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SUMMARY 

1. The plant ecology of re-vegetated peat cuttings in ombrotrophic 
mires was investigated to elucidate factors having a major 
influence on the vegetation, with the aim of formulating management 
guidelines for the rehabilitation of such areas for nature 
conservation. 

2. Most of the investigations were carried out at Thorne Moors, 
a cut-over derelict raised bog near Doncaster, S. Yorkshire. 

3. The vegetation of the wide range of abandoned peat cuttings 
present at this site is described. Particular attention was paid 
to re-vegetated peat cuttings within an area comprising a series 
of cuttings, baulks and canals abandoned about 1920, now a proposed 
National Nature Reserve. Successional, hydrological and chemical 
factors and processes important in determining the distribution of 
vegetation were investigated. 

4. Stratigraphical investigations show that some species which 
recolonized the abandoned peat cuttings (e. g. Sphagnum imbricatum 
and S. magetlanicum) have disappeared from the site since 1920. 
They have been replaced by species which were not major components 
of the undisturbed mire (e. g. Sphagnum recurvwn and S. finzb2-iatum). 

5. The distribution of the vegetation in peat cuttings principally 
reflects the height of the water table. Hydrological studies have 
also shown that the methods used to maintain the water table in the 
proposed National Nature Reserve (dams in ditches and drains and 
peat baulks), a virtually isolated peatland block, are effective. 
The peat of the baulks appears to have an extremely low hydraulic 
conductivity which may be a result of drainage. 



6. The chemical characteristics of the peat waters suggest weakly 
minerotrophic rather than ombrotrophic conditions. This is attributed 
to various sources of nutrient enrichment as well as to the 
effects of peat drainage. The vegetation reflects this enrichment. 

7. The concentration of bisulphite in the rainwater may explain 
the disappearance of Sphagnum imb2-icatum and S. mageZZanicwn 
from Thorne Moors, the current low diversity of Sphagnum species 
and the dominance of S. recurvum at the site. However, there is 
no evidence that the growth of Sphagnum species introduced onto 
Thorne Moors was substantially affected by bisulphite in the rain. 

8. The abundance of Sphagnum recurvum is consistent with the 
chemical composition of the peat waters in cuttings and with its 
wide tolerance as regards the height of the water table. 

9. Many cuttings are dominated by Eriophorum vaginatum. This 
species, which can withstand a wide range of water table conditions, 
probably became established when the water table was somewhat 
lower than at present. 

10. The dominance of Juncus effusus in some cuttings may be 
associated with water flow and is sustained by flooding with 
nutrient-rich water and nutrients provided by Black-headed gulls. 
Juncus effusus became established when the water table was relatively 
low. 

11. BetuZa pubescens achieved its present dominance when the water 
table was somewhat lower than at present. This species is now 
becoming moribund and is dying in flooded peat cuttings. 

12. The composition of the vegetation relates to the time which 
has elapsed since the peat cuttings were abandoned. 

13. On the basis of the present findings and also of observations 
on other derelict sites, guidelines for the management of cut-over 
peatlands are presented. The importance of maintaining a constant 
water table somewhat above the cut-over surface is emphasized. 
Attention is also drawn to the importance of water quality and 
a source of colonizing species as well as to the need to create 
conditions suitable for the colonization of Sphagnum spp. 

14. Guidelines for the management of Thorne Moors are formulated. 
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INTRODUCTION 
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1.1 THE NATURE OF THE INVESTIGATION 

Ornbrotrophic mires (i. e. mires irrigated directly and 

exclusively by rainwater) support various and specialized plant 

communities. These have drastically declined over the last 

200 years as a result of agricultural reclamation, afforestation 

and commercial peat extraction (Tansley 1939; Godwin 1981; Goode 

1981). Lowland raised bogs, particularly, have been destroyed 

or severely modified by peat cutting (Ratcliffe 1977; Goode 1981). 

However, although many of the cut-over peatlands which remain 

have lost their former importance as intact raised mires, many 

support a wide variety of semi-natural habitats, and may provide 

the potential, through appropriate management, for rehabilitation 

of communities of ombrotrophic mires. Indeed some cut-over sites, 

including Shapwick Heath in Somerset, Moorthwaite Moss in Cumbria 

and Thorne Moors (or Waste), S. Yorkshire have been conserved partly 

because of their potential for the regeneration of mire communities 

(Ratcliffe 1977). 

Little information is available on ihe plant ecology of 

re-vegetated'peat cuttings and, therefore, I the management strategies 

required for the recreation of peatland communities (Barker & 

Gibson 1922; White 1930; Giller 1982). The objective of the present 

study was to investigate the plant ecology of re-vegetated peat 

cuttings in ombrotrophic mires and to assess the major ecological 

differences between intact and cut-over peatlandi. It was hoped 

to formulate guidelines for the management of cut-over peatlands 

on the basis of these findings. 
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Most of the investigations were carried out at Thorne 

Moors, S. Yorkshire, because of the considerable range of abandoned 

peat cuttings present at this site. These are of various ages 

and contain a wide variety, of vegetation types; the water table, 

nutrient status of the water and the residual peat depth also 

vary. In addition, part of the site is a proposed National 

Nature Reserve (pNNR). To make the investigation more comprehensive, 

cut-over areas were'also examined on other peatland sites. These 

included: Danes Moss, Cheshire; several Cumbrian peatlands; 

Fenn's and Whixall Moss, Clwyd/Shropshire; and Shapwick Heath, 

Somerset. 

1.2 RESEARCH APPROACH 

The plant ecology of re-vegetated peat cuttings and 

the ecological differences between intact and cut-over peatlands 

were studied by investigating the factors and processes influencing 

the distribution of the vegetation (Chapter 3). The factors 

which appear to be most important in determining the distribution 

of vegetation types both within and between mire systems are 

hydrology (Lopatin 1949; Ivanov 1953; Ingram 1967; Goode 1970), 

chemistry (SjO'rs 1950; Gorham 1956a, b; Gorham & Pearsall 1956) 

and successional status (Tansley 1939; Walker 1970). Individual 

investigations were therefore carried out into the hydrology 

(Chapter 5), chemistry (Chapter 6) and stratigraphy (Chapter 4) 

in a wide variety of peat cuttings. In view of the likely importance 

of bisulphite pollution in influencing re-vegetation by Sphagnum 

spp. (Ferguson, Lee & Bell 1978), the effect of such pollution 



on certain Sphagnum spp. has also been investigated (Chapter 7). 

Results of these studies are presented after a consideration of 

the land use history of Thorne Moors (Chapter 2). On the basis 

of these findings, factors affecting the main floristic features 

of the re-vegetated peat cuttings (relevant to the management of 

peatlands) are discussed (Chapter 8). Observations on other cut- 

over peatlands visited during the course of this study are 

included (Chapter 9); these are followed by suggested guidelines 

for the management of cut-over peatlands (Chapter 10) and guidelines 

for the management of Thorne Moors (Chapter 11). 

The investigations at Thorne Moors were mostly completed 

before 2 June 1982 when a severe fire burnt much of the site. 

The management guidelines (Chapter 11), however, take the effects 

of this fire into account. 
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1.3 DETAILS OF THE MAIN STUDY AREA 

The situation of Thorne Moors 

Thorne Moors (or Waste*) peatland is a cut-over raised 

bog situated 18 km north-east of Doncaster and 5 km south of Goole 

(Nat. Grid Ref. SE 720155; Vice-County 63); the S. Yorkshire/ 

Humberside boundary passes through the site (Figs. 1.1 and 1.2). 

Together with the adjoining site of Crowle Waste (situated to the 

east of the Swinefleet Warping Drain; cf. Figs. 1.1 and 1.2; not 

studied during'the present investigation) this peatland covers 

an area of 2630 ha. Most of the site is underlain by Bunter 

Sandstone; to the east of Will Pitts(Fig. 1.2), however, this, 

is overlain by Keuper Marl. Drift deposits of clay and silt 

cover the underlying bedrock below the peat (Cory 1972). To the 

south and east The Moors are bordered by the alluvium of the 

former main channel of the River Don (Fig. 1.1; 2.3). This, 

separates the site from Hatfield Moors, another cut-oVer raised 

bog (Smith 1958; not studied in the present investigation). 

Thorne Moors are otherwise surrounded by warpland, i. e. land 

(mainly reclaimed for agriculture) on which river-borne sediment 

has been allowed-to settle (2.5). ' The present surface of Thorne 

Moors lies at c. 2mO. D. The average annual rainfall is 568 mm 

The site is subsequently referred to as 'Thorne Moors' or 
'The Moors' in accordance with the wishes of local naturalists; 
this is because the name 'Waste' tends to be used to make a case 
for developing the area (Chapter 2; 3.2). 
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(Appendix 3), typical for lowland eastern Britain. 

1.3.2 Site description 

The raised bog at Thorne formed c. 3000 years ago 

during the Bronze Age (zones VIIb and VIII; Pigott 1956; 

Turner 1962,1965; Buckland & Kenward 1973; Buckland 1979; 

4.1). The site has been almost entirely cut-over for peat 

(Chapter 2) and no areas of undisturbed mire remain. At 

present the peatland is owned and worked by Fisons Ltd. (Fig. 1.2; 

2.6; this ownership, however, has recently been questioned; 

Bunting et at. 1969; Skidmore 1970). 

Owing to the peat cutting methods used, a wide variety 

of semi-natural habitats have developed on Thorne Moors (Peacock 

1920,1921; excursions of the Yorkshire Naturalists' Union 1907- 

1970 (3.2); Bunting et aZ. 1969) and in the early 1970's the 

Nature Conservancy Council declared this peatland a Site of 

Special Scientific Interest. Of particular interest is the 

Dutch Canal System (Fig. 1.2), a series of re-vegetated cuttings, 

baulks and canals originally worked by a Dutch peat cutting 

company and abandoned around 1920 (Chapter 2). The canals contain 

an extremely diverse flora consisting of some elements of the 

original raised mire as well as species characteristic of fen 

conditions (Skidmore 197Q; Rogers 1971; Rogers & Bellamy 1972; 

Chapter 3). Most of the Dutch Canal System has. been protected 

since 1978 under Section 15 of the Countryside Act (1968), which 

allows for certain management work and scientific recording to 

be undertaken; in addition, Fisons Ltd. have agreed to consult 
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the, NCC over peat extraction (and related activities), the removal 

of tramways and baulks and the chemical spraying of tramways 

(Fig. 1.2). Part, of. the Southern Dutch Canal System is also a 

proposed National Nature Reserve (pNNR ; cf. Figs. 1.2 and 1.3; 

1.3.4; 2.7). Individual canals, tramways (Chapter 2; 3.3) and 

peat baulks as well as an area of unreclaimed warpland (which 

has reverted to fen; 3.3) are protected under the Section, 15 

Agreement and the warpland is, in addition, a further pNNR (Fig. 1.2). 

The peat baulks and tramways are being retained because, on completion 

of cutting activities, it, is hoped that some cut-over areas will be 

re-flooded (Goode 1973; 11.6). 

1.3.3 The drainage system of Thorne Moors 

The pNNR in the Southern Dutch Canal System is actively 

managed for nature conservation (1.3.4) and, therefore, hydrologically 

'sealed' by means, of peat, baulks andidams in ditches and drains 

(Figs. 1.3 and 2.2). This area receives no run-off from elsewhere 

as it is situated above the level of its surroundings (6.5). Most 

of the remainder of the area protected under the Section 15 

Agreement. is also hydrologically sealed.. Otherwise, The Moors 

are drained as follows (Fig., 1.2):, The eastern extension of Main 

Canal North (now a drain; 2.7). flows into Mill Drain, which, with 

the eastern reaches of Cottage Dike and Southern Drain, receive 

water from. the eastern parts, of the peatland and discharge, into 

the Swinefleet Warping Drain. Northern parts of The Moors are 

drained by Blackw4ter Dike; this,, drain also flows into the Swinefleet 
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Warping Drain which eventually discharges into the River Ouse 

near Goole, 7 km north of the site (Fig. 1.1). The western 

reaches of Southern Drain and water from the' north of Angle Drain 

flow into the Southern Boundary Drain; this flows westwards into 

Thorne Moor Drain. Thorne Moor Drain also receives drainage water 

from the drain at the base of the colliery tip (2.9; 6.5) and 

the southern reaches of Angle Drain; it eventually discharges into 

the River Trent at Keadby (Fig. 1.1; 2.3). This drainage pattern 

is modified from time to time by Fisons Ltd. (2.8). No feeder 

drains flow onto The Moors. 

1.3.4 The proposed National Nature Reserve (pNNR) in the 

Southern Dutch Canal System 

The pNNR, 81 ha in area, comprises parallel series of 

alternate peat cuttings'-and peat baulks separated by canals, 

originally used to transport peat from the area (Fig. 1.3; 2.7). 

Owing to the presence of dense birch scrub (Chapter 3), accurate 

levels were not determined across the area; there appears, however, 

to be a slight rise in height to the south and west of the pNNR. 

The primary aim of management in the pNNR is to encourage 

the development of communities characteristic of ombrotrophic 

mires (Goode 1973; Bonner 1978). At present, management activities 

include: maintenance of dams in ditches and drains) monitoring of 

the water table, 's'crub clearance, recording of flora and fauna and 

fire watching; these are undertaken by a full-time NCC warden. 



10 

L1I 

II U_a - -1 --1 
Lj j 

r -, v 

III L---, L--, --. 
J ,- --p I 

L -. J 
LJ 

LL 1 
- 

L---J 

Fig. 1.3 Thorne Moors proposed National Nature Reserve (pNNR) 



11 

1.3.5 Study sites 

1.3.5.1 Study sites within the, pNNR 

Most of the investigationsýwere carried out in the pNNR. 

Within this area, sample sites were, located in peat cuttings, 

on peat baulks an&in-canals along transects across the length 

and breadth of the pNNR (Fig. 3.1; 3.4.2; Fig. 8.1). 

One cutting in the centre of the pNNR was investigated 

particularly thoroughly; this cutting (4/5W5, Fig. 3.1) was considered 

to be of particular interest owing to its central location and diverse 

vegetation (3-4). To prevent disturbance to the long term investigations 

carried out in this cutting, damaging activities (e. g. peat boring) 

were restricted primarily to an adjacent peat cutting, also relatively 

species-rich (4/5W4, Fig. 3.1). Some species-rich cuttings were 

avoided completely to prevent undue damage by trampling. 

1.3.5.2 Other peat cutting study sites 

A Juncus effusus swamp adjacent to and south of Main 

Canal North (JA on Figs. 1.2 and 2.2; 2.7; 3.3.2) was selected 

as a major study site. A tramway borders this cutting on its 

eastern side; in the south and west it is bordered by parts of 

the Northern Dutch Canal System (Fig. 1.2; 2.7). The complete 

dominance of Juncus effusus in this cutting and the possibility that 

water flows through this area from surrounding cuttings were 

considered to be of particular interest (cf. Rogers 1971). 
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The Experimental Plot (EP; Figs 1.2 and 2.2; 2.8; 

3.3.2) is an area of c. 2.5 ha offered for research by Fisons Ltd.; 

this was selected for particular study as an example of a shallow 

peat cutting abandoned relatively recently. This cutting rises 

gently to the north where it is bordered by the Southern Boundary 

Drain; it is surrounded by peat baulks on the other three sides. 

All borders were 'hydrologically sealed' in 1979 (Lindsay 1979). 



CHAPTER 2 

THE LAND-USE HISTORY OF THORNE MOORS 
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2.1 INTRODUCTION 

Thorne Moors was once part of a vast, low-lying 

wetland complex of bog and fen situated around the head of the 

Humber. This region, which stretches north to York, west to 

Selby and Snaith and south, between the Don and Trent, to 

Gainsborough is known as the Humberhead Levels (Wilcox 1933; 

Figs. 2.1 and 1.1). 

The southern part of the Humberhead Levels is known as 

Hatfield Chase, a Royal hunting forest at the time of James I. 

This area, in which Thorne Moors is situated, is roughly rectangular 

in shape. It is bordered by the River Ouse in the north, the 

River Trent in the east and the River Idle in the south (Fig. 1.1). 

The Isle of Axholme lies in the south east of Hatfield Chase; 

this 'hillock' is formed of Keuper Marl and has a maximum elevation 

of 39 m. 

The land use history of Thorne Moors is mainly concerned 

with the reclamation of a vast raised bog through drainage, 

peat cutting and warping. Much reclamation occurred in the 

seventeenth, eighte. enth and nineteenth centuries. In 1874, 

however, Thorne Moors was still 'a shaking bog, trembling in waves 

when you jumped on its 'scurf' or 'floral blanket" (Peacock 1920). 

Although the total peatland area has remained approximately the 

same (Skidmore 1970), commercial peat winning activities have 

radically altered the nature of the raised bog at-Thorne. 
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2.2 EARLY OBSERVATIONS ON THE HISTORY OF THE HUMBERHEAD 

-LEVELS 

The first paper devoted to a consideration of fossil 

material and its origin in the Humberhead Levels was by de la Pryme 

(1701), who noted the occurrence of 'pitch trees', oak, birch, 

yew, 'wirethorn', willow, ash and hazel beneath the peat. 

He observed, that, although the formation of the peat bogs was 

attributed by some to Noah's flood, the 'real truth is that ... 

they have been, produced from trees falling upon Springs and Rivers 

and obstructing their courses; they ... were made by ye Romans 

cutting down ... ye Woods in ye Low grounds and Levels ... in 

the first century A. D. ',, (Tomlinson 1882). This theory was 

subsequently quoted and elaborated by other historians including 

Stonehouse (1839), Casson (1869), Tomlinson (1882) and Bunker 

(1898,1905). Indeed, in spite of recent work which indicates 

that the wood at the base of the peat at Thorne Moors dates from 

the Bronze Age (Turner 1962,1965; Buckland 1979), the destruction 

of a vast forest by the Romans is still considered by some to mark 

the initiation of peat formation at Thorne Moors (Goodchild 1971). 

It is clear that the inhabitants of Hatfield Chase 

knew of the existence of the remains of a forest below the peat 

from the time of the seventeenth century drainage (Stonehouse 

1839; 2.3); some even gained a living by retrieving tree trunks 

from the peat (Bunker 1898). As it is possible that the forest 

remains were observed even earlier, caution is needed in the 

interpretation of the observation by Roger de Mowbray, Lord of 

Axholme, in 1100 A. D. that 'the whole of the Levels twixt Don and 
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Trent were covered in a great old decaying forest of oaks and 

firs'. This phrase, quoted by Peacock (1920,1921), Skidmore 

(1970) and Rogers & Bellamy (1972) as indicating conditions in 

1100 A. D. may have referred either to conditions at this time 

or to the previous existence of a forest in the Humberhead 

Levels. 

Other historical records of woodland in areas of the 

Humberhead Levels are also somewhat difficult to interpret. This 

_is 
because it was apparently assumed that woodlands present in the 

area were relicts of the forest which originally covered the 

whole region, 
'and 

were, therefore, still gradually disappearing 

owing to the continuation of the process which destroyed the 

original forest. For example, the statement quoted by Skidmore 

(1970) and Rogers & Bellamy (1972) (the source of which is not 

identified) that 'during Elizabeth I's reign the last standing 

pines, remnants of the great old forest of pine and oaks which 

covered the whole of the Humberhead Levels long before, sank 

into the morass' gives the impression that the Humberhead Levels 

became significantly wetter during the last few hundred years. 

De la Pryme's suggestion (1704) that 'pitch trees called firr' 

lasted into the eleventh century and finally disappeared just 

before the drainage (seventeenth century) also gives this 

impression; however, a relatively recent rise in water table 

may not, necessarily, have taken place (cf. Buckland 1979). 
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2.3 THE DRAINAGE OF THE HUMBERHEAD LEVELS 

2.3.1 The rivers of the Humberhead Levels (Cory-1972; ý 

Severn Trent Water Authority 1979; Fig. 1.1) 

Before the reclamation of the Humberhead Levels three 

major rivers and their tributary streams meandered across the region: 

the Rivers Don, Tbrne and Idle. They flowed in unstable river 

channels which may have become divided from time to time. 

The River Don entered Hatfield Chase west of Thorne. 

It then divided into two parts: a northerly branch joined the 

River Aire and an easterly branch flowed eastwards between Thorne 

and Hatfield Moors to meet the River Idle at Sandtoft. From 

Sandtoft, the Don, with the added waters of the Idle (north 

course), followed a wavering channel to enter the Trent near 

Adlingfleet. 

In the southern part of the Chase the River Idle split 

into two parts; one part flowed eastwards towards the Trent 

north of Misterton; the other extended northwards to join the 

River Torne east of Wroot and the River Don at Sandtoft. 
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2.3.2 Drainage operations before the seventeenth century 

The Romans may have been the first to attempt the 

drainage of the Humberhead Levels. They apparently built banks 

to keep out the sea and dykes to drain submerged land (Tomlinson 

1882). 

During the mediaeval period the course of the northerly 

branch of the River Don was altered (Buckland 1973) and doubtless 

small areas of land were recovered from marsh during the 

Middle Ages (Cory 1972). 

2.3.3 The seventeenth century drainage (ptonehouse 1839; 

Cory 1972; Fig. 1.1) 

2.3.3.1 The agreement between Charles I and Vermuyden 

The first major marshland reclamation in Britain 

was undertaken in Hatfield Chase in 1626 by a syndicate of 

Dutchmen (known as 'Participants') led by Cornelius Vermuyden. 

An agreement between Charles I and Vermuyden provided for-the 

distribution of 77,000 acres, (31,000 hectares) of marshland in 

three parts: a third each to the Participants, to the Crown and 

to the Tenants of Axholme. Also included in the area was 3,000 

acres (1,210 hectares) reserved for flooding. 
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2.3.3.2 Drainage operations carried out by Vermuyden: 

1626-1629 

Vermuyden's plan for the drainage of Hatfield Chase 

was based on the principles of first intercepting incoming 

rivers and then constructing straight internal watercourses to 

suitable outfalls. Briefly, the southern branch of the Don was 

blocked near Th'orne so that the whole of this river discharged 

along'an enlarged channel into the Aire. At the same time the 

Idle was stopped in the south of Hatfield Chase and diverted 

eastwards into the Trent and the Torne was confined to a new 

channel which discharged into the Trent atý Althorpe. In addition 

to these major diversions many straight drains were also cut to 

deal with the meres and meanderings of many water courses. 

2.3.3.3 Drainage operations after 1629 

The three-year drainage project fell far short of 

complete success. The discharge of the Don into the Aire and 

the Torne into the Trent proved to beýtoo great for the channels 

designed to convey these rivers; this resulted in the flooding 

of large areas, some of which had been previously dry. Remedial 

work was enforced upon the Dutch Participants; this included the 

raising of the Don banks and, in 1635, the cutting of the Dutch 

River in order to provide a satisfactory outfall for the Don into 

the Ouse at Goole. 
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2.3.4 Eighteenth and nineteenth century drainage operations 

(Cory 1972; Rogers 1971; Fig. 1.1) 

In the latter part of the eighteenth century, drainage 

operations included the widening and deepening of outfalls into 

the tidal River Trent and improvements to the New Torne. The 

construction of the Stainforth and Keadby Canal in 1792, which 

passes between Thorne and Hatfield Moors, also eased drainage 

problems in the area. 

In 1830 one George Leathers suggested that a northern 

outfall was necessary for a new tidal drain. He proposed that 

this watercourse should start west of the new Idle, drain 

Thorne Moors and follow a straightened version of the old Don's 

Adlingfleet am. However, this bold plan was not adopted. 

Although wind pumps were used in the drainage of the 

Fens before 1600, there is no mention of the use of these power 

sources in Hatfield Chase. The first mentioned mechanical aid 

to drainage is the steam engine, first used between Epworth and 

the Trent in 1837. In the'latter part of the nineteenth century 

at least three further steam pumping engines were installed in 

Hatfield Chase. 
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2.3.5 Twentieth century drainage operations (Severn Trent 

Water Authority 1979; Fig. 1.1) 

Subsequent to the passing of the Land Drainage Act in 

1930 the entire drainage system of Hatfield Chase was reviewed. 

A detailed levelling survey of the area was carried out and key' 

sites were selected for the location of pumping stations. 

At the south-west margin of Thorne Moors the Elmhirst 

pumping station, located on Thorne Moor Drain (Fig. 1.2), discharges 

water from this peatland into the North Soak Drain c. I km south 

of The Moors. This drain, which runs parallel to the Stainforth 

and Keadby canal, eventually discharges into the River Trent at 

Keadby. 

2.4 PEAT CUTTING ON THORNE MOORS BEFORE 1870 

2.4.1 Introduction 

Turf has probably been removed from turbaries on Thorne 

Moors since early mediaeval times, the peat being used for building 

houses as well as for fuel (Tomlinson 1882). The following 

quotation from the Stovin manuscript (1730; see Jackson 1881) 

suggests that turf was removed from all, margins of this peatland: 

'Thorne Waste is of great extent, being twenty-five miles round. 

It affords turbary to Croul in Lincolnshire, Eastoft, Haldenby, 

Folkerby, Adlingfleet, Ousefleet, Goule, Hooke, Ayremin, Rawcliff 

in Marshland, Snaith, Sykehouse, Fishlake, & c., in the county 

of York'. 
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The vast region suggested by this passage (cf. Fig. 1.1) 

may reflect the extent of the peatland area exposed by the seventeenth 

century drainage (2.3), and may not, necessarily, represent the 

area covered by the undisturbed ombrotrophic mire. However, its 

huge size; and the fact that the River Don was navigable to 

Thorne (through the cutting of the Dutch River, 2.3.3), may have 

provided the incentive for the development of a turf trade in 

the seventeenth century. 

2.4.2 The turf trade during the seventeenth and eighteenth 

centuries (Casson 1869; Goodchild 1971) 

One of the few references to the seventeenth century 

turf trade, which probably developed soon after the drainage, 

concerns the theft, in 1652, of 'one Catch (open sailing barge) 

loade of Turves and Wood'. However, by the eighteenth century, 

it is known that the south-west side of the turf moors at Thorne 

was being worked for peat from a series of excavations adjoining 

canals (drains), which ran for short distances westwards and 

out of thd moor., The peat was transported in 30-40 small boats; 

these were'clinker-built, about 28 feet long and 6 feet wide, 

sharp at both ends and made to work either stem or stern foremost 

(the drains being too narrow to allow the boats to be turned). 

Boating Dykes were used to convey the peat; one of these ran from 

The Moors to the River Don at Thorne and another was cut eastwards 

to the River Trent, the old River Don no longer being navigable. 

The peat was apparently shipped to towns on the banks of the Don, 

Ouse, Trent and Humber. 
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The turf trade appears to have begun to decline in the 

1790's. Firstly the construction of the Stainforth and Keadby 

Canal (2.3.4) probably resulted in the closure to navigation of 

part of the Boating Dyke System and meant that dues had to be 

paid for the carriage of peat; secondly coal began to replace 

peat as fuel between the Aire and Don valleys. 

2.4.3 The turf trade between 1800-1870 (Casson 1869; 

Goodchild 1971) 

In 1815 the Enclosure Commissioners authorized the 

cutting of a new drain, about 2 miles in length, along the edge 

of Thorne Moors to the North Soak Drain of the Stainforth and 

Keadby Canal. However, this drain and the rest of the Boating 

Dyke System was used only until 1829 when it was decided that 

'boating was injurious to the drainage'. At this time there were 

said to have been only 8 or 9 boats in use 'chiefly confined to 

the moors'. 

After the abandonment of boating all peat was carted 

either to Thorne town for sale or to the Stainforth and Keadby 

Canal for shipment. 
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2.5 THE USE OF WARPING TO RECLAIM LAND IN THE THORNE AREA 

2.5.1 The practice of warping (Creyke 1845; Casson 1869) 

'Warp' is the term applied to the river borne sediment 

which by natural or artificial means has settled on land surrounding 

the Humber estuary and its vicinity. Natural warping has, of 

course, been utilized by farmers for centuries and in the first 

half of the nineteenth century extensive areas in the Humberhead 

Levels were warped artificially. 

The warping procedure called for a straight, well 

reinforced drain connected to the main tidal rivers: Trent, Ouse 

or Don. At each tide silt laden waters were directed onto strongly 

embanked areas of land (below sea level) known as warping 

compartments. Carefully designed drains in the warping compartments 

allowed the deposit of a uniform depth of silt and the water to 

be drawn off completely between tides. Occasionally, however, 

excess water was drained into a 'warping pond'. 

Under ideal conditions land was reclamined in one year 

during which time a depth of 2-3 feet of warp was deposited. For 

higher land, however, a warping period of 4 or more years was 

necessary. Many abandoned turbaries were warped in the nineteenth 

century owing to their location below sea level. Indeed, in some 

areas it is clear that peat removal was hastened to allow warping 

to take place. 
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2.5.2 Warping of the Thorne area (Creyke 1845; Edwards 1851; 

Casson 1869) 

Warping of land around Thorne Moors began in 1821. 

By 1826 the following areas were covered: 1600 acres at Goole, 

Swinefleet and Reedness; 800 acres at Eastoft; 250 acres at 

Crowle Moors. 

Areas to the north and east of Thorne Moors were warped 

by means of the Swinefleet Warping Drain (Fig. 1.2). This drain 

connected with the River Ouse 7 km from The Moors and still drains 

the peatland today. Adequate drainage was essential for the 

cultivation of warplands. The waterlogged Shearburn Pitts Warp 

to the west of the Swinefleet Warping Drain was never cultivated 

and today this area has reverted to fen (Fig. 1.2). 

In 1848 the 'Thorne Moor Improvement Company' was 

established to reclaim Thorne Moors in conjunction with plans by 

the Great Northern Railway Company to lay a railway between 

Doncaster and Gainsborough (via Thorne, Crowle and Epworth). 

A scheme to reclaim Thorne Moors by a process of 'dry warping' 

was drawn up: alluvium from the riverbed of the old Don was to be 

transported by rail and spread over the peat. However, the plans 

were abandoned after 'a pressure on the money market' caused the 

Great Northern Railway Company to refuse to take the railway to 

Crowle and Epworth. 
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Subsequent to the failure of this scheme, one of 

the subscribers to the Improvement Company, Makin Durham, 

turned his attention to the construction of a new warping drain. 

The Durham Warping Drain connects the western edge of Thorne Moors 

to the River Don, approximately 3 miles north of Thorne; excess 

water from the drain flowed into Bells Pond (Fig. 1.2). This 

drain, today utilized as a land drain, resulted in the raising 

of a large tract of swampy ground to 3-5 feet above its original 

level. 
4 

2.6 THE PEAT CUTTING INDUSTRY AT THORNE MOORS SINCE 1870 

(Mr S Marsball, employee of Fisons Ltd., personal 

communication; Goodchild 1973) 

The peat cutting industry at Thorne Moors revived 

around 1870 (Bunting et aZ. 1969), principally because of an 

increased demand for peat for use as horse and cattle litter. 

In 1896, four peat cutting concerns then working on 

Thorne Moors were amalgamated into the British Peat Moss Litter 

Company: 
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1. The Dutch Griendstveen Moss Litter Company (which 

was only partially taken over) transported peat from the west and 

centre of Thorne Moors by a system of canals (2.7) to a mill on 

the western margin of The Moors (the 'Old Paraffin Mill', Fig. 1.2). 

From here peat was transported out of the area by means of a 

short branch of the Thorne-Goole railway. This company operated 

until c. 1920 when the Paraffin Mill was closed. 

2. ' In the south of The Moors the Moss Litter, Charcoal 

and Manure Company used an internal tramway system to transport 

peat to Medge''Hall mill, c. 1 km south-east of the peatland. 

Until 1965, when Medge Hall closed, a short branch of the Thorne- 

Keadby railway was used to transport peat out of the area. 

3. The north of Thorne Moors was worked by a concern 

(probably William Smith and Company) whose works, known as 

'Creykes Siding', were'l'ocated adjacent to the Thorne-Goole 

railway. A branch of this railway led to the north-west margin 

of The Moors; peat was transported to this point by means of an 

internal tramway system. The Creykes Siding peat works probably 

closed sometime after 1920. 

4. The Goole Moss Litter Company used an internal 

tramway system to transport peat cut from the north-eas t of 

Thorne Moors to a mill located 2 km north-east of the peatland. 

A fifth peat company, the Hatfield Chase Peat Moss Litter 

Company, which may have cut peat from Hatfield Moors, was also 

taken over by the British Moss Litter Company. 
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In 1900 the British Moss Litter Company merged with 

three other large national companies to form the Peat Moss 

Litter Supply Company. At this time the greatest concentration 

of sales was in northern England and the north-east Midlands. 

In addition to its use as litter for cattle'and horses, peat 

was also used for the production of-paraffin,, creosote, ammonia 

water, tar and as an ingredient in cattle food. 

The British Moss Litter Company (in spite of the merger 

in 1900 the Company retained its old name) continued to cut 

much of the area of Thorne Moors until 1950 when it was taken 

over by Fisons (Horticultural Division) Ltd. This company extracts 

substantial quantities of peat from most of The Moors at the' 

present time (Fig. 1.2). The peat is transported to the 

'Swinefleet' processing plant '(of the old Goole Moss Litter Company) 

2 km north-east of Thorne Moors by means of an internal tramway 

system. 
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2.7 THE DUTCH CANAL SYSTEM 

2.7.1 The canal and drainage systems 

The Dutch worked an area of Thorne Moors bordered in 

the north by Mill Drain, in the east by Thousand Acre Drain 

and in the south by Southern Drain and the Southern Boundary 

Drain (Figs. 1.2 and 2.2). 

They excavated two major canal series: the Northern 

and Southern Systems. In each of these, lateral or 'side' 

canals (12 in the Southern System and 11 in the Northern System) 

were cut perpendicular to a 'main' canal at intervals of 9 chains 

(c. 180 m). The side canals are numbered in a westerly sequence 

(Fig. 2.2). The pNNR (Fig. 1.3) consists of an area bordered by 

the Main Canal and canals 1 and 6 of the Southern System and 

the Southern Boundary Drain (Fig. 2.2). 

The Main Canal of the Southern System was joined to 

Main Canal North by canal 1; from the north end of canal 1 the 

route of the Main Canal was west to the edge of The Moors; from 

here it ran in a north-west direction to the Paraffin Mill, 

crossing the Durham Warping Drain by means of a brick aqueduct 

(Goodchild 1973). 
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Fig. 2.2 The Dutch Canal System. See also Fig. 1.2. 
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Two smaller canal series, the Pighill and Mill Canals, 

were cut perpendicular to canal 1 (south) and the north-west 

portion of the Main Canal respectively (Fig. 1.2). 

The canals were approximately 5m wide and enclosed 

on both sides by banks or baulks of peat, also-approximately 

5m wide. 

A drainage system was excavated quite separate from the 

canal systems. Drains between the side canals of the Southern 

System ran into the Southern Boundary and Southern Drains whilst 

those between the side canals of. the Northern System ran into 

Cottage Dike (Fig. 1.2). In some places-drains are 

thought to have run under the canals by means of culverts; for 

example, where canal 1 crossed Cottage Dike. The'aim of this 

system was to drain the bog sufficiently to cut the surface 

layers of peat, whilst maintaining a relatively high water level 

in the canals. However, it seems that there was a chronic water 

shortage in the canals which was partially rectified by pumping 

water into the Main Canal from the Durham Warping Drain (Goode 

1973). Warp clay (2.5) was also dumped into some of the canals 

in an attempt, to ease this problem. 

Double-ended barges similar to those used on the early 

Boating Dyke System (2.4.2), were used to transport peat from the 

cuttings to the Paraffin Mill. They were drawn by horses and 

steered by a pole from behind along a towpath constructed on the 

north side of the Main Canal. This was made from*limestone 

rubble and other hard core material (Goode 1973). The canals 

were widened at intervals to form passing places. 
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2.7.2 The peat cuttings 

The first stage in the cutting of areas between the side 

canals appears to have been the excavation of deep ditches at 

intervals of I chain (c. 10 m), perpendicular to the side canals 

and larger drains (Fig. 2.3). Peat1was then removed from a series 

of cutting bays; these were generally 1 chain (c. 20 m) in width 

and encompassed two of the original ditches. The cuttings were 

separated by uncut areas (peat baulks) generally li chains 

(c. 30 m) in width (Fig. 2.4). In addition to 3 of the original 

west-east ditches the peat baulks were also usually drained 

by 3 lateral (north-south) ditches. Peat was also removed from 

the area between the end of the peat baulks and the drains 

(Figs. 2.3 and 2.4). In the pNNR 12 cutting bays were excavated 

between each side canal and drain (Fig. 1.3); -this diagram also 

shows that the dimensions of the cuttings and baulks varied 

somewhat. 

Peat removed from the cuttings was stacked and dried 

on the peat baulks. From here, peat wheelbarrows were used to 

cart the peat to the canals. 

The peat baulks now stand approximately 35 cm above the 

'central' section of each cutting (that part enclosed by the 

two original ditches) so that it is known that at least 35 cm of 

peat was removed from these areas (Chapter 4). A further 15 cm 

of peat, at least, was removed from the parts of the cuttings 

between the original ditches and the long edges of the peat baulks 

(subsequently referred to as 'outer' or 'peripheral' cutting sections). 



33 

N Baulk 

Cutting D_itch 

:3 Boulk -0 

Dýtch Cutting 

62i 5m 
I 

Fig. 2.3 The relationship between cuttings, baulks, 
drains, ditches and canals in the Dutch 
Canal System (ditches on baulks are not 
shown for clarity). 
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Vegetation cleared from the surface of the cuttings 

was apparently piled up in the middle of the central sections 

of the cuttings; this is subsequently referred to as peat 'rubble'. 

The Southern Dutch Canal System may have been worked 

from west to east so that western areas may have been abandoned 

before eastern areas (Mr J Kempton, Dutch peat cutter, personal 

communication). 

2.7.3 The Dutch Canal System since 1920 

Since it was abandoned in 1920 the Dutch Canal System 

has been modified in a number of ways: 

1. At present shallow ditches perpendicular to the 

canals occur at regular intervals across the peat baulks 

(parallel to the canals); these may have been cut sometime after 

1920 to drain the canals. 

2. The culverts by which the drains ran under the 

canals have collapsed. 

3. Peat baulks have been cut away from: areas between 

the Mill and Pighill Canals; from some parts of the Northern 

Dutch Canal System; and from between canals I and 2 and the western 

series between canals 2 and 3 of the Southern Dutch Canal System 

(Fig. 1.3). It is not known when this cutting took place but since 

it probably involved breaching of the canals it presumably was 

after 1920. 
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4. Tramways have been constructed adjacent to canals 

6 and 9. This involved the filling in of canal 9. 

5. In 1956, an area to the east of canal 6 (north and 

south) and part of the Northern Dutch Canal System (the 'Juncus 

effusus' area, Fig. 2.2; 3.3.2.1) was cut away by Fisons Ltd. 

Main Canal North east of canal 6 was apparently deepened and 

effectively became a drain. This operation was abandoned, however, 

about 1960 owing to flooding. (Mill Drain did not drain the area 

as effectively as it does now - see no. 8 below). 

6. In the Northern Dutch Canal System, canal 11 and 

the cuttings adjacent to it have been completely cut away; in 

the Southern Dutch Canal System parts of canals 10,11 and 12, 

and cuttings adjacent to them have been cut (Fig. 1.2). 

7. To the north-west of the Mill Canals the Main Canal 

has almost completely dried out (Fig. 1.2). 

8. In March 1972 Fisons Ltd. began to drain the Dutch 

Canal System. Mill Drain and the Southern/Southern Boundary 

Drains (including the nothern part of Angle Drain) were enlarged 

and the New Cut was constructed (Figs. 1.2 and 2.2). These 

drains were cut down to between 45 and 70 cm into the underlying 

clay (Dr D Shimwell, personal communication). Canal 10 (south) 

was connected to Mill Drain by way of canal 10 (north), and canals 

6 and 9 (south) were connected to the Southern Boundary/Southern 

Drain. In addition, the southern ends of the drains which run 

parallel to the side canals in the Southern System were joined to 

the Southern Boundary Drain. 
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The complete drainage of the Dutch Canal SYstem 

was prevented by Wm. Bunting of Thorne and a team of concerned 

naturalists (known as 'Bunting's Beavers') who dammed the drains 

at strategic points. A period of over one year elapsed, however, 

before the Canal Systems were 'sealed off'. These dams are 

indicated on Fig. 2.2 by means of symbols as well as by discontinuities 

in the drains and canals. 

9. Many dams have been reinforced and new ones 
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constructed by the NCC warden, especially in the pNNR. 
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2.8 PEAT CUTTING METHODS USED BY THE BRITISH MOSS LITTER 

COMPANY (EXCLUDING THE GRIENDSTVEEN COMPANY) AND 

FISONS LTD. 

2.8.1 Peat cutting methods used by the British Moss Litter 

Company 

In contrast to the methods used by the Dutch, the other 

constituent companies of the, British Moss Litter Company 

excavated large, rectangular peat cuttings adjacent to continuous, 

narrow baulks of peat on which the tramways were located. Smaller 

peat baulks were used for stacking and drying the peat 

(Bunker 1898). 

Most of the early peat cuttings have been re-cut by 

Fisons Ltd.; however, a small area, of cuttings which date from 

1900 occurs in the south of the site (3.3.2.1, no. 1). 

Many of the tramways had a foundation of 'cinders from 

the engine room fire' (Peacock, YNU 1907; 3.3.5). Small waggons 

of turves were drawn by horses in the early 19001s; these 

were later replaced by locomotives. Many of the tramways are 

abandoned but are retained under the Section 15 Agreement 

(Chapter 1). 

38 
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2.8.2 Peat cutting methods used by Fisons Ltd. 

Fisons Ltd. extract peat from areas which have been 

previously drained and cleared of vegetation by means of a 

machine which cuts a series of 'channels' c. 1.5 m wide and 

c. 0.8 m deep. Baulks are left between the 'channels' on which 

the cut peat 'blocks' are stacked to dry for several months. 

The peat is then transported to the peat processing plant. 

'Modern' cuttings therefore consist of series of large, shallow 

cuttings and baulks. Areas are re-cut at intervals of approximately 

5 years. By'contrast, on Hatfield*Moors, a more up-to-date 

process, peat milling, is carried out. 

The Experimental Plot, (Chapter 1; Figs. 1.2 and 2.2; 

3.3.2) was last cut in 1972. 

Fisons Ltd. control the water level at Thorne Moors by 

constructing temporary aams in the main drains, breaching existing 

dams, constructing new drains and by means of sluices in the main 

drains, for example at the west end of the Southern Boundary 

Drain. 

Fire is a hazard on The Moors where so much dry peat is 

exposed. Some of Fisons' employees therefore carry out 'fire 

watching' activities. 
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2.9 DEVELOPMENT PRESSURES 

2.9.1 Thorne Colliery 

The 'High Hazel' coal seam was extensively worked at 

Thorne Colliery from 1930 until the colliery closure in 1956. 

Approximately 500 hectares of Thorne Moors were undermined; this 

has resulted in a shallow subsidence basin extending to c. 5 km 

east of the colliery, ranging from zero to a calculated maximum 

of 110 cm in depth (National Coal Board, personal communication). 

The NCB is currently carrying out work to reopen 

Thorne Colliery. The Board originally expected to begin production 

in 1984-5; recent financial cutbacks, however, seem likely to 

affect the target date. The renewal of mining operations is 

likely to causefurther subsidence of the Thorne Moors area. 

Colliery waste production is likely to be high once 

the mine runs into full production. The existing tip (Fig. 1.2) 

has spare capacity until 1991; pressure for extension of the tip 

may become necessary after this date (South Yorkshire County 

Council 1981). Such a proposal is likely to cover land on the 

fringe of Thorne Moors. 

Drainage water from the mine flows into the Durham 

Warping Drain and south towards Thorne Moor Drain (Fig. 1.2; 

Chapter 6). 



2.9.2 Pulverized fuel ash disposal 

In 1969, proposals were made by the Central Electricity 

Generating Board to use the western portion of Thorne Moors 

for the tipping of pulverized fuel ash from Drax Power Station 

(3.2.3). Although this threat was averted, further proposals 

were made to dump this material on Thorne Moors, once the peat 

has been extracted. However, in May 1974 South Yorkshire County 

Council decided to take an unfavourable view of this proposal 

'for agricultural, nature conservation and peat operational 

reasonst. 

2.9.3 Regional airport 

There. has been a long-standing proposal to construct 

a new regional airport for Yorkshire and Humberside on the 

northern part of Thorne Moors. South Yorkshire County Council 

consider, however, that such a proposal would have serious 

repercussions on conservation and agricultural after-use and 

therefore decided to withdraw its 'protection' of the potential 

airport site in April 1979 (South Yorkshire County Council 1981). 
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CHAPTER 3 

THE VEGETATION OF THORNE MOORS 



-i 

3.1 INTRODUCTION 

The flora of the raised bog at Thorne has undergone 

many changes since the peat was first cut, drained and warped. 

Past records of the vegetation are presented here in order to 

assess the nature of the undisturbed raised bog and the effect of 

reclamation and improvement (3.2). 

Also included in this chapter are accounts of: 

1. The present vegetation of the Thorne Moors peatland, 

excluding areas described in 3.4 and 3.5 (3.3). 

2. A detailed investigation into the vegetation of 

the re-colonized peat cuttings and baulks of the Dutch Canal 

System 

3. An investigation into the flora of the Dutch Canals 

(3.5). 

owing to the present rapid exploitation of the area 

by peat cutting, the accounts of the vegetation of some areas 

may already be out of date. No attempt was made to make full 

species lists from areas other than the peat cuttings of the pNNR. 
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3.2 PAST RECORDS OF THE VEGETATION 

3.2.1 The 18th and 19th Centuries 

3.2.1.1 The raised bog flora 

One of the earliest references to plants growing on the 

raised bog at Thorne was made by Stovin (see Jackson 1881) in a 

manuscript written around 1730: this waste .... affords 

plenty of cranberries, and an odoreferous (sic) shrub called 

Gale; some call it Sweet willow or Dutch myrtle'. 

Although few specific references were made to species 

of Sphagnwn by the early botanists it seems likely that the bog 

was covered with several species of this genus. Casson (1869), 

for example, states that 'the margins of the ponds at some 

seasons are beautifully fringed with variously coloured moss, 

in greens, in pinks, and up to dark maroon or brown' and Tomlinson 

(1882) writes that '.. we used to gather bundles of bright-coloured 

moss, the hues of which were almost endless, or bunches of the 

cotton-grass' (from the turf-moor). 

The mire surface may have exhibited some patterning; 

Casson (1869) describes 'large ponds ... of dark coloured water, 

clear and perfectly free from weeds and aquatic plants; many of 

them are extremely curious in shape - one perhaps will be like 

two miniature seas divided by a narrow strait, others will have 

the edges indented with large bays and inlets'. Peacock (1920, 

1921), writing of the closing decades of the 19th Century, mentions 
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'pools of the central waste' 'constantly growing up on the 

Sphagnwn peat (which) when used (for duck rests) had to be 

frequently opened out'. 

Plants associated with the pools included Carex limosa, 

Veocharis paZustris., Menyanthes trifoZiata., Rhynchospora aZba., 

Osmunda regaZis and Scheuchzeria paZustris (Peacock 1920). 

Scheuchzeria palustris was found at Thorne Moors 'in 

great plenty' by Appleby in 1831 (Appleby 1832). In 1870, however, 

the last authenticated Thorne Moors specimen of Scheuchzeria 

was collected by Lees (1888). Just forty years after its discovery 

the Rannoch Rush was extinct in the area. 

Elsewhere on Thorne Moors CaUuna vuZgar7*s and Erica 

tetralix were frequent as were Andromeda poUfoZia and Vaccinium 

oxycoccus (Bunker 1898). Bunker (1898) also observed that 'the 

crow berry (EnTpetrum nigrum) .... grows sparingly' and that 'you 

may meet with a bed of bog asphodels' '(Narthecium ossifragum). 

DroSera anglica, D. intermedia and D. rotundifolia were 'so common 

that wheelbarrow loads might be collected' (Bunker 1898); indeed 

Peacock (1920) 'sent out hundreds of specimens of the Droserae 

to workers in many parts of England'. 
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3.2.1.2 The flora of the bog margins and ancient turbaries 

It was perhaps owing to the difficult terrain that much 

botanising was carried out at the margins of the bog as well as 

because the flora of the edges was particularly diverse. Lees 

(1884), for example, gathered Lastraea cristata (Dryopteris cristata) 

and Peucedanwn palustre on the 'less open border' of The Moors 

nearer Thorne. Bunker (1898), too, noted that 'sweet gale or bog 

myrtle (Ahjrica gaZe) is very common near the borders'. 

Peacock (1920,1921) recognized that the flora of the 

bog in the mid 19th Century was, through the cutting of drains, 

dykes, turbaries and decoys, more diverse than that of an 

undisturbed bog. He notes that ancient turbaries on the eastern 

edge of The Moors which 'had long ceased to be used' were the 

most 'botanically interesting districts' in the area. Bewailing 

the warping of these turbaries in approximately 1842, Peacock 

(1920,1921) considered that the area subsequently became a 

botanical wilderness. These turbaries contained plants such as 

Cladium mariscus, Lathyrus paZustris, Dryopteris cristata and 

Scheuchzeria patustris. Peacock (1921) thougit that the latter 

plant survived throughout the mid 19th century in the turbaries 

on account of their 'wetness'. 

