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Abstract 

Oil and gas industries, during the extraction of oil from wells, find water along with 
carbon dioxide (CO2), hydrogen sulphides (H2S), and organic acids. The presence of 
these species affects the integrity of pipelines used for transportation due to the 
electrochemical reactions on the metal surface. This phenomenon of degradation is 
known as carbon dioxide (sweet) corrosion when the presence of CO2 is much higher 
than H2S. Several studies have shown a comprehensive understanding of the 
mechanism enabling the development of mechanistic predictive tools with the help of 
empirical correlations of viscous sublayer thickness, turbulent diffusivity, and reaction 
rate kinetics. These empirical correlations are valid for fully developed flow situations 
and constrain the corrosion rate predictions in developing and disturbed flow 
conditions. This limits the scope of current prediction tools in the literature and 
generates a need to develop a flow and mass transfer coupled model applicable to a 
broader range of operating conditions. Hence, this is the subject of investigation in this 
research work. 

A computational fluid dynamics (CFD) driven mass transfer model is developed to 
predict CO2 corrosion in pipelines. The model involves accurate predictions of viscous 
sublayer thickness and turbulent diffusivity in a horizontal pipe using CFD. These 
predictions then drive the 1-dimensional mass transfer model to predict CO2 corrosion. 
These predictions were then verified with the experimental dataset available in the 
literature for pH 4 to 6, velocity 1 to 10 m/s, partial pressure of CO2 (pCO2) of 1 bar and 
temperature of 20°C. A verification with an experimental dataset highlighted the 
robustness of the CFD-driven model, as the predicted values are well within the range 
of experimental data.  

Machine learning models such as Artificial Neural Network (ANN), Gaussian Process 
Regression (GPR), Random Forest (RF), and Support Vector Regression (SVR) are applied 
to predict corrosion rate based on input variables such as pH, velocity, temperature and 
pCO2. Machine learning-enabled surrogate modelling is used to determine the 
sensitivity of electrochemical reaction rate constants and then calculate a reliable set of 
electrochemical reaction rate constants. Random Latin Hypercube (RLH) sampling was 
then applied to a range of electrochemical reaction rate constants obtained from the 
literature. A dimensionality reduction technique, Principal Component Analysis (PCA), is 
then applied to check if the initial design variables can be reduced. An optimal machine 
learning model is selected from ANN, GPR, RF and SVR based on evaluation metrics. A 
set of optimal electrochemical reaction rate constants was then used to compare them 
against the experimental dataset, and predictions were obtained using the current set 
of electrochemical reaction rate constants.  

When it comes to the predictions of corrosion rates in complex flow situations, few 
prediction tools are available in the literature. A CFD-driven mass transfer model for the 
prediction of CO2 corrosion in complex flow situations is developed in the current study, 
which accurately couples the CFD model with the mass transfer model by setting the 
benchmark for complex flow corrosion modelling. The complex flow situation model 
considered here is a 2D expansion/constriction pipe in which expansion and constriction 
domains are connected gradually. This CFD model is coupled with the 1D mass transfer 
model that calculates the corrosion rate over a surface.  



 

CFD-driven mass transfer model for the prediction of CO2 corrosion in horizontal 
pipelines predicted corrosion rates reasonably well for pH 5 and pH 6. However, for pH 
4 it was found that the corrosion rate predictions were sensitive to the choice of 
electrochemical reaction rate constants. A systematic approach to finding an optimal set 
of electrochemical reaction rate constants for pH 4 with the help of supervised machine 
learning models showed that the GPR model consistently provided lower RMSE values 
compared to other models. An optimal set of electrochemical reaction rate constants 
provided the lowest RMSE value of 0.28 between predicted corrosion rates and 
experimental corrosion rates, showing the robustness of this approach. The current 
model has shown its capability to predict VSL conditions and corrosion rates in complex 
flow geometry situations. 
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Chapter 1:  Introduction 

1.1 Introduction  

Corrosion is a natural process of degradation of materials as a result of chemical and 
electrochemical reactions with the environment (Ibrahimi et al., 2021). This process 
transforms pure metal into chemically stable oxide. The cost of corrosion in terms of global 
impact was estimated to be £2 trillion, equivalent to 3.4% of the global growth domestic 
product (GDP) in 2013. The United States (U.S.) refinery’s capacity was 27% of the global 
refinery capacity towards the end of 2014 (Abbas, 2016). Table 1.1 shows the share of each 
of the industry categories in the U.S. affected by CO2 corrosion (Koch et al., 2002). 

Table 1.1. Corrosion costs share for the United States industry categories (Koch et al., 2002) 

Category Share (%) 

Utilities 35 

Transportation 21 

Infrastructure 16 

Government 15 

Production and Manufacturing 13 

The production and manufacturing industry shared around 13% of total corrosion costs, 
accounting for £14.65 billion (Koch et al., 2002), which was doubled by 2014 (Abbas, 2016). 
Figure 1.1 shows the pie chart of costs associated with the production and manufacturing 
industry. 
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Figure 1.1 Pie chart of corrosion costs for the production and manufacturing industry(Koch 
et al., 2002). 

As shown in Figure 1.1, the total cost cuts for the oil and gas industry are around 39%, 
including oil and gas exploration and production, petrochemical, petroleum refining and 
chemical, and pharmaceutics. Oil and gas industries transport crude oil from the wellhead to 
the refinery for separation and processing. Pipeline flows are the most economical method 
for transporting oil/water mixtures. Such pipelines comprise steel for practical engineering 
implementation and cost-related reasons (Choi et al., 2010). However, several causes result 
in pipeline failure, as shown in Table 1.2. 

Table 1.2 Causes of pipeline failure in the oil and gas industry (Kermani and Harrop, 1996). 

Causes of failure The proportion of failures (%) 

Corrosion 33 

Fatigue 18 

Mechanical damage/overload 14 

Brittle fracture 9 

Fabrication defects 9 

Welding defects 7 

Others 10 

 

Out of overall pipeline failures reported, 33% of total failures are caused by corrosion where 
CO2 corrosion accounted for the highest proportion of failure shown in Table 1.3 (Kermani 
and Harrop, 1996). Subsequent to CO2 corrosion, H2S corrosion and preferential weld 
corrosion each contribute 18%, followed by pitting corrosion at 12% and erosion-corrosion at 
9%. Galvanic corrosion represents 6% of failures, while crevice, impingement and stress 
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corrosion each contribute 3% to the overall pipeline failures due to corrosion in the oil and 
gas industry. Preferential weld corrosion occurs near welds due to factors such as residual 
stresses, differences in metallurgical properties, and environmental conditions, including 
effects of flow, scale formation and pH of the solution (Hebert et al., 2019). Impingement 
corrosion is the degradation of the metal surface due to the impact of fluid with a high 
velocity, resulting in enhanced mass transfer of corrosive species to the metal surface and 
removal of corrosion products from the metal surface (Efird, 2000).  

It is essential to have an efficient design after considering the factors that affect CO2 corrosion 
to minimise capital as well as operational costs. To this end, it is necessary to develop models 
to predict accurate corrosion rates to determine pipeline longevity, reduce extensive 
degradation, and improve effective operation. This will aid the development of efficient 
transportation system design. The need for a predictive tool of  CO2 corrosion is directly 
related to the health, safety, and economic aspects of the industry, where the monetary 
impact is in billions of pounds. 

Table 1.3 Pipeline failure in the oil and gas industry due to corrosion (Kermani and Harrop, 
1996). 

Types of corrosion The proportion of failures (%) 

CO2 corrosion 28 

H2S corrosion 18 

Preferential weld 18 

Pitting 12 

Erosion-corrosion 9 

Galvanic 6 

Crevice 3 

Impingement 3 

Stress corrosion 3 

 

Over the last two decades, numerous studies have been carried out to build an accurate 
model for the prediction of  CO2 corrosion in pipelines (Gardner et al., 2019). There are 
several empirical (Halvorsen and Sontvedt, 1999; Olsen, 2003), semi-empirical (de Waard and 
Milliams, 1975; de Waard et al., 2003), elementary mechanistic (Gray et al., 1989; Nesic et al., 
1995; Nesic et al., 2001; Nordsveen et al., 2003; Nešić et al., 2009), and comprehensive 
mechanistic models (Nešić et al., 2019; Kahyarian and Nesic, 2020) that are now available for 
the prediction of  CO2 corrosion in single-phase pipeline flow. The elementary mechanistic 
model (Gray et al., 1989) encompasses the simplified fundamental corrosion processes 
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focused on the fundamental electrochemical reactions occurring at the metal surfaces (Nešić 
et al., 2009). The comprehensive mechanistic models maintain mass and charge transfer 
balances while incorporating the effect of homogeneous chemical reactions. The mechanistic 
models available have extended their scope by adding complexity, such as the effect of 
multiphase flow (Nešić et al., 2019), the impact of protective corrosion product formation 
(Nesic et al., 2001; Nordsveen et al., 2003), and other corrosive species into these models 
(Zheng, 2015; Kahyarian and Nesic, 2020). Some approaches include combinations of 
experimental work with theoretical modelling for investigating the impact of surface 
roughness (Al-Khateeb et al., 2018) and rapid expansion geometry with the help of 
computational fluid dynamics (CFD)(Owen et al., 2019). 

CFD was only known for its use in high-technology engineering areas of astronautics and 
aeronautics; now, it is a quickly adopted technique for solving highly complex problems in 
general engineering practice. In aerospace and aeronautical industries, CFD is used to analyse 
wing/tail structures or fuselages, optimise fuel delivery and engine cooling systems, and the 
critical components' initial or complete design process (Isaac, 2013). CFD has many 
advantages in automotive engineering, such as shortening cycles, optimising existing 
components, studying the vehicle's external aerodynamics, and improving the in-car environment 
(Dhaubhadel, 1996). Medical researchers rely primarily on simulation techniques to predict 
the behaviour of blood flow through the veins and arteries of the human body (Djukic et al., 
2022). The information challenging to obtain from the experiments can be provided with the 
help of computational simulations by allowing variations of problems to be studied 
parametrically (Veersteg and Malalasekara, 2016). Governments, corporations, and research 
institutes are more actively seeking ways to reach environmental regulatory requirements by 
reducing waste (Wójtowicz-Wróbel et al., 2023) and maintaining acceptable production levels 
to meet increased market demands. CFD has been beneficial for predicting the flow field 
required for corrosion prediction in pipelines (Subraveti et al., 2019) and elbows (Keating and 
Nesic, 2000) for single-phase flow simulations. In addition, CFD provided valuable insights into 
understanding the mechanism of slug flow-induced CO2 corrosions (Zheng et al., 2007; Lv et 
al., 2020).  

Underpinning the current state-of-the-art modelling CO2 corrosion in pipeline flows, 
empirical measurements of reaction rate kinetics, viscous sublayer thickness, and turbulent 
diffusivity restrict predictions to simple geometries, steady-state and single-phase flows. This 
investigation aims to further the current capabilities of CO2 corrosion prediction in pipeline 
flows by deriving and implementing a novel method for accurately incorporating CFD with 
mass transfer modelling. Current predictive tools in the literature are valid for fully developed 
flow conditions as the empirical correlations used for the prediction of flow conditions cannot 
be applied to the flow situations where the flow is developing and/or disturbed (Nordsveen 
et al., 2003; Kahyarian and Nesic, 2020). This limitation can be overcome with the capability 
of CFD modelling to predict corrosion rates when the flow is in developing and disturbed 
condition (Li and Woollam, 2012). There is a research gap in the literature related to the mass 
transfer modelling of CO2 corrosion in complex flow geometries. In addition, the current 
study has implemented machine learning technologies to develop a CFD-enabled machine 
learning predictive tool. Machine learning tools with fast computing speed and the ability to 
handle large datasets have been used to develop predictive tools in the corrosion science field 
(Aghaaminiha et al., 2021). The current study has implemented machine learning techniques 
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to predict corrosion rates based on operating parameters and to predict optimal 
electrochemical reaction rate constants. 

The main driving force for this study is to develop a robust predictive tool for a better 
understanding of corrosion in complex flow situations.  

1.2  Aim and Objectives 

The aim of this research is to build a robust mass transfer model with the accurate coupling 
of the CFD model to predict CO2 corrosion in complex flow situations.  

Below are the objectives of this research project, 

 Carry out a literature review to obtain knowledge of the latest research activities 
associated with the field of CO2 corrosion, plan the project activities and direct the 
research's focus. 

 Investigate the current mechanistic models for the CO2 corrosion prediction and 
understanding the limitations of those models. 

 Develop a methodology for the prediction of CO2 corrosion with the aid of CFD in 
horizontal straight pipelines. 

 Find out the most influential factors that affect CO2 corrosion. Plot corrosion rate 
profiles against factors, for example, pH, pCO2, temperature and velocity.  

 Develop a CFD-enabled machine learning model to predict corrosion rates based on 
operating parameters such as pH, partial pressure of CO2, Temperature and velocity. 
Study the performance of supervised machine learning models and choose the 
appropriate model based on cross-validation. 

 Develop machine learning-based surrogate modelling to find optimal 
electrochemical reaction rate constants.  

 Develop a methodology for the CO2 corrosion in complex flow situations by 
accurately coupling CFD with a mass transfer model. 

1.3  Thesis Structure 

The first two chapters of the thesis provide the theory, background information and a 
literature review related to CO2 corrosion, CFD, surrogate modelling, machine learning 
techniques and optimisation techniques. The third chapter explains the methodology for the 
mass transfer modelling of CO2 corrosion and its coupling with CFD to provide a robust tool. 
The fourth chapter describes the methodology for machine learning enabled surrogate 
modelling that includes the analysis of the most significant factors, such as pH, velocity, 
temperature and partial pressure of CO2 (pCO2). The fifth chapter provides a detailed 
overview of machine learning-enabled surrogate modelling to find optimal electrochemical 
reaction rate constants. The sixth chapter explains the mass transfer modelling of CO2 
corrosion in complex flow situations. The seventh chapter discusses the outcomes and the 
conclusion of the research study.  

  



 

6 
 

Chapter 2:  Literature Review 

2.1 CO2 Corrosion  

Carbon and low alloy steel pipelines transport oil/gas/water from wells to the station where 
crude oil is separated from water. This distance between the wells and the station ranges 
between 10 to 100 kilometres (Martínez-Palou et al., 2011). During the transportation of the 
oil/water mixture, interaction occurs between metal and electroactive species due to the 
chemical surface properties of metal and the electrochemical properties of dilute species, 
where the term dilute refers to the relatively small number of species compared to the total 
oil/water mixture in fluid flows. Their concentration field is calculated using the Nernst-Planck 
equation shown in section 2.3. This phenomenon is described in this section. 

2.1.1 Water Chemistry  

In CO2 corrosion process, gaseous carbon dioxide dissolves in water, which then hydrates to 
form carbonic acid (H2CO3). This reaction is rapid and reversible. Carbonic acid is a weak acid, 
and the dissociation of carbonic acid forms bicarbonate ions (HCO3

−) and hydrogen ions 

(H+). The bicarbonate ions then dissociate to form carbonate ions (CO3
2−) and hydrogen 

ions. Water dissociates to form hydroxide ions (OH−) and hydrogen ions. These chemical 
reactions are shown in Table 2.1, and Table 2.2 shows the empirical equations for the 
equilibrium constants where 𝐾𝑓 is the forward reaction rate constant, and 𝐾𝑏 is the backward 

reaction rate constant (𝐾 =  𝐾𝑓/𝐾𝑏). 
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Table 2.1 Chemistry of CO2 dissociation in water. 

Description Reaction Equilibrium Constant  

Carbon dioxide dissolution CO2(g)
⇌ CO2(aq)

 
𝐾𝑠𝑜𝑙 =

CO2(aq)

pCO2(g)

 
(2.1) 

Carbon dioxide hydration CO2(aq)
+ H2O(l) ⇌ H2CO3(aq)

 
𝐾ℎ𝑦𝑑 =

[H2CO3]

[CO2(aq)
]
 

(2.2) 

 
Dissolution of carbonic acid H2CO3(aq)

⇌ HCO3
−

aq
+ H+

(aq) 
𝐾𝑐𝑎 =

[HCO3
−][H+]

[H2CO3]
 

(2.3) 

 
Dissolution of bicarbonate 

ion 
HCO3

−
aq

⇌ CO3
2−

(aq)
+ H+

(aq) 
𝐾𝑏𝑖 =

[CO3
2−][H+]

[HCO3
−]

 
(2.4) 

 
Dissociation of water H2O(l) ⇌ OH−

(aq) + H+
(aq) 𝐾𝑤 = [OH−][H+] (2.5) 
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Table 2.2. Empirical equations for the equilibrium constants. 

Equilibrium constants Reference  

𝐾𝑠𝑜𝑙 =
14.5

1.00258
× 10−(2.27+0.00565 ∙𝑇𝑓−8.06×10−6 ∙  𝑇𝑓

2+0.075∙  𝐼)  
molar

bar
 

 

(Oddo and Tomson, 1982) (2.6) 

𝐾ℎ𝑦 = 0.00258 (Palmer and Van Eldik, 1983) (2.7) 

𝐾𝑓,ℎ𝑦 = 10
329.85−110.541× log10(𝑇𝑘)−(

17265.4
𝑇𝑘

)
 s−1 

(Palmer and Van Eldik, 1983) (2.8) 

𝐾𝑐𝑎 = 387.6 × 10−(6.41−1.594×10−3∙ 𝑇𝑓+8.52×10−6∙ 𝑇𝑓
2−3.07×10−5∙p−0.4772∙𝐼0.5+0.118∙𝐼) molar (Oddo and Tomson, 1982) (2.9) 

𝐾𝑓,𝑐𝑎 = 105.71+0.0526∙𝑇𝑐−2.94×10−4∙𝑇𝑐
2+7.91×10−7∙𝑇𝑐

3
  s−1 (Bamford & Tiffer, 1972) (2.10) 

𝐾𝑏𝑖 = 10−(10.61−4.97×10−3∙𝑇𝑓+1.331×10−5∙𝑇𝑓
2−2.624×10−5∙𝑝−1.166∙ 𝐼0.5+0.3466∙𝐼) molar (Oddo and Tomson, 1982) (2.11) 

𝐾𝑓,𝑏𝑖 = 109s−1 (Nordsveen et al., 2003) (2.12) 

𝐾𝑤𝑎 = 10−(29.3868−0.0737549∙Tk+7.47881x10−5∙Tk
2)(molar)2 (Kharaka et al., 1988) (2.13) 

𝐾𝑏,𝑤𝑎 = 7.85 ∗ 1010  (molar)−1(s)−1 (Delahay, 1952) (2.14) 
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2.1.2 Electrochemical Reactions 

The general form of electrochemical reaction is given by Eq. (2.15) (Owen, 2018), 

𝑀 → 𝑀𝑛+ + 𝑛𝑒− (2.15) 

where n is the number of electrons and M is metal. The metal ions are transported from the 
anode to the cathode through an electrolyte. The anode is the metal part where oxidation 
occurs, whereas the cathode is the part where reduction occurs. The anode and cathode can 
be next to each other or separated by distance. Figure 2.1 shows the primary corrosion cell. 

 

Figure 2.1 Basic corrosion cell to show the anode, cathode and flow of electrons. 

The overall reaction that takes place in a CO2  corrosion process is given below, 

Fe(s) + CO2(g)
+   H2O(l) → FeCO3(s)

+ H2(g)
 (2.16) 

The anodic dissolution of iron is as follows, 

Fe(s) → Fe2+
(aq) + 2e−    

(2.17)            

The CO2 presence increases the rate at which hydrogen ions are reduced, thus increasing the 
corrosion rate of the surface. CO2 corrosion is a mass transfer-limited process; hence, the rate 
of hydrogen evolution depends on the rate at which it is transported from the bulk to the 
metal surface (Nesic et al., 2001). As the pH value increases above 4, the mass transfer 
controlled current reduces, and then the presence of carbonic acid (H2CO3) allows hydrogen 
evolution. The cathodic reactions of hydrogen evolution are given as follows, 

2H+
(aq) + 2e− ⇌ 2H2(g)

 (2.18)             
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2H2CO3(aq)
+ 2e− ⇌ 2HCO3

−
aq

+ 2H2(g)
         

(2.19)      

2.2 Types of CO2 Corrosion 

2.2.1 Localised Corrosion 

Localised corrosion is the type of corrosion that occurs over smaller regions of the metal 
surface. A smaller surface area of the metal is attacked faster by a corrosive environment than 
the total surface area of the metal (Alawadhi, 2009). The surrounding area affected by 
localised corrosion either remains unaffected or is subject to general corrosion (Kermani and 
Morshed, 2003). Non-uniform formation of corrosion product scale on the metal surface is 
one of the vital factors that contribute to localised CO2 corrosion. There are three different 
variants of localized corrosion: pitting, mesa attack and flow-induced localized corrosion 
(Kermani and Morshed, 2003). Figure 2.2 shows the different types of localised corrosion. 

 

  

(a) (b) 

 
(c) 

Figure 2.2 Different types of localised corrosion in pipelines. a) Pitting attack, b) Mesa-type 
attack, c) Flow-induced localized corrosion (Perez, 2013). 

Pitting occurs at moderate to low velocities when the temperature ranges are around the dew 
point. The pitting depends on the temperature and CO2 partial pressure. As the temperature 
and partial pressure of CO2 increases pitting increases. Pitting is likely around 80-90 degrees 
Celsius in sweet gas (H2S) wells (Kermani and Morshed, 2003). 
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The mesa-type attack is often associated with medium flow velocity conditions. Corrosion due 
to mesa type of attack results in extensive flat-bottomed localised damage with sharp steps 
at the edges of the metal surface (Dugstad, 1998). Corrosion due to mesa attack is most likely 
to occur at the surface with unstable carbonate films (Al-Moubaraki and Obot, 2021). Local 
spalling of carbonate scales is also a significant factor in mesa attack. Metal below the 
carbonate scales gets exposed due to local spalling, which then corrodes, and surface films 
are again reformed. The spalling of the carbonate scales is due to intrinsic growth stresses in 
the scale.  

Flow-induced localised corrosion, above critical flow velocities, is initiated from where pits 
and/or mesa attack sites are already created. These pits and/or mesa attack sites result in 
local turbulence, which aids in disseminating flow-induced localised corrosion attack. The 
critical flow conditions – flow with enhanced wall shear stress may hinder the formation of 
scale growth on the metal surface after the destruction by local turbulence, along with 
stresses developed during the scale growth (Halvorsen and Sontvedt, 1999). 

2.2.2 Uniform or General Corrosion 

Uniform or general corrosion is the type of corrosion in which the attack is consistent over 
the entire surface area of a material (Liu et al., 1994). It is also the most common type of 
corrosion observed in industries. In addition, it is one of the widely studied and well-
understood types of corrosion (Kahyarian et al., 2016). 

2.2.3 Galvanic Corrosion 

Galvanic corrosion is experienced when two dissimilar metals come in contact with each other 
in the presence of an electrolyte (Ma et al., 2023), formation of precipitates on the metal 
surface (Chang et al., 2014; Sainz-Rosales et al., 2022), and due to the turbulence in disturbed 
flow (Heitz, 1996; Li and Woollam, 2012). Figure 2.3 shows the formation of anodic and 
cathodic sites during erosion-corrosion in disturbed flow conditions. The stages of formation 
of galvanic cells show that copper base materials develop anodes in high-intensity regions. In 
contrast, non or low-alloyed ferrous materials develop anodes in more stagnant flow regions 
(Heitz, 1996). 
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Figure 2.3 Galvanic or electrochemical cell formation during erosion-corrosion in a disturbed 
turbulent flow situation(Heitz, 1996). 

2.2.4 Key Factors Influencing Corrosion 

Different factors affect the corrosion rate of the metal surface. These factors include 
operating conditions, fluid chemistry, hydrocarbon, inhibitors' presence and material 
properties shown in Figure 2.4 (Nordsveen et al., 2003; Kermani and Morshed, 2003; Abbas, 
2016; Owen et al., 2019). Out of all the factors that affect the CO2 corrosion, the most 
significant factors such as temperature, partial pressure of CO2 (pCO2), and the velocity of 
flow is discussed in this section. Figure 2.4 shows the parameters affecting corrosion in the oil 
and gas industries. 

 

Figure 2.4 Parameters affecting corrosion in oil and gas industries (Kermani and Morshed, 
2003; Owen, 2018). 

Effect of Temperature  

The corrosion rate increases with an increase in temperature at a given partial pressure of 
CO2 (Nesic et al., 1995). This results from the speed-up of physicochemical processes involved 
in corrosion when temperature increases (Nešić et al., 2019). Figure 2.5 shows the variation 
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in corrosion rate for X65 steel, a type of high-strength, low-alloy steel, as a function of 
temperature and pH values (Nešić et al., 2019).  

 

Figure 2.5 Effect of temperature on the CO2 corrosion rate in a flow loop at velocity (v) = 2 
m/s, diameter (d) = 0.0254 m, CFe

2+< 1 ppm, 1% wt. of NaCl, total partial pressure ptotal= 1 
bar. Solid lines represent the corrosion rate from the (Nešić et al., 2019) mechanistic model, 
and points represent the results from the experimental data for X65 steel (Nesic et al., 
1995). 

Above a specific temperature range, it is agreed that the protective layers of iron carbonate 
(FeCO3) are formed, which results in a decrease in the corrosion rate as temperature 
increases (Nordsveen et al., 2003). These protective layers create a physical barrier between 
surrounding fluid and metal, thus reducing the rate of species' transport to and from the 
metal surface (Nesic et al., 2001). The temperature of an aqueous solution significantly 
impacts the formation of protective carbonate layers. At temperatures below 60°C, the 
protective layers may not form as the solubility of FeCO3 is high, and the precipitation rate is 
slower than at higher temperatures (Nesic et al., 2001). At this temperature range, CO2 
corrosion is a function of temperature, pH, and partial pressure of CO2, and the metallurgy of 
the steel (Hunnik et al., 1996). As the temperature increases above 60°C, the solubility of iron 
carbonate decreases, resulting in the enhancement of the protectiveness of the iron 
carbonate layer, and the corrosion rate increases up to a temperature of 80°C, and after that, 
with the increase in the temperature, corrosion rate decreases. 

Effect of Partial Pressure of CO2 

The partial pressure of CO2 is significant in both the absence and the formed protective film 
conditions. de Waard and Milliams (1975), in a study, provided a relationship between the 
partial pressure of CO2 (𝑝𝐶𝑂2

) and corrosion rate at temperatures 15, 25, and 60°C is given 

below, 
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Corrosion rate = constant × 𝑝𝐶𝑂2
C   

(2.20)             

where C is 0.67. Some researchers found that the value of C is between 0.5 and 0.8 (Wang, 
1999).  

The effect of partial pressure of CO2 is studied in the absence and presence of carbonate 
scales. As the partial pressure of CO2 increases in the absence of carbonate scales, the 
solution's pH decreases and the carbonic acid reduction rate increases. Thus, the corrosion 
rate increases (Nesic and Lunde, 1994). Sun and Nesic (2004) found that under protective 
film-forming conditions, high partial pressure of CO2 at pH below 5.2 reduces the corrosion 
rate. This was due to fewer cathodic sites, which increased bicarbonate and carbonate ions 
(Sun and Nesic, 2004). 

Effect of Flow Velocity  

Flow contributes to the transport of species entirely or partially to the surface due to 
turbulence. In CO2 corrosion, reduction of H+ ions are mass transfer controlled and at higher 
velocities, H2CO3 reduction is influenced by the interaction between a chemical reaction and 
mass transfer. This shows that the flow velocity has a significant impact on the CO2 corrosion 
(Nesic et al., 2004). Flow velocity affects the CO2 corrosion in two distinct ways depending on 
the conditions favourable for forming a protective layer. In conditions unfavourable for the 
formation of the protective layer, flow enhances the transport of species to and from the 
metal surface, increasing the corrosion rate (Nordsveen et al., 2003). Contrarily, when the 
conditions are favourable for the formation of the protective layer, which usually occurs at 
higher pH values, the flow interferes with the formation of protective layers or removes them 
from the surface, increasing the corrosion rate (Nesic et al., 2003). Figure 2.6 depicts the 
impact of velocity on the corrosion rate in a straight pipeline and rotating cylinder electrode 
(RCE) (Nesic et al., 1995). 

 

Figure 2.6 Variation of corrosion rate for X65 steel with respect to velocity at pH = 4, 
Temperature T = 20, 1% wt. of NaCl total partial pressure ptotal= 1 bar (Nesic et al., 1995). 
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2.2.5 CO2 Corrosion Prediction Models 

Several oil and gas companies have created different models for the prediction of CO2 corrosion 
rates. Few of these models are based on empirical correlations with either laboratory or field 
data (Nyborg, 2010. Some of these models are the mechanistic model, which includes 
homogeneous chemical reactions and electrochemical reactions that occur in CO2 corrosion of 
steel. Nyborg (2010) in their study compared all the available models for the CO2 corrosion 
prediction. This section provides an overview of the CO2 corrosion prediction models. 

de Waard Model 

de Waard and Milliams (1975) developed a CO2 corrosion model that was dependent on the 
temperature and partial pressure of CO2. This model was updated later by adding correction 
factors (de Waard et al., 1991; de Waard et al., 1995). de Waard et al. (1995) created an 
updated version of de Waard and Milliams (1975) model, which has a correction factor for 
corrosion product scales. The model could not provide a good account for forming protective 
films above the temperature of 80°C − 90°C. This model also included a factor for oil wetting 
where crude oil systems were available. This system did not apply to condensate systems (de 
Waard et al., 1991), as water separation is much easier than crude oil systems. The model 
requires input for pH when the formation water chemistry is assumed. Considering all these 
limitations, this model did not apply to the broader range of the data; however, it was a good 
starting point for the empirical prediction models (Nyborg, 2010). 

Norsok M-506 Model  

Norwegian oil companies Statoil, Norsok Hydro and Saga Petroleum (Nyborg, 2010) 
developed an empirical model for the prediction of  CO2 corrosion.  This model is fitted to data 
similar to that of de Waard et al. (1995), with some other experiments at higher temperatures 
between 100 °C and 150 °C and corrosion rates for temperatures below 20 °C set equal to 
corrosion rates at 20°C. This model considers the effect of the corrosion product layer at high 
temperatures and high pH efficaciously compared with other corrosion prediction models. In 
addition to this, the model is more sensitive to variation in pH than the de Waard et al. (1995) 
model. The model includes options for calculating the pH value for three conditions and wall 
shear stress based on the pipe diameter and production rates. The model does not include any 
effect of oil wetting on the corrosion rate (Nyborg, 2002).  

However, the model has several limitations, such as under-predicted corrosion rates for the 
total content of organic acids over 100 ppm and pCO2 less than 0.5 bar offered no feasibility 
to determine the critical flow velocity as the correlation was purely empirical.  

Hydrocor Model 

Shell developed the Hydrocor model (Kopliku and Gunaltun, 2006) to combine fluid flow and 
corrosion modelling. This model includes the multiphase flow's effect and an oil-wetting factor 
considered for crude oil systems. For liquid velocity above 1.5 m/s and water cut below 40%, it 
is assumed that the surface is wetted by oil, hence no corrosion. As the water cut increased 
above 40%, the wettability conditions would change from oil-wet to water-wet; hence, the 
corrosion risk would be higher. This model includes the predictions for top-of-line corrosion, 
H2S corrosion and organic acid corrosion. The fluid flow model includes calculating velocity, 
pressure and temperature profiles along a pipeline. 
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The remarkable thing about this model was the prediction of H2S corrosion. It uses the pitting 
factor between 0.7 and 6 for the regions where sulphide dominates based on the ratio of  
pCO2

pH2S
< 20. Some of the limitations of this model include the assumption of weak protection 

from corrosion product layers and the neglect of the effect of gas condensate systems. 

Corplus Model 

Total developed a model (Nyborg, 2002) by merging the Cormed tool created by Crolet and 
Bonis (1991) and the Lipucor model created by Total (Gunaltun, 1996). The model adopts the 
pH calculation from the Cormed tool and gives the same potential corrosivity index as the 
Cormed tool in no protective films or oil-wetting conditions. First, the fluid flow calculations are 
obtained from the Lipucor model. It then provides a corrosion rate as the potential corrosivity 
index multiplied by a water-wetting factor, giving lower predictions of corrosion rates for a 
critical velocity of 0.5 m/s.  

The model has a provision for the input of concentration of calcium carbonate (CaCO3). When 
the concentration value of CaCO3 provided by the user leads to CaCO3 super-saturation, the 
model shows a warning to verify the magnitude of CaCO3 concentration. If the user ignores this 
warning message, the program corrects this value by calculating a pH of a lower magnitude 
(Nyborg, 2010).  

KSC Model 

Institute for Energy Technology (IFE), Norway developed a KSC model by combining the 
electrochemical and transport models (Nesic et al., 1995). This mechanistic model includes 
homogeneous chemical reactions, electrochemical reactions at the surface, diffusion of species 
to and from the bulk solution, and species diffusion through porous protective films. This was 
the first step in building comprehensive mechanistic models. This model is considered to have 
a strong influence on protective corrosion films. Hence, the model predicts low corrosion rates 
for higher values of temperature and pH.  

Multicorp Model 

Multicorp model is a mechanistic model based on the KSC model, and it includes homogenous 
chemical reactions, electrochemical reactions at the surface, and species transport due to 
diffusion, convection and electro-migration. This model is an updated version of the KSC model 
with the coupling of the multiphase flow model. It also includes the effect of iron carbonate 
films and oil wetting. The effects of organic acids such as acetic acid and H2S are also included 
in the model. The results from this model are verified against the data available from the 
laboratory and field (Nesic et al., 2005; Nyborg, 2010). 

