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Abstract

In recent years, motion controls have become a prevalent input modal-
ity for virtual reality (VR) games, offering players richer ways to interact
with virtual environments. However, designing nuanced motion controls
remains a challenging task for game creators. Interactive machine learn-
ing (IML) has been proposed as a solution to better support the iterative
embodied process of movement interaction design. However, its appli-
cation to VR game motion control design poses unique challenges. The
goal of this thesis is to investigate the role of a novel IML design process
and tool for VR embodied motion control design that addresses these
challenges and supports game creators in their design process.

To achieve this goal, we first investigate considerations for integrat-
ing IML into game development pipelines, focusing on seamless integra-
tion with game engines. We then propose a novel IML process and tool,
InteractML, that addresses these challenges, offering native in-engine
integration.

We investigate the embodied design process with two studies involv-
ing game creators designing motion controls for VR games throughout
ideation, implementation and evaluation. Results show that in-medium,
embodied interaction design with IML enables game creators to bodily
explore, prototype, and evaluate VR movement interactions with richer
nuance. We find that designing for VR is better done in VR, that there is
a social embodied cognitive dimension to embodied interaction design,
and that there exists a dissonance between the creator’s first-person em-
bodied understanding of movement and the machine’s third-person com-
putational representation of movement.

In conclusion, this thesis presents a contribution to the field of VR
game motion control design, embodied interaction design and human-
centred IML. Our work has the potential improve the richness of motion
control design in VR games and to inspire further work in the broader
area of IML for creative applications.
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1 Introduction

Game interfaces have traditionally been limited to controllers such as keyboards,
mice, and gamepads, often operating within the WIMP (Windows, Icons, Menus,
Pointer) paradigm [304]. However, in the last two decades, motion controllers
have emerged as a novel and increasingly popular input modality for games. Mass-
market motion controllers like the Nintendo Wii [201], Playstation Move [272] and
the Microsoft Kinect [187] have allowed players to interact with games using nat-
ural body movements. With the renaissance and consumer market push of virtual
reality (VR) from the mid-2010s onward, motion controllers have become the de-
fault input modality for VR games. This is because VR aims to create a sense of
immersion and presence with high degrees of movement freedom, which motion
controls are seen to drive. As a result, motion controls have become an important
design space for games, promising different, possibly more intuitive and enjoyable
ways for players to interact with the virtual environment.

However, there aren’t standard motion control design methodologies or tools for
games, and designing or implementing precise and nuanced motion controls in
video games remains a challenging task, particularly when using conventional game
engine tools. Challenges include a design space limited by the sole reliance on
colliders or triggers [104] that limit nuance and richness in movement; adapting
movements to different body types [89]; and abstracting movement into meaning-
ful computational rules for games. The growing popularity and market penetration
of VR increase the urgent need for game engine tools that address these challenges
and allow for (a) faster exploration of the design space, (b) simpler movement in-
teraction prototyping, and (c) increased nuance in game motion control design and
implementation.

Unpacking why these challenges persist, Gillies [93] explains that designing move-
ment interactions with traditional approaches (as found in current game design
practice and tools) is held back by the usage of existing interface metaphors, rep-
resenting movement through rules, and interpreting movement via object interac-
tions. Movement is a complex and multifaceted phenomenon and there are many
different types of movements, each with their own unique characteristics and chal-
lenges. For example, designing a gesture-based interface for a mobile device re-
quires different considerations than designing a full-body motion capture system
for virtual reality.

In addition, movement interactions often rely on embodied movement knowledge
that cannot be fully communicated explicitly – it is a tacit understanding of how to
move one’s body in a particular way, which is often acquired through practice and
experience rather than explicit instruction [145, 175, 82, 93]. To better compu-
tationally capture such tacit knowledge, Françoise and colleagues [82] argue that
there is an embodied cognitive relationship between design and implementation,
where designers might realise how their movements don’t feel as expected once
implemented and require iterative loops of design and implementation to compu-
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tationally express their intent. Therefore, Gillies [93] reasons that interactive ma-
chine learning (IML) can be such a design and implementation solution to better
capture the iterative embodied cognitive process behind movement interaction de-
sign.

Machine learning (ML) techniques can also be a solution because of their ability to
process nuanced movement data [93]. ML techniques have been shown to detect
fine-grained differences in movement with great results by identifying patterns in
motion capture data [307]. Break-throughs in motion tracking via ML techniques
are commonplace, with a fundamental shift away from algorithmic rule representa-
tions to compute features and movement [151]. However, implementing standard
ML techniques still requires significant expertise not common among game de-
signers and other creative practitioners interested in using movement interactions,
such as musicians [74], dancers [172] or technology artists [113, 221]. To support
these non-ML expert users to engage in movement interaction design exploration
and iteration, IML interventions have been proposed, developed, and validated as
working approaches, with promising results emerging via GUIs that guide non-
experts in performing ML tasks [63]. IML approaches present a so-called model
steering loop, where users can iteratively train a machine learning model by (a) se-
lecting or modifying features, (b) generating or revising pairs of human movement
to model output examples as training data, and (c) selecting or modifying model
parameters [63]. Studies investigating the IML iterative approach found that non-
experts were able to generate ML models to correctly perform the diversity of tasks
they desired, from recognising pictures to producing music [73, 6].

This iterative implementation with IML can be a solution for non-ML expert game
creators designing motion controls for games. Still, IML-based game motion control
design poses its own set of challenges that must be addressed. Firstly, designers
must work with game development tools and pipelines to ensure that the motion
controls are integrated seamlessly into the game, and currently no off-the-shelf
IML solution offers native integration with game engines [74, 6, 80, 63], which is a
necessity as part of the game development process [217]. Secondly, designers must
be able to evaluate and steer the design process towards the desired player expe-
rience. This requires a way to feed game creator evaluation into the steering loop
to ensure that the design meets the desired player experience goals. Evaluation
of IML remains a challenging task because of the subjective nature of game cre-
ation practice, which yields standard ML evaluation metrics (i.e. accuracy, F-score,
squared error) insufficient and many times requires support from qualitative ap-
proaches [73, 276]. Quantitative measures can investigate and describe algorithm
behaviour (algorithm-centred evaluation), while qualitative measures can inform
about user behaviour (user-centred evaluation) [26]. Hence, IML game develop-
ment practices requires game creators take into account intended player experi-
ence outcomes, which adds further complexity and specificity to the evaluation
methodology because current IML quantitative metrics don’t capture player expe-
rience [106]. Additionally, and as mentioned earlier, creative practitioners are not
necessarily experts in machine learning, which requires a simplified approach to
tackle the adoption of IML in game design.
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1.1 Our IML tool: InteractML

In short, there is an opportunity for enhancing game development processes via
IML for movement interactions. IML stands out as a promising approach since it
allows users to directly act out their tacit embodied knowledge [93]. InteractML,
the tool we developed for this end, is an interactive supervised learning solution
integrated into the Unity 3D game engine in the form of a plugin [57]. Plant et al.
[221] and Hilton et al. [113] investigated how creative practitioners understood
and used InteractML to create a series of digital art pieces. Game development
shares similarities as a creative field with digital art, but it is also differentiable by
its heavy industrialisation and product end-goals. Videogame production manifests
itself in technology that allows game designers to quickly prototype and iterate on
game ideas and mechanics, usually simplifying logic interaction into reusable game
engine components through a graphical editor [217]. Game development occurs
within in-house or third party game engines that any new process, such our IML
solution, needs to interface or integrate with [217]. Hence, any new system for a
game engine should ideally exist as a no-frills integration that supports the modular
and iterative industrial nature of game production, meant for digital manufacture
of games on a time efficient schedule [138]. Videogame design goals usually at-
tempt to elicit positive player experiences that will induce players to continue play-
ing and differentiate the end-product from the competition [250]. Game designers
usually perform personal qualitative experiential assessments while implementing
interactions before engaging in external passes of quality assurance with players
and testers [16]. How movements are implemented, iterated on, and recognised
to ensure such a positive end-user experience is therefore relevant in making a
successful game [19, 126].

Designing game movement interactions with InteractML differs from other IML
processes studied in the literature because of the above-mentioned industrial na-
ture of game development requirements and design goals. InteractML, as a toolkit,
supports modularised and iterative prototyping of interactions that are integrated
directly into the game engine, and can be incorporated into game development pro-
cesses by interfacing with game engine components and scripts in the IML Graph
editor [57, 113]. Such a no-frills integration has the intention of reducing friction
and iteration time in a creative process beset by time consuming challenges [138,
217]. The interaction loop of InteractML aims at rapid iterative implementation
and direct evaluation of movements inside of the game scene, where designers can
experiment with movements that are not only usable or efficient, but also pursue a
specific game feel [55] or aesthetic [154], and that are engaging [160], immersive
[314], natural [180], or enjoyable [265] to perform. Furthermore, InteractML offers
both a desktop visual scripting interface and a VR model steering interface to fa-
cilitate embodied interaction design processes. The supervised learning paradigm
used by InteractML requires raw data to be processed into meaningful features
that the algorithms can be trained on. The process of synthesising such features
from data is known as feature extraction [236]. InteractML offers a selection of rel-
evant movement feature extractors through its node interface that users can then
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select from to generate their training datasets [57, 113]. The process of selecting
a reduced significant representation set among the feature extractors is known as
feature selection, and the selected feature sets will have a substantial effect in the
discrimination ability of the learning algorithms [178]. Iterative feature selection
is a relevant and challenging stage in the interactive supervised learning workflow
when implementing and evaluating motion data [73, 178], and it has not been pre-
viously investigated with InteractML.

Therefore, there remains open questions in the literature. Firstly, there are no clear
standard design methodologies for motion controls in games which are currently
the standard input modality in VR gaming [103, 89, 251, 15, 98]. Secondly, there is
no tooling that marries the design and implementation processes to make use of the
tacit embodied knowledge occurring from motion control design [82, 93]. Thirdly,
even though IML has been previously investigated on other creative domains [74,
221, 172], it has not been investigated in motion control creation for games where
design, implementation and evaluation stages are iteratively followed [251, 305,
16, 98] inside of game engines [217, 301, 83].

1.2 Research Questions and Thesis Overview

The goal of this thesis is to investigate the role of a novel in-medium design process
and IML tool for VR embodied motion control design. Consequently, in this thesis
we investigate the following research questions:

1. What are the design and implementation considerations for an IML tool for
virtual reality VR game motion control design?

2. What is a functional IML tool that addresses these considerations?

3. What are the opportunities and challenges that game creators encounter when
ideating VR game motion controls in-medium?

4. What are the opportunities and challenges that game creators encounter in
prototyping and evaluating game motion controls with an IML tool?

In order to answer the research questions, we will review the relevant literature
in chapter 2 on motion controls, design and development methodologies, positive
experiential qualities of motion controls, embodied interaction design, and interac-
tive machine learning. We will look into answering research question 1 in chapter
3, where InteractML will be described in detail as a tool for game motion control
design inside a game engine. To do this, we will expand on prior published work by
the author of this thesis [57, 219, 220, 221, 113]. Gonzalez Diaz and colleagues [57]
published for the first time about InteractML at IEEE CoG 2019, where the author
of this thesis acted as the main author for the publication and the main programmer
of the tool under the supervision of Professor Rebecca Fiebrink and Phoenix Perry.
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Plant and colleagues (2020, 2021) [219, 220, 221] and Hilton and colleagues (2021)
[113] published about how InteractML was used by technology artists as part of an
embodied design methodology using machine learning at ACM NordiCHI’20, ACM
MOCO’20, ACM TEI’21 and ACM VRST’21. In these publications the author of this
thesis acted as a co-author and lead programmer of InteractML.

We will answer research question 3 in Chapter 4, where we will investigate how VR
game creators ideate and design VR movement interactions in-medium following
an embodied ideation methodology, drawing influences from bodystorming [246,
23], embodied sketching [174] and somaesthetics interaction design [116]. The
chapter qualitatively compares game creators involvement with the methodology
from an in-medium and out-of-medium perspective. The chapter expands in depth
prior work published at the ACM CHI’21 Workshop on SocialVR, where Carlos was
the main author [102].

We will answer research question 4 in Chapter 5, where we will investigate how VR
game creators prototype VR motion controlled games and implement movement
interactions using InteractML in the Unity3D game engine. In this chapter, we
investigated creator’s iterative development of the movement interactions from a
games-focused IML perspective, which involved studying (a) how they define and
train IML models, (b) how do they subjectively assess the IML models’ behaviour,
and (c) how do they reflect on their assessment to debug/steer/integrate the IML
models as part of their game scenes.

Finally, in chapter 6 we reflect on the findings from the thesis overall and their
implications for games development, motion control design, interactive machine
learning and movement technology. We suggest a series of potential promising re-
search directions based on our reflections and conclude the thesis with a summary
of findings.
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2 Related Literature

2.1 Introduction

This chapter aims to familiarise readers with the terms, methods and essential con-
cepts behind the creation of motion controls in video games, embodied interaction
design, and interactive machine learning. In this chapter, we aim to identify the
state of the art and open questions that motivate the thesis. To achieve this, we
will conduct a comprehensive review of the literature on game motion controls in
VR, motion control design and development practices, experiential qualities of mo-
tion controls, embodied interaction design methodologies and interactive machine
learning.

Section 2.2 describes forms of motion controls in games and their renaissance in
VR gaming. Next, section 2.3 introduces and describes literature on game motion
control design and development. The section highlights how while there is prior lit-
erature discussing design guidelines, the topic of interaction design methodologies
has received less attention in game design literature. As the aesthetic experience
or ‘game feel’ of controls matters greatly in video games, we next cover what posi-
tive experiential qualities motion controls can deliver to players in movement-based
games in section 2.4. Since the topic of movement interaction design has received
less attention in game design, as per section 2.3, there is a need to explore the
broader movement interaction design literature in the human-computer interaction
(HCI) field to gain a better understanding of how to design effective and engaging
movement interactions in VR games. Therefore, section 2.5 introduces embodied
interaction design design principles and methods to discuss what challenges exist
when designing and implementing movement interactions from a creator perspec-
tive. Finally, section 2.6 introduces the interactive machine learning (IML) method-
ology as a methodology to implement movement-focused interactions, and review
existing IML systems for creative use in the literature and evaluation methodolo-
gies of IML systems. At the end of the chapter, we will summarise the state of the
art and identify the design and implementation considerations for an IML tool for
virtual reality VR game motion control design.

2.2 Motion Controls in Games

After first being introduced to the mass market with the Nintendo Wii and Microsoft
Kinect, motion controllers have experienced a renaissance in virtual reality (VR)
gaming. All current popular VR platforms – HTC Vive, Valve Index, Meta Quest or
PlayStation VR – by default support motion control and offer bespoke controllers,
presumably to increase immersion and presence in the virtual world. We define
motion controls as computer interactions that require some form of physical move-
ment to perform them, and motion controllers as the hardware input device that
tracks user physical movements into computer signals.
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There are various methods for tracking motion: sensing the whole body, using one
or both hands, or tracking the head. Notably, all VR platforms support and most
published VR games today require two-handed motion control with head tracking.
However, due to its novelty, there are few if any best practices for two-handed
motion control schemes for games, particularly when it comes to its effect on player
experience. Due to this, we consider important to review current forms of motion
controllers and design dimensions.

2.2.1 Characteristics and variants

To understand possible best practices for VR motion control design, we first need to
understand motion control characteristics. Motion controls have a series of char-
acteristics that describe how well they track user motion and position in space,
namely accuracy, update rate, latency, drift and jitter [39]. Below we provide the
definitions from Burdea and Coiffet (2003) [39] for each technical characteristic of
a tracker:

• Tracker accuracy: “the difference between the object’s actual 3D position
and that reported by tracker measurements”.

• Tracker update rate: “the number of measurements (datasets) that the
tracker reports every second”.

• Tracker latency (or lag): “the time delay between action and result. In
the case of the 3D tracker, latency is the time between the change in object
position/orientation and the time the sensor detects this change”.

• Tracker drift: “the steady increase in tracker error with time”

• Tracker jitter (or noise): “the change in tracker output when the tracked
object is stationary”.

Depending on how many spatial axes the sensors track, a motion controller can
have different degrees of freedom, with 6 degrees of freedom representing com-
plete three-dimensional movement and rotation in space [39]. Sensors differ as
well. The major distinction here is whether they measure position indirectly with
accelerometers, gyroscopes or magnetometers; or directly with external visual,
sonic or magnetic trackers [39]. Nowadays mass-marketed game motion controllers
mix direct trackers with indirect sensors to calculate six degrees of freedom [114].
In addition, input devices can differ in how many communication channels enable
users to interact with a computer. Devices can be unimodal if they are based on one
modality, or multimodal if they combine many [140]. Moreover, input can be ana-
log if it allow infinite amount of input values, or digital if it is a finite and discrete
number [155].
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The relation between input and output in a motion controller is commonly described
with a transfer function, which is a mathematical transformation of input data to
the desired output [114]. The most relevant transfer function to this thesis is the
control-to-display (C:D) ratio or gain function, the ratio between the movement of
the input device and the corresponding movement of the controlled virtual object
[114]. This ratio is well known in the context of traditional 2D mouse interfaces
[21], but it is kept as 1:1 in VR to ensure a sense of presence and embodiment
[142].

The output or feedback that the controller can give back to the user can be of
different nature. Feedback can be proprioceptive, which relates to the position and
motion of one own’s motion; haptic for vibro-tactile or temperature information;
and visual, when the output can be perceived with the user’s eyes [39].

However, none of this address how it feels to hold a controller in one hands. The
physicality of the controller can be described in terms of ergonomics, gripping,
button disposition, shape, specialization, aesthetics, weight or the building material
used [206]. The resistance of the device can be framed as elastic, viscous or inertial,
depending if it increases with displacement, movement, or acceleration [60].

2.2.2 Current common forms in VR games

Once we have understood motion control characteristics, we need to have an overview
of currently available VR motion controls for games. This will allow us to frame our
understanding of current best practices later on. There are a number of different
VR setups available to the mass-consumer market. The most popular ones are the
HTC Vive [119], Meta Quest [186], Valve Index [10] and PlayStation VR (PSVR) and
PSVR 2 [273, 274]. These VR system offer 6 degrees of freedom head and controller
tracking by combining optical trackers with magnetic ones inside the headset and
controllers. The optical trackers can be external in the case of the HTC Vive, Valve
Index or PSVR1 [119, 114, 273], or internal on the headset in a ‘inside-out’ config-
uration in the Meta Quest and PSVR2 [10, 274].

In addition, all of these systems rely on the use of two-handed motion controllers
to track player hand movement. The ‘simplest’ controller, the PSVR1 PlayStation
Move [272], has the shape of a wand, with four buttons following the classical
PlayStation aesthetic, a fifth wide move button that is positioned in the front-centre
of the device and a last trigger linear-digital button in the back of the controller
(Fig. 1). The controller embeds an accelerometer, a gyroscope, a magnetometer
and a LED sphere to be tracked by an external visual optical tracker [272]. The
controller is built with plastic and offers haptic feedback with vibrations.

The HTC Vive controllers are as well wand-shaped, but they display a more spe-
cialised button where the Move button was in the previous controller (Fig. 2). This
specialised button is a haptic trackpad that can detect where the user is touching
and pressing on its surface. Instead of having the general purposed buttons at the
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Figure 1: PlayStation Move Button Layout [272]

front, they are disposed in the back in the form of two grip buttons, together with
a trigger with similar characteristics to the PlayStation Move trigger button. This
controller is equipped with 24 sensors to be tracked by HTC Vive’s optical tracker
lighthouse [119].

The Valve Index offers an iteration of the controller originally called Valve ‘Knuck-
les’ [303] but nowadays referred to as ‘Index Controllers’ [10], which offer a differ-
ent disposition of the same buttons, reallocating the grip buttons to the front and
modifying the original wand shape to adjust the gripping to the hand (Fig. 3). It
also includes haptic sensors for all the fingers, so the system knows whether the
player is just having the fingers over the button or pressing it, to emulate the feel-
ing of a hand in-game [10]. The controller includes a strap to adjust it to the palm
of the hand to have the controller attached to the hand even with an open hand
(Fig. 3).

The other popular family of mass-marketed motion control designs are the Meta
Quest Touch [186] and PSVR2 controllers [274], and they display a shape reminis-
cent of a gun grip, with a button disposition similar to the Index Controllers, but
without the strap (Fig. 4). The controller is also equipped with haptic sensors on
each button to know when the finger is on the button but not pressing it. Instead
of a big trackpad, it offers a centred joystick with two buttons below it and two
triggers in the back [186]. The grip of the controller is designed to fit a half-opened
hand.

Additionally, it is important to notice the existence of less popular motion controls
in the field of bespoke motion controls for VR games. A very good recent example
is the PlayStation VR Aim Controller [271], which is designed to play First-Person
Shooter Games exclusively. The controller resembles the shape of a plastic two-
handed fire gun, but is equipped with the same sensors as the PlayStation Move
and displays two triggers and several more buttons (Fig. 5)

Lastly, many of these VR headsets support optical markerless hand-tracking via the
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Figure 2: HTC Vive Controller [119]
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Figure 3: Valve Index Controller [303]

Figure 4: Oculus Touch [114]
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Figure 5: PlayStation VR Aim Controller [271]

internal optical trackers on the ‘inside-out’ VR tracking configuration [10, 186].
With this input modality, users can perform mid-air interactions with their hands.
Still, the two handed and 6 degrees of freedom paradigm still holds, hence the focus
from this thesis on supporting such kind of interactions.

2.2.3 Summary

This section introduced and described current motion controllers in games, and
shown how VR is the field were motion controls had a renaissance after the demise
of previous commercial consumer entertainment systems in the early 2010s. The
section described the vocabulary to technically describe tracking qualities of mo-
tion controllers, form factors, button dispositions, and the prevalence of 6 degrees
of freedom in current VR systems.

2.3 Game Motion Control Design & Development

2.3.1 Introduction

In section 2.2 we introduced what current game motion controllers exist and how
motion controls can be technically described. However, since the focus of this
thesis is on game creators, it is important to understand how motion controls can
be designed and implemented.
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2.3.2 Game motion controls design principles

VR is the medium where motion controls are currently commonplace in videogames,
but creators worked with motion controllers before with more limited sensing ca-
pacities (see section 2.2 for reference). Here, prior literature has looked into design
guidelines and suggestions to incorporate movement into games.

Norton and colleagues (2010) [205] explored strategies and guidelines for develop-
ing full body videogame interfaces. The authors followed a Wizard-of-Oz methodol-
ogy with the game Mirror’s Edge to explore patterns in participants spontaneous
movements in front of the screen while an operator played the game for them inter-
preting their movement. The authors argued that it was important to differentiate
a set of “constrained interactions”, which they defined as “those performable in a
confined space, such as a living room with a game console setup”. Their synthesised
guidelines are as follows:

• “Design the environment to quickly challenge natural locomotion and then
support the switch to compensated locomotion”

• “Expect running in place to be the compensating locomotion technique”

• “Retain the ability for natural locomotion in short travel tasks”

• “Design environments to challenge participant’s steering early but unlike lo-
comotion, expect to have to guide them to a particular technique”

• “Enable a means for players to recall in-game interaction possibilities for a
full body interface”

• “Use head orientation to control user’s gaze and the body’s orientation to
control steering”

• “Full body gestures may have cross interference therefore care should be
taken in assigning functions”

• “Full body interfaces may have more gestures, but participants readily under-
stand them and can use them”

• “Predicting possible player control gestures may be achieved by Pierce’s as-
sumption breaking methodology [218]”

• “Fatigue needs to be managed as a part of the design of a full body video
game”

The authors also listed a gesture set to play first-person games like Mirror’s Edge,
which can be found in table 1.

Gerling and colleagues (2012) [89] suggested seven guidelines for the design of
full-body interaction for older adults, based on two user studies with older adults
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Table 1: Gesture sets synthesised from Norton and colleagues (2010) [205]

(i.e. 60 to 90 years old) using the Kinect sensor, which uses computer vision to
track full-body motion. The authors argue that their design guidelines relate to the
guidelines from Norton and colleagues (2010) [205] in terms of avoiding too many
gestures and taking fatigue into account. In addition, the authors highlight the
potential benefit of configurable gestures to ease the cognitive cost of learning new
gestures and increase the comfort for individuals. Their synthesised guidelines are
as follows:

• “Create inclusive games by embracing age-related physical and cognitive im-
pairments”

• “Create interaction paradigms that adapt to individual differences in player
range of motion”

• “Provide fatigue management and prevent overexertion by appropriate game
pacing”

• “Offer difficulty adjustments between players and individually scale challenges”

• “Provide natural mappings and clear instructions that support gesture recall
to empower players”

• “Integrate continuous tutorials and player prompting to facilitate gesture learn-
ing and interaction”

• “Implement easy menus, startup and shutdown routines to encourage inde-
pendent play”

Hara and Ovaska (2014) [107] synthesised a set of design heuristics based on an
extensive list of player problems arising from a systematic study of non-academic
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game reviews for the Kinect and PS Move. The authors grouped their heuristics
into two broad themes: User-Centered Design of Movements (i.e. H1, H2, H3, H4,
H5, H6, H11) , and Technical and Spatial Aspects in Motion Control (i.e. H7, H8,
H9, H10, H12, H13). The complete list of heuristics can be found in table 2.

Silpasuwanchai and Ren (2015) [263] investigated how to several gestures could be
performed simultaneously in gaming, similarly to how players use several buttons
at the same time in a gamepad. They performed three user studies following the
elicitation approach, where players spontaneously come up with gestures for given
actions that happen at the same time in a videogame (Fig. 6). The authors syn-
thesised a set of guidelines to assist creators in designing simultaneous full-body
gestural interactions. The guidelines are as follows:

• “Prioritize events”

• “Prioritize immersion over playability”

• “Use the hand moderately”

• “Exploit transferability between leg and hand and right and left body parts”

• “Accommodate high tolerance for recognizing gestures”

• “Gesture reuse”

• “Design multiple gestures for one event, when needed”

• “Reducing fatigue by a small amount can have great impact”

• “Design kinetically feasible combined gestures”

Additionally, industry game designers also published design guidelines extending
from direct experience releasing motion controlled games to the consumer market,
albeit not in academic journals and conferences. For instance, Jack (2011) [129]
dissects motion controls from his industry experience. He reasons a series of de-
sign guidelines meant to reduce misconceptions and mistakes that game designers
transitioning from designing regular gamepad control schemes to motion control
schemes. His rules are as follows:

• “Motion Control Games are not like Controller Games”

• “There are actually only so many motions”

• “It’s all about depth”

• “Computers don’t interpret people, they interpret points”

• “Fatigue is a big freakinf́actor!”
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Table 2: Design heuristics for motion control in games from Hara and Ovaska (2014) [107]
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Figure 6: A consensus of an user-define simultaneous gesture set for an adventure game
[263]

• “Resistance and feedback are more important than ever”

• “Controls can (and maybe should) be interpretive”

• “Be wary of why conventions exist”

Additionally, Rogers (2014) [238] discusses game controls from his experience as a
game designer, and synthesises the following design guidelines for motion controls:

• Gameplay breaks can avoid fatigue

• Recognition latency can cause player frustration

• Broad body movement can be better recognised than subtle motions

• Gestures should match their “real-world counterparts” where possible

• Players will use movements once learned, avoid introducing variation to ges-
ture sets

• Graphic should guide player motion

• Constant audiovisual feedback is required to reduce player confusion

• Mid-air shape drawing can be misrecognised if the shapes are not simple

• Motion controls can be mixed with traditional button inputs to avoid saturat-
ing players with motion
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If we compare these sets of design guidelines from both industry [129, 238] and
academia [205, 89, 263], we can see that there are shared common themes. All de-
sign guidelines point out the importance of avoiding fatiguing the player and avoid-
ing challenging movements because of the diverse body abilities of players. They
also point out limitations with the physical space that players might have avail-
able at home, and how that might constraint player movement and gesture choice,
with Norton and colleagues (2010) explicitly naming them as “constrained interac-
tions” [205]. Similarly, all authors reason that there can be computer recognition
limitations, and how to tackle that from a player perspective (i.e. give constant
feedback to the player when they perform a movement) and a machine perspec-
tive (i.e. avoid very similar gestures or gestures that require precise movements).
However, these design guidelines were proposed for motion controls that worked
in front of a flat screen with limited degrees of freedom, and modern VR scenarios
have a very different spatial disposition. In modern VR systems, the player has the
freedom to move in the entirety of the available space, instead of the ‘cone’ that
originates from the TV outwards. Furthermore, the VR controllers track 6 degrees
of freedom, and there is no need to make approximations from signals detected
from accelerometers or external cameras. To our knowledge, there is very limited
research looking into design guidelines for VR game motion controls. Çatak and
colleagues (2020) [46] synthesised a series of guidelines from five successful VR
games published between 2016 to 2018. The authors divide the guidelines between
perceptional, interactional and navigational design guidelines. Since the focus of
this thesis is on interaction design, we list here their interactional design guidelines
for VR games. The authors stress the importance of visual signifiers and interac-
tional constraints. They define signifiers as visual cues that “inform the user to
perceive affordances and figure out how things work [...] A signifier can be known
as an existed experience from the player’s mind or can be learned in the game”.
They define interactional constraints as “imitations of actions and behaviors, which
make interaction design feasible and simplified . [...] Constraints are mostly used to
limit the number of dimensions for virtual reality interactions”. Their synthesised
guidelines are as follows:

• “Intuitive interaction designs easily fit the mental models of players. For ex-
ample, shooting gun interaction in most VR games uses the trigger button to
simulate real gun shooting”

• “Interaction methods must be consistent throughout levels. Consistency is
necessary for all games, but it is essential for VR games. It is because VR is
a full-body experience. If things keep changing between levels, players may
lose orientation.”

• “Signifiers should be easily perceivable by users, but too many signifiers can
be confusing. Therefore, they must be used in the proper amount.”

• “Constraints must be used where appropriate. If constraints are not used
appropriately, they make it harder to complete interactions.”
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Figure 7: The “Tomato Presence” VR design concept [251]. Game designers from the
Owlchemy Labs game studio found in 2017 via playtesting that players responded more
positively to the object grabbed acting as a stand-in for the hand.

• “Constraints can be both realistic and unrealistic.”

• “Feedbacks are essential for effective interactions. However, designers should
be careful not to use too much feedback which would overwhelm the player.”

Unlike of the lack of academic design guidelines for VR motion controls, industry
venues have seen an abundance of game designers sharing insights they learned
from their direct work experience releasing VR games to the consumer market.
For instance, the Games Developer Conference (GDC) is an international annual
conference known for its applicable talks from game studios into all topics behind
crafting a game. In their 2017 GDC talk, Alexander Schwartz and Devin Reimer
from the game studio Owlchemy Labs discussed design guidelines synthesised from
their experience developing the VR game hit Job Simulator [251]. The guidelines
are as follows:

• Adding physics to every object

• Near-field manipulation so that objects are in player range

• Account for players can have pre-conceived expectations when interacting
with objects

• Every object needs a purpose

• “Tomato Presence.” (Fig. 7). The object grabbed in the hand acts as a stand-in
for hand presence.

Similarly, game designers Dave Bennet and Patrick Jalbert from the game studio
Schell Games discussed their experience of developing the VR sword fighting game
Until You Fall at GDC 2020 [15]. However, they moved away from general object
interactions because their game focused on sword swinging. They prompted the
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player to focus on sword movements by actually removing object interactivity from
any other entity that wasn’t a sword or an enemy. Their design guidelines are as
follows:

• Traditional non-VR game feel designs can work in VR. For instance, using “hit
pause” where the animation of the enemy pauses before hitting the player,
screen flashes on hits, or camera shakes with powerful swings.

• Secondary VR interactions can distract the focus of the game. For instance,
allowing to grab any object introduces design complexity instead of focusing
on the swordplay. The designers brought that to the extreme where the player
couldn’t even drop the sword.

• Supporting the “player fantasy”. For instance, prompting heroic poses and
postures, or requiring big and exaggerated sword swings. The designers
prompted different movement styles by rewarding each style (i.e. quick wag-
gles would increase the “Rogue” power, whereas big swings would increase
“Bruiser” power).

Design guidelines can play a crucial role in the creation of motion controls, as
they provide a set of principles that guide designers in exploring the design space.
The industry VR game interaction guidelines presented in this review highlight the
tension between designing general object-focused interactions and the richness of
movement. While general object interactions are concerned with manipulating ob-
jects within a virtual environment in a playful but physically plausible way, such
as in Job Simulator (2017) [251], specific object interactions highlight the chal-
lenges of designing and creating a rich and diverse set of movements with that
particular object, as in the sword swinging in Until You Fall (2020) [15]. Çatak and
colleagues (2020) [46] synthesised such VR interaction breadth-or-depth tension in
VR via their interactional constraint guideline, in which actually constraining the
object interaction set allows designers to focus on interaction depth rather than
interaction breadth. Interestingly, once comparing conclusions from non-VR mo-
tion control design guidelines to VR ones, we see that constraining interactions is
suggested as a design trait to avoid [202], while in VR is suggested as a solution to
the breadth-or-depth tension [46]. Additionally, non-VR motion control guidelines
make a stronger focus on the amount of gestures [263] instead of on the richness of
the gestures [15]. Fatigue is a dimension that isn’t covered in VR guidelines, while
the object focus isn’t present in non-VR guidelines, when presumably players can
get fatigued in VR and players would use objects in non-VR motion controls. On
the other hand, both ‘families’ of guidelines highlight the importance of constant
movement feedback [129, 89, 238, 46, 15] and visual cues or “signifiers” [205, 89,
238, 46, 15].

Nevertheless, previous work has focused on synthesizing design guidelines, but
has not provided detailed methodologies for their implementation. Gomes and col-
leagues (2020) [98] suggested an iterative design toolkit for VR experiences. Their
design toolkit consisted of the following phases:
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1. Start: a set of reflective questions about the motivation of the project to an-
swer by the creators.

2. Empathy: test, watch and learn from existing VR applications, as well as
establishing a ground vocabulary to use in the project.

3. Define: frame the project and list potential challenges.

4. Generate: conception of novel or existing solutions for identified challenges.

5. Select and refine: work on improving the best candidates to identify points
of tension in the design of the solution or the development of the solution.

6. Prototype: transform best candidate with less tension points into a digital
prototype.

7. Evaluation: run user studies to gather data about the usability of the proto-
type.

We can see that Gomes and colleagues (2020) [98] motivate the need for such
methodologies, but did not delve into the specifics of their design steps, which
could be considered the (4) generate and (5) select and refine stages. To address
this gap, it is necessary to review the literature on movement interaction design
from an HCI perspective to gain a better understanding of how motion controls can
be effectively designed. We will review such literature in more detail in section 2.5.
Still, Gomes and colleagues (2020) explicit mention the iterative synergy between
the design stages, and the prototype and evaluation stages. This is inline with
Vanderdonckt and Vatatu’s (2018) [305] suggested break-down of gestural user in-
terfaces of (1) design, (2) engineering and (3) evaluation.

Therefore, in order to have more complete view of design methodologies, it is essen-
tial to understand how motion controls are implemented during the game develop-
ment process. Game engines are common pieces of software used for implementing
motion interactions in VR environments. Thus, the next section will explore in more
detail the concept of game engines and discuss game development as a process.

2.3.3 Game development and game engines

Gomes and colleagues (2020) mention an iterative synergy between the design and
prototyping stages in game creation [98]. Therefore, here we focus on how to create
games and game motion controls using the standard software implementation tool:
the game engine. The concept of a game engine has been previously defined as “a
framework comprised of a collection of different tools, utilities, and interfaces that
hide the low-level details of the various tasks that make up a video game” [260].
Nonetheless, the idea of what a game engine is can sometimes be dependent on
the genre of the game at hand (i.e. a racing game engine, or a first-person shooter
game engine) [9]. Modern game engines are considerably more generic [104]. One
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of the most popular game engines is Unity3D [300], which universities regularly
use for teaching and research [318, 156, 7], and which is widely used in the games
industry [137].

Petrillo and colleagues (2009) [217] show how game development is a working field
beset by a plethora of industrial challenges, including management, communication
and technological problems. They analysed videogame postmortems, which can be
described as post-release reports of what went well and what went wrong with the
development process. They found that, even though most problems were reported
to be managerial, technological problems with game engine tools were present in
60% of games studied, with 35% of games reporting specifically problems with
their tools. They illustrate such problems with a quote from the postmortem of the
videogame Diablo II, where the developers expressed how important was to have
tools that operated within their game engine [217]:

“The greatest deficiency of our tools was that they did not operate within
our game engine. We should have made tools that let us create content
within the game engine” [217]

Kanode and Haddad (2009) [138] also argued for the need to optimise tools and
pipelines to ease game development processes. Wang and Nordmark (2015) [310]
studied what game developers considerered important when working with software
architectures and creative processes in game engines. Because of the interdis-
ciplinary nature of game development, where programmers work together with
designers and artists, it is important to provide scripting solutions to support the
creative side of the team (i.e. designers and artists) where the underlying technical
complexity is simplified or hidden. Additionnaly, the authors found that scripting
languages are preferred as they can help rapid prototyping of levels, scenarios or
behaviours.

Aleem and colleagues (2016) [5] investigated the critical success factors in game
development, and found more evidence on how industrial and management require-
ments beset the game development process. Technological problems can be en-
tangled with management challenges, hence, streamlining and simplifying game
engine and asset technologies are of great importance to reduce friction points
during the development lyfecycle.

Marklund and colleagues (2019) [16] performed a systematic literature review on
game development processes and found that there is a lack on agreement on com-
mon practices and definitions on what an“agile” development process constitutes.
They highlight the agreement that, while a formally defined process doesn’t exists,
there seems to be a clear pattern where the development process is non-formally
highly iterative with strong reliance on regular playtesting loops. Newell and col-
leagues (2021) [199] stressed how iterative game development processes are still
prevalent and empirically showed how regular and detailed play-testing was corre-
lated with better game quality and ‘healthier’ working processes.
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Therefore, there is consensus in the literature that game development is a process
challenged by its industrial nature [217, 138, 5] where iterative development pro-
cesses are predominant [16, 199]. A solution to help reducing industrial challenges
and help iteration time is to streamline tools and technology to work within the
game engine [217, 138] in the form of scripting languages for rapid prototyping
[310].

2.3.4 Motion Control Toolkits

To understand potential best practices in motion control implementation, we now
look at what motion control toolkits exist for game engines. Before (in the past with
Wii, Kinect, PSMove) motion control toolkits that recognised user movement were
in-house, and unfortunately there we don’t have available information of how such
systems looked like in editor, as current mass-adopted game engines display sys-
tems on two categories: (1) Interaction Toolkits and (2) gesture recognisers. This
subsection focuses on the Unity3D game engine [300] tools, since it is representa-
tive of other engines currently available (Unreal Engine, Godot Engine) because of
its matured and establised full VR development support.

In the field of VR game motion controls development, a number of in-engine soft-
ware toolkits appeared since 2015 to simplify the implementation and prototyping
of motion controlled interactions [1, 64, 188, 301]. We will refer to these toolkits as
interaction toolkits, as they focused on interactions between the user and the VR
environment. We briefly describe each of them below:

• NewtonVR [1]: an interaction toolkit that allows to “pick up, drop, throw,
and use held objects”. NewtonVR focuses on offering a more believable object
interaction set than what non-VR games previously used

• Virtual Reality Toolkit (VRTK) [64]: an interaction toolkit offering a col-
lection of modular and generalised components to specify object and player
interactions in VR, such as locomotion, grabbing or interacting with virtual
menus

• Mixed Reality Toolkit (MRTK) [188]: an interaction toolkit offering several
features and ready to use components to prototype interactions with objects
(e.g. grab, pick, throw) or menus (e.g. sliders, panels, buttons, selections).

• XR Interaction Toolkit (XRI) [301]: an interaction toolkit developed di-
rectly by Unity, which aims to unify support between VR hardware vendors
and offer modular components to specify object and player interactions, akin
to VRTK.

All of the abovementioned interaction toolkits offer interactions based on how an
object will interpret them, something these toolkits called an “interactable” [301].
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(a) (b)

Figure 8: (a) A screenshot of the ‘Grab’ Interactable component on the Unity3D game
engine editor. (b) The XR Spotlight window displaying the rules distilled from the ‘Coffee
Mug’ interactable object [83]

Therefore, any object, menu, button or entity in the virtual scene needs to be con-
sidered an interactable to model its behaviour. The behaviour is usually mapped in
the form of pairs of triggers-responses, where usually triggers involve collision vol-
umes in the engine known as colliders [103]. For instance, an interactable virtual
ball that the player can grab can be triggered via a collision between the player con-
troller and the collider volume of the virtual ball together with a physical press of
the controller button. Once triggered, the response is ‘to grab’ the ball via moving
it to the player hand. Another example can be pressing a button, where the trigger
is the collision at a certain depth between the player controller and the collider vol-
ume of the button, thus triggering the response ‘button pressed’. Interactables are
meant to be represented as modular components that can be attached to any virtual
object with a collider, and their behaviour can be scripted visually via dropdowns,
sliders and drag&drop boxes on the Unity3D game engine editor (Fig. 8.a).

Vittoria and colleagues (2023) [83] argue that these interaction toolkits aren’t novice-
friendly and propose a solution to simplify the workflow process of creating inter-
actable objects in Unity3D with their XRSpotlight system. Their solution follows an
example-based approach to distill rules of interactables of any toolkit that are visu-
ally displayed in a new editor window on the game engine (Fig. 8.b). For instance, a
novice user can use XRSpotlight to adapt an example interactable available in a ex-
ample scene of MRTK into their own project and modify its behaviour by providing
such existing interactable as an example to the system.

Still, these toolkits focus solely on object-focused interactions and there are more
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kinds of known interactions that are currently non supported out of the box via
these toolkits. For instance, any interaction that is movement-focused, such as
‘wiggles’, ‘shakes’ or swings cannot be prototyped with the tools offered by these
interaction toolkits, and could only be approximated via rules and colliders with-
out incorporating additional plugins. For instance, the ‘wiggle’ motion could be
mapped onto a pair of triggers-actions onto two colliders on opposite ends of an
invisible bounded box around the controller. The rule could be described as the
player moving the controller left-to-right in quick succession between the two col-
liders. However, how far apart do the two collider need to be from each other?
And how quickly in seconds does the player need to move between colliders? What
happens if the player wants to wiggle top-to-bottom the controller instead of left-
to-right? We can see that a movement-focused approximation can easily become
cumbersome and complicated to describe with these approaches. This means that
game creators must write scripts that can extract meaningful signals from motion
trackers to approximate gestural detection.

However, if game creators desire to incorporate some degree of movement recog-
nition beyond these interaction toolkits, there exist third-party plugins for Unity to
perform gestural recognition[54, 231, 232, 302, 176]. Gesture recognition, as a
paradigm, involves the classification of defined gestures onto discrete classes. For
instance, Vatavu and colleagues (2012) [306] developed a widely used 2D gesture
recogniser named “$P”, which was later translated into an Unity plugin [54]. The
“$P” gesture recogniser computes a cloud of points on a plane and searches for
similarities across a dataset of labelled gestures. Users are able to define addi-
tional gestures as long as the label is consistent (e.g. draw additional circles on the
screen to recognise the letter ‘O’).

Still, these gesture recognisers require a beginning and an end, and particularly
the “$P” recogniser suffers the limitation of computing ‘flat’ gestures instead of
3D movements. There are more recent plugins supporting 3D gestures in VR that
follow a similar paradigm of (a) providing lablled gestural data, and (b) evaluating
the recogniser [231, 232, 302, 176]. Most of these gestural plugins offer a game
engine editor interface with limited configurability, where game creators can add
more samples to a gesture dataset and bodily evaluate how their recognition works
[231, 232] (Fig. 9.a). Plugins such as “VR Magic Gestures AI”[232] and “MiVRy”
[176], offer a graphical user interface in VR where the user can visualise labels for
their gestures in 3D (Fig. 9.b), or modify configurations of their gestural recogni-
tion (Fig. 9.c).

Nonetheless, all of these gestural recognisers are centered around the mediums
main input method (i.e. the mouse for desktop and the controller for VR). These
gestures recognisers aren’t prepared to support creators when wanting to recog-
nise a gesture from their head movement, or take into account their body as whole.
This is because the classification algorithms have a set of movement features pre-
set and can’t be reconfigured. The interface of “MiVRy” [176] allows to compute
the movement from both controllers simultaneously, but it still falls short on the
configurability required to fully support motion control creation in a game engine.
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Figure 9: Desktop editor and VR interfaces of different gesture recognisers. (a) Unity
editor interface of “Gesture Recogniser Asset”. (b) VR interface of “VR Magic Gestures
Asset”. (c) VR interface of “MiVRy” plugin.

Furthermore, gesture recognisers require explicit marking the beginning and the
end of a gesture during recognition by holding a button. This can limit expressivity
as players wouldn’t want to hold a button press every time they perform a move-
ment. Imagine a situation where a player would want to do sword fighting while
swinging their controller, and required them to hold a button while moving. What
would be the point of bodily performing the swing if you are already pressing a
button?

Therefore, there is a need for an in-engine software solution that would support VR
movement-focused interactions in a more flexible and general manner. This would
allow to incorporate more nuanced motion controls and reduce technical challenges
of game studios that are already limited by industrial time and management diffi-
culties [217]. This issue will be explored in more detail in Chapter 3, where we will
describe computational movement features and discuss our solution to implement
motion interactions in VR. However, there is still a need to understand what kinds
of experiential qualities motion controls can elicit on players. Therefore, we will
review the literature of positive experiential qualities related to motion controls in
section 2.4 to better frame the design of our in-engine solution for VR movement-
focused interactions.

2.3.5 Summary

In this section we have reviewed motion game design and development principles,
tools, and processes. We found that there aren’t a set of standardised motion game
design guidelines applicable to VR motion controls; similarly, there is little work
on how game motion design as a process or method actually or ideally operate;
we therefore will reviewing broader HCI literature on motion control design in
section 2.5. Regarding game development, we found the a field dominated by in-
dustrial challenges like integration into complex production processes and tooling
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pipelines, particularly the need for any tooling and process to integrate with the
given game engine. A review of popular industry tools for creating interaction in
VR showed that existing solutions tackle interactions from an object-centric per-
spective in pairs of triggers-responses, or from a gestural perspective requiring ex-
plicit movement segmentation and only taking into account the main input source
(i.e. the VR controller). There is room and need for an in-engine movement-focused
solution to prototype motion controls for games flexibly and we suggest a solution
in chapter 3. Still, an understanding of what experiential qualities motion controls
elicit in players is important to frame the design of such prototyping solution. We
therefore review positive experiential qualities related to game motion controls in
the next section.

2.4 Positive Experiential Qualities of Motion Controls

2.4.1 Introduction

To frame the design of our movement-focused motion control solution, we need to
understand what experiential qualities game motion controls can elicit. Since en-
tertainment game design is concerned with affording positive, enjoyable player ex-
perience (PX), a crucial aspect of game controls and control schemes is their game
feel – the PX of how it feels to operate them [288]. In many games, the core inter-
action of manipulating the game state already presents a major source of positive
PX – be it moving jumping Mario or swinging Spider-Man through space via your
game controller, or swapping candies with a finger swipe in Candy Crush. Thus,
good game feel or “enjoyable gestures” are similarly crucial design considerations
for motion controls and control schemes. Just like PX is a broad construct that has
been conceptualised and decomposed into may other constructs without a strong
consensus model, motion control PX has been variously connected to PX constructs
like Flow and Immersion [196]; Challenge, Fun, Frustration, Boredom, Predictabil-
ity and Anxiety [215]; Immersion, Enjoyment and Natural Controls [247]; Immer-
sion and Controller Naturalness [181]; Engagement [19]; or Presence, Enjoyment,
Interactivity and Realism [77].

This subsection follows each of the relevant positive experiential qualities reviewed
in the literature. We will begin by introducing engagement and immersion, and how
both constructs might be related from a player perspective. Then, we will introduce
the area of aesthetics of interaction and game feel, where the literature argues how
movement can be described and how visuals, movement and experience might be
entangled in games. Later, we review literature on enjoyment, to better under-
stand how such a critical construct for games can be framed and understood from
a media, player and controls perspective. Finally, we review theories of presence,
embodiment and embodied cognition that of high relevance for VR and movement
interaction design.
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2.4.2 Engagement

Engagement is the first relevant experiential construct we cover in our review to
frame the design of our motion control creation tool. There is substantial debate
and literature around the definition of the term engagement. The definition and un-
derstanding of the concept, varies between the context of the study and the inter-
action that wants to be measured. Even though the focus of this thesis is on games,
engagement can be studied in many different domains. For example, in [165] en-
gagement is studied from the perspective of the employee in a company, being
understood as a multidimensional set of constructs being named state, behavioural
and trait engagement [165] . In the domain of customer engagement, understand-
ing the concept as an state that can be produced because of the interaction of a
customer, contemplating its nature as multidimensional process as well [33]. Stu-
dent engagement is studied acknowledging its multidimensional nature as a state
[11]. We can look at engagement from a motivational and emotional point of view,
defining it as “the behavioural intensity, emotional quality, and personal investment
in another person’s involvement during an activity.” [234] and dividing the extent
of engagement into behavioural engagement, emotional engagement, cognitive en-
gagement, and voice. Reeve (2008) understands engagement as a state that you
can enter because of a physiological or psychological response to an antecedent
condition, being able to measure the level of engagement thought different psycho-
metrical factors, such as blood pressure or eye focus. All of the perspectives share
the understanding of engagement as a multidimensional state, although it can be
understood as well as a process [33].

Regarding a more technological field, user engagement with technology has been
defined by O’Brien and Tom (2008) as “the process sustained when users are able
to maintain their attention and interest in the application, and is characterized by
positive emotions”, understanding the concept as a process with different stages.
They propose their Model of Engagement as a quality of user experience divided in
several phases: Point of Engagement, Period of Engagement, Disengagement and
Re-Engagement, with multiple attributes of varying level of intensity on each stage
[209]. In his more recent work, O’Brien further discusses the concept and defines
it as a process that measures “the depth of the actor’s investment in the action”.
He discusses how it can be analysed during and after the interaction through a
multifaceted perspective, with a need to vary the unity of analysis depending on
the interaction, based on his work on the Process Model of Engagement [208, 209].
In comparison to the studies in the previous paragraph, engagement is understood
as a process alone and while other authors acknowledge its multidimensionality as
a set of constructs or factors [11, 33, 165, 234], O’Brien calls them attributes.

When related to digital games, engagement has been discussed to be a quantifiable
construct, with the development of questionnaires such as the Game Engagement
Questionnaire [32], where engagement is used as a “generic indicator of game in-
volvement”, relating it to other concepts such as immersion, presence and flow. An-
other study performs a systematic review over 55 papers on engagement in digital
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entertainment games, concluding how complex and multi-factorial the term is un-
derstood [27]. They discuss that engagement can be analysed as a behavioural out-
come of playing computer games or as a process with different stages[27]. Cairns
extends from O’Brien’s work understanding engagement as a process and studying
how the Process Model of Engagement adapts into digital games [40, 209]. He
discusses how there are several components to engagement named Control, Chal-
lenge, Feedback, Aesthetic and sensory appeal, Attention, Awareness, Interactivity,
Novelty, Interest and Positive Affect. These attributes are a series of aspects of
the process with varying levels of intensity that helps to measure the level of en-
gagement [40, 209]. Cairns conclusion shows that engagement can be cycled as a
process several times in one single game-play session, or one cycle may need sev-
eral sessions, as well as the importance of the external factors into the engagement
and the possibility of engagement outside of the game. He points out the necessity
of adapting the measurement method of engagement depending on the genre of
the game [40], as suggested by more previous studies [234] with a different view of
engagement. A different study shows that player engagement is studied as a pro-
cess, developing a framework and four main components consisting of objectives,
activities, accomplishments and affects [249] .

During the review, we have seen that engagement is a very complex and multi-
faceted term studied through different fields and views. Engagement can be un-
derstood as a multidimensional psychological state [11, 33, 165, 234], as a be-
havioural outcome [27] and as a process modelled with different stages, attributes
and components [33, 40, 208, 209, 249]. The subcomponents of engagement vary
depending on the study, but is possible to agree on the multidimensional aspect
of engagement, with concepts such as immersion, flow, involvement, affect and in-
teractivity related. In regards of the view of engagement for this thesis, we will
understand the concept as a multidimensional process with different stages and at-
tributes following the view of Cairns (2016) and O’Brien and Tom (2018) [40, 209,
249] acknowledging that each stage of the process can be seen as a state [33, 234].
Because of that, we could also understand engagement as a behavioural outcome
when the change of stages is produced while cycling the process [27], due to an
antecedent condition that could trigger the process.