The influence of the 'limy' Keuper Marl in the turbaries 

on the eastern side of the bog (Chapter 1) was also recognized 

by Peacock (1920,1921). AnagalZis teneUa, Pyrol. a minor, 

Hypericum elodes and PotentiUa paZustris were some of the plants 

associated with the Keuper Marl recorded from the Lincolnshire 

turbaries. 

I 
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3.2.1.3 The effects of drainage and reclamation 

In 1829 Casson (1869) remarked that owing to the drainage 

of The Moors 'such plants as the Utricularia minor and the 

Scheuchzeria paZustris will soon be found there no more'. Indeed, 

as has been mentioned, Scheuchze2-ia paZustris was to become 

extinct before the end of the 19th Century. Casson (1869) also 

observed that 'on the margin of the moras, the Osmunda regaZis, 

the Peucedanum paZustre and the Lastraea (Dryopteris) cristata 

are fast giving way to oats, and turnips, and marigolds'. The 

drying of the bog was also noted by Peacock (1920,1921) who 

observed that the 'south edge flora consisted practically wholly 

, of pure Pteris' (Pteridium aquilinum). 

3.2.2 Records of the vegetation between 1900-1966 

3.2.2.1 Recording of the vegetation 

The Yorkshire Naturalists' Union (YNU) was responsible 

for the majority of the botanical records from Thorne Moors between 

1900-1966. The area may have received more attention from the 

YNU and others were it not for the difficulty of access, not 

helped by the restrictions imposed by the peat-cutting authorities. 

In addition, the paper published by Peacock (1920,1921) which 

included the gloomy prediction that it was only a matter of time 

before 'the whole area of turf is removed or coveied with 

alluvium' may have convinced naturalists that the site was doomed 

(Skidmore 1970). 
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3.2.2.2 The plant records 

The 204th YNU excursion, in July 1907 (see YNU 1907) 

was the first to Thorne Moors. On the southern borders of The 

Moors lYyrica gate and PotentilZa patustris were plentiful; 

Peucedlanum palustre was also observed. Peacock, however, present 

on this excursion, felt that the bog flora was 'characteristic 

of a desiccating quagmire'. Pteridium aquilinum was the dominant 

species with CaUuna vuZgaris and Eriophorum vaginatum. It was 

also considered that the place was 'far too well drained to 

harbour many mosses'. 

In 1934 the YNU visited Goole Moors (YNU 1934) in the 

north of the site (see Fig. 1.2) and recorded large quantities 

of Erica tetraZix., Itrica gaZe and Andromeda poZifoZia. 

WA Sledge visited Thorne Moors in 1941 to search 

for some of the rarities recorded by Lees (1888). On the south- 

west margin he found some plants of Peucedanum paZustre but did 

not find Dryopteris cristata (Sledge 1941). A search for Drosera 

anglica., Rhynchospora aZba and Carex Zimosa on the north-east 

margins was also without success, although he considered that all 

these plants might be found on the less accessible parts of 

the area. Sledge (1943) also confirmed the identification of 

VioZa stagnina., a plant which had long been puzzling naturalists 

from Thorne Moors. Lees (1888) had 'considered it very unlikely 

indeed that the true stagnina' occurred. 
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The YNU next visited Thorne Moors in 1946 (YNU 1946). 

In the 'boggy thickets of the south-west margin' species found 

included one surviving plant of Lathyrus, palustris, a few plants 

of Peucedanwn paZustre., Viola stagnina and itrica gale. Sphagnwn 

fimbriatum and S. squarroswn were also recorded. 

In 1949 W Bunting, who began working on The Moors in 

the 1940's, introduced a few hundred plants of Drosera intermedia 

onto the area (Bunting 1949). At the time this plant had not been 

recorded on Thorne Moors for several years. 

The 1966 YNU excursion to Thorne Moors visited Snaith 

and Cowick Moors (YNU 1966), to the north-west of the site (Fig. 

1.2). Sledge (YNU 1966), writing on the vascular plants, observed 

that the flora was only an 'impoverished remnant of early days'. 

on this excursion no Myrica gaZe was encountered and only two 

small colonies of Andromeda poZifoZia were seen. 

3.2.3 Recent investigations into the vegetation 

Modern vegetation recording can be said to have begun 

in 1969 after proposals had been made by the Central Electricity 

Generating Board to use the western portion of Thorne Moors for 

the tipping of pulverized fuel ash from the new Drax Power 

Station (2.9). William Bunting, who had been working on the 

natural history of The Moors for. several years, joined forces 

with the Natural History Department of Doncaster Museum to 

survey the entire site. The result was a dossier entitled 

'An Outline Study of Hatfield Chase' (Bunting et al. 1969) which 
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included a summary of all records relating to the flora and 

fauna of Thorne Moors. This, together with further survey work 

summarized by Skidmore (1970), showed that the site was 

botanically richer than at the time Peacock was writing (1920, 

1921). Subsequent to this work the Nature Conservancy Council 

(e. g. Goode 1973) and other workers (e. g. Rogers 1971; 

Rogers & Bellamy 1972) carried out vegetation surveys of the 

site. In 1970 the Yorkshire Naturalists' Union also re-visited 

the site (YNU 1970). 
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3.3 THE PRESENT VEGETATION OF THORNE MOORS 

3.3.1 Current or recent peat workings (Fig. 1.2) 

The cuttings and drier baulks of peat produced by 

modern peat cutting methods (2.8) become colonized by some plants 

which are subsequently stripped off when the area is re-cut. 

Wetter areas contain Eriophorum angustifoZium and E. vaginatwn 

with some Erica tetraZix whilst drier areas favour the growth of 

Rumex acetoseUa and Pteridiwn aquiZinum; CaUuna vuZgaris, PoKia 

nutans and Betula pubeacens may also colonize the baulks. The 

extent of re-colonization of the bare peat surface depends on the 

time which elapses before re-cutting (usually less than five 

years). 

3.3.2 Re-vegetated peat cuttings and baulks (Fig. 1.2) 

Cuttings range in age from those abandoned in 1920 

or before (the Dutch Canal Systems - see 3.4) to cuttings recently 

abandoned by Fisons Ltd. and colonized by the vegetation described 

in 3.3.1. The size, shape and depth of the cuttings and baulks 

are very varied; for convenience, however, the communities are 

described under three headings which represent broad categories 

with respect to water depth and occupy approximately equal areas 

of The Moors. 
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3.3.2.1 Flooded peat cuttings 

In addition to Eriophorwn angustifoZium., E. vaginatum 

and Erica tetraZix, most flooded peat cuttings have become 

colonized by mats of Sphagnum recurvum on which Drosera rotundifolia 

grows. Open water areas contain Juncus bulbos us, Sphagnum cuspidatum, 

Drepanocladus revolvens and D. fluitans. Vaccinium oxycoccus 

and Andromeda polifolia are also sometimes present in these 

cuttings. 

Flooded cuttings of particular interest include: 

I. A series of peat cuttings to the south of the 

Southern Dutch Canal System and the east of Angle Drain. These 

were abandoned in approximately 1900 and contain extensive 

Sphagnum recurvum flats with much Andromeda polifolia and 

Vacci . ni . um oxycoccus; Sphagnum baZticum has also been recorded from 

these cuttings (Mr B Eversham, personal communication). 

2. Juncus effusus swamps 

Two areas have become almost entirely dominated by 

Juncus effusus with some DrepanocZadus fluitans, Sphagnwn recurvwn 

and stunted Betula pubescens. One large Juncus effusus swamp 

occurs in a cutting made into the Northern Dutch Canal System 

(2.7; JA on Fig. 1.2); the other is situated south of Blackwater 

Dike and west of Thousand Acre Drain. Both these cuttings 

are periodically used by Black-headed gulls as nesting sites 

(see 6.3). 
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3.3.2.2 Cuttings in which the water table is near the 

peat surface 

These cuttings are generally dominated by CaUuna 

VuZgaris and BetuZa pubescens with Erica tetraZix; Andromeda 

poZifoZia and Vaccinium oxycoccus also occur. Bare peat areas 

are colonized by bryophytes including PohZia nutans and 

CampyZopus paradoxus as well as Drosera rotundifOlia whilst 

Molinia caeruZea_, present only occasionally, is associated with 

the sides of drains. Of the Sphagna, S. recurvum is the most 

common species but S. fimbriatwn, S. subnitens and S. papilZosum 

are also present. Rhododendron ponticum occurs sporadically. 

This category of peat cuttings includes: 

1. The Experimental Plot (Fig. 1.2). 

The Experimental Plot consists of several cutting 

strips which run north-south. Cutting strips just above the 

level of the water table are dominated by CaUuna vuZgaris whilst 

those situated at, or just below, the water table are dominated 

by Eriophorwn vaginatum or E. angustifoZium. BetuZa pubescens 

is present in the whole area. 

Casson Gardens (Fig. 1.2) 

In the middle of the last century William Casson 

of Thorne planted a garden of flowering shrubs, including 

rhododendrons, fuchsias and dahlias, in the south of The Moors 

(Tomlinson 1882). All that remains of the garden today is a dense 

Rhododendron thicket with q small patch of En7petrum nigrum and some 

plants of the exotic Katmia angustifoZia. 
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3.3.2.3 Dry peat baulks 

In addition to Pteridiwn aquilinum and Rumex acetosella 

(3.3.1), dry peat baulks are colonized by CaUuna vutgaris, 

BetuZa pubescens and a range of bryophytes including Pohlia 

nutans., Campylopus introflexus, PoZytrichum juniperinum, P. 

piliferum and CephaZozia bicuspidata. Seedlings of Pinus 

syLvestris are, infrequent. Lichens present include Lecidea 

granuZosa, L. uliginosa., CLadonia floerkeana., C. fimbriata, 

C. coccifera and C. chZorophaea. 

3.3.3 Vegetation of the drains , 

The deep peatland drains generally contain little 

vegetation; however, Typha ZatifoZia and Juncus effusus are 

occasionally present. Molinia caeruZea and J. effusus also 

occur along the drain edges. 

3.3.4 Wood and warpland 

3.3.4.1 Woodland 

The semi-mature woodland in the southern section of 

The'Moors (Fig. 1.2), which has ýever been warped (Mr W Bunting, 

personal communication; cf. Rogers & Bellamy 1972), but which 

has probably been cut, consists principally of Betula 

pubescens. Quercus robur., Populus tremula and Crataegus 

monogyna also occur with Vacciniwn oxycoccus in the understory. 
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3.3.4.2 Warpland 

The poor class warpland to the west of the Swinefleet 

Warping Drain has reverted to fen and marshland; many of the 

plants which Peacock (1920,1921) never found and feared 

completely lost when parts of the area were warped over in 

the 1840's have re-appeared (Skidmore 1970). 

This area consists of SaUx caprea-Betula pubescens 

carr (with FranguZa aZnus, Carex panicuZata and Sparganium 

erectum) together with beds of Phragmites austraZis (with 

PotentiUa paZustris) and stands of Glyceria maxima and Typha 

latifoZia. other plants recorded include Eupatoriwn cannabinum, 

Scirpus maritimus and Ophiogtossum vuZgatwn. 

Warp-influenced drains in the area (for example the 

eastern reaches of Cottage Dike (Fig. 1.2)), contain plants such 

as CaUitriche platycarpa., C. hamulata and PoZygonum persicaria; 

Epipactis paZustris occurs at the drain edges. The Swinefleet 

Warping Drain (Fig. 1.2) contains Hottonia patustris, Lycopus 

europaeus., AZisma pZantago-aquatica and RanuncuZus sceZeratus 

(Rogers 1971). 

Portions of Inkle Moor, a cut and warped area in the 

west of The Moors, are variously dominated by Phragmites 

austra4is, PhaZaris arundinacea and GZyceria maxima. Other 

plants characteristic of the eastern warpland are also present 

together with Lathyrus paZustris. 
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3.3.5 Tramways 

Some of the numerous tramways or trackways on The Moors 

(Fig. 1.2) are still in operation but more are abandoned (2.8) 

and used as footpaths. Those with a limestone foundation support 

a particularly interesting flora which Peacock (YNU 1907) listed 

in full; Skidmore considered this list equally applicable in 

1970 except for a few species which had arrived since Peacock's 

time, e. g. Senecio viscosus (Skidmore 1970). The species 

list included Linum catharticwn, Euphrasia officinaZis, 

AngeZica syZvestris, PruneZZa vuZgaris, Lotus cornicuZatus, 

Equisetum arvense and RhytidiadeZphus squarrosus. 

The limestone-based towpath along the northern side 

of the Main Canal is particularly rich; OphiogZossum vulgatum, 

Listera ovata, Cal=agrostis epigejos, Eurhynchium praelongwn 

and LophocoZea bidentata have all been observed there. 



3.4 CLASSIFICATION OF THE VEGETATION OF PEAT CUTTINGS 

AND BAULKS IN THE DUTCH CANAL SYSTEM 

3.4.1 Introduction 

This section describes a detailed investigation into 

the vegetation of the pNNR area (part of the Southern Dutch 

Canal System). The vegetation of cuttings in the eastern section 

of the Southern Dutch Canal System, the Northern Dutch Canal 

System and the Mill and Pighill Canals (Fig. 2.2) is also 

described briefly and compared with that of the pNNR. 

3.4.2 Identification of individual peat cuttings 

The peat cuttings of the pNNR are identified according 

to their position within this area. Fig. 3.1 shows the reference 

codes of all cuttings studied in this and subsequent investigations. 

The first two numbers (separated by an oblique stroke) refer 

to the two canals between which the cutting is situated (the 

canals are numbered 1-6 in a west-east sequence); the suffix 

locates the cutting in either the western or eastern cutting 

series between any two canals. In each series individual cuttings 

are numbered 1-12 in a north to south sequence and the final 

digit refers to this location. Thus, for example, cutting 

4/5W5 is located in the fifth cutting of the western series between 

canals 4 and 5 and 3/4E9 is located in the ninth Ltting of the 

eastern series between canals 3 and 4. 
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58 

In the area between canals 1 and 2 and in the western 

section of the area between canals 2 and 3, peat baulks are 

absent; for convenience, however, the reference system is used 

here and applied as if peat baulks were present. Cutting 2/3W10, 

for example, is positioned by its location opposite 2/3E10. 

In studies relating to canal 4 (C4; Fig. 3.1) sample 

positions are located by their adjacent cutting numbers so that 

C49 refers to a point in canal 4 adjacent to cutting 9. 

To locate a peat baulk the suffix 'NB' or 'SB' 

(abbreviations for 'north baulk' and 'south baulk' respectively) 

can be added to the cutting reference code. 

3.4.3 Methods of vegetation analysis 

3.4.3.1 Location of sample sites 

In order to a) investigate the vegetation in cuttings 

across the length and breadth of the pNNR and b) compare the 

vegetation in the cutting area where peat baulks separate the 

cutting bays with that of the cutting area where baulks are 

absent, the vegetation was surveyed along 3 transects (Figs. 3.1, 

3.3 and 3.4): 

1. West-east across the pNNR through cutting no. 5. 

2. North-south along section 2/3W (along this 

transect the only sample sites investigated were those where 

hydrological and chemical studies were carried out (Chapters 

and 6) . 



3. North-south along section 5/6W. 

A west-east transect along the peat baulks north 

of cutting 5 was also sampled. 

3.4.3.2 Data collection 

In the part of the pNNR where baulks separate the 

cutting bays the vegetation at each cutting or baulk was sampled 

by means of quadrats arranged as shown in Fig. 3.2. In sections 

1/2W, 1/2E and 2/3W, where baulks are absent, areas equivalent 

to 'main' cuttings only were sampled (Fig. 3.2). Two data sets 

were collected at each cutting or baulk: 

1. Lists were made of all species present in 'main' 

cuttings, 'side' cuttings and on baulks. The location and number 

of the 52 quadrats used in the collection of this data set, 

subsequently referred to as 'MS' (an abbreviation for 'main/side'), 

are shown in Fig. 3.3. 

2. The vegetation was further sampled in the main 

cuttings by means of three 5x5 m. quadrats, one located in the 

central section and one located in each of the two outer or 

peripheral sections of each cutting (Fig. 3.2). In 5/6W1 and 

5/6W2, where the, total cutting area was equivalent to the central 

section of most other cuttings, only one quadrat was sampled 

(Fig. 3.4). The peat baulks were further sampled by means of 
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two 5x5 m quadrats (Fig. 3.2). 



60 

N ýrain 

Side Ditch-' 
Cutting 

Boulk 

Main 
Cutting 

r -2] 3 

Ditch' 

L11 

Canal 
25M 

Fig. 3.2 Arrangement of quadrats used for vegetation sampling 
in the area of the pNNR where baulks separate the 

cutting bays. 



61 

rn I 

s-a 

iiriryI 7 -- 

I I. - P-. I- ý-A O's -4 1 

LI 
.A 

r ---I r 

r--j r--j 

C: ) 
C) 
3 

r_lj 
- -, % I- -I -- -1 

r --I 

Ir 
L') I CA) (All 

I a, 
LL-1 t It 1-3 

II I I I -A I i II I 

1 !-IIIIII I IL 
ý- L- -i j 

ll 

.- -- - -0 -. 1 
1 LJ - 

.- 

Fig. 3.3 Vegetation survey MS: location and number of quadrats. 



62 

In each quadrat, species lists were recorded using 

the cover-abundance scale (Table 3.1) of Braun-Blanquet (1964). 

This data set is subsequently referred to as 'AC' (an abbreviation 

for 'all cutting sections'). The location and number of the 91 

quadrats used in the collection of these data-are shown in Fig. 3.4. 

+ sparsely or very sparsely present; cover very small 

1 plentiful but of small cover value, 

2 very numerous, or covering at least 1/20 of the area 

3 any number of individuals covering 41 to I of the 

area 

4 any number of individuals covering I to I of the area 

5 any number of individuals covering more than 2 of the 

area 

Table 3.1. The cover-abundance scale of Braun-Blanquet (1964). 

3.4.3.3 Analysis of data 

The data from surveys MS and AC were classified by cluster 

analysis (CLUSTAN IC package) using Ward's method of hierarchical 

fusion (Ward 1963). The cover-abundance data (AC data set only) 

were transformed by an 'ordinaltransformation' (van der Maarel 

1979) prior to analysis, according to the following scaleý: 

Braun-Blanquet value + 1 2 ý 4 5 

transformed value 2' 3 5 7 8 9 
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3.4.4 Results 

Dendograms displaying the classification of data sets 

MS and AC are shown in Figs. 3.5 and 3.6 respectively. The 

degree of similarity of the quadrats is indicated by the value 

of the error sum of squares at which they were fused together 

in the analysis. 

Ten clusters, vegetation categories or noda (the term 

nodum is used to refer to an abstract vegetation unit of un- 

determined rank and status (Poore 1955)) were recognized from 

each of classifications MS and AC. The floristic features of 

these are displayed graphically in Appendices 1 and 2. 

The data are also presented as structured species - 

site tables (Tables 3.2 and 3.3). In order to display clearly 

the main floristic features of each nodum some species occurring 

in one or two quadrats only were deleted. The sequence of noda 

and quadrats within them was also re-ordered. Species removed 

from both the MS and AC lists were Calamagrostis canescens, 

Phragmites austraZis., PotentiUa palustris and Sphagnwn subnitens. 

Autacomnium paZustre and Sphagnum squarrosum were also deleted 

from the AC list. 

The distribution of no4a generated by both classifications 

is shown in Figs. 3.7 and 3.8. 
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Fig. 3.5 Classification of MS quadrat data using Ward's 
method, based on qualitative (presence/absence) 
values. Quadrat locations are shown in Fig. 3.3. 
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MS. Nodum names are given in Table 3.4. 
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Fig. 3.8 Distribution of the ten vegetation noda generated by classification 

AC. Nodum names are given in Table 3.5.1 



3.4.5 Features of noda generated by classifications MS and 

AC 

The floristic. identity of the vegetation noda was 

determined by inspection of the structured species-site tables 

and from the'graphs displaying the characteristics of each nodum 

(Appendices 1 and 2). The vegetation noda were named subjectively 

by dominant and/or characteristic species. This section describes 

floristic and distributional features of each nodum. 

3.4.5.1 Classification MS 

Table 3.4 Noda generated by classification MS 

nodum 

number name 

1 Pteridium-CampyZopus 

2 Sphagnum recurvum - CephaZozia 

3 Vaccinium. - Andromeda 

4 Pteridium - Rhododendron - Sphagnum recurvum 

5 Sphagnum fimbriatum - Quercus 

6 Polytrichum commune - Juncus 

7 Sphagnum - Drosera 

8 Sphagnum - Juncus - Molinia 

9 Sphagnu-m - Drepanocladus 

10 Sphagnum fimbriatum 
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Pteridium-C=pyLopus (nodum 1) 

This nodum is characterized by high constancies of 

Pteridium aquiZinwn, CanpyZopus paradoxus and PohZia nutans; 

Potytrichum juniperinum and CaZypogeia trichomanis are also 

consistently present. This vegetation type is entirely 

restricted to the peat baulks. 

Sphagnwn recurvum-Cephatozia (nodum 2) 

Sphagnwn recurvum and Cephalozia bicuspidata occur 

consistqntly in nodum 2; PohZia nutans and C=pylopus paradoxus 

are also present. This vegetation type occurs in several sample 

sites along the 2/3W transect, at the eastern end of the transect 

in cutting 5 and on one peat baulk. 

Vaccinium-Andromeda (nodum 3) 

Vaccinium oxycoccus and AndrQmeda polifoZia are 

consistently present in nodum 3; three species of Sphagnum 

also occur: S. recurvwn, S. fimbriatum and S. cuspidatum. Cutting 

2/3W3 and three 'main' cuttings at the eastern end of the pNNR 

contain this vegetation type. 
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Pteridium-Rhododendron-Sphagnum recurvwn (nodum 4) 

Nodum 4 is characterized by high constancies of 

Pteridium aquiZinum, Rhododendron ponticum, Sphagnwn recurvwn 

and CephaZozia bicuspidata; S. fimbriatwn is also present. 

Vegetation of this type occurs in all three of the major transects; 

it is possibly associated with areas of peat 'rubble' (2.7) in 

the cuttings. 

Sphagnum fimbriatum-Quercus (nodum 5) 

The four quadrats which contain vegetation of nodum 5 

occur in the extreme west and south-east of the pNNR. Sphagnum 

finibriatum and Quercus robur which are consistently present are 

associated with Pohlia nutans., Polytrichum commune and CephaZozia 

bicuspidata in this vegetation type. 

PoZytrichum commune-juncus (nodum 6) 

This nodum is characterized by the consistent occurrence 

of PoLytrichum commune and Juncus effusus and, like nodum 5, 

occurs in the west and south-east of the pNNR. 



Sphagnwn-Drosera (nodum 7) 

Sphagnum fimbriatum., S. recurvum and Drosera rotundifolia 

are consistently present in this nodum. The sundew may have 

beenmissed in some other quadrats through winter sampling. 

This may have resulted in a degree of mis-classification. This 

vegetation type is present in cuttings along all three of the 

major transects. 

Sphagnum-juncus-Motinia (nodum 8) 

Sphagnwn recumum, S. fimbriatwn, Juncus effusus, 

MoUnia caeruZea, CephaZozia bicuspidata and Pteridiwn aquilinwn 

are all consistently present in this nodum. The three quadrats 

which contain this vegetation type are restricted to an area 

between canals 3 and 4 in and adjacent to cutting 5. 

Sphagnwn-DrepanocZadus (nodum 9) 

Nodum, 9 is characterized by high frequencies of three 

species of Sphagnum: S. recurvum, S. fimbriatwn and S. cuspidatum, 

as well as DrepanocZadus revoLvens. The quadrats which contain 

this vegetation type occur mainly in the 5/6W transect. 
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Sphagnum fimbriatwn (nodum 10) 

Sphagnum fimbriatum is consistently present in this 

nodum; S. recurvum and CephaZozia bicuspidata also occur. Nodum 

10 vegetation is entirely restricted to side cuttings in the 

5/6W transect. 

3.4.5.2 Classification AC 

Table 3.5 Noda generated by classification AC. 

nodum 

number name 

1 Pteridiwn-Campylopus 

2 Calluna-Sphagnum recurvum 

3 Eriophorum vaginatwn-S. recurvwn-Vacciniwn 

4 Eriophorum angustifolium-Sphagnum 

5 Andromeda-Sphagnum recurvwn 

6 Calluna-Erica 

7 Sphagnum finzbriatwn-Sphagnum cuspidatum 

8 Erica-Eriophorum vaginatum-Sphagnwn fimbriatwn 

9 Sphagnwn fimbriatum-Sphagnum recurvum 

10 Vaccinium-Andromeda 
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Pteridium-Cconpylopus (nodum 1) 

This nodum is characterized by dominant Pteridiwn 

aquitinwn., CampyZopus parado=s_, C. introfLexus and PoZyt2-ichum 

juniperinum; PohZia nutans., PoZytrichum piZiferum and 

CaZypogeia trichomanis also occur frequently. Vegetation of 

nodum I type is entirely restricted to the peat baulks. 

CaZZuna-Sphagnum recurvum (nodum 2) 

Nodum 2 is characterized by dominant Caltuna vulgaris 

and the consistent presence of S. recurvum. Betuta pubescens, 

Pohlia nutans and CcanpyZopus paradoxus are also present and 

Rhododendron ponticum and Pteridium aquilinwn occur sporadically. 

This vegetation type is widespread; it occurs on some peat baulks, 

in the central sections of cuttings towards the east of the pNNR 

and in both central and peripheral cutting sections in the 

south and west of the pNNR. 

Eriophorwn vaginatum-Sphagnu-m recurvum-Vaccinium (nodum 3) 

Eriophorum vaginatum and S. recurvum are dominant in 

this nodum; Vaccinium oxycoccus is frequent. Some Andromeda 

poLifeZia and S. papitlosum also occur. Nodum 3 type vegetation 

occurs in peripheral sections of cuttings 4/5E5 and 5/6146 but is 

mostly restricted to the cuttings of the 2/3W transect. 
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Eriophorwn angustifoZium-Sphagnum (nodum 4) 

This nodum is dominated by E. angustifolium and three 

species of Sphagnum: S. recurvwn, S. fimbriatum and S. cuspidatumý 

DrepanocZadus revolvens is also characteristic. Nodum 4 

vegetation occurs in the northern portion of the pNNR, mainly 

in the central sections of cuttings in the 5/6W transect. 

Andromeda-Sphagnum recurvum (nodum 5) 

Andromeda polifolia and S. recurvwn characterize this 

vegetation type; Eriophorum angustifolium and E. vaginatum 

are also frequent. Peripheral sections of peat cuttings contain 

this vegetation type; it also occurs in the central section of 

5/6W3. 

CaUuna-Erica (nodum 6) 

This vegetation type is dominated by CaNuna vulgaris 

and Erica tetralix. Eriophorum vaginatum is also abundant. 

Nodum 6 occurs in the south and west of the pNNR. 

Sphagnwn fimbriatum-Sphagnum cuspidatum (nodum 7) 

Sphagnwn fimbriatum., S, cuspidatum and Eriophorum 

vaginatum are abundant in nodum 7; Drepanocladus s*pp. also 

occur. Vegetation of this type is mostly restricted to the 

peripheral sections of peat cuttings in the 5/6W transect. 
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Erica-Eriophorum vaginatum-Sphagnum fi)? briatwn (nodum 8) 

Nodum 8 vegetation is dominated by Erica tetraZix, 

Eviophorum vaginatwn and Sphagnwn finbriatum; BetuZa pubescens 

and E. angustifolium are also consistently present and some 

S. recurVum occurs. This vegetation occurs in all three 

transects but mostly in the peripheral sections of cuttings and 

towards the eastern end of the pNNR. 

Sphagnum fimbriatum-Sphagnum recurvum (nodum 9) 

Sphagnwn fimbriatum, S. recurvum and Eriophorwn 

vaginatwn are abundant and dominant in this nodum. Vegetation 

of this type occurs mostly in the peripheral sections of peat 

cuttings; it is found in the transect along cutting 5 and in the 

south of the 5/6W transect. 

Vaccinium-Andromeda (nodum 10) 

Vaccinium oxycoccus and Andromeda polifolia are 

both abundant in this nodum which also contains Eriophorum 

vaginatum., E. angustifolium and four species of Sphagnum: 

S. recurvam, S. cuspidatum, S. fimbriatum and S. papMosum. 

only the central sections of cuttings 4/5W5 and 4/5E5 contain 

this vegetation type. 
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3.4.6 Comparison of classifications MS and AC 

3.4.6.1 The effect of common species 

Table 3.2 and Appendix 1 show that Eriophorwn angustifolium, 

E. vaginatum,, CalZuna vulgaris, Betula pubescens and Erica 

tetraZix were present in nearly all the quadrats examined in 

survey MS. They therefore played little part in the 

discrimination of vegetation classes in the presence-absence 

classification (3.4.5.1). The varying abundance of these species, 

however, as recorded in survey AC, does help differentiate the 

quadrat data into classes based on the quantitative records 

(Table 3.3, Appendix 2 and 3.4.5.2). For example, the dominance 

of Calluna VuZgaris in AC nodum 2 and Eriophorum Vaginatum in AC 

nodum 3 distinguishes these noda. Classification MS is largely 

dependent on species of intermediate constancy to differentiate 

noda; as these may, for example, be missed (e. g. Drosera 

rotundifoZia), the usefulness of some of the noda generated 

by this classification may be questioned. 



3.4.6.2 Noda of similar composition 

Table 3.6 Noda of similar composition generated by classifications 

MS and AC. 

Classification MS 

nodum nodum 

number name 

Classification AC 

nodum nodum 

number name 

1 Pteridium-Campylopus 

2 Sphagnwn recurvwn- 
CephaZozia 

3 Vaccinium-Andromeda 

1 Pteridium-CanVylopus 

2 CaZIuna-Sphagnwn recurvum 

10 Vaccinium-Andromeda 

The noda shown in Table 3.6 are comparable vegetation 

types recognized in both classifications. MS nodum 1, for example, 

is characterized by Pteridiwn aquiZinum., Ccvnpylopus paradoxus and 

PoKia nutans as is AC nodum 1. The species composition of the 

other nodum pairs listed is also similar. 

Figs. 3.7 and 3.8 show that these pairs of noda also 

have a similar distribution in the pNNR: the nodum I vegetation 

of both classifications is restricted to peat baulks; MS nodum 

3 and AC nodum 10 occur only in cuttings 4/5W5 and 4/5E5 and the 

nodum 2 vegetation of MS and AC occurs in the west, south-west 

and eastern portions of the pNNR. 

The greater use of the relative abundance of species 

to differentiate units in classification AC probably explains 

why only three noda of similar composition were generated by these 

two classifications. 
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3.4.7 Other peat cuttings of the Dutch Canal System 

The noda generated by classification AC may be used to 

describe the vegetation of peat cuttings of the canal systems 

outside the pNNR. 

3.4.7.1 The eastern Southern and Northern Dutch Canal Systems 

Most of the Northern Dutch Canal System and the area 

to the east of canal 6 in the Southern Dutch Canal System consist 

of series of alternating baulks and cuttings similar to those of 

the pNNR (2.7). 

In the cuttings most of the vegetation may be classified 

in noda dominated by Eriophorum spp.: noda 3 (Eriophorum vaginatum- 

Sphagnum recurvum-Vaccinium), 4 (Eriophorum angustifolium-Sphagnum) 

and 8 (Erica-E. vaginatum-Sphagnum fimbriatum). Nodum 2 (CaUuna- 

S. recurvum) and nodum 6 (CaUuna-Erica) also frequently occur 

in parts of the cuttings. In the eastern Southern Dutch Canal 

System noda dominated by Sphagnum fimbriatum (7: S. fimbriatum- 

S. cuspidatum and 9: S. fimbriatum-S. recurvwn) cover a greater 

cutting area than in the Northern Dutch Canal System. Andromeda 

poZifoZia is less common in the eastern Southern and Northern 

Dutch Canal Systems than in the pNNR and noda 5 (Andromeda- 

S. recurpum) and 10 (Vaccinium-Andromeda) occur only rarely. 

The dry peat baulks are mostly occupied by vegetation of nodum 1 

(Pteridium-CampyZopus); nodum 2 vegetation (CaUuna-S. recurvum) 

also occurs in these areas. 
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3.4.7.2 The Mill and Pighill Canals area 

The region between the Mill and Pighill Canals consists 

mostly of peat cutting areas with a few, relatively small, 

intervening peat baulks (2.7). 

Flooded peat cuttings principally contain Eriophorum 

dominated noda (3,4 and 8). Towards the western edge of The 

Moors vegetation of nodum 2 (CaUuna-Sphagnwn recurvum), 

nodum 6 (CaZluna-Erica) and the Pteridiwrt-CampyZopus nodum 

(also present on the peat baulks) becomes more frequent in the 

cutting areas. 

3.4.8 other species recorded from peat cuttings and baulks 

Species present in the peat cuttings of the pNNR 

but rare and not recorded during surveys MS and AC, include 

Juncus buZbosus-, Dryopteris diZatata., D. carthusiana, Sphagnum 

paZustre, S. capiUifoZium, CaZypogeia mueNerana, C. fissa and 

DicraneNa heteromaNa. BetuZa penduZa and PopuZus tremula 

occur infrequently on the peat baulks. 

Some species formerly recorded from Thorne Moors have 

not been observed at all during the present investigation e. g. 

Drosera intermedia. This species was seen in 1973 (Dr JG Hodgson, 

personal communication); however, it is likely that the specimens 

observed at this time were present as a result of the introduction 

of this plant to the area by Bunting (Bunting 1949; 3.2.2.2). 
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Myrica gale_, recorded as 'scarce' by Skidmore (1970) and 

Sphagnum russcwii recorded by Dalby (YNU 1970) were also not 

observed. 

3.5 VEGETATION OF THE DUTCH CANALS 

3.5.1 Introduction 

The Dutch Canals would probably have been of little 

botanical interest when Peacock wrote his monograph (Peacock 1920, 

1921). Since their abandonment in 1920, however, they have 

become colonized by a flora which contains some species Peacock 

thought had disappeared completely from the site (Skidmore 1970; 

3.2.3). 

In June 1974 Dr T Dargie carried out an investigation 

into the vegetation of the Dutch Canals in the pNNR area: canals 

1-6 of the Southern Dutch Canal System and the Main Canal between 

canals 1-6 (Fig. 2.2). A summary of the results of this investigation 

is presented here. The vegetation of the other canals is also 

described briefly. 
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3.5.2 Data analysis and results 

The data were classified by a cluster analysis with 

Ward's method of hierarchical fusion (Ward 1963). 

Six noda (subsequently referred to as noda Cl-C6) 

were recognized from the cluster analysis. The number of 

occurrences of each species in the sample units of each nodum 

are represented as percentage values in Table 3.7. The distribution 

of the six vegetation noda in the canals is shown in Fig. 3.9. 

3.5.3 Floristic and distributional features of each nodum 

Nodum Cl 

This nodum is dominated by Phragmites australis, 

Juncus articuZatus., Sphagnwn fimbriatum., MoZinia caeruZea and 

Rhododendron ponticum. Carex acutiformis, S. papilZosum and 

Equisetum fluviatiZe are also frequent in this vegetation type, 

E. fluviatite being entirely restricted to this nodum. This 

vegetation occurs in the northern reaches of canals 1,2 and 4; 

one nodum Cl sample unit also occurs in the north of canal 5. 



Table 3.7 Percentage occurrence of species in sample units within each nodum 

NODUM NUMBER ci C2 C3 C4 C5 C6 

NUMBER OF SAMPLE UNITS 14 17 19 15 25 17 

Agrostis stolonifera 0 6 32 40 8 0 
Andromeda poZifoZia 21 0 11 67 32 6 
Betula pubeacens 100 100 100 100 100 47 
Calamagrostis caneacens 79 94 89 47 92 53 
Calamgrostis epigejos 0 0 11 13 4 0 
CalZuna vulgaz* 57 29 32 67 68 6 
Cardamine pratencis 7 41 0 27 0 12 
Carex acutifori7da 14 0 0 7 8 0 
Carex curta 57 100 32 73 76 29 
Carex elata 0 Q 21 13 4 0 
Carex nigra 14 6 0 33 4 0 
Cirsium palustre 0 0 5 0 0 0 
CZadium rrariscus 6 6 0 0 0 18 
Drosera rotundifoZia 21 6 47 27 92 0 
Dryopter, is diZatata 7 12 0 0 32 0 
Equisetum fZuviatiZe 21 0 0 0 0 0 
Erica tetratix 93 82 100 100 100 18 
Eriophorum anguatifoZium 71 41 100 80 100 0 
Eriophorum vaginatun 64 24 63 73 80 0 
GaZium paZustre 57 71 32 33 32 76 
GZyceria max-ima 7 is 0 0 4 47 
HydrocotyZe vulgaris 29 71 58 73 48 12 
Juncus articulatus 79 41 42 33 12 0' 
Juncus buZbosue 14 12 95 80 24 12 
Juncus effusus 100 100 100 100 100 82 
Lemna spp. 14 29 0 20 4 41 
Lycopus europaeus 0 6 0 100 0 18 
Lythrum saZicarta 43 59 53 67 52 76 
motinia caeruZea 79 24 100 0 8 6 
0amunda regaZie 0 0 21 13 4 0 
PhaZaric arundinacea 0 59 0 0 0 65 
Phragmttee australis 79 47 32 60 8 35 
Potamogeton polygonifoliua 21 12 42 40 0 0 
PotentiZZa paZustrin 79 88 16 33 100 29 
RanuncuZus flanmla 0 35 0 7 0 24 
Rhododendron ponticum 79 0 0 13 4 6 
Salix oincrea 100 100 100 100 100 100 
SaZix repens 7 0 32 13 4 0 
Schoenoplectus tabernaemontani 0 6 5 47 48 0 
Scrophutaria nodoea 7 18 0 0 0 6 
Sparganium erectvm 0 12 0 0 0 0 

Typha ZatifoZia so 76 32 47 76 65 
UtricuZaria vuZgaris 14 24 0 7 32 41 
Vaccinium oxycoccus 0 0 11 27 0 0 
AuZacomnium paZustre 79 47 21 100 8 6 
CaZliergon stramineum 29 47 21 60 4 24 
Drepanocladus revoZvens 14 29 47 80 92 6 
Polytrichum co? rmne 100 71 37 93 92 12 
Sphagnum cuspidatum 36 6 37 0 4 6 
Sphagnum fimbriatum 100 47 68 100 12 0 
sphagnum papiZZosum 50 6 16 7 0 0 
Sphagnum recurvum 86 94 89 so 80 76 
Sphagnum squarrosum 29 94 11 73 36 6 
Sphagnum subnitens 57 12 89 100 32 6 
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Nodum 1 
Nodum 2 
Nodum 3 
Nodum 4 
Nodum 5 
Nodum 6 

Canal 6 

Canal 5 

Conot 4 

Canal 3 

Cand 2 

Canal 1 

Fig. 3.9 Distribution of six vegetation noda in the 
canals of the Southern Dutch Canal System. 
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Nodum C2 

Phalaris arundinacea, -nipha latifoLia, Carex curta 

and PotentiUa paZustris are dominant in nodum C2; Sparganium 

erectum., GZyceria maxima, Cladium mariscus and RanuncuZus 

fiammuZa also occur frequently. In addition, this vegetation 

type is characterized by a high proportion of Sphagnum recurvum 

and S. squarrosum. Nodum C2 vegetation occurs mainly at the west 

and eastern ends of the Main Canal and approximately half way 

down canal 4. 

Nodum C3 

Nodum C3 contains a high proportion of Juncus bulbosus, 

Sphagnwn subnitens, Carex eZata., Sa-lix repens and Potamogeton 

polygonifotius and is also characterized by the presence of 

Cir, sium palustre., Vaccinium oxycoccus., CaZ=agrostis epigejos 

and Osmunda regaZis. This vegetation type occurs only in the 

middle and southern reaches of canals 1 and 2. 

Nodum C4 

Andromeda poZifoZia., Lycopus europaeus and AuZacomnium 

paZustre are dominant in this nodum which is also characterized by 

a relatively high proportion of Carex eZata., C. acutiformis., 

c. nigra., osmunda regaZis., SchoenopZectus tabernaemontani and 

vaccinium oxycoccus. Of the-Spbagna, S. fimbriatum, 'S. subnitens 

and S. squarrosum occur frequently. Nodum C4 vegetation is 

restricted to the middle and southern reaches of canal 3 and the 

south of canal 4. 
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Nodum C5 

This nodum is dominated by CaZamagrostis canescens, 

Potentilla palustris., Drosera rotundifOLia and Iýjpha latifolia. 

Dryopteris ditatata and SchoenopZectus tabernaemontani are also 

present in this vegetation type. This vegetation occupies most 

of canals 5 and 6. 

Nodum C6 

Phalaris arundinacea_, Glyceria maxima-, lVpha latifolia 

and Lythrwn saZicaria are dominant in nodum C6; this reedswamp 

vegetation also contains Phragmites australis, Cladium mariscus., 

Utricularia vulgaris, Galium paZustre., Lemna spp. and a relatively 

low proportion of Sphagnum spp. Nodum 6 vegetation is mostly 

restricted to the middle reaches of the Main Canal and the north 

of canal 3. 

3.5.4 ' The vegetation of the Dutch Canals outside the pNNR 

3.5.4.1 The Southern Dutch Canal System east of canal 6. 

The vegetation of the Main Canal between side canals 6 

and 12 grades from the nodum, C6 reedswamp vegetation into a 

community dominated by Carex demissa., Sphagnwn squarrosum, 

S. cuspidatwn and PotentilZa palustris; Phragmites australis, 

njpha ZatifoZia., Molinia caerulea and SchoenopZectus tabernaemontani 

also occur. 
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Canal 7 is dominated by Eriophorum angustifoLium and 

Sphagnum spp. - particularly S. cuspidatum., S. auriculatum var. 

auricu4atwn and S. fimbriatum; Andromeda polifoZia, PotentiNa 

palustris., Juncus bulbosus, Sphagnum recurvum and DrepanocZadus 

spp. also occur. 

Canal 8 contains much Sphagnw77 fimbriatwn, Eriophorw77 

angustifolium., Juncus effusus., Typha ZatifoZia and Phragmites 

austraUs. Other species present in this canal include PotentiUa 

patustris, Erica tetraUx., Drosera rotundifolia and DrepanocZadus 

fLuitans. 

Of the remaining canals, no. 9, adjacent to a tramway 

(Fig. 2.2), is filled in and no. 10 is much overgrown, containing 

mostly Juncus effusus and Molinia caerutea. Parts of canals 11 

and 12 are either cut-away or contain J. effusus, Phragmites 

australis and MoUnia caerutea (2.7). 

3.5.4.2 The Northern Dutch Canal System and the Mill and 

Pighill Canals 

The canals to the north of Cottage Dike and west of 

canal 1 are less species-rich than those of the Southern System. 

They contain stands of Phragmites australis with Typha latifolia, 

Sphagnum fimbriatum and some PotentiUa palustris but otherwise 

communities similar to those of the peat cuttings of the pNNR 

(3.4) fill these canals. 
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3.5.5 Other species recorded from the Dutch Canals 

Species observed during the present investigation or 

recorded relatively recently in the canals by other workers 

which are not shown in Table 3.7 are listed in Table 3.8. 

At present the canals contain some species found 

originally on the bog margins and in the ancient turbaries such 

as, for example, CZadium mariscus., Potentitta paZustris., Lycopus 

europaeus and RanuncuZus flarmnula (Peacock 1920,1921; 3.2.1.2). 

However, other species, also at one time characteristic of 

the mire edges including Dryopteris cristata., Peucedanum paZustre, 

Hypericum eZodes, Anagaltis tenella and PyroZa minor., have 

not been recorded either in the canals or elsewhere on Thorne 

Moors for many years (3.2.2). 

3.5.6. Species composition of the canal vegetation 

Tables 3.7 and 3.8 show that the Dutch Canals, 

particularly those of the pNNR, are extremely species-rich. 

In addition, species characteristic of both ombrotrophic and 

mesotrophic mires and maritime habitats co-exist in the canals. 

Table 3.9 shows the habitats in which certain species recorded 

from the canals are usually restricted. 
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Table 3.8 Other species recorded from the Southern Dutch Canal 
System (not listed in Table 3.7). Species marked * 
have been observed during the present investigation. 

CaZamagroatis stricta Dr JG Hodgson (1972), personal communication 
Carex dendssa* 

Carex otrubae" 

Carex panicea Dr JG Hodgson (1972), personal communication 
Dryopteris carthusiana* 
Veocharis palustr** 

EPitobium Palustre* 

Equiaetwn paZustre* 

GaZium aa=tiZe* 

HOZCUS za=tua* 

Hottonia PaZustria* 

Juncus bufoniua* 

Lysimachia vuZgazia* 

Menyanthes trifoliata Skidmore (1970) 

JVrjophyUum aZterniflorwn YNU (1970) 

Oenanthe fistuloaa YNU (1970) 

PinguicuZa vuZgaris Skidmore (1970) 

RanuncuZus sceZeratuO 

SaZix caprea Dr JC Hodgson (1972), personal communication 
saux viminaZigj Dr JG Hodgson (1972)v personal communication 
SchoenopZectus Zacustria YNU (1970) 

Scirpus maritUM48 YNU (1970) 

Sparganium amersumA 
Triglochin paZustris Skidmore (1970) 
Typha anguatifolia* 
Utr-icuZaria minor Miss FE Crackles (YNU 1969), personal communication 
VioZa ert-agnina Skidmore (1970) 
CaZZiergon cordifoZium* 
CalZiergon cuopidatum* 
Calypogeia trichomanis* 

Drepanootadus e=nnuZatus* 
DrepanocZadus fluitans* 

Gymrocolea infZata* 

PeZZia epiphylZa* 
sphagnum auricuZatum var. auricuZatum* 
Sphagnum auricuZatum var. inundatum* 

Sphagnum capilZifoZium* 
Sphagnum contortum Goode (1973) 
Sphagnum oubsecundum YNU (1970) 
Sphagnum paZustre* 
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Table 3.9 Typical habitats (in Britain) of species recorded 

from the canals 

rich fen poor fen 

Carex acutiformis Carex curta 

Carex eZata Carex demissa 

CZadium mariscus Juncus buZbosus 

Glyceria maxima MyriophyZlum alterniflorum 

Lysimachia vutgaris Potamogeton poZygonifoZius 

Lythrum salicaria Calliergon stramineum 

PhaZaris arundinacea Sphagnum squarrosum 

ombrotrophic mire maritime habitats 

Andromeda polifoZia Schoenoplectus tabernaemontani 

Erica tetraLix Scirpus maritimus 

Eriophorum vaginatum TrigZochin paZustris 

Vaccinium oxycoccus 

Sphagnum capitlifolium 

Sphagnum cuspidatum 

Sphagnum papilZosum 
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CHAPTER 4 

STRATIGRAPHICAL INVESTIGATIONS 
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4.1 INTRODUCTION 

Previous research 

The earliest palaeoecological studies on Thorne Moors 

were carried out by Erdtman (1928) who concluded that peat 

formation began late in the Atlantic period (zone VIIa). Subsequent 

work by Pigott (1956), however, suggested that the Thorne Moors 

peats corresponded to the upper part of zone VIIb and zone VIII. 

Investigations which involved radio-carbon dating of the peat 

deposits (Turner 1962,1965; Buckland & Kenward 1973; Buckland 

1979) confirmed Pigott's observations, showing that the main 

period of peat formation at Thorne Moors began c. 3000 years ago, 

during the Bronze Age. The palaeoecological studies carried out 

by Buckland & Kenward (1973) suggested that the construction of an 

ancient trackway, found at the base of the peat at Thorne, and 

the initiation of peat formation, were a response to increasingly 

wet conditions. They also considered that waterlogging of the area 

may have curtailed all agricultural activity in the region (cf. 

Turner 1962,1965). 

Of the investigations cited above, only Pigott (1956) carried 

out detailed stratigraphical studies into the plant macrofossils, 

but this work was not published in full. However, a detailed 

stratigraphical and palynological analysis has been carried out 

on Hatfield Moors, 3 km south of Thorne Moors, by ýmith (1958). 



92 

4.1.2 Specific objectives 

Peat cores were extracted down to the clay in several 

areas to investigate the general stratigraphical development 

of the mire. However, the main emphasis of the present work was 

on the most recent stratigraphical changes, as follows: 

1. In the pNNR: 

a) An attempt was made to determine the depth of 

the base of the abandoned peat cuttings (last cut around 1920). 

The stages in recolonization of cut-over areas were investigated 

in several cores. 

b) Cores from peat baulks were examined to investigate 

recent vegetational changes and to establish if these areas were 

cut for peat. 

c) The Dutch Canals were sampled in order to investigate 

their recolonization by vegetation since abandonment (around 1920). 