The corrosion prediction model is a 1D model which assumes uniform corrosion across the 
length of the pipe. This model is applied to situations where the flow is fully developed. It uses 
empirical correlations to predict viscous sublayer thickness and turbulent diffusivity (Davies, 
1972). In addition, it uses the empirical constants for the calculation of chemical and 
electrochemical reaction rates, which are found to be inconsistent in different mathematical 
prediction tools for the prediction of corrosion rates (Nordsveen et al., 2003). These limitations 
have restricted the use of mechanistic models for predicting corrosion rates in complex flow 
situations.  
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Recent Prediction Models 

Recent prediction models include the theoretical investigation based on the comprehensive 
mechanistic model integrated with a Pitzer-type specific interaction model (Kahyarian and 
Nesic, 2020). This model considers the system's non-ideal behaviour and the hydrogen ion 
reduction as the only cathodic reaction. The predictions from this model were compared 
against the experimental data on X65 mild steel and 316L stainless steel for pH range 4-6 and 
partial pressure of CO2 from 1 to 15 bar and found a reasonable agreement between predicted 
data and experimental data. 

All the models summarised here are either empirical, semi-empirical, mechanistic or 
comprehensive mechanistic models in nature. Empirical and semi-empirical models are fitted 
to large data sets, and the predictions are limited to a specific range of parameters (de Waard 
and Milliams, 1975; Olsen, 2003). Whereas current mechanistic and comprehensive 
mechanistic models are based on empirical correlations for chemical and electrochemical 
reaction rate constants, viscous sublayer thickness and turbulent diffusivity predictions 
(Nordsveen et al., 2003; Kahyarian and Nesic, 2020). The mechanistic models available have 
extended their scope by adding complexity, such as the effect of multiphase flow (Nešić et al., 
2019), the impact of corrosion product layer (Nesic et al., 2001; Nordsveen et al., 2003), and 
other corrosive species into these models (Zheng, 2015; Kahyarian and Nesic, 2020). Some 
approaches include combinations of experimental work with theoretical modelling for 
investigating the impact of surface roughness (Al-Khateeb et al., 2018) and rapid expansion 
geometry (Owen et al., 2019). 

2.3 Mass Transfer Modelling  

2.3.1 Governing Equation for Species Transport 

The governing equation (species conservation) for the transport of diluted species j in a fluid 
medium is given by Eq. (2.21), 

𝜕𝑐𝑗

𝜕𝑡
=  −𝛻 ∙ 𝑵𝑗 + 𝑅𝑗  

(2.21)       

where 𝑐𝑗 the concentration of species 𝑗, Rj is the production/reduction of species j due to 

homogeneous chemical reactions, Nj is the flux of species j, and t is time. 

The flux of species Nj consists of diffusion, electro-migration, and convection. The flux of 
species is given by, 

𝑵𝑗 =  −𝐷𝑗𝛻𝑐𝑗 +  𝑐𝑗𝒖 − 𝑧𝑗𝐹𝑐𝑗𝑢𝑗𝛻𝜙 (2.22)    

where 𝐷𝑗  is the molecular diffusivity of species 𝑗, 𝑧𝑗 is a charge of species j, 𝑢𝑗  mobility of 

species j, F is Faraday constant (96485 C/mol), 𝒖 is the fluid velocity in bulk (m/s) and 𝒖′ is the 
instantaneous velocity in m/s.  

The fluid velocity u has two components: averaged velocity �̅� and instantaneous velocity 𝒖′. 
The averaged velocity component �̅� does not contribute to species transport in the 1D mass 
transfer model (Nesic et al., 2001).  

The turbulent diffusivity (𝐷𝑡) the term is used to account for 𝒖′ is defined by, 
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𝐷𝑡 =
𝜇𝑡

𝜌𝑆𝑐𝑡
 (2.23)  

where 𝜇𝑡 is turbulent viscosity term, and 𝑆𝑐𝑡 is turbulent Schmidt number with an 
approximate value of 0.5 to 0.9 (Tominaga and Stathopoulos, 2007). 𝑆𝑐𝑡 is dimensionless 
quantity that characterizes rate of momentum diffusion to mass diffusion in turbulent flow 
conditions. 

For 1D modelling, the average velocity component 𝒖 does not contribute to species transport 
and hence is ignored. The flux due to electro-migration is ignored in the current 1D model. 
The flux of species Nj for 1D is given as, 

𝑵𝑗 =  −(𝐷𝑗 + 𝐷𝑡)𝛻𝑐𝑗    
(2.24)             

Equation becomes, 

𝜕𝑐𝑗

𝜕𝑡
=   𝛻 ∙ [(𝐷𝑗 + 𝐷𝑡)𝛻𝑐𝑗] + 𝑅𝑗 

     
(2.25)         

 Figure 2.7 shows the transport of species in 1D mass transfer modelling.  

 

Figure 2.7. Transfer of species in mass transfer modelling. 

For 2D mass transfer modelling, average velocity component 𝐮 contributes to the transport 
of species; hence, the equation for the flux of species Nj becomes,  

𝑵𝑗 =  −(𝐷𝑗 + 𝐷𝑡)𝛻𝑐𝑗 +  𝑐𝑗𝒖 (2.26)          

Eq. (2.21) becomes, 
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𝜕𝑐𝑗

𝜕𝑡
=   𝛻 ∙ [(𝐷𝑗 + 𝐷𝑡)𝛻𝑐𝑗] + 𝛻 ∙ (𝑐𝑗𝒖) +  𝑅𝑗 

 
(2.27) 

This equation is used to solve for the transport of species in complex flow situations where 
the flow is disturbed and not fully developed. The term turbulent diffusivity 𝐷𝑡 and average 
velocity component 𝒖 are obtained from fluid flow modelling using computational fluid 
dynamics. The following section focuses on the general review of computational fluid 
dynamics and its applications in corrosion modelling. 

2.3.2 Charge Conservation 

The motion of charged particles causes current in the electrolytic solution and is expressed 
by, 

𝑖 = 𝐹 ∑ 𝑧𝑗𝑵𝑗

𝑗

 (2.28) 

According to the law of charge conservation, 

𝛻 ∙ 𝑖 = 0      
(2.29)          

Substituting Eq. (2.28) into Eq. (2.29) 

𝛻 ∙ (𝑘𝛻𝜙) + 𝐹 ∑ 𝑧𝑗𝛻 ∙ (𝐷𝑗𝛻𝑐𝑗)

𝑗

= 0      
(2.30)          

For a uniform value of electric conductivity k and in the absence of concentration gradients, 
the equation is reduced to Laplace’s equation given below, 

𝛻2𝜙 = 0 (2.31) 

2.4 Computational Fluid Dynamics  

2.4.1 Introduction 

CFD is a branch of fluid mechanics that solves governing equations for fluid flow using 
computational resources. With the help of numerical analysis and algorithms, it solves 
problems that involve fluid flows. The obtained solution is a collection of pointwise field 
solutions space points when carried out at distinct time levels. CFD integrates the disciplines 
of fluid mechanics and mathematics with computer science, where computer programmers 
code the equations that represent the physical laws that govern fluid flow. When an analytical 
or theoretical solution is impossible, CFD approximates a solution of the governing equations. 
The traditional way of dealing with the problem is to have an experimental method and an 
analytical solution to study problems in fluid dynamics and heat transfer problems. However, 
with the arrival of digital computers, CFD seems a reliable approach for many engineers when 
the fluid flows are incredibly complex (Yeoh and Tu, 2010). 

Some challenges of using CFD include turbulence modelling and discretisation errors (Li and 
Nielsen, 2011). For a stable numerical procedure, five significant sources of error are 
insufficient spatial and temporal discretization convergence, computer round-off error, 
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insufficient convergence of an iterative procedure and computer programming errors (Balint, 
2001; Oberkampf & Trucano, 2002). 

2.4.2 Reynolds Number 

The flow in a pipeline is characterised as laminar, transitional, or turbulent on the basis of 
Reynolds number (Re) and is given by Eq. (2.32), 

𝑅𝑒 =  
𝜌𝑢𝐷

𝜇
 

     
(2.32)              

where 𝜌 is the fluid density (kg/m3), 𝑢 is the velocity of the fluid (m/s), D is the diameter of 
the pipe (m), and 𝜇 is the dynamic viscosity (Pa ∙ s). 

For Re < 2000, flow is assumed to be laminar, 2000< Re < 4000 flow is transitional, and Re > 
4000 flow is turbulent.  The flow field in most of the mechanistic models is assumed as 
turbulent (Nesic et al., 1995; Nesic et al., 2001; Nordsveen et al., 2003; Nešić et al., 2009; 
Zheng, 2015; Nešić et al., 2019; Kahyarian and Nesic, 2020) as the length of the pipes used for 
transportation is enormous, and the distance between the oil wells and the station where the 
separation takes place is in hundreds of kilometres resulting into the fully developed 
turbulent flow (Nešić, 2007). 

2.4.3 Strategy for CFD Modelling 

CFD problems are usually solved in three stages, as shown in Figure 2.8. These three stages 
are the pre-processing stage, numerical solution, and post-processing. In the first stage of 
CFD, a pre-processing step, the geometry of the given problem is created using the inbuilt 
techniques. This procedure is followed by prescribing the boundary conditions along the 
boundary. The governing equations are solved over the volume in 3D and on an area for 2D 
geometries created. The mesh is generated by breaking this volume into smaller cells or units 
called grids. The set of equations chosen for the problem is part of the physical flow model. 
The second stage of CFD consists of the governing equations solved over the geometry 
volume. For steady-state solutions, the equations are solved iteratively. A step-in time is 
taken for time-dependent problems, and the equation is numerically solved by giving a 
solution for the specified time steps. The third and final stage of the CFD process is post-
processing. This stage involves the analysis of solutions for dynamic problems with the aid of 
visualization and animation. In addition to this, the results obtained are compared with any 
experimental data or available theoretical or analytical solutions. All these stages are 
described in detail below in Figure 2.8. 
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Figure 2.8 Stages of CFD modelling (Yeoh and Tu, 2010). 

Pre-processing 

This is the work that must be completed before running the simulation. It can be reduced to 
four general areas: geometry definition, volume division, selection of model and boundary 
condition definition. These are areas described below in detail, 

 Geometry definition - 

The first and foremost pre-processing step is defining a given problem's computational 
domain. The crucial point while creating a computational domain is to permit flow to develop 
fully when it reaches the outlet boundary. 

 Volume division - 

The second stage is mesh generation or volume division. The discrete values of the flow 
temperature, velocity, pressure, and other transport parameters are determined in each of 
these cells obtained numerically. Several cells in the mesh within the computational domain 
strongly affect the CFD solution. Several factors affect the CFD solution, such as the type of 
mesh, the adequacy of the techniques chosen for the physics of the problem, and the order 
of the accuracy of the numerical method. The common orders of accuracy encountered in 
numerical simulations are first-order, second-order and higher-order accuracies. The order of 
accuracy is determined by fitting a line to the error vs grid spacing plot, also known as the 
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convergence plot, followed by calculating the slope of it. It is important to note that the mesh 
near the wall must be dense to capture the boundary layer development and resolve the 
small-scale turbulence structures discussed in the next section (Versteeg, 2007). 

Selection of Physics and Fluid Properties – 

This step deals with the computational and applied mathematical side of CFD. Figure 2.9 gives 
an overall procedure for selecting appropriate physics for the model based on the categories 
it falls into. 

The final solution gets affected if an inappropriate approximating governing equation is 
chosen. Therefore, the errors introduced due to simplifications or assumptions are classified 
as physical approximation errors (Yeoh and Tu, 2010). 

 

Figure 2.9 Selection procedure for appropriate physics (Eslahpazir et al., 2019). 

Specification of Boundary Conditions – 

To replicate the physical representation of the fluid flow in a CFD problem, it is essential to 
define all the conditions. A general fluid flow problem consists of an inlet, outlet, and wall as 
boundary conditions. The fluid's velocity or pressure can be ascertained for inflow boundary 
conditions. At the outflow boundary, the specified relative pressure will typically be imposed. 
At the walls, no-slip condition, i.e. zero velocity, is considered. Figure 2.10 shows the 
boundary conditions for an internal flow problem. 
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Figure 2.10 Initial values and boundary conditions (Yeoh and Tu, 2010). 

There are two boundary conditions: Dirichlet or a direct boundary condition and Neumann or 
natural boundary condition. The Dirichlet boundary condition is the boundary condition type 
where the unknown value is specified. In contrast, on the Neumann boundary condition, the 
value of a derivative of the unknown will be specified. In the above example, the prescription 
of velocity at the inlet is considered a Dirichlet boundary condition. 

The Dirichlet boundary conditions – specifying the velocity on a boundary is given by 𝑢 =
𝑓(𝑥, 𝑦, 𝑧) at an inlet where u can be a scalar, vector or tensor. 

The Neumann boundary conditions – specifying the velocity gradient at a fully developed flow 

boundary is given by,   
𝜕𝑢

𝜕𝑛
= 0, for (𝑥, 𝑦, 𝑧) over a domain. 

Numerical Solution- Solving the Governing Equations of CFD Modelling 

This stage deals with the discretization of the model over the entire domain. The process by 
which a continuous function or expression is approximated by using an analogous discrete 
alternative is known as discretization. The continuous functions are the governing partial 
differential equations for fluid flow problems given in the next section. Analytical solutions of 
partial differential equations would provide the variation of the dependent variables 
throughout the domain. Numerical solutions provide answers only at the discrete points in 
the domain, known as grid points. 

The three most popular methods are finite difference, finite volume, and finite element 
methods. These methods contain variations specific to the application area. Some other 
discretization methods include high-resolution, boundary element, and spectral methods 
(Yeoh and Tu, 2010). 

Finite Difference Method 

The finite difference method is the oldest among the most popular methods. Using Taylor 
series expansion, 1st and 2nd partial derivatives are replaced by algebraic difference 
quotients. This method is not used as commonly as the finite volume or finite element method 
due to its geometric limitation on the applications. In addition, it does not always guarantee 



 

24 
 

the conservation of mass, momentum, and energy on non-uniform grids. It is also considered 
the easiest method to code compared to other methods. 

Finite Volume Method 

The governing equations are solved in the finite volume method over smaller finite control 
volumes. The fluxes across the volumes are conserved as the governing equations are cast 
traditionally over each control volume. This method is developed from the finite difference 
method. It discretizes the solution domain using computational mesh. The finite volume 
method deals directly with the integral form of N-S equations as an integral form of N-S 
equations does not require mathematical continuity. The critical advantage of FVM is that the 
integral conservation will be satisfied over the control volume. This method is more 
appropriate for applications with strong discontinuities, such as sudden pressure and density 
changes in the presence of shock waves. 

Finite Element Method 

The finite element method is more stable than the finite volume and finite difference 
methods (Yeoh and Tu, 2010). This is a residual method in which a residual equation is 
weighted and integrated over the entire domain. The domain is partitioned into many mesh 
elements. Hence, actual integration takes place over each element in the mesh. In terms of 
applications, tests, validation, and literature, the finite element method is robust in all 
numerical discretization methods. 

There are other discretization methods apart from the ones mentioned above. These 
methods can be used with functions of varying order. As the order of the functions increases 
from linear to quadratic, quadratic to cubic, cubic to quartic, etc., computational costs 
increase. The higher-order functions solve more terms and coefficients in the governing 
equations, requiring more sample or interpolation points to resolve them correctly. The 
section below describes the governing equations used for CFD. 

Governing Equations for CFD Modelling 

The governing equations of fluid dynamics represent mathematical statements of physics 
conservation laws below. 

Conservation of Mass  
Conservation of mass law states that the mass is neither created nor destroyed. The net mass 
flux into the boundary of fixed control volume must equal the increase in mass inside that 
volume. For a 3-dimensional compressible flow, the continuity equation is given by, 

𝛻 ∙ 𝒖 = 0 (2.33) 

where 𝐮 is the velocity vector (m/s) and ∇ is the gradient operator.  

Conservation of Momentum 
Conservation of momentum law asserts that the sum of total forces acting on the fluid 
element is equal to the product of mass and the acceleration of the element. For a 3-
dimensional steady-state, incompressible flow, the conservation of momentum equation is 
given as, 

Eq. (2.34) below represents the physical significance of the Navier-Stokes equation. 
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𝜌(𝒖 ∙ 𝛻)𝒖   =   −𝛻𝑝  +    𝛻 ∙ ((𝜇 + 𝜇𝑡)(𝛻𝒖 + (𝛻𝒖)𝑇)) (2.34) 

The term on the left-hand side is convection, also known as advection or inertia. The first term 
on the right-hand side (RHS) is a pressure gradient (Pa), known as source/sink, which provides 
energy to the flow. The second term on the RHS describes the effect of viscosity (Pa ∙ s) on 
the transport of fluid. 𝜇𝑡 is turbulent dynamic viscosity in (Pa ∙ s). 

Post-processing Stage 

This stage involves the post-processing of the results obtained from the CFD simulation. It 
includes three steps – verification, validation and interpretation of results. There is a 
distinction between verification and validation, as one refers to “solving the equations right” 
(verification) and the other to “solving the right equations” (validation) (Roache, 1998).  

In the verification stage, the accuracy of CFD model implementation is determined by 
quantifying the error, including round-off error, iterative convergence error and discretization 
error. Different levels of machine accuracies (single precision, double precision) are used to 
quantify the round-off error. Investigating the effect of systematic variation of truncation 
error related to the selection of first or second-order discretization schemes and convergence 
criteria is used to quantify iterative convergence error. The discretization error is quantified 
with the help of mesh convergence study, often related to the investigation of systematic 
refinement of space and time meshes. 

The validation stage involves the quantification of input uncertainty and physical model 
uncertainty. As the name suggests, the input uncertainty is related to the sensitivity analysis 
of inputs when varied individually (sensitivity) or all together (uncertainty). On the other 
hand, physical model uncertainty is quantified by comparing the results from CFD simulation 
to the results of the high-quality experiments. The graph of target quantity from CFD and 
experimental data is used to support the validation of CFD simulation results.  The more 
robust validation of the CFD model is considered when the difference between the CFD 
simulation results and experimental results is lower than the validation uncertainty (Roache, 
1998). 

2.4.4 Turbulence Modelling 

Turbulence appears in the swirling fluid structures, also known as eddies, which have a 
massive range of lengths and time scales. These eddies interact in a complex way. These 
turbulent eddies could be as large as in metres or as small as micrometres. The largest eddies 
interact with the flow to extract the energy from it and then stretch to create smaller eddies, 
producing even smaller eddies. During this process, kinetic energy transfer is known as the 
energy cascade. This process is shown in Figure 2.11. 
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Figure 2.11 Turbulent eddies visualisation (Aburebaiya, 2020). 

The turbulent flow calculation methods are grouped into three categories: Direct numerical 
simulation (DNS), large-eddy simulation (LES), and turbulent models for Reynolds-averaged 
Navier-Stokes equations (RANS). Direct numerical simulation (DNS) computes all turbulent 
velocity fluctuations and mean flow. Fine spatial grids are required to solve the unsteady 
Navier-Stokes equations. These fine spatial grids must resolve the most minor length scales 
of motion, also known as Kolmogorov length scales. The time steps to resolve the period of 
fluctuations are sufficiently small to match the characteristic time scale to the swirling motion 
of the most miniature eddy in turbulent flow; for example, Eggels et al. (1994) used a time-
step of 0.0002𝑡∗, where 𝑡∗ is the ratio of the diameter of the pipe and friction velocity. The 
total computational time required for studying fully turbulent flow for Re = 7000 was 160 CPU 
hours. Hence, these simulations are very costly in terms of computing resources (Versteeg 
and Malalasekara, 1995). The large-eddy simulation tracks the behaviour of the large eddies. 
The smaller eddies are rejected, and only larger eddies are allowed by using space filtering of 
the unsteady Navier-Stokes equations before the simulation. A sub-grid scale model includes 
the effects on the resolved flow due to unresolved and smallest eddies. The computer 
resources required for this method are enormous (Yeoh and Tu, 2010). Reynolds-Averaged 
Navier-Stokes (RANS) equations focus on the mean flow and the effect of turbulence on the 
properties of the mean flow (Versteeg and Malalasekara, 1995). The Navier-Stokes equations 
are time-averaged before the application of computational methods. The velocity component 
is decomposed as, 

𝒖 = �̅� + 𝒖′ (2.35) 

Where �̅� and 𝒖′ are the mean and fluctuating components of velocity.  

For scalar quantity (𝜙) such as pressure, energy, or concentration of species, decomposition 
is given as,  

𝜙 = �̅� + 𝜙′ (2.36) 
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Due to the interaction between various turbulent fluctuations, extra terms appear in 
Reynolds-averaged flow equations. The classical models are used to model these extra terms 
(Versteeg, 2007). The Reynolds-Averaged-Navier-Stokes equations: 

𝜌
𝜕�̅�

𝜕𝑡
+ 𝜌�̅� ∙ 𝛻 �̅� + 𝛻 ∙ (𝜌 𝒖′⨂𝒖′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) = −𝛻𝑃 + 𝛻 ∙ 𝜇(𝛻�̅� + (𝛻�̅�)𝑇) 

(2.37) 

where ⨂ is the vector product. An additional term is on the left-hand side compared with Eq. 
(2.37). This term is known as Reynolds stress tensor, and it represents interaction occurring 
between the fluctuating components of the velocity field (Versteeg, 2007). This term is 
modelled to close the above equation by turbulence modelling as they consider the effects of 
turbulence on the mean flow. The available turbulence models differ based on the Reynolds 
stress tensor being modelled (Versteeg, 2007). 

Turbulence is assumed to be pure diffusive, which is one of the most common ways to model 
it (Tu et al., 2018). The varying part of the additional term (Reynolds stress) is then shown as, 

𝜌(𝒖′⨂𝒖′̅̅ ̅̅ ̅̅ ̅̅ ) −
𝜌

3
𝑡𝑟𝑎𝑐𝑒((𝒖′⨂𝒖′̅̅ ̅̅ ̅̅ ̅̅ ))𝑰 = −𝜇𝑇(𝛻�̅� + (𝛻�̅�)𝑇) (2.38) 

where the second term on LHS is a spherical part written as, 

𝜌

3
𝑡𝑟𝑎𝑐𝑒((𝒖′⨂𝒖′̅̅ ̅̅ ̅̅ ̅̅ ))𝑰 =

2

3
𝜌𝑘 

(2.39) 

where k is the turbulent kinetic energy. 

The Standard 𝒌 − 𝜺 Model 

The Standard 𝑘 − 𝜀 model has shown good performance for different flow situations and 
hence is recognised as a popular turbulence model. This is one of the oldest models which 
solves two extra transport equations for 𝑘 and 𝜀 (Launder and Spalding, 1983) 

The transport equation for turbulent kinetic energy is given as, 

𝜌
𝜕𝑘

𝜕𝑡
+ 𝜌𝒖 ∙ 𝛻𝑘 =  𝛻 ∙ ((𝜇 +

𝜇𝑇

𝜎𝑘
) 𝛻𝑘) + 𝑃𝑘 − 𝜌𝜀 

(2.40) 

𝑃𝑘 is a production term that can be written as, 

𝑃𝑘 = 𝜇𝑇 (𝛻𝒖: (𝛻𝒖 + (𝛻𝒖)𝑇) −
2

3
(𝛻. 𝒖)2) −

2

3
𝜌𝑘𝛻. 𝒖 

(2.41) 

The transport equations for dissipation rate are given as, 

𝜌
𝜕𝜀

𝜕𝑡
+ 𝜌𝒖. 𝛻𝜀 =  𝛻 ∙ ((𝜇 +

𝜇𝑇

𝜎𝜀
) 𝛻𝜀) + 𝐶𝜀1

𝜀

𝑘
𝑃𝑘 − 𝐶𝜀2𝜌

𝜀2

𝑘
 

(2.42) 

The values of the constants used in the above equation are 𝐶𝜇 = 0.09, 𝐶𝜀1 = 1.44, 𝐶𝜀2 =

1.92, 𝜎𝑘 = 1.00 and 𝜎𝜀 = 1.30. These standard values are used for homogeneous systems 
(Wilcox 2013).  

The turbulent variables are obtained from the turbulent length scale 𝐿𝑇 and turbulence 
intensity 𝐼𝑇 when the inlet data is unavailable. A value of 𝐼𝑇 can be specified between 0.001 
(0.1%) as low intensity and 0.1 (10%) as high intensity for fully turbulent flow. The turbulence 
length scale measures the size of unresolved eddies (Versteeg, 2007). For a fully developed 
flow in a pipe, 
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𝐿𝑇 = 0.07 𝐷 (2.43) 

The values of the turbulence length scale 𝐿𝑇 and turbulence intensity 𝐼𝑇 are used to obtain 
turbulent kinetic energy k and viscous dissipation rate 𝜀, 

𝑘 =
3

2
(𝑢𝐼𝑇)2 

(2.44) 

𝜀 =
3

2
𝐶𝜇

3
4

𝑘
3
2

𝐿𝑇
 

 
(2.45) 

The standard 𝑘 − 𝜀 model provides good results while predicting boundary layers, thin layers 
and duct flows (Tu et al., 2018). However, it performs poorly when the problem involves flow 
separation (Veersteg and Malalasekara, 2016).  

The 𝒌 − 𝝎 Model  

Wilcox (Wilcox, 1998) proposed the 𝑘 − 𝜔 model, which has shown the capability to handle 
near-wall regions. This model solves two transport equations for turbulence kinetic energy 𝑘 
and specific dissipation rate 𝜔. 

𝜌
𝜕𝑘

𝜕𝑡
+ 𝜌𝒖. 𝛻𝑘 = 𝑃𝑘 − 𝜌𝛽∗𝑘𝜔 +  𝛻 ∙ ((𝜇 +

𝜇𝑇

𝜎𝑘
) 𝛻𝑘) 

(2.46) 

𝜌
𝜕𝜔

𝜕𝑡
+ 𝜌𝒖. 𝛻𝜔 = 𝛼

𝜔

𝑘
𝑃𝑘 − 𝜌𝜔2𝛽 +  𝛻 ∙ ((𝜇 +

𝜇𝑇

𝜎𝑘
) 𝛻𝑘) 

(2.47) 

 
where the eddy viscosity is calculated by,  

𝜇𝑇 =  𝜌
𝑘

𝜔
 

(2.48) 

and values are, 

𝛼 =
13

25
   𝛽 = 𝛽0𝑓𝛽  𝛽∗ = 𝛽0

∗𝑓𝛽  𝜎 =
1

2
 𝜎∗ =

1

2
  

𝛽0 =
13

125
, 𝑓𝛽 =

1 + 70𝜒𝜔

1 + 80𝜒𝜔
,   𝜒𝜔 = |

𝛺𝑖𝑗𝛺𝑗𝑘𝑆𝑘𝑖

(𝛽0
∗𝜔)3

|    𝛽0
∗ =

9

100
 ,

𝑓𝛽∗ = {

1
1 + 680𝜒𝑘

2

1 + 400𝜒𝑘
2

      
𝜒𝑘 ≤ 0
𝜒𝑘 > 0

   , 𝜒𝑘 =
1

𝜔3
(𝛻𝑘 ∙ 𝛻𝜔) 

The mean rotation-rate tensor 𝛺𝑖𝑗, 

𝛺𝑖𝑗 =
1

2
(𝛻𝒖 − (𝛻𝒖)𝑇) 

(2.49) 

The mean strain-rate tensor 𝑆𝑖𝑗, 

Sij =
1

2
(∇𝐮 + (∇𝐮)T) 

(2.50) 

𝜀 = 𝛽∗ 𝜔𝑘 (2.51) 
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and  

𝑙𝑚𝑖𝑥 =
√𝑘

𝜔
 

(2.52) 

A combined model of the 𝑘 − 𝜔 model and standard 𝑘 − 𝜀 model was proposed by Menter 
(1994) and discussed in detail in the following subsection.  

The Shear Stress Transport 𝒌 − 𝝎 Turbulence Model 

The Shear Stress Transport (SST) 𝑘 − 𝜔 model was introduced by Menter (1994). It combines 
the precise behaviour of the 𝑘 − 𝜔 model in the region near the wall with the robustness of 
the 𝑘 − 𝜀 model away from the wall.  In this turbulence model, the k-equation and the 
Reynolds stress computation are the same as the 𝑘 − 𝜔 model. It differs in the calculation of 
a ω equation as the 𝑘 − 𝜀 equation is transformed by putting 𝜀 = 𝑘𝜔. 

The equations used in the SST 𝑘 − 𝜔  models are given by (COMSOL, 2016), 

𝜌
𝜕𝑘

𝜕𝑡
+ 𝜌 ∙ 𝛻𝑘 = 𝑃 − 𝜌𝛽0

∗𝑘𝜔 + 𝛻 ∙ ((𝜇 + 𝜎𝑘𝜇𝑇)𝛻𝑘) 
(2.53) 

𝜌
𝜕𝜔

𝜕𝑡
+ 𝜌𝒖 ∙ 𝛻𝜔 =

𝜌𝛾

𝜇𝑇
𝑃 − 𝜌𝛽𝜔2 + 𝛻 ∙ ((𝜇 + 𝜎𝜔𝜇𝑇)𝛻𝜔) 

+2(1 − 𝑓𝑣1)
𝜌𝜎𝜔2

𝜔
𝛻𝜔 ∙ 𝛻𝑘 

 
(2.54) 

 
𝑃 = 𝑚𝑖𝑛(𝑃𝑘, 10𝜌𝛽0

∗𝑘𝜔) (2.55)  

where, 𝑃𝑘 is the production term given as, 

𝑃𝑘 = 𝜇𝑇 (𝛻𝒖: (𝛻𝒖 + (𝛻𝒖)𝑻) −
2

3
(𝛻 ∙ 𝒖)𝟐) −

2

3
 𝜌𝑘𝛻 ∙ 𝒖 

(2.56) 

The turbulent viscosity (𝜇𝑇) is given by, 

𝜇𝑇 =
𝜌𝑎1𝑘

𝑚𝑎𝑥( 𝑎1𝜔, 𝑆𝑓𝑣2)
 

(2.57) 

where 𝑘 is the turbulent kinetic energy (m2/s), 𝜔 is the specific turbulent dissipation rate 
(1/s),  a1 is a model constant with a value of 0.31, S is the mean strain-rate tensor, and 𝑓𝑣2 is 
a blending function.  

𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗 
(2.58) 

The constants in the model are defined through interpolation of inner and outer values, 

 𝜙 = 𝑓𝑣1𝜙1 + (1 − 𝑓𝑣1)𝜙2  for 𝜙 = 𝛽, 𝛾, 𝜎𝑘 , 𝜎𝜔 (2.59) 

where 𝑓𝑣1 and 𝑓𝑣2 are interpolation functions defined as, 

𝑓𝑣1 = 𝑡𝑎𝑛ℎ(𝜃1
4) (2.60) 

𝜃1 = 𝑚𝑖𝑛 [𝑚𝑎𝑥 (
√𝑘

𝛽0
∗𝜔𝑙𝜔

,
500𝜇

𝜌𝜔𝑙𝜔
2

) ,
4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝜔𝑙𝜔
2

 ] (2.61) 

𝐶𝐷𝑘𝜔 = 𝑚𝑎𝑥 (
2𝜌𝜎𝜔2

𝜔
𝛻𝜔 ∙ 𝛻𝑘, 10−10) 

(2.62) 

and, 
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𝑓𝑣2 = 𝑡𝑎𝑛ℎ(𝜃2
2) (2.63) 

𝜃2 = 𝑚𝑎𝑥 (
2√𝑘

𝛽0
∗𝜔𝑙𝜔

,
500𝜇

𝜌𝜔𝑙𝜔
2

) 
 

(2.64) 

where lω is the distance closest to the wall. The default values of constants are 𝛽1 =

0.075, 𝛽2 = 0.0828,  𝛾1 =
5

9
, 𝛾2 = 0.44, 𝜎𝑘1 = 0.85, 𝜎𝑘2 = 1.0, 𝜎𝜔1 = 0.5,𝜎𝜔2 =

0.856, 𝛽0
∗ = 0.09, a1 = 0.31 

As described above, the SST model is a low-Reynolds model; hence, the equations are 
integrated through the boundary layer to the wall. This allows for a no-slip condition at the 
wall. The velocity u becomes zero at the wall, so k must be zero at the wall. 

Similarly, the boundary condition for 𝜔 is 

𝑙𝑖𝑚
𝑙𝜔→0

𝜔 =
6𝜇

𝜌𝛽1𝑙𝜔
2

 
(2.65) 

At the wall, to avoid the singularity 𝜔 is not solved in the cells. Hence, its value is given below, 

𝑙𝑖𝑚
𝑙𝜔→0

𝜔 =
6𝜇

𝜌𝛽0𝑙𝜔
2

 
(2.66) 

To achieve an accurate solution, it is required, 

𝑙𝜔
+ =  

𝜌𝑢𝜏𝑙𝜔

𝜇
 ~1 

(2.67) 

For turbulence models with wall functions, COMSOL Multiphysics (COMSOL, 2016) assumes 
that the thickness of the buffer layer is minimal and hence uses an approximation in this 
region.  

The Spalart-Allmaras Model 

The Spalart-Allmaras model is a one-equation model designed for aerospace applications 
involving wall-bounded flows (Spalart and Allmaras, 1994). This model is a low-Reynolds-
number model. It has been calibrated for use in airfoil and turbine blade applications, for 
which it provides satisfactory results; however, one of the nonphysical properties of this 
model is that in a uniform free stream, it usually predicts zero decay rate for the eddy viscosity 
(Wilcox, 1998). 

