Figure 3.11 shows an example of such an encoding

for `′ = 7.

15

7 8

3 4

1 2

1 2

3

4

5

6

7

Figure 3.11: Huffman encoding for 4 nodes having weights 20 . . . 23

Thus, the height of the Huffman tree for a production p is at most blog2(Np/Nsj)c for
any jth split. Let’s for example consider the boundary case in which Np = 2a for some
a > 0 and Nsj = 1. Without loss of generality let’s suppose that each non-terminal has
at most 1 terminal production and each production does not generate additional nodes,
that is ` = `′ at each step. Knowing that Nsj = B[k] · C[`′ − k] for some non-terminal B
and C, we can inductively calculate the amortized time t complexity for generating a size
` hypergraph from any non-terminal A inductively as follows:

• If ` = 1, we only have to choose a terminal production, then, since we do not need
to choose any split, t = 1− 1 + log2A[`] = 0.

• Otherwise, t ≤ 1− 1 + log2A[`] = 1 + (blog2(Np/Nsj)c) + (k− 1 + log2B[k]) + (`′ −
k − 1 + log2C[`′ − k]).

We may notice that this is independent from the choice of k and, moreover that if the
choice of a split results from the travelling of a long path in the Huffman tree, it means
that in the next step the choices relative to the non-terminal B and C must be quicker,
because there will be less hypergraphs to choose from. Again, considering the boundary
case, if we follow the longest path to a split that can generate only 1 hypergraph, trivially
the next 2 steps will immediately end.

Finally we should notice that in a more general case, removing the constraint of a
single terminal production for each non-terminal, a split k = 1 for A, may generate at
most a fixed number of graphs.

Lemma 3.3.3. The space required by Algorithm Gen’ for the generation of a size-n-
hypergraph is in O(n).

We omit the proof of the complexity analysis for the generation phase of the second
method because it is identical to the one of the first method (Lemma 3.2.4).

62

Chapter 4

Case Studies

This chapter is dedicated to the analysis of some relevant case studies using sets of sim-
ple but significant productions. Differently from string languages, in which the positions
of symbols are always arranged in a fixed order from left to right, when dealing with graph
languages, as described in chapter 3, we must consider both the labels of the hyperedges
and their positions in the graph. For each case, we discuss the reasons for the inherent
ambiguity of the language or we provide a non-ambiguous grammar. When discerning the
use of multiple labels, without loss of generality, we limit the study to grammars present-
ing productions having the same structure for their hyperedges on the rhs, but having 1 or
2 different labels, being straightforward the extension to 3 or more. It is very important
to remember that even if we generate hypergraphs in the slice of a language and such a
slice is finite, the choice of the slice happens after the definition of the grammar. So, the
analysis of the ambiguity of the following cases is based on non-finite languages.

Since we have already proven the equivalence of the probability distribution of the two
sampling methods, we construct the examples using only the first one, being the process
clearer to follow.

String graph languages represent a particular case and will be treated in the next
chapter.

4.1 Discrete Hypergraph Languages

The discrete hypergraph language is the language of all non-connected graphs com-
posed only by 0-hyperedges, that is, independent edges that are not connected to any node.
For its simplest form, the singly labelled, it is possible to construct a non-ambiguous CNF
grammar to sample from as shown in Figure 4.1.

S ::= A

α

S

β
P1

a

P2

A ::= a

P3

Figure 4.1: Non-ambiguous CNF grammar D1 representing the single labelled discrete hyper-
graphs language.

From the grammar we can already evince that it doesn’t present any structural nor
labels related ambiguity. Indeed, the productions do not present any pair of hyperedges
that could potentially generate the same subgraph, leading to derivation trees yielding
isomorphic hypergraphs. We remind that, despite a shorter non-ambiguous grammar can

63

be found, according to the Chomsky Normal Form defined in 2.4, the rhs of a production
must have either 1 terminal or 2 non-terminal hyperedges. This is the reason P1 has a
hyperedge labelled A that can only turn into a terminal a applying the production P3.

Table 4.1: Matrices M1 and M2 resulting from Pre(D1, 3)

M1 M2

N 1 2 3

S 1 1 1
A 1 0 0

P 1 2 3

S
P1−→ AS, 0 0 1 1

S
P2−→ a, 0 1 0 0

A
P3−→ a, 0 1 0 0

Tables 4.1 show that, correctly, there is only one way to generate a size-3-hypergraph.
Inductively we could simply extend these tables for any size k > 3, for P1[k] = A[1]S[k−1]
and S[k] = P1[k].

S P1
=⇒ A

α

S

β
Step 1

Prod.: P1 (1/1)
Split: A1S2 (1/1)

P3
=⇒ a S

β
Step 2

Prod.: P3 (1/1)
No split

P1
=⇒ a A

α

S

β
Step 3

Prod.: P1 (1/1)
Split: A1S1 (1/1)

P3
=⇒ a a S

β
Step 4

Prod.: P3 (1/1)
No split

P2
=⇒ a a a

Step 5
Prod.: P2 (1/1)

No split

Figure 4.2: Derivation for a size-3-hypergraph using grammar D1.

The derivation in Figure 4.2 represents the unique way to generate a single labelled
size-3-hypergraph uniformly at random with probability 1/1. We may notice, as we did
before for the grammar, that none of the sentential forms presents a structural ambiguity.
We may conclude that:

Proposition 4.1.1. For every single labelled discrete hypergraph language there exists a
non-ambiguous grammar generating that language.

Proof. D1 is a non-ambiguous grammar representing the discrete hypergraph language
L(D1) having lab(e) = a for each hyperedge e ∈ EH with H ∈ L(D1).

If we increase the number of labels, we can still construct a non-ambiguous CNF
grammar represented in Figure 4.3. In this case, it is easy to avoid the ambiguity of
generating either a or b from the same non-terminal hyperedge using the common strategy
of producing all the as before the bs.

S ::= A

α

S

β
P1

B

α

C

β
P2

a

P3

b

P4

C ::= B

α

C

β
P5

b

P6

A ::= a

P7

B ::= b

P8

Figure 4.3: Non-ambiguous CNF grammar D2 representing the doubly labelled discrete hyper-
graphs language.

From Tables 4.2 we may notice that the entry S[3] = 4 corresponds to the 4 differ-
ent combinations of hyperedges labelled with a or b that can be obtained with a size-
3-hypergraph. As the previous case, it is possible to see how the table extends for the
generation of a size-k-hypergraph with S[k] = k + 1.

The derivation in Figure 4.4 shows the unique derivation for the size-3-hypergraph
with labels a b b. Such a hypergraph is sampled with probability 1/4 among the 4 possible

64

Table 4.2: Matrices M1 and M2 resulting from Pre(D2, 3)

M1 M2

N 1 2 3

S 2 3 4
C 1 1 1
A 1 0 0
B 1 0 0

P 1 2 3

S
P1−→ AS, 0 0 2 3

S
P2−→ BC, 0 0 1 1

C
P2−→ BC, 0 0 1 1

S
P3−→ a, 0 1 0 0

S
P4−→ b, 0 1 0 0

C
P6−→ b, 0 1 0 0

A
P7−→ a, 0 1 0 0

B
P8−→ b, 0 1 0 0

S P1
=⇒ A

α

S

β
Step 1

Prod.: P1 (3/4)
Split: A1S2 (3/3)

P7
=⇒ a S

β
Step 2

Prod.: P7 (1/1)
No split

P5
=⇒ a B

α

C

β
Step 3

Prod.: P5 (1/3)
Split: B1C1 (1/1)

P8
=⇒ a b C

β
Step 4

Prod.: P8 (1/1)
No split

P6
=⇒ a b b

Step 5
Prod.: P6 (1/1)

No split

Figure 4.4: Derivation for a size-3-hypergraph using grammar D2.

combinations of as and bs. Considering the grammar Gdldh, without loss of generality, we
can express the following proposition for discrete graphs having an arbitrary number of
labels:

Proposition 4.1.2. For every multiple labelled discrete hypergraph language there exists
a non-ambiguous grammar generating such a language.

Proof. As we have extended the grammar D1 into D2 by adding the productions for B
and C, we could iterate this process to generate a non-ambiguous grammar having any
number n of terminal labels. So, without loss of generality, let’s consider a language
over just two labels a and b. Since D2 is a non-ambiguous grammar representing the
discrete hypergraph language L(D2) having lab(e) ∈ {a, b} for each hyperedge e ∈ EH
with H ∈ L(D2), so Dn is a non-ambiguous grammar representing the language L(Dn)
having lab(e) ∈ {a1, . . . , an} for each hyperedge e ∈ EH with H ∈ L(Dn).

We can now apply these proposition to more complex structures and present the fol-
lowing corollary:

Corollary 4.1.1. Let Comp be a finite set of connected hypergraphs and L be a hypergraph
language having members composed by one or more non-connected parts, each part being
an element of Comp. Then, there exists a non-ambiguous grammar generating such a
language.

Proof. Let G be a grammar presenting the same structure of non-terminal productions
as in D2 for the sequential derivation of discrete non-terminals A1 . . . Ak, that avoids the
interleaved production of different non-terminals. Let {C1 . . . Ck} ⊆ Comp be a finite set
of non-isomorphic hypergraphs. Adding the productions for each derivation A•j −→ Cj
for 1 ≤ j ≤ k to G results in a non-ambiguous grammar. If we consider a sub-tree t′

of the derivation tree t up to the production of the non-terminals A1 . . . Ak, we know
from Proposition 4.1.2 that each t′ has a different sequence of non-terminals given by
its pre-order traversal. If we then extend t′ to t, we know that each additional branch is

65

attached to a production having a specific non-terminal on its lhs, so their order cannot be
changed. We also know that the derivations obtained by following two different branches
cannot generate the same graph. That is, there cannot exist two different derivation trees
yielding the same non-connected hypergraph.

As for the string case, we remind that the trivial case of a finite hyperedge replacement
language has always a non-ambiguous grammar representing it.

4.2 Star Graph Languages

Corollary 4.1.1 is restricted by the finiteness of the non-connected components. If we
consider the star graphs instead, we may move forward to study further implications. By
“star” we identify a graph having a set of 1-hyperedges all connected to a single common
node. Graph S and S′ represent respectively a 4-pointed single labelled star and a 3-
pointed multiply labelled star.

1

1 1

1
a

a

a

a

S

1

1

1
a

b

b

S′

1

1

1

1

1

1

a

a

a

a

a

a

· · ·

C1 C2 Cm

M

1

1

1

1 1

1
a

a

a

a

a

a

M ′

1

1 1

1 1

1

a

a

a a

a

a

· · ·

C1 C2 Cm

M ′′

Figure 4.5: Examples of star graphs.

The language of star graphs has non-ambiguous grammars for both its singly and
multiply labelled forms. Figures 4.6 and 4.7 represent respectively the former and the
latter.

S ::=
1

1
A

α

C

β

1

P1

1

a

1

P2

1

P3

C ::=
1

1
A

α

C

β

1

P4

1

a

1

P5

A ::=
1

a

1

P6

Figure 4.6: Non-ambiguous grammar for the single labelled star graph language.

Let’s now consider the language of multiple star graphs, that is, each graph is composed
by non-connected stars. Let e be an edge connected to the centre of a star, we use the
following notation (ex)y to indicate the structure of the hypergraphs in the language,
where x is the number of points of a star and y the number of stars in the graph. We
use the symbol ∗ to indicate an unbounded quantity. We may discern 5 different cases,
according to the settings of the number of starts and their points.