Despite of this being just a fraction of the research available, we can see that most
of the research is focused on gameplay and game design and not much in interac-
tion and control schemes. E. A. Boyle and colleagues (2012) and P. Cairns (2016)
[27, 40] brings the topic of interactivity in their studies, mentioning how natural-
ness and embodied interaction might affect engagement in digital games. However,
the connection with enjoyment seems unclear.

Another of the constructs that is related to positive experiential qualities of game
controls and, in a repetitive fashion to VR, is immersion. In the next section we will
look at how immersion is portrayed in literature to better understand how it can
connect with enjoyment in VR games.
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2.4.3 Immersion

Immersion is the second relevant experiential quality we review to frame the de-
sign of our motion control creation tool. Additionally, immersion is a highly relevant
construct for games [35]. Yet, immersion is a complicated construct with different
meanings and definitions depending on the field of study and the author that stud-
ies it, very similarly to the engagement literature. The definitions can easily be
contradictory and can make the research on the field difficult, due to the complex-
ity in understanding all the different meanings the construct gathers. Nonetheless,
immersion is a well-known and referred term both inside and outside the academic
environment, proving to be useful the time and effort spent understanding its dif-
ferent meanings.

Brown and Cairns (2004) [35] describe immersion as a “scale of involvement with
a game” where exist a division into three different levels named Engagement, En-
grossment and Total Immersion; depending on how strong the sense of immersion
is. Engagement is the first and lowest stage of immersion, and to be engaged,
the player needs to invest time, effort, and attention. However, firstly is neces-
sary to pass the barrier of access, which is related to game controls and how the
player becomes an expert interfacing with the game. The second stage is named
Engrossment, where there is a high level of emotional investment in the game, hav-
ing a strong effect reaching this point visuals, interesting tasks to perform, and
plot. Total Immersion is the name given to the maximum level capable of being
experienced. This level is as well referred to as presence, introducing the barriers
of empathy and atmosphere to reach it. Here, empathy is the “growth of attach-
ment” and atmosphere is the “development of game construction”. In this sense,
immersion is understood as a state with different levels of depth.

The above definition [35] has been used in later studies [131, 252] to better under-
stand the concept of immersion in terms of addiction and subjective and objective
measures. Seah and Cairns (2008) [252] study the potential similarities between
being immersed and being addicted to a video game, showing that addiction seems
to be an extreme form of engagement and immersion. They define immersion as “an
internal measure, or psychological measure, of engagement in playing videogames
and the engagement/addiction factor as an external measure, or behavioural mea-
sure”. They show that immersion can be “a mix of psychological factors, specifically
the cognitive and emotional involvement in the game, and sense of dissociation from
the real world, as well as game challenge and game control”, comparing the term
with flow [52], cognitive absorption [3] as well as GameFlow [287]. It is shown
that immersion can be a precursor to flow, that can happen even if the game fails
to provide flow, or that it overlaps with three factors of GameFlow. However, an
important difference with the previous study is that it separates Immersion from
Presence, defining Presence as “the sense of being present in some virtual world as
opposed to the real world” and calling it “perceptual immersion” too, while differ-
entiating it from “psychological immersion” [48] which is the one we are focusing
on here. This way, by using a virtual reality headset together with a motion track-
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ing technology to explore a virtual world, one can feel perceptually immersed; and
as well one can feel psychologically immersed when playing a puzzle game where
there is no clear environment to be immersed into [131]. It is important to re-
mark that they are already starting to contemplate the fact that immersion can be
produced far from a positive effect, when a game is frustrating for example.

Jennett and colleagues (2008) [131] show that Immersion can be measured both
subjectively, through questionnaires, and objectively, through task completion time
and eye movements. They ran three different experiments. The first experiment
was related to task completion time, and showed that “the more immersed a person
was when playing a game, the longer it took them to complete a tangram task
afterwards that was not related to the game”. The second experiment was related
to eye movement frequency, and showed that “participant’s eye movements in the
immersive condition significantly decreased over time”. The third experiment was
related to pace of interaction, and showed that “emotional involvement appears to
be a key factor on immersion”. These findings support and build from the studies
by other authors [35, 252], but still can’t tell if other objective measures, such a
biosensors and body motion analysis, can be used to measure Immersion as defined
above.

Nevertheless, Calleja (2011) understand differently the term immersion and offers
an alternative naming, Incorporation, that in his opinion suits better what the cur-
rent literature defines as immersion or presence. He makes a definition review of
immersion as a term, both outside and inside the game research literature, identi-
fying two meanings [42]. The first one he names Immersion as Absorption, which
refers to the fact of being immersed in some condition, action, interest, etc.; and the
second meaning which he calls Immersion as Transportation, refers to the fact of
being transported to the virtual world. Immersion as Absorption would be equiva-
lent to the previous definition of Psychological Immersion, and Immersion as Trans-
portation to Perceptual Immersion [48, 131]. Following this idea, he disagrees with
the concept that there is only an unidirectional relation between the player and the
virtual environment, introducing his term Incorporation, as an “experiential phe-
nomenon that accounts for the simultaneous assimilation into consciousness of the
virtual world and the systemic acknowledgement of the player’s location and exis-
tence therein” [43]. Consequently, the term can only be used in ergodic media, due
to the fact that there is requirement from the medium to specifically acknowledge
the player’s presence and agency within the virtual world.

In order to facilitate research into this area, Calleja (2011) explains in the Player
Involvement Model, a framework intended to describe the phenomena afforded by
involving gameplay [43]. The model introduces two temporal phases. The first one
is “the macro” and represents the offline involvement, and the second one is “the
micro”, representing moment-to-moment involvement during gameplay. There are
as well six dimensions of player involvement, named kinaesthetic, spatial, shared,
narrative, affective, and ludic.

All of these theories could help to build the bridge between motion controls and
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player experience in VR games, but there isn’t enough research relating immer-
sion directly to engagement or enjoyment. It might be that a broader qualitative
perspective might help describe relevant experiential factors from movement inter-
actions. The next section will introduce the field of aesthetics of interaction and
how it could help creators to verbalise their motion controlled ideas.

2.4.4 Aesthetics of Interaction

Since a broader qualitative perspective might help frame relevant VR motion con-
trols experiential factors, we review the field of aesthetics of interactions in this
subsection. When interacting with motion controlled VR games, creators and play-
ers constantly perform motion, resembling the ‘natural’ interaction they would be
performing if they were present in that virtual world. Nevertheless, it is hard to
categorise what is the meaning of player’s gestures if we cannot refer to them in a
qualitative way.

The same way we can describe several different mediums with qualities, we could
use several qualities to describe an interaction. The term aesthetics of interac-
tion was first mentioned in the first decade of the XXI century [154], conceiving
‘aesthetic’ as a system of values an interaction can have [154].

In a study conducted in 2007, the authors discuss how intelligent products cannot
just have a beautiful appearance but a beautiful interaction as well. They discuss
how an interaction can have both task-oriented meaning as well as aesthetic mean-
ing, as the actions themselves may be aesthetically rewarding [59]. They as well
point out the correspondence in the quality of movement between the input and
the output in an interaction, connecting the richness of actions that a product al-
lows for, the degrees of freedom that product component have, the sensitivity in
the input, and the smooth movement in the output; naming this phenomena sym-
metry of input and output qualities [59]. Löwgren (2009) extends this work and
introduces four concepts trying to answer some of the questions when describing
an interaction: pliability, rhythm, dramaturgical structure, and fluency [162].

In a literature synthesis, they review a total of 19 papers regarding this topic [154].
A first inspection revealed that the total of 151 attributes studied can be divided
into two main groups, one for describing experiential interactions and another one
for describing physical interactions. However, after studying in more detail the
definition for each of the attributes, the authors proposed a division into 3 main
sub-categories: prescriptive (describing the goal of the user with the interaction),
descriptive/motor-level (describing the physical experience of performing the inter-
action) and descriptive/be-level (describing the psychological experience and mean-
ing of performing the interaction). For both descriptive categories a further sub-
categorization was assigned, dividing the interaction in the be-level between the
psychological needs of stimulation, security, competence, autonomy, relatedness,
meaning and popularity; and the motor-level was divided into the temporal, spatial,
action-reaction, presentation, forces and meta sub-categories [154]. Additionally,
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one of the most relevant qualities for game controls is game feel, which we will
review in the following subsection.

2.4.5 Game Feel

Aesthetics of interaction offers a form of qualitative description and framong of
movement. Related to aesthetics of interaction in digital games is the term ‘Game
Feel’, which is defined as a “Real-time control of virtual objects in a simulated
space, with interactions emphasized by polish” [288]. There are a total of five
experiences for a game to convey in order to feel good: aesthetics sensation of
control, pleasure of learning and mastering a skill, extension of senses, extension
of identity and interaction with a unique physical reality within the game[288].
Swink presents Game Feel as a universal concept, but it can be narrowed down
to specific in-game actions. In the study of Fasterholdt and colleagues (2016), the
authors study the feel of the jump action in 2D platformer digital games, and how
it relates to the physical implementation through game controllers, developing a
framework to quantify different parameters in the feeling [70]. A similar study
was conducted by Dahl & Kraus (2015) [55], but understanding how players feel
a bespoke 2D platformer through a series of questionnaires, where words such a
“twitchy”, “fluid”, “difficult” or “enjoyable” were used to describe the interaction,
following some of the terminology in the interaction of aesthetics literature [154].
Nevertheless, the authors of the study conclude that players understand Game Feel
and the different attributes to described their experience in different ways [55].

In the quest to label interactions, another study by Isbister and colleagues (2011)
[127] looked at how much players rated their motion interaction with a set of Wii
games in terms of fun, happiness, frustration, and energy levels. Their conclusions
show that there is no apparent relationship in the amount of movement and how
much players understand their interaction to be funnier, happier or more frustrat-
ing; although it shows that their self-reported energy level was higher when playing
games with more movements. Following their quest to understand players’ feelings
when performing movements, Isbister et al. (2011) developed a series of experi-
ments with movement games to see whether movement adds emotional impact and
increases social connectedness. Results showed that vigorous movement led to
reports of higher arousal but not of more positive emotional valence [125, 128].

After reviewing both aesthetics of interaction and game feel, we have seen that both
are terms with different understandings often confused among users [55] or even
by experts [154]. While the field of aesthetics of interaction tries to describe and
frame the physical, psychological and motivational aspects of an interaction with
a computer [59, 162, 154], the field of game feel focuses specifically in the psy-
chological experience when interacting with a game, either broadly [288] or game
mechanic focused [55, 70]. Relating to motion controls, Isbister and colleagues
performed a series of studies with the goal to better understand how the amount
of movement in motion controlled digital games affected emotional qualities and
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social connectedness, with results linking movement with arousal [125, 127, 128].
Still, none of these constructs frame the experiential ethos of game playing as an
enjoyable one, which could easily be understood as one of the key goals of most
videogames. Therefore, the next section reviews prior work on conceptualising en-
joyment, from a broad understanding of need satisfaction to a multi-layered game
experience.

2.4.6 Enjoyment

We have so far reviewed how engagement, immersion aesthetics of interaction and
game feel help describe and frame game motion controls. Still, enjoyment could be
assumed to be a key constructs for game creators. It is possible to argue that one
of the main reasons why game creators might want to design and prototype motion
controls is to create a more enjoyable experience with the game. However, what
constitute an enjoyable gesture? And, how do we define what is enjoyment? The
latter question needs a broader understanding of how enjoyment can be defined. In
this section different understanding of enjoyment as a psychological construct will
be reviewed, as it could be viewed as the satisfaction of needs, a result of the flow
experience, or as a multifactorial and multi-layered game experience.

2.4.6.1 Enjoyment as the Satisfaction of User Experience (UX) NeedsOne
of the general ways to conceptualise enjoyable experiences is via need satisfaction
theories. Hassenzahl (2003) [109] proposed a model of user experience based on
product character attributes, which can be pragmatic or hedonic, and reflect the
designer’s intention and the user’s goals and well-being. Vorderer, Klimmt and
Ritterfeld (2004) [309] proposed a model of media entertainment based on user
and media prerequisites, which influence the user’s enjoyment and its effects. Their
model can be related to Hassenzahl’s (2003) theory of user experience in terms of
hedonic and pragmatic attributes [109]. Kim and colleagues (2011) [143] proposed
a framework and a method for generating design concepts based on human needs
satisfaction, which they derived from previous literature. They compared their
needs list with other models, such as Hassenzahl’s (2003) theory of user experience
(Fig. 10).

Tamborini and colleagues (2010) [289] investigated the role of hedonic and nonhe-
donic needs in videogame enjoyment, using arousal, absorption, competence and
autonomy as measures. They found that both types of needs contributed to the
variance in enjoyment in a singleplayer game. Tamborini and colleagues (2011)
[290] conducted a second study to examine the effects of hedonic and nonhedonic
needs on videogame enjoyment, using arousal, affect, competence and autonomy
as measures. They found that hedonic and nonhedonic needs varied depending on
the interactivity of the medium. They compared their approach with other models
of entertainment that differentiate between enjoyment and appreciation [109, 309]
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Figure 10: Comparison of Need Satisfaction Theories [143]
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2.4.6.2 Enjoyment Explained by the Flow ExperienceIn contrast with the need
satisfaction approach, Sherry (2004) [261] proposed a theory of media enjoyment
based on the flow experience, which occurs when the user’s cognitive abilities
match the media content message. Sherry (2004) applied the flow theory to media
enjoyment, arguing that it depends on the balance between challenge and skills. He
built on his previous work on videogame uses and gratifications, and discussed the
role of individual and contextual factors in flow. He concluded that flow provides a
theoretical framework for understanding enjoyment across different media.

Sweetser and Wyeth (2005) [287] proposed a model of game enjoyment based on
flow, which consists of eight elements: concentration, challenge, skills, control,
clear goals, feedback, immersion and social interaction. They validated their model
on two RTS games and recognised its limitations. They later revised their model
for different game genres and noted the difficulty of assessing enjoyment and im-
mersion from observations of the game exclusively.

The GameFlow model is more complex than the previous theory from Sherry (2004),
as it takes more elements into account that the skill and challenge from the game.
Even though Sherry (2004) select because of allowing concentration, allowing to
adjust the challenge to our skills, having concrete goals and providing feedback,
the GameFlow model [287] accounts for Immersion and Social Interaction as key
elements of the experience. Nevertheless, Sherry’s (2004) study offered solely a
theoretical explanation for media enjoyment, while Sweetser and Wyeth (2017) of-
fered an applicable framework for expert reviewers.

Still, it is possible to observe that the viewpoint of enjoyment as a result of the flow
experience [261, 287] shared certain elements with the need satisfaction literature
presented earlier in the text [109, 143, 265, 309]. In both approaches, it is possible
to see elements relating to the intrinsic motivation needs of Autonomy, Competence
and Relatedness [143, 243, 259, 290] Like the elements of Skills, Controls, Clear
Goals and Social Interaction from the GameFlow model [287]. After all, Sherry
(2003) studied a selection of uses and gratification in games that led him to apply
the flow theory to explain enjoyment a year after [261].

2.4.6.3 Enjoyment as a Multifactorial Game ExperienceStill, the literature
until this point showed several levels of overlap and different categorisations of
the experience that might lead to think of enjoyment as a more complex construct
with different dimensions. The following literature understands enjoyment as a
multifactorial game experience, where intrinsic needs, hedonic needs, flow and
different psychological constructs mix.

Poels, de Kort and Ijsselsteijn (2007) [224] proposed a categorisation of digital
game experience based on focus groups and existing literature on flow, immersion,
enjoyment, social context and negative experience. They identified nine dimen-
sions of game experience, but did not explore their interrelations or variations.
They introduced the Game Experience Questionnaire as a tool to measure game
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experience. Ijsselsteijn and colleagues (2007) [124] further examined the concepts
of flow and immersion, and argued for a multi-method, multi-measure approach to
evaluate gameplay. They also mentioned the Game Experience Questionnaire as a
first step to assess player experience.

To frame the research around the GExpQ, it was important to understand the differ-
ent ways to empirically measure enjoyment. That is the reason why in a following
study, Ijsselsteijn and colleagues (2008) [123] investigated how to measure Player
Experience (PX), with enjoyment as one aspect of that measure. They strived to
measure PX with a multi-method, multi-measure approach, following the multidi-
mensionality of PX presented in the study of Poels, de Kort and Ijsselsteijn (2007)
[224].

In addition, Ijsselsteijn and colleagues (2008) [123] expanded the dimensions of
their player experience categorisation to include positive affect as well as negative
affect. Similarly, psychophysiological measures might be useful in distinguishing
player emotions along the dimensions of arousal and valence. Arousal dimension
distinguishes between exciting and dull, and the valence dimension distinguishes
between positive and negative emotions, as presented in the well-known research
from Russell (1980) [241].

The work from Poels, de Kort and Ijsselsteijn (2007) [224], and Ijsselstein and col-
leagues (2007, 2008) [124, 123] expanded the conceptualisation of game experi-
ence as a multidimensional construct, where the dimensions can be fitted into the
categories of enjoyment, flow, immersion, intrinsic motivation and hedonic need
satisfaction. This is a combination from the previous research on need satisfaction
and flow explained in this thesis, with the addition of immersion. However and in
spite of all the work published by Poels, de Kort and Ijsselsteijn (2007), and Ijssel-
stein and colleagues (2007, 2008), there was not enough empirical data published
around the development of the measures and the list of the different multi-measures
selected.

Following the critique around the lack of data published, Norman (2013) [204] re-
viewed two of the papers introducing self-reported measures for PX using digital
games: the Game Experience Questionnaire [124] - labelled as GExpQ by Norman
(2013) - and the Game Engagement Questionnaire [32] – labelled GEngQ by Nor-
man (2013). The GExpQ measures PX as a game evaluation characteristic, but
there is not empirical evidence in its multidimensionality, as was pointed out be-
fore. The GEngQ measures engagement as a unidimensional player characteristic
and it is backed up by empirical evidence [32]. Nevertheless, the unidimensional-
ity of the GEngQ might be due to the factors selected in its conceptualisation, and
unfortunately its usage is associated with anti-game groups [8].

Norman (2013) [204] followed his argument by explaining that the individual char-
acteristics of the player or the game might affect the game experience but none of
the measures studied attempt to reconcile the interaction between the two. There-
fore, Norman (2013) proposed two new measurement candidates, studying both

37



player and game using immersion as a pathway, named the Immersability of indi-
viduals (IAI) and the Imersiveness of Games (ING). The idea of taking into account
specific qualities of the game when measuring PX was as well contemplated in the
enjoyment research from Sweetser et al. (2017) [286], where the GameFlow mea-
sure was proposed to be adapted depending of the genre of the game studied.

As it was presented up until this point in this review the understanding of game
enjoyment and game experience is quite dissimilar in the different dimensions that
comprises the experience. In order to gain a broader assessment, a systematic re-
view of 87 quantitative studies on the enjoyment of digital entertainment games
was revised [183]. The motivation of Mekler and colleagues (2014) [183] started
with the lack of a common terminology for discussing and measuring PX and game
enjoyment, in a similar manner to the motivation of the work of Poels, de Kort and
Ijsselsteijn (2007) [224], and Ijsselstein and colleagues (2007, 2008) [124, 123].
Therefore, Mekler and colleagues (2014) reviewed 87 studies that involved a quan-
titative measure of enjoyment of some sort. In addition, different terms that do not
cover the exact same meaning to enjoyment were discarded, such as fun, liking or
preference [22, 194]. The review excluded serious games, pervasive games and
augmented reality games as well, since they might require their own criteria for
modelling enjoyment [130]. Mekler and colleagues (2014) grouped then determi-
nants that potentially predict enjoyment found in the literature into game system,
player and context as suggested by the model from Nacke and Drachen (2011)
[195]. In addition, the separation of PX into different layers accounting the player
and the game is partly aligned with the previous research from Norman (2013)
[204] and Sweetser and colleagues (2017) [286].

Interestingly for the purpose of this thesis, intuitive control schemes were found
as one of the determinants to predict game enjoyment, since they facilitated feel-
ings of being in-control and self-efficacy [157, 247, 295]. Players enjoyed easy to
control interfaces that allowed best performance [36, 166]. The psychological out-
comes of feeling of being in-control, self-efficacy and need satisfaction were found
as determinant predictors of game enjoyment as well [228, 289, 290].

Mekler and colleagues (2014) then analysed enjoyment in relation to other PX com-
ponents. Different views on how flow relates to enjoyment were found in the lit-
erature. Some authors use the words flow and enjoyment as synonyms [134, 146]
or use specifically the GameFlow model when studying enjoyment [287]. Other
studies entrusting the GExpQ argue than flow is a dimension of player involvement
instead of player enjoyment [84]. Finally, some stated that enjoyment results from
the flow experience [314]. Although several studies associated the flow aspects of
focused attention [134] and the balance of skill and challenge [146] to explain en-
joyment, Shim, Srivastava and Hsu (2011) identified that the balance of skill and
challenge accounts partially for game enjoyment. Conversely, Limperos and col-
leagues (2011) discovered that another aspect of flow –the experience of control –
was related to player enjoyment, but not to other characteristics of flow.

In addition, different studies found a positive connection between presence and
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Table 3: Game Enjoyment Determinants found by Mekler and colleagues (2014) [183]

Game System Player Context

• Challenge

• Player Skills

• Motives

• Game Outcome
(e.g. win/lose.
Mixed results)

• Intuitive control
schemes

• Fantasy

• Narrative

• Avatar resemblance

• Identification with
the avatar and
other playable
characters

• Sound

• Music

• Violence

• Player types and
motives

• Personality traits

– Sensation
seeking

– Self-
forgetfulness

• Player Gender

• Psychological out-
comes

– Feelings of in-
control

– Feelings of
self-efficacy

– Feelings of
need satisfac-
tion

– Winning, ego-
enhancement

– Mood repair,
recovery expe-
rience

– Feelings of
guilt

• Social Interaction

– Presence of
other players

– Communication
between play-
ers

• Location
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Figure 11: Flow and Enjoyment are similar but not the same. Less demanding gameplay
can be perceived as enjoyable [183]

flow [134, 197]. Presence might cause enjoyment indirectly through flow because of
the facilitation of cognitive involvement [247, 314] . Rewording, flow encompasses
both enjoyment and involvement, but players can experience enjoyment separately
from flow (Fig. 11) when skills exceed challenges posed by the game [157, 262].
Immersion was found as well relevant to a good gaming experience, but not to
how it relates to cognitive and emotional involvement [131]. Immersion is as well
associated with positive affect and competence, most likely due to spatial presence
[197].

Mekler and colleagues (2014) [183] then conceptualised game enjoyment based
on all the papers reviewed. Enjoyment was often understood as fun, interest and
the opposite of boredom, especially when seen as intrinsic motivation [228, 248].
Enjoyment was also conceptualised as positive affect [223], or as a construct with
affective and cognitive aspects differentiated between them [69]. Since it is possi-
ble to have an overall enjoyable experience while playing a frustrating game, frus-
tration was also proposed as one important concept related to enjoyment and not
considering it the antipode of enjoyment [61]. Additionally, enjoyment was often
associated with feeling of being in-control [247], competence [133], and improved
mood because of need satisfaction [235]. At the same time, feelings of guilt were
found to negatively correlate with enjoyment [97, 108, 158]. Mekler and colleagues
(2014) summarise their conceptualisation of enjoyment as the combination of posi-

40



tive cognitive and affective appraisal of the game [69], the psychological outcomes
of absence of guilt [97, 108, 158] and need satisfaction [235].

Additionally, Mekler and colleagues (2014) uncovered different methodological chal-
lenges in their review. Few studies used standard measures and many of the studies
with custom scales omitted item descriptions and information on the reliability and
validity on the scales. The most used standardised questionnaires were the In-
trinsic Motivation Inventory (IMI) [242, 297], the Game Experience Questionnaire
(GExpQ) [124] and the self-assessment manikin scale (SAM) [115, 223].

Finally, Mekler and colleagues (2014) called attention to the fact that even though
the context surrounding the player experience is important [111, 195], scarce con-
sideration has been paid to how contextual aspects affect game enjoyment (Table 3).
Furthermore, Lazarro’s 4 keys to fun model [153] linked player, game system and
context with emotions such as challenge and fiero (pride). Mekler and colleagues
(2014) discussed the importance of further studying how game system, player and
context evoke these emotions and this impacts game enjoyment. Likewise, research
on non-interactive media revealed that negative experiences can often be experi-
enced as enjoyable [194], indicating the necessity of a better understanding in how
negative affective experience might impact game enjoyment, and how they relate
to need satisfaction and player values.

2.4.6.4 Enjoyment and Game ControlsThe three prior forms of conceptualis-
ing enjoyment (i.e. needs satisfaction, flow or multi-factorial game experience) do
not delve deeply into controls. Consequently, we here review literature specifically
conceptualising enjoyment from a game controls perspective. Following the idea of
how game controls affect the game experience of enjoyment, a study performed in
2011 compared if the naturalness of the controller type affected spatial presence,
and if that was related to player enjoyment [265]. The authors compared the ex-
perience of the players across a golf game and a racing game; using a gamepad, a
motion control, a keyboard, a joystick and a steering wheel. Results did not only
find that the more natural the controller was, the higher spatial presence , but also
that it is a predictor of enjoyment. Although, is a different study the authors con-
clude that active videogames can be less enjoyable that more sedentary ones [164].
Nevertheless, another study determines that the more the natural the controller is,
the higher the social interaction is and the more enjoyable is playing with a collab-
orator [19]. For this last study, they compared a gamepad, a motion control, and a
bespoke motion control for a music game.

Shafer and colleagues (2011) [257] investigated how motion controls compared to
traditional controls in terms of enjoyment, and found that higher levels of inter-
activity of motion controls were a predictor for enjoyment. Shafer and colleagues
performed a follow-up study in 2014 [256] where they included ‘props’ for certain
movement tasks (such as “table tennnis” or “lightsaber dueling”) and found that
those were the biggest predictors for enjoyment, albeit movement interactivity re-
mained the most important predictor all conditions.
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This might indicate that including motion controls ‘for the sake of moving’ might
not be such an important design factor as incorporating ‘nuance’ into the movement
to benefit interactivity during game creation. Shafer and colleagues (2011, 2014)
also looked at how enjoyment and presence were connected, and found that both
constructs correlated with movement and interactivity. Since VR it is the current
medium for motion controlled games, presence can be a dimension highly affected
by the stereoscopic visual effect that VR offers, hence in the following subsection
we will look into what is presence and how VR affects presence.

2.4.7 Presence

We have reviewed so far five main experiential qualities: engagement, immersion,
aesthetics of interaction, game feel, and enjoyment – to better frame the design of
our VR motion control creation tool. Prior work related enjoyment with presence,
which is also one of the key constructs in VR. In their review paper, Felton and Jack-
son (2021) [71] defined presence as “the extent to which something (environment,
person, object, or any other stimulus) appears to exist in the same physical world
as the observer” [71]. They argue that their rationale goes beyond technology and
is framed as a psychological phenomenon disentangled from its cause. In their un-
derstanding, presence exists in the psychology of the user, regardless of whether
in VR or not, and they give examples of how someone can feel present in a dream,
through religious experiences or even while consuming media (ie. movies, books).
Felton and Jackson (2021) specifically refer to presence “elicited in response to VR
technology” as virtual presence [71]. They synthesised two main dimensions from
the literature, named spatial presence and social presence. They defined spatial
presence as “the subjective sense that one is physically located within the per-
ceived environment and subject to any physical consequences therein” [71] and
social presence as “the degree to which another animate entity appears to coexist
in the same environment as the user” [71].

For instance, spatial presence would be understood as feeling as if one is really in
a different place, and virtual presence would be understood as feeling that some-
one is there with you. Felton and Jackson (2021) also review the determinants of
virtual presence, with head-tracking and haptic cues as the most relevant ones for
this thesis. The define head-tracking as “the change in a visual display that corre-
sponds with changes in the location of the user” and haptic cues as “the sense of
touch, including the perception of pressure, temperature, vibration, and limb po-
sition in space”. There are technological limitations to simulate pressure, temper-
ature, vibration in VR [311], but limb position is simulated via controller tracking
[39], hence supporting head and controller tracking are critical to the experience
of virtual presence [71].

Additionally, prior research from Slater and colleagues (1998) suggested that body
movement was positively associated with virtual presence [268]. Participants that
physically crouched and moved in the virtual space prompted by the height of vir-
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tual trees reported higher levels of presence than those in the control group. How-
ever, later research didn’t find significant differences on levels on body movement
and virtual presence [12, 269]. Still, it is safe to assume that, depending on the
movements performed by users, presence might be affected, hence game creators
might want to ensure high subjective feelings of virtual presence with their motion
controls.

Skarbez and colleagues (2017) informed their review of presence by Slater’s place
and plausibility illusions [267, 266]. Mel Slater theorised that what is understood
as presence can be represented by two orthogonal illusions: (a) the place illusion
which refers to how “real” the environment feels, and (b) the plausibility illusion
which refers to how believable the situation is [267]. Skarbez and colleagues (2017)
argued that framing the feeling of presence as ‘illusions’ was benefitial, and actually
suggested the alternative term placeness for what Felton and Jackson (2021) de-
scribed as virtual presence [266, 71]. Furthermore, Skarbez and colleagues (2017)
also take into accoutn models of deeply related concepts to presence or placeness,
such as embodiment.

2.4.8 Embodiment and Embodied Cognition

Related to presence, another highly relevant psychological concept in VR is the
sense of embodiment, which is defined as the “representation of a user (also known
as avatar) withing a mediated or virtual environment” [266]. Kilteni and colleagues
(2012) frame the sense of embodiment on “one’s own biological body”, which grounds
the user feelings on their physical body [142]. They further define three subcom-
ponents of embodiments, named self-location, agency and body ownership [142].
Self-location refers to the “relationship between one’s self and one’s body”, agency
refers to the sense of having “global motor control” and body ownership refers to
“self-attribution of a body... and it implies that the body is the source of experienced
sensations” [142]. For instance, a user feeling that they are placed inside a body
would be self-location, accepting that body as theirs would be body ownership, and
feeling that they can control the body they are in and have accepted is agency.

But prior research showed that users can do more than feel with their bodies,
they also think with their bodies [148] via processes of embodied cognition [148].
Klemmer and colleagues (2006) discussed how physical bodies shape how users
experience, understand and interact in the world and synthesised five themes rel-
evant for interaction design: thinking through doing, performance, visibility, risk
and thick practice [148]. In their thinking through doing theme, Klemmer and
colleagues discuss how previous research has shown “the importance of physical
action as an active component of our cognition” via a shared link of “perception,
cognition and action”. According to them, users can learn about complex physical
or mathematical concepts via direct embodied interaction with tangible systems,
such as the Montessori blocks for learning numbers [191] or the tangible illumi-
nating light workbench for learning optical physics [298]. Furthermore, Klemmer
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and colleagues differentiate between pragmatic and epistemic actions to argue that
users think via direct interaction. They use the example of Tetris piece movement,
in which pieces can be move pieces pragmatically to align them, or epistemically to
understand how different options would work [169]. Therefore, they discuss that
the iterative epistemic prototyping process allows creators to think via prototyp-
ing, and reason that the form of thinking via doing helps in cognitive processes that
could not be produced without “producing a concrete manifestation of her ideas”
[148]. Then they introduce their performance theme, which synthesises the notion
that artifacts are incorporated into peoples embodied perceptions, “acting through
it rather than on it” and expressing tacit knowledge [148]. They argue that there
is evidence about the existence of kinesthetic memory, such as bodily remembering
how to ride a bicycle or how to play a piano but not being able to reflectively articu-
late how it is done [279, 148]. They then claim that reflective reasoning is too slow
compared to experiential cognition, in which users are able to quickly bodily think
in interactive scenarios that make use of body interactions “in the loop” [203, 148]
and state that one of the most commercially successful interfaces to leverage em-
bodied cognition are game controllers (beskope action ones, such as flight joysticks
or steering wheels).

Kirsh (2013) extended the embodied cognition theory with the insight that bodies
can be used as “simulation devices to physically model things” after finding that
dancers were able to better learn a complex dance phrase by bodily rehearsing
an incorrect performance than by mentally reflecting on the correct performance
[145]. He argues that his findings occur because of the ability of people to cog-
nitively “project the structure or idea” via physical movements. He additionally
accounts for how objects can be brought into the cognitive process since they can
be “absorbed” into the body, and thus enrich interaction design [145].

Therefore, the untackled benefits of embodied cognition inspired further research
into embodied interaction design. In the next section, we introduce previous liter-
ature on embodied interaction design and discuss the most relevant work to our
thesis.

2.4.9 Summary

This section of the background showed how diverse the conceptualisation of experi-
ential qualitites of movement are, and open questions of better understanding how
to frame and describe motion interactions in digital games, as well as how changes
in these interactions affects the game feel of specific motion game mechanics. In
addition, game creators might prioritise other constructs such as flow, immersion,
engagement or enjoyment to affect the “feeling” of the motion controlled game and
the different aesthetic qualities they might want to deliver to the player.

Since motion controls are predominantly used in VR gaming nowadays, presence
is another key construct to consider when creating motion controlled videogames,
as body movement might affect the sense of presence in the virtual environment.
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Furthermore, we introduced theories of embodiment that tackle how users ground
their feelings in their bodies. Finally, we covered theories of embodied cognition
that argue that users not only feel with their bodies, but are also able to think with
their bodies.

We have reviewed how motion controls can elicit a diverse set of experiential quali-
ties grounded in movement [288, 40, 154, 125, 257] and the body [267, 71]. There-
fore, any VR motion control design solution should accommodate the expression of
such rich intent. Furthermore, we found how there aren’t standard game motion
control design principles [202, 263, 46, 98], and existing game engine implemen-
tation solutions are focused on object-based interactions [301] or inflexibly support
movement [54]. Therefore, in the following section we will review broader HCI de-
sign methods focused on movement with a rich and bodily grounded experiential
perspective.

2.5 Embodied Interaction Design

2.5.1 Introduction

We have previously seen how there is a lack of movement-focused standard de-
sign methods for game motion controls. We have also seen how rich and bodily
grounded motion control experiential qualities can be. In this section, we review
HCI literature investigating embodied interaction design, which is an approach that
suits our motion control design problem. Embodied interaction is an approach that
emphasizes the role of the human body and its interactions with the environment in
supporting bodily processes of interaction design [175]. This design methodology
is grounded in the theory of embodied cognition, which posits that human cognitive
processes are deeply rooted in the body [145]. Embodied interaction design aims
to create more natural, intuitive, and engaging interfaces by incorporating princi-
ples from embodied cognition theory into the design of human-computer interaction
systems [175].

2.5.2 Creators need to move to design

One of the key ides to understand embodied interaction design is that movement
is itself is part of the design process. Klooster and Overbeeke (2005) [149] and
Hummels and colleagues (2007) [121] suggested design tools to support expres-
siveness of designers, users and products based on the principle that designers
should master movement knowledge and sensibilities to actually design. Klooster
and Overbeeke (2005) [149] developed the choreography of interaction framework,
which described movement as a “trinity” of entangled pivots (physical involvement,
dynamic quality and expressed meaning). Reflecting on the choreography of inter-
action and other methods, Hummels and colleagues (2007) [121] synthesised seven
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guiding principles for movement-based interactions: (1) meaning through interac-
tion, (2) richness of interaction, (3) design by moving, (4) support for movement,
(5) research by doing, (6) educate through and for movement, and (7) design for
diversity.

2.5.3 Describing movement

Prior work has focused on framing the movement interactions between users and
computers. The tangible interaction framework presents a set of four overarching
themes (tangible manipulation, spatial interaction, embodied facilitation, expres-
sive representation) that integrates the body, its movements, and tangible inter-
faces within physical and social contexts to describe interactive social spaces and
artifacts [118]. The multimodal interaction space framework has a focus on levels,
modes and senses to describe movement mediated by technology [24]. The frame-
work developed by Eriksson and colleagues (2007) [67] uses three main concepts
(space, relation and feedback) to articulate movement interactions encompassing
body parts, shape, position, and orientation to articulate and describe movement
within camera-tracking applications [67]. The kinesthetic interaction framework
described movement interactions via three overarching design themes (Develop-
ment, Means and Disorder) and seven design parameters (engagement, sociality,
movability, explicit/implicit motivation, expressive meaning and kinesthetic empa-
thy) [78]. For instance, in fig. 12 we can see that the Nintendo Wii Tennis game,
where users play tennis by physically swinging the Wii controller as if it was a ten-
nis racket, can be described by the theme kinesthetic means (i.e. playful kinesthetic
activity) and the kinesthetic parameters engagement (i.e. it is an engaging activ-
ity), sociality (i.e. fosters social play), explicit motivation (i.e. the game has explicit
rules) and expressive meaning (i.e. the physical-virtual mapping is a congruent fit).

2.5.4 Mapping movement interactions

How movement interactions can be mapped onto user inputs and computer out-
puts is another field in which frameworks have been developed. The interaction
frogger framework examines the interplay between the actions of individuals and
the functional capabilities of products, leveraging both inherent and augmented in-
formation, with the goal of enhancing the range of actions with perceptual motor
abilities of individuals in tangible interaction [316]. The interaction frogger frame-
work can be seen in figure 13 is constructed around coupling actions with types
of information that computers can offer (i.e. inherent, augmented or functional),
and each coupling can six aspects between input/output (time, location, direction,
dynamics, modality and expression). Benford and colleagues (2005) [14] created a
framework around the interplay and tensions of three reflective principles (i.e. ex-
pected movements, sensed movements and desired movements) when describing
movement inputs and computer outputs [14]. The sense-making experience frame-
work was developed to tackle the design of sensor-based movement interactions via
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Figure 12: The Kinesthetic interaction conceptual framework from Fogtmann et al. (2008)
[78]
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Figure 13: Interaction Frogger framework describing couples of human actions and infor-
mation offered by a computer [316]

transforms, which are the authors terms for describing pairs of human input and
world outputs [239]. Rogers and Muller (2006) describe their sense-making expe-
rience framework from the lenses of transforms, and refine three user cognitive
processes that tackle inputs/outputs (i.e. perceiving, understanding and reflect-
ing). They argue that novel transforms can be created by considering uncertainty
and unexpectedness as parameters of the movement interaction [239]. They also
reason that there are three sensor properties when coupling human movements
with computer outputs (i.e. discrete-continuous, precision, explicit-implicit) [239].

2.5.5 The first-person subjective body

All of the previous frameworks aim to help design more intuitive and natural embod-
ied interactions. However, Norman (2010) claimed that the term “natural” has been
overused when referring to the benefits of embodied interactions [202]. He firstly
stated that gestural interfaces weren’t new to the decade of the 2010’s (shortly
after the appearance of the mass-marketed Nintendo Wii, Playstation Move and
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Kinect Controllers [272, 265]) and that known problems with gestural interactions
prevailed back then. He illustrated such “naturalness” problem via the Wii bowling
game, in which the natural interaction was swinging the motion controller forward
and release gripping pressure to throw a virtual bowling ball, but this caused the
unintended problem of some controllers flying away from users’ hands and damag-
ing their TV displays. He made the point that while gestural purists would claim
that the problem was in the presence of the controller or the strap instead of in the
gesture, he saw very challenging to map the “release grip” input without the pres-
ence of any controller [202]. He reasoned that gestures and interactions are not
“natural” and instead they are “learned” via social conventions, and illustrated this
with the difference of nodding between western and indian cultures or the apparent
naturalness or pinching to zoom on a screen [202].

Gillies and Kleinsmith (2014) [94] reasoned from Norman’s argument that bodily in-
terfaces and traditional interfaces exhibit a distinct contrast. The authors reasoned
from the reality-based interaction point of view that Jacob and colleagues (2008)
introduced, where bodily interfaces and other emerging forms of interaction are
effective by utilising a different range of our inherent skills than traditional WIMP-
based GUIs. While a GUI draws on our skills in manipulating external visual and
symbolic representations, bodily interfaces employ skills related to body and en-
vironmental awareness. Therefore, Gillies and Kleinsmith (2014) [94] reason that
this difference occurs because of the non-representational, sensorimotor nature of
bodily interactions, which contrasts with the inherent symbolic characteristics of
GUIs. Hence, natural user interfaces would only be “natural” if they account for
such non-presentational and sensorimotor grounding.

O’hara and colleagues (2013) extended Norman’s argument by differentiating be-
tween representational concerns away from interactional concerns [207]. With rep-
resentational, O’hara and colleagues (2013) refer to the positivist view that has
been prevalent on HCI work that motion interfaces are inherently more natural
because they are closer to the “real-world” and hence can distill some universal
gestural vocabulary that, with enough research, could be represented and modeled
by technology. Instead, they position themselves away from the representational
concern to adopt Merleau-Ponty’s (1968) phenomenological perspective in which
actions could be performed from the objective body (i.e. third-person, abstracted
and representable) or from the lived body (i.e. first-person, subjective and per-
sonal) [185, 184, 207]. Furthermore, they reason from a Wittgensteinian (1969)
and ethnomethodological perspective that the lived body is affected by the social
activities that construct one’s individual experiences [317, 207]. Therefore, O’hara
and colleagues claim that separating what is really “natural” about a motion inter-
face is not how it is engineered to be used, but rather who uses it and the way the
it is used in context [207].

Loke and Robertson (2013) [161] introduce a movement-based design methodol-
ogy that is directly inspired by prior phenomenological work from O’hara et al.
[207] and Svanaes [284]. Loke and Robertson criticised the third-person focus of
prior embodied interaction conceptual design frameworks from the 2000 to 2010

49



decade[118, 24, 67, 78, 240] and argued that, in order to innovate in movement-
based interaction design a first-person perspective focused on “the how of working
with the moving body” should also be taken into consideration [161]. They take
inspiration from principles of “defamiliarisation” of the subjective lived experience
into free variations, a technique known as “making the familiar strange” or “mak-
ing strange” [161]. Hence, Loke and Robertson suggests the methodology moving
and making strange, which is structured around three core perspectives: the ob-
server (i.e. third person human perspective), the mover (i.e. first person human
perspective), and the machine (i.e. third person computer perspective). They then
suggests that these three core perspectives are to be support the execution of seven
activities during embodied interaction design (see Table 4).

Svanaes (2013) [281] suggests a different vocabulary when studying embodied in-
teractions, grounded in three concepts that he has been researching on since 1993
from a phenomenological perspective: the feel dimension of embodied interactions
[284], the interaction gestalts [282], and the kinaesthetic thinking [283]. The feel
dimension encompasses the overall “sum of stimuli in the visual, auditory, tactile,
and olfactory sense modalities” when performing a particular action with a par-
ticular interface [284]. The interaction gestalts are the “atomic percepts in the
kinaesthetic sense modality” [282] and Svanaes stresses that gestalts are com-
plete behaviours instead of symbolic action/reaction representations of interaction
[281]. He argues that the gestalts are understood by users in the feel dimension of
embodied interactions via kinaesthetic thinking, which represent the “experiential
wholes” and “direct cognitive operations” with the physical environment [283, 281].
Kinaesthetic thinking allows users to compare interaction gestalts between them,
akin to how visual gestalts of faces can be compared via visual thinking [281]. The
author illustrates his terminology with a driving metapor: driving a car is experi-
enced via the feel dimension, and kinaesthetic thinking allows users to understand
the changing gear gestalt [281]. Svanaes argues that while kinaesthetic thinking
can be used to describe embodied reasoning processes, users can also have the abil-
ity to abstract movements away from concrete gestalts. Therefore, he introduces a
new term: kinaesthetic creativity, which he defines as “the active use of the body
through abstract movements to explore possible futures” and discusses that body-
based interaction design can be used for both concrete reasoning and alternative
futures explorations [281]. He illustrated how kinaesthetic creativity can be useful
in embodied interactions design via two design-through-enactment studies [285],
where participants mixed their lived and abstracted bodies with role-playing exer-
cises to generate possible futures. The first study presented in his 2013 paper [281]
involved a workshop in a hospital setting to ideate useful interfaces that didn’t ex-
ist (in this case, a tablet GUI to read tests results and medical history); the second
study presented involved a participatory workshop using disabled Wii remotes with
physiotherapists, to ideate movement-based serious games that did not exist (Fig.
14) [281].

50



Table 4: Summary of activities and perspectives in the moving and making strange method-
ology [161]
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Figure 14: A design-through-enactment workshop from Svanaes (2013) [285, 281]. (a) Par-
ticipants use kinaesthetic creativity to ideate alternative Wii games via direct first-person
lived movement-experience. (b) Participants abstract their lived experience into a white-
board sketch describing their concrete idea, which is what they “saw” while enacting phys-
ically.

2.5.6 Methods and techniques to design

Other authors studied ‘bodystorming’ methods to explore creativity methods from
a first-person lived body experience [212, 246, 174, 23, 116]. With bodystorming,
we refer to a creativity-through-enactment activity in which users explore ideas
from a whole body first-person perspective. Oulasvirta and colleagues (2003) [212]
decided to explore bodystorming as an creative ideation method for ubiquitous
computing. In ubiquituous computing the context of where the device is located
and how it is on-site plays a key role, hence why bodystorming becomes a rele-
vant method. Bodystorming in this paper is understood as “brainstorming on a
context-aware physical location with potentially some acting-out activities when
required” [212]. In the motivation, the authors compare bodystorming with brain-
storming as exemplars of user-centered design processes (althought they briefly
mentioned Contextual Design, Scenario-Based Design, FACE UI Design and oth-
ers). There is a common flow among all these design methodologies involving three
steps: “(1) observation of user activities; (2) documentation of the observations;
and (3) design based on the documentation”. Authors motivate how stages (1)
and (2) are solely meant to produce a document that can be later on complicated
and biased, therefore failing to communicate its findings during the design stage.
Bodystorming might help since it could allow participants to better ‘experience’ the
context. Authors hypothesise that bodystorming could potentially (1) take less time
to produce outputs, (2) result in better designs, (3) provide better understanding
of contextual factors and (4) give immediate feedback on-site. These assumptions
are motivated by previous research showing how externalising representations and
contextual cues can reduce cognitive load, better recall ideas and memories, and di-
rect attention to relevant features. In their study, Oulasvirta and colleagues (2003)
compared 4 bodystorming case studies with different settings between them and
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between another 4 brainstorming case studies with similar settings by looking at
how the variations affected the “session and generated innovations”, “the quality
and quantity of generated ideas” and “comparing expert sociologist’s comments
of the acquired results”. The authors found out that the novelty of bodystorming
technique required participants to be trained during several sessions for partici-
pants to grasp the methodology, and after comparing all case studies they didn’t
found significant qualitative differences between traditional brainstorming and the
bodystorming technique they used. Yet, they especulated that, from their obser-
vations, bodystormed experiences might be better remembered and could prove
useful in the long term, thus “inspiring researchers to get familiar with new con-
texts” [212]. Schleicher and colleagues (2010) [246] argued that a rework of the
bodystorming method needs to be done, addressing the problem that the end-focus
shouldn’t be on the final idea generated but rather on the physical experience be-
hind the enactment of a situation. Their goal is to focus on tacit knowledge ex-
pression via participatory physical level of experience. They name their variation
of bodystorming “embodied storming”, which focuses on “scenarios” more than en-
acted personas. Schleicher and colleague’s (2010) reason that embodied storming
helps creating themes via tacit knowledge translation into rapid communication
and social “generate-do-learn” cycles [246]. They also consider the usage of props
and suggest that they can have “feelings, thoughts, and the ability to speak” [246].
Höök and colleagues (2018) [116] researched somaesthetic interaction design, a
design methodology focused on “on making people more aware of their felt bodily
experiences”, with term “soma” refers to the “ the unity of mind and body, in-
tellect and experience”, while “aesthetics” refers to subjective appreciation. The
authors argue that it is challenging to incorporate aesthetically pleasing designs
into products that are meant to be used with the human body, with many poorly
designed products it is difficult to create a good bodily experience. Additionally,
it is difficult to articulate what constitutes a good or bad bodily experience, which
poses methodological challenges. Höök and colleagues (2018) synthesise three
main insights from their somaesthetic interaction design journey: (1) attaining so-
maesthethic skills (i.e. mastery of lived bodily practices), (2) somaesthetic brain-
storming (i.e. the methodology affected the way ideas are generated), and (3) the
materials in the design process (i.e. iteratively exploring digital and physical mate-
rials). Márquez Segura and colleagues (2016) [174] proposed a new method called
embodied sketching, which has the purpose of designing enjoyable movement in-
teractions for a product based on play, even before the product is firstly prototyped.
The authors reason that motion-tracking technology should be bodily sketched to
avoid negative applications and instead come up with positive applications before
creating the technology. They illustrate their position with motion-controlled game
experiences, arguing that they could fail engage players long-term as gesture inter-
actions could not offer enough play after the initial novelty phase, because of treat-
ing the motion-control design problem an engineering one. Márquez Segura and
colleagues (2016) cleverly illustrate this problem with the a quote on the Playsta-
tion Move controller: “[. . . ] great tech, probably not so great applications so far
[. . . ]” [174]. The authors synthesise five principles from their embodied sketching
method: “i) an activity-centred embodied approach to ideation, ii) the use of the
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Figure 15: Prototype screenshots from the virtual bodystorming study [23]

complete setting as a design resource, iii) the physical and hands-on engagement
of designers with a non-scripted activity, iv) the use of movement and play both
as method and goal, and v) the facilitation of a sensitizing and design conducive
space” [174]. Boletsis and colleagues (2017) explored a VR-centric bodystorming
methodology, named virtual bodystorming [23]. They motivate their work from the
perspective of traditional design ideation methods, which inform about specifities
of interactions with users and service in a limited manner. Therefore, there is a
need for service design ideation methods that can convey the information better.
The authors hypothesise that bodystorming in VR might help overcome the limita-
tions between the service environment and its prototype, thanks to the capacity of
recreating physical scenarios in 3D and simulating acted-out interactions in a col-
laborative fashion (Fig. 15). These immersive and networked features could help
the service designer in extracting and communicating relevant user feedback [23].

More recently, the challenges behind the COVID pandemic stimulated embodied
interaction research on remote scenarios. Ferran Altarriba and colleagues (2022)
[18] introduce their designerly tele-experiences method that focuses on iterative re-
mote co-design between designers and stakeholders. The designerly tele-experiences
allowed participants that were co-located in the same physical space act as co-
designers by interacting with playable digital prototypes that were remotely con-
trolled by the researchers (Fig. 16)

Weijdom (2022) [315] proposed the performative prototyping method for collabo-
rative mixed reality environments. The authors explored how bodystorming tech-
niques in a socialVR scenario could benefit from a digital puppeteering (i.e. blend-
ing physical and virtual props, see Fig. 17) and Wizard of Oz [56] techniques, which
“asks for an embodied awareness by the operator of its mediated performance of
objects and events in the MR environment in response to other participants”[315].
Weijdom (2022) explains that the performative prototyping technique is done both
from an inside-out phenomenological appreciation and an outside-in somaesthetic
evaluation [315]. The author chose to study his methodology in socialVR because
“the capability to do the designing, coding, prototyping, and sharing from within
its VR environment allows for a continuous flow of embodied design strategies and
experiential learning”, and additionally it allows “to scale oneself in relation to a
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(a) (b) (c)

Figure 16: The designerly tele-experiences method [18]. (a) Sketch of the remote method-
ology, in which the researcher controls a prototype remotely and remote participants bodily
co-design while co-located. (b) Participants playfully co-designing with props in response
to one of the prototypes. (c) Participants marking body parts of other co-located peers as
ideated effects from an interaction with the prototype.

Figure 17: In performative prototyping, participants bodystorm and merge physical props
with virtual representations that are controlled via puppeteering or wizard of oz techniques
[315]

virtual environment”. The performative prototyping method follows the stages of
ideation, development, and testing and suggests that bodystorming, Wizard of Oz,
puppeteering or role-play can be used in any of the stages as designers see fit [315].

