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Abstract 

Forests are vitally important for the World to achieve carbon neutrality as called for in the 

Paris Agreement under the United Nations Framework Convention on Climate Change 

(UNFCCC). This thesis explores existing challenges in integrating global maps derived 

from satellite-based Earth observation to quantifying forest dynamics and fluxes 

(hereafter 'EO products') in national reporting to the UNFCCC. Focusing on developing 

tropical countries this thesis reveals a notable underutilization of EO products in national 

reporting (Chapter 2).  

Chapters 3 and 4 delve into this low uptake, revealing striking divergences in 

deforestation maps, in its magnitude and spatial distribution (Chapter 3), and identify 

large omission and commission errors linked to shifting agriculture (Chapter 4). While 

combining maps can improve the accuracy of deforestation estimates, large errors 

remain. However, correcting the estimates with a reference sample renders relatively 

similar area estimates regardless of the map used to stratify the sample (Chapter 4). 

Using the maps for stratification is one of the practical demonstrations of how the EO 

products are ingested in national monitoring systems with such examples of uptake 

occurring mainly in the reporting of African States and Least Developed Countries 

(Chapter 2).  

This thesis emphasizes the complexities of accurately mapping deforestation in tropical 

dry forests and concludes that EO products are not as widely employed nor as accurate 

as perceived within the EO community. The results from this thesis call for a stronger 

collaboration between national and global land monitoring experts to address the existing 

disconnect between the available EO products and the requirements of the IPCC 

Guidelines. By supporting the measurement reporting and verification capacity of Parties 

to the UNFCCC, the EO community fills an important information gap to both the national 

and global (Global Stocktake) understanding of land use carbon fluxes and trends. 
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1. Chapter 1: Introduction 

1.1 The bigger picture and motivation for this thesis 

The climate crisis is the major challenge humanity is facing during this century (IPCC, 

2023; UNEP, 2023). Under the United Nations Framework Convention on Climate 

Change (UNFCCC), all countries, developed and developing, large and small, are 

making policy decisions to address this challenge and strive for a universal shift towards 

a low carbon future. Forests are vitally important to support this transition to carbon 

neutrality as they are the only proven large-scale carbon removal technology that is 

available to compensate part of our fossil fuel emissions in the most immediate years of 

transition (Mo et al., 2023; Anderson et al., 2023). In the future, forests and land use will 

also continue to play an important role to compensate unavoidable emissions from the 

remaining sectors. But accurate and timely information on forest and land use GHG 

fluxes is required to plan mitigation actions and align ambition with reality (Korosuo et 

al., 2023). 

Satellite Earth observations (EO) have great potential to support more accurate and 

complete estimates of land use GHG fluxes at national and global scales by providing 

information that is consistent over space and time and by covering all of the Earth’s 

surface, including remote and inaccessible forests in the tropical biome (Defries et al., 

2007; Achard and House, 2015; Romijn et al., 2018; Herold et al., 2019; GFOI, 2020). 

Accordingly, EO products are used in global estimates of carbon fluxes from land in 

satellite-based studies (Baccini et al., 2017; Harris et al., 2021; Chevallier, 2021; Feng 

et al., 2022), and in the three bookkeeping models H&N (Houghton and Nassikas, 2017), 

BLUE (Hansis et al., 2015) and OSCAR (Gasser et al., 2020) that contribute to the Global 

Stocktake through the IPCC assessment reports (AR; IPCC, 2022). Furthermore, large 

investments continue to be made by the international Space Agencies to support space-

based observations of the land sector. Such data directly supports UNFCCC processed 

such as the reducing emissions from deforestation and forest degradation in tropical 

countries (REDD+) (e.g. Goetz et al., 2015) and the Global Stocktake (Ochiai et al., 2023; 

Poulter et al., 2023). 

The first Global Stocktake ran during 2021-2023 and will now be repeated in 5-year 

cycles to assess the collective, continual progress in achieving the objectives of the Paris 

Agreement. This process uses information on GHG fluxes from the models in the IPCC 

ARs and also aggregated information from national GHG inventories (NGHGI) submitted 

by nations to the UNFCCC (UNFCCC, 2019a; Decision 19/CMA.1, para 37). However, 
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for the process to be effective in informing policy makers on the role of forests and land 

use in achieving carbon neutrality, the high levels of uncertainty (Friedlingstein et al, 

2023) and large divergence of the GHG flux estimates from different sources, both in 

terms of its trends and magnitude, must be reduced or explained (Grassi et al 2023; 

Heinrich et al 2023a, Gidden et al 2023). 

An example of this large divergence in magnitude and trends can ironically be found in 

the history of the Global Carbon Budget (GCB), a key “living document” for carbon-cycle 

researchers, that provides a historic record of changes in the state of carbon cycle 

science. Firstly, a reversal in the trend was observed between GCB2020 and the budgets 

of the subsequent years (Figure 1-1). Secondly, the annual CO2 emissions trend from 

land use change (ELUC component) shows a large variability among the three 

bookkeeping models, with H&N showing a decreasing trend while BLUE and OSCAR 

show an increasing emissions from land-use change, or ELUC (from the latest IPCC 

assessment report, AR6, Figure 1-2). Comparing the estimates from the bookkeeping 

models used in the IPCC 6th Assessment Report and in the first Global Stocktake 

(GCB2020, IPCC AR6, Figure 1-2) with those from the global aggregation of NGHGIs, 

highlights a large difference and an opposite sign between the estimates, with the 

NGHGIs presenting the LULUCF sector as a small increasing carbon sink (negative sign) 

and the average of the bookkeeping models reporting this sector as an increasing large 

source (positive sign). 

 
Figure 1-1 Differences in the estimates of emissions from land use change between GCB2020 (left) 
(Friedlingstein et al., 2020) and the most recent GCB2023 (right) (Friedlingstein et al., 2023). Note the 
variability shown is not the uncertainty of the models but the variability from the estimates of the three 
bookkeeping models BLUE, H&N and OSCAR. 
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Figure 1-2 Estimates of global anthropogenic GHG emissions from different data sources for the period 
1970–2019. Source: Figure 2.2b from the IPCC AR6. The estimates from the three bookkeeping models 
(BLUE, OSCAR and H&N) are those from the GCB2020 depicting on average an increasing trend of 
emissions from land use. Source of NGHGI is Grassi et al. (2021). 

The apparently contradictory estimates and large mismatch between the average of the 

bookkeeping models (version GCB2023) and the aggregation of NGHGI is quantified as 

a staggering 6.7 GtCO2yr-1 (Grassi et al., 2023). This large gap, which is greater than the 

current fossil fuel emissions of the USA (Friedlingstein et al 2023), can be mainly 

explained by conceptual differences in how the two sources of information estimate the 

anthropogenic and natural land CO2 fluxes. Grassi et al. (2023) reconcile this difference 

by adding part of the sinks estimated by DGVMs to the bookkeeping models so that the 

GCB and IPCC ARs are comparable to the aggregation of NGHGIs when assessing 

progress under the Global Stocktake of the Paris Agreement.  

So far, the independent estimates of global GHG flux models based primarily on EO 

products to quantify forest dynamics and carbon fluxes (Harris et al., 2021; Feng et al., 

2022), are not contributing to adding clarity to our understanding of land use CO2 flux 

estimates and the mitigation role of forests (Figure 1-3). The 2001 to 2020 global 

average net emissions from forests and forest conversion (gross emissions plus gross 

removals; not including emissions and removals from other land use categories such as 

croplands and grasslands) from Harris et al. (2021) in Heinrich et al. (2023a) is estimated 

as a large net sink of -6.7 GtCO2yr-1. It represents a difference of 4.8 GtCO2yr-1 compared 

to the aggregated NGHGIs for LULUCF, or 11.5 GtCO2yr-1 compared to the average of 

bookkeeping models for ELUC, which is comparable to the fossil fuel emissions of China 

(Friedlingstein et al 2023).  

Similar discrepancies emerge when focusing on the most fundamental issue of 

estimating emissions from deforestation in the tropics. Feng et al. (2022) used different 

high-resolution satellite datasets, including the Hansen et al. (2013) global forest change 

(GFC) dataset also used by Harris et al. (2012), to show a doubling of gross tropical 

forest carbon loss from 0.97 ± 0.16 PgC yr−1 (or 3.6 ± 0.6 GtCO2yr-1) in 2001–2005 to 
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1.99 ± 0.13 PgC yr−1 (or 7.3 ± 0.5 GtCO2yr-1) in 2015–2019. Although the magnitude of 

emissions from deforestation is of the same order of magnitude of the aggregated 

emissions from deforestation in Non-Annex I Parties to the UNFCCC (including all 

tropical countries from the study but also China, Mongolia, Southern Africa and Southern 

South America), the trend is opposite (Figure 1-4). The Feng et al. (2022) increasing 

trend in emissions from deforestation is consistent with Harris et al. (2012), and the IPCC 

AR6 (IPCC, 2022) (Figure 1-2) using data from the GCB2020 (Friedlingstein et al., 

2020). However, it is contrasting to the slightly decreasing trend from the aggregation of 

NGHGI, from the average of bookkeeping models in the GCB2023 and other pan-tropical 

studies (e.g., Vancutsem et al., 2021).  

 
Figure 1-3 Global net CO2 flux due to land use (LULUCF) calculated by different datasets, including the 
Global Earth Observation dataset from Harris et al. (2021) as the sum of the gross emissions and gross 
removals in non-intact forests. Source: Figure 1 from Heinrich et al. (2023a). 
 

 
Figure 1-4 Comparison of emissions from deforestation from the last two decades (2000-2020) 1) in the 
tropics from the study of Feng et al. (2022) based on data from the Global Forest Change dataset (Hansen 
et al., 2013) and using a stratified random-sample approach (left figure), and 2) in non-Annex I Parties to the 
UNFCCC as the aggregation of emissions from deforestation from national GHG inventories. Sources: 
Figure 1 from Feng et al. (2022) and adapted Figure 2b from Grassi et al. (2022). 
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Vancutsem et al (2021) do not document fluxes, but areas of deforestation, forest 

degradation and recovery of global tropical moist forests (TMF) over the past three 

decades (TMF dataset). The authors compare the TMF areas of deforestation with the 

GFC (Hansen et al., 2013) and note the TMF depicts 61.4% more deforested area than 

the GFC for the 2001-2010 decade but, for the 2010-2019 decade, the GFC maps as 

forest loss all the deforestation areas in TMF plus 5.7% of the areas mapped in TMF as 

forest degradation. This sharp increase in detected forest loss between the two decades 

by the GFC was highlighted in other studies as well (Galiatsatos et al., 2020; Palahi et 

al., 2021; Ceccherini et al., 2021). The different definitions and approaches used by 

these datasets must be considered when explaining the differences with NGHGI. The 

TMF (Vancutsem et al., 2021) shows a marked increase in forest degradation in recent 

years. The GFC (Hansen et al., 2013) does not map forest degradation, only tree cover 

loss, including harvest (Ceccherini et al., 2020). However, harvest is reported in NGHGI 

in the category forest land remaining forest land, and not in a forest conversion category, 

and therefore is not included in the class “deforestation” in Grassi et al. (2022) (Figure 

1-4).  

The writing of this thesis ends at the same time as the conclusion of the first Global 

Stocktake, a mechanism under the Paris Agreement to course correct and reflect 

urgency to address ambition and implementation gaps (UNFCCC, 2019a). According to 

the synthesis report prepared by the co-facilitators of the technical dialogues of the 

Global Stocktake, “around half of net AFOLU emissions result from land-use change: 

predominantly CO2 from deforestation” and “despite a decline in deforestation since 

2000, the rate remains high, with 95 per cent of global deforestation occurring in the 

tropics but incentivized by consumers globally” (UNFCCC, 2023a). This observation 

contrasts to that of many sources of information from the EO community, who seem to 

be unable to agree on the fundamental question “has deforestation increased or 

decreased in the past 20 years?”. The apparent disconnect between the EO community 

and the processes under the UNFCCC raises the overarching questions:  

 

Why do we get conflicting estimates from the aggregation of land carbon fluxes 

from GHG inventories submitted to the UNFCCC and independent global 

estimates from EO products? 

 

How has the EO community contributed to the first Global Stocktake if their 

estimates of land carbon fluxes diverge from the conclusions from the Global 

Stocktake? 
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These are the wider questions this thesis will address and contribute to. They are of 

particular relevance to tropical developing countries where EO products have for long 

been expected to substantially bolster the understanding, and reduce the uncertainty, of 

historical emissions from deforestation. 

Box 1.1. Additional motivation for this study 

For most of the time of my PhD studies I was funded by the Natural Environment 

Research Council (NERC, UK), through the Leeds–York NERC Doctoral Training 

Partnership. NERC encourages and invites researchers to apply for work placements 

during their doctoral training programs. In this context, in 2017, I was on placement at 

the UNFCCC secretariat in Bonn (Germany), in the transparency division, AFOLU unit. 

My responsibilities included compiling data from REDD+ reference levels, identifying 

main insights and trends in methods used by Parties in their submission, and supporting 

programme officers during the climate change conference (COP23). The insight I gained 

on UNFCCC processes was invaluable. Following my work placement, I was nominated 

to the Roster of UNFCCC experts by the national focal point of Guinea-Bissau with whom 

I had worked with for many years prior to my PhD and continued to work with throughout 

my PhD. My work placement and longstanding collaboration with Guinea-Bissau steered 

my research interests to contributing to the objectives of and processes under the 

UNFCCC, and to exploring the existing opportunities provided by the EO community to 

level out the playing field in forest monitoring and MRV by supporting developing 

countries who don’t have accurate in-house data or forest monitoring capacity to comply 

with the requirements of the Paris Agreement and effectively plan mitigation actions in 

the forest and land use sector.  
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1.2 Key definitions 

In the previous background section 1.1, which sets the motivation for this thesis, some 

terms were introduced, such as “EO data”, “EO products” and “EO community”. Because 

these are key terms used throughout this thesis, this section of the introduction defines 

them, or clarified their meaning. "Earth observations" (EO) is a commonly accepted term 

within the field of remote sensing for describing the use of satellite data to study the 

Earth. Satellites do not directly "observe" the surface of the Earth, they detect and 

measure electromagnetic radiation emitted or reflected by objects on the Earth’s surface 

which are then processed to create images. Consequently, EO is considered by some 

scientists to be an inaccurate designation. Nevertheless, it is a simplification adopted in 

this thesis when referring to: 

- “EO data” as satellite imagery, for example Landsat scenes or mosaics, or very-

high resolution imagery available in Google Earth;  

- “EO products” as analytical products derived from satellite data, such as land 

cover or tree cover maps, or biomass maps; 

- “EO community” as the diverse group of stakeholders involved in the collection 

and analysis of EO data, and development of EO products, including Space 

Agencies, remote sensing scientists and researchers. 

The overarching questions raised in section 1.1 above link these key terms on EO with 

the needs of governments and national technical teams of tropical countries, which are 

the main actors in this thesis. Some terms related to this group of actors, such as 

“deforestation”, “LULUCF”, “REDD+”, the “Global Stocktake”, are discussed in the 

following section 1.3. This is then followed by two sections (1.4 and 1.5) with a description 

of ongoing efforts and opportunities envisioned by the EO community to better support 

the UNFCCC processes, and a literature review on EO stakeholders developing global 

to pantropical EO products to include more detail on the existing maps. These last two 

sections introduce the other main group of actors in this thesis, the EO community 

wishing to assist UNFCCC processes. 

1.3 Forests and land use under the UNFCCC and its Paris 

Agreement 

The academic and scientific communities are generally somewhat disconnected from 

policy (Oliver and Cairney 2019, Findlater et al 2021). This section of the introduction will 

therefore briefly describe the policy background and the modalities and guidelines 
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countries use in preparing their NGHGI and in reporting to the UNFCCC. It builds on the 

reflections from the previous section related to the discrepancies in the data from 

different sources which, in theory, are measuring the same thing – land dynamics and 

GHG fluxes from the land sector – and with the same objective of informing the UNFCCC 

and its Global Stocktake.  

In 2015 a near universal agreement was achieved under the UNFCCC. By signing the 

Paris Agreement, countries agreed to limit global warming to below 2.0°C or 1.5°C above 

pre-industrial levels and to reach GHG neutrality in the second half of the century 

(UNFCCC, 2015). These objectives are to be achieved through the implementation of 

national climate plans, or nationally determined contributions (NDCs). The Paris 

Agreement has an emphasis on transparency and includes a new set of rules for 

measurement, reporting and verification (MRV) applicable to all Parties (UNFCCC, 

2019b). The enhanced transparency framework (Article 13 of the Paris Agreement; 

UNFCCC, 2015), which supersedes the previous MRV arrangements, establishes that 

each Party is to regularly provide a national inventory report of anthropogenic emissions 

by sources and removals by sinks of GHGs (NGHGI). Among other contributions, the 

NGHGIs submitted to the UNFCCC enable the availability of regular and up to date 

quantitative information on domestic GHG emissions and removals, and of the progress 

towards meeting domestic targets of the NDCs. In 5-year cycles, such information is also 

aggregated to provide a collective view through the Global Stocktake process (UNFCCC, 

2019a).  

Forests cover approximately 4 billion hectares, or one third of the Earth’s land surface, 

with 45% located in the tropics (FAO, 2020). Net CO2 emissions from land-use change 

(mainly deforestation) accounted for about 11% of anthropogenic CO2 emissions in the 

last decade (IPCC, 2022). According to the IPCC AR6, after solar energy, reducing 

deforestation is the mitigation option with the largest potential contribution to net 

emission reduction by 2030 (IPCC, 2022). At the same time, forests can act as a powerful 

sink working as an efficient, safe, natural, long-lasting and cost-effective carbon capture 

and storage technology (Mo et al., 2023; Heinrich et al., 2023b; Cook-Patton et al., 2020). 

