
Robot Adaptability to People with
Different Capabilities through

Reinforcement Learning

Chengke Sun

The University of Leeds
School of Computing

Submitted in accordance with the requirements for the degree of
Doctor of Philosophy

May 2024

Declaration

The candidate confirms that the work submitted is his own, except where work which
has formed part of jointly authored publications has been included. The contribution
of the candidate and the other authors to this work has been explicitly indicated
below. The candidate confirms that appropriate credit has been given within the
thesis where reference has been made to the work of others.

Some parts of the work presented in this thesis have been published in the following
article:

Sun, C., Cohn, A., & Leonetti, M. (2023). Online Human Capability Estimation
through Reinforcement Learning and Interaction. In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS)

The above publication is primarily the work of the candidate.

This copy has been supplied on the understanding that it is copyright material and
that no quotation from the thesis maybe published without proper acknowledgment.
©2024 The University of Leeds and Chengke Sun

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisors,
Anthony G Cohn and Matteo Leonetti. Their professional guidance, unwavering
support, and deep friendship have been invaluable. Although the rare COVID epidemic
posed challenges for us, my PhD journey is still exciting and meaningful under their
support.

To my examiners, Mehmet Dogar and Matthew Howard. I deeply appreciate the
thoughtful feedback received during my defense. It is an honor to engage in such
intellectual discourse with you. Your feedback and comments not only helped me
enrich the quality of my thesis but also gave me courage and confidence in my academic
journey.

My time at the Robotics Laboratory of the University of Leeds has been truly
incredible. I would like to thank the roboticists I worked with: Rafael Papallas,
Wisdom Agboh, Alexia Toumpa, Ricardo Luna, Lipeng Chen, Hasan Mohammed,
Logan Dunbar, Shengyin Wang, Zisong Xu, and Shaokang Wu. Although we don’t
have much time to work together due to the pandemic, I am very grateful for their
friendship, support, discussions, and sharing of world cuisines.

Finally, I would like to thank my family. To my loving parents, Xuefeng and Jiang:
thank you for your solid support regarding both my studies and life, and for your
generous financial support. To my beloved wife, Hang, thank you for always being
there for me no matter what.

Abstract

Robots are increasingly envisioned to offer sensible assistance across diverse settings.
This thesis primarily centers on human-robot collaboration involving individuals with
potential physical limitations. We aim to enable robots to perceive and adapt to human
capabilities acutely, thereby offering personalized assistance. We present a framework
for the online estimation of human capabilities based on Reinforcement Learning and
Bayesian inference, including a series of estimation strategies and capability-guided
exploration algorithms.

During Reinforcement Learning, the agent accumulates evidence that permits the
continuous updating of human capability estimates via Bayesian inference. These
estimates are pivotal in optimizing robot behavior. By modeling human capabilities
as preconditions for specific robot actions, the agent can either deactivate the action
or refer to the most suitable actions derived from a pre-training policy aligned with
capability estimates.

We present three human-robot collaboration experiments to demonstrate and
validate our framework: two are operated within a simulation environment, and one is
a real-world experiment. The results show that our methodology accurately estimated
human capabilities in static and dynamic environments. Furthermore, the robot
exhibited faster adaptation and enhanced performance when human capabilities were
incorporated into the learning process.

Table of contents

List of figures xiii

List of tables xxi

1 Introduction 1
1.1 Main themes . 2
1.2 Contributions . 5
1.3 Thesis Outlines . 6

2 Background 7
2.1 Markov Decision Process . 7
2.2 Reinforcement Learning . 8

2.2.1 Model-based Learning . 9
2.2.2 Model-free Learning . 10

2.3 Deep Reinforcement Learning . 12
2.4 Multi-Label Classification . 13
2.5 Naive Bayes Classifier . 14
2.6 Bayesian Network . 16

3 Related Work 19
3.1 User adaptability . 19
3.2 System Structure . 20
3.3 User Model . 21

3.3.1 Static User Model . 21
3.3.2 Dynamic User Model . 23
3.3.3 Implicit User Model . 24

3.4 Decision-Making with User Knowledge 25
3.4.1 Rule-based Methods . 25
3.4.2 Supervised Methods . 25

x Table of contents

3.4.3 Reinforcement Learning Methods 27
3.5 Summary . 29

4 Human Capability Estimation through Reinforcement Learning 31
4.1 Introduction . 31
4.2 Problem Definition . 32
4.3 Capability Estimation Strategies . 33
4.4 Capability Belief . 37
4.5 Implementation and Deployment . 37

4.5.1 Robot Navigation Task . 38
4.5.2 Pre-training . 39
4.5.3 Sampling . 42
4.5.4 Policy Initialization . 42
4.5.5 Estimation Algorithm . 43
4.5.6 Capability-guided Exploration 44

4.6 Summary . 46

5 Experimental Evaluation 49
5.1 Evaluation Metrics . 49
5.2 Robot Navigation Task . 50

5.2.1 Human Following . 50
5.2.2 Experimental Setup . 52
5.2.3 Estimation Performance Evaluation 54
5.2.4 RL Performance Evaluation . 70
5.2.5 Experiments with Lower Prior Probabilities 77
5.2.6 Summary . 81

5.3 Robot Manipulation Task . 81
5.3.1 Introduction . 81
5.3.2 MDP Settings . 82
5.3.3 Motion planner . 83
5.3.4 Human Capabilities . 84
5.3.5 Human Model . 84
5.3.6 Experimental Setup . 85
5.3.7 Estimation Performance Evaluation 87
5.3.8 RL Performance Evaluation . 101
5.3.9 Summary . 106

5.4 Scavenger Hunt Game . 107

Table of contents xi

5.4.1 Introduction . 107
5.4.2 MDP Settings . 107
5.4.3 Human Capabilities . 108
5.4.4 Task Settings . 108
5.4.5 Human-Robot Distance Estimation 109
5.4.6 Mobile Software . 111
5.4.7 Pre-training in Simulation . 111
5.4.8 Experimental Setup . 112
5.4.9 Estimation Performance Evaluation 114
5.4.10 RL Performance Evaluation . 115

6 Conclusion and Future Work 117
6.1 Results Summary . 117
6.2 Limitations and Future Work . 120

6.2.1 Binary Capabilities . 120
6.2.2 The Human Objects of Real-World Experiment 120
6.2.3 Optimized Multi-label Learning 120
6.2.4 Continuous Task Domains in Reinforcement Learning 121
6.2.5 Generalization Across Domains 121
6.2.6 Diverse Evidence and Estimations 122

6.3 Conclusion . 122

References 125

List of figures

2.1 The diagram of Reinforcement Learning 8
2.2 An example of Q-table where S = {s0, s1} , A = {a0, a1, a2} 10
2.3 A diagram of the DQN algorithm . 12
2.4 An example of Bayesian network . 16
2.5 The Bayesian network of MDP . 16

3.1 General structure of user-adaptive robotic system 20
3.2 The structure of static user model . 21
3.3 The structure of dynamic user model 23
3.4 The structure of implicit user model . 24

4.1 The Bayesian network of the policy (π) affected by human capabilities. 33
4.2 The Bayesian network of MDP . 33
4.3 The Bayesian network of EST-Action 34
4.4 The Bayesian network of EST-State-Policy 35
4.5 The Bayesian network of EST-Policy 36
4.6 The main components of our framework 38
4.7 The Gazebo world for the navigation task 39
4.8 An example of one-hot encoding: (a) The directed graph with nodes in

the label style. (b) The directed graph with nodes in one-hot encoding. 41

5.1 Partial directed graph of the navigation task. (a) The door D1 is open.
(b) The door D1 is closed. 51

5.2 The experimental setup of the navigation task (Q-learning) 52
5.3 The experimental setup of the navigation task (DQN) 53

xiv List of figures

5.4 The Precision and Recall in the navigation task (Q-learning) applied
EST-Action: (a)(b) Agents were initialized with the pre-trained policy
π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-trained policy
π∗(a | s, {0, 0}). (e)(f) Agents were initialized with the pre-trained policy
π∗(a | s, random). 56

5.5 The Precision and Recall in the navigation task (Q-learning) applied
EST-State-Policy: (a)(b) Agents were initialized with the pre-trained
policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-
trained policy π∗(a | s, {0, 0}). (e)(f) Agents were initialized with the
pre-trained policy π∗(a | s, random). 57

5.6 The Precision and Recall in the navigation task (Q-learning) applied
EST-Policy: (a)(b) Agents were initialized with the pre-trained policy
π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-trained policy
π∗(a | s, {0, 0}). (e)(f) Agents were initialized with the pre-trained policy
π∗(a | s, random). 58

5.7 The Accuracy and Hamming Loss in the navigation task (Q-learning)
applied EST-Action: (a)(b) Agents were initialized with the pre-trained
policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-
trained policy π∗(a | s, {0, 0}). (e)(f) Agents were initialized with the
pre-trained policy π∗(a | s, random). 59

5.8 The Accuracy and Hamming Loss in the navigation task (Q-learning)
applied EST-State-Policy: (a)(b) Agents were initialized with the pre-
trained policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the
pre-trained policy π∗(a | s, {0, 0}). (e)(f) Agents were initialized with
the pre-trained policy π∗(a | s, random). 60

5.9 The Accuracy and Hamming Loss in the navigation task (Q-learning)
applied EST-Policy: (a)(b) Agents were initialized with the pre-trained
policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-
trained policy π∗(a | s, {0, 0}). (e)(f) Agents were initialized with the
pre-trained policy π∗(a | s, random). 61

List of figures xv

5.10 The estimates of capabilities in the navigation task (Q-learning) applied
EST-Action and RLC-Policy, where all agents were initialized with the
pre-trained policy π∗(a | s, random): (a) The true collaborator’s capa-
bility set was {c_fast = 1, c_open = 1}. (b) The true collaborator’s
capability set was {c_fast = 1, c_open = 0}. (c) The true collabo-
rator’s capability set was {c_fast = 0, c_open = 1}. (d) The true
collaborator’s capability set was {c_fast = 0, c_open = 0}. 63

5.11 The estimates of capabilities in the navigation task (Q-learning) applied
EST-State-Policy and RLC-Policy, where all agents were initialized with
the pre-trained policy π∗(a | s, random): (a) The true collaborator’s
capability set was {c_fast = 1, c_open = 1}. (b) The true collabo-
rator’s capability set was {c_fast = 1, c_open = 0}. (c) The true
collaborator’s capability set was {c_fast = 0, c_open = 1}. (d) The
true collaborator’s capability set was {c_fast = 0, c_open = 0}. 64

5.12 The estimates of capabilities in the navigation task (Q-learning) applied
EST-Policy and RLC-Policy, where all agents were initialized with the
pre-trained policy π∗(a | s, random): (a) The true collaborator’s capa-
bility set was {c_fast = 1, c_open = 1}. (b) The true collaborator’s
capability set was {c_fast = 1, c_open = 0}. (c) The true collabo-
rator’s capability set was {c_fast = 0, c_open = 1}. (d) The true
collaborator’s capability set was {c_fast = 0, c_open = 0}. 65

5.13 The estimates of capabilities in the navigation task (DQN) applied
EST-Policy, where all agents were initialized with the pre-trained policy
π∗(a | s, {1, 1}): (a) The true collaborator’s capability set was {c_fast =
1, c_open = 1}. (b) The true collaborator’s capability set was {c_fast =
1, c_open = 0}. (c) The true collaborator’s capability set was {c_fast =
0, c_open = 1}. (d) The true collaborator’s capability set was {c_fast =
0, c_open = 0}. 67

5.14 The estimates of capabilities in the navigation task (DQN) applied
EST-Policy, where all agents were initialized with the pre-trained policy
π∗(a | s, {0, 0}): (a) The true collaborator’s capability set was {c_fast =
1, c_open = 1}. (b) The true collaborator’s capability set was {c_fast =
1, c_open = 0}. (c) The true collaborator’s capability set was {c_fast =
0, c_open = 1}. (d) The true collaborator’s capability set was {c_fast =
0, c_open = 0}. 68

xvi List of figures

5.15 The estimates of capabilities in the navigation task (DQN) applied EST-
Policy, where all agents were initialized with the pre-trained policy π∗(a |
s, random): (a) The true collaborator’s capability set was {c_fast =
1, c_open = 1}. (b) The true collaborator’s capability set was {c_fast =
1, c_open = 0}. (c) The true collaborator’s capability set was {c_fast =
0, c_open = 1}. (d) The true collaborator’s capability set was {c_fast =
0, c_open = 0}. 69

5.16 The Return and the number of steps per episode in the navigation
task (Q-learning), where EST-Action was applied: (a)(b) Agents were
initialized with the pre-trained policy π∗(a | s, {1, 1}). (c)(d) Agents
were initialized with the pre-trained policy π∗(a | s, {0, 0}). (e)(f) Agents
were initialized with the pre-trained policy π∗(a | s, random). 72

5.17 The Return and the number of steps per episode in the navigation task
(Q-learning), where EST-State-Policy was applied: (a)(b) Agents were
initialized with the pre-trained policy π∗(a | s, {1, 1}). (c)(d) Agents
were initialized with the pre-trained policy π∗(a | s, {0, 0}). (e)(f) Agents
were initialized with the pre-trained policy π∗(a | s, random). 73

5.18 The Return and the number of steps per episode in the navigation
task (Q-learning), where EST-Policy was applied: (a)(b) Agents were
initialized with the pre-trained policy π∗(a | s, {1, 1}). (c)(d) Agents
were initialized with the pre-trained policy π∗(a | s, {0, 0}). (e)(f) Agents
were initialized with the pre-trained policy π∗(a | s, random). 74

5.19 The Return and the number of steps per episode in the navigation task
(DQN), where EST-Policy was applied: (a)(b) Agents were initialized
with the pre-trained policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized
with the pre-trained policy π∗(a | s, {0, 0}). (e)(f) Agents were initialized
with the pre-trained policy π∗(a | s, random). 76

5.20 The estimates of capabilities in the navigation task (Q-learning) applied
EST-Policy and RLC-Policy, where all agents were initialized with the
pre-trained policy π∗(a | s, random) and lower prior probabilities: (a)(b)
The true collaborator’s capability set was {c_fast = 1, c_open = 1}.
(c)(d) The true collaborator’s capability set was {c_fast = 1, c_open = 0}. 78

List of figures xvii

5.21 The estimates of capabilities in the navigation task (Q-learning) ap-
plied EST-Policy and RLC-Policy, where all agents were initialized with
the pre-trained policy π∗(a | s, random) and lower prior probabilities:
(a)(b) The true collaborator’s capability set was {c_fast = 0, c_open =
1}.(c)(d) The true collaborator’s capability set was {c_fast = 0, c_open =
0}. 79

5.22 The Return and the number of steps per episode in the navigation
task (Q-learning), where EST-Policy and lower prior probabilities were
applied: (a)(b) Agents were initialized with the pre-trained policy π∗(a |
s, {1, 1}). (c)(d) Agents were initialized with the pre-trained policy
π∗(a | s, {0, 0}). (e)(f) Agents were initialized with the pre-trained
policy π∗(a | s, random). 80

5.23 The Gazebo world for the manipulation task. 81
5.24 Examples of acceptable solutions in the manipulation task. 82
5.25 An example of visual differences caused by c_green: (a) The layout

seen by the collaborator c_green = 1. (b) The layout seen by the
collaborator c_green = 0. 84

5.26 The experimental setup of the manipulation task (Q-learning). 85
5.27 The experimental setup of the manipulation task (DQN). 86
5.28 The Precision and Recall in the manipulation task (Q-learning) applied

EST-Action: (a)(b) Agents were initialized with the pre-trained policy
π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-trained
policy π∗(a | s, random). 88

5.29 The Precision and Recall in the manipulation task (Q-learning) applied
EST-State-Policy: (a)(b) Agents were initialized with the pre-trained
policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-
trained policy π∗(a | s, random). 89

5.30 The Precision and Recall in the manipulation task (Q-learning) applied
EST-Policy: (a)(b) Agents were initialized with the pre-trained policy
π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-trained
policy π∗(a | s, random). 90

5.31 The Accuracy and Hamming Loss in the manipulation task (Q-learning)
applied EST-Action: (a)(b) Agents were initialized with the pre-trained
policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-
trained policy π∗(a | s, random). 91

xviii List of figures

5.32 The Accuracy and Hamming Loss in the manipulation task (Q-learning)
applied EST-State-Policy: (a)(b) Agents were initialized with the pre-
trained policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the
pre-trained policy π∗(a | s, random). 92

5.33 The Accuracy and Hamming Loss in the manipulation task (Q-learning)
applied EST-Policy: (a)(b) Agents were initialized with the pre-trained
policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-
trained policy π∗(a | s, random). 93

5.34 The estimates of capabilities in the manipulation task (Q-learning) ap-
plied EST-Action and RLC-Policy, where all agents were initialized with
the pre-trained policy π∗(a | s, random): (a) The true collaborator’s
capability set was {c_green = 1, c_swap = 1}. (b) The true collabo-
rator’s capability set was {c_green = 1, c_swap = 0}. (c) The true
collaborator’s capability set was {c_green = 0, c_swap = 1}. (d) The
true collaborator’s capability set was {c_green = 0, c_swap = 0}. . . . 95

5.35 The estimates of capabilities in the manipulation task (Q-learning) ap-
plied EST-State-Policy and RLC-Policy, where all agents were initialized
with the pre-trained policy π∗(a | s, random): (a) The true collabo-
rator’s capability set was {c_green = 1, c_swap = 1}. (b) The true
collaborator’s capability set was {c_green = 1, c_swap = 0}. (c) The
true collaborator’s capability set was {c_green = 0, c_swap = 1}. (d)
The true collaborator’s capability set was {c_green = 0, c_swap = 0}. . 96

5.36 The estimates of capabilities in the manipulation task (Q-learning) ap-
plied EST-Policy and RLC-Policy, where all agents were initialized with
the pre-trained policy π∗(a | s, random): (a) The true collaborator’s
capability set was {c_green = 1, c_swap = 1}. (b) The true collabo-
rator’s capability set was {c_green = 1, c_swap = 0}. (c) The true
collaborator’s capability set was {c_green = 0, c_swap = 1}. (d) The
true collaborator’s capability set was {c_green = 0, c_swap = 0}. . . . 97

5.37 The estimates of capabilities in the manipulation task (DQN) applied
EST-Policy, where all agents were initialized with the pre-trained pol-
icy π∗(a | s, {1, 1}): (a) The true collaborator’s capability set was
{c_green = 1, c_swap = 1}. (b) The true collaborator’s capability set
was {c_green = 1, c_swap = 0}. (c) The true collaborator’s capabil-
ity set was {c_green = 0, c_swap = 1}. (d) The true collaborator’s
capability set was {c_green = 0, c_swap = 0}. 99

List of figures xix

5.38 The estimates of capabilities in the manipulation task (DQN) applied
EST-Policy, where all agents were initialized with the pre-trained pol-
icy π∗(a | s, random): (a) The true collaborator’s capability set was
{c_green = 1, c_swap = 1}. (b) The true collaborator’s capability set
was {c_green = 1, c_swap = 0}. (c) The true collaborator’s capabil-
ity set was {c_green = 0, c_swap = 1}. (d) The true collaborator’s
capability set was {c_green = 0, c_swap = 0}. 100

5.39 The Return and the number of steps per episode in the manipulation task
(Q-learning) applied EST-Action: (a)(b) Agents were initialized with
the pre-trained policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized
with the pre-trained policy π∗(a | s, random). 102

5.40 The Return and the number of steps per episode in the manipulation task
(Q-learning) applied EST-State-Policy: (a)(b) Agents were initialized
with the pre-trained policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized
with the pre-trained policy π∗(a | s, random). 103

5.41 The Return and the number of steps per episode in the manipulation task
(Q-learning) applied EST-Policy: (a)(b) Agents were initialized with the
pre-trained policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with
the pre-trained policy π∗(a | s, random). 104

5.42 The Return and the number of steps per episode in the manipulation
task (DQN) applied EST-Policy: (a)(b) Agents were initialized with the
pre-trained policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with
the pre-trained policy π∗(a | s, random). 105

5.43 Examples of searching rooms in the Bragg building at the University of
Leeds. 109

5.44 The objects being searched in the Scavenger Hunt Game. 109
5.45 The Bluetooth beacons deployed on TIAGo. 110
5.46 The structure of the implementation in the Scavenger Hunt Game. . . . 112
5.47 The experimental setup of the Scavenger Hunt game (Q-learning), where

the yellow rectangles represent the pre-trained policies used in the
initialization of deployments. 113

5.48 The probabilities of capabilities in the Scavenger Hunt Game: (a) The
true collaborator’s capability set was {c_color,c_sound}. (b) The true
collaborator’s capability set was {c_fast,c_sight,c_color}. (c) The
true collaborator’s capability set was {c_sight,c_color}. 114

xx List of figures

5.49 The Return in the Scavenger Hunt Game: (a) The true collaborator’s
capability set was {c_color,c_sound}. (b) The true collaborator’s ca-
pability set was {c_fast,c_sight,c_color}. (c) The true collaborator’s
capability set was {c_sight,c_color}. 115

List of tables

6.1 The constraints of estimation strategies. 119

Chapter 1

Introduction

Service robots are expected to participate in the general public’s lives widely. People
are no longer satisfied with robots providing information and services to humans in a
one-way manner. Instead, there is a growing desire for more collaborative interactions
between robots and humans. This paradigm shift has given rise to human-robot
collaboration tasks. While these tasks are often observed in controlled environments,
such as robot competitions and research laboratories, achieving seamless integration of
service robots into the daily routines of individuals remains a challenge.

In human-robot collaboration tasks set in real-world environments, the frequent
assumption of able-bodied collaborators, often made in laboratory or controlled settings,
becomes no longer viable. Service robots must not only perceive the capabilities of
their human partners, but also incorporate the understanding into their high-level
task-planning processes. It allows them to adjust their behavior based on the human’s
capability and improve social acceptability. A typical environment of this challenge
arises in care home settings, where residents may exhibit varying physical capacities
due to chronic illnesses, injuries, or age. Therefore, this thesis aims to advance the
development of user-adaptive robots. These robots would be adept at offering timely,
personalized assistance to their human collaborators.

Reinforcement Learning (RL) introduces a paradigm for robots to enhance their
behaviors through interactions with the environment. This dynamically changing
behavior improves the robot’s adaptability, particularly when dealing with unknown
collaborators in real-world settings. In the context of value-based RL algorithms
used for online user adaptation, there are typically two causes behind policy changes:
1. When the agent performs actions that are not suitable for the current user, it
accumulates negative rewards over time. Because these undesirable actions yield
lower value compared to other actions, the agent gradually shifts its policy towards

2 Introduction

actions with higher expected value; 2. The agent discovers actions with higher expected
value than those currently in use through explorations. However, frequently trying
low-value actions can be annoying to the human collaborator or even lead to task
failure. Moreover, over-dependence on random exploration will cause the robot to
perform risky actions. Overall, policy improvement that only relies on the above two
principles pays no attention to human capabilities.