Furthermore, Françoise and colleagues (2017) [82] focuses on the importance of
technology-driven kinesthetic awareness in embodied interaction design. The au-
thors explored how their interactive sound installation that “generates a continu-
ously evolving sound environment, in response to participants’ micro-movements
and muscular activity”. The authors emphasize that, while methodologies like em-
bodied sketching [174] or somaesthetics interaction design [116] are powerful to
generate embodied interaction designs, implementation of such ideas is essential
for continuous interaction. They claim that “moving in interaction is fundamentally
different from sketching or simulating interactions, as it positions the user with-
ing a singular action-perception coupling” [82]. The authors reason the importance
of designing “inside the feedback loop” of the technological intervention to explore
variations in implementation and mapping. They acknowledge that there is often no
single criterion for finding the optimal design, and designers must embrace explo-
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Figure 18: The reflective design loop model for embodied interaction design and imple-
mentation of interactive machine learning systems [93].

ration and deep attention, citing qualitatively perceived “Aha moments” to uncover
singular experiences within the design space.

Gillies (2019) [93] agrees with Francoise and colleagues (2017) [82], and reasons
there isn’t a similar experience to a paper prototype that could translate the feeling
of enacting movement interactions and receiving immediate computer feedback.
He suggests that movement interactions can be classified in three major styles:
(1) object focused (i.e. tangible user interfaces in which the focus is on the object
rather than on the movement), (2) direct mapping (i.e. virtual tangible interfaces
where a virtual action can be tackled via different forms of undefined movements,
such as pressing a virtual button), and (3) movement focused (i.e. interaction de-
sign around specific body movements that don’t rely on objects). Gillies (2019)
argues that machine learning techniques can be applied to successfully tackle
movement-focused interaction designs following an interactive human-in-the-loop
approach. He reasons that fast interactive loops of movement-to-machine-feedback
allow for embodied reflection that positively affect the interaction being designed
and implemented [93]. In this manner, he suggests that a movement interaction
designer can follow iterative loops of performance, machine feedback, human re-
flection, and machine learning refinement (Fig. 18).

2.5.7 Summary

This section of the background reviewed embodied interaction design theories and
methodologies grounded in the body, where designers benefit from thinking with
their bodies to design. We reviewed theories of the first-person lived body dis-
cussing how the body can be used for both reasoning and creativity, and then in-
troduced embodied ideation methodologies, such as bodystorming [246], embodied
sketching [174] and somaesthetic interaction design [116]. Finally, we reviewed
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literature arguing that embodied interaction design processes for interactive tech-
nology should be accompanied by implementation of the ideas generated to foster
embodied creative reflection [82, 93].

Therefore, we have seen that in this section different methods of embodied in-
teraction design and reasons that suggest a deep integration between embodied
ideation, design and implementation in an iterative fashion. Furthermore, interac-
tive machine learning seems to be posed as a solution to explore for game motion
controls interaction design. In the next section, we will introduce the concept of
interactive machine learning and prior research in the field.

2.6 Interactive Machine Learning

2.6.1 Introduction

As described previously in the thesis, Interactive Machine Learning (IML) can be
a potential solution to support game creators in designing and implementing more
nuanced motion controls. There is room for improving the player experience of vir-
tual reality games because of the undesirable tracking quality of motion controllers
[258] and the limited interactions that existing tools in game engines allow [1].
These issues can create friction during motion control scheme development and
lead to a poorer player experience.

Traditional gamepads and keyboards are as well limited in the interaction range
they offer, but they still allow for a discrete remapping of control schemes when
creators find that their controls aren’t working well. Joysticks can support a some-
what richer finger movement space [114], but they can’t be compared with the
richness of human body motion [91].

Additionally, previous research has highlighted how existing methods of embodied
interaction design, such as bodystorming [23], embodied sketching [174] or so-
maesthetics interaction design [116] require marrying design and implementation
loops to benefit from embodied reflection [82, 93].

Hence, there is a need for better embodied motion control prototyping pipelines
that might might potentially improve the player experience by broadening the rich-
ness of interactions and making use of cycles of design and implementation. Inter-
active Machine Learning then offers a solution to these problems by allowing game
creators to prototype gestural interactions via direct human movement examples to
tailor the experience to their needs, therefore better representing gestural intent
with current technologies [63, 93]
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2.6.2 Related IML Work

The field of Interactive Machine Learning (IML from now on) is relatively new. The
term was first introduced in 2003 by Fails and Olsen (2003) [68]. Dudley and col-
leagues (2018) [63] define IML as the “interaction paradigm in which a user or
user group iteratively builds and refines a mathematical model to describe a con-
cept through iterative cycles of input and review”. Importantly, not only does user
input shape the model and its subsequent behaviour: users modify their behaviour
in response to the system output as well [68]. IML thus provides an interaction
loop where the user is heavily involved, steering the feature space, learner model
or training and evaluation data sets in a desired direction after every iteration [6,
63].

Amershi and colleagues (2014) [6] performed a literature review that collected sev-
eral IML case studies that show how some first attempts fail to account for the user
and how there is a need for new learning systems to interact with the end-users.
IML introduces “rapid, focused and incremental model updates” [6], that allows
users to perform small changes on a particular aspect of the model and immedi-
ately obverse the effect of the update (Fig. 19). These characteristic of the IML
workflow allows non-expert users to explore the model space and drive the system
towards an intended behaviour, reducing the need of expert supervision [6]. Amer-
shi and colleagues (2014) also comment that there exists a tight coupling between
the user and the system because of the rapid iterative IML workflow. Amershi and
colleagues illustrates as well the fact that studying user interaction can lead to an
improvement of classical machine learning algorithms and novel IML systems [6].
This is in line with later research from [92] that points to different traditions in
the evaluation of models and learners between the HCI and machine learning com-
munities. HCI research can benefit from the use of representative datasets and
structured tasks, as it already happens in traditional machine learning experimen-
tation; and machine learning research can improve by performing user studies in
the style of HCI investigation [6, 63].

Videogames then become an interesting test environment where it is possible to
explore how the user and the learner affect each other and how tight their coupling
is during the experience. It is as well a potential powerful answer to the points
raised by previous research regarding the need of user studies in machine learning
research and regarding the use of standardised methods – with the right set of
structured tasks [6, 92, 63].

Based on a literature review by Dudley and colleagues (2018) [63] , a common IML
workflow involves six steps: (1) feature selection, (2) model selection, (3) model
steering, (4) quality assessment, (5) termination assessment, and (6) transfer. In
Dudley and Kistensson’s (2018) opinion, the model steering task is the core activ-
ity of the IML workflow, and the one where the user will most likely spend most
of the time seeking to steer the model behaviour to a desired one. Fiebrink and
colleagues (2011) [73] comment that model steering can as well entail defining the
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Figure 19: Structural breakdown of a generic IML system [63]

right decision boundaries of a classifier. It is presumably the most relevant aspect
in the IML workflow since it is where the most effort might be spent [63]. During
the model steering, there will be an exchange of information between the model
and the user that can manifest in different ways, for example as a potential concept
drift [41, 150] or as situations where the users cannot correctly express their intent
[226, 163]. [226] describe this exchange of information as the training dialog and
the specific features selected as the training vocabulary.

Still, all the tasks impact model performance and user engagement with the IML
system in a variety of ways and deserve focus. Explicit feature selection can be
beneficial for generalised interactions as it can be translated into efficiency [230]
and quality gains [34]. When selecting the model, allowing the user to accurately
specify the model to use or make a comparative analysis and adjust the model
parameters can be favourable for the users to deliver their intent [63]. For that
reason, Francoise and colleagues (2016) [80] developed GaussBox, an IML tool for
inspecting hidden markov models trained to recognise mouse gestures. The idea
behind GaussBox (Fig. 20) is to improve users understanding of machine learning’s
elemental mechanisms by increasing the transparency of the interactive represen-
tation of gestures [80]. In Fig. 20 it is possible to see the representation of the
likelihood of the markov model as the user performs the gesture with the mouse,
aiming to help designers create efficient gesture sets [80].

In the field of gestural based computer interaction, Fiebrink and colleagues (2011)
[73] explains that the shape and smoothness of the decision boundaries of a model
can be of higher relevance to the user than the where those boundaries lay in the
feature space. To reach that conclusion, Fiebrink and colleagues (2011) developed
a tool to allow training supervised learning model for gestural interaction in mu-
sic, called the Wekinator [73, 74]. In their study, the authors found that as users
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Figure 20: GaussBox Interface [80]

learned how to steer the model in the desired direction, the model taught them
back how to recognise noise in the training dataset and how to adjust goals to
match observed capabilities of the learning system. Interestingly enough, even a
professional cellist identified flaws in her technique by using Wekinator to train a
motion gesture recogniser [73]. The Wekinator follows an IML workflow by letting
users select which type of model they want to use and sample paired gestures with
sounds to perform regression or classification [74]. The Wekinator is a highly con-
figurable tool where users can sample data from different sources, by sending OSC
messages to the Wekinator through the computer’s virtual ports system, and then
experimenting with which model users feel they are expressing their intent better
[74]. The Wekinator interface can be seen in Fig. 21.

As the literature points out, sometimes end-users might not have a clear idea of
how exactly they want their interaction to be [226], and this is no exception when
creating videogame interactions. It might happen that players might expect to have
a full-fledged sword fighting combat system, but when allowed to freely encounter
an enemy they might not know how to physically react. Or it might be that a game
designer wants to create such sword-fighting system, but not have a clear idea of
how it will manifest in its final form. Lü and colleagues (2014) [163] therefore tack-
led this intent problem during the training dialog by creating Gesture Script, an
application where the users can describe the fundamental structure of a 2D ges-
ture by providing new samples to improve gesture classification. In the Gesture
Script example [163], the model steering activity is comprised of several sub-tasks
in which users engage in the training dialog by either generating new samples for
a gesture, selecting generated ones from the interface, or defining the underlying
structure of a gesture by coding simple steps. The approach of Lü and colleagues
(2014) creates an interesting solution to tackle the problem of user intent by cre-
ating a highly configurable system that doesn’t penalize users when their intent or
direction is not clear. Tsandilas and colleagues (2009) [296] studied as well gestural
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Figure 21: The Wekinator interface [74, 73]

interaction, although in music content research, and approached users intent drift
by allowing users to sample gestures without explicit meaning and giving users the
option to give meaning to pre-sampled gestures when the concept has solidified in
their mind. The authors called their strategy “semi-structured delayed interpreta-
tion of gestures” [296].

Even when the user believes that they have a clear direction, there is always a
potential risk of intent drift without users noticing as [63] extracted from the lit-
erature. [150] tackled the intent drift problem by developing a more structured
sampling method during model steering. [41] answered the same issue by design-
ing a series of heuristics and text guidance for the user to follow while the user is
engaged in the training dialog. The users would encounter explicit text instructions
while sampling to avoid drifting their intent, for example “When you show examples
of an Angry face vary them as much as possible” [41].

These solutions for the interaction challenges that the training dialog offers can
be very useful in the context that this thesis presents. As users interact with the
system, having a very structured sampling workflow and explicit guidance can man-
ifest as potential benefits on intent drift and delivering the intended player experi-
ence. Nevertheless, as Kleinsmith and Gillies (2013) [147] discovered, sometimes
users will not follow an iterative strategy during model steering. Kleinsmith and
Gillies (2013) study is of special relevance since it is following a very similar ap-
proach to the proposed in this thesis, by using an IML system to let users cus-
tomize the behaviour of in-game avatars in a Kinect motion-controlled game (Fig.
23). Therefore, the customisation game interface should encourage an iterative
strategy through the interaction and visual feedback presented [147], very much in
line with the non-game related studies from Cakmak and Thomaz (2014) [41] and
Kulesza and colleagues (2014) [150].Gillies (2016) [92] show as well the potential
of involving an user in the IML process and the opportunities to create embodied
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Figure 22: Gesture Script Interface [163]

virtual interactions aiming to immerse the user in a variety of scenarios [91, 92, 4].

Another of the characteristics of the IML workflow is that it can potentially relieve
prohibitive challenges by making more accessible motion-controlled interactions.
Katan and colleagues (2015) [141] studied how the IML workflow could be used
to customise gestured-based instruments with people with mental disabilities and
found that disabled and expert users shared the same goals and practices. Other
studies have looked at increasing the accessibility of motion-based videogames for
players with physical disabilities [29, 88], but have relied on pre-existing frame-
works that required the development time from experts. Therefore, the same way
customisable game controllers can improve the accessibility for regular game-pad
interactions [122], even leading to the later release of mass-marketed products
[85], IML systems offers the possibility to create adaptable motion-based interac-
tions for video-games.

2.6.3 Summary

In this section of the background we introduced what interactive machine learning
(IML) is and reviewed relevant IML work. We saw that the IML process comprises
of fast and focused iterations of feature, data or model changes in the model steer-
ing loop. To perform such loop, users interact with GUIs displaying relevant infor-
mation about the ML task at hand where they can perform model steering tasks. We
then reviewed relevant IML systems from the literature that work with movement
data, and showed that, while each IML system provided a well-performing solu-
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Figure 23: Player avatar in motion-controlled game [147]

tion to a particular movement-based problem, none of the current systems respond
to the specific requirements of game creation practice and game motion control
design and implementation.

2.7 Summary and Conclusions

In this chapter we have reviewed the literature about game motion controls in mod-
ern VR systems, and how IML can be a solution to support the embodied design and
implementation of more positively perceived motion controls. There isn’t a stan-
dard methodology for games motion control design [202, 263, 46, 98], and current
game motion controls implementation solutions are either too focused on object
interactions [301, 83], or too inflexible in their support for movement [306, 54].
Additionally, motion controls can elicit a rich and diverse set of experiential quali-
ties grounded in movement [288, 40, 154, 125, 257] and the body [267, 71], thus
any solution should accommodate the expression of such rich intent. Embodied in-
teraction design methodologies ground their process in the body [121, 281], and
propose methodologies of creative embodied design and reflection [174, 117] that
suit our problem. IML is then suggested as a movement-focused implementation
solution for the embodied interaction design creative reflection process [82, 93].

Nevertheless, and due to the particularities of the IML work pipeline, where the
user is constantly iterating and steering the model [6, 63], there can be unexpected
behaviours in motion-controlled games [147]. Furthermore, current IML solutions
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Figure 24: Screenshot of InteractML, our custom developed IML system for Unity 3D.

don’t accommodate game creators needs of systems working in-engine [217]. There
is therefore a research need for a new IML system built to support game creators
in their embodied design and implementation practice.

The IML system to use should follow a series of requisites from the literature. The
proposed IML system in this thesis should provide a way to configure input, output
and model to use for creators [6, 63]. The system should allow for an easy way to
visualise and de-bug the sampled-data by performing modifications on the dataset,
as well as guiding the training dialog to avoid potential intent drift [226, 163, 150,
41]. Finally, the proposed model should fully account for an IML workflow allowing
rapid iterations by being as easy to use by end-users as possible [6, 63].

Is for the above-mentioned reasons that we decided to develop a custom IML solu-
tion in the form of a visually-scripted game engine plugin, called InteractML (Fig.
24). The proposed plugin wraps most of the functionality of the C++ RAPID-MIX
API [50], which contains the requirements needed to allow the IML workflow in
terms of model selection and training. The plugin works as an integrated compo-
nent of Unity 3D [300], offering a visual scripting interface displayed as an addi-
tional window in the game engine (Fig. 24). Game creators can configure inputs,
outputs, model selected and providing the tools to debug the feature space and
sampled data, both in desktop and VR mode.

In chapter 3 the system will be introduced, and its functionalities, features and
machine learning algorithms described in detail.
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3 InteractML: Our IML Framework

3.1 Introduction

Videogames are increasingly incorporating a diverse variety of sensors. Examples
include DIY hardware games, VR sensors, smartphones, AR systems, smart watches
and more. Despite decades of research on using sensors as game controllers, there
are still no standard practices for how to design sensor-based interactions. It can
be difficult for developers to implement accurate and robust movement analysis
when sensors are noisy or high-dimensional, or when the goal is to sense complex
motions or actions in games. Furthermore, the motion-controlled game industry
transitioned from low-level IMU or camera systems with 3 degrees of freedom (DoF)
[201, 272, 187] to current ‘room-scale’ virtual reality (VR) systems with 6 DoF [119,
211]. Unfortunately, there isn’t an agreed set of motion control design methodolo-
gies for VR games [205, 89, 263, 46], and current in-engine VR solutions for motion
control design are overwhelmingly focused on object-interactions [188, 301, 83]
while leaving unattended the movement-focused richness arising from plenty of
unsupported interactions [93].

Moreover, previous generations of motion-controlled systems were constructed on
the same visualisation principle as traditional computer work: users are meant
to move always facing the screen to receive visual feedback. However, VR’s 6
DoF displays break that principle by displaying information anywhere in the virtual
scene, since the interaction and spatial perception of the stereoscopic visual illusion
strongly resembles that of real-life, where users move and interact with their whole
bodies. Hence, game creators ‘hide’ the main display of the computer when they
place the VR headset on during VR development. Since their view of the keyboard
and mouse is also overriden by the stereoscopic display, current VR systems show
a virtual representation of the two controllers (in the case of controller-tracking) or
the two hands (in the case of hand-tracking). This creates the need for IML tools
for games to also have a ‘presence’ in the VR display, both for information display
and system control.

Previous literature on end-user motion authoring explored interactive machine learn-
ing (IML) workflows on creative domains [74, 6]. In an IML workflow, end-users
follow iterative loops of human teaching and machine learning of model steering
iterations [63]. Via iterative model steering, end-users author machine learning
models that are able to process user input and transform it into meaningful out-
puts. For instance, the creative domains that showed promising results include mu-
sic motion research [74, 73] or dance [81], where body movement of musicians and
dancers was processed to create music, visuals or a combination of both. Nonethe-
less, none of the previous domains included motion-controlled videogames or IML
toolkits specifically built to support game creation processes.

In this chapter, we describe InteractML, which is an IML system designed to facil-
itate the design and prototyping of motion-controlled games to capture rich infor-
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mation about player movements and actions. This work is informed by the success
of IML in facilitating the design of new gestural musical interfaces for professional
musicians [76, 75] as well as children and adults with disabilities [213, 141]. In-
teractML has been created in the form of a no-frills plugin for the widely-used
Unity3D game engine. The design principles behind InteractML were (a) to main-
tain game editor interaction metaphors game creators are already familiar with
(i.e. drag&drops, gameobjects, scripts) and (b) to facilitate non-expert work via a
visual-scripting interface for ML tasks [173, 63].

Additionally, InteractML supports in-VR development by displaying IML system
state on a movable virtual panel. The IML information displayed includes input fea-
tures values, model steering stage (i.e. recording data, training, running) and live
ML model output. There are also VR specific nodes in the game editor node-graph
interface to control any other node behaviour with VR controllers, thus allowing to
change labels, record data, train or run ML models.

The chapter begins in section 3.2 by introducing an overview of what is interactive
supervised learning and what are the stages from a user-centred process, followed
by our design rationale and process to implement such stages in section 3.3. Then,
section 3.4 details the core contribution that this chapter presents: InteractML’s
user-centred in-engine visual and embodied model steering. Afterwards, the system
architecture is explained in section 3.5, and a detailed explanation of each node is
done in section 3.6. Finally, the chapter discusses how our visual and embodied
model steering process in the game engine editor compares to prior IML literature.

3.2 Interactive Supervised Learning

Supervised learning algorithms are capable of building new recognisers or control
systems from examples, rather than requiring a developer to write code analysing
sensor data and specifying how an application (e.g., a game) should respond. Specif-
ically, an algorithm learns from examples of human gestures or actions, each paired
with the desired response. For instance, a developer (or player) could provide a
few examples of an accelerometer being tilted right and left, along with informa-
tion about how the colour of an on-screen game object should change in response
to each tilt. A supervised learning algorithm can then build a mathematical model
capable of choosing a new colour (or any other property) change in response to
each new tilt observed during gameplay.

In interactive machine learning, a user (e.g., a developer or player) iteratively
builds and refines the model through “cycles of input and review” [63]. IML sys-
tems for building new gestural controllers for music typically allow users to create
new gesture examples on the fly, and to evaluate models by experimenting with the
new controllers in realtime [76, 90]. Users can iteratively modify the training exam-
ples, sensor, and learning algorithm to improve performance. A similar approach
has been used to customise virtual game characters’ behaviour via physical player
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Figure 25: InteractML, the proposed interactive machine learning solution. On the left of
the image are the nodes extracting features from gameobjects in the scene. The node “Ro-
tation” is a “Feature Extractor” that sends data from a gameobject forward in the graph. In
the center of the image is the “Training Examples” node where users can iteratively collect
pairs of features extracted (positions, rotations, velocities, etc) and game outputs (sounds,
colours, particles, etc). To the right is the “IML Configuration” node, which holds the prop-
erties to build the ML model, specifying the type of supervised learning algorithm (classifi-
cation, regression or time series analysis), the training dataset and which gameobject will
feed features during gameplay to perform the real-time ML analysis. Game creators can
iteratively customise the training dataset, the features extracted or the properties affected
by the ML model outputs until they reach the ML configuration that best expresses their
intent (wave a hand, fly a dragon, play an instrument, etc).
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Figure 26: IML stages as present in InteractML

movements [147].

Several standalone software tools have been created to support IML creation of
gestural control interfaces, such as Wekinator [76], GRT [90], and GVF [45]. Oc-
casionally these have been used in games. For example, Schedel and Perry [244]
used Wekinator to create a musical game in Unity3D controlled using a Cello K-
bow and a Microsoft Kinect [244]. However, the implementation of this system was
difficult and needed the writing of substantial new code to enable communication
between Wekinator, Unity and the audio engine. Further, the final game could not
be released as a standalone application, as it required multiple software programs
(Unity3D, Wekinator, and a tailored application to extract data from sensors) run-
ning in parallel. The complexity of this toolchain limits the utility of such an IML
solution for game developers that are used to different subsystems in the game en-
gine editor window with seamless integration between them (i.e. the scene viewer
with the light system, the shader viewer with the behaviour tree system, etc.).

3.2.1 Overview of Interactive Supervised Learning Stages

Interactive supervised learning is the IML paradigm that InteractML follows. It re-
lies on iterative human-in-the-loop cycles where labelled training data is recorded,
an ML model is trained and evaluated. Dudley and colleagues [63] generalised
an IML workflow divided into four main stages: (1) feature selection, where the
user chooses meaningful symbolic representations of input data to generate train-
ing data; (2) model selection, where the user chooses a suitable algorithm to tackle
the machine learning problem; (3) model steering, where the user engages in it-
erative loops of data collection, model evaluation and/or feature re-selection; and
(4) transfer, where the user packages and deploys the trained model onto a tar-
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get application. InteractML follows the four main stages described in Dudley and
colleagues [63], but additionally requires users to think about (a) how the model
output is mapped onto a game interaction, and (b) which variables and data types
should be chosen to represent the mapping. Hence, a summary of InteractML IML
stages would be:

1. Feature selection: the user chooses meaningful symbolic representations of
the VR input controllers to record training data. These representations are
known as features, and the user selects them by connecting the appropriate
feature node into the VR controller node (Fig. 25.B, Fig. 26.1). The features
we implemented for InteractML are position, rotation, velocity, distance and
window of features.

2. Model selection: the user chooses one of the algorithms offered to do classifi-
cation or regression via creating an ‘ML System’ node of the appropriate type
(Fig. 25.E, Fig. 26.2). The algorithms offered for classification are k-nearest
neighbour (KNN) and dynamic time warping (DTW), and for regression a mul-
tilayer perceptron (MLP).

3. Model steering: the user follows iterative loops of (a) variables and data types
selection, (b) data collection, (c) model evaluation and, depending on assess-
ment, (d) feature re-selection and/or (e) further data collection (Fig. 26.3). A
summary of each substage would be:

(a) Variables and data types selection: the user select variable nodes in the
IML visual scripting graph to define and connect different types of data
to pins for labelling training data or visualising model outputs (Fig. 25.C,
Fig. 26.3.a).

(b) Data collection: the user collects training data via creating a node called
‘Teach the Machine Node’ and recording their own movement data as
they exemplify movements. Each data recordings is paired with a label to
produce a labelled dataset that then can be connected to a ‘ML System
Node’ (Fig. 25.D, Fig. 26.3.b).

(c) Model evaluation: the user performs a qualitative direct evaluation over
the model [73], where they bodily feel how the model recognises their
movements. Models output their inferred result onto a variable node
(Fig. 25.F, Fig. 26.3.c).

(d) Feature re-selection: the user might decide to change the features se-
lected after an unsatisfactory evaluation. This step will require the user
to collect further data as the previous dataset didn’t include the correct
features (Fig. 25.B, Fig. 26.3.d).

(e) Further data collection: the user might decide that there is a need to
record more training data after an unsatisfactory model evaluation. More
data can be recorded following sub-step (b) data collection (Fig. 25.D,
Fig. 26.3.b).
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4. Model output to interaction: the user will map the model output – which is
usually an integer – into a game interaction. To achieve this, the user drags
and drop a game script from the main game engine editor view onto the IML
visual scripting graph, thus creating a ‘Script Node’. These ‘Script Nodes’
respond to the logic written in them, and show as many input or output pins
as specified in the variable declaration (Fig. 25.G, Fig. 26.4).

5. Transfer: the user can export the trained models by packaging and loading
training data and models as JSON files (Fig. 26.5). This process is automated
following Unity3D packaging process.

Below we will describe our design rationale and design process to create an Inter-
actML.

3.3 Design Rationale of InteractML

The design goals of InteractML were grounded by the limitations posed by prior
IML tools [76, 45, 90] in respect to modern game motion controls design practice
[217, 244, 83]. We aimed at designing a system that (1) is fully integrated in the
game engine as an additional editor subsystem, (2) reduces the amount of written
programming code required to use, and (3) follows a visually scripted approach to
configure the IML system. To tackle the no-frills integration into the game engine,
since its very inception we designed InteractML as a native game engine plugin,
where users download and install and additional package into Unity 3D, which
displays an additional editor window with the system reusing engine interaction
metaphors via supporting drag and drops of scene objects. We wanted to design
a system to reduce written code with a visually scripted interface. Therefore, we
decided to use a node-based visually scripted interface for users to define feature
extraction from dropped game objects onto the node graph window, training data
collection, model training and inference via dedicated nodes.

The decision to employ a node-based system for InteractML was influenced by
the popularity of such solutions in game development, namely Unreal Engine’s
Blueprints [66, 313] and Unity’s ShaderGraph [299]. Additionnally, node-based
systems for visual programming has been shown to simplify adoption and program-
ming outside of games development [173]. Hence, by following a similar node-
based approach, InteractML aligns with familiar visual scripting paradigms in game
development, potentially reducing the learning curve for creators and promoting
adoption of IML tools.

Additionally, InteractML’s data workflow is strongly inspired by previous IML sys-
tems, especially the workflow present in the Wekinator [74]. Wekinator functions
as a Java application based on the Weka machine learning framework, and offers
a GUI relying on dropdowns, buttons, sliders and tables. Such a design requires
game creators to (1) write code to extract features from objects in their game, (2)
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write additional Open Sound Control (OSC) network code to send such features
onto Wekinator, (3) use Wekinator’s GUI to set up a Wekinator project, record data
and configure an ML model, (4) write code to receive and process model outputs
from Wekinator. Additionally, once deploying their game to players, game creators
need to ensure that Wekinator is also installed and open on players machines, which
complicates deployment. Wekinator additionally relies on ’projects’ as a way to de-
fine input and output parameters, requiring users to change projects if users want
to modify the number of inputs or outputs in the machine learning model.

InteractML attempts to simplify this process by allowing users to visually map
model inputs and outputs to game script variables directly within the game en-
gine. Our design requires game creators to use InteractML’s node window to (1)
visually select features from game objects in the game scene, (2) visually record
data and configure one or several ML models, and (3) visually map model out-
puts to game script variables. The user will only need to write code to process
the variables receiving the model outputs in a game script as they would do if the
variables received the information from another game subsystem (i.e. no network
code required). Additionally, InteractML’s also offers an in-VR console displaying
the node-graph status, which creators can use to follow the IML process in their
practice fully in-medium, which is an interface that creators would need to con-
struct themselves if using Wekinator. Finally, models are automatically exported
to players when game creators deploy their games in an ’invisible’ manner, simi-
larly to how the rest of the game engine deploy systems to a player build (e.g. the
player isn’t actively aware what makes the lighting or physics work). Therefore,
our design facilitates a more accessible and user-friendly experience, particularly
for non-technical creators, by enabling them to incorporate the IML workflow to
their process with fewer steps.

3.3.1 Design Process

The development of InteractML followed an iterative process with expert feedback,
where the design methodology was characterized by a series of progressive re-
finements without the direct involvement of end-user testing or evaluation. This
approach leverages iterative cycles of planning, implementation, feature testing,
discussion with specialists and subjective personal evaluation, where each phase
builds upon the insights gained from the preceding one. Decisions regarding fea-
ture implementation or modification were informed from 2019 until 2022 by Prof.
Rebecca Fiebrink and Phoenix Perry, that acted as experts, and allowed us to build
on from their IML experience for creative practice [76, 73] and games [244].

The initial purpose of the project in 2019 was to expand on the shortcomings from
Fiebrink’s and Perry’s prior work, resulting from decades of user feedback and their
personal specialist introspection during their own IML research. From 2020 until
2022 we collaborated with Prof. Marco Gillies, Dr. Nicola Plant and Clarice Hilton
as part of the 4i project, which investigated how InteractML was used by tech-
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Figure 27: InteractML Design Iterations. (Left) The original mock-up of InteractML, show-
ing the node-based system with data flow with feature extraction, data collection, and model
configuration as dedicated nodes. (Right) The first implemented iteration of InteractML dis-
playing the initial implementation of the mockup design to include objects from the scene
and nodes for feature, training data and model configuration.

nology artists as part of an embodied design methodology using machine learning
[219, 220, 221, 113]. During this period, and after each iteration, we gathered
expert feedback and discussed our improvement proposals informally within the
team of collaborators. These discussions went from tackling general IML princi-
ples (e.g. "How is model steering performed now?") to focused discussions tackling
pilot studies performed as part of the 4i project (e.g. "How are users going to
implement and evaluate movements with both their VR controllers in irregular cir-
cles?"). Hence, changes were decided in discussions between the main author of
this thesis and his collaborators, taking into account the expert feedback from Prof.
Rebecca Fiebrink and Phoenix Perry. Changes consisted of usability enhancements
(e.g. changing the text or button layouts in nodes), functionality expansions (e.g.
introducing new nodes), and performance optimizations (e.g. optimizing the up-
date loop of the model node). Between iterations, we developed small prototypes
aiming to assess how it is to place InteractML into controlled implementation sce-
narios. The original mock-up of the interface, together with its first iteration can
be observed in figure 27, which is visibly different from the final form of the tool in
figure 26. The last period of design work of InteractML, from 2022 until 2023, was
conducted by the main author of this thesis. This period focused on designing how
users provide explicit testing examples of their own movement, and followed a sim-
ilar iterative process with the supervisors of the thesis providing feedback based
on prior experience (see section 3.6 for more information).

The original mockup of the tool (Fig. 27 (Left)) laid the foundations of InteractML’s
data workflow, in which (1) features nodes are fed onto a ‘Training Examples’ node
to build a dataset, (2) the training dataset from the ‘Training Examples’ node is
fed onto a model in the ‘IML Configuration’ node, and (3) the model prediction is
fed onto a ‘Realtime Output’ node. Such a design attempts to implement the basic
steps in the IML process to perform feature and model selection, model steering
and model output to interaction.
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The first working implementation of InteractML (Fig. 27 (Right)) included game ob-
ject nodes and feature extraction nodes, the ‘Training Examples’ node and the ‘IML
Configuration’ node from the original mockup design. One of the changes from the
mockup design to the first implementation was the separation of input data coming
onto the ‘Training Examples’ node to the ‘IML Configuration’ node, aiming to de-
couple input for training datasets from the input for models to encourage flexibility.
The configuration of the training dataset and the model was done via fields and
dropdowns on both the ‘Training Examples’ and ‘IML Configuration’ node, follow-
ing a similar set of options to that of Wekinator’s GUI. In this initial implementation,
the model (or models) output was mapped onto game scripts interactions via refer-
encing an entire graph and reading an array with all model outputs sequentially.

Nevertheless, after iterations of personal prototype implementation and system re-
finement, we identified several points of friction with the initial implementation.
One of the first problems to arise was processing the array of model outputs from
an InteractML node graph reference. We initially followed the same approach as
the Wekinator, where an array of outputs is returned and the user needs write
code to segment and parse the data onto variables that then can be used for game
logic. We found that this ended in an unnecessary amount of code written that
could be simplified directly in the node graph. We introduced ‘Script Nodes’ that
allowed to visually map model outputs to specific game script variables on the node
graph editor, reducing the amount of written code for game creators. The addi-
tional advantage of such design is that users could then train several models in an
exploratory fashion, but not connect all of them onto the game script. The sec-
ond point of friction we identified was the configuration of the ‘Training Examples’
and ‘IML Configuration’ via fields and dropdowns. Such interface process made
exploration on feature selection and model steering time consuming because the
process required two redundant steps: (1) create and connect feature nodes, (2)
specify via dropdowns what features are expected to be connected. We decided to
simplify the configuration by removing the fields and dropdowns, and instead let
users select and connect features and variable nodes on the ‘Training Examples’
and ‘IML Configuration’ node. Furthermore, we decided to split the ‘IML Config-
uration’ node into specific model nodes to reduce the amount of clicks required
for model selection and configuration. Finally, we decided to overhaul the look
of nodes and colour palette to hide information that we considered redundant or
confusing, and attempted to highlight when variables changed on nodes to visually
highlight the data flow. The visual look overhaul also included changing the names
of the ‘Training Examples’ node into ‘Teach the Machine’ node to signify that users
should spend effort ‘teaching’ movements to this node, and that this node would be
used to ‘teach’ a model once connected. The final look of InteractML is the one that
we elaborate on during the rest of the chapter, and it was kept consistent for the
VR interface as well (see core contribution in subsection 3.4).

Below we will describe more in detail how the core contribution of InteractML –an
in-engine and in-medium visual and embodied user-centred process for interactive
supervised learning.
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Figure 28: Position selection of the left VR controller. (Left) The user drags and drops
the ‘LeftHand Controller’ over to the IML Graph to create a ‘Game Object Node’ with a
reference to the controller. (Middle) The user clicks on the output pin and selects the
‘Position’ movement feature from the contextual menu (Right) The Position Node showing
real-time position changes.

3.4 Core Contribution: Visual and Embodied Interactive Su-
pervised Learning

3.4.1 Visual Feature Selection

One of the novel contributions to the field is the visual and user-centred design
process of our tool. InteractML is a visually scripted tool directly in the game
engine scene, and as such users will perform feature selection on the IML graph.

Firstly, users drag and drop any gameobjects that they want to extract movement
features from. For instance, given a Unity scene with an XR Rig, which is a hier-
archical representation of gameobjects of a physical VR system, the user can drag
and drop the ‘LeftHand Controller’ onto the IML Graph to select the position fea-
ture (Fig. 28). The feature selection process in the example provided on figure 28
can be reused to import more gameobjects and select further features. For exam-
ples, in figure 45 both controllers have been imported and the user has followed
the visual feature selection process to select the position of both VR controllers,
then further select the distance between both controllers and select a window of
features were all features are combined together in a window of size 1.

3.4.2 Visual Model Selection

In InteractML, the user can select a model via right-clicking anywhere on the IML
Graph and selecting one of the available moodel nodes from the dropdown menu
(Fig 29). The user can create as many model nodes as desired on the IML graph,
and any of them can tick the ‘Run Model On Play’ checkbox (Fig. 47) that will allow
a model to automatically run once the game starts.
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Figure 29: The user selects a classification model on the IML Graph. (Left) The user right
clicks on the IML Graph to display the contextual menu. (Right) The user selected the
‘Classification MLS’ option to create the ‘Classificataion Machine Learning System Node’.

Figure 30: The model steering iterative task. The user can perform the task on desktop or
VR depending on the sub-stage they are working on.

3.4.3 Visual and Embodied Model Steering

One of the main novel contributions of this chapter is the no-frills visual and embod-
ied model steering capabilities of InteractML, both in desktop and VR, extending
beyond the user-centred functionalities of prior IML systems [74, 90, 80].

In figure 30 we can see an overview of how the model steering task consists of four
sub-tasks in InteractML. Before jumping to a detailed description of each higher-
level IML task, we wanted to explain our core contribution in detail since it can be
better understood explained as a whole process.

Visual variable selection and control: Users can create and connect variable
nodes to specify labels or to visualise model outputs. However, in order to allow
a better embodied variable control while the user is in VR, users need to be able
to change the value of a variable with VR controller input. In order to do that,
we implemented a node that serve as a simple mathematical function that adds or
removes a value for any variable (Fig. 31).
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Figure 31: (Left) The node ‘AddSubstractAmount’. (Right) The node visually programmed
to add or remove an amount of 1 to a variable triggered via up or down keyboard arrows.

Embodied Data collection: The user can perform the entire data collection stage
in VR by visually scripting the control of a ‘Teach the Machine’ node with VR con-
troller buttons. In VR, the user visualises the current label and state of data record-
ing on the VR console in 3D. The user will record pairs of performed human move-
ments and labels while in VR.

Embodied Model evaluation: The user can bodily feel how the model recognises
their movements, and observe the inferred output of the model on the VR console
and, additionally, on the audiovisual in-game effect they aim to control.

Visual Feature re-selection: After an unsatisfactory evaluation, the user might
decide to change the features selected. For this step, they will need to remove the
VR headset and visually select features on the desktop IML Graph. This step will
require the user to collect further data as the previous dataset didn’t include the
correct features, but it can be done in VR alltogether once features are selected.

Further embodied data collection: If there is a need to record more training
data after an unsatisfactory model evaluation, the user can do so fully in VR, hence
ensuring that, if there is no need to change features, the entire model steering
process can be performed in-medium in VR. In this manner, the user will perform
fully embodied in-medium loops of data collection and model evaluation, which are
the most performed subtasks in model steering [63].

Therefore, by using InteractML, game creators can visually and bodily create and
iteratively train interactive supervised learning models without needing expert ML
knowledge. For example, a game creator that is used to create VR games for Ocu-
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Figure 32: (Top) A ‘Teach the Machine Node’ programmed to perform embodied data
recording via VR controller input. On the left side of the graph, two ‘VRTrigger’ nodes con-
trol that the dataset label changes with the left controller primary and secondary buttons.
On the right side of the graph, the ‘VRTrigger’ nodes connected to the ‘Teach the Machine’
node control that the primary and secondary buttons of the right controller trigger data
recording or delete the dataset in case of the user is unsatisfied. (Bottom) User performing
embodied data collection. On his laptop screen it can be observed how he looks at the VR
console ingame while controlling the change of label in his IML Graph with VR controllers.
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Figure 33: The dependency diagram of InteractML.

lus headsets with Unity 3D, wants to explore how to introduce dancing capabilities
to their game. They can download and integrate InteractML from the github repos-
itory, and immediately start experimenting on a scene that they already have in
place for their preivous game. They can drag and drop to the IML graph their XR
rig objects and experiment with different features and movements all within the
engine and the virtual scene they are familiar with. We believe these are much
needed requirements to translate the knowledge generated in prior IML work onto
such a practical and industrialised field as game development. Furthermore, we
are advancing the state of the art in IML tooling by supporting a fully visually pro-
grammable IML loop, and a fully embodied model steering activity.

Still, there is value in understanding how InteractML supports our visual and em-
bodied user-centred design process from a software standpoint. In the following
section we will describe in detail the software architecture of InteractML, how data
flows through the system, its most important classes and how InteractML integrates
with the Unity 3D game engine.

3.5 System Architecture

In this subsection, we describe InteractML’s underlying software architecture as a
Unity3D game engine plugin. Firsly, we will describe the dependencies the system
relies on to function. Secondly, we will introduce how data flows into InteractML.
Thirdly, we will introduce an overview of all the relevant classes in detail. Lastly, we
will describe in detail the most relevant classes in charge of data flow management,
IML graph and node display, input handling and virtual reality support.

3.5.1 Dependencies

InteractML, as a game engine plugin, relies on a series of dependencies:

1. Unity3D Game Engine API: The first major dependency is the game engine
itself. InteractML is developed as a Unity3D ([300]) and will not function out-
side of it. We don’t consider this a limitation as this is an intended behaviour
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Figure 34: The movement data flow of InteractML. (1) User interacts with VR devices. (2)
Movement data is piped onto IML Graph. (3) Movement data is (a) broken onto features,
(b) processed by an IML model, and (c) piped onto a game script. (4) IML Graph output is
mapped onto a custom game interaction in-game.

and one of the systems strengths. InteractML works on any Unity version
from Unity 5 onwards.

2. xNode framework: InteractML’s node graphical capabilities are built on top
of an Unity open-source node framework called xNode [31]. xNode is a generic
framework for node-graphs specifications and drawings. Graphs and nodes
are scriptable objects (i.e. a Unity specific data structure) that can be ac-
cessed at run-time. Every InteractML node class and the IML graph class
base implementation are provided via xNode. InteractML extends xNode to
account for (1) custom data flow, (2) two update loops (in editor time and in
‘play’ time), (3) a full re-skin of the UI, and (4) custom library of IML nodes
and functions.

3. Rapidlib libary: InteractML’s uses Rapidlib as its machine learning backend
[50, 320] via a C# to C++ interoperability layer. Rapidlib is a C++ All ma-
chine learning algorithms and training data structures extend from rapidlib’s
definitions.

4. Newtonsoft JSON.NET library: InteractML relies on Newtonsoft JSON.NET
library to serialise the training datasets and system states into JSON files
[200].

3.5.2 Data Flow

Because of the movement-focused nature of InteractML, data flows from the user
onto a game action as depicted in figure 34.

3.5.3 Overview of Classes

IMLComponent.cs: InteractML has a main starting point to execute logic on the IMLComponent

.cs class. This class has a reference to an IML graph and implements the main data
flow update method, which (1) pulls information from every referenced gameobject
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Figure 35: Relationship diagram of core classes of InteractML. The class IMLComponent

.cs links gameobjects and scripts from the virtual scene with the nodes contained in an
IMLGraph.cs instance.

into the graph and (2) updates the state of every node implementing the interface
IFeatureIML or IUpdatableIML. The IMLComponent can be added as a component to any
game object in the scene, but we provide an editor menu option to create an ‘IML
System’ game object in the scene with an IMLComponent already added to it.

IMLGraph.cs: The IML Graph class contains a list of all nodes and specifies how the
graph is drawn on the game engine editor.

IUpdatableIML.cs: An interface that marks any node class implementing it as updat-
able by IMLComponent.cs, and requires the implementation of the methods Update()

and LateUpdate(). See code listing 1 for the core interface definition.

Listing 1: IUpdatableIML.cs interface

1 namespace InteractML
2 {
3 /// Allows a node to implement the Update and LateUpdate methods
4 public interface IUpdatableIML
5 {
6 ...
7 /// Function to call to run code to update class
8 void Update();
9 /// Called after update has finished

10 void LateUpdate();
11 }
12 }
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IFeatureIML.cs: An interface that marks any node class implementing it as a fea-
ture from a machine learning perspective, which allows the node to be considered
for training data collection and machine learning inference input. This interface
requires the implementation of the FeatureValues variable and the UpdateFeature()

method. See code listing 2 for the core interface definition.

Listing 2: IFeatureIML.cs interface

1 namespace InteractML
2 {
3 /// Implement this interface when a class will act as an input/output feature

for the IML system
4 public interface IFeatureIML
5 {
6 /// Values returned by this feauture
7 IMLBaseDataType FeatureValues { get; }
8 ...
9 /// Function to call to run code to update feature values

10 object UpdateFeature();
11 }
12 }

IMLBaseDataType.cs: A generic class that identifies a variable as an acceptable input
or output into a rapidlib model. Because rapidlib algorithms and training datasets
expect all data to be parsed as double precision point numbers, we need to wrap
any variable into an IMLBaseDataType class to support variables of diverse types on
the IML Graph while complying with rapidlib’s data requirements.

3.5.4 Game Engine Editor Time and ‘Play’ Time Loops

As shown in the class diagram in figure 35, InteractML updates every frame all
nodes that require it via the IMLComponent class. To do so, a loop needs to be imple-
mented and the main update method called in it. Because InteractML is a plugin of
a game engine system, it needs to update both during editor time and ‘play’ time.
Editor time is the period of work that the user spend on the game engine editor
itself, without launching the game and compiling all scene scripts. In Unity, edi-
tor time stops once the ‘Play’ button on the top of the editor is clicked. Once that
button is clicked, all game scripts are compiled and ‘play’ time begins, executing
routines and code in the same order as during execution time on a built game.

Therefore, InteractML implements two different update loops –one for editor time
and one for ‘play time’. Each of them is handled by a different class:

IMLEditorManager.cs: Manages InteractML’s update logic during editor time. The
class offers public subscription events to subscribe methods from any class to run in
editor time. On project start, all IMLComponent are found and subscribed. Additionally,
when a new IMLComponent is instantiated its main update loop is also subscribed to
the IMLEditorManager class.
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MonoBehaviour.cs: The MonoBehaviour class is provided by the Unity API, and allows
any class inheriting from it to automatically subscribe to the game engine update
loops in ‘play’ time. Our IMLComponent class inherits from MonoBehaviour to call Inter-
actML’s main update loop in ‘play’ time. Additionally, and thanks to the inheritance
from the MonoBehaviour class, an IMLComponent instance can be created via the game
engine editor interface when adding such class as a component to any game object
in the scene.

3.5.5 IML Graph Display

In order to draw the IML Graph as a node-based window in the Unity3D engine,
InteractML inherits from the generic node editor framework xNode [31]. The main
class that draws the IML Graph editor in InteractML is IMLGraph.cs, which inherit
from the class NodeGraph.cs. Our IMLGraph class implements the methods AddNode()

and RemoveNode(), which allows create and destroy nodes in the graph (see code
listing 3). The graph is structure as an Unity ‘Scriptable Object’, which facilitates
many data persistence benefits that don’t need to be reimplemented. However, to
support the persistence of scene game objects, scene scripts, training datasets and
ML models, we needed to write custom serialisation methods exposed in the static
class IMLDataSerialization.cs.

Listing 3: IMLGraph.cs class definition excerpt

1 using System;
2 using UnityEngine;
3 using XNode;
4

5 namespace InteractML
6 {
7 /// Defines an example nodegraph IML Graph that can be created as an asset in

the Project window.
8 [CreateAssetMenu(fileName = "New IML Graph", menuName = "InteractML/IML Graph

")]
9 public class IMLGraph : NodeGraph

10 {
11 ...
12 /// Override addNode to account for custom adding logic
13 public override Node AddNode(Type type) {...}
14 /// Override removeNode to account for custom removal logic
15 public override void RemoveNode(Node node) {...}
16 ...
17 }
18 }
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3.5.6 IML Nodes

Node classes are defined by the IMLNode.cs class. Every node class in InteractML
(e.g. models, training datasets, variables, etc.) inherits from it in order to correctly
function as part of the IMLGraph class and be updated by the IMLComponent main update
loop. The IMLNode.cs class offers methods to initialise nodes on instantiation and
automatic assignment of unique IDs. Below is a list of the main node classes in
InteractML which functionality is explained more in detailed in section 3.2.1:

1. BaseMovementFeatureNode.cs: the base class for all feature nodes and implements
the IFeatureIML interface.

2. TrainingExamplesNode.cs: the base class for the ‘Teach the Machine Node’ where
training data recording is performed. It implements the interface IDataSetIML

to hold training data.

3. MLSystem.cs: the base class for all the different algorithms offered by Inter-
actML to train and infer with.

4. ScriptNode.cs: the node that allows to drag and drop scripts onto the IML
Graph. It shows information about a script and pipes data into our out of the
script via input or output pins.

3.5.7 Input Handling

Input is handled in the main update loop of the IMLComponent class, which updates the
information from any node implementing the IInputType interface. The IInputType in-
terface includes the methods OnTriggerChange() and OnButtonChange() to detect when
a button or trigger has been pressed on input devices.

The class KeyboardInput handles input coming from a keyboard device, and such in-
put is exposed in the node class KeyboardPress which inherits from the CustomController

parent node class. The user can select which keyboard key will be detected and
can connect the output pin of the node into any clickable button on an IML Node
(Fig. 36).

3.5.8 VR Support

Until now, we have described the ‘InteractML Core’ classes and functionalities.
However, InteractML can be extended with additional modules and nodes. We
created the VR module that adds additional functionality of top of InteractML to
perform interactive machine learning loops in virtual reality. The module is divided
in two main components: (1) VR display of relevant IML Graph information, and (2)
VR control of IML Graph nodes.
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Figure 36: Two keyboard input nodes are connected to the ‘Record Data’ and ‘Run’ but-
tons, thus programming that the key press ‘M’ wil trigger data collection, and key press ‘R’
will trigger the model to run inference.

VR Display. Because InteractML is built around the Unity 3D game engine editor,
which is created for desktop usage, we needed to create a solution to display in-
formation about the IML Graphs that users create in VR. To simplify the amount of
learning that users would require, we decided to follow a simple console approach
that displays information about an individual IML Graph on a virtual panel (Fig. 37).
The console displays the ID of each ‘Teach the Machine’ node or ‘ML System’ node
in the graph. From the ‘Teach the Machine’, the console displays the current label
connected to the node and how many examples are stored in it, together with the
state of the data collection (i.e. whether is currently recording data or not). From
the ‘ML System’, the console displays the total number of training data trained on
together with the state of the model (i.e. training, running) and the inferred output
of the model. This way, the user can visualise core system information while in VR.

VR Input Handling. The VR module adds a new kind of input device node specific
for VR controller buttons named VRTrigger, which inherits from InteractML’s core
input handling parent class CustomController. Once a VRTrigger is connected to a
‘Teach the Machine Node’ or ‘ML System Node’, an instruction is displayed on the
VR console with information about which button to press on the VR controller to
trigger a node action (Fig. 38). This way, the user can perform InteractML’s core
model steering tasks from within VR without the need to remove the headset.

3.6 Feature Selection in InteractML

One of the game engine components that provides support for the programming of
movement is the ‘transform’ in the virtual scene. Transforms are engine compo-
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Figure 37: InteractML’s VR Console. (Left) The in-game console displaying the state of
training data recordings and ML model of an IML Graph. (Right) The corresponding IML
Graph.

Figure 38: InteractML’s VR Console displaying VR input details. (Left) The in-game con-
sole displaying the state of training data recordings and ML model of an IML Graph, to-
gether with which buttons from the VR controller will trigger node actions. (Right) The
corresponding ‘ML System’ node with two ‘VRTrigger’ nodes connected to its main buttons
for ‘Train’ and ‘Run’ the model.
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nents that change the position, orientation, and scale of an object in a coordinate
system. Transforms can be applied to any object in a virtual scene, such as models,
cameras, lights, etc. In Unity, they are the basic component of any game object
[300].

Game engines usually provide functions and tools that allow developers to manipu-
late transforms easily and efficiently. This manipulation can be done via code or via
the editor. Therefore, transforms are a fundamental concept in game engines that
enable the programming of movement in virtual scenes.

Transforms can be utilised by supervised learning algorithms as the basis for fea-
tures describing movement. In supervised learning, a feature is an abstraction that
pre-processes data into a meaningful numerical value to improve machine learn-
ing results. Features are usually derived from existing human knowledge, such
as knowledge extracted from audio signal processing to derive fourier transforms
[30], or from computer vision research representing motion as the positive absolute
difference between an object position in space over time [190].

Since game creators would use transforms to describe movement in their games,
it makes sense in the context of supervised learning features to use transforms as
the basis for our features. InteractML offers five core movement features: position,
rotation, velocity, distance between features, and a window of features.

3.6.1 Position and Rotation

The position feature exposes the field GameObject.Transform.Position that returns a
vector with x, y, and z coordinates, each specifying the spatial location of the object.
The rotation feature exposes the field GameObject.Transform.Rotation that returns a
quaternion vector x, y, z, and w. Quaternions are mathematical representations
of a rotation that can be difficult to understand for game creators, that is why In-
teractML also offers a rotation feature in Euler angles [58] that returns a vector
in x, y and z coordinates, in which every dimension is in the range [0, 360] that
could map better to known rotation degrees values. However, we disencouraged
the use of Euler angles since they suffer from gimbal lock, which means that one
degree of freedom is lost when two rotation axes align. This can cause sudden and
unpredictable changes in the orientation of an object. This can cause confusion
and inconsistency in the representation of rotations. Both the position and rota-
tion features can be calculated in global space (i.e. the coordinate origin is the
virtual world space) or in local space (i.e. the coordinates of origin are relative to
the parent gameobject in the engine hierarchy). We decided to offer the position,
the quaternion rotation and the euler rotation as nodes for feature selection (Fig.
39 because creators might want to experiment with features and they match the
symbolic representation of the objects in the Unity editor (Fig. 40).
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Figure 39: Position and Rotation Nodes in InteractML node interface

Figure 40: (Left) Position and (Right) Rotation as visually represented in the game engine
coordinate space
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3.6.2 Velocity of other features

The velocity feature calculates the first order derivative of whichever feature is
used as an input. The first order derivative in regards to movement is the rate
of change of one variable with respect to another variable, following the formula

v⃗ =
x f − x0

∆t
, where velocity is a vector quantity that describes the rate of change of

value of a feature with respect to time, where v⃗ is the velocity vector, x f is the final
position, x0 is the initial position, and ∆t is the time interval in between two frames.