Case 1: (en)m. If both the number of points n for each star and the number of stars
m in the graph are arbitrary (Graph M in Fig. 4.5) we fall into a problem structurally
equivalent to the string language (anb)m. That is, an arbitrary number m of substrings
all having the same length n separated by a symbol b. Similarly M shows m separated
components C1, C2, . . .Cm. Intuitively, in the context of hypergraphs, we may consider it
as a grid expanding in 2 directions where each column m has exactly n rows. As proven
by Engelfriet in [18], this language is not context-free.

66

S ::=
1

1
A

α

C

β

1

P1

1

1
B

α

D

β

1

P2

1

a

1

P3

1

b

1

P4

1

P5

D ::=
1

1
B

α

D

β

1

P10

1

b

1

P11

C ::=
1

1
A

α

C

β

1

P6

1

1
B

α

D

β

1

P7

1

a

1

P8

1

b

1

P9

A ::=
1

a

1

P12

B ::=
1

b

1

P13

Figure 4.7: Non-ambiguous grammar for the multiple labelled star graph language.

Case 2: (ek)m. If the number of points for each star is a constant k, while the number
of stars m in the graph is arbitrary, we can apply the Corollary 4.1.1, since each non-
connected component of the graph is part of a finite set. Figure 4.8 shows a non-ambiguous
grammar representing the language for k = 3. A member of this language is the graph
M ′ in Figure 4.5. We may notice that production P1 allows for any number of 3-pointed
stars to be generated.

Proposition 4.2.1. For every stars graph language (ek)m, where k is a constant number
of points e of each star and m is an arbitrary number of stars, there exists a non-ambiguous
grammar generating such a language.

Proof. Sk,m is a non-ambiguous grammar representing the stars graph language L(Sk,m)
having k = 3.

S ::= B

α

S

β

P1

1

1
A

α

C

β
P2

B ::=
1

1
A

α

C

β
P3

C ::=
1

1
A

α

A

β

1

P4

A ::=
1

a

1

P5

Figure 4.8: Non-ambiguous grammar Sk,m for the (ek)m star graph language with k = 3.

Case 3: (en)k. If the number of points n for each star is arbitrary, while the number of
stars is constant k, there exists a non-ambiguous grammar representing the language. We
can indeed connect a k-hyperedge to the central node of each star at once and generate
the same number of points. Figure 4.9 shows a non-ambiguous grammar representing the
language for k = 2. The graph M ′ is a member of this language. We may notice that
iterating P3 and P5 we may generate 2 stars with an arbitrary number of points.

Proposition 4.2.2. For every stars graph language (en)k, where n is an arbitrary number
of points e of each star and k is a constant number of stars, there exists a non-ambiguous
grammar generating such a language.

Proof. Sn,k is a non-ambiguous grammar representing the stars graph language L(Sn,k)
having k = 2.

67

S ::=
1 2

1
B

α

A

β

1 2

P1

1 2

P2

B ::=
1 2

1
C

α

A

β

1 2

P3

1

a

1 2

P4

C ::=
1 2

1
B

α

A

β

1 2

P5

A ::=
1

a

1

P6

Figure 4.9: Non-ambiguous grammar Sn,k for the (en)k star graph language with k = 2.

Case 4: (en)∗. If the number of points n is arbitrary and the number of stars is
unbounded, the language is again non context-free. Intuitively, as the first case, we need
to generate non-connected identical components. A grammar as in Figure 4.9 would not
work because the type of the shared hyperedges adding the same amount of points to each
star should be also unbounded. That is, the hyperedges should be untyped.

Case 5: (e∗)m. If the number of points is unbounded, but the number of stars m in the
graph is arbitrary, such a language is inherently ambiguous. This is the most interesting
case as it represents a first example of structural ambiguity. Graph M ′′ in Figure 4.5 is
a member of this language. Starting from the same approach used for the grammar in
Figure 4.8 for the case (ek)m we generate a sequence of isolated non-terminal hyperedges,
then, from any of them, we generate a star with an unbounded number of points.

Proposition 4.2.3. The stars graph language (e∗)m, where ∗ is an unbounded number of
points e of each star and m is an arbitrary number of stars is inherently ambiguous.

Proof. These graphs are composed by an arbitrary number of stars each of them having an
unbounded number of points. We can consider them as unconnected components of non-
finite size, since each of them can have any number of edges. It is not possible to generate
all components from a single connected non-terminal hyperedge, since it would require an
arbitrary type m-hyperedge and by definition all hyperedges have a fixed type. Let t be the
maximum type for a hyperedge, then there are exactly dm/te unconnected components.
Thus, without loss of generality, let’s consider each component C1, . . . , Cm to be generated
by a 0-hyperedge e1, . . . , em. Since each component has an unbounded number of edges
e1, . . . , em are pairwise symmetric. Let S1, S2 be star graphs with |S1| 6= |S2| and let
m = 2 be the number of stars. For any context-free grammar representing L(S∗,m) it is
always possible to obtain two different derivations where C1 = S1 and C2 = S2 or C1 = S2

and C2 = S1. That is, the language L(S∗,m) is inherently ambiguous.

1
1

A

α1

A

α2

1

2

H

1

1

1

a

a

a

C1 C2

H ′

1

1 1

a

a

a

C1 C2

H ′′

Figure 4.10: Symmetric hyperedges along with the derived isomorphic size-5-hypergraphs for the
(e∗)m star graph language with m = 2.

Figure 4.10 shows an example of derived isomorphic graphs H ′ ∼= H ′′ in the language
L(S∗,m) for m = 2 where the components C1 and C2 are a single and a double pointed
star graphs. Such an ambiguity is caused by the structural symmetry of the hypergraph
H.

68

S ::= B

α

S

β

P1

1

1
A

α

C

β
P2

1

a

P3 P4

B ::=
1

1
A

α

C

β
P5

1

a

P6 P7

C ::=
1

1
A

α

C

β

1

P8

1

a

1

P9

A ::=
1

a

1

P10

Figure 4.11: Ambiguous grammar S∗,m for the (e∗)m star graph language.

Table 4.3 show the result of algorithm Pre on input (S∗,m, 3). We may notice that the
entry S[3] = 4. There are indeed 4 hypergraphs that can be generated from the starting
symbol, but, 2 of them are isomorphic, as shown in Figure 4.12. That proves the ambiguity
of the grammar.

Table 4.3: Matrices M1 and M2 resulting from Pre(S∗,m, 3)

M1 M2

N 1 2 3

S 1 2 4
B 1 1 1
C 1 1 1
A 1 0 0

P 1 2 3

S
P1−→ BS, 0 0 1 3

S
P2−→ AC, 1 0 0 1

B
P5−→ AC, 1 0 0 1

C
P8−→ AC, 0 0 1 1

S
P3−→ a, 1 0 1 0

S
P4−→ λ, 1 1 0 0

B
P6−→ a, 1 0 1 0

B
P7−→ λ, 1 1 0 0

C
P9−→ a, 0 1 0 0

A
P10−→ a, 0 1 0 0

S P1
=⇒ B

α

S

β

Step 1
Prod.: P1 (3/4)
Split: B1S2 (2/3)

P7
=⇒ S

β

Step 2
Prod.: P7 (1/1)

No split

P5
=⇒

1

a

Step 3
Prod.: P3 (1/1)

No split

S P1
=⇒ B

α

S

β

Step 1
Prod.: P1 (3/4)
Split: B2S1 (1/3)

P6
=⇒

1

a

S

β

Step 2
Prod.: P6 (1/1)

No split

P4
=⇒

1

a

Step 3
Prod.: P4 (1/1)

No split

Figure 4.12: Derivations of a size-3-hypergraph showing the ambiguity of S∗,m grammar.

Generalising these concepts to a wider class of graphs we can present the following
Corollary on the inherent ambiguity of languages of which members are made of an arbi-
trary number of unconnected parts, each part being an element of an infinite set:

Corollary 4.2.1. Let Comp be an infinite set of connected hypergraphs and L be a hyper-
graph language having members composed by one or more non-connected parts, each part
being an element of Comp. Then, L is inherently ambiguous.

69

Proof. The proof comes from the generalisation of Proposition 4.2.3 to components that
are elements of an infinite set of connected graphs.

4.3 Cycle Graph Languages

The Cycle Graph Languages are the languages of hypergraphs composed by closed
chains of 2-hyperedges. To study the characteristics of these languages we consider all the
hyperedges oriented in the same direction. That is, if a pair of them shares a node, it is the
first attachment node for one and the second for the other. Formally, if att(e)i = att(e′)j
then i 6= j.

1

2

1

2

a

a

H1

1

2

1 2

1

2

12

a

a

a

a

H2

1

2

1 2 1 2 1 2

1

2

121212

a

b a b

a

bab

H3

Figure 4.13: Example of cycle graphs.

Figure 4.13 shows 3 examples of cycle graphs. H1 is a simple cycle composed by 2
hyperedges. H2 is a singly labelled cycle while H3 is a multiply labelled cycle. As the
previous case, we limit the number of labels to 2. The structural ambiguity of the cyclic
component is slightly different from the previous case. While, as a subgraph, a cycle can
potentially lead to a structural ambiguity, in this particular case we are interested in the
ambiguity derived from the number of labels used.

S ::=

1

2

1

2

A

α

C

β
1

P1

1
2

a

1

P2

C ::=

1

2

1

2

A

α

C

β

1

2

P3

1

2

a

1

2

P4

A ::=

1

2

a

1

2

P5

Figure 4.14: Non-ambiguous grammar C1 for the single labelled cycle graph language.

Figure 4.14 shows a non-ambiguous grammar for the singly labelled cycle graph. This
grammar is conceptually equivalent to the one representing an open chain of hyperedges,
or, in the string setting, a grammar resolving the ambiguity for the regular language a∗.
Indeed, the graph develops only in a single direction.

Proposition 4.3.1. For every singly labelled cycle hypergraph language there exists a
non-ambiguous grammar generating that language.

Proof. C1 is a non-ambiguous grammar representing the cycle hypergraph language L(C1)
having lab(e) = a for each hyperedge e ∈ EH with H ∈ L(C1).

Figure 4.15 shows an ambiguous grammar for the multiply labelled cycle graph. Even if
apparently the difference from its singly labelled counterpart resides only in the doubling
of the productions for the b labelled terminal hyperedges, the circular structure of the
graphs generates an unavoidable symmetry. Intuitively, we may think about these graphs
as an unbounded number of blocks a∗b∗ given in any order, since their cyclic nature.

70

S ::=

1

2

1

2

A

α

C

β
1

P1

1

2

1

2

B

α

C

β
1

P2

1
2

a

1

P3

1
2

b

1

P4

C ::=

1

2

1

2

A

α

C

β

1

2

P5

1

2

1

2

B

α

C

β

1

2

P6

1

2

a

1

2

P7

1

2

b

1

2

P8

A ::=

1

2

a

1

2

P9

B ::=

1

2

b

1

2

P10

Figure 4.15: Ambiguous grammar C2 for the multiply labelled cycle graph language.

Proposition 4.3.2. The multiply labelled cycle graph language is inherently ambiguous.