We present a framework that combines Bayesian inference and Reinforcement
Learning to online estimate human capabilities in this thesis. These human capabilities
are latent variables not directly observable by the agent. By introducing capability
estimation into the RL process, the robot achieves a more adequate understanding
and adaptation to its human collaborator. This early understanding of the capabilities
supports the agent in improving its policy, thereby enhancing the quality of collaborative
outcomes. Importantly, our proposed framework is model-free, which not only simplifies
its implementation but also avoids potential model bias issues. This approach also
prevents the computational intensive models like Partially Observable Markov Decision
Processes (POMDPs).

Numerous approaches have been deployed to building user-adaptive robots, including
statistical inference, POMDP planning, and user demonstration. Nevertheless, our
method introduces capability estimation as a side effect of the RL context. While it
is important to acknowledge that Reinforcement Learning is not the only method for
estimating capabilities, our focus lies on the robot’s ability to autonomously acquire
this knowledge through its own interactions, without specialized calibration or input
from the collaborator.

1.1 Main themes

This thesis mainly focuses on online human capability estimation and producing
user-adaptive behaviors, thereby unfolding the following themes:

1. The Role of Human Capabilities in Human-Robot Collaborations.

We model human capabilities as preconditions of robot actions, especially such
actions involving human-robot interaction (HRI). For instance, a museum scenario
where a robot serves as a tour guide allowed to drive fast. For effective and
user-friendly guiding, the robot must remain within the visual range of the human
collaborator. Thus, the collaborator must walk fast enough to follow the robot.
However, this person may need more time to walk due to some health conditions,

1.1 Main themes 3

such as using crutches. In such scenarios, the human’s capability to walk quickly
becomes the necessary precondition for the robot’s fast-driving action.

When the human partner does not meet this precondition, a sensible alternative
for the robot is to adjust its speed downward. Traveling at different speeds based
on human capabilities is a form of adaptive and personalized assistance the robot
offers in this collaborative task. Suppose the robot cannot sense the difference
in this "walking" capability, the robot may drive to an inappropriate position,
such as being too close to the collaborator or to a place where the collaborator
cannot see it, leading to user-unfriendly and annoying feedback from users or
task failures. Therefore, when modeling collaborative tasks, human capabilities
are essential prior knowledge.

2. Tracking Multiple Capabilities in Collaborative Tasks.

We treat human capabilities as distinct labels, thus, the capability estimation is
to learn a predictive model. This model takes a feature vector as its input and
produces a set of capability labels as its output. Given that collaborative tasks
frequently require predicting various human capabilities, we approach human
capability estimation as a multi-label learning problem. The model’s output is a
series of capability beliefs, reflecting the classifier’s confidence in each capability.

3. Exploring Correlations Between Human Capabilities and Observable
Variables in the Context of Reinforcement Learning.

Human capabilities, as human properties, are latent variables, which means these
variables cannot be directly observed but can be estimated based on a series of
observed variables. Before building the predictive model, we need to determine
the correlation between human capabilities and other observable variables within
the Reinforcement Learning context. This study is essential because correlations
are crucial to understanding and modeling the interrelationships between random
variables. It helps us better understand and improve the accuracy of predictions.
We propose three models with different correlations in this work. These distinct
correlations subsequently guide us to three unique estimation strategies.

4. Online Capability Estimation in Reinforcement Learning.

We addressed the multi-label learning problem using the Label Powerset method.
For our Reinforcement Learning, both table-based Q-learning and Deep Q-
Network (DQN) were adopted. Both Q-learning and DQN operate as model-free
algorithms, indicating that the agent refines its policy through interactions

4 Introduction

with its environment. Once the capability estimation model is well-trained and
operational for predictions, we deploy the model in online RL, in which the model
can accumulate evidence. Bayesian inference is then used to continuously update
the probabilities of capabilities with the chosen estimation strategy.

Our capability estimation is integrated as middleware into both the Q-learning
and DQN algorithms, which only slightly modify the existing Reinforcement
Learning pipeline. This implementation enables the rapid adaptation of the
capability estimation to other Reinforcement Learning methods.

5. Capability-guided Exploration in Reinforcement Learning.

As we define capabilities as preconditions for robot actions, having capability
estimates allows the agent to dynamically activate or deactivate certain actions
based on the probabilities of associated capabilities. For instance, in the earlier
tour guide scenario, when the probability of the capability to "walk quickly" drops
below a predetermined threshold, the robot can decide to disable the fast-driving
action.

Furthermore, we obtain a collection of optimal policies during the training phase
of building the prediction model. We can offer a structured exploratory path
for the Reinforcement Learning agent by aligning these pre-trained policies with
capability estimates.

6. Applicability in Static and Dynamic Domains.

Given the varied environment of human-robot collaborative tasks, our framework
must exhibit robustness in both static and dynamic environments. We conducted
three experiments to evaluate both the performance of capability estimation and
the Reinforcement Learning performance in various environments.

In the first experiment, we tasked the robot with guiding a collaborator from a
fixed starting location to a fixed goal, a collaborative navigation task involving
two human capabilities. The second experiment centered on a manipulation task,
where the robot and a human partner sort objects on a table. This task also
considered two human capabilities. Nevertheless, this environment introduced
uncertainty as the layout of objects on the table was randomly generated at
the beginning of the task. Consequently, the state space became more complex
than the first navigation task. Our final experiment occurred in a real-world
environment, where the robot collaborated with a human partner to locate target
objects dispersed across multiple rooms. Similar to the second task, the placement

1.2 Contributions 5

of target objects was randomized. This task involved four human capabilities.
The results of these experiments conclusively demonstrated that our framework
accurately and robustly estimates capability probabilities.

1.2 Contributions

• Paradigms for Correlating Human Capabilities with Observable Vari-
ables in Standard MDPs.

We present three estimation strategies, EST-Action, EST-State-Policy, and EST-
Policy, to capture correlations between human capabilities and random variables
in standard Markov Decision Processes (MDPs). These strategies are adaptable
to collaborative tasks of varying complexity while remaining model-free.

• Online Estimation of Human Capabilities in Model-Free Reinforcement
Learning.

We introduce a framework for the online estimation of human capabilities within
model-free Reinforcement Learning algorithms. This framework unfolds in three
stages: pre-training, optional sampling, and deployment, seamlessly integrating
with the RL pipeline with minimal modifications. We tested the Q-learning
and DQN implementation. However, our approach can be adapted to other RL
algorithms. We used chunk-based compression techniques to reduce the demands
of storage and memory during pre-training and sampling.

• Capability-Guided Exploration in Reinforcement Learning.

We present two capability-guided exploration strategies, RLC and RLC-Policy,
as alternatives to pure random exploration in Reinforcement Learning. Human
capabilities are defined as preconditions for robot actions. RLC uses this prior
knowledge and the results of capability estimation, while RLC-Policy further
incorporates the pre-trained policy derived during the training state of capability
estimation.

• Implementation of Human-Robot Collaboration Experiments.

We present three collaborative tasks for the need to evaluate the human-capability
adaptive learning framework. Two of these tasks are simulated, involving robot
navigation and manipulation. The navigation task represents static domains,
requiring the robot to guide a collaborator from a fixed starting point to a fixed

6 Introduction

endpoint. In the manipulation task, uncertainty and dynamic environments
are introduced, with the robot and collaborator jointly sorting randomly placed
objects on a table. The third task operates in the real world and is a variation
of the Scavenger Hunt Game benchmark. This task challenges the robot and
collaborator to locate multiple randomly positioned objects within various rooms.

1.3 Thesis Outlines

Chapter 2 introduces the background of this thesis. Chapter 3 introduces related
work. Chapter 4 introduces the estimation strategies and the estimation framework.
Chapter 5 introduces the experimental setup and evaluations. Chapter 6 summarizes
the experimental results, limitations, and introduces the future work.

Chapter 2

Background

2.1 Markov Decision Process

Task planning for robots can be viewed as a sequential decision-making problem in an
uncertain system. Markov Decision Process (MDP) is a model that describes sequential
decision-making and rewards in a system where the Markov property is met. The
Equation (2.1) illustrates the case where Markov property is satisfied, that is, the
transition probability of current state st+1 depends only on the previous state st rather
than the state history:

P (st+1 | s0, s1, . . . , st) = P (st+1 | st). (2.1)

A MDP is represented as a tuple D = ⟨S, A, Pa, Ra⟩ to describe the stochastic
process, where S is a set of states, A is a set of actions, Pa(s, s′) is the probability
of state transition from the state s = st to the next state s′ = st+1 by executing the
action a:

Pa(s, s′) = P (st+1 = s′ | st = s, at = a). (2.2)

Ra(s, s′) is the reward function, representing the immediate reward the agent
received after transitioning from state s to the next state s′, due to action a.

MDP is the foundation of Reinforcement Learning that we will introduce next. The
random variables present in MDP shape the feature space for our capability estimation.

8 Background

Agent Environment

State

Reward

Action

Fig. 2.1 The diagram of Reinforcement Learning

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning method that enables an agent
to learn optimal behaviors through observations and interactions between the agent
and the environment. MDP is a formal representation of such an environment. As
diagrammed in Figure 2.1, the agent is in an interactive environment described by the
state space S, and the environment is observable for the agent by perceiving the state
s ∈ S. The agent can choose an action a ∈ A, and then the environment rewards the
agent based on the reward function Ra. The goal of the RL agent is to learn a policy
π, which indicates the agent to perform an action a given a state s: a = π(s). The
Equation (2.3) shows the deterministic policy. The Equation (2.4) shows the stochastic
policy, where π(a | s) represents the probability to choose the action a given the state
s:

π : A× S → [0, 1] (2.3)

π : A× S → R. (2.4)

The goal of the agent is to maximize the expected cumulative reward, represented
by the return R(τ), where the trajectory τ denotes a sequence of states and actions. A
policy is considered optimal if its return is greater than or equal to the return of any
other policy, for all states.

One kind of return is the n-steps undiscounted return:

R(τ) =
T∑

t=0
rt. (2.5)

Another kind of return is the n-steps discounted return, where γ is the discount
factor:

R(τ) =
T∑

t=0
γtrt+1. (2.6)

2.2 Reinforcement Learning 9

In the rest of this thesis, the expected return is considered as the n-steps discounted
return. We introduce the state value function V π(s) that denotes the expected return
if the agent starts in state s and follows the policy π:

V π(s) = Eτ∼π [R(τ) | s0 = s] . (2.7)

The state-action value function Qπ(s, a) denotes the expected return if the agent
starts in state s, takes an action a, and then follows the policy π:

Qπ(s, a) = Eτ∼π [R(τ) | s0 = s, a0 = a] . (2.8)

An optimal policy π∗ maximizes the expected return:

π∗ = arg max
π

∑
s∈S

V π(s). (2.9)

Similarly, we can define the optimal value function V ∗(s) and Q∗(s, a) when the
optimal policy π∗ is applied:

V ∗(s) = max
π

Eτ∼π [R(τ) | s0 = s] (2.10)

Q∗(s, a) = max
π

Eτ∼π [R(τ) | s0 = s, a0 = a] . (2.11)

2.2.1 Model-based Learning

In model-based learning, the Markov Decision Process (MDP) is either known to the
agent or the agent actively learns a model of the environment. That is, the agent knows
the probability of state transition Pa and the reward function Ra as well. Based on
this assumption and the Markov property, the expected maximized values in Equation
(2.10) and (2.11) can be further solved when both state space and action space are
finite:

V ∗
γ (s) = max

a∈A

∑
s′∈S

P a
s→s′(Ra

s→s′ + γV ∗
γ (s′)) (2.12)

Q∗
γ(s) = max

a∈A

∑
s′∈S

P a
s→s′(Ra

s→s′ + γ max
a′∈A

Q∗
γ(s′, a′)). (2.13)

The above equations (2.12) and (2.13) are also called Bellman Optimality Equations,
which are the foundation of typical model-based RL methods such as policy iteration

10 Background

and value iteration. While this method is relevant, it will not be further used in this
work because our work is model-free, which will be explained in the subsequent section.

2.2.2 Model-free Learning

The state transition Pa and reward functions Ra in MDP are usually hard to know in
actual tasks. The model-free learning algorithms allow the agent to learn the policy
without being aware of state transition and reward functions. Model-free learning
methods can be divided into two categories: Value-based Learning and Policy-Based
Learning. The Value-based approaches learn the state-action value function (also
named value function or Q-function) Q∗(s, a). The Policy-Based methods directly learn
the policy function π(a | s).

The Monte Carlo (MC) method is a model-free learning algorithm that replaces
explicit policy evaluation by learning the approximate value function based on multiple
sampling of the complete trajectory.

Q-learning is a Temporal-Difference (TD) method. Compared with MC, the TD
method updates the value function estimation at every step, which is more efficient.
The optimal Q-function obeys the following Bellman Optimality Equation:

Q∗(s, a) = Es′∼Pa

[
Ra(s, a) + γ max

a′
Q∗(s′, a′)

]
. (2.14)

In scenarios where both the state space and action space are finite, the Q-function
can be conveniently represented using a table structure (shown in Figure 2.2). The size
of the table is determined by |S| × |A|. Each entity (Q-value) in the table corresponds
to a specific state-action pair and represents the estimated value of that action in
the given state. At the beginning of the training, a table Q̃ is initialized with any
values. Then, by updating Q̃ during the learning process, the Q̃ converges to Q∗. The
Algorithm 1 outlines the iterative process of updating the Q-values based on observed
rewards and estimated future rewards.

Q-table

Fig. 2.2 An example of Q-table where S = {s0, s1} , A = {a0, a1, a2}

In Reinforcement Learning, Behavior Policy is an agent’s policy to select actions in
a given state. The primary role of the behavior policy is to explore the environment

2.2 Reinforcement Learning 11

Algorithm 1: Q-Learning
Input: the environment E, the number of learning episode episodes, the

learning rate α, the discount factor γ
Output: value function Q(·)

1 Q(s, a) = 0 for all s ∈ S and a ∈ A(s)
2 for i← 1 to episodes do
3 Observe initial s0 from E
4 s← s0
5 repeat
6 Choose action at using policy derived from Q (e.g., ϵ-greedy)
7 Take action a and observe r, s′ from E
8 Q(s, a)← Q(s, a) + α(r + γ maxa′ Q(s′, a′)−Q(s, a))
9 s← s′

10 until st is terminal;
11 return Q

and gather experience by interacting with it. Target Policy is the policy the agent aims
to learn or optimize based on the experience it receives.

On-policy learning algorithms evaluate and improve the same policy used to select
actions. In other words, these algorithms employ the same policy in both Behavior
Policy and Target Policy. In contrast, Off-Policy learning algorithms employ different
policies for evaluating and action selection. Q-learning is an Off-Policy method since
it uses ϵ-greedy for action selection whereas greedy policy is for evaluating. The
ϵ-greedy shows in (2.15), in which the agent chooses optimal action given the state s

with probability 1− ϵ and chooses a random action from A with probability ϵ. The
Off-policy methods balance the two behaviors of exploring the reward of each action
and exploiting the action with the highest current reward, thus preventing the agent
from becoming trapped in a local optimum:

π(s) =

arg maxaQ(s, a), Pr = 1− ϵ

rand(A), Pr = ϵ.
(2.15)

The Softmax method is another algorithm for selecting actions, transforming a set
of Q-values into a probability distribution. Instead of only performing action with
the highest reward, Softmax assigns a non-zero probability to all actions, even those
with lower estimated values, and the probability of each action is proportional to
its estimated value. The algorithm of Softmax is shown in Equation (2.16), where
t denotes the positive parameter called temperature. For high t, probabilities of all

12 Background

actions being chosen converge gradually, and the specificity of actions will decrease.
For low t, the probability of the action with the highest reward being chosen tends to
be 1:

P (a | s) =
exp Q(s, a)

t∑
ai∈A

exp Q(s, ai)
t

. (2.16)

The Reinforcement Learning algorithms involved in our work are Off-policy and
model-free. Q-learning is one of our implementations in capability estimation. The
Softmax method is applied to transform action values into probabilities.

2.3 Deep Reinforcement Learning

In the previous Section 2.2, we introduced Reinforcement Learning methods that rely on
finite state and action spaces. Such approaches focus on identifying the optimal action
for each discrete state and typically store policies in tables or databases. However,
these methods have limited generalization abilities and pose challenges when dealing
with large or continuous state spaces, requiring extensive storage capacity.

Enviroment Copy every
 steps

Prediction
Network

Target
Network

DQN loss function

Replay
Memory

Gradient loss Predicted Target

Fig. 2.3 A diagram of the DQN algorithm

Deep Reinforcement Learning methods, such as the Deep Q-Network (DQN)[39],
use deep neural networks (DNN) to approximate the value function Q∗, denoted as
Q(s, a, ω), where ω represents the learned weights of DNN during training. Figure 2.3
shows the data flow of DQN. The primary objective is to train Q(s, a, ω) to closely
approximate Q∗. The output of DQN is a |A|-dimensional vector. Each element in
this vector corresponds to the estimated value of a specific action. The generalization

2.4 Multi-Label Classification 13

ability of DQN arises from the ability of DNN to approximate complex functions and
capture high-dimensional patterns in the state space. The neural networks receive state
representations from the agent’s environment, and transform them through multiple
layers of interconnected neurons. These layers progressively extract and abstract
relevant features and patterns, capturing the underlying structure and dynamics of
the environment. As DQN learns from a diverse set of experiences and updates ω

accordingly, it gradually builds a rich internal representation of the environment. Such
a representation serves as a powerful tool for generalization, allowing DQN-based agents
to transfer their acquired knowledge and competencies to new, unseen environments or
tasks, enhancing their problem-solving abilities beyond the specific contexts they were
trained in.

Similar to Q-learning, one limitation of DQN is overestimating Q-values[22][23],
which can lead to suboptimal performance. In Double DQN presented by Hasselt et
al.[23], the target network is still used to select the action with the maximum Q-value,
but the main network is employed to estimate the Q-value associated with that action.
By separating the action selection and Q-value estimation, Double DQN mitigates the
overestimation problem.

We used DQN as one of the implementations for our capability estimation framework
in this thesis.

2.4 Multi-Label Classification

Classification tasks can be mainly divided into three paradigms: binary classification,
multi-class classification, and multi-label classification, also known as binary learning,
multi-class learning, and multi-label learning. The objective of binary classification
is to train a model to determine whether an instance belongs to a specific class.
Multi-class classification expands the binary classification approach by generating
more than two distinct classes or categories as the output. Binary classification and
multi-class classification are categorized as single-label learning problems, where each
instance is associated with a single label. This distinction sets single-label learning
apart from multi-label learning, where objects can be associated with multiple labels
simultaneously.

Solving multi-label learning is more challenging than single-label learning because
of the computational and query costs associated with the exponentially growing
number of label combinations and high-dimensional feature vectors. However, the

14 Background

critical advantage of multi-label classification is that it considers the dependencies and
correlations between labels.

Methods to address the multi-label learning problem can be broadly classified into
three categories: First-order strategy, Second-Order strategy, and High-Order strategy
[64][65]. The first-order strategy breaks down the multi-label learning problem into
separate binary learning tasks, ignoring the potential correlations between labels. In
contrast, the second-order strategy considers the relationships between pairs of labels.
However, this approach can sometimes be hindered by the specific combination or
sequencing of label pairs. The high-order strategy, on the other hand, recognizes
correlations across all labels, granting superior correlation-modeling and generalization
abilities compared to the first and second-order strategies. However, this strategy is
computationally intensive and less scalable.

Label Powerset (LP) transformation [59] is a representative example of a High-
Order strategy. This method tackles the multi-label learning problem by creating new
classes for each unique combination of labels, thereby transforming it into a multi-class
learning problem. LP method is simple and effective but is vulnerable to an imbalanced
dataset[18]. Furthermore, the number of label combinations will be up to 2n for n

labels, making it more suitable for scenarios with a smaller number of labels.
The above three strategies are categorized as problem transformation methods.

They work by transforming the multi-label learning problem into a form of the single-
label learning paradigm. In contrast, another category of approaches to address the
multi-label learning problem is the algorithm adaptation methods, which directly tweak
existing single-label learning algorithms to address the multi-label learning problem.

Estimating human capabilities in human-robot collaborative tasks can be viewed as
a multi-label learning problem. Because in practical collaborative scenarios, the robot
frequently has to understand and adapt to various dimensions of human capabilities.
We use the Label Powerset method in this work to address the multi-label learning
problem.

2.5 Naive Bayes Classifier

In Section 2.4, we discussed the application of multi-label learning for estimating
human capabilities. This process is subsequently transformed into single-label learning
using the LP method. However, to effectively tackle this single-label learning challenge,
the selection of appropriate methods or techniques is crucial.

2.5 Naive Bayes Classifier 15

A widely adopted single-label learning algorithm is the Naive Bayes (NB) classifier.
The NB classifier is frequently applied in various domains due to its simplicity and
efficiency. We assume that L is the set of label values and x is the feature vector.
According to Bayes’ theorem, the posterior probability P (l | x) that the feature vector
x belongs to class l is shown in Equation (2.17), where P (l) is the prior probability,
P (x | l) is the likelihood, and P (x) is the marginal probability:

P (l | x) = P (x | l)P (l)
P (x) . (2.17)

The NB method assumes all features in x are conditionally independent, resulting
in the likelihood can be expressed as Equation (2.18). By applying the total probability
rule, Equation (2.17) is updated to Equation (2.19):

P (x | l) = P (x1 | l)P (x2 | l) · · ·P (xn | l), (2.18)

P (l | x) =
∏

x∈x P (x | l)P (l)∑
l′∈L

∏
x∈x P (x | l′)P (l′) . (2.19)

Since the denominator of Equation (2.19) is equal for all classes, the class to which
the feature vector x most likely belongs is shown in Equation (2.20):

hnb(x) = arg max
l∈L

P (l)
∏
x∈x

P (x | l). (2.20)

However, suppose events within the feature vector were not observed during training.
In that case, these events will be assigned a zero probability, causing the whole Equation
(2.18) to be 0, and the classifier cannot continue processing. From another perspective,
events that do not appear in the training set are not entirely impossible. Smoothing
algorithms are applied to solve the zero probability problem and improve computational
accuracy. The Equation (2.21) shows Laplace smoothing, where count(x) is the number
of occurrences of event x in the training data, α is the smoothing factor (generally
assigned with 1), N is the total number of observations, and |L| represents the number
of classes:

PLAP (x) = count(x) + α

N + |L| × α
. (2.21)

When calculating the product of multiple tiny probabilities, it is possible for the
result to approach zero, which can lead to numerical underflow issues. A common
approach to address this issue is to migrate the probabilities to the logarithmic space,

16 Background

as shown in Equation (2.22). By transforming the tiny probabilities to logarithmic
values, the multiplication operation is replaced by addition, which helps prevent the
occurrence of extremely small values that can cause underflow:

P (x | c)P (l) =
∑
x∈x

log P (x | l) + log P (l). (2.22)

2.6 Bayesian Network

A

B

C

D

Fig. 2.4 An example of Bayesian network

A Bayesian network is a probabilistic graphical model used to represent and reason
about uncertain knowledge. It consists of a directed acyclic graph (DAG) where nodes
represent random variables, and edges represent conditional dependencies between them.
Each node in the network is associated with a probability distribution that reflects
the uncertainty in the variable’s value given its parents in the graph. The quantitative
conditional dependencies are represented by the Conditional Probability Table (CPT).
Figure 2.4 shows an example of a Bayesian network. We define a Bayesian network
as a tuple ⟨G, Θ⟩, where G denotes the DAG structure and Θ denotes CPTs between
associated random variables. The MDP model (ct. Section 2.1) can be represented as
a Bayesian network, as shown in Figure 2.5.