For example, if the variable is the position of an object, then the first order deriva-
tive is the velocity of the object, which tells how fast and in what direction the
object is moving. If the variable is the velocity of an object, then the first order
derivative is the acceleration of the object, which tells how fast and in what direc-
tion the velocity is changing. Hence, participants can use this feature node with
any other feature node.

We decided to offer the velocity node as the first order derivative of any other fea-
ture to simplify feature selection, because the alternative would have been to offer
specific nodes for the ‘Velocity of the Position’, ‘Velocity of the Euler Rotation’ and
‘Velocity of the Quaternion Rotation’ as three separate nodes, whereas now it can
all be selected with the same node (Fig. 41). Similarly, if the user wants to calculate
a the acceleration of a feature, which is the second order derivative, the user can
join two velocity nodes together instead of selecting a specific ‘Acceleration’ set of
nodes.

3.6.3 Distance between features

The distance between features calculates the euclidean distance between two fea-
tures, following the formula d =

√
(x2 − x1)2 +(y2 − y1)2 +(z2 − z1)2, where where d is

the distance, (x1,y1,z1) and (x2,y2,z2) are the coordinates of the two points.

In the case of using more than two features, the first feature is used as the origin
when calculating each euclidean distance. For example, using the distance function
is possible to calculate the openness of the arms by having both hand positions as
inputs. Similarly, one can calculate the distance between the head and the hands
by having the head as the first input, and each hand as the second and third inputs.
In this case, the node outputs two euclidean distances beginning at the head and
ending at each hand (Fig. 44).

We decided to offer a configurable euclidean distance node to simplify feature se-
lection, because the user can use one node to visually calculate relative features to
one another. For instance, this node could be used to visually calculate a distance
relationship between the head and the hands (Fig. 44), as well as a distance rela-
tionship between the palm of the hand and the fingers for hand-tracking gesturing.
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Figure 41: Velocity of Position and Velocity of Rotation Nodes

Figure 42: (Left) Representation of the velocity of a position and (Right) velocity of a
rotation. The information of the initial or final position or rotation is discarded, thus only
the velocity vector coloured in red is returned by the velocity node.
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Figure 43: Distance node between two positions nodes

Figure 44: (Left) Representation of the distance between two positions and (Right) two
cubes to the head. The information of the initial or final position is discarded, thus only the
distance amount coloured in red is returned by the distance node.
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Figure 45: A Window of Features Node including the position of the left and right hands,
and the distance between the two hands. The window is configured for one sample only,
hence only a frame of time is taken into account.

3.6.4 Window of Features

The window of features creates new features from existing ones by using past val-
ues of the data. In this sense, movement data will be computed as a form of time
series data, where the window of features can help capture the patterns in the
movement over time. For instance, with the window of features it is possible to cre-
ate a time series of positional data from a VR controller in the past second, minute,
hour, or any other time interval. The way to do this is by specifying a sample size
on the node itself. For reference, the sampling rate of InteractML is one sample per
frame, with the update rate fixed at 16.7 milliseconds (60 frames per second refresh
rate). Hence, a sample size of 60 is equivalent to a second of time. This can help to
distinguish different types of movements, such as walking, running, jumping, etc.

We decided to design this node as a key component of time segmentation for the
classification and regression algorithms. Windowed-time segmentation is a chal-
lenging problem to automate in machine learning reasearch [293], and any given
movement can be segmented in many different ways (Fig. 46). Thus, we decided
that the best judges for the quality of the recognition are the creators and attempt-
ing to automate this process could negatively affect (a) the quality of the creator’s
interaction, (b) the sense of control during feature selection, and (c) the mental
model of the creator as it learns about ML while using the tool [73].
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Figure 46: Red lines are single data samples. Black bars are the boundaries of the win-
dows. (Left) Representation of a window of features of sample size 6 and (Right) sample
size 3 for a swinging motion. The sample size determines the size of the window in regards
to time. The higher the sample size of the window, the more quantity of information is
stored in each window, and the less windows needed to describe a movement

3.7 Model Selection in InteractML

By combining features, users can symbolically describe what is important about
their movements to better teach their machine learning models. However, it is also
important to select a suitable machine learning algorithm that will correctly learn
from the input features.

InteractML implements the following learning algorithms: (1) classification with
k-nearest neighbour [53], (2) regression with a multilayer perceptron [86], and (3)
time series analysis with dynamic time warping [17]. Each of these learning al-
gorithms can be selected in the form of a ‘Machine Learning System’ node on the
graph window. Every algorithm is implemented from Rapidlib, a C++ machine
learning library developed as part of the European project Rapidmix with contri-
butions from researches at Goldsmiths, University of London [50]. Rapidlib was
developed to prototype light-weight interactive supervised learning models with a
variety of sensors in a diversity of platforms via porting of the C++ library into the
target system [320]. For InteractML, we compiled the C++ code into a dynamic
link library (.dll) file and wrote a C# wrapper compatible with Unity3D.

Each algorithm node is design in a similar way with two input pins, variable output
pins depending on training data labels, and three buttons to control the model
state (Fig. 47). The reason we chose this design is to facilitate experimentation
with feature selection and training data recording. In terms of feature selection,
user might decide to record data with a set of features pulling information from one
gameobject, but want to run inference on the same set of features with a different
gameobject. In terms of training data collection, the user might prefer to record
different movements on different ‘Teach the Machine Nodes’, and connect all of
them or a subset to the ML System node to train. This flexibility is one of the
key benefits of a visually scripted ML workflow such as the one we designed for
InteractML.
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3.7.1 KNN Classification

The k-nearest neighbour (kNN) algorithm is a supervised learning classifier that
uses proximity to make classifications or predictions about the grouping of an in-
dividual data point [53]. The kNN algorithm assumes that similar data points are
close to each other in the feature space. It works by calculating the distance be-
tween a query point and all the training samples, then selecting the k closest train-
ing samples (i.e. nearest neighbours) based on the calculated distances between
them. The algorithm assigns the query point to the class that has the majority of
the nearest neighbours.

For example, consider a problem where we want to classify human hand movements
as either moving to the left or to the right. We can represent each movement
by a set of features, such as the position and velocity of the hand. Given a new
hand movement with an unknown direction, the kNN algorithm would calculate the
distances between this movement and all the known movements in the training set.
It would then select the k nearest movements and assign the new movement to the
class (left or right) that has the majority of the nearest neighbours.

The decision boundaries in the kNN algorithm are determined by the local geometry
of the distribution of the data in the feature space and their relative distance mea-
sures [53]. As a result, the decision boundaries can be nonlinear and non-smooth.
The smoothness of the decision boundaries can be influenced by the choice of the
number of neighbouring data points in the parameter k. This process is known
as ‘parameter tuning’, and as k is modified, the decision boundaries could become
smoother, thus potentially reducing overfitting and improving generalisation [53].
To simplify user interaction, InteractML hides any parameter tuning options, and
instead has a default value of ‘3’ for the k parameter, which is the same default
value offered by the rapidlid library.

In terms of training time, kNN requires no training time. KNN is a lazy learning
model that does not generalise the data in advance. For inference time, it scans
the entire dataset to predict the class of a test sample by finding the closest class
based on a distance metric [53]. The time complexity of the kNN algorithm is O(nd),
where n is the total number of data points in the training data, and d is the total
number of features in the dataset [53]. Hence, kNN tends to be slow with large
datasets because it scans the whole dataset to predict and it is more appropriate
for small datasets to reduce friction in the IML loop.

3.7.2 Multilayer Perceptron Regression

The regression node in InteractML implements a multilayer perceptron. The mul-
tilayer perceptron (MLP) is a type of feedforward artificial neural network (ANN)
that consists of multiple layers of nodes, including an input layer, one or more hid-
den layers, and an output layer [86]. Each node in a layer is connected to every
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Figure 47: ML System nodes. (a) Classification Node, (b) Regression Node, (c) Dynamic
Time Warping (DTW) Node.
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node in the adjacent layers, making it a fully connected network. MLPs are used
for various tasks, such as classification and regression problems, and can model
complex non-linear relationships between inputs and outputs. In InteractML, the
MLP algorithm is only used for regression tasks, where the output of the algorithm
is continuous instead of discrete, unlike in classification.

For example, consider the problem of processing human hand movements when
moving to the left or to the right. Given a new hand movement with an unknown
direction, the MLP algorithm would infer a new output based on the trajectory of
the training dataset, instead of assigning it to a known class as kNN does. So, if
we assume a linear trajectory in a training dataset where the movements hand to
the left, centre and right are labelled as ‘-1’, ‘0’ and ‘1’, moving the hand further
down to the left that what was known would output ‘-1.5’ Similarly, moving the hand
mid-way between the known ‘left’ and ‘centre’ would output ‘-0.5’.

In an MLP, the input layer receives the input data, and the output layer produces
the final predictions. The hidden layers in between perform transformations on the
input data using activation functions. The most common activation function used in
MLPs is the sigmoid function [86], thus that’s the one implemented in rapidlib. The
learning process in an MLP involves adjusting the weights of the connections be-
tween nodes to minimise an error function, which measures the difference between
the predicted outputs and the actual target outputs. This is typically achieved using
the backpropagation algorithm, which calculates the gradient of the error function
with respect to each weight and updates the weights accordingly [86, 110]. MLPs
have a theoretical universal approximation capability, meaning that MLPs with a
sufficient number of hidden nodes can approximate any continuous function [86].

Selecting the number of hidden layers or the activation functions would affect the
curvature of the decision boundaries, and it is a form of parameter tuning. To
simplify user interaction with InteractML, a default neural network with one hid-
den layer and the sigmoid activation function is created for every regression node
placed on the IML graph.

Training a neural network using backpropagation involves a forward pass and a
backward pass, and the training time complexity increases considerably with each
layer and node on the network because of the fully connected relationship between
layers [86]. Therefore, MLP is more time-consuming to train than kNN, especially
for large datasets. While training an MLP is rather time-intensive, inference time
can be relatively ‘cheap’ since all weights have been calculated and neural network
inference time is less sensitive to the amount of training data and feature dimen-
sionality than the kNN algorithm.

3.7.3 Dynamic Time Warping Classification

Dynamic Time Warping (DTW) is an algorithm used for measuring the similarity
between two temporal sequences [17]. DTW works by finding the optimal alignment

95



between two time series, that may have different lengths or speed via non-linear
stretching or shrinking along the time axis, hence the name ‘warping’ [17].

Unlike kNN and the MLP, DTW inherently processes data from a ‘time’ perspec-
tive. That is, every single data point is actually a series of points. For example, five
seconds of the position of a hand would be processed as five seconds of indepen-
dent points with kNN and the classifier wouldn’t be able to process time without
a window of features node. However, DTW wouldn’t need the window of features
as five seconds of data would be understood as a time series to compare. And be-
cause of its time ‘warping’ capabilities, a gesture drawing a circle in mid-air that
takes 5 seconds can be compared with another slower sample of drawing the same
circle mid-air that takes 15 seconds. Despite DTW’s inherent time representation
usefulness, it has limitations, because while the algorithm can compare gestures
of different time lengths, it also requires explicit segmentation of when the ges-
ture begins and ends. This segmentation problem is a well documented problem
with time series analysis algorithms [293]. This problem isn’t present when a kNN
is used in conjunction with a window of features, as the algorithm can run in the
background processing movement data without the user explicitly signalling the
beginning and end of a movement.

Additionally, DTW can be computationally expensive in training and inference time,
especially when dealing with large datasets or long time series. The time complex-
ity of DTW is O(m * n), where m and n represent the length of each sequence [17].
Therefore, large training datasets with lengthy sequences may highly impact users
using DTW in their IML loops.

Yet developers do not need to know anything about the algorithms themselves to
begin using InteractML; they must only understand (1) the interaction flow required
to build a model (i.e., record data, train a mode, run the model) and (2) which
type of machine learning algorithm (classification, regression, time series analysis)
they wish to use. InteractML comes with numerous examples and tutorials to aid
developers with these tasks.

3.8 Model Steering in InteractML

3.8.1 Variables and Data Types Selection

Users can create variable nodes in the IML graph of the following types: Boolean,
Integer, Float, Vector2, Vector3, Vector4 and Array (Fi.g 48. Variable nodes can
be connected to any pin that accept the corresponding data type, for example to
specify a label when recording training data (Fig. 49 Left) or visualising the inferred
output from a machine learning model (Fig. 49 Right).

We designed the variable nodes in this manner to allow for as much flexibility as
possible when selecting labels or controlling buttons with variable output. Users
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Figure 48: Variable Nodes available in InteractML

can create a variable node and modify its value, and as soon as they connect it to a
suitable node the value of the variable node will start ‘flowing’ onto the other node.
Users can even record training data using variables as training samples instead of
movement features. This is because all movement feature nodes outputs the same
data structures that variables output. For instance, a position node outputs the
same kind of data structure that a Vector3 node outputs. On the visualisation side,
to ensure that the user understands when a variable is ‘reading’ a value instead of
‘writing’ a value, we removed the darkened background that indicates modifiable
capibilities when the variable node receives and input. For example, on the right
part of figure 49, an integer node receives the output of the model as an input and,
consequently, visually indicates that the integer value contained in the node cannot
be modified by the user by changing the darkened background –as opposed to the
left side picture.

3.8.2 Training Data Collection

To record training data, InteractML offers a ‘Teach the Machine Node’ with two
input pins: one for features and one for labels (Fig. 50 Left). Via this node, the
user can record data into training pairs of feature data and labels. For example,
the feature ‘Position’ of the hand gameobject can be paired with the integer label
‘1’. Then the user can click on the button ‘Start Recording’ to collect example pairs
of positions with label ‘1’. The number of collected examples is displayed on the
node and the user can stop collecting data by pressing the button ‘Stop Recording’.
The recorded data can then be viewed by opening a scrollable layout at the bottom
of the node (Fig. 50 Right).

We designed this node to offer flexibility during data recording. The node offers a
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Figure 49: Variables being used in conjuction with other nodes. (Left) An integer variable
node is used to specify the label of the training data to record. (Right) An integer variable
node is used to display the inferred output of a model.

button for recording one sample of data, because users might want to control very
carefully which poses or points in space they want to record onto the dataset. The
node also offers a button to record one example every frame, and this way the user
can record as much movement nuance as they desire and stop recording when they
are satisfied. We also didn’t want to constrain creators with the amount of features
or labels they choose. Users can experiment with as many ‘Teach the Machine
Nodes’, movement feature nodes and variables as they steer their model with their
own data.

3.8.3 Model Training and Running States

Before evaluating a model, the user needs to train the model with the data that
has been collected. All of the ‘ML System Nodes’ display buttons to (1) train, (2)
re-train if needed, (3) run the model, and (4) reset the model (Fig. 47). We describe
each of the model states below:

• Untrained: Models that have been just created or reset are untrained, hence
the user cannot run them –the ‘Run’ button is greyed out and the user can’t
click on it (Fig. 47). The user can train model once a ‘Teach the Machine
Node’ is connected to it (Fig. 51).

• Training: Models that are training with very large datasets will display this
state as is training on a different task. The model cannot run nor be retrained.

• Trained: Models that have been trained can now run and will display the

98



Figure 50: Training Data Collection Node, called ‘Teach the Machine Node’. (Left) The
node receiving input from a position feature with an integer label, and displaying all the
buttons that the user can press. The user can record one example, trigger data recording
until the user wants to stop, or delete all recorded examples. (Right) The detail dropdowns
for the training data recorded and for the unique classes recorded in the node.

correct number of output pins based on the label structure of the training
dataset (Fig. 51).

• Running: Models that are running infer in real-time an output that can be
displayed via variable nodes (Fig. 52). In this state, models can be stopped or
reset, but cannot be retrained.

And the node actions are as follows:

• Train: Enters the model into the ‘Training’ state and ‘Trained’ states.

• Re-train: Enters the model again into the ‘Training’ and ‘Trained’ states if
the node detect changes to the ‘Teach the Machine Nodes’ connected to it.

• Run: Enters the model into the ‘Running’ state.

• Reset: Re-enters the model into the ‘Untrained’ state via re-instantiating the
internal rapidlib model.

3.8.4 Model Evaluation in InteractML

How well a model learns can be calculated via the accuracy of inference. Inference
is the process of applying a trained ML model to a dataset and producing an output
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Figure 51: Training model nodes. (a) A ‘Teach the Machine Node’ with a training dataset
recorded is connected to a Classification model node that is trained displaying the one
output pin according to the training dataset label. (b) A ‘Teach the Machine Node’ with
a training dataset recorded with one Vector3 and two Float variables is connected to a
trained Regression model node displaying more output pins because of the higher number
of labels.

Figure 52: A classification model node is running displaying real-time inference via a
variable node.

100



Figure 53: Model evaluation can be broken down into three sub-stages: (1) direct evalua-
tion, (2) debugging or problem diagnosis, and (3) improvement strategy [264, 95]

or prediction. In InteractML’s case, the inference dataset will always be the live
input data coming from the selected features, and the inference output is specified
by the labels recorded in the training datasets. For example, if the user recorded a
training dataset in which the position ‘left hand up’ is labelled as ‘1’, and ‘left hand
down’ is labelled as ‘2’, the model will infer the output ‘1’ when the hand is up, and
‘2’ when hand is down. Accuracy is a metric for evaluating the performance of a
classification model. It is the fraction of inferences that the model got right out of
all the ones it made. For example, if a model correctly infers 90 out of 100 exam-
ples, its accuracy is 0.9 or 90%. Accuracy is a simple and intuitive way to measure
how well a model can identify the correct class for a given example. However, given
the qualitative nature of this thesis, we did not investigate the quantifiable value
of accuracy, but rather its qualitatively perceived value [73]. Because game de-
signers use their own qualitative assessment to prototype controls before engaging
in playtesting or quality assurance processes, we consider that InteractML should
support their existing way of assessing game feel via direct qualitative assessment,
something we refer to throughout the thesis as direct evaluation.

User evaluation of each iteration in the model steering loop can be divided into
three further sub-stages which form a sub-loop by themselves. The model evalua-
tion sub-stages are (see Fig. 53):

1. Direct evaluation [73]: During direct evaluation, the user ‘runs’ the model
while performing movements to directly observe the numerical model output
to assess whether the performance is satisfactory [73]. In InteractML, we
prompt a class by class evaluation structure via interface prompts (Fig. 54).

2. Debugging or problem diagnosis [95]: After an unsatisfactory direct evalua-
tion, a debugging or problem diagnosis phase is entered where the user at-
tempts to assess what causes are affecting the model numerical output during
live inference [95]. For instance, users might find that their training dataset
is lacking a label or more examples on a certain label, or that the selected fea-
tures don’t describe well enough the movement and a different set features is
selected.

3. Improvement strategy [264]: once the problem has been diagnosed, an im-
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Figure 54: Explicit testing data collection interface on model node. (a) Classification node
default view. (b) The user clicks ‘RUN & TEST’ after training the model, therefore entering
a structured class per class explicit testing procedure visualised as a pop-up window over
the node. (c) The user clicked ‘Record Testing Examples’, which started a testing data
collection in which the user movements are recorded. The user is also able to see what is
the expected numerical output for that class and the live inferred output from the trained
model (i.e. input: hands-up, output: stop taxi). (d) The user clicked ‘Stop Recording’
and a screen displaying how many testing examples were collected and an opportunity to
delete and re-record the testing examples is given. (e) Once the user has collected testing
examples for all classes, the user can exit the explicit testing interface to freely and directly
evaluate the model without structured prompts. They can stop or re-train the model at any
time from this moment.

provement strategy is followed to steer the model into the desired behaviour
(i.e. the user might need to select a different set of features, or to provide
additional training examples for a new or existing class) [264].

This evaluation loop can be performed for as many times as the user requires to
achieve a subjective degree of satisfaction with the model behaviour.

The IML Workshops chapter (Chapter 5) limited InteractML’s ML algorithms to
only offer the k-Nearest Neighbour (kNN) classifier[53] to both simplify quantita-
tive comparisons during future post-hoc analysis and reduce cognitive load from
participants. The kNN classifier was represented as the classification node in the
IML Graph (Fig. 54.a), which accepted nodes containing training examples (called
‘Recorded Data’ on the classification node) and features expressing live movement
data from the VR gameobjects (head and hand controllers).
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Figure 55: The user drags and drops the ‘LightController.cs’ script onto the IML graph to
create a ‘ScriptNode’

(a) (b)

Figure 56: (a) A float variable node is used to affect the light intensity of the ‘LightCon-
troller.cs’ script in IML graph. (b) A script node with display input and output pins following
the code on the LightController.cs Listing 4.
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3.9 Model Output to Interaction in InteractML

The final section of any IML graph is to pipe the model output into a custom script
in the game scene in order to translate model outputs into game interactions. In
InteractML, this is done via the ‘Script Node’ which represents an existing script.
For example, the user can drag and drop a Unity C# script that expects a float value
to control the intensity of a light into their IML graph as a ‘Script Node’, that will
display information about the script (i.e. name and gameobject holder) together
with input pins to connect the a variable node (Fig. 55. Then, given an interaction
where the movement ‘hand to the left’ outputs ‘0’ and ‘hand to the right’ outputs
‘2’, the user (Fig. 56.a).

Additionally, users can use ‘Script Nodes’ to output information from the scene into
their IML graphs. In the previous ‘LightController.cs’ example, the user can display
an output pin from the node with the intensity of the light when it is on. In order to
configure how many input and output pins are displayed from a script, the user can
decorate any public variable in the C# code with the attribute [PullFromIMLGraph]
to display an input pin, or [SendToIMLGraph] to display an output pin (see code
listing 4 and Fig. 56.b). Pins are displayed with the name of the variable together
with its data type following a code reflection process in C# [189].

We designed the script node to reflect the existing way of working in Unity, in
which creators would write simple scripts to prototype game behavior. Thanks to
that, we allow creators to reuse existing scripts they have in place by adapting
them to work with the IML Graph processing. Additionally, scripts are not a new
metaphor to learn, since users already understand that in order to have an effect
on a gameobject you need a script, and the API to affect a gameobject is still the
Unity API.

Listing 4: LightController.cs script with an input and output pin

1 using UnityEngine;
2 using InteractML; // This import is needed to use InteractML instructions
3

4 public class Lightcontroller: MonoBehaviour
5 {
6 // Displays input pin
7 [PullFromIMLGraph]
8 public float SetLightIntensity;
9

10 // Displays output pin
11 [SendToIMLController]
12 public Vector3 LightPosition;
13

14 // Update is called once per frame
15 void Update()
16 {
17 // Pull data from IML Graph
18 light.intensity = SetLightIntensity;
19

20 // Send data to IML Graph
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21 LightPosition = light.transform.position;
22 }
23 }

3.10 Model Transfer in InteractML

Since InteractML is integrated as a game engine plugin, models are transferred
to exported games via Unity’s regular build procedure [294]. InteractML automati-
cally packages training data and machine learning models as JSON files and exports
them into the file structure of the packaged game in the folder ‘InteractML/Data’.
This is then loaded into the game on run-time allowing for real-time inference on an
executable. This process is automated and doesn’t require any intervention from
the user side, ensuring functionality parity between the game engine editor and the
built game.

For instance, an excerpt of an example JSON file containing training data can be
found in code listing 5 and an excerpt of a trained model can be found in code
listing 6. We decided to use JSON as the serialisation format for data because it is
human-readable. As it can be seen in code listing 5, user can modify their training
dataset by writing or deleting examples from the dataset file. They can also choose
to merge datasets together by copying and pasting them together from one file to
another.

Listing 5: JSON excerpt from a file containing training data

1 [ {
2 "Inputs": [ {
3 "InputType": 0,
4 "InputData": {
5 "Values": [0.0, 0.0, -5.0],
6 "DataType": 3
7 }
8 } ],
9 "Outputs": [ {

10 "OutputType": 0,
11 "OutputData": {
12 "Values": [3.0],
13 "DataType": 1
14 } } ] },
15 ...
16 } ]

Listing 6: JSON excerpt from a file containing a trained classification model

1 {...
2 "modelSet" : [ {
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3 "examples" : [
4 {
5 "class" : 1,
6 "features" : [ 61.400001525878906, 0, 50.5, 61.40000

1525878906, 0, 50.5, 0 ]
7 },
8 ...
9 {

10 "class" : 2,
11 "features" : [ 61.400001525878906, 0, 50.5, 61.40000

1525878906, 0, 50.5, 0 ]
12 },
13 ...
14 ],
15 "inputNames" : ["inputs-1", "inputs-2", "inputs-3", "

inputs-4","inputs-5",
16 "inputs-6", "inputs-7", "inputs-1", "inputs-2", "inputs

-3", "inputs-4",
17 "inputs-5", "inputs-6", "inputs-7"],
18 "k" : 1,
19 "modelType" : "kNN Classificiation",
20 "numInputs" : 7,
21 "whichInputs" : [ 0, 1, 2, 3, 4, 5, 6 ]
22 }]
23 }

3.11 Discussion

Here, we discuss how the design features and interactions supported by InteractML
relate to existing tools for game motion control creation, and to out-of-engine inter-
active machine learning tools.

3.11.1 Advances on Game Motion Control Toolkits

In supporting in-engine, visual and embodied motion control creation, InteractML
makes several contributions on interaction toolkits [301, 83] and gesture recog-
nisers [306, 176]. Unlike existing VR interaction toolkits, InteractML moves away
from object-focused interactions and embraces a full movement-focused approach:
the source of an action is not the object “interactable” [83], as in a VR interac-
tion toolkit, but rather the movement itself. Additionally, InteractML can be used
alongside a VR interaction toolkit.

For instance, holding an interactable ball can set to True, a Boolean variable in the
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IML graph that will in turn run an ML System node to process user movement. We
could get creative and, similarly to how input is handled currently via ‘VR Trigger’
nodes, creators could integrate virtual interactables to control the entire model
steering process. We could imagine a basketball game with superpowers, where
creators could build an interface based around throwing the basketball into a par-
ticular hoop to change the training data recording label, or to grab the basketball
to begin recording movement data and throw the basketball to stop recording. This
example brings more nuance to object-focused interactions as the player movement
begins to matter when there is a direct consequence on how the player is moving
and how the player can control their own movement recognition.

And since the entire IML Graph is visually scripted, our system pushes forward the
state of the art of configurability and flexibility of movement-focused interaction
toolkits.

The basketball example also brings one of the key differences between InteractML
and current VR gesture recognition plugins–sensitivity to more than a single, pre-
specified controller through the ability to flexibly configure what the recognition
algorithm is ‘observing’. InteractML doesn’t assume that there is a single ‘correct’
input device. Rather, it accepts any game object from the scene as the source to
select movement features from –which could range from motion controls to web-
cams, microphones or wearables. This is a key difference from gesture recognition
plugins such as “MiVRy” [176], where the VR controller is the only input method
accepted.

InteractML also doesn’t ‘lock’ the user onto an opaque set of features or a sin-
gle processing algorithm, but rather offers a range of transparent features and
algorithms to better serve creative needs. Transparent, flexible feature selection
increases user agency, control, and potentially ML learnability, since non-experts
creators can discover how different feature sets affect the quality of their machine
learning inference.

InteractML allows users to perform the core of the tool interaction (i.e. the model
steering process) in an in-medium embodied manner. Users can use their body
movements to configure how their game interaction functions solely within VR.
This encourages users to indeed bodily think, instead of clicking sliders or typing
numbers on a GUI. Additionally, a fully embodied process is more direct than rule-
based movement abstractions [83] or simplified gesture recognisers [306, 176]. In
short, InteractML goes beyond existing systems that require users to constantly
switch between mediums to tweak variables in the game engine inspector. This is
done by offering a full embodied model steering process: users can bodily think
about the system as a whole.

Finally, regarding processing algorithms, InteractML allows for both classification
and regression tasks to be tackled. For instance, none of the gesture recognition
plugins available would allow to run a regression to control the intensity of an in-
game light or the strength of an attack; and none of them would allow ‘free moving’
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as InteractML does. With the window of features node in combination with the
kNN classification or the MLP regression node, InteractML users aren’t required
to carefully segment their movements during inference and support ‘unbounded’
movements such as wiggles, shakes or continuous movements such as walking or
dancing. And, since InteractML also offers a DTW algorithm node for time series
classification, users get the best of both worlds and can choose to ‘bound’ their
movements to explicit segmentations with the DTW algorithm.

3.11.2 Advances on Interactive Supervised Learning

The interactive supervised workflow supported by InteractML builds on existing
systems and approaches, especially the Wekinator [74]. The Wekinator affords the
same stages of interactive supervised learning that InteractML, and it has been a
clear influence to InteractML’s ethos [74, 73]. In both systems, users can (1) select
features from sensors without clear default input devices, (2) select models, and (3)
perform model steering.

At the same time, InteractML deviates from and advances upon this predecessor
in significant ways. Firstly, InteractML is a fully integrated into a game engine,
whereas Wekinator acts as a companion app that receives and sends data to other
computer programs. Secondly, InteractML’s interface is visually scripted, whereas
Wekinator’s interface follows a traditional interface based on buttons and slid-
ers. Thirdly, feature selection in InteractML is performed fully in-engine visually,
whereas Wekinator requires users to (a) write programming code in their language
of choice to select features from sensors, and (b) send the information via a network
protocol known as OSC. This is one of the strongest barriers of usage for non-ML
expert practitioners using Wekinator: coding features can prove difficult to creators
without signal processing or OSC experience. Thus, InteractML improves Wekina-
tor’s feature selection methodology considerably because of its visually scripted
and in-engine nature.

Model selection is done differently in InteractML. In Wekinator, users select a model
from a dropdown, whereas in InteractML users do so visually. But most importantly,
model steering has some clear differences between both systems. In Wekinator,
users record their entire training dataset in the same interface and file. If the user
wants to change their feature set, Wekinator requires them to delete their entire
data recording or “change session”. In InteractML, users can create as many ‘Teach
the Machine’ nodes as they desire, each of them with the same or different feature
configuration and file. Of course, users can delete all their prior training examples
in a ‘Teach the Machine’ node if they wish to, but they aren’t required to by the
interface and can keep all their training data on one graph. Thus, InteractML
offers a far more flexible design to record training data, because users can visually
configure a set of different data sets, and even different feature configurations,
without the need to delete any prior recordings.

Both the Wekinator and InteractML offer functionality to trigger each of the model
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steering sub-tasks via input devices. However, Wekinator requires users to write
programming code to send a signal via the OSC network protocol to invoke the
different buttons that trigger each model steering sub-stage. On the other hand,
InteractML offers visual scripting nodes to handle the equivalent functionality, what
is (a) more readable from the user perspective, because the user can visually see
where each input device node connects to; and (b) easier to modify since users can
simply disconnect and reconnect input device nodes onto other nodes to control
when to record data or to start running or stopping a model.

Additionally, InteractML’s core contribution of performing in-medium model steer-
ing isn’t offered by Wekinator ‘out of the box’. In InteractML, users can perform
model steering fully in VR with the nodes that the system already provides, how-
ever in Wekinator the user would need to program all the behaviour from scratch
(i.e. reading data from Wekinator via OSC code, creating a VR console and input
handling of model steering stages). This contribution, together with its visually
scripted nature, make InteractML stand out from prior IML systems, not only the
wekinator, because to our knowledge no other IML system is fully integrated into
VR and into a game engine simultaneously.

Finally, InteractML’s model output to interaction is also different from Wekinator. In
Wekinator, the user would need to write OSC network code in their programming
language of choice to receive the output of the model as an array, and further
code to pipe that array into a meaningful variable. In InteractML, the user only
needs to add an attribute on their game script variable and pipe the model output
visually on the IML Graph. This process is (a) more readable for the user and (b)
more accessible for non-technical creators that can modify the behaviour of existing
scripts in less steps than writing the equivalent code in Wekinator.

3.11.3 Limitations of InteractML

Nonetheless, InteractML, in its current state, suffers from certain limitations when
compared to prior interaction toolkits, gestural recognisers and IML solutions.

Regarding VR Interaction Toolkits, the fact that behaviours are configured via rules
can also offer advantages compared to a data-drive solution such as InteractML,
because the rule-based model can be more transparent and visually understandable
to users. Additionally, the limitation of VR Interaction Toolkits is also their strenght,
since they are better suited to model object-focused interactions. That is why we
suggest that mixing a system like InteractML with VR interaction toolkits could
offer more nuance to game creators working with object-focused interactions.

Furthermore, currently training data in InteractML is not visualised beyond the
numerical dropdowns from the ‘Teach the Machine’ node or the JSON files where
the training data is stored. The gestural recognition plugins that we introduced in
the background section 2.3 usually offer a very concrete shape to be drawn and
provide examples against (e.g. a geometrical shape, a stroke, a letter or a symbol),
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and gestures on the training dataset are usually displayed to the user in 2D or 3D.
Gestural recognisers can do this ‘easily’, since all gestures are clearly segmented
and can be represented as a continuous plot of points, whereas the freedom that
InteractML affords increases the complexity of the data visualisations. It is very
different how the system should display a movement computed as the velocities of
rotations compared to a movement computed as the distance between the hands
and the head. This is also true for the labels, since the goal of the creator might not
be to represent a clearly defined shape with their movement, but rather a nuanced
and highly dimensional action. Hence, one of the clear weaknesses of InteractML
is how the training data is currently displayed. Still, creators can annotate their
training datasets with ‘Note’ nodes to keep track of their intentions when recording
movements and constructing datasets during the model steering stage.

Moreover, InteractML’s training data modification functionality is not as user-
friendly as some prior IML tools. For instance, Wekinator allows users to modify
their training data directly on the tool [74], GestureScript and similar gesture IML
system display a symbol representation per gestural class to detect on screen [296,
163], and Kleinsmith and Gillies system displayed recorded user movements as 3D
motion capture skeletons [147]. InteractML is limited in this sense, since it re-
quires users to modify the JSON files with training data, which is prone to errors
and not really user-friendly, or to record further movement samples on a different
‘Teach the Machine’ node. Furthermore, the Wekinator offers a ‘Feature’ matrix
where features can be muted, reducing the need of recording again data in scenar-
ios where the user follows a reductive feature selection strategy. In InteractML,
users that want to ‘mute’ features from an existing data can’t do so, and are forced
to create a new ‘Teach the Machine’ node and record again their movements. Fi-
nally, InteractML can’t be used out of the box with any other software except Unity,
although it could be used in a similar form to Wekinator, implementing a layer of
OSC code to handle information into and out of Unity. Still, Wekinator already has
the integration done on the ML side, whereas that is an additional layer that should
be written for InteractML.

3.11.4 Future Work

Despite the limitations of InteractML, there are several avenues for future work
that could address these limitations and improve the tool’s functionality.

Regarding the limitations of InteractML in regards to VR Interaction Toolkits, fu-
ture work could explore ways to integrate InteractML with these toolkits to create
more nuanced and complex object-focused interactions. This could involve devel-
oping new nodes or modules that allow for seamless integration between the two
systems, or creating new visual scripting tools that allow for more complex rule-
based models to be created within InteractML.

To address the limitations of InteractML in regards to gestural recognisers, new
data visualisation tools could be developed to allow for more nuanced and rich vi-
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sual data representations to be displayed within InteractML, by taking into account
the complexity of each feature. Such data visualisations could be displayed both in
2D or 3D in VR, to facilitate data exploration in either medium.

Furthermore, InteractML suffer from some limitations compared with prior IML
tools. Future work could focus on developing new training data modification tools
that are more user-friendly and accessible to non-technical creators. This could
involve developing new visual scripting tools that allow for more seamless modifi-
cation of training data within InteractML, or creating new features that allow for
more fine-grained control over the training data. For instance, we could imple-
ment visual functionalities to support incremental or reductionist feature selection
strategies that save the user from recording data again after re-selecting features.
The feature matrix from the Wekinator [74] could be a good starting point, although
the interface doesn’t have a lot of room for embodied exploration. Alternatively, any
form of movement data could be displayed based on the gameobject that originates
from, and movement can be displayed as a recording of the movement itself re-
gardless of the feature. Then, once the user decides to increment or reduce their
feature selection, a break down of further visualisations of the same gameobject
could be displayed in a new pop-up window. For instance, for the rotation fea-
ture, the object would be displayed only rotating on intself, and the velocity feature
would display the velocity vector based on the movement recorded. Such an idea is
still limited, since it is impossible to predict all the gameobjects that the user might
want to extract features from, nor every possible feature selection once features
are chained (i.e. the velocity of the distance between rotations of the head in rela-
tion to the controller). Therefore, such a challenging task on generalisable training
data visualisation remains as a challenging open field of research.

Overall, there are many exciting avenues for future work in the field of interactive
machine learning for motion-controlled videogames, and InteractML is well posi-
tioned to be at the forefront of these developments. By addressing the limitations
of the tool and continuing to innovate and develop new features, InteractML has
the potential to become an indispensable tool for game creators looking to create
complex and nuanced motion-controlled interactions.

3.12 Conclusion

InteractML offers a simple and accessible tool to develop sensor interactions, using
an in-engine visual node IML workflow that does not require prior expertise with
ML techniques. The tool also includes a VR module to perform in-VR model steer-
ing loops, making use of the movement tracking sensors of the VR system. Thus,
InteractML supports game creators in more easily developing movement interac-
tions with movement sensors, and in creating more nuanced embodied experiences
for players. This chapter contributes to the body of literature of interactive ma-
chine learning by pushing the state of the art with a games-specific IML system
built into a game-engine, and visually programmed to facilitate non-expert inter-
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action. Furthermore, it contributes to motion control and embodied interaction
design methodologies by incorporating IML implementation and design principles
into motion controls design methodologies.

InteractML enables the design methodology we study in this thesis, therefore the
following chapters will focus on the in-depth investigation of each of the embodeid
design stages: ideation, implementation and evaluation. Chapter 4 will begin by
studying the embodied ideation process, and chapter 5 will focus on the embodied
implementation and evaluation of the process using InteractML.
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4 In-Medium Motion Control Embodied Ideation
within an IML context

4.1 Introduction

This thesis investigates a novel design process and IML tool for VR embodied game
control design. Prior research showed that embodied interaction design processes
benefit from the implementation of the ideas generated. In order to fully under-
stand such design process, we need to investigate the three stages of embodied
motion control design: namely embodied ideation, embodied implementation and
embodied evalation. Therefore, while Chapter 3 deal with the description of our
tool for VR motion control creation, this chapter investigates the role of embodi-
ment in the first step ideation for VR motion controls.

Traditional ideation methods used in interaction design commonly fail to explore
and capture the somaesthetic dimension of movement interactions. As a result,
designed interactions may be usable and responsive but still lack noteworthy ap-
plications [174]. This has led researchers to develop a range of novel embodied
ideation and design methodologies that explicitly target articulating and affording
particular kinds of bodily experience, such as bodystorming [246], somaesthetic
design [117], or embodied sketching [174].

These embodied methods assume bodily co-presence: as participants bodily ex-
plore and act out interactions, multiple participants might play the roles of dif-
ferent agents or parts (and thus need to physically interact with each other), and
participants fluidly build on each other’s ideas by observing and mirroring each
other’s movements. However, creative collaboration is increasingly shifting toward
remote arrangements [62] without immediate bodily co-presence. Accelerated by
the COVID-19 pandemic [37], businesses have been fast to explore and adopt com-
binations of video conferencing with new mass-market remote design collaboration
tools like Figma or Miro to conduct common non-embodied ideation methods and
workshop formats. However, these usually focus on and afford shared ground in
the form of a focal object or display space, such as a virtual whiteboard with and
sticky notes [170]. They do not afford bodily co-presence.

Previous research explored how other physically co-located ideation methods can
be adapted to a digital medium [132]. Boletsis, Karahasanovic and Fjuk (2017) [23]
explored how to translate a well-known embodied design methodology, bodystorm-
ing, into virtual reality through ‘Virtual Bodystorming’ for service design. Weijdom
(2022) [315] explored how bodystorming techniques blending physical and virtual
props in a ‘Mixed Reality’ scenario could affect designing performative experiences.

Additionally, previous literature has suggested that, while embodied interaction
design offers many documented benefits grounded on embodied experience and
cognition [121, 78, 281], there is a lack of practical embodied reflection on the
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embodied design loop, because designers should have focused loops of design and
implementation to better reflect on their ideas [82]. Consequently, IML has been
identified as a promising technical solution to such embodied design reflection loop
[93]. Our IML tool, InteractML, contributes to the literature its visual and embodied
IML workflow. However, studying embodied implementation without investigating
embodied ideation would be incomplete, since ideation is an essential first step in
the design process, and there is limited work in how in-medium embodied ideation
is performed and what is the role of embodiment in such scenario.

We therefore investigate in this chapter the opportunities and challenges when
ideating VR game motion controls in-medium. We will follow a comparative study
in which game creators bodystorm in-medium against out of medium in an idealised
IML scenario without constraints (i.e. any input can be mapped onto any output).

However, this study was performed during the first wave of the worldwide COVID-
19 pandemic, therefore our control group was performed in a video-call scenario
instead of an in-person scenario. Nevertheless, this allow us to delve into relevant
insights about technology and embodiment, and the impact it has on motion control
design. It also contributes to the understanding of computer-mediated embodied
remote work practices, something that it is likely to become even more important
given the impending need to reduce carbon emissions from worker mobility for
sustainable international creative collaborations [225].

Therefore, in this chapter we explore two different mediums suitable for remote em-
bodied ideation: video-calls and virtual reality online spaces. In order to compare
the two mediums, we prepared a series of structured embodied design workshop in-
spired by Márquez Segura and colleagues’ (2016) [174] Embodied Sketching work.
Each workshop consisted of a total of seven different activities to sensitise, bodys-
torm and ideate with designers in one of the two mediums.

4.2 Method

We chose a qualitative study design to investigate how in-medium embodied de-
sign affect the ideation of game motion controls as the first step of an embodied
design process. Our qualitative approach follows a comparative between-subject
design. This qualitative approach is necessary because of the constructive and
non-quantifiable nature of our analysis framing, where we are interested in inves-
tigating qualities of an embodied ideation process. Similar qualitative analyses
have previously been performed in studies of embodied interaction ideation [246,
174] and design [116]. To achieve an understanding of how in-medium embodied
ideation works, we opted for a workshop structure where participants were initially
bodily sensitised [174], introduced into movement ideation principles, and then pro-
ceeded to group collaborative ideation. As a group, participants ideated either on
a private video-call or in a private SocialVR room. Specific topics for ideation were
counterbalanced to avoid any potential carry-over effects between sessions. We tar-
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geted a sample size of 12 to 20 to ensure good code and meaning saturation [112].
We chose to video record participants’ interactions and collect focus group data
to better qualitatively capture the embodied interactional phenomena of partici-
pants throughout their creativity process. For analysis, we followed a video-based
interaction analysis of the interactional phenomena recorded and, on the basis of
the coded interaction events, we performed an inductive thematic analysis. There
were three workshops per medium, where participants selected how many work-
shops did they take part in. On each medium, participants were tasked to ideate
in three different workshops, with the possibility of selecting how many workshops
they took part in. Workshops lasted no longer than 90 minutes each.

4.2.1 Participants

A total of seventeen participants (13 male-identifying, 2 female-identifying, 2 gen-
der variant/non-conforming) took part in the study to ideate in a total of 6 remote
workshops. The participants were split in two groups: one for video-call ideation
(out-of-medium) and another for virtual reality ideation (in-medium). Six partici-
pants (3 male, 1 female, 2 gender variant/non-conforming) ideated in the videocall
group and eleven participants (10 male, 1 female) ideated in VR. On each medium,
participants were tasked to ideate in three different workshops, with the possibil-
ity of selecting how many workshops they took part in. In the video-call group,
two participants took part in all three workshops, two participants took part in two
workshops and two participants only took part in one workshop. In the VR group,
one participant took part in all three workshops, two participants took part in two
workshops and eight participants took part in one workshop. The average amount
of participants on the video-call workshops was four, and the average amount of
participants in the VR workshops was five. It is important to note that one of the
participants in the video-calls group required the assistance of two British sign
language (BSL) interpreters during the ideation workshops, raising the average
number of people in the video-calls from four to six and it was likely to impact
communication between participants.

The participants were recruited through social media or email, with the require-
ment that they had previous experience in videogame creation and virtual reality.
The experience requirement was a deliberate choice to assure that participants
were familiar with the ideation topics chosen for our case study. After participants
filled the consent form, they were invited to a private texting server on the Discord
platform to communicate outside of the workshops.

4.2.2 Procedure and Data Collection

Before working on the embodied collaborative ideation tasks, participants were
briefed about the purpose of the study and introduced themselves to each others.
The core part of the study involved collaboratively ideating movement interactions
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Table 5: Magical Interactions Workshop Phase Lengths

MAGICAL INTERACTIONS video-
call

VR

(i) Body Sensitising 3 mins 3 mins
(ii) Performance of movement interactions ideated at
home

14 mins 28 mins

(iii) Breaking down interactions between actuators/inputs
and verbs/outputs

2 mins 8 mins

(iv) Force-pairing actuators/inputs and verb/outputs to
generate new movement interactions

6 mins 23 mins

(v) Performance of movement interactions ideated on-site 8 mins 9 mins
(vi) Labelling of interactions according to implementation
difficulty with current game engines

14 mins 8 mins

focused on three topics in two media; one in the videocall platform Zoom and the
other in the socialVR platform Rec Room. Each topic focused on eliciting different
kinds of interactions for VR videogames where movement can be used: everyday
interactions, magical interactions and standard game interactions. The rationale
behind these three topics was to offer participants a diverse range of movements to
work with, as movements that are performed on a daily basis tend to be qualitatively
different from movements that are performed on films, books or games, many times
exaggerating the performance for visual impact. For each topic, participants were
tasked to think of at least 3 different movement interactions at home before the
start of each workshop.

Regardless of the topic, each workshop involved 6 phases: (i) body sensitising with
designers, (ii) performance of movement interactions ideated at home, (iii) break-
ing down interactions between actuators/inputs and verbs/outputs (i.e. move your
hands in a circle (actuator/input) to create a portal (verb/output) ), (iv) force-pairing
actuators/inputs and verb/outputs to generate new movement interactions, (v) per-
formance of movement interactions ideated on-site, and (vi) labelling of interactions
according to implementation difficulty with current game engines. Whenever the
group was big enough (4 participants or more), participants were split up in two
sub-groups from phase iv onward. The exception was the video-call magical inter-
actions workshop, since the sub-group policy was introduced afterwards.

In order to have similar conditions among the groups, the 6 phases were timed and
participants were asked to continue with the next embodied ideation phase when
the time was up. To ease participants’ creative processes, we did not require groups
to continue when they wanted to move on to the next phase, and they were allowed
to finish discussions and embodied ideation that were initiated before the phase
finished. Still, after each workshop we adapted the timings to ensure participants
could finish the creative tasks in the next workshop. Timings for each workshop
and medium can be found on tables 5, 6 and 7. In total, including the introductions,
the creative work and a follow-up debriefing interview, each workshop lasted 90 to
120 minutes.
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Table 6: Everyday Interactions Workshop Phase Lengths

EVERYDAY INTERACTIONS video-
call

VR

(i) Body Sensitising 4 mins 4 mins
(ii) Performance of movement interactions ideated at
home

15 mins 18 mins

(iii) Breaking down interactions between actuators/inputs
and verbs/outputs

13 mins 13 mins

(iv) Force-pairing actuators/inputs and verb/outputs to
generate new movement interactions

19 mins 24 mins

(v) Performance of movement interactions ideated on-site 8 mins 7 mins
(vi) Labelling of interactions according to implementation
difficulty with current game engines

11 mins 19 mins

Table 7: Game Interactions Workshop Phase Lengths

GAME INTERACTIONS video-
call

VR

(i) Body Sensitising 4 mins 5 mins
(ii) Performance of movement interactions ideated at
home

11 mins 21 mins

(iii) Breaking down interactions between actuators/inputs
and verbs/outputs

28 mins 11 mins

(iv) Force-pairing actuators/inputs and verb/outputs to
generate new movement interactions

13 mins 18 mins

(v) Performance of movement interactions ideated on-site 10 mins 5 mins
(vi) Labelling of interactions according to implementation
difficulty with current game engines

10 mins 15 mins
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Consent to video record the workshops was gathered from participants. In the
video-call setup, we recorded the researcher’s screen showing all participants we-
bcams in a "gallery view", including the ones with the webcams off. In the VR setup,
we placed two virtual cameras to capture participant’s interactions. One camera
was controlled by the main author and the other by an assistant, attempting to cap-
ture the entire group at all times (e.g. how participants interacted with each other,
their movements from two different angles where possible and their writings on
the virtual whiteboards). Whenever participants were divided in two sub-groups,
each virtual camera was assigned to each of the two sub-groups. At the end of the
study, participants joined back together to take part in a group debriefing interview
about their experience in the workshop and rationale behind interaction labelling
choices.

4.2.3 Analysis

The approach used in our research draws from qualitative ethnomethodology and
focuses on the interactional and sequential organisation of verbal and nonverbal
behaviour. Participant’s interaction and collaboration while working on the embod-
ied ideation tasks was analysed using video-based interaction analysis as outlined
by [136]. To that end, interactional phenomena such as turn at talk, communication
practice, clarification, repairs, and movement-based exemplifications of ideas were
coded. Furthermore, on the basis of the coded interaction events, we performed an
inductive thematic analysis [28].

With reference to previous experience that our group had with pilot face-to-face
[219] and remote workshops, we anticipated that we would observe different com-
munication behaviours between the video-call and the VR groups. Then, we ex-
plored the influence on collaboration and ideation. We thus applied a deductive
approach to our interaction analysis. We followed an up-to-bottom approach and
started by looking at entire pairs of videos based on each workshop topic: the pair
of videos about magical interactions, the pair of videos about everyday interac-
tions, and the pair of videos about game interactions. We then broke each video
into smaller sections and coded them. Once we had an initial pool of candidate
codes, we then had group-viewing sessions on video snippets to further iterate on
categories. In the coding process, attention was focused on when participants in-
teracted with each other as well as how they communicated their ideas with their
bodies on both the video-call and VR mediums. Additionally, we looked at how the
impact of participant’s environment (either physical or virtual) and the presence of
the researcher in the space influenced participants’ interactions. Identified codes
were then checked against other sequences across pairs of videos. To code the ver-
bal communication between participants, movement ideation, and the location of
participants, we used the qualitative video analysis software ELAN [65]. We coded
the videos using 3 schemes, each focusing on a different aspect. First, we coded
the participant’s interactions in the workshop, asking; where is the workshop go-
ing poorly? How did the presence and interactions of the researcher influenced the
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workshop? Second, we coded participant’s movements, asking; what is the nature
of movement produced on each medium? What is the relationships between the
movements and the interactions? Third, we coded the use of participants’ move-
ments in communication, asking; how is movement used in collaboration? How is
movement used in individual thinking? Finally, by combining these insights, we also
asked; does the remote medium impact the embodied ideation techniques used by
the participants? With these questions in hand, we conducted our interaction anal-
ysis. An inductive, bottom-up thematic analysis [28] was later used to make sense
of the codes generated.