Proof. Let a and b be the two labels of a multiply labelled cycle graph language and let’s
consider the following cases:

• All non-terminal hyperedges are produced before being replaced by terminal as and
bs. Suppose that they are replaced in an arbitrary order. Since the cycle has an
arbitrary number of edges, keeping track of their terminal replacements would require
an untyped non-terminal hyperedge. This case presents the same problem of the
(e∗)m stars graph language and, equivalently, it is not solvable for a non-ambiguous
grammar.

• The non-terminal hyperedges are produced and replaced without any specific order.
That is, at some point of the derivation two non-terminal hyperedges may be sepa-
rated by one or more terminals and still having an infinite generative power. That’s
structurally equivalent of having two unconnected components. For Corollary 4.2.1
such a grammar is ambiguous. The minimal structure causing the ambiguity is the
graph H in Figure 4.16.

• The non-terminals are produced and replaced in a circular order as described in the
grammar in Figure 4.15. Even if this grammar is able to produce unique sequences
of terminals, we should remember that the underlying structure is a circle, not a
line. That is, for a cycle with n hyperedges, there are at most n ways to produce
the same hypergraph, the worst case being the one with all as but one or viceversa.

Since there is no arrangement in the production of labels or the relative hyperedges that
can allow for a non-ambiguous grammar, the language is inherently ambiguous.

We may notice that a non-ambiguous grammar, as the one in Figure 4.14, for the singly
labelled cycle graphs is possible because in the third case producing an ordered circle of
terminals has a unique sequence.

Figure 4.16 shows an example of derived isomorphic size-8-hypergraphs H ′ ∼= H ′′ in
the multiply labelled cycle graph language. Such an ambiguity is caused by the structural
symmetry of the hypergraph H.

71

1

2

1

2

A

α

A

β
1

2

H

1

2

1 2

1

2

12

b

b

a

a

H ′

1

2

1 2

1

2

12

a

a

b

b

H ′′

Figure 4.16: Symmetric hyperedges along two possible isomorphic size-8-hypergraphs for the
multiply labelled cycle graph language with labels a and b.

Table 4.4 show the result of algorithm Pre on input (C2, 3). We may notice that the
entry S[3] = 4. Since the starting handle is a 1-hypergraph we may generate the table for
a size of n − 1. There are indeed 4 hypergraphs that can be generated from the starting
symbol, but, 2 of them are isomorphic, as shown in Figure 4.17. That proves the ambiguity
of the grammar.

Table 4.4: Matrices M1 and M2 resulting from Pre(C2, 3)

M1 M2

N 1 2 3

S 2 0 4
C 2 0 4
B 1 0 0
A 1 0 0

P 1 2 3

S
P1−→ AC, 1 0 0 2

S
P2−→ BC, 1 0 0 2

C
P5−→ AC, 1 0 0 2

C
P6−→ BC, 1 0 0 2

S
P3−→ a, 0 1 0 0

S
P4−→ b, 0 1 0 0

C
P3−→ a, 0 1 0 0

C
P4−→ b, 0 1 0 0

A
P9−→ a, 0 1 0 0

B
P10−→ b, 0 1 0 0

In a more general case, the same approach can be used to analyze the ambiguity of a
cycle language in which the hyperedges can be oriented in both ways. Even for the singly
labelled case, this language is still inherently ambiguous. The ambiguity in fact derives
by the circular structure itself, potentially generating an infinite number of components,
rather than them being distinguished by different labels or subgraphs.

4.4 Tree Languages

There are several ways to represent trees using hypergraphs, for example using 3-
hyperedges for representing branching in binary trees where the 3 attachment nodes re-
spectively represent the parent, left child and right child. Despite being very effective, this
approach hides the ambiguity problem we want to study. The advantage of hypergraphs to
naturally describe the order of their connected elements would also enforce an ordering for
the children of a parent node. That’s the reason we prefer to use the more classic approach
of using terminal 2-hyperedges to represent connections of parent nodes to their children.
Again we distinguish between singly labelled trees and multiply labelled trees, but with an
additional restriction: the uniqueness of the labelling is extended to the edges connecting
the children of a node. It means that in the multiply labelled case a node cannot have

72

1

S P1
=⇒

1

2

1

2

A

α

C

β
Step 1

Prod.: P1 (2/4)
Split: A1C1 (1/1)

P9
=⇒

1

2

1

2

a

C

β
Step 2

Prod.: P9 (1/1)
No split

P8
=⇒

1

2

1

2

a

b

Step 3
Prod.: P8 (1/1)

No split

1

S P2
=⇒

1

2

1

2

B

α

C

β
Step 1

Prod.: P2 (2/4)
Split: B1C1 (1/1)

P10
=⇒

1

2

1

2

b

C

β
Step 2

Prod.: P10 (1/1)
No split

P7
=⇒

1

2

1

2

b

a

Step 3
Prod.: P4 (1/1)

No split

Figure 4.17: Derivations of a size-4-hypergraph showing the ambiguity of C2 grammar.

children connected with hyperedges having the same label, otherwise, we would fall into
the same singly labelled case while considering the sub-tree of that node.

1

2

1

2

1

2

1

2

a a

a a

H1

1

2

1

2

1

2

1

2

a b

a b

H2

1

2

1

2

1

2

1

2

1

2

1

2

a b

b a a b

H3

Figure 4.18: Example of tree graphs.

The graphs H1 and H2 in Figure 4.18 are respectively a singly labelled and a multiply
labelled binary trees. Even if H3 is also a multiply labelled binary tree we may notice that
on one side there are two children both connected with a labelled edges. If we consider
the sub-tree composed by those two edges, this structure presents the same problem as
H1. So, to avoid any confusion, without loss of generality, we consider multiply labelled
trees as ordered full binary trees on the set of terminal labels {a, b} where a symbolically
represents the connection between the parent and the left child and b the connection to the
right one. Interestingly, these languages present an opposite behavior to the one observed
for cycle graphs.

Figure 4.15 shows a non-ambiguous grammar for generating ordered full binary trees.
We may notice that P8 and P11 represent productions with potentially symmetric be-
havior. On a closer look, we may notice instead that in the sentential forms, every time
there are seemingly symmetric hyperedges, they belong to two different branches of the
tree as in the graph H2 in Figure 4.18. Since such a tree is ordered there are never two
identical paths from the root to a node. We have already analyzed this structure when
defining the Huffman codes in 3.3.1. Alternatively we may formulate this concept saying
that none of the paths leading to any of the hyperedges in the tree is a prefix of another.
That is, the only way to expand the tree is to create a new path. The result is that no
one of the hyperedge can be in a potentially symmetric position to any other. If there was
such a configuration, there should be a parent node with 2 children with the same label,
as in graph H3 of Figure 4.18, but that’s impossible, because the tree is fully ordered. So,
even the hyperedges in P8 and P11 have the same generating power, the language doesn’t

73

S ::=

1

2

1

2

A

α

B

β

1

P1

1

2

3

1

2
C

α

D

β

1

P2

1

P3

C ::=

1

2

1

2

A

α

B

β

1

2

3

P4

E ::=

1

2

3

1

2
C

α

D

β

1

P5

D ::=

1

2

1

2

A

α

B

β

1

2

P6

1

2

1

2

A

α

B

β

2

1

P7

1

2

3

1

2

3
C

α

C

β

1 2

P8

1

2

3

1

2
C

α

D

β

1 2

P9

1

2

3

1

2
C

α

D

β

2 1

P10

1 1

E

α

E

β

1 2

P11

1

2

3

1

C

α

E

β

1 2

P12

1 1

2

3

E

α

C

β

1 2

P13

A ::=

1

2

a

1

2

P14

B ::=

1

2

b

1

2

P15

Figure 4.19: Non-ambiguous grammar T2 for the ordered full binary tree language.

present any structural ambiguity.

Proposition 4.4.1. For every ordered full binary tree language there exists an non-
ambiguous grammar generating that language.

Proof. T2 is a non-ambiguous grammar representing the ordered full binary tree language
L(T2) having for each pair of edges e, e′ connecting a parent node to its left and right
children, lab(e) = a and lab(e′) = b.

If we reduce the number of labels to 1 then the singly labelled tree language obtained
is instead inherently ambiguous. Intuitively we may notice that losing the ordering, makes
the children of a node indistinguishable. We may notice that productions P8 and P11
contain symmetric hyperedges.

S ::=

1

2

1

2

A

α

A

β

1

P1

1

2

3

1

2
C

α

D

β

1

P2

1

P3

C ::=

1

2

1

2

A

α

A

β

1

2

3

P4

E ::=

1

2

3

1

2
C

α

D

β

1

P5

D ::=

1

2

1

2

A

α

A

β

1

2

P6

1

2

1

2

A

α

A

β

2

1

P7

1

2

3

1

2

3
C

α

C

β

1 2

P8

1

2

3

1

2
C

α

D

β

1 2

P9

1

2

3

1

2
C

α

D

β

2 1

P10

1 1

E

α

E

β

1 2

P11

1

2

3

1

C

α

E

β

1 2

P12

1 1

2

3

E

α

C

β

1 2

P13

A ::=

1

2

a

1

2

P14

Figure 4.20: Ambiguous grammar T1 for the singly labelled binary tree language.

Proposition 4.4.2. The singly labelled tree language is inherently ambiguous.

Proof. Without loss of generality, let’s consider a singly labelled full binary tree T . Let a
be the label. Given h as the height of T , we know from Proposition 3.3.2 that the number
of its leaves is at most 2h−1. So generating such a tree sequentially from the root using a

74

single hyperedge would require an exponential increase of its type at each step, which is
not feasible due to its fixed type.

Let n, n′ be two leaves of T and let np be their parent. Let e, e′ be a pair of edges, so
that lab(e) = lab(e′) and att(e)1 = att(e′)1 = np. Let att(e)2 = n and att(e′)2 = n′. Since
Πe
T = Πe′

T , e and e′ form a structural ambiguity and so the singly labelled full binary tree
language is inherently ambiguous.

Two children is the minimum indeed to produce a structural ambiguity. This proof can
easily be extended to trees allowing for any number of children, besides the trivial case of
the language of trees having only 1 child per parent. In such a language the hyperedges are
arranged in a chain and it can be easily categorized as a string graph language rather than
a tree. Despite the possibility of a string graph language to still be inherently ambiguous,
the ambiguity of the grammars representing it are not directly caused by the structure of
their members, but rather to the limits of context-freeness of HRG as shown in Chapter
5.

Table 4.5: Matrices M1 and M2 resulting from Pre(T1, 8)

M1 M2

N 1 2 3 4 5 6 7 8

S 0 0 0 1 0 0 0 2
C 0 1 0 0 0 0 0 0
E 0 0 0 0 0 0 0 2
D 0 0 0 2 0 0 0 4
A 1 0 0 0 0 0 0 0

P 1 2 3 4 5 6 7 8

S
P1−→ AA, 2 0 0 0 1 0 0 0 0

S
P2−→ CD, 2 0 0 0 0 0 0 0 2

C
P4−→ AA, 0 0 1 0 0 0 0 0 0

E
P5−→ CD, 2 0 0 0 0 0 0 0 2

S
P3−→ λ, 0 1 0 0 0 0 0 0 0

D
P6−→ AA, 2 0 0 0 1 0 0 0 0

D
P7−→ AA, 2 0 0 0 1 0 0 0 0

D
P8−→ CC, 4 0 0 0 0 0 0 0 0

D
P9−→ CD, 2 0 0 0 0 0 0 0 2

D
P10−→ CD, 2 0 0 0 0 0 0 0 2

D
P11−→ EE, 0 0 0 0 0 0 0 0 0

D
P12−→ CE, 2 0 0 0 0 0 0 0 0

D
P13−→ EC, 2 0 0 0 0 0 0 0 0

A
P14−→ a, 0 1 0 0 0 0 0 0 0

Table 4.5 shows the result of the Pre-processing phase using grammar T1 for the singly
labelled tree case. Since the starting handle is a 1-hypergraph we may generate the table
for a size of n − 1. We may notice from entry S[8] that there are 2 possible derivations,
shown in Figure 4.22, yielding the isomorphic size-9-hypergraphs H ′ and H ′′ of Figure
4.20. Hypergraph H shows the minimal structure causing such an ambiguity.

