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Abstract

This thesis presents the study of the hyperon-nucleon scattering in-

teractions of Σ−p → Σ−p and Σ+p → Σ+p using data from the g12

experiment performed at the Thomas Jefferson National Accelerator Fa-

cility. Shedding light on these interactions will allow physicist to obtain

a more clear description of the dynamics of hyperons in the core of neu-

tron stars. This will subsequently allow the refinement of the Equation of

States of Neutron stars and the resolution of the ”Hyperon Puzzle”.

The two scattering interactions were investigated in conjunction through

the determination of their cross section ratio. The cross section ratio of

the two reaction were calculated as a function of both momentum and

energy, and finally compared to the cross section ratio calculated using

the Clebsch-Gordon coefficients of the Isospins.

This work established a promising preliminary agreement between ex-

perimental cross section ratios at low momenta and theoretical predictions

based on Clebsch-Gordon coefficients. This initial result serves as a crucial

stepping-stone for future investigations, laying the groundwork for more

accurate extraction of cross section ratios in subsequent studies that will

enhance the collaborative work of experimentalists and theorists in the

attempt of solving the ”Hyperon Puzzle”.
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1 Introduction

1.1 The Atom

The emergence of the atom finds its origins in ancient Greece. Philosophers

such as Democritus and Aristotle believed in the existence of an indivisible

fundamental particle of which nothing smaller can exist. The name atom comes

from the Greek word atomo which translates to “uncuttable” [1].

It was not until 1897 when J.J. Thompson discovered the first subatomic

particle, the electron, and changed forever the perception that the atom was

the smallest building block that made up the Universe. While experimenting

with cathode rays, Thompson realised that these were made up of negatively-

charged particles. On top of that, from the magnitude of the deflection of the

aluminium plates that were incident with the cathode rays, Thompson was able

to determine the mass-to-charge ratio for this new particle. To his astonishment,

he found the mass of the electron to be 1/1,836 that of the mass of a hydrogen

ion [2].

From his findings, Thompson came to a conclusion in 1904, that at last the

atom was not indivisible, dismantling the old idea. He proposed the famous

“plum pudding model” of the atom, where the atom is made up of a sea of

electrons surrounding a uniform positively charged sphere, therefore cancelling

out the negative charge of the electrons, giving rise to the neutral state of the

atom [3]. The discovery of the electron sparked the journey of the discovery of

fundamental particles of nature.

It wasn’t until 1911 that Thomson’s model lasted before it was nullified by

one of his students, Ernest Rutherford. Through a scattering experiment on

a gold-foil, Rutherford provided evidence that the atom is made up of mostly

empty space, with a tiny but massive positive nucleus located at the centre of

the atom, with negatively charged electrons orbiting the nucleus [4].

The issue with Rutherford’s model that prevented it from lasting was the

fact that electrons (or any charged particle ) that experience orbital motion

would emit electromagnetic radiation, dissipating an amount of their energy,

and in return would spiral towards the nucleus, thus making Rutherford’s model

unstable [5].

It was yet another great scientist, by the name Neils Bohr that two years

after Rutherford, proposed the idea that the electrons orbiting the nucleus of the

atom, have allowed, discrete, energy states and fixed orbits. Bohr postulated
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Figure 1: (Left) : J.J. Thompson’s plum pudding model, (Right) Rutherford’s

nuclear model.

that the emission or absorption of electromagnetic radiation by an atom occurs

due to electrons jumping between different discrete excited or ground states [6].

Experimental evidence of discrete energy levels, that supported Bohr’s model,

were obtained three years later by James Frank and Gustav Hertz [7].

Figure 2: Bohr’s model [8].

Today most textbooks employ the nuclear shell model, which is based on

work of Dmitri Ivanenko (1932) together with the independent work by Eugene

Paul Wigner, Maria Goeppert Mayer, and J. Hans D. Jensen, who shared the

1963 Nobel Prize in Physics for their contributions [9].

In the nuclear shell model, nucleons are arranged in a similar fashion that

electrons are arranged in the atomic shell model. Within the nucleus, protons
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and neutrons are arranged in orbital shells, the discrete energy of which corre-

sponds to the energy difference between nuclear orbits [10].

1.2 Standard Model

From the 1930’s and onward, scientific theories and discoveries on particle

physics, quantum mechanics, and theoretical physics provided a deep under-

standing in the fundamental aspects of the universe. The best formulation of

these remarkable discoveries lies within the Standard Model [11].

Figure 3: The Standard model of elementary particles. [16]

The Standard Model is the theory that encapsulates the elementary particles

that compose all matter in the universe, along with four fundamental forces that

govern all interactions between them. Each fundamental force comes with its

own fundamental force carrier that mediates the particular interaction. The four

fundamental forces and their associated gauge boson are the Electromagnetic

force mediated by the photon, the Strong force, which is conveyed by the gluon,

the weak force born by the W and Z bosons, and Gravity with the hypothetical

graviton as its mediator [12].

Particles in the Standard Model lie within two families: those of fermions

and bosons. Bosons comprise the aforementioned charge carriers as well as

the recently discovered Higgs Boson. Fermions are split into two subgroups, of
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quarks and leptons [13].

1.2.1 Quarks

The discovery of the quark is thought to be one of the greatest accomplishments

in physics. It started in 1964 with the work of Murray Gell-Mann and George

Zweig who independently hypothesised the existence of quarks as part of their

work on the symmetries of particles. Experimental evidence for the existence of

quarks only became available in 1968 with deep inelastic scattering experiments

at the Stanford Linear Accelerator Center.

There exist six different flavours of quarks named up (u), down (d), strange

(s), charm (c), bottom (b), and top (t) for which experimental evidence for all

different flavours of quarks were not available until 1995 [14]. Quarks come also

in three different colour confinements of red, blue, and green. The colour assign-

ment of quarks in hadrons is an intrinsic property of the quark and it explains

a particles’ strong interactions within the theory of quantum chromodynamics

(QCD). The quarks that make up a meson or a baryon must be of different

colour [15].

A quark is an elementary particle and the smallest component of matter. In

the previous sentence I referred to the quark in singular, which is something that

never occurs in nature, since quarks only exist in combinations with each other

in hadrons, such as protons and neutrons. This is due to the colour confinement

of quarks.

1.2.2 The Strong Force

The theory of quantum chromodynamics (QCD) depicts the strong force within

the aspects of the standard model. In QCD theory, attraction exists between

quarks of different colour as a result of the strong force, the same way that

particles of different electric charge are attracted to each other as a result of the

electromagnetic force.

Until the 1970’s it was not clear how nucleons were held together inside the

nucleus. The presence of the neutral neutron, and the absence of a negative

nucleon meant that positively charged protons would repel each other causing

the nucleus to fall apart. The existence of an attractive force, stronger than the

electromagnetic was suggested to oppose the effects of electromagnetic repulsion

between nuclei. Consequently, the strong force got its name from the fact that

it is the strongest of all the other fundamental forces [17].
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1.2.3 Hadrons

As previously mentioned, the force carrier for the strong force is the gauge boson

gluon. However, this is the case when we examine strong interactions at the

smallest scale, between quarks that make up hadrons.

When it comes to larger distances, such as the separation between nucleons

in a nucleus, the influence of the strong force mediated by gluons, which is

responsible for binding quarks within protons and neutrons, diminishes. In the

case of nucleons, the strong nuclear force is mediated by mesons. A meson is

one of the two types of hadrons (the other being baryons) , and it is made up

of one quark and one antiquark. Baryons are made up of three quarks. The

exchange of mesons results in a nuclear force strong enough to overcome the

electromagnetic repulsion between protons.

Hadron research is a highly active research area, within the particle physics

community. Many current facilities (e.g LHC at CERN) collide hadronic par-

ticles with each other and collect the remains, which are known as the particle

shower. A particle shower, is the name given to subsidiary particle interactions

produced when a high-energy particle interacts with dense matter [18].

The use of high-energy accelerators and high sensitivity detectors, such as

CERN and JLab, has been providing valuable insights to the properties of

hadrons and their interactions via the fundamental forces. Furthermore, since

1950’s, particle colliders have been verifying the existence of excited states of

baryons and mesons as well as the discovery of exotic hadrons. Exotic hadrons

in contrast to ordinary hadrons, contain more than three valance quarks [19].

Experiments are actively carried out in order to discover new excited states,

and to verify the existence of exotic hadrons.

1.2.4 Strangeness

Strangness is a intrinsic property of hadrons that carry strange quarks. The

name was attributed due to the strange behavior observed during research on

high-energy cosmic rays research. The newly found pion and Kaon mesons,

seemed to instantly appear into existence, but took their time to decay, de-

spite their large masses and large cross-sections [20]. To explain this strange

behaviour Gell-Mann proposed that another fundamental property must exist,

which he named strangeness, that is conserved during the creation of these par-

ticles but not conserved during their decay. Essentially, strangeness is conserved

in events governed by the strong force and not conserved in those governed by
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weak interactions [21].

