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Abstract 

Continuous flow processing has revolutionised the field of chemistry by 

enabling enhanced heat and mass transfer, safer handling of hazardous 

reagents, end-to-end processing of telescoped reactions and access to a 

broader range of reaction conditions  compared to traditional batch 

methodologies. The desire to reduce the labour and material demands in 

research and development (R&D) processes has emphasised the need for 

automation in chemical synthesis. Flow platforms have played a pivotal role 

in enabling the automation of chemical systems, offering enhanced control 

over reaction parameters. Consequently, this has led to their substantial 

integration into the pharmaceutical industry. 

The implementation of algorithms in feedback loops on automated flow 

platforms has expanded the potential of these systems, facilitating efficient 

exploration and optimisation of chemical processes. This synergy has resulted 

in the development of proficient self-optimisation systems that adeptly 

navigate experimental domains, expediting the discovery of optimal 

conditions and enhancing process understanding. Expanding the scope to 

encompass all factors in experimental self-optimisation approaches will 

promote more extensive utilisation, contributing to the advancement of 

sustainable practices in early-stage reaction development within the 

pharmaceutical industry.  

The work in this thesis aims to unlock the potential of self-optimisation 

flow platforms, extending the capabilities into previously unexploited areas 

within this field. This involves introducing discrete variables into automated 

self-optimisation processes, applying them in the synthesis of a TRPV1 

receptor antagonist API and extending the approach to incorporate 

telescoped flow reactions with consideration of multiple objectives to highlight 

the effectiveness of end-to-end optimisations. 



- vi - 

Table of Contents 

Acknowledgements .................................................................................... iv 

Abstract ........................................................................................................ v 

Table of Contents ....................................................................................... vi 

List of Figures .......................................................................................... viii 

List of Schemes ........................................................................................ xiv 

List of Tables ............................................................................................ xvi 

List of Abbreviations .............................................................................. xviii 

Chapter 1. Introduction ....................................................................... 22 

1.1 Fundamentals of Continuous Flow .............................................. 23 

1.2 Advantages of Flow Chemistry .................................................... 26 

1.2.1  Containment of Hazardous Chemicals ........................ 26 

1.2.2  Mixing and Mass Transfer ........................................... 28 

1.2.3  Unlocked Temperatures and Pressures ...................... 30 

1.2.4  Telescoped Synthesis ................................................. 31 

1.3 Automated Self-Optimisation ....................................................... 34 

1.3.1  Local Optimisation ....................................................... 36 

1.3.2  Global Optimisation ..................................................... 47 

1.4 Mixed Variable Systems .............................................................. 55 

1.5 Discussion ................................................................................... 59 

1.6 Project Aims ................................................................................ 60 

Chapter 2. Synergising Simulation and Experimental Studies 
for Mixed Variable Optimisation ...................................................... 62 

2.1 Introduction ................................................................................. 63 

2.2 Mixed Variable Multi-Objective Optimisation Algorithm ............... 68 

2.3 Nucleophilic Aromatic Substitution .............................................. 71 

2.4 Simulated Optimisations ............................................................. 72 

2.4.1  SNAr Simulation ........................................................... 72 

2.5 Experimentally Optimised Results ............................................... 81 

2.6 Conclusion .................................................................................. 91 

Chapter 3. Exploring API Synthesis: A Mixed Variable 
Optimisation Approach of Catalytic Systems ................................. 93 

3.1 Introduction ................................................................................. 94 

3.2 Sonogashira Cross-Coupling Reaction ....................................... 98 

3.3 Automated Flow Platform and Optimisation Results ................. 101 



- vii - 

3.4 Conclusion ................................................................................ 114 

Chapter 4. Enhancing Telescoped Chemical Reactions through 
Mixed Variable Optimisation .......................................................... 117 

4.1 Introduction ............................................................................... 118 

4.2 Heck Reaction ........................................................................... 122 

4.3 Telescoped Optimisation ........................................................... 126 

4.4 Conclusion ................................................................................ 140 

Chapter 5. Conclusions and Future Work ....................................... 142 

Chapter 6. Experimental .................................................................... 148 

6.1 Discrete Variable Automated Flow Platform .............................. 149 

6.2 Offline Analytical Equipment ..................................................... 151 

6.3 Chapter 2 Procedures ............................................................... 151 

6.3.1  Chemicals ................................................................. 151 

6.3.2  Synthesis of ortho-2.3, para-2.4 and bis-2.5 ............. 152 

6.3.3  Simulated Optimisation ............................................. 153 

6.3.4  Experimental Set-Up ................................................. 164 

6.3.5  Self-Optimisation Results .......................................... 167 

6.4 Chapter 3 Procedures ............................................................... 172 

6.4.1  Chemicals ................................................................. 172 

6.4.2 Synthesis of 2-(3,3-dimethylbut-1-yn-1-yl)-4-
(trifluoromethyl)benzonitrile 3.6 .................................... 173 

6.4.3  Experimental Set-Up ................................................. 174 

6.4.4  Self-Optimisation Results .......................................... 178 

6.5 Chapter 4 Procedures ............................................................... 182 

6.5.1  Chemicals ................................................................. 182 

6.5.2  Synthesis of 2-methyl-2-phenyl-1,3-dioxolane 4.8 .... 183 

6.5.3  Experimental Set-Up ................................................. 183 

References ............................................................................................... 192 

 



- viii - 

List of Figures 

Figure 1. Comparison of reaction coordinates between flow technologies 
and conventional batch methodologies ............................................... 24 

Figure 2. Photo-flow platform used in the optimisation utilising a four 
miniature CSTR cascade for the aerobic oxidation of tetralone from 
tetralin with benzophenone as a photo synthesiser............................. 26 

Figure 3. (a) Example of Laminar flow in tubing where there is no 
disruption between parallel fluid layers. (b) Turbulent flow where 
there is a presence of rapid changes in velocity. ................................ 29 

Figure 4. The telescoped flow platform employed in the synthesis of 
Tamoxifen is equipped with various temperature zones for 
reactions, in addition to pre-mixing and quenching coils.23 ................. 34 

Figure 5. Illustrative example of a self-optimisation flow platform with an 
automated feed-back loop for system control and direction of 
conditions. ........................................................................................... 36 

Figure 6. Example two variable OVAT optimisation leading to a false 

optimum to be observed. ★ represents the best results observed 

from the process. ................................................................................ 37 

Figure 7. Example 2-level (-1, +1) 3-factor FFD (X1, X2, X3) with a 
singular centre point. The constructed matrix for the experiments is 
highlighted on the right. Blue points represent experiments required 
from this matrix, with the centre point highlighted in red, originating 
from the data entry for experiment 9. .................................................. 40 

Figure 8. Possible geometric transformations performed by the Nelder-
Mead Simplex algorithm for a 2D problem: multiple contraction 
(MC), inside contraction (XIC), outside contraction (XOC), reflection 
(XR), expansion (Xe). ........................................................................... 42 

Figure 9. A visual example of a 2-variable simplex optimisation 
converging on a local optimum where a global optimum of a better 
solution is present. .............................................................................. 47 

Figure 10. Flow diagram for a SNOBFIT optimisation. Where nreq = 

minimum number of required function evaluations to be performed, 
set by the user, neval = number of actual function evaluations 

performed. ........................................................................................... 49 

Figure 11. An example of a conflicting objective optimisation, between 
productivity/STY and Yield, where both metrics are being 
minimised. Red points illustrate the Pareto front between the 
objectives, with blue points being dominant solutions. ........................ 52 

Figure 12. Hypervolume plot for a 2D objective space.  The hypervolume 
is calculated between the reference point, r, and  the current non-
dominated solutions, si. ....................................................................... 53 



- ix - 

Figure 13. Flow chart for the TSEMO algorithm workflow within an 
optimisation process, utilising random sampling of GP surrogate 
models. ............................................................................................... 55 

Figure 14. Photo of a Chemspeed HTE batch reactor, where aliquots of 
mixtures are drawn up using syringe pumps and injected into the 
batch vessels. ..................................................................................... 56 

Figure 15. (a) Schematic of the autosampler-flow platform used to 
screen libraries of discrete variables for the Suzuki-Miyaura cross-
coupling reaction. (b) Preparation and injection of discrete variable 
slugs into the flow stream, where mixing and diffusion it analysed 

by UV detection. .................................................................................. 57 

Figure 16. Comparison between traditional HTS methodologies vs. this 
developed MVMOO self-optimisation approach for a full reaction 
optimisation pathway. .......................................................................... 66 

Figure 17. Flow chart for the iterative process of the MVMOO algorithm.
 ............................................................................................................ 70 

Figure 18. SNOBFIT simulation for the SNAr reaction with pyrrolidine 
with the ortho product selected as the objective. The colour bar for 
this graph represents the yield for the ortho product, with a range 

of 0-100%.  Where the ★ represents the optimum ortho yield. ........... 77 

Figure 19. SNOBFIT simulation for the SNAr reaction with pyrrolidine 
with the para product selected as the objective. The colour bar for 
this graph represents the yield for the para product, with a range of 

0-4%. Where the ★ represents the optimum para yield. ..................... 77 

Figure 20. SNOBFIT simulation for the SNAr reaction with morpholine 
where the ortho (2.3) yield is selected as the objective. Where the 

★ represents the optimum ortho yield. ................................................ 78 

Figure 21. SNOBFIT simulation for the SNAr reaction with morpholine 
where the para (2.4) yield is selected as the objective. Where the 

★ represents the optimum para yield. ................................................. 79 

Figure 22. Illustrates the results of a multi-objective optimisation 
approach using a genetic algorithm to optimise the SNAr reaction. 
The objectives of this optimisation were to maximise the yields of 
the ortho (2.3) and para (2.4) products from the reaction. ................... 80 

Figure 23. Automated flow platform utilised within the solvent 
optimisation of the SNAr reaction, where ortho and para yields are 
selected as the objective for the optimisation. ..................................... 83 

Figure 24. Results of the five-parameter mixed variable optimisation on 
the SNAr reaction, where an initial 25 experiment LHC was 
conducted with a further 74 additional iterations identifying 20 non-
dominated solutions. Solvent shapes represent: ● – DMF,  – NMP, 
■ – EtOH, + – MeCN, × – DMAc. ........................................................ 85 



- x - 

Figure 25. Parallel coordinate plots for NMP and DMAc for the Pareto 
optimal solutions of each discrete variable highlighting the required 
interactions between the four continuous variables for each non-
dominated solution. The error for % yield of both ortho and para 
was calculated using 10 repeat experiments from the optimisation, 
where an error of ±4% was observed for ortho % yields and an 

error of ±3% was observed for para yields. ........................................ 87 

Figure 26. Parallel coordinate plots for DMF an MeCN for each Pareto 
optimal solution produced by these solvents. The error for % yield 
of both ortho and para was calculated using 10 repeat experiments 
from the optimisation, where an error of ±4% was observed for 
ortho % yields and an error of ±3% was observed for para yields. ..... 88 

Figure 27. Hypervolume plot for the SNAr reaction that was monitored 
throughout the optimisation procedure. After 60 experiments 
monitoring enabled the termination at 100 experiments once a 
plateau was achieved. ......................................................................... 89 

Figure 28. Parallel coordinates plot for the simulated Pareto front using 
polarity index as an input continuous variable. Residence time was 
maintained at 2 minutes and thus excluded from the figure. 
Simulation and figures were produced by Jamie Manson. .................. 90 

Figure 29. 12 principles of green chemistry with highlighted areas 
addressed by these types of mixed variable optimisations 
presented. ........................................................................................... 95 

Figure 30. (A) Schematic for the Suzuki-Miyaura coupling reaction 
optimised with  respect to mixed variables on a micro-fluidic 
platform. .............................................................................................. 97 

Figure 31. Flow chart for the MVMOO self-optimisation procedure with 
inclusion of details for the timers throughout the process. ................ 102 

Figure 32. Exploration of different process metric outcomes using a 12 
initial reaction data set, evaluating productivity metrics. .................... 103 

Figure 33. Schematic used for the optimisation of the Sonogashira 
cross-coupling case study. Where L1 is DavePhos, L2 is XPhos, 
L3 is CyJohnPhos, L4 is SPhos and L5 is TPP. The catalyst is 
Pd(OAc)2, CuI and pyrrolodine base were included in each of these 
stock solutions. Additionally, R6 represents 2-bromo-4-
(trifluoromethyl) benzonitrile (3.4), I.S is the internal standard 1,3,5-
trifluoromethoxybenzene and R7 represents 3,3-dimethylbutyne 
(3.5). .................................................................................................. 106 

Figure 34. Results of the four-parameter mixed variable multi-objective 
optimisation of the Sonogashira cross-coupling reaction. An initial 
25 experiments were completed from LHC sampling with an 
additional 44 iterations direct by MVMOO, 12 of which formed a 
Pareto front highlighting the trade-off in STY and RME. Ligand 
shapes represent: ● – DavePhos,  – XPhos, ■ – CyJohnPhos, 
× – SPhos, + – TPP. ......................................................................... 107 



- xi - 

Figure 35. Plot of the calculated yield from RME values vs experiment 
number, highlighting the outstanding yield achieved of 90% using 
the conditions corresponding to the optimum RME using TPP. 
Ligand shapes represent: ● – DavePhos,  – XPhos, 
■ – CyJohnPhos, × – SPhos, + – TPP. ............................................. 108 

Figure 36. Results from the Sonogashira coupling optimisation with 
individual process metrics against experiment number to highlight 
metrics enhancements over the optimisation process. Where ■ – 
Initial, ■ – Algorithm and ■ – Optimum. ............................................. 109 

Figure 37. Parallel coordinates plot showing the interactions between 
the variables for the Pareto optimal solution for the STY that was 
achieved by SPhos. .......................................................................... 110 

Figure 38. Parallel coordinate plot highlighting the interactions between 
the variables for each non-dominated solution of the Sonogashira 
optimisation. Each line represents a single Pareto optimal solution 
for TPP ligand points. Line colour is scaled in relation to STY 
weighting to aid in visualisation (high STY/low RME = –, low 
STY/high RME = –). .......................................................................... 111 

Figure 39. 3-D plot for the Pareto front solutions with respect to RME, 
where ● represents TPP based solutions and ■ represents the 
singular SPhos solution. .................................................................... 112 

Figure 40. 3-D plot for the Pareto front solutions with respect to STY, 
where ● represents TPP based solutions and ■ represents the 
singular SPhos solution. .................................................................... 113 

Figure 41. Calculated hypervolume vs experiment number for the 
Sonogashira optimisation that was used to determine the stopping 
criteria for this workflow. .................................................................... 114 

Figure 42. Flow schematic for the synthesis of 1,2,4-triazoles using 
continuous telescoped flow techniques.151 ........................................ 119 

Figure 43. Multipoint sampling technique used for telescoped 

optimisation with daisy-chained Vici sampling configuration where 
a single HPLC analysed both steps in the reaction. Configuration 
based on the work completed by Clayton et al.20 .............................. 128 

Figure 44. Flow schematic used for the telescoped optimisation case 
study. Where R8 is bromobenzene (4.5), L1 is dppm, L2 is dppe, 
L3 is dppp, L4 is DavePhos and L5 is TPP. The catalyst Pd(OAc)2, 
NEt3 base and internal standard methyl p-tolyl sulfone were 
included in each of these discrete variable stock solutions. 
Additionally, R9 represents ethylene glycol vinyl ether (4.6), and 
the solvent is ethylene glycol:MeCN (2:1 ratio). ................................ 131 



- xii - 

Figure 45. Results of the five-parameter mixed variable multi-objective 
optimisation of the telescoped Heck-hydrolysis reaction. For each 
ligand, 5 initial LHC points were afforded. The MVMOO algorithm 
then iteratively ran an additional 41 experiments, 8 of which were 
identified as non-dominated solutions highlighting the trade-off 
between STYDiox (4.8) and acetophenone (4.9) overall yield. Ligand 
shapes represent: ● – dppm,  – dppe, ■ – dppp, × – DavePhos, 
+ – TPP. ............................................................................................ 133 

Figure 46. Results from the Heck-hydrolysis optimisation, with STYDiox 
vs Experiment number plotted to highlight improvements made to 
this metric over the process. Where ■ – Initial, ■ – Algorithm and ■ 
– Optimum. ....................................................................................... 136 

Figure 47. Results from the Heck-hydrolysis optimisation, with RME vs 
Experiment number plotted to highlight improvements made the 
RME metric over the process. Where ■ – Initial, ■ – Algorithm and 
■ – Optimum. .................................................................................... 136 

Figure 48. Parallel coordinate plot highlighting the interactions between 
continuous variables and objective outcomes for each Pareto 
optimal solution. ................................................................................ 138 

Figure 49. Hypervolume vs. Experiment number plot for the telescoped 
Heck-hydrolysis reaction that was monitored throughout the 
optimisation process. ........................................................................ 139 

Figure 50. Photo of the automated mixed variable flow reactor used for 
Chapters 2, 3 and 4. .......................................................................... 150 

Figure 51. Screenshot of the concentration profiles used within the 
simulated code for the SNAr reaction. ............................................... 155 

Figure 52. Screenshot of the ODE Solver code required for the 
simulation of concentration profiles, returning the TimeData and 
Concentration Data, used to calculate the % yield results for each 
regioisomer in the simulation............................................................. 156 

Figure 53. Example HPLC chromatogram for the SNAr optimisation. 
Retention times (min): bis 5 = 1.14; para 4 = 1.53; 2,4-
difluoronitrobenzene 1 = 1.69; ortho 3 = 1.95; biphenyl (IS) = 3.86 .. 166 

Figure 54. Flow schematic of the optimisation platform used for this 
chapter’s work. R1 represents 2,4-difluoronitrobenzene 2.1 and R2 
is morpholine 2.2. Biphenyl (internal standard) was included in all 
the R1 stock solutions. S1 is DMF, S2 is NMP, S3 is EtOH, S4 is 
MeCN and S5 is DMAc. .................................................................... 166 

Figure 55. Flow schematic used for the Sonogashira optimisation. R6 
represents 2-bromo-4-(trifluoromethyl) benzonitrile 3.4, I.S is the 
internal standard 1,3,5-trimethoxybenzene and R7 represents 3,3-
dimethylbutyne 3.5. L1 is DavePhos, L2 is XPhos, L3 is 
CyJohnPhos, L4 is SPhos and L5 is TPP. The catalyst Pd(OAc)2, 
CuI and pyrrolidine base was included in each of these stock 
solutions. ........................................................................................... 176 



- xiii - 

Figure 56. Example HPLC chromatogram for the Sonogashira reaction. 
Retention times (min): 2-chloro-4-(trifluoromethyl)benzonitrile 3.4 = 
3.37 (230 nm); 2-(3,3-dimethylbut-1-yn-1-yl)-4-
(trifluoromethyl)benzonitrile 3.6 = 4.44 (254 nm); 1,3,5-
trimethoxybenzene (IS) = 2.17 (210 nm). ................................... 177 

Figure 57. Example HPLC chromatogram at 230 nm for the Heck-
hydrolysis reaction. (a) Heck-intramolecular cyclisation (first step); 
(b) Hydrolysis deprotection (second step). Retention times (min): 
Bromobenzene 4.5 = 5.74 and 13.05 min; Dioxolane 4.8 = 4.09 
and 11.93 min; acetophenone 4.9 = 2.92 and 10.19 min and 
methyl p-tolyl sulfone (IS) = 2.44 and 9.71 min. ........................ 187 

Figure 58. Flow schematic used for the Heck-hydrolysis telescoped 
optimisation. R8 represents bromobenzene 4.5 and R9 represents 
ethylene glycol vinyl ether 4.6. L1 is dppm, L2 is dppe, L3 is dppp, 
L4 is DavePhos and L5 is TPP. The catalyst Pd(OAc)2, 
triethylamine base and internal standard methyl p-tolyl sulfone 
were included in each of these stock solutions. ................................ 188 



- xiv - 

List of Schemes 

Scheme 1. Example of the selective in-situ generation of acyl-
substituted aryllithium (1.4) and reaction with phenyl isocyanate 
electrophile. ......................................................................................... 27 

Scheme 2. Heck reaction between 4-chlorobenzotrifluoride (1.8) and 
2,3-dihydrofuran (1.9) to form the mono-(1.9) and bi-substituted 
products used in the Nelder-Mead Simplex optimisation. ................... 43 

Scheme 3. Sonogashira coupling reaction optimised using a TSEMO 
algorithm between 3,5-dibromopyridine (1.12) and 1-hexyne (1.13) 
to form the desired mono-substituted alkyne (1.14) and undesired 
bis-alkyne (1.15). ................................................................................. 54 

Scheme 4. Suzuki-Miyaura cross-coupling reaction between (E)-vinyl 
sulfonate (1.16) and aryl boronic acid (1.17) used for the mixed-
variable optimisation where maximisation of the (E)-desired 
product (1.18) was priority. .................................................................. 58 

Scheme 5. SNAr reaction between 2,4-difluoronitrobenzene (2.1) and 
morpholine (2.2) for the formation of the ortho- (2.3), para- (2.4) 
and bis- (2.5) regioisomers. ................................................................ 71 

Scheme 6. Resonance stabilisation of the ortho regioisomer through a 
Meisenheimer complex. ...................................................................... 72 

Scheme 7. Kinetic reaction pathway for the formation of all regioisomers 
in the SNAr pathway. ........................................................................... 74 

Scheme 8. Catalytic cycle for the Sonogashira cross-coupling reaction 
between an aryl or vinyl halide and terminal alkyne, facilitated by a 
palladium catalyst and copper (I) co-catalyst in a side catalytic 
cycle. ................................................................................................... 99 

Scheme 9. Sonogashira cross-coupling reaction between aryl bromide 
3.4 and terminal alkyne 3.5 to form aryl alkyne 3.6. Includes 

optimisation parameters. ................................................................... 100 

Scheme 10. Catalytic cycle for the Heck reaction between an aryl or vinyl 
halide and alkene, facilitated by a palladium (0) catalyst which is 
regenerated via the addition of a base in the final step of the cycle.
 .......................................................................................................... 123 

Scheme 11. Neutral and Cationic pathways for alkene insertion within 
the Heck catalytic cycle for the direction of alpha and beta 
products.157 ....................................................................................... 124 

Scheme 12. Heck reaction between bromobenzene (4.5) and ethylene 
glycol vinyl ether (4.6) to form the alpha substituted product (4.7) 
followed by intramolecular cyclisation to form the dioxolane product 
(4.8). Subsequently, the hydrolysis deprotection reaction to form 
the final acetophenone product (4.9). ................................................ 126 

Scheme 13. Formation of the desired alpha- and undesired beta-
products via the respective cationic and neutral pathways in the 
Heck reaction. ................................................................................... 134 



- xv - 

Scheme 14. Equilibrium for the formation of the cationic palladium(II)-
alkene intermediate promoted by the presence of hydrogen-bond 
donation by ethylene glycol. .............................................................. 134 

 



- xvi - 

List of Tables 

Table 1. Overview summary of examples utilising local optimisation 
algorithms on chemical systems. ........................................................ 44 

Table 2. Comparison of Environmental and Economic metric objectives 
for evaluating chemical processes. ..................................................... 64 

Table 3. Boundaries for continuous variables in the SNAr simulation with 
morpholine. ......................................................................................... 76 

Table 4.  Chemical descriptor values of common solvent polarity 

metrics.112 ........................................................................................... 82 

Table 5. Boundaries for continuous variables in the telescoped Heck-
hydrolysis optimisation. ..................................................................... 130 

Table 6. Parameter boundaries for the four-variable single-objective 
simulated self-optimisation of the SNAr reaction using pyrrolidine 
and morpholine in separate studies for comparison. ......................... 156 

Table 7. List of operating conditions and results from the simulated 
SNOBFIT optimisation of the SNAr reaction for pyrrolidine with 
ortho yield as the objective. The optimal yield and conditions are 
highlighted in green. .......................................................................... 157 

Table 8. List of operating conditions and results from the simulated 
SNOBFIT optimisation of the SNAr reaction for pyrrolidine with para 
yield as the objective. The optimal yield and conditions are 
highlighted in green. .......................................................................... 159 

Table 9. List of operating conditions and results from the simulated 
SNOBFIT optimisation of the SNAr reaction for morpholine with 
ortho yield as the objective. The optimal yield and conditions are 
highlighted in green. .......................................................................... 161 

Table 10. List of operating conditions and results from the simulated 
SNOBFIT optimisation of the SNAr reaction for morpholine with 

para yield as the objective. The optimal yield and conditions are 
highlighted in green. .......................................................................... 162 

Table 11. List of reservoir solutions for the SNAr optimisation. Biphenyl 
was used as the internal standard for the optimisation process. ....... 165 

Table 12. Parameter boundaries for the five-variable experimental multi-
objective self-optimisation of the SNAr reaction using the MVMOO 
algorithm. .......................................................................................... 167 

Table 13. List of operating conditions and results from the self-
optimisation of the SNAr reaction. The first 25 experiments were 
completed as a LHC design. Pareto optimal points are highlighted 
in green. ............................................................................................ 167 

Table 14. List of Pareto front experiments in order of optimum ortho-2.3 
yield % to optimum para-2.4 yield %. ................................................ 171 



- xvii - 

Table 15. List of reservoir solutions for the Sonogashira optimisation. 
1,3,5-trimethoxybenzene was used as the internal standard for the 
optimisation process. ........................................................................ 174 

Table 16. Parameter boundaries for the four-variable self-optimisation of 
the Sonogashira coupling reaction. ................................................... 178 

Table 17. List of operating conditions and results from the self-
optimisation of the Sonogashira coupling reaction. The first 25 
experiments were completed as a LHC design. Pareto optimal 
points are highlighted in green. ......................................................... 178 

Table 18. List of Pareto front experiments in order of optimum RME to 

optimum STY. ................................................................................... 181 

Table 19. List of reservoir solutions for the Heck-hydrolysis telescoped 
optimisation. Methyl p-tolyl sulfone was used as the internal 
standard for the optimisation process. .............................................. 185 

Table 20. List of operating conditions and results from the self-
optimisation of the mixed variable multi-objective Heck-hydrolysis 
telescoped reaction. The first 25 experiments were completed as a 
LHC design. Pareto optimal points are highlighted in green. ............ 188 

Table 21. List of Pareto front experiments in order of optimum STYDiox to 
optimum overall yield. ....................................................................... 191 

 



- xviii - 

List of Abbreviations 

A  Pre-exponential factor 

API  Active pharmaceutical ingredient 

Boc  tert-Butyloxycarbonyl 

C  Concentration 

cm  Centimetre 

CSTR  Continuously stirred tank reactor 

D  Diameter 

Da  Damköhler number 

DCM  Dichloromethane 

DMAc  Dimethylacetamide 

DMC  Dimethyl carbonate 

DMF  Dimethylformamide 

DMSO Dimethyl sulfoxide 

d  Doublet 

DoE  Design of Experiments 

Diox  Dioxolane 

dppm  bis(Diphenylphosphino)methane 

dppe  bis(Diphenylphosphino)ethane 

dppp  1,3-bis(Diphenylphosphino)propane 

Ea  Activation energy 

EIM  Expected improvement matrix 

Eq.  Equivalents 

Equiv.  Equivalents 

ESI+  Positive mode electron spray ionisation 

Et  Ethyl 



- xix - 

EtOH  Ethanol 

FFD  Full factorial design 

g  Gram 

GP  Gaussian process 

HPLC  High performance liquid chromatography 

HTE  High-throughput experimentation 

HTS  High-throughput screening 

Hz  Hertz 

ID  Inner diameter 

IS  Internal standard 

J  Coupling constant 

k  Rate constant 

LHC  Latin hypercube 

m  multiplet 

Me  Methyl 

MeCN  Acetonitrile 

MHz  Megahertz 

min  minute 

MINLP Mixed integer nonlinear programming 

mL  Millilitre 

mol  Moles 

MVMOO Mixed variable multi-objective optimisation 

MW  Molecular weight 

MΩ  Megaohm 

𝑛  Number of moles 

NMP  N-Methyl-2-pyrrolidone 

NMR  Nuclear magnetic resonance 



- xx - 

NMSIM Nelder-Mead simplex 

OD  Outer diameter 

ODE  Ordinary differential equation 

OVAT  One-variable-at-a-time 

P  Pressure 

Ph  Phenyl 

PhMe  Toluene 

PSI  Pounds per square inch 

PTFE  Polytetrafluoroethylene 

R  Gas constant 

RAFT  Reversible addition-fragmentation chain-transfer 

Re  Reynolds number 

R&D  Research and development 

RME  Reaction mass efficiency 

s  Second or singlet 

sc  Supercritical 

SM  Starting material 

SMSIM Super modified simplex 

SNAr  Nucleophilic aromatic substitution 

SNOBFIT Stable noisy optimisation by branch and fit 

STY  Space-time yield 

T  Temperature 

t  Time or triplet 

TFA  Trifluoroacetic acid 

THF  Tetrahydrofuran 

TMS  Trimethylsilane 

TOF  Turn over frequency 



- xxi - 

TPP  Triphenylphosphine 

tR  Residence time 

tres  Residence time 

TSEMO Thompson sampling efficient multi-objective 

µ  Viscosity 

µL  Microlitre 

uPLC  Ultra performance liquid chromatography 

V  Volume



- 22 - 

Chapter 1. Introduction 
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1.1 Fundamentals of Continuous Flow 

Continuous flow chemistry, often described as an enabling technology, 

represents an alternative technique for executing chemical transformations 

and reactions compared to conventional batch techniques. The essence of 

flow chemistry lies in its name – it involves the seamless passage of reagents 

as a continuous stream through a network of reactors until the desired 

transformation is achieved. In contrast, batch reactors typically unfold within 

enclosed containers like round-bottom flasks. Flow chemistry, however, 

unfolds within chemically resistant tubing, allowing the reaction mixture to 

continuously flow. This difference in apparatus sets the stage for some 

fundamental differences between the two approaches.   

One crucial disparity is how the chemical reactions progress. In flow, the 

progression of a reaction hinges on the distance travelled by the reagents 

within the tubing. As a result, the composition of the reaction mixture changes 

gradually as it moves along this path in the reactor. During this sequence, the 

reagents in the system will encounter different reaction conditions e.g. the 

temperature of reactors, the pressure of the system and mixing, ultimately 

leading to changes in the reagent concentrations, Figure 1. On the other hand, 

batch chemistry relies on the quantity of time as the primary driver of 

composition changes. The longer the mixture is stirred at the set reaction 

conditions, the more it transforms.  

This distinction gives rise to a crucial concept in flow chemistry known 

as “steady-state”. It refers to conditions where the chemical species within the 

mixture remain stable over time. In simpler terms, the components within the 

reaction mixture reach a point where their concentrations remain relatively 

constant. This state-state concept is an essential asset to this technique, 

offering researchers a high level of control over reaction variables to drive 

reaction pathways to the desired outcomes consistently.  

The ”steady-state” concept in flow chemistry is the notion of achieving 

stability in concentrations of chemical species within the reaction mixture over 

time. It enables researchers to maintain consistent reaction conditions, which 

is crucial for controlling and optimising chemical reactions in flow systems. 
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Figure 1. Comparison of reaction coordinates between flow technologies and 

conventional batch methodologies 

As previously mentioned, the continuous nature of flow technologies 

demands entirely different equipment compared to traditional batch 

processes. To carry out continuous flow chemical reactions, a specialised 

apparatus is essential. The increasing popularity of this technology has led to 

advancements in the equipment becoming readily available, ranging from 

basic to highly specialised setups. This variety ensures that researchers have 

access to the necessary tools for conducting continuous flow experiments. 

In recent decades, continuous flow processes have gained significant 

popularity in both the pharmaceutical and fine chemical industries.1,2 This 

heightened interest has driven substantial enhancements and refinements in 

this technique over the years. Moreover, it has been integrated with other 

chemical methodologies such as photochemistry, microwave chemistry and 

electrochemistry, highlighting the versatility and capabilities of continuous 

flow. This feature has made it a valuable tool for chemists in both research 

and industry to exploit.3 Additionally, ongoing improvements in various 

aspects of continuous flow components, such as reactor design, tubing types 

and sizes have contributed to enhancing the efficacy of this enabling 

technology. These modifications reinforce the advantages that flow chemistry 

can offer when integrated with other chemical processes. 