As of September 2022, 54% of the submitted NDCs mentioned the mitigation measures 

afforestation, reforestation and revegetation (UNFCCC, 2022). Other terrestrial systems 

in addition to forest land, such as croplands, grasslands, wetlands, trees outside forests 

such as tree crops and urban trees, are all part of land use, land use change and forestry 

(LULUCF) and can also play an important role in climate change mitigation (Skole et al., 

2021; Hart et al., 2023). In some of these cases, most of the carbon stocks are found in 

the below-ground plant organic matter and soil.  
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Consequently, mitigation actions in the land use, land use change and forestry (LULUCF) 

sector are strategically important to achieve the long-term goal of the Paris Agreement 

(UNFCCC, 2015; Den Elzen et al., 2022; UNFCCC, 2023a; IPCC, 2023). It is therefore 

not surprising that the sector plays a key role in the pledges made by many countries 

towards meeting the Paris Agreement targets with 43% of Parties including related 

quantitative mitigation targets in their NDCs (UNFCCC, 2022; Grassi et al., 2017). 

1.3.1. So, what exactly is LULUCF? 

Land use, land use change and forestry (LULUCF) is one of the sectors in the national 

GHG inventory (NGHGi), it is the land component of AFOLU (Agriculture, forestry and 

other land use) and is reported in the NGHGi separately from agriculture. While the 2006 

IPCC Guidelines refer to AFOLU as a single sector (IPCC, 2006), the rules for the 

transparency framework (MPGs) (UNFCCC, 2019b) refer to the agriculture sector and 

the LULUCF sector separately. For reporting to the UNFCCC, the MPGs take 

precedence. Agriculture in the NGHGi refers to GHG emissions mainly from livestock, 

fertilizers and burning of crop residues, while LULUCF covers all anthropogenic 

emissions and removals from lands in a land-based approach.  

Understanding how reporting GHG fluxes from LULUCF works, how the sector is split in 

categories of land use and land use change (Table 1.1), helps understanding where 

possible divergences with independent estimates can occur (as mentioned in chapter 

1.1). To handle and present the data in a way that makes sense to the users under the 

UNFCCC, the latest global carbon budget (GCB2023; Friedlingstein et al 2023) includes 

a section splitting the land use (ELUC) components to partially map the global models’ 

fluxes to the categories in the NGHGi. Sources and sinks are presented aggregated into 

(i) gross sources from deforestation; (ii) afforestation, reafforestation, and wood harvest; 

(iii) emissions from organic soils (peat drainage and peat fire); and (iv) sources and sinks 

related to other land-use transitions. In addition, in one of the appendices, the authors 

add part of the land sinks component (SLAND) in managed forest from the DGVM 

simulations to ELUC estimates (following Grassi et al., 2021) to the bookkeeping ELUC 

estimate.  

Understanding these categories is important because they affect the comparability of the 

results with values calculated using different approaches. For example, it is not 

straightforward to link the maps and estimates of “forest net fluxes” and “gross 

emissions” and “gross removals” from the global EO flux model of Harris et al (2021) to 

the IPCC categories in the NGHGI. For example, the “net forest GHG fluxes” in the EO 

flux model corresponds in the NGHGI to GHG fluxes in the categories “Forest Land” but 
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also on the sub-categories “Forest Land converted to Cropland” (which is reported in the 

Cropland main category), “Forest Land converted to Grassland” (in the Grassland main 

category), “Forest Land converted to Wetlands” (in the Wetlands main category), “Forest 

Land converted to Settlement” (in the Settlement main category) and Forest Land 

converted to Other land” (in the Other Land main category), depending on the post-

deforestation land use in the EO flux model for each Landsat pixel. Furthermore, the 

LULUCF net fluxes in the NGHGI may also include sinks from other land use categories 

and therefore it is not comparable with the net fluxes from the EO flux model – this is 

stated by the authors (Harris et al., 2021) but may be confusing to readers of these 

papers. 

Table 1.1 IPCC categories for the land use, land use change and forestry (LULUCF) sector used in GHG 
inventories reported to the UNFCCC mapped to the variables used in the Global Carbon Budget (2023) and 
the Global Earth Observations flux model from Harris et al (2021) to identify which LULUCF categories are 
covered and where they are presented in the other two datasets. 

IPCC land-use categories and sub-categories Global Carbon Budget (2023) Global EO flux model (Harris et al) 

forest land remaining forest land (4.A.1.) SLAND (land sinks)  
ELUC (harvest, forest degradation, 
reforestation, fallow of shifting 
agriculture cycles) 

Gross losses (harvest) 
Gross removals (forest land remaining 
forest land) 

land converted to forest land (4.A.2.a-e) ELUC (afforestation) Gross removals (from forest gain) 

cropland remaining cropland (4.B.1.) ELUC (other transitions) 
 

n.a. 

land converted to cropland (4.B.2.)   
forest land converted to cropland (4.B.2.a) ELUC (deforestation) Gross losses (deforestation) 

other land uses converted to cropland (4.B.2.b-e) ELUC (other transitions) n.a. 

grassland remaining grassland (4.C.1.) ELUC (other transitions) n.a. 

land converted to grassland (4.C.2.)   

  forest land converted to grassland (4.C.2.a) ELUC (deforestation) Gross losses (deforestation) 
other land uses converted to grassland (4.C.2.b-e) ELUC (other transitions) n.a. 

wetlands remaining wetlands (4.D.1.) ELUC (other transitions) n.a. 

land converted to wetlands (4.D.2.)   
  forest land converted to wetlands (4.D.2.a) ELUC (deforestation) Gross losses (deforestation) 

other land uses converted to wetlands (4.D.2.b-e) ELUC (other transitions) n.a. 

settlements remaining settlements (4.E.1.) ELUC (other transitions) n.a. 

land converted to settlements (4.E.2.)   

  forest land converted to settlements (4.E.2.a) ELUC (deforestation) Gross losses (deforestation) 

other land uses converted to settlements (4.E.2.b-e) ELUC (other transitions) n.a. 

other land remaining other land (4.F.1.) ELUC (other transitions) n.a. 

land converted to other land (4.F.2.)   

  forest land converted to other land (4.F.2.a) ELUC (deforestation) Gross losses (deforestation) 

other land uses converted to other land (4.F.2.b-e) ELUC (other transitions) n.a. 

1.3.2. REDD+ 

Reducing emissions from deforestation and forest degradation in developing countries 

(REDD+) is a framework established under the UNFCCC for the implementation of 

activities to reduce GHG emissions from forests. These activities are to be implemented 

by national governments, at the national level, and in the context of results-based 

payments. Since the Warsaw Framework for REDD+ was agreed in COP 19, held in 

2013 (UNFCCC, 2014), 60 developing countries have submitted at least one REDD+ 
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Forest Reference Level / Forest Reference Emission Level (FRL/FREL) as benchmark 

for assessing performance in implementing REDD+ activities. To date, the submitted 

FRL/FRELs collectively cover a forest area of over 1.5 billion ha (over 1/3 of global forest 

area). The Paris Agreement reemphasizes in its Article 5 the importance of the existing 

efforts to mitigate climate change through land use activities, including those related to 

forests and REDD+. REDD+ is therefore a component of the Paris Agreement and 

REDD+ activities can be included in the NDCs. REDD+ results are submitted as an 

Annex to the biennial update report (BUR; 19 Parties have submitted REDD+ Annexes 

to the BUR so far). The BURs, which include the GHG inventory, are the main source of 

information to the collective view under the Global Stocktake. 

Furthermore, REDD+ decisions establish that the data, methodologies and procedures 

used in FRL/FRELs should be consistent with corresponding anthropogenic forest 

related GHG emissions by sources and removals by sinks as contained in the national 

GHG inventory. Although methodologies are often not yet harmonized between REDD+ 

and GHGi, countries are working towards that objective. Accordingly, REDD+ activities 

(deforestation, forest degradation, sustainable management of forests and the 

conservation and enhancement of forest carbon stocks) can be mapped to the IPCC 

categories (see Table A.1.1) and many submissions already adopt a land based 

approach in their FRL/FRELs that allows an easy mapping between REDD+ FRL/FREL 

and their NGHGI. The REDD+ Framework, and the REDD+ Readiness investment from 

multilateral and bilateral arrangements triggered by it, has in fact substantially 

contributed to building national MRV capacity in developing countries and supporting 

them in the transition to the more stringent reporting requirements of the Paris 

Agreement (Federici et al., 2017; Grainger and Kim, 2020). For example, more than half 

of these countries submitted a FRL/FREL before their first NGHGI in the biennial update 

report (BUR; 53%) (UNFCCC, 2023b, 2023c). Going through the technical assessment 

process under the UNFCCC helps to build such MRV capacity and REDD+ submissions 

are typically more detailed, more complete and more transparent than national 

communications and even BURs (Grainger and Kim, 2020; Grassi et al., 2022). 

Accordingly, in their database of LULUCF CO2 fluxes of countries submissions, Grassi 

et al. (2022), prioritise the most recent data source but also take into account the 

completeness of information and select REDD+ as data source in 22 countries because 

the data was more recent and complete. 

1.3.3. The IPCC guidelines, methods and variables 

The IPCC provides internationally agreed methodologies for assessing and reporting on 

GHG emissions and removals. Under the enhanced transparency framework 
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arrangements, all countries ”shall” use the 2006 IPCC Guidelines (IPCC, 2006), 

complemented by the 2019 refinement (IPCC, 2019), to prepare their NGHGI. This is 

different from the previous MRV arrangements where developing countries can still 

select any previous IPCC methodology. The simplest methodological approach to 

estimating emissions and removals is to combine information on the extent to which a 

human activity takes place (activity data or AD) with coefficients which quantify the 

emissions or removals per unit activity (emission/removal factors or EF/RF). For 

emissions from land use change this is given as:  

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (𝑡𝐶𝑂2𝑒 𝑦𝑟−1) = 𝐴𝐷 (ℎ𝑎 𝑦𝑟−1) × 𝐸𝐹(𝑡𝐶𝑂2𝑒 ℎ𝑎−1)  

Estimating changes in carbon pools and fluxes depends on national circumstances such 

as data and model availability, as well as resources and capacity to collect and analyse 

that information. According to IPCC guidance, moving to higher tiers improves the GHG 

inventory by reducing the uncertainty of the estimates (IPCC, 2019). Tier 1 methods are 

designed to be the simplest to use and default values are provided for estimating country-

specific carbon stocks using globally available sources. Tier 2 can use the same 

methodological approach as Tier 1 but country- or regional-specific input data, such as 

emission factors that are more appropriate for the climatic regions and land-use systems 

in that country. Higher order methods are used in Tier 3 together with high-resolution 

data (spatial and temporal) disaggregated at sub-national level. Any model used in Tier 

3 needs to be validated and thoroughly documented. These higher order methods 

provide estimates of greater certainty than lower tiers. However, the complexity of the 

infrastructure and resources required to conduct the inventories also increases with 

higher tiers. The 2019 IPCC refinement recognizes the role of remote sensing as a 

possible source of data in delivering GHG inventories for both the AD and EF 

components, and has a new section with guidance on the use of biomass density maps 

for national GHG inventories (IPCC, 2019; Herold et al., 2019). 

Following IPCC guidance, two methods can be used to estimate the changes in carbon 

stock in forest lands remaining forest lands, and forest land conversion to and from other 

land use categories: gain-loss or stock-difference. The chosen method and some of the 

variables used in those methods (Table 1.2) determine the requirements in terms of 

characteristics of the data. The default gain-loss method estimates the net balance of 

additions to and removals from a carbon stock in all land-use categories. For example, 

changes in biomass carbon stocks on forest land i converted to cropland j are estimated 

by the difference between the biomass stocks of the forest type i before and immediately 

after the conversion (BAFTERi - BBEFOREi, t d.m. ha-1yr-1) multiplied by the area change of 

forest type i to crop j (ADij, ha yr-1; i and j are country specific strata). The initial change 
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in biomass stock is increased by the average annual biomass growth (ΔCG) and 

decreased by the average annual biomass losses in crop j (ΔCL, t d.m.ha-1yr-1) on the 

land in the year of conversion (t d.m. ha-1yr-1). The alternative method is stock-difference, 

where carbon stocks are measured at two points in time to assess carbon stock changes 

(keeping the area of land in that category at times t1 and t2 identical). In this method, if 

using plot data (in t d.m. ha-1), the value is then multiplied by the total area within each 

stratum to obtain the total stock change estimate.  

The decision on which approach to use is based on the availability of data, with most 

GHG inventories submitted to the UNFCCC using the default gain-loss approach. When 

national data is not available, Tier 1 methods are applied and default values are used. 

For forest land, for example, the IPCC Guidelines provided default values for estimating 

the variables for the gain-loss method using globally available sources, distinguishing 

climate domain, ecological zone, continent, forest age structure, and for plantation or 

natural forests. However, for key categories, or categories with significant influence on a 

country’s total inventory of GHG in terms of absolute level, more advanced methods 

should be chosen (Tier 2, 3). 

Table 1.2 Variables used in the IPCC equations for estimating carbon stock changes in the AFOLU sector 
(Volume 4, Chapter 3, IPCC 2006). The first five variables correspond to the gain-loss method while the last 
two are used in the stock-difference method. [table also included in Poulter et al (2023) and in Supplementary 
information of Hunka et al (2023)] 

Variable Description 
Equation from the 
IPCC 2006 Guidelines 

BAFTERi biomass stocks on land type i immediately after the conversion, t d.m. ha-1 Equation 2.16 
BBEFOREi biomass stocks on land type i before the conversion, t d.m. ha-1 Equation 2.16 
ADij area of land remaining in the same land-use category, or area of land use i converted 

to land-use j in a certain year, ha yr-1 
Equation 2.9,  

ΔCG annual increase in carbon stocks in biomass due to growth on land converted to 
another land-use category or in land remaining in the same land-use category by 
vegetation type and climatic zone, in t C yr-1 

Equation 2.7, 2.9 

ΔCL annual decrease in biomass carbon stocks due to losses from harvesting, fuel wood 
gathering and disturbances on land converted to other land-use category or in land 
remaining in the same land-use category, in t C yr-1 

Equation 2.7, 2.11 

Ct1 carbon stock in the pool at time t1, t C Equation 2.5 and 2.8 
Ct2 carbon stock in the pool at time t2, t C Equation 2.5 and 2.8 

1.3.4. Perspectives of tropical countries 

When the UNFCCC entered into force in 1994, all the onus was put on developed 

countries to lead the way to stabilizing GHG concentrations "at a level that would prevent 

dangerous anthropogenic interference with the climate system". Industrialized countries 

were the source of most historical and current GHG emissions and, accordingly, were 

the ones expected to undertake most of the efforts to reduce their emissions to 1990 

levels. Existing MRV arrangements under the UNFCCC are more stringent for developed 

countries, and with such stringency came also a legacy of developed capacity on 

repeated national forest inventory measurements (NFIs), forest monitoring and MRV 
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(Nesha et al., 2022). Developing countries were encouraged to start submitting biennial 

reports only in 2014, and with a lot of flexibility and consideration for their respective 

capabilities. To date (as of December 2023), from the 155 developing country-Parties to 

the UNFCCC, 111 (72%) have either never submitted a biennial update report with a 

GHG inventory to the UNFCCC (n=56 or 36% of total) or have submitted only one report 

(n=55, 35%) (UNFCCC, 2023b, 2023c). At the same time, developed countries have 

been following standardized requirements for reporting national inventories annually 

since 2003 and are in their 5th biennial report using the 2006 IPCC guidelines and 

detailed common reporting format tables. 

While behind in MRV capacity, it is clear that a decade after the Warsaw Framework for 

REDD+ was adopted, and more than a decade of REDD+ momentum and REDD+ 

readiness investment played a crucial role in MRV and GHGi capacity in tropical 

countries (Federici et al., 2007; Nesha et al., 2021; FAO, 2022). REDD+ under the 

UNFCCC anticipated three phases (UNFCCC, 2011): Phase I, or readiness phase, 

including the development of national strategies or action plans and forest reference 

levels; Phase II consisting on the implementation of these plans which at this phase could 

be piloted at a subnational level; and phase III, where results-based actions are 

implemented and measured, reported and verified (UNFCCC, 2011; 2014). In parallel to, 

and in support of, the UN negotiations and decisions on REDD+, several multi- and bi-

lateral initiatives started mobilizing resources focusing on “readiness activities” (e.g., the 

World Bank Forest Carbon Partnership Facility (FCPF), and the UN Collaborative 

Programme UN-REDD) which enhanced MRV capacity. The Green Climate Fund (GCF) 

launched a pilot programme for results-based payments in 2017, but its envelope was 

depleted in 2020 (FAO, 2022). The World Bank FCPF’s Carbon Fund and other private 

jurisdictional REDD+ accounting standards emerged, providing new opportunities for 

countries engaged in REDD+ activities and seeking results-based payments. Although 

these standards build on UNFCCC MRV requirements they go beyond the UNFCCC 

MRV requirements, for example by including additional verification and determining 

countries’ choices when constructing their reference levels. 

With more than a decade of investment in REDD+ readiness and REDD+ MRV capacity, 

inequity persists. Firstly, countries from the African regional group and the group of least 

developed countries represent an almost negligible proportion of historical reported 

results and corresponding payments (FAO, 2022). This means the investment in REDD+ 

readiness was either lower in these UN groupings or less effective. Secondly, but linked 

with the lack of effectiveness factor, while financial assistance can help in enhancing 

capacity, adequate levels of monitoring capacity and data are not achieved immediately 

(Herold and Skutsch, 2011). It is therefore important to reflect on how the international 
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community and academia can assist countries that are currently being left behind in the 

transition to the more stringent reporting requirements of the Paris Agreement. One way 

of doing so, is by developing research to increase knowledge. National monitoring of 

land dynamic and associated carbon fluxes is essential to achieve result-based 

emissions-reduction (e.g., Gibbs et al., 2007; Joseph et al., 2013), as is understanding 

the drivers and causes of forest and biomass loss through space and time for the 

development of appropriate mitigation strategies. These complex but fundamental 

components can potentially benefit from existing capabilities of readily available EO data, 

methods and products. 