The strange quark was one of the first quarks to be postulated by Gell-Mann.

It is the only quark with a non-zero strangeness. This indicated that Kaons and

Lambda baryons observed must contain a strange quark, making them a special

type of baryons, hyperons.

1.3 Hyperons

A hyperon is a baryon that is made up of at least one strange quark, and no

charm, top, or bottom quarks. Most of the times hyperons are more massive

than nucleons due to the fact that the strange quark that they contain, is heavier

than the up and down quark.

Evidence for Hyperons was first introduced by Louis Leprince-Ringuet in

1953, through his experiments with cosmic rays. Since then, hyperon physics

have been a highly researched area of physics, with experiments dedicated to

the subject, in a number of facilities around the world such as CERN, Fermilab,

SLAC, JLAB, Brookhaven National Laboratory, KEK, GSI and others [22].

The strange quark(s) of hyperons, results in hyperons experiencing strangeness

i.e., they are created by the strong interaction but decay via the weak interac-

tion, making them unstable. Even though their decay takes far more time than

their creation, when taking into consideration terrestrial conditions their decay

time is so short that direct detection of hyperons is impossible. A more stable

state of hyperonic matter might exist in extremely dense and hot conditions,

such as those that exist in the core of neutron stars [23].

1.4 The “Hyperon Puzzle” of Neutron Stars

Neutron stars are some of the most astonishing objects in the universe. Essen-

tially, neutron stars are the remains of the collapsed core of supergiants, after

a supernova explosion. With masses of 1.4 solar masses and radii of 10 km,

neutron stars are some of the most dense objects in the universe. Attempting

to grasp how dense a neutron star is someone should imagine that a neutron

star the size of a matchbox would have a mass of 3 billion tonnes [24].

The first evidence for the existence of neutron stars came when Jocelyn Bell

observed a pulsating signal, which later was deduced to be a pulsar i.e., a highly

magnetized rotating neutron star that emits beams of electromagnetic radiation

out of its magnetic poles [25]. Many more neutron stars were observed since
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1967, but internal conditions within their core have not yet been defined with

certainty.

The core of a neutron star is so dense, that it is unavoidable for protons

and neutrons to decay into heavier baryons i.e., hyperons, as additional degrees

of freedom are expected to emerge. The high density creates an environment

where the strong force between quarks is great enough to overcome the energy

cost of creating strange quarks. Therefore, the appearance of strange quarks

becomes more energetically favoured rather than ordinary nucleons (protons

and neutrons) [26].

The presence of hyperons in neutron stars creates a contradiction between

theoretical models of neutron stars and observational evidence. As a result of

additional degrees of freedom, the neutron star Equation of State (EoS) become

softer. The term softer simply means that there is a smaller than expected,

increase in the degeneracy pressure of the core with an increase in density,

causing the neutron star to be more compressible, as the pressure can no longer

compensate for the gravitational field [27]. A more compressed neutron star

implies that a neutron star of given mass will be constrained within a smaller

radius. Therefore, the maximum allowed mass that a neutron star can reach

before collapsing is reduced, to a value of approximately 1.5 solar mass, but

observational evidence of pulsars J1614-2230 and J0348+0432 with masses of 2

solar masses, disagree with the current hyperonic neutron star models [28].

1.5 Experimental Motivation

To resolve the “Hyperon Puzzle” the maximum allowed mass from the theoret-

ical models of hyperonic neutron stars should increase, and for this to happen,

reforming of the EoS is necessary. A stiffer equation of state (where the pres-

sure increases a lot with a given increase in density ) must be established that

will counter the strong interactions that result in softer EoS. For this to be

accomplished, a repulsive interaction between hyperons must be established in

order to stiffen the EoS. However, to do this we first need to examine further

the interactions between hyperons and neutrons.

Currently, the experimental constraints on the theoretical descriptions of

hyperon-nucleon interactions are very limited. This is primarily due to the fact

that hyperons are very unstable, and will decay very rapidly after their creation.

This prevents the existence of lived/stable beams or targets to perform high

precision scattering experiments. As a result the performance of high precision
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scattering experiments involving hyperons is hindered.

This research analysis presents a novel approach to access the interaction

between hyperons and nucleons, allowing us to explore this interaction in un-

precedented detail. The ultimate goal of the project is to determine the exper-

imental cross section ratio of the scattering reactions Σ+p and Σ−p. Addition-

ally, the project aims to provide a theoretical determination of the cross section

ratio of the scattering reactions. Precise experimental measurements can aid

in constraining and refining the underlying dynamics of the hyperon nucleon

interaction.

1.5.1 The Reaction

Scattering experiments are required to investigate the interaction of hyperons

and nucleons. However, due to the short lifetime of hyperons, establishing

precision measurements with hyperon beams or targets is quite challenging. To

overcome this difficulty, we perform scattering experiments of hyperons with

nucleons, which result in subsidiary reactions and particles that can be detected

by modern-day detectors.

The 2021 CLAS Collaboration research paper ”Improved Λp Elastic Scatter-

ing Cross Sections between 0.9 and 2.0 GeV as a Main Ingredient of the Neutron

Star Equation of State” constituted the first examination of this reaction since

1970s. The new cross sections not only exhibited significantly improved accu-

racy and precision compared to existing data, but also laid the groundwork for

future experiments [29].

This subsequent work will expound upon these findings, offering a compre-

hensive analysis of the scattering of another hyperon, Σ−, thereby contributing

to our broader understanding of hyperon physics.

The Hyperon-nucleon interaction that this research was dedicated on is the

photodisintegration of a proton target. This reaction produces a positive Kaon

and Lambda-1405. The Λ1405 particle has a very short lifetime and will thus

decay into a Σ− and a π+ or a Σ+ and a π− before being detected by the

detector(see Fig. 4).

γp → K+ + Λ(1405) (1)

Λ1405 → Σ− + π+ (2)
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Figure 4: Schematic diagram of the reaction of interest. The reaction begins

as a photodisintegration reaction of a proton target. This will result in the

photoproduction of Λ(1405) and K+. The Λ(1405) decays rapidly into a Σ−

or a Σ+ and a π+ or π− respectively. The Σ baryon will then undergo elastic

scattering with a proton, and eventually decay into a pion and a neutron.

or

Λ1405 → Σ+ + π− (3)

The Σ− will then undergo elastic scattering by hitting a proton, before de-

caying into a neutron and a π−.

Σ−p → Σ−p (4)

Σ− → π−n
Γi

Γ
= 99.848± 0.005% (5)

In a similar reaction the Σ+ undergoes elastic scattering with a proton be-

fore decaying into a neutron and a π+.

Σ+p → Σ+p (6)

Σ+ → π+n
Γi

Γ
= 48.31± 0.30% (7)
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The neutron is not detected in the current work due to the fact that the

CLAS detector has a low efficiency for detecting neutral particles. Therefore,

requiring the detection of the neutron would have reduced the statistics of the

reaction significantly. Overall, the four particles that are detected are K+, π+,

π−, and a proton.

2 The Experiment

The experimental data that were utilised in this project were gathered at the

Thomas Jefferson National Accelerator Facility (TJNAF). Located at Newport

News, Virginia, the Jefferson Laboratory (JLab), as it is widely known, is a

leading U.S. Department of Energy nuclear physics research centre, which is

actively used by the international scientific community due to its cutting edge

technology. JLab is made up of the Continuous Electron Beam Accelerator

Facility (CEBAF) and four experimental halls. A,B,C, and D.

2.1 CEBAF

The Continuous Electron Beam Accelerator Facility (CEBAF), at JLab, is de-

signed to generated polarized electrons beams, that help researchers to explore

the physics behind the structure of quarks and gluons that comprise nucleons

and mesons. The CEBAF structure and composition allows for the high-quality

electron beams to be distributed to the four different experimental halls at the

same time with energies up to 12 GeV. However, when the g12 experiment was

running it was able to generate electron beams up to 6 GeV and only halls

A,B, and C existed back then. The accelerators racetrack shape together with

its non-resistive and superconducting radio frequency (SRF) cavities allow elec-

trons to be delivered directly to Hall B. The continuous beam is essentially made

up of groups of electrons with a time separation of 2 ns. The beam currents

during the g12 experiment were between 70 to 130 nA. A three-laser GaAs pho-

tocathode system was used to generate the electrons. The electrons were then

accelerated with superconducting radio frequency (SRF) cavities operating at

499 MHz. The electrons pass through the tube before going through the SRF

linear particle accelerators (LINACs) five times. LINACs is made up of twenty

cryomodules. Each cryomodule accommodates eight superconducting niobium

cavities. To continuously accelerate electrons, the LINACs generate a standing

electromagnetic wave inside the niobium cavities (see Fig. 5). Every time an
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electron moves through the accelerator, it obtains an additional energy of 1.2

GeV ( or 600 MeV for each LINAC). The g12 experiment used electrons with

a maximum energy of 5.7 GeV to produce tagged photons with a maximum

energy of 5.4 GeV in Hall B. The accelerator has been modified recently to ac-

commodate 12 GeV electrons into Hall B, which is now known as CLAS12 [30].