4.3 Results

4.3.1 Types of User Interactions

In total, 9 hours of video and 110 ideas were analysed. A total of 28 ideas were
generated in the Magical Interactions workshop, 47 ideas in the Everyday Interac-
tions workshop and 35 ideas in the Game Interactions workshop (Figure 57). Based
on participants’ verbal and non-verbal behaviour with the researcher and between
themselves, video snippets were selected and coded by the main author, and pre-
liminary codes were discussed with the other authors by collaboratively viewing se-
lected video fragments and discussing the interactional phenomena observed [136].
In the end, the codes were divided into two broad categories of events: Interac-
tional (Embodied Demonstration, Embodied Exploration, Play) and Conversational
(Request Clarification, Embodied Clarification, Laughter, Joke). Furthermore, since
some of the video snippets provided richer insights that couldn’t be strictly cate-
gorised, we provided a “Special Insight” category for annotation (i.e. a participant
is bodily demonstrating, but while doing so they interact in an unusual but interest-
ing manner with another participant/virtual prop). In addition, less common events
such as pointing and joined attention where coded under the “Special Insight” cat-
egory with a contextual annotation. We used all three categories to code the videos
for further analysis. As this study focuses on the participants movements, inter-
action, communication, and creativity in their respective remote medium, video
sections with no observable phenomena were excluded from the analysis. Finally,
the 110 ideas collected from the videos were coded into 37 low-level codes and
synthesised into 11 high-level codes. Some of the ideas 110 ideas were coded with
more than one of the 37 low-level codes, or with no suitable code for one for the
themes, resulting in the distribution of codes per theme presented in figures 58, 68,
73, and 82. An enumeration of the most relevant interaction/communication codes
can be found in Table 8 and an enumeration of the low-level and hight-level codes
for the generated ideas can be found in Table 9.
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Figure 57: Total amount of interactions genereated per workshop.

Table 8: Interaction Events Codes

Interaction Events Communication Events Turn-taking events
Embodied Demonstration Clarification Request Successful Turn-taking
Embodied Exploration Embodied Clarification Challenging Turn-taking
Play Laughter/Joke
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Table 9: Low-level codes for ideas generated in each workshop.

Magical Interactions Everyday Interactions Game Interactions
Upper body Upper body Sequence
Object creation Object quality Attack Action
Player movement Object creation Upper body
Object movement Agent Movement Object destruction
Sequence Object Movement Lower body
Attack Action Hands Player quality
Defense Action Agent Quality Hands
Equip Item Action Mouth Communication Action
Not present in whiteboard Unconventional Input Object quality
Voice Head Object movement
Object quality Object Selection Eyes
Audio Creation Eye Object selection
Hands Lower body Player movement
Lower body Player Quality Full body
Not demonstrated to group Player Movement World quality
Breath Not present in whiteboard Head
Unconventional Input Object destruction Agent quality
Pose Full body Agent destruction

Sequence Equip Item Action
Multiplayer action Audio Creation
Cooperation

4.3.2 Thematic Analysis

On the basis of the codes and the insights gathered during the first up-to-bottom in-
teraction analysis, we performed an inductive thematic analysis [28] to make sense
of the data. We looked at themes following a bottom-up approach by looking at the
collection of coded video snippets and the high-level coded generated ideas. We
looked for patterns across the snippets, with a focus on (a) movement, (b) creativ-
ity, and (c) communication. Since this follows a comparative and qualitative nature,
we compared snippets where similar interactional phenomena was being observed
both in the video-calls and in SocialVR. Additionally, instances that could not be
compared because of the particular affordances of each medium were also taken
into account during the analysis.

Candidate themes were synthesised from the coded video snippets and coded gen-
erated ideas by the main author and discussed with the other authors using slide
presentations and example video fragments for further iteration. After enough it-
erations the following themes were synthesised, where all codes and relevant in-
teraction instances could fall in place. Themes were divided into 4 main overar-
ching categories depending on the relationship between input and ouputs of their
interactions, how the interactions were ideated during the workshop, and how par-
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ticipants communicated. Themes are: (1) Output Space, (2) Input Space, (3) Ex-
pressive Ideation Space and (4) Communication Space. Each theme has two to
three subthemes. Subthemes for theme (1) are (1.a) Effect on Virtual Elements
and (1.b) Social Interactivity. Subthemes for theme (2) are (2.a) Bodily Expressions
and (2.b) Expressive Input Space. Subthemes for theme (3) are (3.a) Exploration of
affordances, (3.b) Co-located Playfulness, and (3.c) Challenges in Remote Ideation.
Subthemes for theme (4) are (4.a) Support for Non-Verbal Cues, (4.b) Embodied
Repair Strategies, and (4.c) Remote Turn-Taking.

Table 10: Themes and subthemes from the thematic analysis

THEMES SUBTHEMES

(1) Output Space
(1.a) Effect on Virtual Elements
(1.b) Social Interactivity

(2) Input Space
(2.a) Bodily Expressions
(2.b) Expressive Input Space

(3) Expressive Ideation Space
(3.a) Exploration of Affordances
(3.b) Co-located Playfulness
(3.c) Challenges in Remote Ideation

(4) Communication Space
(4.a) Support for Non-Verbal Cues
(4.b) Embodied Repair Strategies
(4.c) Remote Turn-Taking

Themes and codes will be discussed in the following subsections in depth, providing
example video-frames to illustrate our findings.

4.3.2.1 Output Space: Effect on Virtual Elements
Having an effect on virtual elements was the most common form of output in par-
ticipants’ interactions. We understand virtual elements as the fundamental objects
in a virtual environment, like characters, props and scenery. From all videocall ses-
sions, 90% of outputs referred to virtual elements. And from all SocialVR sessions,
66% of outputs referred to virtual elements. By looking more in depth into the
kinds of virtual elements participants wanted to interact with, we found four main
categories of virtual elements: (1) objects, (2) the player, (3) other agents, and (4)
the virtual world itself.
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Figure 58: Comparison of low-level codes for generated ideas under the theme Effect on
Virtual Elements (a generated idea could have more than one code assigned)

A break-down comparing generated ideas between each medium can be found in
figure 58 and explanations per category can be found below.

4.3.2.2 Object Interactions Object interactions are one of the first high level
codes synthesised from the generated ideas, and the most predominant form of
outputs (24% of all codes refer to object interactions, with a total of 224 interac-
tions). In this context, an object can be understood as any visible virtual element
that can’t be embodied but rather controlled or affected by players actions (i.e.
an energy ball, a protective bubble or a tomato). Participants ideated interactions
to create, destroy, select, move and alter qualities of objects. For instance, in So-
cialVR, a group of participants was bodily exploring a stretching movement with
their arms when they had the idea of affecting objects with that movement (Fig-
ure 59). After a brief conversation and performing the movement among them,
the participants decided that it made sense to stretch the arms to multiply objects.
Participants even bodily explored how slow movement repetitions could reduce the
multiplication effect. Another instance where participants ideated an object inter-
action was during one of the videocall workshops when participants explored what
the “Pulling a rope” movement could do (Figure 60). After performing the move-
ment a few times each and discussing about it, they decided that it made sense
that by pulling they could change the size of an object, similarly to how you could
zoom/pan with the fingers on a touch-screen.
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Figure 59: Stretch arms to multiply objects Interaction. Participants ideated movement
in which they needed to stretch their arms two multiply objects . As participants were
performing the movement, they started to experiment with the idea of slowly performing
the repetitions to affect the object multiplication by reducing the amount of objects created.
In addition, participants also accompanied their movements with sounds they were making
with their own voices, imitating the sound of pop-corn cooking in a microwave as they
imagined objects being multiplied in front of them.

Figure 60: Pulling rope to change object size. In this example a participant is bodily
exemplifying a “pulling rope” movement that makes an object smaller. However, after
performing the movement in front of the camera, he explained that he didn’t like the feeling
of pushing rope forward to make the object bigger, hence he only accepted the pulling
mechanism as a valid movement.

Between the two mediums, movements that had an effect on the creation of ob-
jects were more predominant in SocialVR whereas movements that had an effect
on qualities of an object were more predominant in the videocalls (Object creation
interactions: 12 videocall vs 35 SocialVR; Object quality interactions: 28 video-
call vs 13 SocialVR; see Figure 58) This could potentially be related to how each
medium affords embodied ideation. In a videocall, participants are surrounded by
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objects in their real spaces, and by having a quick look around, participants might
be influenced by each of these objects in their space. For instance, one of the inter-
actions that was ideated in the video call was controlling how the curtains opened
or how a door opened. Both elements might have been physically present in front
of the participant that suggested those movements. By comparison, in SocialVR,
participants do not have such diversity of objects. We filled the virtual room with a
selection of virtual props that rec room offered, but it did not equal the amount of
objects that are found in a real room: office material, house furniture , electricity
sockets, boxes, windows ... (Figure 61) Therefore, it might be that the lack of vir-
tual objects might prompt participants to explore ideas and movements that would
allow them to fill the space so that it looks closer to its real counterpart.

(a)

(b) (c) (d)

Figure 61: Virtual vs physical room appliances that might have biased the ideation of
object interactions. (a) Collection of virtual props present in virtual room, from left to
right: magic wand, brush, bow, shields, swords, shovel, garden fork, snowballs, toy fish,
wip, wooden stool. (b) Participants playfully interact with the virtual props betwen them.
(c) Participants use virtual markers provided on virtual tables to fill a virtual canvas with
the ideas they created. (d) An example of a potential home physical environment from
which participants might have joined the videocall workshops.

4.3.2.3 Player Interactions Since the case study of this paper is focused on
VR game interactions, participants ideated interactions having an effect on the
player. The player in this context is understood as the agent that the participant
would embody in a videogame. Player interactions mostly generated ideas to alter
qualities of the player or to move the player; counting 31 player interactions in
total.

For example, some of the ideas were related to player qualities (5 interactions
in videocalls and 3 interactions on SocialVR workshops). In one of the videocall
workshops, one participant created an idea where “Crossing your arms as if you
are resting” would make the player to rest (Figure 62.a). The idea required to have
a body posture and facial expression that would be perceived by other as clearly
“resting”, since the participant initially bodily demonstrated the idea by sitting on a
chair, which seemed like potentially not specific enough after demonstrating it. The
idea was not picked-up in the force-pairing stage. Another player quality example
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was ideated in SocialVR when a participant demonstrated the movement to wash
their hands with an avatar to specifically clean COVID-19. (Figure 62.b).

The most common kind of player interactions was be focused on the movement on
the player (17 in videocall workshops and 7 in SocialVR workshops) . In SocialVR,
a group of participants forced-paired the movement “Pedal hands” with the “Run”
player action. The participants were playfully exploring the movement with differ-
ent outputs like “Going up the stairs” or “Searching a pile of objects”, but finally
settled on “Run” as their favourite outcome (Figure 62.c).

(a) (b) (c)

Figure 62: Player Interactions Demonstrations. (a) Crossing arms in resting posture to
rest the player. (b) Wash hands to eliminate the COVID-19 virus. (c) Pedal with hands to
make the player run.

4.3.2.4 Agent Interactions Similarly to what happened with object interac-
tions and the player interactions, participants generated ideas that had an effect
on agents other than the player. We can understand agents in this context as any
kind of virtual entitity, represented by an avatar, that is controlled either by remote
users (i.e. other players) or artificial intelligences (i.e. non-playable charaters, en-
emies) or a mixture of both (i.e. a remote user controlling a group of enemies). The
generated ideas focused on the movement, qualities and destruction of the agents;
with 13 ideas generated in total.

For example, one of the interactions that affected the movement of an agent was
ideated in a videocall workshop. A participant paired the “Chewing” mouth move-
ment as an input, with “Leading dog on lead” as an output. The participant thought
it was fun to control with his jaw the direction of where his dog would move next to
follow his orders. This particular interaction also shows one of the strengths of the
videocall format, which is the higher expressivity for facial movement interactions.
(Figure 63).
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(a) (b) (c) (d) (e)

Figure 63: Chewing to lead dog. In this agent interaction example a participant is bodily
exemplifying a “Chewing” face gesture that allows to lead a dog. The participant didn’t
stand up to do this movement, but rather showed on the camera the different variations
of the gesture to control the different axis of movement. (a) Chewing stronger on the left
leads the dog to the left. (b) Chewing stronger on the right leads the dog to the right. (c)
Chewing equally with both sides of the jaw leads the dog to the right. (d) Chewing while
opening the jaw slightly leads the dog backwards. (e) Participants explains to the rest of
the group how his previous movements would lead the dog to wherever he wanted.

A second example that illustrates an idea affecting a player quality came from the
Game Mechanics SocialVR workshop, where a participant paired the “Touch person
on top of the head” gesture as an input with the “steal an item from that person”
output (Figure 64). The SocialVR medium allowed participants to explore close-
contact interactions movements because of the virtual co-llocation of other player
avatars. Similarly, in the same workshop an interaction for destroying agents was
produced. Participants ideated an interaction where hugging an agent would de-
stroy it (Figure 65). Furthermore, the same group of participants further ideated
a variation of the movement. when bodily demonstrating their interaction to the
rest of the workshops. The variation consisted in pairing the hugging gesture as
an input with ingesting big pieces of food as the output. The variation resulted
from a playful group demonstration where participants were laughing and virtually
hugging each others.

Figure 64: Touch head to steal item from agent. In this agent interaction example, par-
ticipants bodily demonstrated to others how the “touching head” gesture would work in
SocialVR. The rest of the group obeserved at the demonstration and followed afterwards.
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Figure 65: Hugging to destroy enemy. In this agent interaction example, participants
are bodily demonstrating how they would hug, or pull their arms towards their chest, to
destroy an agent. The participants also collaboratively came out with a variant where
hugging would result in eating human-size pieces of food.

4.3.2.5 World Interactions Finally, the last kind of virtual element mentioned
among the ideas generated was the virtual world itself. We can understand the
virtual world as the environment where all virtual elements live and the systems
and rules that control them. This category only came up in the videocall workshop
about game mechanics, with just two ideas generated. Participants in the videocall
played with the idea of accelerating and slowing down time. Their final idea was
inspired by SuperHot VR [280], which is a very popular VR video game that has a
direct relationship between how slow time is based and how much the player moves.
However, participants created two interesting twists from the idea by force-pairing
different inputs. One group of participants paired the “shooting arrow” input to
accelerate time (Figure 66), whereas the other group paired their eye movement
as an input to slow-down time (Figure 67)

(a) (b)

(c) (d)

Figure 66: World Interactions Demonstrations - Shoot arrow to accelerate or slowdown
down time. (a)-(b) The participant bodily demonstrates the input of shooting an arrow. (c)-
(d) The participant bodily demonstrates the output of “accelerating” time.
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(a) (b)

(c) (d)

Figure 67: World Interactions Demonstrations - Use eyes to accelerate or slowdown time.
(a)-(b) The participant bodily demonstrates the input of gazing with their eyes in a particular
direction. (c)-(d) The participant bodily demonstrates the output of altering time speed to
the group.

4.3.2.6 Output Space: Social Interactivity

When looking at all the ideas generated, we identified 44 ideas focused on the
interaction between several virtually co-located players. We grouped all those ideas
under the theme Social Interactivity, and 79.5% of them were generated in SocialVR
(35 out of 44). We provide a breakdown of codes on Figure 68.
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Figure 68: Comparison of low-level codes for generated ideas under the theme Social
Interactivity (a generated idea could have no suitable code assigned for this theme)

Because of our particular case-study, 86% of the ideas are focused on common
game-like interactions, such as attacking or defending from another player (38 out
of 44). As an example of an attack interaction, one of the participants in the video-
call group for magical interactions thought of the classical “Hadouken” movement
from the Street Fighter game’s franchise [44]. In this interaction, the participant
showed in front of the camera how moving his arms forward with the hands shape
in a certain way would produce an energy ball thrown at another player (Figure
69). In contrast to this interaction, a participant from the SocialVR workshop for
magical interactions ideated a sequence of movements to defend another player
with a protective dome (Figure 70).

(a) (b)

Figure 69: Social Interactions Demonstrations - Move arms forward to throw energy ball.
The participant in the videocall showed how to start from the movement by opening his
arms in (a) and then pushing forward with the hards opened in a semicircle in (b).
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(a) (b) (c)

Figure 70: Social Interactions Demonstrations - Create a protective dome for another
player. This is an interaction that requires a sequence of movements as an input before the
dome can be placed on a player as the output. (a) Participants move their arms up at sides
to create a protective dome. (b) Participants set distance between their hands to change
the protective dome’s size. (c) Participants vigorously move down theirs arms to finally
shield another player.

Nonetheless, more general social interactions were also explored, such as commu-
nication or cooperation between players. In the videocall workshop for everyday
interactions, a group of participants force-paired the “chopping with axe” as an
input with the “talk to other player” output (Figure 71), producing an interesting
and unconvential result. Furthermore, in the SocialVR workshop for everyday in-
teractions, a group of participants force-paired the output “make friends” with two
different playful inputs: wash each others hands (Figure 72 (a)-(b)) and dance with
each other (Figure 72 (c)-(d)).

(a) (b) (c)

Figure 71: Social Interactions Demonstrations - Hit with an axe to another player to talk.
(a) The participant selects which player to talk with . (b) The participant move their arms
vigorously pretending to hit another player with an axe. (c) The participant engages in a
conversation with the other player.
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(a) (b)

(c) (d)

Figure 72: Social Interactions Demonstrations - Cooperative actions. (a)-(b) Participants
dance with each other to add each other to their friends list. (c)-(d) Participants wash each
others hands to add each others to their friends list.

4.3.2.7 Input Space: Bodily Expressions

When analysing the data from an input standpoint, we could see how diverse and
rich the movements and input that participants used in the ideation process were.
Participants used the hands, head, upper body, full body, lower body... but not only.
Participants also used other forms of input that are more unconventional such as
their voice, their mouth, lips or jaw movement; their eyes, their breath, or even a
multi-modal combination of several of the previous inputs.

A total of 208 codes were annotated for this theme, out of which 85% (177 of 208)
belong to regular limb motion (I.e. head, hands, arms or legs). 5 ideas used eye
gaze or eye lid motion. 5 ideas used voice as an input, 2 ideas used mouth move-
ments as inputs and 4 ideas used breath as an input. A complete breakdown of the
codes can be found in figure 73.
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Figure 73: Comparison of low-level codes for generated ideas under the theme Bodily
Expressions (a generated idea could have more than one code assigned)

An example of an interaction using hands in the videocall comes from the workshop
for everyday interactions, where a participant force-paired an idea that connected
“Picking and dropping tea” as an input with “opens and closes curtains” as an
output (Figure 74). The participant made sure to show on camera how he envisions
the “picking” gesture, and explained the rest of the group how that would work.
Figure 72 (c)-(d) shows how a group of participants ideated a movement interaction
requiring to “wash each other hands” to “make friends” in SocialVR. They enacted
the movement with the limitations of their avatars in SocialVR, but it was picked up
by the entire group quickly afterwards.
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(a) (b)

(c) (d)

Figure 74: Bodily Expressions - Hand Interaction demonstration in a videocall. (a)-(b)
The participant shows to the group how he envisions a fine-grained gesture of picking
and dropping a tea bag by pinching with his fingers and releasing on the air. (c)-(d) the
participant shows on camera how the gesture would open or close the curtains.

We can only report interactions that used head or eye gaze from the videocall work-
shop. In the videocall workshop for game interactions a participant thought of an
interaction requiring them to look in a particular direction to accelerate or slow-
down time (Figure 67). They enacted this interaction on camera by gazing with
their head left or right in their room (Figure 67 (a)-(b)). In the same workshop,
the participants also ideated movements that required fine-grained eye movements
only, requiring to look and focus in order to spread “butter on bread” (Figure 75).

134



(a) (b)

(c) (d)

Figure 75: Showing eye movement on webcam. (a)-(b): The participant bodily demonstrat-
ing a movement interaction idea to show their “focused” movement and eye movement. The
participant gets closer to his webcam and shows the eye movement required for his inter-
action. (c)-(d): The participant shows a variation of the eye movement doing an eye roll.

Upper body interactions were the most common type of interactions in both medi-
ums with 126 instances coded out of the 208 in total. For instance, an upper body
interaction was ideated in SocialVR when participants were bodily exploring what
would be a good fit to the “moving arms up and down” input. Participants ended
up force-pairing the “moving arms up and down” input with the “generate energy”.
(Figure 76). An example of an upper body interaction in the videocall medium was
demonstrated by a participant “swinging an axe” as an input gesture to talk with
other players (Figure 71).
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(a) (b)

Figure 76: Moving arms up and down to generate energy. The entire group in the work-
shop mimics the interaction while the participant that ideated it explains how to generate
energy from it, since they are “releasing” their own inner energy by doing vigorous upper
body movement.

Lower body interactions were mostly produced in the videocalls workshop, with
only one lower body interaction produced on SocialVR (12 out of 13 lower body
interactions were produced in the videocall workshops). For instance, an example
of a videocall lower body interaction was produced in the workshop for magical
interactions, where a participant a force-paired the input “move body up and down”
with the output “change object size”. The only example from SocialVR only refers
to “walking around” as an input for the output “walk”.

Figure 77: Lower body interactions: Moving body up or down in a videocall to open or
close doors.
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(a) (b)

(c) (d)

Figure 78: Lower body interactions. (a)-(b) Participant walking around in SocialVR to
bodily demonstrate how it looks in the medium. (c)-(d) The rest of the group starts to follow
the participant bodily demonstrating the walking interaction

Interactions that used explicitly the mouth or voice were only ideated in the video-
call medium. For instance, a participant force-paired the input “chewing” with the
leading dog “leading dog”, generating an idea where he could control the different
directions of the dog’s movement by chewing differently (Figure 63). An example
of an interaction that used the voice as an input comes from the videocall workshop
in magical interactions, where a participant generated an idea requiring to scream
a positive afirmation to make an object bigger (Figure 79)

(a) (b)

Figure 79: Voice interaction. (a) A participant explains how to scream a positive affirma-
tion at an object by saying “You are wonderful” or “I really enjoy my time around you”.
(b) The participant explains how the voiced positivity will make the object grow after each
phrase.
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On the contrary, interactions that required breathing as an input were only gener-
ated in SocialVR. For instance, a group of participants ideated an interaction that
required “breathing in or out” as an input to trigger the “fly up or down” output
(Figure 80). They used their microphones to make the “breathing in” or “breath-
ing out” sounds and accompanied their breathing with body movements inwards
(Figure 80.(a)) or outwards (Figure 80.(b)) from their chest.

(a) (b)

Figure 80: Breathing interaction in SocialVR to fly up or down. (a) The participants breaths
in to fly up while moving her arms inwards to her chest. (b) The participants breaths out to
fly down while moving her arms outwards from her chest.

The only interaction coded as multi-modal was produced in the videocall workshop
for magical interactions, since it used the full-body as well as the voice. The inter-
action consisted of a sequence of inputs where they needed to (a) “start out sitting
in a ball” (Figure 81.a), (b) “explode up and outward” and (c) “scream a positive af-
firmation for someone” (Figure 81.b) to trigger the output “teleport to that person”
(Figure 81.c).

(a) (b) (c)

Figure 81: Multimodal interaction in a videocall. (a) The participant starts by sitting down
forming a ball with their body. (b) The participant continues to jump as if “exploding up
and outward”. (c) The participant voices a positive affirmation about someone to teleport
to that person.

4.3.2.8 Input Space: Expressive Input Space

From the above we can see that participants expressed their interactions with a
diverse range of inputs. Furthermore, the nature of this inputs is relevant to our
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case study. Approximately 93% of the inputs participants used in their interactions
are gestures (100 gesture codes out of 107 expressive input space codes). We
understand a gesture as any movement that requires time to be performed. That
leaves the door open to interpret two sub types of gestures: repetitive gestures and
sequential gestures (Figure 82). A repetitive gesture is any movement that needs
to be repeated over time without a particular order in order to produce its output
(I.e., pedal hands to play musical tones). A sequential gesture is any collection of
movements or poses that needs to be performed in a specific order.

Figure 82: Comparison of low-level codes for generated ideas under the theme Expressive
Input Space (a generated idea could have more than one code assigned, or no suitable code
assigned)

Examples of simple gestures can be found in figure 65 for SocialVR or in figure
71 for videocalls, where participants ideated the “hug an enemy to destroy it” and
“swing axe to talk” interactions. Both movements required the participant to per-
form a single movement with their body in order to trigger their respective output.
However, for the case of repetitive gestures, an example that illustrates this be
found in figure 83 for SocialVR and figure 63 for videocalls. In the case of these
repetitive gestures, participants performed the movement continuously, pedaling
the hands or constantly chewing, in order to affect the output. In contrast, sequen-
tial gestures use a combination of gestures or poses in a specific order, such as
in figure 84 where participants generated an idea in SocialVR for a horror game
where the player would need to first slice their hand’s skin, then place their hand
above an area to summon a demon. An example of a sequential gesture ideated in
a videocall can be found in figure81 that mixes movement and audio sequentially to
allow the player to teleport.
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Figure 83: Expressive Input Space - Repetitive Gesture in SocialVR. Participants ideated
the gesture “Pedal hands to play musical tones”. The speed in the gesture’s repetition
would control how fast the track plays, similarly to how a mechanical musical box would
work.

(a) (b)

Figure 84: Expressive Input Space - Sequential Gesture in SocialVR. (a) First, participants
need to “slice their hand” to open a wound. (b) Then, participants need to let the blood drip
on floor to open a demon portal.

On the other hand, only 7% were poses (7 out of 107 expressive input space codes).
An example from SocialVR can be found in figure 85 where participants ideated the
“arms up” pose to immediately create a protective bubble in an archery game. An
example from a pose ideated in the videocalls workshops can be seen in figure 62.a,
where a participant demonstrated how their idea of a resting pose would look like
on camera.
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Figure 85: Expressive Input Space - Pose ideated in SocialVR. Participants raise their arms
in an open body pose to immediately create a protective shield in an archery game.

4.3.2.9 Expressive Ideation Space: Exploration of Affordances
In both mediums, the exploration of the possibilities of the medium was a consistent
finding. We coded this instances as either “Embodied Demonstration” or “Embod-
ied Exploration”. An embodied demonstration instance is a bodily enactment of any
of the interactions participants ideated during the workshops (i.e. Figure 65 or 75).
On the other hand, in an embodied exploration instance participants would explore
up to what extent they can make use of their bodies and use of the software itself to
express their ideas to the rest of the group. For instance, a participant might move
the camera or explore the software options to see how they can show a movement
or an element from their physical space in a videocall (Figure 86 b-c). Additionally,
participants would make use of background filters that show video clip of a video
game from which they extract some of the movement interactions that they were
discussing during the ideation process (Figure 86.c).

(a) (b) (c)

Figure 86: Expressive Ideation Space - Exploration of affordances in a videocall. (a) A
participant changed their videocall background to better reflect the movements and me-
chanics from a game they enjoyed. (b)-(c) A participant moves his webcam trying to find a
good viewpoint to demonstrate his movements on camera.

In social VR, the exploration of affordances was even more clearly observable dur-
ing analysis. The platform used for embodied ideation, Rec Room, has a particular
way of affording virtual avatar control via VR controller input mappings (i.e. press
the VR controller trigger to open/close virtual hands). As this mapping is not stan-
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dardise, because it is still too early for social VR apps to converge into a common
controller-avatar mapping, participants would collaboratively explore what kind of
interactions rec room affords. For example, we could observe how participants
would gaze at each other, and at their own virtual body, to perform movements and
interactions in a curious and exploratory way to understand what were they able
to do with their virtual bodies. Furthermore, there would be verbalizations of this
phenomena to request this kind of knowledge from their co-located peers (Figure
87). R.1 (speaks): “... How dow you,

how do you [do a handshake]... (frame a)”

L.1 has his fist closed because of gripping his
physical controller, but R.1 doesn’t know how
to close her avatar fist.

L.1 (speaks): “If we... if we both do it...
I think you... I can’t remember if you have
to grip. Yeah, yeah, you need to grip”

R.1 closes her avatar fist by
gripping her physical controller.

R.1 (speaks): “Oh yeah I see now” (frame b)

L.1 and R.1 both close their avatar fists on top of
each other which then triggers an scripted “add friend”
audiovisual animation (frame c).

R.1 (speaks): “Friended! (frame d)”

(a) (b)

(c) (d)

Figure 87: Expressive Ideation Space - Exploration of affordances in SocialVR. This ex-
ample illustrate how participants in SocialVR jointly explored the affordances of the space
and their avatars. Participant R.1 (to the right of every image) wants to do a handshake,
which is a supported scripted animation inside Rec Room. Participant L.1 (to the left of
every image) explains her how to do the handshake, but he doesn’t exactly remember how.
By moving and talking they both explore the affordance of their controller-avatar mapping
and finally manages to do a handshake.

4.3.2.10 Expressive Ideation Space: Co-located Playfulness
Another observation we made of remote ideation was how playful participants could
be in both mediums and how participants were making use of a shared space.
Playfulness was understood as any moment in which participants behaved light-
heartedly with a focus on fun. The codes used to instantiate different playfulness
manifestations were “Play”, for when a participant or group playfully interacting
with each other outside of the workshop requirements but during the workshop
time; “Joke”, for whenever a participant made a fun comment intended for the rest
of the group; or “Laughter”, for whenever participants would overtly express laugh-
ter audiovisually. Playfulness was present in both mediums, but we observed less
limitations for it in SocialVR because of participant co-location in the same virtual
space.

Firstly, participants explored the virtual space with curiosity and used the virtual
props playfully, interacting joyfully among themselves. We coded this instances as
“Play” during our video analysis. (Figure 61.b). Furthermore, participants would
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use props in the virtual space playfully, and make use of their co-location by jointly
interacting with them (Figure 88.a) Participants would as well sporadically play
with the virtual props whenever they would finish a task or there was a moment of
breakdown (i.e. a participant was disconnected or there was an audio issue with a
participant). Play many times would be inviting for other participants near the ones
that were playing, or even for participants that were still in the middle of a task but
where inclined to join this sporadic play.

Later on, during the body sensitising and embodied demonstration sessions, partici-
pants could form group structures such as circles so that they could gaze each other
and communicate naturally (Figure 62.b). Moreover, participants would approach
each other in the virtual space and jointly and playfully bodily explore interactions
that would require co-located cooperation to be performed (Figure 88.b)

(a) (b)

Figure 88: Expressive Ideation Space - Co-located playfulness. (a) Participants use a
virtual fish prop playfully to collaboratively demonstrate how to pet a dog with a particular
movement. (b) Awareness of co-located peers while bodily demonstrating as participants
collaboratively perform movements requiring their co-location and with two people in a
specific pose.

4.3.2.11 Expressive Ideation Space: Challenges in Remote Ideation

Even though participants can verbally and non-verbally express themselves during
a videocall or a group meeting in SocialVR, there are a series of limitations on
expressivity inherent to each medium.

The observed challenges on the ideation space in videocalls are as follows: ( 1)
the field of view of a webcam is many times limited, not allowing participants to
fully gesturally express themselves when they are communicating through video
(Figure 89); (2) the resolution of a webcam can greatly differ between participants,
which can affect how group members perceive an individual (i.e. gesturing of the
eyes, eyebrows, and facial expressions in general, can be hard to perceive in low
resolution cameras); (3) the number of frames per seconds that a webcam streams
can be a limitation during non-verbal communication in a video feed, for instance
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a participant might want to bodily demonstrate a quick gesture, such as a jump or
sitting down promptly on the chair , hence if the video feed skips several frames
the rest of the group might not fully capture the nuance of the movement (Figure
90); (4) there can be connection issues during a remote group video call, such
as for online bandwidth, audio or video problems from the video call software or
hardware( i.e. participant’s webcam might disconnect because of a battery loss or
general compatibility issues between hardware and software); (5) participants are
still using their regular working machines, therefore there is room for them to get
distracted by notifications from their operating system, or for participants to follow
up on a question or idea by browsing the Internet, which can cause distractions.

Figure 89: Limited FOV of webcam (participant getting out of view while performing
movement). The participant wants to show a movement that requires them to lay down on
their bed, but they can’t do it easily without moving the webcam. The participant decides
to perform the movement in real life and not show to the camera the entire sequence.
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(a) (b)

(c) (d)

Figure 90: Connection problems in videocall (the frame freezes). (a) A participant is
demonstrating a movement to the rest of the group. (b) The webcam of the participant
performing the movement freezes the video-feed and there is a moment of break-down. (c)
Another participant approaches his computer trying to see what happened and how to help
the other participant without video. (d) Later on, the participant finds a solution by joining
from two devices, but their engagement in the embodied ideation process gets negatively
affected.

In a social VR setting, the affordances of the medium for ideation are different. We
found a series of challenges behind ideation particular to SocialVR: (1) stand alone
virtual reality headsets that don’t require a PC to be used (i.e. Oculus Quest) re-
quire a battery to work, therefore participants need to make sure that they have a
full battery when joining a workshop or otherwise they might not be able to ideate
as the rest of the group; (2) motion sickness is a known effect that can appear when
participants use virtual reality, hence the researcher needed to account for this ef-
fect by regularly checking on participants how they felt and inviting them to stop
using VR for a short period of time and re-join the workshop when they feel better
if they wish (Figure 91). Motion sickness can negatively impact non-verbal commu-
nication and creativity as participants experience strong moments of breakdown
from the communication and ideation in the space; (3) the relationship between
the virtual avatar body representation and participant body in real life play an im-
portant role in non-verbal communication in SocialVR. For instance, a participant
might want to perform movements that make use of their legs, and because of the
lack of leg representation in Rec Room’s virtual avatars, participants cannot re-
ally express these movements properly. Nonetheless, participants can infer these
movements from the virtual avatar torso movement( i.e when the torso of the avatar
moves down, participants can understand that the body of the corresponding real-
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life person is moving down by crouching as seen in Figure 97). This is a common
problem with other virtual avatar representations in social VR spaces, as current
mass marketed VR hardware only physically tracks head and hand movement from
users, and the virtual avatar representations many times decide not to represent
virtual legs and choose a “head-torso-hands” representation (Figure 95). (4) the
affordances and the mapping between VR controllers and virtual actions can be a
challenge when not mapped correctly. For instance, participants might use a new
kind of headset that uses VR controllers that don’t require buttons to grab virtual
objects and, by mistake, they grab a virtual whiteboard while bodily demonstrat-
ing and idea, therefore experiencing a moment of breakdown and frustration. (5)
Facial expressions of virtual avatars don’t match facial expressions of participants
in real life, and that stops participants from conveying nuanced meaning to their
communication and ideation. (i.e. Rec room uses a series of premade and playful
expressions that are generated based on participants speech as seen in Figure 92).

(a) (b)

(c) (d)

Figure 91: Motion sickness. (a)-(b) A participant tells his ideation partner that he needs
to pause his participation temporarily due to motion sickness (c) The researcher takes over
his participation and joins while the other participant gets back from his pause, but the
creativity process gets negatively affected as the researcher is likely to introduce bias (d)
The participant that experienced motion sickness comes back after a short period of time
(approximately 5 minutes) and decides to participate in a seated position (as can be indi-
rectly inferred by the lower height of his virtual avatar).
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Figure 92: Facial expressions Rec Room. The chosen SocialVR platform, Rec Room, rep-
resents facial expressions in their virtual avatars through a combination of playful cartoon-
like animations. The above expressions are all rendered in different frames while the
participant is quiet and listening. They don’t directly represent the real life expressions
participants and are a barrier for full non-verbal communication, as they limit participant
expression capacity. However, as long as a participant doesn’t want to control their facial
expressions directly, Rec Room’s facial expression approach seems to be accepted by par-
ticipants and no clear complaint against it was observed. Positive and playful comments
were made by participants of each other facial expressions during moments of embodied
demonstration or discussion.

4.3.2.12 Communication Space: Support for Non-Verbal Cues
Both the videocall and SocialVR workshops supported standard non-verbal cues.
Non-verbal cues are a key component in group communication. However, each
remote medium affords non-verbal cues in a different way. The observed non-verbal
interactions made use of extensive gesturing to convey ideas to other participants.
The nature of the non-verbal interactions was multifold in each medium.

For instance, during the videocall workshops, participants can use their fine-
grained full body expressions to support the delivery of an idea (Figure 93), as well
as make use of facial gesturing during conversation (i.e. a participant can show
how happy or sad character can be with a body pose, or a participant can facially
express how much they like or dislike a particular idea from a different participant).

Secondly, a video-call format offers the opportunity for deaf participants to commu-
nicate with the rest of the group through text chat and with sign language inter-
preters, thanks to the camera capturing fine-grained details from hands, arms and
facial gesturing (Figure 94).
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(a) (b)

Figure 93: Showing full-body pose on webcam. The participant bodily demonstrate a full
body idea in front of the camera, by bending the knees (not visible because of the limited
FOV) and moving the body to the cut a tree (a) and shoot an arrow with a bow (b)

(a) (b)

(c) (d)

Figure 94: Communication of deaf participant with British Sign Language (BSL) inter-
preters. (a)-(b) A deaf participant is able to communicate with the rest of the group through
a BSL interpreter translating their signing into spoken English language. (b)-(c) The BSL
interpreter translates what another participant says to the deaf participant signing in front
of the camera. Communication deaf participant - BSL interpreter - group is possible thanks
to the webcam support for a complete range of non-verbal gesturing and high-resolution
facial expressions.

In SocialVR the affordances for non-verbal cues were different due to the spatial
nature of the medium. Firstly, head gaze and pointing are well supported by cur-
rent implementation of virtual avatars. Current virtual avatars are limited in their
body representation in Rec Room (Figure 95.a), but since they provide fully tracked
head movements and hand movements gaze and pointing where extensively used by
participants during communication and ideation (Figure 96). Furthermore, move-
ments that in principle couldn’t be understood due to the lack of avatar body limbs,
such as crouches, could be inferred by participants because of the smooth track-
ing of the VR systems (Figure 97). This allowed participants in SocialVR to further
non-verbally express their movements.

148



(a) (b) (c) (d)

Figure 95: Avatars in sampled SocialVR platforms. (a) - (c) The “head-torso-hands” rep-
resentation is consistent among most SocialVR platforms trialed during the early stages of
the study. From left to right: Rec Room, AltspaceVR and Mozilla Hubs. (d) Other SocialVR
platforms, such as VRChat, support virtual avatars with full body representation, although
they approximate the movement of non-directly tracked body parts through an algorithmi-
cal “inverse kinematics” approach, which results in an inaccurate representation of lower
body movement.

(a) (b) (c)

Figure 96: Gaze and pointing SocialVR. (a) Participants gaze and point naturally at each
other during embodied ideation. (b)-(c) A participant can be seen pointing towards an idea
at a virtual whiteboard for his partner to gaze there.

Figure 97: Crouches on VR (imgs). Participants can infer real life movement that is not
directly supported by Rec Room’s virtual avatars thanks to indirect virtual cues. In this
example, participants can infer the movement “crouching” because the virtual torso of the
avatar moves up and down following the crouching motion discussed in the group.

4.3.2.13 Communication Space: Embodied Repair Strategies

When analysing the video data from both workshops from a communication per-
spective, we coded instances where participants made clarification requests about
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the ideas being generated (coded as “Clarification Request”), and to how movement
and non-verbal cues were used by the participant clarifying (coded as “Embodied
Clarification”). Repair strategies in videocalls made use of the non-verbal language
presented in the previous section, with face and upper body gesturing used to bod-
ily clarify ideas an even to finish repair sections (Figure 98.d). Repair strategies
in SocialVR equally made use of the non-verbal cues inherent to the medium, with
head gaze and pointing being instrumental in clarification requests and embodied
repair instances (Figure 99).

R.2-top (speaks): “Do you have any other

ideas on it [using eyes to focus]? (frame a)”

L.2-bottom shrug their shoulders to express
confusion (frame b).

L.2-top (speaks): “I mean, can’t you use the
eyelids, so then, you could just like obviously
communicate with your eyelids in that sense. So
you want to execute something, maybe you can
do...” L.2 gesticulates with her eyes while
clarifying (frame b-c)

R.2-top (interrupts): “Is that like mouse-click but
with blinking?”

L.2-top opens her eyes and blinks in an
affirmative manner, and concludes the
clarification non-verbally without verbally
answering (frame d)

(a) (b)

(c) (d)

Figure 98: Communication Space - Embodied Repair Strategies in videocalls. This exam-
ple illustrates how participants in the videocall verbally and non-verbally repaired requests
for embodied clarifications. Participant R.2-top (to the top-right of every image) wants to
clarify the details of an interaction utilising the eyes to focus. L-2-bottom (to the bottom-left
of every image) shrug their arms shoulders as they don’t know what to answer. Participant
L.2-top (to the top-left of every image) explains him how to do the movement, both verbally
and non-verbally by gesticulating with her eyes while talking. In the end, L.2-top ends the
clarification only by blinking and nodding non-verbally after another question from R-2-top.
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R.3 (speaks): “And, drip blood on an enemy

or do you also want to do this circular
movement (frame a)”

R.3 performs the circular motion with his hand
and gazes to L.3 while requesting a
clarification for a movement.

L.3 (speaks): “Hmm, I don’t know you would
almost drip it on the floor or wipe somewhere
and that is making your portal? (frame b-c)

L.3 responds non-verbally by performing the
dripping and wiping movements while
head gazing towards R.3

R.3 writes down the interaction on the virtual
whiteboard (frame d)

(a) (b)

(c) (d)

Figure 99: Communication Space - Embodied Repair Strategies in SocialVR. This exam-
ple illustrate how participants in SocialVR verbally and non-verbally repaired requests for
embodied clarifications. Participant R.3 (to the right of every image) wants to clarify the
details of the sequence of movements to use as the input for an interaction they are gen-
erating. Participant L.3 (to the left of every image) explains him how to do the sequence,
both verbally and non-verbally by gesticulating while talking. Extensive use of head gaze is
done in this example.

4.3.2.14 Communication Space: Remote Turn-Taking

As part of the communication observations made during analysis was how turn-
taking differed between both mediums. Turn-taking was observably more chal-
lenging on a video-call compared to socialVR. Participants would take a turn that
abruptly or not indicate well when their turn finished or started (Figure 100). How-
ever, the use of names or pauses by participants could make turn-taking smoother
(Figure 101). In contrast, turn-taking was observably smoother in SocialVR, as seen
in Figure 102 where participants could take turns without exaggerated pauses be-
tween them.
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(a) (b)

Figure 100: Confusing turn-taking on video-call. (a) Participant on the bottom-right makes
a visual indication to take a turn by pulling his headset’s microphone down and unmuting
himself. (b) Participant on the bottom-left starts talking and takes the turn that the bottom-
right participant intended to take.

(a) (b)

(c)

Figure 101: Successful turn-taking on video-call). (a) Bottom-left participant talks about
the task and gives his opinion on a movement, then pauses. (b) Following a pause, the top-
right participant says a short comment and agree with the previous statement, then pauses.
(c) Following the previous pause, the bottom-right participant gives his opinion about the
same topic, ending as well in a pause.
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(a) (b) (c)

Figure 102: Successful turn-taking on SocialVR. (a): Researcher introduces the task to
the group. (b): Researcher invites participant to his right to take the turn and uses pointing
and gaze to smoothly pass the turn. (c): The participant pointed takes the turn, without a
pause, and the rest of the group gaze at him while he speaks.

4.4 Discussion

In the following, we will discuss the results presented above. First, we will provide
an overview of the findings that resulted from our analysis of participant collabo-
ration and medium use, and discuss them in relation to their impact on embodied
creativity. Second, we will discuss the implications of moving on from current out-
of-medium videocalls or SocialVR in-medium platforms by highlighting potential
pitfalls and opportunities for future remote mediums.

4.4.1 Nature of the Space

We saw in section 4.3.2.1 that there was a difference between the nature of ideas
that dealt with objects. Between the two mediums, movements that had an effect
on the creation of objects were more predominant in SocialVR whereas movements
that had an effect on qualities of an object were more predominant in the videocalls
(Figure 58). Furthermore, a similar difference was found in Figure 68 from section
4.3.2.6, where the SocialVR workshops had more game-like interactions generated
(attacks, defense actions, equip items) that their videocall counterpart.

We believe the space where participants ideated influenced these differences. The
physical qualities of a real-life space (i.e. colour, light, complexity, furniture) have
been proven to have a positive or negative effect on creativity [179, 47], and this
effect might be translated to a remote setting, even if virtual. The home office
environments that participants where present in during the videocall workshops
are "mundane" environments, in the sense that there is nothing special that can
bias participants consciously or unconsciously to interact with "magical" elements
(Figure 61.d). On the other hand, the SocialVR space was full of magical and fantas-
tical elements, such as magic wands, body-sized swords, bows with infinite arrows
or snowballs that never melt (Figure 61.a). Additionally, the dimensions of the in-
medium SocialVR room were exaggerated in an unrealistic fashion, with very tall
walls, big windows and an wide empty central space present in the virtual environ-
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ment (Figure 103). The qualities of each space might have influenced participants
to generate ideas that (1) control objects present in their home office surroundings
during videocalls (i.e. move the curtains by picking a tea bag in Figure 74), and
(2) generate objects that will populate a seemingly empty virtual space (i.e. stretch
arms to multiply objects in Figure 59).

Figure 103: SocialVR space. The SocialVR space designed by the authors in Rec Room
was an exaggeratedly big room, designed in a way that participants would have enough
space to be separated and not hear each other during ideation. This created a big and
empty central space where the body sensitising and body demonstration activities would
take place.

Therefore, we speculate that the space that surrounds participants influenced their
way of thinking. Specifically in-medium, the influence of the space in the embodied
ideation process opens the possibility for future work where it would be possible
to construct different virtual spaces to align with ideation goals. For instance,
we could imagine a workshop designed to bodystorm rehabilitation movements for
hospital patients happening in a virtual hospital rehabilitation room. Or a workshop
designed to bodystorm technical operator movement interactor with manufacturing
robots happening in a virtual automation space.

4.4.2 Joint Action Space

In section 4.3.2.10 we introduced the effect that SocialVR’s spatial co-location had
on embodied ideation, allowing participants to create interactions that require of
multiple players to physically coordinate (Figure 72). As noted by Gaver[87], this is
co-location is not available in video mediated communication. We also introduced
instances of playful interaction and joint exploration of affordances in the virtual
space (Figure 87). While in videocalls participants needed to pretend to interact
with other imaginary players when ideating and demonstrating movement interac-
tions (Figure 71), in SocialVR participants can benefit from the joint co-location
benefits in their movement enactment and elaboration. Furthermore, the instances
of play (Figure 61.b) and playful co-located interaction with virtual props (Figure
88) shows the positive effect of in-medium virtual co-location in embodied ideation.
Co-location can also have positive effects on the learnability of the technology as
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participants can help each other explore the affordances of the platform and the
avatar-controller mapping by mixing movements and conversation (Figure 87).

We believe that the positive effect observed from participant’s in-medium virtual
co-location comes from its impact on joint attention [192, 144] or shared attention
[278], due to its effect on social cognition. Previous research on joint or shared
attention used VR systems to study the effect of human-avatar gaze in attention, and
showed how the medium could offer a controllable setting for experimental studies
[144]. SocialVR offers the ability of participants to naturally use head gaze during
communication, which is one of the key identifying factors of joint attention [192,
144]. SocialVR also offers participants to have a joint real-time understanding of the
state and use of virtual props in the co-located space (Figure 88.a). Joint attention
then allows participants to explore together ideas or affordances in the medium by
maximising embodied communication and minimising moments of breakdown or
lack of attention. This might have had a direct effect on the nature of the ideas and
movements ideated in the space, therefore prompting movements cooperative and
co-located in nature (Figure 88).

4.4.3 Playfulness, Novelty and Creativity

We saw how in SocialVR there were instances of playful interactions (section
4.3.2.10) and exploration of the affordances of the avatars (section 4.3.2.9). Pre-
vious literature have explored the relationship between creativity and adult play
[2, 171]. Play can be a precursor of creativity [171], therefore the playful interac-
tions that participants experienced might have influenced the ideation process in
SocialVR. However, we want to go a step further and argue that novelty might also
influence the playfulness of the interactions. Participant recruitment was controlled
to ensure that the game designers participating in the workshops had previous pro-
fessional experience with VR. The intention behind the VR novelty control was to
reduce any potential affect on the exploration of the space and the interaction with
other participants, since VR is such an immersive medium that the novelty itself
can distort participant behaviour.

However, even though the participants had previous experience and familiarity with
VR technology, not all of them might be familiar with Rec Room, the selected So-
cialVR platform for our workshops. The unfamiliarity might have expressed itself
through the joint exploration of affordances introduced in section 4.3.2.10 (Figure
87). A participant not knowing how to close the fist of their avatar, or trigger a
pre-scripted animation might indicate exploration because of unfamiliarity with the
platform. Therefore, it could indicate a certain degree of novelty for some of the
participants. This novelty could lead to curiosity during participant exploration of
the space. Participants would look to a virtual prop and playfully explore how the
prop works, and because of the co-located aspect of SocialVR and the game-like in-
teractions that virtual props support in Rec Room, participants could find intuitive
to aim the prop at another nearby avatar. The reaction of the receiving participant,
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even if they were not new or unexperienced with Rec Room, might be influenced by
the playful curiosity from the participant that started the interaction, which in end
can create an appropriate space for play between two or more co-located users.
Hence, the VR space might enable novelty and play which then could influence
participant creativity.

4.4.4 Bodystorming and the Adjacent Possible

In section 4.3.2.9 we reported how we coded instances of "Embodied Exploration"
across in-medium and out-of-medium conditions. Some of the embodied exploration
instances had to do with how a participant would explore the mapping of the VR
controller to the virtual avatar in SocialVR (Figure 87), while others would be of
how a participant in a videocall used their webcam to see how much of the move-
ment is being captured (Figure 86.b-c). However, there were other sorts of em-
bodied exploration instances in which participants explored variations of the same
movement or interaction while bodily demonstrating or mimicking the demonstra-
tion of another participant.

We believe that these instances of bodily exploring variations of the same move-
ment are connected to the adjacent possible concept [20]. The adjacent possible
was introduced in evolutionary biology as a principle to explain how living organ-
ism could behave or mutate to explore and actualise what is available at hand, but
has since been studied in other contexts, including design studies. [20] discussed
how it is possible to design to better support adjacent possibles, but arguing that
physical and virtual spaces can be built to support three different principles: diver-
sifiability, traversability, and sensoriability. We believe that body storming follows
the sensoriability affordance from [20], because when participants are bodystorm-
ing, what they are following is a full-body and mind thinking process in which they
are sensing the possibility space of their bodies and movement.

This relationship of the exploration of the adjacent possibles interacting with phys-
ical movement could be potentially used in different ideation workshops. Since
we saw this phenomena manifesting itself in both out-of-medium videocalls and in-
medium SocialVR, we could foresee how tailoring the workshop structure to have
an starting movement could make use of the adjacent possible principle. For in-
stance a workshop that tries to ideate new ways of opening a door could start with
one or two different existing ways of opening doors. Then participants could dis-
cuss how would they change the movement if they had different physical abilities
or were required to change the direction in which the door opens.
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4.4.5 Non-Verbal Cues, Repair Strategies and Turn-Taking influence Re-
mote Ideation

There were differences in the support for non-verbal cues found in the videocall and
SocialVR workshops as seen in section 4.3.2.12. Despite the fact that both mediums
offer the chance to bodily demonstrate full-body interactions, the videocalls showed
better support for facial expressions (Figure 75) and accesible gestural communi-
cation (Figure 94). On the other hand, SocialVR excelled in supporting head gazing
and pointing (Figure 96), as well as the positive effect from spatial co-location in
communication (Figure 87). The videocall support of facial gesturing was observ-
ably used in participant repair strategies, indicating intent or expressing emotions
(Figure 98), whereas head gaze was constantly used in SocialVR during clarifica-
tion requests and embodied clarifications (Figure 99). Finally, we observed how in
videocalls there could be confusing turn takes during communication (Figure 100)
and how turn-taking was smoother in SocialVR (Figure 102).

We believe that the support of head gaze and pointing in a co-located virtual en-
vironment positively influenced turn-taking in SocialVR, which an existing effect
from face-to-face communication [135]. Similarly, the lack of head gazing and point-
ing negatively affected turn-taking in videocalls, but was partially compensated by
speech pauses and explicit turn leading 101. However, pauses can be a problematic
indicator of turn ends as communication can be further negatively affected in sit-
uations where unwanted latency occurs over the videocall network [255]. In such
situations, unwanted overlaps might occur that could be detrimental to communi-
cation [245].

Furthermore, we believe that our analyses shows from a qualitative perspective
how smooth communication has a positive effect on embodied in-medium remote
ideation. Previous research argued that communication is an intrinsic component
of collaborative creativity due to its co-creative nature [270, 96]. We agree with
such statement, as we could observe positive effects from smooth turn-taking and
joint attention in the SocialVR embodied explorations of ideas. We could observe
how participants would collaboratively enact movements to each other during the
force-pairing stage by "picking-up" movements that another member was perform-
ing and adapting it slightly. These instances of collaborative embodied exploration
effectively constituted instances of movement co-creation where non-verbal and
verbal channels were used by group members in their remote ideation process.
Nonetheless, we observed instances of embodied exploration in the videocall work-
shops as well, but their existence and reach was limited by the inherent limitations
of the medium, as participants could get confused as to when to contribute verbally
to the conversation and even physical expressions of turn-taking could get missed
during the remote ideation process (Figure 100).
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4.4.6 Medium Constraints

In section 4.3.2.11 and 4.3.2.12 we showed how in SocialVR, unlike in the video-
call counterpart, there was a lack of fine-grained expressivity of body limbs and
facial expressions due to current limitations in consumer-grade VR systems and
the avatar-controller representation (Figure 95). On the other hand, the videocall
medium had a clear limitation from the camera field of view (FOV) that didn’t allow
participants to show to other participants their full bodily intent during ideation
(Figure 89). Hence, each medium can constrain the ideation process because of
the inherent limitations of the technology.