Fig. 2.5 The Bayesian network of MDP

2.6 Bayesian Network 17

The Bayesian network effectively represents the conditional independence between
random variables. By constructing a Bayesian network, we can capture the interactions
between various factors that contribute to estimations of human capabilities, and
assess their conditional dependencies. As shown in Figure 2.4, we can deduce that the
random variables B and D are conditionally independent when the random variable A

is given, denoted as B ⊥⊥ D | A. Knowing the value of A eliminates the dependence
between B and D, and their relationship can be explained solely by their common
dependence on A. In other words, once we have the value of A, the knowledge of
B does not provide any additional information about D, and vice versa. We can
further derive that the joint probability of the random variables in Figure 2.4 is
P (A, B, C, D) = P (A)P (B|A)P (D|A)P (C|B).

The Bayesian network is a fundamental tool in this work, helping us understand
the correlations among random variables.

Chapter 3

Related Work

3.1 User adaptability

In this section, we investigate the definition of user adaptability, as the foundation
of our research. User adaptability of service robots has been widely researched in
the robotic community because users prefer robots that respect human conditions
and preferences [47]. User-adaptive robots aim to assist people by adapting their
behavior to meet users’ intentions, preferences, and personalities [24]. Furthermore,
user adaption also plays a significant role in building socially acceptable robots [53].

Adaptive systems are commonly characterized as either localized or personalized
[24]. Localization pertains to adaptive systems considering broad aspects, such as
regional or cultural characteristics. Conversely, personalization involves the narrow
scope of adapting, like the capabilities and preferences of a group of users or a specific
individual. Preferences have been organized in a taxonomy for physically assistive
robots involving human capabilities as parameters that affect how robots’ actions are
performed [10].

While human capabilities and preferences are frequently examined collectively, we
believe that they merit separate consideration instead of merely treating capabilities
as parameters of preferences. Human capabilities are objective, involving the physical
and cognitive skills an individual possesses, from fundamental motor abilities such as
walking and object manipulation to more cognitive expertise such as problem-solving,
language interpretation and expression, emotional understanding, and the ability to
learn. Human preferences, on the other hand, are subjective and individual-specific.
They often refer to the decisions made given a variety of options. This decision-making
process could be influenced by personal experiences, social surroundings, cultural
backgrounds, inherent personality traits, and emotions. Common topics involving

20 Related Work

collaborators’ preferences include food choices, favored activities, and the order of
arranging objects.

Finally, let us examine the definition of adaptability through the output of adaptive
systems. Martins et al. define adaptability as the ability of a system to automatically
modify its operating parameters accordingly to perform functions [36]. Mehdi et al.
conceptualized user adaptability as the robot’s capacity to adjust its parameters in
response to collaborator information [24]. Thus, the target of user adaptation can be
specific parameters of end effectors, such as the mobile robot’s movement speed or the
speaker’s volume. More importantly, user adaptation also applies to more abstract
layers in the robotic systems, such as personalized behaviors and high-level task
planning among multiple agents. This thesis mainly focuses on high-level single-agent
user adaptation with personalization.

3.2 System Structure

User
Feedback

User Interface

Decision-
making with

User
Knowledge

Actions

Interactions

Fig. 3.1 General structure of user-adaptive robotic system

For effective user adaptation in robotic systems, one must take into account the roles
played by the robot, the user, and the environment. Figure 3.1 shows the general struc-
ture of the user-adaptive robotic system. In human-robot collaborative tasks, the robot
typically serves as the user interface, equipped with sensors to observe information and
actuators to perform actions. The decision-making component, commonly embodied by
a task or motion planner, processes the feedback and information received from the user
interface to formulate adaptive actions or motion trajectories given the user knowledge.
User-adaptive systems require knowledge of the user, interaction system, and task [42].
Therefore, user models are commonly integrated with the decision-making component.
These user models provide insights into the unique characteristics of the user, enabling
adaptive interactions between the robot and its collaborators. In the next section, we
will delve into the taxonomy of user models.

3.3 User Model 21

3.3 User Model

User models serve as an explicit knowledge base, enabling adaptive systems to access
the necessary information for localization and personalization. These models encode
relevant user attributes, such as preferences and capabilities, to support the system
to generate personalized behavior that matches the user’s intentions and preferences,
consequently boosting user satisfaction and acceptance. User models can take on various
representations, ranging from pre-defined rules to probabilistic models that integrate
representation with reasoning. It is interesting to track mutable user information and
characteristics in human-robot interaction (HRI). Thus, inspired by studies [36] and
[24], we categorize the persistence of user models into three types: Static User Model,
Dynamic User Model, and Implicit User Model.

3.3.1 Static User Model

User
Feedback

Training (One-time)

User InterfaceDecision-
making

Actions

Interactions

User Model

User Knowledge

Developing In advance (One-time)

Prior Knowledge

Fig. 3.2 The structure of static user model

Figure 3.2 shows the structure of the static user model. Static models are intuitive
in user-adaptive systems, where information about the user is collected during or
even before the interaction and remains fixed throughout, resulting in reasonable and

22 Related Work

repeatable adaptions. This information can be obtained through feature extractions,
the prior knowledge, and questionnaires.

Some service robots enhance user engagement and acceptance by observing user
states and implementing pre-defined adaptive behaviors[21][38]. The decision process
can be rule-based matching or inferred by finite state machines. Memorizing user
characteristics and adapting conversation to the user’s preferences in HRI can help
improve user satisfaction. Churamani et al.[11] developed an adaptive robot that can
generate personalized dialogues by training faces and voice recognition models, as well
as memorizing personal information in the knowledge base.

Static user models can provide users with personalized assistance in human-robot
collaborative manipulation. Klee et al.[31] present an assisting robot for dressing a
user. The knowledge base of their system stores user constraints used to select motions
adaptively. Gao et al. [17] present an approach to building kinematics models of the
upper body. The robot can consider the user’s moveability and produce adaptive
motions to help the partner dress. In [48], the user model contains children’s personal
information and the history of dance moves, which supports producing personalized
dance performances for kids.

Questionnaires can be used to train user models to learn user preferences. In [13],
each participant needs to fill out a questionnaire about preferences, and the system
will match users to predefined user profiles. The parameters of the robot’s actions are
adjusted according to the user’s personas. In [3], the authors compared two techniques
that establish users’ personalities initially: questionnaires and linguistic models. A
symbol-based reasoning system builds a user model based on the user’s answers [8][9].

Robust prior knowledge is a solid foundation for causal analysis in user models and
behavior optimization in robotic systems. In most collaborative tasks, the observation
space and planning space are constrained by the environment, the scope of interactions,
sensors, and actuators. For instance, if a collaborator struggles to read text on a display.
An assistant robot, if solely programmed to read out text, would perform that action
rather than modify the font size for better visibility. The robot does not consider issues
such as reading disabilities or language barriers the collaborator faces, as they are
irrelevant to the task. Hence, when the system observes that the collaborator struggles
to read or when the robot takes on the task of reading aloud, it might reasonably infer
a negative assessment of the collaborator’s visual capabilities. Simultaneously, the
predefined fallback action of reading the text can provide positive assistance to the
collaborators. Our work applies expert knowledge to define preconditions for certain
robot actions relevant to human capabilities.

3.3 User Model 23

3.3.2 Dynamic User Model

User
Feedback

Updating

User InterfaceDecision-
making

Actions

Interactions

User Model

User Knowledge

Fig. 3.3 The structure of dynamic user model

Figure 3.3 shows the structure of the dynamic user model. Dynamic user models
facilitate the updating of knowledge pertaining to one or multiple users across succes-
sive interactions. The methods behind such models typically involve learning from
interaction histories and tracking over extended periods. By continuously updating
the user model, the system can adapt to shifting user characteristics and preferences
throughout the interaction process.

A long-term adaptive dialog system implemented by representing user interaction
history through probabilistic models [40]. Aylett et al [5]. present an empathic robot
tutor that continuously tracks features that reflect the user’s knowledge level to adjust
relevant interactions. By modeling the limited historical steps of collaborators, the
robot can provide flexible policies when humans show adaptation; otherwise, output
policies are adapted to humans to gain trust [41]. In [12], the authors present a
system that estimates the collaborator’s mental states over interactions; meanwhile, the
collaborators can only get partial information. Their robot provides the collaborator
with the information he misses while minimizing the amount of communication to
reduce interruptions. In [49], the authors introduce Stochastic Context-Free Grammars
with synchronization-based adaptability. When a user indicates in an interaction that
they do not like the music the agent selects, the user’s preferences will be updated.
Service robots working in shopping malls can provide users with personalized guidance
services [27]. Their robot system stores personal information, conversation history, and
guidance history in databases. Similarly, the robot reserves user profiles via a database,

24 Related Work

such as capabilities, special needs, and preferences. Moreover, the robot automatically
updates their preferences as seniors age [44].

Sekmen et al.[51] implemented a Bayesian learning system that employed ques-
tionnaires to build initial probabilities of the network. The questionnaire collected
information such as the courses and meetings users participated in and their bev-
erage preferences at different times of the day. In their adaptive system, the robot
recommends beverages and reminds users to attend events in time based on their
preferences. The user preferences model is updated after every interaction. In contrast,
the non-adaptive version requires users to explicitly instruct the robot to set reminders.
Based on user ratings obtained from experiments, the results demonstrated a preference
for the adaptive system over the non-adaptive one.

In addition to tracking the user’s interaction history, adaptability can be generalized
to new users using user profiles and online analytics. Karami et al [28]. present an
MDP-based learning framework that contains dynamic user profiles. These profiles can
be initialized with domain knowledge and continue to be updated during interactions.

In contrast to the static model, which relies on fixed knowledge, the dynamic model’s
ongoing update mechanism in long-term collaborative tasks ensures more responsive
user adaptability. Moreover, adaptive systems can directly optimize the robot’s plan
or policy by considering user characteristics as latent variables that influence decision-
making, as an implicit user model. This approach eliminates the need for a large
number of explicit user model components in the system structure.

3.3.3 Implicit User Model

User
Feedback

User InterfaceDecision-
making

Actions

Interactions

User Model

Fig. 3.4 The structure of implicit user model

Figure 3.4 shows the structure of the implicit user model. These systems can interact
with users by using immediate feedback obtained during the interaction without
explicitly storing knowledge about user preferences. Given the blurred boundary

3.4 Decision-Making with User Knowledge 25

between the user model and decision-making in such systems, we discuss them further
in the next section.

3.4 Decision-Making with User Knowledge

Alongside considering the persistence and mutability of the user model, recent work
focuses on the methodologies used for decision-making strategies combining user models.
Beyond traditional symbolic reasoning, a plethora of machine learning techniques are
now available for enhancing decision-making processes.

3.4.1 Rule-based Methods

Rule-based systems typically involve human-written rules, logic programming, search
trees, and state machines. Such as finite-state automaton in [38] and pre-coded
transitions of behaviors in [27]. The developer directly controls the adaptive behavior of
these systems, exhibiting efficient adaptive decision-making in a controlled environment.
However, hand-crafted rules often rely on interpretable natural language or database
entries, limiting the ability to generalize and pose challenges when handling complex
tasks. The system’s adaptability to the environment is highly dependent on the
robustness of expert knowledge and the low complexity of the task.

3.4.2 Supervised Methods

Supervised learning is a category of machine learning methods that involves training an
algorithm on labeled data. Typical algorithms applied in user-adaptive robots include
Naive Bayes, support vector machines (SVM), decision trees, and neural networks.
Compared to rule-based methods, machine learning methods offer several advantages:

1. Processing Complex Data: Machine learning techniques excel at analyzing
high-dimensional and continuous state space features. They efficiently process
and interpret complex datasets, making them well-suited for adaptive challenges
involving intricate data structures.

2. Optimized Storage Efficiency: Instead of relying on extensive, explicitly
stored rules like rule-based systems, machine learning algorithms discern patterns
from the data, resulting in condensed and effective representations. It is especially
beneficial for robot systems with limited computational resources.

26 Related Work

3. Generalization Abilities: Machine learning models are trained on existing
data, allowing them to identify patterns and make informed decisions on new,
unseen data. This generalization ability ensures that the models remain adaptive
and effective in varied and evolving scenarios.

Several research studies have explored the application of SVM in different domains.
For instance, in [3], the authors utilize SVM to predict a user’s personality based on
their utterances. Meanwhile, in [26], the authors implement SVM to predict which
toppings customers will choose in a collaborative sandwich-making scenario, based
on their gaze patterns. The features considered for prediction include the number
of glances, duration of the first glance, total duration of gaze, and the most recently
glanced item. SVM method can be computationally intensive and require careful
tuning of hyperparameters for optimal performance.

Collaborative filtering is a popular machine learning technique employed in recom-
mendation systems. It operates under the assumption that users who have agreed in
the past will likely agree in the future about their preference for certain items. Thus,
it predicts user’s preferences according to patterns from users with similar tastes. This
technique makes the pre-trained user model adapt to new users rapidly by matching
known characteristics. Abdo et al. present a system that learns user preferences from
pre-collected ratings and makes predictions using collaborative filtering [1]. However,
this method has some drawbacks. One is the cold start problem, where new users
or items have no or limited historical data available, making it difficult to provide
accurate recommendations. Other challenges such as the sparsity problem, where the
number of available ratings for items is much smaller than the total number of items,
making it challenging to find similar users or entities for the recommendation.

Bayesian inference has been applied to estimate user intention [37]. Martins et al.
introduce a user-adaptive service-selecting model using Bayesian programming [34],
where the Bayesian inference can support agents to plan personalized behaviors by
creating a probabilistic model that predicts collaborators’ behavior based on their
past behavior, environmental factors, and other relevant information. In this thesis,
Bayesian inference does not yield the action executed by the robot, which is instead
obtained through RL. It is used as a side-effect of RL, to estimate human capabilities
as action preconditions. Martins et al. present a distributed learning system to infer
the characteristics of users [35].

3.4 Decision-Making with User Knowledge 27

3.4.3 Reinforcement Learning Methods

Supervised learning is learning from a labeled training set. However, procuring a
vast and representative set of learning samples in scenarios involving interactions
with both the environment and humans is often challenging. Reinforcement Learning
agents, in contrast, actively explore their environment, gaining experience and behavior
norms. Their primary goal is to determine actions that maximize cumulative rewards.
Consequently, Reinforcement Learning offers a flexible way to bridges the gap left by
supervised learning, especially when labeled training data is either limited or arduous
to acquire, which is a common challenge for robotic tasks.

The classic model-based RL learning methods are Policy Iteration and Value
Iteration. Karami et al. [29] propose an adaptive system that models the user profile
and activity in the MDP, where the robot analyzes every user’s feedback to learn user
preferences and update the reward function. Tseng et al. [56] propose an model-based
RL with online reward shaping for HRI, where the reward shaping is used to enhance
the reward from the human feedback.

Partially Observable Markov Decision Process (POMDP) is a mathematical frame-
work that models decision-making problems where the system’s state cannot be fully
observed. POMDP extends the MDP by introducing the concept of observation, which
captures the fact that the agent’s knowledge of the state is incomplete. Taha et al.[54]
propose a POMDP model encoding multiple HRI variables to infer user’s intentions
has been applied to an intelligent wheelchair. Broz et al.[7] introduced a time-indexed
POMDP model that contains hidden user intentions, improving the quality of interac-
tions. Their example domains are a simulated elevator-riding task and a simulated
driving task. Michelangelo et al.[16] propose a work based on Mixed Observability
Markov Decision Process (MOMDP), which uses hierarchical states to simplify the
POMDP computation. Their system monitors user’s movements and adjusts to their
walking speed and engagement level. Lam et al.[32] presented a POMDP framework
incorporating the human model, machine dynamics model and observation model to
determine appropriate feedback from controllers, and overriding operations. They em-
ployed simulations to show the benefits of this framework. Wang et al. [62] formulated
the decision-making process as a POMDP and presented a framework to infer the
intention of human partners based on their movements. They verified their work on
a human–robot table tennis domain with nonlinear and stochastic human behaviors.
Görür et al. [20] presented an autonomous adaptive framework combined with the
Anticipatory Partially Observable Markov Decision Process (A-POMDP) model for
short-behaviors and a Bayesian Policy for long-term changing human characteristics,

28 Related Work

where the experiment is a product inspection and storing job performed by humans
and robots collaboratively in a simulated factory environment.

As the number of states increases, the number of possible belief states grows expo-
nentially, making it difficult to compute an exact solution to the POMDP. Consequently,
solving POMDP can be computationally intensive for problems with a large number
of states, posing challenges in deriving optimal solutions within a feasible time frame.
Our approach also infers latent variables, but does not require the POMDP modeling.
Instead, we address the state space using a standard MDP, while estimating capabilities
separately. Model-free learning is used online, avoiding complex POMDP planning.

In model-free Reinforcement Learning, the agent learns to make decisions based
on trial-and-error interactions with the environment. Therefore, adaptive behavior
can occur naturally through continuous interaction by receiving positive or negative
rewards to update the policy. Model-based approaches have difficulty modeling dynamic
environments and users, while model-free approaches solve this problem. Model-free
methods typically involve learning the value function or learning the policy. Tapus
et al. [55] propose an adaptive system that learns user personality through three
main parameters: distance of interaction, movement speed, and verbal communication
(volume and speed of speech). They used a Policy Gradient Reinforcement Learning
algorithm to optimize these three parameters according to the personality of the user
in order to maximize user performance. Q-learning is also a widely used algorithm
regarding HRI. Hemminahaus and Kopp [25] use Q-learning to adjust the robot’s level
of assistance to help the human complete tasks. Park et al. [43] use Q-learning to
generate personalized robot’s action to improve children’s engagement and outcomes.
Maroto-Gómez et al. [15] propose a Q-learning system with dynamic learning rates
to produce personalize robot’s behaviors based on the people around it. Standard
Q-learning faces the challenge of learning massive amounts of states. Castro-González
et al. [14] employ Object Q-learning [33] to reduce the number of states that the agent
needs to learn. Deep neural networks with the generalization ability are also a popular
approach to solve this challenge. In [45], the robot used the deep policy network to
learn social behaviors. However, there is no guarantee of convergence when applying
neural networks as the function approximator [6][33].

Interactive Reinforcement Learning (IRL) is an extension of traditional Reinforce-
ment Learning where the learning process is augmented by interactions with a human
teacher or advisor. Instead of relying solely on rewards from the environment, the agent
can receive guidance, feedback, or even corrective actions from the humans, potentially
expediting the learning process and aligning the agent’s behavior with human expecta-

3.5 Summary 29

tions. Senft et al.[52] present a supervised Reinforcement Learning framework to learn
personalized behaviors from expert guidance. Tsiakas et al.[57] propose an IRL frame-
work that combines explicit feedback with implicit human-generated feedback. Such
approaches allow the robot to adapt flexibly to different environments and situations
because of facilitating human-robot interactions. Humans can provide more detailed
information about the environment and the task. However, this collaborative form
of learning requires human input and supervision. The need for human involvement
can also be inefficient if the human guidance and feedback are not consistent or if the
robot demands to be constantly supervised and corrected. The collaborator’s guidance
and feedback may also be biased toward a particular outcome. This thesis, instead,
aims at adaptation without human demonstration.

3.5 Summary

User adaptability plays an essential role in developing socially acceptable service robots.
There are various ways to implement adaptive robots. We reviewed user adaptability
in service robots, which is the main theme of this thesis and essential for building
socially acceptable robots. Human capabilities are a more objective perspective than
personal preferences. Nevertheless, limited research involves online adaptation of
human capabilities in high-level task planning, which is the central focus of this thesis.

User models serve as knowledge bases, enabling robots to optimize their behavior,
and ensuring alignment with individual users’ preferences and intentions. Inspired by
existing research, we divide the persistence of user models into three types: static,
dynamic and implicit. Static models use information collected during or before inter-
actions and remain fixed throughout, while dynamic models update the knowledge
related to users over time. Implicit models do not require explicit user models and
instead use direct feedback obtained during the interaction to optimize the robot’s
policy. We review three decision-making methods: rule-based systems, supervised
learning, and Reinforcement Learning. The adaptability of intelligent service robots is
crucial to their successful deployment in real-world environments, which are inherently
uncertain. Although traditional modeling methods based on domain knowledge and
questionnaires can provide stable adaptive policies in controlled environments, dynamic
user models are more effective in long-term adaptive and multi-agent collaboration
tasks. Learning is a possible solution to dynamic environments where responses to all
different situations cannot be pre-programmed. Our work includes explicit, predefined
domain knowledge to clarify the correlation between human capabilities and robot

30 Related Work

actions. However, we apply online Reinforcement Learning guided by independent
capability estimation in our framework to support the agent in continuously improving
its policy to achieve dynamic user adaptability.

Robust adaptability, quick adaptation to new users, task generalization, accep-
tance of guidance from non-experts, and adaptive multi-agent interactions are central
challenges in this field. Overall, the success of service robots in the home and public
domains hinges on their ability to adapt to diverse user needs and preferences.

Chapter 4

Human Capability Estimation
through Reinforcement Learning

4.1 Introduction

In this chapter, we explore the challenges robots face when estimating human capa-
bilities and then use that knowledge to enhance user adaptability in human-robot
collaboration tasks. We introduce a framework for estimating human capabilities that
combines Bayesian inference and online Reinforcement Learning. Instead of focusing on
the causes behind human capabilities, our approach prioritizes the robot’s perspective.
One of our goals is to determine the specific human capabilities required for each
collaborative action that the robot can perform. Let us review the scenario of a robot
providing a guided tour. The robot can drive at high speeds, requiring the person to
keep up at a similar pace. However, due to factors like age, injuries, or disabilities,
the person may be unable to move quickly. Rather than evaluating the physical
reasons (e.g., diseases and pathology) behind these limitations, our framework focuses
on the preconditions of the robot’s actions. If the robot gathers sufficient evidence
indicating that the person cannot benefit from a certain action, it will disable that
action accordingly.

The capability estimation framework we propose introduces an additional abstrac-
tion layer, orthogonal from the observable state space, and not directly perceivable
by the robot. Capabilities are inherent properties of individuals, making them latent
variables. We introduce a Bayesian method for capability estimation, which gathers
evidence through RL, avoiding the demands for the more complex and computationally
intensive model of POMDPs. Based on the previous example of the guided tour, the RL
agent may receive a low reward when it drives fast, as it leaves the person behind. The

32 Human Capability Estimation through Reinforcement Learning

agent connects this information to the observable state space and learns that driving
fast is not a suitable choice in the given location with that specific person. However, to
generalize this knowledge and understand that driving fast is unsuitable for this person,
the agent would need to receive low rewards across various locations consistently. With
the incorporation of capability estimation, the latent capability of the person to move
fast can be inferred as negative at an early stage. Once sufficient evidence has been
accumulated, the driving-fast action can be universally deactivated, regardless of the
location. Such a system makes informed decisions based on the person’s capabilities,
enhancing the robot’s efficiency and adaptability in human-robot collaboration tasks.