Figure 5: Schematic diagram of CEBAF [30].

2.1.1 CLAS

The design of the CEBAF Large Acceptance Spectrometer (CLAS) centers

around a toroidal magnetic field that allows the high resolution measurement of

the momentum of charged particle products, and for their geometrical coverage

at large angles in the laboratory. The particle detection system of CLAS is made

up of drift chambers for determining charged particle trajectories, Cherenkov

counters for identifying electrons, scintillation paddles for measuring time-of-

flight (TOF), and electromagnetic calorimeters for detecting showering parti-

cles. Six superconducting coils are positioned around the beam line to produce

a magnetic field which is directed in the ϕ direction (see Fig. 6). Individual seg-

ments are equipped to form six essentially independent magnetic spectrometers

with a shared target, trigger, and data-acquisition (DAQ) system.

15



2.1.2 Tagger System

In general, CEBAF is able to directly deliver electrons to the target. The g12

experiment is instigated by photoproduction and therefore instead of using an

electron beam, a photon beam is used. The electron beam from CEBAF strikes

a radiator, which is a target made from a very thin gold foil producing photons

by the bremsstrahlung process that interract with a hydrogen target in the

centre of the spectrometer. The electrons then pass through a dipole magnet

that bends their path away from the beam-line so that the only particles that

will arrive at the proton target will be neutral particles. The last part of the

process is known as “photon running”. The electron that are travelling away

from the target are eventually detected by scintillator hodoscopes, known as

electron taggers. The electron taggers are made up of two different counters.

The E-counters that are responsible for measuring the energy of the electrons,

and the T-counters that measure that record timing information [31]. The latter

allows us to correlate events detected in a large acceptance spectrometer with a

photon, whereas the former allows us to identify (tag) the energy of the photon.

2.1.3 Start Counter

Photons are directed towards the center of CLAS, where a Deuterium or Hy-

drogen target awaits them. The interaction of photons with the target pro-

duces a variety of reactions that can be studied in detail using the various

sub-components of CLAS.

The first component that is used in photon induced experiments is the Start

Counter (SC). Immediately after their creation, the products of the photodis-

integration reaction arrive at the Start Counter. There are four scintillator

paddles in each of the six sectors of CLAS connected with photo-multiplier

tubes. These 24 scintillator paddles surround the target within the acceptance

of the drift-chambers. The Start Counter is responsible for detecting charged

particles and recording their time. The event start time was then established

using timing information from the RF beam bunch, and was used to match the

product particles with the photon detected by the tagger system that instigated

their creation [32].
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2.1.4 Torus Magnet

The use of a superconducting toroidal magnetic field together with the detector

subsystem of Drift Chambers (DC), allow researchers to obtain the momenta

of charged particles. The six coils separate the drift chambers into six areas

known as Regions (see Fig. 6). The individual coils are made up of 4 layers of

54 turns of aluminum-stabilized NbTi/Cu superconductor, that were initially

cooled to a temperature of 4.5 K. The Six superconducting coils, positioned

around the beam line, produce a toroidal magnetic field. The magnetic field is

directed so that positively charged particles are bent away from the beamline,

while negatively charged particles are bent towards the beamline [33].

Figure 6: A schematic illustration of the CLAS detector with a cut perpendicular

to the beam. The Main Torus made up of the six superconducting coils can be

seen separating the DC into six Regions. The mini-torus, which is exclusively

utilised during electron runs, is also shown. [30].
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2.1.5 Drift Chambers

Drift Chambers are responsible for measuring the curved trajectories of charged

particles by the in-bending and out-bending magnetic field to determine their

momentum. Made up of three regions in each of the six sectors, drift chambers

make up the primary detector subsystem of CLAS. Each region consists of two

superlayers containing six layers of wires. These wires are made from 20µm

gold-plated tungsten “sense wires” with a constant moderate positive voltage.

Surrounding the sense wires, the six high negative voltage 140 µm gold-plated

aluminum alloy “field wires” can be found. The gas chamber is filled with 90%

argon and 10% carbon dioxide gas ( non-flammable), allowing for the ionization

of the gas particles. The ionised electrons cascaded towards the sense wires,

generating a signal that was amplified and recorded by the on-board electronics.

The DC system’s distinctive shape not only ensured high acceptance at CLAS,

but also allowed for good tracking resolution and efficiency [33].

2.1.6 Time-of-flight Counters

The “time of flight” of the charged particle exiting CLAS are given by the

coordination of the time-of-flight counters, that record the Stop time of the

charged trajectories, and the Start Time given by the aforementioned Start

Counter. Using the path length measured by the drift chambers the velocity

of the particle, β, can be found. Using the known masses of the particles the

momentum can be found and in turn particle identification can be successfully

performed.

2.1.7 Cherenkov Counters

Between the drift chambers and the Time-of-flight Counters the Cherenkov

Counters can be found. They are responsible for differentiating electrons and

pions. When an electron passes through these detectors, it emits Cherenkov

radiation, which traverses through the perfluorobutane gas. Pions with mo-

mentum below 2.5 GeV do not emit Cherenkov radiation. At the same time,

electrons have a threshold momentum of 9 MeV, which makes them easy to

distinguish from pions, with a 97% detection efficiency [34]. This subsystem

was not used during the g12 experimental run, but this system is crucial for

electroproduction experiments.
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2.1.8 Electromagnetic Calorimeters

Electromagnetic calorimeters (EC) are used to detect neutral particles outside

of the TOF system. The EC is made up of a succession of scintillators and lead

sheets situated on photomultiplier tubes. The interaction of neutral particles

with the lead sheet results in the emission of radiation that is magnified by a

scintillator sheet. This process is continued through multiple layers of lead and

scintillators until the produced photons reach the photomultiplier tubes, where

they can be converted into an electrical current. The detection efficiency for

neutral particles is relatively low and for that reason the signal from the EC

was not used in this analysis [35].

3 Event Selection

As previously stated, the reaction produces a positive Kaon (K+) and Lambda-

1405 (Λ-1405). The Λ-1405 particle, has a very short lifetime (6.59 × 10−24s),

decays into a Σ± and a π± without being detected by the CLAS detector. In this

analysis, events where Σ± undergoes elastic scattering with a proton target,were

selected. The Σ baryon subsequently decays into a neutron and a π±. In this

particular experiment neutral particles were not detected by CLAS, and thus

the neutron remains undetected. In total, four particles are detected: K+, π+,

π−, and a proton.

3.1 Skimming

The primary goal of skimming is to keep the relevant bits of data, and remove

unnecessary events. initial skimming is done by selecting events with 3 positive

and 1 negative. This criteria alone significantly reduces the file size enabling a

detailed analysis locally.

3.2 Particle Identification

To successfully identify the final state particles, information obtained from the

(ST), (DC), and Time of Flight (SC) detector must be employed. The SC

provides us with the time of travel of the particle from the event vertex to

the TOF detector. Since the distance traveled by the particle in the DC is

determined by the reconstruction, we can calculate the speed of the particle.
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A more refined PID than the initial mass selection can be done using the

two independent measurements of β: one from TOF and one from DC, along

with the assumption about the particle’s mass.

We can calculate the particles speed βc , using the momentum from the DC

:

β =
p√

p2 + (mi
PDGc

2)2
(8)

mi
PDG represents the rest mass of the particle with respect to its entry in the

Particle Data Group (PDG) tables. We can then calculate the difference be-

tween the measured speed βm from the TOF and the calculated value βc.

∆β = βc − βm (9)

Figure 7: ∆β momentum dependence for the positive K+ track.(Left) before

∆β cuts.(Right) after ∆β cuts.

The DC is also responsible for providing the particle’s momentum and charge.

Using the momentum we can calculate the mass:

m2 =
p2(1− β2

m)

β2
m

, (10)

where c = 1.

βm is the measured velocity, in units of the speed of light, denoted by c.

βm = v
c

p is the momentum of the particle.

The calculated mass can be then compared to the already-known masses of

particles. The detected particle is therefore identified as the particle with the
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best matching mass. To ensure this particle identification and remove back-

ground events, we implement cuts on the particle mass (∆β) for the particles of

interest (e.g see Fig. 7 for K+ ). The example on Fig. 7 presents the ∆β momen-

tum dependence for the positiveK+ track. The left panel shows the distribution

before applying ∆β cuts, while the right panel displays the distribution after

applying ∆β cuts.

3.3 Photon Selection

The photon that started the reaction is identified by the photon selection cut.

This is achieved by contrasting the timing data acquired by the tagger (tγ) and

the CLAS detector (ttrack). The scattered electrons from the accelerator tunnel

go through a magnetic field which bends them into the Tagger when the photons

are produced in the tunnel by Bremsstrahlung.