One significant advancement is the design of different reactor types 

which have been further implemented to enhance the capabilities of flow 

chemistry within synthetic and large-scale production laboratories. The 

development of new types of reactors plays a prominent key role in the 
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effectiveness of the technique as the reactor is where the main chemical 

reactions take place. These provide unique advantages over one another, 

such as seen with the use of packed bed reactors, which allows for a solid 

such as a catalyst to be loaded into a cartridge and placed such that the 

reaction mixture is streamed through the cartridge.4 Implementing this 

approach enables the reactants within the mixture to interact with the solid 

substances immobilised within them. These solid materials serve various 

functions in a reaction, such as loaded catalysts, bases, or drying agents 

among others which might not be possible to dissolve in solution. The 

inclusion of these solids in a reactor bed addresses one of the main challenges 

that flow chemistry poses, which is the integration of solid components into 

reaction pathways. Enabling the access to suspended solid substances within 

a reactor bed, can unlock large libraries of bio- or catalytic chemistry that might 

otherwise remain inhibited.   

 Alternatively, another innovative solid-liquid hybrid reactor design is the 

continuously stirred-tank reactor (CSTR), offering an alternative to 

conventional reactor coils, for managing solid or slurry-type reaction 

mixtures.5 A typical CSTR consists of a magnetic stir bar placed within a small 

chamber, allowing the solid-liquid reaction medium to flow in and out of the 

heated reactor compartment. These reactors are often arranged in a cascade 

or series, with multiple reactor beds positioned sequentially to ensure 

complete conversion and the desired product formation. This design has 

found insightful applications for photo-flow chemical optimisation, where 

Manson et al. strategically positioned a UV lamp above the top of the reactor 

to facilitate a photochemical reaction, Figure 2. This arrangement enabled a 

case study for the aerobic oxidation of tetralin (1.1) to tetralone (1.2) utilising 

benzophenone as a photo synthesiser for this formation, Figure 2.6 This was 

then further optimised using a hybrid-based algorithm to achieve yields of up 

to 65%. 
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Figure 2. Photo-flow platform used in the optimisation utilising a four miniature 

CSTR cascade for the aerobic oxidation of tetralone from tetralin with 

benzophenone as a photo synthesiser. 

1.2 Advantages of Flow Chemistry 

Reactor design represents a notable advantage that continuous flow 

processes offer when integrated with other enabling technologies, enhancing 

reliability and scalability in chemical synthesis. However, flow methodologies 

offer additional substantial benefits over traditional batch techniques for 

synthetic processes. This approach enables the implementation of potentially 

problematic batch reactions with a greater level of safety, whilst also 

increasing the overall efficiency of the procedure.  

1.2.1 Containment of Hazardous Chemicals 

The advantages of flow chemistry extend to enhancing safety in 

multiple ways. Firstly, the small volumes inherent in flow systems mean that 

only a limited quantity of the mixture is exposed to reaction conditions such 

that the generation of hazardous intermediates at any given time is 

significantly reduced. This fundamentally reduces the potential for exposure 

to quantities of harmful or toxic substances, thereby enhancing the overall 

safety of this technique. Moreover, this facilitates the design of flow processes 

that exploit in-situ generation of hazardous intermediates to be utilised 
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downstream and unlock reaction pathways that would have otherwise 

remained inaccessible. This enhanced safety of hazardous intermediate 

generation was manipulated by Kim et al. where the development of a 

microreactor to facilitate extremely short reaction times enabled the 

implementation of a reaction between an organolithium species and a 

carbonyl, Scheme 1.7 Traditionally, the reaction between carbonyl groups and 

organolithium species is extremely reactive, typically requiring functional 

group protection to moderate the reactivity and selectivity.8 Implementation of 

an integrated microreactor facilitated residence times of 0.003 seconds to be 

achieved, this enabled the selective in-situ generation of acyl-substituted aryl 

lithiums that could be immediately quenched with an electrophile. Using this 

methodology, lithiation of p-dimethylpropanoyliodobenzene (1.3) was 

generated in situ via an iodine-lithium exchange process with mesyllithium to 

form the corresponding acetylphenyllithium (1.4). This short-lived intermediate 

was directly reacted with a phenyl isocyanate electrophile to form the desired 

product (1.5) achieving an 87% overall yield.  

 

n-BuLi

MesBr

Integrated Device

0 °C

0.003 s
-70 °C

PhNCO

1.3

1.4

1.5

 

Scheme 1. Example of the selective in-situ generation of acyl-substituted 

aryllithium (1.4) and reaction with phenyl isocyanate electrophile. 

Additionally, the continuous nature of a flow process itself contributes 

to safer experiment procedures. The seamless flow of reaction mixture 

minimises the risk of accumulating explosive intermediate within the system. 

In contrast, batch reactions can pose a substantial risk if explosive 

intermediates form, as a significant proportion of the flask might contain these 
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volatile compounds, increasing the potential for accidents. Furthermore, the 

absence of a headspace in the flow tubing serves as an added safety 

precaution against the accumulation of volatile explosive intermediates.9 Flow 

chemistry proves especially advantageous when handling highly exothermic 

reactions that have the potential to trigger thermal runaway which would result 

in severe accidents when conducted in batch systems. In flow systems, the 

risk of thermal runaway can be effectively mitigated through the improved heat 

dissipation facilitated by the small volumes of liquid contained within the tubes. 

This heightened control over heat not only ensures the safer execution of such 

reactions but also grants greater control over the reaction process.10 

Moreover, the enhanced heat dissipation attributes of flow setups eliminate 

the formation of potential “hot spots”, consequently reducing the chance of 

side reaction or product overreaction/thermal decomposition. This additional 

safety feature not only averts accidents but also enhances the reliability and 

reproducibility of flow reactions. 

1.2.2 Mixing and Mass Transfer 

In a continuous flow system, reaction mixtures are continuously 

introduced to one another, allowing for the observation of mixing effects 

between the incoming streams. This contrasts with traditional batch reactions, 

where all reactants are combined at once and allowed to react in a partially 

static environment. The efficiency of mixing in flow systems is a critical factor 

that directly impacts the reaction conversion and performance which can be 

assessed by considering different mixing modes that occur as streams 

combine within the flow tubing. One of the key parameters for describing these 

mixing patterns is the Reynolds number (Re), a dimensionless quantity widely 

employed in fluid dynamics to predict and characterise flow behaviours in such 

systems. The Reynolds number can be calculated according to [Eq (1)], where 

ρ (density, 𝑘𝑔𝑚−3), v (linear flow rate, 𝑚/𝑠), D (diameter, 𝑚) and µ (viscosity, 

𝑃𝑎 ∙ 𝑠) are the respective parameters:  

 
Re =  

ρvD

μ
 

(1) 
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When the Reynolds number of a flow system drops below 

approximately 2000, the flow is classified as laminar and when the number is 

above 3000, the flow is characterised as turbulent.11 In the turbulent flow 

regime, the dominant forces at play are the disordered changes in the velocity 

resulting in highly effective mixing among the fluid layers within the system. In 

contrast, for the laminar flow regime, the dominant forces are the viscous 

forces, and turbulence is virtually absent. Consequently, due to no disruption 

in the parallel fluid layers, mixing predominantly relies on the rate of diffusion 

taking place along the longitudinal fluid interface.12 This type of mixing is often 

described as passive, as it occurs naturally due to the slow diffusion of 

molecules and is driven by concentration gradients within the system. 

Conventional batch reactors exhibit distinct mixing patterns, with turbulent 

regions near the stirring mechanism, creating rapid changes in velocity, and 

laminar regions closer to the vessel walls.13  

 

Figure 3. (a) Example of Laminar flow in tubing where there is no disruption 

between parallel fluid layers. (b) Turbulent flow where there is a presence 

of rapid changes in velocity.  

On the other hand, standard laboratory-scale flow reactors typically 

exhibit laminar flow patterns. This tendency is a consequence of the 

combination of low flow rate operating conditions and the small dimensions 

characteristic of these reactors. When compared to batch vessels, tubular flow 

reactors exhibit a substantially higher surface area-to-volume ratio. 
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Consequently, this results in an increased rate of diffusion and subsequently 

an enhanced rate of mixing.  

The mixing effects play a pivotal role in mass transfer within a flow 

system, and their influence can be elucidated through the use of the 

Damköhler number (Da), which defines the rate of reaction to the rate of 

diffusion within a system [Eq (2(3)].14 Where k is the rate constant of the 

reaction, C0 is the initial concentration, n is the order of reaction, dt is the 

diameter of the tubing and D represents the ratio of the rate of reaction to the 

rate of diffusion.  

 
Da =  

kC0
n−1dt

2

4D
 

(2) 

 
D =  

rate of reaction

rate of diffusion
 

(3) 

  

When the Da > 1, it signifies that the rate of reaction surpasses that of 

the mass transfer of the system. This scenario can result in the accumulation 

of a concentration gradient, which, in turn, can have detrimental effects on the 

reactor’s efficiency. Additionally, it may lead to an increased production of 

undesirable byproducts within the reaction process.9,14 In the case of Da < 1, 

it means that the rate of mass transfer by diffusion is greater than the rate of 

reaction such that an essentially homogenous reaction mixture is achieved. 

To address challenges stemming from limited mass transfer when Da > 1, flow 

reactors have demonstrated their efficiency in eliminating concentration 

gradients, owing to their aforementioned enhanced mixing capabilities. 

Furthermore, the development of micromixers and microreactors in flow 

systems has successfully proven to circumvent potential complications arising 

from limited rates of diffusion, especially in cases involving rapid reactions.15,16 

Modelling of the Damköhler number has been performed numerous times 

within literature, classically through the use simulated computational studies, 

where values for Da are typical reported between 10−2 − 103.17,18 

1.2.3 Unlocked Temperatures and Pressures 

In comparison to traditional batch methods, the utilisation of a flow 

setup significantly amplifies the efficiency of heat transfer processes. This 
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remarkable enhancement can be attributed to the substantially increased 

surface area-to-volume ratios intrinsic in the system. As previously 

highlighted, this heightened heat dissipation capability inherent in flow setups 

not only facilitates the safe execution of highly exothermic reactions but also 

frequently removes the necessity for extremely harsh cryogenic conditions. 

Fukuyama et al. emphasised this possibility, where they were able to perform 

flow experiments for the diisobutylaluminium hydride reduction of an ester to 

aldehyde at temperatures elevated from -70 °C in batch to -50 °C in an 

optimised flow system.19 Furthermore, they went on to emphasise their 

achievement in conducting an n-butyllithium-mediated coupling of the 

aldehyde product with a sulfone fragment at substantially higher temperatures 

and better conversions, specifically 10 °C, within a flow system, as opposed 

to the demanding cryogenic conditions of -70° C necessary in batch 

procedures. This accomplishment presents the potential for a substantial 

reduction in the need for cryogenic temperatures for these transformations 

when performed under continuous flow conditions.  

One significant advantage of flow platforms lies in the capacity to apply 

high pressure to the system using a back-pressure regulator. This ability to 

manipulate higher temperatures and pressure safely, such that it enables 

solvents to be heated to temperatures far exceeding their usual boiling points. 

Consequently, this allows for the execution of chemical reactions under 

optimal conditions, employing the desired solvents, without the necessity of 

costly high-pressure batch vessels. The elevated temperatures at which 

experiments can be conducted translates to accelerated reaction rates, as 

defined by the Arrhenius equation, leading to short reaction durations and 

increased production rates, for instances where selectivity is not impacted by 

higher temperatures.  These faster reaction rates can aid in the reduction of 

material required to carry out these processes, presenting these types of 

methodologies as overall greener, provided that the energy consumption to 

reach the elevated temperatures is not excessive.   

1.2.4 Telescoped Synthesis 

When striving to synthesise complex natural compounds in batch 

processes, challenges often arise related to the manner in which the 
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technique is carried out. Firstly, traditional research adopted a “one-pot” 

synthesis approach, which involved the combination of various reagents in a 

singular vessel with attempts to directly utilise intermediates formed within a 

system for product generation. However, this approach comes with obvious 

disadvantages as it entails the combination of multiple reagents, potentially 

leading to undesirable side reactions or byproduct generation, hindering the 

reaction’s effectiveness and conversions. Additionally, for reaction pathways 

that include the generation of unstable intermediates, significant challenges 

arise in maintaining the reaction species concentration for further reaction 

without degradation occurring, which can further limit the overall process 

efficiency. The alternative to performing singular vessel synthesis for the 

multistep reaction is performing singular steps in a reaction pathway, followed 

by workups, purification, isolation, and quantification for further reaction. This 

is approached in an iterative loop with many active pharmaceutical ingredients 

(APIs) being traditionally synthesised in this manner. This methodology only 

leads to the generation of substantial amounts of waste through undesired 

workup media, purification solvent systems and analysis waste but also 

results in elongated production times due to each step of a reaction pathway 

having its own additional sets of processes required. Furthermore, when 

employing this workflow for large-scale synthesis of APIs, it exposes potential 

vulnerabilities. In the event of any disruption in the supply chain for production, 

it could result in substantial delays or shortages in the output, affecting both 

efficiency and cost-effectiveness.20 

In contrast, flow chemistry provides a unique capability for telescoped 

synthesis, where in this approach, reactions are compartmentalised, allowing 

for precise control and sequential addition of reagents through each segment 

during the multistep pathway.21 The modular nature of flow systems facilitates 

the ability to construct complex platforms with relative ease and adaptability, 

allowing for streamlined customisation and rapid scalability. The capacity to 

provide quench streams/reactors and in-line purification methods after each 

stage in a reaction addresses the difficulties encountered by traditional batch 

methodologies where intermediates present in further reactions can 

detrimentally affect the reaction outcomes. Furthermore, the capacity to 

quench, purify and quantify reagents through inline or online analysis all within 
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a singular, continuously flowing process highlights the significant potential that 

these types of workflows can pose when performed in a telescoped 

operation.22  

Murray et al. highlighted the ability to apply these types of workflows for 

the total synthesis of Tamoxifen from simple and commercially available 

starting materials.23 This innovative approach involves the development of a 

five-stage flow reactor system that incorporated premixing and quench coils 

to minimise the potential of unwanted downstream side reactions. Additionally, 

this platform provided the capability to access varying temperature zones 

along the pathway, enhancing the overall process efficiency. Utilising this 

telescoped system, a total synthesis of Tamoxifen was achieved with an 

impressive 85% overall yield. Remarkably, just 80 minutes of continuous 

pumping resulted in the production of 12.4 grams of the desired product, all of 

which highlight the significant capabilities of flow systems for performing multi-

step reactions in a telescoped manner. 
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Figure 4. The telescoped flow platform employed in the synthesis of 

Tamoxifen is equipped with various temperature zones for reactions, in 

addition to pre-mixing and quenching coils.23 

1.3 Automated Self-Optimisation 

The introduction of advanced technologies in chemical synthesis has 

sparked significant interest in automating chemical processes, with a primary 

focus on reducing the time and labour required for process development.24 

Application of automated synthesis has been observed through both batch 

and flow experimentation where control of the platforms has enabled 

enhanced management of reaction pathways, thus minimising labour 

requirements. This growing interest has extended to the automated 

optimisation of chemical systems, leveraging statistical or algorithmic 

approaches to design or dictate experimental conditions for these platforms.25 
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Self-optimisations of chemical systems aim at maximising or minimising 

objective metrics via the manipulation of the reactions variables. A chemical 

systems’ variables can be split into two categories: continuous and discrete. 

Continuous variables are parameters that can be measured on a continuous 

scale, for example temperature, concentrations, residence times. On the other 

hand, discrete variables are those that can only take on specific values, often 

representing categorical choices within the experimental setup, such as the 

choice of solvent, catalyst, ligand etc. Continuous variables allow for fine-

tuning and adjustment within a range, facilitating precise control over reaction 

conditions and parameters. They are typically chosen based on their impact 

on reaction kinetics and objective metrics. Discrete variables introduce a 

dimension of choice and strategy into the optimisation process, where 

selection of the discrete variables such as the choice of reactants can 

significantly influence the outcomes of the reactions and the efficiency of the 

overall process. Therefore, careful consideration is given to choosing discrete 

variables that offer the most favourable conditions for the desired chemical 

transformations. Ultimately, the selection and manipulation of both continuous 

and discrete variables are guided by the principal goal of optimising desired 

outcomes, whether it is maximising yield, selectivity, efficiency, or other 

process metrics, in the most effective and efficient manner possible. 

 The inherent capabilities of flow systems, heavily facilitates the 

employment of optimisation algorithms onto them to enable reaction 

parameter control. To permit the use of algorithms in these automated flow 

platforms, computers have been integrated into the process in a closed 

feedback loop, whereby data from in/online analytical equipment is sent 

through to the computer in an iterative manner, Figure 5.26–28  
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Figure 5. Illustrative example of a self-optimisation flow platform with an 

automated feed-back loop for system control and direction of conditions. 

This process allows for the continuous analysis of data, which is then 

used by an algorithm to instruct the process, including the control of key 

reaction parameters such as temperature, equivalents, concentrations, and 

residence times. This synergy enables complete automated self-optimisation 

of chemical processes, eliminates the need for human intervention and 

significantly reduces labour requirements.29 Furthermore, applying these 

feedback loop systems for intelligent optimisation of the experimental domain 

reduces the number of experiments required, subsequently, resulting in a 

more efficient, cost-effective, and environmentally sustainable approach for 

optimisation of chemical systems. 

1.3.1 Local Optimisation 

1.3.1.1 One-Variable-at-a-Time 

For decades, traditional optimisations performed within synthetic 

chemistry have mostly employed a one-variable-at-a-time (OVAT) approach 

for the refinement of chemical processes. OVAT is a methodical approach, 

where each variable is sequentially changed per experiment, whilst the 

remaining parameters are maintained at a set constant or at their previously 

optimised value, to assess the impact on the reaction outcome. An example 

of a two-variable OVAT optimisation is shown in Figure 6, where the variable 
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x1 is initially studied and changed along the line A to B whilst x2 is maintained 

at a constant value. Upon identification of the best x1 result xb, x2 is varied 

along the line C to D with the value from xb maintained, leading to the 

identification of the optimum point, ★. Whilst the OVAT approach offers a 

simplified methodology for the potential optimisation of a chemical system, it 

has several major disadvantages: (i) Exploration of experimental space is 

significantly reduced, restricting information gained about the system. (ii) 

Variable-variable interactions are not considered, which can significantly 

affect the process outcomes. (iii) Optimisation of the system is highly 

dependent on the starting values assigned for the initialisation of the process. 

(iv) Highly time and resource-intensive, with iterations at designated intervals 

performed along each variable limits it can increase the number of 

experiments required, especially in systems with several variables under 

study. 

 

Figure 6. Example two variable OVAT optimisation leading to a false optimum 

to be observed. ★ represents the best results observed from the 

process. 

Hence, the utilisation of the OVAT approach in chemical procedures 

can result in inefficient optimisation processes, potentially leading to the 
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optimum conditions for the system being missed. Moreover, when dealing with 

an increased number of variables, this issue is further intensified, reducing the 

likelihood of identifying the true optimum.30 Additionally, this amplifies the 

demand for a greater number of experiments within the workflow, 

consequently leading to increased material consumption and time 

inefficiencies. 

1.3.1.2 Design of Experiments 

In the last decade, the literature has increasingly featured the 

application of Design of Experiments (DoE) for optimising chemical systems. 

DoE is a statistical-based systematic optimisation approach used to plan, 

conduct, and analyse experiments. The use of DoE at both industrial and 

academic scales has been prevalent within the literature with both sides 

employing it more frequently in their optimisation processes.31,32 Unlike OVAT, 

DoE takes into account the synergistic effects that the variables being 

changed can have on one another. As previously highlighted, the assumption 

that the variables are independent within the OVAT approach can lead to a 

false optimum being achieved. However, for most chemical systems, the 

synergistic effects between the variables will be present and will most likely 

affect the outcome of the reaction such that the identification of the true 

optimum of a system requires the exploration of the design space.  

Another advantage of DoE over OVAT is the facilitation of gaining 

knowledge of experimental information in a larger region of the design space. 

This means that the process understanding acquired about the response 

surface for the given factors and the interactions taking place is further 

increased. A response surface can be described as the relationship between 

experimental variables (e.g., temperature, pH etc.) and a response (e.g. 

Yield). This further improves the optimisation as it grants a greater region of 

the optimum to be explored for each factor and the relationship each factor 

can have with one another.33  

When planning to perform reactions by experimental design, there is a general 

set of rules which the user can follow to ensure that the experiments are 

designed and performed correctly. Not following the rules can lead to large 

numbers of unnecessary experiments being performed and as such large 
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amounts of wasted time and resources which can be expensive.34 An example 

of some of the steps which have to be followed to plan a DoE is shown below. 

1) Determine the aim for the experiment: Establish the objectives for 

optimisation. 

2) Examine all factors that can potentially have an effect: All factors that 

can affect the outcome of the reaction are required to be identified. 

3) Planning of the experiments: Once the factors are determined, their 

range limits (lower and upper bounds) can be set. Simultaneously, 

select and formulate the model being applied to the experimental 

process. 

4) Execute the experiments: Perform the set experiments that have been 

generated by the design and record the results of each experiment. 

5) Analyse the results from the experiments performed: Transform the 

collected data into a logical conclusion of the process, considering the 

interactions and effects of the factors on the process outcomes. 

 

Full factorial designs (FFD) are the simplest form of design method that 

can be applied to DoE. They serve as a basic yet effective method for 

systematically exploring factors in the system that are expected to have a 

substantial effect on the response. FFDs can be designed to include several 

factors within the experiment, where the number of experiments required, N, 

can be calculated using [Eq (4)], where n is the number of levels, k is the 

number of factors being included and m is the number of centre-point 

replicates. Centre points are experiments where each factor is set to the 

midpoint value in its upper and lower bounds. These points serve as an 

assessment of the repeatability of the experiments performed to estimate 

experimental error within the system and can be further replicated to enhance 

this. An example FFD for a 2-level 3-factor design including a singular middle 

point, where the upper and lower bounds are set to +1 and -1 respectively, is 

shown in Figure 7, where N can be calculated to produce the requirement for 

9 experiments. 

 N =  nk + m (4) 
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Figure 7. Example 2-level (-1, +1) 3-factor FFD (X1, X2, X3) with a singular 

centre point. The constructed matrix for the experiments is highlighted 

on the right. Blue points represent experiments required from this matrix, 

with the centre point highlighted in red, originating from the data entry for 

experiment 9. 

 𝑌 =  𝑏0 +  𝑏1𝑋1 +  𝑏2𝑋2 +  𝑏3𝑋3 +  𝑏12𝑋1𝑋2 +  𝑏13𝑋1𝑋3 +  𝑏23𝑋2𝑋3 +

 𝑏123𝑋1𝑋2𝑋3 +  𝜖   

(5) 

 Where 𝑌 is the response variable, 𝑋𝑖 is an input variable, 𝑏𝑖 is the 

associated contribution and 𝜖 is the related error in the model. 

Often one experimental design is not enough, whereas in an 

optimisation process, an initial screening design might be performed to rule 

out any variables which have negligible effects. This would then be followed 

up with an optimisation design on the remaining variables. The data collected 

from the previous design can be used to regenerate and modify the problem 

to improve the next model. Modification of the postulated model, removal of 

insignificant factors, re-examination and definition of the experimental design 

can all be performed and repeated from point 3 (Planning of reactions) to 

enhance the new design being performed. This limits the overall process, 

where refinements of the optimal region require additional execution of 

experiments, thus increasing the experimental demand for process 

understanding to be achieved. Furthermore, for higher dimensional systems, 

DoE can suffer further from the necessity for an exponential number of 

required experiments to be performed. A combination of both these effects 
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can relate to significantly increased cost and time requirements for 

experimental procedures.  

1.3.1.3 Simplex 

Access to different types of coding software packages such as 

MATLAB and LabVIEW has helped give research chemists the ability to 

control laboratory equipment. Various types of algorithms have been 

implemented into this software which has enabled researchers to gain access 

to self-optimisation techniques and setups. 

Nelder-Mead Simplex (NMSIM) is an example of a black-box 

optimisation technique where directed iterations to consistently improve an 

objective are performed and can be implemented on systems where DoE 

might become inefficient. A black-box technique can be described as an 

optimisation where no a priori knowledge or mechanistic understanding of the 

chemical system is required.35 The algorithm can determine the maximum 

response of a single objective by using a numerical evaluation of the objective 

function.35 The use of algorithms within optimisation can allow for a reduction 

in the number of experiments required to find the optimum conditions. A 

reduction in the number of experiments means that these processes are faster 

and more efficient, with reduced material consumption. The basis of the 

NMSIM optimisation algorithm stems from geometry by utilising a polyhedra 

that is formed of 𝑛 + 1 vertices, where 𝑛 is the number of variables being 

observed.36 This builds upon the original simplex algorithm which was first 

developed by Spendley et al. to include the following additional geometric 

transformations: multiple contraction of the polyhedra, outside contraction, 

reflection and expansion as shown in Figure 8.37 These modifications were 

made to reduce the rigidity to overall improve the optimisation algorithm.38 
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Figure 8. Possible geometric transformations performed by the Nelder-Mead 

Simplex algorithm for a 2D problem: multiple contraction (MC), inside 

contraction (XIC), outside contraction (XOC), reflection (XR), 

expansion (Xe). 

The algorithm explores the feasible design space set by either the user-

defined variable boundaries or randomly generated experiments. Each vertex 

of the polyhedral generated represents an experiment where the response 

function of it has been evaluated. Upon each iteration, the vertex producing 

the worst response function is replaced with another vertex via a geometric 

transformation. This results in a completely new simplex that is exploring a 

new area of the design space. Repetition of this process continues with the 

objective to iteratively find vertices with better response values until it can find 

the local optima of the system.39 

 Jensen et al. employed the NMSIM algorithm for the optimisation of a 

Heck reaction between an aryl chloride (1.8) and 2,3-dihydrofuran (1.9) 

utilising a flow-microreactor system.40 The case study aimed at optimising the 

Heck reaction’s yield for the monosubstituted product (1.10) on the microscale 

by adjusting residence time and alkene (1.9) equivalents. The algorithm 

successfully identified optimal conditions to achieve an overall yield of 83% in 

just 19 experiments.  
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Scheme 2. Heck reaction between 4-chlorobenzotrifluoride (1.8) and 2,3-

dihydrofuran (1.9) to form the mono-(1.9) and bi-substituted products 

used in the Nelder-Mead Simplex optimisation. 

Whilst this optimisation highlights the efficacy of employing the NMSIM 

algorithm on chemical systems, the deliberate simplification of the process 

should be noted. Reducing the number of continuous variables examined 

constrains the number of variable-variable interactions within the system and 

as such reduces the process understanding gained from the optimisation. 

Additionally, the reduction in the number of continuous variables facilitated the 

decrease in the number of experiments required to achieve the optimised 

results. Furthermore, as a prerequisite to the optimisation, a solvent, 

palladium catalyst and phosphine ligand screen were all carried out. Notably, 

to credit this study, the reaction was successfully scaled up 50-fold using the 

optimum conditions achieved from the microscale process, with the 

conservation of comparable yields on the mesoscale.  

Numerous local optimisation algorithms, including gradient-based 

methods and further modifications to the simplex algorithm, have been 

developed and implemented for the optimisation of chemical systems.41–43 

Individually detailing each category of local algorithms available for 

optimisations of chemical systems extends beyond the scope of this work. 

Table 1 provides an overview of self-optimisations that have been completed 

on chemical systems using local optimisation algorithms for the consideration 

of continuous variable case studies. 
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Table 1. Overview summary of examples utilising local optimisation 

algorithms on chemical systems. 

Year, 

Group 

Algorithm Reaction Variables Objective 

2010, 

Jensen40 

NSIM Pd-catalysed Heck 

reaction 

Equivalents of 

alkene  

&  

Residence time 

Yield 

2010, 

Jensen26 

NSIM, 

The steepest 

descent 

method, 

SNOBFIT 

Knoevenagel 

condensation and 

benzyl alcohol 

oxidation 

Temperature &  

Residence time 

Objective 

function value 

&  

Associated 

yield 

2011, 

Poliakoff44 

Super 

Modified 

Simplex 

(SMSIM) 

Methylation of 1-

pentanol in scCO2 

CO2 Flow rate, 

Temperature, 

Pressure, 

Equivalents 

Yield 

2011, 

Poliakoff45 

SMSIM dehydration of 

ethanol over γ-

alumina in scCO2, 

carboxymethylation 

reaction in scCO2 

Temperature, 

Pressure & CO2 

Flow rate 

Yield 

2012, 

Jensen46 

The steepest 

descent 

method, 

Conjugate 

gradient, 

Armijo 

conjugate 

gradient and 

Penalised 

Armijo 

conjugate 

gradient 

Paal−Knorr Temperature & 

Residence time 

𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒
  

(Proportional to 

Productivity) 
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2012, 

Poliakoff47 

SMSIM Methylation of 

alcohols using 

dimethyl carbonate 

(DMC) in scCO2 

Flow rates of CO2, 

1-pentanol and 

DMC 

Reactor 

temperature  

& Pressure 

Yield 

STY 

E-factor 

E+ 

STY x Y 

2013, 

Poliakoff48 

SMSIM, 

SNOBFIT 

Solvent-free 

methylation of 

alcohols with DMC 

over γ-alumina 

Flow rates of 1-

pentanol and 

DMC 

Reactor 

temperature 

Yield 

2015, 

Poliakoff49 

SMSIM γ-alumina catalytic 

reaction with 

aniline using DMC 

and THF in scCO2  

Analine, DMC and 

THF* flow rates, 

Temperature & 

Pressure 

 

* THF flow rate 

not optimised for 

first 4 products 

Yield of a 

range of 

products within 

the reaction 

2016, 

Felpin50 

Modified 

Simplex 

Pd catalysed Heck-

Matsuda reaction 

Catalyst loading 

(mol%), 

Temperature, 

Residence time & 

Equivalence of 

starting material 

Yield,  

Highest 

throughput and 

production cost 

2016, 

Ley51 

Complex 

Simplex 

Hydration of nitrile 

to amide over 

MnO2, Appel 

reaction 

Residence time,  

Temperature, 

Concentrations & 

Equivalents 

Weighted 

objective 

function 

determined by:  

Throughput, 

Conversion,  

Consumption 

2018, 

Felpin52 

Modified 

Simplex 

allylation, [3,3]-

Claisen 

rearrangement, 

isomerisation, 

Temperature, 

Residence time & 

Equivalents of 

starting material 

Yield & 

Throughput  
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oxidative 

dimerization 

2018, 

Ley53 

Complex 

Simplex 

(±)-tramadol 

synthesis 

(Grignard addition), 

lidocaine 

synthesis(acylation 

of aniline 

derivative, amine 

alkylation), 

bupropion 

synthesis (α-

bromination, amine 

alkylation) 

Residence time, 

Temperature & 

Equivalents 

Four-term 

objective 

function 

determined by: 

Throughput, 

Conversion, 

Consumption,  

Energy 

2018, 

Rueping54 

Modified 

Simplex 

Paternò-Büchi 

[2+2] photo- 

cycloaddition 

Flow rates and 

residence time 

Conversion 

2021, 

Hein55 

Bayesian 

Optimisation 

Stereoselective 

Suzuki-Miyaura 

coupling 

Temperature, 

Equivalents, 

Ligand : Catalyst 

ratio, Catalyst 

loading (mol%) 

Four-term 

objective 

function: E-

product assay 

yield (1st), Z-

product assay 

yield (2nd), Pd 

loading (3rd), 

acid 

equivalents 

(4th) 

2023, 

Bourne20  

Bayesian 

Optimisation 

Adaptive 

Expected 

Improvement 

Telescoped Heck-

Selective 

Hydrolysis 

Temperature, 

Equivalents, 

Residence time, 

Ratio of flow rate 

of acid to flow rate 

of first reactor 

Overall product 

% yield  
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1.3.2 Global Optimisation 

The methodologies presented in Table 1 are all examples of local 

optimisation techniques, where a local optimum in the design space is found. 