4.2 Problem Definition

We build on the common task model of a MDP denoted as D = ⟨S, A, Pa, Ra, γ⟩, where
S is a set of states, A is a set of actions, Pa is the transition function, Ra is the reward
function, and γ is the discount factor. We augment this model with the collaborator’s
capabilities as preconditions to robot actions. For instance, in the tour guide example,
the robot’s action drive_fast depends on the collaborator’s capability to move_fast.

We define L = {λ1, λ2, · · · , λn} as the label set of n human capabilities. In the
tour guide example, L = {move_fast}. For each capability λi, we define a binary
random variable ci ∈ {0, 1} to indicate the capability presence, where ci = 1 represents
the human has the corresponding capability λi, and ci = 0 otherwise. Thus, a
specific set of human capabilities can be represented as an n-dimensional binary
vector c = {c1, c2, · · · , cn} = {0, 1}n, In the tour guide example, we introduced one
human capability move_fast, hence, c = {1} represents the capability set where the
collaborator can move fast, and c = {0} vice versa. We refer to such a binary vector as
a capability combination. For n capabilities, there are up to 2n capability combinations.

We define for each action the subset of the capabilities that are required for
that action, and denote it with C(a). In the tour guide example, C(drive_fast) =
{move_fast}. At each time step t, an action a is considered enabled if all capabilities
in C(a) are present. Mathematically, the set of enabled actions at time t is defined as
At = {a ∈ A | ∀ci ∈ C(a); ci = 1}.

We define the policy π of the RL agent as π(a | s, c), which is affected by both state
and capabilities, represented by a Bayesian network in the Figure 4.1. The primary
objective of the RL agent is to calculate an optimal policy, denoted as π∗(a | s, c)
which maximizes the expected return G = Eπ

[∑T
t=0 γtrt+1

]
in the given task, where rt

is the immediate reward at time step t, extracted from Ra. The policy is constrained

4.3 Capability Estimation Strategies 33

to select actions exclusively from the set of enabled actions, which corresponds to the
domain of the random variable A in π(A = a | s) is At.

Fig. 4.1 The Bayesian network of the policy (π) affected by human capabilities.

The explicit estimation of the probability of human capabilities offers the robot
the ability to accumulate evidence over time. When the probability of a particular
capability P (ci | evidence) is reliably low, the robot can assume the absence of
capability ci and disable the corresponding actions according to C(a), irrespective
of the current state partially or entirely. Consequently, an essential aspect of our
framework lies in accurately estimating human capabilities. In the subsequent section,
we will provide a detailed description of our approach to address this crucial aspect.

4.3 Capability Estimation Strategies

We propose indirectly estimating the probability of human capabilities through the
underlying continuous RL process. In this section, we introduce a Bayesian framework
for capability estimation and will explore the implementation details and offline training
in subsequent sections.

Fig. 4.2 The Bayesian network of MDP

The Bayesian network shows the correlation between states and actions within the
standard MDP model, as shown in Figure 4.2. The vector of capabilities is considered
as a latent variable, thus it cannot be observed online directly. The training and testing
process of the capability estimation model is as follows: The RL agent is pre-trained
(ct. Section 4.5.2) under known human capabilities firstly, converging to the optimal
policy π∗(a | s, c). Then, the robot is deployed with a new user and expected to adapt

34 Human Capability Estimation through Reinforcement Learning

to the user’s actual capabilities as quickly as possible. The underlying RL process
selects actions while improving the policy and thereby generating a sequence of states,
actions, and rewards. We define the trajectory τ as the feature vector, comprising a
sequence of tuple (st, at, st+1, rt+1), where st denotes the state at time t, at denotes
the action performed by the agent at time t, st+1 denotes the state at time t + 1, the
rt denotes the immediate reward at time t + 1. The trajectory does not contain an
entire episode, and the entire task is possibly infinite, but we consider it in batches of
length l. Given such a trajectory as the evidence, we can obtain estimates of human
capabilities based on Bayes’ theorem shown in Equation (4.1), where Pr(c) represents
the prior probability that expresses our beliefs about the capabilities c before we see
any evidence:

P (c | τ) = P (τ | c)Pr(c)
P (τ) . (4.1)

Although τ contains all observable information in the standard MDP, not all
variables within this information are necessary for capability estimation. To explore
the influence and correlations among these variables on capability estimation, we
propose the following three estimation strategies: EST-Action, EST-State-Policy, and
EST-Policy.

EST-Action: We define the trajectory τa to be a sequence of the historical actions
taken:

τa = {a1, a2, ..., al}. (4.2)

We disregard connections between actions caused by the state transition function
Pa and assume that all actions in trajectory τa are conditionally independent. The
Bayesian network depicting the correlation between the capability vector and actions
is shown in Figure 4.3. Therefore, Equation 4.1 derives to Equation (4.3) according to
the Naive Bayesian:

P (c | τa) =
∏l

i=1 P (ai | c)Pr(c)∑
k∈2c

∏l
i=1 P (ai | k)Pr(k)

. (4.3)

Fig. 4.3 The Bayesian network of EST-Action

4.3 Capability Estimation Strategies 35

The likelihood P (ai | c) in Equation (4.3) is the action distribution given capabilities
c. To obtain that, we use the sampling method over a number of episodes in which the
RL agent executed the optimal policy π∗(a | s, c). We assume that the action space
is discrete, thus, by setting action counters to track the occurrences of each action,
we can compute the approximate action distribution based on Equation (4.4). The
parameter w determines the number of episodes of the sampling process. The Behavior
Policy of the value-based RL agent can adopt the Softmax method, resulting in the
opportunity to be performed for all actions. Smoothing algorithms can also be applied
to Equation (4.4) to avoid zero counts in computing, ensuring a more robust estimation
of action probabilities:

P (ai | c) =
∑

w count(ai) ∼ π∗
c∑

w

∑
a∈A count(a) ∼ π∗

c
. (4.4)

EST-State-Policy: We define the trajectory τπ includes the sequence of tuple
consisting of states and actions experienced by the agent:

τπ = {(s0, a1), (s1, a2), ..., (sl−1, al)}. (4.5)

Fig. 4.4 The Bayesian network of EST-State-Policy

The Bayesian network presented in Figure 4.4 illustrates correlations among random
variables in this strategy. We disregard the effects of the state transition function Pa,
in other words, the states are considered conditionally independent. The capability
vector acts on every state and action, except for the final state. Therefore, Equation
4.1 derives to Equation (4.6) according to the Naive Bayesian:

P (c | τπ) =
∏l

i=1 π∗(ai | si−1, c)P (si−1 | c)Pr(c)∑
k∈2c

∏l
i=1 π∗(ai | si−1, k)P (si−1 | k)Pr(k)

. (4.6)

Similar to Equation (4.4), Equation (4.7) shows that the approximate state distri-
bution can be obtained by tracking the occurrences of each state given the optimal
policy π∗(a | s, c). Thus, unlike EST-Action, which requires a discrete action space,

36 Human Capability Estimation through Reinforcement Learning

EST-State-Policy is applicable when dealing with discrete state space:

P (si | c) =
∑

w count(si) ∼ π∗
c∑

w

∑
s∈S count(s) ∼ π∗

c
. (4.7)

EST-Policy: The trajectory τπ used in EST-State-Policy is still employed in this
strategy. However, we take into account the effect of state transition function Pa, and
capabilities are considered only to affect actions. The Bayesian network representing
this strategy is shown in Figure 4.5. Consequently, the likelihood in Equation 4.1, for
a given policy π, can be expressed as follows:

P (τπ | c) =P (s0)π∗(a1 | s0, c)Pa(s1 | s0, a1)π∗(a2 | s1, c) · · ·
Pa(sl−1 | sl−2, al−1)π∗(al | sl−1, c).

(4.8)

Fig. 4.5 The Bayesian network of EST-Policy

The probability of the trajectory can be factored into two parts, one that depends
on the capabilities, and one that does not:

P (τπ | c) = P (s0)
l−1∏
i=1

Pa(si | si−1, ai)
l∏

i=1
π∗(ai | si−1, c). (4.9)

The first two terms in the right-hand side of Equation 4.9, which do not depend on the
capabilities, appear in both the numerator and the denominator of Equation 4.1 (that
is, in both P (τπ | c) and P (τπ)) and therefore cancel each other out. The estimation of
the capabilities can then be obtained from the optimal capability-conditioned policy
and a trajectory through the Bayesian update:

P (c | τπ) =
∏l

i=1 π∗(ai | si−1, c)Pr(c)∑
k∈2c

∏l
i=1 π∗(ai | si−1, k)Pr(k)

. (4.10)

In EST-Policy, we circumvent the discretization required for the action and state
spaces in the earlier EST-Action and EST-State-Policy strategies. This enhancement
provides EST-Policy with a broader scope of applicability.

4.4 Capability Belief 37

4.4 Capability Belief

In the previous section, we presented estimation strategies for the capability combination
c. The resulting multi-label learning of Equation (4.3), (4.6) and Equation (4.10) can
be simplified in case of dependency between capabilities, but in this thesis, we apply
the Label Powerset method, thus, consider the full set of |2c| combinations.

By merging the joint probabilities of all capability combinations from Equations
(4.3), (4.6) and (4.10), we can compute the marginal probabilities for each capability
ci’s presence given the trajectory τ , denoted with P (ci = 1 | τ), which reflects the
degree of belief in the capability ci. This distribution can either be the direct output
from the estimation or be transformed into a binary outcome using the following two
policies:

Deterministic Policy: we define a set of thresholds d = {d1, d2, · · · , dn}, where
each threshold di corresponds the capability ci. Capabilities with a belief value greater
than or equal to the corresponding threshold are labeled as positive, while those falling
below are labeled as negative, as shown in Equation (4.11). Recall from Section 4.2
where we defined C(a) as the capabilities required to execute the action a. By applying
this deterministic policy, the set of enabled actions at time t can be further defined as
At = {a ∈ A | ∀ci ∈ C(a); P (ci = 1 | τ) >= di}:

∀ci ∈ c, ci =

 1 P (ci = 1 | τ) >= di

0 otherwise.
(4.11)

.
Stochastic Policy: The presence of a capability follows its probability distribution,

as shown in Equation (4.12), where the function rand() returns a uniform random
value between 0 and 1. By applying this stochastic policy, the set of enabled actions at
time t can be further defined as At = {a ∈ A | ∀ci ∈ C(a); ci ∼ P (ci = 1 | τ)}:

∀ci ∈ c, ci =

 1 P (ci = 1 | τ) >= rand()
0 otherwise.

(4.12)

4.5 Implementation and Deployment

We introduced the problem definition concerning estimating human capability proba-
bilities within the RL in Section 4.2. It was followed by the proposition of estimation
strategies in the context of RL in Section 4.3. Subsequently, in Section 4.4, we pre-
sented the output beliefs of capability estimation. In this section, we introduce the

38 Human Capability Estimation through Reinforcement Learning

Policy
Initialization

Capability-Guided
Exploration

Sampling
(if applicable)

Pre-training

Online RL
(Capability Estimation)

Fig. 4.6 The main components of our framework

implementation and deployment aspects of our capability estimation framework. Figure
4.6 summarizes the critical aspects of our framework and the data flow among them:

• Pre-training of the capability-conditioned policy π∗(a | s, c) under known capa-
bility combinations.

• Estimating state distribution S ∼ or action distribution A ∼ by sampling if
applicable.

• Initialization of the value function using the pre-trained policies.

• Online RL with a new user, while continually estimating capabilities using
EST-Action, EST-State-Policy, or EST-Policy.

• Taking advantage of the capability estimation for exploration.

The red highlights in Figure 4.6 represent the training process. The policy initial-
ization highlighted in yellow represents the initialization of online learning. The green
highlights procedures of online learning with capability estimation. We will go through
each aspect presented above. To provide a clear illustration, we will use the first task
from our experimental evaluation as an example and begin with its description.

4.5.1 Robot Navigation Task

In this collaborative navigation task, the robot has to lead a person to a desired location
with possible human help. The Gazebo1 simulation environment is shown in Figure
4.7. The robot starts from a fixed initial location, marked in green, and is asked to

1https://gazebosim.org/

4.5 Implementation and Deployment 39

lead the person to the goal location in blue. Two red doors provide shortcuts in the
environment. Only the collaborator can open doors. We introduce more details of the
implementation and evaluations in Section 5.2.

Fig. 4.7 The Gazebo world for the navigation task

The state space is composed of the robot’s position, the status {close, safe, far}
used to represent the distance between the robot and the collaborator, and whether
each door is open or closed. The action space consists of nine actions: four navigation
actions in the four cardinal directions both driving fast and slow, and the action
open_door to ask the collaborator to open doors and take the shortcut. Slow driving
actions make the robot move 1 unit per step, and fast driving actions result in 2 units.
Two human capabilities, L = {c_fast, c_open}, are considered, to enable the fast
navigation actions and the open_door action. The human model always catches up to
the robot if c_fast = 1, otherwise 1 unit per step. Significant time may be saved by
passing doors and taking shortcuts. Every step will result in a negative reward of -1.
Reaching the goal will bring a reward of 50. When the distance status is far (distance
exceeds 1 unit), the agent will be assigned a negative reward of -50.

To make the environment realistic, we introduce the following features: The robot’s
perceived human-robot distance is affected by Gaussian noise (µ = 0, σ = 0.05); Each
door may be open at the start of every episode with probability 0.1; The human model
makes slow steps even if c_fast = 1 with probability 0.05.

4.5.2 Pre-training

All estimation strategies we proposed in Section 4.3 require optimal policies π∗(a | s, c),
which can be trained offline under a sufficiently representative and known set of
capabilities. This training can be entirely model-free, executing the task in the real

40 Human Capability Estimation through Reinforcement Learning

world with a group of people with different known capabilities. However, such an
effort would be considerable and, in many cases, unrealistic. In this thesis, we rely on
simulations modeling the behavior of people with different capabilities, and on which
the training to learn the optimal policy π∗(a | s, c) can be carried out offline. The
simulation will inevitably be different from real users. However, the capability estimate
can be made tolerant to uncertainty by adjusting the set of thresholds d (ct. Section
4.4).

In this navigation task, offline pre-training results in five optimal policies. Four
of these pre-trained policies are for deterministic capabilities, corresponding for each
combination of c_open = {0, 1} × c_fast = {0, 1}. And one remaining pre-trained
policy is trained with random capabilities, denoted with π∗(a | s, random), which
is mainly used as an initial policy of online learning we will introduce in Section
4.5.4. When training this policy for random capabilities in the simulator, the human
model stimulates human capabilities that are randomly generated at the start of each
episode. These pre-trained policies and their associated value functions serve multiple
purposes: (i) they support the sampling process to estimate state distribution and
action distribution, which we will introduce in Section 4.5.3; (ii) the agent can use
them as the initial value function of online learning, which we will introduce in Section
4.5.4; (iii) they support the capability-guided exploration, which we will introduce in
Section 4.5.6.

Chunking Storage

Since both the state space and the action space in this task are discrete, we implemented
EST-Action, EST-State-Policy and EST-Policy by using the Q-learning algorithm. We
also implemented EST-Policy by using the DQN algorithm. Because the pre-training
process results in |2c|+ 1 policies, and each policy contains a Q-table of size |S| × |A|.
The storage and memory demands of these policies are substantial, presenting challenges
to the program running. We developed a storage solution based on Zarr2. Zarr is an
open-source format that offers features such as chunking and compressed storage, and
it seamlessly integrates with popular data science libraries like Numpy3.

"Chunking" is a term for breaking up and organizing big data within a multi-
dimensional array. In Zarr, data is stored in a hierarchical structure where each array
comprises chunks. Each chunk is a smaller sub-array of the larger data array. The

2https://zarr.readthedocs.io/
3https://numpy.org/

4.5 Implementation and Deployment 41

chunking strategy involves dividing the array into smaller chunks and includes the
following key benefits:

(i) Partial Loading: With chunking, it becomes possible to read only specific parts
of a large array without loading the entire array into memory. It is essential
when working with large Q-tables that do not fit into memory.

(ii) Efficient Updating: Chunking allows us to write data in smaller units, which
can improve I/O performance. Instead of saving the entire large array at once,
only the relevant chunks are updated, reducing the amount of data transferred
and improving saving times.

(iii) Compression: Zarr supports chunk-level compression, where each chunk of data
can be individually compressed before being stored. It can significantly reduce
storage requirements, especially for datasets with repetitive or compressible
patterns.

After examining storage protocols provided by Zarr, we selected the one based
on Lightning Memory-Mapped Database (LMDB)4 due to its exceptional stability.
By implementing our storage solution, we have achieved a significant reduction of at
least 50% in the hard disk and memory resources required. This solution allows our
framework to run on platforms with limited resources, such as the robot’s internal
computers.

One-hot Encoding

0 1

2

3

(a) (b)

Fig. 4.8 An example of one-hot encoding: (a) The directed graph with nodes in the
label style. (b) The directed graph with nodes in one-hot encoding.

4http://www.lmdb.tech/doc/

42 Human Capability Estimation through Reinforcement Learning

For DQN, we employ One-hot encoding to transform the discrete state values into
a binary vector representation because some state values lack a meaningful partial
order. In one-hot encoding, each discrete value is represented by a binary vector where
only one element is "hot" (1) while the rest are "cold" (0). For instance, in the case of
the serial number of nodes in Figure 4.8(a), there is no inherent positional relationship
among these numeric labels. This encoding results, shown in Figure 4.8(b), extend the
discrete features to the Euclidean space, enabling more meaningful distance calculations
between features. Our DQN agent is implemented based on Stable-Baselines3, a set of
reliable implementations of RL algorithms [46].

4.5.3 Sampling

For the strategies EST-Action and EST-State-Policy, it is required to employ sampling
to obtain the approximate distributions for actions A ∼ or states S ∼. Below is how
the sampling process works:

1. For every capability combination c ∈ 2c, we begin by initializing the RL agent
with the pre-trained optimal policy corresponding to the capabilities c, that is
π∗(a | s, c).

2. This RL agent then executes w episodes without any exploration.

3. After w episodes, if our strategy is EST-Action, we compute the approximate
action distributions for all action a ∈ A for the given capability combination c,
applying Equation (4.4).

4. Conversely, if our strategy is EST-State-Policy, we compute the approximate
state distributions for all state s ∈ S for the given capability combination c,
applying Equation (4.7).

4.5.4 Policy Initialization

The underlying online learning is generalized policy iteration, and its convergence is
not affected by the initial value function (in MDPs). However, it is possible to expedite
the learning process considerably through a favorable initialization. The pre-training
phase offers additional advantages by providing such a beneficial initialization, thereby
boosting the learning rate.

The robot has a set of |2c|+1 value functions to choose from and use while adapting
to the particular user. The policy trained with a user has all capabilities, that is,

4.5 Implementation and Deployment 43

π∗(a | s, {1, 1, · · · , 1}) may seem like a natural choice since all actions are enabled
in this policy. However, committing to any initial capability combination has a risk
of overfitting. Therefore, a competitive option for initialization could be the policy
pre-trained over random capabilities, that is, π∗(a | s, random).

4.5.5 Estimation Algorithm

Online capability estimation is a direct application of EST-Action, EST-State-Policy
and EST-Policy. The Algorithm 2 outlines the procedure for applying these three
strategies. The estimation process begins with a prior distribution Pr(c). The robot
collects l actions or state-action pairs, and then updates the probabilities of the
capabilities. The agent_step() function at Line 4 returns the most recent action and
indicates whether it resulted from exploration, allowing for its exclusion from capability
estimation. Exploratory actions do not follow the learned policy and can distort the
capability estimates.

44 Human Capability Estimation through Reinforcement Learning

Algorithm 2: Human Capability Estimation
Input: Pr(c): The prior probabilities of capabilities.

l: The batch length.

1 τ ←− [];
2 j ←− 0;
3 while learning is running do
4 s, a, e←− agent_step();
5 if e is false then
6 if EST-Action then
7 Append the action a to τ ;
8 else if EST-State-Policy or EST-Policy then
9 Append the state-action pair (s, a) to τ ;

10 end
11 j ←− j + 1;
12 end
13 if j mod l = 0 then
14 if EST-Action then
15 Update capability estimates according to Equation (4.3);
16 else if EST-State-Policy then
17 Update capability estimates according to Equation (4.6);
18 else if EST-Policy then
19 Update capability estimates according to Equation (4.10);
20 end
21 Pr(c)←− current estimate;
22 τ ←− [] ;
23 end
24 end

4.5.6 Capability-guided Exploration

To ensure the convergence of RL, the inclusion of random exploration is mandatory.
Because in complex environments, there might be multiple sub-optimal policies that
an RL agent could get stuck in if it only exploits its current knowledge. Random
exploration allows the agent to venture into unexplored regions of the state-action space

4.5 Implementation and Deployment 45

and discover better behaviors that it might not have encountered through deterministic
exploitation.

In principle, the robot starts with the average good pre-trained policy for every
capability combination, therefore when sufficiently confident in the presence of the
capability, it could switch to the corresponding optimal pre-trained policy. However,
the capability-conditioned optimal policy was learned in pre-training, it may not be
optimal with the new user at hand. Nonetheless, we propose to use it for exploration
advice, limiting purely random exploration. Below, we outline two distinct exploration
strategies that are guided by capabilities:

RLC: We introduced the notation C(a) in Section 4.2 to denote the preconditions
of the agent’s actions. This predefined dependency serves as a guiding principle, aiding
the RL agent in more efficient exploration while mitigating the need for entirely random
behaviors. At each time step t, an action a is considered enabled in the exploration if
the estimates of all the capabilities in C(a) are positive. Mathematically, the set of
enabled exploring actions at time t is defined as At = {a ∈ A | ∀ci ∈ C(a); ci = 1},
where the capability belief ci can be extracted by the deterministic or stochastic policy
presented in Section 4.4.

RLC-Policy: We introduced Pre-training in Section 4.5.2. The resulting pre-
trained optimal policy can further guide the agent’s exploration. On the basis of RLC,
the agent will explore the optimal action in the pre-trained policy corresponding to
the latest capability estimates, given the current state s. Mathematically, the possible
optimal exploring action given the state s at time t is defined as at ∼ π∗(a | s, cest).

The two above exploration strategies we used are shown in Algorithm 3. The
capability-guided exploration should be executed on top of ϵ-greedy this algorithm
results in choosing the current optimal action with probability 1− ϵ, the capability-
guided action with probability ϵ. We can decay κ over time, so the advice is gradually
removed.

46 Human Capability Estimation through Reinforcement Learning

Algorithm 3: Capability-guided Exploration
Data: A: The Set of Actions.

π∗: The pre-trained optimal policy.
s: The current state.
cest: The current capability estimates.
κ: The value of κ.
κpre: The value of κpre.
decay(n): The optional decay function, where n is the number of
episode.