1.4 Space agencies and the EO community in support of the 

UNFCCC 

Space agencies and the Earth Observation (EO) community play a crucial role in 

monitoring the Earth surface and in supporting the UNFCCC. The Paris Agreement, 

particularly in its Article 7 on adaptation and Article 8 on loss and damage, identifies the 

need to enhance and strengthen systematic observation, climate services and 

knowledge sharing and that systematic observation and early warning systems are areas 

of cooperation and facilitation to enhance understanding, action and support. Satellites 

collect data on the land surface systematically in space and time, and therefore are also 

considered fundamental to provide a global overview of land dynamics and associated 

carbon stocks and fluxes (Baccini et al., 2017; Harris et al., 2021; Chevallier, 2021; Feng 

et al., 2022). Accordingly, the international EO community monitoring the land surface 

stepped up in support of the UNFCCC (Hegglin et al., 2022; Byrne et al., 2023) targeting 

mitigation and the AFOLU sector (Poulter et al., 2023; Ochiai et al., 2023; Chevallier, 

2021).  

For the processes under the UNFCCC and specifically the operationalization of the Paris 

Agreement, the availability of land carbon fluxes obtained from satellite data presents 

opportunities for the enhancement of NDCs, for national reporting under the Enhanced 

Transparency Framework (ETF, Art 13), for REDD+ (Art 5), and for the Global Stocktake 

(Art 14) (see blue path in Figure 1-5 and Table 2.1 in Chapter 2 to avoid duplication 

here). By supporting the completeness and timeliness of domestic NGHGI the EO 

community would contribute to a stronger Global Stocktake, informing policy makers on 

the effective role of forests and the land use sector in achieving the carbon neutrality 

objectives of the Paris Agreement. Figure 1-5 illustrates the wider scope of this thesis 

identifying the possible ways the EO community can contribute to processes under the 

UNFCCC, including the Global Stocktake. Because the Global Stocktake process is 



16 
 

Party-driven, it consists mostly of the analysis of the aggregation of country-Parties 

submissions (blue pathways) complemented with science from the IPCC assessment 

reports (ARs, brown pathway) and independent contributions (black pathway) (see 

UNFCCC 2019a, paragraph 37). The EO community can contribute through all these 

pathways. However, the focus of this thesis (yellow pathway) is on the specificities of the 

IPCC guidelines and UNFCCC modalities to ingest EO products in national reporting. 

Exploring if and how these products are ingested in national GHG inventory reporting 

can help answer the wider questions of this thesis i) why do we get conflicting estimates 

and ii) how has the EO community contributed to the Global Stocktake. 

 
Figure 1-5 Information flows between key actors contributing to the elements of the Paris Agreement of the 
UNFCCC and placing this thesis in a wider scope of understanding the contributions from the satellite Earth 
Observation (EO) community to the UNFCCC and its Global Stocktake. The arrows show possible ways the 
satellite community can support the implementation of the Paris Agreement. The blue arrows/pathways show 
possible support through the provision of satellite data and derived EO products to national teams preparing 
their submissions – nationally determined contributions (NDCs), forest reference levels and REDD+ results 
under the REDD+ framework, GHG inventories in the biennial transparency reports under the enhanced 
transparency framework. These three sources of data are then ingested in the Global Stocktake for a 
collective view. In the blue pathway, to prepare their submissions, national teams follow the methodological 
guidance developed by the IPCC Task Force on national GHG inventories. The EO community can also 
contribute to the science included in the IPCC assessment reports (ARs) (brown arrow/pathway), including 
the synthesis report and the independent reports from the three working groups [continues in next page…] 
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(WGI - Physical Science Basis of Climate Change; WGII - Climate Change Impacts, Adaptation and 
Vulnerability; WGIII with Mitigation of Climate Change) who serve as input to the Global Stocktake 
(UNFCCC, 2019a). Finally, according to the same decision 19/CMA1 (UNFCCC, 2019a) the EO community 
can contribute directly to the Global Stocktake with independent estimates (black arrow/pathway). This thesis 
focuses on the ways EO products can be used according to the IPCC Guidelines to produce estimates of 
emissions from deforestation which are used in all country submissions (NDCs, REDD+ and NGHGI). 

The EO community, including through the World Meteorological Organization (WMO), 

the Committee on Earth Observation Satellites (CEOS), and the Group on Earth 

Observations (GEO), has ongoing efforts and working groups to facilitate the 

coordination on data collection and research. For example, the WMO is taking the lead 

in coordinating an international effort to establish top-down GHG monitoring in support 

of the implementation of the Paris Agreement. The Global GHG Watch monitoring 

infrastructure (GGGW) (WMO, 2023) will rely on satellite and surface (airborne and in 

situ) atmospheric observations and include modelling and data assimilation capabilities 

in an integrated framework to provide estimates of total net GHG fluxes on a global scale 

but potentially useful at national scales. The ambition of the GGGW infrastructure 

includes the support to UNFCCC processes by delivering “actionable information that 

supports the Paris Agreement Global Stocktake and national government policy 

objectives” (WMO, 2023) (Figure 1-5) Given the complexities of the AFOLU sector, the 

existing prototypes (Chevallier, 2021; Deng et al., 2022; Byrne et al., 2023) indicate this 

is still very much an active research area. The estimates are given at a spatial scale that 

is too coarse, and any comparison attempt with NGHGI is only possible in very large, or 

aggregated, countries. The uncertainties are also very high. For example, Byrne et al 

(2023) overestimate CO2 fluxes for the EU+UK by over a GtCO2, and in Chevallier et al 

(2021), the uncertainties in some countries are more than 4GtCO2, which is an order of 

magnitude close to the fossil fuel emissions of the USA. Because of the issues with the 

large uncertainty ranges, the conclusion from these studies is that there is no significant 

difference between NGHGI and inversions. 

In parallel, CEOS has recently endorsed a roadmap to provide a framework for long-term 

(+15 years) coordination of space agencies observing programmes in support of the 

needs of society for AFOLU-related information, with a particular focus on the needs and 

ambition cycle of the Global Stocktake (Poulter et al., 2023). The AFOLU EO community 

does not use atmospheric measurements and inversions, but satellite-based 

measurements of the land surface and its structure. The large investments made by the 

space agencies to launch new missions dedicated to measuring land dynamics (e.g., 

with the continuation of programmes such as Landsat, Sentinel, MODIS), and forest 

structure and biomass (e.g., GEDI, BIOMASS, NISAR) (Quegan et al., 2019; Dubayah 

et al., 2020) have the potential to be used for land GHG emissions and removals and 

improve national measurement, reporting and verification capacity (Nesha et al., 2021). 
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Accordingly, a CEOS AFOLU roadmap was endorsed by the space agencies’ Principals 

at the CEOS Plenary in November 2023. The roadmap includes a set of 

recommendations to the space agencies and the EO research community (see Box 1.2) 

and lists the current and planned satellite missions using a combination of sensor types 

(Ochiai et al., 2023). Among the recommendations, which will develop into specific 

activities, there is the aim of improving the use of EO data in UNFCCC reporting 

(recommendation 2). The definition of “data” in the recommendation encompasses 

datasets or what is defined here in this thesis as EO products. This aim is also 

emphasized in the CEOS EO handbook, mentioning that “the primary expected outcome 

of the CEOS AFOLU efforts is an enhanced uptake of EO satellite data sets in support 

of the Global Stocktake process on a global and country level” (CEOS, 2023).  

Box 1.2 Recommendations provided in the CEOS Roadmap for AFOLU (Poulter et al., 2023) to serve as a 
guide for active implementation by the CEOS agencies and partners. 

Recommendation 0:  Ensure that every country that wishes to has the land satellite data 

required to report to UNFCCC under IPCC guidance. 

Recommendation 1:  Ensure long-term continuity and backward compatibility for missions 

providing activity data and emission factors. 

Recommendation 2:  Improve use of Earth observation data in UNFCCC reporting and 

IPCC Guidelines. 

Recommendation 3:  Recognizing that different countries have various requirements to 

support their system for reporting, enable dialog between inventory 

practitioners and CEOS community. 

Recommendation 4:  Support efforts to reconcile bottom-up, top-down, and inventory 

estimates of GHG emissions and removals. 

Recommendation 5:  Integration of New Space and commercial partnerships in supporting 

national GHG inventories. 

Recommendation 6:  Ensure consistency of CEOS AFOLU and GHG Roadmaps to support 

an integrated national GHG inventory system, GHG+. 

Recommendation 7:  Development of actions to support the CEOS AFOLU 

recommendations. 

The release of new state-of-the-art EO products at such rapid speed is promising and 

timely. However, the fact that the existing CO2 flux estimates diverge in the magnitude 

(Heinrich et al., 2023a) and their trend (Feng et al., 2022) with the aggregation of NGHGI 

and the bookkeeping models (Grassi et al 2023), highlights the necessity for clearer 

definitions, and for map validation and correction. Large biases from map classification 

errors make the maps inaccurate (Stehman, 2013; McRoberts, 2011; Olofsson et al., 

2014). These biases could come, for example, from the lack of backward compatibility 

which could prevent a consistent time-series. The risk of temporal inconsistencies exists 

in all EO products, even those from the long-running Landsat programme, because of 
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sensor degradation or sensor and technology changes between successive missions 

(Roy et al., 2016; Vogeler et al., 2018). Accordingly, this concern is reflected in the CEOS 

AFOLU roadmap (Box 1.2, recommendation 1), and Achard et al. (2002), Vancutsem 

et al. (2021), Feng et al. (2022) are a few examples of the use of deforestation maps as 

hotspots for stratification with the estimates being derived from the stratified sample. The 

same process for area correction (Olofsson et al., 2014) is recommended in the Global 

Forest Watch portal, where data from Hansen et al (2013) is available, due to changes 

in the GFC algorithm (Ceccherini et al., 2021; Palahi et al., 2021). Reflecting on the 

overarching questions raised in section 1.1, the suggested best practice of correcting the 

areas derived from maps highlights potential issues of accuracy of the maps or difficulty 

in the attribution of mapped categories to actual land use or land use changes according 

to national definitions. Low accuracy and attribution could explain the differences in the 

global estimates or hinder the uptake of these datasets in UNFCCC processes.   

1.5. Literature review on EO stakeholders developing global to 

pantropical EO products for MRV 

The CEOS AFOLU roadmap (Poulter et al., 2023) mentioned in the previous section 

identifies several global products or maps derived from satellite-data that could 

potentially provide information compatible with the IPCC variables related to AD and 

EF/RF described above (section 1.2.3). Table 2.2 (in Chapter 2 to avoid duplication) lists 

those products and expands on those identified in the roadmap to include datasets on 

land cover, fire and biomass with spatial resolutions finer than 1 km and with global to 

pantropical coverage.  

Some of these global maps or products (Table 2.2) that provide information on land 

dynamics (Friedl et al., 2010; Sexton et al., 2013; Hansen et al., 2013; Shimada et al., 

2014) biomass distribution (Saatchi et al., 2011; Baccini et al., 2012) and fire 

disturbances (e.g., MODIS active fire and burned area, (Giglio et al., 2016; Giglio et al., 

2018)) have existed for more than 10 years. The research community has had plenty of 

opportunity to explore their application to estimate CO2 fluxes from land from national 

(Tyukavina et al., 2013) to pantropical (Zarin et al., 2016; Achard et al., 2014) or global 

scales (Harris et al., 2012; Harris et al., 2021; Feng et al., 2022). The methods used to 

obtain CO2 flux estimates in these studies are similar to the basic concept in the IPCC 

Guidelines of multiplying AD and EF/RF, or “stratify and multiply” to obtain more 

adequate AD and EF/RFs according to the chosen stratification and land definitions. In 

more recent years there has been an explosion in the number of maps being released, 

likely due to the greater availability of satellite data from different sensor types, for land 
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cover and land cover change (Zanaga et al., 2021; Karra et al., 2021; Arevalo et al., 

2022) and biomass (Santoro et al., 2021; Baccini et al., 2021; Duncanson et al., 2022; 

Dubayah et al., 2022; Simard et al., 2019). However, the main questions raised in this 

thesis remain – in which way have these EO products, widely explored by the research 

community, contributed to inform the UNFCCC, including through country uptake? The 

following subsections reflect on how the scientific community has been contributing with 

EO products that could be used for activity data (AD; section 1.5.1), emission/removal 

factors (EF/RF, section 1.5.2) or the combination of both to derive carbon fluxes from 

land use (section 1.5.3). 

1.5.1. EO for monitoring forest land and changes in forest area 

The use of satellite data and remote sensing for forest cover and forest/non-forest 

mapping is well advanced. Methodologies using multispectral Landsat Thematic Mapper 

(TM) data are considered core for this purpose due to the available time-series and long-

term continuity of the programme (TM since 1984), its spatial resolution (30-m), and 

demonstrated applicability in tropical forest mapping contexts (e.g., reviewed in Gomez 

et al., 2016). The 10-m resolution Satellite Pour l'Observation de la Terre (SPOT) 

missions have also been orbiting the Earth for over 30 years providing optical data used 

in cartography, land classification and change detection (e.g., Kanellopoulos et al., 

1992). The more recently launched Sentinel-2 providing free, full and open data access 

to high resolution optical imagery and continuity of SPOT and Landsat missions is 

equally promising (Drusch et al., 2012). Also sensitive to vegetation structure and 

applicable for stand-alone forest cover mapping are: the optical Moderate Resolution 

Imaging Spectroradiometer (MODIS) (e.g., Friedl et al., 2002, 2010) and the Advanced 

Very High Resolution Radiometer (AVHRR) (e.g., DeFries and Townshend, 1994; Gopal 

et al., 1999) at coarser resolution, and the very high resolution optical RapidEye, and 

microwave sensors such as ALOS PALSAR (Advanced Land Observing Satellite Phased 

Array type L-band Synthetic Aperture Radar) (Shimada et al., 2014; Shiraishi et al., 2014) 

and Sentinel-1 (Torres et al., 2012). Furthermore, methodologies incorporating different 

data sources (e.g., optical and microwave sensors) have increased potential (De Alban 

et al., 2018; Sirro et al., 2018) when the use of optical data alone is less suitable, e.g. 

due to permanent cloud cover (Rignot et al., 1997). 

For forest cover mapping, several single date wall-to-wall land cover maps were 

produced based on different data sources and methods through national or international 

initiatives worldwide. Some of the global land cover maps composites are even available 

periodically, although they are usually too coarse and have low local accuracy to be 

useful for national land monitoring, reporting and planning (Alfieri et al., 2007; Herold et 
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al., 2008; Fritz et al., 2010). Some examples are the International Geosphere-Biosphere 

Programme DISCover (IGBP DISC), the University of Maryland (UMD) global land cover 

classification, MODIS land cover, and the Global Land Cover Map (GLC-2000), ranging 

from 300-m to 1-km spatial resolution. At finer resolution, although not available for 

tropical regions there is CORINE Land Cover 2000 (CLC) in Europe based on Landsat 

data. The Food and Agriculture Organization of the United Nations (FAO), which is the 

standard reference for global scale forest resource information usually based on national 

statistics and tabular data, developed a Global Forest Resources Assessment (FRA) 

Remote Sensing Survey (FAO & JRC, 2012; Keenan et al., 2015) in partnership with the 

European Commission Joint Research Centre (JRC) and using for the first time a 

systematic sample of Landsat satellite imagery and remote sensing techniques to 

calculate and report global forest land-use and change rates (deforestation and 

afforestation) for 1990, 2000, 2005, 2010, and 2015 (Keenan et al., 2015). This work was 

based in sampling methods and aggregated estimates without providing spatially explicit 

information. It can, therefore, be considered less practical for spatial planning of 

mitigation activities. 

The monitoring of forest loss and disturbances, although with considerable uncertainty 

and varying estimates, is equally well documented, with several studies demonstrating 

a variety of robust methods using particularly optical data, but also Synthetic Aperture 

Radar (SAR) data to map clear cut and fire in tropical regions (e.g., van der Werf et al. 

(2010); Walker et al. (2010)). Fusing and integration of optical and radar data has also 

been considered a promising alternative (reviewed in Joshi et al., 2016). In more recent 

years, and to overcome the knowledge gap on global forest trends and particularly forest 

lost in the tropics, available global datasets of tree cover and tree cover loss (Hansen et 

al., 2013; Sexton et al., 2013; Vancutsem et al., 2021) and periodic forest and non-forest 

(F/NF) cover maps (Shimada et al., 2014) based on automated classification algorithms 

of Landsat and ALOS PALSAR imagery were developed and are now freely available 

covering all tropical nations. Furthermore, such automatic systems are continuously 

updated and made freely available in Google Earth Engine or other web-mapping tools 

such as the Global Forest Watch (GFW), or the JRC Tropical Moist Forest (TMF) 

Explorer.  

Three of these initiatives - the Global Forest Change (GFC) dataset, the Global Land 

Cover Facility tree cover dataset (Sexton et al., 2013) and the Japan Aerospace 

Exploration Agency (JAXA) forest/non-forest maps (Shimada et al., 2014) - are worth 

discussing in more detail because they are more complete in the extent covered 

(compared to the TMF dataset covering only moist forests), they are of finer spatial 

resolution (in contrast to the previous generation of coarser resolution IGBP DISC, 
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MODIS land cover, and GLC-2000), and have shown some continuity in their updates. 