However, even though apparently the medium limitations are a constraint for col-
laborative ideation, we argue that in the case of VR they can also be a desirable
constraint. The existing technological constrains limiting ideation have a 1:1 map-
ping with existing consumer-grade technology [210]. The ideas generated in the
SocialVR workshops are well fitted to be prototyped with current technologies in
VR, whereas several of the ideas generated in videocalls require of sensors that
are not currently mass-marketed (i.e. eye-tracking sensors, lip sensors) or sen-
sors that are unlikely to even exist (i.e. sensor to detect the granularity of the jaw
movements from the "chew to lead dog" interaction in Figure 63). Therefore, para-
doxically, technological limitations from the medium can be useful during ideation
because they reduce the likelihood of generating ideas that cannot be currently
implemented. We consider this a core contribution, suggesting a positive effect of
in-medium embodied ideation for VR motion control design.

4.4.7 Making the Most of Each Medium

As we have seen throughout this study, neither of the two mediums is perfect and
each medium supports remote embodied collaborative ideation differently. Fur-
thermore, we want to take this opportunity to look into the future and suggest
strategies to make the most of each medium in a remote setting. One of the biggest
challenges found in the video calls is the limited field view. This is something that
could be leverage by translating known solutions from video-based systems into
video-mediated remote embodied ideation. For instance, we could imagine a set-
ting where specialised rooms are equipped with cameras in different positions and
angles to cover for this lack of field view. In addition, once the participant is joining
a group discussion, the system can intelligently show the camera feed that best cap-
tures the entire movement of the participant. In the case of the participant leaving
the field of view of their current camera, the system would automatically switch to
the next one that captures their full body.

In social VR, the challenges in communication were caused by the lack of full body
tracking and facial tracking. We believe that these barriers are mostly technologi-
cal. Hence, we envision a future where 1:1 avatar representation of nonverbal cues
is highly accurate and responsive. That way, remote group embodied creativity
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workshops can support embodied exploration of movement interactions that make
extensive use of facial features or lower body interactions. However, there are still
some usability challenges that will need extensive HCI research. For instance, one
of the usability challenges that we observed in social VR was unwanted object grab-
bing. We believe that for a fully successful remote embodied creativity experience,
there needs to be better support for basic object interactions with creativity tools
such as pens, whiteboards, or natural and intuitive drawing interactions. Enhanc-
ing the capabilities of such creativity tools in the immersive space (i.e. by allowing
magical super capabilities to a pen or whiteboard), would also allow for a better
exploration off embodied design interactions. Furthermore, unlike in video calls,
participants in social VR spaces don’t have access to web browsers to search an
import preferences into the group conversation. Social VR spaces could support
browsing and researching audio visual references from the Internet to enhance
idea sharing by just being able to “show what you mean” to the rest of the group.

4.4.8 Looking into the Future

Finally, we would like to bring our ideal scenario based on the findings from this
study. Even in a future where VR headsets are fully technologically developed, there
are some important drawbacks to the requirement of using VR for a prolonged pe-
riod of time. We know that a portion of the population would suffer from motion
sickness when using virtual reality. Additionally, extensive use of VR can cause fa-
tigue either on the eyes or on the neck. Still, there are very important advantages
in remote embodied ideations when using VR. Hence, we would want to leverage
those advantages while minimising the disadvantages. That is why we suggest a hy-
brid remote medium, where moving from video call to a social VR space, and vice
versa, with the same group of people is effortless and very comfortable. With a hy-
brid remote medium we are able to (a) reuse the learned affordances from regular
desktop and videocall usage, reducing motion sickness and physical fatigue; and (b)
incorporate the best aspects of remote bodystorming in a co-located virtual space
with SocialVR. In addition, we would support McVeigh-Schultz and Isbister’s[182]
call to go beyond replicating real world affordances and use the technological ca-
pabilities of both video and social VR to enhance what is possible in bodystorming.

4.4.9 Limitations

We are aware that this study has a series of limitations that could potentially affect
the results and our conclusions. Firstly, the particular case study and population
chosen to participate in the workshops have a strong effect on the types of interac-
tions ideated and, potentially, in the playfulness of the in-medium SocialVR commu-
nication. We acknowledge that for the results of our study to be fully generalisable
more research is needed with different case studies and population backgrounds
(age, gender, culture, professional occupation, education).
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Additionally, the data from this study was collected during the first wave of the
worldwide COVID-19 pandemic, which forced the out-of-medium condition to be re-
mote. The pandemic is likely to have an effect on the attitude that participants bring
into remote workshops, since most of us were experiencing limited physical and so-
cial interaction when the workshops were run. Therefore, there might have been
a heightening effect on participant positive or negative social experience, resulting
in a potentially abnormal behaviour. Based on our observations and analysis, we
believe that such effect is likely to be small.

4.5 Conclusion

We have observed that both in-medium and out-of-medium conditions can support
embodied collaborative ideation, with special emphasis on the in-medium opportu-
nities.

On one hand, the expressivity of out-of-medium video calls is apparently more lim-
ited because of the lack of co-presence and limited field of view. However, we argue
that video calls are a successful medium when it comes to generating movement in-
teractions where facial features are extensively used because of the high-resolution
capabilities of modern webcams. In addition, we found that participant explored a
more diverse range of inputs modalities in remote group videocalls. Still, the lack
of support for head gaze and pointing can negatively affect embodied creativity in
a group video call setting since it can deter from smooth communication.

On the other hand, in-medium social VR offers a very promising space for remote
collaborative embodied ideation. There seems to be strong benefits when commu-
nicating between participants in social VR because of the support for standard non-
verbal cues, such as head gaze and pointing. In return, conversation events such
as turn taking are more fluid and group communication is strengthened, allowing
participants to better explore the embodied design space. In addition, the support
for virtual co-location seems to benefit the ideation of social interactions that re-
quire inter-player cooperation. Nevertheless, expressivity in VR is challenged by
the lack of granularity and control from users’ facial expressions. Plus, the rela-
tionship between the in-medium avatar representation and communication seems
to be equally important. We argue that as long as the social VR platform offers a
consistent in-medium affordance of the interaction to generate ( i.e. generating VR
movement interactions through Social VR), is not a barrier for creativity and the
benefits of the in-medium work outweighs the limitations that it presents.

Finally, there seems to be a prevalence on ideation of object interactions, yet from
a different nature in or out of medium. Out-of-medium ideas seemed to interact
with existing everyday objects more while in-medium ideas seemed to focus on
generation of objects. We argue that participants creative thinking might have
been influenced by the space they inhabited, with out-of-medium workshops taking
place at home offices and in-medium workshops taking place in an exaggeratedly
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big virtual space lacking furniture or a rich diversity of props. Exploring workshop
designs that take place in specifically designed in-medium virtual environments can
steer participants to align ideas generated with workshop goals

Therefore, we have shown the positive outcomes of in-medium embodied ideation
for VR game motion control design because of the richness in playfulness, creativity,
communication and medium affordances. Next step in the embodied design process
is idea implementation and evaluation, something that Chapter 5 will investigate in
detail.
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5 IML for Prototyping VR Motion Controlled Game-
play

5.1 Introduction

The previous chapter investigated in-medium embodied ideation from a VR game
creator perspective. This chapter focuses on the second and third stages of the
embodied motion control design process: implementation and evaluation. Prior
research argued that embodied interaction design enjoyed a focused loop of design
and implementation for embodied creative reflection [82] and suggested IML as a
technological intervention to support such loop [93]. Thus,this Chapter will look at
the opportunities and challenges that game creators encounter in prototyping and
evaluating game motion controls with InteractML, our novel IML tool.

To do so, we conducted 4 game jams where we asked participants (n=17) to create
a VR game motion control using InteractML over 2-3 days. This framing served for
participants to consider game software engineering and player experience while
creating their IML prototypes. To analyse how participant game developers imple-
ment and evaluate movement interactions in InteractML, we particularly looked at
feature selection strategies, perceived output quality, and model evaluation strate-
gies. Perceived output quality refers to the degree in which participants subjec-
tively judged their implemented movement interactions from a human-centred IML
perspective [276]. Finally, we were interested in how participants used the tool as
part of their game creation process inside the game engine. In sum, we studied how
game creators using IML tackle (1) feature engineering, (2) IML iterative training,
(3) IML evaluation with an experiential focus, and (4) IML integration into a game
engine. To do so, we collected field notes, observations, think-alouds, interviews
and focus group data. To make sense of the data collected, we followed a reflexive
thematic analysis.

We found that creators followed an embodied thinking process during their pro-
totyping, which affected their engagement with the IML model steering loop and
evaluation. We conclude that while IML can serve well the purpose of implementing
more nuanced movement interactions for motion-controlled VR games, it presently
suffers from a number of limitations, some of which are inherent to the supervised
learning paradigm, some specific to the current InteractML implementation. These
require further design work to make movement interaction design with IML truly
accessible to non-ML experts.

5.2 Method

Grounded in our research aim of understanding opportunities and challenges that
game creators encounter in prototyping and evaluating game motion controls with
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InteractML, we chose a qualitative study design. Our qualitative approach is neces-
sary because prior research showed how traditional ML quantitative metrics aren’t
able to inform about human-centred dimensions of IML [73, 26, 276]. To achieve an
understanding of prototyping and evaluation processes, we opted for a workshop
structure where participants were initially introduced into ML, IML and InteractML
specifically, and then proceed to free individual prototyping. We targeted a sample
size of 12 to 20 to ensure good code and meaning saturation [112]. We chose to
collect field notes, observations, think-alouds, interviews and focus group data to
better qualitatively capture the human-machine interaction phenomena and mental
model maturing of participants throughout their working process. For analysis, we
adopted reflexive thematic analysis to recursively explore and interpret patterned
meaning about prototyping and evaluation of game motion controls accross our
dataset. Each workshop had a different cohort of participants that created a VR
motion-controlled game using InteractML over a period of 2 to 3 days.

5.2.1 Participants

In total, 17 participants (10 male-identifying, 6 female-identifying, 1 gender
varian/non-confirming) took part in the study across 4 in-person workshops, with
an average of 4 participants per workshop (see Table 11). All participants were
adult UK residents and recruited to have prior experience creating VR games with
game engines but not experts at machine learning. 16 out of 17 participants didn’t
have any previous experience with machine learning. Participants were recruited
via email and course leaders of UK university degrees focused on VR, interac-
tive media, or games. While we tried to recruit working professionals from larger
game studios, we were not successful in doing so, and so our participant pool was
chiefly composed of students or student-level independent developers. Participant
data was anonymised and each participant was assigned an anonymised identifier
consisting of the beginning ‘R_’ and three random alphanumeric characters (e.g.
R_Pv9).

5.2.2 Procedure

Workshops were conducted in person at VR laboratories of Goldsmiths, University
of London and the University of York. The VR laboratories offered each partici-
pant a high-end computer with a Unity3D installation with a template InteractML
project, together with a consumer grade VR headset (i.e. Oculus Rift, Oculus Quest
2, HTC Vive, HTC Vive Pro). The first two workshops lasted for two days, but
after participants reported that they would benefit from at least an extra day of
interaction with the tool, we added an extra day of implementation time (vi, see
table 12) for the last two workshops. The core part of the study involved indi-
vidually implementing movement interactions of their choice using InteractML in
VR. This was to observe each participant’s individual engagement with all stages
behind InteractML’s workflow, instead of risking that only part of a group would
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Table 11: Participant details per workshop

Participant ID Workshop Age Gender VR Exp ML Exp
R_3P5 1 34 male High None
R_1Ih 1 31 female Medium None

R_W1X 1 42 male Medium None
R_3Mc 2 35 female Low None
R_3Gw 2 20 female Medium None
R_2bW 2 22 male High None
R_Pv9 3 25 Non-conforming Low None
R_11i 3 22 male Low None
R_0oi 3 22 male Medium None
R_3qq 3 27 female Medium None
R_2b1 3 22 female Low None
R_ZEL 3 26 male Low None
R_1BQ 4 24 male Medium None
R_1H7 4 19 male Low None
R_2uv 4 28 male Low None
R_2bU 4 18 female Low None
R_1Ib 4 29 male Low Basic

Table 12: Workshop Phase Lengths

(i) IML introductory lecture 60 mins
(ii) Bodystorming ideas 10 mins
(iii) Bodystorming IML classifier 10 mins
(iv) InteractML tutorial feature by feature 2h - 4h
(v) Breaking down previous ideas on whiteboard into features 10 mins
(vi) Free implementation of ideas with InteractML Rest of

workshop
(1-2 days)

work with InteractML as part of group work. While InteractML supports a range of
classifier algorithms, unbeknownst to the participants, we restricted the workshop
implementation of the tool to the k-nearest neighbour (kNN) classifier. This was to
simplify participant teaching and later analysis. Regression or dynamic-time warp-
ing (DTW) algorithms differ in how they calculate decision boundaries, and this
variance could have affected how participants understand and interpret the system
output.

The full workshop structure can be found in table 12. At the beginning of the
workshops, participants were briefed about the purpose of the study and introduced
themselves to each other. participants then received an introduction into IML, with
a bodystorming session followed by a hands-on InteractML tutorial.

The introduction was a 60 minute lecture covering the theoretical basis of super-
vised learning and focused on classification tasks, labelled datasets, and the human-
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in-the-loop component of IML.

The bodystorming session served both to allow participants to ideate potential in-
teractions to implement (as seen in the previous chapter) and to conduct a didactic
and performative IML exercise. It was always done around a whiteboard, either
as one big group or with two groups of at least two people. The instructor would
pretend to act out as a supervised learning classifier and react to the training move-
ments that participants would pretend to teach the instructor. The intention was
to simplify learning of the machine learning methodology before participants were
presented with InteractML’s interface, thus allowing participants to learn the logic
of ML before learning the interface or InteractML.

The hands-on InteractML tutorial sequentially introduced all features and each par-
ticipant implemented a simple classifier utilising each feature, thus implementing
5 small classifiers over the course of the tutorial.

Finally, the instructor requested participants to go back to the whiteboard where
their ideas were and discuss how to break their interactions down into features. The
tutorial lasted for half-a-day to a day depending on participants’ learning needs, as
some cohorts learned quicker than others.

The remainder of the workshop time was used for individual prototyping of at least
one full movement interaction for a small VR game. With a full movement interac-
tion, we mean a combination of a working classifier and a custom visual represen-
tation in a virtual scene.

5.2.3 Data Collection

Consent to voice and video record the workshops was gathered from participants.
Video recordings consisted of relevant spontaneous behaviours that participants
showed, such as unexpected usage or modifications of the tool/system, or illustra-
tive working processes. During the workshop, we gathered field-notes with obser-
vational insights and ran regular video-recorded think-alouds by seating close to a
participant that was observably doing something of interest, then requested them
to verbalise their thoughts and rationale while using InteractML. At the end of the
workshop we asked participants to save screenshots of their projects and their IML
graphs, and organised a one hour focus group about the experience in the work-
shop and their design process with InteractML compared to other engine toolk-
its. Finally, on the day after the workshop, we arranged individual semi-structured
interviews over a video-call about fine-grained details covering their experience
doing (a) feature selection, (b) model steering, (c) model evaluation and (d) player-
experience evaluation dimensions. Before each interview, the main author pre-
sented screenshots of the participant project and relevant field notes to aid with
participant’s process recall.
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5.2.4 Analysis

Interviews and focus groups were transcribed verbatim. To code the field notes,
transcripts and IML graph screenshots, we used the qualitative analysis software
MAXQDA [308]. In total, the data from 17 participants across four in-person work-
shops spanned 17 hours of interviews, 4 hours of focus group and approximately
60 think-aloud instances (3-4 per participant).

We performed a thematic analysis in which we followed an initial deductive top-
down coding process on the data collected, followed by a second bottom-up induc-
tive coding step in order to ensure coding reliability and capture themes missed in
the first deductive phase [28].

The first top-down analysis focused on interactive supervised learning (a) feature
selection, (b) model training, (c) model evaluation, (d) integration into a game
engine, and (e) player-experience evaluation dimension and yielded 208 low-level
codes, 24 high-level codes, 4 themes and 4 sub-themes.

We looked at participants per workshop, coding first the field notes per participant
to ground our later interpretation of interview and focus group transcripts. During
coding we asked ourselves questions such as; how did participants understand each
feature? How did their usage of the features affect their training process? Why
did they record data the way they did? What is the relationship between their data
recording and their graph structure? What did they find relevant during evaluation?
How did it affect their interpretation of their classifiers? How did it affect their
model steering and further node creation or deletion? How did they pipe their
classifiers outputs to their custom scripts? How did that affect their interpretation
of their classifiers and overall model steering? What experiential qualities did they
consider important about their end-result? How did they express such qualities in
relation to their end-result?

Additionally, we coded participant’s IML graphs screenshots looking at (a) which
features were selected and (b) which classifier nodes were created, then cross-
referenced their graph structure with relevant transcript instances mentioning fea-
ture selection or classifier training.

To ensure coding reliability, we performed a second deductive bottom-up analysis
on a subset of the entire dataset, which included 6 participants, accounting for
6 hours of interviews, 2 hours of focus groups and approximately 20 think-aloud
instances (3-4 per participant). The results from the second bottom-up analysis
enriched the insights yielding 101 new low-level codes, 10 new high-level codes
and one new sub-theme. The new codes were grouped into the original 4 themes,
therefore they didn’t change the number of themes from the first top-down analysis.
Since we didn’t synthesise any new themes, we assumed saturation was reached
with a total of 409 low-level codes, 34 high-level codes, 4 themes and 5 sub-themes
from the top-down and bottom-up analyses.
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Table 13: Theme and sub-theme structure

THEMES SUBTHEMES
1. Creators Displayed an Embodied
Thinking Process
2. Tension between Embodied Thinking
and Supervised Learning requirements

2.1. Tension in how each feature affects
model inference
2.2. Tension in understanding the par-
ticularities of each feature with regards
to time
2.3. Tension to tackle the mismatch be-
tween natural embodied point of refer-
ence to machine point of reference

3. Human engagement with IML mod-
els is a constant in-medium iterative
process

3.1. Affected by model output visualisa-
tion (positive or negative effect)
3.2. People do quick iterations and trial
and error while engaging with the sys-
tem
3.3. Immersive Model Steering can be
negatively affected by media breaks

4. Structure benefits Embodied Think-
ing in Immersive Interactive Super-
vised Learning

4.1. People create structure when there
is none present

5. IML Visual Scripting as part of a
game engine facilitates IML processes
and ML mental modelling

5.1. Modularity wasn’t obvious to users
5.2. Challenges in separating system
responsibilities and diagnosing prob-
lems

6. The user evaluation of Expressive
IML Outputs show a tension between
accuracy, visual flicker and embodied
experiential qualities

6.1. Embodied design qualities consid-
ered when evaluating IML

Finally, results were discussed with co-authors during over a month of iterative
writing and regular meetings every two weeks. The discussion identified a com-
mon theme among several sub-themes relating to embodied thinking [229] and
the separation of the tension between embodied thinking and supervised learn-
ing requirements from the embodied thinking theme. Furthermore, the discussion
also resulted in a further splitting of sub-themes to better communicate the find-
ings. Consequently, we added two additional themes and reworked the sub-themes
structure, resulting in a total of 6 themes and 10 sub-themes. The themes and
sub-themes can be found in table 13.
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Figure 104: Relation Diagram between Themes

5.3 Results

We proceed to present and define the five main themes and their corresponding
sub-themes, with detailed descriptors and data instances where relevant.

5.3.1 Creators Displayed an Embodied Thinking Process

When interacting with the tool, both in and outside of VR, creators used their own
bodies to construct their mental models about the interactive loop with the tool
and the elements involved. With mental model, we here refer to the users’ internal
representation of how our system works, both from a software and machine learn-
ing perspective, based on Staggers and Norcio (1993) [277]. In short, creators
interacted with InteractML in a form of embodied thinking[229].

Creators consistently used non-symbolic physical gestures and cues – when engag-
ing in individual silent problem solving, speaking with each other, and while indi-
vidually interacting with the computer. This indicates bodily anchored reasoning
about the IML system state and its internal interpretation of movement data. We
saw examples of embodied thinking in the embodied ‘dialogue’ that participants
had with their systems as they were bodily recording data and training the mod-
els. To explore the decision boundaries of their trained model – at what point it
categorised a hand movement as ‘fast’ or ‘slow’, say – creators engaged in an itera-
tive, two-way process: they taught the machine what movements they wanted it to
learn, and the machine learning system ‘taught’ creators what gestures it did actu-
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ally learn. Once there was a mismatch between expectations and results, partici-
pants observably repeated movements with slight variations to bodily explore how
the model understood their movements. This physical exploration was notably not
just there for eliciting more observational data of the system’s decision boundary.
For even when the model wasn’t running, participants would still silently gesture
and ‘play through’ different movements as they were attempting to diagnose what
was happening with their own movements and bodily understand how the classifier
interpreted them.

Participant R_1lh described this process as a literal embodied dialogue: “I need to
know what kind of movement will confuse the machine. So the machine will not
tell me directly, so I have to test two different kinds of categories. . . And then the
machine tells me ‘oh you’re right on that. Oh, you are not right’. So I noticed
how the machine teaches me”. To further illustrate her quote, the embodiment
of the dialogue is constant, as the participant need to move in order to interpret
the answer from the model. R_2bW similarly stated “you end up learning what
that version of the machine. . . what likes and dislikes in the movement, what kind
of boundaries it has overlapping or whatnot. So you can kind of accommodate
that”. Both participants considered that they were ‘saying’ things to the classifier
through their interactions (selecting features, recording data, directly evaluating
it) and ‘listening’ to what the classifier ‘said’ via bodily and visually interpreting its
output. We interpreted the embodiment of the dialogue as an indicator of embodied
thinking, because participants needed ground their cognitive processes on their
body usage to understand what their ML models were ‘telling’ them.

For example, participant R_2bW created a reactive virtual dance floor in which the
lights of the scenario would react to the way in which he moved. To that end,
he trained a classifier that would discriminate between a ‘hands up’ pose, a ‘one
hand up, one hand right’ pose, and a ‘one hand up, one hand left’ pose. Once he
recorded data for each pose, he proceeded to directly evaluate the classifier and
performed all the movements, but realised that for the area in between poses (i.e.
moving one of the hands up after placing it on the side), the model didn’t recog-
nise his movements as expected. He then kept directly evaluating to assess where
the movements didn’t overlap as he wanted to. Before recording additional data,
he performed the movements without running the classifier, observably reflecting
on where he wanted the movements to overlap. He then recorded additional data
and directly evaluated the classifier again to ‘listen’ to what the classifier ‘liked’
or ‘disliked’. He engaged in additional iterations where he reflected on what the
classifier ‘answered’ to what he bodily ‘said’ to help define the boundaries in be-
tween movements to his preference. We interpreted such reflective moments with
clear body movements as instances of embodied thinking, where the participant
grounded their reflective thinking process in their body and movement interpreta-
tion of the classifier mental model.
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5.3.2 Tension between Embodied Thinking and Supervised Learning re-
quirements

We observed a tension between participants’ embodied thinking and the supervised
learning requirements that InteractML posed. Participants ideated movement in-
teractions mixing gestures and words, describing what they were doing when they
performed a movement. A movement could be anything from a pose to a sequence
of gestures, and many times participants would understand such a spectrum as a
single movement.

However, in order for the classifier in InteractML to recognise the full movement,
participants needed to break down their idea into a dataset made of pairs of human-
recorded movement data with a label. For a start, this data structuring didn’t match
the creators’ existing embodied mental models about how to describe a movement.
This is because participants would express their movements as whole actions, but
many times they are formed of distinct sequences of actions, even if small se-
quences. For instance, when discussing ideas with their colleagues, participants
would describe a walking forward motion simply as “walking”, whereas there is a
structured movement pattern to identify when someone is walking versus running
(i.e. first one foot forward, next opposite foot forward, but not too fast nor with
the feet too much apart from each other). Therefore, to structure a dataset for a
walking motion, the participant would need to break down the motion into distinct
identifiable sub-components that a classifier could discriminate, including move-
ment examples of walking and running with certain features selected. And that is
unlike their spontaneous intuition of such an ingrained motion such as walking.

Furthermore, participants reported difficulties remembering what each label meant
after using the system for a few hours, even though they created the labels and
recorded their own movement for each label. Participants resorted to the use of
on-screen note nodes where they would keep track of what each label was meant to
mean (Fig. 105), but even then, they reported difficulties remembering the nuances
of their own movement, which illustrates the tension between how they understood
the interaction in a first-person embodied way and how the supervised learning
classifier would treat it from a third-person symbolic perspective. We interpreted
this finding beyond strategic cognitive offloading [237, 193], because we observed
how participants did not use note nodes from the beginning, and resorted to them
as they iteratively defined the structure of their movements during model steering.
Participants would begin constructing a dataset that represented their spontaneous
embodied understanding of a movement instead of the more symbolic structured
sequence that a classifier would need to discriminate better. For instance, they
would begin defining walking with examples of only walking, or defining archery
as just the arrow shooting movement, but as they iterated on their models they
realised how their dataset required way more structure than what they anticipated.
Additionally, once they constructed a better dataset “for the machine”, we could
observe how they forgot the nuance that they wanted to express on a particular step
of the sequence. To illustrate this point, participant R_1Ih tried to bodily record a
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Figure 105: - The participant placed a text note early on close to her training dataset node
explaining what each label meant. However, she didn’t update the note as she recorded
more cases with more labels, and she changed the movement behind each label to improve
the recognition of her classifier.

dataset for magical archery, in which loading the bow with an arrow is performed
in a magical way by separating both hands at a certain height and the participant
wrote a note stating “1 - load arrow” –meaining that label “1” is paired with the
“load arrow” motion. However, as model steering iterations went on, she wanted
to updated her dataset, but she found it challenging to recall what the nuance was
in each motion just from the “load arrow” written description. She explained how
challenging it was during the interview:

“R_1Ih: Sorry, in this part I think one thing is very, uhm, useful. Like, if I,
uhm... If I easily put like uhm... if my label is one, and then like... what,
what [does] it mean? Like, the label meaning. I think it is very useful for
me, so I actually put a note at first to say that label one is that, and label
two is that, and label three is that. But the node is not very, uhm. . . I
mean, I haven’t really updated it, because the one they’re training and
I put five inside, and if I want to change it [the note] to another one, I
have to type a lot of things. So I think if, if I will do it a second time... I
don’t know, I have to improve this part. For myself thinking as well. Like
how I do that, how I train it, right. How I teach the machine and what
I changed in it. And like. . . the different labels. Also, also, I have to let
myself to remember which label is what. In case I forget in my script
here to just to call my function. [Laughter]

Researcher: Right.

R_1Ih: Yeah, yeah. So... and I also need to know that if my label two is
not, uhm. . . my label two is not my movement, but what it is? It is not
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only my movement, but maybe I have three not my movement to one,
this one is here [Gesture backwards] and the other one is here [Gesture
forwards] and I have to distinguish between them. So, I think I need a
better note. [Laughter]”

In the previous quote, participant R_1Ih explained how it wasn’t enough to describe
the motion with only text, as she later on struggled to exactly recall the nuance of
the each motion during model steering, and found challenging to remember how
exactly she broke down the motion into different sub-stages. We interpreted this
finding beyond cognitive offloading, because participants were engaged in active
embodied thinking during iterations, but the structural requirements of a super-
vised learning dataset difficulted their work as they needed to always find a “cor-
rect” way to describe –or re-describe –a movement as they were improving their
model with data. Therefore, we interpreted such challenges as indicators of a ten-
sion between participant’s embodied thinking process and the supervised learning
requirements of InteractML.

Moreover, the workflow friction that participants experimented included additional
dimensions. Firstly, creators found unintuitive providing varied human examples
in a way that would benefit the supervised learning classifier. This was because it
was obvious to them how to recognise a movement as a human from one example,
whereas the classifier could require repeated examples with time segmentations.
Participant R_3Gw explained how she might have “started recording a little earlier
or a little too late”. See the full quote below:

“R_3Gw: I could have perfected the movement of the hand. Because,
as I mentioned earlier, you know it would, at the end of the day, kind of
hail the queued animation and the queued text when I was even halfway.
Whereas, when I was fully above my head, for some reason, it would stop
even though that’s the position I put in. Uhm, so either, either I recorded
it, started recording it a little earlier or a little too late.”

Hence, in the previous quote the participant described how challenging it was to
correctly segment her movements to provide variations to the classifier she was
training. We interpreted this instance as an example of the unintuitiveness of the
segmentation requirement of a supervised learning classifier.

Additionally, creators found it challenging to record distinct enough examples to
get good recognition results, because they found it difficult to understand why the
supervised learning model struggled to distinguish between two movements that
are obviously different to the human eye but yield false positives during inference
time. The following quote from participant R_W1X illustrates this phenomena:

“Researcher: Was your rationale based on: are they detected well? Or,
was there something else?
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R_W1X: It was, are they detect well? And also, are they detected dif-
ferently? Are they distinct enough that it doesn’t light up both lights?
Because it thinks that gestures, also that one, so it had to be distinct and
also detect accurately. So I think that was, uhm, the main four... When I
was trying to get four at the end that would be detected differently. But,
uhm, yeah could it all easily be done and detected well.”

In the previous quote, the participant built a classifier to detect four different ges-
tures that needed to be performed at a random order to open a locked box. He
found it challenging to ensure that his gestures are “detected differently” and are
“distinct enough” for them not to trigger false positives. This is a challenge for
their spontaneous embodied thinking, as there exists a tension in how the partici-
pant bodily discriminates movement, and how the movement is discriminated by the
classifier. Such tension in distinctiveness poses problems for the perceived classi-
fier accuracy, as he pointed out when he said that his movement “had to be distinct
and also detect accurately”. Hence, it was difficult to bodily distinguish when the
motion of two or more cases overlapped resulting in performance degradation with
no intuitive embodied difference to users.

Furthermore, participants found it challenging to structure a labelled dataset be-
cause of not being sure when to stop adding additional cases to their dataset to
help discriminate every other case (i.e. the participant wants to detect when the
letter O is done in midair, but not when the number cero is gestured in midair, or
half of an eight is gestured in midair. Participant R_W1X explains it in the following
quote:

“R_W1X: Just because there was no way of like, uhm, in machine learning
it’s very hard to say, these are the gestures I want, and now I’m going
to perform and train it with every other possible gesture. Because that’s
obviously like an infinite number. And yeah, it’s very hard to train that
default case of like, not matching one of the gestures I wanted. You sort
of, I think, that’s probably where machine learning isn’t great. You need
an alternative to do that.”

In here, the participant ended up understanding that the supervised learning al-
gorithm required a clear and large set of training examples to discriminate “every
other possible gesture” from the one they were training, that is the “default case
of like, not matching one of the gestures I wanted”. However, that wouldn’t need
to be the case if the feature selection is done in a way that can help reduce the
amount of cases to feed the “default” class. For instance, features such as veloc-
ity (which includes direction) or the distance between the hand and the head can
help discriminate whether the user is performing one motion or a different, without
adding “every other possible gesture” to the training dataset. We interpreted this
as a tension between the supervised learning requirements of the training dataset
or feature selection of a classifier and the embodied discrimination of a user.
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Besides, participants found it difficult to recreate consistent behaviour across
trained models, because of the impossibility to re-record the same movement twice
as there is a natural occurring variation in repetitive human body movement to
which the classifier is sensitive and which isn’t bodily obvious to humans. For in-
stance, participant R_3Gw explains it in the quote below:

“R_3Gw: I guess, kind of matching the, uhm, the positions for both the
machines. Because essentially, if you hail, hail a taxi and then the text
also has to appear, it has to recognize the same kind of positions. Uhm.
I think that was probably the most challenging thing, just kind of match,
match the position of the hand from beginning to end. But since again,
it was pretty straightforward positions that are quite different from each
other.”

In the previous quote, the participant attempted to train two different models to
recognise the same movement, because she wanted a taxi and a floating 3D text to
appear when she “hailed” to the taxi. This by itself is an instance of a misunder-
standing of the capibilities of the system, since the same model could have been
used to process the same motion. Still, despite of her misunderstanding, her in-
tention was to train two different models to detect the same movement, and she
bodily felt that two recorded training sets with the same motion should be produce
two models that would detect the same movement. However, she realised how each
classifier understood the motion differently to her, hence her embodied cognitive
discrimination of how to describe a motion was more generalisable than the deci-
sion boundary of each classifier. We interpreted this dissonance as an instance of
the tension between participant’s embodied thinking and the supervised learning
requirements of InteractML, because it isn’t bodily obvious to a human that a mo-
tion that is clearly discriminated by the creator has so much nuance once processed
by a machine learning classifier.

Finally, participants didn’t find it obvious how to structure interactions that re-
quired a specific sequence of movements, because of the dissonance between their
embodied understanding of a movement and the symbolic logic of the supervised
learning classifier. Participant R_1Ih explained such sequencing problem with her
“invoke a bow” interaction in the following quote:

“R_1Ih: Uhm, kind of. Because I want to call it to appear [the bow] right,
but I also want to make it disappear. So, those two functions actually
are a little bit to make those things harder. Because if I only want to
make it appear, that’s quite easy, so I already implement it. But what
yeah, the problem is one I want to do another movement and to make
it to disappear. And then, the problem is to go to a second stage. And
say, when that happened, and I only can only implement it in the right
time. Like, it now only can disappear, but not really appear. So that
is like, uhm, lots of times I think the problem can be solved. So this
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should be yeah, but uhm... yeah, I think uhm... If it could be invoked and
disappeared. And actually I still have a step 3! [Laughter]”

In the previous quote, the participant was explaining how she thought that mak-
ing her magical bow appear was “quite easy”, but making the bow “appear” and
“disappear” was challenging. From our observations, this was because her body
expressivity of the gesture “bow appear” and “bow disappear” indicated that she
understood both movements as distinct and that the “bow disappear” movement
wasn’t a priority during her embodied thinking process, but rather the sequence of
gestures required to make the full interaction, which involved movements to make
the magical bow (1) “appear”, (2) “load an arrow”, (3) “shot the arrow”, and (4)
“make the bow disappear”. However, she found out that the classifier wouldn’t dis-
criminate priorities on gesture recognition, hence as soon as the bow appeared, if
she made the motion for the bow to disappear, the classifier would infer the correct
motion and indeed made the bow disappear. This was counter-intuitive to her, as
she struggled to prioritise the “bow appear” recognition over the “bow disappear”,
up to the extent where she couldn’t even proceed to the next step in the interaction
sequence when she explains that “And actually I still have a step 3!”. We inter-
preted this instance as an example of a tension of how creators bodily think about
their own interactions, what they consider a priority of recognition at a particular
step, and how the classifier doesn’t have any form of prior knowledge about when
to prioritise one motion over the other for recognition.

Therefore, we considered this theme as the richest of the synthesised themes from
our analysis, where participants exhibited a tension between their embodied think-
ing processes and the supervised learning requirements of the system. From this
theme, we consider important to highlight three subthemes delving deeper into
prominent dimensions of such tension: (1) how each feature affects model infer-
ence, (2) how time affects each feature, and (3) the participants’ first-person point
of reference and the machine’s third-person point of reference during movement.

5.3.2.1 Tension in how each feature affects model inferenceWe observed a
tension between how a feature was understood and how it affected the perceived
accuracy of the model. The movement features that InteractML offers are known
movement qualities for which creators could already have embodied references:
position, rotation, velocity, distance between two points. However, it was not obvi-
ous for participants which features would make a trained classifier discriminate a
given gesture better or worse. For instance, the participant R_3Mc implemented an
interaction in which a light would turn on or off based on whether the controller po-
sition was ‘below waist’ (‘light off’) or ‘above head’ (for ‘light on’). Then she wanted
to introduce an additional movement to change the intensity of the light that was
more nuanced than just controller position. For this, she trained a third class ‘move
controller up’ for ‘light dimmed’ that should have a visual performative feel to it,
so that the player would feel inside an interactive and responsive light display. To
add that performative feel, she thought that the most obvious feature was rotation,
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since she naturally identified rotation as the feature most ‘obviously’ distinct from
position based on her own bodily movement understanding. Yet she struggled to
get the classifier to work as she intended, because probably the variation in her po-
sitions were bigger than the variations in her rotations, meaning that eventhough
she bodily felt her hands rotations as quite pronounced they weren’t as numerically
significant as the position differences. She then attempted to add velocity as an
additional feature, which made her classifier “good enough”. However, she then
wasn’t sure which feature had the most impact on her classifier, and whether she
should now remove rotation or whether she could train a better classifier with only
rotation and velocity. She attempted to use a window of features attempting differ-
ent combinations of position, rotation and velocity. She couldn’t verbalise why her
classifier performed similarly with or without rotation, but she preferred to have it
included as she explained, “to probably improve it [the classifier] I then added the
rotation”.

This tension in feature understanding and model inference, is directly related to
the overall tension in their embodied thinking and the supervised learning require-
ments. Participants experimented with features in the virtual world by visually
observing the numerical values yielded by each feature both in the VR panel and
the desktop node interface. Afterwards, they would solidify their understanding
by recording a simple dataset with a feature and two or three labels to observe
what effect they have on a model. When their expected mental model of how the
feature should affect the classifier didn’t match the classified result, participants
would engage in an iterative loop of providing more training movement examples,
or deleting and recording new movement examples to understand how each feature
affected the classifier inference. Hence, for every feature introduced and worked
with, participants found that they needed to overcome their natural embodied un-
derstanding of what a ‘position’, ‘rotation’ or movement ‘velocity’ is, and relearn a
mental model of how the classifier treats these seemingly intuitive movement qual-
ities. In the following quote, participant R_3Gw explains how she didn’t understand
how each feature affected model inference:

“R_3Gw: You know, at one point, you need to think about it [a feature
effect], uhm. If I would do, if I were to do something differently, probably
also explore the rotations and velocity a little bit further. Because those
are the kind of things, I mean rotation I kind of understood. But the
velocity went a little bit over my head I, I... [Gasp] I wish I could say that
I understand it.”

In the previous quote, the participant expressed that the most straight-forward
features to understand from an embodied perspective were ‘position’ and ‘rota-
tion’, yet she “wished” to understand ‘velocity’ because “it went a little bit over
my head”. This was a surprising finding, since we would assume that velocity is a
more immediate quality to understand than rotation, especially given the evidence
behind spatial rotation processing in psychology [167]. However, this instance and
our observations indicated that participants found both features quite immediate
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to bodily understand, yet not quite as much to ascertain how much they affect their
classifier inference as we saw with participant’s R_3Mc ‘lights on or off’ example,
where her rotation didn’t seem important to discriminate movements and she could
construct an argument as to why. We interpreted both of these instances as exam-
ples of the tension between how participants bodily felt that a feature should affect
motion recognition, and how it symbolically affects the machine learning algorithm.

5.3.2.2 Tension in understanding the particularities of each feature with
regards to time Participants understood features in an embodied way, similarly to
how they were thinking about their own movement. They reported details into how
the features affected their own understanding of the movement in an embodied way
and how certain features were easier to understand than others. For instance, the
easiest feature to understand was raw position, and the hardest feature to under-
stand was either velocity or the window of features. Participants reported that how
difficult they found it to understand different features was due to how they under-
stood their own movements in an embodied manner. The way in which the classifier
understands raw position was closer to the way in which participants understood
their own body positions while recording data, but still it wasn’t the same and it
took some time to fully mature. This is because participants understood positions
without reflecting on time, but rather on a ‘volume space’ relative to their body
core or field of view, while the classifier processed positions just as points in space.
Hence, even-though participants’ mental model of the position feature in regards
to time better matched the actual functioning of the system, but it wasn’t fully ma-
tured to understand that there wasn’t any time taken into account by the system at
first.

On the other hand, velocity or the window of features were more difficult to un-
derstand because of them requiring more than one game engine frame of data,
thus involving a machine understanding of time. Game engines usually parse time
as ‘frames per second’, something that originates from the visual renderer of the
engine generating the virtual scene onto a pixel-format image in a very fast succes-
sion, which creates the effect of visual animation on-screen. Most game engines
use the renderer update loop to also compute other processes in order to keep
rendered visuals and game logic in sync. Our IML system similarly updates each
feature information with every rendered frame. A second of human-perceived time
thus usually involves 30, 60, or even more frames rendered by the game engine.
This machine understanding of time was observed to be very different from how
participants naturally understood time in their own movements. We usually ob-
served this tension manifesting throughout all workshops with the four stage pro-
cess described in the previous sub-theme when participants engaged with a feature
and a gesture involving time, either with simpler features (i.e. position or rotation)
or with features that intrinsically use more than frame of data (i.e. velocity or win-
dow of features). Such friction with a feature involving time can be illustrated with
the following quote of participant R_3Gw:

“R_3Gw: Even though, I, you know, mine isn’t really static but that’s why
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I put it put in the window so that kind of allowed me to use another type
of gesture, so it wouldn’t just be a pose... ... I wouldn’t love to believe the
window [of features] affected it [model inference]. To be quite honest, I
think I have like a slight understanding of [the window of features] as,
as you explained that it, it just gives more time for the movement and it
tracks more time and, like per second. Uhm...”

In the previous quote, the participant attempted to use the window of features
to enrich her movement “so it wouldn’t just be a pose”. However, she explained
how, while she felt that the window of features “affected it [model inference]”,
she only had a “slight understanding” and that “it just gives more time for the
movement”. We considered this an excellent illustration as an example of such
tension in understanding how time is computed in each feature. She said that the
window of feature gives “more time” compared to the raw position that she was
using, yet the raw position doesn’t compute any time. The fact that she understood
“more time”, means that she had an understanding that the raw position computed
‘some’ time. This is incorrect and shows how her mental model was enough for her
to select features and get the classifier “to work”, but it isn’t matured enough to
properly understand how the only way for the position feature to compute time is
via a window of features.

5.3.2.3 Tension to tackle the mismatch between natural embodied point of
reference to machine point of referenceLike the game engine, for any object
in a (virtual) scene, InteractML determines all coordinates relative to the centre of
the virtual world. Thus, the mathematic representation of all features in InteractML
are calculated from a ‘third-person perspective’: the tracked VR system controllers
and headset are themselves represented and tracked as an offset in reference to
the fixed three-dimensional coordinate system of the game engine with a central,
fixed origin point. Participants in contrast understood, modelled, and referenced
their movements from an embodied first-person perspective, in which movement
position or velocity were understood in reference to their own body centre, head or
hands as the origin point.

Movements in reference to their body core involved moving their whole body
around space (i.e. walking, crouching or dancing, see fig. 106.a), movements in
reference to their head involved their point of view (i.e. manipulating objects in
front or behind themselves, drawing in-air shapes, see fig. 106.b), and movements
in reference to their hands involved the palm of their hand or the tip of their fingers
as a starting or end point of (i.e. throwing magical rays from the tip of their fin-
gers, see fig. 106.c). These varying, natural embodied first-person reference points
clashed with the third-person modeling offered in InteractML.

The feature that offered the least mental friction was raw movement position, as it
allowed less friction when implementing movement interactions with a body core
point of reference. However, the same mental model that allowed them to success-
fully implement an initial position-based interaction with a body core point of ref-
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(a)

(b) (c) (d)

Figure 106: (Left, a-c) Participants showed an spontaneous first-person and diverse em-
bodied point of reference depending on the movement interaction. (Right, d) The IML
system was built following the spatial assumptions from the game engine and hence imple-
ments a third-person point of reference when processing movement data by default.

erence failed when they attempted to implement an interaction with a first-person
head point of reference using the same position feature. To facilitate their mental
model maturity, we onboarded participants in the introduction into a feature that
we called ‘Distance to First Point’, in which they could calculate the distance be-
tween more than one point in the third-person system perspective, thus translating
the system’s third-person point of reference into a first-person point of reference
when the first point in the feature was their virtual head or hand. However, partic-
ipants didn’t grasp such symbolic representation and complained how the system
did not match their body intuitions. Let’s take participant’s R_2bW answers during
the interview to illustrate this point:

“R_2bW: . . . the triangle you, you’d have to do it in a specific area. And
even that, uhm, it wouldn’t just recognize the gesture itself, it would
recognize all the points and positions in it [the triangle]. So that if you
just went into any of those positions, without doing the gesture, it would
still switch [the output], uhm, to the corresponding case. Which kind
of made it so that I had to make sure that none of the gestures would
overlap in their movement or, uhm. . . work. Yeah, more or less that.”

In the previous quote, the participant explained how he constructed a mental model
of how the classifier understood his motion to draw a triangle. His mental model
was correct, as in it correctly modelled the fact that the position by itself, would be
understood from a third-person perspective by the computer. However, his problem
was that he was trying to perform a movement in relation to his own body from a
first-person perspective, and couldn’t grasp how the ‘Distance to First Point’ feature
would help solving that issue, and instead he attempted to “make sure that none of
the gesture would overlap in their movement”. This was a solution that limited the
creator movement expressivity and we interpreted it as an instance of the tension
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existing between participants’ first-person point of reference and the computer’s
third-person point of reference.

5.3.3 Human engagement with IML models is a constant in-medium itera-
tive process, affected by model output visualisation

Participant engagement with the IML system was a constant in-medium iterative
process spanning (a) learning about the system, (b) correctly interpreting the sys-
tem’s state, and (c) steering the system into a desired state.

We define learning about the IML system as the process that allows sufficient un-
derstanding of the system functionalities for independent work. InteractML had
several elements that participants needed to initially learn to perform basic IML
model steering iterations. At the beginning of a workshop, participants followed
a tutorial led by us that onboarded them to InteractML and taught them: (1) how
to drag and drop GameObjects into the graph, (2) how to create nodes to extract
features from a GameObject, (3) how to pipe and record movement data from the
selected features, (4) how to train and run a classifier, and (5) how to pipe the
classifier output into a custom script.

Within the framework of Grossman and colleagues (2009) [105] for software learn-
ability, we focus on the user understanding of the system functionality, and consider
system learning as a necessary initial step while engaging with the IML system dur-
ing the initial learnability category that Grossman and colleagues (2009) define as
“Initial performance with the system”. However, we consider that learning during
the extended learnability category that Grossman and colleagues (2009) define as
“change in performance over time” can happen during iterative human engagement
with the system, but it is not a necessary first step. Users might have learned ev-
erything they about the system, but model steering increases model performance
with the system because of the process itself, rather than any human learning. This
is because users already learned the ‘basics’ and they could engage in iterative IML
model steering without learning many of the other aspects of the interaction with
their classifier. For instance, participants would eventually need to learn how to
debug their classifiers, or how to transform their classifier outputs into their de-
sired animations or in-game actions. But none of those would impede their ability
to engage with their classifiers.

Interpreting the system’s state was the next step in engaging with the IML sys-
tem once participants understood the system functionalities, and the first step if
participants already understood the system functionalities. Participants needed
to interpret the system state in order to plan the current steering iteration, and
they followed different strategies to do so. For instance, participants could explore
the decision boundaries of the classifier via physical direct evaluation to interpret
where a movement is being misrecognised. We use the definition provided by Sper-
rle and colleagues (2021) [276] that defines interpretability as an inductive process
in which “a system is interpretable when users can understand why it behaves in a
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Figure 107: Three stage human engagement with IML models diagram

given way under given circumstances”. We understand that interpretability refers
to the behaviour of the machine learning model, rather than the overall system.
This is because in the case of InteractML, the overall system exists in the form of a
plugin of a game engine, which introduces several layers of complexity beyond the
machine learning behaviour. The goal of participants was to successfully interpret
whether their classifiers recognised the movements in their desired way.

Steering the system was the final step in engaging the IML system once partici-
pants had interpreted it. Participants could take many different actions to steer
their classifiers, such as recording additional training movement data, changing
features or improving their custom script to better pipe the classifier output into
their interactions. Steering an IML system refers to guiding or adjusting the IML
model as it learns from user feedback [63]. Because the user is actively involved
in the training process, providing feedback to the IML model and helping to steer
it towards better performance requires a previous step of interpreting the system’s
state. Even if the interpretation is incomplete, users will always require some de-
gree of assessment prior to a steering activity. For instance, participants could
be observably struggling to correctly interpret why their classifiers miscategorised
their movements when drawing a mid-air shape, but still proceed to record more
training data to steer the model in the hope to better interpret the system next
iteration. Hence, we saw a close relationship between interpretation and steering,
in which participants wanted to correctly steer their classifiers to better interpret
them, and wanted to correctly interpret their classifiers to better steer them.

Therefore, we could illustrate engagement loop as a three-stage interaction process
(Fig. 107). Let us use feature selection as an example of such process:

1. Learning about the system: In the first stage, participants selected a fea-
ture for a movement interaction. In this stage, we would visually observe signs
of an initial, embodied mental model as the participant exemplified movement
data that seemed intuitive for humans to learn from but was likely to yield bad
recognition results. For instance, they would record velocity samples from
their movement while performing poses or pauses between their movement,
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hence training the classifier to admit pauses in its decision boundaries while
recognising movement. This would confuse the classifier when discriminating
between movement and non-movement (i.e. posing idly in between gesturing),
and showed how the embodied mental model of participants didn’t discrimi-
nate such fine-grained details from their own movement.

2. Correctly interpreting system state: In the second stage, participants
would directly evaluate their classifier and realised that it misrecognised their
movements, showing a flickery behaviour (i.e. not having stability in its out-
put) with very low accuracy or with too many false positives. We observed
verbal or nonverbal expressions of confusion, illustrating their mismatch in
expectations. A participant could stay in this stage attempting to re-record
movement data more than once and still observing how the model misbehaves
regardless of what approach they take. Once participants realised that the
problem didn’t come from a misconfiguration of their system, but rather from
a misunderstanding of the system, they would seek help with the intention of
maturing their current natural embodied understanding of a feature to better
represent the supervised learning classifier. For that goal, they would reach
a colleague from which they can observe good classifier results with a similar
feature or gesturing goal, or reach directly to the researchers for clarifica-
tions. The explanations that we would give would either be a repetition of
the explanation given during the tutorial, or a deeper explanation of how the
symbolic data of a feature is understood by the classifier and sketches of what
is the translation between a gesture and the symbolic nature of a supervised
learning feature.

3. Steering system into desired state: In the third and final stage, partici-
pants managed to better understand how the classifier processed feature data
from their training movement dataset and could proceed to independently en-
gage with regular IML iterations. However, if the participant failed to mature
their understanding, they would repeatedly engage with stages two until ei-
ther they managed to proceed to stage three or give up and simplify their
feature set or movement interaction to a previously successful implementa-
tion.

Additionnally, we found that human engagement with an IML system is (1) affected
by model output visualisation, (2) relies on quick iterations and trial and error dur-
ing engagement, and (3) sensitive to media breaks. We will proceed to unpack
each sub-theme below and how they affect all three relevant stages of IML system
engagement.

5.3.3.1 System output display IML engagement was affected by the classifier
output visualisation. The default visualisation of the classifier output was displayed
as the inferred result on either the IML model node in the desktop node interface,
or on the 3D panel in the VR interface. The classified result depends on the label
that the user chose when recording training data. For instance, if the user recorded
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a movement dataset in which the movement ‘clapping’ was assigned the label ‘1’
and the movement ‘waving’ was assigned the label ‘2’, the classifier would display
‘1’ or ‘2’ on the desktop node and the VR 3D panel depending on whether the user
claps or waves during inference time. In the this scenario, since there isn’t an
‘idle’ state in the training set, the classifier wouldn’t be able to discriminate when
the user is not clapping or waving, resulting in a ‘flickery’ display that constantly
switches between ‘1’ or ‘2’. Additionally, if the user was translating the inferred
label to an in-game visualisation (i.e. casting a spell, summoning a weapon, etc.),
their engagement would be more affected by the visualisation since their visual
implementation could amplify or hide the classifier state details.