1 Function CapabilityGuidedExploration(n):
2 λ←− uniform random value between 0 and 1;
3 κ←− decay(n);
4 if λ < κ then
5 if RLC then
6 a←− random({a′ ∈ A | ∀ci ∈ C(a′); ci = 1});
7 else if RLC-Policy then
8 λpre ←− uniform random value between 0 and 1;
9 if λpre < κpre then

10 a←− random({a′ ∈ A | ∀ci ∈ C(a′); ci = 1});
11 else
12 a ∼ π∗(a | s, cest);
13 end
14 end
15 else
16 a←− random(A);
17 end
18 return a;

4.6 Summary

In this chapter, we proposed a human capability estimation framework based on
Reinforcement Learning and Bayesian inference. In Section 4.2, we introduced the
problem definition of estimating human capabilities in the context of RL. Human
capabilities as preconditions for robot actions. In Section 4.3, we introduced three
estimation strategies for the capability combination: EST-Action, EST-State-Policy,
and EST-Policy. In Section 4.4, we introduced methods for extracting capability beliefs

4.6 Summary 47

from continuous distributions. In Section 4.5, we introduced various critical aspects
of our proposed framework through the robot navigation experiment, which mainly
includes pre-training, sampling, policy initialization, capability estimation algorithm,
and two capability-guided exploration approaches: RLC and RLC-Policy. In the next
chapter, we will introduce the evaluation methods of our framework, three human-robot
collaboration experiments, and experimental results.

Chapter 5

Experimental Evaluation

For all our experiments, we used the PAL Robotics TIAGo1, both in a Gazebo simulation
and the real world. All environment is designed to meet the OpenAI Gym2 standard,
and the program interface is extended to support collaborative tasks where robots
need to adapt to human capabilities. This standardized structure ensures that the
task environment can be easily utilized with other Reinforcement Learning methods,
enabling quick and seamless integration into different algorithms.

5.1 Evaluation Metrics

Our evaluation focuses on the agent’s performance in RL and the effectiveness in
multi-label learning. For RL performance, we directly compare the episode Return and
the number of steps in episodes. Evaluating multi-label learning is more complex than
single-label learning [65]. Let L denote the set of labels, D denote the set of samples,
Z denote the set of true sample pairs, and Y denote the set of predicted sample pairs.
We firstly introduce the Accuracy, Precision and Recall presented by Godbole et al.
[19], shown by Equations (5.1), (5.2), (5.3). Higher values of Accuracy, Precision, and
Recall indicate better performance of the classifier:

Accuracy = 1
|D|

|D|∑
i=1

|Yi
⋂

Zi|
|Yi

⋃
Zi|

, (5.1)

Precision = 1
|D|

|D|∑
i=1

|Yi
⋂

Zi|
|Zi|

, (5.2)

1https://pal-robotics.com/robots/tiago/
2https://github.com/openai/gym

50 Experimental Evaluation

Recall = 1
|D|

|D|∑
i=1

|Yi
⋂

Zi|
|Yi|

. (5.3)

The Hamming Loss, introduced by Schapire and Singer [50], is another metric we
used to quantify the performance of multi-label learning tasks. This metric is defined
as the fraction of labels incorrectly predicted, on average, across all instances. In other
words, it calculates the proportion of label assignments that are different between the
predicted labels and the true labels for all instances in the dataset. The Equation of
Hamming Loss is shown on (5.4), where ∆ represents the Kronecker delta function,
and this operation is similar to the XOR (exclusive OR) operation in Boolean logic
[58]. For Hamming Loss, a lower value is better.

Hamming Loss = 1
|D|

|D|∑
i=1

|Yi∆Zi|
|L|

. (5.4)

5.2 Robot Navigation Task

The configuration of the robot navigation task was partially introduced in Section 4.5.1.
This section will continue introducing more details of the implementation, experimental
results, and analysis.

5.2.1 Human Following

The simulated collaborator must have a navigation functionality similar to that of
an actual human to follow the guiding robot. Initially, we attempted to deploy two
independent TIAGo robots in Gazebo, each equipped with autonomous navigation and
obstacle avoidance functions. One robot served as a guide, while the other acted as a
collaborator. However, this approach yielded unsatisfactory results, primarily due to
the following reasons:

(i) The collaborator is usually close to the guiding robot. Thus, autonomous navi-
gation systems often misinterpret each other as obstacles, leading to navigation
stuck or unnecessary detours.

(ii) Given the relatively tiny distance between the two robots, if the guiding robot
suddenly stops, the collaborator may struggle to stop promptly. This challenge
arises from the simulator’s acceleration and friction parameter limitations.

5.2 Robot Navigation Task 51

(iii) Positioning error is allowed in the navigation stack of both robots, causing both
the guiding robot and the collaborator to deviate from their intended positions.

(iv) TIAGo has no omnidirectional base, which restricts the ability of both the robot
and the collaborator to make precise attitude adjustments. This limitation
further damaged the robot model’s suitability for acting as a collaborator, as its
navigation behavior does not possess the flexibility that an actual human does.

(a) (b)

Fig. 5.1 Partial directed graph of the navigation task. (a) The door D1 is open. (b)
The door D1 is closed.

To resolve the above navigation issues, we represented all paths of the entire
environment by a directed graph. Part of this graph is shown in the Figure 5.1. The
continuous Cartesian coordinates in the simulator are reduced to a series of waypoints,
represented by numerical nodes in the graph. Both the collaborator and the guiding
robot in the simulator move between these waypoints. The weight of the edges in the
graph is used to indicate the direction of movement between waypoints. Specifically,
1 indicates moving right, 3 indicates moving left, 2 indicates moving down, and 4
indicates moving up. Doors are represented by nodes starting with the letter D. Figure
5.1(b) shows a closed door, and its associated node is deactivated, preventing the robot
and collaborator from passing through. The robot can request the collaborator to open
doors only when the robot is located in a neighboring node of the door node. This
simplified representation allows for more efficient modeling and smooth navigation
within the simulator.

52 Experimental Evaluation

1. Pre-training 2. Sampling

RL

RL

RL

3. Deployment (30 trials)

EST-Action

EST-State-Policy

EST-Policy

RL RLC

RLC-Policy

EST-Action

EST-State-Policy

EST-Policy

RL RLC

RLC-Policy

EST-Action

EST-State-Policy

EST-Policy

RL RLC

RLC-Policy

RL

Fig. 5.2 The experimental setup of the navigation task (Q-learning)

5.2.2 Experimental Setup

Q-learning Implementation

The experiment started with pre-training, resulting in |2c| = 4 pre-trained policies
and one extra pre-trained policy for random capabilities. The pre-trained policies
π∗(a | s, {1, 1}), π∗(a | s, {0, 0}) and π∗(a | s, random) serve as the initial policies.
For each initial policy, the RL agents were deployed separately with collaborators
of all |2c| = 4 capability combinations. We tested all combinations of {EST-Action,
EST-State-Policy, EST-Policy} × {RL(normal), RLC, RLC-Policy} separately in the
deployment. Consequently, we had 4 × 3 × 3 × 3 = 108 deployment configurations.
Figure 5.2 shows the overview of the experimental setup.

In the pre-training, the Q-learning agents were trained over 800,000 episodes for
each capability combination. The learning rate α = 0.1, the discount factor γ = 0.95.
The maximum number of steps in a single episode was 500. The prior probability of
the combination {c_fast = 1, c_open = 1} was 0.8, and for the other combinations
was 0.06.

In the sampling, the Q-learning agents ran 500,000 episodes for each capability
combination. The Softmax temperature τ = 0.01. The smoothing factor of Laplace
smoothing was 1.

5.2 Robot Navigation Task 53

In the deployment, the Q-learning agents ran 15,000 episodes for each configuration.
The ϵ of ϵ-greedy decayed linearly from 0.5 to 0.1. The learning rate α = 0.3, the
discount factor γ = 0.99. The maximum number of steps in a single episode was 500.
The κ = 0.5 and κpre = 0.5. The capability thresholds d = {0.5}2. The Softmax
temperature τ = 0.01. The batch size of estimating trajectory l = 4.

DQN Implementation

1. Pre-training 2. Deployment (20 trials)

EST-Policy

RL RLC-PolicyRLC

EST-Policy

RL RLC-PolicyRLC

EST-Policy

RL RLC-PolicyRLC

Fig. 5.3 The experimental setup of the navigation task (DQN)

The experiment started with pre-training, resulting in |2c| = 4 pre-trained policies
and one extra pre-trained policy for random capabilities. The pre-trained policies
π∗(a | s, {1, 1}), π∗(a | s, {0, 0}) and π∗(a | s, random) serve as the initial policies.
For each initial policy, the RL agents were deployed separately with collaborators of
all |2c| = 4 capability combinations. We tested all combinations of {EST-Policy} ×
{RL(normal), RLC, RLC-Policy} separately in the deployment. Consequently, we had
4× 3× 1× 3 = 36 deployment configurations. Figure 5.3 shows the overview of the
experimental setup.

In the pre-training, the DQN agents were trained over 2,000,000 steps for each
capability combination. The learning rate α = 0.001, the discount factor γ = 0.99.
The maximum number of steps in a single episode was 500. The prior probability of

54 Experimental Evaluation

the combination {c_fast = 1, c_open = 1} was 0.8, and for the other combinations
was 0.06. The batch size of learning was 2048. The ϵ initially started at 0.8 and began
to decay. Once the training progress reached 85%, ϵ was reduced to 0 and remained
fixed at this value. The policy network consisted of three layers, each with a size of 64.

In the deployment, the DQN agents ran 350,000 steps for each configuration. The
ϵ initially started at 0.8 and began to decay. Once the training progress reached 85%,
ϵ was reduced to 0 and remained fixed at this value. The κ = 0.5 and κpre = 0.5. The
capability thresholds d = {0.5}2. The Softmax temperature τ = 0.0001. The batch
size of estimating trajectory l = 4.

5.2.3 Estimation Performance Evaluation

In this subsection, we first evaluated the effectiveness of our estimation strategies:
EST-Action, EST-State-Policy, and EST-Policy with Q-learning implementation, using
Accuracy, Precision , Recall and Hamming Loss. The figures of Q-learning implemen-
tation displayed in this subsection show the average result across configurations in the
Q-learning deployment, accompanied by 95% confidence intervals, calculated based on
30 trials.

Figure 5.4, Figure 5.5 and Figure 5.6 show Precision and Recall of the three
estimation strategies: EST-Action, EST-State-Policy and EST-Policy. The x-axis
across these figures represents the learning progression, segmented into 20 intervals.
Specifically, x = 0 denotes the initial 5% of the learning process, while x = 19
corresponds to 100% completion.

The results are all good, and the fluctuations shown in these figures are minimal. We
first focus on the performance gaps between different estimation strategies, examining
the overall differences among Figure 5.4, Figure 5.5 and Figure 5.6. It can be seen that
when the estimated strategy is EST-Action, and the initial policy is π∗(a | s, {0, 0}), the
value of Recall is slightly lower in the beginning compared with other configurations,
which is because EST-Action only uses the sequence of actions to estimate, but
the agent’s policy has not yet converged to the optimal policy in the initial stage.
This non-optimal and cautious policy will further cause the agent to estimate lower
capability probabilities incorrectly and thus miss more true positive instances. The
three estimation strategies for other configurations show similar Precision and Recall.

Then, let us focus on whether different exploration methods cause performance
differences by checking the gap between the two lines in each subplot, where the
black line represents RLC and the red line represents RLC-Policy. The performance
difference caused by different exploration methods arises primarily in two scenarios.

5.2 Robot Navigation Task 55

One is the initial stage of the learning process. The RLC-Policy is significantly better
than RLC. In addition, when the exploration method is EST-Action, the RLC-policy
yields obvious advantages in Recall compared to RLC. In other configurations or the
middle and late stages of the learning process, this performance gap is not apparent
due to different exploration methods. Because accurately estimating the probabilities
of human capabilities requires a convergent policy, the variation in estimation results is
primarily attributed to the differences in the Reinforcement Learning performance of
agents employing distinct configurations. The subsequent subsections will delve deeper
into the performance metrics linked with Reinforcement Learning.

Figure 5.7, Figure 5.8 and Figure 5.9 present Accuracy and Hamming Loss achieved
by the proposed estimation strategies. The x-axis of all these subplots maintains
its representation of the 20 learning intervals. The fluctuations on Accuracy and
Hamming Loss are minimal. These three figures show that Accuracy experiences an
upward trajectory, while Hamming Loss decreases. These two metrics are similar to
Precision and Recall. The differences in Accuracy and Hamming Loss between different
configurations are concentrated in the initial stage of the learning process. This gap is
also related to the convergence of policy in Reinforcement Learning.

56 Experimental Evaluation

RLC RLC-Policy

(a) (b)

(c) (d)

(e) (f)

Fig. 5.4 The Precision and Recall in the navigation task (Q-learning) applied EST-
Action: (a)(b) Agents were initialized with the pre-trained policy π∗(a | s, {1, 1}).
(c)(d) Agents were initialized with the pre-trained policy π∗(a | s, {0, 0}). (e)(f) Agents
were initialized with the pre-trained policy π∗(a | s, random).

5.2 Robot Navigation Task 57

RLC RLC-Policy

(a) (b)

(c) (d)

(e) (f)

Fig. 5.5 The Precision and Recall in the navigation task (Q-learning) applied EST-
State-Policy: (a)(b) Agents were initialized with the pre-trained policy π∗(a | s, {1, 1}).
(c)(d) Agents were initialized with the pre-trained policy π∗(a | s, {0, 0}). (e)(f) Agents
were initialized with the pre-trained policy π∗(a | s, random).

58 Experimental Evaluation

RLC RLC-Policy

(a) (b)

(c) (d)

(e) (f)

Fig. 5.6 The Precision and Recall in the navigation task (Q-learning) applied EST-
Policy: (a)(b) Agents were initialized with the pre-trained policy π∗(a | s, {1, 1}).
(c)(d) Agents were initialized with the pre-trained policy π∗(a | s, {0, 0}). (e)(f) Agents
were initialized with the pre-trained policy π∗(a | s, random).

5.2 Robot Navigation Task 59

RLC RLC-Policy

(a) (b)

(c) (d)

(e) (f)

Fig. 5.7 The Accuracy and Hamming Loss in the navigation task (Q-learning) applied
EST-Action: (a)(b) Agents were initialized with the pre-trained policy π∗(a | s, {1, 1}).
(c)(d) Agents were initialized with the pre-trained policy π∗(a | s, {0, 0}). (e)(f) Agents
were initialized with the pre-trained policy π∗(a | s, random).

60 Experimental Evaluation

RLC RLC-Policy

(a) (b)

(c) (d)

(e) (f)

Fig. 5.8 The Accuracy and Hamming Loss in the navigation task (Q-learning) applied
EST-State-Policy: (a)(b) Agents were initialized with the pre-trained policy π∗(a |
s, {1, 1}). (c)(d) Agents were initialized with the pre-trained policy π∗(a | s, {0, 0}).
(e)(f) Agents were initialized with the pre-trained policy π∗(a | s, random).

5.2 Robot Navigation Task 61

RLC RLC-Policy

(a) (b)

(c) (d)

(e) (f)

Fig. 5.9 The Accuracy and Hamming Loss in the navigation task (Q-learning) applied
EST-Policy: (a)(b) Agents were initialized with the pre-trained policy π∗(a | s, {1, 1}).
(c)(d) Agents were initialized with the pre-trained policy π∗(a | s, {0, 0}). (e)(f) Agents
were initialized with the pre-trained policy π∗(a | s, random).

62 Experimental Evaluation

The above evaluation metrics Precision, Recall, Accuracy, and Hamming Loss reflect
that our framework can effectively estimate the probabilities of human capabilities in
this navigation task. Now, let us specifically investigate how probabilities of capabilities
change over time during the learning process. Figure 5.10, Figure 5.11, and Figure
5.12 show a visualization of the capability probability convergence using different
estimation strategies, where the black line represents the probability of c_fast, and
the red line represents the probability of c_open. All agents in these figures were
initialized with the pre-trained policy π∗(a | s, random) and applied RLC-Policy. The
estimates in all subplots gradually converge to the correct side. Although the numbers
on the x-axis are large, most probabilities of capabilities converged at an early stage.
Overall, EST-State-Policy and EST-Policy showed more promising convergence rates
and stability than EST-Action.

5.2 Robot Navigation Task 63

c fast c open

(a) (b)

(c) (d)

Fig. 5.10 The estimates of capabilities in the navigation task (Q-learning) applied
EST-Action and RLC-Policy, where all agents were initialized with the pre-trained
policy π∗(a | s, random): (a) The true collaborator’s capability set was {c_fast =
1, c_open = 1}. (b) The true collaborator’s capability set was {c_fast = 1, c_open =
0}. (c) The true collaborator’s capability set was {c_fast = 0, c_open = 1}. (d) The
true collaborator’s capability set was {c_fast = 0, c_open = 0}.

64 Experimental Evaluation

c fast c open

(a) (b)

(c) (d)

Fig. 5.11 The estimates of capabilities in the navigation task (Q-learning) applied
EST-State-Policy and RLC-Policy, where all agents were initialized with the pre-trained
policy π∗(a | s, random): (a) The true collaborator’s capability set was {c_fast =
1, c_open = 1}. (b) The true collaborator’s capability set was {c_fast = 1, c_open =
0}. (c) The true collaborator’s capability set was {c_fast = 0, c_open = 1}. (d) The
true collaborator’s capability set was {c_fast = 0, c_open = 0}.

5.2 Robot Navigation Task 65

c fast c open

(a) (b)

(c) (d)

Fig. 5.12 The estimates of capabilities in the navigation task (Q-learning) applied
EST-Policy and RLC-Policy, where all agents were initialized with the pre-trained
policy π∗(a | s, random): (a) The true collaborator’s capability set was {c_fast =
1, c_open = 1}. (b) The true collaborator’s capability set was {c_fast = 1, c_open =
0}. (c) The true collaborator’s capability set was {c_fast = 0, c_open = 1}. (d) The
true collaborator’s capability set was {c_fast = 0, c_open = 0}.

66 Experimental Evaluation

We continued investigating changes in capability probabilities over time in our DQN
implementation with a sensitivity analysis regarding the initial policy selection. Figure
5.13, Figure 5.14 and Figure 5.15 provide a visualization of the capability probability
convergence using EST-Policy with different initial policies under DQN implementation.
These three figures show the average result across configurations, accompanied by 95%
confidence intervals, calculated based on 20 trials.

The agents were initialized with the pre-trained policy π∗(a | s, {1, 1}) in the
Figure 5.13, π∗(a | s, {0, 0}) in the Figure 5.14 and π∗(a | s, random) in the Figure
5.15. By analyzing these three figures, we can find that at the beginning of the task,
because agents had not sufficiently learned, the initial policies at this time had not
been improved to the optimal policies, so the estimated results were affected by both
the prior probabilities, and the bias from initial policies. This impact is evident in
Figure 5.14, because when the initial policy was π∗(a | s, {0, 0}), the agent exploited
cautious actions at the beginning of the task. We will continue to discuss the impact
of the different initial policies on Reinforcement Learning in Section 5.2.4. Although
these probabilities fluctuate in all subplots, they constantly fluctuate on the correct
side or eventually converge to the correct side. It is advised not to disable actions
prematurely during exploitation when dealing with unstable or unreliable capability
probability estimates. This caution arises from the potential risk of incorrectly turning
off certain actions. Once these actions are disabled erroneously, they tend not to be
restored, given that only trajectories encompassing inappropriate states and actions are
used for estimation. Therefore, when dealing with uncertain and unstable probabilities,
we advise avoiding disabling actions during the exploitation process while continuing to
operate capability-guided exploration. This practice does not affect the convergence of
capability probabilities or improve RL performance. We will show these results when
evaluating RL performance.

5.2 Robot Navigation Task 67

0 250 500 750 1000 1250
Actions

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

c fast c open

(a) (b)

(c) (d)

Fig. 5.13 The estimates of capabilities in the navigation task (DQN) applied EST-
Policy, where all agents were initialized with the pre-trained policy π∗(a | s, {1, 1}):
(a) The true collaborator’s capability set was {c_fast = 1, c_open = 1}. (b) The true
collaborator’s capability set was {c_fast = 1, c_open = 0}. (c) The true collaborator’s
capability set was {c_fast = 0, c_open = 1}. (d) The true collaborator’s capability
set was {c_fast = 0, c_open = 0}.

68 Experimental Evaluation

0 250 500 750 1000 1250
Actions

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

c fast c open

(a) (b)

(c) (d)

Fig. 5.14 The estimates of capabilities in the navigation task (DQN) applied EST-
Policy, where all agents were initialized with the pre-trained policy π∗(a | s, {0, 0}):
(a) The true collaborator’s capability set was {c_fast = 1, c_open = 1}. (b) The true
collaborator’s capability set was {c_fast = 1, c_open = 0}. (c) The true collaborator’s
capability set was {c_fast = 0, c_open = 1}. (d) The true collaborator’s capability
set was {c_fast = 0, c_open = 0}.

5.2 Robot Navigation Task 69

0 250 500 750 1000 1250
Actions

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

c fast c open

(a) (b)

(c) (d)

Fig. 5.15 The estimates of capabilities in the navigation task (DQN) applied EST-Policy,
where all agents were initialized with the pre-trained policy π∗(a | s, random): (a)
The true collaborator’s capability set was {c_fast = 1, c_open = 1}. (b) The true
collaborator’s capability set was {c_fast = 1, c_open = 0}. (c) The true collaborator’s
capability set was {c_fast = 0, c_open = 1}. (d) The true collaborator’s capability
set was {c_fast = 0, c_open = 0}.

70 Experimental Evaluation

5.2.4 RL Performance Evaluation

In this subsection, our primary objective is to run an ablation study over the different
configurations of our framework and determine whether RL agents applying our
framework show enhanced learning performance compared to normal RL.

We first evaluated our framework’s RL performance through the Q-learning results.
The Figures 5.16, 5.17 and 5.18 show the Return and taken steps per episode of the
normal RL, RLC, and RLC-Policy. For capability estimation strategies, the agents
used EST-Action in Figure 5.16, EST-State-Policy in Figure 5.17, and EST-Policy in
Figure 5.18. These figures are accompanied by 95% confidence intervals, computed
from 30 separate trial runs.

Across all three figures, all agents demonstrated effective learning ability. The
agents did spend a certain number of episodes to learn the optimal policy, yet this
number remains considerably fewer than the episodes expended during the pre-training
phase. Various factors, such as hyper-parameters and reward shaping, influence the
convergence rate of RL. In this work, we refrain from delving into optimizing these
aspects. We focus on the contribution of capability estimation and capability-guided
exploration to the convergence rate.

We shall begin by assessing the impact of different exploration methods on RL
performance by comparing the difference between the three lines in each subplot, where
black is for normal RL, red is for RLC, and blue is for RLC-Policy. During the early
stages of learning, both RLC and RLC-Policy outperformed normal RL in terms of
Return. At the same time, RLC-Policy consistently obtained higher Return and fewer
steps than RLC. As learning progresses, all agents achieve similar results. However,
RLC-Policy converged faster with fewer steps per episode across all cases. Capability
estimation and capability-guided exploration enhance the agent’s generalization ability,
allowing the agent to explore reasonable actions before the action’s values are refined,
especially those states that the agent has not visited yet.