4.5 Series Parallel Languages

The last case we propose is the singly labelled series-parallel graph language [20], com-
monly used for describing RLC electrical circuits. Such a language presents an interesting
structure deriving from the composition of two simple languages. The series component is
a chain of edges, equivalent to a string graph, for which, we have proven that there exists
a non-ambiguous grammar (Chapter 5). The other component is structurally equivalent
to a singly labelled star graph, with the only difference that the hyperedges share 2 nodes

75

1

1
A

α1

A
α2

1

H

1

2

1

2

1

2

1

2

a a

a a

H ′

1

2

1

2

1

2

1

2

a a

a a

H ′′

Figure 4.21: Symmetric hyperedges along with the derived isomorphic size-9-hypergraphs for the
singly labelled full binary tree language

1

S P2
=⇒

1

2

3

1

2
C

α

D

β
Step 1

Pr: P2 (2/2)
Sp: C2D4 (1/1)

P4
=⇒

1

2

1

2

1

2
A

α

A

β

D

β
Step 2

Pr: P4 (1/1)
Sp: A1A1 (1/1)

P14
=⇒

1

2

1

2

1

2
a

A

β

D

β
Step 3

Pr: P14 (1/1)
No split

P14
=⇒

1

2

1

2

1

2
a

a

D

β
Step 4

Pr: P14 (1/1)
No split

P6
=⇒

1

2

1 2

1

2

1

2

a

a

A

α

A

β

Step 5
Pr: P6 (1/2)

Sp: A1A1 (1/1)

P14
=⇒

1

2

1 2

1

2

1

2

a

a

a

A

β

Step 6
Pr: P14 (1/1)

No split

P14
=⇒

1

2

1 2

1

2

1

2

a

a

a

a

Step 7
Pr: P14 (1/1)

No split

1

S P2
=⇒

1

2

3

1

2
C

α

D

β
Step 1

Pr: P2 (2/2)
Sp: C2D4 (1/1)

P4
=⇒

1

2

1

2

1

2
A

α

A

β

D

β
Step 2

Pr: P4 (1/1)
Sp: A1A1 (1/1)

P14
=⇒

1

2

1

2

1

2
a

A

β

D

β
Step 3

Pr: P14 (1/1)
No split

P14
=⇒

1

2

1

2

1

2
a

a

D

β
Step 4

Pr: P14 (1/1)
No split

P6
=⇒

1

2

1

2

1

2

1

2

a

a

A

α

A

β

Step 5
Pr: P7 (1/2)

Sp: A1A1 (1/1)

P14
=⇒

1

2

1

2

1

2

1

2

a

a

a

A

β

Step 6
Pr: P14 (1/1)

No split

P14
=⇒

1

2

1

2

1

2

1

2

a

a

a

a

Step 7
Pr: P14 (1/1)

No split

Figure 4.22: Derivations of a size-9-hypergraph showing the ambiguity of T1 grammar

76

instead of 1. It has also already proven to allow a non-ambiguous grammar in Section
4.2. When we combine the two, we obtain a language where a non-terminal hyperedge
can either indefinitely expand creating a new parallel circuit or adding more edges to the
same line.

1 2 1 2

1 2

a a

a

H1

1 2 1 2

1 2

a a

a

H2

1 2 1 2

1 2

a a

a

H3

1 2

1 2

1 2

1 2

a

a

a

a

H4

Figure 4.23: Example of series-parallel graphs

Similarly to the star graph languages we may associate a single parallel component a
(e∗)∗ graph, being e∗ the unbounded number of consecutive edges on a line for ∗ parallel
lines. Intuitively we may already understand that since the number of parallel lines is
unbounded there is no typed hypergraph from which they can be generated unambiguously.
Consequently, a grammar generating them non-ambiguously cannot exist.

S ::=

1

2

1

2

C

α

S

β

1

2

P1

1

2

1

2

A

α

S

β

1

2

P2

1

2

1

2
S

α

S

β
1

2

P3

1

2

a

1

2

P4

C ::=

1

2

1

2
S

α

S

β
1

2

P5

A ::=

1

2

a

1

2

P6

Figure 4.24: Example of an ambiguous grammar SP1 for the series-parallel graphs

Figure 4.24 shows an ambigous grammar for the series-parallel graph language. This
grammar is ambiguous because productions P3 and P5 contain symmetric hyperedges.
We may notice how another potential source how ambiguity has been solved for the chain
components in productions P1 and P2 with the addition of productions P5 and P6.

Proposition 4.5.1. The series-parallel graph language is inherently ambiguous.

Proof. Let π be a subgraph representing a parallel component of a series-parallel graph
H, between nodes n1, n2 so that for each e ∈ π att(e)1 = n1 and att(e)2 = n2. Since the
number of edges in π is unbounded it is not possible to generate all of them in a single
replacement with a fixed type hyperedge.

Without loss of generality let e, e′ ∈ π be two parallel hyperedges, so that lab(e) =
lab(e′). Since Πe

T = Πe′
T and the replacements of e and e′ are in two separated contexts, the

hyperedges form a structural ambiguity and so the series-parallel language is inherently
ambiguous.

Table 4.6 shows the result of the Pre-processing phase using grammar SP1. Since the
starting handle is a 2-hypergraph we may generate the table for a size of n − 2. We
may notice from entry S[4] that there are 11 ways to generate a size-6-hypergraph. That
highlights the ambiguity of the grammar, since the only series-parallel size-6-hypergraph
are the 4 graphs in Figure 4.23.

77

Table 4.6: Matrices M1 and M2 resulting from Pre(SP1, 4)

M1 M2

N 1 2 3 4

S 1 1 3 11
C 0 1 2 7
A 1 0 0 0

P 1 2 3 4

S
P1−→ CS, 1 0 0 0 1

S
P2−→ AS, 1 0 0 1 3

S
P3−→ SS, 0 0 1 2 7

C
P5−→ SS, 0 0 1 2 7

S
P4−→ a, 0 1 0 0 0

A
P6−→ a, 0 1 0 0 0

1

2
S P3

=⇒
1

2

1

2
S

α

S

β
Step 1

Pr: P3 (7/10)
Sp: S3S1 (3/7)

P2
=⇒

1

2

1 2

1

2

A

α

S

β
S

β
Step 2

Pr: P2 (1/3)
Sp: A1S1 (1/1)

P6
=⇒

1

2

1 2

1

2

a S

β
S

β
Step 3

Pr: P6 (1/1)
No split

P4
=⇒

1

2

1 2

1

2

a a

S

β
Step 4

Pr: P4 (1/1)
No split

P4
=⇒

1

2

1 2

1

2

a a

a

Step 5
Pr: P4 (1/1)

No split

1

2
S P3

=⇒
1

2

1

2
S

α

S

β
Step 1

Pr: P3 (7/10)
Sp: S1S3 (3/7)

P4
=⇒

1

2

1

2
a

S

β
Step 2

Pr: P4 (1/1)
No split

P2
=⇒

1

2

1 2

1

2
a

A

α

S

β

Step 3
Pr: P2 (1/3)
Sp: A1S1 (1/1)

P4
=⇒

1

2

1 2

1

2
a

a

S

β

Step 4
Pr: P4 (1/1)

No split

P4
=⇒

1

2

1 2

1

2
a

a

a

Step 5
Pr: P4 (1/1)

No split

Figure 4.25: Derivations of a size-6-hypergraph showing the ambiguity of SP1 grammar

Series-parallel graphs have a source and a target, the former being a node allowing only
connections via the first attachment point of edges and the latter allowing only connections
from the second attachment point. If we instead consider closed series-parallel graphs,
where the source and target are merged, we can give a simple proof of inherent ambiguity
of such languages by reducing them to multiply labelled cycle languages. Identifying the
components of the graph is outside the scope of this work, since an algorithm has already
been given in [20].

Proposition 4.5.2. The closed series-parallel graph language is inherently ambiguous.

Proof. Let C be a closed series-parallel graph with a single edge followed by a parallel
component of 2 edges. Let lab(e) = a for each e ∈ EC . We reduce the parallel com-
ponent by replacing it with a single hyperedge e′ having lab(e′) = b. Such a graph is a
multiply labelled cycle graph also representing a minimal case of structural ambiguity.
From Proposition 4.5.1 we know that every component can be ambiguously expanded
from this structure to generate any other member of the language. That is, the language
is inherently ambiguous.

The reduction from a more complex language to one of the cases analyzed is a very
practical way to identify inherently ambiguous languages. For example, this is the case
of string diagrams, the language of which can now easily be proven inherently ambiguous
due to their parallel component.

78

Chapter 5

String Graph Languages

String graphs are a particular form of hypergraphs shaped as a chain of hyperedges
that can be used to represent literal strings [19] with a direct correspondence between their
labels and the symbols of the represented word. Mairson’s methods, described in Section
3.1, have been originally developed to work with classic context-free string grammars,
but, since we have extended the algorithm to the settings of hypergraphs, it is worth to
explore the advantages acquired by generating words from graph grammars. The aim
of this chapter is to increase the range of string languages to sample from and, when
possible, offer a uniform distribution of the sampling. We stress again the importance
of a uniform distribution as a sought result or even a requirement for many applications
relying on random generation. One limitation of Mairson’s methods is that they indeed
require a context-free grammar to work with. Moreover, to obtain a uniform distribution
such a grammar must be non-ambiguous. Nevertheless there are several cases in which we
may overcome these limitations representing string languages with hyperedge replacement
grammars. In [19] Engelfriet and Heyker show that it is possible to represent some non-
context-sensitive-free string grammars with context-free hyperedge replacement grammars.
For example, the non-context-free language L = {ww | w ∈ {a, b}∗} may be represented
by the string graph grammar in Figure 5.3.

Considering strings as sequences of symbols, they are easily representable as chains of
2-hyperedges with a consistent order of their attachment nodes, each label corresponding
to a different symbol.

Definition 5.0.1 (String Graph). Let s = σ1...σn be a string and let H be a hypergraph
having VH = {v0} and EH = ∅, then a string graph representing s, also denoted as s•, is
constructed as follows:

For each σk ∈ s with 1 ≤ k ≤ n:

1. VH = VH ∪ {vk}

2. EH = EH ∪ {ek} with type(ek) = 2, att(e)1 = vk−1, att(e)2 = vk and lab(e) = σk

Clearly the empty string λ is represented by a hypergraph containing only a single
node. If H ′ ∼= s•, then H ′ is also a graph representation of s. We write (σ1...σn)• for a
string graph representing the string σ1...σn. We always consider the beginning of the string
to be the label of the hypeperge which first attachment node has no other connections.

Figure 5.1 shows the string graphs corresponding to the empty string λ, the single
character a and a the string aabaab.