User learning of the system is affected by the IML classifier output visualisation as
it helps the user understand the functionalities available in regards to model per-
formance. This is as well important for the user to learn how their existing known
metaphors from their prior interaction with the game engine can affect model in-
ference, if at all. This can be illustrated by the following quote from participant
R_3Gw:

“R_3Gw: At the end of the day, I could get so much like only so much
from the graph itself by looking at it. By checking the integer, whether
it’s changing or not. So, is it even recognizing the changing position?
So that allowed me to understand whether it was recorded correctly and
whether it knows what I’m doing and knows what it’s [the classifier]
supposed to do to make it [the output].”

In the previous quote, the participant explains how “by checking the integer” out-
put she was able to understand (a) if the system was processing data at all (“it is
even recognizing the changing position?”, (b) if the system was trained with her
latest training data (“whether it was recorded correctly”), (c) if the system could
recognise her movements correctly (“whether it knows what I’m doing”), and (d) if
her script was translating the integer output correctly into her in-game visualisa-
tion (“knows what it’s [the classifier] supposed to do to make it [the output]”).

Furthermore, user interpretation of the system can be highly affected by the IML
classifier output since it is one of the key pieces of information that participants
would use to inform their interpretation of the model state. For instance, in the
example with the recorded training dataset where ‘clapping’ is ‘1’ and ‘waving’ is
‘2’, the flickery display of the output would be a clear indication that the training
dataset is lacking an ‘idle’ class or similar. However, this same visualisation can
as well be deceiving, since the user might have recorded an ‘idle’ class with its
corresponding label, but the problem might lay somewhere else in the configura-
tion space (for instance, the movements might physically overlap, the training data
might be noisy, the classifier can’t learn with the selected features, the classifier
wasn’t retrained after recording an additional class, etc.). Therefore, interpreta-
tion can be highly affected by the IML model output visualisation. An illustration
could come from the following quote from participant R_2bW:
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“R_2bW: When I made just the first area, they felt [the features], the
features were making it work. And I could see that was working because
then everything was acting as it was supposed to. The machine [output]
works just fine. Come to the second part of it, yeah, I think the features
were working as they’re meant to. I think it was more of a script issue,
towards the end of that part I can’t say for certain, right.”

In the previous quote, the participant explained how his system for detecting poses
in a dance floor was “working because everything was acting as it was supposed to.
The machine [output] works just fine.”. Thanks to being able to visualise the model
output in real-time , he managed (a) to conclude that “the features were working
as they’re meant to” and, (b) he managed to diagnose that whatever problems he
wasn’t satisfied with were due to “a script issue”. Yet, because he didn’t follow
a full evaluation run at the end, he claimed that “towards the end of that part I
can’t say for certain”, although the real-time output visualisation helped him reach
a preliminary diagnosis of the problem.

Because of how strong of an effect the classifier output has on the interpretation
of the IML system, it in turn affects how the participant decides to steer the clas-
sifier behaviour. Interpretation and steering can be understood as two separate
processes (or interpretation can be understood as a sub-process from the overall
model steering process), but they are intertwined in that the way the user interprets
the model state will inform the way the user intervenes (or not) to steer the IML
model into a desired state. For instance, participant R_3Gw explained her experi-
ence in problem interpretation and steering intervention via observing the “integer
changing” that led her to interpret that the model was working as expected, but in-
stead the configuration of the particle system “need to spawn quicker or they need
more time to spawn”. See the full quote below:

“R_3Gw: I’d say so because sometimes, uhm, even working on the wind
project, you could see the integer changing as you’re testing. And so,
you can see that it is recognizing, but for example the particle system
isn’t uhm spawning. It’s not initiating, so you still understand. You see
that the machine has learned, it has recognized your movements, your
gestures. So you see that the problem is not in how you recorded it,
rather that the particles need to spawn quicker or they need more time
to spawn or whatsoever. It allows you, I guess, to like have an extent like
an angle on the problem-solving situation and understand that it’s not
just that it could be anything else in the scene”

5.3.3.2 People do quick iterations and trial and error while engaging with
the systemWe observed that participant engagement with the system was itera-
tive, which is something in line with previous IML literature [276]. The fact that
our IML system was presented as a node-based game engine plugin with a VR in-
terface and that participant interaction was predominantly embodied didn’t change
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this finding. We understand iterations as a full loop of engaging with the IML sys-
tem (i.e. interpreting and steering the classifier until a satisfactory state) with a
window of time of no longer than a few minutes. Participants performed quick iter-
ations, from seconds to less than five minutes, while they were engaged in the core
model steering process. That is, participants already learned about the system,
successfully interpreted its state and were in the process of adjusting the system
configuration.

Quick iterations were not only desired, but they allowed for more trial and error
which in turn helped with learning. When the mental model of the participant
wasn’t correct, we could see that performing seamless, comfortable and quick iter-
ations where they could try out different features or data configurations benefitted
their explorative learning about the functionalities and boundaries of the IML sys-
tem.

Similarly, quick iterations and trial and error benefitted system interpretation, as
participants could visualise what the classifier inferred under different movements
or configurations, and allowed them to form a more accurate interpretation of the
IML model inner state and its effect on their scene.

And, as above mentioned, quick iterations facilitated the core model steering pro-
cess because of their positive effect on learning and interpreting. We additionally
observed that their steering iterations were predominantly embodied, since partic-
ipants directly evaluated their classifier while moving in VR. Participant R_1Ih ver-
balises how in her opinion that model steering “need some time ... to see whether it
is good or not [the classifier]” with “several motions”, where she explicitly mentions
that “we have that kind of design thinking”. See the full quote below:

“Researcher: So could you tell me what was challenging about this pro-
cess of testing and running [the classifier]?

R_1Ih: Ah, testing and running. I think, the challenges like it need,
it need some time. Like, because we will have to, we’ll have to, train
states. And to see whether it is good or not [the classifier]. And even we
have several motions, we have that kind of design thinking. It still needs
time to see whether it works well, or not to. . . our accuracies are good
or not, as well...”

5.3.3.3 Immersive Model Steering is preferred to be done constantly in-
medium, which makes it sensitive to media breaksSince participants steered
predominantly their IML systems in an embodied manner, it made the steering
process vulnerable to media breaks. We understand media breaks as interruptions
in users’ flow in their current medium where they are forced to swap to a different
one, hence ‘breaking’ their medium usage [139].

If participants were bodily steering their classifier while in VR, but something in
their node configuration required them to switch back to the desktop node inter-
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face, they would report how frustrating or tedious switching back and forth be-
tween the two mediums was. Participants verbalised that, depending on their style
of working, they preferred doing most of their IML steering work in either VR or
regular desktop. The reasoning behind was diverse, with most participants prefer-
ring to maintain the VR embodied engagement with the system as much as possible
since “that is what the players will interact with” or they feel that “they have better
control over what the model learns”. To comfortably steer their classifiers, partic-
ipants wanted to visualise the model output in the VR 3D panel while wearing the
headset and gazing directly at the 3D panel. They would want to ensure a clear
line of sight with the 3D panel and they could even construct their virtual scene
around it. Additionally, they would place their in-game controlled visualisation also
in front of the panel, so they could observe both at the same time. For instance,
if a tree is meant to grow when the classifier outputs label ‘1’ after recognising a
‘waving’ gesture, users would try and place their tree in front of the 3D panel to
clearly read what the classifier output is and, at the same time, observe if the tree
indeed grows.

If participants were unable to fully engage with the IML system in VR (i.e. including
the ability to recording data, change labels, train the classifier and enter or leave
the inference state), they would complain of how tedious was to swap between
the two media and how that made their creations difficult and even obstructed the
correct interpretation of the classifier state and system problem diagnosis. These
limitations were prominent in the first two workshops as the VR interface was just
limited to visualising the model output in VR and the functionality to control when
to record data in VR and change the label was either not functional or prone to
errors. We bug-fixed the problems to ensure that in the later two workshops the
in-VR functionality worked without issues (i.e. recording data, changing labels, vi-
sualising model output and structured class-by-class testing of the model). Still,
re-selecting features, separating the training datasets into different nodes, or pip-
ing the model output to a custom script still required participants to use the desktop
node-interface.

However, some participants preferred to limit their work in VR to just the model
steering and engage with the classifier as much as possible while on the desktop
interface. To avoid bodily evaluating their classifiers in VR, they would ask another
workshop colleague to perform the testing movements for them while they look
at the node graph and virtual scene from the game engine editor window. Or they
would perform the testing movements with the VR system, but not wear the headset
and rather hold the headset on one of their hands, shoulder or even table to still
be able to look at the screen while using the controllers. When asked about their
reason to avoid engaging with the system in VR, they explained that it was tedious
to get into and out of VR, or that they couldn’t look at the rest of the game engine
editor while steering the model. This might indicate that they relied on already
learned interaction metaphors from the game engine that didn’t translate into the
embodied and immersive IML model steering process.
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5.3.4 Structure benefits Embodied Thinking in Immersive Interactive Su-
pervised Learning

Once the participants’ mental models were better matured to represent the su-
pervised learning requirements, we observed that they benefited from structure in
their iterative use of InteractML. What we mean with structure is the organisation
and arrangement of the various components that make up part of a system. This
can include the logical flow of data and control, the hierarchy of objects and as-
sets, and the relationships and dependencies between different parts of the users
implementations. In the visual scripting interface, structure refers to the organisa-
tion of nodes that perform specific tasks and the connections between them, hence
defining the flow of data and control through the IML system. In the game engine
editor, structure refers to the organisation of game objects, assets, and code. The
structure in the game engine project determines how the different components of
the game are organised and how they interact with each other to implement the de-
sired movement interaction. Similarly, there is also structure present in the visual
scripting interface of InteractML, especially in the explicit testing procedure that
participants are asked to follow when directly evaluating their classifiers.

We found that all these forms of structure helped with the embodied thinking pro-
cess of participants, but each differently. For instance, participants reported that
they found the explicit class-by-class testing procedure during the direct evaluation
stage useful as it allowed them to have a better feel of their trained classifiers and
their training data in an embodied way. We believe this is because of the structured
nature of the task in which participants are required to go class by class bodily
exemplifying movements that are meant to be classified in that class. Participant
R_3Gw explains how with the “testing and running” he had enough time “to go up
and down, up and down and track the position that it works best at”. See the full
quote below:

“R_3Gw: Yeah, it was after, you know, after recording the movements.
Then we transferred it to test and run. To teach and then test and run
and with the testing and running that’s kind of when I started first notic-
ing OK, OK so it’s kind of not, not fully the position. And then, after
we’ve already tested. And then ran both, both models ,that’s when I had
like enough time to go up and down, up and down and track the position
that it works best at.”

Additionally, the structured data flow in the visual scripting interface of InteractML
was reported to help participants in their embodied thinking. Nodes are placed
and connected left-to-right following the same structuring process of a supervised
learning task, in which first the data is loaded, then features are selected from the
dataset and then the model is trained on the selected features from the dataset. In-
teractML’s visual scripting flow emulates this principles in the visual flow of nodes,
where features are selected on the left and the model is trained on the right. Partic-
ipants reported that the mixture of real-time visualisations on the nodes and their
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positioning helped during their thinking process, and we observed how they were
gesturing while silently thinking during their working process.

5.3.4.1 People create structure when there is none presentFurthermore, as
participants engaged with the system iteratively, they created structure to aid their
embodied thinking process. Firstly, as there wasn’t an existing way of linking nu-
merical labels to an human-readable format, participants placed notes close to each
classifier node to clarify what each label did.

Secondly, participants visually structured their datasets into groups of nodes ac-
cording to relevant labels or movements. For instance, participant ‘R_3P5 whose
movement interaction relied on non–verbal communication with a virtual character,
structured his dataset into different nodes with each corresponding to a different
recognisable gesture towards the virtual character. He also structured his idle class
(i.e. all the movements that shouldn’t trigger any response from the virtual char-
acter) into separate nodes, but each with its own movement dataset (Fig. 108).
He explained during the interview that this additional structure allowed him to
simplify his working process as he could select which movements to focus on, and
could erase or augment the dataset of certain movements without affecting the rest.
He explained how he realised the dataset was “controllable”, where he works with
“a label called zero and I train everything on zero. And then I do another [node]
database that I only do training on the one, and I do everything on there. And then
I feed them all into one learning machine and machine learning output. And yeah,
so by learning how to use the multiple database [nodes] actually is very helpful.”.
See the full quote below:

“R_3P5: Also, I know the system can actually add on top. To add any
more details, the two [machine learning] systems have any one [train-
ing] data. Data, so you can have your [training] database. So I realised
this is controllable. Because if I’m doing other design and other than this
[Gestures], I probably can do only a [training] data. For example, a label
called zero and I train everything on zero. And then I do another [node]
database that I only do training on the one, and I do everything on there.
And then I feed them all into one learning machine and machine learn-
ing output. And yeah, so by learning how to use the multiple database
[nodes] actually is very helpful.”

Thirdly, participants created additional structure in the game engine editor by im-
plementing feature visualisations that would match their mental models of their
own body movements. When asked about this during the interviews, participants
explained that it helped them to better understand how the classifier understood
their movement, and to better understand how their movement was being pro-
cessed by their selected features. The visualisation consisted of a coloured trail
created as they moved their virtual hands in the scene (Fig. 109). The coloured
trail would fade after the same amount of time as they understood their selected
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Figure 108: In this screenshot from participant R_3P5’s graph, he used two different
training dataset nodes, each with its own label, to better structure his steering process.

windows of features would “look” at their movement. Additionally, participants
would also create virtual elements that would help them structure their embodied
interaction in the virtual scene, such as a virtual lectern with inscriptions of the
gestures to perform at real-scale (Fig. 110). This particular virtual element was
intended to help the creator record movement data with a consistent scale, some-
thing he believed was relevant for the accuracy of his classifier.

5.3.5 IML Visual Scripting as part of a game engine facilitates IML pro-
cesses and ML mental modelling

Apart from the structure participants could bring into their node graphs, partic-
ipants found advantages when using InteractML’s visual scripting as part of the
game engine editor set of tools. Participants reported that the real-time visualisa-
tion of each of the nodes helped them in their learning and interpretation of the
data flow into the classifier. They explained that visualising how their movements
were computed in real-time by their selected features helped them understand how
each feature worked, and how the classifier could understand their movement. The
real-time visualisation on each of the nodes helped see whether all data is flowing
correctly to the classifier, or whether they forgot to connect some nodes together
in their graph. Participant R_2bW illustrates the advantages of visually seeing “a
changing value” to understand if “there is something wrong with the node”. See
the full quote below:
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Figure 109: A participant records additional movement data for his movement interac-
tions. He implemented a red trail to visualise in real-time what the window of features
‘sees’ from his movement. In the pictures the trail can be seen ‘growing’ as he makes the
gesture. In the end the trail will disappear matching the sample size of the window of fea-
tures.

Figure 110: A participant created a virtual lectern with the shapes he was recording in
an attempt to maintain consistency in the way he moved. He described how he thought
the reason why his model wasn’t performing well enough was because of the variations
in his own mid-air movement. He structured his recording process by creating and bodily
following the contours of the lectern shapes.
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“R_2bW: it’s pretty easy to see for position, rotation or any node with a
changing value, velocity any of those. If the value is low, if it changes or,
it means either they’re not connected right or there is something wrong
with the node. See, you can kind of figure that one out quite easily”

Furthermore, participants reported that creating, connecting or disconnecting cer-
tain nodes helped them with diagnosing problems with their graph because they
could better visually understand which part of the graph wasn’t working. This mod-
ularity and flexibility of visual scripting helped participants with their supervised
learning workflow as well, since they could make one classifier run in real-time,
while another classifier is off, which helped them see if one of the models mis-
behaves under certain conditions. Moreover, the visual modular flexibility helped
participants better interpret their IML systems, since via successful diagnosis they
can gain an intuition of the underlying ’black box’ of the classifier. Thus, the visual
modular flexibility improved participant system controllability, due to the possibil-
ity of triggering conditions visually without writing programming code. Partici-
pant R_3P5 illustrates that “there’s a lot of good ways of using the current system”
to use“visual coding language systems where you can control the flow within the
graph”. See the full quote below:

“R_3P5: Um, adding one point on, on the using experiences. I find... to
understand the system is very important. Especially today we have lots
of debugging and creating small functions. And I think, because I find
there’s a lot of good ways of using the current system. For example you
can add more layers of library on top of the library, and then you can
create subsystems. And you can enhance your previous learn, machine
learning data with only one single set, so you can test out, for example,
one single node. For example, um [label] zero. I add some more data in
it [label zero] and I can try other data. And that can be another func-
tion that sometimes controls the other machine Learning System while
they’re on and off. So that’s really handy. So I think that’s a really good
way [of working]. I’ve never seen this in the other visual, visual coding
language systems where you can control the flow within the graph so
that’s really, really cool.”

We observed as well that participants visually represented their mental models of
how the IML system processed data through iterative node placement. We could ob-
serve this by comparing early stages of their graphs during think-alouds to the later
version of the graphs. In their early graphs, nodes would be scattered around the
graph as they explored the different functionalities of each node. But we observed
that participants reflected their understanding of the data flow into the graph as
they learned about the system and created more structured graphs. We believe this
visual representation of their mental models helped them solidify their interpreta-
tion of the system, which in turn allowed them to better steer their classifiers.
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Furthermore, participants reported that the IML workflow offered benefits for
game development in virtual reality. Participants found that the direct embodied
evaluation of their classifiers had benefits compared to other graph plugins be-
cause it gave them a sense of “where the error is”, whereas other graph plugins
don’t have this embodied channel of feedback. Additionally, participants reported
that they perceived the IML workflow as an efficient way of saving VR development
time compared to traditional methods. Because, even when the creator is able to
write functions to process movement data, the amount of effort and time required
to reach nuanced results is considerable. They explained that this was particularly
the case with traditional gesturing solutions. These traditional gesturing solutions
rely on simple positional sequences after virtually interacting with invisible ‘collid-
ers’ that send a signal to a script. These collider-based systems are usually restric-
tive on what kinds of movements are detected, since it is more straightforward for
participants to physically exemplify the movements they want, rather than design
and engineer a number of colliders that will need to be hit in a certain sequence.
Whereas with IML, participants found that they could save time on writing down
cases combining code, feature extraction, and collider placement.

In spite of the fact that visual scripting and the IML workflow offered opportuni-
ties, it suffered from a number of limitations that either we observed or participants
reported throughout their work with the tool. We will describe in detail each syn-
thesised sub-theme below.

5.3.5.1 Modularity wasn’t obvious to usersEven though there were benefits
from participant usage of InteractML’s visual scripting interface, the modular place-
ment of nodes in the graph wasn’t obvious to all participants. During the first two
workshops we observed that even though some participants intuitively understood
that a modular placement of nodes was possible, most participants didn’t and they
realised after talking to their peers during the workshops. They reported feeling at
a disadvantage since they could easily perceive the benefits against the perceived
workflow struggles of not being able to bring structure into their graphs. For in-
stance, when asked about data collection, participant R_W1X explained how he
“only realised later” that he could have “separate training node”, and that in turn
“would have made that [data recording] more sensible”. See the full quote below:

“Researcher: Was there anything easy about this process of steering the
model to behave as you wanted through data collection?

R_W1X: No, because I think I only realised later that I could have added
in the extra, uhm, you know, more... just the fact that I added more
data for a particular, uhm, feature by having separate, separate training
nodes. And I think, I think I only realised that yesterday, so... I probably
would have done that earlier. Which would have made that [data record-
ing] more sensible. But I didn’t. Yeah, I didn’t realise that earlier on that
you could have multiple [recording nodes].”
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5.3.5.2 Challenges in separating system responsibilities and diagnosing
problemsIn regards to system debugging, participants found it challenging to bal-
ance the responsibilities of each workflow layer. A complete prototype of a move-
ment interaction with InteractML has three layers: (1) the IML processing of move-
ment data, (2) the game script translating the classifier output to an in-game state,
and (3) the visual representation of the game state. For instance, one of the par-
ticipants created an interaction in which quickly moving her arms forward would
make a magical bow appear in her hands. This particular movement interaction
was divided into (1) a classifier processing the data from a window of features with
30 samples per data entry, with the distance between the position of the left and
right hand to the head, the velocity of the position of the left hand, and the rotation
of the left hand; (2) a game script receiving the output of the classifier and trans-
lating the outputs ‘0’ to ‘idle’ logic and ‘1’ to ‘make bow appear’ logic; and (3) the
3D model of the bow together with a particle system to beautify its appearance.

Participants struggled with balancing what was the responsibility of the (1) clas-
sifier processing the data and (2) the game script translating outputs into game
states. For the previous example, participant R_3Gw experienced flickering issues
with her classifier outputting ‘0’ or ‘1’, since her idle class wasn’t stable enough
to correctly discriminate when the bow had already appeared. Once this problem
has been diagnosed, there could be several interventions to reduce the classifier
flicker. One option would be to improve the stability of the idle class, either by edit-
ing the training data or the selection of features, to better discriminate when the
user has already summoned the bow in her hands. A different intervention could be
done on the game script side, where a written programming function could ignore
the classifier flicker and only read the output once before the bow appeared. The
participant in question chose the latter approach, and smoothed out the flicker in
her script.

However, this became a challenge as the classifier incrementally had more outputs
than ‘idle’ or ‘bow appear’, and also accounted for the outputs ‘bow disappear’ and
‘bow fire’. Her script became increasingly difficult to manage since it was smooth-
ing out classifier output flicker and, at the same time, it managed the progression of
states in her interaction, activating or deactivating 3D models and particle systems
accordingly. In the following quote, she explains how she could see the her classi-
fier was reacting “either in an odd way or in a correct way”, which indicates output
flicker. She was unsure “how much can I actually implement” and if she should
record more data to fix it or “go look into my code and see if something is wrong
there”. We interpreted this as an instance of how challenging it was to discern if
the flicker problem should be fixed on the data side, or the game script side. See
the full quote below:

“R_3Gw: Because at some point, even when I would put down my hand
it would show one. So, or like 101010 and change. So since I saw that
it was reacting either in an odd way or in a correct way, that affected it.
Okay, so how much can I actually implement and how much I can actually
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do with it, or should I record it or, should I, you know, or should I go look
into my code and see if something is wrong there. Because everything
else is responding [except my code].”

Participant R_3P5 experiencing a similar issue with his interaction and decided to
tackle the classifier output flicker by rigorously modularising his training dataset
making each class more stable to reduce the classifier output flicker. However,
as his interaction grew in labels, it became tedious to change features and record
again training movement data. He resorted to a feature selection “trick”, in which
he made the classifier to recognise all movements above his head height and below
his waist height to be recognised as ‘idle’, hence simplifying his classifier decision
boundaries. As he explained it, he “just take out the x and z [axis] to act on that”
and that “once I know how the system works, I can basically use tricks to trick
the system” or “a clever way to train the system, to make the system work much
better”. See the full quote below:

“R_3P5: yeah definitely, for example, in the beginning that, the head up
and down. I just take out the x and z [axis] to act on that. And there are
lots of things. I think, once I know how the system works, I can basically
use tricks to trick the system. Well, well, the better [term]... let’s put
another word, like using a better way to train the system. Or even a
clever way to train the system, to make the system work much better.”

These two examples illustrate the common challenge among all participants of bal-
ancing the responsibilities between the classifier and the game script. Each of the
above-mentioned implementations has its advantages and disadvantages, but show
a fundamental challenge in deciding how to prioritise responsibilities and where
to spend development effort in the IML system workflow. Spending more effort
on the game script side can be challenging for game creators without much pro-
gramming experience, but could simplify working with the training dataset. On the
other hand, spending effort on the classifier side to fine-tune the training dataset or
features can require a rigorous structure and workflow when adding data or labels
to the classifier, but simplifies code complexity in the game script.

Following on the participants’ effort in data recording, participants reported that
they found it tedious to record data again when diagnosing a problem with their
classifiers. If there was a problem with the data or with the features, there could
be a lot of tedious trial and error to change a feature, number of samples in the
window of features, or movements recorded in a specific way to see what works.
This problem grew in acuteness the more cases the classifier needed to recognise.
Participant R_2bW complains about it in the following quote:

“R_2bW: Uhm, in the grand scheme of things, that wouldn’t be so much
of a problem. It would be uhm. . . not an annoyance, but tedious to have
to record things a lot.”
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Similarly to how there existed a challenge balancing layers (1) and (2) of Inter-
actML’s workflow, it also existed a challenge establishing the relationship between
layers (2) the game script translating the classifier output to an in-game state, and
(3) the visual representation of the game state. Participants reported that it was
challenging working with how the game script processed game states every frame,
and how animations would play while moving in VR, especially when animations
are timed. Because of this, participants reported how they found it challenging
to correctly establish this relationship to convey the look and feel of the interac-
tions they initially ideated. Participant R_1Ih explained how she realised that her
script calls “update all the time”, and how her animation “go through the whole
animation and it will start again and again”. She expressed that she believed the
issue with her animation to be a “coding problem, but not really a machine learning
problem. Because, even when I don’t use machine learning, ... you have to, uhm,
put data into the update ... when the participant wants to invoke the bow”. See
the full quote below where she explains how challenging she found translating the
classifier output into the “invoke the bow” interaction:

R_1Ih: I think the feel is a bit difficult. Because, uhm, I think people. . .
how to say... like the VR environment gives people an immersive ex-
perience right, but people still like what can easily be recognised a bit
differently. Like if it’s delayed, right? And so I feel like all the positions
are not really good. When I do the movement and... but, it does not really
show it and I have to do another, a second time. So I think many things
are very influenced by the result. But actually, I think it is okay, to be
honest. Yeah because , in the end of it, the main problem is not reaching
that kind of experience. It’s because [Laughter] Because my script it’s
just the update all the time, using the machine learning [system]. The
condition is if, uhm, the machine learning label equals one, and they will
invoke the bow to do some interaction with the animation. But for the
animation, my way, my way is like to use the delta time. So it’s actually,
I think it is limited, like you can only call it once to do that, from start to
the end of the animation. But when you always update it and call it, it
will just stop in the middle of it. It [the bow] won’t really go through the
whole animation and it will start again and again. I think that is kind of
a coding problem, but not really a machine learning problem. Because,
even when I don’t use machine learning, sometimes our function, you
have to, uhm, put data into the update to make like, no matter when the
participant wants to invoke the bow. And you need to let the computer
know now you should be able to do that, right. So, I think that kind of
problem needs to be solved. But yeah, what I say is not the fault of the
machine learning system.”

Because of the challenges balancing responsibilities in each of the IML workflow
layers, participants reported how debugging and diagnosing problems with their
classifiers was a multidimensional task. In each of the layers of the IML workflow,

195



there are several sublayers where a problem could lay, and we observed different
strategies that participants followed to decide in which layer the problem was. For
instance, participants reported that the real-time classifier output label helped di-
agnosing whether there was a problem with the graph configuration or the game
script code, since they could observe if the inferred output updated to the cor-
rect value but their in-game effect didn’t update the state accordingly. Therefore,
participants reported that “scene things” were usually a problem with their game
scripts, but problems with the inferred value itself would lead to a graph configura-
tion problem. Participant R_2bW explain how his configuration allowed for “a very
simple way of checking if it works or not” because if his 3D model “didn’t turn red,
then it meant there was something wrong with the script. If it didn’t turn green it
meant that there was something wrong with the connection between the script or
the machine. Or it was the machine. So that kind of helped to narrow it down”. See
the full quote below:

“R_2bW: So I would, uhm.... I would set up in the script when it’s chang-
ing its case. It’s just a very simple way of checking if it works or not. So,
in the first area, it was very simple to see if the capsules would turn red
or if they would turn green. If it didn’t turn red, then it meant there was
something wrong with the script. If it didn’t turn green it meant that
there was something wrong with the connection between the script or
the machine. Or it was the machine. So that kind of helped to narrow it
down.”

Participants also followed regular debugging strategies making extensive use of
the game engine editor console to diagnose problems. However, diagnosing prob-
lems with the IML graph configuration was reported to be challenging, since it was
difficult for participants to correctly interpret the dropdown of recorded training
data. Participants reported that, because of the dropdown only having numbers,
they couldn’t understand what they meant and most of the time ignored any step
of data exploration in their diagnosis process. Instead, participants relied on gain-
ing an embodied intuition of where the problem might be, and performed debug-
ging iterations trying different feature or data combinations with a small subset
of their classes. We observed participants following a simple-to-complex feature
selection strategy when diagnosing problems with their selected features. This
strategy relied on a simplification of their feature selection and an incremental ad-
dition of features to diagnose if a feature, or combination of features, is causing
the problem. Additionally, we observed participants usually following a sequential
movement data recording strategy, from their idle class to each of the cases they
are diagnosing, instead of re-recording only one of the cases. We believe this de-
bugging strategy allowed participants to gain a better embodied ownership of their
training dataset during the diagnosis process. In regards such embodied ownership
of data, the participant R_3Gw explained how “you are the one doing the gestures”
which are “like your emotions”, and points out how “You are physically working”.
See the full quote below:
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“R_3Gw: Uhm you, you are the one doing the gestures. And even if
it’s, again, like this something that you know that it at the end of the
day will work best for you. But, still could have been incorporated for
other people as well depending on what kind of gestures you’re doing.
Because you’re the one developing you’re the one setting it. It’s like
your emotions. So you physically worked on the project as well, which is
kind of like what sometimes lacks when you’re doing digital work. You
are physically working but you’re like, you know, there’s only a limit
of physical activity that you do when you’re working on something in
Unity.”

Finally, the last challenge that participants reported and we observed was how dif-
ferent the thinking requirements of a supervised learning workflow are to those of
the rest of the game engine. The supervised learning thinking requirements refers
to (a) how to strategize feature selection, (b) how to structure the data and the la-
bels, and (c) how to diagnose problems when the classifier misrecognised gestures.
The supervised learning way of thinking is required to correctly use InteractML
as part of the engine, but many other game engine system metaphors don’t trans-
late well into InteractML. Thus, effectively training classifiers requires a different
skillset from regular game development that can be time consuming to obtain with-
out prior explanations. Even if iterative use of the tool teaches about machine
learning, we observed how some participants struggled with the supervised learn-
ing way of thinking and requested instructor clarifications during their working
process often. Participant R_1lh stresses “how you design with machine learning
thinking” is “the interesting and the difficult part” because “if no one teaches me,
it is really difficult to design anything”. See the full quote below:

“R_1lh: I think the interesting and the difficult part are the same. It’s
like how you design with machine learning thinking. And well for this
time, I think because we have these workshops, and the basic learning
of the machine learning uh I mean, the logic of the machine learning.
How you train it to do the categories is very useful for me really, to make
the next thing for my interaction. But if no one teaches me, it is really
difficult to design anything.”

5.3.6 The user evaluation of Expressive IML Outputs show a tension be-
tween accuracy, visual flicker and embodied experiential qualities

We found that the most important qualities during the evaluation stage were clas-
sifier accuracy, classifier output flicker, and the different embodied experiential
qualities pursued by creators. Classifier accuracy refers to the correctness of the
recognition of a movement with the label it was trained for [276], whereas classi-
fier output flicker can be defined as the temporal instability of the recognition of
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a movement for the duration of such movement. The different movement experi-
ential qualities mentioned by participants were enjoyment, naturalness, presence,
smoothness, responsiveness, fluidity, expressiveness and self-consciousness. They
referred mostly to positive movement experiences, except for self-consciousness
which was understood as the excessive self-awareness of one’s movements while
performing “silly movements”. Participant R_W1X explains how some of the ges-
tures he tried “weren’t fine or felt like they could be self-conscious” in the following
quote:

“R_W1X: Yes, yeah yeah I was trying different gestures. Because some
clearly, think, weren’t fine or felt like they could be self-conscious, you
know. If people are. . . [Pause] So there are certain ones I tried earlier
on, and either eliminated because they didn’t work well with the ma-
chine learning, or they felt like they could be too difficult. Or, or they
could cause self consciousness, or something like that. So I did, I did go
through a range of different gestures and then swapped them around a
bit.”

Participants reported intended player enjoyment was one of the most important
qualities mentioned by participants, and they used the word “fun” to describe en-
joyable interactions. They noted that making their interactions “fun” was, many
times, one of their primary goals. Participants also mentioned that enjoyment was
related to other embodied experiential qualities such as naturalness and expres-
siveness. Naturalness refers to how closely the IML system mimics intuitive human
movement. Expressiveness refers to how well the IML system captures and con-
veys the user’s intended movement and it was important because it made them feel
like they were able to fully convey a feeling through their movements.

Presence refers to how users really felt that they were “there” performing their
interaction in the virtual environment. Participants noted that presence was im-
portant because it was one of the core qualities in virtual reality, and a desired
experiential achievement. They also noted that presence could be enhanced by in-
corporating visual or auditory cues that help users feel like they are “really there,
doing the movement”. Smoothness and fluidity seemed to be used interchangeably,
and refer to how well different movements flow together in response to IML system
inputs, with no sudden or jerky changes. Participants noted that smoothness and
fluidity were important because it made them feel like they were performing a nat-
ural sequence of movements rather than a series of disjointed movements. Respon-
siveness refers to how quickly and accurately their classifiers react to user inputs.
Participants noted that responsiveness was important because it made them feel
like they had greater control over their movements and reduced frustration when
trying to perform complex movements.

One of the insights we gained from the study was how there existed a tension in
the IML model steering strategy of participants, where they tried to maximise their
classifiers accuracy while minimising their classifiers output flicker. Participants
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would firstly steer the classifier to reach a minimum level of accuracy, which is
what many reported as “to get it working”. They relied on observing the numerical
output of the classifier and a simple sphere changing colour in this stage. They per-
formed embodied direct evaluations on their classifiers to interpret their perceived
level of accuracy. Even if the numerical output or the colour of the sphere would
flicker, they seemed to accept a certain level of flicker at this stage. However, once
they piped the classifier output into their own 3D object or effect, we observed how
the same classifier output flicker would cause the participant to perceive a lower
level of accuracy. This is because the output flicker was magnified by not allowing
full animation sequence to play correctly, and was a cause for tension. Hence, we
believe that this tension between classifier accuracy and classifier output flicker
shifted how accurate their classifier actually was, and participants followed to per-
form further iterations to steer their IML implementation into a state that would
yield more temporal stability. Participant R_3Gw explained how she identified vi-
sual flicker during model steering:

“R_3Gw: If it was changing quickly, you know. Or changing in the wrong
position. So, if I was in, you know, my hand is up but it’s showing 0,
for example. Or if I’m doing something else and it’s doing 010101 and
actually calling in the animation.”

To reduce visual flicker, participants resorted to different interventions: (1) adding
more movement training data, (2) including a window of features in their feature
selection and experimenting with the size of the window, (3) breaking down a big
classifier into simpler ones recognising less cases each, or (4) write programming
functions in their game script. Regardless of the intervention, participants reported
how, by making their classifier more temporally stable, they could affect how it
positively felt to bodily interact with their creation.

For instance, even though participants reported feeling more satisfied with their
interaction after reducing the visual flicker, they would pursue to make their in-
teractions “more expressive”. This is because a movement could be perceived as
accurate by participants (i.e. it is recognised when the user does the gesture), but
at the same time inexpressive (i.e. it doesn’t convey the intended feel). Hence, cre-
ators want to make movements that are well recognised, but also expressive so that
the movement conveys a certain feeling when performed (i.e. a taxi being stopped
feels satisfactory, but the movement the classifier accurately recognised was very
uncomfortable). Participant R_3Gw explained how she didn’t felt satisfied with the
interaction she got working to stop a taxi in the following quote:

“R_3Gw: I don’t really feel satisfied with how it [the movement interac-
tion] feels just because it, like, it doesn’t give you the satisfaction of taxi
stopping. So it’s not really satisfying to keep raising [the hand] also be-
cause for the taxi I have to really raise my hand. And how I wanted it [the
movement interaction] to be, which is about how it works really nice. But
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for the taxi it’s kind of like an in-between awkward, so I wouldn’t say that
it was very satisfactory. Nor would I say it is like a game-like feeling.”

Another instance to exemplify the tension between perceived accuracy and posi-
tive experiential movement movement qualities came from participant R_2bW ex-
plaining how making their classifier “too accurate” with certain features restricted
“movement fluidity and realism”. This is because certain features can make a model
infer false positives. For example, the distance from the hand to the shoulder is
computed the same if a player moved their hand forward, or overstretched their
hand backwards, even for a frame. See below his explanation with the distance
feature and movement fluidity:

“R_2bW: This kind of [workflow], uhm... although it expands your ability
to control certain movements, and what with the fluidity of movements
and do something with that. It also hinders what exact movements you
can do. Because if you’re reaching for something with interactML and
you’ve got those, uhm, the machine hasn’t like saved my shoulder too
outstretched far. That one movement will trigger something which kind
of limits what you can do. In the distance from my palm to my shoulder
you can’t really do anything there. But without it you can’t just put the
point as the hand at the end and you can do individual points between
and they can actually do different things. But it’s all situational based,
I would say. So you may want something between the points but that
would also stop you from having that fluidity and realism. But. . . so it’s
good and bad for either one.”

5.3.6.1 Embodied design qualities considered when evaluating IML Be-
cause of the tension getting the movement interactions to deliver certain experien-
tial qualities, we considered it important to understand what qualities participants
pursued as they engaged with the IML system.

Firstly, we found that participants thought that movement recognition needed to
make sense thematically. Participants described how there needed to be a mean-
ingful use of a movement to interact with a virtual object, otherwise they couldn’t
see a benefit of using a gestural recognition approach. This is something that was
described as well as an ideation challenge, since participants needed to find a use
case where ML-driven movement recognition would make sense compared to a tra-
ditional recognition approach. Participant R_W1X framed it in term of gestures
with objects and gestures with features, and how “pushing a button” could “have
been hard coded a lot easier”. See the full quote below:

“R_W1X: And even at the very beginning, when I was saying what objects
am I gonna interact with. It is very much tied in with, well, what ges-
tures would you interact with this object and what gestures with other
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features. ... So yeah like an interaction like just pushing a button on the
alarm, which I think was too simple. That could have been hard coded a
lot easier.”

Secondly, participants reported that they pursued a certain “magicality” with their
movement interactions. Realism wasn’t necessarily pursued since participants
wanted to control visual effects that weren’t possible in real life, such as fire ap-
pearing as a bow is summoned or an exaggerated stop of a taxi. In this regard,
we observed a relationship between the interaction 3D graphics and its embodied
game feel. Participants reported that without the animated visual layer over their
interaction they found it difficult to convey the desired level of “magicality”. This
finding is inline with Swink’s (2009) theory of game feel [288], where visual feed-
back in traditional gamepad videogames is similarly essential for good game feel.
Participant R_W1X explained how his interaction visuals “really tied into the fun of
the thing” in the following quote:

“R_W1X: I think the screen script came quite early on. And it possibly
did come get modified to sort of give more visual, uhm, changes in the
world. And also things like that setback, the time delay before say a
light went off and the next one went on that got buried. Because that
felt like it really tied into the fun of the thing. And also, it was too easy
if, you know, if the lights stayed on for like three seconds that’s made it
ridiculously easy. So I gradually reduced it to sort of one second. And
that felt still possibly a bit easier, it could have even been putting them
all together in half a second but, uhm... Yeah one second was about
right.”

Furthermore, participants showed an interest in their classifier working for a di-
versity of bodies, and that their movement design choice allowed for the player
to bodily learn how to play with an increasing complexity curve. Our finding is
reflective of Csikszentmihalyi’s theory of flow, in which challenge and experience
can be correlated [51, 133]. Participant R_2bW described the embodied challenge
increase in his prototype taking into account “taller and shorter people”, where
the amount of movement was increased with difficulty, and his training dataset in-
cluded “different versions of the same movement to allow for that [stature] margin
of error”. See the full quote below:

“R_2bW: So for the first area there were three basic poses that didn’t
require much movement. I would, uhm, train the machine with three
different classes. And I would move for each class I would do a little
bit of movement just in the general area. So you’re not having to get
the exact positioning of the controllers correct. Because that would be a
massive pain for anyone to try to get the exact same position as someone
else. Plus, you never know with taller and shorter people if they can
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reach the same area. So that’s how I did that bit. And then the second
area was a lot more, the movements, I guess, I had to make several, I’d
have to do the same movement a few times back and forth in varying
degrees of distance from each other. I guess that’s how you’d want it. So
that is because I was going to do the same movement slightly differently,
as well. Even though it’s because everyone has a different stature. So
I needed to make sure that I recorded a bunch of different movements
or a bunch of different versions of the same movement to allow for that
[stature] margin of error.”

Finally, participants reported feelings of “satisfaction” when developing with IML
because of how well they could control their creations and an embodied ownership
of the created artefact. We found it highly interesting how participants described
that, in a way, the player would be physically interacting with the creator since the
classifier is trained and tuned thanks to the movement data of the creator. This
suggests that making an interaction feeling stiff or not fluid can raise the creator’s
feelings of self-awareness as of how players would judge the way the creator moves.
This can be illustrated with participant R_2bW explaining how “If people enjoy the
action you’ve done, you can take that as ’oh i did that myself’, rather than the
computer” because “there’s some aspect of you [in the action]”. See the full quote
below:

“R_2bW: I like the way it is, but you have that added factor of you can
show people that this is probably something you’ve done yourself that
makes you kind of get a feel for the person as well. And it kind of, it
helps instil a sense of self-confidence in yourself as well. If people enjoy
the action you’ve done, you can take that as ’oh i did that myself’, rather
than the computer. That’s all, not necessarily how you’ve set the graph.
There’s, there’s some aspect of you [in the action], which can be a real
accomplishment for certain people.”

5.4 Discussion

5.4.1 Implications and Future Work

Participants were able to create classifiers without being experts in machine learn-
ing. This shows that IML, as implemented in InteractML, can be used to support
the embodied design and thinking processes that participants exhibited. This is in
part due to the embodied nature of the recording and evaluation process, in which
the participants physically move to record data and to evaluate their classifiers,
and proved advantageous compared to traditional methods using colliders or rule-
based approximations. Still, the same embodied process that enables participants
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to better prototype motion controls also brings new barriers to their implemen-
tation, because of the tension between the very embodied thinking displayed by
participants and the inner workings of interactive supervised learning.

Prior motion control design guidelines didn’t cover such challenges, and instead
focused on broad recommendations for design such as “Use head orientation to
control user’s gaze and the body’s orientation to control steering”[205], “Create in-
teraction paradigms that adapt to individual differences in player range of motion”
[89], or “Design multiple gestures for one event, when needed” [263]. It is true,
however, that certain motion design guidelines from the literature can be appli-
cable when working with gestures, because even while being broad recommenda-
tions, tackled some of our results. For instance, Norton and colleagues (2010) [205]
guideline “Full body gestures may have cross interference therefore care should be
taken in assigning functions” matches with the problem that participants encoun-
tered of designing distinct enough movements to be recognised. From the game
industry perspective, Jack (2011) [129] mentioned as one of his guidelines that
“Computers don’t interpret people, they interpret points”, which matches with our
finding regarding the dissonance between the human and the computer point of ref-
erence. Still, none of the existing design guidelines tackle continous movement and
IML-drive development fall short for the challenges arising from designing with an
interactive supervised learning. Therefore, we could synthesise a set of IML-driven
motion control design guidelines from our results that tackle broad recommenda-
tions for motion control game creation, inline with previous literature:

• Make use as much as possible of creator movement, even during sys-
tem configuration. This guideline makes use of one of our core findings, that
creators grounded their thinking process in their body. Therefore, any part of
the design loop that doesn’t support such embodied thinking capabilities risks
hindering the tacit creative practice of embodied thinking.

• Facilitate feature experimentation via reducing iteration cost. Since
features can be difficult to understand, we found that the more participants
iterated with the system, the more they managed to mature their mental mod-
els. It is difficult to create the same environment for “peer discussion” that
we had during our workshops, and something that participants made use of
extensively during their working process. What we can recommend is to facil-
itate iterations as much as possible.

• Configure features to compute from a first-person perspective relative
to the creator’s field of view. Since we found that creators bodily thinking
was grounded in their body, so was their thinking perspective. In computer
science, usually features are computed from a third-person perspective, but
this introduced unnecessary friction that could have been solved by computing
all features from a first-person perspective.

• Data and features can be manipulated fully in-medium and as flexibly
as possible. Because model steering was performed constantly in-medium
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and was sensitive to media-breaks, we suggest that the entire design process
should be undertaken fully in-medium, which includes data and feature ma-
nipulation. Additionally, designers should be able to modify their dataset fully
in-medium, adding examples or removing certain examples if they wish to.

• Modularise the training dataset as much as possible. One of the strate-
gies that participants found useful was the modularisation of the training
dataset into configurable sets. Such a modular approach reduces the iteration
cost, because the designer only needs to add or remove movement examples
to a particular class, or to a particular movement.

• Start with a distinct set of movements, tackle nuance as a challenge
in itself Even though our embodied IML process was meant to support more
nuanced movements that traditional gestural recognisers, all the challenges
that participants faced made it clear that it would have been a better approach
to ‘start simple’ with less nuance, and iteratively add nuance once a base
functional recogniser is in place. This guideline is meant to reduce friction
throughout the iterative process.

• Prioritise visual flicker from the beginning. Since visual flicker was one
of the most common challenges participants faced, prioritising visual stability
should be a focus from the beginning of the design process. Iteratively adding
new cases after each case is stable can be a good strategy.

• Place the focus on movement, not objects. Most existing VR interaction
toolkits are completely object-focused, and it is difficult to make a better job
than them with an IML system like InteractML. Instead, the strength of our
results is on the diversity of movement that was recognised, which is some-
thing that VR interaction toolkits [301, 83] or gestural recognisers [306, 232]
can’t tackle appropriately. Therefore, the focus with our approach should be
on movement exclusively, and use other specialised tools for other tasks.

Participants also expressed a desire to use the tool more after the workshops and
they benefited from the visual scripting interface, indicating that they found it use-
ful and valuable for their work. Also, from our observations, the full integration of
InteractML into the game engine facilitated game creation processes as expected
[217], because participants were able to stay in-medium when working on other
engine parts and reuse known interaction metaphors from the game engine edi-
tor. This suggests that IML could potentially be used in regular game develop-
ment workflows to facilitate the creation of motion-controlled video games. Yet, to
properly address industry workflows, further research with workflow integration in
game studios should be undertaken.

Looking towards the future, there are many exciting use cases for InteractML and
its methodology. For example, InteractML could be used to expand any of the ideas
participants implemented, fine-tuning their features and data on longer develop-
ment periods (certainly longer than one or two days) to improve game feel. This
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includes improving the reactivity of the environment to player movement, games
where players use their bodies to interact with characters, vehicles or objects in
the game world, or games where players must solve puzzles using physical poses,
gestures or movements. Additionally, InteractML could be integrated with VR SDKs
(Software Development Kits) or popular toolkits with already implemented exam-
ples. That allows the discoverability of the paradigm when developers download
SDKs and read the official documentation, and can enrich the interactivity of VR
experiences by making movement recognition a more common-place feature.

Of course, InteractML can have use cases outside of games development. Inter-
actML can be used by researchers in areas where researchers need to record move-
ment data and use ML in a game engine. Some examples can be non-verbal human-
agent interaction, novel forms of movement interaction for regular desktop work or
virtual instrument creation. Other fields can benefit from simulations built with In-
teractML as well, like physical rehabilitation, sports or medical training. A merge
of any these fields with motion-controlled serious gaming could be possible. For
instance, by using IML to create motion-controlled videogames that are tailored to
specific rehabilitation needs, patients could engage in fun and interactive exercises
that help them recover from injuries or illnesses. This could include games where
patients must perform specific movements or gestures to complete tasks or achieve
goals.

Furthermore, there is a very exciting opportunity to create interactive experiences
where the player contributes movement data to the recorded dataset, thus tailor-
ing the movement experience to particular player needs. This idea about end-user
authoring of movement interactions can be extended to any of the previously men-
tioned fields. For instance, coming back to the example of physical rehabilitation,
patients could tweak existing interactions that are found to be physically challeng-
ing to perform.

Overall, this study demonstrates the potential of InteractML for supporting embod-
ied design and thinking processes in a variety of contexts. These findings suggest
that InteractML has a bright future ahead as a tool for creating engaging and intu-
itive motion-controlled videogames and interactive experiences.

5.4.2 Implications for IML

One of the biggest challenges arising from our results is how it wasn’t straight-
forward for participants to select the most optimal features for their classifiers.
Fiebrink’s Wekinator [74] supports feature selection in a similar fashion to In-
teractML, albeit it offers more challenges as creators are required to write their
own feature extractors in the programming language of their choice and pipe the
data to Wekinator via a network protocol, while InteractML offers already written
movement features in the visual scripting interface. McCallum and Fiebrink (2019,
2020)[177, 178] further investigated an intervention to support feature engineer-
ing with Wekinator, where they modified the system interface to display selection
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options of 200 relevant features synthesised from literature [236]. Because of the
amount of features, McCallum and Fiebrink (2019) offered an automated feature se-
lector, together with the option to manually select features in the interface because
not all automated feature selection would be well suited for a general IML loop
where the dataset is small or the task performed can’t be known in advance. Their
results were fascinating. On the one hand, participants decided to choose features
that were familiar to them, which “most often, these were means and first-order dif-
ferences” [177]. On the other hand, quantitative accuracy evaluation showed that
user selected features performed worse that any of the automated solutions. Yet
most participants reported that they completed the task satisfactory, with a third of
them reported that not all their gestures had good performance.

In their follow up study in 2020, McCallum and Fiebrink [178] also included semi-
structured questionnaires and a more diverse set of participants and tasks to better
understand the disparity in the accuracy and self-reports from participants. Their
results were inline with those of their prior study, and concluded that participants
wanted to select features to select features to realise their designs, because raw
data would lead to worse accuracy, but automated features would lead to worse self-
reported subjective ratings. Similarly to our results, McCallum and Fiebrink (2020)
reported how difficult was for participants to interactively select and evaluate ap-
propriate features sets, sometimes changing their task instead of their features.
They discussed that an interface intervention could potentially better structure em-
pirical experimentation with candidate features.

McCallum and Fiebrink’s (2019, 2020) results offer a very interesting set of in-
sights to reflect on from our own results. Firstly, we found that our participants
found challenging to understand features. Because of the amount of features Mc-
Callum and Fiebrink offered, they didn’t enter into detail as to what was chal-
lenging about a certain feature, but rather found that the “means and first-order
differences” were the most chosen features. They argue that it might be that partic-
ipants were “bad” at feature selection, but we speculate that the challenging aspect
of more sophisticated features is to think about them in a first-person body expe-
rience. Features are, in the end, symbolic representations that help the machine
make better sense of the data, not the human. Secondly, McCallum and Fiebrink
found a consistent mismatch between classifier accuracy and participant subjec-
tive rating in both their studies. Again, they argue that a solution is to help par-
ticipants to make better decisions from an accuracy perspective. However, what
if that is not what participants are after? In our results we also had a focus on
perceived accuracy, but explored during the interviews the particular experiential
goal of participants, where most of them were more worried about visual flicker
and enjoyment or immersion than perfect accuracy. Which might mean that maybe
accuracy is a poor quantifiable dimension of movement to maximise. What about
movement features that might degrade accuracy but increase temporal stability,
thus reducing visual flicker? What about feature sets that degrade accuracy but
increase enjoyment? The literature on movement experiential qualities introduced
in the background chapter in subsection 2.4 tackles a diversity of constructs (i.e.
engagement, immersion, game feel, enjoyment, presence, embodiment) that is not
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possible to easily quantify, except for the use of questionnaires or physiological sen-
sors that are still in early research stages or are not fit for the quick iterative nature
of model steering. Even though our review tried to cover the state of the art, our
own results show experiential qualities that we couldn’t have predicted. The ex-
periential qualities that surprised us were smoothness, fluidity, responsiveness and
self-consciousness; and the embodied design qualities that we didn’t expect were
thematic meaning of movement, magicality of movement, and diversity of bodies
support. We can speculate that, if we had more participants, there was a likelihood
that more of such unexpected qualities would arise. Hence, maybe we should ask
ourselves: is it even possible to generalise onto one quantifiable metric all of those
desired dimensions of movement? Maybe that was the issue that prior work found
with accuracy in human IML model evaluation [73, 177, 178], that accuracy falls
short to describe such richness and diversity of body experiential expressiveness
ingrained in the movement data.

Additionally, McCallum and Fiebrink (2020) [178] suggests to bring more structure
to feature selection. Such suggestion is inline with our findings that structure is
preferred in an IML process, with participants highlighting the structured class-
by-class testing interface to make sense of their classifiers. Also, we found that
participants wanted to create structure were none was present, which suggests
that indeed feature selection might benefit from a structured process to explore
feature combinations. We suggest that future work might tackle labelling feature
sets and models with a subjective feeling score, to iterative construct a dataset of
not only the pairs of human movement and interaction outputs, but tuples including
scores for additional relevant experiential evaluation such as enjoyment, smooth-
ness or magicality. This could be in the form of additional guided visual steps when
performing model steering iterations that introduce structure to select feature and
help with rich movement evaluations.