Bremmstrahlung photons are produced by directing electrons onto a gold

foil. Subsequently, the electrons are deflected in a dipole magnetic field and

detected using a hodoscope. The curvature radius in the dipole depends on

the electron’s energy, and consequently, the photon energy is determined by the

difference in electron energies,

Eγ = Ee − Ee′

The time taken for the photon to reach the event vertex, tγ is calculated

using :

tgamma = tcenter +
d

c
(11)

where d is the distance between the center of the target to the event vertex.

CLAS indicates the time at which the reaction starts, whereas tagger infor-

mation establishes the time at which the photon is absorbed. The difference

between the two should be zero for the same photon (see Fig. 8).

∆t = ttrack − tgamma (12)

3.4 Corrections

3.4.1 Photon Energy Corrections

Due to a small gravitational bulge in the tagger scintillator paddles, photon

energy corrections were necessary. The outcome of this gravitational bulge

was to reconstruct electrons with systematically higher energies than their true
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Figure 8: The distribution of the time taken for a photon to reach the event

vertex (Left) before cuts and (Right) after cuts.

energies (see Fig. 9). This inaccuracy caused the photon to be tagged with an

energy that is lower than its actual energy. In Fig. 10 the energy loss ∆Eγ was

plotted against the photon energy Eγ. This analysis incorporated the photon

energy corrections established by S. Stepanyan et al. [36].

Figure 9: Photon energy spectrum after corrections.

3.4.2 Energy-loss Corrections

Some energy is always lost when charged particles pass through matter, through

the ionization or excitation of electrons in the matter. The mean rate of energy

loss is given by the Bethe-Bloch equation,
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Figure 10: Energy loss as a function of measured photon energy.

−dE

dx
= Kz2

Z

A

1

β2

(
1

1
ln

2mec
2β2γ2Tmax

I2
− β2 − δ(βγ)

2

)
, (13)

where A is the atomic mass of the target, Z is the atomic number of the

target, I is the mean excitation energy, Tmax is the maximum kinetic energy

that can be gained by an electron in a single collision, and K is a constant that

depends on the classical electron radius, Avogadro’s number and the mass of

the electron.

The energy lost due to ionisation of the target, is corrected using the eloss

software package.

3.4.3 Momentum Corrections

The energy lost in the drift chambers, drift chamber misalignments, and dis-

crepancies between the actual toroidal field and the field map used for track

reconstruction, have all been taken into factored in by corrections performed on

the particle momenta. The corrections that were incorporated in this project

were determined by P. Mattione et al. through the kinematic fitting of the

reaction γ + d → p+ p+ π− [37].

Kinematic fitting of the reaction γ p → p π− π+. The difference, ∆pi, be-

tween the kinematically and eloss-corrected momenta was used to establish the

comparison. The average difference, ∆p, between the fitted and eloss-corrected

momentum was studied for different particles in every sector of the CLAS de-

tector (see Fig. 11).

The difference ∆p was also examined as a function of ϕ to account for drift

chamber misalignments and variations in the magnetic field map (see Fig. 12).
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Figure 11: ∆p against p for each of the 4 detected particles.( Top Left) proton,

(Top Right) Kaon, ( Bottom Left) π+, (Bottom Right) π−.

Figure 12: ∆p against ϕ for each of the 4 detected particles,( Top Left)

Kaon, (Top Right) π+, ( Bottom Left) π−, (Bottom Right) proton.

3.5 Vertex cut

The vertex is calculated by extrapolating the tracks of the particle determined

from the DC, to the position of the target. The distance of closest approach
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to the fiducial planes is taken as the vertex position for each track. A more

detailed explanation can be found in [38]. Although we expect to find the event

vertex inside the target, this is not always true. There exist events that seem

to have originated outside target. We therefore opt to perform a vertex cut to

remove any events that were not created within the target. From the plot of the

vertex position (see Fig. 13) we want to omit any events outside the plateau.

The peaks in the plots depict the boundaries of the target.

The coordinate system is set up so that z is oriented in the direction of the

photon beam. The negative values on the z axis are due to the fact that the

target is placed in the center of the detector.

Figure 13: Vertex position (units of cm), parallel to the photon beam) for each

of the four detected particles (π+ ,π−, K, and proton).

3.6 Reaction Reconstruction

After PID, Photon selection and Vertex cuts were successfully performed on

empirical data, there still seemed to exist a need for further analysis. This in
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fact rises from the vast background events visible in the missing mass plots. To

remove these background events we perform cuts on the missing mass plots of

identified particles. The missing mass is calculated using energy and momentum

conservation and allows us to select the reaction of interest.

As previously stated, four final state particles (π+ ,π−, K, and proton) were

detected after the photoproduction reaction, γ p → K+ Λ(1405).

Considering that K+, π+ and π− were already detected, events matching a

missing neutron were selected. To select events with a neutron, we made straight

cuts around the neutron peak in the MM(γp → K+ + π+ + π− + p+X).

The missing mass distribution of the reaction γp → K+ + π+ + π− + p+X

was determined by,

MM(γp → K+π+π−pX) =
√
(Pγ + Pp − PK+ − Pπ+ − Pπ−)2 (14)

where, Pγ , Pp, PK+ , Pπ+ , Pπ− are the four-vector momenta of the photon, the

proton target, the Kaon and the two pions.

Before plotting the missing mass distribution of (γp → K++π++π−+p+X),

and isolating the neutron peak, cuts must be applied to the Invariant Mass

distribution of particles in order to clean our events from as much background

contribution as possible.

3.6.1 Λ0 and K0 cuts

It is not guaranteed in any way that the detected particles are daughter particles

of the Λ(1405) decay. There is a 65% probability that Λ0 decays via the pπ−

channel and a 35% chance that Λ0 decays via the nπ0 channel. This can lead

to a miss-construction of the reaction as some of the detected particles might

not originate from the photoproduction reaction of Λ(1405) but from the decay

of Λ0.

The invariant mass distribution is determined using,

IM(pπ−) =
√
(Pp + Pπ−)2 (15)

From the plot of the Invariant mass of Λ0 (IM(p+π−) (see Fig. 14) we want

to omit any events within the peak ( Within 3 standard deviations of the mass

of Λ0. This peak is responsible for some of the background events around the

neutron peak.

The same procedure was repeated with the Invariant mass distribution (

calculated by equation 16) of the neutral Kaon (d s̄) (see Fig. 15). There is a
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Figure 14: The invariant mass of p + π− showing a clear peak around the

Λ mass, which corresponds to background events for our reaction of interest.

These events are removed with the application of ±3σ cuts from the mean of

the Gaussian.

69% probability that K0 decays into two of our final state particles (π+ and π−)

and it is therefore responsible as well for some of the background events around

the neutron peak in the missing mass distribution of γp → K++π++π−+p+X.

IM(π−π+) =
√
(Pπ+ + Pπ−)2 (16)

3.6.2 Σ cuts

As it can be seen from Fig. 16 the neutron peak in the MM(K+π+π−p) is sur-

rounded by a large peak close to the mass of Σ−. Since there was no significant

visible difference in the MM(K+π+π−p) plot after the Λ0 and K0 Invariant

mass cuts were applied (see Fig. 17), we proceeded to cut incident Σ− beam

and the Σ− re-scattered events that might be responsible for the background

peak.

In order to isolate the peak of neutron missing mass around 939.65 MeV, the

next step was to remove the Σ− beam events outside 3 standard deviations from

the mass of Σ− (1130 and 1270 MeV ). For the re-scattered Σ−, the exact same

method was repeated. From (see Fig. 18) it can be seen that after the events

that contain a Σ− particle are eliminated a peak very close to the theoretical

mass of the neutron is visible.

27



Figure 15: The invariant mass of π+ + π− showing a clear peak around the

K0 mass, which corresponds to background events for our reaction of interest.

These events are removed with the application of ±3σ cuts from the mean of

the Gaussian.

Figure 16: Missing mass of X from the reaction γp → K+π+π−pX before cuts.

3.7 Reaction reconstruction and Yield Calculation.

After applying the cuts on the MM described in section 3.6, the reaction char-

acteristics were successfully verified, by removing any events that were possibly

detected, which did not originate from the photoproduction of Λ(1405). Our

next goal was to plot the missing mass plots of the Σ− and Σ+ beam ( before

re-scattering ) making it possible to eventually calculate the Yield of Σ−p and

Σ+p elastic events.

First, the missing mass distribution for the reaction of γp → K+π+X was

determined and plotted in order for cuts to be applied and isolate the peak of

28



Figure 17: Missing mass of X from the reaction γp → K+π+π−pX after Λ0 and

K0 Invariant mass cuts.

Figure 18: (Top) Missing mass of X from the reaction γp → K+π+π−pX, after

K0 and Λ0 and Σ− beam cut at 1.13 and 1.27 GeV, (Bottom) Missing Mass

of X from the reaction γp → K+π+π−pX, after K0 and Λ0, Σ− beam and Σ−

re-scattered cuts at 1.13 and 1.27 GeV .
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Σ−.