They are therefore hypothetically more useful for national forest monitoring systems and 

for MRV. 

Worldwide coverage of Landsat sensor data was used by Hansen et al (2013) from the 

University of Maryland to develop a Global Forest Change (GFC) dataset mapping global 

forest cover extent and forest change between 2000 and 2012. This dataset in being 

updated in terms of algorithmic improvements and extending the time series – currently 

covering the period 2000-2023 available for download in the GFW platform. With a 

spatial resolution of 30-m this product is globally consistent and potentially locally and 

regionally relevant (McRoberts et al., 2016). The dataset includes a global tree cover 

extent map from 2000 and a map identifying the year when removal of all tree cover was 

observed (Hansen et al., 2013; 2014). The global dataset is divided into 10x10 degree 

tiles and users can easily download the tiles corresponding to their area of interest. An 

advantage of this EO product is that continuity of this appears to be secured, with 

constant updates made available in the GFW web platform. It has been widely used by 

researchers from many different fields and for a variety of applications through their 

integration with other datasets. For example, with forest types as in Johnson (2015); or 

protected areas as in Spracklen et al. (2015) and Lui and Coomes (2016); or to estimate 

carbon fluxes from forest dynamics in Harris et al. (2021). However, because it is 

described as a “forest change” dataset, misconceptions about some definitions and 

methods employed in the creation of the product may lead to its inappropriate use or 

interpretation (Tropek et al., 2014; Hansen et al., 2014). Namely, the specific definition 

of forests used, as all vegetation taller than 5-m in height (supplementary information in 

Hansen et al., 2013), renders some limitations such as failing in distinguishing between 

natural forests and plantations (Lui and Coomes, 2015; Zarin et al., 2016). Other 

misconceptions can apply in the use of the “loss” and “gain” datasets. The mapping 

process is entirely signal-driven and forest loss represents a complete removal of tree 

cover (~0% crown cover), which depending on the percentage cover threshold defined 

by the end user can determine an under estimation of converted areas. Also, although 

this dataset includes a map of forest gain in the period 2000-2012, the “gain” only 

includes densities of >50% tree cover of areas originally mapped as non-forest, and the 

year of that “gain” is not identified which may cause some confusion when analysing the 

dynamics of loss and gain in a same area and in estimating net emissions. Moreover, by 

using images from the growing season some confusion with herbaceous vegetation 

occurs, especially considering the optical data sensitivity to foliage cover (e.g., Lui and 

Coomes, 2015). Some consideration should also be given to the potential issues arising 

from the Landsat 7 slc off and consequent “banding effects”, which can cause artefacts 



23 
 

and consequently an incorrect interpretation of the product. And finally, more specifically 

for the dry forests and woodlands of Africa, it is considered particularly difficult to correctly 

extract tree cover percentages for low tree cover densities of 10-30% which can lead to 

its inaccuracy (Achard et al., 2014; Bastin et al.,2017). 

Existing studies analysed the agreement among GFC and locally produced maps and 

estimates of forest loss (e.g., Lui and Coomes, 2015; Richards and VanWey, 2016; 

Sannier et al., 2016; Mermoz and Toan, 2016; Zarin et al., 2016; Bastin et al., 2017). For 

example, at a global level Bastin et al. (2017) indicate an underestimation of dry forests 

by the GFC when comparing GFC to their forest map based on a reference sample. 

Mermoz and Toan (2016) in their study over Vietnam, Cambodia and Lao (together 

covering a total area of approximately 750,000 km2) reported a consistent overestimation 

of forest loss from the GFC dataset in all three countries when compared to their map of 

forest loss derived from ALOS PALSAR data. Consistently, Zarin et al. (2016) in their 

pan-tropical study of GHG emissions from deforestation reported a significant reduction 

of the estimated forest loss in the Democratic Republic of Congo and Malaysia after 

plantations were excluded from the UMD GFC dataset (from 0.581 to 0.110 and 0.387 

to 0.162 Mha yr-1, respectively). Two other studies had a focus in the forest-savanna 

transitions of West Africa. Lui and Coomes (2015) in a study over a region of Sierra 

Leone (West Africa) which included the Gola Rainforest National Park (covering an area 

of 710 km2) showed that three different EO products, i) one using a traditional pixel-

based supervised land classification technique using Landsat imagery, ii) the forest cover 

and forest cover change maps obtained with the Carnegie Landsat Analysis System lite 

(CLASlite) software package, and iii) the UMD GFC dataset, all generated maps with 

high overall accuracy (using high-resolution imagery and photo interpretation to generate 

truth data). Of the three maps, the CLASlite was the more accurate and analytically 

capable of both mapping deforestation and distinguishing natural forests and plantation 

stands. However, the authors also report a significant underestimation of forest loss from 

both the CLASlite and the GFC maps when compared to the supervised classification, 

and showing deforestation rates close to zero. The underestimation of forest loss by this 

product was also documented in the studies of Tropek et al. (2014) at global level and 

Milodowski et al. (2017) in the Amazon. Sannier et al. (2016) in their study in Gabon 

(267,667 km2) also report comparable overall accuracies for all forest cover maps but 

highlight that overall accuracy can be misleading by itself, and that the GFC dataset 

should be calibrated at national and more local level if it is to offer an alternative to 

national wall-to-wall forest maps. The authors identify an overestimation of tree cover 

and consequently forest area, a tendency for overestimation of deforestation, and an 

underestimation of regeneration or “gain” with consequences for net change estimates 
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as the main limitations of the product. One should also note that in the case of Gabon, 

very few changes occurred during the period analysed by this study, with close to zero 

net changes. In conclusion, the findings from the existing studies using GFC at national 

levels are conflicting, i.e.  the underestimation of forest loss in Lui and Coomes (2015), 

Tropek et al. (2014) and Milodowski et al. (2017) is contrasting to the overestimation of 

forest loss in the Mermoz & Toan (2016), Zarin et al (2016) and Sannier et al. (2016) 

studies. All studies highlight issues of accuracy, which underlines the need for further 

studies at national scales to increase confidence in the use of such product for reporting 

in the land use sector. 

The Global Land Cover Facility (GLCF), also in the University of Maryland Department 

of Geographical Sciences, published on the same year another global dataset of tree 

cover at 30-m resolution described by Sexton et al. (2013). The final product is also a 

tree cover global map but, differently from GFC, this dataset uses the 250-m MODIS 

VCF rescaled to 30-m resolution using Landsat data. Additionally, contrarily to the GFC 

that used a single tree cover map for a reference year and through spectral metrics 

detected changes in the study interval based only on this reference map, this product 

includes a tree cover layer for 2000, 2005, 2010 and 2015. Landsat scenes acquisition 

dates varied greatly (between October 1999 and April 2002 for the 2000 product, 

between November 2005 and December 2006 for the 2005 product, and between 

October 2009 and November 2010 for the 2010 product) but largely correspond to the 

dry season in West Africa, making it hard to compare to GFC map based on imagery 

from the growing season in the region. Bastin et al. (2017) compared the area of forest 

obtained from Sexton et al (2013) and Hansen et al (2013) with their estimates from a 

reference data of 210,000 sample units and concluded both maps underestimated the 

area of dry forests, in particular Sexton et al. (2013). Seasonality of imagery acquisition 

date could be a possible explanation for underestimation in Sexton et al. (2013) 

compared to Hansen et al. (2013) although further studies comparing the two products 

are needed to derive a conclusion. Seasonality causing under- or over-estimation can 

also have an impact on the suitability of these products for national reporting following 

IPCC guidelines and the IPCC good practice of neither over- nor under-estimate 

emissions. 

Global mosaics between 2007 and 2010 with a spatial resolution of 25-m from the Japan 

Aerospace Exploration Agency (JAXA) Advanced Land Observing Satellite (ALOS) 

Phased Array L-band Synthetic Aperture Radar (PALSAR) were used by Shimada et al. 

(2014) to produce annual Forest/Non-Forest maps. This mission collected two cloud-free 

global coverages per annum producing an archive that until then only existed for coarse-

resolution sensors. Although the mission ended, ALOS-2 PALSAR-2 was launched in 
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2014 and is providing continuity to this product (Rosenqvist et al., 2014), with new annual 

composites for 2015-2022 being available. The Forest/Non-Forest product uses the 

lower levels of L-band backscatter as a threshold for mapping the transition of forest to 

non-forest, with forests being defined as areas of woody vegetation above 10% tree 

cover. While the University of Maryland products require a cloud screening and a stack 

of layers to create a per-pixel set of cloud-free observations, SAR penetrates through 

clouds (a unique ability when compared to optical and LiDAR data) and therefore does 

not require multiple acquisitions and repeat mapping. However, potential limitations of 

the product should be considered when interpreting results. According to the authors, 

forests and woodlands at the lower threshold might be missed in the classification due 

to the still too coarse resolution of PALSAR for such detailed mapping (Shimada et al., 

2014). Studies evaluating the relationship between ALOS PALSAR L-Band Backscatter 

and AGB reported that the signal saturation is influenced by the sensitivity to surface 

moisture conditions (Lucas et al., 2010). Also, contrarily to Hansen et al. (2013) who 

used a single tree cover map for a reference year and through spectral metrics detected 

changes in the study interval based only on this reference map, the JAXA product 

includes independent F/NF annual maps that do not necessarily ensure consistency in 

the observed transitions, although they can be subsequently combined by the user to 

identify changes. More studies are needed at local scale to understand the accuracy of 

this product given the signal saturation and influence of surface moisture. 

The use of global datasets such as these examples mentioned above opens a possibility 

for developing countries, in particular countries with low capacity and insufficient support 

(such as finance from REDD+ readiness), to quickly produce estimates of forest loss, 

and potentially use them for a critical analysis on the spatial patterns of deforestation 

and associated drivers. Additionally, the continuous global monitoring of land use 

processes is only expected to expand in the future, with initiatives such as the opening 

up of the Landsat archives to the public and the continuation of the programme, the start 

of the Sentinel family of missions from the European Space Agency (ESA) with an open 

data policy, and the availability of powerful cloud-based geospatial storage and 

processing platforms such as Google Earth Engine. However, the wider availability of 

data does not guarantee by itself a higher uptake by national teams in their reporting 

(Ochieng et al., 2016). Ochieng et al., (2016) identify a high acquisition of remote sensing 

data but low use in reporting to the UN-REDD programme from FAO, while Nesha et al. 

(2021) concluded that in more recent years, remote sensing and forest monitoring 

capacity of developing countries have increased significantly in reporting to the FAO 

FRA. However, there are no studies on the uptake of EO products derived from EO data 

by national teams in official reporting to the UNFCCC. 



26 
 

1.5.2. EO for biomass 

As a global store of carbon, particularly in tropical forest ecosystems, above-ground 

biomass (AGB) has a stabilizing effect on the Earth’s climate system (Pan et al., 2011; 

Friedlingstein et al, 2023). Therefore, understanding its dynamics and climatic feedbacks 

is essential. In the context of REDD+ and for reporting carbon fluxes from the land use 

sector, countries must quantify and map the carbon content, losses and gains in their 

forests, both for producing a benchmark and historical reference, and to quantify the 

impact of REDD+ interventions or NDCs. Essentially, the information on land dynamics 

discussed above (section 1.5.1.) needs to be combined with information on carbon 

stocks and biomass changes to quantify fluxes of carbon to and from the atmosphere. 

Methods to determine AGB include direct measurement through forest inventories and 

allometry (Tomppo et al., 2010), and estimation of AGB from EO instruments sensitive 

to AGB content (Houghton et al., 2001; McRoberts et al., 2010). However, although this 

is a controversial subject, many authors argue that mapping AGB over large areas 

without the support of EO data is insufficient (Goetz et al., 2009), and highlight the risk 

of assigning an average carbon stock to an entire area or even to forest strata that do 

not capture the large inter-variability in carbon content of the forest (e.g., Houghton et 

al., 2012). 

Different methods have been explored to estimate AGB directly through a combination 

of EO data calibrated with field AGB measurements (e.g., Mitchard et al., 2011; Saatchi 

et al., 2011; Ryan et al., 2012; Baccini et al., 2012; Asner, 2009; Asner et al., 2014; 

Baccini et al., 2021; Duncanson et al., 2022; Dubayah et al., 2022; Simard et al., 2019), 

including approaches for biomass retrieval algorithms using optical, light detection and 

ranging (LiDAR) and/or Synthetic Aperture Radar (SAR) data either as primary inputs or 

as auxiliary datasets. Optical EO data are often used to investigate forest structure, 

cover, and processes through vegetation indices and spectral signatures (e.g., the 

spectral mixture analysis CLASlite method described in Asner et al., 2009), and have 

even been shown to have some capability to spatialize field measurements and produce 

estimates of biomass (Foody et al., 2003; Foody et al., 2001; Baccini et al., 2004; 

Avitabile et al., 2012). However, these data are spectrally more sensitive to leaves than 

wood and offer great limitations for direct biomass retrieval (e.g., saturation, limited 

transferability). They are therefore rarely used for this purpose unless complemented by 

additional data (e.g., Saatchi et al., 2011).  

Active sensors such as LiDAR can penetrate the canopy of trees and measure the signal 

reflected either from the ground or top canopy, which is useful to have an estimate of 

canopy height, a biophysical indicator strongly linked to AGB (e.g., Lefsky et al., 1999).  
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LiDAR spaceborne systems such as the Geoscience Laser Altimeter System (GLAS) 

with 70-m footprints available throughout the globe have the potential to measure large 

areas if upscaled, but have limitations for biomass estimation as the instrument was 

design to measure ice-sheet and was not optimized for vegetation. Furthermore, it is 

more suitable for estimating height and not biomass directly; its measurements are 

sparse and require interpolation to obtain full coverage of a given area, with higher 

associated uncertainty, and are sensitive to topography. Airborne systems though have 

proven ability to more precisely estimate AGB (Zhao et al., 2009) but are very expensive 

to use in large areas (Mascaro et al., 2014). Nevertheless, such capabilities led to the 

planning and development of the Global Ecosystems Dynamics Investigation Lidar 

(GEDI) from the National Aeronautics and Space Administration (NASA) launched in 

2018 to collect high-resolution observations of the vertical structure of tropical and 

temperate forests used to predict AGB at fine spatial resolution (Dubayah et al., 2020). 

Two products were released recently, one provided at 25-m footprint-level samples of 

waveform lidar over the globe up to ± 51.6º latitude and publicly available as Level 4A 

(L4A) product (Duncanson et al., 2022); and a gridded product at 1-km spatial resolution 

and publicly available as Level 4B (L4B) product (Dubayah et al., 2022; Healey et al., 

2022). The application of these datasets leveraging millions of satellite observations over 

small areas is very promising to improve NFIs, but due to their very recent release few 

studies and no guidance with practical demonstration of their use is available for 

countries. Furthermore, the existing studies at national levels warn the users to the fact 

that L4A model-building data may not reflect local conditions if local data is not used to 

calibrate the model (e.g., Bullock et al., 2023). 

SAR transmits a microwave signal and measures the reflected backscatter intensity 

which is related with AGB (e.g., Toan et al., 1992; Kasischke et al., 1997; Englhart et al., 

2011; Sinha et al., 2015). Its capabilities in tropical regions (in cases of cloud cover and 

haze) and the different sensitivity to vegetation structure, including AGB, depending on 

the length of the transmitted wavelength (X, C, L and P bands) or operating mode (e.g., 

polarization, interferometry) is an advantage of these data. However, SAR also shows 

some disadvantages in terms of uncertainties in the estimates, particularly in moist 

tropical forests where the backscattered intensity is less sensitive to the high levels of 

AGB. Nevertheless, reported saturation levels vary considerably depending on the 

wavelength used (e.g. co- vs. cross-polarization), and vegetation type. For example, in 

dry tropical forests and savanna ecosystems, saturation (L-band HV backscatter) has 

been reported to occur at higher AGB values of around 150-200 t ha-1 (Collins et al., 

2009; Mitchard et al., 2009). Other related limitation is the sensitivity to vegetation water 

content and surface moisture conditions influencing the capacity to retrieve AGB (Lucas 
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et al., 2010; Carreiras et al., 2012). Finally, it is also worth noting that SAR requires an 

advanced degree of technical expertise for data processing, making it less attractive for 

developing countries when considering alternatives for the development and 

operationalization of their monitoring systems (Reiche et al., 2016). The European Space 

Agency (ESA) Climate Change Initiative (CCI) biomass map (Santoro et al., 2021) is an 

example of the use of satellite radar sensors, specifically SAR data from Sentinel-1 

satellites and other international SAR missions such as the Japanese ALOS PALSAR, 

to generate a global, spatially explicit forest AGB dataset at a spatial resolution of 1-ha. 

The capabilities offered by these different data sources and methods described above 

to derive AGB estimates have been explored at different scales. For example, maps 

using EO data have been developed at national level in tropical countries either using 

primarily optical data (e.g., Avitabile et al., 2012), LiDAR (Asner et al., 2014), or SAR 

(Carreiras et al., 2012; Avtar et al., 2013; Cartus et al., 2014; Mermoz et al., 2014). Part 

of these national studies (Avitabile et al., 2012; Carreiras et al., 2012; Mermoz et al., 

2014) and other studies at sub-national levels (e.g., Mitchard et al., 2009; Ryan et al., 

2012; Carreiras et al., 2013) had a particular focus on sub-Saharan Africa and its tropical 

dry forests. However, only a few large-scale maps of biomass have been published so 

far (e.g., Saatchi et al., 2011; Baccini et al., 2012; Santoro et al., 2021; Duncanson et al., 

2022; Dubayah et al., 2022; see Table 2.2 to avoid duplication here). 