This model solves for undamped eddy kinematic viscosity, ṽ given below, 

𝜕�̃�

𝜕𝑡
+ 𝒖 ∙ 𝛻�̃� = 𝑐𝑏1�̃��̃� − 𝑐𝑤𝑙𝑓𝑤 (

�̃�

𝑙𝑤
)

2

+
1

𝜎
𝛻 ∙ ((𝑣 + �̃�)𝛻�̃�) +

𝑐𝑏1

𝜎
𝛻�̃� ∙ 𝛻�̃� 

(2.68) 

The auxiliary variables are, 

𝑐𝑤𝑙 =
𝑐𝑏1

𝑘𝑣
2

+
1 + 𝑐𝑏2

𝜎
 

(2.69) 

𝜒 =
�̃�

𝑣
 

(2.70) 

𝑓𝑣1 =
𝜒3

𝜒3 + 𝑐𝑣1
3  

(2.71) 

𝑓𝑣2 = 1 −
𝜒

1 + 𝜒𝑓𝑣1
 (2.72) 
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𝑓𝑤 = 𝑔 (
1 + 𝑐𝑤3

6

𝑔6 + 𝑐𝑤3
6 )

1
6

 

(2.73) 

𝑔 = 𝑟 + 𝑐𝑤2(𝑟6 − 𝑟) (2.74) 

𝑟 = 𝑚𝑖𝑛 (
�̃�

�̃�𝑘𝑣
2𝑙𝑤

2
, 10) 

(2.75) 

�̃� = 𝑚𝑎𝑥(𝛺 + 𝐶𝑅𝑜𝑡 𝑚𝑖𝑛(0, 𝑆 − 𝛺) +
�̃�

𝑘𝑣
2𝑙𝑤

2
𝑓𝑣2, 0.3𝛺) 

(2.76) 

𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗 
(2.77) 

𝛺 = √2𝛺𝑖𝑗𝛺𝑖𝑗 
(2.78) 

𝑆𝑖𝑗 = (𝛻𝒖 + (𝛻𝒖)𝑇) 

 

(2.79) 

𝛺𝑖𝑗 =
1

2
(𝛻𝒖 − (𝛻𝒖)𝑇) 

(2.80) 

where 𝑆𝑖𝑗 are the mean strain rate, 𝛺𝑖𝑗 are the rotation rate tensors, 𝑣 is the kinematic 

viscosity, 𝑙𝑤 is the distance to the closest wall.  

The turbulent viscosity (𝜇𝑇) is given by,  

𝜇𝑇 = 𝜌�̃�𝑓𝑣1 (2.81) 

The parameter values are 𝑐𝑏1 = 0.1355, 𝑐𝑏2 = 0.622, 𝑐𝑣2 = 7.1, 𝜎 =
2

3
, 𝑐𝑤2 = 0.3, 𝑐𝑤3 =

2, 𝑘𝑣 = 0.41, 𝐶𝑟𝑜𝑡 = 2.0. 

2.4.5 Turbulent Boundary Layer Profile 

The no-slip wall condition is essential in turbulent flows since tangential velocity fluctuations 
near the flat plate surface are decreased by viscous damping (Stanković et al., 2014). The large 
gradients in mean velocity cause a rapid increase in turbulence as turbulent kinetic energy is 
produced away from the wall (Veersteg and Malalasekara, 2016). Figure 2.12 shows the 
velocity profile over the length of a flat plate. The laminar boundary layer develops when the 
flow with uniform velocity hits the leading edge of the flat plate. As discussed above, the 
velocity of the fluid is zero at the surface of a flat plate and increases linearly in the viscous 
sublayer near the surface. Adjacent to the viscous sublayer, the buffer layer exists where 
turbulent stresses dominate over viscous stresses. The average flow velocity in that region is 
proportional to the log of the distance to the surface. This is called the log-law region. 
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Figure 2.12 Understanding the formation of the boundary layer on a flat plate (not to scale). 

The formation of near-wall regions for pipe flow is plotted in semi-log coordinates shown in 
Figure 2.13. The dimensional distance from the wall represents the horizontal axis y+ and the 
vertical axis is represented by 𝑢+. The 𝑦+ and 𝑢+ values are obtained using, 

𝑦+ =
𝑦𝑢𝜏𝜌

𝜇
 (2.82) 

and  

𝑢+ =
𝑢

𝑢𝜏
 (2.83) 

𝑢𝜏 = √
𝜏𝑤

𝜌
 

 

 
(2.84) 

where, 𝑢𝜏 frictional velocity and 𝜏𝑤 is the wall shear stress of fluid. 

The velocity profile is primarily divided into parts: inner and outer layers. The inner layer is 
divided into three regions: viscous sublayer up to 𝑦+ = 5, buffer layer 5 < 𝑦+ < 30 and fully 
turbulent region, also known as a log-law region for 𝑦+ > 30. The upper limit of the axes 
depends on the Reynolds number of the flow.  
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Figure 2.13 Subdivisions of regions near-wall in a pipe (not to scale). 

2.5 CFD Modelling in the Area of Corrosion 

There has been a significant increase in the use of CFD modelling for corrosion or erosion-
corrosion prediction models over the last couple of decades. In elbows, CFD is used to predict 
hydrodynamic flow fields and then coupled to the erosion-corrosion model to determine the 
significance of bend orientation (Keating and Nesic, 2000) and flow velocity (Bozzini et al., 
2003) in multiphase flows. Keating and Nesic (2000) used a standard two-equation k − ε 
model and Lam and Bremhorst (1981) low Reynolds modification to predict mass transfer in 
axisymmetric sudden expansion geometry. However, upon verification of the results with the 
experimental data, it was found that Lam and Bremhorst (1981) near-wall model showed poor 
agreement and the highest deviation was observed at the reattachment point. Although there 
was a significant deviation in the mass transfer results, the authors ignored this issue, 
expecting that there would not be any separation and reattachment in bends. On the other 
hand, some studies did not resolve flow near the wall in bends; instead, they used the 
standard two-equation k − ε model and standard wall functions for the near-wall treatment 
(Bozzini et al., 2003; El-Gammal et al., 2010). 

Flow accelerated corrosion (FAC) has been studied using both experimental and CFD 
techniques at Re = 40000 (El-Gammal et al., 2010) to explore the importance of parameters 
such as surface roughness, wall shear stress, upstream turbulence, and the role of geometry 
on the prediction of local mass transfer coefficients (Pietralik, 2012). El-Gammal et al. (2010) 
performed experiments to quantify the time evolution of wall wear patterns and CFD to 
simulate flow hydrodynamics in a 90-degree elbow. CFD simulations aided in obtaining wall 
shear stress along the elbow wall and are presented in terms of the coefficient of friction 
shown in Figure 2.14. It was found that the increased levels of skin friction along the elbow 
intrados resulted in maximum wear in the entrance region.  
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Figure 2.14 Contours plot of skin friction coefficient along the elbow wall between a fluid 
and the surface (diameter = 25.4mm) (El-Gammal et al., 2010). 

Zhang and Cheng (2010) studied the FAC behaviour of X65 pipeline steel in CO2 − saturated 
formation waters with the help of electrochemical measurements and CFD simulations in 
which micro-electrodes were installed on an impingement jet test system. Their study 
modelled steady-state – incompressible fluid flow with the standard k − ε turbulence model 
to determine the flow distribution at different impact angles and velocities. The effect of 
impact angle on steel corrosion was then attributed to the flow and shear distribution on 
electrode surfaces. In some studies, CFD approximated the correlations for the mass transfer 
coefficient when no empirical equations were available at high Reynolds numbers (Pietralik, 
2012). This shows one of the remarkable capabilities of CFD in the area of corrosion.    

In pipeline flows, CFD simulations were used to understand the mechanism of slug flow-
induced CO2 corrosion (Zheng et al., 2007; Lv et al., 2020). The shear stress and mass transfer 
coefficient in the upward slug flow increased as the superficial velocities of the gas and liquid 
phase increased (Lv et al., 2020). This increased the 316L SS corrosion rate. These studies only 
focused on typical slug flows while ignoring the corrosion that could occur in transition 
processes where superficial velocities of liquid and gas vary.  

CFD located the most probable corrosion sites based on water volume fraction (El-Batsh et 
al., 2012) and water accumulating regions (Hu and Cheng, 2016). El-Batsh et al. (2012) 
modelled a two-phase liquid-liquid flow using a mixture model (Manninen et al., 1996) and 
an SST k − ω turbulence model to resolve viscous sublayer in complex pipeline geometry that 
included six elbows. The model showed reasonable accuracy upon comparison with the 
experimental fluid flow data and concentration distribution. The reduction in elbow thickness 
was linked with the volume fraction distribution of water near the wall obtained using CFD. 
Hu and Cheng (2016) modelled two-phase oil-water flow in straight and inclined pipelines 
using the volume of fluid (VOF) method, realizable k − ε turbulence model and standard wall 
functions. They obtained the volume fraction of water and shear stress distribution across the 
domain and coupled it with the empirical corrosion prediction model (Kanwar, 1994). The 
correlation for the prediction of corrosion rate is given as  



 

35 
 

CR = k 𝑝𝐶𝑂2
𝑐𝜏𝑏 (2.85)  

where CR is corrosion rate (mm/yr), k is the constant equal to 15.5 ± 0.5, 𝑝𝐶𝑂2 is the partial 
pressure of 𝐶𝑂2 (MPa), 𝜏 is wall shear stress (N/m2), c and b are the constants equal to 
0.83 ± 0.07 and 0.1, respectively.  

It is important to note that this empirical model is valid for oil content below 60% and 
temperatures less than 60℃. For oil content above 70%, another empirical equation was used 
for the corrosion prediction (Jepson et al., 1996), 

CR = 31.15 (
∆𝑃

𝐿
)

0.3

𝑣1.6𝑝𝐶𝑂2
0.8𝑒(−

2671
𝑇

) 
(2.86) 

A similar approach was adopted by Li et al. (2016) to predict CO2 corrosion rates using CFD 
based on the semi-empirical corrosion model of Jepson et al. (1996). CFD simulations were 
carried out to obtain pressure drop gradient terms for different oil contents required in Eq. 
(2.86), and results were compared with the experimental data. It was found that there was a 
relatively good agreement between the predictions and experimental data; however, due to 
the semi-empirical nature of the model, the authors mentioned that there is specific 
applicability related to corrosion environments and operating conditions (Li et al., 2016).  

Some studies coupled the mechanistic model with CFD to predict corrosion rates in a pipeline 
(Wang, 1999; Li and Woollam, 2012; Prasad et al., 2018; Hu et al., 2018).  Li and Woollam 
(2012) used CFD and a mechanistic model to predict corrosion rates in the sharp bend 
geometry of disturbed flow. A steady-state incompressible flow was modelled with the help 
of RANS and the Abe-Kondoh-Nagano k − ε turbulence model (Abe et al., 1994) to resolve 
the viscous sublayer. The study was remarkable in highlighting the cathodic and anodic 
regions based on the potential distribution inside a bend, as shown in Figure 2.15. The 
cathodic regions were developed downstream of the bend, where the higher potential and 
current density values were seen. They found higher corrosion rates near the bend as the 
mass transfer experienced was maximum.  
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Figure 2.15 Current and potential distribution inside a bend. Surface – electric potential (V) 
and Arrows - Current density (A)  (Li and Woollam, 2012). 

Chang et al. (2014) modelled a water droplet on the metal surface surrounded by air, known 
as Evan’s drop (Evans, 1960) and a solid deposit surrounded by water in a pipeline to model 
under-deposit corrosion. In their mathematical model, the cathodic and anodic sites were not 
defined prior and were the result of the formation of precipitates. However, the limitation of 
this model is that it only considers aerated electrolyte systems, and it needs to be explored 
for the systems relevant to the oil and gas industries, where deaerated electrolytes play a 
significant role. A similar methodology was developed by Sainz-Rosales et al. (2022) to study 
Evan’s drop (Evans, 1960) with the help of tertiary current distribution to obtain oxygen 
concentration distribution between the centre of the droplet and its periphery, which set up 
potential differences across it. The value of potential difference was verified against the 
experiment data of the kelvin probe technique (Chen and Mansfeld, 1997). 

Prasad et al. (2018) coupled the mechanistic model (Sanchez-Caldera et al., 1988) and CFD to 
predict FAC by considering the reduction in wall thickness. In their study, the mass transfer 
coefficient (MTC) was computed using CFD in bend and orifice geometries. The SST k − ω 
turbulence model was used to resolve the viscous sublayer in their study. The thinning of the 
wall was calculated based on the mass transfer coefficient obtained from CFD simulations. 
They observed a significant difference between the CFD-predicted and experimental wall 
thickness values linked to how the ferrous iron formation was modelled.   

Wang (1999) coupled the fluid flow model with the 1D numerical model for the prediction of 
CO2 corrosion in pipelines. The corrosion rate predictions were based on mixed potential 
theory, and the straight pipe correlation of Berger and Hau (1977) was used for overall mass 
transfer coefficients in a simplified electrochemical model. Although an attempt was made to 
couple the flow and electrochemical models, the corrosion rate predictions showed 
discrepancies upon comparison with experimental data. It was assumed that VSL exists for 
𝑦+ < 5, and the discrepancies were not explored in detail. Some of the recent research 
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includes the prediction of CO2 corrosion in the straight pipe and jet impingement using CFD, 
which over-predicted uniform corrosion rate for pH 4 (Hu et al., 2018). This study used the 
AKN 𝑘 − 𝜀 turbulence model (Abe et al., 1994) for the mass transfer model's fluid flow 
simulations with different electrochemical reaction rate constants.  

Research Gap 

The literature review has shown that there is a lack of methodology which accurately predicts 
VSL and turbulent diffusivity profile and then subsequently couples it to the mass transfer 
model of CO2 corrosion rate. In addition to this, the predictive tools available are applicable 
for fully developed flow, resulting in uniform corrosion. The current study is focused on the 
prediction of VSL and turbulent diffusivity profile with the help of CFD and then using these 
predictions to drive the 1D mass transfer model for the prediction of CO2 corrosion rate. The 
reliable 1D mass transfer model for the prediction of CO2 the corrosion rate is then applied 
to construct CFD driven mass transfer model for the prediction of corrosion rate in gradual 
constriction pipe that will account for the variation in viscous sublayer thickness and turbulent 
diffusivity profile along the length of the pipe.  

2.6 Design Optimisation 

Design optimisation is finding the optimum design without violating certain constraints. The 
objective function is either minimised or maximised. In the current study, a difference 
between experimental corrosion rates (Nesic et al., 1995) and predicted corrosion rates 
(Thorat et al.,2024) is considered as an objective function (f(𝐱)), where x is a design variable. 
The 12 design variables used in the current study are electrochemical reaction rate constants, 
which include reversible potential (Erev), Tafel slope (b), activation energy (∆H), power 

constant (a1), reference exchange current density (i0,ref) and reference concentration of 

species (cCO2,ref). A design optimisation methodology is implemented in this study to find an 
optimal set of electrochemical reaction rate constants to build a robust mass transfer model.  

The standard optimisation problem is given below, 

Minimise: 

The cost function:  𝑓(𝒙) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) (2.87) 
Subject to: 

𝑔𝑖(𝒙) ≤ 0;  𝑖 = 1 𝑡𝑜 𝑚 (2.88) 
ℎ𝑗(𝒙) = 0;  𝑗 = 1 𝑡𝑜 𝑝 (2.89) 

The design space is,  

𝑥𝑙𝑜𝑤𝑒𝑟 ≤ 𝑥𝑖 ≤ 𝑥𝑢𝑝𝑝𝑒𝑟 (2.90) 

where, 𝑔𝑖(𝑥) are the inequality constraints, ℎ𝑗(𝑥) are the equality constraints and 𝑥𝑙𝑜𝑤𝑒𝑟 

and 𝑥𝑢𝑝𝑝𝑒𝑟 represent lower and upper limits for each of the design variables.  

Figure 2.16 below gives the framework of the surrogate-based optimisation implemented in 
the current study.   
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Figure 2.16 The framework of surrogate-based optimisation to find out optimal parameters 
for operating conditions and electrochemical reaction rate constants. 

2.6.1 Design of Experiments  

Sampling the design space can be directly linked to obtaining maximum information from a 
limited number of samples, as the simulations or experiments are expensive or time-
consuming (Yondo et al., 2018). The techniques that are used for the planning of the 
experiments include one factor at a time (OFAT), trial and error approach (Montgomery, 
2013), and design of experiments (DoE) (Fisher, 1937). Yondo et al. (2018) classified DoE 
sampling techniques into classical DoE (Montgomery, 2013; Antony, 2014) and Modern DoE 
(Sacks et al., 1989; Koehler and Owen, 1996; Crary, 2002; Bursztyn and Steinberg, 2006) 
shown in Figure 2.17. 
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Figure 2.17 Classification of design of experiment techniques (Yondo et al., 2018). 

Classical DoE includes factorial designs (Mukerjee and Wu, 2006; Montgomery, 2013), ‘Box-
Wilson’ Central Composite Designs (CCD) (Box and Wilson, 1951), optimal designs (Kiefer and 
Wolfowitz, 1959), and orthogonal arrays experiments (Taguchi Methods) (Rao, 1947; Taguchi, 
1959; Taguchi, 1989).   

Figure 2.18 shows the sketch of the classical design of experiments. There are two types of 
factorial designs: full and fractional (Yondo et al., 2018). A factorial design sets points at the 
hypercube vertices, and as the number of factors increases, the sample points spread 
(Mukerjee and Wu, 2006; Montgomery, 2013). This methodology is considered complex for 

the design variables greater than three, e.g., 3-levels (3k), k is the number of design variables 
(Yondo et al., 2018). CCDs (Box and Wilson, 1951) are developed to fit full quadratic objective 
functions with the advantage of having adaptive sampling features. The optimal designs are 
assessed based on the variance matrix included in the surrogate model (Kiefer and Wolfowitz, 
1959). Orthogonal arrays (Rao, 1947; Taguchi, 1959; Taguchi, 1989) are fractional factorial 
designs with the advantage of focusing on controllable factors' impact on the objective 
function responses (Yondo et al., 2018). These designs are represented using cubes; each 
dimension depicts a factor, and the levels of each factor are displayed along that dimension 
(Yondo et al., 2018). 
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Figure 2.18  Sketch of classical design of experiments (Veldhuis et al., 2016). 

Modern DoE includes random sampling (Gentle, 2003), quasi-random designs (Lemieux, 2009; 
Sobol’ et al., 2011), projections-based designs (Kacker et al., 1991), uniform designs (Fang and 
Li, 2006), and some miscellaneous design techniques that cannot be categorized in either of 
these two classifications. 

Random sampling generates sampling points with the likelihood of appearing in any sample 
with the same probability. Simple random sampling and Monte Carlo methods such as Gibbs 
sampling, Markov Chain Monte Carlo – MCMC Samplings, Metropolis-Hastings Sampling, etc., 
are popular (Kim et al., 2000). The disadvantage of this technique is that it needs to have a 
deep knowledge of the entire design space without missing data (Yondo et al., 2018). Quasi-
random designs (Lemieux, 2009; Sobol’ et al., 2011), often known as low discrepancy 
sequences generators, provide a high level of uniformity in a multidimensional space (Yondo 
et al., 2018). Uniform designs (Fang and Li, 2006) are space-filling designs based on the 
measure of uniformity ℳ. For the entire design space χ, a design 𝜉 ∈ 𝜒 is a uniform design if 
the value of  ℳ is minimised over 𝜉 (Yondo et al., 2018). 

Latin Hypercube Sampling (LHS) 

Latin Hypercube sampling (LHS) (McKay et al., 1979) comes under the miscellaneous design 
sampling techniques (Yondo et al., 2018), in which N design variables are divided into equal P 
levels. For LHS DoE, it is made sure that there is only one sample point for each level. LHS DoE 
is classified into random Latin Hypercube (RLH) and optimal Latin Hypercube (OLH) sampling. 
This classification depends on how the sampling points are distributed in the design space 
(Bates et al., 2004). The RLH method utilizes randomness to obtain each sample point (Bates 
et al., 2004). OLH samples used in this study are generated with the help of the permutation 
genetic algorithm (permGA) and based on the methodology developed by (Bates et al., 2004). 
This methodology solves a combinatorial optimisation problem of minimisation of the 



 

41 
 

potential energy of repulsive forces for a set of sample points with a unit mass (Bates et al., 
2004). The magnitude of these repulsive forces depends on the square of the distance 
between the points and is given by, 

∑ ∑
1

𝑟𝑝𝑞
2

𝑃

𝑞=𝑝+1

𝑃

𝑝=1

 → 𝑚𝑖𝑛 
(2.91) 

where 𝑟 is the distance between sample points 𝑝 and 𝑞. 

The function given in Equation (2.91) is known as the Audze-Eglais objective function (AELH) 
(Bates et al., 2004). The coordinates method is used to encode AELH. The formulation is done 
in such a way that the first X numbers are a random sequence between 1 and X, repeating 
this up to N without the repetitions of numbers in each sequence. Hence, the rule of LHS of 
having a point in each level is secured. The process of using genetic operators with a 
permutation encoding starts with Mutation, as given below, 

[5 𝟏 4 2 𝟑] ⟹ [5 𝟑 4 2 𝟏] 

In the above step, two numbers are exchanged. A crossover step follows this, applied to all 
the sequences of X numbers up to N design variables. Different methods can be used for 
crossover, such as simple crossover, cycle crossover, and inversion. Simple crossover involves 
the selection of a crossover point up to which a permutation is copied from the first parent, 
followed by scanning the second parent from the beginning.  

Parent 1 =  [𝟓 𝟐 1 4 3]      ⟹      Child 1 =  [𝟓 𝟐 4 1 3] 

    + 

Parent 2 =  [𝟒 𝟏 3 5 2]      ⟹      Child 2 =  [𝟒 𝟏 5 2 3] 

Cycle crossover maintains the element’s positions in the sequence of parents as each value 
and its position belongs to one of the parents (Bates et al., 2004). The implementation of cycle 
crossover is given below (Bates et al., 2004), 

Parent 1 =  [1 3 9 7 5 4 6 2 8] 

 Parent 2 =  [4 6 2 1 7 8 9 3 5] 

The process starts with the selection of the first value of parent 1 followed by identifying the 
value at the same position in parent 2 and then finding the position of that value in parent 1. 
Thus, 

Child 1 =  [1 ∗ ∗ ∗ ∗  4 ∗ ∗ ∗] 

This provides a value of 9 from parent 2 at the 4th position. Thus, 

Child 1 =  [1 ∗ ∗ ∗ ∗  4 ∗ ∗  8] 

This rule is repeated, and the following values for child 1 are 5 and 7. As the value of 7 is 
selected, it requires the selection of value 1 from parent 1. Since a value of 1 is used, the cycle 
is completed. 

Child 1 =  [1 ∗ ∗  7 5 4 ∗ ∗  8] 

The final values of child 1 are, 
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Child 1 =  [16 2 7 5 4 9 3 8] 

This process is applied to obtain child 2 as given below, 

Child 2 =  [4 3 9 1 7 8 6 2 5l] 

The inversion crossover method consists of choosing two random points in a parent between 
which the points are inverted. This is shown below, the cut-off points are 2 and 6, marked by 
‘|’. 

Parent 1 =  [4 2 | 9 1 7 6 | 8 5 3]      ⟹      Child 1 =  [4 2 | 6 7 1 9| 8 5 3] 

The OLH sampling method is used to solve a problem of 4 design variables and 100 sample 
points in the current study. 

2.6.2 Surrogate Models 

The use of CFD to solve problems in aerospace, automotive, medical and oil/gas industries 
has seen a massive increase in recent years (Yeoh and Tu, 2010b). Although advanced 
computational resources such as high-performance computer clusters and cloud computing 
resources are available, high-fidelity simulations require hundreds of hours to complete 
(Yondo et al.,2018).  Considering the amount of computational time and computational 
power required to solve high-fidelity simulations, it is irrational to depend solely on these 
simulations (Yondo et al., 2018). Box and Draper (1987) introduced surrogate models, also 
known as metamodels or emulators or response surface models, to overcome the 
computational restrictions of these simulations. Surrogate models often replicate the 
response of computationally expensive (high-fidelity) simulations (Yondo et al., 2018). Ahmed 
and Qin (2009) categorized surrogate models into black-box and physics-based models. The 
black-box approach models were again classified according to two criteria that involved 
classifying them based on design variables used: either parametric (Gunst, 1996; Forrester, 
2008; Montgomery, 2013) or nonparametric (Wasserman, 1993) and based on a technique 
used for the construction of surrogate model; either interpolation or regression. This section 
reviews some of the techniques used for obtaining the response surface. 

Artificial Neural Network (ANN) 

Artificial neural networks (ANN) are one of the most popular machine-learning techniques for 
creating data-driven models (Gosmann et al., 2022). In the architecture of ANN shown in 
Figure 2.19, the input layer consisting of input variables (xi) is connected to a hidden layer 
with some weights(wij). A weighted sum (Fj = ∑ wijxii ) of the inputs from the input layer is 

calculated at each node in the first hidden layer. An activation function is then used to 
transform Fj and is an output from each node. This output from each node in the first hidden 

layer becomes the input for the second hidden layer. This process is repeated until the output 
layer is reached. To minimise the mean squared error between the predicted and target 
values, weights that connect the nodes are adjusted. Various types of ANN currently exist; 
out of those, radial basis function neural networks (RBFNN) (Wasserman, 1993) and 
multilayer perceptrons (MLP) (White, 1992) have been found to have better learning 
capabilities (Yondo et al., 2018). Figure 2.19 shows the structure of multilayer perceptron 
neural networks. 
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Figure 2.19 Structure of multilayer perceptron neural networks (Zhang et al., 2019). 

RBFNN, shown in Figure 2.20, consists of three layers of neurons: an input layer, a hidden 
layer, and an output layer. The weights of this nonlinear surrogate model are computed using 
nonlinear least squares methods, hybrid methods or maximum likelihood estimation (Myers, 
1990; Forrester, 2008; Yondo et al., 2018). The formulation of RBFNN is given below, 

𝒙𝒊 ↦ 𝑦𝑖 = 𝑓(𝒙(𝑖))| 𝑖 = 1,2,3, … , 𝑛 (2.92) 

where 𝑥 =  [𝑥(1), 𝑥(2), … , 𝑥(𝑛)]
𝑇

 and 𝒚 = [𝑦(𝒙(1)), 𝑦(𝒙(2)), … . , 𝑦(𝒙(𝑛))]𝑇 

A linear predictor of the RBF approximation is (Yondo et al., 2018), 

�̂�𝑅𝐵𝐹(𝑥) =  𝑤𝑇𝜙 = ∑ 𝑤(𝑖)𝜙(||𝑥 − 𝑐(𝑖)||)

𝑛𝑐

𝑖=1

 
 

(2.93) 

where 𝑤(𝑖) are the weights, 𝑐(𝑖) the 𝑖𝑡ℎ of the 𝑛𝑐  basis function centres and 𝜙 the nc- vector 
containing the values of the basis functions 𝜙. These basis functions 𝜙 are evaluated at the 

Euclidean distances between the prediction x and centres c(i) of the basis functions (Yondo 
et al., 2018). 
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Figure 2.20 Single hidden layer neural network. 

Moving Least Squares Method  

The moving least squares method (MLSM) is a generalized form of the conventional 
polynomial weighted least squares method (Choi et al., 2001; Toropov et al., 2005; Loweth et 
al., 2011). The weights in MLSM are dependent on the Euclidian distance between a sampling 
point 𝐱𝐢 and a prediction point x where the metamodel is evaluated unlike the traditional 
least squares methods where the weights are constant. The magnitude of the weight function 
changes as the prediction point x changes its location to provide the moving least squares 

approximation f̌(x) of the original function f(x) (Toropov et al., 2005). The numerical noise in 
the sampling data can be handled effectively by adjusting the “closeness of fit” (Toropov et 
al., 2005; Loweth et al., 2011). The “closeness of fit” is adjusted by changing the weight decay 
parameter. The Gaussian weight decay function, one of the popular weight decay functions 
(Toropov et al., 2005), is given below, 

𝑤𝑖 = 𝑒𝑥𝑝(−𝜃𝑟𝑖
2) (2.94) 

where 𝜃 is the closeness of fit and 𝑟𝑖 is the normalised distance between the i-th sampling 
point and the current point. 

Gaussian Process Regression (GPR) 

GPR is a probabilistic method that comes under non-parametric regression types of regression 
models capable of carrying out nonlinear input/output mappings. Rasmussen and Williams 
(2006) provided an extensive overview of the Gaussian process (GP). They stated that a GP is 
a generalization of the Gaussian probability distribution. A probability distribution represents 



 

45 
 

a stochastic process for random variables, either scalar or vectors, in the case of multivariate 
distributions (Snelson, 2007).   

A function f(𝐱𝐢) is assumed as a GP even before considering the data, where 𝐱𝐢 is an input 
vector known as a regressor. For yi, a scalar output value of the function f(𝐱𝐢) also called 
targets at locations i corrupted with Gaussian noise ϵi given by, 

𝑦𝑖 =  𝑓(𝒙𝒊) + 𝜖𝑖  (2.95)  

𝜖𝑖~𝒩(0, 𝜎𝑛
2) (2.96) 

where 𝒙𝒊 are input vectors (𝒙𝒊 ∈ ℝ𝐷×1) and yi are scalar outputs (𝑦𝑖 ∈ ℝ). 

A mean function m(𝐱) and a covariance function k(𝐱, 𝐱′) can be used to fully define a GP in 
a function-space view (Rasmussen and Williams, 2006), 

𝑓(𝒙) =  𝒩(𝑚(𝒙), 𝑘(𝒙, 𝒙′)) (2.97) 

A data set 𝐷 = {𝑋, 𝒚} represents all the available data for N number of sample points. 

Where  𝑋 =  [𝑥1, 𝑥2, . . , 𝑥𝑁]𝑇 ∈ ℝ𝐷×1 and  𝑦 =  [𝑦1, 𝑦2, . . , 𝑦𝑁]𝑇 ∈ ℝ𝑁. 

The vector of actual values of function evaluation is given by f, and the vector for actual values 
of prediction points is written as 𝒇∗. A probabilistic joint Gaussian distribution is assumed for 
the unknown function values given by, 

[
𝒇
𝒇∗

] =  𝒩 ([
𝑚𝑓

𝑚∗
] , [

𝑘𝑓𝑓

𝑘∗𝑓

𝑘𝑓∗

𝑘∗∗
])  

(2.98)  

The mean function value m (∙) is considered less critical for simplicity and hence assumed to 
be zero for noise-free applications (Zhang et al., 2022).  A general understanding of taking the 
mean value equal to zero is that the prediction value is assumed to be zero in the regions of 
sample space where the data is absent (António and Rodrigues, 2021).  

The covariance function 𝐾(∙,∙) has two regressors as arguments and returns a scalar value 
given below, 

𝐾(∙,∙): ℝ𝐷 × ℝ𝐷 ⟼ ℝ𝐷 (2.99) 

For the given data, the model prediction 𝒇∗ can be derived as conditionally distributed, 

𝒇∗|𝑋, 𝒇 ∼  𝒩(𝜇∗, ∑∗) (2.100) 

where 𝜇∗ is the regression output for the input x∗ predicted by GPR calculated using,  

𝜇∗ = 𝑘∗𝑓𝑘𝑓𝑓
−1𝒇 (2.101) 

The covariance matrix ∑∗ quantifies the uncertainty in the predictions as given by, 

∑∗ = 𝑘∗∗ − 𝑘∗𝑓𝑘𝑓𝑓
−1𝑘𝑓∗ (2.102) 

This probability distribution is called posterior distribution. For the test data corrupted with 
Gaussian noise, the inference procedure is extended by adding the noise variance term: 
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[
𝒇
𝒇∗

] =  𝒩 ([
0
0

] , [
𝑘𝑓𝑓 + 𝜎2

𝑛𝐼

𝑘∗𝑓

   𝑘𝑓∗

   𝑘∗∗
])  

(2.103) 

The posterior distribution is then given as, 

𝒇∗|𝑋, 𝒇 ∼  𝒩(𝜇∗, ∑∗) (2.104) 

𝜇∗ = 𝑘∗𝑓(𝑘𝑓𝑓 + 𝜎2
𝑛𝐼)−1𝒇 (2.105) 

∑∗ = 𝑘∗∗ − 𝑘∗𝑓(𝑘𝑓𝑓 + 𝜎2
𝑛𝐼)−1𝑘𝑓∗ (2.106) 

This distribution can be used to evaluate function predictions at a test/query point 𝑥∗. Figure 
2.21 shows the process of inference. 

 

Figure 2.21 Process of inference for a) Prior distribution with dotted values showing 
generated y values. b) Posterior distribution for the three random functions (Rasmussen and 
Williams, 2006). 

Support Vector Regression (SVR) 

Support vector regression is considered one of the most powerful algorithms for supervised 
machine learning (Aghaaminiha et al., 2021). An alternative loss function, shown in Figure 
2.22, is introduced in the support vector machine algorithm to transform it into SVR (Brereton 
and Lloyd, 2010). This is done by modifying the loss function to include a distance measure 
(Yondo et al., 2018).  Loss functions used in SVR are Quadratic, Laplace, Huber and ε-
insensitive (Vapnik, 1999).  
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Figure 2.22  Loss functions (Brereton and Lloyd, 2010). 

SVR in a general form is given below, 

�̂�(𝑥) = 𝜇 + ∑ 𝑤(𝑖) + 𝜓(𝑖)

𝑛

𝑖=1

(𝒙, 𝑥(𝑖)) 
(2.107) 

where μ is the base term, w(i) are weights and  ψ(i) are the basis functions. 

A linear regression function with the form shown below, 

𝑓(𝑥) = 𝜇 + 〈𝑤, 𝑥〉 = 𝜇 + 𝑤𝑇𝑥 (2.108) 
with 𝑤 ∈  𝜒 and 𝜇 ∈  ℝ. 

Support vectors approximate the predictor while the sample points within the ε-insensitive 
tube are discarded to build an accurate SVR surrogate (Yondo et al., 2018). This problem is 
often considered a constrained convex quadratic optimization problem, which requires,  

Minimise  
1

2
∥ 𝑤2 ∥ 

(2.109) 

 

Such that        {
𝑦𝑖 − 𝑤. 𝑥(𝑖) − 𝜇 ≤ 𝜀

𝑤. 𝑥(𝑖) + 𝜇 − 𝑦𝑖 ≤ 𝜀
 (2.110) 

A linear SVR regression with the introduction of Lagrange multipliers is given as, 

�̂�(𝑥) = 𝜇 + ∑(𝛼+(𝑖) − 𝛼−(𝑖)

𝑛

𝑖=1

)(𝑥(𝑖). 𝑥) 
(2.111) 

For a non-linear relationship between the input variables and the output, the transformation 
(𝜙) of input variables to higher dimensions is carried out to make them linearly separable 
(Aghaaminiha et al., 2021). The SVR for non-linear regression can be expressed as, 
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�̂�(𝑥) = 𝜇 + ∑(𝛼+(𝑖) − 𝛼−(𝑖)

𝑛

𝑖=1

)𝜓(𝑖) 
(2.112) 

where 𝜓 =  𝜙. 𝜙 a continuous, symmetric and positive definite basis function known as 
Mercer kernel. 