MM(γp → K+π+X) =
√

(Pγ + Pp − PK+ − Pπ+)2 (17)

The missing mass distribution for the Σ+ peak was determined by,

MM(γp → K+π−X) =
√

(Pγ + Pp − PK+ − Pπ−)2 (18)

Σ− particle after the photon and vertex selection cuts were applied (see

Fig. 19a). Then, just as in previous steps, we implemented the same invariant

mass cuts for Λ0 and K0 (see Fig. 19b). Subsequently, a criteria was used

to ensure the neutron mass to fall between 0.8 and 1.0 GeV so that events

containing a neutron would be included(see Fig. 19c). The next stage was to

exclude any Σ− that were more than three standard deviations out from the

mass range of Σ− (1130 to 1270 MeV)(see Fig. 19d).

(a) MM(γp → K+π+X) distribution

after Vertex, and photon selection cuts.

(b) MM(γp → K+π+X) distribution

after Vertex, photon selection, Λ and

K0 Invariant mass cuts.

(c) MM(γp → K+π+X) distribution

after Vertex, photon selection, Λ and

K0 Invariant mass, neutron cuts.

(d) MM(γp → K+π+X) distribution

after Vertex, photon selection, Λ and

K0 Invariant mass, neutron cuts and

Σ− re-scattered cuts.

Figure 19: Grid of Plots of the reaction of MM(γp → K+π+X) that recon-

structs the missing mass of the Σ− beam.

The plot 19d was utilised in determining the Yield of the scattering reaction,

which was then used in the determination of the cross section ratios of the
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reactions.

4 Cross Section determination

This section outlines the steps that were necessary for the determination of the

cross section of the Σp scattering reactions.

The cross section quantifies the probability for a specific reaction to occur.

The magnitude of the cross section of the Σ− scattering is analogous to the

strength of the interaction between the Σ− hyperon and the proton nucleon.

The same is true for the interaction of Σ+p → Σ+p .

For the purpose of enhancing the readability in the subsequent derivations,

Σ was used to represent both Σ+ and Σ− baryons, given that the equations are

identical for both.

The cross section of the reaction is given by:

σ =
NΣ

LΣ ·A
(19)

where A is the acceptance of the detector discussed in 4.2 and NΣ is the number

of Σp elastic collision events determined in 4.4 and LΣ is the photon beam

luminosity discussed below.

4.1 Luminosity

In particle physics, Luminosity is the term given to the quantity that measures

the number of interactions that can be produced in an experiment.

The luminosity of Σ− or Σ+ beam from eq. 19 can be determined by eq. 20.

LΣ =
NA · ρT · lΣ ·NΣ

M
(20)

where, NA is the Avogadro number,

ρT is the density of the target,

M is the molar mass of the target.

lΣ is the path length of the Σ particles within the target cell,

andNΣ is the number of Σ events which is identical to the number of Λ(1405)

particles. This is due to the fact that because of the very short lifetime of

Λ(1405), all of them will decay into Σ baryons.
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The number of Λ(1405) particles can be found using the well-known cross-

sections of the Λ(1405) the acceptance(see 4.2) and the luminosity of the photon

beam.

The luminosity of the photon beam is defined by,

Lγ =
NA · ρT · lT ·Nγ

M
(21)

where, NA is the Avogadro number, ρT is the density of the target, lT is

the path length, Nγ is the photon beam flux, and M is the molar mass of the

target.

The utilization of luminosity in the cross section calculations necessitates

knowledge of the photon beam flux and the path length.The process of obtain-

ing the path lengths of the Σ+ and Σ− is a complex process that demands addi-

tional time resources. Unfortunately, given the time constraints of this one-year

project, dedicating the requisite time to acquire the experimental path lengths

was deemed impractical. See subsection 4.5.1 for more detailed explanation on

the limitations of obtaining experimental path lengths.

4.2 Acceptance

The determination of the cross section of the Σ− beam requires the knowledge

on the acceptance of the detector. A detailed analysis would be necessary to

obtain an in-depth knowledge of the detector acceptance for cross section mea-

surements. However, by determining the cross section ratio of the Σ+ to the Σ−

beam we only need to demonstrate that the detector acceptance is the same for

the two elastic re-scattering reactions. To show this the momentum distribution

of Σ+ and Σ− was plotted after applying minimum momentum and angle θ ( in

rad) cuts on the the final state particles of the reaction (see Fig. 21).

From the following plot of the momentum distributions of Σ+ and Σ− we

can see that the two particles have the same momentum distribution, and there-

fore we can conclude that the detector in both reactions must have the same

acceptance or this would not be possible.

4.3 Cross Section ratio

Moreover, the use of cross section ratio alleviates from the photon beam flux

determination through the following derivation :
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Figure 20: Plots of Particle cuts.(Top left) Kaon + : momentum > 0.35 GeV/c

and θ > 0.05 rad. (Top right) π+ : momentum > 0.15 GeV/c and θ > 0.05

rad.(Bottom left) π−: momentum > 0.15 GeV/c and θ > 0.05 rad. (Bottom

right) proton momentum > 0.40 GeV/c and θ > 0.05 rad.

Figure 21: Momentum distribution of Σ+ and Σ− after K, π−, proton, and π+

cut. (Blue line) Σ+, (Red line) Σ−, (Green line) Σ+ without the Legendre cross

sections, (Orange line) Σ+ without the Legendre cross sections.
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σΣ+

σΣ−
=

NΣ+

LΣ+ ·A
NΣ−

LΣ− ·A

(22)

If the acceptance of the detector is on average the same for the two reactions,

then the cross section ratio simplifies to:

σΣ+

σΣ−
=

NΣ+ · LΣ−

NΣ− · LΣ+

(23)

And since the target and setup is the same for both decay channels of Λ(1405)

( Σ− and Σ+ ) then the ratio of the luminosities of the two Σ particle simplifies to

the ratio of their corresponding path lengths. The cross section ratio eventually

reduces to a ratio of the Yields of the two reactions and the inverse of the ratio

of the path lengths:

LΣ−

LΣ+

=

NA·ρT ·lT
Σ− ·Nγ

M
NA·ρT ·lT

Σ+
·Nγ

M

=
lTΣ−

lTΣ+

(24)

σΣ+

σΣ−
=

NΣ+ · lΣ−

NΣ− · lΣ+

(25)

Although both Σ particles have very short lifetimes and will decay before

they reach the detector. However, their lifetimes and hence the distance that

they will travel before decaying is different. The path length can be given by

the following equation, l = ct where c is the speed of light and t is the lifetime

of each particle (tΣ− = 1.479× 10−10 s and tΣ− = 0.8018× 10−10 s) .

4.4 Yield determination

The missing mass distribution’s peak can be fitted using a Gaussian Probabil-

ity Density Function (PDF) due to the fact that, after the several cuts that

were applied the signal events cluster around the mass of the Σ baryon. This

characteristic of the missing mass distribution aligns with the shape of a nor-

mal distribution. It can be therefore concluded that it can be fitted with some

degree of uncertainty with a Gaussian PDF.

The background signal exhibits a smooth variation across the range of miss-

ing mass distribution. A Polynomial PDF, has the ability to interpolate between

the missing mass data points, providing a continuous representation of the back-

ground distribution.
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To calculate the Yield of Σ± the reaction γp → K+π±X was plotted. The

number of events from the missing mass plot of Σ± was calculated by subtracting

the polynomial of the fit from the Gaussian of the peak and Fig. 23 for a range

of momentum bins. As an example the missing mass plot for the momentum

bin of 0.9 - 1.0 GeV/c, for both the Σ− (see Fig. 22) and Σ+ (see Fig. 23).

More missing mass distributions for both Σ particles, were taken for a range of

different momentum bins(see Appendix A).

f(x) = A · e−
(x−µ)2

2σ2 +Bx+ Cx2 +Dx3 + . . . (26)

Here:

f(x) is the overall function representing the Σ± missing mass distribution,

A is the amplitude of the Gaussian peak,

µ is the mean of the Gaussian peak,

σ is the standard deviation of the Gaussian peak,

B,C,D, . . . are coefficients of the polynomial background terms,

x is the variable representing the Σ± mass.

Figure 22: MM(γp → K+π+X) distribution where the peak matches the mass

of Σ− in GeV/c2, for the momentum bin of 0.9 - 1.0 GeV/c.

The Yield is therefore given by,

NΣ+ =

∫
gaussian

d(MΣ+)−
∫
polynomial

d(MΣ+)

binwidth
· 1

0.4831
(27)
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Figure 23: MM(γp → K+π−X) distribution where the peak matches the mass

of Σ+ in GeV/c2, for the momentum bin of 0.9 - 1.0 GeV/c.