Another of our findings relates to the process that participants followed when en-
gaging with the IML loop. We described such process of human engagement with
IML models with three stages (1) learning about the system, (2) correctly inter-
preting system state, (3) steering the system into desired state. Our findings are
reminiscent of Katherine Compton’s “grokloop” [49], in which she modelled ca-
sual creators creative process in four stages: (1) build a hypothesis, (2) modify the
model, (3) evaluate the result, and (4) update the model. Compton considers the
grokloop as being a way for the user to interact with a generative tool and exam-
ine its possibility space, where “the speed of learning depends on how short the
loop is”[49]. Lai and colleagues (2020) [152] reflect on the grokloop from a mixed-
initiative procedural content generation (MI-PCG) for games perspective. In their
work, Lai and colleagues discuss that there exists three game design pillars for
MI-PCG which are (1) respect user control, (2) respect the creative process, and
(3) respect existing work processes. In their case, the grokloop is reminiscent of
the second pillar respect the creative process, where Lai and colleagues argue that
the creative process for MI-PCG is “a feedback loop of trying something out, seeing
the result, making changes, seeing the new result, making further changes, and
so forth until the designer is satisfied”. Additionally, Lai and colleagues argue that
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Figure 111: Visualising Kate Compton’s grokloop [49]

“To stay focused on the task, it is important that this feedback loop is as short as
possible”, where the authors reflect on the similarities of Kate Compton’s grokloop
[49] and how it is transferable to MI-PCG. Furthermore, Lai and colleagues explic-
itly mention how in IML, the model steering loop is an ML-specific variant of the
grokloop that is “in opposition to classic ML algorithms where a high level of tech-
nical skill is often required, and training data often needs to be fed to the algorithm
for a long time, without an interactive interface to test when the user is happy with
the result of the learning” [152]. Our results show that, not only Lai and colleagues’
(2020) and Kate Compton’s (2019) creative processes are applicable to IML for mo-
tion control design, but also that there can be an additional social dimension for
creators when they are unable to properly mature their mental model of the IML
model and request a discussion with a working peer. We speculate that this might
indicate that, apart from the embodied thinking that participants displayed when
individually working on their own systems, there might be a social aspect to their
embodied thinking in which creators are able to verbally and non-verbally translate
their tacit understanding of their mental model to a peer that isn’t familiar with
their problem. Through verbal and non-verbal explanations, and through bodily in-
teracting with the classifier of the participant in need of help, the peer might be
able to bodily and cognitively construct a better mental model of the system to help
the participant asking for help correctly interpret the system state.

These observations expand current knowledge of embodied forms of design [116]:
they show that creators not only design in an embodied manner, but also think
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in an embodied manner.Our observations also suggest that participants generated
embodied knowledge [93] about the system.

Nevertheless, we can’t ignore the technological challenges and cognitive frictions
described in the results. Firstly, we saw a tension between participants’ embodied
mental models and the operational logic of supervised learning underpinning Inter-
actML. Participants ideated movement interactions mixing gestures and words, but
in order for the classifier in InteractML to recognize the full movement, participants
needed to break down their idea into a dataset including pairs of human-recorded
movement data with a label. This data structuring requirement didn’t always align
with participants’ embodied thinking. That in turn leads to tensions in how each
feature affects model inference, understanding the particularities of each feature
with regards to time, and tackling the mismatch between natural embodied point
of reference to machine point of reference. In short, these tensions arise from prior
non-expert embodied expectations not being met (i.e. the machine will discriminate
like me, the features are calculated as I understand them, I can teach the machine
as I teach a human).

To address these conflicts, there could be interface interventions. We found that
structure did help with some of these tensions, yet graph modularity wasn’t obvi-
ous. One straight-forward intervention is to better visually guide participants to in-
clude more structure by default. This can be done via ‘smart’ suggestions, similarly
to what modern integrated development environments (IDEs) use to help program-
mers write code [79]. InteractML’s node interface could suggest nodes as the user
interacts with the graph. For example, InteractML can suggest to automatically
create training data nodes as the user records additional labels, and to distribute
each label to a training data node by default, thus making graphs more modular
and easier to modify, extend and debug. Additionally, InteractML could provide
richer data visualisations for both live recording and playback of recorded move-
ment data, similarly to how participants created their own coloured trails to match
their window of features. InteractML could display semi-transparent 3D visuali-
sations in VR. Points that are created for positions, rotated snapshots of tracked
objects, straight-line distance lines drawn between objects or velocity vector lines.
These feature data visualisations could help maturing users’ mental models of how
features are computed already in the training data recording stage, since partici-
pants don’t need to wait until evaluating their ML models to begin a “dialogue” with
the system. On top of that, InteractML could provide a virtual ‘recording&testing’
room, with virtual furniture and elements that could help users perform movements
more consistently. These virtual elements could be tailored to fit the user’s partic-
ular movement needs, as we’ve seen with the virtual lectern in the results section.
The advantage is that we are prompting the user to use the virtual space around
them in their immersive embodied model steering process.

Additionally, model inference visualisations could help the above mentioned ten-
sions by making the system more transparent. Model inference visualisations can
extend training data representations to include the most informative cases for par-
ticipants. For instance, one interesting example would be with only positional data
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Figure 112: Diagram from Bullejos and colleagues (2022) [38] work on visualising a KNN
model trained on four classes representing each a different type of soil. In the 3D visual-
isation, each diagram removes a different class showing what are the decision boundaries
per class in 3D space.
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inference, in which the 3D space of the virtual scene gets coloured to construct
three-dimensional decision boundaries. The classifier would colour every possi-
ble point in the scene, and the user could navigate the visualisation both in editor
mode or in VR. This idea is a three-dimensional extension of known kNN 2D visuali-
sations [292, 38]. Another example is with velocity data or distance data inference,
in which a generated representation of the VR headset and controllers could per-
form variations of existing recorded movements and a coloured vector line would
be drawn from the tracked objects. Each colour would represent a known label,
as in the previous positional data inference visualisation. And especially since with
the current InteractML process implementation users are already recording test-
ing cases, therefore we could simply reuse the movements they record to evaluate
their models. However, this approach gets more complicated as more features are
selected, and would likely require very specific visualisations when several features
are selected for model inference.

Furthermore, these model inference data visualisations can, in a way, disrupt the
current direct embodied classifier evaluation since they introduce a ‘record and
playback’ loop, instead of a ‘record and move-to-test’ loop. Studying whether these
‘playbacks’ of training data and model inference visualisations support or hinder
participant’s observed embodied thinking process is therefore an open topic for
future work.

Still, just improving the transparency of the training data and model inference
doesn’t address the problems that participants reported with fundamental machine
learning requirements of supervised learning algorithms. These algorithms learn
from a curated training dataset, and we observed how making any changes to the
selected features required participants to record data again. Even without chang-
ing the selected features, the current IML methodology can require users to record
again when there is a problem with a certain label. A possible solution is to sepa-
rate movement recording from feature selection, which would allow users to record
movements without having to worry about selecting features before. This could
take the form of a recording process in which the movement is recorded 1:1, with a
playback of the VR headset and controllers played after recording the data. From
there, the user could visualise all the features and select the ones that they consider
important, which means users have less friction when iteratively experimenting
with features. Furthermore, techniques to automate feature selection altogether
could be explored. By using additional machine learning algorithms to automati-
cally select features based on the recorded movements, users could save time and
effort in the feature selection process [178]. This would also help to ensure that
the selected features are relevant and useful for the task at hand. Automating the
selection of the window of features can simplify meaningfully, as creators found it
challenging to comprehend each feature in regards to time. There exist current
automated techniques to automate window sample size selection [293]. It might
as well be that granting ‘invisibility’ to the time segmentation process could fur-
ther obstruct user’s understanding of features in regards to time, since the time
element in their movements is never tackled explicitly during interaction. Thus, fu-
ture research should explore whether an intervention automating window sampling

211



is detrimental to user understanding of features while, paradoxically, allowing them
to iterate faster.

Even if future automated interventions simplified the feature selection process, the
current supervised learning algorithms can require large amounts of data for ex-
ceptionally nuanced and complicated movement interactions. This would still make
recording movement data tedious, hence algorithmic solutions for recording less
training data could be explored. One interesting solution would be to use data
augmentation techniques, which involve generating new training data from exist-
ing labelled data. For example, a data augmentator can generate variations of the
original movement data by applying transformations to existing movement data by
adding noise or distortion, or changing the speed or direction of movement [120,
72]

Another solution would be transfer learning: leveraging pre-trained models that
have already been trained on a large dataset of movement data [275]. These pre-
trained models could have already learned to extract relevant features and patterns
from the movement data, which can be useful to train robust classifiers with less
additional data.

Furthermore, one-shot or few-shot learning algorithms could drastically reduce the
amount required for training. One-shot learning algorithms can learn to recognize
new classes of movement from a single or very few examples, which can reduce the
need for large amounts of labelled data [312].

Finally, reinforcement learning (RL) classifiers can be used instead of supervised
learning classifiers via demonstration-based learning. Demonstrations are exam-
ples of movements that are provided to the RL algorithm by users. The RL algo-
rithm learns to imitate the demonstrations and then further refines its performance
by loops of automated sampling and training to maximise a reward function [253].

Less time spent recording movement would, in theory, mean that game creators
would have more time to spend on feature selection, model evaluation or any of
the many game development tasks. Nonetheless, the algorithmic interventions ex-
plained above do require more computational resources to train and likely more in-
ference resources than the k-nearest neighbour (kNN) algorithm employed in this
study. They might as well miss the benefits from the strong influence of training
data on kNN’s decision boundaries that was speculated in previous IML literature
[73]. Therefore, future work might investigate how less data-hungry algorithms are
qualitatively evaluated by game creators compared to kNN, and what they consider
important when evaluating decision boundaries from classifiers.

Overall, these algorithmic solutions have the potential to significantly reduce the
amount of data that needs to be recorded in order to create accurate and effec-
tive IML models. By continuing to explore these solutions and refine their imple-
mentation, we can unlock even more potential for creating engaging and intuitive
motion-control videogames and other applications with IML.
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5.4.3 Supporting Game Creators with IML

We found that ‘ideal’ engagement with InteractML would be a fast, unbroken IML
steering loop, enabled by providing all relevant inputs and outputs directly and fully
‘in-medium’ – in VR or on desktop . Consequently, all the stages in the IML process
should be fully supported both in VR and outside of VR, not only partly as currently
implemented in InteractML. If users want to engage with the entire IML loop in
VR, there should be appropriate spatial metaphors translating each of the desktop
options without negatively impacting their functionality. Users should be able to
select features and see recordings of their own movements. Similarly, users should
be able to inspect and modify the game scene from VR, as well as pipe classifier
outputs in their scripts. Obviously, the reason why this hasn’t been implemented is
because it is a herculean design research task. What do all IML spatial metaphors
need to look like in VR? How do they fit in the overall spatial game development
process? And how can users comfortably program scripts in VR?

Narrowing down questions around better supporting users during their scripting
efforts, users reported how it was challenging to separate system responsibilities
and debug. As explained in the results, a complete prototype of a movement inter-
action with InteractML has three layers: (1) the IML processing of movement data,
(2) the game script translating the classifier output to an in-game state, and (3) the
visual representation of the game state. Participants found it challenging to discern
which layer was responsible for an issue, and how to diagnose problems with each
layer. A possible non-technical intervention is to include teaching resources about
this topic. This could take the form of synchronous tutorials where students are in-
troduced to each of the challenges identified in this thesis and they are tasked with
training ‘toy’ classifiers where they need to balance on the pros and cons of solv-
ing a flicker problem between layers (1) and (2), or solving an animation problem
between layers (2) and (3). These tutorials could also be delivered asynchronously
without an instructor in the form of online community resources, in which users
are presented with the ‘toy’ classifiers and they can work on the issues at their own
pace.

Additionally, participants explained how challenging it was to diagnose problems
during debugging on each layer or in-between layers because of the symbolic opac-
ity of data. Numbers and numerical labels did not mean much for participants when
inspecting their datasets, and instead relied on bodily evaluating trained models to
bodily ‘explore’ their dataset. Participants followed regular software debugging
strategies by making extensive use of the game editor console. We suggest ex-
tending the capabilities of the game editor debugger to better interpret symbolic
problems with the supervised learning parts of the system. Furthermore, the vi-
sual scripting interface could offer break points, stopping the execution at a given
point to interpret the system’s state. Feature data visualisations could greatly im-
prove symbolic data interpretation during debugging. That said, even with better
visualisations, our observations suggest a fundamental difficulty in translating the
system’s numerical output into users’ embodied interpretation. Hence clarifying
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the symbolic nature of data on screen might only have a limited positive effect on
problem diagnosis. A very interesting approach would be to offer embodied debug-
ging capabilities, where not only the user can benefit from more complete debug-
ging tools and visualisations, but can also bodily interpret breakpoints by physically
evaluating the classifier ‘snapshot’ at a given time while in VR, hence grounding
debugging on their embodied thinking process. We believe that, for the particular
problem of training movement interactions, this embodied debugging methodol-
ogy could yield superior results to regular data explainability interventions. How
this embodied debugging intervention would be designed and evaluated remains
an open research question for future work.

Finally, the last theme from the results focused on the tension that arises in the
user evaluation of expressive IML outputs between accuracy, visual flicker, and
embodied experiential qualities. This tension was due to the factors potentially
conflicting with each other. For example, improving accuracy may come at the cost
of increased visual flicker or reduced embodied experiential qualities. Similarly, re-
ducing visual flicker may come at the cost of embodied experiential qualities. All the
previously mentioned interface and algorithmic interventions should allow users to
correctly teach the system what they want to express with their movements. This is
a key concept, since the diversity of desired experiential qualities could potentially
have grown if our dataset was bigger. Our interpretation was that it wouldn’t be
possible to generalise what every creator would want to express with a movement,
hence giving the most control possible to game creators is of utmost importance.

However, the technical tension between accuracy and visual flicker is equally im-
portant, since players would only be able to correctly experience the intended ex-
perience through the audiovisual feedback of the game. A possible solution would
be to always require some sort of visualisation alongside the classifier inferred la-
bel, even if a default one on a primitive, while teaching and evaluating the system.
This could change the observed predominant training strategy, in which partici-
pants tried to get a classifier “working” first by looking at the symbolic output on
the graph or VR panel before piping it into a custom script. Hopefully visualising
some degree of flicker could prompt creators to address this tension from the very
beginning. Additionally, quantitative metrics could be shown alongside this visu-
alisation, both for accuracy and temporal flicker. However, we are cautious when
recommending this approach, because a quantitative evaluation could be under-
stood as a score to maximise by participants and could deter them from conveying
their original experiential qualities. This phenomenon, known as intent drift in IML
literature, could therefore be negatively heightened by an automated quantitative
evaluation. Hence, future research should look at understanding how visually dis-
playing quantitative metrics affect the embodied creative process studied in this
thesis.
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5.4.4 Limitations

While this study provides valuable insights into how IML could be used for motion-
controlled VR game development, we are aware that this study has limitations that
should be acknowledged.

Firstly, this study only explored one algorithm (k nearest-neighbour) for classifica-
tion tasks. Other algorithms may have different strengths and weaknesses. For
instance, the chosen k-nearest neighbour algorithms don’t provide an intrinsic rep-
resentation of time and require an explicit supervised learning feature to account
for it (i.e., the window of features). Classification algorithms such as InteractML’s
dynamic time-warping (DTW) could prove easier or more intuitive, but they also suf-
fer from known explicit time segmentation challenges (i.e. the user needs to specify
when the gestures begins and ends during inference time). Fully automated time
classification algorithms might be better suited for IML interactions, with newer re-
search offering potential solutions [293]. It is also possible that participants would
have reacted differently if the task to tackle was a regression task. Future research
could explore a wider range of algorithms to identify how they support different
types of IML movement interaction prototyping..

Secondly, this study did not explore any quantitative metrics for evaluating the
performance of participant classifiers. While participants provided valuable feed-
back on their subjective experiences with the system, it would be useful to also
collect quantitative data on factors such as accuracy and temporal stability. This
would provide a more objective measure of the system’s performance and could
help understand how user perceived accuracy and diverse subjective experiential
judgement correlates with objective algorithmic behaviour.

Thirdly, this study only involved one to two days of full prototyping with each par-
ticipant. While this was sufficient to gain insights into how users engage with IML
systems, it is possible that longer periods of prototyping may reveal additional in-
sights or challenges. Future research could explore longer prototyping periods to
gain a more comprehensive understanding of how users engage with IML systems
over time.

Finally, this study did not explore teamwork dynamics when using InteractML.
While participants worked individually during the prototyping sessions, it is likely
that teamwork dynamics would play an important role in real-world applications
of IML systems. Future research could explore how teamwork affects engagement
with IML systems and how these dynamics can be optimised for maximum effec-
tiveness.

Overall, while this study provides valuable insights into how IML can support VR
game development, there are several limitations that should be addressed in future
research to gain a more comprehensive understanding of these systems and their
potential applications.
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5.5 Conclusion

This chapter looked into the opportunities and challenges that game creators en-
counter in prototyping and evaluating game motion controls in VR with InteractML.
We observed that participants displayed embodied thinking to train their classifiers,
which resulted in clashes between ‘naive’ embodied mental models of interaction
and communication and the operational logic of supervised learning. Participants
expected position to be anchored in their first-person body, head, or hand as a ref-
erence point, and that a single demonstration would suffice – as it does in human
interaction. This produced a particular embodied grokloop of iterative learning,
interpretation and steering of the system. Participants benefited from working in-
medium and adding structure to their working process, but found it challenging to
modularise their ML implementations and separate system responsibilities along
the development pipeline. Still, participants found that the visual scripting inter-
face and the IML workflow better supported them in implementing movement inter-
actions compared to their prior experience with traditional rule-based approaches.
Finally, we found that the diversity of experiential qualities that participants were
interested in delivering with their creations could conflict with their ability to bal-
ance perceived classifier accuracy or visual flicker.

Overall, while there is potential for IML to enhance game development processes,
there are also significant challenges that need to be addressed before it can be
widely adopted. Future research could look to improve the IML methodology either
from a human-centred approach to reduce friction during user interaction, and from
an algorithmic perspective to reduce the amount of training data required.
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6 Discussion and Conclusions

6.1 Introduction

The introduction (Chapter 1) motivated the need for a novel design process and IML
tool for VR embodied game motion control design and posited the main research
questions that each chapter would provide answers to.

In chapter 2, we found that game creators require tools as part of the game engines
they already use to create games, and prior motion control tools were focused on
object interactions or inflexible in their movement-focused methodologies. Fur-
thermore, we reviewed that game motion controls can elicit diverse and rich expe-
riential qualities, and that embodied interaction design methodologies might help
elicit such qualities better than traditional game design ones. Prior research ar-
gued that embodied interaction design processes for interactive technology should
be accompanied by implementation of the ideas generated to foster embodied cre-
ative reflection, where IML is suggested as a well-suited solution to explore. We
conducted a literature review of IML systems that operate on movement data, and
demonstrated that, although these IML systems offered effective solutions for vari-
ous movement-related problems, they did not address the particular needs of game
creation practice and game motion control design and implementation. Therefore,
Chapter 2 showed that there is a research gap in embodied design and development
methodologies for motion controlled videogames in VR.

In Chapter 3 we then tackled such need for a tool with InteractML, our in-engine
visual node IML workflow that does not require prior expertise with ML techniques.
The tool includes a VR module to perform in-VR model steering loops. The chap-
ter contributes This chapter advances the field of interactive machine learning by
presenting a novel IML system that is integrated into a game-engine and supports
visual programming to enable non-expert interaction. Moreover, it enriches mo-
tion control and embodied interaction design methodologies by incorporating IML
implementation and design principles into motion controls design methodologies.

We therefore evaluated InteractML on the three main stages of motion controls
creation, with Chapter 4 tackling ideation and Chapter 5 tackling implementation
and evaluation. Chapter 4 investigated how game creators ideated VR embodied
interactions in-medium, and contributed to advance the field of embodied ideation
by showing evidence that the methodology produced rich and diverse IML ideas,
and that participants behaved and socially ideated in-VR making use of the embod-
ied affordances of the medium. Chapter 5 investigated how game creators imple-
mented and evaluated their IML ideas with InteractML. The Chapter contributed
to the fields of of game motion control design methods and development toolkits as
well as the field of interactive machine learning with evidence that participants dis-
played embodied thinking in the entire IML process, which led to conflicts between
their intuitive embodied mental models of interaction and communication and the
underlying logic of supervised learning. Furthermore, the Chapter showed an em-
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bodied grokloop of participants, with the benefit of using InteractML in-medium
and being able to socially include peers in the mental model maturing loop.

Therefore, in the current Chapter, we will review and reflect on the contributions
of this thesis. Section 6.2 revisits all the research questions posited in the intro-
duction chapter, summarises all of the contributions presented and synthesises the
contribution to research from this thesis as a whole. Section 6.4.1 discusses the
implications of our contributions to motion control design and development and
suggests solutions to existing problems found. Sections 6.4.2 and 6.4.3 expands on
the future work for the methodology explored in this thesis and section 6.5 closes
the chapter with a summary of the thesis findings and closing remarks.

6.2 Contributions to Knowledge

The introduction in Chapter 1 presented how existing embodied design processes
and IML solutions aren’t well suited for game creators designing and implementing
motion controls. Therefore, the chapter posited four research questions to tackle
this gap, with the overall goal of this thesis being to investigate the role of a novel
IML design process and tool for VR embodied motion control design. We now pro-
ceed to analyse the extent to which each research question has been answered
whithin the body of this thesis.

6.2.1 RQ1: What are the design and implementation considerations for an
IML tool for VR game motion control design?

Whithin Chapter 2 the following research question was examined:

Research Question 1: What are the design and implementation consid-
erations for an IML tool for VR game motion control design?

We considered that we brought answers to this theoretical research question based
on the literature review carried out within the background Chapter. Section 2.2 pro-
vided an overview of the existing motion controllers for gaming applications, and
demonstrated how VR has become the domain where motion controls have expe-
rienced a revival after the failure of previous commercial consumer entertainment
systems in the early 2010s. The section also defined the terminology to technically
characterise the tracking features of motion controllers, such as form factors, but-
ton layouts, and the predominance of 6 degrees of freedom in current VR systems.

Section 2.3 presented a critical analysis of the principles, tools, and processes of
motion game design and development. We identified a lack of standardised mo-
tion game design guidelines for VR motion controls and a scarcity of research on
the actual or ideal practices or methods of game motion design. Regarding game
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development, we noted the dominance of industrial challenges such as integration
into complex production processes and tooling pipelines, especially the require-
ment for any tooling and process to be compatible with the chosen game engine. A
review of popular industry tools for creating interaction in VR revealed that exist-
ing solutions approach interactions from an object-centric perspective with trigger-
response pairs, or from a gestural perspective that requires explicit movement seg-
mentation and only considers the main input source (i.e. the VR controller).

Section 2.4 illustrated the diversity of the conceptualisation of experiential qualities
of movement, and raised questions of how to better frame and describe motion
interactions in digital games. Dimensions such as flow, immersion, engagement
or enjoyment affect the “feeling” of the motion controlled game and the different
interactional aesthetics conveyed. And, because of the predominance of motion
controls in VR, presence and theories of embodiment provided grounds for the body
as a central part of the experience and, even, cognition.

Section 2.5 presented embodied interaction design theories and methodologies
grounded on the body, providing evidence that designing embodied interactions
can benefit from methods where body movements are central to the design pro-
cess. The section examined that the first-person lived body can be employed for
reasoning, creativity and reflection. Lastly, we reviewed literature arguing embod-
ied creative reflection requires a tight loop of design and implementation, with IML
as a suggested implementation method.

Section 2.6 provided an overview of IML and its relevant work. We observed that
the IML process consists of rapid and focused iterations in the model steering loop.
The section then examined relevant IML systems from the literature that work with
movement data, showing that none of the current systems meet the specific re-
quirements of game creation practice and game motion control design and imple-
mentation outlined in section 2.3.

We therefore synthesised the following design and implementation considerations
for an IML tool for VR game motion control development:

1. From section 2.2, we synthesised that the tool should support current mass-
marketed forms of motion controls, with special emphasis on two-handed mo-
tion controlled VR systems.

2. From section 2.3 we synthesised that the tool should fully work in-engine and
provide flexible exploration of movement-focused interactions given the lack
of standard design methods.

3. From section 2.4 we synthesised that the tool should support developers ex-
pressing a rich diversity of experiential qualities.

4. From section 2.5 we synthesised that the tool should support a design and
implementation methodology grounded in body movement, with bodystorm-
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ing and IML being theoretically promising design and implementation ap-
proaches.

5. From section 2.6 we synthesised that current IML solutions are not suited
for the game creation specific considerations synthesised from Section 2.3,
therefore motivating the need for a new IML tool. From this section we also
synthesised the IML requirements that the tool should support

We believe that the literature review and our synthesis of design and implementa-
tion considerations positively answered research question 1 and helped theoreti-
cally ground how InteractML should work.

6.2.2 RQ2: What is a functional IML tool that addresses these considera-
tions?

Within Chapter 3, and with the implementation evidence of Chapter 5, the following
research question was examined:

Research Question 2: What is a functional IML tool that addresses
these considerations?

We considered that we positively answered this practical research question de-
scribing the design decision and implementation details of InteractML in Chapter
3, together with the evidence from the implementation workshops in Chapter 5. In-
teractML presents a visual and embodied approach to designing movement-based
interactions within the game engine, thus reducing the need for prior knowledge
in machine learning techniques. Additionally, the tool incorporates a VR module,
enabling in-VR model steering iterations by leveraging the motion tracking capa-
bilities of the VR system. Consequently, InteractML empowers game developers to
create nuanced movement interactions using IML, thereby attempting to capture
the embodied experiential expressiveness that game creators want to deliver.

Within Chapter 3, section 3.4 established the main contribution of the chapter,
which is InteractML’s in-engine visual and embodied IML workflow. Section 3.5 de-
scribed the implementation details of the tool. Section 3.6 detailed how each of the
IML stages worked from an interface and methodology perspective by describing
each node and relating it to an IML methodology step, with the VR module details
described in section 3.5.8. Lastly, section 3.11 reflected on the core contribution
of the tool and how it advances the state of the art of game motion control toolkits
and IML. Whithin Chapter 5, the results shown in section 5.3 showed how creators
used the tool to successfully prototype motion controls in VR, and how richly their
expressive intent was.

Thus, the consideration 1 was addressed by the VR support of InteractML described
in Chapter 3 and the VR prototypes developed by game creators in Chapter 5.
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The consideration 2 was addressed by the fully in-engine nature of InteractML de-
scribed in Chapter 3 and the in-engine working process investigated in Chapter
5. The consideration 3 was addressed with the description of the flexible design
frame of InteractML to support a rich set of experiential qualities in Chapter 3, and
the rich evidence from creators experiential intent reported in Chapter 5. The con-
sideration 4 and 5 were addressed by the possibilities of InteractML’s IML stages,
where game creators visually select features, models and configure the graph; and
model steering can be performed in-medium making the most of the principles be-
hind embodied interaction design and thus, attempting to support a rich expression
of experiential qualities from creators embodied design. Such possibilities are sup-
ported by the evidence gathered in Chapter 5, where creators indeed managed
to successfully follow in-medium embodied IML model steering iterations and pro-
duced working models that reacted to their movements. In section 5.4 we discussed
what these meant for IML and how InteractML was a significant contribution in sup-
porting (a) an embodied working process, and (b) game creation needs compared
to prior IML working processes.

Thus, Chapter 3 contributes to the growing field of IML by advancing the state-
of-the-art through the development of a game-specific IML system, seamlessly inte-
grated into a game engine and visually programmed to facilitate non-expert engage-
ment. Moreover, Chapter 5 evidence of creators successfully prototyping motion
controls in VR using InteractML supports the design intent from Chapter 3. Hence,
InteractML enriches the motion control and embodied interaction design fields by
incorporating in-VR IML implementation and design principles into motion control
design frameworks.

6.2.3 RQ3: What are the opportunities and challenges that game creators
encounter when ideating VR game motion controls in-medium?

Chapter 4 examined the following research question:

Research Question 3: What are the opportunities and challenges that
game creators encounter when ideating VR game motion controls in-
medium?

We provided insights into the research question with the qualitative analysis de-
tailed in section 4.3 and subsequent reflection on section 4.4. Theme 1 synthesised
the output space of the interactions ideated by creators, with subtheme 1.a de-
tailing the effects on virtual elements of the ideas and subtheme 1.b the social
aspect of ideas. Theme 2 synthesised the input space of the interactions ideated
by creators, with subtheme 2.a reflected the richness of body modalities, and sub-
theme 2.b reflected the expressiveness of movement in participants’ ideas. Theme
3 synthesised the expressiveness in the participants’ embodied ideation process.
Subtheme 3.a reflected the embodied nature of in-medium affordance explore, sub-
theme 3.b reflected the playfulness present in co-located ideation, and subtheme
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3.c reflected socio-technical challenges of in-medium embodied ideation. Lastly,
theme 4 synthesised the communicative nature of in-medium embodied ideation.
Subtheme 4.a reflected that non-verbal cues were inherent in communication and
embodied ideation, subtheme 4.b reflected the embodied repair strategies during
ideation, and subtheme 4.c reflected the importance of smooth turn-taking during
in-medium remote embodied ideation.

Section 4.4 reflected on the meaning of the findings, and we discussed that the
space where the embodied ideation took place influenced the playfulness of the
ideas and the enriching effect of in-medium co-located embodied ideation. We also
discussed the interplay between play, novelty and creativity and how does it affect
the exploration of affordances in-medium. Furthermore, we argued that the embod-
ied cognition displayed by participants when ideating variations of an interaction
was related to the theory of the adjacent possible, in which embodied thinking
process is cognitively grounded in the possibility space of participants’ bodies and
movement. Moreover, we argued that smooth communication and joint attention
had a positive effect on social co-creation, as participants ‘picked-up’ each other
movements and continued them. Additionally, we discussed how actually design-
ing in-VR positively used the constrained affordances of the medium to focus on
more realisable IML ideas. On the other hand, in-medium embodied ideation also
suffered from socio-technical and usability constrains that were potentially detri-
mental to idea generation.

Therefore, Chapter 4 contributed to the fields of embodied interaction design
knowledge, showing the opportunities for in-medium social embodied ideation and
the socio-technical challenges that such a process entails.

6.2.4 RQ4: What are the opportunities and challenges that game creators
encounter in prototyping and evaluating game motion controls with
an IML tool?

Chapter 5 examined the following research question:

Research Question 4: What are the opportunities and challenges that
game creators encounter in prototyping and evaluating game motion
controls with an IML tool?

We qualitatively answered the research question with the analysis presented in sec-
tion 5.3. Theme 1 synthesised that creators displayed an embodied thinking process
throughout their implementation and evaluation of their interactions. Theme 2 syn-
thesised the tension existing between their embodied thinking and the IML require-
ments. Subtheme 2.1 delved deeper into the tension between participant embodied
understanding of features and the actual computational effect, subtheme 2.2 de-
scribed the tension between participant embodied understanding of features and
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time, and subtheme 2.3 reflected on the tension between participant first-person
body point of reference for thinking and the third-person computer understanding.
Theme 3 synthesised the in-medium iterative process of participant engagement
with IML models. Subtheme 3.1 described that the in-medium engagement process
can is affected by model output display, subtheme 3.2 described that people rely on
quick iterations of trial and error, and subtheme 3.3 reflected the negative impact
that media-breaks can have of in-medium model steering. Theme 4 synthesised the
positive effect of structure in the editor and in the process, and subtheme 4.1 de-
scribed that game creators can create structure on their process when there is none
present. Theme 5 synthesised that visual scripting facilitated working with IML and
maturing mental models about IML. Subtheme 5.1 tackled the issue of modularity
not being obvious to creators, and subtheme 5.2 described the challenges in sep-
arating system responsibilities during problem diagnosis. Lastly, theme 6 synthe-
sised the tension existing between perceived accuracy, interaction visual flicker and
intended embodied experiential qualities, with subtheme 6.1 detailing the richness
of intended embodied experiential qualities.

Section 5.4 reflected on the meaning of findings on motion control design and de-
velopment and IML. We discussed that, while game creators managed to implement
IML motion controls without being ML experts, there were patterned opportunities
and challenges across their interaction. We suggested a set of design guidelines
to make use of present opportunities and minimise challenges, grounded in our
findings that creators profited from in-medium embodied work on cognitive and
productive dimensions. We henceforth suggested to incorporate as much move-
ment as possible throughout the entire IML process, to reduce iteration cost, to
compute features from a first-person body perspective, to suppport fully in-medium
embodied work, to modularise the training dataset, to design a distinct set of move-
ments with nuance tackled incrementally, to prioritise interaction visual flicker and
to focus on movement instead of objects. We argued that visual scripting had a
positive impact on the overall IML-driven motion control prototyping and evalua-
tion because game creators could visually structure the data flow through the IML
graph and get a ‘visual intuition’ of where the problem laid during debugging.

Furthermore, we reflected how our findings on interactive feature selection com-
pared to those from the literature [177, 178], and while the literature argued that
users were “bad” at feature selection, our findings go beyond that and argued that
features don’t match creators embodied first-person perspective. We also extend
prior IML literature arguing that accuracy is a deceiving and incomplete quantifi-
able metric for game motion controls, since we found that visual flicker or move-
ment experiential qualities are far richer potentially quantifiable metrics to account
for. Furthermore, we discussed that our findings about the social aspect of human
engagement with IML models expand prior work on mixed-initiative generative cre-
ative processes [49, 152]. Lastly, we discussed how one of the chapter’s core con-
tributions was how ‘ideal’ engagement with InteractML would be a full in-medium
working loop, either on desktop or VR, without media-breaks. We speculated how
such full in-VR work would look like and described future interventions.
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Therefore, Chapter 5 contributed to the fields of game motion control design and
development, human-centred IML and embodied interaction design, discussing the
socio-technical opportunities for in-engine IML embodied motion control implemen-
tation and evaluation, and the challenges that such an embodied working process
entails.

6.2.5 General insights about investigating the role of a novel IML design
process and tool for VR embodied motion control design

So far, the thesis has detailed the contributions of each chapter. However, when
we began motivating our work, we understood the need to create a novel IML de-
sign process ad tool tailored for VR game motion control creation specific needs
throughout the main stages of creation: ideation, implementation and evaluation
[305, 98]. Each empirical chapter contributed knowledge onto each stage, but,
what are the overall contributions to knowledge after going through the entire pro-
cess? We will proceed to

We believe that the thesis yield three core contributions: (1) designing for VR bene-
fits from designing in VR, (2) designing embodied interactions is and benefits from
an embodied process with a social embodied cognitive dimension to it, and (3) the
logic of supervised machine learning of movement clashes with people’s embodied
logic of how movement and learning work. We will proceed below to detail each
contribution:

Designing for VR benefits from designing in VR.We found that designing
VR motion controls within VR improved the users creative process alongside the
ideation, implementaton and evaluation stages. Chapter 4 found that embodied
ideation in SocialVR provided a rich medium for creativity because of the support
for non-verbal cues and the specific in-medium affordance exploration that partici-
pants would have missed were they not in VR. Furthermore, Chapter 5 found that
IML-driven VR game motion control implementation and evaluation benefits from
an in-VR working process, because of the positive use of creators’ first-person em-
bodied thinking and the negative effect of media-breaks that require creators to
place or remove the headset.

Wearing the VR headset, holding the controllers and pressing the buttons offers a
physical feeling that helps creators bodily feel the nuances of the medium during
ideation, with an immediacy that would be impossible to feel withtout being in VR.
If a creator moves in a energetic and open manner, they can feel the weight of
the headset and controllers, and how the stereoscopic VR image looks like when
they are moving. For instance, when they want to include a button press in their
interaction, they can bodily feel how the button springs when they press it, how the
movement works in conjunction with the motion, and how their avatar immediately
reacts to the button and motion press. Similarly, while implementing and evaluating
a movement interaction in VR, the game creator can make use of their embodied
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thinking process and focus on it while working fully in-medium, hence why media-
breaks were so disruptive when switching from VR to desktop and vice-versa. The
immediacy of the visual effect also helped creators grasp important qualities that
could have been missed, such as how prominent the interaction visual flicker was
once they saw and felt their own IML model. Recording and training IML models
in-VR also allowed them to better perform the human-model “dialogue” to bodily
feel how their movements affected the decision boundaries of the model, and how
their training data was bodily structured.

Therefore, we consider that creating for VR benefits from creating in VR is the first
general insight gained from the thesis work.

Designing embodied interactions is and benefits from an embodied pro-
cess with a social embodied cognitive dimension to it.We found that design-
ing embodied interactions is an embodied process and benefits from an embodied
process with a social embodied cognitive dimension to it alongside the ideation,
implementaton and evaluation stages. Chapter 2 argued that game creators fol-
lowed a thinking process grounded in the body, in which they sensed the possibil-
ity space of their movements while ideating. The Chapter also found how social
co-creation was embodied, with creators continuing each other’s movements or in-
teracting with co-located props and constructing social interactions from individual
interactions. Additionally, it found how relevant non-verbal cues and smooth com-
munication was important from a body perspective, therefore allowing creators to
bodily express and bodily understand each other movement ideas. Chapter 5 found
that game creators displayed an embodied thinking process and it argued that cre-
ators thought about features and model decision boundaries via a first-person body
experience. Furthermore, the chapter found that the richness of experiential qual-
ities that creators want to convey with their interactions is also grounded in the
body, with dimensions such as fluidity, smoothness or self-consciusness of move-
ment present in their embodied evaluation process. It similarly found that creators
included a social aspect to their ‘grokloop’ of human engagement with IML models,
in which to correctly interpret a model they could include a peer to discuss their
movement interactions, making use of a similar set of non-verbal and communica-
tive processes to those from the ideation Chapter, but grounding the discussion on
the embodied feeling of interacting with an already implemented model to correctly
interpret it.

Prior literature argued that designers should “design by moving” [121] and that
movement interfaces are effective because of their non-presentational and sensori-
motor grounding [94], that the body can be used for both reasoning and creativity
[281], and that embodied interaction design can benefit from embodied interac-
tion implementation [82, 93]. However, our contribution goes beyond current work
by providing evidence of embodied interaction design with an observable social
embodied cognitive dimension, where creators can bodily express and understand
each other designs through social communication grounded in the body. We found
qualitative evidence of creators bodily communicating ideas while performing em-
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bodied interaction co-design in Chapter 4, bouncing movement ideas between par-
ticipants via body movement reflection and exploring adjacent possible ideas collab-
oratively. Similarly, Chapter 5 provided qualitative evidence for how participants
incorporated an embodied social dimension to their IML “grokloop”, where their
interpretation of their recently trained classifier would benefit from sharing their
embodied understanding with co-located peers that could bodily construct a better
mental model of their system to support them.

Therefore, we consider that designing embodied interactions is and benefits from
an embodied process with a social embodied cognitive dimension to it, is the second
general insight gained from the thesis work.

The logic of supervised machine learning of movement clashes with peo-
ple’s embodied logic of how movement and learning work.We found that the
IML logic of movement clashes with people’s embodied logic of how movement
and learning work alongside the ideation, implementaton and evaluation stages.
Chapter 4 found that participants exploration of their in-medium body to avatar af-
fordances was grounded in a first-person body experience, and similarly Chapter 5
found that participant understanding and mental modelling of the IML system was
grounded on an first-person body experience. Such first-person perception clashes
with supervised learning third-person logic. Therefore, this is a core contribution
to human-centred IML, because current movement-driven IML literature investi-
gate how to make users better at feature selection [177, 178] or how users want to
evaluate their models [73, 276], but it doesn’t focus on the why users interact with
the IML work from a first-person lived body perspective.

Therefore, we consider that the IML logic of movement clashes with people’s em-
bodied logic of how movement and learning work, is the third general insight gained
from the thesis work.

6.3 Limitations

We present the main limitations shared accross all studies presented throughout
this thesis:

Population: We acknowledge that the samples in both empirical studies might
have affected our results, and limited their generalisability because participants
were either university students with graduate experience in game creation, or in-
dependent developers with limited knowledge of game studios industrial working
processes. In order to generalise our findings onto game studios, future work
should deploy and evaluate InteractML on game studios with business needs to
better generalise our claims.
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Limited workshop time: Both empirical studies presented in this thesis were
performed on workshops, either remote or in-person, an involved limited amounts
of time with each participant. This approach enabled us to synthesise insights
about InteractML, embodied ideation and the user engagement with IML systems.
However, extending the duration of the studies might uncover further insights or
difficulties. Therefore, future studies are encouraged to investigate the long-term
effects of including an IML-driven intervention for motion control design and im-
plementation.

Limited large scale adoption generalisability: This thesis employed a qualita-
tive methodology that relied on a limited sample size that might not be representa-
tive of the larger population of game creators, and instead focused on rich specific
human-centred insights about our IML embodied design process and tool. We ac-
knowledge the limitations of our method and suggest future large scale quantitative
research grounded on our rich insights to better understand the generalisability of
the thesis contributions.

COVID-19: The data from this thesis was collected during 2020 and 2022, when
the worldwide COVID-19 pandemic required the UK population to enter or exit
lockdowns, and social restrictions were gradually ‘eased’ in 2022. Therefore, the
pandemic was likely to have an effect on participants, because of limited physical
and social interaction in the remmote workshops, or because of the usage of infec-
tion prevention tools (e.g. masks, tests) in the in-person workshops. Based on our
analysis, we believe any effect on the data to be small.

6.4 Implications and Future Work

6.4.1 Implications for Game Development

In chapter 5 we saw that one of the challenges that creators faced was how ML
thinking differs from regular game dev thinking.

This is a non-trivial problem, since the rest of the game engine systems function
in a very different way. Nonetheless, new paradigms of work have previously been
successfully introduced and adopted in game development. One of the most sig-
nificant ones was 3D rendering at the end of the twentieth century. 3D drastically
changed the way games were made, not only by ‘just’ adding a third dimension
when writing gameplay code, but by introducing completely novel ideas such as
skeletal animation [254] and programmable shaders [159]. These breakthroughs in
computer graphics demanded new skill sets and paradigms of work that required
people learning new ways of thinking to specialise in 3D character animation, rig-
ging, skinning and texturing [168], or shader programming [159]. We assume that,
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even though ML thinking is now a fairly different way of thinking for game cre-
ators, the adoption of ML powered tools in game engines will slowly reduce the
friction in this sense and ML-thinking will be one of the many ways in which a game
creator needs to think to build a videogame. There has been steady work during
the last decades transferring ML research breakthroughs into game engines, with
examples such as the Kinect computer vision algorithms [321] and reinforcement
learning game playing agents with unity ml-agents [198]. And, with this trajectory,
current relevant ML research, such as large language models (LLMs) to generate
programming code [319] or ML-based asset generators [233], will inevitably be
transferred into game engines. This will hopefully contribute to communicating the
data-centric nature of machine learning that will eliminate the cognitive friction
when a creator describes the behaviour of a tool by recording a training dataset.

Nonetheless, eliminating friction with the ML-way of thinking does not reflect on
the most important finding of this thesis, which is that game creators grounded
their design and thinking in their bodies during motion-control prototyping. That
is, they follow an embodied development process. We could speculate that this
finding could potentially be translated to other game engine systems, but which
ones? Would an IML workflow benefit the system? If not, which other embodied
workflows?

We can make the educated guess that systems that could benefit from IML-driven
embodied development metaphors should be the first ones to be investigated. For
instance, the game animation pipeline could employ embodied IML. Instead of
the animator using a mouse to describe animations, the animator could physically
demonstrate animations. This, in a way, already happens with motion captured
data, where actors perform movements under the eye of high-fidelity motion cap-
ture systems. However, animators later clean motion captured data ‘by hand’ using
a mouse-driven GUI to tweak recorded animations to make them work with virtual
characters. Animators could as well follow an embodied development process when
cleaning up animations, where instead of using mouse based GUIs they directly
physically demonstrate how to correct the recorded data. Even following the spirit
of interactive machine learning, performers themselves could interactively visualise
how the final animation will look while recording data, and correct it through em-
bodied demonstrations. Previous IML interventions have been explored in the field
of virtual character animation [91, 93], but what we suggest here is an embodied
development intervention into the entire animation pipeline. Even for low-budget
animations, techniques of embodied IML-driven animations could be made with we-
bcams and/or VR kits, where the indie game creator has a full embodied control of
how the movement data is recorded and displayed by the virtual character.

Another game engine system that could benefit from an IML-driven embodied de-
velopment metaphor are camera control and animation systems, where creators
can teach the computer how the camera should be animated and controlled in re-
sponse to player input. This might be a potential natural fit because the game
engine camera system is already an abstraction that replicates how a real camera
functions. Game creators could animate the camera by recording demonstrations
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of themselves holding the virtual camera in VR and recording its position, zoom
or pan attributes. Previous work explored how VR cameras could be used to ex-
plore camera takes during pre-production for computer generated movies [13], but
we are suggesting programming camera behaviours through embodied demonstra-
tions. We could even generalise this principle to any virtual object, thus creating
an object-focused embodied teaching metaphor where creators teach how a virtual
object should behave through embodied demonstrations. For example, game cre-
ators might demonstrate how a gun should animate when it is shot by moving the
gun, and link each of the animations with its corresponding in-game action.

Moreover, this methodology could include programming the behaviour of parti-
cle systems by bodily describing emission trajectories or demonstrating with the
distance between two hands the size-over-lifetime attributes of emitted particles.
Similarly, general object placement in the scene could, up to a certain degree, be
programmed via embodied demonstrations. For instance, the game creator could
select an object in a VR interface and perform strokes with their upper arms to
place objects in the scene, as if they would be ‘throwing them out of a basket’,
and specify their animation attributes over time or in response to player input or
in-game events. This workflow would be limited in scope, but could potentially be
used to quickly sketch a reactive scenario in VR by bodily throwing objects around,
or to prototype certain fine-grained game events such as rocks falling off a cliff
(from recorded variations of the creator throwing a rock) after triggering a certain
in-game condition. Likewise, it could be possible to explore asset generation via
pairing body movements and asset outputs. This might enable the possibility of
generation of complex 3D models defining how they should move (i.e. moving like a
monkey, generate a monkey). Game audio generation or reactive audio could ben-
efit from IML, as it is already and active area of research that could be translated
into game development [74, 291].

6.4.2 Multimodal Embodied Development

Furthermore, there is evidence that body gesturing is entangled with verbal com-
munication [25, 227, 214]. Thus, this might indicate that the embodied cognition
process mentioned in [145, 93], and the embodied thinking process observed in this
thesis have a verbal component to it. This might make sense as in the ideation study
participants expressed their movements to each other verbally and non-verbally as
seein in Chapter 4. In the implementation study, participants also used verbal com-
munication when describing their movements to their peers during the ideation
phase, but we observed silent periods of embodied thinking during their time with
the computer in Chapter 5. The fact that participants were silent in the embod-
ied thinking instances we observed doesn’t mean that they were not ‘speaking’ to
themselves while thinking and gesturing, and rather they might have not displayed
any evidence of verbally grounded thinking because talking to the computer is, not
only irrelevant, but socially awkward in a shared working environment. We don’t
know if this was the case, but there is room for future research investigating the
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potential verbal and non-verbal relationship during embodied cognition and game
creation.

Still, if we assumed that there was indeed some relationship, and this is just spec-
ulation, we could look into real-life instances where this relationship was present.
For example, if we look at the way dance instructors teach their students, it is not
enough for the instructor to physically demonstrate dance moves, but they need to
verbally explain the steps and how each of them connect together in a sequence.
Likewise, it is not enough for the students to only practise the physical movements,
but also they benefit from verbally asking questions and engaging with other stu-
dents in loops of verbal and non-verbal demonstrations to correctly understand the
dance moves. Hence, assuming that embodied cognition is both grounded in the
body and speech, we could further enhance embodied development processes to
also include verbal signals. Game creators could implement movement interactions
in the same way that they ideated them, doing physical demonstrations accompa-
nied with verbal explanations. This could therefore reduce the friction originating
from the interaction with a visual interface, and could potentially refer to the “di-
alogue” that participants understood from their interaction with their classifiers
(Chapter 5).

This is a very exciting idea, and it can drastically enhance the previously suggested
embodied interventions in animation, camera, particle and object interactions. Cre-
ators could verbally explain to the computer the qualities of their movements, and
verbally and non-verbally correct the computer inferred outputs when they don’t
match their expectations. For example, an animation could be physically demon-
strated together with labels and the order the movement in the sequence. Camera
behaviour can be generalised mixing verbal and non-verbal demonstrations (e.g.
‘the camera needs to zoom onto the character, and then move in this way for a
dramatic effect [the user physically moves the virtual camera]’). Particle emission
attributes such as colour, size, or rate of emission can be detailed through verbal
explanations as the gestural strokes are demonstrated, and correspondingly with
object placement in the virtual scene (e.g. the user describes that a street should be
created in front of him, and physically gestures in which way crossings and traffic
should go). Embodied 3D model generation could be enhanced via verbal descrip-
tions. For instance, the user moves as a monkey and verbally describes what colour
the monkey should be or points to some areas of their body and specifies additions
like ‘place an armour here’ or ‘remove the hair here and place a tattoo of a red
rose’. Furthermore, embodied audio generation could be explicitly instructed ver-
bally (i.e. the user moves and explains how they want piano notes matching upper
body movement and a violin lower body), or imitate sounds or instruments (i.e.
humming) as they move to generate more nuanced audio from their motion.

Additionally, this multimodal embodied development process could even help to
program the behaviour of game playing agents via multimodal reinforcement learn-
ing demonstrations, in a reminiscent manner of how people would teach pets how to
behave. Users could point to a location, say ‘walk there this way’ and then proceed
to physically demonstrate how the game playing agent should walk. Likewise, if
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the agent should behave more believably, the user could verbally correct the agent
saying ‘not like, you should look into the eyes of your speaker as you are listening
but not too deeply, like this’ then proceed to demonstrate gaze behaviours. Theoret-
ically, any sort of behaviour could be described following the suggested multimodal
embodied development process, such as algebra [229] or the original example of
dancing.

6.4.3 Collaborative Multimodal Embodied Development

Moreover, we can speculate that for these multimodal embodied development meth-
ods to really ‘shine’ they should be extended to support collaborative work. Since
we saw how much potential there was for embodied ideation in SocialVR in Chap-
ter 4, we can translate the benefits of co-location and smoother communication
into IML. Thus, as creators collaboratively bodystorm and explain to each other
how their movement interactions would feel like, they can collaboratively construct
machine learning models on-the-fly to genuinely feel whether their ideas match
their expectations. Creators could easily modify their creations just by giving ver-
bal corrections and body demonstrations, equivalently to how a couple of dance
instructors collaborate to teach a students about the choreography.

We believe that this is where the methodology should head in the future, hence
blurring the lines between collaborative embodied ideation and multimodal em-
bodied implementation into one flexible methodology grounded in the body and
mind. Future research could investigate (a) which mediums are better suited for
collaborative multimodal embodied development (e.g.. How in-person interventions
compare to the technological ‘magicality’ of SocialVR?), (b) which algorithms can
better support two or more creators steering IML models simultaneously, (c) how
participants’ mature their mental models of their IML models via iterative collabo-
rative embodied development, and (d) what collaborative debugging strategies do
participants follow.

6.5 Conclusion

This thesis has explored how a novel in-engine IML design process and tool –In-
teractML–support game creators designing and implementing motion controls in
VR. Our findings suggests that the tool was successful in facilitating the creation
of movement-focused interactions. Furthermore, we found that designing for VR
is better done in VR, supporting an in-medium embodied creative reflection loop
where the affordances of VR, the movement ideas and the IML system can be bod-
ily explored. We additionally found that there is a social embodied cognitive di-
mension to embodied interaction design, where creators bodily co-create with each
other or bodily interpret each other IML systems. Lastly, we found that the IML
logic of movement computation clashes with creators’ embodied understanding of
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their own movement, with a dissonance with the creator first-person lived body
experience and the machine third-person computational processing.

We hope that the work presented in this thesis helps to focus future research on
deployment and evaluations of our tool and methodology in game studios and can
help bring a new paradigm of game motion control design.
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