2. Other peat cuttings 

a) Recent vegetational changes were investigated in the 

Juncus effusus area (JA), a peat cutting abandoned in the early 

1960's. 

b) The Experimental Plot (EP) was sampled in order to 

investigate the extent of recolonization since 1972, when this 

cutting was abandoned. 
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c) A peat core was extracted from a peat cutting 

currently being worked by Fisons Ltd., subsequently referred 

to as a 'modern peat cutting'. Particular interest was in 

determining the type of peat being extracted at the present time. 

The depth of the peat was established in all areas 

investigated. 

4.2 MATERIALS AND METHODS 

4.2.1 Location of sample sites 

In the pNNR peat cores were extracted from a north-south 

transect across cutting 4/5W4 and from a west-east transect in 

the central sections of peat cuttings, on their adjacent southern 

peat baulks and in the canals at the position of cutting 5; the 

Main Canal was also sampled (Fig. 4.1). In addition, peat cores 

were collected from JA, EP (Fig. 5.3) and from a modern peat 

cutting located to'the east of the tramway adjacent to canal 9 

and north of the Main Canal (Fig. 2.2). 

4.2.2 Collection of samples 

Peat cores were obtained with a 'Russian' pattern borer 

(Jowsey 1966). In the peat cuttings the areas of peat 'rubble' 

(2.7) were avoided. With the exception of the cenýral section 

of cutting 4/5W4 and its southern baulk (which were sampled down 

to the underlying clay), all cuttings and baulks in the pNNR were 

sampled to a depth of 1m only. At all other sample sites 
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Fig. 4.1 Location of sample sites in the pNNR selected for stratigraphical 
investigation. Six peat cores were extracted from the transect 

across cutting 4/5W4 (Fig. 4.3); three peat cores were extracted 

from canal 3 (Fig. 4.8a). 
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(excluding additional samples collected from canal 3; see 

Fig. 4.8a) cores were extracted to the level of the underlying 

clay. 

In an attempt to establish the depth of the original 

cutting surface the humification and density of some surface 

peat cores were examined in the field. Most cores, however, 

were transported to the laboratory in rigid plastic containers 

wrapped in plastic sheets. They were stored at 20C prior to 

examination (completed within 14 days). 

4.2.3 Stratigraphical examination 

The macrofossils, including leaves, cuticles, seeds, 

stems and wood in each I or 2 cm segment of each core were 

identified to a depth of 50 cm; below this depth each 10 cm segment 

was examined. In each sample the predominant macrofossil present 

was given a frequency rating on a three-class scale, according to 

whether it contributed up to 25%, 25-75% or 75-100% of the total 

sample. The degree of humification was also recorded on a 

three-class basis using the humification scale of Von Post & 

Granlund (1926): 111-H3 (weakly humified material); H4-H6 

(moderately humified); H7-HlO (strongly humified). 
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4.3 TRE PEAT STRATIGRAPHY DIAGWIS 

4.3.1 Representation of the stratigraphy 

The peat stratigraphy is shown in Figs. 4.3-4.9; 

a key to stratigraphical symbols is given in Fig. 4.2. 

To classify and subsequently describe the peat deposits 

a modification of the Troels-Smith (1955) system was used (Aaby 

1979; Smart 1982). The number of symbols per unit area indicates 

the frequency of the predominant macrofossil on a three class 

scale (4.2.3); the highest density corresponds to the highest 

frequency class. The thickness of the symbol strokes indicates 

the degree of humification in one of three classes; the thickest 

strokes represent the most strongly humified deposits (H7-HIO). 

The other classes are H4-H6 and Hl-H3. 

The vegetation of the sites from which peat cores were 

extracted is described in Chapter 3. The water level of the 

4/5W4 transect (in April 1982) is shown in Fig. 4.3; this 

transect was levelled when the surface was completely flooded 

by determination of the depth of standing water above the peat 

surface. With the exception of the cores extracted from cuttings 

and their adjacent baulks (Figs. 4.5-4.7), the relative heights 

of the study sites are unknown; this is because of the difficulty 

in determining levels across the area (Chapter 1). The 

water level of the other peat cutting study sites ýs described 

in Chapter 5. 
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Fig. 4.2 Key to peat deposits. 
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In the following section the gross stratigraphy of 

the 4/5W4 transect is described; thereafter only contrasting 

and sub-surface features of the stratigraphy are mentioned in 
I 

relation to the other study sites. 

4.3.2 Stratigraphy of the 4/5W4 transect (Fig. 4.3) 

4.3.2.1 Gross stratigraphical features 

1. Wood peat, consisting mostly of the remains of 

BetuZa sp(p)., occupied the base of the complete cores (C and F) 

above the underlying clay. 

2. Above the wood peat, to a depth of 95 cm, the 

cores contained a variety of peat types including the remains 

of Sphagnum imbricatwn (often weakly humified), S. sect. 

AcutifoZia., S. cuspidatum, S. sect. Subsecunda., AuZacomnium, 

ericaceous plants (consisting mostly of Vacciniwn oxycoccus and 

CaZZuna) and Scheuchzeria paZustris. 

3. Scheuchzeria paZustris peat did not form a consistent 

horizon across all cores. Nevertheless it was often present 

at a similar depth in several cores. Above 60 cm and between 

165-175 cm and 205-235 cm remains of Scheuchzeria palustris 

were absent from all cores. 

4. With the exception of the cores from-the ditches 

(B andD), the weakly humified remains of Sphagnwh imbricatum 

occurred in all cores above 95 cm; core F also contained 

Scheuchzeria palustris peat. 
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100 

4.3.2.2 Sub-surface stratigraphical features 

1. Core B (from a ditch) 

Between 3-6 cm from the surface (at a depth of 83-86 cm) 

a band of ericaceous peat occurred above Sphagnum imbricatwn 

peat; the surface deposit (at the base of the ditch) consisted 

of Drepanocladus remains. 

2. Core D (from a ditch) 

Between 14-15 cm from the surface (at a depth of 94-95 cm) 

a band of Sphagnwn recurvwn peat occurred over S. cuspidatum 

remains; ericaceous and DrepanocZadua peats occurred between 4 

and 14 cm from the surface (84-94 cm) whilst the top 4 cm of the 

core (at the base of the ditch) consisted of Sphagnum recurvum 

remains. 

3. Cores A and E (from the peat cutting) 

The surface deposits of peat in cores A and E (at 

depths of 50 and 40 cm respectively) consisted of moderately 

humified Sphagnum imbricatum remains. 

Core C (from the peat cutting) 

The top 10 cm peat deposit (between 35 and 45 cm) 

consisted of Sphagnum fimbriatum; this was present above remains 

of S. imbricatum. 
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5. Core F (from the peat baulk) 

This core contained the remains of Sphagnum compactwn 

to a depth of 30 cm; below this was S. imbricatwn peat. 

4.3.3 Stratigraphy of cores from peat cuttings 1/2W5 and 

2/3W5 (Fig. 4.4) 

4.3.3.1 Gross stratigraphical features 

The gross stratigraphy of these peat cores was similar 

to that of the cores from the 4/5W4 transect. 

4.3.3.2 Sub-surface stratigraphical features 

1. Cutting 1/2W5 

The surface peat deposit consisted of a6 cm layer of 

ericaceous remains; these occurred above moderately humified 

Sphagnum imbricatum peat. 

2. Cutting 2/3W5 

A4 cm deposit of ericaceous peat was present above 

moderately humified remains of S. imbricatum at the surface of 

this core. 
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Fig. 4.4 Peat stratigraphy of surface cores from 
peat cuttings 1/2W5 and 2/3W5. 
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4.3.4 Stratigraphy of cores from peat cutting 3/4W5'and its 

adjacent southern baulk (Fig. 4.5) 

4.3.4.1 Gross stratigraphical features 

The gross stratigraphy of these peat cores was similar 

to that of the cores from the 4/5W4 transect. 

4.3.4.2 Sub-surface stratigraphical features 

1. Cutting 3/4W5 

The surface peat consisted of a4 cm deposit of 

Sphagnum recurvum; below this a 12 cm band of ericaceous peat 

occurred above the remains of S. imbricatum. 

2. The peat baulk 

Strongly humified remains of Polytrichum occurred 

to a depth of 2 cm above the remains of Sphagnum imbricatwn. 

4.3.5 Stratigraphy of cores from peat cutting 4/5W5 and its 

adjacent southern baulk (Fig. 4.6) 

4.3.5.1 Gross stratigraphical features 

Between 49-65 cm the core from the peat cutting contained 

a 16 cm deposit of Sphagnum mageZZanicum remains. -Otherwise, the 

gross stratigraphy was similar to that of the cores from the 

4/5W4 transect. 
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1 

4.3.5.2 Sub-surface stratigraphical features 

1. Cutting 4/5W5 

"'he surface deposit consisted of a 10 cm layer of 

Sphagnum cuspidatwn peat; below this the remains of Drepanocladus 

occurred above the Sphagnum mageZZanicum peat. 

2. The peat baulk 

Between 10-30 cm below the surface, a layer of 

Sphagnum cuspidatum peat was present above moderately humified 

S. imbricatum remains; above the S. cuspidatum peat shallow 

deposits (2-3 cm) of S. recurvwn, S. imbricatum and S. sect. 

Acutifotia occurred; the surface peat layer consisted of a2 cm 

band of Campylopus remains. 

4.3.6 Stratigraphy of cores from peat cutting 5/6W5 and its 

adjacent southern baulk (Fig. 4.7) 

4.3.6.1 Gross stratigraphical features 

In the core from the peat cutting, the remains of 

Sphagnum papiUosum occurred between 65-75 cm. otherwise, the 

gross stratigraphy was similar to that of the cores from the 

4/5W4 transect. 
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4.3.6.2 Sub-surface stratigraphical features 

1. Cutting 5/6W5 

The surface peat deposit consisted of a 15 cm 

layer of moderately humified Sphagnum recurvum remains; this 

was present above S. imbricatum peat. 

2. The peat baulk 

A 10 cm band of strongly humified Sphagnum compactum 

peat occurred above moderately humified S. imbricatum remains at 

the surface of the baulk. 

4.3.7 Stratigrapby of cores from canals 1-6 and the Main 

Canal of the Southern Dutch Canal System (Fig. 4.8a, b) 

4.3.7.1 Gross stratigraphical features 

The central portions of the cores (above the basal 

wood peat and below 77 cm) variously contained deposits of 

herbaceous peat (sensu Troels-Smith 1955), as well as the remains 

of Sphagnum sect. Sphagnum, Phragmites, CampyZopus and wood 

in addition to peat types described from the 4/5W4 transect 

(4.3.2.1, no. 2). Otherwise, the gross stratigraphy was similar 

to that of the cores from the 4/5W4 transect. 
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4.3.7.2 Sub-surface stratigraphical features 

1. Layers of clay, variable in thicknessl were present 

in the cores from canals 1 and 3; clay was not present in the 

cores from the other canals. In canal 1 the clay occurred at 

a depth of 53-66 cm; in canal 3 the clay was at depths of 73-77 cm 

(M), 60-75 cm (3B) and 40-50 cm (M). 

Canal 1 

Above the clay layer in canal Ia shallow (4 cm), 

strongly humified, deposit of Sphagnum imh-icatum peat was 

present; above these remains, towards the top of the core, peat 

layers of S. sect. AcutifoZia, S. imbricatum and S. sect. 

Subsecunda occurred; the surface deposit consisted of a weakly 

humified deposit of S. recurvum, 17 cm in thickness. 

Canal 2 

Between 10-40 cm moderately humified remains of 

Sphagnum sect. Acutifolia were present above Scheuchzeria 

patustrýs peat; the top 10 cm of the core contained Eriophorum 

vaginatwn peat. 

4. Canal 3 

The upper portions of the three cores from canal 3 

contained weakly humified Sphagnum fimbriatwn peat; in 3A this 

occurred above the moderately humified remains of Sphagnum 

imb2-icatwn which overlaid the clay; in 3B and 3C the S. fimbriatum 

peat occurred immediately above the clay. 
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Canal 4 

Between 20-40 cm below the surfacea layer of 

Sphagnum sect. Acutifolia peat overlaid Scheuchzeria palustris 

peat; above the Sphagnum sect. Acutifolia remains deposits 

of Hypnoid and S. imbricatum peat occurred; the surface peat 

layer consisted of a5 cm deposit of S. squarrosum remains. 

Canal 5 

The surface peat consisted of a 12 cm deposit of 

Sphagnwn fimbriatum which occurred above S. squarrosum peat; 

at 20-30 cm S. sect. AcutifoZia peat and bryophyte peat (sensu 

Troels-Smith 1955) occurred above the remains of S. imbricatum. 

7. Canal 6 

Between 10-17 cm, above a deposit of Sphagnwn imbricatum 

peat, the core contained the remains of ericaceous plants; above 

10 cm a surface layer of S. squarrosum peat overlaid S. recurvum 

peat. 

8. Main Canal 

Between 10-12 cm, a shallow layer of ericaceous peat 

occurred above Sphagnum imbricatum peat; S. imbricatwn remains 

also occurred above this ericaceous peat below the 4 cm surface 

deposit of Phragmites peat. 
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4.3.8 Stratigraphy of cores from JA, EP and a modern 

peat cutting (Fig. 4.9) 

4.3.8.1 Gross stratigraphical features 

The gross stratigraphy of these peat cores was similar 

to that of the cores from the 4/5W4 transect. 

4.3.8.2 Sub-surface stratigraphical features 

1. JA 

Between 7-20 cm, moderately humified remains of 

Sphagnum mageZZanicum occurred above Scheuchzeria paZustris peat; 

above this Sphagnum mageZZanicum peat, ericaceous remains occurred 

below the shallow (2 cm) surface deposit of Juncus effusus 

remains. 

2. EP 

A relatively shallow layer of peat was present in EP, 
4 

the Experimental Plot (see also Fig. 6.29). At a depth of 3-20 cm 

a layer of moderately humified Sphagnum imbricatum remains 

occurred above Scheuchzeria patustris peat and below the 

shallow surface deposit of CampyZopus peat. 
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3. Modern peat cutting 

A deposit of Sphagnum inbricatum peat occurred from the 

surface of the core to a depth of 30 cm; this overlaid 

Scheuchzeria palustris peat. The Sphagnum imbricatwn peat is 

the deposit currently being extracted by Fisons Ltd. 

4.4 STRATIGRAPHICAL DEVELOPMENT OF THE MIRE 

4.4.1 Problems in interpretation of the peat stratigraphy 

Owing to the removal of some peat from most of Thorne 

Moors, the stratigraphy does not show the complete-development 

of the mire. Further, whilst it is almost. certain that-the 

baulks of the pNNR have never been cut for peat (Chapter 2), 

it is likely that the drainage of these baulks (caused by the 

excavation of ditches and the removal of peat from adjacent 

cuttings) will have affected the composition and nature of their 

superficial peat horizons (4.5). In addition, subsequent burning 

and erosion of the dry peat baulks have probably removed and altered 

the character of some surface peats (5.6). In the following 

section, therefore, only the relatively early stages in the natural 

development of the mire are considered. 

Comparable depths in the profiles do not necessarily 

represent contemporaneous surfaces; this is because of: 
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1. Variation in a) the amount of peat removed by 

cutting and b) the depth of peat which has developed over the 

cutting surface, in cores where the relative level of the 

sample sites is unknown. 

2. Differential decay and compression. 

3. Possible heterogeneity in the undisturbed mire 

surface. 

4. Possible variation in the topography of the 

underlying clay. 

4.4.2 Mire development 

The wood peat at the base of the cores which penetrate the 

underlying clay (subsequently referred to as 'complete' cores), is 

probably the remains of the forest which covered the area just 

over 3000 years ago, during the Bronze Age (cf. de la Pryme 1701; 

Turner 1962; Buckland & Kenward 1973; Buckland 1979). 

Remains of Scheuchzeria palustris above the wood peat 

in many of the cores, also observed by Margaret Pigott (Pigott 

1956), may reflect the wet conditions which characterized the 

early sub-Atlantic period, zone VIIIa (Buckland 1979). At 

Hatfield Moors, where peat formation began during the early 

Atlantic period (zone VII), Smith (1958) observed a phase of 

increased surface wetness marked by remains of Scheuchzeria 

palustris close to the zone VIIb/VIIIa boundary; this 'flooding 

horizon' (sensu Smith 1958) may be contemporaneous with the 

main initiation of peat formation on Thorne Moors (cf. Buckland 

1979). 
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Above the depth at which the lowest remains of 

Scheuchzeria patustris occurred, the cores contained a variety 

of peat types including Sphagnum imbricatum, S. cuspidatum, 

S. sect. Acutifolia, S. sect. Subsecunda, ericaceous peat and 

herbaceous peat; these suggest the existence of an ombrotrophic 

mire surface with some microtopographical heterogeneity. 

A second phase during which conditions were relatively 

wet on the mire surface may be indicated by Scheuchzeria paZustris 

and Sphagnum cuspidatum peats in the upper and middle portions 

of the cores; these remains occurred, for example, above 165 cm 

in the cores from the 4/5W4 transect (Fig. 4.3) at a depth below 

which Scheuchzeria paZustris was absent from all cores. 

Dr J Turner (personal communication) obtained a date of 1855 ± 110 

BP from material collected from a band of S. paZustris remains 

in an exposed peat face, situated at a depth of 74-76 cm above 

the underlying clay. This corresponds to a depth of about 160 cm 

in the cores from the 4/5W4 transect and may indicate the 

approximate age of these remains. These upper Scheuchzeria 

peats probably correspond to a flooding horizon in the peat 

at Hatfield Moors which Smith (1958) considered may date from 

the end of the Roman occupation. 

Although there is some evidence for the existence 

of flooding horizons, the occurrence of Scheuchzeria patustris 

at most levels above the wood peat and below 60 cm in the cores 

from the 4/5W4 transect suggests that this plant was a regular 

and persistent constituent of the flora of the undisturbed mire. 
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4.5 THE RECOLONIZATION OF CUT-OVER AREAS 

4.5.1 Detection of the cutting surface 

The depth of peat which represents the base of the 

abandoned peat cuttings of the Dutch Canal System (last cut 

63-113 years ago), subsequently referred to as the 'cutting 

surface', is not obvious from the peat stratigraphy. It cannot, 

for example, be detected by the sudden disappearance of the remains 

of plants which no longer occur at Thorne Moors; this is shown 

by the presence of Sphagnwn imbricatum remains immediately 

above the layers of clay, almost certainly dumped by the Dutch 

at the start of peat cutting (4.5.3), in the cores from canals 

1 and 3 (Fig. 4.8a). Features which have been used in an attempt 

to detect the cutting surface include the presence of the remains 

of plants which were not major constituents of the flora of the 

undisturbed bog (4.4) and changes in the humification and frequency 

of macrofossils. 

4.5.2 Recolonization of the cuttings and baulks of the pNNR 

4.5.2.1 Peat cuttings of the pNNR 

In core C from cutting 4/5W4 (Fig. 4.3) the cutting 

surface probably occurs at a depth of approximately 25 cm from the 

surface of the cutting and 60 cm from the surface. of the peat 

baulk. 60 cm of peat, therefore, was cut away by the Dutch 

(although as peat has been removed by burning and erosion and 
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the baulks are likely to have subsided since 1920 (4.6 and 5.6) 

the amount of peat removed was probably greater than 60 cm). 

This horizon corresponds to a decrease in the frequency of 

Sphagnwn imbricatum remains and to a colour change observed 

in the field: from brown peat below 60 cm, to black peat above. 

it is possible, therefore, that S. imbricatum, a plant currently 

rare in Britain but abundant in Post-glacial peats (Green 1968), 

may have recolonized cut-over areas in the pNNR. This moss 

certainly occurred at, or very near, the surface in other cores 

from the pNNR; for example, cores A and E from cutting 4/5W4 

(Fig. 4.3). 

Sphagnwn mageUanicum., which like S. imbricatum is no 

longer present at Thorne Moors, may also have recolonized cut-over 

areas. Remains of this plant occurred 14 cm below the surface 

in cutting 4/5W5 (Fig. 4.6). 

By contrast, however, it is unlikely that Scheuchzeria 

palustris recolonized the Dutch peat workings. Remains of this 

plant were not found near the surface in the pNNR cuttings and 

it was not seen on The Moors after 1870 (Chapter 3), when the 

Dutch started peat cutting. In addition, Scheuchzeria palustris 

is known to be a plant which is extremely susceptible to drainage 

(Tallis & Birks 1965). 
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Fig. 4.10 Observed pathways of recolonization in the peat 
cuttings of the pNNR. 

Sphagnum imbricatum and S. mageUanicwn were replaced 

by the vegetation shown in Fig. 4.10. The remains of Sphagnum 

fimbriatum, S. recurvwn and Drepanocladus spp. occurred only at, 

or near, the surface of the peat cores. This indicates that these 

mosses, characteristic of the present vegetation but not that 

of the undisturbed mire, colonized the area relatively recently. 

Reasons for the disappearance of Sphagnum inbricatum and 

S. magellanicum and the subsequent recolonization by species such 

as S. recurvum are considered in Chapters 7 and 8. 



121 

The ericaceous peat at the surface of cores from 

1/2W5 and 2/3W5 (Fig. 4.4) may represent the vegetation which 

recolonized these cuttings subsequent to the re-cutting of the 

area between canals 1 and 2 and section 2/3W (Chapter 2). These 

cuttings, therefore, may be at an earlier stage of recolonization 

than others in the pNNR. 

The ditches in the cuttings (Fig. 4.3) have probably 

been full of water since their excavation and it is unlikely 

that any vegetation has colonized their bases. The surface 

peat in cores from the ditches, therefore, probably represents 

the remains of plants originally present in the surface water 

above the ditch (e. g. Sphagnum recurvum and DrepanocZadus spp. ) 

and remains which have fallen into the ditch from adjacent, higher 

cuttings. 
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4.5.2.2 Peat baulks of the pNNR 

Sphagnum cuspiýtum 
I 

Sphagnum recurvum 

Sphagnwn imbricatum 

PoLytrichum Sphagnum"compactum Sphagnum sect. Acutifolia 
I 

Spha., m inibricatum 
I 

CovVy'l pus 

Fig. 4.11 Recent vegetational changes in the peat baulks of 
the pNNR. Lines on arrows represent probable stage 

of peat cutting. 

The presence of the remains of Sphagnum oompactum, a 

bryophyte characteristic of wet heaths rather than ombrotrophic 

mires, at the surface of the baulks (Fig. 4.11) adjacent to 

cuttings 4/5W4 (Fig. 4.3) and 5/6W5 (Fig. 4.7), may reflect the 

gradual drying of the peat baulks through their drainage and 

the removal of peat from the nearby cuttings. 

The succession of peat types in the baulk adjacent to 

cutting 4/5W5 (Fig. 4.6) may also reflect the change towards 

drier conditions. Sphagnum cuspidatum was progressively replaced 

by species which may tolerate increasingly dry conditions: 

S. recurvum, S. sect. Acutifotia, S. imbricatwn (Green 1968) and, 

eventually, Campylopus (Fig. 4.11). 
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4.5.3 The vegetation which recolonized the Dutch Canals 

(Fig. 4.8a, b) 

The clay in cores from canals 1 and 3 was probably 

dumped by the Dutch at the start of peat cutting in an attempt 

to 'line' the canals and so increase the amount of water held 

by them (Chapter 2). It is certainly known that there were 

problems in retaining water in the Canal Systems (Goode 1973). 

Clay may also be present in parts of the other canals, not sampled 

during this investigation. 

The presence of remains of Sphagnum imbricatum above 

the clay in cores from canals 1 and 3 (core 3A) supports the 

suggestion that S. imbricatum recolonized cut-over surfaces 

abandoned around 1920 (4.5.2.1) and disappeared from the site 

somewhat later. S. imbricatwn may have recolonized the base of 

the canals after 1920 when they were partially drained (2.7). 

Although these remains could conceivably be explained by the 

dropping of a turf from a barge into the canal above the clay, 

it is unlikely that this would account for both layers of 

S. imbricatwn peat in canal 1 as well as the remains in core 3A. 

S. imbricatum peat was also present very near the surface in cores 

from canal 4 and the Main Canal. 

As in the cuttings, the surface peats in the canals 

consisted of the remains of plants which were not apparently 

characteristic of the undisturbed mire. These inýlude Sphagnwn 

squarrosum, S. recurvum and S. fimbriatwn. 
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4.5.4. The vegetation which recolonized the Juncus effusus 

area (JA), the Experimental Plot (Ep) and a modern 

peat cutting (Fig. 4.9) 

In the Juncus effusus area the upper limit of the 

Sphagnum magellanicum peat, which was subsequently replaced by 

the remains of ericaceous plants at a depth of 7 cm, probably 

represents the cutting surface at this site. The shallow surface 

deposit of Juncus effusus remains suggest that this peat cutting 

became colonized by J. effusus only relatively recently. 

In the Experimental Plot the cutting surface occurs 

very near the top of the peat core, probably at a depth of 3 cm 

where CampyZopus recolonized Sphagnwn imbricatum peat. In the 

modern peat cutting, however, the cutting surface is at the surface 

of the peat core because no vegetation has yet recolonized this 

area. 

4.5.5 Conclusions 

1. The depth of the cutting surface cannot be determined 

with certainty in the peat cuttings. 

2. Sphagnum imb2-icatum and possibly S. mageLlanicum, 

not present at the site, probably recolonized cut-over surfaces 

abandoned around 1920. 

3. It is extremely unlikely that Scheucýzeria paZustris 

recolonized cut-over surfaces abandoned around 1920. 

4. Many species characteristic of the present vegetation 

colonized the area relatively recently. 
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5. There is no evidence to suggest that the peat 

baulks were ever cut for peat. 

6. Clay was used to 'line' some canals by the Dutch; 

this was probably an attempt to increase the amount of water 

retained by the canals. 

4.6 THE DEPTH OF THE PEAT 

In 1920 Peacock observed that 'In its more central 

portions .... the peat of the Waste was once (in 1874) from 

twenty to fifteen feet deep'; i. e. c. 5m (Peacock 1920). The 

depth of peat recorded from below a peat baulk, however, an area 

probably never cut for peat, was 2.36 m (core F, Fig. 4.3). This 

reduction in the depth of the peat may be explained by the fact 

that the raised bog at Thorne originally had a liquid core which 

has disappeared through the drainage of the area over the last 

100 years (Rogers & Bellamy 1972). Such a core may have acted as 

a buffer against seasonal or longer term fluctuations in precipitation; 

even in periods of drought, therefore, the surface of the cupola 

would have remained saturated (Morrison 1955). Support for this 

suggestion comes from Peacock (1920) who stated that 'In 1875 it was 

estimated that the winter rise and summer fall of the bog was about 

six feet, in an abnormally wet season in the 'sixties, eight feet'. 

Alternatively, it is possible that the depth of peat in 

the pNNR, which is near the south-west margin of the complex, was 

always more shallow than that in more central areas. 
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Peat wastage may also have caused a reduction in 

the depth of the peat; this occurs when the water table is below 

the surface, as in the peat baulks (Hutchinson 1980). Peat 

wastage or subsidence of the peat at Thorne is considered in 

5.6. 



CHAPTER 5 

HYDROLOGICAL INVESTIGATIONS 
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5.1 INTRODUCTION 

5.1.1 The hydrology of mires 

Most hydrological studies of sites bearing peat have been 

carried out on intact mire systems (e. g. Chapman 1965; Goode 1970; 

Ingram 1982), peatlands undergoing erosion (e. g. Conway & Millar 

1960; Tallis 1973a) or peatland areas reclaimed for agriculture 

(e. g. Baden & Eggelsmann 1968; Burke 1972,1975). There is 

comparatively little information available on the hydrology of 

cut-over peatlands which have their water tables maintained, often 

artificially, for the purposes of nature conservation (Schmatzler 

11 & Tuxen 1980; van der Molen 1981). 

It has been suggested that an intact raised mire comprises 

two layers of substratum, namely a core of humified peat known 

as the 'catotelml, which occupies most of the deposit, overlain by 

a thin (25-50 cm) 'acrotelm' or 'active layer' (Lopatin 1949; 

Ivanov 1953,1981); it may conveniently be described as 'diplotelmic, 

(Ingram 1978). The acrotelm is the peat-forming layer; it mainly 

consists of growing plant material, especially Sphagnum, which 

undergoes alteration by humification below, where it becomes 

transformed into the partly colloidal material or the catotelm 

(Ingram 1982). Water table levels and fluctuations in raised 

mires are controlled by, and depend on, the physical properties 

of these two layers (Ivanov 1981). The pattern of hydraulic 

conductivity, or ability of the peat to transmit water, is of 
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particular importance. From the top to the base of the acrotelm, 

towards the top of the catotelm, the hydraulic conductivity 

decreases by up to 4 orders of magnitude. This means that when 

precipitation is reduced or absent the mire is prevented from 

becoming dry because horizontal seepage stops completely when 

there is a fall in level. In addition, excess rainwater is 

disposed of relatively rapidly without any significant rise in 

level because water runs off the mire to surrounding areas. The 

thickness of the acrotelm and the maximum depth of the water table 

are, therefore, roughly the same, seldom exceeding c. 0.5 m 

(Ivanov 1981). 

The applicability of the two-layer hypothesis to cut and 

drained mires is not clear (Ingram 1978) ; it is likely, however, 

that the acrotelm will have been removed or destroyed such that 

the system is no longer able to maintain and regulate its water 

table. 

5.1.2 Specific objectives 

In order to assess some of the hydrological differences 

between cut-over areas at Thorne and intact mire systems, the 

fluctuation and level of the water table were investigated in a 

number of peat cuttings, a canal, and a dry peat baulk. Specific 

reasons for doing this were: 

1. In the pNNR it was intended to asses4 the effectiveness 

of the dams in the ditches and drains which aim to 'seal off' the 

area hydrologically. Intermittent water table measurements were 

recorded in 32 peat cuttings and in one of the Dutch canals. 
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Continuous water table measurements were made in a peat cutting 

with a relatively high water table in the area of the pNNR without 

peat baulks (2/3W3), and a peat cutting in the area of the pNNR 

where baulks alternate with the cutting bays (4/5W5). 

2. The behaviour of the water table in a peat baulk 

was investigated because of the potential of baulks to act as 

'hydrological buffer zones' around nature reserves. In addition 

it was hoped that this study might indicate some of the changes 

which have occurred in the peat resultant on the drainage and 

subsequent drying of the baulks. Continuous water table measure- 

ments were made in one peat baulk in the Dutch Canal System; 

the water table was also periodically recorded in a transect across 

a peat baulk and the cutting adjacent to it. 

3. In A (the Juncus effusus area) particular interest 

was in the effect of the drain which forms the northern boundary 

of this cutting and in the possibility that the area receives 

water from the surrounding cuts. Continuous and intermittent 

water table measurements were made in JA. 

4. In EP (the Experimental Plot), a shallow peat cut, 

not so well 'sealed off' hydrologically as the pNNR, it was intended 

to assess the influence of the deep Southern Boundary Drain. 

Continuous and intermittent water table measurements were made 

in this cutting. 

At all study sites it was intended to assess the relation- 

ship between the water level and the vegetation. - 
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The water budget as applied to a specific mire can be 

expressed as: 

P+I=E+R±AS 

where P= precipitation, I= inflow, E= evapotranspiration, 

R= run-off and AS= change in storage. A complete assessment 

of the water budget was not feasible. The individual components 

of this budget, however, are commented on wherever possible. 

All water table measurements were related to the 

precipitation recorded at Crowle, Humberside (Nat. Grid Ref. 

SE 474409), approximately 6 km from the study site. Monthly rain- 

fall totals are given in Appendix 3. 

5.2 MATERIALS AND METHODS 

5.2.1 Monthly water table in peat cuttings 

Water table in the pNNR was investigated by means of 

32 sampling tubes located along 4 transects (I perpendicular to 

the other 3) in a series of peat cuttings, and 1 transect along 

the length of canal 4 (Fig. 5.1). Sample tubes were located 

within the central section of each peat cutting, in the centre 

of a floristically and topographically 'uniform' area of 

approximately 25 m2. selected using random numbers. Water table 

was also measured in cuttings JA and EP in sample tubes located 

by this method. Sample tubes were positioned in the centre 

of canal 4. 
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The sampling tubes (Fig. 5.2) were 50 cm lengths of 

ABS soil pipe (10 cm internal diameter) with numerous holes 

drilled in the side and a PVC lid. They were buried to within 

5 cm of their length, an attempt being made to minimise 

disturbance to the peat substratum. Peat debris remaining within 

the tube subsequent to installation was removed by hand. The 

sample tubes were installed two months before any readings were 

taken to permit equilibration. 

peat 

/ 
-50 cm 

Fig. 5.2 A sampling tube in situ. 
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The water level was measured from the top of each 

sampling tube using a flexible steel rule graduated in mm. 

The distance from the top of the tube to the peat surface was 

also measured and the water table in relation to the peat surface 

was calculated from these two measurements. In the peat cuttings 

measurements were taken at approximately monthly intervals over 

a period of 16 months from April 1980 to August 1981. Measurement 

of water table in the 3/4E transect was terminated in October 1980, 

because during the winter, even when starting at first light it 

was impossible to take all the readings in one day. Between 

February and May 1981, in 2/3W3 and JA where the water table 

was very high, the height of the water level above the top of 

the sampling tube had to be estimated (because of a personal 

temporary physical limitation) to the nearest an from a distance 

of 3-5 m, the nearest dry point. In canal 4 measurements were 

taken at approximately monthly intervals over a period of 16 

months from November 1980 to March 1982. 

5.2.2 Continuous monitoring of water table by automatic 

water level recorders 

Three Kempton R16 automatic vertical water level 

recorders were available for making continuous, accurate records 

of water table. During the first period of operation the 

equipment was positioned in peat cuttings JA, 2/3W3 and 4/5W5. 

After just over one year two of the recorders were moved; one to 



peat cutting EP and the other to the peat baulk directly south 

of cutting 4/5W5, where they remained for a further year. The 

apparatus in cutting 4/5W5 remained in position throughout the 

whole monitoring period (Fig. 5.3). 

The recorders in JA and 2/3W3 were located in the 

centre of the cuttings. The former was run from 22 April 1980 

to 5 August 1981; the latter from 7 May 1980 to 3 June 1981. 

In 4/5W5 the recorder was positioned within the central section 

of the peat cutting, away from the area of 'peat rubble'; this 

recorder was tun from 7 May 1980 to 5 August 1982. The recorder 

in EP was located towards the northern end of thelcutting and 

operated from 5 August 1981 to 5 August 1982. On the peat 

baulk south of cutting 4/5W5 the recorder was installed c. 2.5 m 

from the edge of the baulk in line with the recorder in 4/5W5 

and at right angles to the length of the cutting (Figs. 5.4 and 

5.15). The recorder at this location, from now on referred to as 

SB, operated from 30 July 1981 to 5 August 1982. The two 

monitoring periods of approximately a year will subsequently 

be described as year 1 and year 2 respectively. The water level 

recorders will be referred to by the namesof the cuttings (or 

baulk) in which they were situated. 

Water table is monitored by the recorders by means of 

a float (with counterweight) operating a pen arm in the vertical 

plane, in conjunction with a revolving chart drum actuated by 

a monthly clockwork mechanism. The chart drum is 25 cm high. 

As the range of fluctuation at any site was unknown at the time 

134 



135 

Mitt 11 Canals 
Pighi(I 11 Canals 

Canal- 

FB 
J Drain I 

Canal Experimenial I 
Plo 101 FB 

C-) 

0 
ID Southern Dutch Cana[ System 0 X 

C2 15* 
ID 

00 tI 
F 10 

Canal 6 

B 

Cana 

'n 
te 

KEY NC 
Drains or Dikes 
Canals 
Dom in Drain 
Dam in Canal 

B 
Tramways 

Footbridge 
--- Main Tracks 

SCALE 
1: 10560 or 6 inches to I mile 

FB 

ý 11 ý 
Im I I 
P. 

Northern 
Dutch Canal 

System 

0 

Juncus 
effusus 

area 

Fig. 5.3 Location of water level recorders during year 1 (0) and year 
2 (0). The recorder in cutting 4/5W5 (4)) remained in 
position throughout the whole monitoring period. 



136 

of installation, a1 in 5 gear was used so that all recorded 

levels were subsequently multiplied by 5. The equipment 

accurately registers water table changes of 5 mm (1 mm on the 

charts). On the horizontal scale 12 mm corresponds to a period of 

24 hours; the time a particular water level was registered can, 

therefore, be determined to within 4 hours. 

Much consideration was given to the design of the 

stands to support the recorders. It was decided that it would 

be preferable to use a stand which would move with the overall 

expansions and contractions of the surrounding peat (and so 

register water table relative to peat surface) rather than one 

totally embedded in the underlying mineral material. To this end 

the recorders located in the wet cuttings were mounted on a PVC 

platform (45 x 45 x 1.6 cm) whose 4 corners were attached to 2m 

lengths of ABS soil pipe (external diameter 10 cm). The float 

and counterweight were enclosed in a1m PVC'perforated tube 

(internal diameter 10.7 cm), sunk approximately 75 cm into the 

peat, directly below the recorder. The stands supporting the 

recorders were inserted approximately 1m into the peat. Only 

in the case of EP, where the peat is shallow, was the underlying 

clay penetrated. To penetrate the dry peat baulk recorder SB was 

mounted on a stand supported by 4 'legs' of galvanised dexion 

slotted angle, 2 m in length. Even so, some difficulty was 

experienced in inserting this stand and it was necessary to 

excavate a hole Im deep and the same size as the ttand platform 

(45 cm x 45 cm), prior to installing the stand. The float and 
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counterweight were not enclosed by a PVC tube in this case as 

there was no means of supporting such a tube. 

The data obtained from the first few days of operation 

were discarded, as it was considered that the float and water table 

needed time to equilibrate after installation. 

To investigate possible vertical movement of the recorder 

stands in the cuttings, the length of one leg of each stand above 

the water table was measured, every month when the charts were 

changed, during year 1. These readings were compared with 

changes in water tableregistered by the recorders and by adjacent 

sampling tubes. 

5.2.3 Water table in a peat baulk and adjacent peat cutting 

Water table in a baulk and adjacent cutting in the 

centre of the pNNR was investigated by means of a transect of 

sampling tubes located across cutting 4/5W5 and the nearby 

southern baulk. The transect (known as CB) was 54 m in length 

and positioned at right angles to the long axis of the baulk 

and cutting (Fig. 5.4) incorporating the water level recorders 

4/5W5 and SB. Sampling tubes were installed every 2 m, 11 in 

4/5W5,15 across the baulk and one in 4/5W6 (Fig. 5.15). At SB 

it was unnecessary to install a tube as the water table reading 

was obtained from the hole over which the SB recorder was mounted. 
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The sampling tubes were 75 cm lengths of capped, 

perforated ABS soil pipe (internal diameter 3 cm). The tubes 

were inserted by applying pressure from above, removed and 

re-inserted following clearance of peat debris from the pipe bore. 

All tubes were buried to within approximately 5 cm of their 

length. They were left for one month for equilibration prior 

to measurement. 

In the cuttings the water level was measured from the 

top of each sampling tube using a flexible steel rule graduated 

in mm. The water table relative to the peat surface was calculated 

from this measurement. 
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On the peat baulk the water table was determined by 

the apparatus shown in Fig. 5.5. A metal rod (diameter 2 mm, 

length M), one end of which was inserted into a cork, was 

introduced into the sampling tube. A PVC plug was used (Fig. 5.5) 

to support and centralise the apparatus, and relevant measurements 

were made with a flexible steel rule. After determining the 

water level at which the cork floats in the laboratory, the water 

table was calculated. The reading obtained by this method is 

likely to be a slight over-estimate of water table because the 

cork displaces its own volume of water. 

Water table measurements were taken at approximately 

monthly intervals from November 1981. Although a monitoring 

duration of one year was planned, the investigation was prematurely 

terminated because of the severe fire on 2 June 1982 which melted 

all the sampling tubes, and substantially altered the shape of 

the peat baulk. The transect was levelled when the water table 

was above the surface in the, peat cutting. The shape of the peat 

surface in the cutting was determined by measuring water depth 

at one metre intervals along the transect. The baulk was levelled 

by means of a Quicksett level, utilizing the water table in the 

cutting as a local datum. 
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3cm 

Fig. 5.5 Apparatus for determination of water table 
in a peat baulk. Water level below peat 
surface (T) was calculated by subtracting 
(R + P) from M. 
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5.3 GENERAL FEATURES AND PROBLEMS OF INTERPRETATION OF THE 

WATER TABLE DATA 

5.3.1 General features of the water table data 

The continuous water table records obtained during 

years 1 and 2 are shown in Figs. 5.7 and 5.8 respectively; 

the daily, mean weekly and mean monthly water tables are represented 

graphically in conjunction with daily, total weekly and total monthly 

precipitation values in each case. Changes in water table registered 

by means of the sampling-tubes, the water level recorders and the 

legs of the water level recorder stands are shown in Fig. 5.6. 

Table 5.1 shows characteristics of the yearly water table levels. 

Extracts from the original chart data are shown in Figs. 5.9- 

5.12. 

Intermittent water table records measured in the sampling 

tubes are represented graphically in Figs. 5.13 and 5.14. The 

monthly water table in 4/5W5 and the adjacent, southern, peat 

baulk, determined from the transect CB (Fig. 5.4) is shown in 

Figs. 5.15 and 5.16. Because of their complex nature and as 

several features can be identified from these records, the 

results are all presented together here. Reference back to the 

relevant diagrams is needed in discussing specific points; 

however, some general features may be identified here: 

1. There was a marked seasonal variation in the 

water table at all study sites. 
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4 /5W5 

MAY JUNE 1980 

Fig. 5.9 Water table relative to peat surface (registered by 
automatic water level recorder) between 25 May-7 June 1980. 
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Fig. 5.10 Water table relative to peat surface (registered by 
automatic water level recorder) between 12-25 May 1981. 
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Fig. 5.11 Water table relative to peat surface (registered by 
automatic water level recorder) between 17-30 October 1981. 
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Fig. 5.12 Water table relative to peat surface (registered by 
automatic water level recorder) between 23 July-5 August 
1982. 
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200- 
April 1980-August 1981. 

1004 111 ....... ............ -1111 . ....... ..... . 1111 . I'll, . 11110 ............ 

0 

200 

100 

0 

5/6 W5 

5/6 E5 

100- 

2/3 Wl 
oý ,, j6t 

-100- 

3uu 

200 

0" 100- 
2/3 M 

100- D 
-4.213 W7 
0 01 '0 CD 

. -inn-, 
c) 

100 
a, 2/3 W8 
0 CD ol II __4.1-, 

__ _I_ 

-100 

100. 
213 W10 

-1001 
100 

........... ............ jjj, ý 2/3 W12 
0 

-1 

149 

M IJ IJIA IS 10 IN IDJ IF IM I AIM IJIJ 
1980 

11981 



Fig. 5.13c Water table (measured in sampling tubes) in 
peat cuttings between April 1980-August 1981.150 
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Fig. 5.13d Water table (measured in sampling tubes) 
MM in peat cuttings between April 1980-August 1981.151 
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Table 5.1 Characteristics of yearly water table levels in peat 

cuttings monitored by automatic water level recorders. 

All values are in mm. 

Year Water level Mean Median -Mode Lowest Highest Range 

recorder water table water table 

1 JA 196 175 180 60 430 370 

1 2/3W3 473 485 510 365 510 145 

1 4/5W5 333 345 350 215 415 200 

2 4/5W5 301 310 320 180 400 220 

2 SB 560 560 580 420 790 370 

2 EP 179 200 220 -55 370 425 

Values for year 1 are based on water table levels recorded over one 

year between I June 1980 and 31 May 1981; those for year 2 are based 

on water table levels between 6 August 1981 and 5 August 1982. 

2. The continuous water table records show that all 

sites exhibited long and short term fluctuations in water level. 

3. The height of the water table was greater, and the 

fluctuation of the water table was less, in the cuttings of the 

pNNR than in the other study sites. 

4. The behaviour of the water table in the peat 

baulk was very different from that observed in the peat cuttings. 

These main features of the data are analysed and 

discussed in subsequent sections. 



159 

5.3.2 Limitations and problems in the interpretation of the 

water table data 

Owing to the difficulty in determining levels across 

the area (Chapter 1) the relative heights of the study sites, 

apart from 4/5W5 and adjacent baulk, were not accurately 

established. 

5.3.2.1 Continuous water table records 

1. Movement of the water level recorder stands 

Discrepancies between water table changes registered 

by the charts of the water level recorders and by the sampling 

tubes (Fig.. 5.6) suggest that, for limited periods, the water 

table was either over- or under-estimated by the water level 

recorder, probably because of vertical movements of the recorder 

stands. The crude nature of the data, however, must be taken into 

account. It is impossible to establish from these data the 

degree of expansion and contraction of the peat surface. 

Discrepancies in water table changes monitored by these methods 

may be, at least partially, the result of differential movement 

of the peat mass at the site of the recorder and the site of the 

sampling tube. Differences may reflect errors in measurement, 

particularly in the case of the recorder stand, the length of 

which was difficult to measure accurately. 
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2. Short tem changes in water table 

Short term fluctuation in water level may be a response 

to rainfall. However, the response to rain may be quicker than 

Figs. 5.7 and 5.8 suggest. This is because the daily water table 

represents the level at approximately midday, whereas the daily 

precipitation measurements were taken at 0900 GMT, on the 

following day. Changes in water table occurring after midday 

are therefore not shown until the next day. 

In considering the response of the water table to 

rainfall, the fact that the Crowle rainfall station is 6.0-6.5 

km away from the recorders should be also taken into account; 

the amount of rain falling into the cuttings may have been slightly 

different from that shown in Figs. 5.7 and 5.8. 

3. The effect of ice 

The rather high mean monthly water table recorded for 

January 1982 (Fig. 5.8) at all sites was probably because the 

floats were held at relatively high levels when the water froze 

during mid-January. The water also froze in late December 1981; 

these periods are shown as spells of steady water table in the 

cuttings. In EP the ice held the float at an artificially high 

level; this added 70 mm to the water table range at this site. 

The effect of the fire 

Apart from melting some of the sampling tubes (5.2.3) 

the fire which occurred on 2 June 1982 burnt through the cable 

attaching the float to the counterweight in recorder SB. The 
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water table between 2-25 June (the time taken to replace the 

lost counterweight) has been estimated as the mean between 

these two-dates and is therefore represented as a straight line 

in Fig. 5.8b. 

5. The water level recorded by SB 

The behaviour of the water table in the hole over 

which recorder SB was mounted is unlikely to represent exactly 

the changes in water table which occurred within the peat baulk 

as the measurement of water table in a pit may not precisely 

reflect the water table within the peat, when the water table 

is below the surface. It is likely that the water table in the 

surrounding peat will be maintained at a slightly higher level 

owing to impeded drainage (Ingram 1982). Set against this, 

however, is the fact that in the immediate vicinity of the peat 

surrounding the pit an area of draw-down may be created causing 

water to flow into the pit. The size and shape of the hole are 

likely to have affected the water level. Rycroft, Williams & 

Ingram (1975), considering the use of seepage tubes to investigate 

the hydraulic conductivity of peat, observe that the dimensions 

of a cavity in peat affect the. rate of water movement into that 

cavity because water may be conducted by peat at a different 

rate in the horizontal and vertical planes. It is also likely 

that, after rain, the water table in the hole will have risen 

before the water table in the peat baulk because, of the time 

necessary for water to percolate through the peat to reach the 

water table. 
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5.3.2.2 Intermittent water table records 

The measurement of water level in short sampling 

tubes may not exactly reflect the true water table in relation 

to the underlying mineral material (c. 2m below the peat 

surface). The tubes are held at the peat surface and should, 

therefore, move with the peat surface if expansion or contraction 

of the peat takes place. It was considered, however, that an estimate 

of water table in relation to peat surface would be of greater 

value in assessing the effect of water levels on the composition 

of the vegetation. The remarks made on measurement of water 

table in wide cavities (sampling tubes of 10 cm internal 

diameter) apply here. The main reason for using sampling tubes 

of these dimensions was that they were also used for collection 

of water samples for chemical analysis (6.2). In the CB transect 

the use of narrower tubes (internal diameter 3 cm) will lessen 

the effect owing to a higher water table being maintained in 

It. he surrounding peat than in the sample tube, because of impeded 

drainage. 

The apparently uneven water surface in the peat cutting 

measured from the CB transect (Fig. 5.15) may be due to measurement 

errors or reflect the fact that the surface of the peat altered 

in shape slightly between the beginning of the investigation 

and the time when the transect was levelled (March 1982) because 

of the continual trampling of the area. 
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5.4 SEASONAL FLUCTUATIONS IN THE WATER TABLE 

5.4.1 Response of the water table to rain 

5.4.1.1 Continuous water table records 

1. Gross changes in water level 

Comparison of the mean weekly and monthly water table 

and the total weekly and monthly precipitation suggests that 

bulk changes in water level are a response to rainfall. The 

water table in early October 1980 (Fig. 5.7), for example, may 

be related to the low rainfall of September 1980. The highest 

levels in the cuttings during year 1, recorded in March and April 

1981, correspond to the high rainfall value of March. Similar 

relationships can be advanced for other periods in 1980 and 1981, 

and for year 2 (Fig. 5.8). 