Random Forest 

Random forest (RF) is an ensemble machine-learning technique used for regression and 
classification (Quinlan, 1987). This technique consists of multitudes of decision trees in which 
smaller subsets (leaf) are created around input variables by splitting (branch) a dataset. As a 
result, these subsets will have minimal variances in the outcome values. This splitting is 
carried out until the terminal condition is met, which could be either the number of splits or 
a cut-off value for the standard deviation for each subset. Following this, once the terminal 
condition is met, the average value in the leaf is the predicted outcome for that set of inputs 
(Aghaaminiha et al., 2021). The random forest has two hyperparameters: the number of trees 
and the maximum number of features that can be split. 

2.6.3 Surrogate Model Quality Assessment 

The quality of the surrogate model can be assessed using statistical techniques such as the 
Root Mean Square Error (RMSE), the Relative Maximum Absolute Error (RMAE), the Relative 
Average Absolute Error (RAAE) and the R2.  This subsection gives an overview of the 
techniques used for the quality assessment of the surrogate model. 

The Root Mean Squared Error 

The Root Mean Squared Error (RMSE) is calculated using,  

RMSE = √
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

 
(2.113) 

where 𝑛 is the number of measurements, �̂�𝑖 is the predicted value and yi is the actual value. 

RMSE is often used in regression analysis to measure the average deviation between actual 
and predicted values. This metric helps know the typical magnitude of errors. RMSE values 
are sensitive to outliers as the squared differences increase the impact of more significant 
errors. The lower the RMSE value, the better the model’s performance. RMSE value equal to 
0 is considered the best. 

The relative maximum absolute error 

The Relative Maximum Absolute Error is given by, 

RMAE =
𝑚𝑎𝑥(|�̂�1 − 𝑦1|, |�̂�2 − 𝑦2|, |�̂�3 − 𝑦3|, … . . , |�̂�𝑛 − 𝑦𝑛|)

𝜎
 

(2.114) 

where 𝜎 is the standard deviation of the observed values. 

It gives the relative measure of the maximum absolute error between the actual and 
predicted values. This metric helps understand the worst-case scenario in terms of the 
accuracy of the prediction model, and the values range from 0 to 1, where 0 is the ideal value.   
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The Relative Average Absolute Error  

The relative average absolute error is obtained from, 

RAAE = ∑
|�̂�𝑖 − 𝑦𝑖|

𝑛𝜎

𝑛

𝑖=1

 
(2.115) 

RAAE gives a relative measure of the average absolute error between actual and predicted 
values. This metric helps compare the accuracy of predictions for the datasets with different 
scales.  

The Correlation Coefficient 𝐑𝟐 

The R2 is given by, 

R2 = 1 −
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 
(2.116) 

where y̅ is the average of observed values. 

The value between 0 and 1, where 1 is the ideal value, shows the proportion of variance in 
the target variable. It represents the goodness of the fit of the model.   

In summary, the choice of metric depends on the specific goals and analysis requirements. 
The RMSE metric is considered the best choice for finding out the overall prediction accuracy 
of the model. RMAE can be used to find extreme variations in the dataset. RAAE can be helpful 
if the interest is in finding out the relative error in capturing the scale of the target variable. 
R2 metric can be used to evaluate the model’s fit.  

In this work, RMSE and R2 values are used to find prediction accuracy and the model's overall 
fit, respectively. 

2.6.4 Optimization Techniques 

An optimization technique can be applied to find the global minimum after generating the 
response surface from the metamodel. In the current research, optimization techniques are 
used to find an optimal value of corrosion rate based on pH, pCO2, T and u and the optimal 
set of electrochemical reaction rate constants to tune the mass transfer model of corrosion 
rate.  

 The classical optimization techniques are divided into two types: optimality criteria methods 
and search methods. A function must satisfy optimality criteria at its minimum point in 
optimality criteria methods. In search methods, also known as direct methods, the optimum 
design is estimated initially and then iteratively improved to satisfy the optimality criteria. 
Some of the line search algorithms include Nelder-Mead, Fibonacci, golden section, Hooke 
and Jeeves’, Powell’s, gradient descent, and coordinate descent methods to solve 
unconstrained optimization problems (Venkateswarlu and Jujjavarapu, 2020). 

Optimization techniques are classified into heuristic and non-heuristic optimization 
techniques. Heuristic optimization techniques, also called metaheuristic optimization 
techniques, are used to find near-optimal solutions to complex problems when traditional 
optimization techniques are ineffective (Gandomi et al., 2013). These techniques provide 
approximate solutions to problems with high dimensionality, nonlinearity and many 
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constraints. These techniques involve Genetic Algorithms (GA) (Goldberg and Richardson, 
1987), Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995), Ant Colony 
Optimization (ACO) (Dorigo et al., 2006) and Simulated Annealing (SA)(Bertsimas and 
Tsitsiklis, 1993). Non-heuristic or deterministic optimization techniques find the optimal 
solution by exploring the entire design space. These techniques include Linear Programming 
(LP) (Bertsimas and Tsitsiklis, 1997), Integer Programming (IP) (Li and Sun, 2006), Dynamic 
Programming (DP) (Sakoe and Chiba, 1978) and Branch and Bound technique (Brusco and 
Stahl, 2005). 

Optimisation techniques can also be classified into gradient-based solvers and non-gradient-
based solvers. Gradient-based solvers find the minimum or maximum of the objective 
function by evaluating its gradient (derivative). In this case, the gradient is a vector of partial 
derivatives concerning each design variable. The optimal solution is approached iteratively by 
following a direction of negative gradient.  On the other hand, non-gradient-based solvers 
require function evaluation only. Some examples of non-gradient-based solvers include the 
Nelder-Mead simplex method, the Fibonacci method, simulated annealing and the genetic 
algorithm. 

Efficient design in terms of optimal time, reduced computational burden and human 
resources is of paramount importance in many industries. Although computational resources 
are available, it is absurd to be completely dependent on expensive simulations, also known 
as high-fidelity simulations, to find the optimal design. Surrogate models, with the help of the 
DOEs, replace these high-fidelity simulations to predict the objective function at the unknown 
sample points. This process reduces the time required for analysis using high-fidelity 
simulations, allowing parametric optimization and sensitivity analysis (Yondo et al., 2018).   

Nelder-Mead method 

The Nelder-Mead method is one of the popular methods applied to unconstrained nonlinear 

optimization problems (Nelder and Mead, 1965). It uses heuristic ideas to search nth 
dimensional space. The advantages of this method are that it does not require derivatives of 
the objective function, and the objective function does not need to be smooth. It uses a 
geometrical shape called Simplex, a polygon with n+1 vertices (Bagherian et al., 2021). Where 
n is the number of design variables. For 2 design variables (n=2), the simplex will have 3 
vertices, shown in Figure 2.23. 

 

Figure 2.23 A Simplex with 2 design variables. 
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The process starts with the initialization of n-dimensional Simplex (guess vertex) with n+1 

vertices. The worst vertex in ith iteration is replaced using the steps such as reflection(xr), 
expansion(xe), contraction (inside(xc), outside(xcc)), reduction, and convergence. The 
expressions for these points are given below, 

𝑥𝑟 =  �̅� + �̂�(�̅� − 𝑥𝑛+1) 
 

(2.117) 

𝑥𝑒 =  �̅� + 𝜒(𝑥𝑟 − �̅�) 
 

(2.118) 

𝑥𝑐 =  �̅� + 𝛽(𝑥𝑟 − �̅�) 
 

(2.119) 

𝑥𝑐𝑐 =  �̅� − 𝛽(�̅� − 𝑥𝑛+1) 
 

(2.120) 

�̅� =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 

 

(2.121) 

where, �̂� = 1 is the coefficient of reflection,  𝜒 = 2 is the coefficient of expansion, 𝛽 = 0.5 is 
the coefficient of contraction, and �̅� is the centroid. 

This method is shown in the flow chart in Figure 2.24. 
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Figure 2.24 Nelder-Mead simplex algorithm for unconstrained optimization (Bagherian et 
al., 2021). 

Hooke-Jeeves Method 

The Hooke-Jeeves method (Hooke and Jeeves, 1961) is a pattern search method that 
evaluates the objective function at specific points in the design space. This method involves 
an exploratory search step and a pattern move. An exploratory search step finds a direction 
from the current point in which the value of the objective function is improved. Pattern move 
accelerates the search in the best direction. The Hooke-Jeeves algorithm requires five 

parameters, a starting point vector 𝒙𝟎,  a perturbation step size vector 𝑷𝟎, the perturbation 



 

53 
 

tolerance limit vector 𝑇𝑙 , the step size reduction parameter η, and the acceleration factor a. 
The following steps are carried out in the Hooke-Jeeves method, 

At the starting point, the vector 𝒙𝟎, the value of objective function 𝑓(𝒙𝟎) is calculated. 

Consider, 𝒙𝟎 = 𝒙𝒃𝒆𝒔𝒕 and 𝑓(𝒙𝟎) =  𝑓(𝒙𝒃𝒆𝒔𝒕). A starting point vector 𝒙𝟎 is then combined with 

a perturbation step size vector 𝑷𝟎  to calculate the value of objective function f(𝐱𝟏) and 

𝒙𝟏 = 𝒙𝟎 + 𝑷𝟎 . If 𝑓(𝒙𝟏) < 𝑓(𝒙𝒃𝒆𝒔𝒕) then assume 𝒙𝟏 as 𝒙𝒃𝒆𝒔𝒕 and 𝑓(𝒙𝟏) as 𝑓(𝒙𝒃𝒆𝒔𝒕). If 𝑓(𝒙𝟏) 

> 𝑓(𝒙𝒃𝒆𝒔𝒕) then change the direction by taking 𝒙𝟏 = 𝒙𝟎 − 𝑷𝟎 following the evaluation of the 

objective function and its comparison with the 𝑓(𝒙𝒃𝒆𝒔𝒕). The pattern move is then carried out 

using 𝒙𝟎 and 𝒙𝒃𝒆𝒔𝒕 to create a new point 𝒙𝟐 in improving direction.  

𝒙𝟐 =  𝒙𝟎 + 𝒂(𝒙𝒃𝒆𝒔𝒕 − 𝒙𝟎)  (2.122) 

A typical value of the acceleration factor is equal to 2. Following this, an exploratory step is a 

repeater for a new point 𝒙𝟐 until the values in the perturbation size vector fall below the 
perturbation tolerance limit vector Tl. 

Powell’s Method 

Powell’s method is a type of iterating method used for unconstrained optimization problems 
(Powell, 1964). This method does not require derivatives of the objective function, which is a 
part of quasi-Newton methods. The method finds minima of objective function f(𝐱𝐢), where 
is 𝒙𝒊 is the vector with n variables at iteration i. The steps of Powell’s method are given below, 

The method starts with setting an Initial vector 𝑷𝟎 = initial 𝒙𝒊=𝟏 with an initial base vector 𝑼𝒌 
for k = 1,2,3…n. Each Uk the vector consists of a kth term that can be set to one and the 
remaining terms to zero. The next step is to find a value of 𝑎𝑘 that minimises function f(𝑃𝑘−1 +
𝑎𝑘𝑈𝑘) for k = 1 to n. Following this, the searching vector at the kth iteration 𝑃𝑘 is set as, 

𝑷𝑘 = 𝑷𝑘−1 + 𝑎𝑘𝑼𝑘 (2.123) 

The one-dimensional minimisation for function f is obtained from the above step. Ju and Hsieh 
(2022) suggested that Brent’s method with the golden section search can efficiently obtain 
one-dimensional optimisation. The value of i is incremented by 1 and set 𝑈𝑗 = 𝑈𝑗+1 for j = 1 

to n-1, set 𝑈𝑛 = 𝑃𝑛 − 𝑃0. The value of a is then found to minimise the one-dimensional 
function of f(𝑃0 + 𝑎𝑈𝑛) (Ju and Hseih, 2022). The variable vector is then updated to 𝒙𝑖 =
𝑷𝟎 + 𝑎𝑼𝑛. Following this set 𝑷𝟎 = 𝒙𝒊 and repeat the above steps. 

2.6.5 Dimensionality Reduction Technique – Principal Component Analysis (PCA) 

PCA is a technique used to reduce the dimensionality of a large dataset. This method 
transforms a large set of variables or features into a smaller one without losing the 
information in the large set.  

The method begins with standardising the continuous initial variables to ensure they 
contribute equally to the analysis. This step aids in reducing the dominance of initial variables 
with significant differences over the ones with slight differences in value. This is followed by 
computing the covariance matrix (ndv × ndv) to understand how the input data set variables 
vary from the mean to each other (Jollife and Cadima, 2016). The covariance matrix has the 
covariance entries associated with the pairs of the initial variables. 
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If the covariance sign is positive, then the two variables increase or decrease together, which 
means they are correlated. If covariance is negative, one variable increases when the other 
variable decreases (Jollife and Cadima, 2016). The next step involves computing the 
eigenvalues and eigenvectors from the covariance matrix to determine the principal 
components of the data. The principal components are new variables constructed as linear 
combinations, so principal components (new variables) are not correlated, squeezing most of 
the information into the initial components (Tapeh & Naser, 2023).  

Considering the advantages of PCA, it has been used in this work to check if the dimensionality 
of the dataset can be reduced for both the studies of finding optimal operating parameters 
and electrochemical reaction rate constants. Previously, in several studies, PCA has been used 
to find dimensionality reduction-based optimisation.  

2.7 Applications of Machine Learning Modelling in Corrosion  

Several studies in the literature used machine learning modelling in the area of corrosion 
science (Xu et al., 2023). Machine learning models with the enhanced abilities of high-speed 
computing have been used to make necessary real-time corrosion decision support in oil and 
gas industries, as shown in the framework in Figure 2.25 (Xu et al., 2023). The data collected 
from the oil and gas gathering and transportation system is inspected for outlier recognition, 
followed by correlation analysis in which redundant input variables were removed. The 
identified input and output variables are then used to predict the corrosion rate from the 
constructed machine-learning model. Following this, the machine learning model's 
performance is evaluated based on the metrics. The best machine learning model is then used 
for the decision supporting corrosion mitigation (Xu et al., 2023).  

 

 

Figure 2.25 Framework for implementing artificial intelligence (AI) in corrosion decisions (Xu 
et al., 2023). 

ANN (Bassam et al., 2009; Weckman et al., 2010; De Masi et al., 2015; Chou et al., 2017; Pai 
et al., 2020), RF (Ossai, 2019; Aghaaminiha et al., 2021; Ben Seghier et al., 2022), SVM (Lee et 
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al., 2013; Ji et al., 2015; Hatami et al., 2016; Chou et al., 2017), GP (Zhang et al., 2022) and 
Deep Learning (DL) (Ossai, 2019) are some of the studies that focused on the application of 
machine learning in the corrosion prediction. Out of these models, ANN models, often 
referred to as Shallow Neural Networks (SNN), are the most popular machine learning of  CO2 
corrosion. 

Bassam et al. (2009) developed an ANN model to determine the type of Electrochemical 
Impedance Spectroscopy (EIS) from inhibitor concentrations of three datasets. ANN models 
predicted the type of corrosion using hyperbolic sigmoidal transfer functions; however, a 
more efficient ANN could have been developed. Weckman et al. (2010) developed the ANN 
model for a better understanding of  CO2 corrosion inhibition performance by extracting the 
knowledge from the ANN model. The knowledge extraction techniques included Network 
Interpretation Diagrams (NID), Garson's algorithm, a family of curves, sensitivity analysis, and 
TREPAN-plus (Weckman et al., 2010). However, Weckman et al.’s model was not tuned for 
the hyperparameters, and the predicted data's cross-validation was missing. Castellanos et 
al. (2011) developed a Failure Analysis Expert System (FAES) using a multilayer perceptron 
structure and Back Propagation Neural Network (BPNN) approach to understanding failure 
mechanisms such as external corrosion, internal corrosion, erosion, material selection and 
vandalism. Khalajestani and Bahaari (2014) developed a four-layer multilayer perceptron 
model to predict interacting local thinning areas caused by erosion or corrosion in elbows. 
The model's accuracy was verified using mean squared error (MSE) metrics. ANN is also used 
to predict experimental values such as corrosion current density and corrosion potential with 
good agreement between the actual and predicted values (Narimani et al., 2015). Abbas et 
al. (2018) established a neural network model as a tool for corrosion prediction with the main 
focus on the characterisation of transfer and training functions available in MATLAB software 
to check the suitability for the prediction of CO2 corrosion rate. The dataset used for the 
neural network modelling was obtained from weight loss experiments using autoclaves 
(Hesjevik et al., 2003; Choi and Nešic, 2009; Zhang et al., 2013) with unevenly spread 22 
sample points used for modelling.  

Xu et al. (2023) stated that the low accuracy of the ANN models available in the literature was 
due to problems such as over-fitting and local minimum in the training process. They stated 
that this issue could be eliminated by adjusting the network parameters with the help of 
population-based optimisation algorithms such as the Beetle Antennae Search (BAS) 
Algorithm, PSO, Whale Optimisation Algorithm (WOA), Sparrow Search Algorithm (SSA), and 
Cuckoo Search Algorithm (CSA). The accuracy of the BPNN was improved by optimising the 
initial weights and deviations of BPNN using GA (Wen et al., 2019). Ossai (2020) tuned the 
hyper-parameters using PSO of a feed-forward sub-space clustering neural network to predict 
leakage failures and corrosion defects of pipelines long in service. Some innovative algorithms 
for the prediction of corrosion density include a combination of ANN with levy flight weighted 
quantum PSO algorithm, which provided twice as much an improvement in the accuracy of 
mean averaged error (MAE) compared to BPNN (Wang et al., 2022). Other examples include 
the use of the WOA (Ouladbrahim et al., 2022) and SSA (Xin et al., 2022) to optimise hidden 
layer neurons, deviation and the weights of the BPNN model. 

After ANNs, SVMs were found to be the most popular technique, accounting for 27% of the 
available machine learning techniques, with RF at 9% and DNN at 7% for the prediction of CO2 
corrosion (Xu et al., 2023). SVM was useful for predicting the stress concentration coefficient 
of pipeline corrosion pits (Ji et al., 2015), monitoring pipeline conditions (Lee et al., 2013), and 
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identifying leakage apertures and leakage locations (Sun et al., 2016). A least-square SVM 
(LSSVM) model was developed by Hatami et al. (2016) to predict the corrosion rate based on 
input parameters such as pH, pCO2, temperature and flow velocity obtained from the 
experimental dataset of Dugstad et al. (1994). Although an attempt was made to predict the 
CO2 corrosion rate using LSSVM, it did not provide descriptive statistics for the data used, 
which could have helped to identify outliers and missing values in the dataset. Peng et al. 
(2021) developed a model that combined support vector regression (SVR), PCA and chaos PSO 
(CPSO) for the internal corrosion prediction of the multiphase pipeline. It was found that a 
combined model of PCA-CPSO-SVR provided a lower RMSE value (2.7%) compared to 
remaining models viz, SVR (5.9%), PCA-SVR (8.1%), PCA-GA-SVR (3.1%) and PCA-PSO-SVR 
(2.9%). SVR, ANN, RF and K-nearest neighbours are used to predict the time-dependent 
corrosion rates in the presence of corrosion inhibitors (Aghaaminiha et al., 2021). The SVR 
model provided a 13% RMSE value, which was 2nd best after the RF model.  

RFs have been used for classification purposes in corrosion modelling for leakage detection 
and classification (Ning et al., 2021) and for locating and estimating pipeline damage (Bao et 
al., 2022); however, the model developed had lower accuracy than numerical and 
experimental studies. This was overcome by combining the RF with the random decrement 
technique (RDT) used in data processing to eliminate the influence of noise (Bao et al., 2022). 
Zahedi et al. (2018) used RF to predict erosion ratio in single-phase and multiphase flow 
situations and found that RF was the best-performing machine learning model. However, it 
over-predicted low erosion ratio values. Aghaaminiha et al. (2021) found that the RF model 
outperformed other machine learning models when trained on a combination of numerical 
and categorical datasets and provided MSE values ranging from 0.005 to 0.093. RF model was 
then used to study the sensitivity of corrosion rates to changes in the input variables such as 
type of corrosion inhibitor and concentration, pCO2, temperature, wall shear stress, brine 
type.  

Some other machine learning models used for corrosion modelling include Gaussian Process 
Regression (GPR) and Deep Neural Network (DNN). For example, Zhang et al. (2022) 
constructed a predictive model using GPR that included an adaptive sampling strategy for the 
CFD-based corrosion modelling of flow in an elbow. The advantage of using the adaptive 
sampling technique is that it controls the uncertainty in the model prediction Zhang et al. 
(2022). In addition, there has been an increase in the use of DNN classification problems to 
predict leakage from gas pipelines (Kopbayev et al., 2022), to predict the damage location 
(Bao et al., 2022) and corrosion detection for oil and gas pipelines (Forkan et al., 2022).  

Research Gap 

This section has shown that there has been significant interest in applying machine learning 
modelling to predict corrosion in oil and gas pipelines in the last two decades. However, some 
machine learning models still experience issues such as over-fitting and local minimum in the 
training process and difficulty adjusting hyper-parameters, resulting in lower accuracy and 
high calculation costs (Xu et al., 2023). In addition, very little attention is given to the sample 
points of the variables used in machine-learning models to predict corrosion rates. The most 
popular machine learning models, ANN, SVR, GPR, and RF, have been applied to predict 
corrosion rates, and their performance is assessed on the basis of evaluation metrics.   
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2.8 Surrogate-based Optimisation to find Optimal Parameters for 
Mathematical Modelling 

Surrogate models replace high-fidelity CFD simulations to reduce computational time and 
power without compromising accuracy (Liu et al., 2023). Surrogate modelling-based 
optimisation (SBO) is widely used in various areas but is more prevalent in aerodynamic 
analyses due to the massive time required by full-scale models. One of the earliest studies 
that addressed the SBO method included the design of sampling space using orthogonal-array 
Latin hypercube sampling, Gaussian process regression (Kriging) to build a surrogate model 
and assessing the performance of optimisation methods on helicopter rotor blade design 
problem of 31 design variables (Booker et al., 1999). Queipo et al. (2005) carried out multi-
objective optimisation of liquid-rocket injectors to find an optimal design. The two primary 
objectives in their studies were improving the performance and life of injector design, which 
is associated with an axial length of the thrust chamber and thermal field inside the thrust 
chamber, respectively. It included using orthogonal arrays to generate sample space given as 
OA (54,4,3,2) corresponding to 54 designs/runs, four factors, and three levels with strength 2 
(Queipo et al., 2005). The parametric polynomial regression surrogate model was used for 
sensitivity analysis and multi-objective optimisation. They demonstrated that the SBO 
approach could effectively solve multi-objective optimisation problems but did not explore 
other surrogate modelling techniques. Thapa and Missoum (2022) constructed a SBO 
framework for optimising horizontal-axis wind turbine composite blades using Kriging and 
SVM approach with adaptive sampling viz., max-min sampling and generalized max-min for 
the refinement. Adaptive sampling can improve the accuracy of the surrogate model and has 
been used along with GPR to predict the corrosion rate in elbows (Zhang et al., 2022). The 
SBO framework has replaced CFD simulations to optimise the rotor airfoil's aerodynamic 
shape (Li et al., 2020; Du et al., 2021; Liu et al., 2023). Liu et al. (2023) used a deep neural 
network (DNN) surrogate model to optimise the aerodynamic shape of the SC1095 rotor 
airfoil with the primary aim of suppressing dynamic stall. The objective function was to 
minimise the drag and moment coefficients of the airfoil using a multi-island genetic 
algorithm (MIGA). This approach was significantly faster than CFD, with high prediction 
accuracy. 

Surrogate modelling-based parameter optimisation has been used in several studies to find 
the best set of parameters, for example, in the proton exchange membrane fuel cell (PEMFC) 
model (Li et al., 2021; Fan et al., 2022), pressure swing adsorption (PSA) model (Subraveti et 
al., 2019) employed for adsorption and cyclically removal of contaminants, and in granulation 
modelling (Braumann et al., 2010). PEMFC cells, due to their low emissions and high energy 
efficiency, are considered one of the most prominent energy conversion devices (Li et al., 
2021). Hence, maximizing their performance based on operating conditions and structural 
parameters has been a significant area of interest for many researchers (Mohamed and 
Jenkins, 2004; Peng et al., 2017). The SVM approach (Peng et al., 2017) and ensemble learning 
model with the base learner as ANN model (Li et al., 2021) were used to identify the significant 
variables of the PEMFC model. Peng et al. (2017) solved a single objective function of 
maximization of power density values using the standard simplex approach, whereas Li et al. 
(2021) solved a multi-objective optimisation problem which included power density, system 
efficiency and uniformity of O2 distribution on the cathode catalyst layer using a non-
dominated sorting genetic algorithm (NSGA-II). These studies showed that surrogate models 
efficiently identify significant parameters and their optimal values. Subraveti et al. (2019) 
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proposed Surrogate-assisted Optimisation (SOpt) and Dimensional Reduction-based 
Optimisation (DROpt) techniques to find the set of optimal parameters of the mathematical 
model of PSA. The SOpt approach consisted of ANN model to construct a surrogate and NSGA-
II model for the multi-objective optimisation. They found that the SOpt approach was the 
most efficient when compared with predictions of the mathematical model of PSA, again 
highlighting that surrogate-based optimisation is a reliable methodology to replace physics-
based expensive simulations. Braumann et al. (2010) carried out surrogate modelling-based 
parameter optimisation for the complex full-scale granulation model. This model consisted of 
unknown parameters often identified by solving inverse problems in which predictions 
obtained by full-scale models were compared with experimental results (Braumann et al., 
2010; Myers et al., 2022).  Their approach included using a quasi-random screening for 
sampling and a first and second-order polynomial to fit the sample points. They found that 
the second-order response surfaces showed more minor relative uncertainties for estimating 
four unknown rate constants. The above studies showed that surrogate modelling can replace 
complex, full-scale physics-based models. However, these studies did not explore other 
surrogate models as the applicability of a surrogate model depends on several factors such as 
input data quality, dimensionality of the input variables, relationship complexity between 
input and output variables, constraints and model assumption (Forrester, 2008).  

Research Gap 

The predictive tools in the literature for the prediction of CO2 corrosion consists of empirical 
values for reaction rate kinetics. These values have been tuned in several studies to get the 
desired predictions of corrosion rate (Nordsveen et al., 2003; Al-Khateeb et al., 2018; Hu et 
al., 2018; Nešić et al., 2019). The lack of reliable predictive tools makes it difficult to make the 
decision required to mitigate corrosion in the oil and gas industries. Conducting a sensitivity 
analysis of these empirical values to obtain a reliable set of values requires running the mass 
transfer model several times, which is not feasible as it takes a tremendous amount of time 
and power. To circumvent this, the SBO approach can be implemented as mentioned above. 
A machine learning based surrogate modelling to find a reliable set of electrochemical 
reaction rate constants for the prediction of CO2 corrosion is implemented for the first time. 
It generates a surrogate model using ANN, GPR, SVR, and RF, then solves the optimisation 
problem that is subject to constraints. Finally, a comparison is made with the experimental 
values, CFD-driven mass transfer prediction and values obtained using the SBO approach for 
corrosion rates.  

2.9 Summary and Conclusions 

This chapter provided theory, background information, and a literature review related to CO2 
corrosion, CFD, surrogate modelling and machine learning techniques. It covered the primary 
mechanism behind CO2 corrosion and current prediction models are available in the 
literature. It highlighted the assumptions on which these models are based, stating that a 
reliable prediction model is needed. One of the significant issues related to these models is 
the use of empirical correlations of viscous sublayer thickness and turbulent diffusivities, 
which restricts their ability to predict corrosion rates in situations where the flow is not fully 
developed. CFD is a reliable tool that can be used to resolve this problem. This technique will 
involve accurate predictions of viscous sublayer thickness and turbulent diffusivity profiles 
and then subsequently coupling these predictions with the mass transfer model for the 
prediction of  CO2 corrosion.  
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A review of machine-learning-enabled surrogate modelling provided the background theory 
related to the different surrogate models, which can be applied to find the optimum 
parameters in the mass transfer models. Electrochemical reaction rate constants used in the 
current mass transfer models are often tuned to predict better results than the experimental 
data. This study focuses on identifying the most significant electrochemical reaction rate 
constants and then finding the optimum values of these constants. Machine learning 
techniques can be applied to find out the impact of significant parameters such as pH, 
velocity, temperature, and pCO2. This methodology will assess all the supervised machine-
learning models and will provide the most suitable model for the prediction of CO2 corrosion 
can then be used to find the optimum combination of the parameters. 

As mentioned above, the current CO2 corrosion prediction models are not suitable for flow 
situations that are not fully developed. This study resolves this issue by accurately coupling 
the flow field obtained from CFD with the mass transfer model in an expansion/constriction 
pipe. 
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Chapter 3:  Computational Fluid Dynamics Driven Mass Transfer 
Model for the Prediction of CO2 Corrosion in Pipelines 

3.1 Introduction  

The flow in a pipeline is characterised as laminar, transitional, or turbulent based on the 
Reynolds number (Re). The flow field in most of the mechanistic models is assumed to be 
turbulent (Nesic et al., 1995; Nesic et al., 2001; Nordsveen et al., 2003; Nešić et al., 2009; 
Zheng, 2015; Nešić et al., 2019; Kahyarian and Nesic, 2020) due to high flow rate and length 
of the pipes used for transportation resulting in a fully developed turbulent flow (Nešić, 2007). 
This flow field is divided into three regions: the viscous sublayer, the buffer layer, and the 
turbulent layer, as shown in Figure 3.1. 

 

Figure 3.1 Turbulent boundary layer profile over a flat plate (not to scale). 

Very close to the wall, mass transfer is dominated by molecular diffusion. However, studies 
related to the observation of fluid elements adjacent to the wall have shown that vertical 
components of velocity fluctuations continue to exist until they reach the wall and thus occur 
within the viscous sublayer (VSL) of a turbulent flow (Popovich and Hummel, 1967). The effect 
of turbulent convection on an element carried within the fluid can be quantified using the 
notion of Dt. The dispersion of particles in each region is caused by eddies within the fluid 
flow. These eddies cascade in scale to a size smaller than the region's; larger eddies advect 
the fluid region but do not cause element separation. As the region grows in size due to 
advection, the range of eddies captured facilitates the dispersion of particles in the flow. This 
is turbulent diffusion, different from eddy diffusion, which is the process by which eddies are 
dispersed in a turbulent flow. The available equations for measuring turbulent behaviour are 
based on steady-state approximations since capturing the time-dependent behaviour of 
turbulence without an experiment for a particular flow is highly challenging. Hence, the time-
dependent fluid flow and mass transport changes are described using eddy and turbulent 
diffusivity. As a result, researchers have no consensus on predicting turbulent diffusivity in 
horizontal pipelines. All empirical equations for the turbulent diffusivity are either assumed 
in a general form (Notter and Sleicher, 1971) or obtained by experimental data fitting (Notter 
and Sleicher, 1971; Davies, 1972; Nordsveen et al., 2003; Wang and Nesic, 2003). These 
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empirical correlations only apply to a fully developed pipe flow, limiting their use in non-
idealised geometries such as elbows, rectangular channels, or sudden expansion/constriction. 
This has become one of the main drawbacks of using empirical correlations in the mechanistic 
modelling of CO2 the present study aims to alleviate corrosion using CFD to determine the 
turbulent boundary layer profile and flow behaviour in the near wall region. The following set 
of objectives are studied in this chapter: 

 Explore the limitations of the empirical correlations used in the mechanistic models 
available in the literature. 

 Build the mass transfer model with the empirical correlations of viscous sublayer 
thickness and turbulent diffusivity. 

 Modify the mass transfer model's chemistry to accommodate carbonic acid's 
dissociation. 

 Build a CFD flow model in a straight pipeline using different turbulence models and 
choose the best model that resolves the near-wall fluid flow. 

 Run CFD simulations for different velocities to obtain viscous sublayer thickness and 
turbulent diffusivity predictions. 

 Use the predictions obtained from CFD simulations to drive the mass transfer model 
of CO2 corrosion. 

 Compare the CO2 corrosion rate predictions with experimental data in the literature 
and values obtained from the empirical correlations-based mass transfer model. 

This study's CFD-driven corrosion prediction model provides a robust approach for coupling 
the fluid flow and mass transfer models to predict corrosion rates. A vital feature of this 
approach is the accurate calculation of viscous sublayer thickness and turbulent diffusivity 
profiles, which sets a benchmark for the corrosion rate predictions in disturbed, developing 
and fully developed flow conditions. The mass transfer model is based on the Nordsveen et 
al. (2003) multi-node model, which integrates through the viscous sublayer to calculate the 
concentration of each species at a series of points by accounting for the transport of species 
to and from the bulk. It includes homogeneous chemical reactions, diffusion of species, 
electrochemical reactions at the steel surface and transport of species to and from the bulk, 
including diffusion and convection through the viscous sublayer (Nordsveen et al., 2003). 
Section 3.2 describes the mass transfer, velocity and eddy distribution in pipeline flows and 
CFD methodology. Section 3.3 explains the numerical approach used in the mass transfer 
model of axisymmetric pipe. Section 3.4 describes the CFD methodology. Section 3.5 presents 
a comprehensive series of results containing calculations of viscous sublayer thickness, 
turbulent diffusivities, corrosion rates, and verification using the experimental data in the 
relevant literature. 

3.2 Materials and Methods 

3.2.1 Mass Transfer Modelling  

The transport of species is described using species conservation equations. The governing 
equation for the transport of diluted species j in a fluid medium is given by Eq. (3.1): 

𝜕𝑐𝑗

𝜕𝑡
=  −

𝜕𝑵𝒋

𝜕𝑥
+ 𝑅𝑗  

(3.1)  
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where 𝑐𝑗 the concentration of species 𝑗, Nj is the flux of species j due to diffusion, Rj is the rate 

of production of species j due to homogeneous chemical reactions, t is the time, and x is the 
spatial coordinate (distance from the metal surface). Figure 3.2 shows the transport of species 
in the mass transfer modelling.  