These types of optimisation techniques are typically fast as each iteration is 

converging on the optimum area. However, a disadvantage of local 

optimisations is when there are complex variable-variable interactions, this 

can lead to multiple local optima being observed within the system. The 

presence of multiple local optima in a system can cause a local optimisation 

algorithm to get stuck on a single optima and home in towards it, when in fact 

it might not be the true optimum value, Figure 9.  

 

Figure 9. A visual example of a 2-variable simplex optimisation converging on 

a local optimum where a global optimum of a better solution is present. 

 

From these challenges, when attempting to employ a local optimisation 

algorithm into a problem, it must be assured that the specific chemical system 

only contains one local optimum, which can be obtained by limiting the number 

of variables under study. Global optimisation algorithms possess the ability to 

effectively manage noise in complex systems, allowing them to achieve faster 
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and more reliable convergence towards optimal solutions compared to local 

optimisation techniques like Simplex, especially in noisy systems.56 

1.3.2.1 Stable Noisy Optimisation by Branch and Fit 

The Stable Noisy Optimisation by Branch and Fit (SNOBFIT) method 

is another example of a global optimisation algorithm which was developed by 

Huyer and Neumaier.56 Once again, it is an example of a black-box technique 

as well as being a derivative-free method, meaning that it does not require 

any gradient information on the objective that is being optimised. The 

algorithm uses a combination of stochastic linear and quadratic surrogate 

models to find the global optimum of the system.35 These surrogate models 

allow for the prediction of the black-box model and predict the outcome of 

interest where a limited amount of data is available, which can provide a 

cheaper alternative to conducting reactions.57 

Within the optimisation, the algorithm generates 5 different classifications 

of points which are detailed below. A flow diagram is detailed in Figure 10 

where each classification generated is included. 

Class 1 -  The point that minimises the local quadratic around the best 

current point and contains at most one point. 

Class 2 -  Points that approximate local minimisers. Where no local points 

are generated within an optimisation, no points in class 2 are 

generated. 

Class 3 -  Points that are approximate nonlocal minimisers.  

Class 4 -  Points in unexplored regions. 

Class 5 -  Randomly generated points to fill the design space. 

The main advantage of the SNOBFIT algorithm is that it can handle noise 

effectively due to the random fitting of points which leads to higher confidence 

that the optimum found within the optimisation will be the global optimum. 

However, due to the algorithm exploring the experimental area, this can cause 

a higher number of experiments to be required such that it is outperformed in 

terms of number of reactions required by local optimisation techniques for 

simple (no noise) systems.  
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Setting of Boundaries 

and variables

Split search region into 

subsections containing 1 point 

each (with all data included and 

duplicates removed)

Enough data for local 

model fitting?

Fitting of local polynomial 

models around all changed 

points

Yes

Generation of points of 

classification 2 and 3

Generation of class 1 point via 

fitting of polynomial model 

around the best point

Generation of random points in 

unexplored areas (Class 4)

No

Generation of space-filling data 

points (Class 5)

neval   nreq Perform experimentsYes

No

Total experiments 

  Limit

Stop OptimisationYes

Addition of new data points to 

existing set

No

 

Figure 10. Flow diagram for a SNOBFIT optimisation. Where 𝒏𝒓𝒆𝒒 = minimum 

number of required function evaluations to be performed, set by the user, 

𝒏𝒆𝒗𝒂𝒍 = number of actual function evaluations performed. 

SNOBFIT has been implemented for the optimisation of chemical 

systems on several occasions across various groups, with the Bourne group 

significantly contributing to this literature.49–51 The first example of SNOBFIT 

being implemented was by Krishnadasan et al. for the controlled synthesis of 

nanoparticles.58 Optimisation took place by measurements of the wavelength 

of the outlet of the reactor until the desired nanoparticle size was formed. The 

injection rates of reactants and the temperature of the reactor were controlled 

by the algorithm to perform a noise-tolerant global search method.  

However, SNOBFIT does begin to struggle with chemical systems where 

the number of dimensions involved in the optimisation is too large (>9 

dimensions).61 Telescoped reaction optimisations pose an obvious problem 

where multiple reagent streams, reactors and therefore dimensions are 
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involved. As well as high dimensionality problems, the algorithm can only be 

applied to optimise continuous variables, so for the optimisation of ligands, 

bases catalyst etc. a different type of optimisation algorithm will have to be 

employed. 

1.3.2.2 Bayesian Optimisation 

Bayesian optimisation represents a division of derivative-free global 

optimisation methods that employ probabilistic models for an initially unknown 

objective function. It is designed for optimising functions that are expensive to 

evaluate.62 Bayesian optimisation offers advantages by enabling the 

incorporation of prior knowledge about the problem, guiding the sampling 

process to explore a balance between exploration and exploitation of the 

design space. These Bayesian optimisation methods rely on surrogate models 

to approximate the true objective function. In each iteration, the next point for 

evaluation is determined by an acquisition function, which is calculated using 

these constructed surrogate models generated from prior obtained data. 

Typically, the most common surrogate models take the form of Gaussian 

processes (GP), which define a distribution over all possible functions in line 

with the observed data, [Eq (8)(6)].63 Specifically, a GP can be fully defined 

by a mean function, 𝑚(𝐱), [Eq (6)], and a covariance function, 𝑘(𝐱, 𝐱′), [Eq 

(7)], of a real process 𝑓(𝐱), where x and x’ are input vectors and 𝔼[∙] is the 

expectation over the function.  

 m(𝐱) =  𝔼[f(𝐱)] (6) 

 k(𝐱, 𝐱′) =  𝔼[(f(𝐱) − m(𝐱))(f(𝐱′) − m(𝐱′)) (7) 

 f(x) ~ GP(m(𝐱), k(𝐱, 𝐱′)) (8) 

The covariance function, 𝑘(𝐱, 𝐱′), often referred to as the kernel, is used 

to determine the relationship between pairs of inputs to establish confidence 

intervals for the mean function. The kernel contains various hyperparameter 

settings, one of which is an adjustable setting that can be fine-tuned to 

accommodate noisy optimisations, where optimal values can be generated 

through the training of the model.63,64 Upon acquisition of data, the prior 

distribution evolves into a posterior distribution with updated beliefs about the 

unknown system. This posterior distribution is utilised to formulate the 
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previously mentioned acquisition function. The acquisition function is used to 

determine the subsequent evaluation point based on the trade-off between 

exploration and exploitation.65 Experiments are suggested by the acquisition 

function to reduce uncertainty in the most promising regions. The acquisition 

function attains higher values when: (i) Mean function/exploitation, is high: 

(ii) Uncertainty/exploration is high: (iii) or both points are true: in cases 

involving a maximisation optimisation. 

1.3.2.3 Multi-Objective Optimisation 

The concept of multi-objective optimisation describes the methodology 

aimed at optimising a process by considering various performance metrics 

simultaneously. In chemical systems, a wide variety of criteria exist for 

evaluating the performance of a reaction, including environmental factors like 

the E-factor or reaction mass efficiency (RME), as well as productivity-related 

metrics such as Space-time yield (STY) or yield.  

In contrast to single-objective optimisation, which focuses solely on one 

performance criterion, often favouring productivity metrics, it is evident that in 

many chemical systems, optimising the throughput of a system does not 

always translate to improved reaction performance. This, in turn, can lead to 

substantial waste generation.66 These approaches have been employed in a 

sequential approach where individual process metrics are consecutively 

optimised independently of one another to identify optimum conditions for 

each objective. Consequently, these methodologies lack consideration of how 

the objectives interact and the essential interactions of the variables required 

to explore a trade-off between them. An alternative strategy involves the 

combination of multiple objectives into a single-weighted objective function, 

allowing users to assign weights and preferences to process metrics, which 

are then optimised. However, such workflows often require a priori knowledge 

of the chemical system’s various metrics, posing challenges in practical 

implementation where slight adjustments to these weighting values can lead 

to drastic output variations. Furthermore, weighted objective optimisations 

only yield a single optimal solution, failing to explore the trade-off between 

objectives.35  
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 Conversely, the alternative is an a posteriori approach which involves 

the simultaneous optimisation of a combination of multiple conflicting 

objectives, intending to achieve a set of non-dominated solutions that explore 

the trade-off between objectives. These types of methodologies do not rely on 

assigned weights or bias towards different objectives unlike its a priori 

counterpart. Simultaneously optimising these objectives within a single 

process provides insight into the unique interactions between variables that 

are required to optimise each metric and explores the inherent trade-offs 

between them.50 In these systems, due to the intrinsic conflict between these 

objectives, single optimal solutions are often not generated. Instead, a Pareto 

front, defined as a set of optimal non-dominated solutions that elucidate the 

trade-off between the objectives, is generated, Figure 11. 35,67 

 

Figure 11. An example of a conflicting objective optimisation, between 

productivity/STY and Yield, where both metrics are being minimised. Red 

points illustrate the Pareto front between the objectives, with blue points 

being dominant solutions.  

 There are several common criteria used to evaluate the performance 

of a multi-objective optimisation process, with the hypervolume of a system 

being the most commonly used. This metric serves as a measure of how 
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effectively a collection of solutions spans the Pareto front, where a greater 

value of hypervolume implies superior coverage suggesting a more diverse 

and desirable set of solutions.68,69  The interest and popularity of hypervolume 

as a main performance criterion stems from the fact it considers both the 

precision and diversity of an approximate set. These associated beneficial 

attributes of the hypervolume for measuring accuracy and diversity of the 

dataset, led to the utilisation of this metric to determine optimisation 

termination that is featured in Chapters 2-4.  

 

Figure 12. Hypervolume plot for a 2D objective space.  The hypervolume is 

calculated between the reference point, r, and  the current non-

dominated solutions, si.  

Multi-objective optimisation approaches have been well established in 

chemical systems as evidenced by a range of published literature 

examples.66,70,71 Clayton et al. highlighted the application of a Thompson 

sampling efficient multi-objective optimisation algorithm (TSEMO) on a 

Sonogashira reaction for the synthesis of the 3-alknyl-pyridine moiety in 

lanabecestat, which is a drug used for Alzheimer’s disease, Scheme 3.72  
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Scheme 3. Sonogashira coupling reaction optimised using a TSEMO 

algorithm between 3,5-dibromopyridine (1.12) and 1-hexyne (1.13) to 

form the desired mono-substituted alkyne (1.14) and undesired bis-

alkyne (1.15).  

The Bayesian algorithm utilises an initial dataset, generated via a 

random set of space-filling experiments, to construct GP surrogate models for 

the optimisation process. A random sampling of the GPs is utilised by the 

algorithm to ensure a balance of exploration and exploitation is achieved 

within the optimisation and further reduces bias towards any objective under 

study. The sample with the highest predicted hypervolume improvement is 

selected for the next sample and is subsequently performed in Figure 13.35 
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Figure 13. Flow chart for the TSEMO algorithm workflow within an 

optimisation process, utilising random sampling of GP surrogate models.  

1.4 Mixed Variable Systems 

While numerous studies have delved into optimising continuous variable 

systems to maximise process metrics, the exploration of mixed variable 

systems remains relatively unexplored. In recent years, optimisations have 

increasingly focused on integrating both discrete and continuous variables, 

enabling a comprehensive examination of variable interactions within 

chemical systems.73–75 However, many industries and synthetic research still 

employ the traditional OVAT-based methodology for the screening of discrete 

variables within their optimisation processes. The vast combination of 

potential discrete variables within a chemical system can lead these workflows 
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to be highly resource-intensive. Furthermore, the inclusion of discrete 

variables within an optimisation process naturally increases the complexity of 

the system due to the extended networks of variable interactions possible, 

resulting in an increased likelihood that the true optima of the system is not 

identified.  High-throughput experimentation (HTE) has been well-

documented to perform large numbers of automated experiments in the 

pharmaceutical industry.76–78 HTE can be achieved using auto-sampling 

platforms that can perform multiple parallel reactions simultaneously. Using 

this, a wide library of compounds can be screened to identify the optimum 

discrete variable (catalyst, ligand etc.) at the current operating conditions.79 

The method is especially useful for the minimisation of waste produced where 

reactions can be screened on a small scale to ensure minimal amounts of 

material are required.  

 

Figure 14. Photo of a Chemspeed HTE batch reactor, where aliquots of 

mixtures are drawn up using syringe pumps and injected into the batch 

vessels. 
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The combination of HTE, coming through an autosampler, combined 

with continuous flow provides a very powerful technique for the automated 

screening of compound libraries. Perera et al. highlighted the efficacy of this 

methodology on a Suzuki-Miyaura coupling reaction, in which the screening 

of suitable electrophiles, nucleophiles, bases, solvents and ligands was 

achieved, Figure 15.73 In this method, 5 µL slugs of the desired discrete 

variable were injected into 500 µL of carrier solvent such that a 1:100 diffusion 

ratio was achieved to ensure the sufficient dilution of the reaction slug into the 

carrier solvent for the further downstream reaction.  

 

Figure 15. (a) Schematic of the autosampler-flow platform used to screen 

libraries of discrete variables for the Suzuki-Miyaura cross-coupling 

reaction. (b) Preparation and injection of discrete variable slugs into the 

flow stream, where mixing and diffusion it analysed by UV detection. 

Combination with continuous flow facilitated the precise control of 

reaction parameters, where the flow rates, residence time, reactor 

temperature and system pressure were all regulated. The inclusion of the 

autosampler in the system enabled a 1 µL aliquot for each discrete variable 

(nucleophile, electrophile, catalyst, ligand and base) to be injected to form the 

5 µL slugs in the carrier solvent in a fully autonomous manner. Additionally, 

utilising an autosampler for this system facilitated the flexibility of placing it 

inside a glovebox such that it provided access to moisture or air-sensitive 
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discrete variables. Using this platform, a total of 5760 experiments were 

successfully performed achieving a rate of >1500 reactions in 24 hours.  

Although this flow-HTE platform was highly effective for screening a 

large library of discrete variable compounds, the process eliminated the 

consideration of continuous variable interactions within the system via the 

selection of a single set of operating conditions. Furthermore, this workflow 

presented a brute-force approach, where no optimisation was performed, 

instead a vast combination of discrete variables was tested over the process 

and as such required a significant number of experiments. Consequently, this 

limitation is highly problematic due to the complex interactions between 

variables, which have been shown to significantly affect reaction outcomes. 

Therefore, this leads to a desire for the simultaneous consideration of mixed-

variable optimisations on chemical systems, especially for cases with the 

consideration of multiple objectives.  

 There has been a singular investigation for the consideration of mixed-

variable optimisations concerning multiple objectives performed by 

Christensen et al. employing a Chemspeed equipped with an online HPLC to 

autonomously conduct and analyse batch-based experiments.55 In this 

workflow, a stereoselective Suzuki-Miyaura coupling was selected as the 

chemical system, where various phosphine ligands were utilised as the 

discrete variable of choice, Scheme 4.  

 

Scheme 4. Suzuki-Miyaura cross-coupling reaction between (E)-vinyl 

sulfonate (1.16) and aryl boronic acid (1.17) used for the mixed-variable 

optimisation where maximisation of the (E)-desired product (1.18) was 

priority. 

This work presented the first case of a mixed variable multi-objective 

optimisation on a chemical system, that was directed by a machine learning 
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algorithm. However, a significant disadvantage of this method was its reliance 

on batch-based experimentation, which imposed a maximum temperature 

limit of 40 °C, thereby mitigating any potential interactions between variables 

and elevated temperature ranges. Furthermore, using batch processing for 

the optimisation meant that each experiment was conducted for a set 2-hour 

period, leaving unexplored possibilities for varying reaction times. Given the 

inherent complexity of mixed variable systems and the restrictions imposed 

by the limiting temperature range and reaction times, this approach limited the 

process understanding gained from the optimisation. In contrast, adopting a 

continuous flow system would address these limitations by enabling access 

to higher temperatures and various residence times, thus facilitating a 

comprehensive exploration of interactions across a wider range of conditions. 

The exploration of mixed variable optimisations within continuous flow 

processes has been limited, with previous evaluations focusing solely on 

single-objective systems. Further inclusion of details regarding the 

optimisation of discrete variables within flow processes is discussed in 

Chapters 2-4 introductions. 

1.5 Discussion 

The exploration of discrete variables in research is not a new frontier. 

Many organic synthetic procedures have historically employed OVAT 

methodologies to identify the “optimal” operating conditions and build a library 

of functional groups for these chemical transformations. However, the OVAT 

methodology has proven unreliable in identifying the true optima of chemical 

systems where complex variable interactions are present and are often 

labour-intensive, demanding a large number of reactions.  The use of HTE 

has also been well-published for the autonomous screening of vast libraries 

of compounds for the synthesis of APIs within the pharmaceutical industry. 

Nevertheless, there is a trade-off, as the time required per reaction can be 

increased, when compared to flow reactions, due to the temperature 

constraints, typically related to solvents, for batch processes.76,78,80,81 

However, the adoption of flow systems for these processes provides access 

to higher temperatures and enables the exploration of hazardous 
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intermediates within these reaction pathways to further enhance early-stage 

reaction development.  

Over the past decade, numerous literature examples have featured self-

optimisation platforms for a variety of chemical systems to determine optimal 

conditions concerning a range of process metrics. These studies typically 

examine the exploration and utilisation of different algorithms to control 

experiment procedures and streamline the optimisation process. Local 

optimisation techniques, such as Simplex and gradient-based methods have 

been significantly exploited for chemical systems with low-level 

complexity.26,44,45,82,83 Similarly, global optimisation methods, such as 

SNOBFIT, have demonstrated successful approaches in exploring more 

complex chemical systems.58–60,66,84–86 However, all of these previous 

approaches have only examined the optimisation of continuous variables 

within these flow systems, mitigating any potential exploration of interactions 

between discrete and continuous parameters. The Jensen group has provided 

the main contribution to literature for consideration of mixed-variable flow 

systems, where only single-objective optimisations were explored.74,79,87 

1.6 Project Aims 

The combination of automated flow platforms with efficient optimisation 

algorithms has facilitated the expansion of the toolkit available for process 

development. Furthermore, the utilisation of Bayesian algorithms has proven 

successful in expanding the capabilities of these processes for the 

consideration of multi-objective optimisations. However, there is an absence 

of the simultaneous optimisation of mixed variable flow systems concerning 

multiple objectives.  There is only a singular case documented examining 

mixed variable multi-objective optimisations, with the workflow relying on 

batch processing to achieve this, where the previous limitations of this system 

related to temperature have been highlighted.55 Therefore, presenting a 

necessity for these workflows to be developed into automated continuous flow 

systems, to provide an efficient approach to comprehensive reaction 

optimisation. Implementation of these optimisations will provide a crucial 
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expansion to the tools available for process development, especially in early-

stage reaction development.  

Chapter 2 initially establishes the potential for simulated optimisations of 

chemical systems using pre-existing kinetic data to provide insight into an 

SNAr case study that would subsequently be examined for experimental 

optimisations. Building on these simulations, work was completed to highlight 

the experimental applicability of mixed-variable multi-objective optimisations 

on chemical systems using automated continuous flow processing. Two 

conflicting objections were set such to explore the solvent effects on the 

regioselective outcome of the SNAr, where the solvent of the system was 

selected as the discrete variable enabling full exploration of the trade-off 

between the process metrics.  

 Chapter 3 builds on the previous mixed-variable optimisation to present 

the potential of these workflows for early-stage reaction development in the 

pharmaceutical industry, such that the synthesis of an API was examined. The 

inclusion of a Sonogashira cross-coupling reaction enabled a more chemically 

complex catalytic system to be optimised to further explore more complex 

variable interactions within the system and enhance the applicability of these 

methodologies. The optimisation was set to explore the trade-off between an 

environmental and productivity metric such that the ever-increasing concern 

about the environmental effects stemming from the production of APIs would 

be considered.  

Chapter 4 describes the further development of the automated flow 

platform to introduce the optimisation of mixed-variable telescoped reactions. 

Multi-point sampling was implemented to facilitate the analysis of all steps 

within the telescoped pathway on a single piece of analytical equipment. 

Conflicting objectives were selected from each reaction within the system to 

enable different reaction pathways to be optimised, where the inclusion of a 

Heck-hydrolysis reaction further highlighted the development of catalytic 

systems.  A selection of mono- and bidentate phosphine ligands was included 

as the discrete variable to examine the potential mechanism of the Heck 

reaction and the outcome effects on the conflicting process objectives.  
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Chapter 2. Synergising Simulation and Experimental Studies 

for Mixed Variable Optimisation  
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2.1  Introduction 

The COVID-19 pandemic significantly highlighted the importance of 

being able to conduct simulated experimentation, specifically in the 

optimisation landscape which can excel in efficiency and effectivity for these 

types of processes.  

The pandemic had a significant impact effect worldwide on the ability of 

chemical researchers to conduct experiments, leading to many research 

groups finding alternate ways to carry out work. Still being able to carry out 

‘experiments’ would be vital to gaining insight into potential future case 

studies, further developing PhD project timelines, and contributing work to 

chemical literature. Computation chemistry is already a well-known and 

researched branch of chemistry, that utilises mathematical methods in 

combination with chemical physiological and electrical properties to build 

models and approximations that can be implemented on a computer.88 

Simulated optimisations combine the power of computational software 

packages with efficient mathematical algorithms to explore the chemical 

system scope and predict the outcomes to enable researchers to have critical 

insight into how the chemical system under study will behave.89  

Developments in kinetic analysis software, such as Compunetics, over 

the recent years have enabled this area of chemistry to become readily 

available to the broader research community.90,91 The software can apply the 

mathematical principles and models to the chemical systems using the inputs 

of real-world kinetic data that have been previously gathered.92–94 With a vast 

amount of kinetic data readily available through published literature work, this 

allows for simulated computational experimentation to be carried out. This 

data allows for real-world kinetic models to be generated from all known 

species in the specified chemical reaction under study, to investigate how the 

properties of each substituent in a reaction affect the outcome. Performing 

these types of simulated experiments can provide key insights into 

quantitative chemical synthesis for process development which poses a 

critical constraint for the chemical industry, that when utilised can reduce the 

time requirements and costs for the scale-up of these processes.95,96 MATLAB 

offers an inbuilt ordinary differential equation (ODE) solver into their software 
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which enables the models of the concentration profiles for each component in 

reaction to be simulated. These types of studies provide key insights into the 

mechanisms of the chemical processes and enable the exploration of the 

optimisation surface responses which can aid in limiting the number of 

experimental reactions required. By doing this, it enhances the efficiency and 

sustainability of these processes, via the reduction of the number of 

experiments required which decreases the time and material consumption.97 

With this additional time, researchers can then focus their attention on 

handling more challenging problems which might be limited by experimental 

conditions, whereby simulated experiments can mediate the handling of 

hazardous intermediates, dangerous conditions, or laborious exploration of 

the design space.  

The mathematical optimisation algorithms can then be employed in the 

simulated models via the manipulation of the variables under study to optimise 

the desired process metrics, whether economical or environmental. 

Table 2. Comparison of Environmental and Economic metric objectives for 

evaluating chemical processes. 

Economical Environmental 

Yield E-Factor 

Productivity (Space-Time Yield) Reaction Mass Efficiency 

Cost Atom Economy 

Purity Impurities 

 

When combined with simulated experiments, real-world experimental 

optimisations can provide a validation of the previously performed simulated 

work, all whilst building upon the simulated models to further refine and 

enhance the models being used. Leading to an additive effect where both 

techniques benefit from one another in a synergistic form in which, simulated 

models are being improved upon by experimental reactions and experimental 

design spaces gaining key insights into the chemical system landscape 

through the simulated experiments. This synergy grants researchers an 
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extremely powerful optimisation tool to accelerate optimisation processes and 

access larger data sets to analyse and report on. 

Over the last decade, the majority of optimisations on chemical 

systems have only studied the manipulation of continuous variables for their 

desired outcomes, with only mixed variable case studies being observed in 

batch systems through the use of HTE in a ‘brute force’ manner.73,76,80,98 

These types of operations come with significant problems as when confronted 

with ever more intricate synthetic methodologies, the time-consuming 

‘exhaustive’ strategy for high-throughput screening (HTS), involving the trial 

of every conceivable combination of discrete factors, is losing its appeal. 

Moreover, the process of optimising both discrete and continuous variables 

sequentially within a workflow leads to an inadequate understanding of the 

overall process, Figure 16. This deficiency arises from the neglect of crucial 

interactions that can occur among the discrete and continuous variables. In 

addition, the optimisation of mixed variable systems for multiple objectives is 

an area of research that is significantly lacking, this could be due to the nature 

of the complexity of the systems or algorithms able to adequately handle these 

types of problems. 

However, there has been work reported on performing simultaneous 

optimisation of both categorical and continuous variables using an HTS batch 

system.55 These types of experimentations come with the drawbacks 

associated with performing experiments in batch reactors compared to 

continuous flow processes which offer access to higher temperature reactions 

and enhanced control over hazardous intermediates. Warren et al. 

investigated a multi-objective optimisation of this type for a series of RAFT 

polymerisations to explore molar mass dispersity and monomer conversion.99 

To achieve this, they employed a TSEMO-based algorithm in their system. 

However, it is important to note that separate optimisations were completed 

for each RAFT agent, consecutively, leading to a significant concentration of 

data in suboptimal areas within the reaction scope.  
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Figure 16. Comparison between traditional HTS methodologies vs. this 

developed MVMOO self-optimisation approach for a full reaction 

optimisation pathway.  

Interactions between continuous variables in a chemical reaction 

pathway are becoming increasingly appreciated by synthetic research groups, 

with many procedures adopting new condition optimisation methods by 

combining computation and modelling techniques to revolutionize their 

research. The increase in appreciation could be due to the relative increase 

in literature publications of continuous variable studies and the ease of being 

able to define and optimise continuous variables compared to discrete 

variables.6,47,52,86,100,101 Continuous variables are any variable within a reaction 

pathway that can be fitted to a continuous scale, and as such are typically 

easier to optimise with a wide range of optimisation techniques becoming 

readily available.  
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Discrete variables are typically harder and fit to a categorical scale, 

however, the complexity increases with discrete variables due to the number 

of properties (ligand steric bulk, catalysts ligand exchange rate etc.) that each 

variable can possess. The properties of each discrete variable can cause 

further variable-variable interactions to be observed within an optimisation 

space. These defined properties for discrete variables has prompted research 

aimed at categorising these factors with the goal of aligning them on a 

continuous scale, e.g. fitting solvents based on polarity index or ligands based 

on steric bulk. Jensen et al. used molecular descriptors to explore solvents to 

convert these discrete variables onto a continuous scale in a multi-objective 

optimisation of Rhodium-catalysed asymmetric hydrogenation in which the 

temperature was also optimised.75 However, these methods require the 

exploration of extensive libraries of properties associated with the discrete 

variables under study. Selecting suitable molecular descriptors that are 

capable of accurately explaining the observed behaviour demands a 

substantial amount of prior knowledge and readily accessible data resources. 

This becomes particularly challenging when dealing with novel reaction 

pathways, as acquiring such knowledge can prove difficult to obtain without 

extensive reaction modelling and investigation.  In contrast, black-box 

optimisation techniques circumvent the necessity for explicit physical 

knowledge of the discrete variables in the optimisation, bypassing this 

requirement of vast prior knowledge.102 

Herein, this chapter aims to explore the simultaneous optimisation of 

mixed-variable flow systems, utilising the MVMOO algorithm to direct this 

process. The SNAr reaction was selected as the initial case study, with a 

specific focus on optimising the yields of the various regioisomers formed.  

The SNAr reaction was selected as the initial case study to where the 

yields of the different regioisomers formed would be set as the objectives for 

the optimisation. This difference in regioselectivity of the reaction would be 

further tested via the selection of the solvent choice as the discrete variable, 

where previous literature has highlighted the different regioselective outcomes 

based on the solvent of choice. 
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Preliminary efforts will focus on leveraging simulated reaction 

chemistry and state-of-the-art machine learning algorithms to conduct 

simulated optimisations. This approach aims to offer insights into the SNAr 

reaction, serving as supporting evidence for the experimental studies to follow. 

2.2 Mixed Variable Multi-Objective Optimisation Algorithm 

 The mixed variable multi-objective optimisation algorithm (MVMOO) 

utilised within all experimental work contained within this thesis was created 

and developed by Jamie Manson as part of his PhD project within the group 

and was subsequently published in the Global Optimisation Journal.63 The 

work within this thesis focuses on the implementation of the MVMOO 

algorithm onto real chemical systems, when used in combination with the 

automated flow platforms developed to optimise for multiple objectives during 

each case study. A brief analysis of the optimisation algorithms functionality 

is shown in Figure 17. 

From Figure 17, the initial space-filling design was completed for each 

discrete variable, which was a five identical Latin hypercube (LHC) sampling 

for each categorical variable under study with varying continuous variable 

conditions. Using this methodology provides sufficient exploratory information 

in the design space for the algorithm for use with the iterative process 

models.103 This type of procedure is suitable when working with small 

numbers of discrete variables but can lead to large initial costs to the 

optimisation when n > 10, where n is the number of discrete variables or when 

there are multiple different types of discrete variables being evaluated. 

Following this, individual GPs are utilized as surrogates for each objective 

function using the data set obtained from the initial conditions or current data 

set after each successful iteration. To enable the modelling of mixed variables, 

the GP surrogates use an internal distance metric which has been based on 

Gower similarity. During the iterative process, the next set of reaction 

conditions is determined via internal optimisation of the expected 

improvement matrix (EIM) acquisition function. An EIM function is used to train 

the GP models to determine the next point for evaluation.104 The experiment 

is then carried out on the automated platform and the analysis is evaluated for 
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the objective functions. After performing the experiment, the GPs are updated 

after which the process proceeds in an iterative process until a stopping point 

is achieved. This can be determined by evaluating the hypervolume changes 

after a set number of iterations. Using this iterative approach enables a 

balance of exploration and exploitation to identify the global Pareto front for 

all metric functions. 
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Figure 17. Flow chart for the iterative process of the MVMOO algorithm. 
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2.3 Nucleophilic Aromatic Substitution 

 The nucleophilic aromatic substitution (SNAr) reaction has been utilised 

as an ideal test reaction for continuous optimisation reactions of the chemical 

system for both single- and multi-objective studies.66,105,106 For this 

optimisation, in the initial studies, operating conditions were utilised from the 

work completed by Schweidtmann et al. but were later subjected to some 

adjustments for improved stability of the system.66 

 

Scheme 5. SNAr reaction between 2,4-difluoronitrobenzene (2.1) and 

morpholine (2.2) for the formation of the ortho- (2.3), para- (2.4) and bis- 

(2.5) regioisomers. 

 The SNAr reaction serves as a valuable synthetic tool for substituting 

effective leaving groups on an aromatic ring, commonly using aryl halides. 

This process involves the utilisation of an appropriate nucleophile and unfolds 

through a resonance-stabilised Meisenheimer complex, illustrated in Scheme 

6. This reaction proves advantageous for crafting aromatic carbon-heteroatom 

bonds, with the potential to create diverse regioisomers hinging on the 

selection of a suitable starting material. The ability to yield both desired 

regioisomeric products and undesirable products further designates this 

reaction as a key reaction for the initial case study. The inclusion of this 

reaction would help increase the complexity of the optimisation at hand to 

facilitate the assessment and refinement of algorithmic capabilities on the 

automated flow platform. 
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Scheme 6. Resonance stabilisation of the ortho regioisomer through a 

Meisenheimer complex. 