In 4/5W5 the mean water table of year 2 was 301 mm, 32 mm 

less than that recorded for year 1 (Table 5.1). This difference, 

and the lower modal value of year 2, probably reflect the relatively 

low precipitation of the first half of 1982 (Appendix 3), compared 

with the greater than average precipitation totals of 1980 and 1981. 

2. Short-term responses to rain 

Inspection of Figs. 5.7-5.12 suggests that the response 

of the water table to precipitation was rapid in all the cuttings. 

For example, the 30 mm of rain which fell on 20 May 1981 (Fig. 5.10) 

produced an immediate rise in water table in the three cuttings. 
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There was a consistent variation in the magnitude of 

the short-term response to rainfall. During year I the recorder 

at site 2/3W3 always registered a lesser increase in water table 

than found at JA and 4/5W5. The 28 mm of rain which fell on 

30 June 1980, for example, produced a rise in water table of 

35 mm in 2/3W3 and 50 mm in both 4/5W5 and JA. During year 2 

site EP consistently showed a greater increase in water table 

subsequent to rain than site 4/5W5. 

The magnitude of the response to rain varied with the 

time of year; greater increases in water table occurred during the 

summer months. The 13 mm of rain which fell on 4 August 1982 

caused the water table to increase by 40 mm in 4/5W5 and 80 mm 

in EP (Fig. 5.12), whereas the 13 mm of rain which fell on 24 October 

1981 produced an increase in water table of 10 mm in 4/5W5 and 

20 mm in EP (Fig. 5.11). 

5.4.1.2 Intermittent water table records 

In the peat cuttings gross changes in water table were 

related to rainfall. The gradual summer increase in water level 

of 1980, for example, corresponds to heavy rainfall during June 

and August 1980 (Fig. 5.13). 

In canal 4 (Fig. 5.14) there appears to have been a delay 

in the response to rainfall. For example, during September 1981 

the level at all sampling locations was low, despite relatively 

high rainfall in August and September. An increase was, however, 

registered in October. 
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5.4.1.3 Factors affecting the response of the water table to rain 

Short-term responses to rain 

Any given amount of rainfall will tend to produce a 

greater rise in water level when the water table is originally 

below the peat surface than when it is above the peat surface. 

This is accounted for by the fact that it is only the spaces or 

'voids' (Ingram 1967) between the peat particles that can accommodate 

the water. The absorption of water by the drier areas of JA and 

4/5W5 and their surrounding peat baulks may explain why these 

cuttings consistently, after rain, registered greater increases 

in water table than 2/3W3. There are no peat baulks in the 

immediate vicinity of 2/3W3 and this cutting has a high water 

table continuously above the peat surface. In EP the mean water 

table was much lower than that in 4/5W5. This may explain why at 

all times EP registered a greater increase in water table than 4/5W5 

and why, in all cuttings, the response was greater during the 

summer when the water table is low than during the winter. 

2. The delay in the response to rain in canal 4 

The canal is relatively long and narrow and surrounded 

on both sides by dry peat baulks at least 5m wide. Water takes 

longer to infiltrate drier peat than more moist peat (Keane & 

Dooge 1972) and so it is likely that there would be some delay 

before the water table level in the baulk responded to rain. 

The. observed effect, therefore, may arise from this delay in the 

equilibration of the water table in the baulk and canal, after rain. 



166 

5.4.1.4 Conclusions 

1. Gross changes in water level in all peat cuttings 

appear to be closely related to rainfall. 

2. The response to rainfall at all sites except 

canal 4 was immediate. 

The consistent difference in the magnitude of the 

response to rain observed in the study sites was considered to 

relate to the relative proportions of peat above and below the 

water table. 

5.4.2 Seasonal decline in water level 

5.4.2.1 Seasonal decline in water level at the study sites 

During the summer of 1980 all the recorders registered 

several consectutive periods of steady reduction in water table 

subsequent to each fall of rain (Figs. 5.7 and 5.9). Although 

comparable amounts of rain fell during the winter of 1980/81, 

the water table remained at a higher level than during the 

summer. This presumably reflects greater evapotranspiration during 

the summer months. The diurnal pattern of loss can be clearly 

seen in Figs. 5.9 and 5.12. 

The decline in water table in the peat cuttings may be 

described by the mean gradient of the fall in water table over 

equivalent rain-free periods. During the summer-of year 1, 

between 2-7 June 1980, the mean gradient of the fall in water 

table in 4/5W5 was 2.5 (i. e. the mean rate of fall was 2.5 mm 

per day), whereas during the winter, between 26-31 December 1980, 
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the mean gradient of the fall in water table was 1.5 in this 

cutting. 

The cuttings showed differences in the rate of decline 

of the water table. Between 2-7 June 1980 (Fig. 5.9) the mean 

gradient of the fall in water table was 2.0 in JA and 2/3W3 and 2.5 in 

4/5W5. Between 6-16 May 1982 the mean gradient of the fall in 

water table was 3.. 0 in 4/5W5 and 6.0 in EP. The differences 

between the rate of decline of the water table at the study 

sites were consistent. At site 2/3W3, for example, a greater 

decline in water table was always registered than at 4/5W5: 

between 14-19 May 1981 (Fig. 5.10) the mean rate of fall was 

2 mm per day in 4/5W5 and 1 mm per day in 2/3W3. 

A seasonal decline in water table was also shown by 

the intermittent water table records. 

5.4.2.2 Factors affecting the seasonal decline in water level 

A seasonal relationship between water table in mires 

and rainfall has been observed by many workers (e. g. Bartley 

1960; Chapman 1965). The loss through transpiration by 

vegetation is greatest during the summer. 

The differences in the rate of decline of the water 

table in different parts of Thorne Moors may perhaps be 

attributable to the height of the water table in the cuttings, 

lower rates being associated with higher water levels. The mean 

water table in 2/3W3, for example, was greater than that in 

4/5W5. Nichols & Brown (1980) found that under similar conditions 

the rate of evaporation from a Sphagnwn moss surface was 
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approximately twice that from a free water surface. The highest 

rate of evaporation was found when the water table was c. 5 cm 

below the surface. Although the vegetation in neither of 

these cuttings consists of a complete Sphagnwn lawn, it is 

likely that the difference in the rates of fall between sites 

2/3W3 and 4/5W5 may be because the higher water table of 2/3W3 

covered a greater proportion of the vegetation than in 4/5W5. 

In EP a greater exposure of peat and vegetation due to an even 

lower water table may explain the relatively high observed rates 

of reduction in level. 

5.4.2.3 Conclusions 

Seasonal decline in water levels were considered by 

comparing mean gradients of the fall in water table: 

The decline in water level was greatest during 

the slarmer probably because of losses through evapotranspiration. 

2. At any one time the sharpest decline in water level 

occurred in peat cuttings with the greatest exposure of peat 

and vegetation; losses through evapotranspiration may therefore 

relate to the level. of the water table. 
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5.5 HEIGHT AND FLUCTUATION OF THE 14ATER TABLE 

5.5.1 Height of the water table 

The continuous water table records show that mean 

and modal water tables were higher in the pNNR (2/3W3 and 

4/5W5) than in JA and EP. Within the pNNR the water level in 

2/3W3 was higher than that in 4/5W5 (Table 5.1). 

There was much local variation in the height of the 

water table in relation to the peat surface in the central 

(Fig. 5.13) and outer (Figs. 5.15 and 5.16) sections of the 

cuttings in the pNNR. For example in 4/5W1 (Fig. 5.13) the 

level never fell below 90 mm, whereas in 2/3W8 the level was 

continuously below 60 mm above the peat surface. 

It has been observed (Chapter 1) that there may be 

a very slight rise in height to the south and west of the pNNR 

area. This is borne out by the water table results: in cutting 

5 the sampling tubes indicated deeper water for longer periods 

in an eastwards progression. Likewise, in canal 4 (Fig. 5.14) 

and in the 2/3W transect, although the water table in 2/3W7 

and 2/3W8 was generally slightly lower than in 2/3WIO and 

2/3W12, there was an overall trend towards drier conditions to 

the south. 

Drains may exert some influence on the water table 

in some of the cuttings. For example the New Cut may help 

maintain the water level in 1/2W5 at a relatively low level 

(Fig. 5.13). 
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5.5.2 Fluctuation of the water table 

5.5.2.1 Continuous water table records 

The range of fluctuation of the water table was 

least in the pNNR and greatest in JA and EP (Table 5.1). This is 

emphasized by the fact that the largest differences between the 

mean weekly and mean monthly water table curves occur in JA 

(Fig. 5.7) and EP (Fig. 5.8). Within the pNNR the range of 

fluctuation was greater in 4/5W5 than in 2/3W3. 

The large range of fluctuation exhibited by JA was 

partly the result of a rise in water table (approximately 200 mm) 

in February and early March 1981, when increases of no more than 

80 mm occurred elsewhere. On 13 May 1981 the water table 

rapidly fell (Fig. 5.10). Between 14-19 May the water table 

dropped by 110 mm. The mean gradient of the fall in water table 

between these two dates was 22.0; the mean rate of fall was, 

therefore, 22 mm per day. At the same time the mean gradients 

of the fall in water table in 4/5W5 and 2/3W3 were 2.0 and 1.0 

respectively (Fig. 5.10). 

5.5.2.2 Intermittent water table records 

In the pNNR cuttings the range of water table 

fluctuation (excluding the 3/4E transect which was measured 

over a period of less than one year), was fairly similar, ranging 

between 115 mm and 170 mm above the surface over the period 

investigated -a difference of 55 mm. The range of fluctuation 

was lowest towards the centre of the area of the pNNR where 

peat baulks separate the cutting bays (the lowest range of 115 mm 
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occurring in 3/4W5) but this may not be significant. 

5.5.3 Features affecting the level and fluctuation of 

the water table 

5.5.3.1 The level of the water table in the pNNR 

The high water levels and the overall similarity in 

the pattern and fluctuation of the water table in the pNNR 

suggest that the whole area responds similarly to changes in 

water relations. 

The variety of depths to which peat was cut is considered 

to be the main reason for the observed local differences in 

the height of the water table. Deposits of peat 'rubble' 

also introduce further variation together with the vegetational 

microtopography. Mining subsidence may have had local or 

general effects on the water level. 

Because of the difficulties in establishing precise 

levels in the area (5.3), it is not easy to comment on the 

relative effects of drains and elevation differences on water 

levels observed. However, it is unlikely that the New Cut is 

responsible for the relatively low water level in 1/2W5 (Fig. 5.13). 

This drain is dammed at both ends and if it were exerting an 

influence, the water table in 1/2E5, on the eastern side of the 

New Cut (Fig. 5.1), would be expected to be generally lower 

than that observed. Drains to the west of canal 1 are probably 

too far away (c. 50 m) to exert any detectable draw-down effect 



172 

on the water level in 1/2W5 (cf. Boelter 1972). In addition, 

dry peat baulks, c. 5m wide, run along both sides. of canal 1; 

it is considered, therefore, that the low water table recorded in 

1/2W5 reflects the relatively high altitude of the area. The 

effectiveness of dry peat baulks in maintaining high water 

tables is further considered in Chapter 10. 

5.5.3.2 Comparison with undisturbed mires 

With regard to the aims of conservation management 

in the pNNR area, it is relevant to compare the level and range 

of the water table with that observed in undisturbed bogs. 

Goode (1970), working on the Silver Flowe, N. W. Scotland, found 

that water table levels varied around the peat surface over a 

range of 150 mm in the pool networks on the crown of the bog 

and increased to 250 mm. towards the periphery. At Coom Rigg 

Moss, Northumberland Chapman (1965) found that the lowest 

summer water table was -230 mm and that run-off occurred at 

-80 mm, suggesting a maximum fluctuation of 150 mm. Although 

these bogs may differ somewhat from Thorne Moors before it was 

cut and drained, such values suggest a comparable, if somewhat 

higher, range of fluctuation at Thorne (145 mm in 2/2W3; 200 mm 

in 4/5W5). By contrast it is clear that the measured mean 

water levels at Thorne Moors (473 mm in 2/3W3; 333 mm in 

4/5W5) are substantially above those recorded in undisturbed 

sites. The upper limit of the water table, and, therefore, 

to some extent, the amplitude of fluctuation are determined by 
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the heights and permeabilities of dams in ditches and drains. 

The management problems which this situation creates are 

discussed inýChapter 10. 

5.5.3.3 Level and fluctuation of the water table in JA 

The increase in water table of approximately 200 mm 

which occurred during February and early March 1981 was quite 

different from anything measured elsewhere on the Moors. It was 

probably explained by the activities of Fisons Ltd. Subsequent 

to the relatively low rainfall of December 1980 and January 1981, 

the water table in peat workings to the east of JA was apparently 

raised in late February 1981, by Fisons Ltd., (to reduce fire 

risk) by damming the drain which forms the eastern extension 

of Main Canal North and which runs into Mill Drain (Fig. 5.3). 

As a result, water backed up into JA, the northern boundary of 

which comprises this drain. After the heavy rainfall of March 

1981, the dam was breached on 13 May 1981 (Fig. 5.10); this 

caused the water table to fall quickly. Were it not for the 

fact that some water may run on to this cutting from elsewhere 

the mean water table (196 cm) would probably have been lower. 

5.5.3.4 Level and fluctuation of the water table in EP 

The main contributory-factor to the high range (425 mm) 

and the low mean water level (179 mm) appears tc; have been the 

low water table levels recorded throughout the summer of 1982. 
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These were lower than values recorded in other parts of the 

site and may be explained by various features: The area is not 

so thoroughly 'sealed off', by dams in drains and peat baulks 

as the pNNR, from the effects of surrounding drains. Also the 

sluice at the west end of the Southern Boundary Drain may have 

beýen open during this time causing additional drainage of the 

peat. 

5.5.4 Conclusions 

1. The variation in the water level relative to the 

peat surface in the pNNR probably reflectsgeneral and local 

variations in peat height, with no clear evidence for draw-down 

associated with the New Cut. 

2. The dams in drains and ditches which aim to seal 

off the pNNR area hydrologically are considered to be 

effective: 

a. The water table fluctuated less in the pNNR 

than in the other study sites. 

b. The water level in the pNNR was much higher than 

in the other study sites. 

c. The overall similarity in the magnitude and 

pattern of water table variation in the cuttings and canal 

investigated in the pNNR suggests that the whole area responds 

similarly to changes in water relations. 

3. The range of water table fluctuation in the pNNR 

is somewhat higher, and the mean water levels are substantially 

higher, than those recorded in undisturbed mires. This is 
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because the upper limit of the water table, which in intact mires 

is determined by the level at which run-off occurs, is at Thorne 

dictated by the height and permeability of dams in ditches and 
0 

drains. 

In JA the level and fluctuation of the water table 

were partly explained by the activities of Fisons Ltd. Most of 

the time the drain which forms the northern boundary of this 

cutting maintained the water table at a relatively low level. 

5. In EP the relatively low mean water table was 

probably mostly due to the influence of the southern Boundary 

Drain. 

5.6 THE WATER TABLE IN THE PEAT BAULK 

5.6.1 The response of the water table to rain registered 

by recorder SB 

5.6.1.1 Gross changes in water level 

Comparison of the total monthly precipitation values 

with the mean monthly water table (Fig. 5.8) and the fluctuation 

of the water table (Fig. 5.16) suggest that gross changes in 

water level in the peat baulk were related to rainfall. 
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5.6.1.2 Short-term responses to rain 

The short-term response to rain was rapid. A much 

greater increase in water table occurred in SB subsequent to rain 

than in 4/5W5. For example, the 13 mm of rain which fell during 

24 October 1981 produced an increase in water table of 70 mm in SB, 

but only 10 mm in 4/5W5 (Fig. 5.11). The magnitude of this 

response seemed to vary with the time of year; the 13 mm of rain 

which fell during 4 August 1982 caused the water table in SB to 

increase by 170 mm (Fig. 5.12). 

As well as exhibiting a much higher rise in water table 

subsequent to rain than in 4/5W5, Fig. 5.11 shows that the overall 

pattern of response to rain in SB was also very different from 

that occurring in 4/5W5. Fig. 5.11 shows the response of the water 

table to rain on two occasions. In 4/5W5 the water table 

responded immediately (rising by 10 mm) to the 12 mm of rain which 

fell on 19 October 1981 and then stabilized until 24 October when 

13 mm of rain caused a further increase. By contrast, although 

the response to the 12 mm of rain on 19 October was immediate in 

SB, the water table continued to rise for 24 hours, to increase 

by a total of 50 mm; over the next 3 days the water table fell 

steadily until 23 October (when a fall of 1 mm of rain may have 

prevented a further decline in water table). The 13 mm of rain 

which fell on 24 October produced a similar pattern of response 

to that of 19 October: the water table rose over a period of 24 hours 

by 170 mm; the subsequent fall was influenced by the I mm of rain 

which fell on each of 26,28 and 29 October. 
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5.6.1.3 The net response of the baulk water table to rain 

observation of the response of SB to an isolated fall 

of rain suggests that the difference between the level before 

rain and the stabilized level afterwardswas a little greater than 

the change registered by 4/5W5 in the same time. For example, 

the level in SB on 5 April 1982 was 550 mm; subsequent to the 11 mm 

of rain which fell between 5-7 April the level stabilized to 

540 mm on 13 April. The overall change in level in 4/5W5 was from 

320 mm on 5 April to 315 mm on 13 April. Between 5-13 April, 

therefore, the water table in 4/5W5 decreased by 5 mm and that in 

SB decreased by 10 mm. After stabilization of the water table 

subsequent to rain, Fig. 5.8 shows that the behaviour of the water 

table in SBwas very similar to that in 4/5W5, until the next fall 

of rain. 

The very high response to rain exhibited by SB is reflected 

by the recorded range (370 mm). 

5.6.2 Water table fluctuation in the sampling tubes 

The fluctuation of the water table was generally greater 

in the peat baulk than in the adjacent peat cutting (Figs. 5.15 

and 5.16). 

The sampling tubes in the baulk exhibited variety in the 

pattern of fluctuation of the water table (Fig. 5.16). This is 

reflected in differences in the shape of the watertable profiles 

of Fig. 5.15. In the vicinity of the ditches, for example, 
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the fluctuation of the water table was lower than that in some 

of the other sampling tubes. In B14, for example (located in a 

ditch: - see Fig. 5.15), the water table fluctuated over a range 

of 180 mm whereas in B13 (located 2m from a ditch - see Fig. 5.15) 

the water table fluctuated over a range of 240 mm (Fig. 5.16). 

5.6.3 Interpretation of the response of the water table to 

rainf all 

5.6.3.1 The response of the water table to rain registered by 

recorder SB 

1. Inferred properties of the peat comprising the baulk 

The behaviour of the water table in the hole over which 

recorder SB was mounted permits some inferences to be drawn on 

the properties of the peat surrounding the hole. The high 

amplitude of water table oscillation in SB may reflect the very 

low permeability of the surrounding peat. In less permeable 

peats, voids form a smaller proportion of the total volume than 

in more permeable examples. A given addition of water, therefore, 

produces a greater rise in level in less permeable peats than in 

more permeable peats; the same applies to a fall. 

The peat which comprises this baulk may have a low 

permeability, and therefore, a low hydraulic conductivity (Ingram 

1967) because it has been drained. Drying of the ýeat may have 

caused an increase in humification and the utilization of the 

peat baulks for peat extraction may have contributed to compaction 
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and subsidence of the peat. The relationship between humification 

and hydraulic conductivity has been investigated by many workers 

(Baden & Eggelsmann 1963; Boelter 1965) who have found marked 

decreases in hydraulic conductivity with increasing humification. 

Humification is a complex process difficult to quantify or measure 

objectively. In attempting to relate hydraulic conductivity to 

simpler, physically based properties of peat Boelter (1970) found 

that bulk density (which increases with increasing decomposition) 

showed an inverse relationship with hydraulic conductivity. 

An increase in bulk density may also reflect subsidence of peat. 

Armstrong & Watson (1974) found that, following the drainage of 

a South Australian fen, the bulk density of the peat increased 

threefold whilst the thickness of the peat reduced to approximately 

one quarter, over a period of 32 years. Stephens and Speir (1970) 

observed that the rate of subsidence was proportional to the depth 

to which the water table was lowered, following drainage of organic 

soils in the USA. The inferred low hydraulic conductivity of the 

baulk, therefore, may reflect compaction, subsidence and an increase 

in humification owing to the drainage and subsequent drying of the 

peat. 

2. The surface of the peat baulk 

The effects of drying in causing an increase in 

humification and subsidence are likely to be greatest towards the 

outer surface of the peat baulks at Thorne. Investigation of 

erosion gullies on Featherbed Moss in the S. Pennines by Tallis 

(1973a) revealed that drying of surface peat layers caused an 



180 

impermeable peat skin to develop, which accentuated overland flow. 

If such a skin has developed at Thorne it is possible that 

rainwater may tend to run over the surface of the peat into the 

surrounding cuttings, the ditches in the baulk (Fig. 5.15) and the 

SB hole. Such a skin is also likely to increase the time which 

rainwater (that does not run off) takes to penetrate the underlying 

peat, resulting in a corresponding delay in the response of the 

underlying water table to rain, as suggested elsewhere (5.4.3). 

3. Interpretation of the pattern of response to rain 

It seems likely that the high initial increase and 

subsequent high fall in water table reflect the low hydraulic 

conductivity of the peat surrounding the hole. Water running 

over the peat baulk surface and into the SB hole may have 

contributed to the high increase in level. The fact that the rise 

was greater during the summer (Figs. 5.11 and 5.12) may be 

because the peat adjacent to, and above, the water table at the 

lower summer water level has an even lower hydraulic conductivity 

than that adjacent to and above the water table at the higher 

winter levels. The level at which the water table eventually 

stabilizes may approximately represent the net response of the 

baulk water table to the rain. The time required for stabilization 

is probably that taken by the water table in the baulk and hole 

to equilibrate, and may relate to the time for the rain water 

to infiltrate the peat baulk and reach the water table. 
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Future changes in the peat baulk 

It is likely, owing to further drying, that the peat 

of the baulks will continue to settle and become more compact 

resulting in further changes in the hydrophysical properties 

of the peat. The changes resultant on desiccation of peat may 

be irreversible; for example, the proportion of water taken up 

by a sample of dried peat is considerably less than that held by 

the peat before it was dried (Hooghoudt 1950). 

5.6.3.2 The response of the water table to rain registered by 

the sampling tubes 

The generally high fluctuation of the water table in the 

baulk is likely to relate to the fact that the oscillations 

occurred in peat which may be extremely impermeable. 

The observed variety in the pattern of fluctuation 

probably results from various causes. The response to rain 

(monitored in B2 by the SB recorder) at the sample sites, for 

example is likely to have varied, the exact response of each 

sampling tube probably being affected by the nature of the peat 

(e. g. hydraulic conductivity) in its vicinity. The lower 

fluctuation in the vicinity of the ditches may be because the 

water table near the ditches reacts sluggishly to shifts in the 

water balance compared with that further away (Dr HAP Ingram, 

personal communication). Further differences in fluctuation may 

have been caused by the position of the sampling tube in the 

baulk; for example, those sampling tubes situated near ditches on 
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the baulk may have received some water flowing over the relatively 

impermeable peat surface. 

5.6.4 The height of the water table in the baulk and adjacent 

cutting 

5.6.4.1 The water table records 

The water level was generally higher in the peat baulk 

than in the peat cutting (Figs. 5.8,5.15 and 5.16); the 

lowest water level recorded in SB (420 mm) was higher than 

the highest level recorded in 4/5W5 (400 mm). 

The water level in the baulk and cutting gradually 

fell during the early summer of 1982. Between January and May 

the maximum downward water table displacement was greater in the 

baulk than in the cutting. 

5.6.4.2 Factors affecting the height of the water table in the 

baulk and adjacent cutting 

The water table in the baulk is likely to have been 

maintained at a generally higher level than in the cutting by 

capillarity and the retention of precipitation through impeded 

drainage (Ingram 1982), as in intact bogs. 
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1. The decline in water table between January and May 1982 

The ditches in the baulk are unlikely to have received 

water directly from the baulk except perhaps in January 1982 and 

December 1981 when they contained standing water, some of which 

may have eventually flowed into the surrounding cuttings. 

It is likely that some water losses in the baulk occurred 

through evapotranspiration. Such losses from the baulk were 

probably less than from the adjacent cutting. In spite of the 

presence of birch trees which must account for some losses, the 

relatively impermeable nature of the peat and the likely existence 

of an impermeable skin are likely to reduce water loss by this 

means. 

Some water may have been lost by flow from the peat 

baulk to the peat cutting because of the steep hydraulic gradient 

(cf. B1 and Cll, Fig. 5.15). In this context it is relevant 

to consider the side of the baulk as one side of a ditch. The 

effectiveness of ditches in the drainage of peat varies according 

to the hydraulic conductivity of the peat through which the water 

flows. The position of the water table in the environs of a 

ditch is determined by the hydraulic conductivity of the peat and 

the hydraulic gradient between the bog and the ditch (itself related 

to the dimensions of a ditch). Boelter (1972) for example, 

demonstrated that a ditch causing the water table to lie in highly 

humified peat had little influence on the water table beyond 5m 

from the ditch; however a (shallower) ditch which caused the water 

table to lie in less decomposed peat led to a detectable draw-down 
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effect 50 m from the ditch. Although the steep hydraulic 

gradient between C11 and Bl (Fig. 5.15) suggests some recharge 

from the baulk to the cutting, the steep gradient also implies 

a low hydraulic conductivity (Dr HAP Ingram, personal communication), 

so that the actual rate of this recharge may be rather small. 

The capacity of the baulk to retain water suggests that, in this 

sense, the peat of the baulk displays similar characteristics to 

the catotelm of undisturbed bogs (Ingram 1978); in intact bogs 

horizontal seepage-may cease completely when the water table falls 

to'the top of the catotelm (Ivanov 1981). 

2. Water storage capacity of Thorne Moors 

Chapman (1965) observed that the water storage capacity 

at Coom Rigg Moss, Northumberland, was equivalent to the amount 

of water that could be accommodated by the peat between the lowest 

summer water table and the level at which run-off occurred. 

At Thorne Moors, water is accommodated in both the baulks and 

the cuttings; the storage capacity is related to the difference 

between the lowest and highest recorded levels, the latter 

probably being determined by the height and permeability of the 

dams in ditches and drains. These observations are in accord 

with those of Burke (1972,1975) who found that drainage of 

blanket peat at Glenamoy, Ireland was accompanied by an increase 

in storage capacity. In this case the increased sporage capacity 

was accompanidd by a greater, more uniform water output which 

at Thorne is prevented by the dams in ditches and drains. 
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Baden & Egglesmann (1968) investigated the hydrological budget 

of a raised bog area of N. W. Germany and established that the 

storage capacity of a drained 'raised bog grassland' was 

much greater than that of an adjacent, heather-covered raised 

bog. By contrast, Conway and Millar (1960), who compared run-off 

in small peat covered catchments in the Northern Pennines, concluded 

that a small catchment, severely burnt and traversed by drains 

(both artifical and formed by peat erosion), had no storage 

capacity; however an intact Sphagnwn-covered catchment had a water 

storage capacity of several centimetres in its surface layers. It 

may be that any storage capacity created by the drainage of the 

former catchment was subsequently removed by the erosion and burning 

to which the area was-subject. Tallis (1973a) points out that the 

new storage capacity produced by a drop in the water table in eroded 

areas of the S. Pennines, is likely ultimately to decrease because 

of burning. At Thorne, the fire which occurred on 2 June 1982 

undoubtedly removed some of the storage capacity of the area. 

In addition to losses through burning, the continued progression of 

subsidence and compaction will probably further reduce the capacity 

of the drier peat areas, particularly the baulks, to store water. 
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5.6.5 Conclusions 

The behaviour of the water table in the hole over 

which recorder SB was mounted suggests that the peat has a low 

permeability and a correspondingly low hydraulic conductivity. . 

This may be a result of the drainage and subsequent drying of the 

baulks, causing an increase in humification, compaction and 

subsidence. 

2. A particularly impermeable surface skin may have 

developed on the outer surface of the peat baulk. 

3. Long term drying of the peat baulk may have caused, 

and may continue to cause, irreversible changes to the hydrophysical 

properties of the peat. 

4. The variation in the magnitude and pattern of water 

table fluctuation across the peat baulk may relate to the position 

of the sample sites on the peat baulk and local differences iný 

the nature of the peat. 

The water level was higher in the peat baulk than 

in the adjoining peat cutting. 

The rate of recharge from the baulk to the cutting 

was probably rather low. 

7. The capacity of the baulk to retain water (through 

its low hydraulic conductivity) indicates that the peat of the 

baulk displays some characteristics of the catotelm of undisturbed 

bogs 

8. As in other drained bogs, an increased storage 

capacity at Thorne has been produced by the past drainage of 

the area; the subsequent hydrological isolation of the pNNR by means 
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of dams in ditches and drains has further increased this capacity. 

9. The storage capacity is likely ultimately to decrease 

through losses owing to burning and through the continued progression 

of subsidence, decomposition and compaction of those areas above 

the water table. 

. 
5.7 DURATION LINES 

5.7.1 The use of duration lines to describe the water regimes 

of the peat cuttings 

The continuous water table data obtained during years 

and 2 are represented as duration lines in Figs. 5.17 and 5.18. 

Duration lines show the number of days, in one year, a certain 

water table is exceeded, over the recorded range. Many continental 

workers (e. g. Niemann 1963,1973; Grootjans & Tenklooster 1980) 

have used duration lines to describe the water regimes of plant 

communities; they have also been used to characterize further 

sociologically- and ecologically-definable vegetation units 

(Klo'tzli 1969). The water table duration lines of the five 

cuttings investigated emphasize and summarize previously noted 

differences in water regimes. Overall differences in level, 

such as the altogether higher water tables of 2/3W3 and SB, and 

the generally lower water tables of JA and EP, are displayed by 

the height of the curve. The range is related to ýhe number of 

points on each curve. The relatively low range recorded in 2/3W3 

(145 mm), for example, is represented by far fewer points than that 
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Fig. 5.17 Representation of water table levels recorded during 
year 1 between 1 June 1980 and 31 May 1981 as 'duration 
lines'. Short horizontal lines mark the mid-point 
of the range. 

Fig. 5.18 Representation of water table levels recorded during 
year 2 between 6 August 1981 and 5 August 1982 
-as 'duration lines'. Short horizontal lines mark the 
mid-point of the range. 
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of JA (where the range was 370 mm) because the water table tended 

to remain at the recorded levels for longer. The clusters of 

points at the ends of the curves denote the extremely high and 

low levels recorded. The higher levels observed in JA, many of which 

occurred on one day only, correspond to the substantial fluctuation 

of early 1981 (5-5.2.1). The upper, completely vertical sections 

of the EP line represent the sudden shifting upwards of the float 

owing to the formation of ice in mid January 1982 (5.3). The modal 

water table occurs on one of the two points furthest apart on the 

curve, or between these two points. The modal water table of 350 mm 

in 4/5W5 (year 1), for example, was exceeded on 168 days; 355 mm 

was exceeded on 133 days. The difference between these two points 

represents the number of days (35) on which the water table remained 

at the modal level. 

5.7.2 Shape of the duration lines 

Water table changes in the peat cuttings are characterized 

by the shape of the duration lines. A convex duration line is 

produced when the water table remains mostly in the upper half of 

its fluctuation range (i. e. median > mean). A water table remaining 

mostly in the lower half of its fluctuation range gives rise to a 

concave line (i. e. median < mean). 

At Thorne Moors, the duration lines for sites 2/3W3 and 

4/5W5 (during years 1 and 2) are convex whereas for sites JA, SB 

and EP they are concave. The water table remained mostly in the 

upper half of its fluctuation range, therefore, only in the wet 
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cuttings of the Dutch Canal System, presumably because of the 

'sealing off' of the area by dams in ditches and drains. The 

overall similarity in shape of the line for site 2/3W3 and the 

lines for site 4/5W5 for years 1 and 2 probably also reflects their 

similar location. The shape of the curve for the SB site below 

the mid point of its range is very similar to the corresponding 

section of the curve for site 4/5W5. This supports the previous 

suggestion that, after stabilization of the water table subsequent 

to rain, the behaviour of the water table in SB is very similar 

to that in 4/5W5. The section of the curve for SB above the mid 

point of the range, which gives rise to its overall concave shape, 

results from the extremely high short-lived responses to rain. 

The concave shape of the duration line for site JA arises mostly 

because of the short period of high water table in early 1981. 

In EP the relatively rapid reduction of the water table during 

the summer months is the main reason for a principally concave 

duration line. 

5.7.3 Conclusions 

1. The water regimes of the cuttings in the pNNR 

were characterized by convex duration lines (the water table 

remained mostly in the upper half of, its fluctuation range); 

the water regimes of sites JA and EP gave rise to concave 

duration lines (the water table remained mostly in. the lower half 

of its fluctuation range). This suggests that the dams in drains 

and ditches which aim to isolate the pNNR hydrologically are 

effective. 
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2. The high, relatively short-lived response to 

rain in SB accounts for the concave duration line of the water 

regime. 

5.8 THE RELATIONSHIP BETWEEN WATER TABLE AND THE VEGETATION 

Full descriptions of the vegetation of the study sites 

are given in Chapter 3. 

5.8.1 The peat cuttings 

The peat cuttings of the pNNR 

Characteristics of the water table (Fig. 5.13; Table 5.1) 

are related to the vegetation noda of some of the sample sites in 

Table 5.2. Noda generated by classification AC are used to 

describe the vegetation of the sample sites because the height 

of the water table in relation to the peat surface within each 

cutting varies too greatly to facilitate the use of classification 

MS. The number of noda represented in Table 5.2 is limited 

because sampling tubes were located within the central section of 

each peat cutting. The water table in the outer sections of cutting 

4/5W5 was measured in transect CB (Figs. 5.15 and 5.16). 

Characteristics of the water table measured in the relevant 

sampling tubes are shown with the vegetation noda of three sample 

sites in Table 5.3. The peat cuttings are considered in order of 

increasingly high water tables in this section, as In Table 5.2. 

The distribution of the vegetation noda within the pNNR is described 

in Chapter 3. 
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Table 5.3 Vegetation and water table (mm) of the outer sections of 

cutting 4/5W5 and 4/5W6 measured in transect CB (see 

Figs. 5.15 and 5.16). 

sampling lowest highest water table nodum 

tube water table water table range number 

Cl 430 565 135 5 

d2 - 4o 100 140 5 

C3 125 250 125 5 

CIO 305 445 140 5 

Cil 335 465 130 5 

C12 90 220 130 - 

nodum 

name 

Andromeda-S. recurvum 

it 
�I 

I, 

It 

CaNuna-Sphagnum recurvwn (nodum 2): Cuttings with the 

lowest recorded water tables in the PNNR are dominated by Calluna. 

The presence of CampyZopus paradoxus and PohZia nutans is also 

consistent with the relatively low water tables which appear to 

characterize this nodum (Watson 1981). Rhododendron ponticum 

and Pteridium aquiZinum, generally associated with drier conditions, 

occur sporadically. Sphagnum cuspidatum is absent. In all 

cuttings, however, the water table is for some part of the year 

above the peat surface, allowing the growth of S. recurvwn. 

Vegetation of nodum 2 occupies the central sections of several 

peat cuttings in the pNNR; that it occurs in the outer sections of 

some cuttings in the south and west of the area supports the 

suggestion that there is a slight rise in height in this direction. 
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Vaccinium-Andromeda (nodum 10): The height of the 

water table was very different in the two cuttings characterized 

by the Vaccinium-Andromeda nodum (Table 5.2). This vegetation 

type, also dominated by Eriophorum angustifoZium and Eriophorwn 

vaginatum, can clearly withstand a range of water table conditions 

from 75 mm below the peat surface to 265 mm above. 

CaUuna-Erica (nodum 6): This vegetation type is 

dominated by CaUuna and Erica tetraZix. The dominance of CaUuna 

may be accounted for by the fact that the water table occasionally 

drops below the peat surface. Vegetation of this nodum occurs 

in 2/3W8 and in the southern portion of the 5/6W transect, 

perhaps indicating, as with the CaUuna-S. recurvwn nodum (2), 

the drier conditions to the south and west of the pNNR. 

Erica-E. vaginatum-S. fimby-iatum (nodum 8): The 

presence of this vegetation type in the wet conditions of 

3/4E5 demonstrates the tolerance of E. Vaginatum to a water table 

well above the peat surface at Thorne. This nodum, also 

characterized by dominant Erica tetraZix and S. fimbriatum is a 

frequent constituent of the wetter, outer sections of the peat 

cuttings. 

E. angustifolium-Sphagnwn (nodum 4): The water table 

remains well above the surface in 5/6W5 which contains vegetation 

of this type. This may account for the presence of S. recurvum, 

S. fimbriatum and S. cuspidatum as well as DrepanocZadus revoZvens. 

Nodum, 4 occurs in the northern portion of the pNRR. 
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E. vaginatwn-S. recurvum-Vaccinium (nodum 3): 

Vegetation of this nodum appears to be associated with a high 

water table. As with the Erica-E. vaginatum-S. fimbriatwn nodum 

(8) this vegetation type is dominated by E. vaginatum; it also 

frequently occurs in the outer, wetter, sections of the cuttings. 

Vaccinium oxycoccus is normally associated with drier conditions 

than those found in 2/3W7 and 2/3W3; it may tolerate this high 

water table because it tends to root in adjacent drier areas. 

Andromeda-S. recurvum (nodum 5): Fig. 5.15 shows that 

although the water table is extremely high in the outer sections 

of 4/5W5 there is some microtopographical variation. Andromeda 

may survive here and in the outer sections of other peat 

cuttings because it roots in 'islands' of peat 'rubble' or 

dead vegetation such as that present at C2 (Fig. 5.15). 

The water table was not monitored in sites characterized 

by vegetation of noda 7 (Sphagnum fimbriatum-S. cuspidatum) and 

9 (S. fimbriatum-S. recurvwn). Sites containing these types of 

vegetation occur mainly in the outer, wetter, sections of the 

peat cuttings. 

5.8.1.2 Juncus effusus area (JA) 

optimum conditions for the germination and establishment 

of Juncus effusus appear to include a water table which fluctuates 

about the level of the soil surface (Lazenby 1955). It is 

considered likely that this plant became established when the 

water level was relatively low. Indeed, Juncus effusus was noted 
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to have achieved its present dominance in the area during the 

dry summer of 1976-(personal communication, Hr Eversham, 

employee of Fisons Ltd. ). The mature plant appears to be able 

to withstand the variety of water table conditions observed in 

the area (Fig. 5.7a; Table 5.2). 

5.8.1.3 Experimental plot (EP) 

EP, a peat cutting abandoned relatively recently, is 

primarily colonized by Eriophorum vaginatwn and E. angustifolium 

with caZZuna vuZgaris. The presence of CaUuna, particularly, 

is compatible with the relatively low water table in this 

cutting (Table 5.2); the Eriophorum spp. can withstand a 

range of water table conditions. 

5.8.2 The peat-baulks 

The water table is always below the surface in the 

peat baulks (Figs. 5.8c, 5.15 and 5.16). They are primarily 

characterized by the Pteridium-CampyZopus nodum (1) although 

some parts of the baulks are colonized by vegetation of nodum 

2 (caZluna-S. recurvwn). 

The species which characterize the Pteridiwn- 

campyZopus nodum (1), such as PohZia nutans, PoZytrichwn 

juniperinum, P. piZiferwn and CampyZopus., are normally 

associated with dry heathlands (Watson 1981). The restriction 

of this vegetation type to the peat baulks suggests that its 
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distribution may be accounted for by the fact that the water 

table is well below the surface. The Calluna-S. recurvum 

nodum (2), characteristic of the drier portions of the cuttings, 

presumably occurs in those parts of the baulks where the water 

table is nearer the surface. 

5.8.3 Canal 4 

Table 5.4 shows features of the water table measured 

in the sampling tubes located in canal 4 (Fig. 5.14) with the 

canal vegetation nodum of each sample site. 

Table 5.4 Vegetation and water table (um) of canal 4. Full 

descriptions of the canal vegetation noda are given in 3.5. 

sampling lowest highest water table canal 

tube water table water table range nodum number 

C41 - 35 150 185 Cl 

C411 -5 175 180 C4 

C49 110 250 140 C4 

C47 85 250 165 C2 

C43 85 260 175 C2 

C45 265 470 205 C2 
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The presence of some of the plant species which 

characterize nodum Cl and occur at C41 is consistent with the 

relatively dry conditions observed there. This nodum, for 

example, contains much Rhododendron ponticum, PoZytrichum commune 

and S. fimbriatum. ScrophuZaria nodosa, Carex acutiformis and 

C. nigra., plants of damp woods or fens, occur. It also 

contains, however, some Potamogeton polygonifoZius, Equisetum, 

jýTuviatiZe and Phragmýtes austraZis., plants usually associated 

with swamps and shallow water. Microtopographical variation 

within the canals may account for the coexistence of some of 

these species. 

The wetter conditions of C411 and C49 may be reflected 

in the greater dominance of plants such as Juncus buZbosus, 

Lycopus europaeus., Potamogeton poZygonifolius., DrepanocZadus 

revolvens and Sphagnwn squarroswn which characterize nodum C4. 

The coexistence of these species with CaUuna and some Rhododendron 

ponticum also suggests a degree of microtopographical variation. 

Like nodum C4, nodum C2 is characterized by plants 

associated with wet conditions which may reflect the high water 

tables measured in C47,3 and 5. These include dominant PhaZaris 

arundinacea, Typha ZatifoZia and RanuncuZus gammuZa with 

cZadiwn mariscus, GZyceria maxima and Sparganium erectum. 
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5.8.4 Conclusions 

1. The distribution of the vegetation in the cuttings 

and on the baulks of the pNNR is consistent with the behaviour 

of the water table at these sites. 

2a. The dominance of Juncus effusus in JA may be 

explained by the level and fluctuation of the water table in 

the area. 

b. The plant species currently established in EP 

are likely to be able to tolerate the range of water table 

conditions observed in EP. 

3. In canal 4 the distribution of the vegetation 

cannot entirely be explained by differences in the water table. 



CHAPTER 

THE CHEMISTRY OF THE PEAT WATERS 
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6.1 INTRODUCTION 

Some investigations into the water chemistry of 

peatlands have included cut, drained or otherwise degraded 

areas as a small proportion of the total sample sites (e. g. 

Gorham 1956a; Gorham & Pearsall 1956). There is very little 

information, however, on the water chemistry of re-vegetated 

peat cuttings (Proctor 1974; Giller 1982), particularly in 

ombrotrophic mires. 

The aim of this investigation was to assess and 

compare the water chemistry of peat cuttings at Thorne Moors with 

the water chemistry of intact ombrotrophic mires. In addition 

it was hoped to gain information on seasonal fluctuations in the 

chemical composition of the peat waters. 

The water chemistry was investigated in seven study 

sites (Fig. 6.1). Specific reasons for choosing these were: 

1. In the pNNR it was intended to assess variation 

in water chemistry across the length and breadth of the area in 

cuttings where baulks separate the cutting bays (sites 5.4/5W5 

and 6.5/6E5) and in the area of the pNNR without peat baulks 

(sites 2.2/3W1,3.2/3W5-and 4.2/3W8). 

2. In the Juncus effusus area (site 1. JA) particular 

interest was in the possible chemical input from the drain 

which forms the northern boundary of this cutting. 
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3. In the Experimental Plot (site 7. EP), a shallow 

peat cutting, the possible influence of the underlying clay 

was investigated. 

At all study sites the relationship between the water 

chemistry and the vegetation was assessed. 

6.2 MATERIALS AND METHODS 

6.2.1 Water sampling 

At each study site five sampling points were located 

in the centre of a floristically and topographically 'uniform' 

area of approximately 25 m2 selected using random numbers. 

In the pNNR, study sites were located within the central 

section of each peat cutting. Water samples were collected from 

I tubes (5-2-1) inserted into the peat at the sampling points. 

The use of tubes inserted into the peat allows 

sampling of the interstitial water of the peat matrix at the 

rooting depth of the vegetation under investigation (Summerfield 

1974; Giller 1982), when the water table is up to 50 cm below 

the peat surface. It should be noted that the ionic concentration 

of peat waters is likely to be much greater than that of open 

surface waters (Sjo'rs 1950). It is recognized that the peat 

waters may exhibit a chemical stratification (Sjors 1950) which 

will be masked by this sampling method. In order to make 

comparisons between the study sites, however, it was deemed 

necessary to obtain an overall estimate of the ionic concentrations 
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prevailing in the surface 50 cm. The stratification of the 

peat waters formed part of a separate investigation 

The sampling tubes were installed two months before 

samples were taken to allow equilibration. Water samples 

were collected from the tubes at approximately 2-monthly 

intervals between March 1980 and January 1981. On each 

sampling occasion a single water sample was taken from each tube 

in a 250 ml polyethylene bottle. The water samples were 

filtered and stored at 50C within 24 hours of collection. Chemical 

analyses were completed within ten days. 

6.2.2 Methods of chemical analysis and data processing 

Details are given in Appendix 4. 

6.3 WATER CHEMISTRY OF THE PEAT CUTTINGS 

6.3.1 Approach in presentation and discussion of results 

The concentration of ions in the samples taken over 

a period of one year exhibited much variation. It was decided, 

therefore, to present in detail the results and base the main 

discussion on the chemical analysis of samples taken on one 

occasion only: 10 July 1980. Giller (1982) found that 

concentrations of ions were generally greater during the summer 

months owing to lower water levels. Differences*between the 

study sites are likely to be more apparent at this time. Seasonal 

fluctuations in the concentrations of ions are considered in 6.4. 
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For each chemical variable the results of a one-way 

analysis of variance (Appendix 4) are summarized. The F-ratio 

and probability are given with the mean value of the variable 

for each site. The lines underneath the means indicate homogeneous 

subsets generated using Duncan's New Multiple Range Test (P < 0.05). 

The Bartlett Box-F test indicates the heterogeneity of error 

variances. Where this is significant the subsets can be regarded 

only as indicative of differences between the study sites. The 

values are based on means of five replicates. 

6.3.2 pH 

F ratio = 3.689 P<0.05 Bartlett Box -Fp<0.05 

Site 6413572 

5/6E5 2/3W8 JA 2/3W5 4/5W5 EP 2/3WI 

Mean 3.82 3.9o 3.91 3.94 4.09 4.14 4.47 



205 

The pH of 2/3Wl was relatively high, otherwise there 

is poor separation of the study sites in respect of pH. The 

generally low pH values probably reflect the acid nature of the 

peat. The presence of some Sphagnum at all the study sites 

except EP may be contributing to the high acidity of the sites. 

Clymo (1964) has shown that Sphagnum species are able to lower 

the pH of their environment by the ability of the cell walls to 

exchange cations for hydrogen ions (Clymo 1967). 

6.3.3 Major cations 

6.3.3.1 Calcium 

F ratio = 3.572 P < 0.05 Bartlett Box - F N. S. 

Site 65 1 72 3 4 

5/6E5 4/5W5 JA EP 2/3W1 2/3W5 2/3W8 

Mean 6.44 6.54 7.64 7.72 8.38 8.68 9.44 

mg/l 
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The study sites of the 2/3W transect (2,3 and 4) 

had significantly higher concentrations of Ca 2+ in the peat 

waters than the other two sites in the pNNR (5 and 6). This may 

reflect the chemical composition of water from a nearby canal 

(6.6) or drain (6.5). 

Concentrations of calcium in JA and EP were intermediate 

between the higher levels of 2,3 and 4 and the lower levels of 

5 and 6. 

6.3.3.2 Magnesium 

F ratio = 17.373 p<0.001 Bartlett Box -FN. S. 

Site 2165347 

2/3WI JA 5/6E5 4/5W5 2/3W5 2/3W8 EP 

Mean 1.18 1.96 2.68 2.74 3.66 3.98 4.64 

mg/1 
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The sites are separated into two groups. As with 

calcium, magnesium concentrations were greater in sites 3 and 

4 than sites 5 and 6 in the pNNR; site 1, however, had 

relatively low levels of magnesium. The relatively high 

concentration of magnesium in EP, a shallow peat cut, may 

reflect the proximity of the underlying clay (Chapter 4; 6.7). 

6.3.3.3 Sodium 

F ratio = 0.476 N. S. Bartlett Box - Fp<0.001 

Site 6 17 2 3 45 

5/6E5 JA EP 2/3W1 2/3W5 2/3W8 4/5W5 

Mean 7.20 8.20 8.80 9.00 9.70 10.20 11.25 

mg/l 

There are no differences between the study sites in 

relation to concentrations of sodium. The levels may partly 

indicate the proximity of Thorne Moors to the North Sea (cf. 