 

Figure 3.2. Transport of species in mass transfer modelling in horizontal pipelines. 

The flux of species Nj consists of diffusion, electro-migration, and convection. The model 
developed here is applied to cases where the electrolytes have high conductivity, including 
the major species Na+ and Cl−, with the result that electro-migration in the electric field is 
negligible compared to diffusion and convection. For a comprehensive justification of this 
assumption, see references (Stephens and Mauzeroll, 2019; Balsara and Newman, 2021). In 
addition, since the aim is to assess the importance of modelling the VSL accurately on 
corrosion modelling, the model is developed for cases where the precipitation of FeCO3 is 
negligible, obviating the need to introduce additional empiricism into the corrosion 
modelling, as in previous models for corrosion product formation, e.g., Nesic et al. (2001). In 
fact, in the cases considered here, the temperatures are low (around 20oC), which means that 
the super-saturation S given by Eq. (3.2), 

S =  
𝑐𝐹𝑒2+𝑐𝐶𝑂3

2−

𝐾𝑠𝑝
 

  
(3.2)       

is small, and the precipitation of FeCO3 will, therefore, be negligible. This issue is discussed in 
greater detail by Nesic et al. (2001), who concluded that the precipitation rate of FeCO3 is 
extremely low for temperatures less than 60℃. The ability to neglect corrosion product 
formation enables a steady-state modelling approach to be adopted. 

The flux of species Nj is given by Eq. (3.3), 

𝑵𝒋 =  −(𝐷𝑗 + 𝐷𝑡)
𝜕𝑐𝑗

𝜕𝑥
 

(3.3) 

The turbulent diffusivity (𝐷𝑡) is shown by Eq. (3.4),  
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𝐷𝑡 =
𝜇𝑡

𝜌𝑆𝑐𝑡
 (3.4) 

The sensitivity of the term 𝑆𝑐𝑡 to corrosion rate predictions by varying it from 0.5 to 0.9, and 
0.71 is chosen for the mass transfer calculations upon comparison with the experimental 
corrosion rates. The 𝐷𝑡 of each species, j varies within the domain as 𝜇𝑡 varies through the 
viscous sublayer of the flow (Davies, 1972).  Table 3.1 and Table 3.2 show the species 
properties as a function of temperature and reference values of molecular diffusion 
coefficients for chemical species involved in the corrosion process. 

Table 3.1 Species properties as a function of temperature T(K) used in the mass transfer 
model. 

Property Equation 

Density (Kg/m3) 𝜌(𝑇) = 1152.3 − 0.5116𝑇 

Dynamic viscosity (Pa*s) 
𝜇(𝑇) = 𝜇𝑟𝑒𝑓 × 10

1.3272(20−𝑇)−0.001053(20−𝑇)2

𝑇+105  

Diffusion coefficient (m2/s) 
𝐷 =  𝐷𝑟𝑒𝑓 (

𝑇

𝑇𝑟𝑒𝑓
) (

𝜇𝑟𝑒𝑓

𝜇
) 

where Tref  is the reference temperature =20°C,  𝜇𝑟𝑒𝑓=1.002 kg/(m.s). 

Table 3.2 Reference values of molecular diffusion coefficients of chemical species involved 
in the corrosion process. 

Species Diffusion Coefficients (m2/s) Reference 

CO2 1.96×10-9 (Perry and Green, 1987) 

H2CO3 2×10-9 (Kvarekval, 1997) 

HCO3
- 1.105×10-9 (Newman, 1991) 

CO3
2- 0.92×10-9 (Kvarekval, 1997) 

H+ 9.312×10-9 (Newman, 1991) 

OH- 5.26×10-9 (Newman, 1991) 

Fe2+ 0.72×10-9 (Kvarekval, 1997) 

 

3.2.2 Water Chemistry Modelling 

CO2 a stable and inert gas, when dissolved in water, gives a reactive chemical species called 
carbonic acid (H2CO3). The carbonic acid then dissociates to give bicarbonate ions (HCO3

−). 
The bicarbonate ions are further dissociated, giving carbonate (CO3

2−) and Hydrogen ions. 
Table 3.3 shows chemical reactions related to this equilibrium (Nesic et al., 2001; Nordsveen 
et al., 2003). 

The reaction rates depend on the temperature, partial pressure of CO2 (pCO2
) and ionic 

strength (I) (Nordsveen et al., 2003). The ionic strength (I) of a solution provides the amount 
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of concentration present in the solution. Table 3.4 provides the equilibrium constants used in 
the corrosion prediction model. The forward reaction rate constants are denoted as 𝐾𝑓 and 

backward reaction rate constants are represented as 𝐾𝑏. I is the ionic strength (mol/L), 𝑇𝑓 is 

the temperature in degrees Fahrenheit, 𝑇𝑐 is the temperature in degrees Celsius, T is the 
temperature in Kelvin, and p is pressure in psi. 

Table 3.3 Chemistry of CO2 dissociation in water 

 Reaction Equilibrium Constant 

Carbon dioxide 
dissolution 

CO2(g)
⇌ CO2(aq)

 
𝐾𝑠𝑜𝑙 =

CO2(aq)

pCO2(g)

 

Carbon dioxide 
hydration 

CO2(aq)
+ H2O(l) ⇌ H2CO3(aq)

 
𝐾ℎ𝑦𝑑 =

[H2CO3]

[CO2(aq)
]
 

Dissolution of 
carbonic acid 

H2CO3(aq)
⇌ HCO3

−
aq

+ H+
(aq) 

𝐾𝑐𝑎 =
[HCO3

−][H+]

[H2CO3]
 

Dissolution of 
bicarbonate ion 

HCO3
−

aq
⇌ CO3

2−
(aq)

+ H+
(aq) 

𝐾𝑏𝑖 =
[CO3

2−][H+]

[HCO3
−]

 

Dissociation of 
water 

H2O(l) ⇌ OH−
(aq) + H+

(aq) 𝐾𝑤 = [OH−][H+] 
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Table 3.4. Equilibrium constants used in the corrosion prediction model.  

Equilibrium constants Reference 

𝐾𝑠𝑜𝑙 =
14.5

1.00258
× 10−(2.27+0.00565 ∙𝑇𝑓−8.06×10−6 ∙  𝑇𝑓

2+0.075∙  𝐼)  
molar

bar
 

 

(Oddo and Tomson, 1982) 

𝐾ℎ𝑦 = 0.00258 (Palmer and Van Eldik, 1983) 

𝐾𝑓,ℎ𝑦 = 10
329.85−110.541× log10(𝑇𝑘)−(

17265.4
𝑇𝑘

)
 s−1 

(Palmer and Van Eldik, 1983) 

𝐾𝑐𝑎 = 387.6 × 10−(6.41−1.594×10−3∙ 𝑇𝑓+8.52×10−6∙ 𝑇𝑓
2−3.07×10−5∙𝑝−0.4772∙I0.5+0.118∙I) molar (Oddo and Tomson, 1982) 

𝐾𝑓,𝑐𝑎 = 105.71+0.0526∙Tc−2.94×10−4∙Tc
2+7.91×10−7∙Tc

3
  s−1 (Bamford & Tiffer, 1972) 

𝐾𝑏𝑖 = 10−(10.61−4.97×10−3∙𝑇𝑓+1.331×10−5∙𝑇𝑓
2−2.624×10−5∙p−1.166∙ I0.5+0.3466∙I) molar (Oddo and Tomson, 1982) 

𝐾𝑓,𝑏𝑖 = 109s−1 (Nordsveen et al., 2003) 

𝐾𝑤𝑎 = 10−(29.3868−0.0737549∙𝑇𝑘+7.47881x10−5∙Tk
2)(molar)2 (Kharaka et al., 1988) 

𝐾𝑏,𝑤𝑎 = 7.85 ∗ 1010  (molar)−1(s)−1 (Delahay, 1952) 
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Table 3.5. Equations for the calculation of reaction rates. 

Reaction Reaction rate equation 

Dissolution of carbon dioxide  
𝑅𝐶𝑂2,𝑠

=
𝜕

𝜕𝑡
(𝑐𝐶𝑂2,𝑠

) =  𝐾𝑏,ℎ𝑦 𝑐𝐻2𝐶𝑂3,𝑠  − 𝐾𝑓,ℎ𝑦𝑐𝐶𝑂2,𝑠 

Formation of Carbonic acid (H2CO3) 𝑅𝐻2𝐶𝑂3,𝑠
=

𝜕

𝜕𝑡
(𝑐𝐻2𝐶𝑂3,𝑠

) =  −(𝐾𝑏,ℎ𝑦 𝑐𝐻2𝐶𝑂3,𝑠
 − 𝐾𝑓,ℎ𝑦𝑐𝐶𝑂2,𝑠

) - (𝐾𝑓,𝑐𝑎  𝑐𝐻2𝐶𝑂3,𝑠
 − 𝐾𝑏,𝑐𝑎𝑐𝐻𝑠

+𝑐𝐻𝐶𝑂3,𝑠
− ) 

Formation of Bicarbonate ions(HCO3
−) 

𝑅𝐻𝐶𝑂3,𝑠
− =

𝜕

𝜕𝑡
(𝑐𝐻𝐶𝑂3,𝑠

− ) = (𝐾𝑓,𝑐𝑎  𝑐𝐻2𝐶𝑂3,𝑠
 − 𝐾𝑏,𝑐𝑎𝑐𝐻𝑠

+𝑐𝐻𝐶𝑂3,𝑠
− ) − (𝐾𝑓,𝑏𝑖  𝑐𝐻𝐶𝑂3,𝑠

−  − 𝐾𝑏,𝑏𝑖𝑐𝐻𝑠
+𝑐𝐶𝑂3,𝑠

2−) 

Formation of Carbonate ions (CO3
2−) 

𝑅𝐶𝑂3,𝑠
2− =

𝜕

𝜕𝑡
(𝑐𝐶𝑂3

2−) = (𝐾𝑓,𝑏𝑖  𝑐𝐻𝐶𝑂3,𝑠
−  − 𝐾𝑏,𝑏𝑖𝑐𝐻𝑠

+𝑐𝐶𝑂3,𝑠
2−) 

Formation of Hydroxide ions (OH-) 
𝑅𝑂𝐻𝑠

− =
𝜕

𝜕𝑡
(𝑐𝑂𝐻𝑠

−) = 𝐾𝑓,𝑤𝑎 − 𝐾𝑏,𝑤𝑎𝑐𝐻𝑠
+𝑐𝑂𝐻𝑠

−  

Formation of H+ ions 
𝑅𝐻+.𝑠 =

𝜕

𝜕𝑡
(𝑐𝐻𝑠

+) = (𝐾𝑓,𝑐𝑎  𝑐𝐻2𝐶𝑂3,𝑠
 − 𝐾𝑏,𝑐𝑎𝑐𝐻𝑠

+𝑐𝐻𝐶𝑂3,𝑠
− ) +  (𝐾𝑓,𝑏𝑖 𝑐𝐻𝐶𝑂3,𝑠

−  − 𝐾𝑏,𝑏𝑖𝑐𝐻𝑠
+𝑐𝐶𝑂3,𝑠

2−) + (𝐾𝑓,𝑤𝑎 − 𝐾𝑏,𝑤𝑎𝑐𝐻𝑠
+𝑐𝑂𝐻𝑠

−) 
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The equations presented in Table 3.5 are solved for the prediction of concentrations of 
species cj in Python, j is used as an index for the species involved in the corrosion process. 

The representation of the concentration of species cj is given below, 

𝑐 = [𝑐𝐶𝑂2,𝑠, 𝑐𝐻2𝐶𝑂3,𝑠
, 𝑐𝐻𝐶𝑂3,𝑠

− , 𝑐𝐶𝑂3
2− , 𝑐𝑂𝐻𝑠

− , 𝑐𝐻𝑠
+] 

𝑐𝑗 = 𝑐(𝑗) 

𝑗 = 1,2, … 𝑁 

where N is the total number of species involved in the corrosion process. 

3.2.3 Electrochemical Reactions 

Table 3.6 shows all the electrochemical reactions that take place in the current mass transfer 
model of CO2 corrosion prediction, which includes the reduction of H+and H2CO3. The model 
is structured so that the additional cathodic reactions can be switched on and off. 

Table 3.6. Electrochemical reactions take place on the metal surface. 

The reaction rate of these electrochemical reactions is expressed in terms of an electrical 
current density given by Eq. (3.5), 

𝑖 =  ±𝑖0 × 10±
𝐸−𝐸𝑟𝑒𝑣

𝑏  
(3.5) 

where 𝑖0 is the exchange current density with the positive sign for anodic reaction and 
negative sign for cathodic reactions, 𝐸 is the electrical potential of the surface, 𝐸𝑟𝑒𝑣 is the 
reversible potential, and b is the Tafel slope constant. The exchange current density (𝑖0) is 
calculated using Eq. (3.6), 

𝑖0 = 𝑖0𝑟𝑒𝑓 (
𝐶𝐻+

𝐶𝐻+
𝑟𝑒𝑓

)

𝑎1

(
𝐶𝐶𝑂2

𝐶𝐶𝑂2𝑟𝑒𝑓

)

𝑎2

(
𝐶𝐻2𝐶𝑂3

𝐶𝐻2𝐶𝑂3 𝑟𝑒𝑓

)

𝑎3

𝑒
−

∆𝐻
𝑅

(
1
𝑇

−
1

𝑇𝑟𝑒𝑓
)
 

(3.6) 

 
where 𝑖0𝑟𝑒𝑓 is the reference exchange current density, 𝐶𝐻+is the concentration of H+ions at 

the surface, 𝐶𝐻+
𝑟𝑒𝑓

 is the reference concentration of H+ ions, 𝐶𝐶𝑂2
 is the concentration of 

CO2 species at the surface, 𝐶𝐶𝑂2 𝑟𝑒𝑓
 is reference concentration of CO2 species, 𝐶𝐻2𝐶𝑂3

 is the 

concentration of H2CO3 at the surface, 𝐶𝐻2𝐶𝑂3 𝑟𝑒𝑓
 is the reference concentration of H2CO3, 

a1−3, are the power constants, ∆𝐻 is the activation energy, and 𝑇𝑟𝑒𝑓 is the reference 

temperature. The values for these constants are available for both cathodic reactions (Nesic 
et al., 1995) and anodic reactions (Nesic and Thevenot, 1996). Table 3.7 shows the values of 
electrochemical reaction rate constants for cathodic reactions used in different corrosion 
prediction models. 

Electrochemical Reaction Reaction Type 

2H+
(aq) + 2e− ⇌ 2H2(g)

 Cathodic 

2H2CO3(aq)
+ 2e− ⇌ 2HCO3

−
aq

+ 2H2(g)
 Cathodic 

Fe2+
(aq) + 2e− ⇌ Fes Anodic 
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Table 3.7 Electrochemical reaction rate constants for electrochemical reactions (Nesic et al., 2001; Nordsveen et al., 2003; Al-Khateeb et al., 
2018). 

𝒊𝟎,𝒓𝒆𝒇 

(𝐀/𝐦𝟐) 

𝐚𝟏 𝒄𝑯+,𝒓𝒆𝒇 

(𝐦𝐨𝐥/𝐋) 

𝐚𝟐 𝒄𝑪𝑶𝟐,𝒓𝒆𝒇 

(𝐦𝐨𝐥/𝐋) 

𝐚𝟑 𝒄𝑯𝟐𝑪𝑶𝟑,𝒓𝒆𝒇 

(𝐦𝐨𝐥/𝐋) 

∆𝑯 
(𝐊𝐉/𝐦𝐨𝐥) 

𝑻𝒓𝒆𝒇 

(℃) 

𝑬𝒓𝒆𝒗 
(𝐕) 

𝒃 
(𝐕) 

0.05 0.5 10−4 0 N/A 0 N/A 30 25 
−

2.303RT

𝐹
𝑝𝐻 

2.303𝑅𝑇

0.5𝐹
 

0.06 -0.5 10−5 0 N/A 1 10−4 50 20 
−

2.303RT

𝐹
𝑝𝐻 

2.303𝑅𝑇

0.5𝐹
 

1 2 if pH < 4 
 

1 if 4≤ 𝑝𝐻 <
5 
 

0 if pH≥5 
 

10−4 1 for pCO2 ≤ 1 
bar 

 
0 for pCO2 >1 

bar 
 

0.0366 0 N/A 37.5 25 -0.488 2.303𝑅𝑇

1.5𝐹
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3.2.4 Velocity and Eddy Distribution in Straight Tubes 

In a turbulent flow, momentum is usually transferred by viscosity and velocity 
fluctuations. The analogy of eddy diffusion of momentum is used to define the turbulent 
diffusion of mass and is given by Eq. (3.7)(Lin et al., 1953), 

𝐷𝑡 = (
𝑦+

𝐶
)

3
𝜇

𝜌
 

(3.7) 
 

where constant C ranges from 8.9 to 14.5 (Lin et al., 1953; Davies, 1972). 𝑦+ is the 
dimensionless distance from the wall calculated using Eq. (3.8), 

𝑦+ =
𝑦𝑢𝜏𝜌

𝜇
 (3.8) 

And,  

𝑢+ =
𝑢

𝑢𝜏
 (3.9) 

𝑢𝜏 = √
𝜏𝑤

𝜌
 

  

(3.10) 

where, 𝑢+ is dimensionless velocity, y is the vertical distance from the wall (m),  𝑢𝜏 is 
the frictional velocity (m/s), and  𝜏𝑤 is the wall shear stress of the fluid (Pa). 

Davies (1972) provided an empirical correlation shown using Eq. (3.11) to calculate the 
viscous sublayer thickness (𝛿) as a function of the Reynolds number and the diameter 
of the pipe, assuming that the edge of the viscous sublayer thickness is at 𝑦+ = 5, 

𝛿 = 25 𝑅𝑒−7/8𝑑 (3.11) 

This correlation is based on the empirical friction factor equation for zero pressure 
gradient flow. It assumed 𝑦+ = 5 at the edge of viscous sublayer thickness, which has 
been found to depend on the turbulence intensity. Some studies had found an average 
viscous sublayer thickness of 𝑦+ = 6.17, questioning the validity of Eq. (3.11)  (Popovich 
and Hummel, 1967). 

A number of researchers (Nesic et al., 2001; Nordsveen et al., 2003) have used Eq. (3.11) 
for the viscous sublayer thickness and Eq. (3.12) for the turbulent diffusivity to predict 
the corrosion rate in pipe flow in the presence of a corrosion product film with a 
thickness 𝛿𝑓. 

𝐷𝑡 = {

   0                                       𝑓𝑜𝑟 𝑦 < 𝛿𝑓   

0.18 (
𝑦 − 𝛿𝑓

𝛿 − 𝛿𝑓
)

3
𝜇

𝜌
          𝑓𝑜𝑟 𝑦 > 𝛿𝑓

 

 
(3.12) 

 

There are several other empirical expressions which can be used (Notter and Sleicher, 
1971; Rosen and Tragardh, 1995; Wang and Nesic, 2003b) and can be applied to a 
specific set of experimental conditions (Lin et al., 1953; Davies, 1972; Nesic et al., 2001; 
Wang and Nesic, 2003; Nordsveen et al., 2003; Kahyarian and Nesic, 2020). Therefore, 
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to make these predictions more robust, CFD will be used to provide accurate velocity 
distributions required for corrosion rate predictions. 

3.2.5 Computational Fluid Dynamics Modelling 

A 2-D axisymmetric pipe with a steady-state, isoviscous, isothermal and incompressible 
flow is used for the simulations. COMSOL Multiphysics® version 5.5 (COMSOL, 2016) is 
used to solve the governing equations given by Eq. (2.33) and Eq. (2.34). 

The Shear Stress Transport (SST) k − ω turbulence model is used for its ability to resolve 
the flow in the viscous sublayer and buffer layers (Owen, 2018). The turbulent viscosity 
(𝜇𝑇) in the SST k − ω model is calculated using Eq. (2.57). 

3.3 Axisymmetric Pipe Model 

3.3.1 1D Model of Mass Transfer in a Pipeline 

This section describes mass transfer modelling in an axisymmetric pipe with an overview 
of the computational domain used, initial and boundary conditions, numerical method 
and mesh convergence study. Figure 3.3 shows the computational domain used for the 
prediction of CO2 corrosion in pipelines. 

 

Figure 3.3. Computational grid and finite volumes for discretising the computational 
domain. The fluxes of species are computed on the finite volume boundaries, and 
concentrations and potential of species are calculated at the centre of finite volumes. 

3.3.2 Initial and Boundary Conditions 

It is considered that turbulence mixes all the species thoroughly, and uniform 
concentrations of species are considered for initial and boundary conditions. For the 
species not involved in the electrochemical reactions at the metal surface zero flux 
(𝑁𝑗 = 0) is specified, and for the species j involved in the electrochemical reactions at 

the metal surface, the flux is specified by, 
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𝑁𝑗 = −
𝑖𝑗

𝑛𝑗𝐹
 

(3.13) 

where 𝑖𝑗 is the partial current of a specific electro-chemical reaction which contributes 

to the overall current density,  𝑛𝑗  is the number of moles of electrons exchanged per 

mole of species 𝑗, and 𝐹 is the Faraday constant (96485 C/mol). 

3.3.3 Numerical Method 

The viscous sub-layer thickness obtained from the CFD model is divided into a number 
of finite volumes (FV), as shown in Figure 3.3. There are a total of nFV finite volumes 
across the viscous sub-layer and a total of nFV+1 flux boundaries. Each FV has an 
upstream and downstream flux boundary. Eq. (3.1) can be rewritten as, 

𝜕𝑐𝑗

𝜕𝑡
= 𝑓(𝑐𝑗) 

(3.14) 

Integrating over ith  FV leads to, 

𝜕𝑐𝑗

𝜕𝑡
|

𝑖
= 𝑓𝑗(𝑐)|𝑖  

−𝑁𝑖,𝑗 + 𝑁𝑖+1,𝑗

∆𝑥𝑖
+ 𝑅𝑗,𝑖 

(3.15) 

where Ni,j is the flux of the jth species over the ith flux boundary, Ni+1,j is the flux of the 

jth species over the i+1st flux boundary and Rj,i is the rate of generation of species cj in 

ith FV. 

The backward Euler method computes the approximations using Eq. (3.16), 

𝑐𝑗
𝑛+1 = 𝑐𝑗

𝑛 + ∆𝑡 𝑓(𝑐𝑗
𝑛+1, 𝑡𝑛+1)  (3.16) 

where 𝑓(𝑐𝑗
𝑛+1)  is the time derivative of the concentrations 𝑐𝑗 at n+1st time step.  

Here computing of 𝑐𝑗
𝑛+1 from 𝑐𝑗

𝑛 requires the solution of Eq. (3.17), 

𝑐𝑗
𝑛+1 − ∆𝑡 𝑓(𝑐𝑗

𝑛+1, 𝑡𝑛+1)  = 𝑐𝑗
𝑛 (3.17) 

Eq. (3.17) is turned into a root-finding problem, and Newton’s method is implemented 

to solve it. Let  𝑣𝑖  be the ith Newton iterate approximation of 𝑐𝑛+1 and 𝑣𝑜𝑙𝑑 = 𝑐𝑛. Figure 
3.4 shows the flow chart for the numerical method used for the corrosion rate 
predictions. 

At each time step, an iterative matrix equation that has to be solved for ∆𝑣 = 𝑣𝑖+1 − 𝑣𝑖  
subject to a specified error tolerance on the magnitude of ∆v, starting from 𝑣0 = 𝑣𝑜𝑙𝑑 =
𝑐𝑛. 

Numerical calculations are solved in the Python programming language. All the terms 
except flux of species are calculated at the centre of the FV. The flux of species is 
calculated at the finite volume boundaries (Nordsveen et al., 2003). 

These equations need to be solved for the increments of ∆x subject to charge balance 
equations for Finite Volumes 1 to nFV-1 (i.e. not adjacent to the corroding surface). 

∆𝑐𝐻+
+ 2∆𝑐𝐹𝑒2+

− ∆𝑐𝐻𝐶𝑂3−
− 2∆𝑐𝐶𝑂32−

− ∆𝑐𝑂𝐻−
+ ∆𝑐𝑁𝑎+

− ∆𝑐𝐶𝑙−
= 0 (3.18) 

This is done by replacing the equation for the ∆𝑐𝐻+
 freedom in FVs 1 to nFV-1, with Eq. 

(3.18). 
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The conditions that the concentrations in the final Finite Volume, nFV-1, equal those 
calculated from the bulk steady state analysis are imposed by setting ∆cj = 0 for all 

concentration freedoms in the final Finite Volume, nFV-1.  

 

Figure 3.4. Flow chart for the numerical method used for the corrosion rate 
predictions. 

3.3.4 Mesh Convergence Study for Mass Transfer Model 

A mesh convergence study was carried out to determine the sensitivity to the number 
of finite volumes used for the prediction of  CO2 corrosion at pH 4, velocity 1 m/s, pCO2 
1 bar and Temperature 20 ℃. The corrosion rate obtained at 25 nFV is 0.7563 mm/yr, 
which decreases to 0.7522 mm/yr for 50 nFV and stays constant for 55 and 60 nFV, as 
shown in Figure 3.5. Hence, the number of finite volumes chosen for all the corrosion 
predictions is 50 nFV.  
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Figure 3.5. Mesh convergence study for mass transfer model of corrosion prediction at 
pH = 4, velocity = 1 m/s, temperature = 20 ℃, pCO2 = 1 bar and diameter of pipe = 
0.015 m. 

3.4 CFD Model of Axisymmetric Pipe 

3.4.1 Geometry 

Reynolds Averaged Navier Stokes (RANS) formulations can compute the flow field 
required for the computational domain shown in Figure 3.3. The axisymmetric pipe 
model is used to reduce computational time without compromising accuracy. The pipe 
diameter (D) is equal to 15 mm (Radius R =7.5 mm) with a length of 100 diameters 
(200*R) as the pipe length is chosen to obtain a fully developed flow at the outlet. The 
flow is simulated for different Reynolds numbers 18316 to 171795 by changing the inlet 
velocity. The axisymmetric pipe model is shown in Figure 3.6. 

 

Figure 3.6. The axisymmetric computational domain used for the simulation (diameter 
= 15 mm). 
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3.4.2 Initial and Boundary Conditions  

The velocity inlet and pressure outlet boundary conditions are used for the simulations. 
A flow velocity from 0.5 to 5 m/s was specified at the inlet with a fluid density (ρ)  
998 kg/m3 and dynamic viscosity (μ) of  0.001 Pa ∙ s.  The values of k and ω are 
specified at the inlet as 0.00375 m2/s2 and 11.18  1/s respectively. Table 3.8 describes 
the boundary conditions used for the simulation. 

Table 3.8 Boundary conditions used for the CFD simulations of axisymmetric pipe. 

Boundary Description p u k ω 

AB Inlet n∙ ∇p = 0 u = 𝐮in k =  kin ω =  ωin 

CD Outlet p = 0 n∙ ∇u = 0 n∙ ∇k = 0 n∙ ∇ ω = 0 

AD Symmetry axis n∙ ∇p = 0 n∙ ∇u = 0 n∙ ∇k = 0 n∙ ∇ω = 0 

BC Pipe wall n∙ ∇p = 0 u = 0 k = 0 ω = 0 

3.4.3 Numerical Method 

COMSOL Multiphysics ® (COMSOL, 2016) is based upon the finite element method 
(FEM) in which the field variables, in this case, 𝒖, 𝑝, 𝑘 and 𝜔 are expressed using 
piecewise continuous basis functions on the discretised number of elements (de Boer et 
al., 2018). A form used for the approximation of a field variable φ is given using Eq. 
(3.19), 

𝜑(𝑥) =  ∑ 𝜑𝑖𝑁𝑖

𝑛

𝑖=1

 
(3.19) 

 
where 𝜑𝑖 are the nodal values of the variable and Ni denotes the basis function (de Boer 
et al., 2018).  A weighted integral (Galerkin) approach (Hysing, 2012) is then used to 
formulate nodal equations. The weak form of this formulation to obtain the discrete 
nodal equation for a field variable φ is shown using Eq. (3.20), 

∫ ℒ(𝜑)
𝑥𝑖+1

𝑥𝑖

𝑁𝑖(𝑥)𝑑𝑥 = ∫ 𝑠
𝑥𝑖+1

𝑥𝑖

𝑁𝑖(𝑥)𝑑𝑥 
(3.20) 

 

where ℒ(φ) = s is the strong form of the nodal equations. More details related to this 
can be found elsewhere (Hysing, 2012; COMSOL, 2016; de Boer et al., 2018). 

3.4.4 Mesh Sensitivity  

A structured quadrilateral mesh is used for the flow domain with rectangular boundary 
elements adjacent to the wall. The mesh adjacent to the wall should be fine enough to 
predict the fluid flow in the viscous sublayer accurately. The dimensionless distance (y+)  
to the centre of the element adjacent to the wall was chosen to be 0.1. The mesh 
convergence study was conducted to assess the impact of the number of mesh elements 
on the flow velocity at the outlet. The number of elements varied along the pipe length 
for the mesh convergence study, as shown in Figure 3.7. The average velocity at the 
outlet did not change significantly for mesh elements more than 440000. Hence, to save 
computational time and power without compromising accuracy, the mesh with 440000 
elements was chosen for the simulations.  
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Figure 3.7 Mesh convergence study for numerical simulations of axisymmetric pipe of 
diameter 0.015 m. 

3.5 Results and Discussion 

3.5.1 Turbulence Modelling – Justification of use of SST 𝐤 − 𝛚  model 

Figure 3.10 compares turbulent diffusivity profiles obtained using different turbulence 
models. The SST 𝑘 − 𝜔 model is the most accurate turbulence model when compared 
against the turbulent diffusivity profile obtained using empirical correlation followed by 
the low Re 𝑘 − 𝜔 model, Spalart Allmaras model and v2-f turbulence model. A similar 
method was used by Owen et al. (2019) to justify the use of the SST 𝑘 − 𝜔 model by 
comparing the results with the Berger and Hau (1977) correlation for the calculation of 
the mass transfer coefficient in a straight pipeline.  
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Figure 3.8 Turbulent diffusivity profile comparison for different turbulence models at 
Reynolds number = 18316. 

3.5.2 Prediction of Turbulent Boundary-layer Profiles 

The values of VSL thickness from CFD and empirical correlation for VSL thickness given 
by Eq. (3.11) are compared for Reynolds numbers ranging from 18316 to 1717195. As 
shown in Table 3.9 and Figure 3.9, CFD predicts the values of viscous sublayer thickness 
reasonably well when compared with the empirical correlation, which is only applicable 
to specific cases. The percentage difference between the two predictions ranges from 
11.51 to 17.50. Note that the empirical correlation in Eq. (3.11) is obtained by curve 
fitting using the friction factor obtained by Blasius for Re in the range between 3,000 
and 100,000.  Davies (1972) assumed that y+ = 5 at the edge of VSL, which contradicts 
the findings by Popovich and Hummel (1967), as they had found that the average 
thickness of VSL was 𝑦+ = 6.2 and proposed that it was most likely to be around 𝑦+ =
4.3. These uncertainties in using the Davies (1972) empirical correlation can explain the 
discrepancy between the two sets of predictions shown in Table 3.9 and Figure 3.9. 
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Table 3.9 Viscous sublayer thickness predictions comparison between CFD and 
empirical correlation. The percentage differences between CFD and empirical VSL 
values are between 11.51 to 17.50. 

Reynolds 
Number Re 

Empirical VSL δ 
in mm 

CFD VSL δ in 
mm 

Percentage 
Difference % 

18316 0.0698 0.0789 11.51 

35686 0.0390 0.0456 14.52 

52899 0.0276 0.0329 15.97 

70019 0.0216 0.0255 15.44 

87053 0.0179 0.0216 17.50 

104138 0.0153 0.0179 14.80 

121072 0.0134 0.0157 14.54 

138079 0.0119 0.0139 14.39 

155123 0.0108 0.0129 16.77 

171795 0.0098 0.0118 16.53 

 

 

Figure 3.9 Viscous sublayer thickness comparison between empirical and CFD values 
for Reynolds number 18316 to 171795. 

Figure 3.10 compares the turbulent diffusivity profile obtained from CFD and the 
empirical Eq. (3.12) within the viscous sublayer thickness for Re = 18316. The difference 
between the shapes of the two profiles can be linked with the approximate constants 
obtained by fitting the experimental data for empirical correlation.  
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The values of viscous sublayer thickness and turbulent diffusivity profiles are then 
coupled with the mass transfer model to predict corrosion rates described in the 
following subsection.  

 
Figure 3.10 Turbulent diffusivity comparison between CFD and empirical correlation 
for Re = 18316. 

3.5.3 Verification of Corrosion Rate Predictions 

Figure 3.11 shows the concentration profiles for dissolved species for pH = 4, velocity = 
1 m/s, temperature = 20℃, pCO2 = 1 bar and diameter of pipe = 0.015 m. At the metal 
surface, direct reduction and dissociation of carbonic acid results in depletion of  H2CO3 
species there, with a consequent increase in the concentration of HCO3

-. 
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Figure 3.11 Concentration deviation of dissolved species from the values in bulk at for 
pH = 4, velocity = 1 m/s, temperature = 20 ℃, pCO2 = 1 bar and diameter of pipe = 
0.015 m. 

The corrosion rates shown in Figure 3.12, Figure 3.13, and Figure 3.14 are a function of 
significant parameters such as pH, Reynolds number, pCO2 and temperature. The 
experimental data of straight pipe is obtained using potentiodynamic sweeps for a 
diameter of 15 mm, temperature of 20℃ and pCO2 of 1 bar (Nesic et al., 1995).  

Figure 3.12, Figure 3.13, and Figure 3.14 show the corrosion rates for pH 4 to 6 at 
different Reynolds for conditions in the absence of protective corrosion product 
formation. As the Reynolds number increased, the corrosion rate increased for three pH 
values. The significant effect of turbulent flow in the absence of protective film is that it 
enhances the transport of species to and from the steel surface. At pH 4, there is a 
noticeable increase in the corrosion rate as the Reynolds number increases due to the 
presence of a much higher concentration of H+ ions and enhanced transport of 
electrochemically active species towards and away from the metal surface. Conversely, 
at pH 5 and pH 6, the observed corrosion rate is much less than that at pH 4. 