When choosing an initial case study for the optimisation of mixed 

variables, it was logical to select the SNAr reaction. This choice stemmed from 

the reaction’s historical performance within the research group, which 

provided a clear understanding of how the continuous variables interact, 

sustained by kinetic investigations that had been previously performed.107 

Furthermore, the regioselective outcome of the reaction can be significantly 

influenced by the choice of solvent, a topic extensively covered in existing 

literature. This body of literature serves as supporting evidence for the results 

observed during the optimisation process, further substantiating the achieved 

reaction outcomes.108–110 

2.4 Simulated Optimisations  

2.4.1 SNAr Simulation 

As previously mentioned, conducting simulated tasks to complement 

experimental studies holds significant importance. During the COVID-19 

pandemic, these methodologies were further highlighted as a necessity for 

providing optimisation data during laboratory closures. It was during this 

phase that efforts were initiated to formulate simulated investigations for the 

upcoming SNAr project. Initially, the focus was centred on crafting a simulation 

script aimed at optimising continuous variables in the context of this case 

study. This choice was guided by the availability of kinetic data specific to the 

desired SNAr reaction that had been published by Hone et al.107  

The simulated studies were executed utilising two distinct categories of 

global optimisation algorithms, which are as follows:  
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1) SNOBFIT – Designed to facilitate simulated studies concentrating 

exclusively on continuous variables. This entailed the creation and 

training of the simulation scripts on MATLAB. 

2) Genetic Algorithm – The MATLAB Inbuilt algorithm was employed to 

optimise simulated studies involving both continuous and discrete 

variables. This covered studies on both single-objective and multi-

objective.  

Through numerical analysis of ODEs, the simulation of concentration 

profiles expressed as 
𝑑𝐶𝐴

𝑑𝑡
⁄ , was successfully resolved. Here, 𝐶𝐴 

symbolises the concentration of a species existing within the system. This 

process was repeated iteratively for all species present within the system. 

By utilising Arrhenius kinetics, it becomes feasible to compute the rate 

constants corresponding to each transformation within the given reaction 

pathway. This computation draws on data that has been documented 

previously within the literature. The rate expression can be given by:  

 

 
𝑘 = 𝐴𝑒−

𝐸𝑎
𝑅𝑇⁄  (9) 

 

Where, 𝐴 = Pre-exponential factor, (Units SI) 

𝐸𝑎 = Activation energy, (J/mol) 

R = 8.3145 𝐽 ∙ 𝑚𝑜𝑙−1 ∙ 𝐾−1 (Ideal gas constant) 

T = Temperature, (K), the temperature was later indexed as a variable in the 

optimisation function.  

Using [Eq (9)], the reported pre-exponential factors and activation 

energies for each step in the reaction pathways, enabling the concentration 

change model to be built and utilised within an optimisation script. The 

reaction pathway shown below (Scheme 7) for the SNAr reaction was the 

pathway selected for the simulated work and as stated previously would be 

the reaction pathway selected for the experimental studies to be performed 

on.  
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Scheme 7. Kinetic reaction pathway for the formation of all regioisomers in 

the SNAr pathway.  

For the ODE solver to work effectively for each case study, MATLAB 

offers different settings to allow for fine-tuning of the solver, the most important 

settings that can be set for modelling kinetic reactions are:  

• NonNegative – Ensures that the concentration of each of the 

species within the reaction pathway cannot become negative, 

which is true in real-world chemical systems. 

• RelTol – Adjusts the Relative tolerance of the solver which helps 

in increasing the accuracy of the results but in turn increases the 

time required. However, moderating the step sizes taken can aid 

in reducing this time requirement. 

With these option settings in place, the subsequent code can be 

employed to configure the ODE solver, yielding TimeData and ConcData for 

utilisation in the objective equations. This approach establishes the ODE to 

solve the reactor model outlined by [Eq ((10)-(14))]. The resultant simulated 

concentration profiles can then be harnessed to compute an objective metric; 

in this instance, the yield of a particular species can be determined based on 

the concentration data.  

A comparative analysis was carried out between two prevalent ODE 

solvers: ODE45 and ODE15s, the former being a non-stiff solver while the 
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latter being a stiff solver. In this context, ODE45 showcased superior 

performance in both accuracy and timing (evaluated using MATLAB’s tic toc 

measurement) for the conducted simulated experiments. This observation can 

be attributed to the fact that the equations being solved lack terms that could 

induce rapid fluctuations in the solution, thereby rendering the ODEs in this 

case non-stiff. A screenshot of the subsequent ODE solver code is presented 

in Chapter 6.3.3 Figure 52. 

 𝑑𝐶𝐴

𝑑𝑡
=  − 𝑘1 ∙ 𝐶𝐴  ∙ 𝐶𝐵  −  𝑘2 ∙ 𝐶𝐴  ∙ 𝐶𝐵 

(10) 

 𝑑𝐶𝐵

𝑑𝑡
=  − 𝑘1 ∙ 𝐶𝐴  ∙ 𝐶𝐵  −  𝑘2 ∙ 𝐶𝐴  ∙ 𝐶𝐵  −  𝑘3 ∙ 𝐶𝐵  ∙ 𝐶𝐶 −  𝑘4 ∙ 𝐶𝐵  

∙ 𝐶𝐷 

(11) 

 𝑑𝐶𝐶

𝑑𝑡
=  𝑘1 ∙ 𝐶𝐴  ∙ 𝐶𝐵  − 𝑘3 ∙ 𝐶𝐵  ∙ 𝐶𝐶 

(12) 

 𝑑𝐶𝐷

𝑑𝑡
=  𝑘2 ∙ 𝐶𝐴  ∙ 𝐶𝐵 − 𝑘4 ∙ 𝐶𝐵  ∙ 𝐶𝐷 

(13) 

 𝑑𝐶𝐸

𝑑𝑡
=  𝑘3 ∙ 𝐶𝐵  ∙ 𝐶𝐶 +  𝑘4 ∙ 𝐶𝐵  ∙ 𝐶𝐷 

(14) 

Where 𝐶𝐴= Concentration of 2,4-difluoronitrobenzene, (M) 

𝐶𝐵  = Concentration of morpholine (or pyrrolidine), (M) 

𝐶𝐶 = Concentration of ortho, (M) 

𝐶𝐷 = Concentration of para, (M) 

𝐶𝐸 = Concentration of bis, (M) 

t = time, (min) 

𝑘1 = Rate of reaction for the first step, (min-1) 

𝑘2 = Rate of reaction for the second step, (min-1) 

𝑘3 = Rate of reaction for the third step, (min-1) 

𝑘4 = Rate of reaction for the fourth step, (min-1) 

Using this, it was possible to build a suitable kinetic model to perform 

simulated experiments on and subsequently optimise using one of the 

previously mentioned algorithms for their different purposes. This system 
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proved to be an ideal example for simulation since the discrete variable 

optimisation would be performed on the same case study where differentiation 

of the solvent would suitably affect the regioselectivity outcome of the reaction.  

For the simulation of the SNAr reaction, only continuous variables were 

studied i.e., temperature, residence time, concentration of 2,4-

difluoronitrobenzene (2.1) and the equivalents of the pyrrolidine/morpholine 

(2.2) due to the publication of the kinetic data for only one of the solvents, with 

that being ethanol. Boundaries were set for the continuous variables such that, 

the upper and lower limits would fit the experimental system’s capabilities and 

would be selected to be the limits for the experimental study. Different 

objectives such as yield, productivity and E-factor were all explored for 

different parts of the simulated study, the yield of different products being the 

main objective for each study due to the nature of the regioselective outcome 

for the discrete variables in the future experimental study. The boundaries for 

the simulated optimisation are shown in Table 3.  

Table 3. Boundaries for continuous variables in the SNAr simulation with 

morpholine. 

  

In the initial simulation, SNOBFIT was selected as the algorithm of 

choice and the ortho (2.3) – product yield was optimised in an experimental 

run followed by the para (2.4) – product due to the nature of SNOBFIT being 

a single objective optimisation algorithm. Both sets of simulations were 

performed initially with the pyrrolidine kinetic dataset followed up by the 

morpholine dataset, which would allow for a direct comparison between the 

simulated and experimental optimisations. 

 Residence 

time (min) 

Temperature 

(℃) 

SM (2.1) 

concentration in 

reactor 

Equivalents of 

morpholine 

(2.2) 

Minimum 

bounds 

0.5 60 0.1 1 

Maximum 

bounds 

2 120 0.5 5 
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Figure 18. SNOBFIT simulation for the SNAr reaction with pyrrolidine with the 

ortho product selected as the objective. The colour bar for this graph 

represents the yield for the ortho product, with a range of 0-100%.  Where 

the ★ represents the optimum ortho yield.  

 

Figure 19. SNOBFIT simulation for the SNAr reaction with pyrrolidine with the 

para product selected as the objective. The colour bar for this graph 

represents the yield for the para product, with a range of 0-4%. Where 

the ★ represents the optimum para yield. 
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The results show that in the simulation the algorithm effectively explores 

the design space to find the global optimum value of 90% ortho (2.3) yield, 

which is represented by the square symbol in Figure 18. This initial dataset 

highlights the effectiveness of the SNOBFIT algorithm in identifying the global 

optimum in the optimisation space for these simulated studies. The conditions 

required to form the maximum ortho (2.3) yield, utilised low temperatures and 

equivalents to prevent overreaction from the ortho (2.3) to the bis (2.5) 

product. From this information, another simulation was performed using the 

model for the morpholine reactant to compare the outcome of the SNAr 

reaction between each nucleophilic species. The simulation of the morpholine 

species was especially important as it would be the nucleophile of choice 

when performing the solvent optimisation following the conditions reported by 

Schweidtmann et al.66  

 

Figure 20. SNOBFIT simulation for the SNAr reaction with morpholine where 

the ortho (2.3) yield is selected as the objective. Where the ★ 

represents the optimum ortho yield. 
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Figure 21. SNOBFIT simulation for the SNAr reaction with morpholine where 

the para (2.4) yield is selected as the objective. Where the ★ represents 

the optimum para yield. 

Interestingly, when morpholine is used in replacement of the pyrrolidine, 

it causes the maximum yield of the ortho product to decrease, where the 

maximum amount of ortho formed is 79.7% as highlighted in the red square 

of Figure 20. When performing the simulated optimisation on the para product, 

this decrease in ortho yield can be observed with an increase in the para yield 

from 4% with pyrrolidine up to 22% with morpholine, which led to further 

rationality for the selection of morpholine for the experimental studies. This 

change in reactivity can be linked to steric effects between the nitro group and 

the morpholine (bulkier than pyrrolidine) such that less ortho is formed. These 

results go on to justify the experimental observations of acetonitrile 

outperforming methanol when maximising the ortho product formation.  

Following the initial investigations, work commenced on performing a 

multi-objective simulated optimisation on the same case study to delve into 

the optimisation of multiple objectives for the SNAr reaction, an area that had 

not been extensively reviewed. Utilising the MATLAB genetic algorithm, 

31,000 iterations were performed to evaluate and optimise the two selected 

objectives. While productivity and overall yield were initially chosen as the 

objectives to maximise, the focus later shifted to studying the yields of the 
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ortho and para products to align with the ongoing experimental work (refer to 

Section 4.2.1). The simulated work utilised morpholine kinetic data, consistent 

with the species employed in the experimental solvent optimisation process, 

ensuring coherence between the simulation and experimental studies. 

 

Figure 22. Illustrates the results of a multi-objective optimisation approach 

using a genetic algorithm to optimise the SNAr reaction. The objectives 

of this optimisation were to maximise the yields of the ortho (2.3) and 

para (2.4) products from the reaction. 

 As anticipated, the simulation effectively highlighted the trade-offs 

between the formation of each of the regioisomers under study. The 

optimisation revealed that low temperatures were essential to maximise the 

yield of either the ortho or para products, emphasising the sensitivity of the 

SNAr reaction for overreaction to form the bis product due to temperature 

variations.  

 From the 31,000 data points generated, a total of 200 Pareto-optimal 

solutions populated the Pareto front. These solutions represent the optimal 

trade-offs between the two selected objectives and are visually distinguished 

by highlighting the points in red in Figure 22. The Pareto front provides 

valuable insights into the relationships and dependencies between the yields 
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of the ortho and para produces, aided in guiding further experimental design 

and optimisation strategies for the experimental solvent study.   

Performing these simulated optimisations using the experimental kinetic 

data gave a key insight into the effects that the continuous variables could 

have on the output of the reaction and explained some of the reactivity later 

observed in the experimental work for the ethanol solvent. This simulated work 

allowed for the refinement of the experimental process and provided key 

justification for the results observed with the ethanol solvent. Finally, it allowed 

for ‘experimental’ work to be continued to develop the project throughout the 

COVID-19 pandemic and provided key training and further enhancement of 

coding skills.  

2.5 Experimentally Optimised Results 

 Using the simulated optimisation provided key insight into the proposed 

SNAr solvent optimisation, although performed on only a singular solvent, it 

acted as a benchmark for the choice of the solvents being selected for the 

optimisation. As it is known in the literature, the solvent properties can 

significantly affect the regioselective outcome of the reaction.108,109,111 For this 

optimisation three common solvent polarity metrics were evaluated: (i) polarity 

index, which is a measure of a solvent’s ability to interact with various polar 

test solutes; (ii) dipole moment, which is calculated based on the product of 

the magnitude of separated charges and the distance between those charges; 

(iii) dielectric constant, which is a measure of a substance’s ability to insulate 

charges from one another, Table 4. Solvents were also selected based on 

these polarity attributes in addition to being able to provide a homogenous 

reaction mixture. 
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Table 4.  Chemical descriptor values of common solvent polarity metrics.112 

 

 

 

 

 

 

 

 

Due to the regioselective outcome of the reaction, and to further 

highlight the solvent effects on the objective outcomes, the yield of both the 

ortho (2.3) and para (2.4) regio-isomers were selected as the process metrics 

to be examined. Given that MVMOO is a minimisation algorithm, the negative 

response of both objectives was input to achieve objective maximisation, 

leading to the formulation of the optimisation equation [Eq (15)]. The 

continuous variables for the optimisation procedure were performed on four 

variables residence time (mins), starting material (2.1) concentration (M), 

pyrrolidine (2.2) equivalents and temperature (°C). 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 [−(𝑦𝑖𝑒𝑙𝑑𝑜𝑟𝑡ℎ𝑜), −(𝑦𝑖𝑒𝑙𝑑𝑝𝑎𝑟𝑎)] 
(15) 

Subject to:    

 𝑆𝑜𝑙𝑣𝑒𝑛𝑡 ∈ [𝑁𝑀𝑃, 𝐷𝑀𝐴𝑐, 𝐷𝑀𝐹, 𝑀𝑒𝐶𝑁, 𝐸𝑡𝑂𝐻]  

 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 ∈ [0.5, 2.0]  

 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝟐. 𝟏)  ∈ [0.05, 0.175]  

 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑠 (𝟐. 𝟐) ∈ [1, 5]  

 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ∈ [60, 120]  

To achieve switching of the discrete variable stock solution, a 7-port 6-

way switching valve was implemented with the feeds from each discrete 

variable stock solution taking positions 1-5. The final 6th slot was left free for a 

solvent flush between experiments, this would ensure that the outlet line from 

Solvent Polarity 

Indexa 

Dipole Moment Dielectric 

Constant 

NMP 6.7 4.09 32.20 

DMAc 6.5 3.72 37.78 

DMF 6.4 3.86 36.71 

MeCN 5.8 3.44 37.50 

EtOH 5.2 1.66 24.55 
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the switching valve would be cleaned between each iteration and minimise 

cross-contamination between discrete variables. For this SNAr case study, a 

precautionary mixture of DMSO and water (5% v/v water in DMSO) was used, 

as in preliminary exploration experiments, it had been noted that solid 

formation was occurring at higher temperatures when NMP was selected for 

the variable of choice. After further research, it highlighted that NMP had poor 

solubility of triethylamine salts, causing a build-up in the reactor.113 This led to 

the introduction of the DMSO/water washing solvent, where water was added 

to the solvent to ensure that the solution did not freeze overnight in the lab. In 

addition, the potential formation of these salts led to a reduction in the 2,4-

difluoronitrobenzene concentration that had been previously reported in the 

paper, to the concentration presented in [Eq(15)]. The finalised schematic 

which was used throughout the experimental optimisation of the SNAr reaction 

is provided in Figure 23. 
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Figure 23. Automated flow platform utilised within the solvent optimisation of 

the SNAr reaction, where ortho and para yields are selected as the 

objective for the optimisation. 



- 84 - 

Initialisation of the MVMOO algorithm began with a 5 sample LHC where 

each solvent was afforded 5 experiments resulting in an initial 25 experiments. 

The algorithm was allowed to run for a further 74 experimental iterations to 

effectively map out the Pareto front for the system. Of these experiments, a 

total of 20 of them were identified as non-dominated solutions which 

sufficiently highlighted the trade-off between the formation of the ortho-(2.3) 

and para-(2.4) regioisomers. In this case, the Pareto front can be observed to 

be broken into three sections, resulting from the different solvent effects being 

observed in the system, Figure 24. The optimal ortho-(2.3) yield was achieved 

by MeCN and corresponded to an 80% yield which related to a 10% para-(2.4) 

yield. Conversely, the optimal para-(2.4) yield was achieved by NMP and 

corresponded to a 48% yield which related to a 49% ortho-(2.3) yield.  

DMF was unique in providing a moderate compromise to the formation 

of both objectives under study to result in dominating the mid-section of the 

Pareto front. Despite the structural similarities between DMF and DMAc, it 

could be seen that DMAc gave a much higher selectivity towards para-(2.4) 

than its structural counterpart, this can be related to DMAc obtaining a higher 

polarity index which in turn aids the selectivity. At the top, for the highest 

yielding para results, NMP dominated in all experiments apart from one. On 

the other side of the Pareto front, although EtOH provides higher ortho-(2.3) 

selectivity, it suffers from forming significantly lower overall yields resulting in 

MeCN dominating this Pareto section. Additionally, it resulted in the MVMOO 

algorithm only suggesting a singular EtOH-based point after the initial LHC 

which can be seen to perform extremely poorly leading to the algorithm 

focussing on MeCN for this region. 
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Figure 24. Results of the five-parameter mixed variable optimisation on the 

SNAr reaction, where an initial 25 experiment LHC was conducted with a 

further 74 additional iterations identifying 20 non-dominated solutions. 

Solvent shapes represent: ● – DMF, ♦ – NMP, ■ – EtOH, + – MeCN, 

× – DMAc. 

It can be observed how the MVMOO algorithm was able to effectively 

map out the relative importance of the continuous variables combined with 

discrete variables across the Pareto front, Figure 25 and Figure 26. To 

maximise the ortho-(2.3) yield, when using MeCN it requires high residence 

times, high equivalents and temperatures whereas the concentration of 2,4-

difluoronitrobenzene (2.1) is a less important variable in this case. On the 

other hand, for NMP to achieve higher yielding para-(2.4) results, it could be 

achieved over a range of residence times, equivalents, concentrations, and 

temperatures indicating how strong the solvent effects are for these results.  

Similarly, to MeCN, when observing the results from DMF, to achieve 

a moderate compromise between objectives, it required higher equivalents, 

temperatures, and concentration. The contrasting results for each discrete 

variable highlight the importance of these types of workflows, as these 
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observations are contradictory to the assumptions of traditional optimisation 

procedures. In these types of methodologies, the continuous variables are 

optimised independently of the discrete variables, where it would be wrongly 

assumed that the interactions between the discrete and continuous 

parameters are the same throughout for each discrete variable under study. 

The MVMOO algorithm was able to successfully optimise the mixed variables 

simultaneously, providing a greater understanding of the interactions of the 

variables to explore the trade-off of the objectives. Additionally, traditional 

methods for optimising continuous and discrete variables sequentially can 

lead to elongated timeframes for the full study of the chemical systems, 

requiring material and time consumption to be increased. 
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Figure 25. Parallel coordinate plots for NMP and DMAc for the Pareto optimal 

solutions of each discrete variable highlighting the required interactions 

between the four continuous variables for each non-dominated solution. 

The error for % yield of both ortho and para was calculated using 10 

repeat experiments from the optimisation, where an error of ±4% was 

observed for ortho % yields and an error of ±3% was observed for para 

yields. 
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Figure 26. Parallel coordinate plots for DMF an MeCN for each Pareto 

optimal solution produced by these solvents. The error for % yield of 

both ortho and para was calculated using 10 repeat experiments from 

the optimisation, where an error of ±4% was observed for ortho % 

yields and an error of ±3% was observed for para yields. 
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Employing MVMOO enabled this optimisation to be completed in only 

18 hours, requiring no human intervention, thus highlighting the increased 

efficiency of this process when compared to iterative HTS methodologies or 

traditional sequential optimisations for each solvent.99 Furthermore, 

commissioning MVMOO for the simultaneous optimisation of mixed variables, 

allows for real-time monitoring of the hypervolume as the experiments 

proceed. This acted as a key part of information for the stopping criteria of the 

experiment, as it was decided that once the optimisation had reached a 

minimum of 60 experiments, the hypervolume would be monitored until it 

reached a plateau that lasted for a duration of 5 experiments.  

 

Figure 27. Hypervolume plot for the SNAr reaction that was monitored 

throughout the optimisation procedure. After 60 experiments monitoring 

enabled the termination at 100 experiments once a plateau was 

achieved. 

As can be seen in Figure 27, after 60 experiments, there is a gradual 

gain in hypervolume as the optimisation proceeded until around 90 

experiments where it can be noted that a plateau was reached, leading to the 

finishing of the optimisation.  Doing it in this manner, allowed for the 

conservation of material and time, in addition to gaining a further 9 Pareto front 

points.  
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 Using the dataset gained from this optimisation, Jamie Manson went 

on to complete some key chemical descriptor analysis to observe the 

underlying solvent polarity metric effects on the regioselective outcome. 

Herein, the key information related to these studies will be reported, however, 

it should be noted that all simulated data and graphical representations were 

completed by Jamie Manson. Overall, from the chemical descriptor analysis, 

it can be observed that there is a general bias towards the formation of the 

ortho-(2.3) regioisomer, which is likely related to the hydrogen bonding 

between the nucleophile and the nitro group. The models deduced that 

increasing the para-(2.4) regioisomer yields was sufficiently correlated to the 

increase of the polarity index of the solvent, Figure 28. Furthermore, the 

studies contributed to further insights into the continuous variables' 

relationship with forming each regioisomer. These results provided further 

justification for the hypothesised relationships that had been identified by the 

MVMOO algorithm on the chemical system throughout the optimisation.  

 

Figure 28. Parallel coordinates plot for the simulated Pareto front using 

polarity index as an input continuous variable. Residence time was 

maintained at 2 minutes and thus excluded from the figure. Simulation 

and figures were produced by Jamie Manson. 

Conversely, during the chemical descriptor analysis, when selecting 

either the dipole moment or dielectric constant as inputs, it failed to effectively 
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illustrate the observed relationship. When inputting the dielectric constant, it 

predicted DMAc and MeCN to perform in a similar manner, which is contrary 

to the experimental results that are observed to be the complete opposite. The 

use of these studies can significantly highlight an important area of algorithm 

application with additional data extraction for potential use in process 

optimisation and exploring chemical spaces. It enables the ability to suggest 

ranges of conditions that had not been performed within the experimental 

procedure and explore further relationships. However, it should be noted that 

this type of methodology was only completed on a small number of solvents 

to identify the optimal ones, where a much greater dataset would be required 

to examine the key solvent descriptors in further detail, due to the vast other 

solvent properties that could be in effect. Additionally, to be able to utilise 

solvents in the suggested polarity range from the simulation, it would require 

solubility studies to be performed to optimisations, in which there is no 

consideration performed by the model.  

2.6 Conclusion 

The combination of automated flow processing with intelligent algorithms 

represents a key area of research required to improve process efficiency and 

reduce the material consumption of optimisations. Consideration of both 

discrete and continuous variables in a simultaneous manner remains a 

relatively unexplored area, where traditional workflows employ sequential 

optimisations to incompletely explore the interactions. Early-stage reaction 

development and screening is a key area where the application for 

simultaneous optimisation can have a significant effect.  

In this chapter, the work is based on employing a mixed variable 

optimisation algorithm onto an automated flow platform, studying the solvent 

effects in combination with continuous variables on the outcomes of the SNAr 

reaction. To further study the regioselective effects of the solvents, the work 

presented utilised both the desired ortho- and para-yields as the objectives to 

be studied in a multi-objective format. The workflow used a four continuous 

variable system in combination with 5 solvents as the discrete variables to 

elucidate the variable-variable interactions required to explore the trade-off 
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between the objectives. Before this optimisation, using published kinetic data 

for the system, simulations for one of the solvents (EtOH) were completed to 

increase prior knowledge of the system and allow for fine-tuning of the 

continuous variables to better suit the experimental optimisation. Furthermore, 

these initial studies provided support for the observation that MeCN 

outperformed EtOH in producing non-dominated solutions with respect to 

ortho yields within the allotted experiments. Finally, chemical descriptor 

analysis by Jamie Manson using the optimisation data highlighted the 

significant importance of the polarity index as a chemical descriptor on the 

regioselective outcome of the reaction.  

This work represents the first completed studies of exploring multi-

objectives for mixed variables on a continuous flow chemical system, offering 

enhanced efficiency and identification of key interactions over traditional 

sequential optimisation workflows. In addition, performing these studies on an 

automated flow system offers the additional benefits of access to higher 

temperatures and hazardous intermediates when compared to mixed variable 

HTS batch systems. The enhanced efficiency of these types of optimisations 

lends itself towards early-stage reaction development, where there is a desire 

to maximise information gained and a reduction in material and time 

consumption.  
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Chapter 3. Exploring API Synthesis: A Mixed Variable 

Optimisation Approach of Catalytic Systems  
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3.1  Introduction 

Palladium-catalysed cross-coupling reactions have transformed the field 

of organic chemistry and the pharmaceutical industry alike, providing 

enhanced access to the synthesis of natural complex structures.114,115 Over 

the years, these types of catalysed reactions have received extensive 

research with great success in developing a vast scope of possible reactions 

utilising a substantial number of different variants of catalysts, ligands, and 

additives to make the reactions possible. However, these types of reactions 

suffer from the catalyst itself, due to palladium being a precious metal, it can 

lead to staggering prices for the catalysts, requiring research of other metal 

catalysts such as nickel and copper to act as replacements.116 Furthermore, 

the desire to reduce catalytic consumption has led to substantial studies and 

significant interest from the pharmaceutical industry in the adoption of better 

optimising these chemical systems as well as the recycling of the palladium 

catalysts.  

Within the ever-growing pharmaceutical landscape, the impact and 

effect the chemical industry is having on the environment is an increasing 

concern, leading to companies such as GSK in Singapore and Eli Lilly 

adopting greener techniques for chemical synthesis.117,118 The 

pharmaceutical industry is no exception, with many attempting to minimise the 

effect it is having, whether adopting new waste minimisation strategies or 

recycling solvents to reduce their impact. The implementation of new 

technologies such as continuous flow processing has enabled the adoption of 

greener methods for API synthesis within the pharmaceutical industry. 

Integration of continuous flow manufacturing, combined with other alternative 

chemical methodologies e.g., photo flow chemistry, and electro flow chemistry 

can facilitate access to new chemistry in flow processes at novel research 

level but also large-scale production.119,120 All of which provide the added 

benefits of flow processes over traditional batch methodologies, further 

enhancing the green aspect of these systems. Furthermore, the adoption of 

machine learning algorithms to optimise these chemical systems can further 

aid in the green aspects of the processes, helping enhance the energy 

efficiency and preventing any wasted reactions or materials.20  



- 95 - 

 

 

Figure 29. 12 principles of green chemistry with highlighted areas addressed 

by these types of mixed variable optimisations presented.  

Green chemistry and engineering are two highly important fields for 

addressing and responding to environmental and sustainability challenges 

stemming from the chemical industry. The 12 principles of green chemistry 

were developed in 1991 by Paul Anastas and John Warner to provide a useful 

guideline for other industries to reduce the risk of their processes as well as 

minimise the environmental footprint.121,122 The introduction of these principles 

in addition to the ever-increasing concern of the impact that the chemical 

industry has on the environment, has led to many modifying traditional 

techniques to better fit these guidelines with numerous reviews on the benefits 

of Green Chemistry being published.122–127 This approach of mixed variable 

optimisations of catalytic reactions addresses the 12 principles by providing 

routes to less hazardous chemical synthesis and safer chemistry to reduce 

accidents coming from performing them under flow conditions. All whilst 

enhancing energy efficiency and reducing waste coming from less wasted 

experiments required to complete a successful optimisation when compared 

to other traditional sequential methods.128 

The inclusion of catalytic systems in autonomous self-optimisation 

processes has been explored for both single-objective and multi-objective 
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optimisations where all the literature solely focuses on the manipulation of 

continuous variables. The main techniques for the adoption of discrete 

variables within these catalytic optimisations have come through HTE to 

screen through vast libraries.129–131 As previously highlighted in Chapter 2, the 

HTE approach to optimisation of chemical systems results in incomplete 

process understanding due to the neglect of the potential interactions between 

the continuous and discrete variables. Thus, becoming an increasing 

unattractive approach for these types of optimisations. This holds especially 

true for case studies involving catalytic transformations, where the complexity 

of the interactions is significantly increased due to the numerous combinations 

of catalytic species and ligands available. For example, the sequential 

optimisation of discrete and continuous variables would mitigate the 

observation of the effects of the temperature of the reaction on the activity of 

different catalysts. This heightened complexity highlights the necessity for 

simultaneous optimisation of mixed variable systems on catalytic systems. 

Jensen et al. explored a series of mixed variable transition metal catalysed 

cross-coupling reactions employing an optimal DoE based algorithm to 

conduct and direct the optimisation.74,79,87. Notably the authors studied a 

palladium catalysed Suzuki-Miyaura cross-coupling reaction employing a 

micro-fluidic system to minimise consumption of materials whilst operating 

parallel reactions throughout the optimisation.  

These approaches utilised an adaptive response surface methodology 

that iteratively eliminated catalytic species from the optimisation. Whilst these 

processes presented the efficient optimisation of mixed variable chemical 

systems on a continuous flow platform, employing a black-box algorithm, they 

were limited to maximise a single-objective. This type of methodology does 

not provide understanding into the trade-off (Pareto front) between conflicting 

performance criteria, which is critical in the development of feasible industrial 

processes. Furthermore, limiting the system to only single-objectives confines 

the variables interactions observed, as it only studies the relationships 

required for optimisation of a single metric. 
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The case study proposed for this chapter aims to address the identified 

limitations of previous optimisation in catalytic chemical reactions whilst 

incorporating mixed-variables into the system for the study of multiple 

objectives. Inclusion of mixed-variables for the evaluation and optimisation of 

catalytic systems also aids in increasing the complexity of the chemical 

reaction present, further extending the value of these types of optimisation 

processes. This optimisation focussed on maximising the productivity of the 

reaction outcome whilst minimising the wastage of materials, achieved 

through maximisation of the reaction mass efficiency. Selection of the discrete 

variable was made such that the variable of choice would have a significant 

impact on the catalytic cycle itself and was decided that the ligand choice 

would be the best fit. This enabled comparisons between high and low-cost 

ligands which would add an extra consideration of the price to productivity 

outcomes for such ligands. It is important to highlight that the catalytic system 

utilised in this study is homogeneous, offering a well-defined environment for 

investigating the interactions and optimisation of reaction parameters. This 

systematic approach facilitates the exploration of mutli-objective optimisations 

and allows for the study of factors related to the catalytic species within the 

Figure 30. (A) Schematic for the Suzuki-Miyaura coupling reaction optimised 

with  respect to mixed variables on a micro-fluidic platform. 

(B) Flow over time transformation of the reaction slug within microfluidic 

platform that was utilised within the optimisation process. 



- 98 - 

solution that may influence the objective metrics. Overall, this enhances the 

understanding of the underlying mechanisms influencing the reaction 

pathways.  