Two freely available pantropical maps at grid scales of 1 km (Saatchi et al., 2011) and 

500 m (Baccini et al., 2012) have been available for over a decade. These two maps 

used similar GLAS LiDAR data sources but are based on different ground data for 

calibration and different MODIS layers and spatial modelling methodologies (Maxent and 

Random Forests, respectively) for upscaling. Their reference year is 2000 and 2007-

2008 for Saatchi et al. (2011) and Baccini et al. (2012) respectively. Saatchi et al. (2011) 

also produced a map with a per pixel error estimate. This approach of combining remote 

sensing and field data was considered a milestone (Morton, 2016) and several 

subsequent studies explored their application for estimating carbon fluxes. For example, 

Langner et al. (2014) combined the two maps to produce AGB values per eco-zones as 

an alternative to IPCC Tier 1 values. Mitchard et al. (2013) compared the two already 

existing pantropical maps, founding overall agreement and lower uncertainties when 

data is aggregated at larger scales, but significant differences otherwise. Some other 

studies concluded the same at the regional and local scales, using independent data to 

further assess the precision of those maps (e.g., Hill et al., 2013; Mitchard et al., 2014), 

recommending better uncertainty assessments. Others proposed fusion and calibration 

methods to correct for spatial bias (Langner et al., 2015; Avitabile et al., 2016). However, 

more important than identifying agreement and disagreement, and harmonizing 
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methods, is understanding their cause and spatial pattern, and the accuracy (i.e. 

agreement with the truth) of those products rather than their precision (i.e. good 

agreement), to ultimately understand their usefulness for reporting and decision making 

at national to sub-national level (Araza et al., 2022). Furthermore, it is unclear how 

extensively these maps have in fact been used in national reporting in support of country 

MRV. 

1.5.3. Combining EO derived products to estimate land carbon fluxes 

Ultimately, what we want in the context of the UNFCCC and in applying the IPCC 

guidance, is to derive estimates of carbon fluxes from land and land use changes. 

Following on the description of existing products and their capabilities for land use 

change assessments and AGB content, EO global datasets, and in particular readily 

available automatic products, are a potentially interesting alternative to derive these 

estimates of carbon fluxes at very low cost. This can be especially true given the 

frequently limited capacity of developing countries to timely produce their own complex 

datasets and maintain operational forest monitoring systems (Romijn et al., 2015; Goetz 

et al., 2015; Nesha et al., 2021).  

There are examples of studies developing estimates of emissions from tropical 

deforestation using a combination of different EO data and several EO techniques (e.g., 

DeFries et al. (2002); Pan et al. (2011); Ryan et al. (2012); Baccini et al. (2012); 

Tyukavina et al. (2013); Harris et al. (2012); Achard et al. (2014); Tyukavina et al. (2015); 

Mermoz and Toan (2016); Zarin et al. (2016); McNicol et al., 2018). At the pan-tropical 

level (Pan et al., 2011; Baccini et al., 2012; Harris et al., 2012; Achard et al., 2014; 

Tyukavina et al., 2015; Zarin et al., 2016), the derived biomass loss estimates for the 

decade of 2000 vary considerably (0.81 to 2.9 Pg yr-1) and the reasons for the major 

differences between emissions reported in these studies range from the type of data 

used (EO data, forest inventory, or tabular reference data), the analytical approach (e.g., 

bookkeeping, sampling, wall to wall), and forest loss definition (net vs. gross emissions). 

From the pan-tropical emission baseline studies, the most recent ones (Harris et al., 

2012; Achard et al., 2014; Tyukavina et al., 2015; Zarin et al., 2016; Harris et al., 2021; 

Feng et al., 2022) all use at least one of the EO products described above either directly 

or with some form of modification. Focusing on REDD+ needs and requirements and 

highlighting the unreliability of FAO data and the many assumptions inherent to 

bookkeeping models, Harris et al (2012) match areas of forest loss (Hansen et al. 2010; 

AD) with pre-deforestation carbon stocks (Saatchi et al 2011; EF) to quantify gross 

carbon emissions from deforestation in tropical regions. Achard et al. (2014) used a 
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systematic sampling approach of Landsat-TM imagery to map forest area changes and 

estimate emissions between 1990 and 2010 with small statistical standard errors (due to 

large sample size). The author used average biomass density values from Saatchi et al 

(2011) and Baccini et al (2012) within the sampled units as sources of carbon data (EF). 

Gross emissions averaged by continent were obtained by combining the two factors. 

Tyukavina et al (2015) used a ‘stratify and multiply’ approach where GLAS footprints 

from Baccini et al. (2012) were used directly to derive a mean carbon density estimate 

for each pre-deforestation forest stratum (stratification was based on Landsat-derived 

structural characteristics). Using the GLAS footprints as EFs rather than relating forest 

loss to the coarser biomass map, which may include mixed pixels, was deemed by the 

authors as more appropriate, particularly when considering spatially heterogeneous 

regions. For AD, the authors use the GFC forest cover loss dataset (Hansen et al., 2013) 

following a probability sampling approach for classification error adjustment. Zarin et al. 

(2016) established a 2001–2013 benchmark for annual carbon emissions from gross 

tropical deforestation by also compiling and modifying or expanding on some of the 

datasets described in the previous sections. More specifically, the GFC dataset (Hansen 

et al., 2013) was modified to correct for some of the confusion between natural forests 

and plantations and used as AD, while the Baccini et al. (2012) methodology was 

expanded to include additional GLAS footprints and correlate those with additional RS 

and biophysical variables to map AGB density at 30-m, which was then used as the EFs. 

The baseline estimate of carbon emissions from the AGB pool for the reference period 

2001-2013 was subsequently calculated through the combination of these two products. 

At a regional level, Mermoz and Toan (2016) developed an algorithm based on ALOS 

PALSAR data to map and quantify disturbances in Cambodia, Vietnam and Lao, and 

assessed the associated emissions aggregated by ecological zones by combining their 

map of change (AD) with the AGB values of Saatchi et al. (2011) and Baccini et al. (2012) 

at the pixel level (EF). Finally, at global level, Harris et al. (2021) used the GFC dataset 

of tree cover change, fires data from MODIS burned area product and information of the 

post deforestation land use from Curtis et al (2018), combined with geospatial data (e.g., 

removal factors for naturally regenerating forests from Cook-Patton et al 2020) and IPCC 

Tier 1 default values (IPCC 2019). The more recent study from Feng et al. (2022) also 

extensively used the GFC product and document a significant increase in carbon loss 

from forest conversion in the tropics during the early twenty-first century.  

All these studies based on EO products at larger scales (global or pantropical) converge 

in their conclusion that there has been a significant increase in carbon emissions from 

deforestation in the tropics during the early twenty-first century. As discussed in section 

1.1, this collective agreement from the EO community at large scale is contradictory to 
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the stable trend or slight decline in emissions from deforestation as reported in the GHG 

inventories of developing countries (Grassi et al., 2022; Figure 1-6), the Global Carbon 

Budget (Friedlingstein et al., 2023) and the synthesis reports used in the UNFCCC 

Global Stocktake (UNFCCC, 2019a). The conclusions are also more divergent at the 

local and national levels, as discussed in section 1.5.1. 

1.5.4. The uptake of EO products in national reporting 

The previous sections discussed the different studies using different approaches to 

develop baselines of carbon emissions and describing methodologies for matching 

carbon density to the area of deforestation. I showed that existing EO products to 

measure carbon fluxes from land at relatively high resolution are becoming widely 

popular. These research efforts from the EO community to produce data and explore 

their capabilities can therefore contribute to enhance forest monitoring capacity (Romijn 

et al., 2015; Nesha et al., 2021), promote consistency and transparency across regions 

and contribute to tracking global progress on reducing GHG emissions in a transparent 

way. However, there is i) a large variation between the estimates at pan tropical level 

both on biomass distribution (Hunka et al., 2023) and land cover mapping (Herold et al., 

2008), ii) a divergent trend between EO global estimates and the Global Stocktake, and 

iii) many studies warn of the dangers of over- and underestimation when using EO 

products at national levels. Therefore, the operational usefulness or accuracy for 

application of EO products at national scales needs to be further explored if these EO 

products are to be considered in the context of supporting processed under the 

UNFCCC. Nesha et al (2021) and Romijn et al (2015) assessed the forest monitoring 

capacity using EO data for reporting to the FAO, not the UNFCCC, and Ochieng et al. 

(2016) assessed MRV capacity but using country reports to the UN-REDD+ programme 

from FAO, not the UNFCCC. Therefore, to my knowledge, at the time of developing the 

research in this thesis, there has been no systematic review of the uptake of EO products 

in national reporting to the UNFCCC nor an explanation of the technical factors hindering 

their uptake.  

As discussed above, the UNFCCC REDD+ framework had an important role in 

developing the MRV capacity in developing countries (Federici et al., 2017; Nesha et al., 

2021). We now count on more than 15 years of REDD+ readiness investments, namely 

investments in forest monitoring and MRV using satellite data and remote sensing 

techniques such as those discussed above (Gibbs et al., 2007, Gibbs and Herold, 2007; 

Goetz et al., 2015). Since the start of the negotiations on REDD+, the EO community 

has been arguing that methods and data are available for immediate use (Herold and 

Johns, 2007; Gibbs et al., 2007; Gibbs and Herold, 2007; Achard and House, 2015; Bucki 
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et al., 2012). If not at national levels, at least to be used in priority areas at subnational 

levels where measurements can be more rigorous and independently verified (Herold 

and Skutsch, 2011). The same discourse continues to date with the space agencies at 

the higher level expressing the readiness to contribute to UNFCCC processes (Ochiai et 

al., 2023; Poulter et al., 2023).  

Some studies reflect on the lessons learned from the more than 15 years of investment 

in REDD+ readiness and highlight the challenges faced by developing countries in 

effectively implementing REDD+ (Joseph et al., 2013; Ochieng et al., 2016). For 

example, Ochieng et al. (2016) added an institutional dimension in the assessment of 

MRV capacity by analysing ‘ownership of technical methods’, ‘administrative capacity’ 

and ‘good governance’. The findings underscore the importance of addressing 

governance issues, capacity building, and stakeholder engagement for a successful 

MRV. The authors argue that countries have high ownership of EO data and methods 

for reporting Activity Data (consistent with findings from Romijn et al., 2015 and Nesha 

et al., 2021) but do not have MRV systems in place due to low administrative and low 

levels of good governance. However, a question arises from the conclusion of this study 

regarding the link between data acquisition (the indicator used by the authors to score 

countries’ technical ownership) and the use of EO data in reporting. The fact that 

countries acquired data due to REDD+ readiness support from international agencies 

but then did not use it in reporting may not necessarily be linked to administrative and 

good governance issues. As De Sy et al (2012) point out, it is not enough to assume that 

just because EO data is available, it is useful for developing countries. There are 

constrains in the operational usefulness of the data, for example those linked to lack of 

consistency or continuous coverage or the use of appropriate methodologies or 

classification protocols for data interpretation depending on the national circumstances 

(De Sy et al., 2012; DeFries et al., 2007). This thesis focuses on these technical 

capabilities or limitations of using readily available EO products because focusing on 

administrative and governance issues, although important, can hide or dismiss existing 

problems in the EO products. The contrasting trend of emissions from deforestation 

between global EO-based studies and aggregation of country reporting to the UNFCCC 

(e.g., Feng et al., 2022 vs. Grassi et al 2022; Figure 1-4; section 1.5.3), the difficulty in 

comparing different land cover maps, understanding their utility and the knowledge that 

they have limited ability to discriminate some classes (Herold et al., 2008; Bastin et al., 

2017) further suggests that mapping land use and land use change following IPCC 

guidance with EO products is not trivial. Effective MRV needs institutional arrangements 

and ownership of data at the national level by sovereign governments (Ochieng et al, 

2016; Ochieng et al, 2018). This is not something the EO community can directly interfere 
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with but rather support through the provision of essential data to inform policy decisions 

and strategies (Herold et al., 2019). The onus is on the EO community to exercise 

scientific humility and question the data that is being provided. Because there is a 

possibility that the EO community may not fully understand the requirements of national 

teams reporting to the UNFCCC and that the way EO products are handled and present 

can be improved to better fit the national and international requirements for MRV and 

support the transparency framework of the Paris Agreement. 

1.6 Thesis aims and objectives 

This section summarizes the research gaps identified in the literature review (Box 1.3) 

and provides a concise list of the research questions which the thesis will address. It is 

followed by section 1.7 showing the workflow and how the different chapters are 

addressing these research questions. 

Box 1.3 Summary research gaps from the literature review 

• Forests and land use (LULUCF) have an important role to play in climate change mitigation but 

the CO2 fluxes from the sector are complex to measure and the contrasting trend from global 

EO carbon flux estimates creates confusion to policy makers, and can hinder action and uptake 

of EO products. 

• EO products are assumed to be highly relevant for MRV under the UNFCCC and for the Global 

Stocktake but so far there has been no systematic review of the uptake of EO products in 

national reporting to the UNFCCC nor an explanation of the technical factors hindering or 

facilitating their uptake. 

• There is a scarcity of studies solely combining EO products for both land dynamics and biomass. 

• Studies analysing the agreement between EO products and in situ data at national scales 

emphasise issues of under- or over-estimation of the EO products. 

• Existing EO products show large variation between the estimates at pan tropical level both on 

biomass distribution and land cover mapping but the causes of such disagreements are poorly 

studied. 

• High ownership of EO data is not the same thing as using it in MRV. Focusing on lack of 

governance and capacity gaps can hide problems inherent to the way the EO products are being 

handled and presented to national teams. 

• The accuracy of existing EO products at national scales and the causes of errors remains largely 

unknown. 

• There are no examples on if and how the estimates can be improved with the combination of 

existing EO products. 

The overarching aim of this thesis is to explore how the capabilities offered by the fast-

growing availability of global maps and products derived from satellite data to measure 

land use, fire, and tree above-ground biomass (referred to as “EO products” throughout 

this thesis) are and could be harnessed by the developing world to quantify and report 
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land use dynamics and fluxes to the UNFCCC. By supporting the completeness and 

timeliness of domestic NGHGI the EO community would contribute to a stronger Global 

Stocktake, informing policy makers on the effective role of forests and the land use sector 

in achieving the carbon neutrality objectives of the Paris Agreement. The research 

questions raised in this thesis aim to inform two main actors: i) the national teams 

reporting to the UNFCCC and the policy makers using their GHG inventories to make 

decisions on land mitigation actions, and ii) the EO community eager to contribute to the 

UNFCCC Global Stocktake. The research questions emerging from the literature gaps 

and to be addressed in this thesis are very practical in focus. Focusing on available EO 

products to measure carbon fluxes from land, this thesis will answer the questions: 

• How extensively are the wide range of EO products offered by the EO community 

being used in national reporting and are thus contributing to the Global 

Stocktake? 

• Is the uncertainty in the EO-based carbon flux estimates mostly linked to land 

and land use change (Activity Data) or biomass (Emission/Removal factors)? 

• What are the reasons for the main discrepancies and errors? 

• How can the combination of maps improve the estimates? 

 

Answering these research questions will contribute to the understanding of the 

overarching questions: 

Why do we get conflicting estimates from the aggregation of land carbon fluxes 

from GHG inventories submitted to the UNFCCC and independent global 

estimates from EO products? 

 

How has the EO community contributed to the first Global Stocktake if their 

estimates of land carbon fluxes diverge from the conclusions from the Global 

Stocktake? 

 

1.7 Chapter outline 

To answer the overarching questions, three chapters were prepared. Figure 1-6 

presents the logical flow of the thesis by linking the chapters to the research questions. 
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Figure 1-6. Link between the chapters and the research questions of the thesis to present the logical flow 
across the chapters. 

Chapter 2 starts by evaluating if the global capabilities provided by existing EO products 

are being used in the national reporting obligations to the UNFCCC and provides the 

basis for identifying which products are effective in this sector, and why. It also highlights 

the challenges to wider use of existing and planned products. The data sources used in 

analysis of this chapter timely coincided with the end of the input phase for the first Global 

Stocktake and the results can therefore serve as a baseline to access progress on 

uptake of EO products for the next cycles of the Global Stocktake. Furthermore, Chapter 

2 helps identifying i) existing EO products, ii) which are considered more relevant by 

national teams, and iii) how national teams adapted them to fit with the national 

definitions and which methods were used to correct mapping errors. Such information is 

useful for the subsequent chapters.  

Chapter 3 assesses the impact of using different combinations of EO products for 

producing estimates of historical carbon emissions from deforestation. Using Guinea-

Bissau (a Least Developed Country in West Africa) as a case study, I compare historical 

gross emissions from deforestation obtained by combining several EO products (for AD 

and EF), including nationally produced ones. I investigate how well global EO products 

agree between them, and how they agree with in-situ data, and explore the causes of 

existing variations. 

Chapter 4 uses the same EO products from Chapter 3 and assesses their accuracies. 

The chapter describes a sampling scheme and the collection of a reference dataset of 

very high-resolution data to quantify the errors of the AD maps used in Chapter 3 and 
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test if the errors are reduced with the combination of maps. Similar approached and 

methods used by national teams identified in Chapter 2 were explored here, namely the 

sampling design and classification protocol. 