The CFD-driven mass transfer model predictions are compared with those based on the 
set of empirical correlations, the experimental dataset of Nesic et al. (1995), and the 
numerical model of Srinivasan (2015) for pH between 4 and 6, velocities between 1 m/s 
and 10 m/s, with a temperature of 20℃, pCO2=1 bar and diameter of 0.015 m. The error 
bars on the experimental data are largest for pH 4, and it can be seen that each of the 
models are in reasonably good agreement with the experimental error bars for this case. 
Note that for pH 4 the corrosion rate predictions are particularly sensitive to the choice 
of electrochemical reaction rate constants, the precise values of which have been the 
subject of significant debate, see e.g. (Nordsveen et al., 2003; Al-Khateeb et al., 2018; 
Hu et al., 2018). Further sensitivity studies into the effects of the electrochemical 
reaction rate constants would be beneficial for pH values of 4 and below. 
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However, for the cases of pH 5 and 6, with much smaller error bars, it can be seen clearly 
that the new CFD-driven model is far superior to either the empirical or the Srinivasan 
(2015) model, and the limitations of the empirical approach are abundantly clear. For 
pH 5 and 6, typical discrepancies between the CFD-driven predictions and experimental 
data are only around 5%. This accuracy provides strong evidence that improving the 
modelling of flow in the viscous sublayer is very beneficial for mass-transfer based 
corrosion models and motivation to validate the approach for more complex, practically 
relevant corrosion scenarios. 

 

Figure 3.12 CO2 corrosion rate predictions for pH = 4, temperature = 20℃, pCO2= 1 bar 
and diameter = 0.015 m and its comparison with the model based on empirical 
correlations of VSL and Dt, experimental data of Nesic et al. (1995), and numerical 
model of Srinivasan (2015). 
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Figure 3.13 CO2 corrosion rate predictions for pH = 5, temperature = 20℃, pCO2 = 1 bar 
and diameter = 0.015 m and its comparison with the model based on empirical 
correlations of VSL and Dt, experimental data of Nesic et al. (1995), and numerical 
model of Srinivasan (2015). 

 

Figure 3.14 CO2 corrosion rate predictions for pH = 6, temperature = 20℃, pCO2 = 1 bar 
and diameter = 0.015 m and its comparison with the model based on empirical 
correlations of VSL and Dt, experimental data of Nesic et al. (1995), and numerical 
model of Srinivasan (2015). 
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3.6 Summary and Conclusions  

A novel, CFD-driven modelling methodology for predicting CO2 corrosion rates in 
pipelines is proposed. Computational fluid dynamics (CFD) based on the SST k −  ω 
model, with its proven ability to resolve near-wall flow regions accurately, is used to 
provide accurate predictions of the viscous sublayer (VSL) thickness and turbulent 
diffusivities, which are then used within a mass transfer model of aqueous carbon 
dioxide (CO2) corrosion. This new approach leads to significantly improved predictions 
of corrosion rate over a range of conditions and provides strong evidence that improving 
the modelling of flow in the VSL is very beneficial for mass-transfer based corrosion 
models. It also shows clearly that the current approach of using empirical models to 
predict VSL and associated turbulent diffusivities is both inaccurate and restrictive. 

The key advantage of the new approach is its flexibility. It provides a firm scientific 
foundation for predicting corrosion rates by determining VSL and flow conditions in 
much more complex and practically relevant situations. The approach now needs 
further validation in such scenarios. 

The present model is developed for application to cases with high electrolyte 
conductivity and low temperatures, for which electro-migration and FeCO3 corrosion 
product formation can both be neglected. Since the goal of the study is to assess the 
benefits of determining the VSL conditions accurately, it is beneficial to avoid corrosion 
product formation conditions as this obviates the need for introducing additional 
empiricism into the corrosion model. However, if required, the model presented here 
can be extended to account for electro-migration by the addition of the term zjujFcj∇φ 

in Eq. (3.3), whereas the inclusion of FeCO3 The formation of corrosion products on the 
metal surface will necessitate a time-dependent solution scheme similar to those 
developed in the references (Nesic et al., 2001; Nordsveen et al., 2003). Finally, note 
that the electrochemical reaction rate constants can have a strong influence on 
corrosion rate predictions, particularly for lower pH values (Nordsveen et al., 2003; Al-
Khateeb et al., 2018; Hu et al., 2018). It would, therefore, also be useful to carry out a 
systematic investigation into their influence on corrosion rate predictions, for example, 
using machine-learning methods. This approach is becoming increasingly popular in 
CFD-based simulations (Brunton et al., 2020). 
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Chapter 4:  Application of Machine Learning Modelling for the 
Prediction of CO2 Corrosion in Straight Pipelines  

A CFD-driven mass transfer model developed for the prediction of CO2 corrosion was 
elaborated on in the previous chapter. It has shown the limitations of using empirical 
correlations to predict fluid flow features and how CFD has the ability to construct a 
reliable tool in the areas of corrosion prediction.  

4.1 Introduction  

Measuring defect depth (depth of corrosion) and corrosion rate influences the decisions 
regarding pipeline corrosion control (Xu et al., 2023). These decisions include selecting 
economically cheap and sustainable pipe material, predicting pipe service, optimum wall 
thickness selection, and inhibitor performance analysis (Aghaaminiha et al., 2021). 
However, inaccurate prediction of corrosion rate, whether high or low, often results in 
economic losses for the industry. To avoid this, it is essential to have an accurate 
corrosion prediction model that will aid in corrosion control and reduce economic 
losses.  

A CFD-driven mass transfer modelling technique developed in this work has been proven 
to be a robust tool for the prediction of viscous sublayer thickness, turbulent diffusivity 
profile, and CO2 corrosion prediction in practical operating conditions. CO2 corrosion is 
affected by several factors, which include temperature, flow rate, partial pressure of 
CO2, pH and the presence of species such as H2S. However, there are few studies into 
the factors affecting corrosion rates. Machine learning techniques offering efficient, 
non-linear data processing have shown great promise for corrosion prediction model 
development (Qi et al., 2019). The development of high-speed computing in the last 
couple of decades, in particular, has led to the application of machine learning methods 
such as Artificial Neural Networks (ANN) (Bassam et al., 2009; Weckman et al., 2010; De 
Masi et al., 2015; Chou et al., 2017; Pai et al., 2020), Random Forest (RF) (Ossai, 2019; 
Aghaaminiha et al., 2021; Ben Seghier et al., 2022), Support Vector Machines (SVM) (Lee 
et al., 2013; Ji et al., 2015; Hatami et al., 2016; Chou et al., 2017), Gaussian Process (GP) 
(Zhang et al., 2022) and Deep Learning (DL) (Ossai, 2019).  

There has been significant interest in applying machine learning modelling to predict 
corrosion in oil and gas pipelines in the last two decades. However, some machine 
learning models still experience issues such as over-fitting and local minimum in the 
training process and difficulty adjusting hyper-parameters, resulting in lower accuracy 
and high calculation costs (Xu et al., 2023). In addition, very little attention is given to 
the sample points of the variables used in machine-learning models to predict corrosion 
rates. In the current study, the most popular techniques, such as ANN, GPR, SVR and RF 
are applied to predict CO2 corrosion rate in straight pipelines. 

Considering the capabilities of machine learning models, the following objectives were 
established: 

 Find out the range for operating parameters in oil and gas industries and create 
the design of experiments using optimal Latin Hypercube sampling (OLHS). 

 Obtain predictions at sampling points using the CFD-driven mass transfer model 
constructed in the previous chapter. 

 Check the significance of each input variable. 
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 Construct machine learning models using ANN, GPR, SVR, and RF methods. 
Compare these machine learning models to choose an optimal machine 
learning model. 

The section below covers the concise theoretical background of OLHS, PCA and machine 
learning methods. This is followed by training machine learning models and tuning their 
hyperparameters. The optimum machine learning model is then selected based on error 
metrics. The results section compares the metrics of machine learning models to provide 
the best-performing machine learning model.  

4.2 Machine Learning Models 

Machine learning techniques create predictive models for large datasets. It becomes 
useful when the output depends on several input variables to establish a relationship 
between them (Aghaaminiha et al., 2021). Machine learning is vital in data mining, 
difficult-to-program applications, and customised software applications (Michel, 1997). 
Machine learning is usually classified into supervised, unsupervised, and reinforcement 
learning, as discussed in Chapter 2. The current section outlines the machine learning 
models used to predict corrosion rates. 

Artificial neural network (ANN) is one of the most popular machine learning techniques 
for creating data-driven models. In the architecture of ANN, the input layer consists of 
input variables (xi) is connected to a hidden layer with weights(wij). A weighted sum 

(Fj = ∑ wijxii ) of the inputs from the input layer is calculated at each node in the first 

hidden layer. An activation function is then used to transform Fj and is an output from 

each node. The output from each node in the first hidden layer becomes the input for 
the second hidden layer. This process is repeated until the output layer is reached. 
Weights that connect the nodes are adjusted to minimise the loss function between the 
predicted and target values. 

SVR is a variation of SVM used for regression analysis. It is based on finding a hyperplane 
in higher dimensional space where the non-linear relationship between input and 
output variables may become linearly separable (Aghaaminiha et al., 2021). Different 
kernel functions, such as linear, polynomial, and radial basis functions (RBF), are used to 
map the input sample points to a higher dimensional space. Then, the hyperplane is 
selected in such a way that it maximises the margin between the hyperplane and the 
closest data points (Cherkassky and Ma, 2002). 

GPR is a non-parametric regression analysis technique. It maps out the relationship 
between input and output variables, assuming that the target variable has a multivariate 
Gaussian distribution (Rasmussen and Williams, 2006). It consists of the mean function 
and covariance function; the former is an unknown function that needs to be modelled, 
whereas the latter captures the correlation between input and output variables. 
Bayesian inference is then used to obtain a probability distribution over the function's 
predicted values, allowing point estimates of the target variable (António and Rodrigues, 
2021). 

Random forest, an ensemble machine-learning technique, is used for both regression 
and classification problems (Quinlan, 1987). This technique consists of multitudes of 
decision trees in which smaller subsets (leaves) are created around input variables by 
splitting (branching) a dataset. As a result, these subsets will have minimal variances in 
the outcome values. This splitting is carried out until the terminal condition is met, which 
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could be either the number of splits or a cut-off value for the standard deviation for each 
subset. Following this, once the terminal condition is met, the average value in the leaf 
is the predicted outcome for that set of inputs. Random forest has two hyper-
parameters: the number of trees and the maximum number of features that can be split. 

4.3 Materials and Methods  

Figure 4.1 shows the workflow for predicting corrosion rates using machine learning 
models. The modelling starts with defining a range of values for all the parameters, 
followed by creating sampling points using OLHS. The generated sampling points were 
then used to obtain corrosion rates from the CFD-driven mass transfer model described 
in the previous chapter. A dimensionality reduction technique, principal component 
analysis (PCA), is used to check if the large dataset can be transformed into a smaller 
one without losing significant information. Machine learning models such as ANN, SVR, 
RF and GPR are compared against each other to find out the optimal machine learning 
model for the prediction of CO2 corrosion rates.     

 

Figure 4.1 Flow chart for the CFD-enabled machine learning model.  
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4.3.1 Optimal Latin Hypercube Sampling 

Efficient sampling of a design space obtains the maximum information from a limited 
sample (Yondo et al., 2018). Latin Hypercube sampling (LHS) (McKay et al., 1979)  (Yondo 
et al., 2018) divides N design variables into equal P levels. For LHS DoE, there is only one 
sample point for each level, and this technique is classified into random Latin Hypercube 
sampling and optimal Latin Hypercube (OLH) sampling. This classification depends on 
how the sampling points are distributed in the design space (Bates et al., 2004). OLH 
samples used in this study are generated with the help of the permutation genetic 
algorithm (permGA) and based on the methodology developed by (Bates et al., 2004). 
This methodology solves a combinatorial optimisation problem of minimisation of the 
potential energy of repulsive forces for a set of sample points with a unit mass (Bates et 
al., 2004). The nature of the repulsive forces is such that the sample points are pushed 
away from each other to get an even distribution of sample points (Bates et al., 2004). 
The magnitude of these repulsive forces depends on the square of the distance between 
the points and is given by Eq. (4.1), 

∑ ∑
1

𝑟𝑝𝑞
2

𝑃

𝑞=𝑝+1

𝑃

𝑝=1

 → min 
(4.1) 

 

where 𝑟 is the distance between sample points 𝑝 and 𝑞. 

Table 4.1 summarises the initial variables used for the OLH sampling. These initial 
variables are chosen so that a protective layer of iron carbonate does not form on the 
surface. The diameter of the horizontal pipe (d) is 0.015 m. The total number of sample 
points generated from this technique is 100. 

Table 4.1 Summary of the initial variables used for the OLH sampling. 

Parameter Base value Minimum 
value 

Maximum 
value 

pH 4 4 6 

pCO2 bar 1 0.1 10 

Temperature (T) 
°C 

20 20 90 

Velocity (u) m/s 1 0.5 10 

 

The distribution of the initial variables is shown using the boxplots in Figure 4.2. The 
boxplots are helpful in showing the distributions of the variables around the measures 
of central tendency, i.e., mean, median and mode (Abbas, 2016) and measures of 
variation, i.e., range, standard deviation, and variance. The distribution of each variable 
is even around the measures of central tendency, which supports the fact that the data 
generated has symmetrical distributions.  
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Figure 4.2 Box plots to show the distribution of initial variables. The horizontal axis 
represents input variables, and the vertical axis represents the magnitude of data. 

A quartile value breaks the distribution into four equal parts. The first quartile, the 25th 
percentile, divides the dataset between the first one-fourth and the last three-fourths 
of the total dataset. The third quartile, or 75th percentile, divides the dataset into the 
first three-fourths and the last one-fourth of the total dataset. The interquartile range is 
the range between the first quartile and the third quartile. This is useful for 
understanding the summary statistics of the corrosion data. Table 4.2 shows the 
descriptive statistics for the input and output variables of the corrosion modelling. 
Skewness measures the asymmetry of a distribution. It is evident from the values of 
skewness that the distribution of all the input variables is symmetrical. In contrast, the 
output corrosion rate has a positive distribution with the value of skewness equal to 
0.32. 

Table 4.2 Descriptive statistics of the corrosion sample data to build a surrogate model 
to find the optimal set of operating parameters. 

Parameter Range Mean First 
Quartile 

Median Third 
Quartile 

Skewness 

pH 4-6 5 
 

4.50 5.00 5.49 0.00 

pCO2 (bar) 0.10-10 5.05 2.57 5.05 7.52 0.00 

Temperature 
(T) (°C) 

20-90 55 37.50 55 72.49 0.00 

Velocity (u) 
(m/s) 

1-10 5.50 3.25 5.50 7.74 0.00 

Corrosion 
rate (mm/yr) 

0.33-14.16 5.61 2.83 5.26 7.65 0.32 
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4.3.2 Data Normalisation 

All the input variables and the output variable (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑦) 𝑗 (𝑗 = 1,2,3, … , 𝑛) are 

normalised to the range [0,1] for better representation using Eq.(4.2) and Eq.(4.3) 

For i = 1,2,3,4 

𝑥𝑖 − 𝑥𝑖
𝑚𝑖𝑛

𝑥𝑖
𝑚𝑎𝑥 − 𝑥𝑖

𝑚𝑖𝑛
 

(4.2) 

𝑦 − 𝑦𝑚𝑖𝑛

𝑦𝑖
𝑚𝑎𝑥 − 𝑦𝑖

𝑚𝑖𝑛
 

(4.3) 

Normalised data is then fed into the PCA algorithm to assess the influence of all the 
design variables. The predictions obtained from the machine learning models can be 
easily transformed from normalised to physical space using the above equation. 

4.3.3 Principal Component Analysis 

PCA of the dataset obtained from OLH sampling is used to account for variations in the 
input variables used in this study: pH, pCO2, T and u. This technique begins with 
standardisation of the continuous initial variables to ensure that each variable 
contributes equally to the analysis, an important step to decrease the dominance of 
initial variables over the remaining ones with smaller differences in value. This step is 
later followed by computing the covariance matrix and eigenvalues and eigenvectors to 
determine the principal components of the data (Jollife and Cadima, 2016). These 
principal components are linear combinations of initial variables, in this case, pH, pCO2, 
T and u. Table 4.3 shows the values such as Eigenvalues, the proportion of those 
Eigenvalues, cumulative variance and cumulative variance percentage associated with 
each principal component. 

Table 4.3 Principal component analysis of 4 design variables corrosion prediction 
model. 

Principal component (PC) PC 1 PC 2 PC 3 PC 4 

Explained variance 0.26 0.25 0.24 0.25 

Cumulative 
variance 

0.26 0.51 0.75 1.00 

Cumulative percentage 
(%) 

26 51 75 100 
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Figure 4.3 Pareto chart showing variance among each of the principal components. All 
principal components exhibit equal influence, thereby contributing equally to the 
overall variance in the dataset. The solid line shows the cumulative variance of the 
principal components. 

 

 

Figure 4.4 Scree plot showing eigenvalues of each principal component. 

Figure 4.4 shows the Pareto chart of the data variance for each principal component. It 
is evident from Table 4.3 and Figure 4.4 that all principal components are significant for 
representing the data and, hence, cannot be neglected. Abbas et al. (2018) in their study 
assumed that it was possible to represent the data using the first two principal 
components as those two principal components accounted for 81 % of the data for pH, 
pCO2, T and u. The remaining 19% was ignored in their study to proceed with the 
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calculation of the relative influence of initial variables on those two components (Abbas 
et al., 2018). On the other hand, the current study shows that the initial variables are 
uncorrelated or weakly correlated and, hence, cannot be ignored. Following PCA, it was 
found that all design variables are equally influential. 

4.3.4 Modelling Process 

CO2 corrosion rate predictions obtained from CFD-driven mass transfer models are used 
as a dataset for machine learning modelling. The input variables for the machine 
learning models are pH, pCO2, T and u. The output variable is CO2 the corrosion rate in 
mm/yr. All the programs are written in Python programming language. 

Determination of Model Parameters  

For the ANN model, the set of hyperparameters consists of the number of hidden layers, 
nodes per hidden layer, batch size and Epochs. The ANN model was first studied for the 
variation in the number of hidden layers and nodes per hidden layer by keeping the 
epochs and batch size constant. Figure 4.5 shows the variation in RMSE for the number 
of hidden layers (nHL) and the number of nodes per hidden layer. It was found that the 
15 neurons per hidden layer for 4 hidden layers showed the lowest RMSE. Hence, this 
configuration was considered for the final ANN model to determine the impact of batch 
size and Epochs. Figure 4.6 shows that a batch size of 5 and Epochs equal to 10000 
provided the lowest RMSE value.  

 

Figure 4.5 Selection of the number of hidden layers and nodes per hidden layer for the 
final ANN model. 
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Figure 4.6 Variation of RMSE value with the change in batch size and Epochs. 

A grid search is a technique in which a grid of parameters is created to try all the possible 
combinations. This functionality is available in Scikit-learn named GridSearchCV, where 
CV stands for cross-validation. It takes a dictionary representing the parameters to be 
tuned and a model to train. Finally, a scoring criterion for evaluating the performance of 
the cross-validated model on the test dataset is set as a mean squared error (MSE). SVR, 
RF and GPR are tuned using this technique; the details are below. 

 There are four hyperparameters when it comes to SVR viz kernel function, epsilon(ε), 
cost (C) and gamma (γ). It is essential to study the influence of ε value as it determines 
the margin of tolerance where no penalty is given to errors. Cost (c) is a regularization 
parameter that decides the penalty for the misclassification of data points. Gamma (γ) 
the parameter determines the shape of the decision boundary, which controls the 
influence of the kernel function. A range of values were studied for these 
hyperparameters. The kernel functions studied for the performance are radial basis 
function (RBF), linear and polynomial. The value of cost C varied from 1 to 10000 for the 
γ values of 0.01, 0.1, and 1 and ε values of 0.1, 0.2, 0.3, and 0.5. The dataset was split 
into five groups during the tuning of the parameters. Table 4.4 shows the best 
parameters obtained using a cross-validated grid search.  

Table 4.4 Tuned hyperparameters for the SVR model. 

Parameter Value 

Kernel function RBF 

Epsilon (ε) 0.1 

Cost (C) 10 

Gamma (γ) 0.1 
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Different parameters need to be tuned for RF based on a negative RMSE value. The 
negative RMSE value is related to how the cross-validation function maximises the 
function; the higher, the better. These parameters include the number of trees, 
maximum depth of trees, and bootstrap. A Boolean input is provided for bootstrap with 
the 'default = True', resulting in training each tree on a subset of the dataset. If this input 
is changed to False, the whole dataset will be used to build each tree. For the current 
dataset, the number of trees varied from 10 to 100 with a maximum depth of trees from 
none to 10 for bootstrap = True. Table 4.5 and Figure 4.7 show the best parameters 
obtained using a cross-validated grid search. 

Table 4.5 Tuned hyperparameters for the RF model. 

Parameter Value 

Number of trees 10 

Maximum depth of trees None 

 

Figure 4.7 Variation of negative root mean square with the number of trees and the 
maximum depth of trees. 

Table 4.6 shows the parameters used for the GPR model. First, the prior of the GP needs 
to be specified for the GPR, which includes the prior mean and prior's covariance. Then, 
the kernel object is passed to specify the prior's covariance and its hyper-parameters 
are optimised while fitting the GPR model. A Matérn Kernel is used for the current model 
with a length scale value of 1. This kernel has an additional parameter, v, used to smooth 
the resulting function. The higher the value of v, the smoother the approximated 
function is. 
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Table 4.6 Tuned hyperparameters for the GPR model. 

Parameter Value 

Alpha 0.001 

Kernel Matérn 

Length scale 1.0 

v 1.5 

4.4 Results and Discussion 

The machine learning regression algorithm aims to learn an optimal model for predicting 
an outcome based on input vectors (Zahedi et al., 2018). The tuned hyper-parameters 
were obtained for all the machine learning models and then applied to the corrosion 
rates data obtained from the CFD-driven mass transfer model. It is important to note 
that the hyper-parameters varied in the current study were assumed to be the most 
significant parameters of machine learning modelling. In contrast, all the other 
parameters were used as the default for the modelling. A similar methodology for 
choosing hyperparameters has been used recently by Aghaaminiha et al. (2021). 

A dataset was split into training and test datasets, where 80% of the total dataset was 
used for training the model and 20% for the test data.  

Table 4.7 Metrics of machine learning models. 

Model RMSE 𝐑𝟐 

ANN 0.04646 0.9622 

SVR 0.0741 0.9269 

RF 0.0937 0.83 

GPR 0.04898 0.9673 

It can be seen from Table 4.7 that the ANN model has the lowest RMSE value of 0.04646 
for the corrosion prediction model for design variables pH, pCO2, T and u, followed by 
GPR, SVR and RF. ANN model performs well as it can map complex relationships 
between inputs and outputs (Wen et al., 2019). However, ANN models are considered 
highly sensitive regarding input data quality, which may result in lower performance due 
to noisy or missing data (Mrzygłód et al., 2020). In addition to this, ANN models result in 
overfitting for complex problems when training data is limited. On the other hand, the 
GPR model considers the uncertainty in the data and handles noisy data more effectively 
than ANNs (Zhang et al., 2022). The current study shows that the GPR model works well 
for limited training datasets. The lower performance of the SVR model for the current 
dataset can be attributed to the selection of hyper-parameters such as kernel function, 
epsilon parameter, cost and regularisation parameter shown in Table 4.4. RF model 
showed the worst performance compared to the other three machine learning models 
due to the limited training dataset.  
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Figures 4.8 to 4.11 compare corrosion rates predicted using the CFD-driven mass 
transfer and machine learning models of ANN, GPR, RF, and SVR models, respectively. 
The solid line on these figures shows x=y and the metrics corresponding to these figures 
is R2 shown in Table 4.7. Based on this metric, the GPR model performed best, followed 
by ANN, SVR and RF. Again, this underlines that the GPR model works well for a limited 
training dataset. 

The findings obtained in the current study are subjected to several limitations. The 
models’ dependence on a limited training dataset may constrain the effective 
generalization of the findings. In addition, the selection of hyperparameters, as 
observed in the lower performance of the SVR model, emphasizes the difficulty of 
optimizing the model parameters to obtain the best performance of machine learning 
models.  

 

Figure 4.8 Corrosion rate predictions using ANN model show actual corrosion rate (CFD 
driven mass transfer model) vs predicted corrosion rate (machine learning model). The 
solid line represents x = y. 
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Figure 4.9 Corrosion rate predictions using the GPR model show the actual corrosion 
rate (CFD-driven mass transfer model) vs predicted corrosion rate (machine learning 
model). The solid line represents x = y. 

 

Figure 4.10 Corrosion rate predictions using the RF model show the actual corrosion 
rate (CFD-driven mass transfer model) vs predicted corrosion rate (machine learning 
model). The solid line represents x = y. 
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Figure 4.11 Corrosion predictions using the SVR model show the actual corrosion rate 
(CFD-driven mass transfer model) vs predicted corrosion rate (machine learning 
model). The solid line represents x = y. 

4.4.1 Surrogate Modelling based Optimisation  

Figure 4.12 shows different responses between pH, pCO2, T and u with corrosion rate. 
The obtained surrogate models for the corrosion rate predictions show the relationship 
between operating parameters and corrosion rates. The optimal machine learning 
model, ANN for corrosion rate prediction, has helped in understanding how the 
operating parameters influence corrosion rates, which allows pipeline designers to 
make more informed decisions. The generation of response surfaces also helps in 
obtaining the best combination of these parameters to lower the corrosion rate. The 
expansion of design space for input variables provides corrosion rates for different 
operating conditions, which is useful in highlighting critical regions. 

Upon training, surrogate models significantly reduce the dependency on expensive and 
time-consuming experiments (Yondo et al., 2018). This is one of the main advantages of 
the current methodology, as it provides an efficient exploration of a wide range of 
scenarios. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.12 The response surfaces of corrosion rate generated using ANN model to find 
corrosion rate in single phase flow pipelines. Response surfaces of  (a) pH and pCO2 (b) 
T and u (c) pH and u (d) pH and T (e) pCO2 and T (f) pCO2 and u  shows a relation with 
corrosion rate. The response surfaces show how changes in factors such as pH, pCO2, T, 
and u affect the rate of corrosion in pipelines. 

4.5 Conclusions 

CFD-enabled machine learning modelling is used for the prediction of CO2 corrosion in 
horizontal pipelines based on significant parameters such as pH, pCO2, temperature and 
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velocity to find the best-performing machine learning model. A design of experiments 
(OLHS) was used to sample the dataset, which was then used to obtain corrosion rates 
from the CFD-driven mass transfer model. A dimensionality reduction technique – PCA- 
is used to determine the significance of each parameter in the prediction of corrosion 
rate. It is found that all four input variables are essential to model corrosion rates.  

After this, machine learning models such as ANN, GPR, SVR and RF are applied to 
corrosion rate predictions. The ANN model performs well compared to GPR, SVR and RF 
based on RMSE value. To summarise, 

 It is found that several variables impact the prediction of corrosion rates, out of 
which pH, pCO2, T and u are the most important ones. A well-trained machine 
learning model is a model trained on sufficient data, with optimized 
hyperparameters and validated on test-data. A well-trained machine learning 
model could eliminate the need for a flow field obtained using CFD. This will 
save a massive amount of computational time and power. 

 A well-tuned ANN model reasonably predicts the output without overfitting the 
training data. This study has also shown that ANN and GPR models are suited 
for small-medium-sized (a few hundred to a few thousand sample points) data. 

 The response surfaces generated using the ANN model offer a comprehensive 
understanding of the correlation between operating conditions and corrosion 
rates. 

This CFD-enabled machine learning modelling can be extended to more complex 
situations such as flows in elbows, expansion/constriction or even multiphase flow 
situations.
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Chapter 5:  Machine Learning Enabled Parameter Optimisation of a 
Mathematical Model of CO2 Corrosion Predictions 

5.1 Introduction 

As discussed earlier, the nature of  CO2 corrosion is electrochemical. The evolution of 
hydrogen ions takes place, which provides the necessary electron sink for the dissolution of 
iron. For CO2 corrosion, the hydrogen evolution reactions are cathodic, with hydrogen as a 
product for all the reactions. These reactions are part of mass transfer modelling for the 
prediction of CO2 corrosion. Table 3.6 shows all the electrochemical reactions that take place 
in the current mass transfer model of CO2 corrosion prediction, which includes the reduction 
of H+and H2CO3 along with the anodic dissolution of iron. The values for electrochemical 
reaction rate constants required in Eq. (3.5) and Eq. (3.6) are available for both cathodic 
reactions (Nesic et al., 1995) and anodic reactions (Nesic and Thevenot, 1996). There is no 
consensus among researchers when it comes to the use of electrochemical reaction rate 
parameters for the prediction of corrosion rates (Nesic et al., 2001; Nordsveen et al., 2003; 
Al-Khateeb et al., 2018; Nešić et al., 2019) with reference to their original source (Nesic et al., 
1995; Nesic and Thevenot, 1996).  

Tuning of these parameters in different studies underlines a need to find the set of reliable 
values that will be applicable to the broader range of data and assess their sensitivity with 
respect to corrosion rate prediction. This can be achieved through the use of surrogate 
modelling-based optimisation (SBO). Physics-based modelling poses constraints in terms of 
computational time and power for the analysis of high-fidelity simulations (Yondo et al., 
2018). Although there is an advancement in computing resources, it is inadvisable to be 
completely dependent on these computationally demanding simulations. To circumvent this, 
‘cheap-to-evaluate’ mathematical models, also known as surrogate models or response 
surface models, were introduced (Box and Draper, 1987). A surrogate model replicates high-
fidelity simulation by providing an evaluation of an objective function at any sample point in 
the design space. A good understanding of design space, physics-based modelling and 
optimisation techniques is essential to extract the required information from SBO (Yondo et 
al., 2018). The steps carried out in the study are given as follows, 

 Find out the range of electrochemical reaction rate constants from the literature. 

 Use a design of experiment technique to create sampling point distribution. 

 Obtain CFD-driven mass transfer model corrosion rate predictions for these sampling 
points. 

 Construct machine learning models using ANN, GPR, SVR and RF methods and tune 
their hyperparameters. 

 Choose the optimal machine learning model by comparing it with each other based 
on evaluation metrics. 

 Solve a surrogate modelling-based optimisation problem to minimise an error 
between predicted values of corrosion rate and experimental values of corrosion 
rates. 

In the current study, parameters related to Tafel’s equation used to describe the kinetics of 
electrochemical reactions are optimized for mass transfer modelling of CO2 corrosion. A 
design of experiment (DOE) technique, viz., random Latin hypercube sampling (RLHS), is used 
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to obtain the sampling points for which function evaluations (corrosion rate) were obtained. 
Machine learning modelling techniques such as ANN, SVR, GPR, and RF are then used to 
construct a surrogate model. A best-performing surrogate model is then integrated with 
different optimisation techniques such as Nelder-Mead method (Nelder and Mead, 1965), 
Powell’s method (Powell, 1964) and Hooke-Jeeves method (Hooke and Jeeves, 1961) for 
optimisation. 

5.2 Materials and Methods 

An initial step consists of finding out the range of all the electrochemical reaction rate 
parameters from the literature. Random Latin hypercube sampling (RLHS) is then used to 
create sample points to obtain corrosion rates at each sample point. A total of 12 design 
variables, which are part of Tafel’s equation for the kinetics of electrochemical reactions, are 
used in the current study. The PCA technique is then used to check if the dimensionality of 
the model can be reduced.  Machine learning models such as ANN, SVR, RF, and GPR are then 
used for surrogate modelling, followed by an optimisation technique to find optimal 
electrochemical reaction rate constants. This process is shown in Figure 5.1. 
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Figure 5.1 Flow chart of methodology to find the optimal set of electrochemical reaction 
rate constants using machine learning enabled surrogate modelling. 

Table 5.1 and Table 5.1 show the values of electrochemical reaction rate constants for 
cathodic and anodic reactions, respectively. 



 

102 
 

Table 5.1 Electrochemical reaction rate constants for cathodic reactions used in different studies. 

 
Electrochemical reaction:  2H+ + 2e− →  H2 

𝐢𝟎,𝐫𝐞𝐟 

(𝐀/𝐦𝟐) 

𝐚𝟏 𝐜𝐇+,𝐫𝐞𝐟 

(𝐦𝐨𝐥/𝐋) 

𝐚𝟐 𝐜𝐂𝐎𝟐,𝐫𝐞𝐟 

(𝐦𝐨𝐥/𝐋) 

𝐚𝟑 𝐜𝐇𝟐𝐂𝐎𝟑,𝐫𝐞𝐟 

(𝐦𝐨𝐥/𝐋) 

∆𝐇 
(𝐊𝐉/𝐦𝐨𝐥) 

𝐓𝐫𝐞𝐟 
(℃) 

𝐄𝐫𝐞𝐯 
(𝐕) 

𝐛 
(𝐕) 

Source 

0.05 0.5 10−4 0 N/A 0 N/A 30 25 
−

2.3RT

F
pH 

2.3RT

2F
 (Nesic et al., 2001) 

0.05 0.5 10−4 0 N/A 0 N/A 30 25 
−

2.3RT

F
pH 

2.3RT

2F
 (Nordsveen et al., 

2003) 

0.05 0.5 10−4 0 N/A 0 N/A 30 25 
−

2.303RT

F
pH 

2.303RT

0.5F
 (Al-Khateeb et al., 

2018) 

 
Electrochemical reaction:  2H2CO3 + 2e− → H2 + 2HCO3

− 

𝐢𝟎,𝐫𝐞𝐟 

(𝐀/𝐦𝟐) 

𝐚𝟏 𝐜𝐇+,𝐫𝐞𝐟 

(𝐦𝐨𝐥/𝐋) 

𝐚𝟐 𝐜𝐂𝐎𝟐,𝐫𝐞𝐟 

(𝐦𝐨𝐥/𝐋) 

𝐚𝟑 𝐜𝐇𝟐𝐂𝐎𝟑,𝐫𝐞𝐟 

(𝐦𝐨𝐥/𝐋) 

∆𝐇 
(𝐊𝐉/𝐦𝐨𝐥) 

𝐓𝐫𝐞𝐟 
(℃) 

𝐄𝐫𝐞𝐯 
(𝐕) 

𝐛 
(𝐕) 

Source 

0.06 -0.5 10−5 0 N/A 1 10−4 50 20 
−

2RT

F
pH 

2.3RT

2F
 (Nesic et al., 2001) 

0.06 -0.5 10−5 0 N/A 1 10−4 50 20 
−

2RT

F
pH 

2.3RT

2F
 (Nordsveen et al., 

2003) 

0.018 -0.5 10−5 0 N/A 1 10−4 50 20 
−

2.303RT

F
pH 

2.303RT

0.5F
 (Al-Khateeb et al., 

2018) 
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Table 5.2 Electrochemical reaction rate constants for anodic reactions used in different studies. 