3.2 Sonogashira Cross-Coupling Reaction 

The Sonogashira cross-coupling reaction is widely used in organic 

synthesis for the construction of carbon-carbon bonds between aryl or vinyl 

halides and terminal alkynes, having been developed in 1975 by Kenkichi 

Sonogashira. The reaction utilises an active Pd(0) catalyst which can be 

generated in-situ via ligand dissociated or reduced from a precatalytic Pd(II) 

species. Within the reaction cycle, the process beings with an oxidative 

addition of the aryl/vinyl halide (R1-X) to the Pd(0). It is important to highlight 

that the rate of addition is accelerated when dealing with substrates featuring 

lower electron density on the C-X bond, following the general trend towards 

oxidative addition rates: vinyl iodide ≥ vinyl triflate > vinyl bromide > vinyl 

chloride > aryl iodide > aryl triflate ≥ aryl bromide >> aryl chloride.132 At the 

same time, the Cu(I) salt undergoes a side catalytic cycle where the terminal 

alkyne coordinates, leading to the formation of a π-alkyne-copper complex. 

This coordination step serves to enhance the reactivity of the acetylenic 

proton, facilitating its deprotonation in the presence of a base, resulting in the 

generation of a copper acetylide. Subsequently, through a transmetallation 

step, the copper acetylide undergoes conversion into the Pd(II) complex to 

yield the palladium acetylide, regenerating the Cu(I) salt. Finally, following a 

cis/trans isomerisation process, the reaction is completed with a reductive 

elimination step. This yields the desired aryl/vinyl alkyne and simultaneously 

regenerates the active Pd(0) catalyst.133  
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Scheme 8. Catalytic cycle for the Sonogashira cross-coupling reaction 

between an aryl or vinyl halide and terminal alkyne, facilitated by a 

palladium catalyst and copper (I) co-catalyst in a side catalytic cycle. 

The Sonogashira cross-coupling reaction remains one of the most 

popular reactions for the formation of a sp2-hybridised carbon atom with 

another sp-hybridised carbon atom. The utilisation of these produced 

arylalkynes holds significant importance in organic synthesis, particularly in 

the creating of natural products with various synthetic pathways involving the 

Sonogashira coupling. Moreover, the arylalkyne framework plays a critical role 

in the development of APIs within the pharmaceutical industry. Furthermore, 

the increased attention on the creation of aryl/vinyl alkynes has stimulated in-

depth mechanistic studies aimed at enhancing the understanding of the 

reaction pathway and innovating novel catalytic approaches.134,135 Utilising the 

Sonogashira cross-coupling to form these bonds offers inherent benefits, 

including its high tolerance of different reaction conditions and wide range of 

functional groups available. Consequently, the Sonogashira coupling reaction 

has emerged as an essential synthetic technique within the chemical industry. 

Numerous factors can impact the performance of catalytic reactions, 

including sterics, solvent, ligand, heteroatoms, base, temperature and metal 
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source. This often necessitates significant optimisation for different substrate 

pairs. The Jensen group previously optimised Suzuki-Miyaura cross-coupling 

reactions performed on a droplet-flow microfluidic system utilising a mixed 

integer nonlinear programming (MINLP) optimisation approach. However, this 

method had limitations, focusing only on a single objective, and limiting overall 

process understanding.87,102 Therefore, an efficient experimental approach for 

multi-objective optimisation of mixed variable catalytic systems on a substrate-

by-substrate basis was sought after. Consequently, a pharmaceutically 

relevant Sonogashira cross-coupling reaction was chosen for investigation 

using the newly developed MVMOO self-optimisation approach.136 This study 

focussed on the Sonogashira cross-coupling between aryl bromide 3.4 and 

terminal alkyne 3.5 to produce aryl alkyne 3.6 (Scheme 9). 

 

Scheme 9. Sonogashira cross-coupling reaction between aryl bromide 3.4 

and terminal alkyne 3.5 to form aryl alkyne 3.6. Includes optimisation 

parameters. 

 Modifications were made to the original synthesis of a TRPV1 receptor 

antagonist, primarily used for pain management and treatment of chronic pain 

illnesses.137–139 These adjustments were implemented to optimise the process 

using the automated mixed variable flow platform. These changes include: (i) 

substituting the aryl chloride with the corresponding aryl bromide to enhance 

the reaction rate, (ii) replacing the Pd2dba3 with the more stable PdOAc2 

precatalyst, and (iii) using a greener homogenous reaction mixture consisting 

of PhMe:MeCN (2:1) and pyrrolidine base instead of NEt3. To ensure the 

stability of the metal-ligand complex, the prepared solution reservoirs were 

stored under nitrogen throughout the optimisation process.  
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3.3 Automated Flow Platform and Optimisation Results 

The flow process operates through a custom written automated 

MATLAB script that has control over all of the equipment on the setup and the 

capabilities to monitor the performance of each piece. When adapting the 

setup for a new case study, it requires editing of the MATLAB optimisation 

script, new custom written conditions generation and response functions 

scripts in order to ensure the transfer of data to the algorithm is complete. 

However, with all the changes, the general operation of the automated script 

remains the same with separate timers throughout the optimisation which can 

act as indications where the script is erroring out if so. Throughout the duration 

of the analysis timer, the reagent pump flow rates are set to dead-time 

conditions to preserve material consumption. The switching valve is switched 

to a position containing only solvent to flush out any potential discrete variable 

remaining within the tubing line. Additionally, the solvent pump flow rate is set 

to 1 mL min-1 to ensure any residual components from previous iterations are 

flushed out. The addition of a 5-minute wait time once the pumps and 

switching valves had been set to their desired values ensured reagents would 

be at the desired concentrations and flushed through the system. The general 

operation of the script is shown below in Figure 31.  
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Figure 31. Flow chart for the MVMOO self-optimisation procedure with 

inclusion of details for the timers throughout the process. 

Initial investigations in the optimisation began with determining a suitable 

set of process objectives to be optimised for, to do this a set of 12 initial 

experiments were completed on the flow platform. Using the data gathered 

from the discovery reactions, different process metrics could be calculated 

using the HPLC data, with a focus on finding a suitable economic metric. To 

determine whether they were a good fit, the metrics were all plotted against 

one another to ensure that a trade-off could be achieved, as shown in Figure 

32. Initially, yield, cost and turn over frequency (TOF) were tested due to the 

interest in finding the best performing ligand for the associated cost of the 

reaction. This would have direct applications to the pharmaceutical industry 

where there is a critical desire to minimise associated costs per experiment 

and maximise the productivity of the reaction. To further explore the effects of 

the ligand on these initial studies, the ligand loading % was included to explore 

outcomes on the TOF and associated costs per experiment.  
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Figure 32. Exploration of different process metric outcomes using a 12 initial 

reaction data set, evaluating productivity metrics. 

 However, after later investigations, it was decided to include an industry 

relevant productivity metric and environmental process metric for the 

optimisation. Selection of an environmental metric was decided such that 

these processes would align and be applicable for enhancing the overall green 

aspect of these workflows. The productivity (STY) and an environmental 

(RME) metric both being selected as the objectives to identify viable operating 

conditions. RME is the percentage of actual mass of the desired product 

formed to the mass of all the reactants used, considering both atom economy 

and product yield.140 Considering the pivotal role of ligands in catalysed 

reactions, the optimisation process incorporated the selection of a phosphine 

ligand as a discrete variable, alongside residence time, equivalents of the 

terminal alkyne (3.5) and temperature.  

 STY 𝑚𝑎𝑠𝑠𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑉𝑜𝑙𝑢𝑚𝑒 × 𝑡𝑟𝑒𝑠
 

(16) 

RME 𝑀𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝟑.𝟔 × 𝑌𝑖𝑒𝑙𝑑

𝑀𝑊𝟑.𝟒 + (𝑀𝑊𝟑.𝟓 × 𝑒𝑞𝑢𝑖𝑣𝟑.𝟓)
 (17) 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 [−(𝑅𝑀𝐸), −(𝑆𝑇𝑌)] 
(18) 
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Subject to:    

 𝐿𝑖𝑔𝑎𝑛𝑑 ∈ [𝐷𝑎𝑣𝑒𝑃ℎ𝑜𝑠, 𝑋𝑃ℎ𝑜𝑠, 𝐶𝑦𝐽𝑜ℎ𝑛𝑃ℎ𝑜𝑠, 𝑆𝑃ℎ𝑜𝑠, 𝑇𝑃𝑃]  

 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 ∈ [1.0, 10.0]  

 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑠 (𝟑. 𝟓) ∈ [1, 3]  

 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ∈ [60, 140]  

To ensure comprehensive optimisation, a diverse set of monodentate 

phosphine ligands were chosen for investigation. These ligands were 

preferred due to their excellent activity in palladium-catalysed cross-coupling 

reactions, good solubility in organic solvents, and easy accessibility in the 

commercial market. Moreover, ligands with varying cone angles were included 

in the selection to investigate the impact of steric bulk on the reaction’s 

outcome. Additionally, ligands with identical bonding stoichiometry to the 

catalytic centre were selected to ensure a valid and comprehensive 

comparison between them was achieved. The palladium catalyst chosen was 

related to this cone angle, where sterically bulky ligands have the capacity to 

induce the dissociation of the active palladium catalyst from the inactive 

resting state. As a result, these ligands have the potential to facilitate the 

formation of palladium complexes from palladium species that are weakly 

coordinated, such as Pd(OAc)2 or Pd2(dba)3.  

When comparing the two potential Pd catalysts, Pd2(dba)3 can be 

characterised by the sterically bulky trans,trans-dibenzylidene acetone (dba) 

ligands, which provides steric protection to the Pd centre. This steric 

protection restricts the potential for ligand exchange, as the presence of these 

bulky dba ligands restricts the approach, thereby reducing the exchange 

rates.141 Additionally, the dba ligands are electron-rich, resulting in strong 

coordination to the Pd centre and enhancing the stability of the complex, 

further reducing the rate of ligand exchange compared to its acetate 

counterpart. Both combined can lead to the requirement for long stirring times 

and heating required to achieve full ligand exchange, but in addition, the non-

innocence of the dba ligand can lead to the presence of Pd(dbax)Ly type 

complexes, which is highly undesirable for this optimisation.142 In contrast, 



- 105 - 

Pd(OAc)2 features acetate ligands that are often more susceptible to 

displacement by other ligands. Consequently, presenting Pd(OAc)2 as the 

preferred catalyst for these investigations, where full ligand exchange is 

crucial to form the desired Pd-L2 discrete variable complexes. The inclusion 

of triphenylphosphine as selection for the final ligand  provided a cheaper 

alternative ligand of choice when compared to the remaining more costly 

Buchwald phosphines. By deciding this, it would allow for comparison 

between the associated cost and performance of each ligand within the 

optimisation. This would further provide useful insight for the pharmaceutical 

industry where price per experiment vs. outcome performances are crucial for 

economic analysis.  Additionally, to the varying steric bulk, the Buckwald 

phosphines were chosen to include ligands with a range of electron density.  
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Figure 33. Schematic used for the optimisation of the Sonogashira cross-

coupling case study. Where L1 is DavePhos, L2 is XPhos, L3 is 

CyJohnPhos, L4 is SPhos and L5 is TPP. The catalyst is Pd(OAc)2, CuI 

and pyrrolodine base were included in each of these stock solutions. 

Additionally, R6 represents 2-bromo-4-(trifluoromethyl) benzonitrile 

(3.4), I.S is the internal standard 1,3,5-trifluoromethoxybenzene and R7 

represents 3,3-dimethylbutyne (3.5). 

The MVMOO algorithm was initialised with 25 experiments, employing 

five LHC experiments per ligand, and then running a further 44 sequential 

iterations. Among these experiments, 12 were identified as non-dominated 

solutions, illustrating the trade-off between STY and RME as shown in Figure 

34. The optimal STY achieved was 322.0 kg m-3 h-1, accompanying a 

corresponding RME value of 51.5. On the other hand, the optimal RME 

obtained was 68.2, with a corresponding STY of 32.31 kg m-3 h-1.  In this case, 

the Pareto front reveals a distinct and steep linear trade-off, enabling a 

significant improvement in STY and only a minor detrimental effect on RME. 

Remarkably, the optimum RME conditions achieved an outstanding in-situ 

yield of 90%, as shown in Figure 35. This highlights the applicability of 
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optimising green metrics such as RME within these processes, where the 

optimum RME relates to less waste produced within the reaction due to higher 

efficiency, whilst still producing excellent yields within the system. 

 

Figure 34. Results of the four-parameter mixed variable multi-objective 

optimisation of the Sonogashira cross-coupling reaction. An initial 25 

experiments were completed from LHC sampling with an additional 44 

iterations direct by MVMOO, 12 of which formed a Pareto front 

highlighting the trade-off in STY and RME. Ligand shapes represent: 

● – DavePhos, ♦ – XPhos, ■ – CyJohnPhos, × – SPhos, + – TPP. 
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Figure 35. Plot of the calculated yield from RME values vs experiment 

number, highlighting the outstanding yield achieved of 90% using the 

conditions corresponding to the optimum RME using TPP. Ligand 

shapes represent: ● – DavePhos, ♦ – XPhos, ■ – CyJohnPhos, 

× – SPhos, + – TPP. 

 The initial LHC results fell within the objective space region 

characterised by a range of RME with low STYs. Notably, triphenylphosphine 

consistently outperformed all other ligands in terms of both STY and RME in 

each LHC experiment. As a result of this, the MVMOO algorithm 

predominantly recommended triphenylphosphine-based experiments for 

subsequent iterations. Generally, Sonogashira cross coupling reactions 

involving deactivated aryl halides favour the use of sterically demanding and 

electron-rich phosphine ligands. The cone angle serves as a measure of the 

steric bulk of ligands, and the monodentate phosphine ligands used in this 

study followed the trend: TPP < DavePhos, XPhos < CyJohnPhos < SPhos 

according to literature values. Therefore, the optimisation results challenge 

conventional chemical understanding, demonstrating the importance of 

efficient experimental optimisation, especially in complex reactions involving 

novel substrate pairs where interactions are not fully understood or easily 

predictable.  
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Despite the initial LHC focussing on regions of low STY, the MVMOO 

algorithm successfully identified new regions in the objective space 

corresponding to more productive regions which may have been missed by 

other experimental techniques, Figure 36. This underlines the efficacy of the 

MVMOO approach for exploring and discovering better reaction conditions to 

Figure 36. Results from the Sonogashira coupling optimisation with individual 

process metrics against experiment number to highlight metrics 

enhancements over the optimisation process. Where ■ – Initial, 

■ – Algorithm and ■ – Optimum. 
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optimise process metrics. The achievement of the optimum RME point within 

the initial space filling LHC, facilitated the MVMOO algorithm to improve on 

the STYs for the primary iterations. These improvements  were highlighted by 

the identification of the optimum STY within the first 10 iterations increasing 

initial highest performing STY of 95 kg m-3 h-1 up to 322 kg m-3 h-1. Upon 

identification of the optimum STY, the algorithm then effectively explored the 

trade-off between the objectives, subsequently mapping out a further 10 

Pareto front points within just 34 experiments. The late iterations within the 

optimisation highlight the reproducibility to achieve high RME results. The 

MVMOO algorithm showcased its impressive exploratory capabilities by 

conducting a limited number of experiments using SPhos as the ligand, which 

was identified as the second most promising ligand in the system during the 

initial LHC. Notably, the highest achievable STY during the optimisation was 

achieved when utilising SPhos at low residence times, high equivalents, and 

high temperatures, Figure 37. 

 

Figure 37. Parallel coordinates plot showing the interactions between the 

variables for the Pareto optimal solution for the STY that was achieved 

by SPhos. 
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 Subsequently, the MVMOO algorithm proceeded to directly compare 

these continuous conditions utilised on SPhos while employing 

triphenylphosphine, which resulted in a less favourable STY and RME as a 

consequence of lower yield. In contrast, triphenylphosphine exhibited a 

preference for employing low to moderate equivalents of alkyne (3.5), 

combined with high residence times and low temperatures to achieve higher 

RMEs. Alternatively, it favoured shorter residence times and higher 

temperatures to maximise STYs, and in contrast to the high SPhos related 

STY, TPP utilised a range of low-moderate equivalents to achieve this, Figure 

38. 

 

Figure 38. Parallel coordinate plot highlighting the interactions between the 

variables for each non-dominated solution of the Sonogashira 

optimisation. Each line represents a single Pareto optimal solution for 

TPP ligand points. Line colour is scaled in relation to STY weighting to 

aid in visualisation (high STY/low RME = –, low STY/high RME = –). 
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Figure 39. 3-D plot for the Pareto front solutions with respect to RME, where 

● represents TPP based solutions and ■ represents the singular SPhos 

solution. 

Similar to the SNAr case study (Chapter 2), it became evident that the 

interactions between the continuous variables and each ligand were 

significantly distinct, highlighting simultaneous optimisation of mixed variables 

as a superior approach for identifying the true optima compared to the 

conventional sequential optimisation method. This capability to fine-tune 

complex mixed-variable catalytic reactions for diverse substrate pairs not only 

opens up exciting prospects for exploring new regions of chemical space and 

novel reactions but also remains viable without the requirement for 

excessively labour-intensive experimentation in the manor which traditional 

sequential optimisations inherently require. In this study presented, the 

MVMOO self-optimisation methodology that was developed exhibited the 

capability to autonomously optimise a four parameter, Sonogashira cross-

coupling reaction, including consideration of both discrete and continuous 

variables. This optimisation was achieved with respect to two objectives with 

remarkable efficiency, requiring only 69 experiments conducted over the span 

of 22 hours. Notably, there was no human intervention required beyond the 

initial preparation of reagent stock solutions.  
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Figure 40. 3-D plot for the Pareto front solutions with respect to STY, where 

● represents TPP based solutions and ■ represents the singular SPhos 

solution. 

Incorporation of real-time monitoring of the hypervolume progression 

after 60 experiments allowed for the optimisation to be terminated once a 

relative plateau of 5 experiments was reached, Figure 41. Implementing this 

monitoring and predefined stopping criterion ensured a balanced trade-off 

between the information gained in the optimisation and minimisation of time 

and material consumption. This trade-off is particularly crucial for catalytic 

optimisations with high associated costs linked to expensive catalysts and 

ligands. Performing the optimisation with the criteria in place, facilitated the 

identification of a further 3 Pareto optimal solutions after the 60th iteration 

leading to the increase in hypervolume, and information gained that can 

observed in this region.  
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Figure 41. Calculated hypervolume vs experiment number for the 

Sonogashira optimisation that was used to determine the stopping 

criteria for this workflow. 

The efficiency and effectiveness demonstrated in this autonomous 

optimisation workflow is comparable to previously reported experimental 

optimisations of single objective mixed variable systems and multi-objective 

continuous variable studies.66,87 Therefore, it is anticipated that this type of 

approach for complex catalytic optimisations will prove effective in expanding 

the range of available tools for synthetic and process chemistry alike.  

3.4 Conclusion 

The utilisation of self-optimisation algorithms for the optimisation of 

mixed-variable catalytic systems has been previously developed on several 

varying metal catalysed reactions.74,79,87 However, these studies solely 

focussed on single-objective approaches. This type of workflow eliminates the 

potential to provide understanding into the trade-off between conflicting 

performance metric, whether environmental or productivity. Insight into this 



- 115 - 

trade-off between objectives is crucial for the development of feasible 

industrial processes, which aim to balance different performance criteria. 

Consequently, this leaves the necessity to develop multi-objective mixed-

variable optimisation approaches for the consideration of catalytic systems. In 

this work, an automated multi-objective optimisation was explored for the 

Sonogashira cross-coupling reaction, with the inclusion of continuous and 

discrete variables in the system. Ligand selection as the discrete variable was 

based on the crucial role they play in catalysed reactions. Various 

monodentate phosphine ligands with a range of cone angles were selected 

owing to their prominent activity in palladium catalysed reactions in addition 

to good organic solvent solubility and commercial accessibility. 

The optimisation aimed to explore and maximise a productivity metric 

(STY) and environmental objective (RME) to gain insight into the trade-off 

between the conflicting criteria. Inclusion of both types, aligned with the 

evolving pharmaceutical industry interests, in which the design of 

environmentally greener synthesis is desired without significant reduction to 

the productivity of the reaction. A pharmaceutically relevant Sonogashira 

cross-coupling reaction was selected, where the product was an intermediate 

for the synthesis of TRPV1 receptor antagonists, used for the management 

and treatment of pain. The MVMOO algorithm successfully explored the 

Pareto front for the conflicting objectives in 69 experiments, of which 12 were 

identified as non-dominated solutions, over a 22-hour period. An optimum 

STY of 322.0 kg m-3 h-1 was achieved utilising SPhos in conjunction with low 

residence times, high temperatures and equivalents of alkyne. Conversely, an 

optimum RME of 68.2 was achieved using TPP alongside high residence 

times, low temperatures, and low-moderate equivalents of alkyne. 

Remarkably, this optimum RME result corresponded to a 90% yield, 

highlighting the feasibility of achieving high RME whilst maintaining high 

production yields. Despite localisation of experiments on low STYs during the 

initial LHC, the MVMOO algorithm effectively identified new regions in the 

objective space, representing more productive regions. Identification of TPP 

as the overall best performing ligand for maximising the RME and exploring 

trade-off, except in the case of optimum STY, challenges conventional 

chemical understanding where the least sterically demanding ligand was 
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identified to have the best performance. Therefore, demonstrating the 

importance of efficient multi-objective experimental optimisation, where in a 

single-objective optimisation of STY, these observations would not have been 

identified. The significance of  these multi-objective methodologies is 

especially true in cases featuring complex reactions including novel substrate 

pairs, where the interactions are not fully comprehended or readily 

predictable. 
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Chapter 4. Enhancing Telescoped Chemical Reactions 

through Mixed Variable Optimisation 
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4.1  Introduction 

In the ever-ongoing objective for more streamlined and environmentally 

friendly chemical processes, the field of synthesis has undergone a notable 

transformation, leading to the emergence of sequential synthesis in the 

chemical industry.143 This emergence has been heightened by the integration 

of continuous flow processes in the wider chemical industry which boosts 

efficiency over single-pot synthesis and allows access to the efficient 

synthesis of new chemical scaffolds.12,144 Performing sequential synthesis, 

enables the simplification of chemical synthesis, a reduction in waste and time 

required by eliminating individual work-up and purification steps between 

reactions, providing suitable analytical techniques have been developed and 

optimised for these processes. Traditional chemical synthesis requires 

discrete separate steps for all reactions involved in the full synthesis, with 

each step requiring individual optimisation and purification processes.145 

Mitigating these steps and combining them into a single process, bypasses 

the extended time requirements, heightened energy consumption and 

substantial waste generation.118 Telescoped synthesis challenges these 

processes by performing numerous sequential reactions over a continuous 

process, increasing the overall efficiency, reducing the time requirements, and 

mitigating isolation, and purification steps. Elimination of these steps 

significantly reduces the solvent requirements, where solvents for the 

production of pharmaceuticals are estimated to account for 50% of 

greenhouse gas emissions.118,146 

The pharmaceutical industry can significantly benefit from the inclusion 

of telescoped synthesis where it can be observed that it can boost the speed 

and reduce the cost at which complex drug molecules can be synthesised and 

developed.147 For the development of complex molecules, sequential 

synthesis can aid in the assembly of functional groups and chemical scaffolds 

in single reaction steps without sacrificing the purity or efficiency of those 

steps. Compared to other chemical industries, the pharmaceutical 

manufacturing of APIs has historically displayed a higher level of 

environmental impact, highlighting a necessity for the adoption of alternative 

greener techniques.148 
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Large complex molecules in the pharmaceutical industry also benefit 

from the sequential techniques via combining protection or deprotection of 

functional groups that can occur in single reactions where further 

functionalisation can happen downstream, reducing waste and time 

requirements. These types of processes can accelerate drug discovery 

timelines while reducing the dependency on hazardous reagents or solvents 

to further assist in enhancing the efficiency, sustainability, and safety of the 

synthesis.21,149,150 Presenting these types of processes as a crucial tool for 

expediting drug discovery and averting potential supply chain disruptions 

inherent in the traditional iterative batch methodology. 

One interesting reaction that has been performed using telescoped 

methodology was by Baxendale et al. in which they were able to develop the 

in-situ generation of ethyl isocyanate which is typically a highly light and 

moisture-sensitive compound.151 This in-situ generated compound was later 

reacted with different functionalised diazonium compounds via a subsequent 

cycloaddition for the synthesis of 1,2,4-triazoles. In addition, this methodology 

was further expanded onto forming pyrrolo[1,2-c]pyrimidines scaffolds which 

have pharmaceutical significance for the treatment of central nervous system 

disorders. 
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Figure 42. Flow schematic for the synthesis of 1,2,4-triazoles using 

continuous telescoped flow techniques.151 

This work highlighted the effectiveness of utilising continuous telescoped 

flow techniques for the formation and downstream utilisation of challenging 
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components such as ethyl isocyanates. Whereby further reacting 

downstream, the authors were able to minimise any potential degradation of 

this sensitive species and any exposure of researchers to its potentially 

harmful effects, providing a safer synthesis for the desired compounds. 

However, this work presents some of the challenging tasks for sequential 

synthesis in which the optimisation of the reactions can lead to resource and 

labour-intensive studies, although it still precedes traditional batch 

methodologies. Optimising these types of reactions remains highly 

challenging due to the complexity of issues that the system presents, 

concatenating steps into a single process increases the number of reaction 

variables present which can negatively affect downstream processes, overall 

reducing yields or other metrics for each reaction step.152 Additionally, the 

presence of prior chemicals or intermediates from previous steps can pose a 

threat to the downstream reactions via complex interactions with reagents that 

can further impact the efficacy of the current reaction step. Therefore, this 

suggests that for such complex multistep processes, efficient optimisation 

cannot be achieved by independently optimising reaction conditions. Instead, 

a comprehensive optimisation of the entire process, considering all reaction 

variables, is necessary.153 

Approaching telescoped optimisations with the use of algorithms holds 

the potential to efficiently synthesise complex natural products over multiple 

steps whilst being able to control and optimise each step for the desired 

outcome. Using this self-optimisation approach with algorithms enables the 

process to consider any complex interactions present, identify them and 

provide an autonomous technique to rapidly develop telescoped reactions.20 

The rising potential to unlock efficient optimisations for these telescoped 

systems, has led to efforts being made to attempt to employ algorithms to 

automate these processes. The initial source of success was made by 

employing a sole analytical measurement of the product stream. Employing 

this approach, enabled the global optimum to be identified with the best 

operating conditions for the telescoped synthesis. However, by only sampling 

the final outlet stream, it critically restricts the process understanding gained 

for the specific stages occurring within the entire procedure. It limits any 

identification of crucial intermediates formed within any stage of the prior 
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reactions and limits the ability to understand the continuous variable’s 

influence on the process metrics being studied. Advancements have been 

effectively made by Jensen et al. and Kappe et al. to demonstrate the ability 

to apply multiple inline and online analytic techniques to these types of 

optimisations.152,154 Although success was made during these optimisations, 

using two separate analytical techniques leads to increased equipment costs 

which can substantially limit the application of these technologies to the wider 

research and industry community. Furthermore, employing inline analytical 

instruments can lead to extensive prior characterisation and validation 

requirements to achieve accurate measurements.  

A recent publication by Clayton et al. has successfully demonstrated the 

ability to apply multipoint sampling to telescoped optimisations, overcoming 

the previously initially presented limitations.20 This technique employed two 

sampling valves to monitor both stages of a two-step Heck cyclisation-

deprotection reaction. Utilising a single piece of online analytical equipment, 

surmounts the issues previously relating to increased costs and prior 

workloads. To achieve this multipoint sampling, each reactor outlet was fed 

into individual sampling valves which were daisy-chained together to feed 

each reaction step samples into an HPLC instrument for analysis on a 

combined chromatogram, Figure 43.  

 Although this enabled both steps of the reaction process to be 

monitored and analysed for key intermediates and determination of process 

metrics over both stages, the process understanding gained is still limited due 

to the constraints of only considering continuous variables. Eliminating the 

potential of exploring discrete variables, critically limits the understanding of 

the key interactions between the mixed variables, which in telescoped 

optimisations can provide significant insights into the reaction pathways and 

mechanisms as well as highlight important intermediate formations. The 

incorporation of mixed variables into these algorithm-based telescoped 

optimisations is an area which has yet to be explored but arguably holds vast 

potential to revolutionise these types of optimisation processes. By integrating 

both discrete and continuous variables within the optimisation frameworks, a 

more comprehensive design space can be addressed. This approach not only 

enhances the efficiency and flexibility of the optimisation process but also 
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enables the exploration of the relationships and interactions between the 

variables over the whole telescoped reaction pathway. As such, there remains 

a necessity to develop an efficient methodology for multi-objective 

optimisation within telescoped flow reactions which include discrete variables 

alongside continuous parameters within the optimisation domain. 

 This chapter advances the research initiated in the preceding chapters 

by tackling the presented challenges posed for telescoped optimisations. This 

is achieved through the exploration of mixed-variable optimisations for a 

telescoped flow reaction. The choice of the case study was deliberate, aiming 

to extend the literature work completed by Clayton et al. on the Heck-

Hydrolysis telescoped reaction and enhance it via the introduction of a mixed-

variable system.20 Expanding on the results from Chapter 3, which 

emphasised the importance of the ligand effects on catalytic systems, the 

decision to persist with the selection of ligands as the discrete variable was 

made. To comprehensively account for the interactions between variables 

across both steps of the telescoped reaction, the objective metrics were 

carefully chosen. These metrics encompass the productivity of the initial step 

and the overall yield of the final product resulting from the combined steps. 

4.2 Heck Reaction 

The Heck reaction, also known as the Mizoroki-Heck reaction stands as 

one of the most critical advancements made in organic synthesis reactions, 

first developed in late the 1960s and early 1970s by Richard Heck and 

Tsutomu Mizoroki.155 This was highly important as it pioneered palladium-

catalysed coupling reactions for the construction of carbon-carbon bonds. It 

was later recognised as such an important development in organic synthesis 

that it was awarded the Nobel Prize in chemistry in 2010 alongside the Suzuki-

coupling reaction. This innovative reaction involves the cross-coupling 

between aryl or vinyl halides with alkenes which react in the presence of a 

palladium catalyst and base which has led to the synthesis of a diverse range 

of substituted alkenes over years of implementation.  

The reaction often requires a pre-activation step of a Pd(II) catalyst pre-

cursor before the catalytic cycle can begin, this is initiated by the reduction of 
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the Pd(II) complex to the active Pd(0) species. Upon formation of the active 

Pd(0) complex, the reaction is initiated through an oxidative addition of the 

palladium complex to the aryl or vinyl halide. Generally, the presence of 

electron-donating phosphine ligands can aid in the activation of the Pd(0) 

catalyst to help accelerate the rate of oxidative addition, this can be further 

increased by the selection of the halide with general reaction rates observed 

being: I >OTf >Br>Cl.156  

 

Scheme 10. Catalytic cycle for the Heck reaction between an aryl or vinyl 

halide and alkene, facilitated by a palladium (0) catalyst which is 

regenerated via the addition of a base in the final step of the cycle. 
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Following this, the cycle undergoes the coordination of the alkene to the 

palladium complex followed by a syn addition of the alkene, which requires 

dissociation of the ligands. This mechanism is notably influenced by the 

selection of the phosphine ligands and halides incorporated in the reaction 

path. The pathway branches into two routes: one being a cationic and the 

other a neutral route. While monodentate ligands can lead to both pathways, 

bidentate ligands tend to favour the cationic route. However, the neutral 

mechanism for bidentate ligands can still occur providing the ligand of choice 

has a large bite angle.157The insertion of the alkene into the palladium centre 

is an important step in the catalytic cycle. Its significance stems from its power 

to control the stereo and regio-selective outcome of the reaction, ultimately 

shaping the final product. Regioselectivity is heavily influenced by the steric 

bulk on each side of the alkene during the insertion. 