Chapter 5 includes the thesis discussion and final conclusions, binding the work carried 

out across the chapters and linking the work to the overarching questions. It also 

concludes with some practical contributions from the results of this thesis and 

perspectives for future work. 
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2. Chapter 2. Satellite-based global maps are 

rarely used in forest reference levels submitted 

to the UNFCCC 

 

 

Abstract 

The Earth Observation (EO) community is coordinating a range of activities in support of 

the Global Stocktake. One objective is to enhance the uptake of satellite-based global-

scale maps (hereafter ‘EO products’) in national GHG inventories submitted to the 

UNFCCC. To measure progress towards this objective, we compile information on the 

use of EO products on land cover, fire, and above-ground biomass to derive carbon flux 

estimates in forest reference levels from 56 tropical countries submitted to the UNFCCC 

between 2014-2022. The Global Forest Change (GFC) was the only EO product used to 

measure land extent and change, and was used by almost half the countries. Only two 

countries used existing EO products for fire mapping. Four countries used biomass 

maps, although only indirectly, such as for comparing with biomass estimates from field 

plot measurements or with IPCC defaults. The uptake is limited but improved the MRV 

capacity of 22 countries. The relatively high uptake of the GFC demonstrates the 

importance of meeting essential conditions in the IPCC guidance when developing EO 

products, including conditions on spatial and temporal resolution, temporal coverage and 

consistency, and the flexibility to adapt to biophysical thresholds in national definitions. 

The limited use of other global land EO products underlines the need for developers of 

EO products to interact with groups responsible for GHG inventories and experts familiar 

with IPCC guidance so that their products are suitable for national reporting, and thus 

contribute to more complete aggregated estimates in the Global Stocktake. 

Keywords: tropical forests, REDD+, LULUCF, GHG inventory, global stocktake, 

research & systematic observation, Earth observation  
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2.2 Introduction  

Forests play a key role in the pledges made by countries towards meeting Paris 

Agreement (UNFCCC, 2015) targets, mostly through reducing carbon emissions from 

deforestation or enhancement of carbon removals from large afforestation programmes 

(Grassi et al., 2017). However, measuring and tracking these contributions from the land 

use, land use change and forestry (LULUCF) sector is complex, and the corresponding 

estimates of greenhouse gas (GHG) fluxes have high uncertainties (Friedlingstein et al., 

2022). The Global Stocktake, running in 2021-2023 and to be repeated in 5-year cycles, 

will use aggregated information from national submissions to the United Nations 

Framework Convention on Climate Change (UNFCCC), complemented by independent 

inputs (e.g., IPCC assessment reports), to assess the collective progress in achieving 

the objectives of the Paris Agreement. For the process to be effective in informing policy 

makers on the role of forests and land use in achieving carbon neutrality, the high levels 

of uncertainty in the estimates of GHG fluxes from land must be reduced. 

Global maps derived from satellite-based Earth observation (hereafter ‘EO products’) are 

considered fundamental in addressing this problem, as a practical means to consistently 

monitor large-scale and remote land areas at high spatial and temporal resolutions 

(Defries et al., 2007; Achard and House, 2015; Romijn et al., 2018; Herold et al., 2019). 

Such global capabilities can support country Parties to the UNFCCC in measuring fluxes 

from LULUCF and in fulfilling their reporting obligations, namely the national GHG 

inventories that form an integral part of the Global Stocktake (Table 2.1). This is 

particularly relevant for tropical countries, where domestic GHG inventories are neither 

frequent nor complete (Grassi et al., 2022; Federici et al., 2017).  

The international EO community monitoring the land surface has responded 

spectacularly to the needs of the Global Stocktake (CEOS, 2021; ESA, 2022; Hegglin et 

al., 2022). Firstly, space agencies are making large investments to launch new missions 

(e.g. Landsat 8, GEDI, BIOMASS, NISAR) dedicated to measuring land dynamics, forest 

structure and biomass using a combination of sensor types (Quegan et al., 2019; 

Dubayah et al., 2020). Secondly, there is an unprecedented degree of collaboration 

between international groups on harmonizing methods and improving the accuracy and 

policy-relevance of EO products (Araza et al., 2022; Tsendbazar et al., 2021; Szantoi et 

al., 2020; Labriere et al., 2022). Finally, partnerships with technology platforms allow free 

and easy dissemination and processing of EO products (Gorelick et al., 2017) which 

should facilitate their uptake in reports to the UNFCCC and support the operationalization 

of the Paris Agreement (Table 2.1). Nonetheless, it is unclear how extensively the wide 
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range of EO products offered by the EO community (Table 2.2) are being used in national 

reporting and thus is contributing to the Global Stocktake. 

Table 2.1. Examples of key uses and opportunities for Earth Observation products in the core elements of 
the Paris Agreement (UNFCCC, 2015)(corresponding article in brackets). Satellites can only measure the 
land surface, so only the above-ground biomass pool is considered here within emission and removal factors 
(EF/RF). 

Element of the Paris 

Agreement 
Opportunities for satellite data and derived products (‘EO products’) 

updating nationally determined 
contributions (NDCs) 

(Art. 4) 

- quantitative metrics to derive quantitative targets and to obtain GHG targets from non-GHG 
targets. 

reducing emissions from 
deforestation and forest 
degradation in developing 
countries (REDD+) 

(Art. 5) 

- estimation of activity data (land area change, AD) and emission/removal factors (biomass 
change, EF/RF)) for establishing forest reference levels (FRLs) and report REDD+ results in a 
technical annex to the Biennial Transparency Report (BTR) in the context of accessing results-
based payments, 

- assessment of drivers of forest changes and corresponding carbon fluxes for REDD+ 
strategies, 

- independent data sources for comparison by the assessment teams / UNFCCC LULUCF 
experts or to constraint the estimates by the Party (verification). 

national reporting under the 
enhanced transparency 
framework 

(Art. 13) 

- estimation of carbon emissions and removals from forests, and non-forest areas with 
significant woody biomass (i.e., cropland/ grassland) in the GHG inventory (GHGi) and biennial 
transparency reports (BTRs; including AD and EF/RFs for all categories), and to track progress 
of the quantitative indicators of the NDCs,  

- supporting tools for Parties with lower Measurement, Reporting and Verification (MRV) 
capacity who will need to adapt to the more stringent reporting rules (previous non-Annex I 
Parties), 

- Independent data sources for verification and to support assessment teams in the technical 
expert review of BTRs. 

global stocktake 

(Art. 14) 

- contribution to inputs (first phase) to each cycle of the Global Stocktake (taking place every 
five years), and its collective view on progress to achieve the objectives of the Paris 
Agreement, through country-Party submissions (NDCs, REDD+, GHGi/BTR, see above) and 
independent estimates by non-Party stakeholders. 
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Table 2.2. Examples of existing satellite-based global-scale maps (or Earth Observation products in the text) 
on land-cover, land-cover change, fire, and above-ground biomass (AGB) covering the tropics. Many of 
these products are identified as being key for the land sector by the research and systematic observation 
community (ESA, 2022). Because the focus of our study is on country uptake for domestic GHG inventories 
and on consistent global monitoring for the Global Stocktake, we have excluded datasets with spatial 
resolutions coarser than 1-km and with only regional to local coverage. Maps produced with Earth 
observations from airborne data are not included. 

Earth Observation products 
(global/pantropical scope) 

spatial 
resolution 

temporal coverage theme/units 

land cover and land cover change 

NASA MODIS Land Cover MCD12Q1 (Friedl et al., 2010) 500-m 2001-present (yearly) class (in 6 different 

legends) 

Global Land Cover Facility Tree-

canopy 

(Sexton et al., 2013) 30-m 2000, 2005, 2010, 2015 percent tree-cover 

Global Forest Change (Hansen et al., 2013) 30-m 2000 

2000-present (yearly) 

2000-present 

percent tree-cover 

class loss 

class year of gain 

JAXA Forest Non-Forest maps (Shimada et al., 2014) 25-m 2007-2010 (yearly), 

2015-2021 (yearly) 

class (Forest, Non-

Forest) 

CCI Land cover maps (ESA, 2017) 300-m 1992-present (yearly) class (hierarchical) 

Global Mangrove Watch (Bunting et al., 2018) 25-m 1996,  

2007-2010 (yearly),  

2015-2020 (yearly) 

class 

Copernicus Land Cover (Buchhorn et al., 2020) 100-m 2015-2019 (yearly) class (hierarchical) + 

cover fraction 

Global Mangrove Loss drivers (Goldberg et al., 2020) 30-m 2000-2005; 2005-2010; 

2010-2015 

Class 

HILDA+ Global Land-Use Change 

reconstruction 

(Winkler et al., 2021) 1-km 1960-2019 (yearly) class (6 + change) 

WorldCover (Zanaga et al., 2021) 10-m 2020; 2021 (planned) Class 

Sentinel-2 Land-Use/Land-Cover (Karra et al., 2021) 10-m 2017-2021 (yearly) class (10, including 

“trees”) 

Global Land Cover Mapping and 

Estimation (GLanCE) 

(Arevalo et al., 2022) 30-m 2001-2019 (yearly) class (7, including 

‘tree-cover’) 

fire 

Copernicus Burned Area (Tansey et al., 2008) 300-m 2014-present class 

MODIS Active Fire MOD14A1 (Giglio et al., 2016) 1-km 2000-present (monthly) class 

MODIS Burned Area MCD64A1 (Giglio et al., 2018) 500-m 2001-present (daily) class 

VIIRS S-NPP NOAA-20 hotspots (Schroeder and Giglio, 

2018) 

375-m 2012-present class 

CCI-Fire Burned Area (Lizundia-Loiola et al., 

2020) 

250-m 2001-present class 

above-ground biomass 

NASA JPL (Saatchi et al., 2011) 1-km 2003-2004 Mg/ha 

WHRC Pantropical AGB map (Baccini et al., 2012) 500-m 2007-2008 MgC/ha 

GEOCARBON (map fusion) (Avitabile et al., 2016) 1-km 2003-2008 Mg/ha 

GlobBiomass growing stock and AGB (Santoro et al., 2018; 

Santoro et al., 2021) 

100-m 2010 m3/ha; Mg/ha 

Global Mangrove AGB  (Simard et al., 2019) 30-m 2000 Mg/ha 

CCI Biomass (Santoro et al., 2021) 100-m 2010, 2017, 2018 Mg/ha 

AGB Change, Pantropical Belt (Baccini et al., 2021) 500-m 2003-2016 Mg C/ha/yr 

NASA GEDI footprint product (Duncanson et al., 2022) 25-m  2019-2021 Mg/ha 

NASA GEDI gridded product (Dubayah et al., 2022) 1-km 2019-2021 Mg/ha 
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We therefore present a compilation of information on the use of satellite data, specifically 

global EO products developed from satellite data, for estimating carbon fluxes from the 

LULUCF sector in the reporting from country Parties to the UNFCCC. The overall 

objective is to evaluate if the global capabilities provided by these new opportunities are 

being exploited in the national reporting obligations to the UNFCCC, and thus to assess 

the extent to which the decade-long investment in developing EO products is effective in 

supporting national aspects of international climate policy (Oliver and Cairney, 2019; 

Findlater et al., 2021). While other studies aggregate data from reports to the UNFCCC 

to explain the large differences in carbon flux estimates from different sources (Deng et 

al., 2022; Grassi et al., 2022), here we focus on the satellite-based data and methods 

that are used to ingest EO products. We also focus on tropical developing countries, 

where remote sensing contributions to forest monitoring are larger (Nesha et al., 2021), 

GHG inventories are scarcer and less complete, and Measurement, Reporting and 

Verification (MRV) capacity has improved through REDD+ (Federici et al., 2017). We 

include data from 56 countries with 75 submissions to the UNFCCC under the MRV for 

REDD+ Framework (UNFCCC, 2014) from 2014 and up to 2022. We seek to understand: 

i) if satellite data, and specifically the numerous products offered by the EO community, 

are being used; ii) which ones are used; and iii) how they contribute to quantifying the 

domestic carbon fluxes from the LULUCF sector. This provides a basis for identifying 

which products are effective in this sector, and why. It also highlights the challenges to 

wider use of existing and planned products. 

2.3 Methods 

We compile data from all the forest reference emission levels/forest reference levels 

(FREL/FRLs) to date submitted voluntarily to the UNFCCC over the almost 10 years of 

the REDD+ framework (UNFCCC, 2014). We use the term FRL regardless of whether 

removals are included (typically FRL) or only emissions are reported (typically FREL). 

Our analysis covers 56 countries and 75 FRLs submitted since 2014. Combined, these 

submissions cover a forest area of over 1.5 billion ha, which is over 1/3 of global forest 

area and more than 80% of the forest land in the tropical domain (Fao, 2020b). We group 

the submissions by geopolitical regional groups recognized by the UN and the group of 

Least Developed Countries (LDCs) which overlap with the regional groups. Of the 75 

FRLs included in our analysis, six are still undergoing technical assessment (cut-off date 

December 2022). For the 69 that have completed the assessment we also extracted 

information from the technical reports prepared by the LULUCF expert reviewers. 

Annexes to the 75 FRLs or other auxiliary information, if made available by the Party, 

were also reviewed. All the information used is accessible in the REDD+ portal 
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(UNFCCC, 2022a) and through web links within each submission. The overview 

database prepared by the UNFCCC secretariat (UNFCCC, 2022b) was used for quality 

control and as an alert for new submissions or for submissions completing the technical 

assessment process and with technical assessment reports available for inspection 

(Figure 2-1).  

In each submission we identify the use of satellite data (e.g., Landsat imagery) and EO 

products (or satellite-based global maps as in Table 2.2) for land cover and land cover 

change, fire and above-ground biomass to estimate the IPCC variables related to activity 

data (area and area change, AD), and emission or removal factors (biomass and 

biomass change, EF/RF). We separate the different ways in which EO products can 

contribute to estimating AD from i) ‘deforestation’, and ii) ‘other REDD+ activities’ (all 

classes can be mapped to the IPCC categories used in GHG inventories, see Appendix 

1; Table A.1.1), and also whether they were used iii) as auxiliary data, or iv) to map fire 

occurrences associated with either deforestation or forest degradation. These are ‘direct’ 

contributions to deriving AD. The use of EO products for EFs is only disaggregated into 

uses to directly estimate carbon fluxes from i) ‘deforestation’ and ii) ‘other REDD+ 

activities’. We further identify ‘indirect contributions’ of EO products if they are not used 

directly to estimate one of the variables (AD or EF) but are used, for example, to support 

decisions and compare/constrain national estimates (verification). 

Finally, to understand if other methodological choices determine the use or preference 

for certain satellite data sources, including EO products, we identify which of three 

methods was selected by the country to derive AD: i) ‘pixel-counting’, where areas of 

change are obtained by comparing two (or more) wall-to-wall maps or direct change 

detection wall-to-wall maps are produced; ii) ‘stratified area estimation’ (Olofsson et al., 

2014), where the classification bias of the areas from the wall-to-wall map is corrected 

using a reference dataset (i.e., better quality data, such as photo-interpretation from 

higher resolution imagery or use of field data); and iii) ‘sampling’, when AD estimates are 

derived from a reference dataset and calculated directly from sample proportions without 

using areas from a map. 
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Figure 2-1. List of all data sources used in this study (accessed through the UNFCCC REDD+ Web platform, 
(UNFCCC, 2022a), and methodological steps in the analysis. For each of the 75 forest reference level (FRL) 
submissions, we checked if: i) satellite data (e.g., Landsat imagery) or ii) EO products (satellite-based global 
maps, see examples in Table 2.2) were used in their development; if so, for which element of the FRL (AD 
- activity data or EF - emission factors) and in which way (direct or indirect use). In addition, we identify iii) 
which method was used to derive AD. For clarity, the colour scheme and symbol ● match the legend of the 
figures and tables in the results section. 

2.4 Results 

Satellite data, mostly Landsat imagery or imagery accessed through the Collect Earth 

platform (combining a time series of Google Earth, Bing Maps, Landsat, Sentinel, SPOT 

and RapidEye images), were used by all countries to produce their own maps or 

estimates for the FRL, in particular as a data source for forest change data (AD; red 

quadrants, Figure 2-2). EO products were used by 46% of the countries (n=26; lower 

quadrants Figure 2-2), but this proportion varied with geopolitical/negotiating groupings: 

70% of LDCs (noting the overlap with regional groups), 65% of African States, 50% of 

Asian States, but only 25% of Latin American and the Caribbean (LAC) States used EO 

products. Hence, the regional group with highest proportion of countries submitting FRLs 

(more than 60% of LAC countries submitted at least one FRL) is also the group relying 

less on EO products to derive their FRLs (Figure 2-2a; Figure A.1.1). 

All countries using EO products to derive AD (n=24 or 43% of the total countries with 

FRL submissions; yellow quadrants, Figure 2-2) relied on a single product—the Global 

Forest Change (GFC) product (Hansen et al., 2013). Submitted FRLs show that national 

technical teams found ingenious ways to adapt and integrate the GFC product into their 

monitoring systems, even to directly estimate deforestation and other forest dynamics 
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and land-use transitions (‘other REDD+ activities’) (n=16; Table 2.3,Table 2.4, Table 

A.1.2). For example, tree cover or tree cover loss or gain data were resampled to pixel 

blocks matching the minimum mapping unit of the national definition and combined with 

domestic maps or a reference dataset for the correct attribution of land uses in cases of 

tree crops, shifting agriculture, harvest and oil palm plantations (e.g., Bhutan, Equatorial 

Guinea, Madagascar, Sri Lanka). The GFC product was also used in combination with 

other data, including very high resolution imagery, to train a map classifier (e.g., Ethiopia, 

Zambia, Tanzania) or to correct mapped areas (e.g., Honduras). Furthermore, 14 

countries used it indirectly, e.g., for quality control or verification by comparing the 

estimates produced with national data with the deforestation magnitude and trends of 

the GFC product (n=9). 