Next, we conduct a sensitivity analysis regarding different initial policies on RL
performance by examining the difference between subplot pairs: {(a), (b)}, {(c), (d)}
and {(e), (f)} in each figure. The convergence of online RL remains unaffected by the
initial policy choice. Nevertheless, a well-chosen initial policy can facilitate learning and
empower the agent to make early-stage decisions that yield higher Return and fewer
steps. In all three figures, it is evident that agents initialized by the pre-trained policy
π∗(a | s, {1, 1}) received the lowest Return during the early stages of learning. This
outcome arose from the bias of the initial policy, that is, stubbornly performing the
optimal actions *_fast and open_door. The agents did not care for the collaborator

5.2 Robot Navigation Task 71

with c_fast = 0, and persisted in performing open_door, even when the collaborator’s
assistance was unavailable. Thus, the agents must accumulate enough negative rewards
to improve their policy. This type of policy improvement, driven by penalties imposed
on the agent’s actions, can still be effective even when there is insufficient exploration.
On the contrary, when the initial policies were π∗(a | s, {0, 0}), the agents achieved
improved results because they took cautious actions derived from this initial policy,
which tends to drive at reduced speeds to avoid penalties. As a result, the agents must
rely on random exploration to discover actions that lead to higher rewards. Without
sufficient explorations, the agent may stick to a cautious policy and be unable to escape
from the local optimum. Hence, the agents using π∗(a | s, random) as the initial policy
may have overall solid performances.

Upon a comprehensive comparison of these three figures, we can find that the
selections in capability estimation strategies had minimal impact on the RL performance
of this navigation task. Because all three estimation strategies infer correct capability
estimates in this task.

72 Experimental Evaluation

RL RLC RLC-Policy

(a) (b)

(c) (d)

(e) (f)

Fig. 5.16 The Return and the number of steps per episode in the navigation task
(Q-learning), where EST-Action was applied: (a)(b) Agents were initialized with the
pre-trained policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-trained
policy π∗(a | s, {0, 0}). (e)(f) Agents were initialized with the pre-trained policy
π∗(a | s, random).

5.2 Robot Navigation Task 73

RL RLC RLC-Policy

(a) (b)

(c) (d)

(e) (f)

Fig. 5.17 The Return and the number of steps per episode in the navigation task
(Q-learning), where EST-State-Policy was applied: (a)(b) Agents were initialized with
the pre-trained policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-
trained policy π∗(a | s, {0, 0}). (e)(f) Agents were initialized with the pre-trained policy
π∗(a | s, random).

74 Experimental Evaluation

RL RLC RLC-Policy

(a) (b)

(c) (d)

(e) (f)

Fig. 5.18 The Return and the number of steps per episode in the navigation task
(Q-learning), where EST-Policy was applied: (a)(b) Agents were initialized with the
pre-trained policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-trained
policy π∗(a | s, {0, 0}). (e)(f) Agents were initialized with the pre-trained policy
π∗(a | s, random).

5.2 Robot Navigation Task 75

Moving forward, let us see the results of DQN implementation. Figure 5.19 shows
the Return and the number of steps taken per episode of the normal RL, RLC, and
RLC-Policy. All subplots in this figure are accompanied by 95% confidence intervals,
computed from 20 separate trial runs. By comparing the gap among normal RL,
RLC, and RLC-Policy in each subplot, we can continue to conclude that RLC and
RLC-Policy yield higher Return with fewer steps than normal RL. RLC-Policy tends
to deliver even better enhancements. Moreover, when comparing the convergence rates
of the DQN agents and Q-learning agents, the remarkable generalization ability of
DQN facilitates quicker convergence to the optimal policy using fewer episodes over
Q-learning.

76 Experimental Evaluation

RL RLC RLC-Policy

(a) (b)

(c) (d)

(e) (f)

Fig. 5.19 The Return and the number of steps per episode in the navigation task
(DQN), where EST-Policy was applied: (a)(b) Agents were initialized with the pre-
trained policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-trained
policy π∗(a | s, {0, 0}). (e)(f) Agents were initialized with the pre-trained policy
π∗(a | s, random).

5.2 Robot Navigation Task 77

5.2.5 Experiments with Lower Prior Probabilities

In Section 5.2.3 and 5.2.4, all experiments were based on high prior probabilities.
To perform a sensitivity analysis on the prior probabilities, we test our framework’s
performance under low prior probabilities in the following experiments of this subsection.
The prior probability of the combination {c_fast = 0, c_open = 0} was 0.7, and for
the other combinations was 0.1.

Figure 5.20 and Figure 5.21 provide a visualization of the capability probability
convergence using EST-Policy with the initial policy π∗(a | s, random). Each figure
in this analysis contains multiple ground truths, with each row corresponding to
a unique one. In each row, the left subplot visualizes the evolution of capability
probabilities throughout the initial 50 episodes, while the right subplot covers the
range of the 50th to the 800th episode. We can see from the above two figures that
all capability probabilities start from a low prior probability we set and gradually
converge to the correct side as the agent begins to learn. As discussed in the above
evaluation subsections, capability probabilities are affected by both prior probabilities
and initial policy, which is confirmed again in these two figures. We can observe that
except for subplots (a) and (b) in Figure 5.20, when the ground truth of a certain
capability probability is False, the capability probability did not directly converge to
near 0. It initially exhibited a surge along the Y-axis. This unexpected fluctuation
is attributed to the bias introduced by the initial policy π∗(a | s, random). Since
capability probabilities are unreliable at the initial stage, we did not disable actions
in the exploitation process given this low prior probability configuration. And this
practice has no impact on the convergence of capability probabilities.

78 Experimental Evaluation

c fast c open

(a) (b)

(c) (d)

Fig. 5.20 The estimates of capabilities in the navigation task (Q-learning) applied
EST-Policy and RLC-Policy, where all agents were initialized with the pre-trained
policy π∗(a | s, random) and lower prior probabilities: (a)(b) The true collaborator’s
capability set was {c_fast = 1, c_open = 1}. (c)(d) The true collaborator’s capability
set was {c_fast = 1, c_open = 0}.

5.2 Robot Navigation Task 79

c fast c open

(a) (b)

(c) (d)

Fig. 5.21 The estimates of capabilities in the navigation task (Q-learning) applied
EST-Policy and RLC-Policy, where all agents were initialized with the pre-trained
policy π∗(a | s, random) and lower prior probabilities: (a)(b) The true collaborator’s
capability set was {c_fast = 0, c_open = 1}.(c)(d) The true collaborator’s capability
set was {c_fast = 0, c_open = 0}.

In addition to the convergence of capability probabilities, we are also concerned
with the performance of RL under conditions of low prior probabilities. Figure
5.22 shows the average return and the number of steps obtained by the agent using
different initial policies when applying the EST-Policy estimation strategy. Results
highlight that the practice of low prior probability does not significantly affect the
performance improvement of RLC and RLC-Policy compared to the normal RL. The
overall performance of RLC-Policy is still better than that of RLC.

80 Experimental Evaluation

RL RLC RLC-Policy

(a) (b)

(c) (d)

(e) (f)

Fig. 5.22 The Return and the number of steps per episode in the navigation task
(Q-learning), where EST-Policy and lower prior probabilities were applied: (a)(b)
Agents were initialized with the pre-trained policy π∗(a | s, {1, 1}). (c)(d) Agents were
initialized with the pre-trained policy π∗(a | s, {0, 0}). (e)(f) Agents were initialized
with the pre-trained policy π∗(a | s, random).

5.3 Robot Manipulation Task 81

5.2.6 Summary

In this section, we continued introducing the robot navigation task used in the previous
chapter and added more details of the experimental environment. We introduced the
parameters of Q-learning and DQN implementations, followed by the experimental
results. Furthermore, we conducted ablation studies across two main dimensions:
estimation performance and RL performance. It allowed us to discuss the performance
gaps observed among various configurations. Furthermore, we conducted a sensitivity
analysis on prior probabilities and the initial policy.

5.3 Robot Manipulation Task

5.3.1 Introduction

The second experiment is a simulated collaborative manipulation task, where the
collaborator and robot work together to arrange objects. The task is set in a Gazebo
world, illustrated in Figure 5.23. The environment consists of a table with a 2 × 3
chessboard, providing six slots for placing objects. Six objects will be sorted: two red,
two orange, and two blue objects.

Fig. 5.23 The Gazebo world for the manipulation task.

At the beginning of the task, some objects are randomly placed on the board,
ensuring a maximum of 4 slots remain vacant. The objects not placed on the board
initially are set on the table. Subsequently, the robot and the collaborator take turns
placing or swapping these objects’ positions. The goal is to organize all the objects
on the board, ensuring that objects of the same color are grouped together. The task
ends when all objects are successfully grouped based on their colors. As illustrated in
Figure 5.24, multiple solutions are acceptable to end the task.

82 Experimental Evaluation

Fig. 5.24 Examples of acceptable solutions in the manipulation task.

5.3.2 MDP Settings

The state space consists of observations for six slots (2× 3) on the chessboard. For
the DQN implementation, we represent the colors of the slots using One-Hot encoding;
otherwise, we use label encoding.

The action space contains nine actions, which can be categorized as follows:

(i) place_{red,orange,blue}: These actions represent that the robot places an
unorganized item of the given color onto the chessboard from the table.

(ii) swap_{red,orange,blue}: These actions represent that the robot chooses an
item on the chessboard of the given color and swaps it with an item of a different
color present on the chessboard.

(iii) ask_swap_{red,orange,blue}: These actions represent that the robot asks the
collaborator to swap the item of the given color on the chessboard.

The RL agent serves as the high-level task planner and operates in an action space
that only indicates the action included in the action space and the target color. A
separate motion solver handles complete information about the colors and positions
of all items, whether on the chessboard or the table. It transforms the RL agent’s
high-level action into a sequence of optimal manipulations for the robot. By setting
this motion solver, the RL agent can focus on high-level instructions without being
concerned about the details of the manipulation process.

We define Le as the number of objects with position discrepancies between the
current layout and the nearest acceptable solution. The reward function for the task is
designed as follows:

(i) place_*: When the robot performs a placing action, it receives a cost of −1.
This cost discourages unnecessary actions and encourages the robot to be more
strategic.

(ii) ask_swap_*: If the robot chooses to ask the collaborator to swap items and
the collaborator responds to the robot’s request, the robot receives a cost of

5.3 Robot Manipulation Task 83

−0.1. This cost encourages the robot to maximize the times it relies on human
assistance when available, stimulating human-robot collaborations.

(iii) swap_*: When the robot autonomously performs a swap, it receives a higher
cost of −2. Because our TIAGo has only one robotic manipulator, the robot
autonomously swapping the positions of two items requires three steps and
occupies an extra storage space on the table. This penalty is to prevent the robot
from engaging in inefficient swaps.

(iv) Penalty for No Layout Variation: If the robot’s strategy does not lead to
any layout variations (∆Le = 0), it receives an additional penalty of −10. This
penalty discourages the robot from getting stuck in repetitive or unproductive
actions.

(v) Penalty for Human Inactivity: If the robot’s strategy leaves the collaborator
with nothing to do, the robot receives an additional penalty −5, because the
robot must not aim to reduce human participation in this task.

(vi) Goal Layout Reward: If the robot’s strategy results in the correct goal layout,
it receives an additional reward of 50.

The manipulation experiment involves a more complex environment than the
navigation task. Each slot can hold objects of 3 different colors and be in an empty state.
Unlike the navigation task, where the starting positions of the robot and collaborator
are consistent, the manipulation task randomizes its initial layout. Furthermore, the
manipulation task has more terminal states. These differences not only contribute to a
more dynamic and stochastic environment but also pose challenges for the RL agent
in generalizing an optimal policy. Achieving effective generalization across the vast
state space and adapting to the dynamic environment requires the agent to handle
a broader range of scenarios and decision-making situations. As a result, the DQN
implementation, rather than Q-learning, is better suited for this manipulation task.

5.3.3 Motion planner

The motion planner consistently generates a greedy plan to reduce the Le, guided
by the high-level command from the RL agent. When multiple plans are available,
the planner randomly selects one for execution. This planner is incorporated not just
for the robot but also for the human model. We employed Redis3, an open-source

3https://redis.io/

84 Experimental Evaluation

distributed in-memory key-value database, to optimize planning speed. The program
stores every plan in Redis after generating it. This strategy proves highly beneficial in
multi-process or multi-computing node environments as the cached plan in Redis can
be accessed and shared among all planners, resulting in significant computational time
savings.

5.3.4 Human Capabilities

We consider two human capabilities in this experiment: c_green and c_swap. The
absence of c_green indicates that the collaborator cannot differentiate between red
and orange colors, a condition known as Deuteranomaly [30]. The c_swap capability
implies the ability to swap two objects in a single move, which can be affected by
mobility impairment or having only one arm.

5.3.5 Human Model

The human model serves as a simulator to interact with the robot. Human capabilities
influence the behaviors of the human model. If the capability c_green is absent, the
human model will not distinguish between red and orange items, as an example shown
in Figure 5.25. Similarly, the human model will not perform any swaps if the capability
c_swap is absent. When the robot requests the human to swap two items, the accuracy
of the exchange depends on the accurate perception of colors, hence influenced by the
capability c_green.

(a) (b)

Fig. 5.25 An example of visual differences caused by c_green: (a) The layout seen by
the collaborator c_green = 1. (b) The layout seen by the collaborator c_green = 0.

To consider that the person can make mistakes, the human model improves the
correct grouping of items, reducing Le (e.g., placing a blue item near other blue
items) with a probability of 0.9, which can be mathematically represented as ∆Le < 0.
However, there is also a probability of 0.1 that the human model may worsen the
configuration with its actions, mathematically indicated by ∆Le ≥ 0.

5.3 Robot Manipulation Task 85

5.3.6 Experimental Setup

Q-learning Implementation

1. Pre-training 2. Sampling

RL

RL

RL

3. Deployment (30 trials)

EST-Action

EST-State-Policy

EST-Policy

RL RLC

RLC-Policy

EST-Action

EST-State-Policy

EST-Policy

RL RLC

RLC-Policy

RL

Fig. 5.26 The experimental setup of the manipulation task (Q-learning).

The experiment started with pre-training, resulting in |2c| = 4 pre-trained policies
and one extra pre-trained policy for random capabilities. The pre-trained policies
π∗(a | s, {1, 1}) and π∗(a | s, random) serve as the initial policies. For each initial
policy, the RL agents were deployed separately with collaborators of all |2c| = 4 ca-
pability combinations. We tested all combinations of {EST-Action, EST-State-Policy,
EST-Policy} × {RL(normal), RLC, RLC-Policy} separately in the deployment. Con-
sequently, we had 2× 4× 3× 3 = 72 deployment configurations. Figure 5.26 shows the
overview of the experimental setup.

In pre-training, the agents were trained over 500,000 episodes for each capability
combination. The learning rate α = 0.1, the discount factor γ = 0.7. The maximum
number of steps in a single episode was 10. The prior probability of combination
{c_green = 1, c_swap = 1} was 0.8, and for the other combinations was 0.06.

In sampling, the agents ran 300,000 episodes for each capability combination. The
Softmax temperature τ = 0.1. The smoothing factor of Laplace smoothing was 1.

In the deployment, the agents ran 80,000 episodes for each configuration. The ϵ of
ϵ-greedy decayed linearly from 0.5 to 0.1. The learning rate α = 0.1, the discount factor
γ = 0.7. The maximum number of steps in a single episode was 10. The κ = 0.5 and

86 Experimental Evaluation

κpre = 0.5. The capability thresholds d = {0.5}2. The Softmax temperature τ = 0.1.
The batch size of estimating trajectory l = 20.

DQN Implementation

1. Pre-training 2. Deployment (20 trials)

EST-Policy

RL RLC-PolicyRLC

RLC-PolicyRL

EST-Policy

RLC

Fig. 5.27 The experimental setup of the manipulation task (DQN).

The experiment started with pre-training, resulting in |2c| = 4 pre-trained policies
and one extra pre-trained policy for random capabilities. The pre-trained policies
π∗(a | s, {1, 1}) and π∗(a | s, random) serve as the initial policies. For each initial policy,
the RL agents were deployed separately with collaborators of all |2c| = 4 capability
combinations. We tested all combinations of {EST-Policy} × {RL(normal), RLC,
RLC-Policy} separately in the deployment. Consequently, we had 2× 4× 1× 3 = 24
deployment configurations. Figure 5.27 shows the overview of the experimental setup.

In the pre-training, the agents were trained over 2,000,000 steps for each capability
combination. The learning rate α = 0.001, the discount factor γ = 0.7. The maximum
number of steps in a single episode was 100. The prior probability of combination
{c_fast = 1, c_open = 1} was 0.8, and for the other combinations was 0.06. The
batch size of learning is 2048. The ϵ initially started at 0.8 and began to decay. Once
the training progress reached 80%, the epsilon was reduced to 0 and remained fixed.
The policy network consisted of two layers, each with a size of 1024.

5.3 Robot Manipulation Task 87

In the deployment, the agents ran 200,000 steps for each configuration. The κ = 0.5
and κpre = 0.5. The capability thresholds d = {0.5}2. The Softmax temperature
τ = 0.01. The batch size of trajectory l = 4. The ϵ initially started at 0.8 and began
to decay. Once the training progress reached 80%, the epsilon was reduced to 0 and
remained fixed.

5.3.7 Estimation Performance Evaluation

In this subsection, our primary focus centers on assessing Accuracy, Precision , Recall
and Hamming Loss. The figures of Q-learning implementation displayed in this
subsection show the average result across configurations in the Q-learning deployment,
accompanied by 95% confidence intervals, calculated based on 30 trials.

Figure 5.28, Figure 5.29 and Figure 5.30 show Precision and Recall of the three
estimation strategies: EST-Action, EST-State-Policy and EST-Policy. The x-axis
across all these figures represents the progression of learning, segmented into 20
intervals. Specifically, x = 0 denotes the initial 5% of the learning process, while x = 19
corresponds to 100% completion.

The fluctuations of all results displayed in these figures are tiny. We first focus on
the performance gaps between different estimation strategies, examining the differences
among Figure 5.28, Figure 5.29 and Figure 5.30. Overall, both Precision and Recall are
great as their values remain high. Nevertheless, these two metrics of EST-State-Policy
change more smoothly in the initial stage than EST-Action and EST-Policy.

Subsequently, we shift our attention to whether different exploration approaches
result in performance differences by reviewing the gap between the two lines in each
subplot, where the black line represents RLC and the red line represents RLC-Policy.
It is evident that there was no considerable difference in Precision and Recall between
RLC and RLC-Policy.

88 Experimental Evaluation

RLC RLC-Policy

(a) (b)

(c) (d)

Fig. 5.28 The Precision and Recall in the manipulation task (Q-learning) applied
EST-Action: (a)(b) Agents were initialized with the pre-trained policy π∗(a | s, {1, 1}).
(c)(d) Agents were initialized with the pre-trained policy π∗(a | s, random).

5.3 Robot Manipulation Task 89

RLC RLC-Policy

(a) (b)

(c) (d)

Fig. 5.29 The Precision and Recall in the manipulation task (Q-learning) applied EST-
State-Policy: (a)(b) Agents were initialized with the pre-trained policy π∗(a | s, {1, 1}).
(c)(d) Agents were initialized with the pre-trained policy π∗(a | s, random).

90 Experimental Evaluation

RLC RLC-Policy

(a) (b)

(c) (d)

Fig. 5.30 The Precision and Recall in the manipulation task (Q-learning) applied
EST-Policy: (a)(b) Agents were initialized with the pre-trained policy π∗(a | s, {1, 1}).
(c)(d) Agents were initialized with the pre-trained policy π∗(a | s, random).

5.3 Robot Manipulation Task 91

Having assessed Precision and Recall, now allow us to evaluate Accuracy and
Hamming Loss. Figure 5.31, Figure 5.32 and Figure 5.33 present Accuracy and
Hamming Loss achieved by the proposed estimation strategies. The x-axis of all these
subplots maintains its representation of the 20 learning intervals. We can still find
that Accuracy increases, while Hamming Loss decreases. We can continue to draw the
similar conclusion as Precision and Recall. The Accuracy and Hamming Loss values of
EST-State-Policy changes more smoothly in the initial stage than that of EST-Action
and EST-Policy. There are still no great differences in Accuracy and Hamming Loss
between RLC and RLC-Policy.

RLC RLC-Policy

(a) (b)

(c) (d)

Fig. 5.31 The Accuracy and Hamming Loss in the manipulation task (Q-learning)
applied EST-Action: (a)(b) Agents were initialized with the pre-trained policy π∗(a |
s, {1, 1}). (c)(d) Agents were initialized with the pre-trained policy π∗(a | s, random).

92 Experimental Evaluation

RLC RLC-Policy

(a) (b)

(c) (d)

Fig. 5.32 The Accuracy and Hamming Loss in the manipulation task (Q-learning)
applied EST-State-Policy: (a)(b) Agents were initialized with the pre-trained policy
π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-trained policy π∗(a |
s, random).

5.3 Robot Manipulation Task 93

RLC RLC-Policy

(a) (b)

(c) (d)

Fig. 5.33 The Accuracy and Hamming Loss in the manipulation task (Q-learning)
applied EST-Policy: (a)(b) Agents were initialized with the pre-trained policy π∗(a |
s, {1, 1}). (c)(d) Agents were initialized with the pre-trained policy π∗(a | s, random).

94 Experimental Evaluation

The above evaluation metrics Precision, Recall, Accuracy, and Hamming Loss show
that our framework can effectively estimate the probabilities of human capabilities
in this manipulation task. Then, allow us to examine how capability probabilities
change over time. Figure 5.34, Figure 5.35, and Figure 5.36 offer a visualization of
the capability probability convergence employing different estimation strategies, where
the black line represents the probability associated with c_green, and the red line
represents the probability associated with c_swap. All agents in these figures were
initialized with the pre-trained policy π∗(a | s, random) and applied RLC-Policy. High
prior probabilities and initial policy affect the value of capability probabilities in the
initial stage. Nevertheless, all estimates in these subplots gradually converge to the
correct side and fluctuate on the proper side.

5.3 Robot Manipulation Task 95

c green c swap

(a) (b)

(c) (d)

Fig. 5.34 The estimates of capabilities in the manipulation task (Q-learning) applied
EST-Action and RLC-Policy, where all agents were initialized with the pre-trained
policy π∗(a | s, random): (a) The true collaborator’s capability set was {c_green =
1, c_swap = 1}. (b) The true collaborator’s capability set was {c_green = 1, c_swap =
0}. (c) The true collaborator’s capability set was {c_green = 0, c_swap = 1}. (d) The
true collaborator’s capability set was {c_green = 0, c_swap = 0}.

96 Experimental Evaluation

c green c swap

(a) (b)

(c) (d)

Fig. 5.35 The estimates of capabilities in the manipulation task (Q-learning) applied
EST-State-Policy and RLC-Policy, where all agents were initialized with the pre-trained
policy π∗(a | s, random): (a) The true collaborator’s capability set was {c_green =
1, c_swap = 1}. (b) The true collaborator’s capability set was {c_green = 1, c_swap =
0}. (c) The true collaborator’s capability set was {c_green = 0, c_swap = 1}. (d) The
true collaborator’s capability set was {c_green = 0, c_swap = 0}.

5.3 Robot Manipulation Task 97

c green c swap

(a) (b)

(c) (d)

Fig. 5.36 The estimates of capabilities in the manipulation task (Q-learning) applied
EST-Policy and RLC-Policy, where all agents were initialized with the pre-trained
policy π∗(a | s, random): (a) The true collaborator’s capability set was {c_green =
1, c_swap = 1}. (b) The true collaborator’s capability set was {c_green = 1, c_swap =
0}. (c) The true collaborator’s capability set was {c_green = 0, c_swap = 1}. (d) The
true collaborator’s capability set was {c_green = 0, c_swap = 0}.