NΣ− =

∫
gaussian

d(MΣ−)−
∫
polynomial

d(MΣ−)

binwidth
(28)

Where 0.4831 is the probability that the Σ+ particle will decay via the Σ+ →
nπ+ channel into the detected final state particles. For Σ− the probability that

the Σ− particle decays into a neutron and a π− is equal to 1, and thus there is

no need to factor it from the yield NΣ+ .

4.5 Reaction Simulation

The number of proton target particles, Nt, is typically determined by calculating

the measured length of the target and multiplying it by appropriate factors

such as target density, atomic mass number, and Avogadro’s number (NA =

6.02× 1023). This provides a straightforward diagnostic for Nt.

However, determining of the number of particles in the Σ− beam, is more

complicated. Since the Σ particles are secondary particles in this reaction, it is

an arduous process to locate the event vertex where the Λ1405 decay onto the

Σ particles. Additionally a direct beam diagnostic is not available to count the

number of Λ1405 particles that are photoproduced.

Moreover, the beam Σ is generated within the target, rendering any protons

upstream of the Σ production vertex unavailable for subsequent Σp elastic scat-

tering. Σ− has a decay path of 4.43 cm while Σ+ of 2.40 cm which are much
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smaller than the 40 cm target length. In addition to that, the Σ particle quickly

decays, making proton targets downstream of the Σ decay vertex unavailable

for later scattering. Furthermore, unlike the photon beam produced by the ac-

celerator, the Σ beam does not travel parallel to the target axis and can exit

the target through the cylindrical wall long before travelling the entire target

length. The complex nature of Σ production and decay requires more sophisti-

cated methods for estimating the decay path of Σ particles in the experimental

setup.

As a solution for the aforementioned limitations of obtaining the experimen-

tal path lengths, a simulation of the reaction was used to obtain the path lengths

needed for the cross section ratio calculations.

4.5.1 Simulation characteristics

The simulation was constructed by writing a C++ code that served as a gener-

ator for the reaction γp → KΛ(1405), followed by the decays Λ(1405) → Σ−π+

and the elastic re-scattering Σ−p → Σ−p or Λ(1405) → Σ+π− and the elastic

re-scattering Σ+p → Σ+p.

The simulation is based on the generation of events based on random num-

bers and kinematic calculations used to model the particle interactions that

follow the decay of Λ(1405). A Monte Carlo phase space generator was used

to generate events with intended decay branching ratios. For a more detailed

description of the simulation generator please [39].

Legendre polynomials are used to model the differential cross-section as a

function of energy and scattering angle, which are then incorporated in the

simulation, to compute the particle paths within the target.

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n (29)

σ(cos θ) = C0 + C1P1(cos θ) + C2P2(cos θ) + C3P3(cos θ) + C4P4(cos θ) (30)

Subsequently the generator includes the tertiary decay of Σ− into the final

state particles nπ− .

4.5.2 Σ Decay Path Length determination

Path length determination within target cell (formula we use to calculate the

path length depending on the Sigma momentum, and direction) Path length
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results for each Sigma accounting for their different lifetimes.

The simulation code generates Λ1405 particles and then decays them into Σ±

particles. The Σ± production vertices are uniformly distributed throughout the

target. The production vertex and the target geometry are used to determine the

hyperon’s path length as it travels through the target before decaying. However,

to derive the path length we must first calculate the longitudinal path and exit

z coordinate.

During this simulation of events we shall see that a series of assumptions

have been made. The first assumption was that the cylindrical target cell is

oriented along the z-axis with its center located at (0,0,lT /2 where lT is the

length of the target cell, in this case 40 cm. The vertex coordinates, x0 and y0,

are generated randomly and uniformly on a disc whose radius is equal to that

of the cylinder, i.e 2 cm. Using uniformly distributed random values between 0

and 2π, the azimuthal angle ϕV of the vertex measured from the positive x-axis,

can be determined.

The distance of the vertex from the centre is given by,

r0 =
√
Rnd× r (31)

Where Rnd is a random number and r is the radius of the cylindrical target

cell.

The distance is taken uniformly along the z-axis between 0 and 40 cm. The

vertex position is calculated using,

x0 = r0 × cos(ϕV ) (32)

y0 = r0 × sin(ϕV ) (33)

z0 = z0 (34)

Through the geometry of the cross section of the cylindrical target, the path

length Σ− particle travelling at an angle ϕp can be determined (see Fig. 25).

From the cosine rule,

r2 = r20 + l2 + 2r0l cos(π − ϕp + ϕv) = r20 + l2 + 2r0l cos(π − (ϕp − ϕv)) (35)

Using the identity,

cos(π − x) = − cos(x) (36)
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Figure 24: Cross section of the path of Σ± in the cylindrical target cell.

r2 = r20 + l2 − 2r0l cos(ϕp − ϕv) (37)

if we rearrange it into the quadratic form we get :

l2 + [2r0 cos(ϕp − ϕv)]l + r20 − r2 = 0 (38)

Solving with the quadratic formula we can finally get the path in the xy

plane,

l = −r0 cos(ϕp − ϕv)±
√
r20 cos

2(ϕp − ϕv) + r2 − r20 (39)

The longitudinal path is therefore given by,

ll =
l

tan(θ)
(40)
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and the exit z-coordinate is calculated as,

zexit = ll + z0 (41)

For zexit between 0 and lT , the length of the target, the path is calculated

by,

Path = l/ sin θ (42)

The Σ− particle can exit through the target ends if zexit is larger than the

target cell length, that is, zexit < 0 or zexit > lT . This is particularly true if

it was created near the target’s ends or at a small angle. The path length is

calculated as follows,

Path =

 lT−z0
cos(θ) , θ < 90◦

zv
cos(θ) , θ > 90◦

where zv is the z-coordinate of the event vertex.

From the following plot, we can see that the Σ− particles are created at

small angles ( θ > 90◦), and thus the first solution must be employed.

Figure 25: Path of the hyperon against scatering angle θ of Σ− .

As previously mentioned, Σ− has a decay path, ct, of 4.43 cm while Σ+

of 2.40 cm which are much smaller than the 40 cm target length. Therefore, a

high probability exists, that the Σ± particle decays prior to exiting the target or

interacting with a proton. To account for this the path length must be weighted

by the probability of decaying, which is given by,

P (d) = exp

(
− d

βγcτ

)
(43)
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where β = v/c and γ is the Lorentz boost.

The path length at last is calculated using :

Path = βγcτ (44)

4.5.3 Path Length results

The Path was taken from the generator code by plotting the 2-dimensional

histogram of Path against the Σ− beam momentum , for the same momentum

bins that the yield was calculated ( 0.6 - 1.8 GeV/c). The result was projected

as a 1D histogram from which the mean path length was extracted(see Fig. 26).

The same procedure was repeated for the Σ+ beam after changing the mass and

lifetime in the code.

The 1D histogram for both Σ baryons is shown below for the momentum

bin 0.9-1.0 GeV/c.The same procedure was repeated for the Σ+ beam after

changing the mass and lifetime in the code (see Fig. 27). See Appendix A for

the plots of the path length of Σ− and Σ+ for all the momentum intervals used

in this analysis.

5 Results

5.1 Cross section ratio as a function of Momentum

The ultimate goal of this analysis was to determine the cross-section ratio of

the Σ−p → Σ− elastic scattering reaction with the anticipation that it would

provide some inside to the Σ+ and Σ− hyperon-nucleon interactions. The cross

section ratio was determined as a function of the momentum of the hyperon (Σ)

beam. A thorough analysis on how this was done can be found on section 4.

We would normally expect that the cross section σ, of Σ+, would be larger

than the σ of Σ−. This is due to the fact that there is a higher probability that

Λ1405 decays into a Σ+ rather than a Σ− particle.

From figure 28 it can be observed that the cross section ratio is significantly

higher in the momentum range of 0.6-0.7 GeV/c.This likely influenced by the

considerably smaller yield for both Σ particles and especially for the Σ−. The

presence of particles with momenta less than 0.7 GeV/c is notably scarce, and

this is also apparent when examining the momentum distribution of Σ+p and

Σ− in figure 29. The low yields at lower momenta have larger statistical fluctu-
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Figure 26: Path length distirbution of Σ− in GeV/c, at the momentum interval

0.9 - 1.0 GeV/c.

ations and more importantly there will be a larger uncertainty in determining

background contributions, making it very difficult for the polynomial probability

density function to fit.

Furthermore, it can be observed that a small ”dip” is present. The error in

the cross section ratio ( see 5.3 for details on how they were calculated) is not

large enough to account for this decrease in the ratio around 1 GeV/c.

To get a clearer picture, we collected more cross-section ratio values with

smaller bins around the dip. This way, we could pinpoint exactly where the

dip occurs in terms of momentum ( see figure 30). We took more σ+

σ− values at

momentum bins of 1 GeV/c. The error in the σ ratio increased as the momentum

bins became smaller, but not enough to account for the dip in the cross section

ratio.