Gorham 1955; Boatman 1961). 
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6.3.3.4 Potassium 

F ratio = 17.395 p < 0.001 Bartlett Box -F N. S. 

Site 51 6 243 7 

4/5W5 JA 5/6E5 2/3W1 2/3W8 2/3W5 EP 

Mean 1.10 1.19 1.54 2.11 2.55 2.68 3.56 

mg/l 

Sites in the 2/3W transect (2,3 and 4) had greater 

concentrations of potassium than elsewhere in the pNNR (5 and 6). 

As with calcium and magnesium, the concentrations may reflect 

the chemical composition of water from one of the canals (6.6) 

or drains (6.5). The high concentration of potassium in EP may 

reflect the proximity of the underlying clay (6.7). Alternatively 

the high level here may represent contamination by bird droppings 

in the vicinity of the sampling tubes (cf. Allen et aZ. 1968; 

Gore 1968). 
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6.3.4 Iron 

F ratio = 5.504 p<0.001 Bartlett Box -Fp<0.001 

Site 5164723 

4/5W5 JA 5/6E5 2/3W8 EP 2/3Wl 2/3W5 

Mean 2.46 4.98 6.98 8.62 9.48 12.28 18.56 

mg/l 

There was much variation in the concentration of 

iron between replicate water samples at each study site, resulting 

in poor separation of the study sites into homogeneous subsets. 

Sites 2.2/3W1 and 3.2/3W5 had higher concentrations of iron 

than the other study sites. Site 5.4/5W5 had the lowest 

concentration of iron. The concentrations of iron at least 

partly reflect the increased solubility of iron compounds at 

lower pH; below pH 4.8 iron is soluble in the ferric as well 

as the ferrous forms (Hem 1970). 
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6.3.5 Manganese 

F ratio = 10.293 p<0.001 Bartlett Box -FP<0.05 

Site 5761432 

4/5W5 EP 5/6E5 JA 2/3W8 2/3W5 2/3W1 

Mean 0.11 0.14 0.15 0.20 0.23 0.26 0.31 

mg/1 

As with iron, sites 2.2/3141 and 3.2/3W5 had higher 

concentrations of manganesethan the other study sites. Site 

5.4/5W5 had the lowest concentration of manganese. 

6.3.6 Phosphorus 

F ratio = 1.685 N. S. Bartlett Box -FP<0.05 

Site 2453617 

2/3W1 2/3W8 4/5W5 2/3W5 5/6E5 JA EP 

Mean 0.000 0.000 0.000 0.001 0.002 0.003 0.007 

mg/l 
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No dissolved phosphorus was detected in sites 2.2/3W1, 

4.2/3W8 and 5.4/5W5. Concentrations of dissolved phosphorus 

were very low in the other study sites, although levels in EP 

were somewhat higher than in JA and 6.5/6E5. As with potassium, 

the relatively high concentration of dissolved phosphorus in EP 

may reflect contamination by bird droppings. 

6.3.7 Nitrogen 

Total inorganic N 

F ratio = 8.006 p<0.001 Bartlett Box -Fp<0.001 

Site 5214367 

4/5W5 2/3W1 JA 2/3W8 2/3W5 5/6E5 EP 

Mean 0.21 0.80 0.81 0.94 1.15 1.21 25.86 

mg/l 
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NH 4 -N 

F ratio = 17.525 p < 0.001 Bartlett Box -Fp<0.001 

Site 52 3 14 67 

4/5W5 2/3W1 2/3W5 JA 2/3W8 5/6E5 EP 

Mean 0.16 0.32 0.35 0.60 0.71 0.84 4.80 

mg/l 

(NO 2 +NO 3 
)-N 

F ratio = 5.36 p<0.001 Bartlett Box -Fp<0.001 

Site 5142637 

4/5W5 A 2/3W8 2/3W1 5/6E5 2/3W5 EP 

Mean 0.12 0.22 0.30 0.48 0.80 0.80 21.06 

mg/l 
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With the exception of EP, there were no significant 

differences in the concentration of dissolved nitrogen at the 

study sites and levels were low. As with potassium and 

phosphorus the high concentration at EP may result from 

contamination. In submerged soils with low pH values NH 4 -N 

tends to accumulate, because the mineralization of organic 

nitrogen stops at the ammonia stage owing to lack of oxygen 

to carry the process via nitrite to nitrate (Ponnamperuma 1972). 

Table 6.1 (NO 
2+ NO 3 )-N as a proportion of total nitrogen at the 

study sites in water samples collected 10 July 1980 

Site 123 

JA 2/3Wl 2/3W5 

(NO 
2+ NO 3 

)-N 

% 27 60 70 

4567 

2/3W8 4/5W5 5/6E5 EP 

32 57 66 81 

Table 6.1, however, shows that in all sites except 1. JA and 4. 

2/3W8 (NO 2+ NO 3 )-N forms a greater proportion of the total. 

The largely microbial interconversions between ammonium, nitrite 

and nitrate in soils are regulated by the redox potential, pH 

(Van Cleemput, Patrick & McIlhenny 1975) and temperature 

(Kaila, Soini & Kivinen 1954). The redox potential, closely 

related to inundation (Pearsall 1938), is likely to vary at the 

study sites (Chapter 5). This and other differences in the 

physical and chemical environment may account for the observed 
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variation in the proportion of (NO 
2+ NO 3 

)-N at the study 

sites. In addition, the relatively high concentrations of 

(NO 
2+ NO 3 

)-N at the study sites may reflect oxidation of the 

water samples before chemical analysis. 

6.3.8 Major anions 

6.3.8.1 Sulphate 

F ratio = 1.432 N. S. Bartlett Box -Fp<0.001 

Site 3265417 

2/3W5 2/3WI 5/6E5 4/5W5 2/3W8 JA EP 

Mean 0.48 2.88 11.85 18.61 18.81 24.34 29.85 

mg/l 

There is no separation of the study sites into 

homogeneous subsets partly because of high intra-site variation 

in sulphate concentration. 
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6.3.8.2 Chloride 

F ratio = 5.56 P<0.05 Bartlett Box -FP<0.05 

Site 561243 

4/5W5 5/6E5 JA 2/3W1 2/3W8 2/3W5 

Mean 15.31 15.79 17.40 25.37 26.25 26.69 

mg/1 

Sites in the 2/3W transect (2,3 and 4) had greater 

concentrations of chloride than the other study sites. The 

relative levels of chloride reflect the relative levels of 

sodium quite cldsely at the study sites. The concentrations 

may indicate the proximity of the site to the sea, as with 

sodium. No data were available for site 7. EP because the 

water samples were inadvertently lost. 



6.3.9 Electrical conductivity (K 
cord 

F ratio = 16.035 p< 0.001 Bartlett Box -F p<0.001 

Site 65 1 23 4 7 

5/6E5 4/5W5 JA 2/3WI 2/3W5 2/3W8 EP 

Mean 97 101 121 128 138 152 349 

ps 

The conductivity reflects the overall ionic concentration 

of the peat waters. The conductivity was greatest in EP. 

In the 2/3W transect (sites 2,3 and 4) the values were higher 

than those of the other sites in the pNNR (5 and 6), but these 

differences were not significant. 
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6.3.10 Differences in the water chemistry of the study sites 

6.3.10.1 Cluster analysis 

Cluster analysis, using Ward's method (Appendix 4), was 

performed on the mean values of the chemical measurements from 

the peat waters of the study sites, to examine the overall 

relationships between the water chemistry at the study sites. 

A dendrogram displaying the classification of the peat waters 

from the study sites is shown in Fig. 6.2. The degree of 

similarity of the study sites is indicated by the value of the 

error sum of squares at which they were fused together. 

6.3.10.2 Overall differences between the sites 

The sites are segregated into three main clusters 

(Table 6.2). The most isolated cluster contains only one site, 

7. EP. This site had relatively high concentrations of nitrogen, 

phosphorus and potassium which may reflect the chemical 

composition of a contaminant such as bird droppings. EP also 

contained high concentrations of iron and magnesium. A second 

cluster consists of the sites of the 2/3W transect (2,3 and 4); 

these are separated from the other two sites of the pNNR (5.4/5W5 

and 6.5/6E5) and from site 1. JA which comprise the third cluster. 

The 2/3W transect sites (2,3 and 4) contained higher concentrations 

of calcium, potassium, iron, manganese and chloride than sites 

1. JA, 6.5/6E5 and 5.4/5W5. Sites 3.2/3W5 and 4.2/3W8 also 
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Error sum of squares 

1. 

6-5/6 

5-4/5 

2.2/3% 

3.2/3 V 

4-2/3 V 

7. EP 

hi ww Ln OD 
OD (D C: ) Ln hi Li (0 -a CD hi OD 01 OD w 

Fig. 6.2 Classification of peat waters of the study sites sampled 
on 10 July 1980 using Ward's method, based on measured 
chemical attributes. 
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contained higher concentrations of magnesium than 1. JA and 

the other sites in the pNNR. The linearisation of the study 

sites in the dendrogram (Fig. 6.2) is consistent with the 

increasing conductivity values in clusters 1-3 (Table 6.2). 

6.3.11 Comparison with the chemical status of intact ombrotrophic 

mires 

Published data for chemical analyses of major cations 

in water from a variety of mires are given in Table 6.3. The 

pH values of the Thorne Moors peat cuttings were similar to, or 

a little greater than those of ombrotrophic mires in all sites, 

except 2.2/3WI where the pH was comparable to values recorded 

from poor fens. Concentrations of calcium, magnesium, sodium 

and potassium were higher than those which characterize ombrotrophic 

mires. The levels of calcium in water samples from Thorne Moors 

are more similar to those which characterize poor fens. 

Sodium and magnesium concentrations were similar to those 

recorded in the N. Cheshire 'schwingmoors' where cation 

concentrations may reflect the influence of ground water and 

run-off on to the mire surface from the sides of the surrounding 

basins and drainage ditches (Tallis 1973b). Potassium 

concentrations at Thorne Moors were intermediate in value between 

those recorded in poor fens and those recorded in the N. Cheshire 

'schwingmoors'. The total major cation concentration at Thorne 

Moors is a little greater than that recorded from poor fens. 
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There is little information available on concentrations 

of iron and manganese in water samples from ombrotrophic mires 

although Summerfield (1974) recorded concentrations of iron of 

0.8 mg/1 on 5 May 1970 from Wem Moss, Shropshire. In water 

samples from a flood plain mire in Norfolk (collected in 

October 1979), however; Giller (1982) recorded iron concentrations 

of 0.04-2.16 mg/1 and manganese concentrations of 0.04-1.10 mg/l. 

The concentrations of iron recorded from Thorne Moors (2.46-18.56 

mg/1) were therefore relatively high. The concentrations of 

manganese recorded from Thorne Moors (0.11-0.31 mg/1) were somewhat 

lower than those observed in the flood plain mire. 

The low concentrations of nitrogen and phosphorus 

recorded at all the study sites except EP are in agreement with 

those reported from other ombrotrophic mires (cf. Boatman, 

Hulme & Tomlinson 1975; Gorham 1956b). 

Of the major anions, sulphate concentrations (0.48-29.85 

mg/1) are similar to and a little higher than those recorded by 

Gorham (1956b) from Moor House, N. England, who observed levels 

between 3.8 and 19.9 mg/l. However most of the sulphate 

concentrations measured at Thorne Moors are greater than the 

6.25 mg/l of sulphate considered by SjO'rs (1950) to characterize 

ombrotrophic mires in Sweden. A concentration of sulphate of 

14.4 mg/l is regarded by Bellamy (1968) to indicate ombrotrophic 

conditions; this value is based on measurements from water samples 

collected from most regions of Western Europe and occurs at the 

mid point of the range of concentrations recorded at Thorne Moors. 
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Concentrations of chloride (15.31-26.69 mg/1) are higher than 

the values observed by Gorham (3.5-6.5 mg/l; 1956b) and the 

10.6 mg/l which Bellamy (1968) considers typical of ombrotrophic 

mires. 

The electrical conductivity measurements of the 

peat waters from Thorne Moors (97-349 jiS) are somewhat greater 

than those recorded in ombrotrophic mires where values of less 

than 80 pS are typical (cf. Gorham 1956a, b; Gorham & Pearsall 

1956). 

6.3.12 Factors influencing the water chemistry of the peat 

cuttings 

6.3.12.1 The basis of the subsequent investigations 

In considering the results of the chemical analysis 

of the peat waters (6.3.2-6.3.9), various sources of enrichment 

were suggested to explain the observed differences in the 

water chemistry of the study sites. These included water from 

the drains and the Dutch canals and the influence of the under- 

lying clay. 

In order to examine the possibility that enrichment 

from one or more of these sources was the cause of the relatively 

high concentrations of ions present in the peat cuttings, and to 

assess the degree of influence of these sources on the study 

sites, the following investigations were carried out: 
I 
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1. Chemical analysis of 47 water samples collected 

from drains in the site (6.5). 

2. Chemical analysis of 34 water samples collected 

from the Northern and Southern Dutch Canal Systems (6.6). 

3. Water samples along a transect in the pNNR were 

analysed for their chemical composition; the transect crossed 

three peat cuttings and two canals, one of which was connected 

to an adjacent cutting by a ditch (6.6). 

4. In order to examine the chemical stratification 

of the peat waters samples of water were taken from below the 

peat surface at four sites: Canal 3,4/5W4, JA and EP; these 

were subjected to chemical analysis (6.7). 

The results of these investigations are presented 

following a consideration of the seasonal fluctuation in the 

chemical composition of the peat waters (6.4) at the main 

study sites. 

Other factors may have contributed to the relatively 

high concentrations of ions recorded in the study sites; these 

are discussed below. 
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6.3.12.2 Black-headed gulls (Larus ridibundus) 

At some ýimes of the year (6.4) phosphorus concentrations 

in the peat cutting study sites were somewhat higher than those 

recorded in water samples collected on 10 July 1980. In the 

Juncus effusus area (site 1. JA) phosphorus concentrations 

were particularly high; for example 0.1 mg/l of phosphorus was 

recorded from this cutting on 14 March 1980, when concentrations 

in the pNNR study sites were no greater than 0.05 mg/l. 

The periodic use of this cutting as a nesting site 

by a large colony of Black-headed gulls probably explains the 

relatively high concentrations of phosphorus (cf. McColl & Burger 

1976). Rogers & Bellamy (1972) also recorded relatively high 

phosphorus concentrations in water from JA and from the swamp of 

Juncus effusus north of Mill Drain, also periodically occupied by 

Black-headed gulls. 

Black-headed gulls appear to be quite specific in their 

choice of nest plant. In the Sunbiggin Tarn fens, for example 

(Holdgate 1955), these birds selected particularly the summits of 

Carex elata tussocks for nesting sites. At Thorne Moors, the 

birds nest only on Juncus effusus tussocks, never, apparently, 

on other tussock formers such as Eriophorum Vaginatum (Mr B. Eversham, 

personal communication). 
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6.3.12.3 The effect of drainage 

The drainage of a bog causes the inorganic sulphides 

accumulated under anaerobic conditions to oxidise rapidly to 
2- so 4. The net effect is to exchange a weak acid (H 2 S) for a 

strong acid (H 
2 so 4) which is almost completely dissociated at 

c. pH 5 (Bloomfield & Coulter 1973). The H+ so released contributes 

to the acidification of drainage waters and also displaces cationic 

nutrients from ion exchange sites on the peat colloids (Odelien, 

Selmer-Olsen & Haddeland 1975). The overall effect is a decrease 

in the pH and an increase in the conductivity of the drainage water 

(Dr K Brown, personal communication). 

It may be, therefore, that previous drainage of the peat 

cuttings and the current exposure of the drier parts of the 

cuttings and baulks to air are partly the cause of the relatively 

low pH, high conductivity and high cation and sulphate concentrations 

measured in the peat cutting study sites. 

6.3.12.4 Clay 

It is possible that some clay intended for lining the 

Dutch canals (Chapter 4) may have been dumped indiscriminately 

in peat cuttings. This, along with clay spoil excavated and 

dumped along some of the main drains as a result of the widening 

and deepening of these drains by Fisons Ltd. (Chapter 2), may have 

had an effect on water chemistry at the study sites and in other 

peat cuttings. 
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6.3.13 The relationship between the water chemistry and the 

vegetation 

Full descriptions of the vegetation of the study sites 

are given in Chapter 3. The vegetation noda of the study sites 

generated by classifications AC and MS are shown in Table 6.4. 

Noda generated by classification MS, which classifies the 

species present in the 'main' and 'side' cuttings, are mainly used 

to discuss the vegetation of the study sites, rather than 

classification AC which analyses the vegetation present in the 

individual sections of the 'main' cuttings, because it was 

considered likely that the vegetation of the whole peat cuttings 

would be affected by the chemical conditions measured. 

6.3.13.1 Plant species in the peat cuttings 

Much of the vegetation reflects the fact that the 

chemistry of the peat waters has more in common with a weakly 

minerotrophic mire than with an ombrotrophic mire. Many of the 

commoner species are known to be able to tolerate a range of 

chemical conditions; for example, Eriophorum angustifolium 

(present in all vegetation noda) and PoLytrichum commune 

(present in noda 2,5 6 and 7) can occur in both poor and rich 

fens as well as in bogs in Britain (e. g. cf. Proctor 1974; 

Wheeler 1980b). Juncus effusus (which occurs in noda 2,3,6,7 

and 8) and Aulacomnium paZustre (which occurs in noda 2,7 and 9) 
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also occur in poor fens as well as bogs (cf. Gorham 1956a). 

Other sýecies are more exclusive to fens; Carex curta, for example, 

which is present in the Vaccinim-Andromeda nodum 3, characterizes 

the poor-fen Caricion curto-nigrae alliance (Westhoff & den Held 

1969) and Phragmites austraZis which occurs in the Sphagnwn 

recurvum-Cephalozia nodum 2) is a plant of both poor and rich 

fens (e. g. cf. Proctor 1974). 

Some cuttings (not included in the chemical studies) 

support PotentiUa paZustris (which occurs in the Sphagnwn- 

Drepanocladus nodum 9) and MoUnia caeruZea (which occurs in 

noda 1: Pteridiwn-C-vipytopus and 8: Sphagnum-Juncus-MoZinia). 

These are also fen species. Although MoZinia caerulea does grow 

in oceanic ombrotrophic mires in parts of W. Britain, the occurrence 

of both these species at Thorne is a further indication of its 

affinities with poor fen. 

The species of Sphagnum present in the cuttings at 

Thorne Moors are compatible with the observed chemical conditions. 

S. recurvwn, the most widespread species which occur's in all 

noda, is known to be a species of wide tolerance as regards mineral 

status (cf. Skene 1915; Green & Pearson 1968; Tallis 1973b; 

Clymo 1973). S. fimbriatum., which occurs in all noda except 6 

(Polytrichwn commune-juncus), and S. squarrosum which does not 

occur at the study sites but is present in noda 4,9 and 10, are 

usually associated with poor fens and fen carr habitats; these 

species can also withstand a range of chemical conditions 
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(cf. Clymo 1973; Proctor 1974). S. subnitens is not widespread 

on The Moors, being present only in the Pteridiwn-Rhododendron- 

Sphagnum recurvum nodum (4); it is known, however, to occur in 

a range of chemical conditions, from rich fens to ombrotrophic 

mires (e. g. Wheeler 1980b; Newbould & Gorham 1956). S. cuspidatum 

is usually associated with the dilute acid waters of ombrotrophic 

mires (e. g. Gorham 1956b). Concentrations of ions may be less 

in the peripheral, wetter parts of the cuttings of the pNNR, 

where this moss mostly occurs, than in the study sites (located 

in the central sections of the cuttings). S. papiUoswn., found 

in poor fens but mostly characteristic of ombrotrophic mires 

(e. g. Gorham 1956b), is present in noda 2,3,7 and 10. This 

species may withstand the relatively high ionic concentrations 

at Thorne Moors by having locally created chemical conditions 

suitable for its growth through the ability of its cell walls 

to exchange cations for hydrogen ions (Clymo 1964; 1967). 

ýII 

6.3.13.2 The differences between the vegetation of the study "I iI 

sites 

At study sites 2.2/3Wl and 4.2/3W8, which both contain 

vegetation of nodum 2 (S. recurvwn-CephaZozia), similar chemical 

conditions prevail (Table 6.4; Fig. 6.2). The relatively high 

concentrations of the major cations, particularly calcium, are 

compatible with the dominance of S. recurvwn (cf. *Clymo 1973) 

and the presence of Phragmites austraZis in this nodum. 
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Bryophytes such as CephaZozia bicuspidata, PohZia nutans and 

CampyZopus paradoxus which also characterize this nodum, can 

clearly withstand the chemical conditions which occurat the study 

sites. 

Table 6.4 shows that site 3.2/3W5, where the chemistry 

of the peat waters was similar to that of sites 2.2/3WI and 

4.2/3W8, is characterized by vegetation of nodum 7 (Sphagnum- 

Drosera). In addition to S. recurvum and Cephalozia bicuspidata 

which characterize and dominate the vegetation at sites 2 and 4 

(nodum. 2), nodum 7 is also dominated by S. fimbriatwn and 

Drosera rotundifolia. The reason for this difference in the 

vegetation of these study sites is not clear. It may be noted, 

however, that classification AC (Table 6.4) indicates that the 

vegetation of the central section of each peat cutting, where 

ýhe sampling tubes were located, at study sites 2,3 and 4, is 

all of nodum. 2 type (CaZluna-S. recurvwn). It may be, therefore, 

that in this case at least, the chemical conditions prevailing 

at the study sites have a local effect on the vegetation; the 

water chemistry in the outer sections of the peat cuttings 

at the 9tudy sites may be different from that of the central 

sections. 

The chemistry of the peat waters was similar at 

study sites 5.4/5W5 and 6.5/6E5; they contain, however, 

vegetation of different types. The vegetation in 5.4/5W5 

consists of the Vaccinium-Andromeda nodum (3), characterized by 

the dominance of V. Oxycoccus., A. poZifoZia and three species of 
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Sphagnwn: S. recurvum, S. fimbriatum and S. cuspidatwn whereas 

site 6.5/6E5 contains vegetation of the S. recurvum-CephaZozia 

nodum (2). Some other factor may therefore be determining the 

composition of the vegetation in these two cuttings. 

With respect to the vegetation and water chemistry of 

5.4/5W5 (nodum 3: Vaccinium-Andromeda); in comparison with 

those of the sites of the 2/3W transect [nodum 2 (S. recurvwn- 

CephaZozia) in sites 2 and 4; nodum 7 (Sphagnwn-Drosera) in 

site 3], it may be that the presence of Vaccinium oxycoccus, 

A. poZifolia and S. cuspidatwn in 4/5W5 reflect the relatively 

low concentrations of ions at this site. Certainly, in Britain, 

these plants are mainly associated with ombrotrophic mires 

(cf. Gorham & Pearsall 1956). 

In site 1. JA the chemistry of the peat waters collected 

on 10 July 1980 was similar to that of the sites 5.4/5W5 and 

6.5/6E5; at other times of the year, however, phosphorus 

concentrations were somewhat higher in site 1. JA (6.4). The 

occurrence of relatively high phosphorus concentrations 

(6.3.12.2) for most of the year may partly explain the dominance 

of Juncus effusus in this cutting. 

The plant species present in EP (Eriophorum vaginatum, 

E. angustifolium-, CaUuna vOgaris and BetuZa pubescens) can 

clearly withstand the chemical conditions which prevail in this 

peat cutting. However, features of the chemistry of the peat 

waters, for example, the high concentrations of 6agnesium, 

may be inhibiting the colonization of Sphagnwn species and 

other plants. 
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6.3.14 Conclusions 

1. At all the study sites the pH of the peat waters 

was comparable with, or somewhat greater than, that which 

characterizes ombrotrophic mires. 

2. Cation concentrations at all the study sites were 

greater than those recorded from ombrotrophic mires. 

3. Of the major anions, sulphate concentrations 

at some of the study sites and chloride concentrations at all 

the study sites were greater than those which characterize 

ombrotrophic mires. 

4. Concentrations of nitrogen and phosphorus were 

in agreement with those reported from ombrotrophic mires. 

5. The vegetation reflects the fact that, in general, 

the chemical characteristics of the peat waters suggest minerotrophic 

rather than ombrotrophic conditions. 

6. To a certain extent, the differences between the 

chemical conditions which prevail at the study sites are 

reflected in the vegetation of the study sites. 

7. The differences between the vegetation of the 

study sites cannot entirely be explained by differences in the 

chemical factors measured. 
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6.4 SEASONAL FLUCTUATION IN CHEMICAL COMPOSITION OF THE 

PEAT WATERS 

6.4.1 Introduction: presentation of results 

The fluctuations in the chemical composition of 

water samples collected over a period of one year (6.3.1) are 

shown in Figs. 6.3-6.10. The mean and standard error of the 

five replicate samples collected at each of the seven study sites 

are displayed on the graphs. The samples were collected on the 

following dates: 

14 March 1980 

16 May 1980 

10 July 1980 

23 September 1980 

10 November 1980 

26 January 1981 

The chemical composition of peat waters collected on 

26 January 1981 was in some cases rather different from that 

of samples collected on 10 July 1980. The results of the January 

chemical analysis are presented here where the separation of the 

study sites into homogeneous subsets (6.3.1) for any chemical 

variable was strongly different from that which resulted from 

the July analysis (6.3). A dendrogram displaying the classification 

of peat waters from the study sites collected on 26 January 1981 

is shown in Fig. 6.11. 
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6.4.2 pH 

There was little fluctuation in the pH of the peat 

water over the sampling period in all study sites except EP 

(Fig. 6.3). At this site the pH decreased throughout the summer 

to a low value in autumn. Malmer (1962) found a lowering 

of the pH after summer and considered it to be due to the 

water table rising into peat where oxidising conditions had been 

prevalent throughout the summer. This may explain the trend 

observed in EP; the water table was not in contact with 

surface peat in the early summer and rose towards the end of 

the summer (Fig. 5.13d). 

6.4.3 Major cations 

6.4.3.1 Calcium 

Concentrations of calcium (Fig. 6.4a) were generally 

somewhat lower during and towards the end of the summer than 

during the winter at the study sites. This is the opposite 

trend to that observed by Giller (1982) and by Mcpoll (1969) 

who found that higher concentrations of the major catiorscorresponded 

to lower, summer water levels. The lower summer concentrations 

may reflect a biological demand for this nutrient during the 

growing season (cf. Prentki, Gustafson & Adams 1978); subsequent 

release from senescent plant material (cf. Planter 1970) may be 

reflected in the higher winter concentrations. The cause of the 
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high concentration found in EP during May is not clear; the 

fluctuation of cations in this cutting may reflect variation 

in the availability of minerals from the underlying clay (6.7). 

Calcium 

F ratio = 6.450 

Site 5 

4/5W5 

Mean 5.36 

mg/l 

The study sites of the 2/3W transect (2,3 and 4) had 

higher concentrations of calcium in the peat waters than the other 

two sites in the pNNR (5 and 6) in the January as well as the 

July samples (6.3.3.1), although the concentration was only 

significantly higher in site 2.2/3WI. A much greater concentration 

of calcium was measured from JA in the winter, however, than in 

the summer. This may be explained by the flooding of this cutting 

by calcium-rich water from Main Canal North (6.6). 

p<0.001 

763 

EP 5/6E5 2/3W5 

7.62 7.66 7.84 

Bartlett Box -FP<0.001 

412 

2/3W8 JA 2/3WI 

8.72 9.04 12.44 
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6.4.3.2 Magnesium 

Magnesium concentrations were highest in May and 

November at almost all the study sites (Fig. 6.4b). The high 

levels recorded in May may be related to the low water level 

in the study sites at this time (Chapter 5) whereas the 

November concentrations, as with calcium, may reflect release 

from senescent plant material. In EP the fluctuation in magnesium 

concentration was very similar to that of calcium. 

6.4.3.3 Sodium 

Fig. 6.4c shows that the variation in the concentration 

of sodium was similar at all the study sites over the sampling 

period. The highest levels measured in July (6.3.3.3), cannot 

be explained by concentration owing to a low water table because 

the water level was relatively high at this time of the summer 

(Chapter 5). It may be that the concentrations of sodium on 

the different sampling occasions represent the variable input of 

sodium from precipitation (cf. Boatman, Hulme & Tomlinson 1975). 
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6.4.3.4 Potassium 

Throughout the sampling period, fluctuations in potassium 

concentrations (Fig. 6.4d) were similar to those of sodium (Fig. 

6.4c). Potassium is extremely soluble and mobile (Summerfield 

1974) and differences in concentration may therefore reflect 

variation in input,, such as by precipitation and leaching from 

plant material, and losses (plant uptake and conversion into 

insoluble forms). 

6.4.4 Iron 

Concentrations of iron were low in site 1. JA and 

site 5.4/5W5 and generally higher in site 3.2/3W5. There was 

much inter-site variation, the study-sites exhibiting little 

consistent seasonal variation (Fig. 6.5). Much variation in 

concentrations of iron has been reported by other workers; 

Summerfield (1974), for example, found on one occasion a 

maximum range of variation of 3.6-28.5 mg/1 iron over a distance 

of 10 cm. 
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6.4.5 Manganese 

Concentrations of manganese were very low over the 

whole sampling period (Fig. 6.6). There was some consistent 

variation at the study sites in that in site 1. JA and the pNNR 

study sites (with the exception of 6.5/6E5) manganese 

concentrations were relatively high in July and low in November; 

the relatively high concentrations, however, do not correspond 

to either particularly high or low water levels (Chapter 5). 

6.4.6 Phosphorus 

Fig. 6.7 shows that phosphorus concentrations at 

other times of the year were much greater than those in July 

(6.3.6) and September. The low summer concentrations probably 

reflect the biological demand for this nutrient (cf. Tamm 1954). 

The high January value (0.14 mg/1) for site 3.2/3W5 

arises from high and variable phosphorus concentrations from all 

the sampling tubes in this cutting; this suggests a contamination 

source outside but near the tubes. The anomalously high and 

variable phosphorus concentration recorded for May in site 7. EP 

suggests that the water in the sampling tubes was contaminated 

(from an unknown source) around this time (6.3.6); the concentration 

decreased rapidly over the summer, probably owing to uptake by 

plants. 
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With the exception of site 7. EP and the January 

value for site 3.2/3W5, the phosphorus concentration was 

greatest in site 1. JA for most of the year. Black-headed 

gulls are probably the source of phosphorus in this cutting 

(see 6.3.14.2). Although some plants of ombrotrophic peatlands 

are known to have efficient internal nutrient re-cycling (e. g. 

Eriophomn vaginatwn; Goodman & Perkins 1968), the capacity of 

Juncus effusus for this is not known. Some degree of 'leakiness' 

might be expected to contribute to high levels of nutrients in 

the substratum outside the growing season. 

6.4.7 Nitrogen 

With the exception of site 7. EP nitrogen concentrations 

were mostly low over the whole sampling period, (Fig. 6.8a, b, c). 

As with phosphorus, subsequent to anomalous contamination in 

May (6.4.6), the concentration of nitrogen in EP decreased 

throughout the year (Fig. 6.8a). 
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6.4.7.1 Form of nitrogen 

Table 6.5 (NO 
2 +NO 3 

)-N as a percentage of total nitrogen at the 

study sites. 

1 2 3 4 5 6 7 

JA 2/3W1 2/3W5 2/3W8 4/5W5 5/6E5 EP 

16 May 1980 45 75 61 69 78 40 47 

10 July 1980 27 60 70 32 57 66 81 

23 September 1980 42 48 30 64 55 14 29 

10 November 1980 44 66 25 49 76 81 18 

26 January 1981 50 83 61 100 0 100 37 

Table 6.5 shows that the proportion of (NO 2 +NO 3 
)-N not 

only varied at the study sites but also varied at each site on 

different sampling occasions. This, and the fact that the 

fluctuation in nitrogen concentrations showed little consistent 

variation, may be accounted for by wide variation in microbial 

interconversions between ammonium, nitrite and nitrate owing to 

differences in water table changes and redox potential at the 

study sites (see 6.3.7). 
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6.4.8 Major anions 

6.4.8.1 Sulphate 

Changes in sulphate concentration show some consistent 

variation at the study sites of the pNNR; in site 1. JA and 

7. EP the values were higher and the fluctuation greater 

(Fig. 6.9a) than in the pNNR sites. 

Sulphate 

F ratio = 7.095 p<0.001 

Site 

Mean 

mg/l 

Bartlett Box -FN. S. 

2 1 7 

4/5W5 2/3W1 JA EP 

22.75 27.07 41.09 54.43 

In water samples collected in January the sulphate 

concentration in JA and EP was significantly higher than sites 

6,3 and 4 in the pNNR. The relatively high sulphate 

concentrations in these cuttings correspond to a relatively low 

water table in JA and EP compared with that in the other study 

sites (Fig. 5.13). To a certain extent, therefore, these 

differences may reflect the production of sulphate through greater 

aeration of the peat by a lower water table (6.3.14.3). 

634 

5/6E5 2/3W5 2/3W8 

10.08 10.85 18.91 
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6.4.8.2 Chloride 

As with sodium, fluctuations in chloride may partly 

reflect variable input from precipitation (Fig. 6.9b). 

6.4.9 Electrical conductivity (K 
cord 

The conductivity (Fig. 6.10) was somewhat greater in 

the summer when the water table was, on the whole, relatively 

low than in the winter when it was higher (Fig. 5.13). For 

example, in January, the conductivity at all the sites was lower 

Conductivity 

F ratio = 23.241 p < 0.001 Bartlett Box -FN. S. 

Site 52 3 46 17 

4/5W5 2/3W1 2/3W5 2/3W8 5/6E5 JA EP 

Mean 75 101 102 103 108 112 149 

lis 

than that recorded in July (6.3.9); it was particularly low in 

site 5.4/5W5. This trend is similar to that observed by McColl 

(1969), Summerfield (1974) and Giller (1982) and suggests that, 

in spite of all the factors which may have contributed to the 

fluctuation of the chemical variables, the degree of dilution 

of the peat waters determines their overall ionic concentration. 
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6.4.10 The overall differences between the study sites in 

January 

As in July (6.3.10) the sites are segregated into three 

main clusters, the most isolated of which contains only site 

7. EP (Fig. 6.11 and Table 6.6). Although the linearisation of 

the study sites in the dendrogram is identical to that in Fig. 6.2, 

the sites of the 2/3W transect (2,3 and 4) are not contained 

in the same cluster in January. Site 2.2/3W1 is associated 

with the other two sites in the pNNR (5.4/5W5 and 6.5/6E5) and 

site 1. JA at a high value of the error sum of squares; sites 

3.2/3W5 and 4.2/3W8 comprise the third cluster. 

This difference in the separation of the study 

sites stems from the fact that, when compared with sites 

3.2/3W5 and 4.2/3W8 , concentrations of phosphorus, chloride, 

iron, manganese and (NO 2 +NO 3 
)-N were relatively lower in site 2. 

2/3W1 in January than in July. This may partly reflect dilution 

in site 2/3Wl; the water table was below the peat surface in all 

three sites (2,3 and 4) in July, whereas in January it was 

above the peat surface in site 2.2/3W1, though not in the others. 

The samples collected from 2.2/3Wl in January, therefore, 

probably contained a lower proportion of interstitial water from 

the peat matrix. 
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Fig. 6.11 Classification of peat waters of the study 
sites sampled on 26 January 1981 using Ward's 
method, based on measured chemical attributes. 
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6.4.11 Conclusions 

1. Uptake and losses by the vegetation may be 

reflected in the variation in concentrations of calcium and 

phosphorus dissolved in the peat waters. 

2. Variation in input of sodium and chloride by 

precipitation may be responsible for fluctuation of concentrations 

of these ions in the peat waters. 

3. Fluctuations in pH and concentrations of sulphate 

in the peat waters may be related to the height of the water 

table in relation to the peat surface. 

4. Variation in conductivity and magnesium concentrations 

probably relate to the degree of dilution of the peat waters. 

6.5 WATER CHEýISTRY OF THE DRAINS 

6.5.1 Methods 

To examine the chemistry of the drain waters in relation 

to the peat cutting study sites, 47 water samples were collected 

on 3 June 1980 (Fig. 6.12) and analysed for chemical composition 

(Appendix 4). Some water samples were also collected from the 

canals on this occasion to allow a comparison with the chemical 

concentrations in the drains. 
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Fig. 6.12 Location of sample sites in drains. 
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Fig. 6.13 pH of the drain waters: (*) 4 4; (0) 4-5; (0) 5-6; 
(0) >, 6. 
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6.5.2 Results 

The results are shown in Figs. 6.13-6.20. Concentrations 

of ions at the sample sites are depicted by different sized 

filled circles. The results of the chemical analysis of the 

water samples from the peat cutting study sites (6.3) collected 

on 10 July 1980 are also shown on the maps. 

6.5.2.1 pH 

The pH (Fig. 6.13) of the drain water was generally 

higher than that of the pNNR and other study sites. It was 

particularly high (>, 6) in the drain at the base of the colliery 

tip (subsequently referred to as the 'Mine Drain' because it 

runs out of the mine workings), the Southern Boundary Drain, the 

Main Canal and in the vicinity of the Swinefleet Warping Drain. 

The pH in water from the New Cut was similar to or somewhat higher than 

that observed in the peat cuttings. 

6.5.2.2 Major cations 

In most of the drains, concentrations of dissolved 

, calcium, magnesium and sodium (Figs. 6.14a, b and c) were much 

greater than in the pNNR or at JA and EP. In waters from the 

, 
New Cut, however, concentrations of calcium and magnesium were 

similar to those recorded at the peat cutting study sites. The 

proportion of calcium, magnesium and to a lesser extent sodium 

in the drain waters at each sample site was constant. 
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Fig. 6.14a Calcium concentrations in drain waters: 
(e) < 8; (0) 8-16; (0) 16-24; (0) >, 24 mg/l. 
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Fig. 6.14b Magnesium concentrations in drain waters: 
(0) < 2; (0) 2-4; (*) 4-6; (0) >, 6 mg/l. 
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Fig. 6.14c Sodium concentrations in drain waters: 
(0) 4 10; (0) 10-20; (0) 20-30; (9) >, 30 mg/l. 
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Fig. 6.14d Potassium concentrations in drain waters: 
(a) < 1.5; (9) 1.5-3.0; (0) 3.0-4.5; (0) '?, 4.5 mg/l. 
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Potassium concentrations (Fig. 6.14d) in the drain 

waters were similar to, or a little greater than, those 

observed in the peat cutting study sites, except in the Mine 

Drain, Thorne Moor Drain, the Main Canal and canal 1 where levels 

were much higher. A particularly high concentration of 

potassium was also recorded at site 41, to the east of EP. 

6.5.2.3 Iron 

Concentrations of iron in the drain waters (Fig. 6.15) 

were mostly similar to those recorded in the peat cutting study 

sites (with the exception of site 3.2/3W5 where relatively high 

levels of iron were recorded - see 6.3.4). Relatively high 

concentrations of iron we're measured, however, in waters from 

sites 22 and 23 where the Southern Drain runs into the Swinefleet 

Warping Drain. 

6.5.2.4 Manganese 

Concentrations of manganese in the drain waters (Fig. 6.16) 

were no greater than those measured in the peat cutting study 

sites except at sites in, or connected to, the Mine Drain (21, 

38,42,45) where levels were similar to the high concentrations 

recorded at 2.2/3WI. 
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6.5.2.5 Phosphorus 

Concentrations of phosphorus in the drain waters 

(Fig. 6.17) were generally similar to the low levels recorded at 

the peat cutting study sites. Higher concentrations of phosphorus, 

however, were measured in the Southern Boundary Drain and towards 

the east of the site in Angle Drain, Thousand Acre Drain, Mill 

Drain, Cottage Dike and in the vicinity of the Swinefleet 

Warping Drain. 

6.5.2.6 Nitrogen 

Nitrogen concentrations were low in most of the drain 

waters (Fig. 6.18) and similar to those recorded in the peat 

cutting study sites. Thousand Acre Drain and the Mine Drain, 

however, contained relatively high concentrations of ammonium- 

nitrogen and (nitrite + nitrate)-nitrogen; Thorne Moor Drain 

contained relatively high concentrations of (nitrite + nitrate)- 

nitrogen. 

6.5.2.7 Major anions- 

With the exception of the Southern Boundary and Southern 

drains, all the drain waters contained greater concentrations of 

sulphate than those recorded at the peat cutting study sites 

(Fig. 6.19). 

The results of the chloride concentrations in the drain 

waters are not presented because they were very similar to the 

sodium levels at the sample sites (Fig. 6.14c). 
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6.5.2.8 Electrical conductivity (K 
cord 

The conductivity of the drain waters (Fig. 6.20) was 

greatest in the Mine Drain, Thorne Moor Drain, the Southern 

Boundary Drain, Angle Drain and the Swinefleet Warping Drain. 

It was otherwise similar to or a little greater than that recorded 

in the peat cutting study sites. 

6.5.3 Factors influencing the chemical composition of the 

drain waters 

The relatively high pH and concentrations of calcium, 

magnesium, sodium and sulphate in the main drains may partly 

reflect the influence of the underlying clay which these drains 

penetrate to a greater or lesser extent. Run-off from the clay- 

covered warp land to the west of the Swinefleet Warping Drain 

(Fig. 1.2) may also contribute to the high pH and concentrations 

of calcium, magnesium and sodium at sites 19-25. In addition, 

the high concentrations of the major cations, particularly sodium, 

in the Swinefleet Warping Drain, may reflect that this drain runs 

into the tidal River Ouse at Goole, 7 km from The Moors. 

Thorne Moor Drain and the Swinefleet Warping Drain 

receive drainage water from the surrounding agricultural land; 

the influence of fertilizers may explain the relatively high 

concentrations of nitrogen and phosphorus in the Warping Drain 

and nitrogen and potassium in Thorne Moor Drain. 
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The chemical composition of the Mine Drain, which 

contained high concentrations of all ions measured except iron 

and phosphorus, was probably influenced by water from the mine 

workings and run-off from the colliery tip. The water in the 

Mine Drain presumably also had an influence on the water chemistry 

of Thorne Moor Drain into which it runs. 

In addition to the effect of the underlying clay, 

the high concentrations. of sulphate in the drain waters may be 

due to the release of this ion as a result of drainage of peat 

areas surrounding the drains (see 6.3.14.3). 

The water chemistry of the canals is considered in 6.6. 

6.5.4 The influence of the drain waters on the study sites 

The main drains flow away from, rather than on to, 

The Moors (Chapter 1). They are situated up to 2m below the 

level of the pNNR and are almost certainly never full enough 

to back up*onto the area. It was considered, therefore, that 

waters from the main drains were unlikely to have influenced 

the chemistry of the peat waters in the pNNR directly. 

The exceptions to this may be the small drain to the 

west of canal 1 (sample site 21; Fig. 6.12) and the New Cut, 

which is dammed. Waters from the Mine Drain may influence the 

water chemistry of peat cuttings surrounding the drain to the 

west of canal 1 but this is unlikely, to have had a direct 

influence on, the water chemistry of the pNNR study sites owing 

to the presence of peat baulks, c. 5m wide, which run along the 

length of both sides of canal 1. The water level in the New Cut 

is generally high and sometimes floods the surrounding peat cuttings, 
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because it is dammed at both ends. It is likely, therefore, 

that water from thisdrain has had an effect on the chemical 

composition of the peat waters in the pNNR particularly in the 

area between canals 1 and 2. The study sites in the pNNR, 

however, were probably isolated from the water of this drain 

by the peat baulks, c. 5m wide, which run along the length of 

both sides of canal 2. 

The chemistry of the peat waters in the Juncus effusus 

area (site 1. JA) is unlikely to have been influenced by water 

from the main drains, for example Mill Drain, because they flow 

away from this cutting. The influence of water from the eastern 

extension of Main Canal North which comprises the northern 

boundary of this cutting will. be considered in 6.6. 

It is unlikely that the chemistry of the peat waters 

in EP was influenced by water from drains (e. g. the Southern 

Boundary Drain) because this cutting is situated well above the 

level of the surrounding drains. 

6.5.5 Conclusions 

1. The concentration of ions and the pH in the drain. 

waters were similar to, and in many instances higher than at the 

peat cutting study sites. 

2. Although some areas of the pNNR may receive water 

from the drains, it is unlikely that the water chemistry of the 

peat cutting study sites was influenced by drain waters because 

of their isolation owing to the presence of peat baulks. 
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3. The chemistry of the peat waters at study sites 

1. JA and 7. EP was unlikely to have been influenced by drain 

waters because these sites are isolated from the main drains. 

6.6 WATER CHEMISTRY OF THE CANALS 

6.6.1 Methods 

-To examine the chemistry of the canal waters in 

relation 'to the peat cutting study sites, 34 water samples 

(Fig. 6.21) were collected on 28 May 1981 and analysed for pH, 

major cations, iron, manganese, phosphorus, nitrogen and 

conductivity (Appendix 4). Some water samples were also collected 

from drains to allow a comparison with chemical concentrations 

in. the canals. 

In'order to examine the possibility that water from 

canal 4 has influenced the chemistry of an adjacent cutting 

(3/4E6), by way of a connecting ditch, surface water samples were 

collected along a_transect in the pNNR on 13 May 1982; this transect 

crossed canal 3, cuttings 3/4W6 and 3/4E6, canal 4 and cutting 

4/5W6 (Fig. 6.28). The water samples were analysed for pH, the 

major cations, iron, manganese and conductivity. 
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6.6.2 Results 

The results of the analysis of the canal waters 

are shown in Figs. 6.22-6.27. The concentrations of ions are 

shown by different sized filled circles; these are the same 

size and represent the same ionic concentrations as those 

used to depict the chemical composition of the drain waters 

(Fig. 6.13-6.20). Phosphorus was not detected at most sample 

sites; nitrogen concentrations were so low that only total 

nitrogen concentrations are presented. The results of the chemical 

analysis of the water samples from the peat cutting study sites 

(6.3) collected on 10 July 1980 are also shown on the maps. 

The results of the chemical analysis of water samples 

from the transect, (subsequently referred to as 'the transect'), 

are shown in Fig. 6.28. 

The canals referred to by number are those of the 

Southern Dutch Canal System unless otherwise specified. 

6.6.2.1 pH 

The pH of the Dutch canals (Fig. 6.22 and. Fig. 6.28a) 

was mostly higher than that of the main study sites and the 

peat cuttings along the transect. The pH was particularly 

high (>, 6) in canal 4. 
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6.6.2.2 Major cations 

_ 
Comparison of concentrations of cations measured in the 

analysis of drain waters (Fig. 6.14) and canal waters (Fig. 6.23) 

shows how ionic concentrations varied on the two sampling occasions. 

At the same site in the Main Canal (site 6, Fig. 6.12; site 12, 

Fig. 6.21), for example, >, 24 mg/l of calcium were measured in 

water collected on 3 June 1980 (Fig. 6.14a) whereas the 

concentration of calcium measured in water collected on 28 May 

1981ýwas'only 8-16 mg/l (Fig. 6.23a). This difference may 

partly reflect the degree of uptake of ions by the vegetation 

in the canals on these two occasions. 

It is clear, however, that concentrations of calcium 

were generally greater in the canals than in the peat cutting 

study. sites (Fig. 6.14a and Fig. 6.23a) or in the peat cuttings 

of the transect (Fig. 6.28b). The highest concentrations of 

calcium were measured in canal 4. 

Magnesium, sodium and potassium concentrations in 

the canals were similar to (Fig. 6.23 and Fig. 6.28) or somewhat 

greater than (Fig. 6.14) than those measured in the peat cuttings 

at the study sites or along the transect. 
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6.6.2.3 Iron 

Iron concentrations in the canals (Fig. 6.24) were 

similar or less than those recorded in peat cutting study sites 

2.2/3Wl and 3.2/3W5; in the other study sites iron concentrations 

were similar to those in the canals. Concentrations of iron 

varied little along the transect (Fig. 6.28b) although levels 

in canal 3 were somewhat higher than elsewhere. 

6.6.2.4 M"ganese 

Concentrations of manganese varied a great deal at the 

canal sample sites (Fig. 6.25); levels in canal 4 (site 20) and 

in Main Canal North (site 1) were as high as those recorded 

at site 2. ' 2/3WI 0.3 mg/1) whilst elsewhere levels were similar 

or less than those in the other peat cutting study sites. 

Manganese concentrations along the transect (Fig. 6.28a) in 

canal 4 were lower than in the peat cuttings. 

6.6.2.5 Nitrogen 

Nitrogen concentrations in the canals (Fig. 6.26) were 

lower than those recorded at the peat cutting study sites. 
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6.6.2.6 Electrical conductivity (K 
cord 

The conductivity of the canal waters was similar to, 

or somewhat greater than, that at the peat cutting study sites 

(Fig. 6.27). Along the transect the conductivity in canals 3 

and 4 was greater than that of the peat cuttings (Fig. 6.28b). 