79

s•

1 2
a

s′•

1 2 1 2 1 2 1 2 1 2 1 2
a a b a a b

s′′•

Figure 5.1: Example of string graphs

5.1 Context-Free String Grammars

While a string graph language is simply a language containing only string graphs,
there is no restriction on the production of a string graph grammar to only have string
graphs on their rhs. The only requirement is to produce the graphs in the language.
In order to translate a string grammar directly into the setting of hypergraphs we need
to remove the empty productions. In contexts where the merging of nodes after the
replacement is considered [18], such a problem does not arise, because we can automatically
join two consecutive hyperedges. Instead, dealing with this problem without merging the
nodes results in several additional productions without producing any real advantages.
So, the easiest way to translate a string grammar into the setting of hypergraphs is to first
transform it into a known form without empty productions. The only exception being for
the starting symbol if the empty string is included in the language. Among all the possible
choices, the Chomsky normal form is the most suitable, because it directly translates into a
grammar ready for the sampling. We propose a simple algorithm to prove the equivalence
between string grammars and their hyperedge replacement coutnerpart. Since the process
for transforming a context-free string grammar into a Chomsky normal form is well known
[9], we suppose that the input of the algorithm is already a string grammar in CNF.

Proposition 5.1.1. For every context-free string grammar GS there exists a hyperedge
replacement grammar GH in CNF such that L(GH) = {s• | s ∈ L(GS)}.

Proof. Let GS = (N,T, P, S) be a context-free string grammar in CNF, then an equivalent
HRG GH = (N,T, P ′, S, (markp)p∈P ′) in CNF can be built such that for each p ∈ P where
rhs(p) 6= λ:

• if p = A −→ BC then P ′ = P ′∪{p′} where lhs(p′) = A and rhs(p′) = rhs(p)• having
ext(rhs(p′)) = (0, 2).

• if p = A −→ a then P ′ = P ′ ∪ {p′} where lhs(p′) = A and rhs(p′) = rhs(p)• having
ext(rhs(p′)) = (0, 1).

if λ ∈ L(GS) then:

• P ′ = P ′ ∪ {p′} where lhs(p′) = S, Erhs(p′) = ∅ and |Vrhs(p′)| = 1.

• for each p ∈ PS ext(rhs(p′)) = λ.

Let’s consider the following string grammar in Chomsky normal form representing the
language {anbn, n ≥ 0}:

S ::= AC | λ
C ::= DB | b
D ::= AC

A ::= a

B ::= b

80

According to Proposition 5.1.1 it can be directly translated into the hyperedge replace-
ment grammar in Figure 5.2.

S ::=
1 2 1 2

A
α

C
β

P1 P2

C ::=
1 2 1 2

D
α

B
β1 2

P3

1 2
b

1 2

P4

D ::=
1 2 1 2

A
α

C
β1 2

P5

A ::=
1 2

a
1 2

P6

B ::=
1 2

b
1 2

P7

Figure 5.2: Non-ambiguous string graph grammar representing the language {anbn | n ≥ 0}

Observation 5.1.1. Grammar AB is a non-ambiguous context-free string graph grammar
representing the context-free language {anbn | n ≥ 0}.

Proof. The proof of non-ambiguity of the HRG in Figure 5.2 representing the language
{anbn | n ≥ 0} comes from a simple analysis of the grammar. Since each non-terminal
production has on its rhs a non-terminal leading to a single terminal production and there
are no productions having the same lhs we assume that there are no options in the choices
of either productions or splits. Table 5.1 results from the Algorithm Pre on input (AB, 5)
confirms that each choice during the generation is made with a probability of 1/1, meaning
that each string graph has a unique derivation.

Table 5.1: Matrices M1 and M2 resulting from Pre(AB, 5)

M1 M2

N 1 3 5

S 0 0 1
C 1 0 1
D 0 1 0
A 1 0 0
B 1 0 0

P 1 3 5

S
P1−→ AC, 3 0 0 1

C
P3−→ DB, 1 1 0 1

D
P5−→ AC, 1 0 1 0

A
P6−→ a, 0 1 0 0

B
P7−→ b, 0 1 0 0

C
P4−→ b, 0 1 0 0

S
P2−→ λ, 1 0 0 0

5.2 Non-Context-Free String Languages

We know that the original Mairson’s methods work with context-free string grammars
and require it to be non-ambiguous to obtain a uniform random sampling. We are not
aware of any systematic method that guarantees the sampling of non-context-free string
grammars over a uniform distribution. Nevertheless, using an equivalent HRG in CNF
we can overcome this problem. On the other hand, there is no systematic way to directly
translate a non-context-free string grammar into its context-free graph counterpart. En-
gelfriet has show that these non-context-free string languages as {(anb)m, n,m ≥ 0} or
{wn, w ∈ {a, b}∗, n ≥ 0}, with n,m ≥ 0, cannot be represented by an HRG.

We may notice that some of the hyperedges in the productions have the role to con-
trol the structure of the string while the others are simply replaced with their terminal

81

a

S ::=
1 2

1 2

A
α

D
β

P1

1 2

1 2

B
α

E
β

P2

1 2 1 2
A

α
A

β

P3

1 2 1 2
B

α
B

β

P4 P15

C ::=
1 2

1 2

3

A
α

F
β

1 23

P7

1 2

1 2

3

B
α

G
β

1 23

P8

1 2 1 2
A

α
A

β1 23

P9

1 2 1 2
B

α
B

β1 23

P10

D ::=

1 2

3 1 2
A

α

C
β

1 2

P5

E ::=

1 2

3 1 2
B

α

C
β

1 2

P6

A ::=
1 2

a
1 2

P13

B ::=
1 2

b
1 2

P14

F ::=
1 2

1 2

3

A
α

C
β

1 23

P11

G ::=
1 2

1 2

3

B
α

C
β

1 23

P12

Figure 5.3: String graphs grammar representing the non-context-free language L = {ww | w ∈
{a, b}∗}.

counterpart. To ease the understanding of the grammars we have kept these hyperedges
in the representations on two different levels.

Tables 5.2 show the results of running the Algorithm Pre on input (WW, 13) where
the 0-filled columns have been excluded. From the first row of matrix M2 we may notice
that WW grammar is also non-ambiguous. An example of unique derivation representing
the generation of graph (aabaab)• is shown in Figure 5.4.

Corollary 5.2.1. Let GH be an HRG representing a non-context-free string grammar GS
such that L(GH) = {s• | s ∈ L(GS)} then Algorithm Gen generates a size-n-hypergraph
s• ∈ Ln(GH) equivalent to a size m = (n − 1)/2 string s ∈ Lm(GS), provided that
Ln(GH) 6= ∅. If GH is n-unambiguous and RNG is a uniform random number generator,
the hypergraph is chosen uniformly at random.

Proof. Let GH be a hyperedge replacement grammar and let GS be its corresponding
string grammar. Since L(GH) = {s• | s ∈ L(GS)}, according to Definition 5.0.1, every
generated string graph s• ∈ L(GH) has one and only corresponding string s ∈ L(GS).
Then, generating graphs in L(GH) is equivalent to generating strings in L(GS). If GH is
n-unambiguous then the string s is generated uniformly at random.

5.3 Inherently Ambiguous String Languages

In this section we explore the possibility to solve the uniform sampling problem for
inherently ambiguous string languages using hyperedge replacement grammars. The meth-
ods presented in Chapter 3 have been proven to generate hypergraphs with a uniform dis-
tribution if the input grammar is non-ambiguous and we also know from Chapter 4 that
some hyperedge replacement languages are inherently ambiguous due to the structure of
their members.

82

1 2
S P1

=⇒
1 2

1 2

A
α

D
β

Step 1
P1 (4/8)

A1D9 (4/4)

P13
=⇒

1 2

1 2

a

D
β

Step 2
P13 (1/1)
No split

P5
=⇒

1 2

1 2

3 1 2
a A

α

C
β

Step 3
P5 (4/4)
A1C7 (4/4)

P13
=⇒

P13
=⇒

1 2

1 2

3 1 2
a a

C
β

Step 4
P13 (1/1)
No split

P7
=⇒

1 2 1 2

1 2

3 1 2
a A

α
a

F
β

Step 5
P7 (2/4)
A1F5 (2/2)

P13
=⇒

P13
=⇒

1 2 1 2

1 2

3 1 2
a a a

F
β

Step 6
P13 (1/1)
No split

P11
=⇒

1 2 1 2

1 2

3 1 2 1 2
a a a A

α

C
β

Step 7
P11 (2/2)
A1C3 (2/2)

P13
=⇒

P13
=⇒

1 2 1 2

1 2

3 1 2 1 2
a a a a

C
β

Step 8
P13 (1/1)
No split

P10
=⇒

P10
=⇒

1 2 1 2 1 2 1 2 1 2 1 2
a a B

α
a a B

β

Step 9
P10 (1/2)
B1B1 (1/1)

P14
=⇒

P14
=⇒

1 2 1 2 1 2 1 2 1 2 1 2
a a b a a B

β

Step 10
P14 (1/1)
No split

P14
=⇒

P14
=⇒

1 2 1 2 1 2 1 2 1 2 1 2
a a b a a b

Step 11
P14 (1/1)
No split

Figure 5.4: Derivations of graph (aabaab)•

83

Table 5.2: Matrices M1 and M2 resulting from Pre(WW, 13)

M1 M2

N 1 3 5 7 9 11 13

S 0 0 2 0 4 0 8
C 0 2 0 4 0 8 0
D 0 0 2 0 4 0 8
E 0 0 2 0 4 0 8
F 0 0 2 0 4 0 8
G 0 0 2 0 4 0 8
A 1 0 0 0 0 0 0
B 1 0 0 0 0 0 0

P 1 3 5 7 9 11 13

S
P1−→ AD, 3 0 0 0 0 2 0 4

S
P2−→ BE, 3 0 0 0 0 2 0 4

S
P3−→ AA, 3 0 0 1 0 0 0 0

S
P4−→ BB, 3 0 0 1 0 0 0 0

C
P7−→ AF, 1 0 0 0 2 0 4 0

C
P8−→ BG, 1 0 0 0 2 0 4 0

C
P9−→ AA, 1 0 1 0 0 0 0 0

C
P10−→ BB, 1 0 1 0 0 0 0 0

D
P5−→ AC, 1 0 0 2 0 4 0 8

E
P6−→ BC, 1 0 0 2 0 4 0 8

F
P11−→ AC, 1 0 0 2 0 4 0 8

G
P12−→ BC, 1 0 0 2 0 4 0 8

A
P13−→ a, 0 1 0 0 0 0 0 0

B
P14−→ a, 0 1 0 0 0 0 0 0

While string languages may also be inherently ambiguous, the shape of the members of
their hypergraph counterparts is simply a chain of hyperedges. Thus, they cannot present
any structural symmetry. Clearly, there isn’t any known algorithm that can in general
produce a non-ambiguous HRG from an ambiguous string grammar, otherwise it could
be easily considered a decider for the ambiguity problem. Using this algorithm we could
produce a new graph grammar that is surely non-ambiguous from the string one. Then,
running our pre-processing algorithm on the graph grammar and Mairson’s pre-processing
algorithm on the string one, we could compare the results for a sufficiently large size. On
the other hand, analyzing each language separately would not lead to any useful result.

In [24] Flajolet proposes a classification of string languages and proves their inherent
ambiguity. Each class is composed by similar languages that are all reducible to a basic
form, thus, finding a solution for the representative form of a class automatically solves
the problem for all of its members. We prove that for some of them it is possible to
find an equivalent non-ambiguous hyperedge replacement grammar to sample uniformly
at random from, but, we also prove that it is not possible for all the classes.