Technical teams found creative ways of using the GFC product regardless of the 

technique employed to derive AD (Figure 2-3, Table 2.4), although more than half of the 

available examples are from FRLs using a ‘stratified area estimate’ approach. There is 

a trend for countries to move away from purely pixel-counting techniques using wall-to-

wall mapping (p<0.001, 95%CI) to a combination of wall-to-wall maps with a reference 

dataset to correct the bias of the map-based estimates (as recommended by Olofsson 

et al (2014b) and GFOI (2020); p>0.1, 95%CI) or to probabilistic sampling methods using 

either a stratified or systematic approach (p<0.001, 95%CI). This trend is closely linked 

to a change in preferred data sources, since the latter two methods rely heavily on very 

high resolution imagery. It is noteworthy that in the past two years there are no examples 

of use of EO products to directly estimate AD. 

The use of satellite data to derive information on biomass and biomass change (EF/RF) 

is much less common. Just three countries used satellite imagery to produce their own 

biomass maps, from ALOS (Zambia 2017) or Landsat (Honduras for forest degradation 

and Togo, 2020) and no country used available global biomass maps (Table 2.3, Table 

2.4). National Forest Inventory (NFI) plot measurements are the main source of biomass 

data (61%), sometimes complemented with IPCC defaults and additional field data 

(23%). If an NFI was not available, countries used a combination of other sources such 

as harmonized plot data, literature, and IPCC defaults (38%), or even biomass data from 

neighbouring countries (n=2) (Table A.1.2). Two biomass maps (Saatchi et al., 2011; 

Baccini et al., 2012) were explored in four (5%) submissions (from Congo, Equatorial 

Guinea, Guyana, and Mozambique; Table 2.3, Table A.1.2). However, they were only 

used indirectly, for example to compare estimates with the reported values in the FRL 

(verification). The use of EO products is also negligible for fire mapping (Table 2.3). Of 

the 16 countries including emissions from forest fires or non-CO2 emissions from 
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biomass burning from deforestation, only two used EO products to estimate AD for burnt 

areas (Ghana and Indonesia), and another (Equatorial Guinea) used them simply to 

justify omitting these fluxes.
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Figure 2-2. Location of the 56 country Parties to the UNFCCC that submitted 75 forest reference emission levels / forest reference levels (FREL/FRL) to the UNFCCC 
from 2014 up to 2022. The colour scheme in the quadrant charts shows the use of satellite data (e.g., Landsat imagery) and derived products (i.e., satellite-based global 
maps in Table 2.2 or ‘ O products’ in the text) to directly derive Activity  ata (A , left-hand quadrants in red and yellow respectively), and Emission Factors (EF, right-
hand quadrants in teal and green respectively). Indirect uses of  O products are represented with a • mark in a quadrant (e.g., use for validation, to justify decisions, to 
adjust the FREL/FRL, or for comparison of reported estimates). See Table 2.4 for more details on what is considered direct and indirect contributions and Table A.1.2 for 
details on the specific ways country Parties use the data. Use of maps produced from airborne technology are not included. Panel a) shows the proportion of developing 
country Parties that have submitted at least one FREL/FRL (blue bars) and proportion within those that submitted at least one F  L/F L using ‘ O products’ in their 
FREL/FRL (black bars; including direct and indirect use of EO products depicted in the widgets in yellow and green and with a • mark). Country Parties are separated in 
panel a) by geopolitical regional groups recognized by the UN—Latin American and the Caribbean (LAC) States, African States, Asian States—and the negotiating Party 
group defined as Least Developed Countries (LDCs, marked with the & symbol). Note that the 56 countries with FREL/FRL submissions are part of one of the three 
regional groups while 20 of them are also designated by the UN as LDCs. See Figure A.1.1 for more information on MRV capacity indicators separated by Party groupings. 
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Table 2.3. All the global maps derived from satellite-data (‘ O products’) used by 26 out of the 56 countries 
that submitted a forest reference emission levels/forest reference levels (FREL/FRL) to the UNFCCC 
between 2014 and 2022 and ways in which these products were used: to directly derive Activity Data (AD; 
yellow box) and Emission Factors (EF; green box) or contributing indirectly to the FREL/FRL. Colours and 

symbols (yellow, green and • match the legend of Figure 2-1 and Figure 2-2). Uses for AD are separated 
into deriving information on ‘deforestation’, on ‘other       activities’, as auxiliary data (e.g., as training 
data or to correct the maps), and to map fire occurrences. Uses for emission factors are separated into 
deriving information on ‘deforestation’ and ‘other       activities’. Unlisted countries (from the 56 with 
submitted FREL/FRL) used no EO product in their FRLs, or if one was used, it is not clearly identified in the 
submission and supporting documentation. Dash (-) denotes no use. * Togo compared emission results with 
data from the Global Forest Watch relying on the Global Forest Change (Hansen et al., 2013) product. Totals 
are total number of countries. Note countries can appear repeated in the same column or row. 

EO products used 

activity data emission factors indirect contribution (•) 
total 

countries deforestation 
other REDD+ 

activities 
auxiliary 

data 
fire 

mapping 
deforest. 

other 
REDD+ 

activities 

support decisions 
assumptions 
adjustments 
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results 

land cover and land 
cover change 

    

Global Forest Change 
(GFC) 

(10) 
Bhutan 
Congo 

Costa Rica 
Equat.Guinea 

Liberia 
Madagascar 

Myanmar  
Nigeria  
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Equat.Guinea 

Liberia 
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3 
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Table 2.4. Examples of how this study classifies the different contributions from products derived from 
satellite data (EO products) found in forest reference emission level/forest reference level (FREL/FRL) 
submissions to the UNFCCC. The main classification of EO product uses is as i) a direct contribution to 
derive activity data (AD; highlighted in yellow), ii) a direct contribution to derive emission factors (EFs; in 
green; n.a. because no examples of uptake were found) and iii) indirect contributions related to either AD or 
EFs (in white). See more details at country level in Table A.1.2 

classes of EO product 

uses 
examples of uses found in reference level submissions (Party, year of submission) 

ac
ti

vi
ty

 d
at

a 
(A

D
) 

direct use for 

‘deforestation’ 

- filling cloud gaps (Costa Rica 2016); 
- produce wall-to-wall forest non-forest maps by adjusting or tree-cover and tree-cover change 

to national definitions or combining it with national layers (Bhutan 2020, Congo 2016, Costa 
Rica 2016, Liberia 2020, Madagascar 2017 and 2018, Nigeria 2018 and 2019, Sri Lanka 
2017);  

- support the classification of sample units (Solomon Islands 2019) or segments (Equatorial 
Guinea 2020);  

- ‘pixel-counting’ approach (Costa  ica 2 1 , Madagascar 2 17); 
- stratification in a ‘stratified area estimation’ approach (Bhutan 2 2 , Congo 2 1 , Equatorial 

Guinea 2020, Liberia 2020, Madagascar 2018, Myanmar 2018, Nigeria 2018 and 2019, Sri 
Lanka 2017); 

- ‘sampling’ approach (Solomon Islands 2 19). 

direct use for ‘other 

 EDD+ activities’ 

auxiliary data 
- training data (Ethiopia 2016, Tanzania 2017, Uganda 2017, Zambia 2016);  
- map correction (Honduras 2017, Lao 2018, Zambia 2021). 

fire mapping 
- burned areas mapping (Ghana 2017); 
- supporting the mapping (Indonesia 2022); 
- validating burned areas (Indonesia 2022). 

em
is

si
o

n
 

fa
ct

o
rs

 (
E

F
) direct use for 

‘deforestation’ 

n.a. 
direct use for ‘other 

 EDD+ activities’ 

indirect contribution 

(•) 

- map validation (Madagascar 2017); 
- justification of omission of activities and gases (Equatorial Guinea 2020, Nigeria 2019); 
- supporting the choice of tree canopy threshold to define forest land (DRC 2018, Equatorial 

Guinea 2020); 
- adjusting the FRL (Guyana 2015; Congo 2016); 
- comparing estimates by the Party (Congo 2016, Equatorial Guinea 2020, Ethiopia 2016, 

Mozambique 2018, Nepal 2017, Togo 2020, Uganda 2017) or the assessment team (Chile 
2016, Congo 2016, Ecuador 2015, Zambia 2016);  

- support decisions on the intensification of the sampling grid (Mongolia 2018); 
- stratification to support the spatial distribution of field plots for biomass measurements 

(Indonesia 2022). 

 

 
Figure 2-3.  Number of forest reference emission levels / forest reference levels (FREL/FRL) submissions 
to the UNFCCC per year since 2014 and up to 2022 separated by technique employed to generate Activity 
Data (AD): pixel-counting, stratified area estimate, or sampling. [continues in next page…………………] 
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Panel a) includes all the 75 submissions to date with a1) showing the trend of the annual proportion of 
submissions using each AD technique. The trend is statistically significant (at 95% CI) for 'pixel-counting'  
(p-value < 0.001) and 'sampling' approaches (p-value < 0.001) but not for 'stratified area estimate' (p-value 
= 0.374). Panel b) shows only those submissions using products derived from satellite data (n = 29; 29 
submissions from 26 country-Parties with Madagascar, Nigeria and Zambia using Earth Observation 
products in their two submissions; see Table 2.4); and further separated into submissions using Earth 
Observation products b1) to directly derive AD for deforestation (n = 11 including all 9 countries in Table 
2.3, with Madagascar and Nigeria using it in their two submissions) or b2) to directly derive any of the other 
REDD+ activities (n=6). 

2.5 Discussion 

Given the wealth of products offered by the EO community (Table 2.2 shows just the 

most prominent examples and some of their characteristics), the most striking finding 

from this study is the lack of diversity in those used for AD and their very limited use to 

map fire and support estimates of EFs. Below we explore some of the issues surrounding 

this observation.  

2.5.1. IPCC considerations for area representation: national 

definitions, spatial and temporal resolution, temporal coverage and 

consistency  

The GFC (Hansen et al., 2013) is the only EO product used to estimate AD, consistent 

with studies highlighting its suitability to produce estimates of forest area at both global 

(Harris et al., 2021) and national scales if local maps are not available (McRoberts et al., 

2016). Reasons for its use in almost half the FRLs, and preference to other global land 

EO products, include its flexibility, which allows it to be adapted to different national 

definitions of forest land. The GFC includes a layer of percentage tree cover per Landsat 

pixel for the year 2000 and annual loss layers corresponding to the removal of all tree 

cover in a Landsat pixel. As a result, countries using the GFC selected the percentage 

tree cover matching the biophysical thresholds in their national definition of forest land 

(which always includes canopy cover thresholds, and varies between 10 and 60% 

among countries studied here, Table A.1.2) and integrated it with national data to 

produce AD. We found examples in 10 submissions (see Table 2.4 and Table A.1.2). 

Alternative global maps with more rigid thematic classes (e.g., MODIS land cover, JAXA 

F/NF, CCI land cover; Table 2.2) are not broadly applicable and equally accurate at 

national level (Li et al., 2016; Tsendbazar et al., 2015; Tsendbazar et al., 2017) given 

the wide variation of canopy cover thresholds used to define forest, i.e., they cannot 

simultaneously match the forest definitions of all countries.  

Land cover maps with a spatial resolution coarser than the minimum area that defines 

forest at national level were never used in FRL submissions. Most countries select either 

0.5-ha or 1-ha as the minimum area of land in their national definitions (51% and 39% of 

submissions, respectively; Table A.1.2). EO products with spatial resolutions coarser or 
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finer than the corresponding 70-m and 100-m do not accurately depict forest and forest 

change extent. For example, coarser pixels may include mixed classes from the national 

definitions and miss small-scale dynamics (Milodowski et al., 2017a; Kalamandeen et 

al., 2018; Ganzenmuller et al., 2022). For finer resolutions, FRLs using the GFC (30-m 

pixels, or approximately 0.09-ha) resampled the data to the minimum mapping unit 

matching the national definition of forest so as not to overestimate the area of forest and 

deforestation. For example, Zambia in 2016 used the GFC aggregated into 5x5 pixel 

blocks to create an initial training dataset for stable forest, non-forest and deforestation 

(Table A.1.2; see also Bhutan, Congo). 

Temporal resolution, coverage and consistency are also important considerations (IPCC, 

2019; GFOI, 2020; Herold et al., 2019). FRLs estimate yearly fluxes and most have 

reference periods of 10 to 15 years. EO products need to be available and comparable 

over time, as well as consistently applied to the entire time series. Starting in the year 

2000, with annual estimates of total tree cover loss, and described as globally consistent, 

the GFC product is the only example from Table 2.2 meeting those requirements. 

Products that are not annual (i.e., coarser temporal resolutions) may miss land dynamics 

such as harvest and conversions to tree crops (Woodcock et al., 2020; Pengra et al., 

2020). Discontinuation (e.g., GLCF; (Sexton et al., 2013)) or unexpected interruptions 

(JAXA Forest / Non-Forest; (Shimada et al., 2014)) of EO products at equivalent spatial 

resolutions could have prevented their use. Note that recent studies highlight a temporal 

inconsistency also in the GFC product attributed to changes in the algorithm (Ceccherini 

et al., 2021; Palahi et al., 2021). Temporal inconsistencies in fact exist in all EO products, 

even those from the long-running Landsat programme, because of sensor degradation 

or sensor and technology changes between successive missions (Roy et al., 2016; 

Vogeler et al., 2018).  

Temporal inconsistencies and the biases they introduce may help explain why countries 

are relying more on reference data, most commonly a sample dataset of visually-

interpreted imagery with high spatial resolution available through the Collect Earth 

platform (Table A.1.2; Figure 2-3). In the last three years 70% of the submissions used 

a reference dataset to estimate AD. While 40% stratified the sample with a map 

(including the GFC product), as recommended to reduce omission errors (Olofsson et 

al., 2020), 30% relied only on the samples. This trend towards reduced dependency on 

wall-to-wall maps to derive AD can partially explain the limited uptake of EO products. 

The need for compliance with IPCC good practice and reporting of uncertainty may also 

help explain this trend. Pixel-counting methods introduce bias in the estimate from map 

classification errors, and the map accuracies derived from error matrices do not quantify 

that bias, as required by the IPCC guidelines (McRoberts, 2011; Olofsson et al., 2013).  
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Another reason for the transition in methods to derive AD is related to attribution: while 

land cover can be obtained from EO, and is typically used as a proxy for land-use, the 

two are not the same. We find countries are using sampling methods and visual 

interpretation of very high resolution imagery to identify complex land dynamics, and to 

distinguish plantations, tree crops, shifting agriculture and trees outside forest, in order 

to attribute these areas to the correct class according to the national land classification. 

Such attribution is not possible with EO products alone (Tropek et al., 2014; Curtis et al., 

2018; GFOI, 2020). For example, the Bangladesh FRL identifies that more than 50% of 

mapped tree canopy cover is from trees outside forest (Potapov et al., 2017). Solomon 

Islands used Collect Earth to correct cases of harvest and replanting of oil palm 

(cropland) identified in the GFC as forest loss. Similarly, Guinea-Bissau manually 

corrected the land cover maps and noted in its FRL that 74% of the corrected pixels 

corresponded to cashew trees (a tree crop) being mapped as forest (Melo et al., 2018). 

Ghana changed its AD approach from pixel-counting (in the 2017 submission) to 

systematic sampling (in the 2021 submission), resulting in a change in the deforestation 

(AD) estimate from around 312,000 to around 18,000 ha per year in the same reference 

period (i.e., deforestation estimate with the systematic sampling approach rendered a 

deforestation estimate which is only 6% of that obtained with pixel-counting). Ghana 

noted in its FRL that using very high resolution imagery as source of AD allowed the 

proper disaggregation of tree crops from forest which had led to the overestimation of 

the AD in the 2017 submission.  

However, we note that in this transition towards sampling-based methods for deriving 

AD (including ‘stratified area estimate’ and ‘sampling’ in this study) the bias of the 

reference data is never quantified in the FRLs. Such bias can be substantial due to 

interpretation errors and to the temporal inconsistencies of the available imagery, given 

that the tropics do not have good coverage by very high resolution imagery, especially 

for a reference period of 10-15 years (McRoberts et al., 2018; Schepaschenko et al., 

2019; Lesiv et al., 2018; Pengra et al., 2020). 

2.5.2. Limited uptake of global biomass maps 

None of the available above-ground biomass EO products were used to estimate EFs. 

The only ways they were used, and only in the submissions of four countries, was as 

independent estimates to compare and enhance the confidence in the national above-

ground biomass values used to derive EFs, or, in Guyana, to adjust the national historical 

emission trend with a global emission level to predict future emissions more accurately. 

Using EO products for verification (i.e., comparing with national estimates) was the only 

example of implementation of the 2019 Refinement to the 2006 IPCC Guidelines, now 

including a section on the use of above-ground biomass EO products. Similarly to AD, 
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when reporting the uncertainty of EFs, national teams need to document the precision 

of the estimates through confidence intervals. However, none of the biomass EO 

products from Table 2.2, except the most recent ones using GEDI data (Dubayah et al., 

2022; Duncanson et al., 2022), provide the required variances and covariances 

(McRoberts et al., 2022; GFOI, 2020). There are examples on how to improve the 

precision of NFI plot-based estimates with global EO products of above-ground biomass 

(Naesset et al., 2016; Naesset et al., 2020; Malaga et al., 2022), but there has been no 

implementation of these methods in FRLs. 