98 Experimental Evaluation

We continued investigating changes in capability probabilities over time in our DQN
implementation with a sensitivity analysis regarding the initial policy selection. Figure
5.37 and Figure 5.38 offer a visualization of the capability probability convergence using
EST-Policy with different initial policies. These two figures show the average result
across configurations in DQN deployment, accompanied by 95% confidence intervals,
calculated based on 20 trials.

The agents were initialized with the pre-trained policy π∗(a | s, {1, 1}) in the Figure
5.37 and π∗(a | s, random) in the Figure 5.38. Relying on the robust generalization
ability of DQN, the capability probabilities converge to the correct side with slight
fluctuation after only a small number of episodes. Nonetheless, high prior probabilities
and the initial policy influence the initial value of capability probabilities.

5.3 Robot Manipulation Task 99

c green c swap

(a) (b)

(c) (d)

Fig. 5.37 The estimates of capabilities in the manipulation task (DQN) applied EST-
Policy, where all agents were initialized with the pre-trained policy π∗(a | s, {1, 1}):
(a) The true collaborator’s capability set was {c_green = 1, c_swap = 1}. (b) The
true collaborator’s capability set was {c_green = 1, c_swap = 0}. (c) The true col-
laborator’s capability set was {c_green = 0, c_swap = 1}. (d) The true collaborator’s
capability set was {c_green = 0, c_swap = 0}.

100 Experimental Evaluation

c green c swap

(a) (b)

(c) (d)

Fig. 5.38 The estimates of capabilities in the manipulation task (DQN) applied EST-
Policy, where all agents were initialized with the pre-trained policy π∗(a | s, random):
(a) The true collaborator’s capability set was {c_green = 1, c_swap = 1}. (b) The
true collaborator’s capability set was {c_green = 1, c_swap = 0}. (c) The true col-
laborator’s capability set was {c_green = 0, c_swap = 1}. (d) The true collaborator’s
capability set was {c_green = 0, c_swap = 0}.

5.3 Robot Manipulation Task 101

5.3.8 RL Performance Evaluation

In this subsection, we continue to run an ablation study over the various configurations
of our framework and focus on whether RL agents applying our framework have more
promising learning performance than the normal RL.

We first assessed our framework’s RL performance through the Q-learning results.
The Figures 5.39, 5.40 and 5.41 shows the Return and steps per episode of the normal
RL, RLC and RLC-Policy. For capability estimation, the agents employed EST-Action
in Figure 5.39, EST-State-Policy in Figure 5.40, and EST-Policy in Figure 5.41. These
figures are accompanied by 95% confidence intervals, computed from 30 separate trial
runs.

Unlike the previous navigation experiment with fixed initial and goal locations, the
environment of this manipulation task is dynamic due to randomly generated initial
layouts, which is reflected in the fact that all agents require more episodes to improve
their policies.

Firstly, let us consider the impact of different exploration methods on RL perfor-
mance by comparing the difference between the three lines in each subplot, where
black is for normal RL, red is for RLC, and blue is for RLC policy. In analyzing
the comparative effects between RL and RLC, one can note a marginal advantage of
RLC over RL. The advantage may appear minimal, given the numerical proximity of
immediate rewards associated with various actions. Nonetheless, the slight edge of
RLC is relevant and contributes to learning. Meanwhile, RLC-Policy demonstrated a
more remarkable advantage within this dynamic environment, consistently achieving
higher returns while taking fewer steps than RLC and the normal RL. This observation
suggests that, within the context of this experiment, the insights obtained by the
agent from pre-trained policies based on capability estimates prove more conducive to
generating user-adaptive behavior than simply applying the reduced action space.

Afterward, allow us perform a sensitivity analysis on different initial policies by
analyzing the differences between pairs of subplot pairs: {(a), (b)} and {(c), (d)} in each
figure. The convergence of online RL remains unaffected by the initial policy choice.
In this dynamic environment, the two initial policies did not result in substantial
differences in RL performance.

Lastly, by comparing these three figures comprehensively, we can see that the shift in
capability estimation strategies maintains a minimal impact on the RL performance of
this manipulation task. Because all three estimation strategies yield correct estimates.

102 Experimental Evaluation

RL RLC RLC-Policy

(a) (b)

(c) (d)

Fig. 5.39 The Return and the number of steps per episode in the manipulation task
(Q-learning) applied EST-Action: (a)(b) Agents were initialized with the pre-trained
policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-trained policy
π∗(a | s, random).

5.3 Robot Manipulation Task 103

RL RLC RLC-Policy

(a) (b)

(c) (d)

Fig. 5.40 The Return and the number of steps per episode in the manipulation task
(Q-learning) applied EST-State-Policy: (a)(b) Agents were initialized with the pre-
trained policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-trained
policy π∗(a | s, random).

104 Experimental Evaluation

RL RLC RLC-Policy

(a) (b)

(c) (d)

Fig. 5.41 The Return and the number of steps per episode in the manipulation task
(Q-learning) applied EST-Policy: (a)(b) Agents were initialized with the pre-trained
policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-trained policy
π∗(a | s, random).

5.3 Robot Manipulation Task 105

Moving forward, let us check the results of DQN implementation. Figure 5.42
shows Return and the number of steps taken per episode of the normal RL, RLC, and
RLC-Policy. All subplots in this figure are accompanied by 95% confidence intervals,
computed from 20 separate trial runs. We can continue to conclude that RLC and
RLC-Policy yield higher Return with fewer steps than normal RL. RLC-Policy tends
to deliver even better enhancements. Furthermore, while DQN exhibited a faster
convergence rate than Q-learning in the static navigation task, this rate increase was
even more pronounced for DQN in this dynamic manipulation task.

RL RLC RLC-Policy

(a) (b)

(c) (d)

Fig. 5.42 The Return and the number of steps per episode in the manipulation
task (DQN) applied EST-Policy: (a)(b) Agents were initialized with the pre-trained
policy π∗(a | s, {1, 1}). (c)(d) Agents were initialized with the pre-trained policy
π∗(a | s, random).

106 Experimental Evaluation

5.3.9 Summary

This section presented a more complex robot manipulation task than the robot naviga-
tion task, outlining the parameters associated with Q-learning and DQN implementa-
tions. The experimental results followed it. We carried out ablation studies focusing
on two dimensions: estimation performance and RL performance. We performed a
sensitivity analysis on the selection of initial policies.

5.4 Scavenger Hunt Game 107

5.4 Scavenger Hunt Game

5.4.1 Introduction

In this section, we present a collaborative variant of the Scavenger Hunt game [63], a
benchmark for testing autonomous robots in the real-world settings. This task aims
to find some objects in several rooms, and in our variant, the robot and a human
collaborator work together.

At the beginning of each episode, a referee program generates a layout of objects
based on a predefined distribution. The referee assistant then places the objects
accordingly in the environment. With knowledge of the object distribution but not
the exact object locations, the robot always guides the way during the search. When
both the robot and a fully capable human collaborator are present, the most effective
strategy involves the robot leading the way and the person identifying objects. In
case of need, the robot can slow its pace during navigation and rely on its own vision
detection if enough evidence shows that the human cannot assist. Additionally, the
robot can explicitly ask the collaborator about the presence of an object during the
game and decide whether to trust his response. This collaborative approach allows the
robot to leverage both its own abilities and the assistance of the collaborator, resulting
in an efficient and user-adaptive system for the Scavenger Hunt task.

In this thesis, the experiment was conducted with the researcher serving as the
sole subject, designed to show the technical applicability of our framework in real-
world scenarios. The design of this experiment is entirely feasible with real volunteers.
However, recruiting at that time would no doubt be impeded by the COVID-19
pandemic.

5.4.2 MDP Settings

The state space consists of the position of the robot base, the current navigation goal,
the target object, the latest answer from the person, the robot’s distance from the
person, and the position of the objects found. The action space consists of drive_slow,
drive_fast, ask, inform, accept, and reject. drive_slow represents the robot’s
mobile base moving to a waypoint at low speed, while drive_fast is at high speed.
ask represents the robot asking the person if he can find the target object around
the current location. Then, the robot has two actions: accept and reject. accept
represents that the robot trusts and takes the human’s answer. reject represents
that the answer is rejected, and the robot plans to scan the area by itself. Besides

108 Experimental Evaluation

asking for human responses, the robot has an alternative action inform. This action
represents the robot expecting the person’s answer to be wrong and sticking to the
robot’s observations. Rather than the reject way: explicitly asking the person, rejecting
the answer, and then scanning around, it is considerably time-efficient to perform the
inform action: scanning the area directly and telling the person the robot’s answer.

The reward function is as follows. Denoting with d the human-robot distance, and
with dmax = 4 the desired maximum distance, The rewards are assigned to the agent
based on the rules listed below, otherwise the reward is 0. The task aims to encourage
human-robot collaborations instead of minimizing completion time arbitrarily. Thus,
the reward function prioritizes actions that involve discussing the location of objects
with the collaborator over providing answers directly by the robot even if the latter
takes less time than the former:

• If d ≤ dmax: Ra(drive_fast) = −1, Ra(drive_slow) = −2.

• If d > dmax: Ra(drive_fast) = −20, Ra(drive_slow) = −10.

• If the robot correctly identifies the location of an object that is in the room:
Ra(accept) = 80, Ra(inform) = 60, Ra(reject) = 40.

• If the robot does not return a false positive, for an object that is not, in fact, in
the room (otherwise the robot may just guess in every room): Ra(accept) = 30,
Ra(inform) = 20, Ra(reject) = 10.

5.4.3 Human Capabilities

Four human capabilities c_fast, c_color, c_sight, and c_sound are considered in
this task. The c_fast capability represents that the person can walk fast; c_color
represents that the person can discriminate red and orange; c_sight represents that
the person can recognize objects from far away; c_sound represents that the person
can locate hidden objects that emit a sound.

5.4.4 Task Settings

There are six rooms to be searched in the Bragg building at the University of Leeds.
Two of them are shown in Figure 5.43. Four target objects red_ball, chickpeas,
breadsticks and speaker are shown in Figure 5.44. A blue ball or orange ball may also
be placed where the red_ball may be, requiring c_color to be discriminated by the
collaborator. The canned chickpeas can be found anywhere. The box of breadsticks

5.4 Scavenger Hunt Game 109

will be placed far away from the center of the room. Thus, the collaborator requires
c_sight to see it. The speaker will be turned on to play music and placed in a position
invisible to the robot and the collaborator, requiring c_sound to be located.

Fig. 5.43 Examples of searching rooms in the Bragg building at the University of Leeds.

Fig. 5.44 The objects being searched in the Scavenger Hunt Game.

5.4.5 Human-Robot Distance Estimation

To satisfy the requirement of human-robot distance measurement used in the state
space, we investigated two indoor positioning technologies: Ultra Wide Band (UWB)
[4] and Bluetooth [61]. UWB stands out for its robust resistance to interference and its
capacity to attain centimeter-level positioning accuracy. On the other hand, Bluetooth-
based Indoor Positioning, while less resilient to interference, boasts widespread support
in mobile devices, and the equipment required: Bluetooth beacons are inexpensive and
easy to deploy. We chose the Bluetooth technique in the end.

Given that our experiment takes place in the public area of the Bragg building, the
accuracy of Bluetooth-based indoor localization is easily affected by signal refraction
and obstruction. Thus, we deployed four Bluetooth beacons on the torso of the TIAGo
robot for error correction, as shown in Figure 5.45.

110 Experimental Evaluation

Fig. 5.45 The Bluetooth beacons deployed on TIAGo.

The principle of Bluetooth Indoor Positioning relies on the positive correlation
between the Received Signal Strength Indicator (RSSI) of the Bluetooth beacon
measured by the transceiver device and the distance between them. In ideal conditions,
the distance d between the transceiver device and the Bluetooth beacon can be estimated
using Equation (5.5)[2], where RSSIT X represents the Transmission Power, RSSI is
the signal strength, and n is an empirical value of path-loss exponent, ranges from 2 to
4:

d = 10
RSSI−RSSIT X

−10n . (5.5)

Algorithm 5.6 shows the process of RSSI updating. The RSSI of all beacons is
obtained, represented by the vector r, at line 2. In the real environment, the signal
strength value can be affected by electromagnetic interference, such as WIFI and the
cellular network. To mitigate the noise impact and ensure more robust measurements,
we employ a Gaussian filter (line 5) to smooth the RSSI values. This filtering process
involves applying a one-dimensional Gaussian distribution (shown in Equation (5.6))
with a standard deviation σ = 1, and a kernel size of 9:

f(x) = 1√
2πσ2

e− x2
2σ2 . (5.6)

5.4 Scavenger Hunt Game 111

Algorithm 4: RSSI Updating
Input: m: The max queue size of smoothed RSSI values.

σ: The standard deviation of Gaussian filter.
k: The kernel size of Gaussian filter.

1 rs ←− empty_dqueue(maxlen = m);
2 while task is running do
3 r←− result_from_beacons();
4 r′ ←− r ⋃ rs;
5 r′ ←− gaussian_filter1d(r′, σ, k);
6 rnew ←− the last value of r′;
7 Append rnew to rs;
8 Publish rnew as the latest RSSI value.
9 end

5.4.6 Mobile Software

The collaborator carries a smartphone with software to answer the robot’s questions,
providing two options Yes and No. At the same time, the software obtains the RSSI of
the Bluetooth beacons through the Application Programming Interface (API) of the
mobile phone, and uploads it to the server in real-time. The robot also carries a tablet
reporting the text of the robot’s words, allowing hearing-impaired people to answer
and interact. Figure 5.46 shows the whole structure of this task.

5.4.7 Pre-training in Simulation

Although the deployment of this task was carried out in a real environment, considering
that there are a total of 16 capability combinations, pre-training in a real environment
is impractical. Therefore, pre-training for this task was performed in the simulator. Our
simulator environment incorporated the following features to enhance the robustness of
the pre-training policies and facilitate smoother transfer to the real-world environment:

(i) There is a probability of 0.1 that the collaborator slowly walks even if he has the
capability c_fast.

(ii) The robot cannot directly see the expected target object when entering the room
with a probability of 0.5 unless it performs a scanning.

112 Experimental Evaluation

Robot States/
Distance/

Human Answers/
Recognition Result

RGB Image

Internet
(VPN Gateway)

Commands

Learning Result

RL Brain

Results Object
Recognition

Server

Robot States/
Observations/
Commands

Collaborator

Detect Distance

Distance/Human Answers

Beacons

Wireless Router

Robot's questions

Fig. 5.46 The structure of the implementation in the Scavenger Hunt Game.

(iii) Even if scanning is performed, there is still a probability of 0.2 that the robot
cannot recognize the target object.

(iv) There is a probability of 0.1 that the robot can observe the speaker without help
from the collaborator.

(v) There is a probability of 0.2 that the robot’s scanning will produce a false positive
result.

(vi) There is a probability of 0.1 that the collaborator will give the robot an answer
inconsistent with the truth.

5.4.8 Experimental Setup

We only implemented Q-learning in this domain. The experiment started with pre-
training, resulting in |2c| = 16 pre-trained policies and one extra pre-trained pol-
icy for random capabilities. The pre-trained policy π∗(a | s, random) is the initial
policy. There are a total of 16 capability combinations in this task, and we se-
lected the following three combinations in the deployment: (i) {c_color,c_sound},
(ii) {c_fast,c_sight,c_color}, (iii) {c_sight,c_color}. For each initial policy, the
RL agents were deployed separately with collaborators of these three capability com-
binations. We tested all combinations of {EST-Policy} × {RL(normal), RLC-Policy}

5.4 Scavenger Hunt Game 113

1. Pre-training (Simulation, offline) 2. Deployment (Real-world, online, 4 trials)

EST-Policy

RL RLC-Policy

Fig. 5.47 The experimental setup of the Scavenger Hunt game (Q-learning), where
the yellow rectangles represent the pre-trained policies used in the initialization of
deployments.

separately in the deployment. Consequently, 1×3×1×2 = 6 deployment configurations.
Figure 5.47 shows the overview of the experimental setup.

In pre-training, the agents were trained over 5,000,000 episodes for each capability
combination and the random capabilities in the simulator. The learning rate α = 0.1,
the discount factor γ = 0.95. The maximum number of steps in a single episode was
200. The prior probability of combination {c_fast = 1, c_sight = 1, c_color =
1, c_sound = 1} was 0.8, and for the other combinations was 0.0133.

The agents ran 20 episodes for each configuration. The ϵ of ϵ-greedy decayed
linearly from 0.4. The learning rate α = 0.3, the discount factor γ = 0.95. The
maximum number of steps in a single episode was 100. The capability thresholds
d = 0.5. The Softmax temperature τ = 0.3. The batch size of trajectory l = 10.
The κ = 0.5 and κpre = 0. We chose the agent applying EST-Policy and RLC-Policy
to compare with the normal RL. Thus, there is no sampling process in Figure 5.47.
Overall, each configuration was evaluated for 4 trials. Each episode took approximately
20-30 minutes.

114 Experimental Evaluation

5.4.9 Estimation Performance Evaluation

Figure 5.48 shows the average probabilities of capabilities over time in the Scavenger
Hunt Game, computed from 4 separate trial runs. All agents in these figures were
initialized with the pre-trained policy π∗(a | s, random), applied EST-Policy and
RLC-Policy. The estimates fluctuated but were eventually correct in all configurations
and almost always fluctuated on the correct side.

c colorc fast c sight c sound

(a) (b)

(c)

Fig. 5.48 The probabilities of capabilities in the Scavenger Hunt Game: (a) The
true collaborator’s capability set was {c_color,c_sound}. (b) The true collaborator’s
capability set was {c_fast,c_sight,c_color}. (c) The true collaborator’s capability
set was {c_sight,c_color}.

5.4 Scavenger Hunt Game 115

5.4.10 RL Performance Evaluation

In this experiment, the pre-trained policies were trained in the simulator. So, we
focus on the agent’s performance when the environment switches from the simulator
to the real world. Figure 5.49 shows average Return across three tested capability
combinations, which are computed from 4 separate trial runs. Our agent applying
EST-Policy and RLC-Policy obtained higher Return than the normal RL. This result
shows that the policy trained in the simulator combined with our framework can help
the agent obtain better RL performance in this real-world human-robot collaborative
task.

RL EST-Policy+RLC-Policy

(a) (b)

(c)

Fig. 5.49 The Return in the Scavenger Hunt Game: (a) The true collaborator’s
capability set was {c_color,c_sound}. (b) The true collaborator’s capability set
was {c_fast,c_sight,c_color}. (c) The true collaborator’s capability set was
{c_sight,c_color}.

Chapter 6

Conclusion and Future Work

6.1 Results Summary

In the previous chapter, we present results from three collaborative tasks: two con-
ducted within a simulator environment and one as a real-world experiment. The first
navigation task operated in a simple, deterministic environment, where a robot-guided
a collaborator from a fixed starting point to a fixed goal. In contrast, the second
manipulation task introduced uncertainty. The layout of objects on the table and the
chessboard was randomly generated, requiring human-robot collaborations to organize
these objects. The third experiment operated in the real world, the collaborative
"Scavenger Hunt Game," also unfolded within an uncertain setting. Target objects
were randomly placed in several rooms, and the robot’s objective was to work with
the collaborator to locate all target objects. The pre-training for the Scavenger Hunt
Game took place in the simulator, while deployment operated in the real world.

We conducted ablation study and sensitivity analysis in the above environments,
and our primary focus was on addressing the following key questions:

(i) The impact of exploration strategies based on capability estimation
and pre-training policies on RL performance. When capability estimates
are correct, the agents applying RLC and RLC-Policy obtained higher Return
and fewer episode steps than normal RL. Overall, RLC-Policy, combining online
capability estimation and capability-guided exploration, performs better than
RLC and normal RL.

(ii) The impact of different initial policies on RL performance: While the
convergence of Reinforcement Learning remains invariant to the initial policy, the
adoption of an appropriate initial policy can significantly accelerate the learning

118 Conclusion and Future Work

process. The π∗(a | s, {1, · · · , 1}) initial policy adopts more aggressive behaviors.
It can rapidly react when receiving a strong signal, such as negative rewards, to
learn more suitable actions for the collaborator. The π∗(a | s, {0, · · · , 0}) initial
policy adopts more cautious behaviors to avoid task failure, but it may get stuck
in local optima when the exploration is insufficient. The behavior of the initial
policy π∗(a | s, random) is between π∗(a | s, {1, · · · , 1}) and π∗(a | s, {0, · · · , 0}),
and achieve relatively good performance. The selection of initial policies also
impacts capability estimates, which we will continue to discuss in (vii).

(iii) The impact of different capability estimation strategies on RL perfor-
mance. In our two simulator experiments, the impact of different estimation
strategies on RL performance is not apparent. Because all three estimation
strategies produced correct estimates. However, one must consider that these
estimation strategies come with varying constraints and computational demands.
Such constraints are given in our discussion (vi) related to estimation performance.

(iv) How reliable are our capability estimation strategies as a side effect of
Reinforcement Learning? We employed metrics including Accuracy, Precision,
Recall, and Hamming Loss in two simulation experiments to demonstrate that all
capabilities probabilities can converge gradually to the correct values as policy
improves, with reasonable fluctuations. Furthermore, we showed plots of capabil-
ity probabilities over time in simulated and real experiments, providing additional
evidence of the convergence of capability probabilities. However, disabling actions
in Reinforcement Learning comes with both benefits and risks. We recommend
not disabling actions during the exploitation process when capability estimates
are unstable or unreliable in the initial stage.

(v) The impact of prior probabilities on capability estimation and Re-
inforcement Learning performance. In our navigation experiment, we
conducted a sensitivity analysis focused on prior probabilities. The evidence
demonstrates an observable influence of prior probabilities on the initial stage
of capability estimation, which is similar to the initial policy made. However,
this does not affect the convergence of capability probabilities. Meanwhile, when
examining the impact on Reinforcement Learning metrics, the influence of these
prior probabilities was minimal.

(vi) Estimation performance differences of different estimation strategies.
Different estimation strategies demonstrated different estimation performances

6.1 Results Summary 119

Estimation Strategy State Space Action Space Sampling
EST-Action N/A Discrete Required for A ∼
EST-State-Policy Discrete N/A Required for S ∼
EST-Policy N/A N/A N/A

Table 6.1 The constraints of estimation strategies.

in our simulator experiments. Because EST-Action only considers the trajectory
of actions, the estimates produced are not as stable as EST-State-Policy and
EST-Policy. EST-State-Policy and EST-Policy may be more effective. However,
the use of these strategies is subject to different constraints depending on the
conditions of their computing methods. We introduced more details of these
constraints in Section 4.3, and here we offer a summary in Table 6.1.

(vii) The impact of different initial policies on capability estimation. The
initial policies are not directly introduced into the calculation of the capability
estimation. Nevertheless, it plays a crucial role in shaping the agent’s behavior
during the early stage of learning. Therefore, the capability estimates at the
initial stage of learning are correlated with the capability combination of the
selected initial policy. For example: when the initial policy is π∗(a | s, {1, · · · , 1}),
the initial estimate is close to {1, · · · , 1}. These initial estimates, rooted in prior
knowledge, gradually converge towards the correct side as the agent’s policy
improves and relevant evidence accumulates over time.