5.2 Cross section ratio as a function of Energy

Plotting the cross-section ratio against the total energy of the reaction W, can

offer a comprehensive understanding of the energy dependence of this elastic
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Figure 27: Path length distribution of Σ+ in GeV/c, at the momentum interval

0.9 - 1.0 GeV/c.

scattering. It allows for comparisons with the Cross Section ratio of Σ+

Σ− against

momentum plots, which may help to provide additional understanding in the

physics of the Σ−p → Σ−p interaction.

From figure 31, we can see that the two plots are identical in shape. Since

the Σ−p interaction is an elastic collision, both energy and momentum are

conserved. It was therefore expected to see the same shape in the two plots

as any difference would indicate that some energy was not conserved. In this

analysis, W was derived using the momentum of the Σ− beam,

W =

√
M2

Σ +M2
p + 2 · (Mp ×

√
M2

Σ + P 2
Σ) (45)

where MΣ is the rest mass of Σ, Mp is the rest mass of the proton, PΣ is the

momentum of the Σ beam and the term 2 · (Mp ×
√
M2

Σ + P 2
Σ) is the Kinetic

Energy of the Σ beam.

Furthermore, contrast between the two plots, could have been a result of a

systematic error, caused by a malfunction in the detector system that measures
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Figure 28: Cross Section ratio of Σ+

Σ− against momentum in GeV/c, at 8 mo-

mentum intervals between 0.6 - 1.8 GeV/c.

Figure 29: Momentum distribution of Σ+ and Σ− particles in GeV/c, at between

0.5 - 3.0 GeV/c.

the momentum.

The appearance of the dip in both plots indicates that further investigation

is required to unravel its nature.
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Figure 30: Cross Section ratio of Σ+

Σ− against momentum in GeV/c, at 10 mo-

mentum intervals between 0.6 - 1.8 GeV/c.

5.3 Errors

Since we are only concerned with the ratio of the cross sections, the error of the

path length obtained from the simulation can be neglected as this is the same

for both the Σ+ and Σ−. As the Yield was obtained experimentally the error

in these values must be taken into account.

The error in the Yield is determined by fist calculating the integral error

within 3σ from the mean of the momentum distribution. The error in the Yield

is then given by,

ENΣ+ =
√
NΣ+ + (EIntegralΣ+ × EIntegralΣ+ ). (46)

The error in the Yield can be then used to find the error in the σ-ratio. This

was determined as the propagation of uncertainty using the standard deviation

formula of the function f . Function f can be understood as the value of the

function determined from the expectation value of A and B . In this case the
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Figure 31: (Left) Cross Section ratio of Σ+

Σ− against momentum in GeV/c, at 10

momentum intervals between 0.6 - 1.8 GeV/c. (Right) Cross Section ratio of
Σ+

Σ− against W in GeV, at 6 energy intervals between 2.2 and 2.5 GeV.

function f is the ratio of Σ+

Σ− .

f =
A

B
(47)

where A is the yield of Σ+ and B is the yield of Σ−.

σf = f ·
√(σA

A

)2

+
(σB

B

)2

(48)

Which in terms of the ratio becomes,

ERatio =
NΣ+

NΣ−
·

√(
ENΣ−

NΣ−

)2

+

(
ENΣ+

NΣ+

)2

(49)

The error in the ratio was then plotted as vertical error bars in the plots

against momentum and energy.

6 Discussion

The presented analysis was concerned with the preliminary results of the cross

section ratio of the two Σp scattering reactions. Further studies on the system-

atic uncertainties must be carried out to allow for a better understanding of this

particular hyperon-nucleon interaction. Furthermore, more detailed simulations

are imperative to unravel the intricacies of the detector acceptance. The use
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of GSIM, the official Geant Simulation framework of CLAS is the natural next

step for the determination of the acceptance. A more detailed explanation on

the GSIM can be found on the JLab website. [40].

Although this analysis was concerned with obtaining the experimental cross

section ratio of the Σ particles, the reactions were further studied theoretically

in order to make comparisons with the experimental results.

6.1 Cross Section Ratio from Clebsch-Gordon Coefficients

For the theoretical determination of the cross section ratio we employed the use

of the Clebsch-Gordon coefficients, from the work of Tadasha Dash & Anjana

Acharya [41]. However, before introducing the Clebsch-Gordon coefficients we

should first introduce the Isospin.

6.1.1 Isospin

Invented by Werner Hisenberg, the Isospin is a quantum number associated with

particles that interact via the strong force, i.e Hadrons. It is derived from the

flavour symmetry and was created to express the fact that in the eyes of the

strong force, there is no difference between a proton and a neutron. The Isospin

is conserved in the strong interaction but not in the electromagnetic and weak

interaction. Mathematically this means that the Isospin operator commutes

with the Hamiltonian of the strong interaction but not of the electromagnetic

and weak hamiltonians.

Although the Isospin is not related in any way to the spin, their mathematical

properties are identical. This suggests that isospin can be combined the same

way that in quantum mechanics angular momentum is added. Particles with

the same Isospin number belong to the same the isospin multiplet. This is in

a similar fashion that the number of electrons spin states , that are part of the

same multiplicity, are given by 2s + 1. In a similar way, the number of states

in an isospin multiplet is given by M = 2I + 1. i.e. takes values of integers or

half integers.

The main difference of the isospin from the spin is that the isospin is un-

affected by rotations and therefore is not coupled with the angular momentum

of the particle. For this reason, the third component of Isospin Iz( the Isospin

in the z-direction ), is used to distinguish between particles. Iz takes discrete

values from -I to I and it always takes values of multiples of 1
2 .
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The different types of Hadrons have different multiplet numbers. For exam-

ple, since nucleons for example have a 2 allowed states, one being the proton

and the other one the neutron, the must have a multiplet of M = 2 and therefore

an Isospin of 1/2 ( from I =( M – 1)/2 = 1/2). The Iz has to either be equal

to − 1
2 ( in the case of the neutron ) or 1

2 ( for the proton ).

The charge of a state and Iz are related by the Gell-Mann-Nishijima rela-

tion [42],

Q = Iz +
1

2
B +

1

2
S (50)

where B is the Baryon number, and S is the strangeness.

6.1.2 Clebsch-Gordon Coefficients

The Clebsch-Gordon coefficients are quantum numbers that are most often used

to describe the coupling of two angular momenta, such as the spin and orbital

angular momentum of a single particle. In this case, the Clebsch-Gordon co-

efficients were utilised to describe the coupling of the Isospin with the Isospin

projection in the z-direction. The Clebsch-Gordon coefficients are denoted by

the symbol CJM
J1M1,J2M2

, where J1 and J2 are the Isospins of the two interacting

particles being coupled, M1 and M2 are their respective projections onto the

z-axis, and J and M are the resulting total Isospin and its projection.

To determine the allowed values of the Clebsch-Gordon coefficients for the

Σp interaction, we must first ensure that Isospin is conserved in the interaction.

For a reaction to be allowed to occur via the strong interaction Isospin must be

conserved (among other things).

The Σ baryon has I = 1 and Iz = -1, 0, 1. From the Gell-Mann-Nishijima

equation we can assign each of the Iz to the different states of the particle ( Σ−,

Σ0, Σ+).The Isospin states are given the notation |I, Iz⟩.
Subsequently, we can verify that both the Σ−p → Σ−p and Σ+p → Σ+p are

allowed as the products are the same as the reactants. Here, the the Σ−p → π0n

channel of the Σ proton scattering must be taken into consideration to account

for all allowed states, as the coefficients of these state will affect the σ-ratio of

Σ+p and Σ−p.

The final state of the reaction and the CG-coefficients can be found from the

PDG table for each of the Σp scattering reactions. A more detailed description

on the table and how it can be used to determine the CG coefficients can be

found on [43] as this is out of the scope of this analysis.
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Figure 32: Clebsch-Gordan coefficient tables from PDG [44].

The reaction can be written in terms of the total isospin states and CG-

coefficients.

Σ+p → Σ+p ⇒ |1, 1⟩| 12 ,
1
2 ⟩ = | 32 ,

3
2 ⟩

Σ−p → Σ−p ⇒ |1,−1⟩| 12 ,
1
2 ⟩ =

√
1
3 |

3
2 ,

−1
2 ⟩ −

√
2
3 |

1
2 ,

−1
2 ⟩

Σ−p → Σ0n ⇒ |1, 0⟩| 12 ,
−1
2 ⟩ =

√
2
3 |

3
2 ,

−1
2 ⟩+

√
1
3 |

1
2 ,

−1
2 ⟩

6.1.3 Cross Section ratio determination using Isospin and CG-coefficients

In order to determine the cross-section ratio using the Isospin states and the

subsidiary coefficients, Fermi’s Golden Rule must be employed. Fermi Golden

rule states that the cross section of an interaction is proportional to the square

of the matrix element of the perturbation Hamiltonian H, between the final f,

and initial states I.

σ ∝ |⟨f |H|I⟩|2

If the Hamiltonian conserves the isospin and hence the reaction takes place

via the strong interaction, the initial and final states must have the same I and

Iz.