6.6.2.7 Water chemistry of the peat cuttings along the transect 

(Fig. 6.28) 

Concentrations of ions in 3/4E5, connected to canal 4 

by a ditch, were no greater than in the other two peat cuttings 

which were isolated from the adjacent canals. In the ditch 

linking canal 4 to 3/4E6, in the ditch adjacent and parallel to 

canal 3 and in the drains running parallel to the canals ionic 

concentrations were similar to those of the cuttings. 

6.6.3 - Factors influencing the chemical composition of the 

canal waters 

The high pH and concentrations of the major cations, 

particularly calcium, in the Main Canal may reflect run-off 

from the chalk rubble towpath which runs along the northern side 

of this canal (Chapter 2). Water from this source may also have 

influenced the water chemistry of the side canals of the Southern 

System; it is unlikely to continue to do so in canals 1,2,5 

and 6 which have, been recently dammed, and are, therefore, isolated 

from the Main Canal. 
W 
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Before 1920, when the Dutch were cutting peat, water 

was pumpedInto the Main Canal from the Durham Warping Drain 

over which it crossed by an aqueduct (Goode 1973; Chapter 2); 

this may also explain the relatively high concentrations of 

cations in the canal waters. 

The presence of clay below the vegetation in the canals 

(probably originally used by the Dutch to line the canals; 

Chapter 4) is another factor which may have contributed to the 

high recorded cation concentrations. Although clay was found 

only at some places in canal 1 and canal 3 (Chapter 4), the 

relatively high cation concentrations recorded from the whole 

Dutch Canal System suggest that it may have been dumped in all 

the canals. 

The Dutch horse-drawn barges (Chapter 2) probably 

caused mixing of the canal waters, to a certain extent, resulting 

in a more even distribution of cations. 

Water running off from the hard core of the tramway 

which runs parallel to canal 6 in both the Northern and Southern 

Dutch Canal Systems may have influenced the water chemistry 

in these canals. 
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6.6.4 The influence of the canal waters on the water chemistry 

of the peat cuttings - 

6.6.4.1 Peat cuttings in the pNNR 

At present the peat Cuttings in the pNNR and the 

canals are hydrologically isolated by peat baulks c. 5m wide 

which run along both sides of all canals. Some water may flow 

from the canals into the cuttings (e. g. 3/4E6; Fig. 6.28) by 

way of deep ditches in the baulks but the water level in the 

canal has to be very high for this to occur. There are no 

deep ditches in the baulks near the main study sites; this, 

together with the fact that concentrations of ions in 3/4E6 were 

no greater than in 3/4W6 and 4/5W6 (Fig. 6.28), suggest that the 

current influence of canal water on the water chemistry of the study 

sites is likely to be minimal. 

In the past, however,, a great quantity of water from 

the canals may have entered the cuttings of the pNNR. Before 

1920, when barges were used, the water level in the canals was 

much higher than in adjacent peat cuttings (Chapter 2). The 

shallow ditches, perpendicular to the canals, which regularly 

cross the baulks (which are parallel to fhe canals) were 

probably cut sometime after 1920 when the Dutch abandoned peat 

cutting in the area. The cutting of these ditches, the bases of 

which are now well above the water level in the peat cuttings, 

will probably have caused much water to flow into the cuttings. 
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The nutrientsIn this water may since have dispersed within each 

compartment of peat cuttings between the canals. 

An influx of canal water, therefore, sometime after 

1920 may explain the fact that the concentrations of ions 

recorded in peat waters from the cuttings were greater than 

those characteristic of ombrotrophic mires. The differences 
i 

between the water chemistry of the study sites (6.3.10) may be 

explained by variation in the quality and quantity of nutrient- 

rich water which flowed into the cuttings. The generally higher 

concentrations of ions in the sites of the 2/3W transect (2,3 and 

4) may be explained by a second influx of canal water owing to 

further breaching of the canals, when the western section of the 

pNNR was cut for the second time. 

6.6.4.2 Study sites 1. JA and 7. EP 

TheJuncus effusus area (JA) may receive water from 

the eastern extension of Main Canal North, which is incompletely 

dammed, flows eastwards into Mill Drain and comprises the 

northern boundary of this cutting. Flooding of JA by water 

from Main Canal North probably explains the relatively high 

concentrations of ions recorded in this cutting. 

The Experimental Plot (EP), isolated from the canals 

by the Southern Boundary Drain, ' has probably never been inundated 

by water from the canals. 
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6.6., 5 Conclusions 

1. Differences in the chemical composition of the 

canal waters may be related to variation in: 

a) the influence of the chalk rubble towpath along the 

Main Canal and the tramway which runs parallel to canal 6; 

b) the dispersion of water from the Durham Warping 

! Drain; 

c) the distribution of clay used to line the canals. 

2. The pH, conductivity and concentrations of the major 

cations in the canal waters were similar to, or somewhat greater 

than those recorded at the peat cutting study sites. 

3. The concentrations of iron, manganese and nitrogen 

were similar to or lower than those recorded at the peat cutting 

study sites. 

4. At present, little water is thought to flow from 

the canals into the peat cuttings of the pNNR. 

5. A former influx of canal water may explain the 

relatively high concentrations of ions measured at the peat 

cutting study sites in the pNNR. 

6. The water chemistry at site 1. JA may be accounted 

for by the flooding of this cutting by water from Main Canal 

North. 

7. The chemistry of the peat waters in EP (site 7) 

cannot be accounted for by inundation by canal waters. 
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6.6.6 The relationship between water chemistry and vegetation 

in the canals 

6.6.6.1 Vegetation of the sample sites 

Table 6.7 shows the vegetation of the sample sites; 

the water chemistry of the sample sites is shown in Figs. 6.22- 

6.27. The sample sites are listed and discussed in order of 

decreasing pH and concentrations of calcium. 

Table 6.7 Vegetation of canal sample sites (Fig. 6.21). Full 

descriptions of the canal vegetation noda are given in 

3.5. The distribution of the noda is described in 

Fig. 3.9. 

sample site sample site canal (C) 

number location nodum number 

20 N. of canal 4 1 

31 S. of canal 4 4 

30 S. of canal 3 4 

29 S. of canal 2 3 

28 S. of canal 1 3 

18 N. -of canal 2 2 

13 Main Canal, E. of New Cut 2 

22 Main Canal, between, canals 5 and 6 2 

12 Main Canal, W. of New Cut 2 

21 N. of canal 5 2 

17 N. of canal 1 6 

14 Main Canal, between canals 3 and 4 6 

19 N. of canal 3 6 

32 S. of canal 5 5 

25 N. of canal 6 5 

33 S. of canal 6 5 
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Nodum Cl: 

Many of the plant species which characterize nodum Cl 

and occur in the north of canal 4 are consistent with the '_' 

relatively high pH (>, 6) and concentrations of the major cations 

(e. g. 16-24 mg/l calcium) recorded at site 20. Plants such as 

Juncus articulatus_, Phragmites austraZis_, Carex acutiformis 

and Equisetum fZuviatiZe, for example, dominant in this nodum, 

are characteristic of base-rich mires in Britain (cf. Wheeler 

1980b). 

Nodum C4: 

At the south of canals 3 and 4, where vegetation of 

nodum C4 occurs, the pH (5->, 6), conductivity and concentrations 

of the major cations were generally somewhat lower than those 

associated with vegetation of nodum Cl (e. g. 8-24 mg/l calcium). 

The presence of Carex eZata, Lycopus europaeus, HydrocotyZe 

vuZgaris and Sphagnum subnitens which characterize nodum C4, 

may indicate these more mesotrophic conditions (cf. Wheeler 1980b). 

Schoenoplectus tabernaemontani, also characteristic 

of nodum C4, may reflect the relatively high concentrations of 

sodium (10-20 mg/D measured at the sample sites. 
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Nodum C3: 

Vegetation of nodum C3, occurring at the south of 

canals I and 2, is also characterized by plants found in base-rich 

mires, for example, Cirsiwn paZustre., Carex eZata and Salix 

repens (cf. Wheeler 1980b). A high proportion of Vacciniwn 

oxycoccus, Sphagnwn cuspidatwn and Potamogeton poZygonifoZius, 

however, may reflect the-fact that the pH (4-6) and concentrations 

of cations (e. g. 8-16 mg/l calcium) were generally lower in 

sample sites 28 and 29 than, in noda Cl and C4 type vegetation 

(cf. Proctor 1974). 

Nodum C2: 

The chemical composition of waters from canals 2 and 

5 and the Main Canal where nodum C2 vegetation occurs was similar 

to that of waters associated with vegetation of nodum C3. Nodum 

C2, however, is characterized by Card=ine pratensis, HydrocotyZe 

vuZgaris, Galiwn paZustre and PotentiZZa paZustris (plants of 

mesotrophic mires) as well as Sphagnwn recurvwn and Sphagnwn 

squarroswn. 
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Nodum C6: 

The reedswamp vegetation which characterizes and 

dominates nodum C6 and occurs in sample sites in the north of 

canals 1 and 3 and the Main Canal is associated with some of the 

lowest pH values (4-6) and cation concentrations (e. g. 8-16 mg/1 

calcium) recorded from the canals. This vegetation consists 

of dominant GZyceria maxima, PhaZaris arundinacea and Typha 

Zatifolia with Phragmites austraZis and Cladium mariscus. 

Some of these species are known to occur in a wide range of 

chemical conditions. Phragmites austraZis_, for example, grows 

in waters at Parys Mountain, Anglesey,, where pH values of 1.8 have 

been recorded and njpha ZatifoZia frequently occurs in poor fens 

e. g. in the Cheshire 'schwingmoors' (see Table 6.3). However, 

the usual restriction of G. maxima and P. arundinacea to rich 

fens (cf. Wheeler 1980a) makes the occurrence of this group of 

species in an-oligotrophic canal of particular interest. 

Nodum C5: 

In canal 6 and the south of canal 5 the presence of 

plants such as Calamagrostis canescens., Lythrum saZicaria and 

PotentiUa palustris which characterize nodum C5 is consistent 

with the pH (4-6) and cation concentrations (e. g. < 16 mg/l 

calcium) recorded at sample sites 25,32 and 33. The increased 

dominance of CaUuna., Drosera rotundifoZia and Eriophor= 

vaginatwn in nodum C5 may reflect the fact that in general the 

lowest pH values and concentrations of the major cations were 

recorded at sample sites containing this vegetation type. 



Inýall vegetation-noda of the canals plants such as 

CaUuna vuZgaris, Erica tetralix and AuZacomniwn paZustre., 

normally found in poor fens or bogs, co-exist with plants 

characteristic of base-rich mires; this suggests that small scale 

variation in chemical conditions may occur in the canals. 
-I 

6.6.6.2 Conclusions 

1. Differences in themegetation noda of the canals 

are, to a certain extent, reflected in the chemical conditions 

recorded at the. sample, sites. - 

2. The distribution of, the vegetation noda in the 

canals cannot entirely be explained, by, differences in water 

chemistry. t.. ý I- 

3. The-co-existence of plants which occur, in both 

rich fens and bogs, in all vegetation noda, may reflect small 

scale variation in chemical conditions. 
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6.7 CHEMICAL STRATIFICATION OF INTERSTITIAL PEAT WATER 

IN PEAT CUTTINGS AND A CANAL 

6.7.1 Methods 

In order to examine the chemical stratification of 

the peat waters in canal 3 and peat cuttings JA, 4/5W4 and EP, 

water samples were taken at 10 cm intervals to a depth of 150 cm 

below the, peat surface. Small samples of water (c. 50 ml) were 

taken at increasing depths with a sampling device shown in 

Appendix 4. The sampler was rinsed with surface water between 

the collection of successive samples because it was considered 

that these would be more dilute than those within the peat 

(cf. SjO'rs 1950). The water samples, collected on 26 May 1982, 

were analysed for pH, the major cations, iron and conductivity 

(Appendix 4). 

6.7.2 Results and discussion 

The chemical stratification of the peat waters is shown 

in Fig. 6.29. In canal 3 there was a peak in pH, conductivity 

and concentrations of the major cations between 20-35 cm; this 

probably reflects the chemical composition of the clay used to 

line the canals (6.6.3). Below this depth, concentrations of 

calcium and magnesium were consistently higher than those recorded 

in the other profiles; this is also reflected in the high pH 

and conductivity values. Below 100 cm the high ionic concentrations 

may reflect the proximity of the underlying clay (Chapter 4). 
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Subsequent to the invasion of Phragmites, associated with a 

peak in calcium concentration at 100 cm, the high ionic 

concentrations may represent recycling from below by the 

vegetation (cf. Chapman 1964). 

In JA concentrations of ions were generally greater 

towards the surface of the profiles. This suggests that the 

relatively high concentrations of ions recorded from surface 

peat waters (6.3) may represent comparatively recent changes 

in water chemistry. The relatively low pH and sodium concentration 

in JA at 10 cm may indicate stratification of the water above 

the peat surface in this cutting (Fig. 6.29a). 

In 4/5W4 the conductivity and concentrations of cations 

were somewhat higher towards the surface of the profiles. The 

significance of this small surface peak in cation concentrations 

is uncertain because only one set of samples was collected from 

each profile. 

In EP, the high pH, conductivity and concentrations of 

sodium and iron at the base of this cutting probably reflect 

the proximity of the underlying clay. 
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6.7.3 Conclusions 

1. Relatively high cation concentrations in canal 3 

are associated with the clay used to line the canals. 

2. The relatively high cation concentrations recorded 

at site 1. JA (6.3) may represent comparatively recent changes 

in water chemistry. 

3. In EP (site 7; 6.3) the relatively high concentrations 

of ions in the waters of the surface peats probably reflect the 

proximity of the underlying clay. 



CHAPTER 7 

THE EFFECT OF BISULPHITE POLLUTION 

ON SPHAGNUM SPECIES 
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7.1 INTRODUCTION 

7.1.1 The Sphagnum flora of Thorne Moors 

At present, the only Sphagnwn species widespread on 

Thorne Moors are S. recurvum, S. cuspidatum and S. fimbriatum; 

other species'; including S. PaPiUosum, S. subnitens and S. 

capiUifoZium., are scarce (Chapter 3). Stratigraphical studies 

(Chapter 4), however, suggest that Sphagnum species such as 

S. inzbricatwn_, S. papiUosum., S. mageZIanicwn and members of 

Sphagnum sect. AcutifoZia were once widespread in the area. 

A decline in the frequency of Sphagnum spp. has been 

observed in various areas of Britain, notably the Southern Penn3. nes 

(Tallis 1964). Reasons put forward in the literature to account 

for the disappearance of species from contemporary peatland surfaces 

include a decrease in oceanicity of climate (Godwin & Conway 1939), 

a decrease in the height of the water table (King & Morrison 1956), 

biotic activities, particularly burning and grazing (Pearsall 1956) 

and atmospheric pollution (Tallis 1964). 

In Chapter 4 it was suggested that Sphagnwn species 

currently absent from the site, S. imbricatwn and S. mageNanicum, 

recolonized cut-over surfaces abandoned around 1920. As these 

species apparently survived the partial drainage of the site, 

through peat cutting activities, it was decided to determine whether 

atmospheric pollution could account for their disappearance. 



303 

7.1.2 Sulphur pollution 

Ferguson, Lee & Bell (1978) and Ferguson & Lee (1979, 

1980) have demonstrated that the growth of a number of Sphagnum 

species is sensitive to sulphur pollutants within the range of 

concentrations found in Great Britain today. 

Sulphur pollutants include, and are derived from, 

sulphur dioxide produced as a result of the combustion of fossil 

fuels (Spedding 1974). 

The distribution of ionic species in So 2 solutions is 

markedly pH-dependent (Puckett et aZ. 1973). Although the pH of 

rain varies according to the other substances dissolved in it, 

it is generally between pHA and 6 (Clymo 1963; Spedding 1974); 

within this range So 2 solution products are primarily in the form 

of bisulphite (Puckett et aZ. 1973). In a mire, therefore, where 

low pH values prevail, So 2 solution products will meet the vegetation 

in the form of HSO 3' so 4 
2- 

and as dry SO 2 and SO 4 
(Ferguson, 

Lee & Bell 1978). 

Ferguson & Lee (1979,1980) have shown that the growth 

and rates of photosynthetic oxygen evolution and carbon fixation 

in Sphagnum species can be reduced by additions of bisulphite. By 

contrast, additions of sulphate had no effect on the rate of 

photosynthesis in Sphagnum species and caused a reduction in growth 

rate only when in concentrations of 480 mg/l. The effect of the 

deposition of dry SO and SO is not well understood but it is 
24 

likely to contribute substantially to the total concentration of 

sulphur compounds dissolving on plant surfaces (Ferguson, Lee & 

Bell 1978). 
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Thorne Moors are placed such that they will receive 

an appreciable level of sulphur pollution. The Drax power station 

is situated c. 10 km from the site. Thorne Moors are also situated 

down wind of Sheffield, Rotherham and Doncaster. 

7.1.3 Specific objectives 

To determine whether bisulphite pollution could account 

for the current low diversity of Sphagnum species it was decided 

to measure the concentration of this ion in the rainwater at 

Thorne Moors. In addition, several species of Sphagnum were 

re-introduced onto Thorne Moors from a site in the north of 

England and their growth was monitored. 

7.2 THE CONCENTRATION OF BISULPHITE IN RAINWATER AT THORNE 

MOORS 

7.2.1 Methods for the determination of the concentration of 

bisulphite in rainwater 

Eight samples of rainwater collected at Thorne Moors 

between March and December 1981 were analysed for bisulphite 

concentration. Full details of the methods used are given in 

Appendix 5. 
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7.2.2 Results 

Mean and range of concentrations of bisulphite (HSO- 
3 

in rainwater (mg/1) collected at Thorne Moors between March and 

December 1981: - 

mean range 

5.78 4.80 - 6.36 

7.2.3 Comparison with concentrations of bisulphite recorded 

from other areas. 

The concentrations of bisulphite recorded from Thorne 

Moors were somewhat lower than those recorded from other areas. 

Davies (1976), for example, recorded at least nine individual 

'rain events' in Sheffield between October 1969 and March 1970 

with mean bisulphite concentrations of more than 40 mg/l, one in 

excess of 162 mg/l and, over a slightly longer period, 32 of more 

than 17 mg/l. In Brussels, 20 mg/l of bisulphite was recorded 

by Meurrens (1974). The difference between these bisulphite 

concentrations and those recorded at Thorne Moors may reflect 

the fact that Thorne Moors are situated somewhat further from 

major sources of sulphur dioxide pollution than these cities. 

However, the concentrations of bisulphite recorded from Thorne 

Moors were of a similar magnitude to those measured from samples 

of Manchester rain although they fluctuated less: during 1975-1976 

a range of bisulphite concentrations-were -recorded from 0-12 mg/l, 

with a mean of c. 2 mg/l (Ferguson & Lee 1980). 

11 
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7.3 THE INTRODUCTION OF SPECIES OF SPHAGNUM ONTO THORNE 

MOORS 

7.3.1 Materials and methods 

Various Sphagnum species were collected from Butterburn 

Flowe, Northumberland on 30 March 1981. Large polythene sacks 

were used to transport the specimens. The Sphagna were 'replanted' 

on Thorne Moors within 48 hours of collection, having been stored 

meanwhile under refrigeration at 40C (cf. Clymo 1963). 

Pre-cut lengths of Sphagnum were packed into cylinders 

of 'netlon' (mesh size 12 mm) 22.5 cm in length, 12 cm in diameter 

and open at each end so as to offer the minimum resistance to 

lateral or vertical water movements. For each species, an 

attempt was made to make the number of shoots in each cylinder 

correspond to the natural density of the plants. A constant length 

of netlon was left protruding above the level of the Sphagnum 

in each cylinder. Dead Sphagnwn stems were inserted into the 

base of the cylinders both to support the plants and create a wick 

between the material in and below the cylinders. 

The cylinders were incorporated into Sphagnwn hummocks 

and lawns (mostly of Sphagnum finbriatum and S. recurvum) in one 

peat cutting (4/5W4). An attempt was made to position each species 

at a height in relation to the water table corresponding to that at 

which the species in the cylinder is normally found. To test 

the effect of transplanting, controls consisting of cylinders 

containing pre-cut lengths of Sphagnwn fimbriatum from Thorne Moors 

were also incorporated into the peat cutting. 



307 

In the case of Sphagnwn cuspidatum, plants were placed 

in areas of open water enclosed by netlon cylinders c. 30 cm 

in diameter. Control plants from Thorne Moors consisting of 

S. cuspidatum and S. reaurvum (which had a more aquatic habit than 

the material from Butterburn Flowe) were placed in similar cylinders. 

The growth of the Sphagnwn plants was assessed by 

measuring the mean increase in length of the plants in each 

cylinder (cf. Chapman 1965; Clymo 1970; Ferguson & Lee 1980). 

This value was obtained by calculating the mean decrease in the 

amount of netlon protruding at the top of each cylinder. 

Measurements were taken 8,14 and 23 months after the Sphagnum 

was transplanted. In the cylinders containing S. cu-9pidatum 

and the S. recurvum from Thorne Moors, the survival or otherwise 

of the plants only was recorded. 

Notes were taken on the general condition of all 

transplanted material throughout the investigation. 
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7.3.2 Results 

Table 7.2 Mean increase in length per month as a percentage 

of the previously measured increase in length (see Table 7.1). 

* Damaged by fire. 

Sphagnum species between 8 and between 14 and 
14 months 23 months 

S. capizzifozium 7.2 7.8 

S. fimbriatum 4.2 
(from Thorne) 

S. mageZZanicum 1.0 1.0 

S. pqpMosum 1.0 2.9 

S. subnitens 4.3 0.3 

S. recurvum 0 0 

Table 7.1 shows that all the transplanted material 

survived except the Sphagnum cuspidatum from Butterburn Flowe 

which was not re-found and presumed to have died. Most species 

increased in length over the period of investigation, the highest 

growth rates occurring during the first 8 months after transplanting. 

Thereafter, all species exhibited a reduced rate of increase in 

length (Table 7.2). Between 8 and 23 months the mean increase in 

length per month of S. capiUifoZium was maintained at a relatively 

high rate when compared with the other species. S. mageUanicum 

also maintained its growth rate between 8 and 23 months, although 

at a relatively low rate (Table 7.2). There were some indications 

that S. capiUifoZium and some of the S. mageZZanicum may 
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eventually be-shaded out by faster growing S. fimbriatum 

surrounding the cylinders. Some cylinders containing these species 

were also being invaded by PoZytrichum comune. 

The mean increase in length per month of S. papiNosum 

was higher, between 14 and 23 months than between 8 and 14 months. 

This species-and S. subnitens which, by contrast, exhibited a 

marked reduction in growth rate after 14 months, were colonizing 

areas outside the cylinders. 

S. recurvum increased by 7.0 cm over the first 8 months 

but showed no further increase in length. The mean length of 

the S. fimbriatum controls from Thorne appear to have decreased 

between 14 and 23 months after transplanting (Table 7.1). This 

is because one of the cylinders was badly burnt by the fire 

on 2 June 1982. The burnt material in the cylinder, however, 

has since been recoloni. zed by S. fimbriatum. 
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7.4 BISULPHITE POLLUTION AND THE GROWTH OF SPHAGNUM 

SPECIES 

Ferguson, Lee & Bell (1978) and Ferguson & Lee (1980) 

have demonstrated that concentrations of bisulphite between c. 4 

and 8 mg/1 reduce the growth (measured as mean increase in length) 

of Sphagnum teneUum, S. imbricatum., S. papiUosum, S. capiUaceum 

(which was taken to include S. capilZifoZium), S. cuspidatum 

and S. magetZanicum. By contrast, S. recurvum was found to be 

more resistant to bisulphite; this moss withstood bisulphite 

concentrations of up to c. 40 mg/l before a significant reduction 

in growth occurred. It is possible, therefore, that the concentrations 

of bisulphite in the rain at Thorne Moors (4.80-6.36 mg/1) may 

explain the disappearance of S. imbricatwn (a species found by 

Ferguson & Lee (1980) to be particularly sensitive to bisulphite 

pollution) and S. mageUanicum from the site and the current 

scarcity of S. capi-ZlifoZium, -S. papiUoswn and S. subnitens. 

The observations of Ferguson & Lee (1980) are also consistent with 

the current dominance of S. recurvum at Thorne Moors. They do not, 

however, explain the current status of S. cuspidatum, another 

species widespread on The Moors. It may be that this species 

survives by growing in aquatic conditions. Bisulphite in solution 

oxidizes-fairly rapidly to sulphate, having a half-life of about 

5.5 hours (Ferguson, Lee & Bell 1978), so that S. cuspidatwn 

may be exposed to lower concentrations of HSO 3 than the more 

terrestrial Sphagnum species. 



312 

Although the Sphagnum plants introduced onto Thorne 

Moors on 1 April 1981 were still alive (with the exception of 

the S. cuspidatum from Butterburn Flowe) 23 months later, all 

species exhibited a marked reduction in growth after 8 months. 

The fact that the growth rates of S. fimbriatum and S. recurvwn 

(currently widespread on The Moors) were amongst the lowest 

recorded, suggests that the results may be accounted for by an 

effect of transplanting the ma'týrial. ' There is no evi - dence, 

therefore, as to'whether the concentrations of bisulphite 

recorded in the rain had , any affect on the growth of the introduced 

Sphagnwn plants. Ho, ýiever, it is possible that the shading out 

of S. mageUanicum and S. capiZZifoLiwn (species particularly 

sensitive to b1sulphite pollution; Ferguson & Lee 1980) by 

S. fimbriatum and the invasion of S. capiZZifoZiwn by PoZytrichwn 

convnune may reflect the effect of bisulphite pollution. 

These findings are in contrast to those of Ferguson & Lee 

(unpublished) who observed the growth of Sphagnwn species introduced 

onto Holme Moss, near Manchester from the Berwyn Mountains, 

N. Wales. After 6 months they found that the rate of growth of 

S. imbricatum, S. capiUifoliwn and S. mageZZanicum had decreased 

substantially (compared to control material in the Berwyn Mountains); 

after 18 months no further growth had occurred. However, the 

rate of growth of S. recurvum was comparable to that observed in 

control material of this species in the Berwyn Mountains. 

It is not known why the S. cuspidatum froi; Butterburn 

Flowe died. It may be that this was an ecad of the species which 

was unable to tolerate the chemical composition of the peat waters at 

Thorne (cf. Green 1968; Chapter 6). 
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Concentrations of bisulphite in the rain at Thorne Moors 

were probably much higher-during and at times since the 

Industrial Revolution than those recorded in the present 

investigation (cf. Tallis 1964; Spedding 1974). This may 

explain the current low diversity of Sphagnum species on the 

site and may partly account for the survival, to date, of the 

Sphagnum plants introduced to the site. 

Stages in the sexual reproduction of Sphagnum may be 

particularly susceptible to sulphur pollution. In the Sheffield 

area, fruiting Sphagnum could not be found until 6 years ago; 

fruiting may have resumed as a result of decreased pollution 

resultant on the Clean Air. Acts (Dr DJ Read, personal communication). 

Additional studies need to be carried out, however, before 

further comment can be made on these suggestions. 
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7.5 CONCLUSIONS 

1. The concentration of bisulphite in the rainwater 

may explain the disappearance of Sphagnum imbricatum and 

S. mageZIanicwn from Thorne Moors, the current low diversity of 

Sphagnw7i species and the dominance of S. recurvum at the site. 

2. There is no evidence that the growth of Sphagnum 

species introduced onto Thorne Moors was substantially affected 

by the concentrations of bisulphite recorded in the rain. 

3. Higher concentrations of bisulphite in the rain 

during, and at times since the Industrial Revolution, and the 

possibility that stages in the sexual reproduction of Sphagnum 

species are particularly susceptible to sulphur pollution may 

explain the survival Of the transplanted material and the current 

low number of species of this genus. 



CHAPTER 8 

THE MAIN FLORISTIC FEATURES OF THE 

RE-VEGETATED PEAT CUTTINGS 
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Factors affecting the main floristic features of the 

re-vegetated peat cuttings are assessed here, with some emphasis 

on the dominant species (Sphagnum recurvum, Eriophorm vaginatwn, 

Juncus effusus and BetuZa pubescens); the age of the peat cuttings 

is also discussed. In addition, attention is paid to the 

recolonization and present distribution of the vegetation in the 

canals. 

8.1 THE AGE OF PEAT CUTTINGS 

In addition to the effects of hydrological and chemical 

factors, the composition of the present vegetation of the peat 

cuttings at Thorne, and hence the distribution of vegetation noda 

in the pNNR, may be determined by the time which has elapsed 

since the peat cuttings were abandoned. 

The Southern Dutch Canal System was probably worked 

from west to east between 1870-c. 1920; subsequent to abandonment, 

the peat baulks were removed from the western section of the pNNR 

(2.7; Fig. 8.1). The oldest part of the cutting complex, therefore, 

probably occupies the centre of the pNNR. This is also where the 

most species-rich cuttings are now found. For example, AC nodum 10 

(Vaccinium-Andromeda) is confined to the centre of the pNNR (Fig. 

3.8). It is characterized by dominant Andromeda poZifoZia and 

Vaccinium oxyCoccus and also contains Eriophorum spp., and four 

species of Sphagnum: S. recurvum, S. cuspidatum, $. fimbriatum 

and S. papMosum (3.4). In some other noda Andromeda poZifoZia, 

Vaccinium oxycoccus and Sphagnum papiUosum are extremely infrequent; 
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317 

for example, in AC noda 4 (Eriophorum angustifoZium-Sphagnwn) 

and 7 (Sphagnum finbriatum-S. cuspidatum) which occur only east 

of canal 5 and west of the drain between canals 2 and 3 (Fig. 3.8). 

The presence of these species in the centre of the pNNR may well 

reflect the greater age of the cuttings. 

The fact that the peat baulks were cut from the western 

portion of the pNNR some years after the area was worked initially 

means that the age of re-vegetated areas in this section varies. 

As it is not easy to determine with certainty the exact areas which 

comprise the original cuttings, it is difficult to comment on the 

relationship between the vegetation noda and the time of abandonment 

of this area. In any case it is likely that the re-cutting involved 

some disturbance to the established vegetation. Nevertheless areas 

occupied by vegetation of AC nodum 3 (Eriophorum vaginatum-Sphagnum 

recurvum-Vaccinium) and AC nodum 5 (Andromeda-S. recurvwn) probably 

comprise the original cuttings (Fig. 3.8). 

The low diversity of the vegetation currently established 

in the Experimental Plot (EP; 3.3), abandoned 11 years ago, again 

mainly reflects the age of this cutting. This suggests that the 

recolonization of 'modern' peat cuttings, which comprise large 

areas of Thorne Moors (Fig. 1.2), is an extremely slow process. 

Additional support for this idea comes from observations on small, 

rectangular (3 mx2 m) peat cuttings dug in EP to a variety of 

depths between 5 and 25 cm from the peat surface during the summer 

of 1981. Eighteen months later, no plants had recolonized these 

areas. The underlying clay may conceivably exert an adverse influence 

on recolonization in this shallow cutting (Chapters 4 and 6). However, 
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similar peat cuttings dug on undisturbed parts of Glasson Moss, 

Cumbria (Chapter 9) which were surrounded by vegetation 

characteristic of undisturbed raised bogs were similarly devoid 

of vegetation eighteen months after excavation. 

8.2 THE ABUNDANCE OF SPHAGNUM RECURVUM 

Sphagnum recurvum is the most abundant species of the 

genus at Thorne Moors, occurring in all vegetation noda except 

AC nodum I (Pteridium-CampyZopus; 3.4). This moss has been noted 

to be a colonizer of wet peat cuttings in many mires e. g. Llyn Mire, 

Wales (Moore & Beckett 1971), the Duddon Mosses, Cumbria (Lindsay 

1978) and the Cheshire 'schwingmoors' (Green & Pearson 1968; Tallis 

1973b); see also Chapter 9. 

As indicated previously (6.3.13), S. recu2, vwn is a species 

of wide tolerance as regards its mineral status. At Thorne Moors 

its occurrence has been shown to be consistent with the chemical 

composition of the peat water; this was found to have greater 

chemical affinities with a weakly minerotrophic mire than with an 

ombrotrophic mire, in consequence of various sources of enrichment 

(Chapter 6). It seems likely that the dominance of S. recurvum 

in peat cuttings on other cut-over sites is also associated with 

their water chemistry; the drainage of peatland areas associated 

with peat cutting activities is likely to increase the electrical 

conductivity of the peat water (6.3.12) even in mires otherwise 

completely isolated from sources of enrichment. 
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Sphagnwn recurvum also exhibits a wide tolerance 

as regards the height of the water table (5.8). However, it has 

poor desiccation tolerance compared with other species of SphagnWn 

(Green 1968). An inability to withstand low summer water tables 

in competition with more resistant members of Sphagnum sect. 

AcutifoZia and S. sect. Sphagnum may account for its absence 

from undisturbed raised mires (Green & Pearson 1968). An increase 

in the height of the water table relative to the peat surface 

produced by the removal of peat may therefore be a further 

factor which accounts for the abundance of this species in flooded 

peat cuttings. 

Other factors which also help explain the dominance of 

S. recurvum at Thorne Moors include its relatively rapid growth 

rate (Green 1968) and its tolerance to sulphur pollutants (Chapter 7). 

8.3 THE DOMINANCE OF ERIOPHORUM VAGINATUM 

Eriophor= vaginatum is present in all vegetation noda 

of the Dutch Canal System and dominant in AC noda 3 (Eriophorwn 

vaginatum-Sphagnum recurvum-Vaccinium), 7 (Sphagnum fimbriatum- 

S. cuspidatum), 8 (Erica-Eriophorum Vaginatwn-Sphagnwn finbriatum) 

and 9 (S. fimbriatum-S. recurvum); 3.4. It is also abundant in 

other re-vegetated peat cuttings on Thorne Moors (Chapter 3; 

Fig. 1.2). 

There is little information available on the precise 

conditions necessary for the establishment of Eriophorum Vaginatum 

in the field. However, Wein (1973) notes that although this species 
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can grow over a wide range of moisture conditions, the mature 

plant is a dominant component of peat communities that have 

a surface water table in the spring but which become drier 

in the summer (Tansley 1939). Gimingham (1964) also mentions 

that the water table in E. Vaginatum-dominated communities can be 

high enough to flood the hollows between E. vaginatum tussocks 

in winter but that the upper horizons may dry out considerably 

in summer. It is likely, therefore, that E. vaginatwn became 

established when the water table was somewhat lower than at present 

(Chapter 5). 

Support for this observation comes from the suggestion of 

Tallis (1964) that E. vaginatum increases greatly during periods 

of dryness and in situations where the drainage has been improved; 

also Kuusipalo & Vuorinen (1981) observed that E. vaginatum became 

widespread owing to the influence of incomplete drainage on a 

drained peatland in Finland. Green & Pearson (1968) further 

consider that cotton grass Istillstand' communities are characteristic 

of drained peat. 

An overall increase-in the height of the water table 

since the abandonment of peat cutting and the establishment of 

Eriophorwn vaginatum in the pNNR may have been brought about by the 

effects of mining subsidence (2.9 and 5.5) and the recent hydrological 

'sealing off' of the area (2.7 and Chapter 5). The partial drainage 

of the pNNR effected by Fisons Ltd. in the early 1970's(2.7) and 

the drought of 1976 are likely to have caused temp6rary reductions 

in the water table; this may have allowed further establishment of 

Eriophorwn vaginatwn. 

// 
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Tallis (1964) observed that the growth habit of 

Eriophorum vaginatum appears to provide a very unfavourable habitat 

for the healthy growth of Sphagnwn. Indeed, during the current 

investigation, it was noticed that S. cusPidatum and S. recurvum 

were often found on paths trampled in some stands of Eriophorum 

Vaginatum. In view of this, it was decided to trample down the 

whole of the central section of an E. vaginatum -dominated cutting. 

This was effected by marching (twice) along the long axis of the 

peat cutting. To date, the E. Vaginatum appears to be dying, 

probably because the integrity of the tussocks has been destroyed; 

S. cuspidatwn and S. recurvwn are colonizing open water areas 

between the tussocks. In this connection it is of interest that 

the loose, fan-like, senescent tussocks of E. vaginatwn often have 

Sphagnwn spp. and Vacciniwn oxycoccus associated with them 

(Mr RA Lindsay, personal communication). 

If the water table in the pNNR is maintained at its 

present level, E. vaginatwn is unlikely to re-establish from seed 

and may eventually lose its current dominance. However, this plant 

is known to be extremely long lived, tussocks remaining active for 

over 100 years (Wein 1973). In addition E. vaginatwn is relatively 

tolerant to burning, exhibiting renewed growth in response to 

released nutrients (NERC Unit of Comparative Plant Ecology, Survey 

III data). 
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8.4 THE DOMINANCE OF JUNCUS EFFUSUS 

it was shown in 4.5 that Juncus effusus colonized the 

'Juncus effusus area' (JA on Fig. 1.2) relatively recently and 

it was suggested in 5.8 that the water table was relatively low 

at the time of establishment. The dry summer of 1976 may have 

allowed Juncus effusus to achieve its present dominance (5.8); 

it is likely that the drain which forms the northern boundary 

of this cutting (the eastern extension of Main Canal North; Fig. 2.2) 

caused the water table to fall somewhat below the peat surface. 

Why Juncus effusus should have become dominant in JA 

(and another cut north of Mill Drain; 3.3) whilst Eriophorum vaginatum 

came to dominate much of the pNNR is not clear. Both plants may 

germinate and become established when the water table is at, or 

very close to the surface (Lazenby 1955; 8.3; cf. Rogers & Bellamy 

1972), conditions which are thought to have occurred in both areas. 

The answer may lie in the fact that water probably flows through 

the Juncus effusus area from surrounding peat cuttings into the 

eastern extension of Main Canal North (5.5). The increased oxygen 

and nutrient supply associated with flowing water may have provided 

conditions more suited to the establishment of J. effusus than 

Eriophorwn vaginatwn (cf. Richards & Clapham, 1941; Ingram 1967). 

The latter plant tends to occur in areas of stagnant rather than 

moving water (Core & Urquhart 1966). Another possibility is that 

nutrients supplied by Black-headed gulls may have favoured the 

establishment of J. effusus (6.4). This is unlikely, however, because 
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the use of this area as a nesting site by these birds was probably 

the result, rather than the cause of, the establishment of 

J. effusus (6.3). 

As in the pNNR, an overall increase in the height of 

the water table may have occurred through mining subsidence (2.9 

and 5.5). The dominance of the mature Juncus effusus plants may 

be maintained by oxygen and nutrients provided by water flowing 

through the area and, when the water table is high, by the flooding 

of this cutting with nutrient-rich water from the eastern extension 

of Main Canal North (6.4 and 6.6). The nutrients provided by 

Black-headed gulls probably also help to sustain these plants (6.4). 

8.5 THE ABUNDANCE OF BETULA PUBESCENS 

Betula pubescens is abundant in re-vegetated peat cuttings 

on Thorne Moors; it is present in all vegetation noda of the Dutch 

Canal System (Chapter 3). However, in the late 1960's it was 

not widespread in the pNNR (Dr DA Goode, personal communication). 

For germination and establishment, B. pubescens requires 

a relatively low summer water table (Dr JG Hodgson, personal 

communication). It is likely, therefore, that the partial drainage 

of the pNNR by Fisons Ltd., during the early 1970's (2.7), caused 

the spread of this plant. Today B. pubescens can apparently withstand 

the wide range of water table conditions observed in the pNNR 

(5.8). However, in the deepest water areas there are signs that it is 

becoming moribund and dying. 
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8.6 THE RECOLONIZATION OF THE DUTCH CANALS 

8.6.1 The flora of the Dutch Canals 

The Dutch Canals have been recolonized by a diverse flora 

including species characteristic of both ombrotrophic and mesotrophic 

mires and maritime habitats (3.5). It was shown in 6.6.6 that the 

distribution of six vegetation noda in the Southern Dutch Canal 

System (Fig. 3.9) reflected, to a certain extent, the chemistry 

of the peat waters; the pH, conductivity and concentrations of 

the major cations were found to be similar to, or greater than those 

recorded at sites in peat cuttings in the pNNR owing to various 

sources of enrichment (6.6.3). The distribution of vegetation 

in canal 4 also reflected the height of the water table (5.8). 

8.6.2 The introduction of the plants which recolonized 

the Dutch Canals 

The Dutch Canals were probably recolonized by ombrotrophic 

species from the surrounding mire and by species introduced naturally 

(wind and animal dispersed seeds) and 'artificially', as a result 

of the peat cutting industry. The water pumped from the Durham 

Warping Drain into the Main Canal (2.7 and 6.6), for example, 

is likely to have contained seeds and fragments of wetland species, 

including maritime species (2.5 and 3.5), not orýginally present 

on the mire. Many wetland species (e. g. Cladiwn mariscus) have large 
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seeds which float (Moore 1982); the movements of the Dutch 

peat barges (2.7) may have helped to transport seeds and plant 

fragments along the Main Canal and into the side canals. Seeds 

may also have been introduced into the canals in the warp clay 

(2.5) used to line the canals (2.7, Chapter 4, and 6.6) and by 

the horses which pulled the barges (2.7). 

8.6.3 The distribution of vegetation in the Southern Dutch 

Canal System 

The distribution of vegetation in the Southern Dutch 

Canal System (Fig. 3.9) may be explained by a variety of factors. 

The species introduced into different parts of the Dutch Canal 

System by the mechanisms mentioned above are likely to have 

varied; for example, there is likely to have been variation in the 

amount of water from the Durham Warping Drain reaching the side 

canals, and the barges are likely to have travelled along different 

canals at different times (2.7). 

The pH, conductivity and concentrations of the major 

cations in the canal waters were probably greater when peat was 

being cut and transported along the canals than at present (6.6); 

when, for example, clay was dumped into the canals, water was still 

being pumped from the Durham, Warping Drain into the Main Canal 

and before nutrients were taken up by the recolonizing vegetation. 

Variation in the influence of the sources of enrichment (6.6) may 

have affected the course of recolonization. 
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The water table in the Dutch Canals may also have 

affected their recolonization. The reduction in water table 

effected by the cutting of ditches perpendicular to the canals, 

after they were abandoned (2.7), probably varied in different 

areas though the possible significance of this is not known. 

The fact that the canals were, in all probability, 

abandoned in different years, may also have caused environmental 

conditions to vary at the time of establishment of the recolonizing 

vegetation. 

8.6.4 Recolonization of the canals in relation to stratigraphy 

and geology 

Rogers & Bellamy (1972) consider that the flora which 

recolonized the canals did so as a result of nutrient enrichment 

from underlying fen peat and alluvial clay. By contrast, the 

stratigraphy of other sites on Thorne Moors was found to consist 

of Sphagnwn peat developed over birch/sedge peat which lay directly 

over Triassic sand. It was shown in 6.7 that the pH, conductivity 

and concentrations of the major cations in a profile from one canal 

were somewhat higher than those from other profiles, probably 

reflecting the proximity of the underlying clay. However, in 

Chapter 4 it was also shown that the basal stratigraphy of sites 

in the canals was broadly similar to that of other sites on Thorne 

Moors and that all deposits were underlain by simil-ar mineral material 

(clay). Rogers & Bellamy (1972) make no mention of the sources of 

enrichment described in 6.6. 
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8.6.5 Changes in the flora of the Dutch Canals 

The flora of those canals which have not been filled 

in or completely cut away (2.7) is likely to have undergone some 

changes since it became established. For example, the collapse 

of culverts (by which drains ran under the canals), the drainage 

activities of Fisons Ltd. in 1972 and recent damming of the canals 

by the NCC warden are all likely to have altered physical conditions 

in the canals. In addition, as suggested in Chapter 7, the Sphagnum 

flora of the canals may have been modified by the effects of sulphur 

pollution. 

8.6.6 The rate of recolonization of the canals 

Since their abandonment in 1920 the canals have become 

filled with vegetation. There are some indications that the 

recolonization of the canals may have proceeded more rapidly than 

in the adjacent peat cuttings. For example, the 53 cm of peat 

which has developed over the clay in canal 1 (Fig. 4.8a) may be 

contrasted with the 25 cm of peat thought to have recolonized the 

cutting surface in peat cutting 4/5W4 (core C, Fig. 4.3; 4.5). 

In addition, there are few areas, of open water in the canals today 

whereas in the peat cuttings large areas of open water are present. 

The reason for this difference is probably partly the 

lartificial'introduction of some of the species which recolonized 

the canals and partly the higher nutrient status of the canals. 

It may also relate to the size of the canals. White (1930) observed 
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that the area of a peat cutting in an ombrotrophic mire influences 

the rate at which recolonization takes place; a small peat cutting 

was noted to recolonize more rapidly than an area the same size 

which was part of a larger peat cutting. He considered that this 

was probably because any one part of the smaller peat cutting 

was nearer the source of potentially recolonizing vegetation 

than much of the area of the larger peat cutting. This may, 

therefore, have influenced the recolonization of the canals. In 

addition, the fact that in the canals the ratio of the distance 

of the edges to the surface area is relatively high may have led to 

the creation of a relatively large area in which conditions varied 

enough to allow the gemination and establishment of a wide variety 

of species. 



CHAPTER 9 

OBSERVATIONS ON OTHER CUT-OVER PEATLANDS 
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Reports of site visits to some other cut-over 

peatlands are included in Appendices 6-9. These comprise site 

descriptions, assedsments of the potential for reclamation (with 

any constraints) and management prescriptions. Copies of these 

reports have been sent to the appropriate Nature Conservancy 

Council regions. The main factors relevant to a consideration of 

the management of peatlands are itemized below, for each site. 

9.1 DANES MOSS (SEE APPENDIX 6) 

1. The dry parts of this cut-over peatland (the area 

outside the Cheshire Conservation Trust Reserve) were dominated 

by BetuZa pubescens and MoZinia caeruZea. The dominance of the 

latter may be partly because of the westerly (and, therefore, 

oceanic) location of Danes Moss; nowhere on Thorne Moors is 

MoUnia caeruZea as abundant. 

2. The raising of the water table (to 100-300 um above 

the peat surface) in a relatively dry peatiand area initially 

resulted in 'blooms' of algae and fungi (which presumably exploited 

nutrients released by dying MoZinia caeruZea). However, four years 

later Sphagnum cuspidatum was dominant in the flooded area forming 

substantial inundated lawns in, places. Eriophorum vaginatwn was 

apparently surviving inundation through the formation of huge 

tussocks which raised the plant above the level of the water table. 

Betula pubescens was dying as a result of the flooding. 

Variation in the height of the water table in the 

flooded parts (produced by the partial covering of old peat stacks) 
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increased the diversity of the area by allowing colonization by 

CaUuna vuZgaris_, Erica tetraZix., MoZinia caeruZea and a number 

of bryophytes. 

3. Parts of Danes Moss were enriched by: 

a. Run-off from agricultural land. Ditches containing 

nutrient-rich water were diverted away from the flooded area of the 

reserve. Advantage was taken of the fact that cation concentrations 

in water in a ditch which drained agricultural land were higher 

than those elsewhere on the moss: some poor fen species were 

successfully introduced into a pool excavated adjacent to the 

ditch. 

b. Run-off from railway ballast. Typha ZatifoZia was 

present in the ditch receiving this water. The flooded area of 

the reserve was probably not affected by enrichment from this 

source. 

c. Run-off from a rubbish dump. Drains were polluted 

at least 200 m from the edge of the tip; this had encouraged 

colonization by opportunist species. In addition, a colony of 

Black-headed gulls associated with the tip were probably a further 

source of enrichment at the site. 
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9.2 CUMBRIAN PEATLANDS (SEE APPENDIX 7) 

9.2.1 Glasson Moss 

1. The small, rectangular peat cuttings were probably 

recolonized by spores and seeds from the nearby intact raised bog. 

2. The small size of the peat cuttings may have aided 

their recolonization. The edge length: surface area ratio is high 

in such sites, thus providing a high proportion of sites suitable 

for plant establishment (as in the canals at Thorne Moors; see 

8.6). 

3. Differences in the height of the water table in the 

cuttings may account for the variation in the species of Sphagnum 

dominant in each cutting. 

4. The species of Sphagnum dominant in each cutting may 

also reflect the age of the cutting. For example, S. mageZZanicum 

may have colonized a cutting originally dominated by S. cuspidatwn; 

S. cuspidatum-dominated cuttings, therefore, may have been abandoned 

later than those dominated by 'hummock' species. 

5. The presence of Carex nigra, Dryopteris carthusiana, 

and MoZinia caeruZea in the cuttings (species scarce on the surface 

of the intact mire ) may reflect the fact that the pH and concentrations 

of anions and cations were somewhat higher than elsewhere on the 

mire. This enrichment may have occurred as a result of the drainagt: 

of the surrounding peat (see 6.3). 
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9.2.2 Wedholme Flow 

1. On a burnt, cut-over peatland area the highest 

proportion of regenerating Erica tetraZix., CaUuna vulgaris, 

Rhynchospora atba and Drosera rotundifolia occurred nearest a 

region of intact raised bog. 

2. Sphagnum recurvum was widespread on cut-over parts of 

Wedholme Flow, as on other cut-over peatlands (8.2). 