(viii) The performance of our method in Deep Reinforcement Learning.
DQN, used in our experiments as a Deep Reinforcement Learning algorithm,
offers generalization abilities that Q-learning does not have and supports high-
dimensional state spaces. Our method can seamlessly serve as middleware for
DQN and Q-learning, simultaneously estimating capability probabilities and
guiding agent exploration. It can be seen from the results of capability estimation
that our method performed well in DQN. The convergence rate of capability
probabilities in DQN is faster than in Q-learning.

120 Conclusion and Future Work

6.2 Limitations and Future Work

6.2.1 Binary Capabilities

In this thesis, we treat human capabilities as binary variables. For instance, in the
navigation experiment, we use c_fast ∈ {0, 1} to represent if the collaborator can
walk fast or slow. However, several human capabilities, like walking speed, are better
represented in a continuous space.

We primarily use binary variables because we consider human capability estimation
as a multi-label learning problem rather than a regression problem. Our goal is to
determine a decision boundary. Binary labels clearly differentiate between the presence
and absence of capabilities, which can be helpful for decision-making through the
pre-condition model. Additionally, to acquire optimal policies used in the estimation,
we have to perform the pre-training where binary human capability ensures a finite
number of pre-trained policies.

Nevertheless, the binary representation disregards the variability within capabilities,
including varying levels or degrees of expertise. A shift towards continuous capabilities
could enable finer control and introduce more nuanced behaviors, representing a poten-
tial direction for future research. When dealing with continuous probability density
functions, performing regression on the distribution would be necessary. This regression
could require a large sample size to capture the variables’ variability sufficiently.

6.2.2 The Human Objects of Real-World Experiment

We introduced a collaborative Scavenger Hunt Game designed for user engagement
in real-world settings. We present this experiment as a technical implementation to
demonstrate the feasibility of our framework in the real world. Moreover, when we
organized that experiment, considering the COVID-19 pandemic and the associated
health risks to participants and researchers, only the researcher stood as human subjects
in this thesis. Future iterations of similar research could benefit from incorporating
real users to further validate findings and enhance practical applications.

6.2.3 Optimized Multi-label Learning

In our capability estimation methods, we used the Label Powerset, as a high-order
strategy, considering the correlations among all capability labels, generating a total of
|2c| capability combinations, which shows a significant limitation of the Label Powerset:
When the size of capability set c grows, the number of capability combinations

6.2 Limitations and Future Work 121

increases exponentially, leading to high complexity and inefficient pre-training processes.
Therefore, future work might involve introducing a high-order algorithm that can
address the drawbacks of the Label Powerset, such as Random k-Labelsets [60]. Another
way is to introduce Algorithm Adaptation Methods to solve the multi-label learning
problem. This category of algorithms focuses on adapting existing learning algorithms
to address multi-label learning problems effectively.

Another perspective is the feasibility of disregarding correlations between human
capabilities. If such correlations can be overlooked, we can employ the first-order
strategy in multi-label learning, which assesses the probability of each capability
independently instead of their joint probability. There is no doubt that first-order
strategies can simplify computational complexity. In this thesis, we did not delve into
the correlation between human capabilities. Choosing which strategy to address a
multi-label learning problem depends on the task domain. For example, in a kitchen
scenario, the robot estimates two human capabilities: if the collaborator has the
strength to open a refrigerator and if the collaborator has the strength to open a beer.
There is likely a correlation between these two capabilities, making the Label Powerset
more theoretically effective at estimating the probabilities of these two capabilities in
this context. We have validated that the framework we proposed in this thesis can
tackle such complex situations. Future research can further explore the correlation
between human capabilities and the strategy selection for resolving the multi-label
learning problem.

6.2.4 Continuous Task Domains in Reinforcement Learning

So far, the collaborative tasks we have experimented with have discrete state spaces and
discrete action spaces. According to Table 6.1, we can find that both EST-Action and
EST-State-Policy can partially support tasks in continuous state space or continuous
action space. EST-Policy, on the other hand, imposes no specific limitations. Therefore,
we expect to introduce collaborative studies with continuous state or action spaces.
By doing this, we can further reveal the differences among the capability estimation
strategies we presented.

6.2.5 Generalization Across Domains

In our existing experiments, we modeled each collaborative task and conducted pre-
training for each capability combination. However, a refresh pre-training for all
capability combinations is required when we wish to introduce a new capability to

122 Conclusion and Future Work

an existing collaborative task. It would be interesting to research how to avoid pre-
training from scratch. Furthermore, can the learning process for capability estimation
be generalized to work in different domains without learning from scratch?

6.2.6 Diverse Evidence and Estimations

The feature vector included state and action information generated through Reinforce-
ment Learning in our proposed estimation strategies. However, the domain of RL is
rich with additional signals and information that could be used to enhance our feature
space further.

Immediate Rewards: One promising direction for future work involves incorporat-
ing immediate rewards into the feature vector. Immediate rewards can carry valuable
information about the consequences of actions taken in a specific state, and their
inclusion can potentially improve the performance and robustness of the estimation.

Temporal Abstraction: RL traditionally operates at an action-level temporal
scale. However, many real-world tasks involve higher-level decision-making and planning
over longer time horizons. Future work could explore methods for abstracting and
summarizing sequences of actions and states, potentially leading to more efficient and
interpretable feature representations.

Multi-Agent Collaboration: Extending our approach to multi-agent environ-
ments is an exciting direction. Nursing homes and intelligent houses of the future may
involve collaboration between multiple agents and different collaborators, and modeling
their interactions can be challenging.

Furthermore, we view Reinforcement Learning as a method for capability estimation,
not the only method. Future research can explore hybrid approaches combining RL
with other machine learning or statistical methods to leverage their strengths and
mitigate weaknesses.

6.3 Conclusion

This thesis presents a novel framework for online human capability estimation, applying
Reinforcement Learning and Bayesian inference. We consider human capabilities as
preconditions of robot actions. Our framework tracks evidence within the Reinforcement
Learning context, offering three distinct strategies for capability estimation, each
adapted to specific requirements. Additionally, we integrated pre-training policies and

6.3 Conclusion 123

introduced two capability-guided exploration strategies, further enhancing the agent’s
RL performance.

Through multiple collaborative experiments, including two simulator-based studies
and the implementation of two popular Reinforcement Learning algorithms, Q-learning
and DQN, we have demonstrated our framework’s actual benefits in improving RL
performance and accurate capability estimation. The real-world experiment has affirmed
the feasibility of capability estimation, with clear results that agent performance can
be substantially enhanced through capability-guided exploration.

Looking ahead, We expect to reduce pre-training requirements by refining the
multi-label learning algorithm. Exploring the integration of diverse sources of evidence
and advancing the generalization of capability estimation across a wider array of tasks
represent promising directions for further research.

References

[1] Abdo, N., Stachniss, C., Spinello, L., and Burgard, W. (2015). Robot, organize
my shelves! tidying up objects by predicting user preferences. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 1557–1564.

[2] Al Qathrady, M. and Helmy, A. (2017). Improving ble distance estimation and
classification using tx power and machine learning: A comparative analysis. In
Proceedings of the 20th ACM International Conference on Modelling, Analysis and
Simulation of Wireless and Mobile Systems, MSWiM ’17, page 79–83, New York,
NY, USA. Association for Computing Machinery.

[3] Aly, A. and Tapus, A. (2013). A model for synthesizing a combined verbal and
nonverbal behavior based on personality traits in human-robot interaction. In 2013
8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages
325–332.

[4] Arias-de Reyna, E. (2013). A cooperative localization algorithm for uwb indoor
sensor networks. Wireless personal communications, 72(1):85–99.

[5] Aylett, R., Kappas, A., Castellano, G., Bull, S., Barendregt, W., Paiva, A., and
Hall, L. (2015). I know how that feels — an empathic robot tutor. In eChallenges
e-2015 Conference, pages 1–9.

[6] Boyan, J. and Moore, A. (1994). Generalization in reinforcement learning: Safely
approximating the value function. In Tesauro, G., Touretzky, D., and Leen, T.,
editors, Advances in Neural Information Processing Systems, volume 7. MIT Press.

[7] Broz, F., Nourbakhsh, I., and Simmons, R. (2013). Planning for human–robot
interaction in socially situated tasks: The impact of representing time and intention.
International journal of social robotics, 5(2):193–214.

[8] Canal, G., Alenyà, G., and Torras, C. (2019). Adapting robot task planning to user
preferences: an assistive shoe dressing example. Autonomous robots, 43(6):1343–1356.

[9] Canal, G., Torras, C., and Alenyà, G. (2021). Are preferences useful for better
assistance? a physically assistive robotics user study. J. Hum.-Robot Interact., 10(4).

[10] Canal Camprodon, G., Alenyà Ribas, G., and Torras, C. (2017). A taxonomy of
preferences for physically assistive robots.

126 References

[11] Churamani, N., Anton, P., Brügger, M., Fließwasser, E., Hummel, T., Mayer, J.,
Mustafa, W., Ng, H. G., Nguyen, T. L. C., Nguyen, Q., Soll, M., Springenberg, S.,
Griffiths, S., Heinrich, S., Navarro-Guerrero, N., Strahl, E., Twiefel, J., Weber, C.,
and Wermter, S. (2017). The impact of personalisation on human-robot interaction
in learning scenarios. In Proceedings of the 5th International Conference on Human
Agent Interaction, HAI ’17, page 171–180, New York, NY, USA. Association for
Computing Machinery.

[12] Devin, S. and Alami, R. (2016). An implemented theory of mind to improve human-
robot shared plans execution. In 2016 11th ACM/IEEE International Conference
on Human-Robot Interaction (HRI), pages 319–326.

[13] Duque, I., Dautenhahn, K., Koay, K. L., Willcock, l., and Christianson, B. (2013).
A different approach of using personas in human-robot interaction: Integrating
personas as computational models to modify robot companions’ behaviour. In 2013
IEEE RO-MAN, pages 424–429.

[14] et al, C.-G. (2014). Learning behaviors by an autonomous social robot with
motivations. Cybernetics and systems, 45(7):568–598.

[15] et al., M.-G. (2018). A bio-inspired motivational decision making system for
social robots based on the perception of the user. Sensors (Basel, Switzerland),
18(8):2691–.

[16] Fiore, M., Khambhaita, H., Milliez, G., and Alami, R. (2015). An adaptive and
proactive human-aware robot guide. In Social Robotics, Lecture Notes in Computer
Science, pages 194–203, Cham. Springer International Publishing.

[17] Gao, Y., Chang, H. J., and Demiris, Y. (2015). User modelling for personalised
dressing assistance by humanoid robots. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1840–1845.

[18] Gibaja, E. and Ventura, S. (2015). A tutorial on multilabel learning. ACM
Computing Surveys (CSUR), 47(3):1–38.

[19] Godbole, S. and Sarawagi, S. (2004). Discriminative methods for multi-labeled
classification. In Advances in Knowledge Discovery and Data Mining, Lecture Notes
in Computer Science, pages 22–30, Berlin, Heidelberg. Springer Berlin Heidelberg.

[20] Görür, O. C., Rosman, B., Sivrikaya, F., and Albayrak, S. (2023). Fabric: A
framework for the design and evaluation of collaborative robots with extended human
adaptation. J. Hum.-Robot Interact. Just Accepted.

[21] Gross, H.-M., Boehme, H., Schroeter, C., Mueller, S., Koenig, A., Einhorn, E.,
Martin, C., Merten, M., and Bley, A. (2009). Toomas: Interactive shopping guide
robots in everyday use - final implementation and experiences from long-term field
trials. In 2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2005–2012.

[22] Hasselt, H. (2010). Double q-learning. Advances in neural information processing
systems, 23.

References 127

[23] Hasselt, H. v., Guez, A., and Silver, D. (2016). Deep reinforcement learning with
double q-learning. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI’16, page 2094–2100. AAAI Press.

[24] Hellou, M., Gasteiger, N., Lim, J. Y., Jang, M., and Ahn, H. S. (2021). Personal-
ization and localization in human-robot interaction: A review of technical methods.
Robotics, 10(4).

[25] Hemminghaus, J. and Kopp, S. (2017). Towards adaptive social behavior gener-
ation for assistive robots using reinforcement learning. In 2017 12th ACM/IEEE
International Conference on Human-Robot Interaction (HRI, pages 332–340. ACM.

[26] Huang, C.-M. and Mutlu, B. (2016). Anticipatory robot control for efficient
human-robot collaboration. In 2016 11th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 83–90.

[27] Kanda, T., Shiomi, M., Miyashita, Z., Ishiguro, H., and Hagita, N. (2010). A
communication robot in a shopping mall. IEEE Transactions on Robotics, 26(5):897–
913.

[28] Karami, A. B., Sehaba, K., and Encelle, B. (2013). Adaptive and personalised
robots - learning from users’ feedback. In 2013 IEEE 25th International Conference
on Tools with Artificial Intelligence, pages 626–632.

[29] Karami, A. B., Sehaba, K., and Encelle, B. (2016). Adaptive artificial companions
learning from users’ feedback. Adaptive behavior, 24(2):69–86.

[30] Keene, D. R. (2015). A review of color blindness for microscopists: Guidelines
and tools for accommodating and coping with color vision deficiency. Microscopy
and microanalysis, 21(2):279–289.

[31] Klee, S. D., Ferreira, B. Q., Silva, R., Costeira, J. P., Melo, F. S., and Veloso, M.
(2015). Personalized assistance for dressing users. In Tapus, A., André, E., Martin,
J.-C., Ferland, F., and Ammi, M., editors, Social Robotics, pages 359–369, Cham.
Springer International Publishing.

[32] Lam, C.-P. and Sastry, S. S. (2014). A pomdp framework for human-in-the-loop
system. In 53rd IEEE Conference on Decision and Control, pages 6031–6036.

[33] Malfaz, M. and Salichs, M. (2009). Learning to deal with objects. In 2009 IEEE
8th International Conference on Development and Learning, pages 1–6. IEEE.

[34] Martins, G. S., Ferreira, P., Santos, L., and Dias, J. (2016). A context-aware
adaptability model for service robots. In IJCAI-2016 Workshop on Autonomous
Mobile Service Robots.

[35] Martins, G. S., Santos, L., and Dias, J. (2019a). Bum: Bayesian user model for
distributed learning of user characteristics from heterogeneous information. IEEE
transactions on cognitive and developmental systems, 11(3):425–434.

128 References

[36] Martins, G. S., Santos, L., and Dias, J. (2019b). User-adaptive interaction in
social robots: A survey focusing on non-physical interaction. International journal
of social robotics, 11(1):185–205.

[37] Matsubara, T., Miro, J. V., Tanaka, D., Poon, J., and Sugimoto, K. (2015).
Sequential intention estimation of a mobility aid user for intelligent navigational
assistance. In 2015 24th IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN), pages 444–449. IEEE.

[38] McColl, D. and Nejat, G. (2013). Meal-time with a socially assistive robot and
older adults at a long-term care facility. J. Hum.-Robot Interact., 2(1):152–171.

[39] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
and Riedmiller, M. (2013). Playing atari with deep reinforcement learning.

[40] Müller, S., Sprenger, S., and Gross, H.-M. (2014). Online adaptation of dia-
log strategies based on probabilistic planning. In The 23rd IEEE International
Symposium on Robot and Human Interactive Communication, pages 692–697.

[41] Nikolaidis, S., Kuznetsov, A., Hsu, D., and Srinivasa, S. (2016). Formalizing human-
robot mutual adaptation: A bounded memory model. In 2016 11th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pages 75–82.

[42] Norcio, A. and Stanley, J. (1989). Adaptive human-computer interfaces: a litera-
ture survey and perspective. IEEE Transactions on Systems, Man, and Cybernetics,
19(2):399–408.

[43] Park, H. W., Grover, I., Spaulding, S., Gomez, L., and Breazeal, C. (2019).
A model-free affective reinforcement learning approach to personalization of an
autonomous social robot companion for early literacy education. In Proceedings of the
Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative
Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19. AAAI
Press.

[44] Portugal, D., Santos, L., Alvito, P., Dias, J., Samaras, G., and Christodoulou,
E. (2015). Socialrobot: An interactive mobile robot for elderly home care. In 2015
IEEE/SICE International Symposium on System Integration (SII), pages 811–816.

[45] Qureshi, A. H., Nakamura, Y., Yoshikawa, Y., and Ishiguro, H. (2018). Intrinsically
motivated reinforcement learning for human–robot interaction in the real-world.
Neural networks, 107:23–33.

[46] Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N.
(2021). Stable-baselines3: Reliable reinforcement learning implementations. Journal
of Machine Learning Research, 22(268):1–8.

[47] Ray, C., Mondada, F., and Siegwart, R. (2008). What do people expect from
robots? In 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 3816–3821. IEEE.

References 129

[48] Ros, R., Baroni, I., and Demiris, Y. (2014). Adaptive human–robot interaction
in sensorimotor task instruction: From human to robot dance tutors. Robotics and
Autonomous Systems, 62(6):707–720.

[49] Sarabia, M., Lee, K., and Demiris, Y. (2015). Towards a synchronised grammars
framework for adaptive musical human-robot collaboration. In 2015 24th IEEE
International Symposium on Robot and Human Interactive Communication (RO-
MAN), pages 715–721.

[50] Schapire, R. E. and Singer, Y. (2000). Boostexter: A boosting-based system for
text categorization. Machine learning, 39(2):135–168.

[51] Sekmen, A. and Challa, P. (2013). Assessment of adaptive human–robot interac-
tions. Knowledge-Based Systems, 42:49–59.

[52] Senft, E., Baxter, P., Kennedy, J., Lemaignan, S., and Belpaeme, T. (2017).
Supervised autonomy for online learning in human-robot interaction. Pattern
recognition letters, 99:77–86.

[53] Sheridan, T. B. (2020). A review of recent research in social robotics. Current
Opinion in Psychology, 36:7–12. Cyberpsychology.

[54] Taha, T., Miro, J. V., and Dissanayake, G. (2011). A pomdp framework for
modelling human interaction with assistive robots. In 2011 IEEE International
Conference on Robotics and Automation, pages 544–549. IEEE.

[55] Tapus, A., Ţăpuş, C., and Matarić, M. J. (2008). User—robot personality
matching and assistive robot behavior adaptation for post-stroke rehabilitation
therapy. Intelligent service robotics, 1(2):169–183.

[56] Tseng, S.-H., Liu, F.-C., and Fu, L.-C. (2018). Active learning on service providing
model: Adjustment of robot behaviors through human feedback. IEEE transactions
on cognitive and developmental systems, 10(3):701–711.

[57] Tsiakas, K., Abujelala, M., and Makedon, F. (2018). Task engagement as person-
alization feedback for socially-assistive robots and cognitive training. Technologies
(Basel), 6(2):49–.

[58] Tsoumakas, G. and Katakis, I. (2007). Multi-label classification: An overview.
International journal of data warehousing and mining, 3(3):1–13.

[59] Tsoumakas, G., Katakis, I., and Vlahavas, I. (2010). Mining Multi-label Data,
pages 667–685. Springer US, Boston, MA.

[60] Tsoumakas, G. and Vlahavas, I. (2007). Random k-labelsets: An ensemble method
for multilabel classification. In Kok, J. N., Koronacki, J., Mantaras, R. L. d., Matwin,
S., Mladenič, D., and Skowron, A., editors, Machine Learning: ECML 2007, pages
406–417, Berlin, Heidelberg. Springer Berlin Heidelberg.

[61] Wang, Y., Yang, X., Zhao, Y., Liu, Y., and Cuthbert, L. (2013). Bluetooth
positioning using rssi and triangulation methods. In 2013 IEEE 10th Consumer
Communications and Networking Conference (CCNC), pages 837–842. IEEE.

130 References

[62] Wang, Z., Boularias, A., Mülling, K., Schölkopf, B., and Peters, J. (2017). An-
ticipatory action selection for human–robot table tennis. Artificial Intelligence,
247:399–414. Special Issue on AI and Robotics.

[63] Yedidsion, H., Suriadinata, J., Xu, Z., Debruyn, S., and Stone, P. (2021). A
scavenger hunt for service robots.

[64] Zhang, M.-L. and Zhang, K. (2010). Multi-label learning by exploiting label
dependency. In Proceedings of the 16th ACM SIGKDD international conference on
knowledge discovery and data mining, pages 999–1008. ACM.

[65] Zhang, M.-L. and Zhou, Z.-H. (2014). A review on multi-label learning algorithms.
IEEE transactions on knowledge and data engineering, 26(8):1819–1837.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Main themes
	1.2 Contributions
	1.3 Thesis Outlines

	2 Background
	2.1 Markov Decision Process
	2.2 Reinforcement Learning
	2.2.1 Model-based Learning
	2.2.2 Model-free Learning

	2.3 Deep Reinforcement Learning
	2.4 Multi-Label Classification
	2.5 Naive Bayes Classifier
	2.6 Bayesian Network

	3 Related Work
	3.1 User adaptability
	3.2 System Structure
	3.3 User Model
	3.3.1 Static User Model
	3.3.2 Dynamic User Model
	3.3.3 Implicit User Model

	3.4 Decision-Making with User Knowledge
	3.4.1 Rule-based Methods
	3.4.2 Supervised Methods
	3.4.3 Reinforcement Learning Methods

	3.5 Summary

	4 Human Capability Estimation through Reinforcement Learning
	4.1 Introduction
	4.2 Problem Definition
	4.3 Capability Estimation Strategies
	4.4 Capability Belief
	4.5 Implementation and Deployment
	4.5.1 Robot Navigation Task
	4.5.2 Pre-training
	4.5.3 Sampling
	4.5.4 Policy Initialization
	4.5.5 Estimation Algorithm
	4.5.6 Capability-guided Exploration

	4.6 Summary

	5 Experimental Evaluation
	5.1 Evaluation Metrics
	5.2 Robot Navigation Task
	5.2.1 Human Following
	5.2.2 Experimental Setup
	5.2.3 Estimation Performance Evaluation
	5.2.4 RL Performance Evaluation
	5.2.5 Experiments with Lower Prior Probabilities
	5.2.6 Summary

	5.3 Robot Manipulation Task
	5.3.1 Introduction
	5.3.2 MDP Settings
	5.3.3 Motion planner
	5.3.4 Human Capabilities
	5.3.5 Human Model
	5.3.6 Experimental Setup
	5.3.7 Estimation Performance Evaluation
	5.3.8 RL Performance Evaluation
	5.3.9 Summary

	5.4 Scavenger Hunt Game
	5.4.1 Introduction
	5.4.2 MDP Settings
	5.4.3 Human Capabilities
	5.4.4 Task Settings
	5.4.5 Human-Robot Distance Estimation
	5.4.6 Mobile Software
	5.4.7 Pre-training in Simulation
	5.4.8 Experimental Setup
	5.4.9 Estimation Performance Evaluation
	5.4.10 RL Performance Evaluation

	6 Conclusion and Future Work
	6.1 Results Summary
	6.2 Limitations and Future Work
	6.2.1 Binary Capabilities
	6.2.2 The Human Objects of Real-World Experiment
	6.2.3 Optimized Multi-label Learning
	6.2.4 Continuous Task Domains in Reinforcement Learning
	6.2.5 Generalization Across Domains
	6.2.6 Diverse Evidence and Estimations

	6.3 Conclusion

	References