Theorem 5.3.1. Let G2
H , G

3
H be context-free HRGs and L(G1

S) = L(G2
S) ∪ L(G3

S) be a
string language such that L(G2

H) = {s• | s ∈ L(G2
S)} and L(G3

H) = {s• | s ∈ L(G3
S)}.

If L(G2
H), L(G3

H) and L(G2
H ∩ G3

H) are not inherently ambiguous, then there exists a
non-ambiguous grammar G1

H such that L(G1
H) = {s• | s ∈ L(G1

S)} and Algorithm Gen
generates a size-n-hypergraph s• ∈ Ln(G1

H) uniformly at random equivalent to a size
m = (n− 1)/2 string s ∈ Lm(G1

S).

Proof. For i ∈ {1, 2, 3} let GiS be string grammars and GiH = (Ni,Σi, Pi, Si, (markp)p∈Pi)
context-free HRGs such that L(GiH) = {s• | s ∈ L(GiS)}. Let G2

H , G
3
H be non-ambiguous.

If L(G2
H) ∩ L(G3

H) = ∅ then the grammar G1
H = (N1,Σ1, P1, S1, (markp)p∈P1) where:

1. N1 = N2 ∪N3 ∪ {S1}

2. Σ1 = Σ2 ∪ Σ3

3. S1 /∈ N2 ∪N3

84

4. P1 = P2 ∪ P3 ∪ {(S1, S
•
2), (S1, S

•
3)}

representing the union of two distinct non inherently ambiguous context-free HRLs is
trivially non-ambiguous since for each derivation S•1 =⇒ K =⇒∗ s•, s• ∈ L(G2

H) if and
only if K = S•2 or s• ∈ L(G3

H) if and only if K = S•3 .

If L(G2
H) ∩ L(G3

H) 6= ∅, let K be a sentential form in a derivation S•1 =⇒∗ K =⇒∗ s•
with s• ∈ L(G2

H) ∩ L(G3
H). Considering the total language tree of L(G1

H) we distinguish
the following cases:

1. derivations S•1 =⇒∗ K ′ =⇒∗ s′• yielding graphs in L(G2
H) ∩ L(G3

H) having K ′ ∼= K
and s′• ∼= s•.

2. derivations S•1 =⇒∗ s′• yielding graphs in L(G2
H)⊕L(G3

H) not having any sentential
form K ′ ∼= K.

3. derivations S•1 =⇒∗ K ′ =⇒∗ s′• yielding graphs in L(G2
H)⊕ L(G3

H) having K ′ ∼= K
but s′• 6∼= s•.

In the first case, for the hypothesis, L(G2
H)∩L(G3

H) is not inherently ambiguous. Then
there exists a non-ambiguous grammar C1 so that L(C1) = L(G2

H) ∩ L(G3
H).

In the second case, since the symmetric difference L(G2
H)⊕L(G3

H) presents 2 distinct
sets of hypergraphs generated by productions applied to derivations having different sen-
tential forms we already know that a non-ambiguous grammar C2 can be constructed for
the subset of graphs corresponding to the case L(G2

H)⊕L(G3
H) not having any sentential

form K ′ ∼= K.

In the third case, we know that there are productions either in P 2 or P 3 that generate
a hypergraph s′• from K ′ such that for each s• ∈ L(G2

H) ∩ L(G3
H) s′• 6∼= s•. Moreover

we know that K ′ is not a sentential form, with the exception of a terminal graph, for
any derivation involved in the production of graphs in L(G2

H) ⊕ L(G3
H). Finally, for the

non-ambiguity of C1 we know that we can safely assume that integrating C1 with such
productions cannot cause the generation of isomorphic graph, otherwise such graphs would
have already been included in the first case.

Since there exist non-ambiguous context free HRGs C1 and C2 representing the lan-
guage L(G1

H) = L(C1) ∪ L(C2) and, again, L(C1) ∩ L(C2) = ∅ are non inherently am-
biguous context-free languages, then L(G1

H) is also non inherently ambiguous.

5.4 Non-ambiguous HRGs for Inherently Ambiguous String
Languages

Theorem 5.3.1 can be applied when considering a context-free string language L result-
ing from the union of two more context-free languages L1∪L2. For example, even if there
exist a pair of non-ambiguous grammars representing them, L could still be inherently
ambiguous. The intersection L1 ∩ L2 may indeed be a non-context-free language.

The general idea is to separate a string language in pairwise distinct subsets. If all
of them can be represented by a non-ambiguous HRG, then, we can find an equivalent
non-ambiguous grammar representing the whole language.

The language L(ABCS) = {anbmcp | n = m or m = p,with n,m, p ≥ 0} may be

85

represented by the following string grammar in CNF :

S ::= DE | AF | AB | CE | HG | BI | BC | AH | a | c | λ
D ::= AF | AB
E ::= CE | c
F ::= DB

G ::= BI | BC
H ::= AH | a
I ::= GC

A ::= a

B ::= b

C ::= c

Such a grammar may separately produce words in both subsets of the language where
n = m or m = p. From the result of running Mairson’s first method pre-processing
algorithm on grammar ABCS shown in Table 5.3 we may deduce that the entry S[3] has
a value of 4. Since there are only 3 strings in the 3th slide of the language (aaa, abc, ccc),
it means that one of the strings is counted twice. Such a string is abc because it belongs
to both subsets n = m and m = p.

Table 5.3: Matrices M1 and M2 resulting from the pre-processing phase for the string grammar
ABCS and n = 3

M1 M2

N 1 2 3

S 2 4 4
D 0 1 0
E 1 1 1
F 0 0 1
G 0 1 0
H 1 1 1
I 0 0 1
A 1 0 0
B 1 0 0
C 1 0 0

P 1 2 3

S −→ DE 0 0 1
S −→ AF 0 0 0
S −→ AB 0 1 0
S −→ CE 0 1 1
S −→ HG 0 0 1
S −→ BI 0 0 0
S −→ BC 0 1 0
S −→ AH 0 1 1
D −→ AF 0 0 0
D −→ AB 0 1 0
E −→ CE 0 1 1
F −→ DB 0 0 1
G −→ BI 0 0 0
G −→ BC 0 1 0
H −→ AH 0 1 1
I −→ GC 0 0 1
S −→ a 1 0 0
S −→ c 1 0 0
E −→ c 1 0 0
H −→ a 1 0 0
A −→ a 1 0 0
B −→ b 1 0 0
C −→ c 1 0 0

Figure 5.5 shows a non-ambiguous HRG for the language L(ABCS). Observing the
productions we may notice that an equal number of as, bs and c is generated at first and
then more as, cs or groups of ab or bc are subsequently added if necessary.

86

S ::=

1

2
3

4

D

P1

1 2
G

P2

1 2
E

P3

1 2
H

P4

1 2
F

P5 P6

D ::=

1

2

3

4

1 2 1 2 1 2

D

a b c
1 2 3 4

P7

1 2 1 2 1 2
a b c

1 2 3 4

P8

D ::=

1 3

1 2 1 2 1 2

E

a b c
1 2 3 4

P9

1 2

1 2 1 2 1 2

H

a b c
1 2 3 4

P10

D ::=
1 2

1 3

1 2 1 2
a

F

b c
1 2 3 4

P11

1 3

1 2 1 2 1 2

G

a b c
1 2 3 4

P12

G ::=

1 3

1 2

G

a
1 2

P13

1 2
a

1 2

P14

E ::=

1 3

1 2 1 2

E

a b
1 2

P15

1 2 1 2
a b

1 2

P16

H ::=

1 3

1 2

H

c
1 2

P17

1 2
c

1 2

P18

F ::=

1 3

1 2 1 2

F

b c
1 2

P19

1 2 1 2
b c

1 2

P20

Figure 5.5: Non-ambiguous string graphs grammar representing the inherently ambiguous string
language L = {anbmcp | n = m or m = p,with n,m, p ≥ 0}

87

The grammar ABCH in Figure 5.6 is the Chomsky normal form obtained from the
application of the rules defined in Section 2.4 to the grammar in Figure 5.5.

Running Pre on input (ABCH , 7) we obtain the Matrices in Table 5.4. The entry S[7],
corresponding to a string of size 3 now corresponds to a correct value of 3 showing that
the grammar is non-ambiguous.

It is also particularly interesting to apply Theorem 5.3.1 to the first class of inherently
ambiguous string languages proposed in [24]. It consists in languages that still have a
constraint in the number of symbols in the word, but there is no constraint on their order.
Languages like O3 and Ω3 are in this class. While it is argued that the inherent ambiguity
of these and even more complex languages can be reduced to their simple counterpart
L(ABCS), to prove their inherent ambiguity, we argue that this assumption should be
re-evaluated in light of the present result on string graph languages that admit instead a
non-ambiguous grammar.

As a proof of the existence of languages that are inherently ambiguous for both their
string and graph representation, we consider the Goldstine language [24]. Let n, p ∈ N
with n ≥ 0 and p ≥ 1 and let n denote the unitary representation of n in the form anb.
Then we can define a class of languages with different constraints based on the variations
of the original sequence n1, . . . , np. For example G 6= = (n1, n2, . . . , np | ∃j : nj 6= j) is the
language of all sequences of group of symbols aib for 1 ≤ i ≤ p where there exists at least
one component having its length not corresponding with the index of its position. The
string abaabaaabaabaaaaab having the 4th component aab instead of aaaab is a member
of this language. Similarly to G 6= we may consider constraints as nj = j, nj < j or nj > j.

Proposition 5.4.1. The Goldstine HRL G 6= = (n1, n2, . . . , np | ∃j : nj 6= j) where n
denotes the unitary representation of n in the form (anb)• is inherently ambiguous.

Proof. In G 6= every string has a common base made by a sequence of components (aib)j ,
with i = j < p, but having at least one of them i 6= j. Moving to HRGs, a simple solution
would be to generate the non corresponding component first and then generate the rest of
the components with an unbound number of As. Even if we have correctly assumed that
string graphs do not have structural symmetries, the generation of this sequence can be
compared to a case non-finite unconnected components as defined in Section 4.2 for (e∗)m
star graphs. Imagining unconnected groups of As separated by Bs, according to Corollary
4.2.1, the language is indeed inherently ambiguous.

Moreover, if we want to attempt the construction of a non-ambiguous grammar, we
would need to generate the sequence (A1BA2B . . . ApB)• of non-terminals and then add
or remove at least 1 hyperedge labelled as A. As we may notice, such a sequence can be
reduced to the language (anb)m, know to be non-context-free [19]. Similar proofs can be
constructed for the constraints nj = j, nj < j and nj > j.