3. Over a period of 15 years, a series of peat cuttings 

previously almost dismissed by Ratcliffe (1969) became recolonized 

by Sphagnum mageZZanicum, Drosera anglica, D. rotundifoZia., 

Narthecium ossifragum, Andromeda polifoZia and Vaccinium oxycoccus. 

There were some signs that a hollow/hummock microtopography was 

developing. 

9.2.3 Tarn Moss, Troutbeck 

1. The situation at Tarn Moss (where acidophilous nuclei 

have developed on a poor fen vegetation) illustrates how difficult 

it may be to determine the cutting history of peatlands. The 

vegetation may be 'natural' or may constitute a recolonized cut- 

over area developing back into an ombrotrophic mire. 
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9.2.4 Salta Moss 

1. Cut-over communities were dominated by Sphagnum 

recurvum as on many other cut-over peatlands (8.2). 

2. Peat cutting may have increased the supply of 

nutrients to the site through the exposure of 'fen' or 'sedge' 

peats. 

3. The removal of peat may also have increased the amount 

of water (and, therefore, the supply of nutrients) flowing through 

the centre of this valley mire. 

4. The re-vegetation of some water-filled peat cuttings 

has occurred through the development of a 'carpet' of vegetation 

over open water, forming a 'schwingmoor'. 

9.3 FENN'S AND WHIXALL MOSS (SEE APPENDIX 8) 

1. The small rectangular peat cuttings in areas 1 and 

2 ('cases') are highly conducive to the rehabilitation of ombrotrophic 

peatland communities: 

a. The water table has been reached through the removal 

of c. 1m of peat. 

b. At least 2m of peat remains so that there is unlikely 

to be chemical interference from the underlying mineral substratum. 

c. As at Glasson Moss (9.2.1), differences in the height 

of the water table appear to have given rise to variation in the 

vegetation in each cutting. 
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d. The height of the water table also varies within 

each cutting because of the existence of 'steps' or'shelves' 

in the cases. It is possible that these could eventually be 

made to support communities which form equivalents to the micro- 

topographic levels represented on an intact raised bog. 

e. The water table in these cuttings is potentially 

easily manipulated. In cuttings which have lopenings , in t eir 

walls, the 'openings' could either be deepened (to allow 

excess water to flow away) or dammed (to impound water). In 

'closed' cuttings further removal of peat from the floor would 

increase the height of the water table; small drains could be 

excavated to decrease the height of the water table. 

2. The replacing of surface sods onto the cut-over 

peat surface appears to promote the colonization of cuttings. 

This practice, known as 'shoeing', introduces the plants, allows 

them to grow on a firmer substrate and prevents oxidation of the 

exposed peat surface. 

3. The diversity of peat cuttings appeared to increase 

with the age of the cuttings. However, some species including 

Sphagnum magelZanicum and Rhynchospora aZba_, present on the uncut 

area of the mire (4a), were absent from re-vegetated peat workings 

in areas 1 and 2. 

4. Parts of Fenn's and Whixall Moss were colonized by 

invasive species: 

a. A Dutch variety of MoZinia caeruZea has been deliberately 

seeded onto trackways to help bind the surface peat. This plant 
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has spread into the 'drier levels of the workings, thereby 

preventing colonization by other bog species. 

b. BetuZa pubescens has invaded many dry areas. 

Its spread is probably encouraged by fire (used-to remove surface 

vegetation and control the adder population). 

c. Burning may also have encouraged the invasion of 

Pinus sylvestris in the drier areas. Seedlings of this plant 

appear to have spread from a plantation adjacent to the site. 

d. Plants uncharacteristic of peatlands have colonized 

areas where rubbish has been dumped. 

5. Apart from its intrinsic interest, the presence of 

an area of undisturbed bog (4a) on the site demonstrates the state 

of the original mire surface in terms of species composition and 

microtopography; it also helps to indicate the type of communities 

which ideally would be created in the cut-over areas. In addition, 

the area serves as a seed and spore source to surrounding cut-over 

regions. 

6. Parts of Fenn's 'and Whixall Moss were enriched by: 

a. Run-off from refuse (area 2). 

b. Water percolating from the boulder clay embankment 

of the Shropshire Union Canal onto the moss (area 4). This has 

produced a species-rich alder-dominated carr. 

7. One large, flooded peat cutting (area 5) was dominated 

by Eriophorwn vaginatum with Sphagnwn cuspidatum and S. recurvwn. 

Communities dominated by these species are widespread on Thorne 

Moors (Chapter 3) and other cut-over areas (e. g. parts of Danes 

Moss; see also Chapter 8). They apparently occur where the water 

table is relatively high; Eviophorum Vaginatum, however, may become 

established when the water table is relatively low (8-3). 1 



8., The dominance of Sphagnum recurvwn in a seemingly 

undisturbed community on the mire suggested that the area had, 

at one time, been cut (cf. 8.2). The stratigraphy of the area 

confirmed this view; loose Sphagnwn peat had developed over a firmer 

layer of Eriophorum angustifolium peat about 1m down. 

, 
9. Live Sphagnwn is collected by florists from Fenn's 

and Whixall Moss. 

10. This peatland complex consists of a number of 

contrasting areas, each of which has a different cutting history. 

This has given rise to wide variation in the plant communities 

which have recolonized the cut-over areas. 

9.4 SHAPWICK HEATH NNR (SEE APPENDIX 9) 

I. 
- 

Many difficulties are encountered in the management 

of an upstanding block of peat at Shapwick (area 1). These 

include: 

, a. Maintenance of the water table. In the adjacent 

commercial, peat workings the water table is lowered to the excavation 

level (c. 2m below the level of the peatland block). To maintain 

the water table within the block (which would otherwise dry out 

completely) water is pumped from the commerical workings into 

the block. However, in spite of the presence of a clay 'wall' 

around the vegetation of the block and an arterial network of 

ditches designed to distribute water within the area the water 

backs up in the direction of the pump. This means that only part 

of the block receives water and occurs because the water is pumped 

into a relatively low-lying part of the block. 
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b. Formation of a fissure in the 'wall' of peat above 

the commercial workings. The wall currently threatens to collapse 

into the workings. 

c. Possible nutrient enrichment. As the underlying 

clay is approached in ehe commerical workings, the concentration 

of certain ions in water pumped into the peat block may rise. 

2. It is proposed to seal the peat block with a clay 

bund and pump water into the highest part of the block. 

3. The diverse Shapwick fen meadows (re-vegetated peat 

cuttings which have developed under the influence of base-rich 

waters) are maintained by, and depend on traditional farming 

methods. Deviations from these methods threaten the vegetation 

of the meadows. 

4. Rehabilitation of peatland communities in commercially 

worked-out areas is likely to be difficult because the intention 

is to remove all the peat, down to the underlying clay. At Thorne 

Moors, by contrast, abandoned commercially worked areas are 

covered by c. 50 cm of wood peat (which the machinery is apparently 

unable to tackle). Given the situation at Shapwick it would be 

desirable to attempt to establish reed bed communities. 

5. It is proposed to construct a series of artificial 

lakes in the commercially worked-out areas. It would be informative 

to attempt to establish wetland communities on peat and clay 

substrates. 
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6. The clearing and enlargement of ditches in a re- 

vegetated, cut-over area (3) four years before the site visit 

resulted in the spread of Sphagnum lawns. 

7. The nutrient status of water in the vicinity may be 

too high to allow the rehabilitation of ombrotrophic peatland 

communities. In this case, it was felt that a management policy 

of maintaining and creating poor fen communities should be 

pursued. 



CHAPTER 10 

GUIDELINES FOR THE MANAGEMENT OF CUT-OVER 

PEATLANDS 
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10.1 INTRODUCTION 

This chapter suggests guidelines for the management 

of cut-over peatlands, the aim of which is to recreate 

communities characteristic of ombrotrophic mires. 

These guidelines form the basis of 'Nature Conservancy 

Council Chief Scientist's Team Notes' on the management of 

cut-over peatlands. They will be prefaced by a resume of the 

issues dictating the adoption of the various management policies, 

discussed more fully in other parts of this thesis. , 

10.2 THE WATER TABLE 

10.2.1 Height and fluctuation of the water table 

The importance of the height and fluctuation of the water 

table in determining the composition of bog vegetation is emphasized 

by the fact that, on an intact peatland, water level modes for 

plants characteristic of hummocks and hollows may differ by only 

5 cm (Goode 1970). In a recently abandoned cut-over peatland 

the water table should be raised as soon as possible such that 

in the majority of the area the summer level never falls below 

10 cm above the peat surface; the total annual fluctuation of the 

water table should ideally be no greater than c. 15 cm (cf. 

Chapman 1965; Goode 1970). 
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It is recognized that a water depth of > 10 cm may 

allow colonization by only the more aquatic Sphagnum species 

such as S. cuspidatum and S. recurvum. However, the aim at 

this stage is to prevent the establishment of invasive species 

such as Eriophorum vaginatum (8.3) and BetuZa pubescens (8.5), 

as well as to encourage the development of lawns of Sphagnwn 

cuspidatum and S. recurvum (which may subsequently be colonized 

by species characteristic of the higher levels of the bog). In 

any case, most cut-over peatlands exhibit much local variation 

in the height of the water table relative to the peat surface 

owing to the presence of baulks, drains and stacks. Peat surfaces 

somewhat above the level of the flooded area offer the opportunity 

for the establishment of communities equivalent to the higher 

microtopographic components of a raised bog (as at Glasson Moss 

(9.2) and Fenn's and Whixall Moss (9.3)). 

To eradicate established swards of invasive species 

(e. g. Betula pubescens and MoZinia caerulea), and to prevent 

development into carr or woodland, the water table should be 

similarly raised, as at Danes Moss (9.1). Raising the water table 

in dry peatland areas is also likely to halt the development of 

structural changes in the peat such as the formation of cracks 

or fissures. 



The water table can be raised and its fluctuations 

somewhat controlled by means of dams in ditches and drains, 

peat baulks, pumping and clay bunds. 

10.2.2 Dams in ditches and drains 

In a flooded cut-over peatland the upper limit of 

the water table and the amplitude of fluctuation are largely 

determined by the heights and permeabilities of dams in ditches 

and drains (5.5). The drainage of peatland areas can be reduced 

(and the water table raised) by damming all drains and ditches 

which allow water to flow from the site both on and around the 

margins of the peatland. 

To maintain some control over the height and fluctuation 

of the water table, an overflow pipe or simple sluice may be 

installed at an appropriate level within a dam (10.2.1). Water 

should not 'over-top' or 'leak through' dams; this is eventually 

likely to erode them and increase water loss from the site. 

The repeated breaching and building-up of a dam as a means of 

water table control will also eventually weaken it. 
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10.2.3 Peat baulks 

Peat baulks (banks of dry' peat) can be used to retain 

and impound water in flooded cut-over areas. Where possible, 

therefore, attempts should be made to negotiate with peat cutting 

companies for peat baulks to be left on completion of cutting 

activities. I 

The baulks should be as wide as possible (at least 5 m). 

Their effectiveness depends on the tendency of water to flow 

through them. This is determined by the hydraulic conductivity 

of the peat and the hydraulic gradient (difference in height of 

the water table) between the inside and outside of the baulk 

(itself related to the baulk dimensions; cf. Boelter 1972). 

There are some indications that the peat of dry baulks 

has an extremely low hydraulic conductivity, making them particularly 

conducive to the retention of water in flooded areas (5.6). This 

is thought to be a result of the drainage and subsequent drying 

of the baulks causing an increase in humification, compaction 

and subsidence. However, the long term effects (> 60 years) of 

further humification, compaction and subsidence as well as continuous 

re-wetting on the hydrophysical properties of dry peats are 

uncertain (5.6). 

Dry peat baulks are particularly susceptible to burning. 

It is therefore recommended that, if necessary, they are cut down 

to a height of no more than 50 cm above the highest water table. 

Repeated burning of baulks will eventually result in their loss 

(see also 10.6). 
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10.2.4 Pumping 

If the water table is raised by pumping (particularly 

applicable to the management of upstanding blocks of peat), it 

is essential that the water is fed' to the highest part of the 

peatland. Otherwise, water may not reach parts of the peatland 

area and back up in the direction of the pump. At Shapwick 

Heath NNR (9.4), the pressure of water backing up has, caused the 

formation of a fissure in the 'wall' of the upstanding peatland 

block. An arterial network of ditches may be utilized to help 

distribute the water within the peatland; this may involve 

excavation of new ditches and/or use of ditches already present 

on the site. 

It is also important to ensure that water pumped into the 

peatland is of the correct quality (cf. 10.3.11). 

10.2.5 Clay bunds 

I 

In peatlands situated somewhat above the level of their 

surroundings, the water table can be raised by means of clay 

bunds; these reduce water loss by marginal seepage (cf. 9-4). 

10.2.6 Buffer-zones 

The buffer-zone of a peatland may be regarded as the 

width necessary to accommodate any water drawdown at the 

periphery of the site. The width required is a function of the 
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hydraulic conductivity of the peat and the difference between 

the height of the water table in a fully saturated (central) 

part of the peatland and in the lowest lying part of the adjacent 

area (van der Molen 1981). 

The concept of the buffer-zone is extremely important 

as it is related to the proportion of the peatland area in which 

the water table is near enough the surface to support bog 

communities and the proportion of the peatland area where it is 

not. If two similar peatland areas are compared, one large 

and one small, clearly the proportion of the area occupied by 

the buffer-zone in the small peatland is much greater than that 

in the large peatland. However, small peatlands can support 

viable mire communities where the water table is held at a level 

which is high enough to render the width of the buffer-zone 

extremely narrow. An example of such a peatland is the basin mire 

Cranberry Bog, Staffordshire, where the hydraulic gradient at 

the edge of the mire is virtually negligible owing to its 

situation (Ratcliffe 1977). On cut-over peatlands the area of 

the 'new' bog community which can be supported will partly be 

determined by the effectiveness of the methods used to raise the 

water table. The buffer-zone should clearly be protected from 

drainage operations as these will increase the width of this 

zone. 

Formulae for the calculation of the width of buffer-zones: 

1. E= 200 Hk (an empirical formula; Eggelsmann 1977) where E= 

width of buffer-zone (m); H= difference between the height of the 



water table in a fully saturated (central) part of the peatland 

and in the lowest lying part- of the -adjacent area (m); k= 

hydraulic conductivity of the peat (m/day). 

2. E=2.2 kHt (a theoretical formula; van der Molen 1981) 

V/ 

where E, H and k are the same as for formula 1; t= time of year 

(in number of days); 11 = storage coefficient. 

The second formula allows calculation of the width of 

the buffer-zone at various times of the year by substitution 

of different values of H, t and p. Formula 2 generates higher 

values for the width of the buffer-zone. 

10.2.7 Excavation of pools 

After the flooding of the majority of the cut-over 

peatland some areas may remain well above the level of the 

water table (as at Thorne Moors); in this case, or if there has 

been only limited success with attempts to raise the water table, 

the peat surface can be brought closer to the water table in places 

by the excavation of pools. 

345 



346 

10.2.7.1 Constraints uPon location 

Pools should 'not be located in or 'near peat baulks 

used for the 'retention of water in cut-over areas, or on buffer- 

zones. Areas of shallow peat (< 1 m) should be avoided owing 

to possible' chemical interference from the underlying substratum 

(10.3) and excavation should not involve the destruction of 

established' mire communities or rare species. They should be 

located as near as possible to a seed/spore source (cf. 9.2.1; 

see 10.4). 

10.2.7.2 Pool dimensions 

Lindsay (1977) gives details for the construction of 

pools. The pools should be excavated such that the summer 

water level never falls below 10 cm, above the peat surface at 

the base of the pool. This depth can be determined by digging 

small pits (c. 20 cm, in diameter, left for 48 hours to 

equilibrate)-in the areas where pools are to be excavated, to 

establish the height of the water table in the peat. Pools 

should be given sloping sides (the angle of which should range 

from shallow to fairly steep) to allow colonization by a range 

of Sphagna and other species. A suitable diameter for a circular 

pool is 4 m. 
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In some cases it may be desirable to deepen existing 

peat cuttings by removing peat1from their bases. The (usually 

vertical) sides of such cuttings could be shaped to give sloping 

edges or excavated into a series of 'steps' or 'shelves, as at 

Fenn's and Whixall Moss (9.3); the latter may be a simpler 

operation and also provides variation in the height of the water 

table relative to the peat surface. 

Excavated peat can be used to construct or reinforce 

dams in ditches and drains. 

Factors affecting the recolonization of pools and cuttings 

are considered in 10.4. 

10.2.8 Other factors influencing the height of the water table 

1. Trees 

The presenceýof trees including Betula pubescens, Pinus 

syLvestris and Salix spp. in wet cuttings and on dry baulks may 

substantially increase the amount of water lost from the site by 

evapotranspiration and interception (5.4; 10.5). 

2. Mining subsidence 

The undermining of sites is likely to increase the height 

of the water table relative to the peat surface (2.9; 5.5). This 

should be borne in mind if mining operations are proposed in the 

locality of the mire. 
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3. Interference with the underlying substratum 

The hydrology of mires may be affected by interference 

with the underlying substratum. For example, the extraction 

of sand and gravel from beneath a basin mire may destroy the 

hydrological security of the basin and result in a lowering 

of the water table as well as some nutrient enrichment (cf. 10.3). 

In this case back-filling with outwash material may provide a 

suitable 'plug', but the success of this will depend on many 

factors which cannot be predicted (Mr RA Lindsay, personal 

communication). 

4. Regional lowering of the water table 

Attempts to lower the water table in whole regions 

(e. g. in the Somerset Levels to 'improve' agricultural land; 

Appendix 9) are likely to result in a significant reduction of 

the height of the water table, and consequently considerable 

change in the vegetation. 

5. Peat wastage 

The continued progression of subsidence, compaction 

and decomposition in peat above the water table will result in 

peat wastage (as at Holme Fen, Hutchinson 1980; see also 4.6 and 

5.6). 1 This may cause some alteration in the height of the water 

table relative to the peat surface. 
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10.2.9 Monitoring of the water table 

The height and fluctuation of the water table may be 

monitored by means of sampling tubes (pipes) embedded into the 

underlying substrate. These should be of metal (to resist fire), 

c. 10 cm in diameter and have numerous holes drilled in the sides. 

The water table relative to the peat surface should be measured 

at least once a month in a series of sampling tubes located across'" 

the length and breadth of the peatland, including the buffer-zone. 

The first readings should be taken one month after installation 

(to allow equilibration). 

An overall similarity in the magnitude and pattern 

of water table fluctuation in the sample tubes inside the buffer- 

zone suggests that the whole site is responding similarly to 

changes in water relations; this in turn indicates that the methods 

used to raise and control the water table are effective. 

10.3 WATER CHEMISTRY 

10.3.1 The water chemistry of ombrotrophic mires 

A consideration of the water chemistry in cut-over 

ombrotrophic peatlands is important because this, more than any 

other single factor, will determine the plant communities which 

develop. In intact ombrotrophic mires (fed solely by rainwater) 

the concentration of ions in the peat waters is extremely low 

(Gorham 1956a, b; Tallis 1973b; 6.3). These concentrations 
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generally increase as' a result of peat cutting activities. 

Possible 'sources of enrichment and other factors that may affect 

water quality on cut-o I ver peatlands are'described below. 

10.3.2 Run-off from adjacent areas 

The removalýof peat mayýresult in an increase in the 

amount of water running onto a site from adjacent areas. Run-off 

from the following sources is likely to lead to enrichment of the 

peat waters at a cut-over site: 

mineral soil/rock (cf. 9.2) 

agricultural land (6.5; 9.1) 

clay-covered warpland (2.5; 6.5) 

embankments-ofýcanals (9.3),, 

hardcore tracks or canal towpaths (6.6) 

railway (9.1) and tramway ballast (6.6) 

refuse tips (9.1; 9.3) 

coal mines and colliery tips (6.5) 

clay or other mineral material dumped on or near the 

peat surface (6.3). 
1 

Mining subsidence and peat wastage (10.2.8) may increase 

the amount of water running from these sources onto the mire. 

Run-off from these sources is likely to preclude the 

development of ombrotrophic vegetation. However, it should be noted 

that some of these sources of enrichment may give rise to species- 

rich vegetation types of interest in their own right; e. g. as at 

Crymlyn Bog where pulverized fuel ash has been dumped onto the 

mire surface (Meade 1983; cf. 6.6 and 10.3.11). 
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10.3.3 Black-headed gulls 

Colonies of Black-headed gulls associated with refuse 

tips (9.1) or, on Thorne Moors, with a stand of Juncus effusus 

(6.3), are likely to enrich cut-over sites through 'guano trophi cation I. 

10.3.4 Exposure of underlying fen peats 

Thexemoval of peat may expose underlying fen peats 

resulting in some enrichment to water flooding peat cuttings(6.7; 

9.2; Chapman 1964; Tallis 1973b). 

10.3.5 The influence of the underlying mineral material 

In areas where peat has been removed completely or where 

a shallow layer of peat remains, the underlying mineral substrate 

will influence water chemistry (6.7; 9.4). 

A 'critical residual peat depth' for the rehabilitation 

of ombrotrophic communities will depend on the chemical influence 

of both the underlying fen peat (10.3.4) and the underlying 

substratum. It would be desirable, however, to negotiate with 

peat cutting companies for at least 50 cm. of peat (above the fen 

peat) to be left on completion of cutting activities (6.7; cf. 

9.3 and 9.4). 
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10.3.6 Water movement 

The removal of peat may result in an increase in the 

amount of water (and, therefore, the supply of nutrients) flowing 

through a mire (cf. 9.2; Ingram 1967). 

10.3.7 The effect of drainage 

There is evidence that the drainage of a bog results in 

a decrease in the pH and an increase in. the conductivity of peat 

waters (6-. 3; 8.2; cf. 9.2 and 9.3; 10.8). 

10.3.8 The effects of flooding 

10.3.8.1 Flooding of a dry peat area 

Oxidation of a dry, cut-over surface may result in an 

increase in the proportion of inorganic material per unit volume 

in the upper horizons of peat. This may give rise to a corresponding 

increase in the concentration of ions in water flooding such an area. 

10.3.8.2 Flooding of a re-vegetated peat cutting 

The flooding of a re-vegetated peat cutting (dominated, 

for example, by Molinia caeruZea), may result in eutrophication 

caused by the breakdown of much organic material. Temporary algal 

and fungal blooms may develop (9.1). 
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10.3.8.3 Flooding of drains 

The flooding or overflowing of peatland drains (which 

may have been 'sealed off' hydrologically) could result in the 

introduction of nutrient-rich water into peat cuttings, particularly 

if the drains penetrate the underlying mineral substrate (6.5). 

At Thorne Moors the water chemistry has also been affected by an 

influx of nutrient-rich water from canals (6.6). 

10.3.9 Bisulphite pollution 

The concentration of sulphur pollutants, particularly 

bisulphite, in rainwater may be important in determining the 

survival of Sphagnum species (Chapter 7). 

10.3.10 Fire 

The burning of a cut-over peatland will result in some 

temporary nutrient enrichment at the site (10.6). 

10.3.11 Measures to isolate cut-over peatlands from sources of 

enrichment 

Where the cut-over mire lies at a similar or somewhat 

lower level than its surroundings, drains containing nutrient-rich 

water should be diverted away from the site (9.1). This may involve 

the damming and embanking of existing drains and the construction 

of new drains. Peat baulks may also be utilized to isolate the site. 



354 

Water pumped into an upstanding peatland from the 

surrounding area is likely to be particularly nutrient-rich (9.4; 

cf. Duffey 1971). One solution might be to pump the water into a 

securely embanked ditch located at the perimeter of the peatland. 

As long as the water level in the ditch was maintained at a slightly 

higher level than that in the peatland adjacent to it, 'filtered' 

water would flow from the ditch into the mire (cf. 10.2.4). 2Vpha 

latifoZia could be introduced into the ditch to lower the nutrient 

status of the water; this may also help to stabilize the ditch and 

embankment. The'pressure of water in the ditch, however, may cause 

fissures to form in the 'wall' of the peatland (cf. 9.4). In addition, 

pumping would'be inefficient in that much of the water in the ditch 

would flow towards the outside of the peatland. 

In some cases it may be impossible to isolate cut-over sites 

effectively'from sources of enrichment - for example, where the water 

chemistry is influenced, by the underlying mineral material or the 

exposure of underlying fen peats. In other cases constraints of cost 

may limit the measures that can be taken-to isolate sites. In these 

situations it is considered that a management policy of maintaining 

and creating poor (or even ri6h) fen communities should be pursued 

(cf. 9.4). 

10.3.12 Monitoring of water chemistry 

The chemistry of the peat waters may be monitored effectively 

by measurement of pH and electrical conductivity (K 
corr 

; Appendix 4). 

Measurements should be taken at least once a month at sample sites 

located near suspected sources of enrichment and across the length 

and breadth of the peatland. Water samples may be collected from 

sample tubes utilized for measurement of the water table (cf. 6.2; 10.2.9). 



10.4 THE RECOLONIZATION OF CUT-OVER PEATLANDS 

10.4.1 Source oý'dolonizing species 

The establishment of appropriate ombrotrophic species 

on cut-over peatlands will proceed more quickly if there is a 

nearby population (Schmatzler & Tuxen 1980; 9.2). For this 

reason it would be desirable, where possible, to negotiate with 

peat cutting companies for an area of un-cut-bog to be left 

undrained (cf. 9.3). Such an area would also demonstrate the 

state of the original mire surface in terms of species composition 

and microtopography and help to indicate the type of communities 

which ideally would be created in the cut-over areas. 

Un-cut areas on otherwise cut-over peatlands may be left 

as upstanding blocks (cf. 10.2.4; 10.2.5; 10.3.11). If only 

limited success is achieved with attempts to raise the water table, 

it might be appropriate, inthe last resort, to cut off the 

living surface turf and replace it onto lower-lying areas (see 

10.4.4). Before undertýking such an operation, however, trials 

should be conducted to determine whether or not it is likely to 

be successful. 

The collection of live Sphagnwn by florists should be 

discouraged (9.3). 
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10.4.2 Size 6f peat cuttings 

Small cuttings are likely to be recolonized at a faster 

rate than larger cuttings. This is because the length of the 

edge of a small cutting is relatively high compared to its 

surface area, probably providing a relatively high proportion of 

sites suitable for plant establishment (8.6; 9.2; cf. 10.2.7.2; 

White 1930). In addition, parts of smaller peat cuttings in 

relatively intact mires will be nearer the source of colonizing 

species (0.2). 

Large flooded peat cuttings may be subject to wave 

action; this may cause erosion and is likely to reduce recolonization 

rates or prevent it altogether. For this reason, the long axis 

of (rectangular or oval) pools might be profitably aligned across 

the direction of the prevailing wind (10.2.7; Wheeler 1983). 

10.4.3 The recolonization of deep water areas 

The flooding of cut-over peatlands may give rise to some 

relatively deep water areas (i. e. >30 cm; Chapter 5; 10.2.1). Such 

areas may revegetate via 'schwingmoor' development whereby a floating 

raft of plants grows out vegetatively from firm land over open 

water (9.2). This type of recolonization has certain advantages 

because floating peat rafts have been shown to compensate for water 

level fluctuation (Green & Pearson 1968; Giller 1982). A raft 

of polystyrene balls might encourage schwingmoor development 

(Dr BD Wheeler, personal communication). 
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10.4.4 The introduction of species into cut-over areas 

The recolonization of cut-over areas may proceed more 

quickly if species are introduced, although this practice is not 

universally accepted by ecologists. Vegetative spread is probably 

the main means of propagation for most plant species of ombrotrophic 

mires. Seeds often do not germinate readily and conditions are 

frequently unfavourable for seedling establishment. Species are 

best introduced, therefore, as mature plants. 

One means of re-introducing ombrotrophic species is by 

the replacement of the living surface turf onto the cut-over 

surface (9.3). This practice, known a's Ishoeing', introduces 

established plants, allows them to grow on a firm substrate and 

prevents oxidation of the exposed peat surface. It would be desirable, 

where possible, to negotiate with peat cutters for surface sods 

to be saved for this purpose. The water table should be maintained 

at the surface of replaced turves. 

The long term feasibility of introducing Sphagnum species 

is not clear. Introduced species at Thorne appeared to grow 

readily for approximately two years, after which time a marked 

reduction in the rate of growth was found (Chapter 7). The 

production of spores has not been observed in introduced Sphagnum 

material at Thorne; this, however, may reflect the fact that 

sexual reproduction is particularly susceptible to the relatively 

high SO 2 concentrations prevalent at this site (10.. 3.9; Chapter 7). 

In flooded areas from which the peat has been removed 

completely it would be appropriate to attempt to establish reed bed 

communities by the introduction of Phragmites austraZis and lVpha 
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latifoZia (9.4). In deep water, Djpha is often a principal 'pioneer 

species and without it terrestrialization of deep water may proceed 

only slowly, or not at all (Lambert 1951; Wheeler 1983). Other 

species may eventually be introduced according to the nutrient 

status. of the water. 

10.4.5 Monitoring of recolonization 

The recolonization of cut-over peatlands may effectively 

be monitored in permanent quadrats (e. g. 2x2 m) by fixed point 

photography and recording of abundance of species present. 

10.5 CONTROL OF DOMINANT SPECIES 

10.5.1 Eriophorum vaginatum 

Once established, E. vaginatm can tolerate relatively 

high water tables (8.3; 9.1; 9.3). Trampling may help to 

eradicate E. vaginatum; this destroys the integrity of the tussocks 

(8.3). 

10.5.2 Betuta pubescens 

The flooding of cut-over peatlands eventually results 
('A in the death of Betula pubescens (8.5; 9.1). If, -however, the water 

table cannot be raised sufficiently to initiate the eradication of 

birch, a policy of cutting, and perhaps chemical treatment of the 

stumps, should be pursued. 

1! 1-. ý 
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10.5.3 MoZinia caeruZea 

MoUnia caeruZea may be eliminated by flooding the 

area which it dominates (9.1). However, if water flows through 

the peatland area this control measure will not be effective 

because the growth of MoZinia in waterlogged conditions is favoured 

by moving water (as in fens; Armstrong & Boatman 1967; cf. Ingram 

1967). In addition, flooding will not necessarily be effective 

in western sites where Molinia caeruZea is a natural component 

of ombrotrophic vegetation; however, even here this control measure 

is likely to prevent extreme dominance. 

10.5.4 Juncus effusus 

Juncus effusus can survive the flooding of cut-over 

areas once established, and may be additionally encouraged by 

'fertilization' by the Black-headed gulls which it sometimes 

attracts (Chapter 5; 8.4). Active removal (e. g. cutting or uprooting) 

may be the only means of eradicating this species. Such a control 

measure would be costly in terms of time and energy but may be 

worthwhile in view of the problems of enrichment associated with 

Black-headed gulls (10.3.3). 

H 
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10.5.5 SaZix spp. 
I 

Willows such as Salix cinerea can withstand flooding 

once established (on mires which have been enriched; 10.3) and 

active removal may be the only solution to their control (cf. 

10.5.2). 

10.5.6 Pteridium aquilinum 

Bracken, a serious pest on dry peat areas, can be 

eradicated by raising the water table. 

10.6 FIRE 

Fire is a hazard on cut-over peatlands as on all other 

peatlands. In dry areas it encourages the spread of invasive 

species including Betula pubescens and Pinus syZvestris (9.3) 

and it may help to maintain the dominance of Eriophorum vaginatum 

(8.3). Fire may also destroy the (often limited) sources of 

recolonizing species. 

For these reasons and because burning results in nutrient 

enrichment (10.3.10), material such as birch or willow cleared 

from peatland areas should never be burnt on site. 

It may be necessary to excavate fire moats, particularly 

in areas where it is difficult to raise the water table. Details 

for their construction are given by Lindsay (1977). On cut-over 

peatlands blocked drains may be utilized for fire moats. Their 

excavation should not involve the destruction of established mire 

communities or rare species. 
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10.7 THE USE OF MACHINERY ON CUT-OVER PEATLANDS 

It may be possible to negotiate with peat cutting 

companies for their machinery to be used for active management 

operations (e. g. the excavation of pools) . However, if machinery 

is used physical damage to the present vegetation must be 

minimized. Apart from the fact that this vegetation may itself 

be of conservational importance, it is this vegetation that will be 

instrumental in recolonization of cut-over areas. In addition, 

clay, (used, for example, for bunding) and other mineral material 

should not be dumped onto the site (cf. 10.3.2). 

10.8 THE REHABILITATION OF OMBROTROPHIC COMMUNITIES 

The indications are that the development of ombrotrophic 

communities on cut-over peatlands takes a long time. On Thorne 

Moors, for example, the most species-rich communities characteristic 

of ombrotrophic mires occur in cuttings which were abandoned up to 

50 years before less diverse cuttings (see also 9.2 and 9.3). 

The time it takes for the development of ombrotrophic 

communities is partly related to the effects of peat drainage 

(6.3; 8.2; 10.3.7); even if all factors relating to the water table 

and the availability of recolonizing species are optimal for 

rehabilitation, and a site is isolated from all external sources 

of enrichment, this factor will have increased the conductivity 

of the peat water (rendering the development of truly ombrotrophic 

communities unlikely). A lowering of the conductivity of the peat 
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water is mostly effected by Sphagnum recurvum which is capable 

of colonizing enriched peat cuttings (8.2; cf. Clymo 1967). This 

moss, therefore, eventually. creates conditions which allow 

colonization by species characteristic of ombrotrophic situations 

such as Sphagnum papiZlosum and Sphagnum mqgeZZanicwn (6.3.13). 

This process can be speeded up by the correct management 

regime. At Thorne Moors, for example, the management procedures 

adopted for the last 5 years have, amongst other things, resulted 

in the spread of Sphagnum recurvum and encouraged the initiation, 

in places, of nuclei of S. papiZloswn. 



CHAPTER 11 

GUIDELINES FOR THE MANAGEMENT OF THORNE MOORS 
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11.1 INTRODUCTION 

The primary aim of management on Thorne Moors pNNR 

is to encourage the development of communities characteristic of 

ombrotrophic mires (Ratcliffe 1977; Bonner 1978). The management 

guidelines presented here, many of which are being implemented 

at present, are mainly concerned with achieving this aim; 

they should be practised in conjunction with those guidelines 

set out in Chapter 10. 

11.2 MANAGEMENT OF THE pNNR 

11.2.1 Water table in the pNNR 

1. The water table should be maintained at its present 

level (Chapters I and 5; 10.2.1). 

2. It is necessary to reinforce the dam at the southern 

end of the New Cut (Figs. 1.3 and 2.2), and it would be desirable 

to install an overflow pipe or simple sluice at the level at which 

water currently over-tops the present dam. This would prevent 

erosion of the dam and allow a more precise control over the level 

and fluctuation of the water table than the-repeated breaching 

and building-up of the dam as sometimes practised by Fisons Ltd. 

(cf. 10.2.2 and 10.2.8). All other dams which leak should also 

be reinforced both in the pNNR and in the area protected under 

the Section 15 Agreement (Fig. 1.2). The integrity of the peat 

baulks which retain and impound water in these areas should be 

maintained. 
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3. A consideration of the buffer-zone of the pNNR 

is complicated by the fact that there is a slight rise in height 

to the south and west of this area (5.5). However, the indications 

are that the pNNR is hydrologically viable at present because 

on its north and west sides the buffer-zone occurs in the Section 

15 area and on its east and south sides effective 'sealing' of 

the area has reduced its width to a minimum (5.5; 10.2.6). Flooded 

cut-over areas to the east of the pNNR also help maintain the water 

table within this area. 

4. The long term hydrological viability of the pNNR 

is questionable if the Section 15 area or the peat to the cast 

of the pNNR is cut away. - In this case the buff er-zone would occupy 

a high proportion of the pNNR, so reducing the area capable of 

supporting bog communities (cf. 10.2.6). If these areas were cut 

irt-would be essential to re-flood them as soon as possible afterwards. 

This would entail the retention of strategically placed peat 

baulks (10.2.3). It must be reiterated, however, that even if tile 

cut-over areas were re-flooded there would still be an overall 

reduction of the height of the water table in the pNNR. Such an 

operation may even render it necessary to pump water into the 

pNNR (10.2.4 and 10.3.11). 

5. The water table should be monitored at monthly intervals 

(details in 10.2.10). Sampling tubes may be located as in Fig. 5.1 

with some additional tubes installed at the four corners of the 

pNNR and in the Section 15 area. 
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11.2.2 Fire 

1. With the exception of the flooded peat cuttings, 

the whole of Thorne Moors is susceptible to burning as shown 

by the fire of 2 June 1982. The spread of this fire was aided 

by the dry peat and birch scrub in the area, thereby demonstrating 

the need to control birch effectively (see subsequent sections) 

and the hazards of a high proportion of peat above the water 

table (cf. 10.2.3). Much of the birch. scrub and the dry peat 

were destroyed by the fire (11.4). 

2. The New Cut would probably act as an effective 

firebreak against fires spreading from the region of Thorne 

Colliery (Fig. 2.2). It would not be appropriate to deepen and 

completely clear canal 1 for this purpose (Fig. 2.2; cf. 

Bonner 1978); this canal contains vegetation of conservational 

importance which in addition forms a source of colonizing species 

(cf. 10.4,10.6; 11.5). 

3. The immediate reflooding of all abandoned cut-over 

areas, particularly those adjacent to the pNNR (Goode 1973; 11.6), 

would also help protect the pNNR (and other cuttings) from fire. 

4. Material such as birch or willow cut or cleared 

from cuttings, baulks and canals should not be burnt on site 

(10.3.10; 10.6). 
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11.3 MANAGEMENT PRESCRIPTION FOR THE PEAT CUTTINGS OF 

THE pNNR 

1. In parts of cuttings in which the water table 

remains below the peat surface (mostly central sections of 

cuttings in the south and west of the pNNR), pools should be 

excavated to encourage the spread of Sphagnum spp. (details in 

10.2.7 and 10.4.2; cf. 10.2.1; 10.7; 10.8). 

2. The recolonization of deep water areas (the outer 

or peripheral sections of peat cuttings) by 'schwingmoor' 

development may be encouraged by a raft of polystyrene balls 

(10.2.1; 10.4.3). This idea should be tested in some peat 

cuttings. 

3. With the exception of the cuttings between canals 

I and 2 which are flooded by water from the New Cut (6.5), the 

current input of nutrient-rich water into the peat cuttings is 

considered to be minimal (Chapter 6). This isolation from 

external sources of enrichment must be maintained (see 10.3). 

4. It is essential to encourage the spread of Sphagnwn 

recurvum. This is because this species can act as a primary 

colonist of the cuttings, and in so doing helps lower the 

conductivity of the peat water (relatively high in the peat 

cuttings; Chapter 6), making conditions suitable for colonization 

by species such as S. papiZZoswn and S. subnitens (10.8). 
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5. The chemistry of the peat water should be 

monitored, desirably at monthly intervals, in samples from 

sampling tubes located across the length and breadth of the pNNR 

(details in 10.3.12). 

6. The oldest, most diverse cuttings occur in the 

centre of the pNNR (8.1). Apart from being of high conservational 

importance, these cuttings are a prime source of colonizing species 

in the pNNR and should be protected totally from disturbance 

(10.4; 10.7; 11.4). 

7. When a revegetated area (outside the pNNR) is about 

to be cut by Fisons Ltd., it would be desirable to collect suitable 

species (e. g. Andromeda polifotia and Vaccinium oxycoccus) to 

introduce into the pNNR. It may even be possible to negotiate 

for surface sods to be saved for 'shoeing' appropriate areas in 

the pNNR (10.4.4). 

8. The vegetation may be effectively monitored by 

fixed point photography and recording of abundance of species 

present in permanent quadrats (e. g. 2x2 m); these should be 

placed along transects of peat cuttings across the length and 

breadth of the pNNR. 

9. The dominance of Eriophorum vaginatwn may be reduced 

by trampling down the tussocks of this plant (8.3; 10.5.1). 
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10. Birch is dying in the flooded peat cuttings of 

the pNNR (8.5; 10.2.9; 10.5.2); much was also burnt out by the 

fire of 2 June 1982 (11.2.2). It would be desirable to pull out 

some of the moribund trees. In drier parts of the cuttings a 

Policy of cutting, perhaps followed by chemical treatment of 

the stumps, should be pursued. Salix spp. and Rhododendron ponticum 

should also be removed from the cuttings (see 10.5.5). 

11.4 MANAGENENT PRESCRIPTION FOR THE PEAT BAULKS OF THE 

pNNR 

1. The fire which occurred on 2 June 1982 brought 

. 
the surface of the peat baulks closer to the water table (10.2.1; 

11.2.2; cf. Fig. 5.15). They are now less susceptible to burning 

(10.2.3) and more capable of supporting bog communities. 

2. It would be desirable to excavate pools on the peat 

baulks (11.3 nos. 1 and 4) and in some cases to shape the vertical 

sides of the baulks into sloping edges to allow colonization by a 

range of Sphagna and other species (10.2.7.2). 

3. BetuZa pubescens should be removed from the peat baulks 

within the pNNR (10.2.9; 11.2.2). This may be extremely difficult 

in future, if the fire, by effectively increasing the height of the 

water table relative to the peat surface, has created conditions 

suitable for the establishment of birch (8.5; cf. 10-5). It is 

suggested that the trees are tackled when young. 



11.5 MANAGEMENT PRESCRIPTION FOR THE CANALS OF THE pNNR 

1. The canals which surround the peat cuttings are the 

main source of colonizing species in the pNNR and contain 

vegetation of high conservational importance (3.5; 10.4; Goode 

1973). It is therefore essential that the present vegetation is 

not damaged during management operations. 

2. To maintain this vegetation, the canals should be 

periodically cleared seZectively in small sections. This should 

involve removal of the vegetation in such a way that rare species 

(e. g. Osmunda regatis) are either preserved or transplanted to a 

canal locationwhere the successional stage and the chemistry of 

the peat water (cf. 6.6) are appropriate to the survival of the plant. 

Ombrotrophic species could be introduced into peat cuttings. 

3. Moribund birch trees should be cleared from the canals 

as in the cuttings (11.3, no. 10). In drier parts birch may have 

to be cut out. In addition to periodic clearance of- small sections of 

canals (above), SaUx spp. (with the exception of S. repens) should 

also be thinned in areas where it excludes most other species. 

369 
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11.6 MANAGEMENT PRESCRIPTION FOR ABANDONED 'MODERN' 

CUTTINGS ON THORNE MOORS 

1. It would be desirable to flood worked-out areas of 

Thorne Moors making use of the tramways and peat baulks protected 

under the Section 15 Agreement (Fig. 1.2; Goode 1973; 10.2). 

Suitable areas are described by Goode (1973). In addition to 

creating new wetland habitats, the flooding of cut-over areas 

would also help maintain the water table in the pNNR (cf. 11.2). 

Where necessary, it may be possible to negotiate with Fisons Ltd. 

for their machinery to be used to 'seal off' areas hydrologically, 

as with the Experimental Plot (Lindsay 1979). 

2. The water flooding abandoned peat cuttings is likely 

to be somewhat enriched owing to the fact that the peat layer 

remaining in these areas is shallow (e. g. 40-80 cm in EP; 4.3 and 

6.7); 10.3. It might be appropriate, therefore, to attempt to 

establish reedbed communities in some of the c ompartments (separated 

by peat baulks) within cut-ov'er areas (10.3.11; cf. 10.4.2; 

Goode 1973). 27ýjpha ZatifoZia and Phragmites austraZis cleared 

from the canals (11.5) could be introduced into such areas (cf. 

10.4.4). This vegetation would be expected to be replaced 

eventually by species characteristic of more ombrotrophic situations. 

3. Once the area to the south of the Southern Boundary 

Drain has been worked-out completely, it would be desirable to block 

this drain at its western outfall into Thorne Moor 'Drain (Fig. 1.2). 

The water should be diverted south along Angle Drain at the point 

where this drain and the Southern Boundary Drain intersect, thus 

permitting continued drainage from the north and east (Goode 1973). 
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11.7 CUTTINGS DOMINATED BY JUNCUS EFFUSUS 

1. Cuttings dominated by Jzýncus effusus present few 

management problems. Black-headed gulls associated with these 

cuttings are unlikely to 'eutrophicate' areas of conservational 

importance because these are situated some distance away from 

Juncus effusus stands (3.3; 10.3.3). It would not be worthwhile, 

therefore, to attempt to eliminate stands of this species (10.5.4). 

2. It should be emphasized that there is no evidence 

to suggest that Juncus effusus can become established in deep water 

areas (5.8; 8.4; cf. Rogers & Bellamy 1972; Goode 1973). 

11.8 MANAGEMENT OF OTHER PARTS OF THORNE MOORS 

Management prescriptions to perpetuate the floral and 

faunal interest of other habitats, including woodland on marginal 

areas, peat baulks outside the pNNR, tramways, warpland and the 

eastern end of Cottage Dike are set out by Goode (1973) and 

Bonner (1978). 
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APPENDIX 1 

Percentage occurrence of species present in ten vegetation noda 
generated by classification MS. 
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APPENDIX 2 

Mean cover-abundance values of species in ten vegetation noda 
generated by classification AC. I 
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APPENDIX 3 

Monthly rainfall totals in millimetres recorded at Crowle, 

Dirtness pumping station (Nat. Grid Ref. SE 474409) 

1980 1981 1982 AVERAGE 

JAN 80.6 27.3 34.1 48.0 

FEB 82.8 45.7 12.2 40.0 

MAR, 75.5 126.0 67.3 35.0 

APR 8.5 79.9 10.2 40.0 

MAY 34.3 69.6 11.9 43.0 

JUNE 114.3 25.2 144.5 44.0 

JULY 22.5 28.8 23.6 55.0 

AUG 87.6 72.3 81.7 66.0 

SEPT 31.0 85.5 - 50.0 

OCT 87.4 57.1 - 45.0 

NOV 65.9 40.1 - 59.0 

D9C 15.8 41.3 - 43.0 

ANNUAL TOTAL 706.2 698.8 - 568.0 

Monthly averages and the average annual total refer to the 

period 1941-70. 
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APPENDIX 4 

1. METHODS FOR CHEMICAL ANALYSIS OF PEAT WATERS 

pH 

pH was measured electrometrically using a Pye Model 79 

pH meter. The glass electrode was inserted directly into a sub- 

sample of the water sample. 

b) Conductivity 

Electrical conductance of water samples was measured 

using an EIL conductivity meter, type MC 1 MK V with automatic 

temperature compensation to 250C. The approximate contribution 

of hydrogen ions to the conductivity was subtracted from the measured 

conductivity using values quoted by Golterman ot at. (1978), 

where the pH of the water sample was below 4.5. Corrected 

conductivity results (K 
corr 

) are expressed in pS cm -1 

c) Nitrogen 

The concentration of nitrogen was determined using, the 

semi-micro Kjeldahl distillation method (Black 1965). 20 ml 

of the water sample was steam distilled with magnesium oxide to 

measure ammonium-N. A further aliquot was steam-distilled 

with magnesium oxide and Devarda's alloy to measure (ammonium 

+ nitrite + nitrite)-N. The first 25 ml of distillate was 

collected in 5 ml of boric acid-indicator solution and titrated with 

0.01 M sulphuric acid. 
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d) -Phosphorus 

Soluble reactive phosphorus in undiluted water samples 

was estimated colorimetrically. A molybdenum blue complex was 

developed using antimony as a colour enhancing agent and ascorbic 

acid as the reductant (Stainton, Capel & Armstrong 1977). The 

absorbance (1 cm light path) was measured at 885 nm using a Pye- 

Unicam SP 550 spectrophotometer. The background absorbance 

resulting from the dark natural colour of the peat waters was 

subtracted from the measured absorbance of the phospho-molybdate 

complex. 

e) Calcium and Magnesium 

Ca 
2+ 

and Mg 
2+ in water samples were measured using 

atomic absorption flame spectrophotometry. To prevent inter- 

ference, a solution of lanthanum chloride, calculated to give a final 

concentration of 800 mg 1-1 La 3+ 
, was used to dilute the samples. 

The samples were diluted to fall within a range of 0-4 mg 1-1. 

2+ ý The absorption was measured at 422.7 nm for Ca and 285.2 nm 

for Mg 
2+ 

on a Pye-Unicam SP 190 atomic absorption spectrophotometer 

calibrated with mixed standards which were also diluted with 

lanthanum, chloride. 
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f) Iron and Manganese 

The concentration of iron and manganese in peat waters 

were measured as in (e) above. The samples were diluted with 

deionised water to fall within a range of Oý2 mg 1-1. Absorption 

was measured at 248.3 nm for iron and 279.5 nm for manganese. 

g) Sodium and Potassium 

Na + 
and K+ were measured simultaneously by flame emission 

spectrophotometry using an EEL 227 integrating flame photometer. 