 

Scheme 11. Neutral and Cationic pathways for alkene insertion within the 

Heck catalytic cycle for the direction of alpha and beta products.157 

In general, the least sterically hindered side of the alkene results in the 

formation of the bond with the palladium complex. This is the general case for 

neutral palladium complexes, however, when the palladium complex is 

cationic, the major product formed is influenced by a trade-off of the steric and 

the electronics of the alkene, with nucleophilic attack occurring on the side of 

the least electron density. Following the insertion of the alkene into the 

complex, a beta-hydride elimination takes place providing that the hydride is 

attached syn-coplanar to the palladium centre. Upon elimination, it yields the 

new substituted alkene, with the E-configuration favoured due to unfavourable 
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steric interaction in the transition state for the Z-isomer. In the final step of the 

cycle, the addition of the base is required to cause the reductive elimination 

step, where the palladium centre is reduced back to its Pd(0)L2 state and the 

regeneration of the active catalyst is complete.  

Over the years, the Heck reaction has been extensively researched and 

pivotal in complex natural synthesis, the formation of APIs and materials 

innovation.158,159 Its exceptional versatility and capacity to facilitate various 

functional groups have enabled the reaction to become an essential 

instrument for synthetic chemists. This heightened attention has led to the 

reaction being involved in several optimisation processes aimed at enhancing 

its efficiency and expanding the scope of the reaction over different processes. 

The area of automated optimisation has embraced this reaction extensively, 

which can be observed by numerous literature publications intended at 

pushing the boundaries of optimisation and exploiting the Heck reaction for 

various process metrics and continuous parameters available.40,50,145,160,161 

Selection of this reaction was made as the design of this telescoped case 

study was to follow on and advance the work completed by Clayton et al. on 

their two-step telescoped Heck-cyclisation-deprotection reaction.20 As 

previously mentioned, the exclusion of discrete variables in this pathway limits 

the understanding of the process and the key interactions that could be 

derived from the initial optimisation procedure. Therefore, leading to 

opportunities for further exploration, particularly when considering mixed 

variable systems with respect to multiple objectives. The pathway for this 

reaction began with an initial Pd-catalysed Heck reaction yielding the intended 

regioselective product. Subsequently, an intermolecular cyclisation took place 

to generate a ketal, followed by the second step of the telescoped reaction, 

where the focus was to hydrolyse the ketal using nitric as a catalyst to form 

the desired final product. Modifications were made to the starting material of 

choice to use bromobenzene in place of the aryl bromide originally used, this 

stemmed from constraints due to its availability and cost of the original aryl 

bromide. In the original proposed reaction scheme, the approach aims at 

synthesising a potential precursor for 1-methyltetrahydroisoquinoline C5 

functionalised derivatives which have pharmaceutical interest for the 

treatment of depression.162 Furthermore, nitric acid was substituted for the 
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original tosylic acid. This substitution was also influenced by the lack of a t-

boc protecting group in the new starting material, where nitric acid’s capability 

to deprotect this group led to an alternative acid being used in the original 

synthesis. Consequently, given the absence of the Boc group in the new 

compound, the utilisation of nitric acid for the hydrolysis reaction was selected. 

Although this modified approach changes the original starting material, this 

study is aimed at highlighting the possibility and potential of optimising mixed 

variable cases on these types of systems, where a change of the initial 

compound used could result in the unlocking of these types of optimisations 

for potential API pathways. The fully modified two-step reaction pathway is 

shown in Scheme 12. 

 

 

Scheme 12. Heck reaction between bromobenzene (4.5) and ethylene glycol 

vinyl ether (4.6) to form the alpha substituted product (4.7) followed by 

intramolecular cyclisation to form the dioxolane product (4.8). 

Subsequently, the hydrolysis deprotection reaction to form the final 

acetophenone product (4.9). 

4.3 Telescoped Optimisation 

For this telescoped optimisation, the automated flow platform that had 

been used for the previous case studies saw the addition of a second 

unheated reactor where the second step hydrolysis deprotection reaction 



- 127 - 

would take place. Additionally, a second sampling valve was added to allow 

access to analyse both steps of the reactions, these were oriented in a daisy-

chained orientation, similar to the configuration that Clayton et al. had 

implemented, Figure 43.20 This enabled access to both steps of the reaction, 

which would allow process metrics to be calculated and optimised for either 

step of the reaction pathway. To facilitate the use of a single HPLC instrument 

for the comprehensive analysis of the two-step reaction, a dual-method 

approach was employed. Initially, upon sampling from the first valve, a 7.3-

minute gradient method was executed transitioning from 16.3% MeCN to 95% 

MeCN (83.7% water to 5% water) to elute the target compounds effectively. 

Following the completion of the first HPLC method, the system was reset to 

the initial analysis conditions, preparing for the subsequent injection. 

Subsequently, the delayed second valve sampled and executed a second 

HPLC method of the same gradient conditions, extending the analysis for an 

additional 7 minutes. 

By employing this sequential dual-method approach, a consolidated 

HPLC chromatogram was generated for the entire two-step reaction. This 

combined chromatogram was then processed using the optimisation script, 

enabling the identification and quantification of the desired signals 

corresponding to the reaction products and intermediates. This streamlined 

analytical workflow facilitated accurate process metric calculation and 

optimisation, leveraging the capabilities of a single HPLC instrument for 

comprehensive analysis and data interpretation.  
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Figure 43. Multipoint sampling technique used for telescoped optimisation 

with daisy-chained Vici sampling configuration where a single HPLC 

analysed both steps in the reaction. Configuration based on the work 

completed by Clayton et al.20  

The process metrics for the optimisation were selected so that a metric 

from either step of the reaction was chosen to provide a unique optimisation 

study, to evaluate the interactions over the whole process. The overall yield 

of the acetophenone (4.9) and STY for the formation of the dioxolane from the 

Heck reaction (STYDiox) were selected, with the latter being selected due to 

the Heck reaction being the rate-limiting step of the process. For the STYDiox 

process metric, the decision was made to utilise the dioxolane as the input 

instead of the alpha intermediate. Although both undergo hydrolysis to yield 

acetophenone (4.9), the intermediate is more readily hydrolysed which would 

restrict the continuous variable limits, especially the temperature. This choice 

was made to ensure a comprehensive exploration of the temperature range 

set in the optimisation, thereby enabling the observation of its effect on both 

objective metrics. Optimising this step, in addition to overall yield, highlights 
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the viability of these types of workflows to the pharmaceutical industry, in 

which the desire to maximise product formation and minimise time 

requirements is of high importance. Furthermore, this approach would assist 

in further exploring the trade-off between the objectives, where increased 

cyclisation of the intermediate to enhance higher STYDiox would, in turn, lead 

to slower rates of hydrolysis for the overall product formation. This could result 

in a fascinating objective space, requiring the MVMOO algorithm to effectively 

exploit the continuous variable interactions to explore suitable trade-offs of 

both objectives.  

The useful insights gained from the Sonogashira coupling optimisation 

that had been completed in Chapter 3, led to the decision for the ligand to be 

selected as the discrete variable of choice for manipulation in this telescoped 

case study. In this workflow, the ligand selection approach would deviate from 

that of the Sonogashira optimisation. This stems from the potential to generate 

both an alpha- and beta-product via the Heck reaction. In this context, the 

selection of the ligand would further highlight the necessary interactions 

between the discrete and continuous variables for the formation of the desired 

alpha intermediate (4.7) and dioxolane (4.8). This would have a direct effect 

on the process metrics, in which both are dependent on the alpha intermediate 

and dioxolane formations within the reaction pathway.  

To increase the complexity of the reaction pathway and overall process, 

it was decided to include a mix of monodentate and bidentate ligands for 

selection, with a range of diphenylphosphine-based ligands selected due to 

the impressive performance of 1,3-bis(diphenylphosphino)propane (dppp) in 

the continuous variable Heck-hydrolysis optimisation performed by Clayton et 

al.20 In addition to dppp, bis(diphenylphosphino)methane (dppm) and 1,2-

bis(diphenylphosphino)ethane (dppe) was selected as the other two bidentate 

ligands to explore how the increase in ligand size would affect the outcome of 

the reaction in conjunction with poor solubility in the solvent choice observed 

for other larger variations. For the monodentate ligands, TPP was selected 

due to its performance in the Sonogashira optimisation and DavePhos was 

selected as it has shown efficiency in promoting the Heck reaction with aryl 

bromides.163 To capture the effects of the continuous variables over the whole 

process, it was decided to incorporate parameters from both the initial Heck 
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reaction and the subsequent hydrolysis step. These included the residence 

time for the whole process, equivalents of ethylene glycol vinyl ether (4.6), the 

temperature within the first reactor, and the ratio between the acid flow rate 

and the flow rate of the first reactor, Table 5.  

Table 5. Boundaries for continuous variables in the telescoped Heck-

hydrolysis optimisation. 

 

Due to the rapid nature of the hydrolysis step both substituents, it was 

decided not to include any temperature parameters for this step as ambient 

reactor temperature was sufficient. This led to the following optimisation 

equation and variables.  

 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 [−(𝑆𝑇𝑌𝐷𝑖𝑜𝑥 (𝟒. 𝟖)), −(𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑌𝑖𝑒𝑙𝑑 (𝟒. 𝟗))] 
(19) 

Subject to:    

 𝐿𝑖𝑔𝑎𝑛𝑑 ∈ [𝑑𝑝𝑝𝑚, 𝑑𝑝𝑝𝑒, 𝑑𝑝𝑝𝑝, 𝐷𝑎𝑣𝑒𝑃ℎ𝑜𝑠, 𝑇𝑃𝑃]  

 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 ∈ [1.0, 20.0]  

 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑠 (𝟒. 𝟔) ∈ [1, 3]  

 𝑅𝑎𝑡𝑖𝑜 ∈ [0.5, 1.5]  

 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ∈ [120, 200]  

 

 Residence 

time (min) 

Equivalents of 

vinyl ether (4.6) 

FvA : FvR1 Temperature 

(℃) 

Lower 

bounds 

1 1 0.5 120 

Upper 

bounds 

20 3 1.5 200 
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Figure 44. Flow schematic used for the telescoped optimisation case study. 

Where R8 is bromobenzene (4.5), L1 is dppm, L2 is dppe, L3 is dppp, 

L4 is DavePhos and L5 is TPP. The catalyst Pd(OAc)2, NEt3 base and 

internal standard methyl p-tolyl sulfone were included in each of these 

discrete variable stock solutions. Additionally, R9 represents ethylene 

glycol vinyl ether (4.6), and the solvent is ethylene glycol:MeCN 

(2:1 ratio). 

 

The MVMOO algorithm was initialised with 25 experiments, employing 

five LHC experiments per ligand in the same format employed in Chapter 3. 

The algorithm then sequentially ran through a further 41 experiment iterations 

achieving the identification of 8 non-dominated solutions sufficiently 

highlighting the trade-off between the STYDiox and overall yield, Figure 45. 

In this case, it can be observed that the Pareto front reveals a steep non-

linear trade-off between the objectives, where major improvements to the 

STYDiox acts significantly detrimental to the overall yield formed. Where the 

overall yield is the yield of the acetophenone (4.9) formed from the multi-step 

reaction, through the hydrolysis deprotection reaction of either the α-

intermediate (4.7) or the subsequent dioxolane product (4.8). The conflicting 

objective metric effects are emphasised by the fact that all experiments 

yielding more than 70% overall, resulted in a STYDiox less than 5. Conversely, 
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this is further highlighted by the observation that every experiment with an 

STYDiox exceeding 15 kg m-3 h1 attained an overall yield in the range of 28% 

to 43%, emphasising the negative effect each objective had on the other. For 

this study, dppp presented itself as the dominant ligand of choice, achieving 

both optimal results for STYDiox and overall yield and governing the Pareto 

front, with all non-dominated solutions associated with this ligand. The optimal 

STYDiox achieved was 40.5 kg m-3 h-1 which corresponded to an overall yield 

of 32%. Conversely, the optimal acetophenone (4.9) overall yield achieved 

was an impressive 88% yield which related to a poor STYDiox (4.8) value of 

2.97 kg m-3 h-1. The initial LHC results spread across a region of space 

characterised by a range of moderate overall yields and low STYs except for 

two high-performing STYs achieved by dppe and dppp. 

As previously mentioned, dppp consistently outperformed all other 

ligands in the system in terms of STYDiox (4.8) and overall yield with dppe being 

the only other ligand to closely contest it. This resulted in the MVMOO 

algorithm mainly deciding for dppp to be the ligand of choice for subsequent 

iterations after the LHC was complete. In this telescoped reaction, the 

hydrolysis reaction requires the formation of the alpha intermediate (4.7)  

during the Heck reaction. This alpha intermediate  (4.7) can then be 

hydrolysed to yield acetophenone product (4.9). Alternatively, it can undergo 

cyclisation to generate the dioxolane (4.8) product which can also be 

hydrolysed, with the intermediate being more readily hydrolysed compared to 

the ketal. This cyclisation transformation occurs within the synaddition step of 

the cycle, where the regioselective coordination of the alkene determines this 

formation. 
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Figure 45. Results of the five-parameter mixed variable multi-objective 

optimisation of the telescoped Heck-hydrolysis reaction. For each ligand, 

5 initial LHC points were afforded. The MVMOO algorithm then iteratively 

ran an additional 41 experiments, 8 of which were identified as non-

dominated solutions highlighting the trade-off between STYDiox (4.8) and 

acetophenone (4.9) overall yield. Ligand shapes represent: ● – dppm, 

♦ – dppe, ■ – dppp, × – DavePhos, + – TPP. 

 

To accomplish this generation of the alpha intermediate, the beta 

position of the alkene must coordinate with the palladium centre. This leads 

to the already coordinated phenyl group being connected to the alpha position 

of the alkene, such that upon beta hydride elimination, the desired alpha 

intermediate is formed from the cycle. Typically, this type of coordination is 

achieved through the cationic pathway which is facilitated by the dissociation 

of the halide from the palladium centre. This leads to a nucleophilic attack on 

the least electron-dense side of the alkene by the cationic palladium centre, 

which in this case is the alpha position.  
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Scheme 13. Formation of the desired alpha- and undesired beta-products via 

the respective cationic and neutral pathways in the Heck reaction. 

A proposed literature concept suggests the presence of an equilibrium 

stage preceding the rate-determining step, which is likely the alkene 

insertion.164 Within this equilibrium, the introduction of a potential hydrogen-

bonding donor is believed to shift the balance of the equilibrium in favour of 

the cationic palladium(II)-alkene intermediate.165 As a result, the concentration 

of this cationic intermediate increases, thereby promoting a more rapid 

generation of the alpha product. This relates to this system where the 

presence of ethylene glycol as part of the solvent composition can enable 

hydrogen bonding within this equilibrium to promote alpha formation.  

 

Scheme 14. Equilibrium for the formation of the cationic palladium(II)-alkene 

intermediate promoted by the presence of hydrogen-bond donation by 

ethylene glycol.  

As previously mentioned, the desired cationic pathway is typically 

facilitated by bidentate ligands, which could rationale the subpar performance 

exhibited by the monodentate DavePhos and TPP throughout the 

optimisation. Furthermore, in the case of bidentate ligands, the bite angle 

serves as a measure of their steric bulk, similar to that of the cone angle for 

monodentate ligands. Among the bidentate ligands utilised in this 
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optimisation, the following trend for bite angle emerges according to literature 

values: dppp < dppe < dppm.166 This bite angle directly impacts the steric 

crowding around the palladium centre, further promoting the alkene insertion 

to take place at the alpha site. Consequently, this elucidates why dppp stands 

out as a prominent ligand throughout this optimisation process. Additionally, 

this rationalises the outcomes noted for dppe; although it surpasses its less 

sterically bulk counterpart dppm, whilst still falling behind the effectiveness of 

dppp.  

The MVMOO algorithm’s successful identification of dppp as the optimal 

ligand within the LHC emphasises the effectiveness of telescoped 

optimisations, where minimisation of material consumption is crucial. 

Demonstrating the ability to manage and manipulate complex interactions and 

help guide the formation of key intermediates throughout multiple-step 

procedures, particularly when these intermediates and interactions are not 

straightforward to predict due to the inherent complexity of telescoped 

processes. This emphasises the proficiency of these types of approaches in 

controlling the interactions between the factors at different stages, allowing for 

the effective exploration and discovery of optimal reaction conditions to 

optimise the process metrics set within the telescoped pathway.  Although the 

LHC returned relatively low results for the overall yields, the identification of 

two high STYDiox results in the initial dataset, enabled the algorithm to explore 

regions of high overall yields to maximise the hypervolume of the objective 

space.  By doing this, the algorithm was able to successfully identify new 

regions in the objective space relating to higher overall yields with significant 

improvements made to this metric, where the maximum overall yield of 61% 

from the LHC was impressively increased up to a maximum of 88%, with 

significant clustering around the 80% range over the optimisation process, 

further validating the reproducibility of the yields achieved. Even though the 

optimal STYDiox conditions were identified during the initial LHC, the MVMOO 

algorithm further went on to explore and map out the trade-off between the 

objectives to build five experimental Pareto points to highlight this.  
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Figure 46. Results from the Heck-hydrolysis optimisation, with STYDiox vs 
Experiment number plotted to highlight improvements made to this 

metric over the process. Where ■ – Initial, ■ – Algorithm and ■ – 

Optimum. 

 

Figure 47. Results from the Heck-hydrolysis optimisation, with RME vs 
Experiment number plotted to highlight improvements made the RME 

metric over the process. Where ■ – Initial, ■ – Algorithm and ■ – 

Optimum. 
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Without the exploration and discovery of these experimental points, the 

information for the extent of the detrimental effects between the objectives 

would have been left unknown and the operating conditions and interactions 

between the variables to achieve these data points would have been 

unexploited. These results further justify the efficacy of the combined 

MVMOO-telescoped approach for exploring more productive regions in the 

objective space where alternative methods may have missed these optimal 

conditions and variable interactions.  

It can be observed how the MVMOO algorithm was able to effectively 

map out the relative importance of each continuous variable when combined 

with dppp across the Pareto front, Figure 48. The maximisation of the overall 

yield in the telescoped process, required high residence times, maximum 

equivalents of the vinyl ether (4.6) and low temperatures, whereas the flow 

rate of the acid ratio variable was less important in this case. The temperature 

variable played a key role in this metric and understanding of the reaction 

pathway, as at lower temperatures the concentration of intermediate formation 

is increased over the dioxolane concentration. 
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Figure 48. Parallel coordinate plot highlighting the interactions between 

continuous variables and objective outcomes for each Pareto optimal 

solution. 

 As previously mentioned, this intermediate is more readily hydrolysed 

to the final product, as such leading to higher overall yields observed, 

indicating the pivotal role of the temperature for this process metric. On the 

other hand, to achieve high STYDiox can be achieved using low residence 

times, moderate-low equivalents and higher temperatures required, with the 

acid flow rate ratio not being examined for this objective due to it only 

participating in the hydrolysis reaction and having no effect on the dioxolane 

formation in the Heck reaction. The higher temperatures required further 

explain the temperature dependence on overall yields observed where 

elevated temperatures are essential to advance the cyclisation of the alpha 

intermediate for the formation of dioxolane.   

 Utilising the MVMOO algorithm in this telescoped optimisation enabled 

it to be completed in only 62 hours, requiring no human intervention, 

highlighting the efficiency and applicability of these types of workflows for 

telescoped reactions. Similarly, to the previously presented case studies, 

employing MVMOO for simultaneous optimisation of mixed variables enables 
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real-time monitoring of the hypervolume in the optimisation process to act as 

a measure of process efficiency over time, Figure 49. 

 

Figure 49. Hypervolume vs. Experiment number plot for the telescoped Heck-

hydrolysis reaction that was monitored throughout the optimisation 

process. 

This is critically important in the scope of telescoped optimisations where 

the associated cost per experiment is significantly increased, such that there 

is a necessity for the minimisation of experimental numbers. As before, once 

the experimental process had reached a minimum of 60 iterations, to ensure 

efficient exploration of the design space, the hypervolume would be monitored 

until a plateau for 5 experiments persisted. As it can be seen, due to the LHC 

identifying two exceptional points for the STYDiox metric, the hypervolume 

forms an initial plateau whilst the algorithm is exploring high overall yielding 

experiments. After incremental hypervolume increases over the process, 

there is a significant increase around the 60th experiment related to two back-

back Pareto optimal points exploring that trade-off between the metrics. After 

the 60th experiment, monitoring of the hypervolume revealed the presence of 
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a plateau, which then prompted the termination of the optimisation process to 

preserve material consumption for the process. This further justifies the 

methodology of real-time monitoring of the hypervolume, as termination 

before the increase observed at the 60th experiment would have led to a 

reduction in non-dominated solutions identified and information gained from 

the optimisation. Employing this approach facilitated the maximisation of 

information gained in the optimisation, whilst preserving material and time 

consumption for the process.  

4.4 Conclusion 

The heightened interest in telescoped optimisations of chemical systems 

over recent years presents the new focus for expanding automated reactor 

platforms onto complex multistage chemical synthesis.20,145,152,154 

In this work, the methodology for optimising continuous variable 

telescoped systems presented by Clayton et al. was successfully advanced 

to introduce the inclusion of discrete variables within these processes.20 This 

addition facilitated the increase in the number of variable interactions possible, 

subsequently leading to further process understanding between the 

interactions and reaction pathways occurring within the chemical system. 

Multi-point sampling after both reactors on the platform enabled the use of a 

single analytical HPLC technique for the quantification and analysis over both 

steps of the reaction under study.  

To further explore the potential reaction pathway effects on the reaction 

outcome, the ligand selection was chosen as the discrete variable in this 

study, with both monodentate- and bidentate-phosphine ligands selected. The 

inclusion of a mixed set of phosphine ligands facilitated the examination of the 

pathway produced for the alkene insertion and the associated outcomes on 

the process metrics. These process metrics were set such that a multi-

objective optimisation was achieved for each step in the reaction pathway. 

The objectives were assigned in a conflicting manner to explore the 

detrimental effects each objective had on one another. The first objective 

metric selected was the overall yield for the telescoped process. This selection 

was made to observe the operating conditions and critical interactions 
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required to produce a greater yielding system. For the Heck reaction, the 

objective was decided to be the STY for the dioxolane (4.8) formation. This 

choice stemmed from the known concept that the second hydrolysis reaction, 

to form the acetophenone (4.9), was much faster for the alpha-intermediate 

(4.7) than for the cyclised dioxolane, forcing the algorithm to explore the 

conditions required to map out the Pareto front between the objectives. The 

selection of both these objectives enabled the full exploration of the 

continuous variables throughout the process, where only low temperatures 

would have been studied if the STY of the alpha-intermediate was decided, 

providing a greater process within this optimisation. Additionally, this 

telescoped methodology included the set hypervolume stopping criteria that 

have been highlighted for each case study within this thesis. Inclusion of this 

stopping criteria based on the hypervolume progression over the optimisation 

is critical for these types of workflows, where the associated costs per 

experiment are significantly increased. This facilitated the optimisation to be 

completed in only 66 experiments, where maximisation of both process 

metrics was achieved. 

 In summary, the work in this chapter has highlighted the possibility of 

expanding the previous Chapter 2 and 3 workflows onto telescoped reactions. 

This work represents the completion of the first known multi-objective mixed 

variable optimisation on telescoped flow systems, providing enhanced 

efficiency and identification of key interactions over sequential reaction steps. 

This progress not only shows the potential for optimising mixed variable 

telescoped systems but provides further evidence for the applicability of these 

types of workflows for accelerating early-stage multi-step reaction 

development. 
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Chapter 5. Conclusions and Future Work 
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The work contained in this thesis has focused on the investigation and 

development of an automated flow platform with optimisation algorithms 

capable of handling mixed-variable systems for pharmaceutically relevant 

compounds. Later work in this thesis focused on the advancement of the 

capabilities of this platform to further highlight the applicability of these 

processes for early-stage reaction development.  

The history of prior self-optimisation processes presented in the literature 

highlights the absence of mixed-variable multi-objective optimisations to 

comprehensively explore the full variable interactions within a system. 

Therefore, the inclusion of these parameters within these methodologies 

would further increase the efficiency and process understanding gained for 

chemical systems throughout these studies. Hence, the work for this thesis 

aimed at exploring: (i) the introduction of multi-objective optimisations for 

mixed-variable chemical systems; (ii) the development of these optimisations 

onto pharmaceutical relevant complex chemical pathways; (iii) the 

implementation of multi-step reactions for the consideration of mixed-variable 

multi-objective optimisations. This thesis has demonstrated the contribution to 

each of these respective areas through the optimisation of various relevant 

case studies. 

The work in Chapter 2 described the simulated and experimental 

optimisations applying MVMOO, a Bayesian mixed-variable multi-objective 

algorithm previously developed by Jamie Manson, on an automated flow 

platform.63 Initial work presents the potential insights that simulated 

optimisations provide as a precursor to experimental studies, utilising 

previously reported kinetic data coupled with SNOBFIT and a genetic 

algorithm to explore the objective space of a chemical system. Later studies 

investigated the development of the mixed-variable flow platform to facilitate 

the handling of discrete variables and explored the selection of the SNAr 

reaction related to the known solvent effects on the regioselective 

outcome.108,109,167 This approach selected two conflicting objectives for the 

optimisation based upon the solvent-dependant regioselective outcome, 

where the solvent of choice was designated the discrete variable to further 

explore the interaction effects required to evaluate the trade-off between 
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process metrics. The optimisation was performed concerning four continuous 

parameters in addition to the solvent choice, where the successful 

identification of the trade-off between the competing regioselective products 

during the process was achieved. This study underlined the inherent effects 

that the solvent polarity index had on the outcome of the reaction in addition 

to the continuous variable interactions required to maximise each objective. 

The prior simulated optimisation that was performed provided a rationale for 

the observations within the experimental study. Although this investigation 

highlighted the effectiveness of the efficient optimisation of mixed variable 

chemical systems, future work should focus on developing the system such 

that it is capable of a higher number of discrete variables. This can be 

achieved using a switching valve with a greater number of ports available, to 

ensure that the solvent effects of a wider array can be explored to further 

observe the underlying solvent properties that affect the reaction outcome. 

Additionally, the utilisation of multiple sample loops should be a focus for 

future work to enable multiple different discrete variables, bases, and solvents, 

within the optimisation pathway to explore the interactions and regioselective 

outcomes for these reaction pathways. Implementation of these additional 

discrete variables facilitates a greater process understanding gained from 

these optimisation procedures.  

In Chapter 3 the potential for the mixed-variable multi-objective 

optimisations was further extended to include more complex catalytic 

systems, with the selection of pharmaceutically relevant Sonogashira cross-

coupling being made. This reaction was selected based on the desired 

product being a precursor to a TRPV1 antagonist used within the 

pharmaceutical industry for pain treatment and management.136,137 The 

inclusion of a catalytic system enabled an increase in the complexity of the 

optimisation aiming to explore the comprehensive variable interactions within 

these systems. To align with the evolving pathways of the pharmaceutical 

industry towards more environmentally sustainable API synthesis, two 

conflicting objectives were selected to explore the trade-off between 

productivity and environmental effects for reaction optimisation.118 The 

optimisation was completed with respect to three continuous variables, with 

the selection of the ligand as the discrete variable due to its significant impact 
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on the outcomes of catalytic pathways. This study successfully identified the 

trade-off between RME and STY, notably highlighting the least sterically 

hindered ligand TPP, as the best-performing ligand, which contrasts with 

current chemical understanding.  

Although hypervolume monitoring throughout the optimisation enabled 

the termination of the process once a plateau was observed, the consumption 

of material is a key consideration for optimisations, especially for processes 

involving catalytic systems where the associated costs of catalysts and 

resources are increased. Subsequently, future work should investigate the 

application of nanomole-scale high throughput experimentation combined 

with the presented self-optimisation platform to ensure the minimal 

consumption of material per iteration in the optimisation. The development of 

an HTE-flow platform would streamline the study of a higher number of 

discrete variables whilst eliminating the necessity for preparing individual 

stock solutions for each component. This, in turn, reduces the labour 

requirements and material consumption, both of which are key criteria for 

early-stage reaction development. 

Multi-stage chemical synthesis for end-to-end processes in continuous 

flow is an area which can significantly benefit from the consideration of multi-

factor optimisations. Observation of the synergistic effects between variables 

over multiple reaction pathways will provide greater process understanding 

and enhance efficiency. In Chapter 4, the work addressed the self-

optimisation of mixed variable telescoped chemical systems with respect to 

multiple objectives, which have not been previously reported. Initial 

developments to the platform implemented multi-point sampling to achieve 

analysis and quantification over both steps on a single piece of analytical 

equipment, that was based on a previously reported technique.20 This 

approach examined two competing objectives for both reaction pathways to 

explore the trade-off required within a Heck intramolecular cyclisation-

hydrolysis telescoped reaction. Optimisation was completed concerning four 

continuous variables and one discrete parameter with the inclusion of 

continuous variables over both steps to examine the interactions for the entire 

reaction pathway. The ligand as the discrete variable enabled the influence of 

the potential catalytic pathways within the Heck reaction to be examined, 
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where a selection of mono and bidentate phosphine ligands was included to 

further explore the underlying mechanistic effects.157 The Heck-hydrolysis 

telescoped reaction was successfully optimised in only 62 hours, requiring no 

human intervention, whilst achieving efficient exploration of the trade-off curve 

between the objectives. Therefore, this work presents the applicability of 

mixed-variable multi-objective optimisations towards the end-to-end 

processing of telescoped reactions and will likely be further extended to 

explore early-stage reaction development of APIs. Consequently, the future 

should aim to explore a higher number of reaction steps to further highlight 

the application of these optimisations towards process development.  

The development of a nanomole-scale HTE-flow platform will aid in 

alleviating these challenges enabling access to a greater consideration of all 

factors throughout the telescoped pathway. However, to facilitate this 

advancement, future work will be required to include the consideration of 

discrete variables over all steps within the reaction pathways to examine a 

comprehensive understanding of the mixed variable interactions throughout 

all stages. Furthermore, the inclusion of multiple discrete factors for each 

reaction pathway will be required to further develop the process understanding 

gained from these optimisations.  

To conclude, the development of automated flow platforms combined with 

optimisation algorithms in feedback loops has enabled the efficient exploration 

of chemical systems for the consideration of various objectives. The work in 

this thesis has focused on the development of mixed variable multi-objective 

optimisations to provide a comprehensive understanding of all factor 

interactions within chemical processes to further enhance efficient exploration 

of the trade-off between competing objectives. The identification required from 

future work to develop this area for early-stage reaction development has 

been highlighted to include: (i) reducing material consumption and labour 

requirements by implementing an automated nanomole-scale high throughput 

flow platform for mixed-variable multi-objective optimisations; (ii) increasing 

the number of discrete variables under consideration to further explore the 

underlying properties and interactions required to provide efficient 

optimisation; (iii) development of the telescoped optimisation to include a 

greater number of steps for process development; (iv) inclusion of multiple 
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discrete variables throughout all stages within a telescoped reaction pathway 

to grant greater process understanding from these optimisations. To facilitate 

the application of these mixed variable methodologies to the wider research 

community, the development of readily available automated control and 

optimisation documentation is critical for enabling ease of use to non-

specialised chemists. The main focal point for the development of future work 

heavily relies on the implementation of nanomole-scale HTE with automated 

flow platforms which have become increasingly commercially available. 

However, the associated costs for the equipment currently remain a limitation 

for accessibility, but with the increasing interest in self-optimisation, the 

production of reduced-cost alternatives is inevitable. Therefore, providing 

accessibility of these technologies to the wider research community for the 

complete process optimisation and development of chemical systems. 
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Chapter 6. Experimental 
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6.1 Discrete Variable Automated Flow Platform 

 Reagents were made up to their desired concentrations in stock 

solutions during the experimental setup, this was completed by utilising 

spreadsheets to calculate the exact concentrations required. The solutions 

were loaded into conical flasks and primed on the dual piston reciprocating 

JASCO PU2800 and PU4185 HPLC pumps. Multiple stock solutions were 

made up for each discrete variable under study, where the ligands and solvent 

selection were achieved using a JASCO CO4062 column oven module 

installed with a 7-port 6-position switching valve. The discrete variable stock 

solutions were loaded onto each position of the selection valve, whereby the 

switching position of the valve would change the discrete variable selected, 

this solution was then fed into one of the HPLC pumps and supplied into the 

system. The streams from the HPLC pumps were mixed using Swagelok SS-

100-3 tee-pieces in the orientation required for each different case study. 