88

S ::=
1 2

1

2
3

4

A
α

R

β

P1

1 2

1 3

A
α

G
β

P2

1 2

1 3

A
α

I
β

P3

1 2 1 2
A

α
B

β

P4

S ::=
1 2 1 2

Q
α

C
β

P5

1 3

1 2

J
α

C
β

P6

1 3

1 2

H
α

C
β

P7

1 2 1 2
B

α
C

β

P8

S ::=

1 3

1 2

L
α

M
β

P9

1 3

1 2

N
α

C
β

P10

1 2

1 3

A
α

O
β

P11

1 2

1 3

Q
α

P
β

P12

S ::=
1 2

a

P13

1 2
c

P14 P15

D ::=

1 2

1 2
Q

α

C
β

1 2 3 4

P16

D ::=
1 2

1

2
3

4

A
α

R
β

1 2 3 4

P17

R ::=
1 2

1

2
3

4

K
α

B
β1 2 3 4

P18

K ::=
1 2

1

2
3

4

D
α

C
β1 2 3 4

P19

D ::=

1 2

1 2

L
α

M
β1 2 3 4

P20

1 2

1 2

N
α

C
β1 2 3 4

P21

1 2

1 2
A

α

O
β

1 2 3 4

P22

1 2

1 2
Q

α

P
β

1 2 3 4

P23

G ::=
1 2

1 3

A
α

G
β

1 2

P24

1 2
a

1 2

P25

E ::=
1 2

1 3

A
α

I
β

1 2

P26

1 2 1 2
A

α
B

β1 2

P27

H ::=

1 3

1 2

H
α

C
β1 2

P28

1 2
c

1 2

P29

F ::=

1 3

1 2

J
α

C
β1 2

P30

1 2 1 2
B

α
C

β1 2

P31

I ::=

1 3

1 2

E
α

B
β1 2

P32

J ::=
1 2

1 3

B
α

F
β

1 2

P33

L ::=
1 2

1 3

A
α

G
β

1 2

P34

M ::=
1 2 1 2

B
α

C
β1 2

P35

N ::=
1 2

1 3

A
α

I
β

1 2

P36

O ::=

1 3

1 2

J
α

C
β1 2

P37

P ::=

1 3

1 2

H
α

C
β1 2

P38

Q ::=
1 2 1 2

A
α

B
β1 2

P39

A ::=
1 2

a
1 2

P40

B ::=
1 2

b
1 2

P41

C ::=
1 2

c
1 2

P42

Figure 5.6: Non-ambiguous string graphs grammar in Chomsky normal form ABCH representing
the inherently ambiguous string language L = {anbmcp | n = m or m = p,with n,m, p ≥ 0}

89

Table 5.4: Matrices M1 and M2 resulting from Pre(ABCH , 7)

M1 M2

N 1 2 3 4 5 6 7

S 0 0 2 0 4 0 3
D 0 0 0 1 0 3 0
E 0 0 1 0 0 0 0
F 0 0 1 0 0 0 0
G 1 0 1 0 1 0 1
H 1 0 1 0 1 0 1
I 0 0 0 0 1 0 0
J 0 0 0 0 1 0 0
K 0 0 0 0 0 1 0
L 0 0 1 0 1 0 1
M 0 0 1 0 0 0 0
N 0 0 0 0 1 0 0
O 0 0 0 0 1 0 0
P 0 0 1 0 1 0 1
Q 0 0 1 0 0 0 0
R 0 0 0 0 0 0 0
A 1 0 0 0 0 0 0
B 1 0 0 0 0 0 0
C 1 0 0 0 0 0 0

P 1 2 3 4 5 6 7

S
P1−→ AR, 4 0 0 0 0 0 0 0

S
P2−→ AG, 3 0 0 0 0 1 0 1

S
P3−→ AI, 3 0 0 0 0 0 0 0

S
P4−→ AB, 3 0 0 0 0 1 0 0

S
P5−→ QC, 3 0 0 0 0 0 0 1

S
P6−→ JC, 3 0 0 0 0 0 0 0

S
P7−→ HC, 3 0 0 0 0 1 0 1

S
P8−→ BC, 3 0 0 0 0 1 0 0

S
P9−→ LM, 3 0 0 0 0 0 0 0

S
P10−→ NC, 3 0 0 0 0 0 0 0

S
P11−→ AO, 3 0 0 0 0 0 0 0

S
P12−→ QP, 3 0 0 0 0 0 0 0

D
P16−→ QC, 0 0 0 0 0 0 1 0

D
P17−→ AR, 1 0 0 0 0 0 0 0

R
P18−→ KB, 1 0 0 0 0 0 0 0

K
P19−→ DC, 1 0 0 0 0 0 1 0

D
P20−→ LM, 0 0 0 0 0 0 1 0

D
P21−→ NC, 0 0 0 0 0 0 0 0

D
P22−→ AO, 0 0 0 0 0 0 0 0

D
P23−→ QP, 0 0 0 0 0 0 1 0

G
P24−→ AG, 1 0 0 1 0 1 0 1

E
P26−→ AI, 1 0 0 0 0 0 0 0

E
P27−→ AB, 1 0 0 1 0 0 0 0

H
P28−→ HC, 1 0 0 1 0 1 0 1

F
P30−→ JC, 1 0 0 0 0 0 0 0

F
P31−→ BC, 1 0 0 1 0 0 0 0

I
P32−→ EB, 1 0 0 0 0 1 0 0

J
P33−→ BF, 1 0 0 0 0 1 0 0

L
P34−→ AG, 1 0 0 1 0 1 0 1

M
P35−→ BC, 1 0 0 1 0 0 0 0

N
P36−→ AI, 1 0 0 0 0 0 0 1

O
P37−→ JC, 1 0 0 0 0 0 0 1

P
P38−→ HC, 1 0 0 1 0 1 0 1

Q
P39−→ AB, 1 0 0 1 0 0 0 0

S
P13−→ a, 2 0 0 1 0 0 0 0

S
P14−→ c, 2 0 0 1 0 0 0 0

G
P25−→ a, 0 1 0 0 0 0 0 0

H
P29−→ c, 0 1 0 0 0 0 0 0

A
P40−→ a, 0 1 0 0 0 0 0 0

B
P41−→ b, 0 1 0 0 0 0 0 0

C
P42−→ c, 0 1 0 0 0 0 0 0

90

Chapter 6

Conclusion and Future Work

Our main results are that the methods presented in Chapter 3 efficiently generate
hypergraphs from non-ambiguous hyperedge replacement grammars with a uniform dis-
tribution. Currently, the most promising application of our generation approach is the
testing of programs working in graph-like domains. If the inputs of such programs are
graphs in a context-free graph language, our method can generate test graphs uniformly
at random in the domain of interest. This should allow to refine random testing ap-
proaches such as [35], [30], [8] and [40]. While the methods find their own unique space
among existing algorithms for sampling graphs, their significant contribution of granting
the user full freedom of choice, make them easily adaptable to a wide variety of contexts.
Our method ensures that all and only the graphs of a specified size in the chosen do-
main will be taken into consideration during the sampling, without any successive need of
testing for membership in order to guarantee that the resulting hypergraph possesses the
sought properties. In future, it would be interesting to explore the possibility to extend
the stochastic process of the generation phase by leveraging the symbolic representation
of terminals in favor of the size of the grammar, improving even further the efficiency of
the sampling.

Another result, described in Chapter 5, is the possibility to generate string graphs with
non-ambiguous HRGs representing non-context-free string languages and, most impor-
tantly, certain classes of inherently ambiguous context-free string languages. This greatly
extends the range of languages allowing for a sampling with a uniform distribution. More-
over, having identified a gap between inherently ambiguous string languages and their
string graph counterpart, we should re-explore these languages in light of the current re-
sult. For example, the language L(ABCS) = {anbmcp | n = m or m = p,with n,m, p ≥ 0}
does not represent an inherently ambiguous prototype for context-free string graph lan-
guages. A continuation of this research could answer the question of the existence of a
similar fundamental structure for string graph languages to help discerning the ambiguity
of their grammars. An interesting further analysis would be to explore the relation be-
tween the structure of an HRG and the degree of ambiguity of the corresponding string
grammars as shown in [59]. Ultimately it could be relevant to study a hypergraph based
meta-language for the direct transition from strings to graphs. Such a representation
would ease the search for non-ambiguous solutions to even more inherently ambiguous
string languages.

A third result, obtained from the cases examined in Chapter 4 is the possibility to study
the ambiguity of graph grammars or even the inherent ambiguity of graph languages by
reducing them to simple forms. We have already proven that languages such as the (e∗)m

stars or the series-parallel graphs language are inherently ambiguous due to some particular
structures found in their members. More complex languages may be proven inherently

91

ambiguous by a direct reduction to the presented cases, simplifying the structures of their
members to the symmetries proposed in section 2.3. Once identified, Variations of the
sampling methods could then be investigated to solve the ambiguity problem for classes
of languages presenting the same characteristics.

Among the several possible continuations of this work we have considered the following:

Weighted Hypergraphs In order to translate Mairson’s methods from strings to hy-
pergraphs we have defined the size of a graph to be the sum of the number of nodes and
edges. This can also be interpreted as the sum of the elements of a graph all having
the same weight of 1. In a more general context, we may consider different weights as
an additional integer attribute of both nodes and edges, assigned, for example, to the
elements of the rhs of a production. Our approach is then guaranteed to work as long
as each production ensures a strictly positive increase of the overall sum of the weights
during the derivation. That extends the application of our method in contexts where the
merging of external nodes is allowed during the application of a production as proposed in
[18]. Moreover it could be possible to present a novel method for the dynamic attribution
of weights directly during the generation phase in order to investigate and improve the
solution of weighted graph problems such as the dynamic shortest hyperpath as in [26]
and [54].

Quasi-Polynomial-Time Approximation To generate graphs from a uniform distri-
bution our method requires the input grammar to be non-ambiguous. If it’s ambiguous, we
cannot provide any information about the distribution the resulting hypergraph has been
sampled from, nor can we improve the result without changing the grammar itself. So, an
interesting topic would be to study the quasi-polynomial-time approximation algorithm of
Gore et al. and extend it from strings to hypergraphs. In [31] they propose an algorithm
that guarantees an approximated uniform distribution even for ambiguous context-free
grammars. The algorithm is also based on Mairson’s methods and compensates for the
non-uniform distribution of the sampling, caused by the ambiguity of the input grammar,
at the cost of efficiency. One of the challenges in the transition to graphs is to find an
efficient test for graph isomorphism. A promising approach for this is the work of Babai
[2], showing that the problem can be solved in quasi-polynomial time. This is a funda-
mental prerequisite for the elimination of duplicates and the consequent narrowing of the
approximation of the sampling algorithm.

More Powerful Grammars Expanding the definition of context-free HRG presented in
Chapter 2 by adding more features to the structure of the grammar may greatly extend the
range of languages to sample from. For example, in [15] the so-called contextual hyperedge
replacement which relaxes the restriction on the fixed type of the hyperedges we may
include additional grammars to our environment. Having a special hyperedge connecting
a variable number of nodes during a derivation allows to overcome the limitation of some of
the languages proposed in our case studies, such as the stars graph language representing
graphs with an arbitrary number of stars and unbounded points.

Another generalisation of the HRGs is the rendez-vous presented in [13], in which the
productions may include the merging of external nodes with nodes outside the replacement
context. This allows the generation of grids, a known limitation for context-free HRGs.
Consequently, it overcomes the limitation of languages structurally equivalent to (anb)m,
providing the possibility to find more non-ambiguous solutions.

An even more powerful form of graph transformation is the Double-pushout represen-
tation [51]. Even if we conjecture that, in the setting of context-freeness, our methods

92

offers the most general solution, it is worth to explore the boundaries of their application
to a computationally complete approach such as DPO.