This measures the amount of light emitted by Na + 
and K+ when these 

elements are excited by a flame. The water samples and standards 

were diluted with lithium chloride to give a final concentration 

of 100 mg 1- 1 
Li+. The instrument was calibrated over the range of 

-1 +-1+ 0-10 mg 1 Na and 0-1 mg IK. 

h)' Sulphate 

Sulphate concentrations in water samples were measured 

using a turbidimetric method involving precipitation of barium 

sulphate-in an acid solution (Golterman et aZ. 1978). Samples 

-1 2- 
were diluted to fall within a range of 0-10 mg I so 4 

The absorbance was measured with a white light source using an 

EEI Nephalometer Head and Unigalvo type 20 galvanometer. 
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i) Chloride 

Chloride in water samples was titrated with mercuric 

nitrate using a diphenylcarbazone-bromophenol blue indicator 

solution. At the end point the excess Hg 2+ 
produces a violet 

colour with diphenylcarbazone (Golterman et aZ. 1978) 

2. SAMPLER FOR EXAMINATION OF VERTICAL STRATIFICATION OF 

PEAT WATERS 

The sampler was constructed from two, closely fitting 

lengths of ABS pipe: 

plug 

ri nrr7n 

OPEN 
outiet 

inner sleeve 

handle 

150cm 



400 

3. NETHODS FOR DATA PROCESSING 

one-way analysis of variance was performed on data sets 

of each chemical variable, at each time of analysis, using the 

SPSS MK 6 package sub-program ONEWAY. Duncan's New Multiple 

Range Test was used to separate the sites at the P<0.05 

level of significance. The Bartlett Box-F test was used to assess 

the heterogeneity of error variances, also at the P<0.05 level 

of significance. ' The CLUSTAN IC package was used to compute cluster 

analyses with Ward's method of hierarchical fusion (Ward 1963). 
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APPENDIX 5 

METHODS FOR THE DETERMINATION OF THE CONCENTRATION OF BISULPHITE 

IN RAINWATER 

1. Principle 

The method used to determine bisulphite concentrations 

is a modification of that formulated by West & Gaeke (1956) to 

measure sulphur dioxide concentrations. The principle of the 

method is the reaction of bisulphite (in rainwater) with sodium 

tetrachloromercurate (II) solution to form stable, non-volatile 

disulphitomercurate (II). This produces a red-violet colour when 

it reacts with p-rosaniline hydrochloride-hydrochloric acid 

mixture and formaldehyde; the absorbance of the resulting solution 

can be measured. 

2. Procedure 

Samples of rainwater were collected, by means of a 

funnel, into polyethylene bottles containing 2 ml of sodium 

tetrachloromercurate (II) solution. These were diluted to 20 ml 

with a known volume of deionized water and reacted with 2 ml of 

0.01% p-rosaniline hydrochloride-hydrochloric acid mixture and 

2 ml of 0.05% formaldehyde. The absorbance (I cm light path) 

was measured at 560 nm using a Pye-Unicam SP 550 spectrophotometer. 

The measured absorbance was compared with that of a range of sodium 

metabisulphite standards (buffered to pH 4-6). All measurements 

were made within 48 hours of the fall of rain. 



APPENDIX 6 

DANES MOSS: 

Report of site visit and management prescription 

JUNE 1980 
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1. INTRODUCTION: DANES MOSS 

Danes Moss is situated c. 3 km S. W. of Macclesfield, 

Cheshire. It comprises an area of cut-over raised bog approximately 

200 acres (81 ha) in extent. Fisons Ltd., who carried out the 

commercial exploitation of the peatland, ceased cutting the moss 

in the 1950's. 

The depth of the remaining peat is thought to be 1.3 m 

over most of the area. Subsequent to abandoning peat cutting 

operations, Fisons Ltd. gave the Cheshire Conservation Trust 

a section of the southern end of the moss. The northern part of 

the area is used as a rubbish dump by Cheshire County Council. 

The remaining central area of Danes Moss (Fig. 1), still belongs 

to Fisons and consists of dry cut-over peat colonized by Betula 

pubescens and a dense covering of Molinia caeruZea. This area 

tends to be burnt off by local children at least once a year - 

and indeed was still smouldering after a recent burn at the time 

of this site visit. 

2. DESCRIPTION OF CHESHIRE CONSERVATION TRUST RESERVE 

OUTLINING PREVIOUS MANAGEMENT 

2.1 The flooding of the Trust Reserve 

The original vegetation cover of the Trust Reserve was 

apparently very similar to that of the area immediately to the 

north of the Reserve - i. e. Betula pubescens with a dense covering 

of Molinia as already mentioned. In 1976/7, however, the water 
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table in the Reserve was substantially raised by the construction 

of strategically placed dams (Fig. 2). This was done with the 

aim of encouraging water fowl into the area and to encourage the 

growth of plants characteristic of an undisturbed mire surface 

and, indeed, other wetland plants. 

The depth of water in the flooded area varies because 

the water is covering old cuttings, peat baulks and drains, running 

in a north-south direction. The tops of old peat stacks emerge 

from the water and are colonized by CaUuna vuZgaris, MoZinia 

caeruZea with some Erica tetraZix and bryophytes such as CephaZozia 

bicuspidata. The irregular nature of these peat stacks seemingly 

allows colonization by a variety of plant speci-es which have 

different requirements in relation to the height of the water table. 

The open water area contains many young birch trees which 

seem to be dying (presumably as a result of water-logging) and tussocks 

of Eriophorwn vaginatwn which have built themselves up such that 

the live part of the plant is well out of the water. Juncus effusus 

clumps are in evidence but form dense stands only in the vicinity 

of a drain running parallel to the track which was apparently 

colonized by this plant prior to flooding. Emergent peat baulks 

are colonized by Molinia, BetuZa pubescens, CaUuna vuZgaris and 

bryophytes including Sphagnwn recurvum and Bryum pseudotriquetrum. 

It was gratifying to note the regeneration of Sphagnm 

cuspidatum which was present prior to flooding but had not been 

noticed in great quantities since then. This plant is evenly 

distributed throughout the water and in places emerges to give 

substantial inundated lawns. 
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In the vicinity of the western boundary of the flooded 

area, along the line of a now obscured ditch, a great quantity 

of DvepanocZadus fluitans occurs. This gives the water a viscous 

green appearance. Before the area was flooded the aforementioned 

ditch used to back up with eutrophic water (from adjacent fields) 

and flood the northern part of the Reserve. 

Other management practices implemented by Roger Meade, 

Reserve Manager at the time of flooding, were the nurturing of 

Drosera rotundifoZia plants (some under a sheet of glass) and the 

placing of introduced hummock-building Sphagna (not present on 

Danes Moss), and Andromeda poZifoZia into a polystyrene box with 

a plastic netting base. The idea of the latter apparatus was to 

subject the plants to a constant water table (owing to the floating 

up and down of the polystyren6 box) in the hope that seed and spores 

from these plants would colonize elsewhere. Unfortunately the box 

was eventually anchored down by Eriophorum roots penetrating 

the holes in the netting. 

The water table in the flooded area fluctuates between 

about 100 mm in summer and 300 mm in winter. Some cation concentrations 

in water samples taken from this flooded area are given in Table 1. 
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2.2 The experimental pool 

Drains carrying water onto and draining off the moss 

have also been subjected to some active management. Field Drain, 

running south-north from a farmer's field, runs into the drain 

adjacent to the main track; thereafter the nutrient-rich water 

is diverted away under the main track, so avoiding the flooded area. 

Tests on water samples have shown that there is a signif icant 

nutrient enrichment of Field Drain owing to runoff from the fields 

nearby. A pool has been excavated adjacent to, and continuous 

with Field Drain as shown on Fig. 2 and Fig. 3. 

Y, 

baulk floating 
dam mat of 

Juncus 
effusus 

pool 

N. 

baulk 

Fig. 3 Plan of the experimental pool (Fig. 2). 
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2.3 Other observýations 

The ditch adjacent to the railway appears to be slightly 

enriched owing to run-off from the railway ballast. Among the 

plants growing here are Qjpha ZatifoZia., a species of CaUitriche., 

Juncus buZbosus and Potamogeton poZygonifoZius. 

Numbersof water fowl on the Reserve are apparently 

on the increase. At least-two, pairs of Canada geese as well as 

Mallard are breeding. 

3. ASSESSMENT OF THE POTENTIAL FOR RECLAMATION AND 

CONSTRAINTS 

3.1 The Cheshire Trust Reserve 

In the Trust Reserve much of the management potential 

has already been realised by the flooding of a substantial 

part of the area initially covered mostly by birch scrub and 

MoZinia. It now seems all important to monitor the site and the 

floral and faunal response to flooding. One constraint here is 

the lack of a suitably qualified person to do the job. 

It is suggested by Roger Meade that a porous box full 

of limestone chippings is placed in Field Drain in the place marked 

X on Fig. 3. The aim of this would be to increase the calcium 

concentration of the water enuaring the pool in order to encourage 

the growth of a poor fen vegetation. 
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3.2 The peatland area to the north of the Trust Reserve 

In spite of objections made by Cheshire Conservation 

Trust, it appears that Cheshire County Council will extend the 

rubbish tip to within 100 m of the track forming the northern 

boundary of the Reserve (Fig. 2). It was felt that the wildlife 

potential of this area could be enhanced further if it were f looded 

in a similar fashion to the Trust Reserve. It is likely that this 

area will constitute a 'no man's land', and as such may be fairly 

easy to negotiate over with the relevant bodies. It was felt that 

it would be infinitely more preferable to have a strip approximately 

200 m in width; this. width also corresponds to a drain which could, 

in theory, act as. a. boundary drain. The close proximity of the 

rubbish tip constitutes problems to this area - whether flooded 

or left unflooded - as, well as to the present Trust Reserve. 

At present, the northern area of peatland is drained as 

shown on Fig. 
_l. 

It is possible, particularly with an increase 

in size of the rubbish tip, that the drains from the tip will 

become more polluted. This would then affect the strip it is 

proposed to flood and possibly the Trust Reserve as well. At 

present it is known that drains are polluted at least 200 m from 

the current, tip front. Many invasive species have become 

established. A colony of Black-headed gulls also constitute a 

problem in that they may well be 'eutrophicating' the northern 

peatland area as well as the Reserve, area. Again - an increase 

in size of the tip is likely to increase the scale of this 

problem. 
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MANAGEMENT PRESCRIPTION 

4.1 The Cheshire Conservation Trust Reserve 

In order to gain information on the effect of raising 

the water table in a cut-over peatland area (the aim of which is 

to encourage, the re-establishment of species characteristic of 

undisturbed mires), the following is recommended: 

1. Monitoring of the vegetation in the Reserve paying 

particular attention to the flooded area. 

2. Monitoring of the water chemistry at several sites 

in the area including the previous sample sites in'Field Drain 

and the area where water runs off from the railway ballast. 

The latter may shed some light on the effect of the nutrient 

input from railway ballast run-off. In addition, the effects of 

pollution owing to gulls or polluted drains from the rubbish 

tip may be determined. 

3. The placing of a box of limestone chippings in Field 

Drain as already mentioned. The effect of an increase in Ca 2+ ions 

should be monitored by observation of vegetational and water 

chemistry changes. 

4. Particular attention should be paid to the progress 

of introduced plants such as Caltha patustris., Carex rostrata., 

Menyanthes trifoZiata and Potentilla paZustris. It may be thought 

desirable to introduce further species if these establish successfully. II 
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4.2 The peatland. area to the north of the Trust Reserve 

It is recommended that the strip of derelict peatland 

between the proposed extension to the tip and the current 

boundary of the tip be managed. (It is understood that this would 

entail declaring the Reserve and the area under discussion a SSSI 

and negotiations with Fisons Ltd. and Cheshire County Council). 

1. It is recommended that water levels be carefully 

raised. The aims of doing this would be the same as those given 

in 4.1. In addition the use of flooding to eliminate Molinia 

could be carefully monitored. The death of acres of vigorous 

MoZinia tends to be exploited by algae and fungi, and 'blooms' 

occur which are detrimental'to Sphagnum growth. On the Trust 

Reserve conditions have taken about 4 years to normalize - only 

now is Sphagnwn cuspidatum re-establishing. Flooding this site 

has the further advantage that little is being put at risk by such 

an action (that is, no plants of any importance would be destroyed 

by water-logging). 

2. No. 1 would entail a survey of the hydrology of the 

area to determine where dams should be placed to raise and control 

the water table. In addition the area should be sealed off from 

pollution from the rubbish tip. 

3. Subsequent to flooding, monitoring of the vegetation 

and water chemistry is recommended (for the same reasons as 

given in 4.1). 



APPENDIX 

OBSERVATIONS ON CUT-OVER AREAS OF SOME CUMBRIAN 

PEATLANDS 

NOVEMBER 1980 
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1. INTRODUCTION 

The Cumbrian peatlands visited between 1 and 5 August 

1980 were Glasson Moss, Wedholme Flow, Tarn Moss and Salta Moss. 

In every case the emphasis was on the cut-over parts of each - 

peatland rather than on the intact and often more floristically 

diverse areas. 

2. GLASSON MOSS, CUMBRIA (NY 2360; GRADE 1) 

2.1 Site description and objective of visit 

'Glasson Moss forms a small part (about 2.5 km 2) 
of a 

once extensive tract Of raised mire along the south side of the 

Solway Firth. A good deal of the southern part of the mire has 

been cut commercially for peat, resulting in a dry surface with 

dominant Cattuna, but the northern section has only been cut 

insignificantly around the margins' (Ratcliffe 1977). 

The northern series of peat cuttings is shown in Fig. 1. 

The main objective of the site visit was to make observations 

on these peat cutttings which were presumably cut for fuel a number 

of decades ago. -Unfortunately the precise time of cutting is unknown. 
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2.2 Description of cuttings 

The cuttings comprise a series of rectangular holes, 

typically measuring c. 3m x 4m. The regenerated surface is about 

0.5 m below the surrounding peat. The original cutting depth 

could perhaps be determined by means of a peat borer. 

It appears that the shape of the peat cuttings has allowed 

water retention and spongy Sphagnum lawns have developed. It is 

interesting to note that the species of Sphagnum dominant in the 

cuttings varies considerably. Lawns comprising almost 100% cover 

each of S. recurvum, S. mageUanicum, S. papiUosum and 

S. cuspidatum were observed. This variation may arise because 

the cuttings were originally cut to a variety of depths relative 

to the water table. 

Certainly, now, the height of the present water table 

relative to the revegetated surface is variable. The water table 

in the S. cuspidatum-dominated cuttings, for example, is higher 

than in the cuttings dominated by S. mageZZanicum. It may be 

that one type of cutting will develop into another by 'hummock' 

species such as S. mageZZanicum colonizing and, therefore, lifting 

the whole surface of the vegetation higher relative to the water 

table. In this case the length of time since peat cutting was 

abandoned may be of prime importance. 

II 
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Associated with the species of Sphagnum already mentioned 

are bryophytes such as Aulacomnium patustre and Mytrichum 

aZpestre. 0dontoschisma sphagni was not found in these lawns,. - 

Drosera rotundifolia, is abundant on the surface of the Sphagnum. 

Other species present'in the wet cuttings include Eriophorum 

angustifoZium.,, Dryopteris carthusiana - the Narrow Buckler Fern, 

Carex nigra and much MoUnia caeruZea. The last three species 

are scarce on the intact raised mire surface. 'In some instances 

Vaccinium oxycoccus and Andromeda polifoZia'have colonized the 

cuttings. It seems that a microtopography consisting of a mosaic 

of hummocks'and hollows, characteristic of an undisturbed mire, 

surface, may be developing. Surrounding the Sphagnum-filled 

cuttings are drier peat baulks colonized by CaUuna VuZgaris., - 

Erica, tetraZix., BetuZa pubescens and PotentiZZa erecta. Sphagnum 

teneUum is present mostly beneath CaUuna bushes and S. compactum 

was also observed. Towards-the"extreme edge of the peatland thickets 

of Betula pubescens are developing and bracken, Pteridium aquiZinum, 

is'invading. 
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2.3 Management prescription 

Because of their floristic characters and other features, 

the old peat cuttings described here are of great interest in 

their own right. It was felt, therefore, that any management 

activities carried out on Glasson Moss NNR should include the 

area occupied by these peat cuttings. 

It would be interesting to cut further peat cuts of 

similar dimensions to those described; firstly to study the 

process of recolonization and secondly because it would probably 

encourage the growth of species characteristic of an undisturbed 

raised mire surface. It is recommended that cuttings be made in 

areas which are otherwise considered to be of little conservation 

interest. 

As already indicated, the study of the stratigraphy of 

these peat cuttings would probably yield very interesting results. 

Concerning the 1976 fire it should be noted here that, 

fortunately, the old peat cuttings were untouched. The view of 

Rose (1978) that if Glasson Moss is to survive no more fires like 

the 1976 fire must occur is strongly endorsed. It is gratifying 

to note that the management prescriptions outlined by Lindsay 

(1977) are being carried out. These have involved the construction 

of strategically placed fire ditches. 
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WEDHOLME FLOW, CUMBRIA (NY 2151; GRADE 1) 

3.1 Site description 

Wedholme Flow, lying between the villages of Kirkbride, 

Oulton and Abbey'Town, covers an area of rather more than 3 square 

miles, and is, after Bowness Common, the largest of the Cumbrian 

Solway raised bogs. A great deal of the eastern part of the Flow 

is-now being cut-for peat commercially whilst areas in the northern 

half were so cut many years ago (Grieg 1975; Ratcliffe 1977). 

The main interest here was in the area of old peat 

cuttings denoted as Q by Grieg (1975) and the northern section 

of the site which has been cut for peat more recently (Fig. 2). 

3.2 The western peat cuttings (Q on Fig. 2) 

This area has been cut such that it is now 2-3 m lower 

than the adjacent peatland (which has also been cut). At first 

sight the area appears flat and featureless as there is no division 

into peat baulks and wetter cuttings. 

The proportion of bare peat (10% in someareas) and the 

young age of the vegetation suggest that the area has been recently 

burnt. The border ditch is well marked by lush MoUnia caeruZea 

and Nartheciwn ossifragum. The area nearest the main peatland 

mass has much young Erica tetraUx growing directly on a wet peat 

surface, and, to a lesser extent, CaUuna vutgaris. Where small 

hollows have become filled with c. 5 cm of water there are lawns 
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of Rhynchdspora aZba, 'and the lichen Lecidea granulosaý Drosera 

rotundifoZia is in abundance growing on the peat. Of the Sphagna, 

onlyýS. compactum and S. recurvum are at all well represented, 

the former growing on the bare peat; the latter associated with' 
R. aZba in the wet hollows. Trichophorum cespitosum and' 

Eriophorum angustifoZium are scattered evenly over this area. 

As has already'been implied, the water table is approximately 

at the surface of the peat. 

Towards the edge of the peatland, to the south-west, 

the nature of the vegetation changes, as that described above 

grades into a SaZixIAZnus carr, on the very edge. Well developed 

hummocks of Leucobryum gZaUCUM are present and vast tussocks 

of MoUnia make the terrain quite treacherous. Where bare peat 

is visible here Vaccinium myVtiZZus is present. Other species 

include Galium paZustre., Sphagnum paZustre_, Polytrichwn comune., 

PotentiNa erecta, Dryopteris diZatata and Carex nigra. 

3.3 The northern peat cuttings (Fig. 2) 

This band of peat workings spreads across the bog from 

west to east between two sections of good raised bog (marked 1 

and 2 on Fig. 2). This area is outside the present SSSI boundary. 

Ratcliffe (1965) states that the 'northern half of the Flow was 

extensively worked for peat long ago, and has been repeatedly burnt, 

so that its vegetation belongs to the drier range from Callunetum 

to various types of damp heath'. Grieg's view (1975), that this 

area is-in much better condition than Ratcliffe found it, is endorsed 

here. ý ý' 
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The Sphagnum cover is rich and extensive - many 

substantial hummocks of S. mageZZanicum were observed. There are 

signs that a hollow/hummock microtopography is developing. 

Drosera angZica, D. rotundifoZia, Narthecium ossifragum., Andromeda 

PoZifoZia and Vaccinium oxycoccus are widespread and common. 

3.4 Conclusions and management prescription 

Considering firstly the northern band of peat workings, 

it appears that it has taken only fifteen years for an area 

almost dismissed by Ratcliffe (1969) to regenerate into an area 

of active raised bog. Clearly, the high quality raised bog 

areas (1,2'and 3 on Fig. 2) will have acted asýsources for the 

plants now growing in this region. The nature and rate of recovery 

here are both encouraging and interesting. 

By contrast it seems that the area Q was too drastically 

disturbed originally to allow this sort of recovery. Some 

regeneration to raised bog may eventually occur, however, on the 

eastern-most margins, perhaps speeded up by the fact that the 

northern band of workings will more and more provide a seed/spore 

source. 

To conclude, it is suggested that the SSSI boundary be 

extended to include the northern band of regenerating peat 

workings, and if possible the high quality intact areas (I and 

2). A full survey would need to be carried out. to determine 

the precise limits of the area. This action is particularly 

recommended in view of Rose's high opinion of the S. W. lobe 

(Rose 1978), which, as he points out, is rather small. 



3.5 Fauna 

A Merlin was observed flying over the S. W. lobe of this 

site during this visit. 

TARN MOSS, TROUTBECK, CUMBRIA (NY 4027; GRADE 1) 

4.1 Site description and objective of visit 

The Nature Conservation Review (Ratcliffe 1977) gives 

the following description of this site: 

'This basin mire lies in a shallow, but apparently quite 

enclosed, elongated hollow in acidic glacial drift and is surrounded 

by poor quality upland pastures. The vegetation is mostly oligo- 

trophic and the main'interest of the site is the predominant poor-fen 

which forms a good example of this north British vegetation type. 

Very few true basin mires exhibit this type of vegetation and it 

is significant that here it is associatedwith a patchy development 

of acidophilous vegetation representing the initiation of still 

more oligotrophic surface'. 

At Dr David Goode's suggestion, the aim of this site 

visit'was to try to establish whether or not the area has been cut 

for peat. Very often a less oligotrophic vegetation type is linked 

with the r6moval of peat (as at Salta Moss or Thorne Moors, for 

example). 
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The site was entered from the eastern side by the road 

and was thoroughly explored for any sign of peat. cutting. The 

ground was observed for baulks and depressions. None were 

apparent. On the western side, however, the ground is so tussocky 

with MoUnia caeruZea that any irregularities in the terrain 

would be obscured. 

4.2 Conclusions 

This site has not obviously been cut for peat. It is 

possible that the area was cut-away evenly, without the excavation 

of cuttings with alternating baulks, and in this case the detection 

of previous peat cutting is made very difficult. The idea that 

there has been some previous cutting activity is perhaps supported 

by the presence of the acidophilous nuclei previously mentioned 

which support, for example, CaUuna vuZgaris, Erica tetraZix, 

Empetrum nigrum, Andromeda poZifoZia and Sphagnum papiZZosum. 

These nuclei suggest that this mire may be in a state of flux - that 

is that the succession is proceeding such that the poor fen is 

developing into an ombrotrophic mire. By this reasoning it may be 

the case that the poor fen constitutes a regenerating cut-over 

area moving back to its original state - that of ombrotrophic 

mire. one theory to account for acidification in the Norfolk 

Broads (themselves old peat workings) follows this reasoning. 

Clearly a stratigraphical study of this area would be 

worthwhile. 
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5. SALTA MOSS, CUMBRIA (NY 0845; GRADE 3) 

5.1 Site description 

This is a coastal peatland lying within I km of the 

Solway shore. 
-The 

moss lies over glacial sand deposits which 

cover the Permian Sandstone plain; the drainage water is nutrient 

poor with only moderate enrichment locally. 

The whole area is much modified, with numerous overgrown 

peat workings and ditches, and it has been repeatedly burnt. 

This, along with the fact that the moss is probably intermediate 

between raised mire and valley mire (the ground rises markedly 

to the west and east), probably accounts for the extremely varied 

flora that exists here. 

The vegetation ranges from highly acidophilous heath to 

mire, with local development of poor fen and intermediate communities, 

and at the eastern margins there are transitions to damp herbaceous 

meadow (Ratcliffe 1974). 

5.2 Description of areas previously cut for peat 

These areas could be picked out as lower-lying wetter 

areas into which irregular shaped, CaLluna vuLgaris-dominated, peat 

baulks jutted. A clear-cut pattern of peat workings could not be 

discerned (aerial photographs were not available, unfortunately, 

at the time of this visit). 
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Luxuriant lawns of Sphagnum recurvum have developed 

on the cut-over areas. This moss occurs with Eriophorum angustifolium., 

Menyanthes trifoZiata and some Juncus effusus. HydrocotyZe vulgaris 

is also characteristic of the cut-over areas along with Typha 

angustifoZia. In some places these lawn areas are extremely 

treacherous - it appears that a 'schwingmoorl type of regeneration 

has occurred whereby a carpet of vegetation has grown over open water. 

The type of community described here can be termed poor 

fen, 'rather than ombrotrophic mire. This is perhaps because it 

developed on peat richer in nutrients than peat found on the surface 

of intact raised bogs. The workings may have penetrated 'fen' 

or 'sedge' peats laid down early on in the successional history 

of this mire. 

In addition, the present mire community has developed 

along the . water course of this valley; the very fact that water 

is flowing means that more nutrients will be supplied to the mire. 

The area immediately flanking the water course contains plants which 

are more tolerant of the slightly higher nutrient levels, for 

example Potentilla paLustris. Towards the edge of the site in drier 

areas than the peat cuttings is a zone characterized by much 

Vaccinium oxycoccus and Sphagnum papiUosum. Perhaps these plants 

were more 'numerous before the area was cut for peat. No Andromeda 

potifolia was observed. It may well be, then, that the rather 

unusual community described here is a result of the cutting of the 

original peatland which both laid bare a richer peat substrate 

and allowed the water course to flow through the area. 
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5.3 Management prescription 

At the time of this site visit a fire had recently swept 

across the west of the moss leaving a substantial area of bare 

peat. Ratcliffe (1974) refers to a patch of c. 30 clumps of 

Osmunda regalis at NY 087450. This clump could not be found, 

despite an extensive search. It is possible (although not certain) 

that the fire has burnt at least the aerial parts. It is suggested 

that the clump of Osmunda be searched for during the next growing 

season. 

An attempt has been made here to show that the vegetation 

growing on the cut-over areas forms a community which adds to the 

interest of the whole site. It would be"informative to continue 

to monitor the regeneration of these peat cuttings. It"may be 

interesting to remove some of the dry baulks and monitor the 

subsequent development of the vegetation. 

As for most peatland areas, some form of protection from 

fire is desirable. However, the cost of excavating a ditch 

system along the lines of the one at Glasson Moss would probably 

be prohibitive. 

5.4 Fauna 

One adder, very dark in colour, was observed. 
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1. INTRODUCTION 

The Fenn's and Whixall Moss complex is a much-modified 

raised bog occupying a comparatively shallow Late-glacial lake 

basin. The Clwyd/Shropshire border passes through the peatland; 

Fenn's Moss lies to the north in Clwyd and Whixall Moss to the south, 

in Shropshire. Bettisfield Moss, to the south-west of the 

Shropshire Union Canal, lies in both counties (Fig. 1). The area 

was designated a Site of Special Scientific Interest in 1957 and, 

following major boundary revisions in 1978, now covers an area 

of 608 hectares. Full botanical descriptions of these mosses and 

accounts of their history are given by Sinker (1962) and Day (1979). 

Most of the site has been cut for peat to a greater or 

lesser extent. The wide range of peat cutting methods employed 

and dates of abandonment have led to the existence today of a 

diverse flora of considerable interest. This report is concerned 

with outlining a management prescription for a variety of cut-over 

areas and the few remaining regions of intact peatland on the 

site. Where relevant, comparisons are made with other cut-over 

peatland sites, especially Thorne Moors, S. Yorkshire. Areas 

discussed are located on Fig. 1; their precise extent, unfortunately, 

is unknown. 
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AREA 1 

This area contains disused 'cases' (rectangular areas 

of cutting) very variable in shape and size. The cases are generally 

about 1m in depth because interest has been and still is (peat 

is currently extracted at a slow rate) for the top layer of white 

peat for horticultural purposes. Below this layer is black or 

fuel peat. 

The nature of the vegetation in the cuttings depends 

mainly on the depth of cutting, local hydrology (drainage), 

time of abandonment, ability of species to recolonize a suitable 

substrate and local burning history. The management procedure 

applied to these cuttings, in order to create communities 

characteristic of undisturbed raised bogs, will depend on the same 

factors. 

Most of the cases have floors which lie approximately 

at the level of the internal water table of the bog. These parts 

tend to contain Sphagnum papiUoswn, S. recurvum., Eriophorum 

vaginatwn, Narthecium ossifragwn, Erica tetraZix and Drosera 

rotundifolia. In other cuttings the water table is above the 

base of the cut. These water-filled cases bear Sphagnum cuspidatum, 

Eriophorum angustifoZium, Utricularia minor and DrepanocZadus 

fZuitans. From the management point of view it is fortunate that 

the cases are mostly as, described. Some, however, are quite dry 

indicating that the water level is-below the flo6r. Here the cut 

should either be deepened to make it wetter or, if the water table 
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is only just below the surface, be blocked off securely by a 

substantial wall of peat (about 1m thick and as tall as the wall 

of the case). The latter treatment will cause the water table to 

rise slightly and impound collecting water. These cuttings lend 

themselves to this type of management because very often a case 

has only a small opening in the wall through which water may 

drain away. A few cuttings may contain a depth of water too great 

to allow colonization by bog plants. Here a drain should be cut 

to a depth that allows surplus water to flow away. The drain 

should be cut such that it can easily be blocked up should the 

cutting get too dry. Another means of promoting colonization of 

particularly wet cuttings is to place the surface sods on to the 

cut-over surface. This practice, sometimes known as 'shoeing' 

introduces the plants, allows them to grow on a firmer substrate 

and prevents oxidation of the exposed peat surface. Local peat 

cutters should be encouraged to do this, although in fact to some 

extent, they already do. 

In-the older cases many-of the species of an undisturbed 

raised bog survive and flourish. Species such as Rhynchospora alba, 

LWpetrwn nigrw? 7-, Sphagnum mageZZanicum and AuZacomniwn paZustre, 

however, are absent from the workings. It is not clear why this 

should be so. On Thorne Moors atmospheric pollution in the form 

of bisulphite formed from sulphur dioxide may be preventing 

recolonization, particularly by the Sphagna, but such pollution 

is unlikely to be important in this area. Whatevbr the reason 

for-the absence of the above species from the peat cuttings, it is 
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worth trying to introduce them. Plants should be selectively 

removed from other areas of the moss where they are more plentiful 

and replaced at levels relative to the local water table equivalent 

to their natural position on an intact raised bog. I 

, -In the past a Dutch variety of Molinia caeruZea (known 

locally as iron grass) has been deliberately seeded onto trackways 

to help'bind the surface peat. This practice should be discouraged 

as this invasive plant has spread into the drier levels of the workings, 

thereby preventing colonization by other bog species. (As the 

tussocks and wiry roots of MoZinia are an impediment to cutting, 

it seems likely that in any case re-seeding will no longer be 

carried out). 

The use of burning, either to remove surface vegetation 

prior to cutting or to control, the adder population (Sinker 1962), 

should be controlled and limited as fire encourages the spread of 

birch scrub. 

In conclusion, cutting in this area, on this scale, is 

highly, conducive to the attempted recreation of communities 

characteristic of undisturbed raised bogs. Cutting to 1 m, allows 

the water table to be reached and in addition, because-a substantial 

thickness of peat-is left (probably at least 2 m; Day 1979) there 

is no chemical interference from the underlying mineral substrate. 

On Thorne Moors the shallow depth of peat in some areas appears to 

be restricting colonization by species characteristic of ombrotrophic 

systems. The various 'steps'. and shelves remaining in abandoned 

cases could eventually be made to support communities which form 

equivalents to the microtopographic levels represented on an intact 

raised bog. 
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AREA 2 

The area of Fenn's Moss to the north of the railway 

contains small workings similar to those in area 1. The cuttings 

were'abandoned in the 1920's apart from a small area of about 2 ha 

which is currently being worked by hand. The management procedures 

outlined for area I should also be applied here. 

Being nearer to the highest point of the moss complex 

(which occurs in area 3, at a point 94.15 m above sea level), this 

area is quite dry and the water table well below the surface. As 

such, the area has suffered periodic burning, both accidental and 

deliberate, which appears to have initiated the spread of birch. 

The removai of birch by a combination of cutting followed by' 

chemical treatment of the'stumps could be attempted. Seedlings 

of Pinus sylvestris appear to have spread from the 12 year old 

plantation to the north and east of Fenn's Moss onto the'area. 

These should be removed as they will tend to dry out the area 

further. 

Rubbish dumping, which has led to localized eutrophication 

and the introduction of plants uncharacteristic of peatlands, 

should be prevented wherever possible. 
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4. AREA 3, 

I 

The north-eastern end of Fenn's Moss is the largest 

unworked area in the moss complex. It is the highest part of 

the whole site and is generally characterized by dry heathland 

communities, dominated by CaUuna vuZgaris, Erica tetraZix and 

Vaccinium nqjrti1Zus. 

Small, gentle-sided hollows and old ditches at the edge 

of the site contain species characteristic of wetter situations, 

including Sphagnum papMosum, S. recurvum, Andromeda poZifolia 

and Vaccinium oxycoccus. These depressions may be former peat 

workings. If possible, small, similar-shaped holes should be 

excavated near to the present area of hollows in order to create 

further similar communities. 

Pine and birch invasion may have been encouraged by 

the repeated burning of the area in the past. Where possible, 

these invasive species should be controlled by methods outlined 

in previous sections. 

AREA 4 

A small uncut, triangular area at the south-western 

corner of Whixall Moss (area 4a on Fig. 1) preserves some trace 

of the hollow/hummock microtopography which the rest of the bog 

has lost. The Sphagnum cover is very good; extensive lawns of 

S. mageZZanicum and S. papMoswn occur with many other species 

characteristic of undisturbed raised bogs, such as Odontoschisma 

sphagni, Vaccinium oxycoccus., Narthecium ossifragwn, Andromeda 

poZifoZia., Rhynchospora aZba and Drosera rotundifoZia. 
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It is very important to protect this area totally. 

(Potential threats are burning, birch invasion, peat cutting 

and eutrophication following rubbish dumping). Apart from its 

intrinsic interest, the area will serve as a seed and spore source 

to the surrounding cut-over regions. In addition, observation 

of this area demonstrates the state of the. original bog surface 

in terms of species composition and microtopography and will help 

to indicate the type of communities which ideally will be created 

in the cut-over areas. Many cut-over raised bogs, such as Thorne 

Moors, have no intact areas to allow such comparisons to be made. - 

The uncut area is bounded to the south by the line of 

the Shropshire Union Canal. Water percolating from the boulder 

clay embankment onto the'mosi has produced an alder-dominated 

marginal fen or carr. This area, of interest in its own right,, 

is fully described by Day (1979). Beyond this 'lagg' is a strip 

of bog about 15 m wide (area 4b on Fig. 1), apparently cut to a 

slightly lower level than the natural surface. An 'edge effect' 

is shown by the presence of base-demanding species such as 

Scorpidiwn scorpioides and Riccardia Zatifrons (Sinker 1962). 

Apart from these species, however, the vegetation is not dissimilar 

to that of area 4a described above. Prominent hummocks of Sphagnwn 

mageZZanicum and Sphagnum subnitens coexist with abundant ' 

Rhynchospora-aZba, Erica tetraZix, and Narthecim ossifragum. 

As such it is recommended that the area be totally protected, 

for similar reasonsi from the hazards outlined in relation to the 

small uncut section. 
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AREA 5 

Area 5 is a large, enclosed area of open water dominated 

by Eriophorum vaginatum with Sphagnum cuspidatum and S. recurvwn. 

Theýcommunity may have arisen as a result of an unsuccessful attempt 

to create a 'duck pit' by explosion (Day 1979). 

An area like this poses problems as do similar areas on 

Thorne Moors and to a lesser extent Danes Moss, Cheshire. The 

vegetation is not very diverse and the depth of standing water may 

be, too great to allow the type of recolonization that is occurring 

on abandoned surfaces in areas 1 and 2. If the water table were 

lowered, however, invasion of pine and birch may occur from the 

surrounding woodlands. In addition, lowering of the water table 

may adversely affect other areas, notably area 6. It is recommended, 

for the time being, that the water table be kept at its present 

level and that, regular checks be made to observe how the community 

composition is altering. (Day's (1979) site 22 information offers 

a good starting point). It would also be interesting to discover 

the fluctuation of the water table here. Intact raised bogs exhibit 

little water table fluctuation, and too great a fluctuation is 

thought to be detrimental to colonization by species characteristic 

of undisturbed bogs (Dr DA Goode 1980, personal communication). 

This could easily be achieved by inse-ýting a piece of drainpipe 

about 1m in length into the peat. After initial measurement 

of the height of the pipe from the peat Ifloor', *regular measurements 

of the water level inside the pipecould be made to ascertain the 

fluctuation occurring. 
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AREA 6 

Extensive Sphagnum lawns cover this area, dominated by 

S. recurvum with some S. papiZZOSUM and S. mageUanicum. Small 

pools contain S. cuspidatum. Associated higher plants include 

Empetrum nigrum, Vaccinium oxyCoccus., Andromeda poZifolia and 

young trees of Pinus syZvestris. 

Day (1979) considers this area to be unworked but this 

is probably not the case. Amateur stratigraphy reveals that a 

loose Sphagnum carpet has developed over a firmer layer of 

Eriophorum angustifolium peat about 1m down. The present day 

community seems to have developed over an abandoned cut-over 

area. 

Pine trees are invading this area from the surrounding 

regenerating woodland. It may be that the wetness of the area, 

(presumably due to being near the lowest point of the moss 

complex), will kill off the trees naturally, by their sinking into 

the moss as they get older and heavier. If, however, the pine 

invasion continues, artificial control should be pursued. 

The existence of this area is interesting and the fact 

that such a community can develop on a cut-over area bodes well 

for the rest of the moss complex. This area should be protected, 

particularly from drainage, as well as from further cutting and 

fire. 



8. GENERAL REMARKS 

The current situation concerning planning permission to 

extend peat working is unknown. 

If either of areas 3 or 4a is to be cut, it would be worth 

negotiating for small pieces to be left so that the complete 

vegetational history of the site (as provided by pollen and 

stratigraphical studies) may be preserved. 

The collection of fresh Sphagnwn by florists for packing 

purposes, which apparently still occurs, should be discouraged 

from all areas. 

Finally, the management of areas undergoing mechanised 

peat extraction - mainly confined to Fenn's Moss - will have to 

be assessed when cutting is abandoned and the remaining peat depth 

and topography are ascertained. 
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1. INTRODUCTION 

1.1 The Somerset Levels 

The Somerset Levels comprise some 169,000 acres (68,391 ha) 

of low-lying flats extending over the flood plains of three major 

rivers, the Brue, Axe and Parrett, which flow into the Bristol 

Channel. They are bounded by the Mendip Hills to the north and 

east, the Oolitic escarpment to the south-east and the Quantocks 

to the west. 

In historic times the Somerset Levels consisted of a 

series of raised bogs with intervening areas of marsh and fen. 

Most of the area has now been drained and peat has been cut 

extensively. The remaining areas of scientific interest are now 

isolated blocks (Ratcliffe 1977). 

1.2 Shapwick Heath NNR 

Shapwick Heath NNR,. about 5 km west of Glastonbury, 

is part-of the once-extensive peat moor which developed between 

the Wedmore and Polden ridges (Hope-Simpson, Newton & Ricketts 

1962; Willis 1967). The southern margin of this much-modified 

raised bog almost meets the gentle slope of the Poldens; it covers 

an area of c. 2 km 2 
and lies at an altitude of 4 m. 
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By 1961. - when the Nature Conservancy negotiated a 

nature reserve agreement covering the majority (c. 500 acres; 

202 ha) of the site, the whole of Shapwick Heath had been cut 

for peat to a greater or lesser extent (Hope-Simpson & Willis 

1955). At this time, in fact, the site had existing planning 

permission for peat extraction but it was considered that, with the 

'old fashioned' slow systems of working, this did not present a 

serious threat. Soon after, however, the land was purchased by 

Fisons Ltd., and by use of up-to-date methods, extraction rates 

rose dramatically. Today c. 450 acres (182 ha) are being worked 

commercially and it is unlikely that more than 72 acres (29 ha) 

of the original National Nature Reserve will survive undisturbed. 

1.3 Scope of this report 

The problems involved with managing the areas that have 

not been cut for peat intensively and the after-use of the commercially 

worked out areas are discussed in this report. Where relevant, 

comparisons are made with other cut-over peatland sites, especially 

Thorne Moors, S. Yorkshire. Areas discussed are located in Fig. 1. 
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2. AREA 1 

This area consists of a block of peatland, adjacent 

to the current peat workings (area 2), about 50 acres (20 ha) 

in extent. For more than 10 years Fisons Ltd. have deferred 

peat operations here, at the request of the Nature Conservancy 

Council, in order to protect the Shapwick fen meadows (area 1c). 

2.1 Vegetation of areas la and lb (Fig. 1) 

The vegetation of areas la and lb consists of a tall 

carr dominated by birch and sallow, developed on an area which 
I 

has, at one time, been cut. Other species include Itrica gaZe., 

MoZinia caeruZea, PotentiNa erecta., CaUuna vuZgaris and Erica 

tetraZix. Several plants of Peucedanwn paZustre and one clump 

of Osmunda regaZis were observed. Hummocks of Sphagnum fimbriatwn 

and lawns of S. recurvum and S. squarrosum are common. 

2.2 Management of the water table in areas la and lb (Fig. 1) 

In order to prevent this carr from developing into a 

woodland, and to encourage the growth of species characteristic 

of undisturbed raised bogs and fens, the water table should be 

kept as near to the surface as possible. Also, the peat in area 

la contains a length of ancient trackway, which, if it is to be 

preserved, must be kept continually wet. There is clearly a 

problem here as Fisons Ltd. actively pump to bring the water table 
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below the current excavation level and this block of peat now 

lies about 2m above that level. The water table is currently 

b eing maintained at as high Ia level as possible by means of pumping 

the water from Fisons' workings into area la, as shown in Fig. 2. 

Several problems, however, have been encountered in using this 

technique. Firstly, in spite of the building of a clay wall 

(c. 1m thick) around the area and an arterial network of ditches 

designed to distribute water within the area, the water tends 

to back up in the direction of the pump. This is presumably 

because the water is being pumped into a relatively low-lying 

part of area la. The pressure of this backward movement of water 

may be one reason why a long fissure has developed in'the 'wall' 

of peat above the current workings. The 'wall' presently threatens 

to collapse into the Fisons' area. Another problem with this 

system is that area lb (which is higher than la) and the western 

end of la are not being kept wet enough. 

fissure in current workings 
pe: (area 2) 

N 

PUMP drove 

area la 11 1 area lb 

ditches to 
distribute water 

clay 'wall' 
tr-oýv- -e 

Fig. 2 Plan to show means of transferring water from the current 
workings into area la. 
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To solve these problems it is proposed to seal off the 

'wall' of area 1 with a clay bund or, embankment. Water would 

then be pumped directly into area lb, percolating into area la 

and the fen meadows. A grant from the Somerset Archaeological 

Society, who wish to ensure the preservation of the section of 

ancient trackway, may be available for this work. 

Once this scheme has been carried out it is recommended 

that checks be made on the pH and concentrations of chemicals 

within the circulating water. As Fisons Ltd. approach the clay 

underlying the peat in area 2, concentrations of certain nutrients 

may rise and these may have an adverse effect on the vegetation 

of area 1. If the water table does not rise sufficiently to 

initiate the eradication of birch, a policy of cutting, and 

perhaps chemical treatment of the stumps, should be pursued. 

2.3 Shapwick fen meadows 

Shapwick fen meadows are re-vegetated peat cuttings 

which have developed under the influence of base-rich waters from 

the surrounding hills. They exhibit a diverse vegetation 

characteristic of base-rich fens (Ratcliffe 1977) which is 

maintained by, and depends on, a traditional farming system of 

mowing or grazing. one deviation from the traditional methods 

practised here is the introduction of supplementary 

feed (hay) into the meadows. This invariably contains 

seeds of invasive, opportunist species which germinate and tend to 

eliminate the fen meadow flora. If possible the co-operation of 
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the'local farmer should be sought and the practice discouraged. 

In common with the rest of the area the water table should be 

maintained at, or just above, the peat surface. 

AREA 2 

Area 2 comprises c. 450 acres (182 ha) of peatland 

currently being worked commercially by Fisons Ltd. 

3.1 1 The after-use of area 2 

It seems likely that Fisons Ltd, will be able to remove 

all of the peat, right down to the underlying clay, as the lowest 

layers consist of soft Phragmites peat. By contrast, at Thorne 

Moors, S. Yorkshire, Fisons have abandoned areas covered by 

c. 50 cm of wood peat which their machinery is apparently unable 

to tackle. The situation at Thorne thus offers some possibilities 

for the rehabilitation of peatland plant communities. Given the 

situation at Shapwick, when Fisons have finished working the area, 

it would be desirable to attempt to establish beds of Typha 

ZatifoZia and Phragmites austraZis, the latter being a vegetation 

type which must have covered large expanses of land in the 

Somerset Levels 8,000 years ago when peat began to form. Other 

fen plants could eventually be introduced in an attempt to re-create 

fen communities. Beds of Typha latifoZia and Phragmites austraZis 

would also serve to lower the nutrient status of water being 

pumped into area 1. 
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3.2 The 'Avalon Lakes' scheme 

Plans for the after-use of this area have, however, 

already been made. Since the mid 1960's the Wessex Water 

Authority (and formerly the Somerset River Board) have considered 

that there is a potential to use the worked-out Somerset peat 

excavations for flood water storage and water supply purposes. 

A recent strategy suggested by Somerset County Council proposes 

that (subject to successful feasibility tests) a series of 

9 lakes covering a total of 2000 acres (809 ha) could be 

developed (Nature Conservancy Council, S. W. Region 1977). 

Dubbed the 'Avalon Lakes', it is suggested that these reservoirs 

would also bater for amenity interests such as recreation and 

wildlife conservation. 

One lake has already been developed at Shapwick. 

It has been proposed that lakes within the boundaries of Shapwick 

Heath NNR be set aside for wildlife. This view is endorsed. 

The expanses of open water are likely to favour some species of 

birds but it is probable that problems will be encountered in 

attempting to establish vegetation in an artificial lake lined 

with plastic sheeting. However, an attempt could be made to 

establish peatland vegetation in isolated basins within lakes 

if it were possible to line them with a layer of peat. In 

addition, reed beds could be established in lakes lined with a 

clay substrate. 
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AREA 3 

4.1 Vegetation of area 3 (Fig. 1) 

Area 3, c. 20 acres (8 ha) in extent, consists of a 

matrix of fen meadows and a more ombrotrophic vegetation type 

developed on cut-over areas. The latter vegetation type is 

dominated by AVrica gate., Molinia caeruZea and Eriophorwn 

angustifoZiwn. Eriophorum vaginatwn is rare. This is perhaps 

fortunate; at Thorne Moors tussocks of E. Vaginatum appear to 

exclude other species, particularly Sphagna. The area is divided 

into strips (perhaps reflecting past peat cutting methods) by 

slightly raised baulks generally colonized by birch, UZex 

europaeus., CaUuna vuZgaris and PotentiNa erecta and lower lying 

areas with sallow, Erica tetralix, Sphagnwn cornpactum and 

S. paZustre. Wet hollows and ditches contain Equisetwn fZuviatiZe 

and lawns of Sphagnwn recurvum and S. squarroswn. 

4.2 Management of area 3 

The area is presently managed by cutting down gorse, 

birch, AVrica gate and sallow on a strip rotation basis. To 

prevent the development of this community into a birch or sallow 

carr, it is recommended that this is continued regularly. Ditches 

in the area were enlarged by the Conservation Corps in 1978 to 

prevent their becoming completely overgrown. The effect of this 

management policy has been to encourage the growth of Sphagnum lawns. 
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If possible, it is recommended that the Conservation Corps excavate 

hollows with sloping sides in the drier areas down to the water 

table, in order to encourage the development of Sphagnum lawns 

characteristic of the wetter areas. The presence of extensive 

Sphagnum lawns in the area might eventually cause the initiation 

of ombrotrophic nuclei which would allow species characteristic 

of undisturbed raised bogs to colonize and spread. 

Any attempt by Fisons to cut this region should be 

strongly resisted because, apart from the existence of the present 

community, this area offers the greatest potential for the re- 

creation of raised bog communities. 

GENERAL REMARKS 

The re-creation of communities characteristic of 

ombrotrophic mires in any of the areas discussed will probably 

be rendered extremely difficult owing to the nutrient status of 

the water in the vicinity: the pH and concentrations of anions 

and cations in water pumped into area 1, inundating the fen 

meadows or associated with the underlying clay are likely to be 

greater than those which characterize ombrotrophic mires. In this 

case, a management policy of maintaining and creating poor (or 

even rich) fen communities should be pursued. 

Further management problems may be encountered as the 

water table in the whole reserve is lowered by the continued 

attempt, in the whole of the Somerset Levels, to-lower the water 

table to 'improve' agricultural land. 
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