Upon combination of all streams into a single flowing stream, it would be 

passed through a tubular reactor block of a desired volume. These reactors 

were made from either PTFE tubing (1/16” OD, 1/32” ID) or Stainless-steel 

tubing (1/16” OD, 1/32” ID), which were fitted in a tabular format to a cylindrical 

aluminium block and heated with a Eurotherm 3200 temperature controller to 

allow for the rapid heating of reaction liquids. Additionally, a conventional desk 

fan was equipped and pointed towards the heating block to aid in enhancing 

the cooling of the aluminium reactor when required. After the reactor, an 

aliquot of the reaction solutions was sampled for analysis in the feedback loop, 

which was achieved using a VICI Valco EUDA-CI4W sample loop (4-port) 

fitted with either a 0.02 µL or 0.5 µL sample loop injection volume. The 

sampled solution was fed directly into an Agilent 1260 Infinity II series HPLC 

instrument fitted with an Agilent Poroshell 120 EC-C18 reverse phase column 

(5 cm length, 4.6 mm ID and 2.7 µL particle size) for quantitative analysis to 

be performed, running a developed HPLC method for adequate signal 

separation. The flow system was maintained under a constant desired fixed 

back pressure using a 250 psi Upchurch Scientific back pressure regulator. 

The automated system was controlled through a custom-written MATLAB 

program to allow for real-time control and monitoring of all instruments 

involved in the system. Additionally, the MVMOO algorithm was employed 
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through Python, with the capability to communicate with MATLAB to enable 

the transfer of data between the algorithm and the control program. The data 

would include the analytical calculations for the experiments and the next set 

of conditions generated by the algorithm to be set on the equipment. To 

achieve the analytical calculations, internal standards (IS) would be included 

in the reservoir solutions to allow for the analysis of IS and compound signal 

areas to be evaluated for the desired metric calculations. Throughout the 

optimisation process, external monitoring of the optimisation process was 

completed using Microsoft Teams screen sharing capabilities. The fully 

annotated photo of the flow platform utilised for all work completed is shown 

below in Figure 50.  

 

Figure 50. Photo of the automated mixed variable flow reactor used for 

Chapters 2, 3 and 4. 

Controlling the pump flow rates, valve positions, reactor temperature, 

and sampling process was executed through a MATLAB script via RS232 

control. During each iteration, valve positions were aligned with their 

corresponding discrete variables. The reactor was then permitted to stabilise 

at the target operational temperature. To conserve resources and expedite 

the process, pump flow rates were minimised during reactor heating/cooling, 

and initial LHC experiments were sequences based on ascending 

temperature values. Furthermore, sequential LHC experiments were initiated 

while the analysis of the preceding experiment was ongoing. Responses for 

each objective were ascertained from HPLC chromatograms obtained after 

each iteration. These responses played a pivotal role in updating the surrogate 
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models and generating subsequent reaction conditions using the MVMOO 

algorithm. Throughout the experimental sequence, the hypervolume was 

continually monitored. The optimisation process was halted when a 

substantial plateau in performance was observed, generally after around 60 

experiments to ensure a sufficient number of points had been gathered.  

6.2 Offline Analytical Equipment 

A Bruker 400 AVANCE III HD NMR Spectrometer (1H NMR at 400 MHz, 

13C at 101 MHz) was used to perform NMR spectroscopy with the appropriate 

deuterated solvent. Chemical shifts in both 13C and 1H NMR spectra are 

reported as ppm downfield from TMS, and reported as singlet (s), doublet (d), 

triplet (t), quartet (q) and a combination for multiple instances, or multiplet (m). 

For instances with coupling present, coupling constants (J) are averaged 

between coupling signals and quoted in Hz. LC-MS analysis was achieved 

with an Agilent 1290 series uPLC and a Bruker HCT-Ultra detector with 

electrospray ionization (ESI) in the positive mode. 

6.3 Chapter 2 Procedures 

6.3.1 Chemicals 

2,4-Difluoronitrobenzene 1 (99%, Fluorochem), morpholine 2 (99.0+%, 

Fisher Scientific Ltd.), triethylamine (99% Acros Organics), 1-methyl-2-

pyrrolidone (NMP; 99%, Fisher Scientific Ltd.), dimethylformamide (DMF; 

Extra pure, Fisher Scientific Ltd.) ethanol (EtOH; 99.8%, Fisher Scientific Ltd.), 

acetonitrile (MeCN; HPLC grade, Fisher Scientific Ltd.) and biphenyl (99.5% 

GC, Merck Life Science UK Ltd.) were purchased from suppliers and used 

without further purification. Standards of 4-(5-fluoro-2-nitrophenyl)morpholine 

3, 4-(3-fluoro-4-nitrophenyl)morpholine 4 and 4,4’-(4-nitro-1,3-

phenylene)dimorpholine 5 were synthesised and characterised for HPLC 

calibration.  
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6.3.2 Synthesis of ortho-2.3, para-2.4 and bis-2.5 

 

 

Morpholine 2.2 (6.02 g, 69.1 mmol) was added to 2,4-

difluoronitrobenzene 2.1 (5.00 g, 31.4 mmol) in ethanol (150 mL) in a round-

bottomed flask. The reaction mixture was left to stir at room temperature for 5 

hours. The resultant mixture was concentrated in vacuo, redissolved in ethyl 

acetate (100 mL), and washed successively with saturated NH4Cl solution 

(100 mL) and brine (100 mL). The organic layer was separated, dried over 

Na2SO4, and concentrated in vacuo. The resultant residue was purified by 

flash column chromatography (10-80% EtOAc/n-hexane) to afford ortho-2.3 

(5.53 g, 78%) as an orange oil, para-2.4 (0.8415 g, 12%) as a bright yellow 

solid and bis-adduct 2.5 as an orange solid (0.35 g, 4%). 

 

1H NMR (CDCl3, 500 MHz) δ 7.90 (dd, J = 9.1, 6.0 Hz, 1H), 6.78 (dd, J = 

11, 2.6 Hz, 1H), 6.72 (ddd, J = 9.5, 7.0, 2.6 Hz, 1H), 3.93 – 3.75 (m, 4H), 3.13 

– 2.99 (m, 4H); 13C NMR (CDCl3, 126 MHz) δ 165.5 (d, J = 260 Hz), 148.6, 

148.5, 129.0 (d, J = 11 Hz), 108.6 (d, J = 24 Hz), 107.2 (d, J = 25 Hz), 66.6, 

51.7; m/z (ESI+) C10H11FN2O3 [M+H]+, calculated 227.08, found 227.33; in 

agreement with published data. 168 

 



- 153 - 

 

1H NMR (CDCl3, 500 MHz) δ 8.09 – 8.00 (t, J = 9.1 Hz, 1H), 6.61 (dd, 

J = 9.4, 2.7 Hz, 1H), 6.54 (dd, J = 15, 2.7 Hz, 1H), 3.89 – 3.82 (m, 4H), 3.40 – 

3.33 (m, 4H); 13C NMR (CDCl3, 126 MHz) δ 158.0 (d, J = 260 Hz), 155.9, 

155.8, 128.2 (d, J = 1.3 Hz), 108.2, 101.0 (d, J = 26 Hz), 66.2, 46.9; m/z (ESI+) 

C10H11FN2O3 [M+H]+, calculated 227.08, found 227.32; in agreement with 

published data. 168 

 

1H NMR (CDCl3, 500 MHz) δ 8.03 (d, J = 9.3 Hz, 1H), 6.47 (dd, J = 9.4, 

2.6 Hz, 1H), 6.33 (d, J = 2.6 Hz, 1H), 3.91 – 3.87 (m, 4H), 3.87 – 3.82 (m, 4H), 

3.37 – 3.30 (m, 4H), 3.10 – 3.03 (m, 4H); 13C NMR (CDCl3, 126 MHz) δ 155.2, 

149.4, 133.1, 129.7, 107.0, 103.4, 66.9, 66.4, 52.3, 47.3; m/z (ESI+) 

C14H19N3O4 [M+H]+, calculated 294.15, found 294.39; in agreement with 

published data. 168  

6.3.3 Simulated Optimisation 

Construction of concertation profiles for the simulated code was made 

based on previously reported reaction kinetic data, using numerical analysis 

of ODEs. Arrhenius kinetics facilitated the computation calculation of the 

corresponding rate constants for each transformation within the SNAr 

pathway. Employing an optimisation algorithm onto these concentration 

profiles and kinetic models supplied by the ODEs enabled the refinement of 

the desired process metrics for the system.  
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𝑑𝐶𝐴

𝑑𝑡
=  − 𝑘1 ∙ 𝐶𝐴  ∙ 𝐶𝐵  −  𝑘2 ∙ 𝐶𝐴  ∙ 𝐶𝐵 

(20) 

𝑑𝐶𝐵

𝑑𝑡
=  − 𝑘1 ∙ 𝐶𝐴  ∙ 𝐶𝐵  −  𝑘2 ∙ 𝐶𝐴  ∙ 𝐶𝐵  −  𝑘3 ∙ 𝐶𝐵  ∙ 𝐶𝐶 −  𝑘4 ∙ 𝐶𝐵  

∙ 𝐶𝐷 

(21) 

𝑑𝐶𝐶

𝑑𝑡
=  𝑘1 ∙ 𝐶𝐴  ∙ 𝐶𝐵  − 𝑘3 ∙ 𝐶𝐵  ∙ 𝐶𝐶 

(22) 

𝑑𝐶𝐷

𝑑𝑡
=  𝑘2 ∙ 𝐶𝐴  ∙ 𝐶𝐵 − 𝑘4 ∙ 𝐶𝐵  ∙ 𝐶𝐷 

(23) 

𝑑𝐶𝐸

𝑑𝑡
=  𝑘3 ∙ 𝐶𝐵  ∙ 𝐶𝐶 +  𝑘4 ∙ 𝐶𝐵  ∙ 𝐶𝐷 

(24) 

 

Where 𝐶𝐴= Concentration of 2,4-difluoronitrobenzene (2.1), (M) 

𝐶𝐵  = Concentration of morpholine (2.2), (M) 

𝐶𝐶 = Concentration of ortho (2.3), (M) 

𝐶𝐷 = Concentration of para (2.4), (M) 

𝐶𝐸 = Concentration of bis (2.5), (M) 

t = time, (min) 

𝑘1 = Rate of reaction for the first step, (min-1) 

𝑘2 = Rate of reaction for the second step, (min-1) 

𝑘3 = Rate of reaction for the third step, (min-1) 

𝑘4 = Rate of reaction for the fourth step, (min-1) 
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Figure 51. Screenshot of the concentration profiles used within the 

simulated code for the SNAr reaction. 

 

The simulated self-optimizations were conducted concerning four 

continuous parameters: tres, pyrrolidine/morpholine 2.2 equivalents, 

concentration of 2.1 and temperature. The parameter limits are shown in 

Table 12. The single-objective optimization was to maximize ortho product 2.3 

yield or maximise para product 2.4 yield, as defined by the [Eq (25-(26)].  

 

 minimize [-(ortho yield)] (25) 

 minimize [-(para yield)] (26) 
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Figure 52. Screenshot of the ODE Solver code required for the simulation of 
concentration profiles, returning the TimeData and Concentration Data, 
used to calculate the % yield results for each regioisomer in the 
simulation. 

Table 6. Parameter boundaries for the four-variable single-objective 

simulated self-optimisation of the SNAr reaction using pyrrolidine and 

morpholine in separate studies for comparison. 

Limits tres /min 
Pyrrolidine/Morpholine 

2.2/equiv. 

Conc. 2.1 

/M 
Temp /°C 

Lower 0.5 1.0 0.05 60 

Upper 2.0 5.0 0.175 120 
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Table 7. List of operating conditions and results from the simulated SNOBFIT 

optimisation of the SNAr reaction for pyrrolidine with ortho yield as the 

objective. The optimal yield and conditions are highlighted in green. 

Entry tres/min Pyrrolidine 

Equiv.  

Conc. 

2.1/M 

Temp/°C Ortho-2.3 

yield /% 

1 1.3 2.3 0.3 99 68.6 

2 0.5 3.4 0.2 60 90.7 

3 1.4 4.5 0.3 120 14.6 

4 0.5 3.8 0.3 80 82.7 

5 0.6 2.1 0.38 110 76.3 

6 0.7 1.1 0.4 70 82.9 

7 0.7 4.9 0.29 90 65.2 

8 1.5 4.9 0.35 105 20.7 

9 1.4 1.2 0.15 85 87.2 

10 1.1 4.9 0.43 66 66.9 

11 1.8 4.6 0.42 74 47.2 

12 0.9 1.1 0.22 115 88.5 

13 0.4 4.5 0.1 60 82.6 

14 0.5 1 0.12 93 66.4 

15 0.4 1 0.27 90 74.8 

16 1 1 0.1 73 64.2 

17 0.7 2.4 0.21 95 85.1 

18 1.8 5 0.1 60 86.1 

19 1.9 1 0.25 93 87.1 

20 0.4 2.2 0.33 60 87.1 

21 1.6 1.7 0.41 85 80.4 

22 1.8 1 0.38 60 84.2 
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23 1.9 2.2 0.11 91 84.5 

24 0.6 2.5 0.23 80 89.2 

25 1.8 2.7 0.46 97 45.1 

26 1.8 2.1 0.3 60 87.6 

27 1.9 1.6 0.22 80 87.9 

28 0.4 1 0.32 101 80.5 

29 0.9 3.9 0.22 115 51.8 

30 1.8 2.6 0.26 60 85.7 

31 1.9 1 0.12 81 80.5 

32 2 2.2 0.21 85 78.6 

33 1.3 4.2 0.29 65 76.5 

34 0.4 3.5 0.32 60 90.7 

35 0.4 1.7 0.25 85 88.0 

36 0.4 2.4 0.41 84 87.6 

37 1.4 2.2 0.16 112 73.9 

38 0.7 3.1 0.29 60 89.9 

39 0.9 1 0.1 104 77.6 

40 0.4 1.7 0.5 81 90.1 

41 0.4 1 0.24 82 69.0 

42 1.7 2.3 0.29 82 76.5 

43 1.3 2.3 0.3 99 68.6 
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Table 8. List of operating conditions and results from the simulated SNOBFIT 

optimisation of the SNAr reaction for pyrrolidine with para yield as the 

objective. The optimal yield and conditions are highlighted in green. 

Entry tres/min Pyrrolidine 

Equiv. 

Conc. 

2.1/M 

Temp/°C para-2.4 

yield /% 

1 0.9 4.9 0.3 87 2.16 

2 1.5 1.0 0.3 120 4.13 

3 1.0 1.2 0.3 60 3.68 

4 1.3 2.9 0.2 103 2.23 

5 2 3 0.12 74 3.49 

6 1.2 1 0.26 95 3.93 

7 1.6 4 0.36 112 0.18 

8 0.6 4.2 0.16 67 3.87 

9 1.3 1.9 0.11 81 3.99 

10 1.3 4.6 0.1 98 2.52 

11 1 1.7 0.48 108 2.69 

12 0.7 4.4 0.23 117 1.21 

13 1.5 1 0.1 74 3.24 

14 0.4 2.6 0.1 60 2.86 

15 1 1 0.1 66 2.63 

16 1.1 1 0.21 120 4.09 

17 0.8 3.4 0.35 93 2.28 

18 2 1 0.5 87 3.99 

19 1.3 5 0.16 60 3.46 

20 1.9 1 0.21 119 4.11 

21 0.8 1.5 0.38 88 3.89 

22 2 1 0.1 110 4.00 
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23 1 2.5 0.1 89 3.91 

24 0.4 1 0.39 80 3.43 

25 0.7 2.6 0.42 71 3.58 

26 1.4 1 0.1 120 4.02 

27 0.5 1.3 0.1 82 3.00 

28 0.4 5 0.28 74 3.54 

29 0.9 1 0.42 95 3.97 

30 1.4 2.7 0.43 107 0.97 

31 1.9 1 0.1 120 4.07 

32 0.5 1 0.29 114 3.97 

33 1.8 1.5 0.14 85 3.97 

34 1.5 1.3 0.1 94 4.02 

35 0.8 3.4 0.15 112 2.54 

36 0.5 1 0.5 120 4.09 

37 1.8 2.8 0.1 85 3.49 

38 1.1 1 0.1 90 3.45 

39 1.4 4.4 0.38 93 0.77 

40 2 1 0.17 120 4.11 

41 1.9 1.9 0.12 98 3.52 

42 0.4 1 0.4 85 3.56 

43 0.4 5 0.1 74 3.96 

44 1.2 1.7 0.44 98 2.97 
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Table 9. List of operating conditions and results from the simulated SNOBFIT 

optimisation of the SNAr reaction for morpholine with ortho yield as the 

objective. The optimal yield and conditions are highlighted in green. 

Entry tres/min Morpholine 

Equiv. 2.2 

Conc. 

2.1/M 

Temp/°C Ortho-2.3 

yield /% 

1 1.9 2.1 0.1 92 42.58 

2 0.6 4.9 0.3 60 27.56 

3 0.7 2.7 0.3 120 69.15 

4 1.7 4.5 0.5 76 73.50 

5 2 3.8 0.19 106 76.47 

6 1.7 1.2 0.19 68 18.80 

7 1.8 1.4 0.4 84 50.19 

8 0.9 4.3 0.37 113 78.28 

9 0.5 4 0.45 99 66.53 

10 1.3 5 0.46 88 76.24 

11 0.8 1.1 0.45 73 21.91 

12 1.5 4.8 0.36 65 61.52 

13 0.5 5 0.12 120 57.53 

14 2 5 0.33 120 79.70 

15 1.5 5 0.5 120 79.70 

16 1.3 5 0.5 115 79.36 

17 1.6 4.4 0.24 83 67.46 

18 1.7 4.1 0.4 113 79.20 

19 2 5 0.35 94 77.60 

20 2 5 0.5 88 77.21 

21 1 1.8 0.39 105 60.95 

22 1.5 5 0.31 120 79.69 



- 162 - 

23 1.8 4.8 0.1 113 74.50 

24 1.9 5 0.48 79 75.83 

25 1.5 2.2 0.35 102 69.93 

26 1.5 4.5 0.4 120 79.70 

27 2 3.4 0.48 107 78.75 

28 2 4.8 0.35 113 79.22 

29 2 4.8 0.45 110 79.01 

30 0.9 3.9 0.38 75 54.90 

31 2 2.7 0.5 120 79.68 

32 2 4 0.5 111 79.08 

33 2 4.5 0.45 120 79.70 

34 1 2 0.28 81 36.61 

35 2 2.7 0.38 120 79.57 

36 2 4.8 0.35 103 78.45 

37 2 2.7 0.45 97 76.54 

38 1.1 3.9 0.23 101 69.53 

39 2 3.6 0.42 120 79.70 

40 2 3.9 0.5 102 78.39 

41 2 3.8 0.5 118 79.57 

42 1 1.8 0.19 105 44.32 

 

Table 10. List of operating conditions and results from the simulated SNOBFIT 

optimisation of the SNAr reaction for morpholine with para yield as the 

objective. The optimal yield and conditions are highlighted in green. 

Entry tres/min Morpholine 

Equiv. 

Conc. 

2.1/M 

Temp/°C para-2.4 

yield /% 
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1 1.7 4.3 0.4 69 19.92 

2 0.7 1.2 0.3 120 10.31 

3 0.9 2.5 0.3 94 14.37 

4 1.5 5.0 0.2 82 17.79 

5 1.6 1.4 0.42 107 16.50 

6 1 2.1 0.14 60 4.01 

7 1.9 5 0.44 114 10.87 

8 1.3 1.1 0.48 75 10.24 

9 1.4 4.3 0.22 101 18.44 

10 1.5 3.8 0.44 88 19.43 

11 0.5 4.5 0.28 64 8.67 

12 1.1 1 0.35 112 11.91 

13 2 2.4 0.14 112 16.58 

14 2 5 0.46 90 16.86 

15 2 1 0.3 91 11.71 

16 2 5 0.33 97 16.82 

17 0.9 2.3 0.35 68 10.16 

18 2 3.5 0.5 76 20.48 

19 1.2 4.9 0.5 83 19.81 

20 2 5 0.4 66 21.23 

21 1 3.9 0.16 111 16.70 

22 2 5 0.14 73 16.80 

23 2 4.8 0.31 78 20.30 

24 2 5 0.36 77 20.35 

25 1.7 5 0.1 95 16.98 

26 1 4.2 0.22 71 13.08 
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27 2 4.7 0.5 60 21.62 

28 1.1 5 0.24 99 18.55 

29 2 4.7 0.5 72 20.72 

30 1 1.8 0.39 101 15.39 

31 0.7 3.8 0.28 71 11.38 

32 2 3.5 0.32 65 18.23 

33 1.5 3.4 0.5 103 17.13 

34 1.4 1.7 0.28 76 10.94 

35 0.6 3.2 0.24 64 6.70 

36 2 4.7 0.5 79 19.45 

37 2 4.9 0.38 72 20.84 

38 2 5 0.5 60 21.79 

39 1.5 2.8 0.18 84 14.01 

40 1.5 3.3 0.36 67 16.96 

41 2 5 0.5 66 21.43 

42 1.6 5 0.5 76 20.35 

43 2 4.3 0.41 68 20.87 

44 1.3 4.2 0.42 101 17.66 

 

6.3.4 Experimental Set-Up 

 Reservoir solutions were prepared by dissolving the desired reagents 

in a solvent under stirring at ambient conditions until a homogenous reaction 

mixture was achieved. These solutions were then loaded and primed into the 

desired pumps for the optimisation. 
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Table 11. List of reservoir solutions for the SNAr optimisation. Biphenyl was 

used as the internal standard for the optimisation process. 

Reservoir Compound 1 Compound 2 Solvent 

1 2,4-

Difluoronitrobenzene 

(27.79 mL, 0.25 mol, 

1.015 mol L-1) 

R1 

Biphenyl (1.95 g, 

13.00 mmol, 

0.051 mol L-1) 

I.S 

The solvent of 

choice (NMP, 

DMF, DMAc, 

MeCN, EtOH) 

(250 mL) 

2 Morpholine (45.58 

mL, 1.04 mol, 2.085 

mol L-1) 

R2 

 

X 

Triethylamine 

(250 mL) 

 

Solvent 

 

X 

 

X 

The solvent of 

choice (NMP, 

DMF, DMAc, 

MeCN, EtOH) 

 

The automated reactor was set up according to the schematic shown 

in Figure 54, where the reactor volume = 3 mL and the fixed back pressure = 

100 psi. HPLC mobile phases were A H2O (18.2 MΩ), and B MeCN, both 

buffered with 0.1% TFA. The method used was 10% to 90% B 5.0 mins, 90% 

to 10% B 0.1 mins, 10% B 1 min, flow rate 1.50 mL min-1, column temperature 

20 °C. An example chromatogram is shown in Figure 53.  
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Figure 53. Example HPLC chromatogram for the SNAr optimisation. Retention 

times (min): bis 5 = 1.14; para 4 = 1.53; 2,4-difluoronitrobenzene 1 = 

1.69; ortho 3 = 1.95; biphenyl (IS) = 3.86 
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Figure 54. Flow schematic of the optimisation platform used for this chapter’s 

work. R1 represents 2,4-difluoronitrobenzene 2.1 and R2 is 

morpholine 2.2. Biphenyl (internal standard) was included in all the R1 

stock solutions. S1 is DMF, S2 is NMP, S3 is EtOH, S4 is MeCN and S5 

is DMAc.  
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6.3.5 Self-Optimisation Results 

The self-optimization was conducted concerning four continuous 

parameters: tres, morpholine 2.2 equivalents, concentration of 2.1 and 

temperature and one discrete parameter: valve position (solvent choice). The 

parameter limits are shown in Table 12. The objective of the optimization was 

to simultaneously maximize ortho product 2.3 yield and maximise para 

product 2.4 yield, as defined by the [Eq (27)].  

 minimise [-(ortho yield), -(para yield)] (27) 

Table 12. Parameter boundaries for the five-variable experimental multi-

objective self-optimisation of the SNAr reaction using the MVMOO 

algorithm. 

Limits tres /min 
Morpholine 

2.2/equiv. 

Conc. 

2.1 /M 
Temp /°C 

Valve 

Position 

Lower 0.5 1.0 0.05 60 1 

Upper 2.0 5.0 0.175 120 5 

 

 

Table 13. List of operating conditions and results from the self-optimisation of 

the SNAr reaction. The first 25 experiments were completed as a LHC 

design. Pareto optimal points are highlighted in green.  

Entry tres/min Equiv. 

2.2 

Conc. 

2.1/M 

Temp/°C Solvent Ortho-

2.3 

yield /% 

Para-

2.4 

yield 

/% 

1 1.19 2.3 0.146 62.7 DMF 44.3 28.9 

2 1.19 2.3 0.146 62.7 NMP 39.6 35.5 

3 1.19 2.3 0.146 62.7 EtOH 13.6 3.0 

4 1.19 2.3 0.146 62.7 DMAc 34.4 28.8 
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5 1.19 2.3 0.146 62.7 MeCN 34.2 6.5 

6 1.65 5.0 0.062 79.3 DMF 57.1 33.3 

7 1.65 5.0 0.062 79.3 NMP 50.0 41.4 

8 1.65 5.0 0.062 79.3 EtOH 31.0 6.7 

9 1.65 5.0 0.062 79.3 DMAc 47.5 37.5 

10 1.65 5.0 0.062 79.3 MeCN 56.3 8.5 

11 0.56 4.0 0.098 90.8 DMF 45.1 26.7 

12 0.56 4.0 0.098 90.8 NMP 40.0 33.3 

13 0.56 4.0 0.098 90.8 EtOH 19.3 3.0 

14 0.56 4.0 0.098 90.8 DMAc 35.6 29.0 

15 0.56 4.0 0.098 90.8 MeCN 33.9 4.2 

16 1.97 2.6 0.123 107.1 DMF 62.2 32.3 

17 1.97 2.6 0.123 107.1 NMP 54.1 40.5 

18 1.97 2.6 0.123 107.1 EtOH 59.6 7.9 

19 1.97 2.6 0.123 107.1 DMAc 55.6 38.1 

20 1.97 2.6 0.123 107.1 MeCN 74.1 10.2 

21 0.83 1.6 0.157 112.1 DMF 49.2 28.8 

22 0.83 1.6 0.157 112.1 NMP 44.1 35.6 

23 0.83 1.6 0.157 112.1 EtOH 31.4 4.0 

24 0.83 1.6 0.157 112.1 DMAc 41.8 32.4 

25 0.83 1.6 0.157 112.1 MeCN 45.4 5.6 

26 2.00 2.7 0.149 107.1 NMP 52.8 41.6 

27 2.00 2.8 0.175 107.6 NMP 52.9 41.5 

28 1.67 3.7 0.175 109.1 NMP 53.9 39.5 

29 2.00 5.0 0.050 120.0 MeCN 79.8 10.4 

30 2.00 3.7 0.050 117.1 DMAc 53.6 40.3 
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31 2.00 5.0 0.050 120.0 NMP 53.1 40.8 

32 2.00 5.0 0.050 88.8 NMP 49.5 48.2 

33 1.81 4.5 0.160 94.9 NMP 54.4 40.3 

34 1.77 3.7 0.141 88.8 NMP 52.2 43.3 

35 1.78 4.5 0.053 88.1 NMP 48.2 42.7 

36 1.98 4.3 0.175 88.0 NMP 53.4 41.9 

37 2.00 5.0 0.050 120.0 DMF 62.0 31.4 

38 2.00 5.0 0.175 91.3 DMF 59.8 33.1 

39 2.00 5.0 0.050 96.8 DMAc 51.7 42.3 

40 2.00 1.0 0.050 85.9 DMF 28.6 18.5 

41 1.95 5.0 0.175 108.2 DMF 59.8 29.2 

42 2.00 1.0 0.050 120.0 NMP 19.0 15.9 

43 2.00 3.3 0.175 98.5 NMP 52.9 42.2 

44 2.00 5.0 0.097 113.5 DMAc 54.5 39.2 

45 2.00 5.0 0.050 103.9 NMP 49.3 42.2 

46 2.00 3.6 0.050 106.1 DMAc 45.3 37.7 

47 1.85 3.6 0.175 120.0 DMF 59.5 29.7 

48 1.52 5.0 0.175 120.0 DMAc 56.3 34.2 

49 0.96 5.0 0.175 120.0 NMP 58.5 35.5 

50 2.00 5.0 0.175 60.8 NMP 53.6 40.9 

51 2.00 2.8 0.175 117.8 DMAc 55.6 38.0 

52 1.39 5.0 0.175 119.0 NMP 56.2 35.7 

53 2.00 4.0 0.171 94.1 NMP 53.7 41.6 

54 2.00 5.0 0.175 66.2 DMF 59.6 36.6 

55 1.46 2.7 0.175 104.2 NMP 52.7 42.1 

56 2.00 5.0 0.175 71.8 NMP 54.5 41.8 
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57 0.72 5.0 0.050 120.0 DMF 53.3 30.3 

58 2.00 3.4 0.175 105.4 DMF 59.4 32.6 

59 0.80 5.0 0.050 116.3 NMP 50.2 41.2 

60 0.50 5.0 0.050 120.0 EtOH 24.7 0.0 

61 1.92 4.6 0.057 119.8 DMAc 54.2 41.3 

62 1.56 5.0 0.175 119.2 DMF 61.4 28.0 

63 2.00 4.4 0.132 120.0 DMAc 55.1 35.1 

64 2.00 1.6 0.058 119.3 MeCN 52.6 7.2 

65 1.03 4.8 0.080 120.0 NMP 52.9 43.1 

66 2.00 5.0 0.175 113.3 MeCN 75.2 16.9 

67 2.00 5.0 0.174 120.0 MeCN 79.0 14.0 

68 2.00 2.5 0.164 112.8 DMAc 54.4 40.2 

69 2.00 5.0 0.110 91.1 NMP 53.0 43.3 

70 2.00 5.0 0.175 76.6 DMF 61.1 34.8 

71 1.76 2.7 0.175 111.1 DMAc 54.5 40.1 

72 2.00 2.3 0.175 105.7 DMAc 53.3 41.5 

73 1.98 3.0 0.050 112.6 DMF 58.2 33.8 

74 2.00 2.8 0.167 86.7 NMP 51.6 43.5 

75 1.83 2.4 0.171 98.0 NMP 51.9 43.0 

76 2.00 3.9 0.149 74.8 NMP 52.0 43.4 

77 2.00 5.0 0.078 68.6 NMP 50.7 44.3 

78 2.00 5.0 0.175 90.1 DMAc 55.3 40.4 

79 2.00 4.5 0.169 113.3 MeCN 76.8 16.8 

80 2.00 3.9 0.175 115.0 MeCN 75.9 17.6 

81 2.00 5.0 0.142 77.4 NMP 53.7 41.4 

82 2.00 5.0 0.175 71.2 DMF 59.9 37.0 
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83 2.00 5.0 0.077 93.6 NMP 51.5 40.3 

84 2.00 3.5 0.105 88.1 NMP 51.7 43.5 

85 1.86 2.6 0.166 102.5 NMP 52.8 42.1 

86 2.00 4.6 0.139 115.5 MeCN 78.1 16.3 

87 1.05 5.0 0.173 110.9 NMP 56.0 38.4 

88 1.40 5.0 0.175 109.6 NMP 55.8 38.0 

89 2.00 5.0 0.175 99.1 DMAc 55.4 38.4 

90 2.00 4.3 0.099 67.8 NMP 50.3 44.1 

91 1.46 5.0 0.175 68.6 DMF 59.2 35.2 

92 1.40 5.0 0.175 64.9 NMP 52.3 41.5 

93 2.00 5.0 0.175 120.0 DMF 61.1 25.9 

94 1.55 3.2 0.134 110.2 DMF 60.5 33.9 

95 1.05 4.8 0.163 115.8 NMP 55.5 39.2 

96 1.73 5.0 0.050 60.1 DMF 46.4 29.1 

97 2.00 4.9 0.170 66.7 NMP 53.4 43.0 

98 1.84 2.7 0.175 109.4 DMF 60.1 34.6 

99 1.71 4.9 0.050 115.3 DMF 59.8 35.8 

 

Table 14. List of Pareto front experiments in order of optimum ortho-2.3 yield 

% to optimum para-2.4 yield %. 