Parsing A very interesting aspect of sampling using ordered derivation trees is that
they produce ordered hypergraphs. Since the hyperedges are replaced by a recursive
function, when the generation algorithm terminates, the terminal hyperedges still hold
the information about the order in which they have been created. It is straightforward
then to rebuild the derivation tree given the resulting hypergraph. If we consider the
complementary problem of parsing as in [5] and [16], it would be of great relevance to
explore, given a hypergraph, this time without any ordering of the hyperedges, to what
extent relying only on the information given by the ordered productions, improves the
construction of parsing trees. In this case the ordering of hyperedges on the rhs may
represent a useful constraint to help converging towards the correct parsing tree.

GP2 Implementation An implementation of the methods for the uniform generation
of graphs would fit as a tool for efficiently testing graph based programs just as QuickCheck
[40] is for Haskell. It offers an unbiased way to generate large domain specific datasets
of graphs ensuring the most accurate results of the tests. It is also possible to consider
an implementation as part of the rule based programming language GP2 [7] in which the
algorithms could be directly built using the GP2 interface. That is, exploiting all the
advantages of GP2 such as representing the rules directly as graph transformations and
working with an ad-hoc graphical interface.

Beyond Software Testing Molecular biology and Cryptography are two important
fields of application where our methods could find a concrete use besides software testing.

In [17] and [42] the representation of molecules through hypergraphs takes advantage
of the possibility of hyperedge to describe multiple links simultaneously. An adaption
of our methods to this setting would provide a key instrument for the exploration of
new compounds, either by the possible definition of a context-free grammar capable of
generating such hypergraphs and the study of the probability distribution underlying the
generation process itself.

The proof of uniformity of the distribution of our methods is crucial for the devel-
opment of cryptographic protocols. It is indeed a fundamental requirement to prove the
computational security when a corresponding mathematical proof is missing. In [29] and
[48] we may find some useful insights on how to model graph based algorithms. In the
setting of HRG, we believe that there is an opportunity for the development of one-way
functions based, for example, on the encoding of the grammar. The ordering of the hy-
peredges on the rhs may represent the key for the generation of hypergraph, then shared
as public parameter. This is clearly in opposition with the previously described problem
of parsing. The question “Is a member of a context-free HRL easier to parse knowing that
its derivation tree is ordered?” leads indeed to an advantage despite of its answer.

93

Chapter 7

Bibliography

[1] S. Aguiñaga, R. Palácios, D. Chiang, and T. Weninger. Growing graphs with hyper-
edge replacement graph grammars. Computing Research Repository, abs/1608.03192,
2016.

[2] L. Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In
Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing
(STOC 16), pages 684–697. Association for Computing Machinery, 2016.

[3] C. Berge. Théorie des Graphes et ses Applications. Dunod, 1958.

[4] C. Berge. Hypergraphs: Combinatorics of Finite Sets, volume 45. North-Holland
Mathematical Library, 1984.

[5] H. Björklund, F. Drewes, P. Ericson, and F. Starke. Uniform parsing for hyperedge
replacement grammars. Journal of Computer and System Sciences, 118:1–27, 2021.

[6] B. Bollobás. Random Graphs, pages 215–252. Springer, 1998.

[7] G. Campbell, B. Courtehoute, and D. Plump. Fast rule-based graph programs.
Science of Computer Programming, 214, 2022. 32 pages.

[8] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. Tse. Adaptive random testing: The
art of test case diversity. Journal of Systems and Software, 83(1):60–66, 2010.

[9] N. Chomsky. On certain formal properties of grammars. Information and Control,
2(2):137–167, 1959.

[10] T. Coolen, A. Annibale, and E. Roberts. Generating Random Networks and Graphs.
Oxford University Press, 2017.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT press, 2022.

[12] B. Courcelle. An axiomatic definition of context-free rewriting and its application to
NLC graph grammars. Theoretical Computer Science, 55(2):141–181, 1987.

[13] G. David, F. Drewes, and H.-J. Kreowski. Hyperedge replacement with rendezvous.
In Proceedings Theory and Practice of Software Development (TAPSOFT 93), vol-
ume 18 of LNCS, pages 167–181. Springer, 1993.

94

[14] F. Drewes, A. Habel, and H.-J. Kreowski. Hyperedge replacement graph grammars. In
Handbook of Graph Grammars and Computing by Graph Transformation, volume 1,
pages 95–162. World Scientific, 1997.

[15] F. Drewes and B. Hoffmann. Contextual hyperedge replacement. Acta Informatica,
52:497–524, 2015.

[16] F. Drewes, B. Hoffmann, and M. Minas. Formalization and correctness of predictive
shift-reduce parsers for graph grammars based on hyperedge replacement. Journal of
Logical and Algebraic Methods in Programming, 2019.

[17] K. Ehrig, R. Heckel, and G. Lajios. Molecular analysis of metabolic pathway with
graph transformation. In Proceedings of the Third international conference on Graph
Transformations (ICGT 06), volume 4178 of LNCS, pages 107–121. Springer, 2006.

[18] J. Engelfriet. Context-free graph grammars. In Handbook of Formal Languages,
volume 3, pages 125–213. Springer, 1997.

[19] J. Engelfriet and L. Heyker. The string generating power of context-free hypergraph
grammars. Journal of Computer and System Sciences, 43(2):328–360, 1991.

[20] D. Eppstein. Parallel recognition of series-parallel graphs. Information and
Computation, 98(1):41–55, 1992.

[21] P. Erdős and A. Rényi. On the evolution of random graphs. Publications of the
Mathematical Institute of the Hungarian Academy of Sciences, 5(1):17–61, 1960.

[22] P. Erdős and A. Rényi. Asymmetric graphs. Acta Mathematica Academiae
Scientiarum Hungarica, 14:295–315, 1963.

[23] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii
Academiae Scientiarum Imperialis Petropolitanae, pages 128–140, 1741.

[24] P. Flajolet. Analytic models and ambiguity of context-free languages. Theoretical
Computer Science, 49(2–3):283–309, 1987.

[25] P. Flajolet, P. Zimmermann, and B. V. Cutsem. A calculus for the random generation
of labelled combinatorial structures. Theoretical Computer Science, 132(1–2):1–35,
1994.

[26] J. Gao, Q. Zhao, W. Ren, A. Swami, R. Ramanathan, and A. Bar-Noy. Dy-
namic shortest path algorithms for hypergraphs. Computing Research Repository,
abs/1202.0082, 2012.

[27] D. T. Gillespie. Stochastic simulation of chemical kinetics. Annual Review of Physical
Chemistry, 58:35–55, 2007.

[28] S. Ginsburg and J. Ullian. Ambiguity in context free languages. Journal of the ACM,
13(1):62–89, 1966.

[29] O. Goldreich. Candidate one-way functions based on expander graphs. In O. Goldre-
ich, editor, Studies in Complexity and Cryptography. Miscellanea on the Interplay
between Randomness and Computation, pages 76–87. Springer, 2011.

[30] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

95

[31] V. Gore, M. Jerrum, S. Kannan, Z. Sweedyk, and S. Mahaney. A quasi-polynomial-
time algorithm for sampling words from a context-free language. Information and
Computation, 134(1):59–74, 1997.

[32] S. A. Greibach. The undecidability of the ambiguity problem for minimal linear
grammars. Information and Control, 6(2):119–125, 1963.

[33] A. Habel. Hyperedge Replacement: Grammars and Languages, volume 643 of LNCS.
Springer, 1992.

[34] A. Habel, J. Müller, and D. Plump. Double-pushout graph transformation revisited.
Mathematical Structures in Computer Science, 11(5):637–688, 2001.

[35] R. Hamlet. Random testing. In Encyclopedia of Software Engineering. John Wiley
and Sons, 2002.

[36] T. Hickey and J. Cohen. Uniform random generation of strings in a context-free
language. SIAM Journal on Computing, 12(4):645–655, 1983.

[37] C. Hierholzer and C. Wiener. Über die Möglichkeit, einen Linienzug ohne Wieder-
holung und ohne Unterbrechung zu umfahren. Mathematische Annalen, 6(1):30–32,
1873.

[38] B. Hoffmann and M. Minas. Generalized predictive shift-reduce parsing for hyperedge
replacement graph grammars. In Proceedings Language and Automata Theory and
Applications: 13th International Conference, (LATA 2019), volume 11417 of Lecture
Notes in Computer Science, pages 233–245. Springer, 2019.

[39] D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the Iconic Science and Engineering, 40(9):1098–1101, 1952.

[40] J. Hughes. Software testing with QuickCheck. In Proceedings Central European
Functional Programming School (CEFP 2009), volume 6299 of Lecture Notes in
Computer Science, pages 183–223. Springer, 2009.

[41] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science, 43:169–188,
1986.

[42] H. Kajino. Molecular hypergraph grammar with its application to molecular optimiza-
tion. In Proceedings 36th International Conference on Machine Learning, volume 97,
pages 3183–3191. Proceedings of Machine Learning Research, 2019.

[43] S. Kannan, Z. Sweedyk, and S. Mahaney. Counting and random generation of
strings in regular languages. In Proceedings Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 95), pages 551–557. Society for Industrial and Applied
Mathematics, 1995.

[44] R. M. Karp. Reducibility among combinatorial problems. In Proceedings of a
symposium on the Complexity of Computer Computations, pages 85–103. Springer
US, 1972.

[45] P. S. le Marquis de Laplace. Théorie analytique des probabilits. In Œuvres Completes
de Laplace, volume 7, pages 181–192. Gauthier-Villars, Imprimeur-Librarie, 3rd edi-
tion, 1820.

96

[46] G. N. Lewis. The atom and the molecule. Journal of the American Chemical Society,
38(4):762–785, 1916.

[47] H. G. Mairson. Generating words in a context-free language uniformly at random.
Information Processing Letters, 49(2):95–99, 1994.

[48] S. Micali and R. L. Rivest. Transitive signature schemes. In Proceedings Topics in
Cryptology (CT-RSA 2002), pages 236–243. Springer, 2002.

[49] M. Minas. Hypergraphs as a uniform diagram representation model. In Proceedings
Theory and Application of Graph Transformations (TAGT 1998), volume 1764 of
Lecture Notes in Computer Science, pages 281–295. Springer, 2000.

[50] M. Mosbah. Probabilistic hyperedge replacement grammars. Theoretical Computer
Science, 159(1):81–102, 1996.

[51] D. Plump. Term graph rewriting. In Handbook of Graph Grammars and Computing
by Graph Transformation, volume 2, pages 3–61. World Scientific, 1999.

[52] G. Robins, P. Pattison, Y. Kalish, and D. Lusher. An introduction to exponential
random graph (p*) models for social networks. Social Networks, 29(2):173–191, 2007.

[53] S. S. Skiena. The Algorithm Design Manual, 3rd Edition. Springer, 2020.

[54] Sunita and D. Garg. Dynamizing Dijkstra: A solution to dynamic shortest path prob-
lem through retroactive priority queue. Journal of King Saud University - Computer
and Information Sciences, 33, 2018.

[55] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8(2):189–201, 1979.

[56] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal
on Computing, 8(3):410–421, 1979.

[57] F. Vastarini and D. Plump. Random graph generation in context-free graph
languages. In Proceedings 13th International Workshop on Developments in
Computational Models (DCM 2023), Electronic Proceedings in Theoretical Computer
Science. Open Publishing Association, 2024. To appear.

[58] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393:440–442, 1998.

[59] K. Wich. Sublinear ambiguity. In M. Nielsen and B. Rovan, editors, Proceedings
Mathematical Foundations of Computer Science 2000, pages 690–698. Springer, 2000.

97