 

 

Electrochemical reaction: Fe → Fe2+ + 2e− 

𝒊𝟎,𝒓𝒆𝒇 

(𝐀/𝐦𝟐) 

𝐚𝟏 𝒄𝑯+,𝒓𝒆𝒇 

(𝐦𝐨𝐥
/𝐋) 

𝐚𝟐 𝒄𝑪𝑶𝟐,𝒓𝒆𝒇 

(𝐦𝐨𝐥
/𝐋) 

𝐚𝟑 𝒄𝑯𝟐𝑪𝑶𝟑,𝒓𝒆𝒇 

(𝐦𝐨𝐥/𝐋) 

∆𝑯 
(𝐊𝐉/𝐦𝐨𝐥) 

𝑻𝒓𝒆𝒇 

(℃) 

𝑬𝒓𝒆𝒗 
(𝐕) 

𝒃 
(𝐕) 

Source 

 
1 

1 for pCO2 < 1 
0 for pCO2 ≥1 

 
10−4 

2 for pH < 4 
1 if 4<pH < 5 
0 if pH>5 

 
0.0366 

 
0 

 
N/A 

 
37.5 

 
25 

 
-0.488 

0.03 for pH<4 
0.08 for  4<pH<5 
0.12 for pH>5 

(Nesic et al., 2001) 

 
1 

1 for pCO2 < 1 
0 for pCO2 ≥1 

 
10−4 

2 for pH < 4 
1 if 4 < pH < 5 
0 if pH > 5 

 
0.0366 

 
0 

 
N/A 

 
37.5 

 
25 

 
-0.488 

0.03 for pH<4 
0.08 for 4<pH<5 
0.12 for pH>5 

 
(Nordsveen et al., 2003) 

 
1 

2 if pH < 4 
1 if 4≤ pH ≤ 5 
0 if pH>5 

 
10−4 

1 for pCO2 ≤ 1 bar 
0 for pCO2 >1 bar 
 

 
0.0366 

 
0 

 
N/A 

 
37.5 

 
25 

 
-0.488 

 
2.303RT

1.5F
 

 
(Al-Khateeb et al., 2018) 
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5.3 Random Latin Hypercube Sampling (RLHS) 

RLHS is a type of LHS DoE in which points are obtained using random sampling and differs 
from optimal Latin hypercube sampling (OLHS) based on the distribution of sampling points 
in a design space (Bates et al., 2004; Yondo et al., 2018). A tremendous amount of 
computational time is required for the generation of OLHS. In addition, OLHS requires 
advanced computational resources for the higher number of design variables, which makes it 
impractical to use in the current study. Hence, to overcome this, RLHS is used to obtain a total 
sample point of 1000 for 12 design variables (Afzal et al., 2017).  

Table 5.3 summarises the parameters of electrochemical reaction rates and their range used 
for RLHC sampling. The parameters related to the two cathodic reactions, hydrogen ions and 
carbonic acid reduction and one anodic reaction, iron dissolution reaction, are also shown in 
Table 5.3. The base value represents the value used in CFD driven mass transfer model of CO2 
corrosion discussed in Chapter 3. The minimum and maximum values are obtained by varying 
the base value by 20% for the parameters with a single value in the literature. This range is 
assumed to avoid invalid or impractical solutions while considering the physics constraints for 
each input variable. The corrosion rates were then predicted using CFD driven mass transfer 
model for a pipe diameter of 0.015 m, pH 4, velocity of 1 m/s, temperature of 20 ℃, and  pCO2 
of 1 bar.   

The parameter range differs by several orders of magnitude, and hence, it is crucial to 
normalize the data. The normalized data is beneficial in terms of avoiding bias from the 
machine learning algorithms as these models assume that the input parameters are on the 
same scale (Izonin et al., 2022). In addition to this, normalized data become flexible for the 
interpretability and comparability of the input variables (Alasad & Bhaya, 2017). The following 
subsection shows the use of the data normalisation technique for the current dataset. 
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Table 5.3 Nomenclature of the 12-design variable corrosion modelling problem. 

 Parameter Notation 
used 

Base value Minimum value Maximum value Comments 

Hydrogen 
ions 

reduction 
reaction 

Reversible potential (𝐸𝑟𝑒𝑣,𝐻)  (V) 𝑥1 -0.232 -0.279 -0.186 20 % change 

Tafel slope(𝑏𝐻) (V) 𝑥2 0.116 0.101 0.131 (Nordsveen et al., 2003) 

The activation energy (∆𝐻) (J/mol) 𝑥3 30000 27000 33000 20 % change 

Power constant (a1,H)  𝑥4 0.5 0.4 0.6 20 % change 

Reference exchange current density (𝑖0𝑟𝑒𝑓 , 𝐻) 

(A/m2) 

𝑥5 0.05 0.04 0.06 20 % change 

Carbonic acid 
reduction 
reaction 

Reference exchange current density (𝑖0𝑟𝑒𝑓 , 𝐻2𝐶𝑂3) 

(A/m2) 

𝑥6 0.06 0.048 0.072 20 % change 

Power constant (a1,H2CO3
) 𝑥7 -0.5 -0.6 -0.4 20 % change 

Activation energy (∆𝐻2𝐶𝑂3) (J/mol) 𝑥8 50000 40000 60000 (Kahyarian and Nesic, 2020) 

Anodic 
dissolution 

reaction 

Reference concentration of CO2 species (𝐶𝐶𝑂2 𝑟𝑒𝑓
) 

(mol/L) 

𝑥9 0.0366 0.02928 0.04392 20 % change 

Reversible potential (𝐸𝑟𝑒𝑣,𝐹𝑒) (V) 𝑥10 -0.488 -0.51 -0.390 (Sainz-Rosales et al., 2022) 

Activation energy(∆𝐻) (J/mol) 𝑥11 37500 30000 45000 20 % change 

Tafel slope(𝑏𝐹𝑒) (V) 𝑥12 0.0387 0.03 0.08 
(Nordsveen et al., 2003) 
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5.4 Data Normalisation 

All the input variables and the output variable (𝑥1, 𝑥2, 𝑥3, … , 𝑥12, 𝑦)𝑗 (𝑗 = 1,2,3, … , 𝑛) 

are normalised to the range [0,1]  for better representation using Eq. (5.1) and Eq. (5.2). 
The parameters 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11, 𝑥12 are shown in Table 5.3, and y 
is the corrosion rate. 

For 𝑖 = 1,2,3, 4,..,12 

𝑥𝑖 − 𝑥𝑖
𝑚𝑖𝑛

𝑥𝑖
𝑚𝑎𝑥 − 𝑥𝑖

𝑚𝑖𝑛
 

(5.1) 

𝑦i − 𝑦i
min

𝑦i
max − 𝑦i

min
 

(5.2) 

Normalised data is then fed into different machine-learning models to obtain corrosion 
rate predictions. These normalised values can be transformed back to physical space 
using the above equations. 

5.5 Dimensionality Reduction Technique – Principal Component 
Analysis (PCA) 

PCA, a dimensionality reduction technique, is used in the current study to determine the 
most significant variables in the dataset. In the current study of 12 design variables, the 
PCA technique transforms input features into uncorrelated principal components (Jollife 
and Cadima, 2016). Principal components are linear combinations of these 12 initial 
design variables and are ordered in such a way that the first component shows the 
maximum amount of variance of the dataset, followed by the second component, which 
tries to capture the remaining variance and so on (Abbas, 2016).  

Table 5.3 shows the list of principal components, the amount of variance explained by 
each component, cumulative variance and cumulative percentage. The explained 
variance column indicates the proportion of total variance captured by each component 
from the original dataset. For example, PC1 has captured 0.098 or 9.8% of total variance, 
and PC2 has captured 0.092 or 9.2% of total variance. In contrast, cumulative variance 
shows the accumulated variance by each principal component at that particular point. 
The cumulative variance of PC2 is 0.191 or 19.2%, the sum of the explained variance of 
PC1 (0.098) and PC2 (0.092). In addition, cumulative variance identifies the number of 
components that retain a significant amount of information about the dataset. For the 
current dataset, the value of cumulative variance reaches 1.0 or 100% at the 12th 
principal component, exhibiting the importance of all the principal components to 
explain the variance in the original dataset. This suggests that all 12 design variables 
contribute towards the overall variance in the dataset. Hence, none of the original 
features can be considered redundant, and all 12 design variables are used for the 
machine learning modelling shown in the next section. Figure 5.2 shows the visual 
representation of the explained variance for each principal component. 
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Table 5.4 Prinicipal component analysis of 12 design variable problems to find the 
optimal set of electrochemical reaction rate constants. 

Principal 
Component 

Explained 
Variance 

Cumulative 
Variance 

Cumulative 
Percentage (%) 

PC1 0.098 0.098 

 
9.8 

PC2 0.092 0.191 

 
19.1 

PC3 0.091 0.281 

 
28.1 

PC4 0.088 0.369 

 
36.9 

PC5 0.087 0.456 

 
45.6 

PC6 0.085 0.541 

 
54.1 

PC7 0.083 0.624 

 
62.4 

PC8 0.081 0.705 

 
70.5 

PC9 0.077 0.781 

 
78.1 

PC10 0.076 0.858 

 
85.8 

PC11 0.074 0.931 

 
93.1 

PC12 0.069 1.000 

 
100 
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Figure 5.2 Principal component analysis (PCA) of electrochemical reaction rate 
constants for the prediction of corrosion rates in pipelines. 

5.6 Machine Learning Modelling 

Python programming language is used to write machine learning model programs. 
CO2 corrosion rate predictions obtained from the CFD-driven mass transfer model based 
on different electrochemical reaction rate constants are used for machine learning 
modelling. An essential initial step following the data pre-processing for the machine 
learning modelling is to find the optimum set of hyperparameters for each machine 
learning model. The section below explains the tuning of hyperparameters for machine 
learning models. 

Determination of Model Parameters  

Various parameters must be tuned for each machine-learning model to obtain robust 
predictions. In the current study, for the ANN model, the set of hyperparameters 
consists of the number of hidden layers, nodes per hidden layer, batch size and Epochs. 
The ANN model was first studied for the variation in the number of hidden layers (nHL) 
and nodes per hidden layer without changing Epochs and batch size. After obtaining the 
optimal value of nHL and nodes per nHL, Epochs and batch size were varied to check for 
the best combination. This is shown in Figure 5.3 and Figure 5.4. The final set of 
hyperparameters based on the lowest RMSE value includes 50 nodes per hidden layer 
with 3 hidden layers, batch size of 10 and Epochs 50000.  
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Figure 5.3 Selection of the number of hidden layers and nodes per hidden layer for the 
ANN model of electrochemical reaction rate constants. 

 

Figure 5.4 Selection of batch size and Epochs for the ANN model of electrochemical 
reaction rate constants. 

Grid search cross-validation (GridSearchCV) technique is used to tune hyperparameters 
for SVR, RF and GPR. This technique involves the evaluation of the model's performance 
for different sets and combinations of hyperparameters to choose the optimal 
combination. An initial step in GridSearchCV involves defining a grid of hyperparameters 
for a machine-learning model. This grid of hyperparameters is provided using a 
dictionary in which values are ranges of parameters to be studied, and the names of the 
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hyperparameters are keys. Following this, an evaluation metric is selected to compare 
the performance of each combination of hyperparameters. The parameter grid and 
scoring metric are passed to the instantiated machine learning model and the 
GridSearchCV function, respectively. Finally, the ‘best_params_’ attribute returns the 
best hyperparameter combination, which is then used to obtain an improved machine-
learning model. 
For the SVR model, the hyperparameters studied are kernel function, epsilon(𝜀), cost 
(C) and gamma(𝛾), with the range of parameters shown in Table 5.4. 
 
Table 5.5 Range of hyperparameters studied for the SVR model.  

Parameter Values 

Cost (C) [1,10,100,1000] 

Epsilon (𝜀) [0.1,0.2,0.3] 

Gamma(𝛾) [0.01,0.1,1] 

Kernel function [rbf, linear, poly] 

 
A range of values was studied by fitting 5 folds for each of the 108 candidates to 
determine the optimum values. To elaborate, fitting 5 folds means the model is trained 
and tested five times. These combinations were compared with each other based on 
evaluation metrics. Figure 5.5 shows the plot of a combination of hyperparameters 
against the value of metrics. The best-performing combination based on the highest 
value of R2 is then selected for the SVR machine learning model. 
 
 

 
Figure 5.5 Mean test scores (R2) for SVR with different parameter combinations.  
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A parameter combination with the best mean test score is then selected for the SVR 
model. Table 5.5 shows a tuned set of hyperparameters for the SVR model. 
Table 5.6 Tuned hyperparameters for the SVR model of electrochemical reaction rate 
constants. 

Parameter Value 

Kernel function RBF 

Epsilon (𝜀) 0.1 

Cost (C) 1000 

Gamma (𝛾) 0.01 

 
Two hyperparameters were tuned for the RF model viz, number of trees and maximum 
depth of trees. A number of tree parameters determine the number of decision trees 
included in the RF model ensemble. The number of trees increases the model's 
performance to a specific value (Breiman, 2001). The maximum depth of trees splits 
each tree to a desired number, capturing the data's information (Osarogiagbon et al., 
2021). Considering the significance of these hyperparameters, a range of combinations, 
as shown in, were studied. Bootstrap is a technique that creates multiple training 
datasets from a given dataset and then builds individual decision trees (Breiman, 2001). 
A model selects random observations for bootstrap samples, resulting in randomness 
and diversity in the model in the training process. A default input of ‘True’ is used for 
bootstrap, which results in training each tree on a subset of the dataset. Table 5.6 shows 
the range of values of hyperparameters studied for the RF model. 
 
Table 5.7 Range of values of hyperparameters studied for RF model. 

 
Parameter 

 
Value 

Number of trees [10,20,30,40,50,60,70,80,90,100,200,300,500,750,1000] 

Maximum depth of 
trees 

[5,10, None] 

 
Figure 5.6 shows the metric score variation for different parameter combinations for the 
RF model. A GridSearchCV expects a utility function instead of a cost function during 
cross-validation. A utility function is often maximised, whereas a cost function is 
minimised. Since RMSE is a cost function, it is inverted to a utility function by taking its 
negative value. Following the grid search, the highest negative value of RMSE is selected 
to choose the best combination of hyperparameters. 
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Figure 5.6 Metric score for different combinations of hyperparameters for the RF 
model. 

The best set of hyperparameters for the RF model is shown in Table 5.8. 
Table 5.8 Tuned hyperparameters for the RF model of electrochemical reaction rate 
constants. 

Parameter Value 

Number of trees 50 

Maximum depth of trees None 

 
As discussed in the previous chapter, the prior of the Gaussian process is specified, which 
consists of the prior’s mean and covariance. The prior mean shows the expected value 
of the underlying function and is often viewed as the average value of the function. The 
prior mean value is set as zero in the current model. In contrast, prior covariance 
expresses the relationship between different sample points in the design space 
(Rasmussen and Williams, 2006). Then, the kernel object is passed to specify the prior's 
covariance and its hyperparameters are optimised while fitting the GPR model. The 
Matern Kernel, with a length scale of 1.0 and a smoothing parameter of 0.5, provided 
the lowest RMSE value. The Matern class kernel uses a positive smoothing parameter 𝑣, 
which controls the smoothness of the function. Table 5.8 shows the parameters used 
for the GPR model. 
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Table 5.9 Tuned hyperparameters for the GPR model of electrochemical reaction rate 
constants. 

Parameter Value 

Alpha 0.01 

Kernel Matern 

Length scale 1.0 

𝑣 0.5 

 

5.7 Results and Discussion 

A dataset was split into training and test datasets to evaluate the model’s performance 
on each split. 5 different split strategies are used in the current study, 20% test data – 
80% training data, 30% test data – 70% training data, 40% test data – 60 % training data, 
50% test data – 50% training data. A similar technique has been used to assess the 
influence of various training-to-testing ratios in some research studies (Nguyen et al., 
2021).  RMSE value across multiple test-train splits is used to check the performance of 
each machine-learning model, as shown in Table 5.9. This strategy prevents any biases 
resulting from selecting an optimal machine learning model based on the lowest RMSE 
value for a single split. RMSE values are the performance metrics used in regression 
models which quantify the difference between predicted and actual values. The lower 
the value of RMSE, the better the performance of the regression model. Table 5.10 
shows the R2 values obtained for different test-train splits, representing the proportion 
of variance in the dependent variable. 
 
GPR has consistently provided the lowest value of RMSE compared to other machine 
learning models. As it is evident, the GPR model can also consider uncertainty in the 
dataset and has also been found to be effective while handling non-linear relationships 
between electrochemical reaction rate constants and corrosion rate. Similarly, SVR and 
RF have shown that these models are able to provide predictions reasonably well, too. 
The performances of models are significantly improved through the tuning of 
hyperparameters. On the other hand, SVR and RF have shown that these models can 
provide predictions reasonably well, too. ANN model, however, has shown that it is 
ineffective for current dataset predictions. The lowest performance of the ANN model 
can be attributed to the type of architecture used and its high sensitivity to the input 
data quality (Mrzygłód et al., 2020). ANN requires a large dataset to identify patterns 
effectively, which could have been a limiting factor considering the size of the dataset 
used in the current study. It is important to note that for any machine learning model, 
the performance of the model noticeably depends on the type of dataset used, choice 
of hyperparameters and pre-processing steps carried out. This has been shown through 
the various sensitivity studies carried out in the current study. The overall high value of 
RMSE is due to the fewer sample points for 12 design variable problems, which has 
become one of the drawbacks of the current SBO approach. A 70% training and 30% test 
dataset is used for validation purposes. 
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The results obtained provide valuable insights into the performance of machine learning 
models to predict electrochemical reaction rate constants. However, several limitations 
must be acknowledged to ensure an understanding of the study’s findings. The overall 
high RMSE value for the ANN model shows that the ANN model has failed to identify 
patterns effectively. The lower correlations in values of R2 across various splits show 
that certain models find it difficult to capture the underlying relationship in the datasets. 
Although hyperparameter tuning has shown promising improvement in the 
performance of models in the current study, further refinement and investigation is 
needed.  

Table 5.10 Performance metrics of machine learning models based on the input of 
electrochemical reaction rate constants. The percentage in RMSE columns is for the 
test dataset out of the total dataset. 

 
Models 

RMSE 
 

20 % 30% 40% 50% 

ANN 0.260 0.245 0.272 0.250 

SVR 0.100 0.101 0.103 0.100 

RF 0.107 0.110 0.112 0.111 

GPR 0.100 0.100 0.102 0.100 

 

Table 5.11 Performance metrics of machine learning models based on the input of 
electrochemical reaction rate constants. The percentage in R2 columns is for the test 
dataset out of the total dataset. 

 
Models 

R2 

20 % 30% 40% 50% 

ANN 0.290 0.250 0.260 0.470 

SVR 0.721 0.727 0.691 0.724 

RF 0.698 0.681 0.637 0.662 

GPR 0.738 0.732 0.699 0.726 
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Figure 5.7 Corrosion rate predictions based on electrochemical reaction rate constants 
using the ANN model. The horizontal axis represents the actual corrosion rates (CFD-
driven mass transfer model), and the vertical axis represents the corrosion rate 
predictions using machine learning models. The solid line represents x = y. 

 

Figure 5.8 Corrosion rate predictions based on electrochemical reaction rate constants 
using the SVR model. The horizontal axis represents actual corrosion rates (CFD-driven 
mass transfer model), and the vertical axis represents the corrosion rate predictions 
using machine learning models. The solid line represents x = y. 
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Figure 5.9 Corrosion rate predictions based on electrochemical reaction rate constants 
using the GPR model. The horizontal axis represents the actual corrosion rates (CFD-
driven mass transfer model), and the vertical axis represents the corrosion rate 
predictions using machine learning models. The solid line represents x = y. 

 
Figure 5.10 Corrosion rate predictions based on electrochemical reaction rate 
constants using RF model. The horizontal axis represents the actual corrosion rates 
(CFD-driven mass transfer model), and the vertical axis represents the corrosion rate 
predictions using machine learning models. The solid line represents x = y.  
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5.7.1 Surrogate Modelling based Optimisation  

Based on the performance metrics, the surrogate model developed using the GPR model 
determines the optimal electrochemical reaction rate constants. The electrochemical 
reaction rate constants in Table 5.3 are used as the design variables, and the formulation 
of an objective function (f) is shown below, 

minimise   𝑓 =  𝐶𝑅𝑒𝑥𝑝𝑡 − 𝐶𝑅 (𝐸𝑟𝑒𝑣,𝐻, 𝑏𝐻 , ∆𝐻, 𝑎1,𝐻 , 𝑖0𝑟𝑒𝑓,𝐻, 𝑖0𝑟𝑒𝑓,𝐻2𝐶𝑂3
, 𝑎1,𝐻2𝐶𝑂3

, ∆𝐻2𝐶𝑂3, 𝐶𝐶𝑂2,𝑟𝑒𝑓 , 𝐸𝑟𝑒𝑣,𝐹𝑒 , ∆𝐻, 𝑏𝐹𝑒) 

subject to: − 0.279 < 𝐸𝑟𝑒𝑣,𝐻 (V) < −0.186 
0.101 < 𝑏𝐻(V) < 0.131 

27000 <  ∆𝐻(J/mol) < 33000 
0.4 < a1,H < 0.6 

0.04 < 𝑖0𝑟𝑒𝑓,𝐻(A/m2) < 0.06 

0.048 <  𝑖0𝑟𝑒𝑓,𝐻2𝐶𝑂3
(A/m2) < 0.072 

−0.6 < a1,H2CO3
< −0.4 

40000 < ∆𝐻2𝐶𝑂3(J/mol) < 60000 
0.0292 < 𝐶𝐶𝑂2,𝑟𝑒𝑓(mol/L) < 0.0439 

−0.51 < 𝐸𝑟𝑒𝑣,𝐹𝑒(V) < −0.39 
30000 <  ∆𝐻(J/mol) < 45000 

0.03 <  𝑏𝐹𝑒(V) < 0.08 
where CRexpt is an experimental value of corrosion rate in mm/yr (Nesic et al., 1995). 

 
The minimum value of the objective function is obtained using three different 
optimisation methods viz., Nelder-Mead simplex method, Powell’s method and Hooke-
Jeeves method for optimisation. Table 5.12 shows the optimal values obtained using 
different optimisation methods. 
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Table 5.12 Optimal values of electrochemical reaction rate constants obtained using 
the SBO model. 

Parameter Previous Value 
Optimal values 

using 
Powell’s method 

Optimal values 
using the 

Nelder-Mead 
Simplex 
method 

Optimal 
values using 

Hooke-Jeeves 
method 

𝐸𝑟𝑒𝑣,𝐻 (V) -0.232 -0.186 -0.187 -0.189 

𝑏𝐻 (V) 0.116 0.117 0.116 0.102 

∆𝐻 (J/mol) 30000 27005 27077 28623 

a1,H 0.5 0.4 
0.453 

 
0.406 

𝑖0𝑟𝑒𝑓,𝐻  (A/m2) 0.05 0.060 0.060 0.059 

i0ref,H2CO3
 (A/m2) 0.06 0.059 0.049 0.053 

a1,H2CO3
 -0.5 -0.547 -0.521 -0.552 

∆𝐻2𝐶𝑂3 (J/mol) 50000 46022 41740 42399 

𝐶𝐶𝑂2 𝑟𝑒𝑓
 (mol/L) 0.0366 0.035 0.034 0.030 

𝐸𝑟𝑒𝑣,𝐹𝑒 (V) -0.488 -0.509 -0.496 -0.505 

 
 ∆𝐻𝐹𝑒  (J/mol) 

37500 41802 41979 33460 

𝑏𝐹𝑒  (V) 0.0387 0.037 0.042 0.032 

5.7.2 Corrosion Rate Predictions and Comparison  

Figure 5.11 shows the comparison between the corrosion rate (CR) predictions for pH 4 
obtained using electrochemical reaction rate constants available in the literature with 
CFD-driven mass transfer model, empirical VSL and turbulent diffusivity profile with the 
same electrochemical reaction rate constants, CFD-driven mass transfer model with 
surrogate based optimal parameters obtained using Nelder-Mead Simplex method, 
Powell’s method and Hooke-Jeeves method, and experimental corrosion rate 
predictions obtained from Nesic et al. (1995). It can be seen that the CFD-driven mass 
transfer model with electrochemical reaction rate constants in the literature 
underpredicted the corrosion rate values, whereas the same electrochemical reaction 
rate constants with empirical VSL and Dt over predicted corrosion rates (Thorat et al., 
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2024). The optimal values obtained using surrogate-based optimisation shown in Figure 
5.11 predicted CR values quite well, as shown below.  

 

Figure 5.11 Corrosion rate predictions and comparison between CFD-driven mass 
transfer model with literature constants, mass transfer model with empirical viscous 
sublayer and turbulent diffusivity (Empirical VSL and Dt), CFD-driven mass transfer 
model with surrogate-based optimal parameters obtained using Nelder-Mead Simplex 
method, Powell method, and Hooke-Jeeves method and experimental corrosion rate 
predictions shown using solid points and error bars (Nesic et al., 1995). Powell’s 
method has provided the lowest RMSE value upon comparison with the experimental 
dataset. 

CFD driven-mass transfer model with literature constants of electrochemical reaction 
rates underpredicted the corrosion rate values with the RSME value of 0.66. In contrast, 
the prediction model based on empirical VSL and Dt over-predicted with an error of 0.47 
upon comparison with the experimental data of Nesic et al. (1995). On the other hand, 
CFD driven mass transfer model with optimal values of electrochemical reaction rate 
constants using the Nelder-Mead simplex method, Powell’s method, and Hooke Jeeves 
method predicted corrosion rates extremely well with the RMSE of 0.30, 0.28, and 0.29 
respectively. The optimisation method with the lowest RMSE value, Powell’s method, is 
used for the corrosion predictions in the subsequent study. As described in Chapter 3, 
the error bars for pH4 in experimental datasets are the largest compared to other pH 
values, and the corrosion rates obtained using optimal electrochemical reaction rate 
constants fall within these error bars. 

Machine learning-based surrogate models are significant in finding optimal 
electrochemical reaction rate constants in the current model. These surrogate models 
have primary advantages, such as the ability to approximate complex mathematical 
equations and computational efficiency (Yondo et al., 2018). The methodology 
developed in this study can be applied to several other mathematical models to obtain 
optimal parameters. 
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5.8 Summary and Conclusions 

 In this research work, a comprehensive study of corrosion rate prediction and 
optimisation of electrochemical reaction rate constants is carried out using a 
combination of data-driven modelling approach and optimisation techniques. Initially, 
upper and lower limits were defined for the input variables from the literature and on 
the basis of experimental bias. Following this, the RLHS sampling technique is used to 
obtain random distribution samples. PCA on a dataset consisting of 12 electrochemical 
reaction rate constants and 1 output variable – corrosion rate obtained using 
methodology developed in Chapter 3. The PCA revealed that all the PCs contribute 
almost equally towards the explained variance of the dataset; hence, all the PCs were 
retained for the current model.  

Different training-testing split ratios were studied for RMSE values for all machine 
learning models, out of which GPR showed the most consistent performance with the 
lowest RMSE value. A 70-30% training-testing split ratio was then selected to construct 
a surrogate model integrated with different optimisation techniques to find an optimal 
one based on RMSE values. Employing Powell’s method for minimisation of the 
difference between CFD-driven mass transfer model predictions and experimental 
corrosion rate predictions, a set of optimal electrochemical reaction constants is 
obtained. Upon comparison of the corrosion rates with the newly derived 
electrochemical reaction constants with results from Chapter 3, it is found that the 
RMSE value has decreased from 0.66 to 0.28, showing the robustness of the technique 
proposed in this research work. 

To conclude, this study has demonstrated the effectiveness of the SBO approach to 
obtain an optimal set of electrochemical reaction rate constants. The use of PCA for 
dimensionality reduction confirmed the importance of each principal component. The 
surrogate model constructed using GPR was integrated with an optimisation technique 
to find the optimal set of electrochemical reaction rate constants, resulting in the 
enhancement of the reliability of corrosion rate predictions.  
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Chapter 6:  CFD-driven Mass Transfer Modelling of CO2 

Corrosion in Complex Flows 

6.1 Introduction 

A novel methodology is developed to predict the CO2 corrosion using CFD driven mass 
transfer model in Chapter 3. This model was applied to the fully developed flow 
condition of the straight pipeline. However, when it comes to situations where complex 
flow occurs, there are not many CO2 corrosion prediction tools that are available in the 
literature. Hence, with the advantage of CFD driven mass transfer model, CO2 corrosion 
rate predictions are obtained in complex flow situations. The model developed in 
Chapter 3 with optimal electrochemical reaction rate constants obtained in Chapter 5 is 
applied to the complex flow situation of a gradual constriction. 

The models that are available in the literature for CO2 corrosion predictions are 
validated under certain operating conditions. This phenomenon is well established for 
corrosion prediction in fully developed single-phase pipeline flow (Kahyarian et al., 
2017; Thorat et al., 2024). Available predictive tools in the literature are valid for fully 
developed flow and uniform of CO2 corrosion (Nordsveen et al., 2003; Prasad et al., 
2018; Hu et al., 2018; Nešić et al., 2019; Kahyarian and Nesic, 2020).  The corrosion rate 
predictions obtained in Chapter 3 are for steady state, fully developed single-phase flow. 
These corrosion predictions lack reliability due to their limitations when considering 
real-life flow situations. In addition, much less is known about the corrosion predictions 
when complex flow situations occur, such as flows in expansions/constrictions domains. 
There is a clear research gap in the literature when it comes to the modelling of CO2 
corrosion in complex geometries.   

In oil and gas industry pipelines, the connection between tubing or tapered sections is 
gradual constrictions (Zhong et al., 2020). These connections are not sudden and always 
have a transfer region that connects large-diameter pipe to small-diameter pipe. Zhong 
et al. (2020) used in situ electrochemical measurements to study flow accelerated 
corrosion (FAC) in gradual constriction pipe. They combined the array electrode 
technique with CFD to predict and mitigate corrosion rate across the surface. The 
combination of CFD and array electrode technique was helpful in correlating local 
corrosion rate with local hydrodynamics obtained from CFD. A similar approach was 
used in the study of Zeng et al. (2023), in which FAC of X65 gradual contraction pipe was 
studied for high pCO2 conditions. They reported significantly high corrosion rate values; 
hence, verification with another dataset was needed. There are very few studies that 
predict corrosion rate in gradual contraction pipes (Zhong et al., 2020). The available 
studies use CFD to observe local hydrodynamics and correlate it with the local corrosion 
predictions (Zhong et al., 2020; Zeng et al., 2023). 

Hence, a methodology is developed in the current study that predicts the VSL and 
turbulent diffusivity profile along the length of an expansion or constriction type 
domain. These predictions are subsequently coupled to the mass transfer model to 
obtain corrosion rates that will account for the variation in VSL due to changes in the 
flow field as the geometry changes. The following section discusses materials and 
methods used in the current study involving mass transfer modelling and CFD 
methodology. Following this, results and a discussion on predicting turbulent boundary 
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layer and corrosion rates are presented. The following steps are carried out in the 
current study, 

 The velocity field calculation for expansions/constrictions pipe along the length 
of the domain uses a 2D CFD simulation. 

 Extraction of VSL and Dt profile along the length of the domain and its 
subsequent coupling to the mass transfer model. 

 CO2corrosion rate predictions using a novel mass transfer model in 
expansions/constrictions pipe in which flow field obtained from 2D CFD model 
is coupled with a series of 1D mass transfer models with newly derived 
electrochemical reaction rate constants. 

6.2 Materials and methods 

6.2.1 Velocity Field Calculation 

As described in Chapter 3, a methodology must be developed that accurately calculates 
the flow field near the wall along the length of the domain. By considering this, a 
methodology is developed to calculate VSL thickness (δ) and Dt profile. This is done 
using MATLAB software. The process starts with evaluating coordinates and friction 
velocity at the bottom wall of the domain. Table 6.1 provides the variables obtained 
from the ‘mpheval’ function of MATLAB software, which evaluates expressions on mesh 
nodes to calculate the velocity field. 

Table 6.1 List variables evaluated at the wall using the ‘mpheval’ function. 

Variable Description 

x x domain coordinate 

y y domain coordinate 

nx Normal x wall component 

ny Normal y wall component 

tx Tangential x wall component 

ty Tangential y wall component 

 

Euclidean distance r0 is calculated for each boundary point using evaluated ‘x’ and ‘y’ 
coordinates. These values are sorted and rearranged in ascending order for the 
following steps. An arbitrary projection length of 1.5 e−4 m is then used to determine 
the reference length along which all variables are evaluated. These variables include 
velocity components, dimensionless velocity (𝑢+) and dimensionless wall distance (𝑦+) 
to find a value of 𝛿. The value of 𝛿 is determined by evaluating the slope (m) of 𝑢+ vs 
𝑦+ and then finding the value where m exceeds the tolerance value of 1e−2  given below 
in Eq. (6.1), 

𝑚(𝑖,𝑗) =
𝑢+

(𝑖,𝑗+1) − 𝑢+
(𝑖,𝑗)

𝑦+
(𝑖,𝑗+1)

− 𝑦+
(𝑖,𝑗)

=
𝜕𝑢+

𝜕𝑦+
 

(6.1) 
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where i and j are the boundary point and slope evaluation index. 