Entry tres/min Equiv. 

2.2 

Conc. 

2.1/M 

Temp/°C Solvent Ortho-

2.3 

yield 

/% 

Para-

2.4 

yield 

/% 

1 2.00 5.0 0.050 120.0 MeCN 79.8 10.4 

2 2.00 5.0 0.174 120.0 MeCN 79.0 14.0 

3 2.00 4.6 0.139 115.5 MeCN 78.1 16.3 
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4 2.00 4.5 0.169 113.3 MeCN 76.8 16.8 

5 2.00 3.9 0.175 115.0 MeCN 75.9 17.6 

6 1.97 2.6 0.123 107.1 DMF 62.2 32.3 

7 2.00 5.0 0.175 76.6 DMF 61.1 34.8 

8 2.00 5.0 0.175 71.2 DMF 59.9 37.0 

9 1.05 5.0 0.173 110.9 NMP 56.0 38.4 

10 1.05 4.8 0.163 115.8 NMP 55.5 39.2 

11 2.00 5.0 0.175 90.1 DMAc 55.3 40.4 

12 2.00 5.0 0.175 71.8 NMP 54.5 41.8 

13 2.00 4.9 0.170 66.7 NMP 53.4 43.0 

14 2.00 5.0 0.110 91.1 NMP 53.0 43.3 

15 1.77 3.7 0.141 88.8 NMP 52.2 43.3 

16 2.00 3.9 0.149 74.8 NMP 52.0 43.4 

17 2.00 3.5 0.105 88.1 NMP 51.7 43.5 

18 2.00 2.8 0.167 86.7 NMP 51.6 43.5 

19 2.00 5.0 0.078 68.6 NMP 50.7 44.3 

20 2.00 5.0 0.050 88.8 NMP 49.5 48.2 

 

6.4 Chapter 3 Procedures 

6.4.1 Chemicals 

2-Bromo-4-(trifluoromethyl)benzonitrile 3.4 (95%, Fluorochem), 3,3-

dimethyl-1-butyne 3.5 (98%, Merck Life Science UK Ltd.), palladium (II) 

acetate (99+%, Merck Life Science UK Ltd.), copper (I) iodide (98%, Merck 

Life Science UK Ltd.), 2-dicyclohexylphosphino-2'-(N,N-

dimethylamino)biphenyl (DavePhos; 98%, Fluorochem), 2-

dicyclohexylphosphino-2'.4’.6’-triisopropylbiphenyl (XPhos; 98%, 

Fluorochem), (2-biphenyl)dicyclohexylphosphine (CyJohnPhos; 98%, 
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Fluorochem), 2-dicyclohexylphosphino-2',6’-dimethoxybiphenyl (SPhos; 98%, 

Fluorochem), 2-methyl-2'-dicyclohexylphosphinobiphenyl (TPP; Flake 99%, 

Alfa Aesar), 1,3,5-trimethoxybenzene (99+%, Merck Life Science UK Ltd.), 

pyrrolidine (99%, Fisher Scientific Ltd.), acetonitrile (MeCN; HPLC grade, 

Fisher Scientific Ltd.) and toluene (PhMe; 99.8+%, Fischer Scientific Ltd.) 

were purchased from suppliers and used without further purification. A 

standard of the desired product 3.3 was synthesised and characterised. 

 

6.4.2 Synthesis of 2-(3,3-dimethylbut-1-yn-1-yl)-4-

(trifluoromethyl)benzonitrile 3.6 

 

 

Pd2dba3 (1.11 mg, 1.22×10-3 mmol), DavePhos (1.90 mg, 4.85×10-

3 mmol) and CuI (0.46 mg, 2.40×10-3 mmol) were added to a round-bottomed 

flask. The flask was then purged with nitrogen and degassed trimethylamine 

(2 mL) was added. 2-chloro-4-(trifluoromethyl)benzonitrile (0.07 mL, 0.49 

mmol) was added and the reaction mixture was heated to 65 °C. 3,3-dimethyl-

1-buytne 7 (0.01 mL, 0.79 mmol) was added slowly over 2 hours using a 

syringe pump. The reaction mixture was heated for an additional 2 hours. The 

resultant mixture was diluted with isopropylacetate (20 mL) and then washed 

twice with water (2×30 mL) and twice with 10% citric acid (2×30 mL). The 

collected organic layer was diluted with methanol (40 mL) and concentrated 

to ~5 mL in vacuo. This was repeated twice more using methanol (2×70 mL), 

then concentration fully in vacuo. The resultant residue was purified by flash 

column chromatography (0-20% EtOAc/n-hexane) to afford the desired 

product 3.6 as a pale-yellow oil (90.3 mg, 74%). 
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1H NMR (CDCl3, 400 MHz) δ 7.73 (d, J = 4.8 Hz, 2H), 7.58 (d, J = 8.4 

Hz, 1H), 1.37 (s, 9H); 13C NMR (CDCl3, 101 MHz) δ 132.76, 128.67, 123.87, 

118.63, 116.32, 107.98, 74.90, 30.33, 28.22; m/z (ESI+) C14H12F3N [M+H]+, 

calculated 251.09, found 251.38; in agreement with published data.136   

6.4.3 Experimental Set-Up 

Reservoir solutions 1 and 2 were prepared by dissolving the desired 

reagents in a solvent under stirring at ambient conditions. Reservoir solutions 

3 (a-e) were prepared under inert conditions and sonicated at 40 °C in a water 

bath until a homogenous solution was achieved. 

Table 15. List of reservoir solutions for the Sonogashira optimisation. 1,3,5-

trimethoxybenzene was used as the internal standard for the 

optimisation process. 

Reservo

ir 

Compound  

1 

Compound  

2 

Compound 

3 

Compo

und 4 

Solvent 

1 2-Bromo-4-

(trifluoromethyl)-

benzonitrile 

(24.00 g, 0.096 

mol, 0.6 mol L-1) 

1,3,5-

Trimethoxybenze

ne (4.04 g, 0.024 

mol, 0.15 mol L-1) 

I.S 

 

 

X 

 

 

X 

 

Toluene/ 

MeCN  

(2:1, 160 m

L) 

2 3,3-Dimethyl-1-

butyne (16.6 mL, 

0.14 mol, 0.400 

mol L-1) 

 

X 

 

X 

 

X 

Toluene/ 

MeCN (2:1; 

240 mL) 

 

3A 

DavePhos (0.76 

g, 1.9 mmol, 

0.012 mol L-1) 

Palladium acetate 

(0.14 g, 

0.64 mmol, 

0.004 mol L-1) 

 

CuI (1.83 g, 

9.6 mmol, 

0.06 mol L -

1) 

Pyrrolid

ine  

(20.48 

g, 0.28

8 mol, 

1.8 mol 

L-1) 

Toluene/ 

MeCN  

(2:1, 160 m

L) 
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3B XPhos (0.92 g, 

1.9 mmol, 

0.012 mol L-1) 

Palladium acetate 

(0.14 g, 

0.64 mmol, 

0.004 mol L-1) 

CuI (1.83 g, 

9.6 mmol, 

0.06 mol L -

1) 

Pyrrolid

ine  

(20.48 

g, 0.28

8 mol, 

1.8 mol 

L-1) 

Toluene/ 

MeCN  

(2:1, 160 m

L) 

3C CyJohnPhos 

(0.67 g, 1.9 

mmol, 0.012 mol 

L-1) 

Palladium acetate 

(0.14 g, 

0.64 mmol, 

0.004 mol L-1) 

CuI (1.83 g, 

9.6 mmol, 

0.06 mol L -

1) 

Pyrrolid

ine  

(20.48 

g, 0.28

8 mol, 

1.8 mol 

L-1) 

Toluene/ 

MeCN  

(2:1, 160 m

L) 

3D SPhos (0.79 g, 

1.9 mmol, 

0.012 mol L-1) 

Palladium acetate 

(0.14 g, 

0.64 mmol, 

0.004 mol L-1) 

CuI (1.83 g, 

9.6 mmol, 

0.06 mol L -

1) 

Pyrrolid

ine  

(20.48 

g, 0.28

8 mol, 

1.8 mol 

L-1) 

Toluene/ 

MeCN  

(2:1, 160 m

L) 

3E Triphenylphosph

ine (0.50 g, 

1.9 mmol, 

0.012 mol L-1) 

Palladium acetate 

(0.14 g, 

0.64 mmol, 

0.004 mol L-1) 

CuI (1.83 g, 

9.6 mmol, 

0.06 mol L -

1) 

Pyrrolid

ine  

(20.48 

g, 0.28

8 mol, 

1.8 mol 

L-1) 

Toluene/ 

MeCN  

(2:1, 160 m

L) 

Solvent X X X X Toluene/M

eCN  

(2:1) 
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The automated reactor was set up according to the schematic shown in Figure 

55, where the reactor volume = 4 mL and the fixed back pressure = 250 psi. 

HPLC mobile phases were A H2O (18.2 MΩ), and B MeCN, both buffered with 

0.1% TFA. The method used was 40% B 1.5 mins, 40 to 95% B 2.5 mins, 95% 

to 40% B 0.1 min, 40% B 1 min, flow rate 1.50 mLmin-1, column temperature 

20 °C. An example chromatogram is shown in Figure 56.  

HPLC

6-way 
valve

Sample 
loop

Pump

Tee 
piece

 Flow 
reactor

MVMOO 
Algorithm

R6
I.S

Continuous Variables
(Temp., tres 

and R7 Equiv. )

Target Objectives
(STY and RME)

Discrete Variable
(Ligand Selection)

L1   L2
L3   L4

L5   

Solvent

R7

 

Figure 55. Flow schematic used for the Sonogashira optimisation. R6 

represents 2-bromo-4-(trifluoromethyl) benzonitrile 3.4, I.S is the internal 

standard 1,3,5-trimethoxybenzene and R7 represents 3,3-

dimethylbutyne 3.5. L1 is DavePhos, L2 is XPhos, L3 is CyJohnPhos, L4 

is SPhos and L5 is TPP. The catalyst Pd(OAc)2, CuI and pyrrolidine base 

was included in each of these stock solutions. 
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Figure 56. Example HPLC chromatogram for the Sonogashira reaction. 

Retention times (min): 2-chloro-4-(trifluoromethyl)benzonitrile 3.4 = 3.37 

(230 nm); 2-(3,3-dimethylbut-1-yn-1-yl)-4-

(trifluoromethyl)benzonitrile 3.6 = 4.44 (254 nm); 1,3,5-

trimethoxybenzene (IS) = 2.17 (210 nm). 

3.6 

254 nm 

 

210 nm 

230 nm 

3.3 

IS 
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6.4.4 Self-Optimisation Results 

The self-optimization was conducted concerning three continuous 

parameters: tres, 3,3-dimethylbutyne 3.5 equivalents and temperature and one 

discrete parameter: valve position (ligand choice). The parameter limits are 

shown in Table S2. The objective of the optimization was to simultaneously 

maximize space-time yield (STY) as defined by [Eq (28)] and maximise the 

reaction mass efficiency (RME) [Eq (29)] of the reaction as defined by the 

[Eq (30)] 

 𝑆𝑇𝑌 =  
𝑚𝑎𝑠𝑠𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑉𝑜𝑙𝑢𝑚𝑒 ×  𝑡𝑟𝑒𝑠
 (28) 

 
𝑅𝑀𝐸 =  

𝑀𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝟑.𝟔 × 𝑌𝑖𝑒𝑙𝑑

𝑀𝑊𝟑.𝟒 + (𝑀𝑊𝟑.𝟓 × 𝑒𝑞𝑢𝑖𝑣𝟑.𝟓)
 

(29) 

 minimise [-(RME), -(STY)] 

 

(30) 

Table 16. Parameter boundaries for the four-variable self-optimisation of the 

Sonogashira coupling reaction. 

Limits tres Eq. 3.5 Temp /°C 
Valve 

position 

Lower 1.0 1.0 60 1 

Upper 10.0 3.0 140 5 

 

Table 17. List of operating conditions and results from the self-optimisation of 

the Sonogashira coupling reaction. The first 25 experiments were 

completed as a LHC design. Pareto optimal points are highlighted in 

green. 

Entry tres/min Equiv. 

3.2 

Temp/°C Ligand RME STY/kg 

m-3 h-1 

1 9.3 1.86 63.5 DavePhos 18.77 9.06 

2 3.6 2.53 76.9 DavePhos 37.06 54.91 
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3 1.9 1.07 99.7 DavePhos 32.18 60.69 

4 7.6 2.99 119.5 DavePhos 3.22 2.57 

5 6.2 1.66 137.3 DavePhos 40.33 27.18 

6 9.3 1.86 63.5 XPhos 21.30 10.40 

7 3.6 2.53 76.9 XPhos 15.28 22.87 

8 1.9 1.07 99.7 XPhos 30.59 58.50 

9 7.6 2.99 119.5 XPhos 39.82 32.11 

10 6.2 1.66 137.3 XPhos 40.54 27.65 

11 9.3 1.86 63.5 CyJohnPhos 14.52 6.97 

12 3.6 2.53 76.9 CyJohnPhos 15.22 22.42 

13 1.9 1.07 99.7 CyJohnPhos 26.01 48.71 

14 7.6 2.99 119.5 CyJohnPhos 45.39 36.08 

15 6.2 1.66 137.3 CyJohnPhos 56.89 38.10 

16 9.3 1.86 63.5 SPhos 54.82 26.53 

17 3.6 2.53 76.9 SPhos 45.46 67.48 

18 1.9 1.07 99.7 SPhos 38.45 72.73 

19 7.6 2.99 119.5 SPhos 45.86 36.70 

20 6.2 1.66 137.3 SPhos 56.87 38.42 

21 9.3 1.86 63.5 TPP 68.19 32.31 

22 3.6 2.53 76.9 TPP 59.08 86.08 

23 1.9 1.07 99.7 TPP 52.00 95.94 

24 7.6 2.99 119.5 TPP 50.42 39.66 

25 6.2 1.66 137.3 TPP 62.97 41.62 

26 2.1 1.80 62.7 TPP 48.71 116.87 

27 2.4 2.77 73.8 TPP 56.61 140.43 

28 3.6 2.43 139.9 TPP 51.56 78.98 
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29 6.8 2.92 72.3 TPP 55.09 49.45 

30 9.2 1.35 71.2 TPP 63.98 31.41 

31 6.4 1.00 136.8 TPP 52.43 34.20 

32 1.9 3.00 82.3 TPP 47.66 151.41 

33 1.9 3.00 66.2 TPP 44.84 147.63 

34 2.0 3.00 92.0 TPP 52.52 161.10 

35 1.0 3.00 140.0 SPhos 51.51 322.05 

36 2.4 2.81 140.0 CyJohnPhos 46.76 115.89 

37 7.9 1.00 61.3 TPP 53.15 27.98 

38 2.3 2.81 140.0 SPhos 46.85 124.97 

39 5.1 2.07 85.2 TPP 58.87 60.07 

40 1.6 2.00 87.2 TPP 52.98 167.98 

41 1.6 1.67 126.6 TPP 57.71 178.37 

42 1.4 1.72 128.0 TPP 57.27 193.29 

43 1.3 1.72 128.0 TPP 55.90 203.91 

44 1.2 1.62 129.2 TPP 53.61 211.10 

45 1.2 1.92 120.6 TPP 53.89 237.84 

46 10.0 1.76 134.8 TPP 54.48 26.80 

47 1.0 1.87 133.4 TPP 53.94 271.17 

48 6.0 2.22 74.0 TPP 63.17 56.87 

49 1.0 3.00 140.0 TPP 45.70 280.86 

50 1.3 1.00 139.7 SPhos 41.47 135.19 

51 7.4 2.11 72.4 TPP 64.63 46.07 

52 4.9 2.42 75.4 TPP 59.26 66.90 

53 4.0 1.71 124.0 TPP 57.30 69.60 

54 1.2 1.56 138.6 TPP 52.59 205.00 
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55 9.2 2.36 72.3 TPP 61.44 37.03 

56 1.0 2.65 103.0 TPP 48.68 282.19 

57 1.2 1.68 127.3 TPP 52.93 206.21 

58 4.8 2.23 74.0 TPP 63.19 70.82 

59 8.3 2.02 65.3 TPP 65.55 41.01 

60 1.3 1.75 127.3 TPP 54.12 208.28 

61 4.2 2.30 73.5 TPP 62.10 80.12 

62 3.2 2.31 73.8 TPP 62.19 104.72 

63 1.3 2.37 74.6 TPP 41.42 175.59 

64 2.4 2.10 108.4 TPP 53.56 115.76 

65 6.7 2.05 60.2 TPP 63.25 48.95 

66 3.0 2.42 74.6 TPP 59.44 111.82 

67 10.0 1.00 140.0 SPhos 27.38 11.72 

68 4.5 2.06 62.4 TPP 63.42 73.72 

69 1.4 1.96 134.0 TPP 54.86 198.67 

 

Table 18. List of Pareto front experiments in order of optimum RME to 

optimum STY. 

Entr

y 

tres/min Equ

iv. 7 

Temp/°

C 

Ligand RME STY/kg m-3 

h-1 

1 9.29 1.86 63.5 TPP 68.19 32.31 

2 8.28 2.02 65.3 TPP 65.55 41.01 

3 7.39 2.11 72.4 TPP 64.63 46.07 

4 4.49 2.06 62.4 TPP 63.42 73.72 

5 3.25 2.31 73.8 TPP 62.19 104.72 

6 2.96 2.42 74.6 TPP 59.44 111.82 
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7 1.57 1.67 126.6 TPP 57.71 178.37 

8 1.45 1.72 128.0 TPP 57.27 193.29 

9 1.34 1.72 128.0 TPP 55.90 203.91 

10 1.28 1.75 127.3 TPP 54.12 208.28 

11 1.00 1.87 133.4 TPP 53.94 271.17 

12 1.00 3.00 140.0 SPhos 51.51 322.05 

 

 

6.5 Chapter 4 Procedures 

6.5.1 Chemicals 

Bromobenzene 4.5 (99%, Alfa Aesar), Ethylene glycol vinyl ether 4.6 

(98%, Merck Life Science UK Ltd.), acetophenone 4.9 (98%, Fluorochem), 

palladium (II) acetate (99+%, Merck Life Science UK Ltd.), triethylamine (99% 

Acros Organics), bis(diphenylphosphino)methane (dppm: 97%, Fluorochem), 

1,2-bis(diphenylphosphino)ethane (dppe: 95%, Fluorochem), 1,3-

Bis(diphenylphosphino)propane (dppp: 95%, Fluorochem), 2-

dicyclohexylphosphino-2'-(N,N-dimethylamino)biphenyl (DavePhos; 98%, 

Fluorochem), 2-methyl-2'-dicyclohexylphosphinobiphenyl (TPP; Flake 99%, 

Alfa Aesar), nitric acid (69-72%, Fisher Scientific Ltd.), acetonitrile (MeCN; 

HPLC grade, Fisher Scientific Ltd.) and ethane diol (99+%, Fisher Scientific 

Ltd.) were purchased from suppliers and used without further purification. A 

standard of the desired dioxolane product 4.8 was synthesised and 

characterised. 
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6.5.2 Synthesis of 2-methyl-2-phenyl-1,3-dioxolane 4.8 

 

An oven-dried, two-necked round-bottom flask containing a stirrer bar 

was charged with bromobenzene (0.16 g, 1.0 mmol), Pd(OAc)2 (2.25 mg, 0.01 

mmol), dppp (8.25 mg, 0.2 mmol) and EG:MeCN (2:1) solvent (2 mL) under 

nitrogen at room temperature. Following degassing three times, an ethylene 

glycol vinyl ether (0.26 g, 0.28 mL, 3.0 mmol) and NEt3 (0.25 g, 0.34 mL, 2.5 

mmol) were sequentially injected. The flask was placed in an oil bath, and the 

mixture was stirred and heated at 145 °C for 2 hours. After this reaction period, 

the flask was removed from the oil bath and cooled to room temperature.  The 

resultant mixture was diluted with H2O (30 mL) the aqueous phase was 

extracted with Et2O (3 x 20 mL) and the combined organic layers were washed 

with H2O (20 mL). The combined organic phase was dried over Na2SO4 and 

then concentrated in vacuo. The resultant mixture was passed through a silica 

gel-filled Pasteur pipette using DCM as the eluent. The product was 

concentrated in vacuo, to yield the dioxolane (4.8) product as a pale yellow 

crystalline solid (0.1445 g, 88%).  1H NMR (400 MHz, CDCl3): δ 7.41-7.39 (m, 

2 H), 7.26-7.18 (m, 3 H), 3.97-3.94 (m, 2H), 3.71-3.66 (m, 2 H), 1.58 ppm (s, 

3 H); 13C NMR (101 MHz, CDCl3): δ 143.7, 128.6, 128.3, 125.7, 109.3, 64.9, 

28.1 ppm; m/z (ESI+) C10H12O2 [M+H]+, calculated 165.08, found 165.10; in 

agreement with published literature.165 

6.5.3 Experimental Set-Up 

Reservoir solutions 1 (a-e) were prepared under inert conditions and 

sonicated at 50°C until a homogenous solution was achieved. Reservoir 

solutions 2 and 3 were prepared by dissolving the desired reagents in the 

solvent under stirring at ambient conditions.   
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The automated reactor was set up according to the schematic shown 

in Figure 55, where the reactor volume = 3 mL and the fixed back pressure = 

250 psi. HPLC mobile phases were A H2O (18.2 MΩ) and B MeCN. The 

method used was 16.3% B 2 min, 16.3 to 95.0% B 7 min, 95.0% B 1 min, 95.0 

to 16.3% B 0.1 min, 16.3% B 0.9 min, flow rate 2.0 mL min-1 , column 

temperature 40 °C. In this case, the same method was used for both reaction 

steps, resulting in a total analysis time of 15 min for the telescoped process. 

Example chromatograms are shown in Figure 57. 
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Table 19. List of reservoir solutions for the Heck-hydrolysis telescoped optimisation. Methyl p-tolyl sulfone was used as the internal 
standard for the optimisation process. 

Reservoir Compound 1 Compound 2 Compound 3 Compound 4 Compound 5 Solvent 

1A Bromobenzene 
(7.85 g, 0.05 

mol) 
Pd(OAc)2 (0.11 g, 

0.5 mmol) 

dppm (0.38 g, 
1.0 mmol) 

NEt3 (12.65 g, 
17.4 mL, 0.125 

mol) 

Methyl p-tolyl 
sulfone (3.41 g, 

0.02 mol) 
IS 

EG/ MeCN 
(1:1, 100 mL) 

1B Bromobenzene 
(7.85 g, 0.05 

mol) 
Pd(OAc)2 (0.11 g, 

0.5 mmol) 

Dppe (0.38 g, 1.0 
mmol) 

NEt3 (12.65 g, 
17.4 mL, 0.125 

mol) 

Methyl p-tolyl 
sulfone (3.41 g, 

0.02 mol) 
IS 

EG/ MeCN 
(1:1, 100 mL) 

1C Bromobenzene 
(7.85 g, 0.05 

mol) 
Pd(OAc)2 (0.11 g, 

0.5 mmol) 

Dppp (0.41 g, 1.0 
mmol) 

NEt3 (12.65 g, 
17.4 mL, 0.125 

mol) 

Methyl p-tolyl 
sulfone (3.41 g, 

0.02 mol) 
IS 

EG/ MeCN 
(1:1, 100 mL) 

1D Bromobenzene 
(7.85 g, 0.05 

mol) 
Pd(OAc)2 (0.11 g, 

0.5 mmol) 

TPP (0.26 g, 1.0 
mmol) 

NEt3 (12.65 g, 
17.4 mL, 0.125 

mol) 

Methyl p-tolyl 
sulfone (3.41 g, 

0.02 mol) 
IS 

EG/ MeCN 
(1:1, 100 mL) 

1E Bromobenzene 
(7.85 g, 0.05 

mol) 
Pd(OAc)2 (0.11 g, 

0.5 mmol) 

DavePhos (0.39 
g, 1.0 mmol) 

NEt3 (12.65 g, 
17.4 mL, 0.125 

mol) 

Methyl p-tolyl 
sulfone (3.41 g, 

0.02 mol) 
IS 

EG/ MeCN 
(1:1, 100 mL) 
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2 Ethylene glycol 
vinyl ether 

(17.62, 18.9 mL 
g, 0.2 mol) 

X X X X EG/ MeCN 
(1:1, 250 mL) 

3 HNO3 (20.19 g, 
14.3 mL 0.90 M) 

X X X X Water (250 mL) 

Solvent X X X X X EG/ MeCN 
(1:1, 100 mL) 
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Figure 57. Example HPLC chromatogram at 230 nm for the Heck-hydrolysis 

reaction. (a) Heck-intramolecular cyclisation (first step); (b) Hydrolysis 

deprotection (second step). Retention times (min): Bromobenzene 4.5 = 

5.74 and 13.05 min; Dioxolane 4.8 = 4.09 and 11.93 min; 

acetophenone 4.9 = 2.92 and 10.19 min and methyl p-tolyl sulfone 

(IS) = 2.44 and 9.71 min.  
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Figure 58. Flow schematic used for the Heck-hydrolysis telescoped 

optimisation. R8 represents bromobenzene 4.5 and R9 represents 

ethylene glycol vinyl ether 4.6. L1 is dppm, L2 is dppe, L3 is dppp, L4 is 

DavePhos and L5 is TPP. The catalyst Pd(OAc)2, triethylamine base and 

internal standard methyl p-tolyl sulfone were included in each of these 

stock solutions. 

Table 20. List of operating conditions and results from the self-optimisation of 

the mixed variable multi-objective Heck-hydrolysis telescoped reaction. 

The first 25 experiments were completed as a LHC design. Pareto 

optimal points are highlighted in green. 

Entry tres/min Equiv. 

4.6 

FvA:FvR1 Temp/°C Ligand STYDiox 

/kg m-3 

h-1 

Overall 

Yield/% 

1 9.7 1.6 1.3 85 dppm 0.60 1.73 

2 15.7 3.0 0.6 119 dppm 0.43 7.73 

3 1.8 2.5 0.9 142 dppm 2.07 4.44 

4 19.5 1.8 1.1 174 dppm 0.59 3.53 

5 5.1 1.3 1.4 184 dppm 1.63 2.67 
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6 9.7 1.6 1.3 85 dppe 0.01 17.10 

7 15.7 3.0 0.6 119 dppe 3.28 42.17 

8 1.8 2.5 0.9 142 dppe 3.94 26.41 

9 19.5 1.8 1.1 174 dppe 9.21 51.98 

10 5.1 1.3 1.4 184 dppe 27.83 28.26 

11 9.7 1.6 1.3 85 dppp 0.24 32.90 

12 15.7 3.0 0.6 119 dppp 8.09 61.18 

13 1.8 2.5 0.9 142 dppp 5.96 35.42 

14 19.5 1.8 1.1 174 dppp 12.81 55.85 

15 5.1 1.3 1.4 184 dppp 40.48 32.39 

16 9.7 1.6 1.3 85 TPP 0.16 18.08 

17 15.7 3.0 0.6 119 TPP 0.72 6.17 

18 1.8 2.5 0.9 142 TPP 10.82 6.30 

19 19.5 1.8 1.1 174 TPP 1.24 5.87 

20 5.1 1.3 1.4 184 TPP 3.48 3.74 

21 9.7 1.6 1.3 85 DavePhos 0.58 10.98 

22 15.7 3.0 0.6 119 DavePhos 0.96 8.87 

23 1.8 2.5 0.9 142 DavePhos 4.41 4.15 

24 19.5 1.8 1.1 174 DavePhos 0.93 4.57 

25 5.1 1.3 1.4 184 DavePhos 2.97 2.51 

26 13.3 2.6 0.5 187 dppp 1.65 27.26 

27 20.0 2.1 0.8 117 dppp 2.40 69.71 

28 20.0 2.1 0.7 120 dppp 2.39 65.47 

29 18.4 1.1 1.0 164 dppp 1.80 54.82 

30 20.0 3.0 0.8 114 dppp 2.49 73.46 

31 16.0 3.0 1.0 195 dppp 1.88 50.06 
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32 20.0 3.0 0.7 81 dppp 0.80 22.51 

33 19.5 3.0 0.9 122 dppp 2.14 67.16 

34 20.0 2.6 0.5 119 dppp 2.11 52.68 

35 15.8 2.5 0.8 117 dppp 2.47 56.68 

36 20.0 3.0 0.9 127 dppp 2.29 71.18 

37 20.0 2.2 1.0 130 dppp 2.51 83.20 

38 18.1 3.0 1.0 139 dppp 2.97 88.77 

39 20.0 3.0 0.9 149 dppp 2.61 81.24 

40 19.9 2.9 0.6 140 dppp 2.81 74.71 

41 20.0 3.0 0.6 132 dppp 3.15 82.94 

42 10.0 1.5 1.0 144 dppp 3.32 54.85 

43 20.0 3.0 0.9 139 dppp 2.38 74.49 

44 17.4 2.9 0.8 155 dppp 1.71 43.71 

45 17.4 3.0 0.6 133 dppp 3.02 69.49 

46 18.9 2.4 0.6 125 dppp 2.79 70.16 

47 20.0 3.0 0.6 125 dppp 2.86 76.28 

48 18.3 2.0 0.6 123 dppp 2.68 64.78 

49 14.5 1.5 0.6 195 dppe 2.18 41.38 

50 14.6 1.7 1.0 191 dppp 2.40 58.03 

51 6.9 3.0 0.5 118 dppp 1.38 11.88 

52 17.9 3.0 0.7 126 dppp 2.91 71.66 

53 20.0 3.0 0.5 156 dppe 2.47 61.32 

54 6.3 3.0 1.0 175 dppe 4.06 42.34 

55 7.0 2.1 1.0 175 dppp 5.58 64.52 

56 3.1 1.0 1.0 200 dppp 6.75 34.78 

57 3.5 1.5 0.9 198 dppe 4.77 27.02 
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58 20.0 3.0 1.0 199 dppp 2.06 68.23 

59 1.0 1.0 1.0 169 dppp 18.05 29.90 

60 2.4 3.0 1.0 166 dppp 13.99 55.46 

61 1.0 2.0 1.0 177 dppp 26.47 43.85 

62 2.9 3.0 1.0 177 dppp 6.01 28.93 

63 20.0 3.0 1.0 146 dppp 1.72 56.91 

64 17.9 1.9 0.7 128 dppp 2.26 56.43 

65 20.0 2.5 1.0 166 dppe 0.64 21.16 

66 16.8 3.0 1.0 133 dppp 2.02 56.32 

 

Table 21. List of Pareto front experiments in order of optimum STYDiox to 

optimum overall yield. 

Entry tres/min Equiv. 

4.6 

FvA:FvR1 Temp/°C Ligand STYDiox 

/kg m-3 

h-1 

Overall 

Yield/% 

15 5.1 1.3 1.4 184 dppp 40.48 32.39 

61 1.0 2.0 1.0 177 dppp 26.47 43.85 

60 2.4 3.0 1.0 166 dppp 13.99 55.46 

14 19.5 1.8 1.1 174 dppp 12.81 55.85 

12 15.7 3.0 0.6 119 dppp 8.09 61.18 

55 7.0 2.1 1.0 175 dppp 5.58 64.52 

41 20.0 3.0 0.6 132 dppp 3.15 82.94 

38 18.1 3.0 1.0 139 dppp 2.97 88.77 
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