By calculating the square of Σp interactions the matrix element and taking

the ratio of the reactions we can find the cross-section ratio.
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Lets begin by representing each interaction as a matrix element along with

the appropriate CG-coefficient,

Σ+p → Σ+p = ⟨3
2
,
3

2
|H|3

2
,
3

2
⟩ (51)

Σ−p → Σ−p =
1

3
⟨3
2
,
−1

2
|H|3

2
,
−1

2
⟩+ 2

3
⟨1
2
,
−1

2
|H|1

2
,
−1

2
⟩ = 1

3
⟨3
2
,
−1

2
|H|3

2
,
−1

2
⟩

(52)

The first term in eq. 52, represents the contribution of the Σ− particle in

the final state with I and Iz
(
3
2 ,

−1
2

)
respectively.

If the Σ− and the proton form a bound state with total isospin of I = 3/2

, then only the components with total I =3/2 will contribute significantly to

the scattering interaction. This is due to the fact that the strong interaction

will favour this isospin configuration. The 2
3 ⟨

1
2 ,

−1
2 |H| 12 ,

−1
2 ⟩ can therefore be

neglected as it will not be favoured by the strong interaction.

Σ−p → Σ0n =

√
1

3

√
2

3
⟨3
2
,
−1

2
|H|3

2
,
−1

2
⟩ −

√
1

3

√
2

3
⟨1
2
,
−1

2
|H|1

2
,
−1

2
⟩

=

√
2

3
⟨3
2
,
−1

2
|H|3

2
,
−1

2
⟩ (53)

In strong interactions, contributions from states with lower isospin, such as

the second term in Equation 53 involving 1
2 isospin, are less preferred for higher

isospin configurations.

The cross section will be proportional to the square of the coefficients of each

reaction. The ratios of the Σ interactions are given by,

σΣ+p→Σ+p = 1

σΣ−p→Σ−p = 1
9

σΣ−p→Σ0n = 2
9

The cross section ratio of the 3 reactions is given by,

σΣ+p→Σ+p : σΣ−p→Σ0n : σΣ−p→Σ−p = 9 : 2 : 1

The ratio of σΣ+p to σΣ−p is determined by,

σΣ+p

σΣ−p
=

σΣ+p→Σ+p

σΣ−p→Σ0n + σΣ−p→Σ−p
= 3 (54)
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6.2 Comparison with Experimental Cross Section Ratio

Now that the cross section ratio was determined using the CG-coefficients, it can

be employed for comparisons with the experimental results. Figure 33 illustrates

that there is a level of agreement between experimental and theoretical predic-

tions. However, it shall be noted, that CG-coefficients are more appropriately

used for determining cross sections of low energy strong interaction scattering

events. At higher energies additional contributing mechanisms that will lead to

a deviation from the predicted value. From figure 33 it can be observed that as

the momentum increases there is a larger deviation of the experimental results

from the theoretical.

Using a Kernel density function, the distribution of the cross section ra-

tios was illustrated( see fig 34). A Gaussian kernel, also known as the normal

distribution, was utilized.

The Gaussian kernel function is defined as:

K(x) =
1√
2π

e−
x2

2 (55)

where x represents the difference between the point of interest and the data

point. The Gaussian kernel function assigns weights to data points based on

their proximity to each individual data point. Closer data points receive higher

weights.

It can be observed that all cross section ratios fall within 1 standard deviation

from the mean, with the exception of the ”dip” value and the ratio at 0.6-0.7

GeV/c. Furthermore, the theoretical prediction of the ratio (
σΣ+p

σΣ−p
= 3) falls

within 1σ from the mean. This provides a good preliminary agreement of the

experimental and theoretical results.
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Figure 33: Experimental cross section ratio against momentum p (left), and

total energy of the reaction W(right), plotted together with the cross section

prediction from the CG-coefficients (red).

Figure 34: Kernel density function of the distribution of the cross section ratios,

with µ = 3.712028478 and σ = 0.8392480417. Most data fall within 1σ from

the mean.

.

6.3 Conclusions

The work presented in this analysis examined the hyperon-nucleon interactions

between Σ+ and Σ− baryon and the proton using the data collected by the
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CLAS detector during the g12 experiment carried out at the Thomas Jeffer-

son National Accelerator Facility and using the theoretical prediction using the

Clebsch-Gordon coefficients of the Isospin.

Prior to this analysis the data available for the aforementioned scattering

interactions were notably scarce. It is true that this project did not yield results

of very high precision that may be taken as the definitive cross sections of the

Σ−p → Σ−p and Σ+p → Σ+p scattering interactions. However,the fact that the

cross section ratios at low momenta seem to fall into broad agreement with the

theoretical predictions from the Clebsch-Gordon coefficients can be viewed as a

promising preliminary finding. This the first stepping-stone for the analysis of

the Σp hyperon-nucleon interactions, and future work must be done in order to

extract more accurate results of the cross section ratios.

The next step for a future experimental analysis, shall be the determination

of the actual acceptance of the detector as well. Additionally, a more time-

consuming but more efficient and realistic simulation should be performed in

order to obtain more accurate path lengths of the reaction and therefore more

accurate cross sections. Both of these procedures can be done with utilisation

of GSIM. This will allow the calculation of the individual cross sections of Σ+

and Σ−.

Further theoretical analysis that will include not only the cg-coefficients

method but a variety of models, more suited to predict cross-section ratios at

higher energies shall be employed. This will allow for comparison with the

experimental results at a bigger spectrum.

Finally, this work may help gain insight in the hyperon-nucleon interactions,

by providing a foundational understanding of the interaction of Σ+ and Σ−

baryons with protons. By validating theoretical models with experimental data,

this research will assist the collaboration of experimentalists and theorists, in

the attempt of solving the Hyperon puzzle of Neutron Stars.
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A Appendix A

Table 1: Table of Experimental Data: Momentum bin in GeV/c, W (total

energy of the reaction) in GeV, Cross Section Ratio of Σ+ to Σ−, and the

corresponding error in the ratio.

Momentum Range W σ+/σ− Error in the Ratio

0.6-0.7 2.203338976 5.70179805 0.705966

0.7-0.8 2.22476967 3.265272744 0.209036

0.8-0.9 2.248120643 3.273730691 0.197592

0.9-1.0 2.273102848 3.068300596 0.190467

0.95-1.05 2.28612232 3.390405947 0.221803

1.0-1.1 2.299453111 2.509805951 0.1834

1.05-1.15 2.313066793 4.459755712 0.363266

1.1-1.2 2.326936743 3.498766808 0.273745

1.15-1.3 2.348168278 3.973754078 0.272855

1.3-1.5 2.437092737 3.947087393 0.341561

1.5-1.8 2.472209738 3.743635286 0.481894
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(a) 0.6-0.7 GeV/c (b) 0.7-0.8 GeV/c

(c) 0.8-0.9 GeV/c (d) 0.9-1.0 GeV/c

(e) 0.95-1.05 GeV/c (f) 1.0-1.1 GeV/c

(g) 1.05-1.15 GeV/c (h) 1.1-1.2 GeV/c

(i) 1.15-1.3 GeV/c (j) 1.3-1.5 GeV/c

(k) 1.5-1.8 GeV/c

Figure 35: Missing mass distribution plot for Σ−.
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(a) 0.6-0.7 GeV/c (b) 0.7-0.8 GeV/c

(c) 0.8-0.9 GeV/c (d) 0.9-1.0 GeV/c

(e) 0.95-1.05 GeV/c (f) 1.0-1.1 GeV/c

(g) 1.05-1.15 GeV/c (h) 1.1-1.2 GeV/c

(i) 1.15-1.3 GeV/c (j) 1.3-1.5 GeV/c

(k) 1.5-1.8 GeV/c

Figure 36: Missing mass distribution plot for Σ+.
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(a) 0.6-0.7 GeV/c (b) 0.7-0.8 GeV/c (c) 0.8-0.9 GeV/c

(d) 0.9-1.0 GeV/c (e) 0.95-1.05 GeV/c (f) 1.0-1.1 GeV/c

(g) 1.05-1.15 GeV/c (h) 1.1-1.2 GeV/c (i) 1.15-1.3 GeV/c

(j) 1.3-1.5 GeV/c (k) 1.5-1.8 GeV/c

Figure 37: Path length distribution of Σ− in cm.
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(a) 0.6-0.7 GeV/c (b) 0.7-0.8 GeV/c (c) 0.8-0.9 GeV/c

(d) 0.9-1.0 GeV/c (e) 0.95-1.05 GeV/c (f) 1.0-1.1 GeV/c

(g) 1.05-1.15 GeV/c (h) 1.1-1.2 GeV/c (i) 1.15-1.3 GeV/c

(j) 1.3-1.5 GeV/c (k) 1.5-1.8 GeV/c

Figure 38: Path length distribution of Σ+ in cm.
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