The tangential velocity (𝑢𝑡) is calculated based on tx and ty as expression shown in Eq. 
(6.2),  

𝑢𝑡(𝑖, : ) = 𝑎𝑏𝑠(𝑢(𝑖, : ) ∗ 𝑡𝑥(𝑖) + 𝑣(𝑖, : ) ∗ 𝑡𝑦(𝑖)) = |𝒖 ∙ 𝒕| (6.2) 

where u and v are the tangential and normal components of velocity.  

Figure 6.1 shows normal and tangential components evaluated along the length of the 
domain. The values of tx and ty change at the inclined region, indicating variations in the 
direction of the velocity vector along the boundary. These changes in the direction of tx 
and ty along the boundary of the domain will influence the velocity and, consequently, 
the point where the deviation in velocity occurs for the calculation of delta. 

 

Figure 6.1 Graphical representation of the normal and tangential components 
evaluated along the length of the domain. 

Once the value of 𝛿 is determined along the length of the pipe, the velocity field is 
calculated between the wall and 𝛿. Figure 6.2 shows the flow chart for the calculation 
of 𝛿 and Dt. 
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Figure 6.2 Flow chart for calculating velocity field required in the mass transfer 
modelling. 

6.3 Constriction – Expansion Model 

The velocity field obtained from the above method is coupled with the mass transfer 
model for the constriction-expansion pipe. The coupling is done so that VSL conditions 
are obtained using the CFD model, and then, for each VSL condition, the mass transfer 
model is solved. This section describes mass transfer modelling in gradual constriction 
pipe with details of the computational domain, initial and boundary conditions, 
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numerical method, and mesh convergence studies for both mass transfer and CFD 
model. 

6.3.1 1D Model of Mass Transfer of Expansion/Constriction Model 

As discussed in Chapter 3, a 1D numerical model is developed to simulate CO2 corrosion 
in pipelines. This 1D mass transfer model is based on the finite volume approach in 
which the fluxes of species are calculated at the boundaries. In contrast, the 
concentration of species is calculated at the centre of finite volumes. The computational 
length of the mass transfer model is based on the VSL thickness obtained from the CFD 
model, as shown in Figure 3.3. The governing equation for species concentration is 
solved using the Backward Euler method, as shown in Figure 3.4. The total number of 
finite volumes used is 50, and the program is implemented in Python. The optimal 
electrochemical reaction rate constants obtained in Chapter 5 are used in the current 
model. 

Initial and Boundary Conditions 

A uniform species concentration in chemical equilibrium is considered for initial and 
boundary conditions for the mass transfer model. It is assumed that all species are 
thoroughly mixed by turbulence. For the species not involved in the electrochemical 
reactions at the metal surface zero flux (𝑁𝑗 = 0) is specified. For the species j involved 

in the electrochemical reactions at the metal surface, the flux is specified by Eq. (6.3), 

𝑁𝑗 = −
𝑖𝑗

𝑛𝑗𝐹
 

(6.3) 

where 𝑖𝑗 is the partial current of a specific electrochemical reaction which contributes 

to the overall current density, 𝑛𝑗  is the number of moles of electrons exchanged per 

mole of species 𝑗, and 𝐹 is the Faraday constant (96485 C/mol). 

6.3.2 CFD Modelling of Gradual Constriction Pipe 

This section gives an overview of steps carried out in CFD modelling of the gradual 
constriction model, including computational domain, initial and boundary conditions 
and mesh sensitivity study.  

Geometry 

Figure 6.3 shows the computational domain used for the current study. RANS 
formulation is used to compute the flow field required for the 2D model. The larger and 
smaller pipe diameters are 25.4 mm and 12.7 mm, respectively, with a cone angle of 
18°. The lengths of expansion, gradual constriction, and straight constriction regions are 
127 mm, 20 mm, and 127 mm, respectively. 
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Figure 6.3 Expansion/constriction pipe computational domain used for the simulations. 

Initial and Boundary Conditions 

The velocity inlet and pressure outlet boundary conditions are used for the simulations. 
A fully developed flow boundary condition is chosen at the inlet with a fluid density of 
𝜌 = 998.8 kg/m3 and dynamic viscosity 𝜇 = 0.001 Pa ∙ s.  

Table 6.2 Boundary conditions used for the simulation of gradual constriction 
geometry. 

Boundary Description p u 𝑘 𝜔 

AB Inlet n∙ 𝛻p = 0 u = 𝒖𝑖𝑛 𝑘 =  𝑘𝑖𝑛 𝜔 =  𝜔𝑖𝑛 

CD Outlet p = 0 n∙ 𝛻u = 0 n∙ 𝛻k = 0 n∙ 𝛻 𝜔 = 0 

AD Symmetry axis n∙ 𝛻p = 0 n∙ 𝛻u = 0 n∙ 𝛻𝑘 = 0 n∙ 𝛻𝜔 = 0 

BC Pipe wall n∙ 𝛻p = 0 u = 0 𝑘 = 0 𝜔 = 0 

Mesh Sensitivity Analysis of Gradual Constriction Pipe 

A structured quadrilateral mesh with an extremely fine grid ratio at the wall is used for 
the simulation. The value of 𝑦+ ≪ 1 is chosen to ensure that the flow field in the viscous 
sublayer is calculated accurately. Following this, several mesh configurations were 
studied to evaluate mesh elements' effect on the outlet's flow velocity. This is shown in 
Figure 6.4, and the average velocity did not change significantly for the number of 
elements greater than 577500. Hence, a mesh configuration with 577500 elements is 
chosen for the simulations. 
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Figure 6.4 Mesh convergence study of expansion/constriction domain in the current 
study. 

6.3.3 Expansion/Constriction Domain based on Experimental Setup in Literature 

This section provides details related to the expansion/constriction domain used in Zhong 
et al. (2020) to study FAC in N80 steel gradual contraction pipe. Their study was focused 
on the prediction of flow-accelerated corrosion and its mitigation with the help of in situ 
electrochemical measurements. There are not enough studies in the literature related 
to the prediction of corrosion rate in the gradual constriction domain. Those that are 
available have provided very little information about the experimental setup, making it 
difficult to replicate the model (Zhong et al., 2020; Zeng et al., 2023). Hence, certain 
assumptions are made in the CFD-driven mass transfer model to carry out verification 
with the experimental dataset of Zhong et al. (2020). 

Geometry 

 

Figure 6.5 Expansion/constriction pipe computational domain used in the current model 
for verification purposes. 

Figure 6.5 shows the expansion/constriction pipe for the verification of corrosion rates 
in the N80 steel gradual contraction pipe. It is important to mention that the length of 
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the domain was missing from the research study of Zhong et al. (2020). The 
experimental domain is shown in Figure 6.6.  Hence, based on the available dimensions, 
the scaling method is used to assume the remaining dimensions. The diameter of 
expansion regions is 50 mm, the cone angle is 21.8°, and the constriction region 
diameter is 42 mm. The lengths of all the regions are assumed in the current model. The 
total length of this domain is 242 mm. 

 

Figure 6.6 Schematic of expansion/constriction domain used in the experimental study 
of Zhong et al. (2020). 

Initial and Boundary Conditions 

The velocity inlet and pressure outlet boundary conditions are used for the simulations. 
A velocity of 2m/s is specified at the inlet with a fluid density of 𝜌 = 998.8 kg/m3 and 
dynamic viscosity 𝜇 = 0.001 Pa ∙ s. Table 6.3 shows the boundary conditions used for the 
verification model. 

The lack of significant details related to the setup used, such as length of expansion and 
constriction region, makes it difficult to replicate the results. Nevertheless, an attempt 
is made here to obtain corrosion rates from the details given in the study by Zhong et 
al. (2020). 
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Table 6.3 Boundary conditions used for the simulation of gradual constriction 
geometry. 

Boundary Description p u 𝑘 𝜔 

AB Inlet n∙ 𝛻p = 0 u = 𝒖𝑖𝑛 𝑘 =  𝑘𝑖𝑛 𝜔 =  𝜔𝑖𝑛 

CD Outlet p = 0 n∙ 𝛻u = 0 n∙ 𝛻k = 0 n∙ 𝛻 𝜔 = 0 

AD Symmetry axis n∙ 𝛻p = 0 n∙ 𝛻u = 0 n∙ 𝛻𝑘 = 0 n∙ 𝛻𝜔 = 0 

BC Pipe wall n∙ 𝛻p = 0 u = 0 𝑘 = 0 𝜔 = 0 

 

Mesh Sensitivity Analysis of Expansion/Constriction Pipe 

The mesh sensitivity analysis of the model is shown in Figure 6.7. A total of 5 mesh 
configurations were studied to find out the variation in average velocity at the outlet. 
The mesh elements were varied along the length and height of the domain. The 𝑦+ ≪ 1 
was assumed to completely evaluate VSL conditions.  It can be seen that there is no 
significant variation in the average velocity after mesh configuration with 225000 
elements compared to the previous configurations. Hence, the mesh configuration with 
225000 elements is chosen for the simulations to ensure the reliability of the CFD model. 

 

Figure 6.7 Mesh convergence study of expansion/constriction domain used for the 
verification purpose. 

6.4 Results and Discussion 

6.4.1 Verification of Corrosion Rate Predictions with Experimental Data 

The corrosion rate predictions obtained from CFD driven mass transfer model are 
compared with the experimental data of Zhong et al. (2020). The experimental setup 
includes in situ electrochemical measurements using the array electrode technique 
(Zhong et al., 2020). The pH value of 6.18 was obtained after de-aeration of the solution, 
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and the temperature of the solution is 65℃. The information related to pCO2 is not 
mentioned in their study, and hence, its value is assumed to be 1.0132 bar.  

Figure 6.8 shows the comparison between experimental (Zhong et al., 2020) and current 
model corrosion rate predictions. The corrosion rates are presented for different 
locations along the length of the domain at 2 m/s. The location of electrodes used in the 
experimental study is also shown in Figure 6.8. The difference between experimental 
corrosion rates and predicted corrosion rates with the current model is significant at 
locations 1, 2 and 3, which then reduces at locations 4 to 8 and again becomes significant 
at locations 9 and 10. Locations 1, 2 and 3 are near the entrance of the gradual 
constriction region, whereas locations 9 and 10 are just after the gradual constriction 
region. However, corrosion rate predictions show that the current model follows the 
trend of experimental data. For instance, the highest corrosion rate value is found at 
location 4. This can be attributed to increased velocity due to changes in the diameter 
of the domain.  The corrosion rate decreases along the length following location 6 in 
both cases.  

It is important to address the differences between the two datasets. The experimental 
data (Zhong et al., 2020) obtained from the literature posed several challenges due to 
missing pCO2 values and incomplete information regarding the dimension, in particular, 
the lengths of both the expansion and constriction regions. These limitations, belonging 
to the reporting of the data and experimental setup, impact the reliability of the 
comparisons by introducing uncertainties. Furthermore, the experimental setup lacks 
details related to the location of the electrodes along the domain to extract corrosion 
rate predictions, adding more complexity to the verification of the model. These 
challenges have been acknowledged in the current study. Despite these limitations, the 
current model has shown more favourable agreement with the experimental 
predictions in the constriction region. This has highlighted its ability to capture certain 
aspects of the observed trends in the experimental data.  

 

Figure 6.8 Comparison of corrosion rate predictions between experimental dataset of 
Zhong et al. (2020) and the current model at pH = 6.18, pCO2 = 1.0132 bar, 
Temperature = 65℃ and velocity = 2 m/s. The location of the electrodes is shown on 
the right side of the graph obtained from the experimental setup of Zhong et al. 
(2020). 
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6.4.2 Prediction of Turbulent Boundary-layer Profiles 

The CFD model developed in this study calculated VSL and Dt profile near the wall along 
the length of the expansion/constriction pipe. A fully developed velocity profile of 1 m/s 
to 5 m/s is specified at the inlet of the computational domain. Figure 6.10 shows the 
velocity profile for expansion/constriction geometry. It can be seen that the flow 
velocity increases as the flow approaches the gradual constriction part, and the 
maximum velocity is seen in the straight constriction part. This maintains the principle 
of continuity. 

Figure 6.10 shows the prediction of VSL for 1 m/s to 5 m/s at the gradual constriction 
region. The VSL values decrease as the inlet velocity increases, as found in Chapter 3. 
The VSL values are the highest for each velocity at the location just near the start of the 
gradual constriction region. The VSL values take a significant dip in the gradual 
constriction region and are then found to increase in the straight constriction region. It 
is also found that the VSL values for all velocities are almost equal in the gradual 
constriction region, highlighting the reduced laminar region near the wall.  

 

Figure 6.9 Velocity profile in expansion/constriction geometry for velocity 1 m/s at 
inlet. 
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Figure 6.10 Viscous sublayer thickness prediction in expansion/constriction geometry 
for velocity 1 m/s to 5 m/s. 

6.4.3 Corrosion Rate Predictions 

As discussed earlier, the accurate prediction of corrosion rates in complex flow 
situations is of paramount importance to ensure the integrity of the pipeline. The CFD-
driven mass transfer model developed in this work is used to predict corrosion rate at 
pH 4 to 6, pCO2 1 bar, Temperature of 20℃, and velocity of 1 m/s to 5 m/s. Figure 6.11, 
Figure 6.12, and Figure 6.13 show the prediction of corrosion rate for all scenarios with 
a notable trend of increase in the corrosion rate in the direction of flow, with the highest 
values obtained in the region of gradual constriction. This ascent in corrosion rate is 
indicative of the dynamic nature of the corrosion process in which the flow field plays a 
significant role, as shown in Figure 6.10 (Zeng et al., 2023). 

A particularly interesting observation of these predictions is a sudden increase in 
corrosion rate at the entrance of the inclination region. This phenomenon can be 
attributed to the increased turbulence due to abrupt changes in the pipe diameter in all 
cases. This change in turbulence enhances the transport of species to and from the bulk, 
which leads to an increased mass transfer rate (Li and Woollam, 2012). The enhanced 
mass transfer rate results in a higher corrosion rate value in the constriction region. 
Zhong et al. (2020) found that an increase in flow velocity and wall shear stress in the 
gradual constriction region increased the corrosion rate and observed a similar trend to 
that found in the current model predictions. As the pH value increased, the corrosion 
rate decreased, whereas as the velocity increased, the corrosion rate increased for 
constant pCO2 and temperature similar to the observations made in Chapter 3. 
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Figure 6.11 CO2 corrosion rate predictions for pH = 4, temperature = 20℃ and pCO2 = 1 
bar in the expansion/constriction domain. 

 

Figure 6.12 CO2 corrosion rate predictions for pH = 5, temperature = 20℃ and pCO2 = 1 
bar in expansion/constriction domain. 



 

134 
 

 

Figure 6.13 CO2 corrosion rate predictions for pH = 6, temperature = 20℃ and pCO2 = 1 
bar in the expansion/constriction domain. 

Figure 6.14 shows the variation of corrosion rate with temperature at pH 4, pCO2 = 1 
bar and velocity 5 m/s. The operating temperature accelerates the physicochemical 
processes involved in corrosion (Nordsveen et al., 2003). Hence, as the temperature 
increases, the corrosion rate increases for a given pH value, as shown. Figure 6.15 shows 
the corrosion rate predictions for different pCO2 values at temperature 20℃, and 
velocity 5 m/s. As the pCO2 increases concentration of H2CO3 species increases, 
resulting in an increase in the rate of catholic reactions (Chen et al.,2023). Hence, as 
pCO2 increases corrosion rate increases. 

This shows the robustness of the current model in predicting the corrosion rate in 
complex flow situations. The current model can be applied to different situations, such 
as transient flows and flows in elbows/bends. The ability of the current model to 
accurately calculate VSL conditions and its subsequent coupling with the mass transfer 
model provides a pipeline designer with the ability to study a wide range of conditions. 
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Figure 6.14 CO2 corrosion rate predictions for different temperatures at pH = 4, 
velocity = 5 m/s, and pCO2 = 1 bar in the expansion/constriction domain 

 

Figure 6.15 CO2 corrosion rate predictions for different pCO2 values at pH = 4, 
temperature = 20℃, and velocity = 5 m/s in the expansion/constriction domain. 
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6.5 Summary and Conclusions 

A CFD-driven mass transfer model for the prediction of CO2 corrosion in complex flow 
situations is presented in this chapter. The empirical correlations available in the 
literature for predicting VSL and turbulent diffusivity profiles are valid for fully 
developed flow conditions, restricting their applicability in developing and disturbed 
flow conditions. The CFD model developed in this study calculates VSL and turbulent 
diffusivity profile at any location in the domain. This model has also shown that it can 
predict viscous sublayer conditions in the domain with geometrical variations along the 
length. 

The VSL conditions obtained at each location along the domain length are coupled with 
the mass transfer model to predict corrosion rates. The predictions obtained have 
shown that the highest corrosion rate values are experienced near the start of the 
straight constriction region after the inclination. The corrosion rate stayed at a moderate 
range following the inclination region.  

While challenges in the experimental data, such as missing information related to the 
value of pCO2 and incomplete dimensions introduced uncertainties in the verification 
of the current model. Our model has demonstrated favourable agreement in the gradual 
and straight constriction regions. Acknowledging these constraints, future research 
should focus on acquiring thorough experimental datasets as well as enhancing 
reporting standards. 

To summarise, the current approach has shown robustness in predicting VSL, turbulent 
diffusivity profiles and corrosion rate predictions in complex flow situations. 
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Chapter 7:  Discussion and conclusion of Computational Fluid 
Dynamics Driven Mass Transfer Modelling of CO2 Corrosion 
in Pipelines and Machine Learning Modelling Based 
Optimisation 

This chapter discusses key findings from the results and the methodology developed for 
the prediction of CO2 corrosion in complex flow geometries. In addition, the significance 
of machine learning modelling in corrosion decisions is explored in this chapter. The 
accurate prediction of viscous sublayer conditions and their subsequent coupling to 
mass transfer modelling is also discussed in this chapter. 

7.1 Introduction 

A CFD-driven mass transfer modelling methodology is developed to understand the 
importance of accurately predicting the VSL conditions in complex flow situations. These 
predictions are then coupled with the mass transfer model to predict CO2 corrosion in 
complex flow situations. This novel methodology is described in detail in Chapter 3, 
validated with the 1-D mass transfer model only applicable for fully developed flow 
conditions. With the aid of this methodology, optimal operating parameters to mitigate 
corrosion in pipelines are obtained using machine learning enabled surrogate modelling 
shown in Chapter 4. Machine learning models have been found helpful in predictive 
maintenance (Yang et al., 2020), corrosion rate estimation (Abbas, 2016), risk 
assessment (Senouci et al., 2014) and optimisation of corrosion inhibitors (Aghaaminiha 
et al., 2021). Furthermore, machine learning models are beneficial for tuning 
parameters for mathematical models (Li et al., 2021). A sensitivity analysis of 
electrochemical reaction rate constants is carried out with the help of machine learning 
enabled surrogate modelling. An optimisation methodology is then applied to find out 
the optimal set of electrochemical reaction constants provided in Chapter 5. A novel 
CFD-driven mass transfer modelling methodology developed in Chapter 3 is then 
expanded to complex flow situations with accurate mathematical modelling for the 
prediction of CO2 corrosion. 

7.2 Flow-induced CO2 Corrosion Mechanism 

7.2.1 Use of CFD Methodology to Build a Robust Mass Transfer Model for 
Prediction of CO2 corrosion in Straight Pipe 

Following the identified research gaps in the literature, a CFD methodology was initially 
built to calculate VSL conditions accurately in straight pipelines. RANS formulations, 
along with the SST k −  ω model, compute the flow field required for the computational 
domain. The values of VSL thickness obtained from CFD are then compared with the 
empirical correlation obtained by (Davies, 1972). The error between the CFD obtained 
VSL thickness and that obtained by empirical correlation is between 11.51% and 17.50% 
for Reynolds number between 18316 and 171795. The discrepancy between these 
values can be explained by the way the empirical correlation of VSL was created. This 
equation is obtained by curve fitting using the friction factor by Blasius for a specific 
range of Reynolds numbers from 3000 to 100,000. In addition to this, the equation is 
simplified by considering the 𝑦+ = 5 at the edge of VSL. However, this assumption of 
Davies (1972) disputes with Popovich and Hummel (1967) as they had found the average 
thickness of VSL equal to  𝑦+ = 6.2, and the most probable value of VSL at 𝑦+ = 4.3. 
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This argument of Popovich and Hummel (1967) related to varying VSL thickness based 
on y+ the findings of the current study support value instead of relying on simplified 
empirical correlation. Table 7.1 shows the values of at y+ at the edge of VSL obtained 
for straight pipelines. 

Table 7.1 Values of at y+ at the edge of VSL obtained for straight pipelines using CFD. 

Reynolds number 𝑦+ at the edge of VSL 

18316 4.92 

35686 5.03 

52899 5.09 

70019 5.04 

87053 5.00 

104138 4.96 

121072 4.94 

138079 4.90 

155123 5.02 

171795 5.05 

  

As discussed above, to account for the turbulent flow field, a notion of turbulent 
diffusivity is used.  The comparison between the predicted turbulent diffusivity profile 
and empirical turbulent diffusivity has shown that the overall error is less than 10%. 
Following the validation of the viscous sublayer conditions obtained from CFD, corrosion 
rates are predicted for the operating conditions in which film formation did not take 
place and effects of electro-migration can be ignored. Corrosion rates are obtained for 
diameter of 0.015 m, pH 4 to 6, velocity 1 to 10 m/s, temperature 20 ℃ and pCO2 1 bar. 
These predictions are compared with the numerical model of Srinivasan (2015) and the 
experimental data of Nesic et al. (1995). Table 7.2  shows the RMSE for corrosion rates 
obtained using the current model, the numerical model of Srinivasan (2015) and the 
experimental data of Nesic et al. (1995) for pH 4, 5 and 6. 
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Table 7.2 Comparison between the current model, numerical model of Srinivasan 
(2015) and experimental data (Nesic et al., 1995) of CO2 corrosion.  

 
pH 

RMSE 

Current model  (Srinivasan, 2015) 

4 0.66 0.52 

5 0.08 0.16 

6 0.15 0.38 

 

For pH 4, the experimental data has the largest error bars compared to other pH values, 
as described in Chapter 3. As can be seen from Table 7.2, pH 4 has the highest deviation 
from the experimental corrosion rates as compared to pH 5 and pH 6. This can be related 
to the choice of electrochemical reaction constants used in the current model, which 
needed a sensitivity analysis to find optimal values of these constants, as described in 
Chapter 5. For pH 5 and pH 6, the current model is in much better agreement than the 
numerical model of Srinivasan (2015). Following this, machine learning based surrogate 
modelling is used to find the optimal set of operating parameters in pipelines discussed 
in the following sections.  

7.3 Importance of Machine Learning Modelling in Corrosion Modelling 

7.3.1 Machine Learning Modelling Enabled Surrogate Modelling to Check the 
Influence of Operating Parameters 

In the current research work, machine learning models such as ANN, SVR, GPR, and RF 
are used to predict CO2 corrosion in pipelines based on input parameters such as pH, 
temperature, velocity, and pCO2. The methodology started with defining the range of 
input parameters, followed by the use of OLHS for sampling of input parameters. 
Corrosion rate is then predicted for these sampling points using a robust model 
developed in Chapter 3. PCA technique is then applied to check if the dimensionality of 
the model can be reduced. Hyperparameters of all the machine learning models are then 
tuned to predict corrosion rates. The discussion covers the model’s performance, the 
importance of input features used, implications of the optimisation techniques used, 
and potential areas for future research. 

The results obtained from PCA are discussed here to give an overall idea of the dataset’s 
structure and dimensionality reduction. The explained variance obtained for each 
principal component (PC) showed the fraction of the total variance accounted for by 
each component. PC1, PC2, PC3, and PC4 each contributed 24% to 26% of the variance, 
suggesting that the input features are evenly spread across the PCs. The cumulative 
variance shows how successive PCs add to the cumulative variance explained in the PCA 
analysis (Jollife & Cadima, 2016). In the current study, the cumulative approach enabled 
us to make informed decisions related to retaining all the PCs for the machine learning 
model. This approach is crucial as some other research work (Abbas, 2016) found that 
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temperature and pCO2 input features had the most significant contribution to the 
variance in the datasets. To summarise, PCA results provided valuable information for 
the selection of features and dimensionality reduction of the dataset. 

The performance evaluation metrics used for machine learning models are MSE, RMSE, 
and R2. These metrics provided valuable insights into the accuracy and determined the 
goodness of the fit of machine learning models. ANN and GPR models outperformed the 
SVR and RF models for all the metrics evaluated. The lower values of MSE and RMSE for 
ANN and GPR models showed that these models are capable of minimising prediction 
errors, showing their high accuracy in corrosion rate predictions. In addition, high R2 
values obtained for ANN and GPR around 0.97 indicated their capability of capturing a 
significant portion of the variance in the data. In contrast to ANN and GPR, RF and SVR 
models performed reasonably well but showed higher values of MSE and RMSE. The R2 
values for both RF and SVR fall below those of ANN and GPR, raising their suitability for 
this corrosion prediction modelling. These results highlight the use of performance 
evaluation metrics for the selection of the best machine-learning model for a given 
corrosion prediction task. ANN, with its performance, is then chosen to find the optimal 
operating conditions. 

To summarise, this work has shown how machine learning models perform when 
applied to corrosion scenarios. Machine learning models integrated with optimisation 
algorithms have the potential to save costs and improve the safety and operational 
efficiency of pipeline networks. Furthermore, these findings will aid in the construction 
of operational guidelines to be applied in real-world scenarios with some modifications. 
For example, the inclusion of time series analysis will look into the corrosion inhibition 
performance of some other research work (Aghaaminiha et al., 2021). This study has 
shown that it is essential to find out the best machine learning model as the 
performance of each model will vary depending on the type of datasets used.  

7.4 Tuning of the Mathematical Model for the Prediction of CO2 

Corrosion 

Machine learning models play a significant role in the optimisation of parameters in 
mathematical models for various industrial applications such as proton exchange 
membrane fuel cells (PEMFC) (Li et al., 2021; Fan et al., 2022) and PSA (Subraveti et al., 
2019) and granulation model (Braumann et al., 2010). Considering this, different 
machine learning models such as ANN, SVR, RF and GPR are used to construct surrogate 
models. The main advantage of surrogate models is the approximate mapping of the 
complex non-linear relationship between input parameters and the objective functions, 
as discussed in Chapter 4 and above section. A 12-design variable problem with 1 
objective function of a difference between experimental corrosion rate and CFD-driven 
mass transfer model described in Chapter 3 is modelled. RLHS technique is used for 
sampling, and PCA is applied to check if the dimensionality of the model can be reduced. 
Surrogate models obtained using the best-performing machine learning model obviate 
the necessity of running the computationally expensive corrosion model for objective 
function evaluation. Integrated optimisation algorithms allow surrogate models to 
search through the design space to find the optimal set of parameters, in this case, a set 
of electrochemical reaction rate constants.  

A PCA technique was used to simplify the complexity of the dataset; however, upon 
analysing the explained variance of each PC, it was found that all the PCs contributed 
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equally to the total variance in the dataset. The Explained variance values of all PCs 
ranged between 6.9% and 9.8%. This provided essential information that suggested 
retaining all the PCs during machine modelling. 

The various train-test split ratios were studied for RMSE value for ANN, SVR, RF and GPR 
models. It was found that the RMSE value for GPR was the lowest and consistent for all 
train-test split ratios. Finally, a 70-30% split ratio was selected to construct a surrogate 
model using the GPR model. This enabled the optimisation of critical electrochemical 
reaction rate constants with the help of Powell’s method. The optimal values obtained 
from this method have provided robustness to the corrosion prediction model described 
in Chapter 3. Table 7.3 shows the comparison of corrosion predictions developed in 
Chapter 3, a numerical model of Srinivasan (2015) and CFD driven mass transfer model 
using optimal electrochemical reaction rate constants with experimental data of Nesic 
et al. (1995) on the basis of RMSE value.   

Table 7.3 Comparison of corrosion prediction model in Chapter 3, numerical model of 
(Srinivasan, 2015), corrosion prediction model in Chapter 3 using optimal 
electrochemical reaction rate constants and experimental data of (Nesic et al., 1995). 

Corrosion Prediction models RMSE 

CFD-driven mass transfer model – Chapter 3 0.66 

Srinivasan (2015) 0.52 

CFD-driven mass transfer model - Chapter 5 0.28 

 

In evaluating the performance of corrosion prediction models in the current study, the 
CFD-driven mass transfer model developed in Chapter 3 under-predicted corrosion 
rates, whereas the numerical model of Srinivasan (2015) over-predicted corrosion rates. 
Following the implementation of optimal electrochemical reaction constants obtained 
using the SBO approach, the RMSE value decreased from 0.66 to 0.28. The newly derived 
values accurately predicted corrosion rates for higher velocities and stayed within the 
error bar for low to moderate velocities. 

To conclude, the SBO approach has proven to be significant. These findings have shown 
how significant the sensitivity studies can be in corrosion prediction modelling. This 
work also highlights the effectiveness of the SBO approach constructed with the help of 
machine learning modelling. 

7.5 Coupling of CFD Model and Mass Transfer Model for the Prediction 
of CO2 Corrosion in Complex Geometries 

The development of a novel methodology of coupling CFD model and mass transfer 
model for the prediction of CO2 corrosion in pipelines has been utilized in cases where 
complex flow situations occur. This methodology consists of evaluating the velocity 
profile at a series of mesh node points to obtain VSL conditions. These calculations are 
then coupled with the mass transfer model to predict corrosion rate in gradual 
constriction geometry. The gradual constriction geometry has a variation in diameter 
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along the length and consists of three regions: expansion, gradual constriction, and 
straight constriction. It is well known that as the flow velocity increases, the velocity 
gradient near the wall reduces significantly. Consequently, the laminar region decreases. 

In the model developed in Chapter 6, the VSL predictions have shown that in the 
expansion region, the VSL value is the highest overall as the velocity is the lowest 
compared to the other regions in the domain. This is also due to the large diameter, 
which is responsible for having a thicker hydrodynamic boundary layer. The gradual 
constriction region has the lowest VSL values due to increased turbulence. The CFD 
model developed in this study has shown that it is capable of predicting VSL conditions 
for which empirical correlations are not applicable.  

The VSL conditions obtained for 1 m/s to 5 m/s velocities were coupled to predict 
corrosion rates in gradual constriction geometry. The model developed found the 
highest corrosion rate value at the entrance of the constriction region after the 
inclination. This is due to an increase in the rate of species transport as a result of the 
increased rate of turbulent diffusion and reduced VSL value. The lowest corrosion rate 
in the domain for all velocities is in the expansion region, as the turbulence in this region 
is the lowest. It also found that the corrosion rate increased in the direction of flow in 
the gradual constriction region due to increased turbulence. In the verification of the 
current model against the experimental dataset, challenges were posed due to missing 
pCO2 values and incomplete dimension information in Zhong et al. (2020). Despite these 
limitations, the current model has shown that it has the capability to predict corrosion 
rates in gradual and straight constriction regions quite well. In addition, the current 
model has demonstrated a trend similar to the experimental dataset of Zhong et al. 
(2020).   

7.6 Future Work 

As the aim of this study was to assess the effectiveness of predictions of VSL conditions 
using CFD, two areas are recommended here. The model developed in the current study 
did not take into account the effect of electromigration and is valid for low 
temperatures. The electromigration term can be added to the model by adding 
𝑧𝑗𝑢𝑗𝐹𝑐𝑗𝛻𝜑 in Eq. (3.3). This allows corrosion prediction for low-conductivity solutions. A 

time-dependent solution scheme is needed to make the model applicable for situations 
where the formation of FeCO3 corrosion products are considered (Nesic et al., 2001; 
Nordsveen et al., 2003).  

A CFD-driven mass transfer model developed in Chapter 6 should be verified with the 
reliable experimental dataset available in the literature. In addition to this, the model 
developed in the current research work did not take into account the formation of 
galvanic/electrochemical cells resulting from the disturbed flow. The difference in mass 
transfer levels in complex flow situations is due to the level of turbulence in the regions. 
These levels create potential variation across the surface, known as 
galvanic/electrochemical cells. The potential distribution across the surface is simplified 
by modelling the Laplace equation by ignoring concentration gradients (Li and Woollam, 
2012). CFD-driven mass transfer model could potentially aid in understanding flow-
induced galvanic corrosion more. A CFD model would then provide a term mentioned in 
Eq.(2.27), which can be obtained by interpolation of the averaged velocity term across 
the domain. This methodology is an extension of the model developed in Chapter 6 with 
the addition of velocity components in the x and y directions. A 2D mass transfer model 
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for CO2 corrosion in complex geometries with the help of CFD would be able to 
determine the anodic and cathodic sites, resulting in potential variation across the 
surface. This model could experience issues such as a high geometric aspect ratio, which 
can be addressed by splitting the domain and linking the boundary conditions.  
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Appendix 

The numerical model developed in Chapter 3 to predict CO2 corrosion rates using 
CFD driven mass transfer model is uploaded to GitHub repository. This repository 
can be accessed using the following link: 

https://github.com/udayrajthorat/CFD-driven-mass-transfer-modelling-of-CO2-
corrosion.git 

The machine learning models developed in Chapter 4 to predict CO2 corrosion 
rates for input parameter such as pH, pCO2, velocity and temperature can be 
accessed using the following link: 

https://github.com/udayrajthorat/machine_learning_modelling_CO2_corrosion.g
it 

The codes used for the surrogate modelling based optimization of electrochemical 
reaction rate constants in Chapter 5 can be accessed using the following link: 

https://github.com/udayrajthorat/machine_learning_enabled_parameter_optimi
zation_CO2_corrosion_model.git 

The codes used for CO2 corrosion rate predictions in complex flow geometries in 
Chapter 6 can be accessed using the following link: 

https://github.com/udayrajthorat/CFD_driven_mass_transfer_model_in_complex
_flow_geometries.git 
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