2.5.3. Regional differences in the uptake of EO products 

Our study reveals a higher uptake of EO products by countries from Party groupings with 

lower forest monitoring capacity (African States and LDCs; Figure 2-2, Figure A.1.1) 

and highlights the important role of EO products in enhancing these countries’ MRV 

capacity. This finding is consistent with a recent study from Nesha et al (2021) on forest 

monitoring capacity in reporting to the FAO, where the authors conclude that despite 

remaining lower than in other regional groups, the remote sensing capacity of African 

States has increased significantly between 2015 and 2020. It also confirms that 

developing countries’ capacity to report GHG fluxes from LULUCF to the UNFCCC has 

been increasing with REDD+ investments (Federici et al., 2017) (Figure A.1.1). For 80% 

(n=45) of the developing countries implementing REDD+ activities, submission of the 

FRL was their first experience of reporting GHG fluxes from LULUCF and going through 

a technical review under the UNFCCC (Table A.1.3). Half of those countries (n=22) did 

so while using EO products in their FRL. Furthermore, as of December 2022, there were 

13 countries submitting a FRL with the support of EO products that have not yet 

submitted any biennial update report. The contribution of EO products can, therefore, be 

more prominent if the capacity built for FRLs leverages the development of GHG 

inventories. This is an important conclusion because strategically selecting 

collaborations with national teams with lower MRV capacity, who rely more on the EO 

products offered, will support their transition to the more stringent reporting requirements 

of the Paris Agreement. At the same time, it contributes to a more complete global time-

series of carbon fluxes obtained from the aggregation of national GHG inventories in the 

Global Stocktake. 

2.5.4. Transparency of reference level submissions and limitations of 

the analysis 

Of the 75 submissions included in our analysis, 69 have completed technical 

assessment. Of those, 75% (n=52) are described by the expert reviewers in the technical 

assessment report as being ‘transparent and in overall accordance with the guidance’. 
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However, the remaining submissions ranged from ‘mostly transparent’ to ‘not sufficiently 

transparent’, with the experts flagging the need for including more detail on the data 

sources and methods. The limitations of this study due to lack of transparency in at least 

25% of the submissions are twofold: 

- Possible underestimation of the use of EO products due to our inability to find all 

data sources used. For example, maps were used for stratification but were not 

adequately documented in the FRL submission and accompanying 

methodological annexes. To minimize this source of bias we assumed that the 

technical assessment report had priority over the FRL, given that experts have 

access to more information that is not publicly shared. For example, Equatorial 

Guinea does not clearly describe how the GFC layers “were superimposed over 

the maps to help to classify AD” but because it is in the technical assessment 

report, we attributed a direct contribution of GFC in deriving AD.  

- Possible underestimation of the direct use of EO products to derive AD due to 

poor descriptions of the methods. For example, any incorrect definitions of the 

AD method as ‘sampling’ instead of ‘stratified area estimate’ will lead to an 

incorrect classification of the use of the EO product as indirect instead of direct 

(e.g., Myanmar, Mongolia). In our analysis, eight submissions (10%) were 

flagged with low confidence in the attribution of the method used to derive AD 

because the FRL submission was not clear or our classification disagreed with 

FAO analysis on REDD+ FRL (FAO, 2020a). Of these eight submissions, three 

(4%) used the GFC product. To address this uncertainty, for these submissions, 

we relied on personal communications with the national technical teams to 

attribute the method used (e.g., Nigeria, see Table A.1.2). 

2.6 Conclusions 

Analysis of the use of satellite data and derived EO products by 56 developing country 

Parties to the UNFCCC in 75 REDD+ forest reference levels indicates that the only land 

EO product used was the GFC; this was used by 43% (n=24) of the countries, with 29% 

(n=16) using it directly to estimate AD. The number of countries using EO products to 

map burnt areas (n=2) and to estimate emission factors (n=0) is negligible. However, the 

GFC and pantropical biomass maps were used for verification (n=9 and n=3, 

respectively) by countries and expert reviewers. There is a trend towards using 

probabilistic sampling methods that do not rely on wall-to-wall mapping to quantify land 

dynamics (p<0.001, 95%CI), which can partially explain a limited uptake of land maps. 

Nevertheless, overall, the availability of EO products enhances MRV capacity: 70% of 

LDCs and 65% of African States with FRL submissions relied on EO products, and for 
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22 of the countries using EO products in their submission, this was their first reviewing 

process under the UNFCCC. This analysis may help the EO community by clarifying the 

properties EO land products must have for their effective take-up by countries in their 

reporting for the land use sector. Fostering collaboration with experts familiar with IPCC 

guidance can help in the design of EO products and facilitate their integration into 

national reporting, and hence enable more complete GHG inventories and increase 

confidence in the data used by the Global Stocktake process. 
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3. Chapter 3. Striking divergences in Earth 

Observation products may limit their use for 

REDD  

 

 

Abstract 

Countries are required to generate baselines of carbon emissions, or Forest Reference 

Emission Levels, for implementing REDD+ under the UNFCCC and to access results-

based payments. Developing these baselines requires accurate maps of carbon stocks 

and historical deforestation. Global remote sensing products provide low-cost solutions 

for this information, but there has been little validation of these products at national 

scales. This study compares the ability of currently available products obtained from 

remote sensing data to deliver estimates of deforestation and associated carbon 

emissions in Guinea-Bissau, a West African country encompassing the climate and 

vegetation gradients that are typical of sub-Saharan Africa. We show that disagreements 

in estimates of deforestation are striking, and this variation leads to high uncertainty in 

derived emissions. For Guinea-Bissau, we suggest that higher temporal resolution of 

remote sensing products is required to reduce this uncertainty by overcoming current 

limitations in differentiating deforestation from seasonality. In contrast, existing datasets 

of carbon stocks show better agreement, and contribute much less to the variation in 

estimated emissions. We conclude that using global datasets based on Earth 

Observation data is a cost-effective solution to make REDD+ operational, but 

deforestation maps in particular should be derived carefully and their uncertainty 

assessed. 

Keywords: REDD+; Forest Reference Emission Level; Measurement, Reporting and 

Verification; Deforestation; Carbon Emissions; Remote Sensing; Sub-Saharan Africa; 

Guinea-Bissau 
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3.2 Introduction 

Land-use change accounts for 12% of global carbon emissions (Le Quéré et al., 2018), 

and mitigation actions in this sector are strategically important under the United Nations 

Framework Convention on Climate Change (UNFCCC) and its Paris Agreement 

(UNFCCC, 2016; Grassi et al., 2017). Accordingly, efforts to reduce emissions from 

deforestation and forest degradation in tropical developing countries (REDD+) have also 

been high on the agenda. However, to be eligible to receive results-based payments for 

REDD+ efforts, countries need to fulfil certain technical requirements (Goetz et al., 2015) 

that include establishing baselines of historical greenhouse gas emissions, or Forest 

Reference Emissions Levels (FREL). FREL in UNFCCC terminology is given by the 

product of ‘activity data’ (AD) and ‘emission factors’ (EF), or area change and changes 

in carbon stock per unit of area. Existing global Earth Observation datasets for land-use 

change assessments (e.g., Hansen et al., 2013; Sexton et al., 2013; Shimada et al., 

2014) and of above-ground biomass density (e.g., Saatchi et al., 2011; Baccini et al., 

2012) may be useful in the context of REDD+ to establish emission baselines (Harris et 

al., 2012; Achard et al., 2014; Achard and House, 2015; Goetz et al., 2015; Tyukavina 

et al., 2015; Zarin et al., 2016). However, although Earth Observation capabilities to 

generate regional to global products can contribute to promote consistency and 

transparency across regions by tracking global progress on reducing emissions (Achard 

and House, 2015), the suitability of these products have rarely been tested for producing 

baselines at national scales. 

Using existing Earth Observation (EO) products is less costly than developing and 

maintaining operational forest monitoring systems, including the high costs of sampling, 

and therefore is particularly attractive to some countries with less capacity and without 

substantial REDD+ readiness funding (Norman, 2015; Herold and Skutsch, 2011). 

However, limitations exist for their wider adoption at national and sub-national levels. 

Such limitations include the scarcity of studies analyzing the agreement between such 

products and in-situ data at national and subnational scales or the differences that may 

be found among the available studies. For example, studies have shown that although 

having high overall accuracies, some products still underestimate deforestation due to 

confusion between forests and plantations (Lui and Coomes, 2015; Tropek et al., 2014) 

or by failing to detect small-scale disturbances (Milodowski et al., 2017b). These 

products can also overestimate tree-cover and deforestation due to discrepancies in 

tree-cover thresholds (Mermoz and Toan, 2016; Sannier et al., 2016). As for biomass, 

studies comparing existing pantropical maps (Mitchard et al., 2013; Hill et al., 2013; 

Mitchard et al., 2014) found overall agreement and lower uncertainty when data is 

aggregated at larger scales, but significant differences otherwise, and thus 

recommended better uncertainty assessments of these pan-tropical products. Overall, 
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these studies compared different EO products for deriving either activity data (AD) or 

emission factors (EF). However, the combined analysis of these two components, which 

is a prerequisite for developing national REDD+ baselines, has rarely been performed. 

This study therefore assesses the impact of using different available datasets obtained 

with state-of-the-art automated methods based on EO data for producing a national 

baseline of historical carbon emissions, using Guinea-Bissau (West Africa) as a case 

study. With an area of ~ 36,000 km2, this least-developed country is mostly covered with 

woodlands and mangroves (Vittek et al., 2014) and encompasses the climate and 

vegetation gradients that are typical of many areas of sub-Saharan Africa (Figure 3-1). 

We compare historical gross emissions from deforestation obtained by combining 

several products (for AD and EF), including nationally produced ones, and investigate a) 

if consistent FRELs are derived when using different EO products; b) if the variance is 

mostly due to the AD or EF component; and c) the reasons for observed discrepancies. 

Overall, we wish to explore whether the concern surrounding the use of global EO 

products at national scales to develop REDD+ baselines is warranted. 

 
Figure 3-1. Map indicating the location of Guinea-Bissau in Western Africa showing terrestrial ecoregions 
(adapted from Olson et al., 2001) and precipitation gradient (mm yr-1, WorldClim) in the Guinea-Bissau 
subset. 

3.3 Data 

3.3.1. National deforestation and above-ground biomass data 

To comply with UNFCCC reporting requirements Guinea-Bissau compiled existing 

information on anthropogenic emissions by sources and removal by sinks in their 

national communications (Guinea-Bissau, 2011, 2018). The main source of data for the 

land-use sector, including information on deforestation and forest AGB, was the 

CARBOVEG-GB nation-wide project which ended in 2010. This project was latter 

extended by the Institute for Biodiversity and Protected Areas (IBAP) with the objective 
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of producing a baseline of emissions for the protected areas (Vasconcelos et al., 2015; 

IBAP, 2015). Information from these projects includes Landsat-based land-cover maps 

for 2007 and 2010 that stratify forests into four classes (Table 3.1), and in-situ AGB data 

collected nationwide in 309 plots (Table 3.2). These data are referred to hereafter as the 

National data (see Vasconcelos et al., 2015 and the Appendix 2 for detailed methods). 

3.3.2. Global forest cover data 

Available global datasets of tree-cover and tree-cover loss (Hansen et al., 2013; Sexton 

et al., 2013) and annual forest and non-forest cover maps (Shimada et al., 2014) based 

on automated classification algorithms of Landsat, the Vegetation Continuous Fields 

(VCF) derived from MODerate-resolution Imaging Spectroradiometer (MODIS), and 

Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture 

Radar (PALSAR) imagery were used (Table 3.1, and Appendix 2). To estimate forest 

loss from 2007 to 2010, we firstly used the Global Forest Change (GFC; (Hansen et al., 

2013)) 30-m resolution dataset based on a time-series of Landsat images from the 

growing season. Secondly, we used the global dataset of tree-cover made freely 

available by the Global Land Cover Facility (GLCF; (Sexton et al., 2013)). Although the 

final product is also a tree-cover global map, this dataset uses the 250-m MODIS VCF 

rescaled to 30-m resolution using Landsat data. Thirdly, we used the 25-m Forest/Non-

Forest (F/NF) global mosaics for 2007 and 2010 from (Shimada et al., 2014) based on 

the Japan Aerospace Exploration Agency (JAXA) ALOS PALSAR. This product uses the 

lower levels of the L-band backscatter as a threshold for mapping the transition from 

forest to non-forest. 

Table 3.1. The data sources used to derive deforestation estimates between 2007 and 2010. 

Product Reference Scale 
Remote sensing 
data sources 

Spatial 
resolution 

Imager  
acquisition 

dates 

 escription of data 
used to derive 
deforestation 

GFC 
Hansen et al. 
(2 12) 

Global Landsat   -m growing season 
Tree-cover 2    
annual tree-cover 
loss 2   -2 1  

GLCF 
Sexton et al. 
(2 1 ) 

Global 
M DIS VCF rescaled 
with Landsat 

  -m all year 
Tree-cover  
2   , 2 1  

JAXA 
Shimada et al. 
(2 14) 

Global AL S  ALSA  2 -m growing season 
Forest/non-forest  

2  7, 2 1  

National 

Guinea-Bissau 
(2 12, 2 1 ) 
Vasconcelos et 
al. (2 1 ) 

National Landsat 2 -m 
dry  

season 
Land-cover  
2  7, 2 1  

3.3.3. AGB maps 

To assess pre-deforestation carbon stocks, we used four available maps of AGB (Table 

3.2, and Appendix 2). Two were developed at a pantropical scale (Saatchi et al., 2011; 

Baccini et al., 2012) based on transects derived from the Lidar dataset obtained by the 

Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation 
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Satellite (ICESat). Two additional AGB maps, based on Synthetic Aperture Radar (SAR) 

from ALOS PALSAR and developed for Africa savannas and dry forests (Bouvet et al., 

2018) and at a national scale (Carreiras et al., 2012) with 25-m and 50-m spatial 

resolution, were also used. All products used field data for calibration and have reference 

years ranging from 2000 to 2010 (Table 3.2). Saatchi et al. (2011), Baccini et al. (2012), 

Carreiras et al. (2012), and Bouvet et al. (2018) products are referred to hereafter as 

SA11, BA12, CA12, and BO18 respectively. 

Table 3.2. The above-ground biomass data sources used to derive emission factors. 

Product Reference Scale 
Remote Sensing  
data sources 

Spatial 
resolution 

Reference 
 ear 

SA11 Saatchi et al. (2 11)  antropical 
GLAS + M DIS + 
QuikSCAT 

1-km 2    

BA12 Baccini et al. (2 12)  antropical GLAS + M DIS    -m 2  7-2    

CA12 Carreiras et al. (2 12) Guinea-Bissau AL S  ALSA    -m 2    

BO18 Bouvet et al. (2 1 ) African savannas AL S  ALSA  mosaic 2 -m 2 1  

National 
Guinea-Bissau (2 12, 2 1 ), 
Vasconcelos et al. (2 1 ) 

  9 plots measured nationwide between 2  7 and 2 12 

 3.4 Methods 

3.4.1 Deforestation (Activity Data) 

A spatial tracking approach was used to estimate gross deforestation over the 2007-

2010 period. Firstly, F/NF layers were derived from all products. This included using a 

similar minimum mapping unit of 0.5-ha and tree-cover threshold of 10% to be consistent 

with the national forest definition (see Appendix 2 for details). The two National land-

cover maps (2007, 2010) were reclassified into F/NF. For GFC, F/NF maps were 

generated for the years 2007 and 2010 using the 2000 tree-cover and annual loss maps; 

the 2000 tree-cover map was reclassified to F/NF with forest being defined as areas with 

tree-cover above 10%; loss in the period 2001-2007 was used to update the 2000 F/NF 

map and generate a 2007 F/NF map; the same approach was followed to obtain the 

2010 F/NF map. For GLCF, F/NF maps were generated for the years 2005 and 2010 by 

reclassifying areas with tree-cover above 10% as forests in the tree-cover maps for the 

corresponding years. For JAXA, F/NF maps were already available for 2007 and 2010. 

For both National and JAXA the threshold for forest is 10% tree-cover, which is 

consistent with the national forest definition (FAO, 2015). Finally, deforestation maps 

were generated by reclassifying each of the combined maps from forest and non-forest 

to deforestation and no-change. A common projection, extent and water mask was 

applied as detailed in the Appendix 2. 
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3.4.2 Carbon assessment and emission factors 

Due to lack of accurate information on the fate of post-deforestation land-uses and 

corresponding carbon stocks, and to ensure the integrity of their FRELs, most countries 

(all FREL submissions except five up to December 2017) and other pantropical studies 

(e.g., Harris et al., 2012; Achard et al., 2014; Tyukavina et al., 2015) chose to report 

gross instead of net emissions. This option is consistent with the stepwise approach for 

the development of REDD+ FRELs, which envisions the incorporation of better data and 

improved methodologies over time.  In this study, we followed the same approach and 

estimated gross emissions, which means post-deforestation carbon stocks are assumed 

to be zero and any post-deforestation carbon sequestration is not accounted for. 

Additionally, tree AGB is the only carbon pool included. Field sampling methods were 

already described elsewhere (see Appendix 2). To estimate plot-level AGB from National 

field data, three different equations were selected: for forest trees (Chave et al., 2014), 

mangroves (best predictive model for mangroves from (Chave et al., 2005)) and palm 

trees (IPCC, 2003) (Table A1). AGB obtained at plot level was extrapolated to the area 

of 1-ha using a dimensional scaling factor (see Appendix 2). The National EF is the 

weighted average of the AGB density from all forest classes. For EFs derived from SA11, 

BA12, CA12 and BO18, instead of country averages, the pre-deforestation AGB was 

used by extracting the values from pixels identified as deforested by each deforestation 

product. AGB was converted to tCO2 ha-1 by using the standard carbon factor of 0.47 

(IPCC, 2006) and the 44/12 molecular weight ratio of carbon to carbon dioxide. 

3.4.3 Estimating historic gross emissions from deforestation 

For each combination of datasets, the product of deforested area (AD, ha yr-1) and the 

associated AGB (EF, tCO2 ha-1) was summed to render total annual emissions (FREL, 

tCO2 yr-1). Four AD (National, GFC, GLCF, and JAXA) and five EF (National, SA11, 

BA12, CA12, and BO18) products were used in this analysis rendering 20 FREL 

combinations. The spread between emissions obtained by these products was estimated 

using the coefficient of variation (CV, %) computed as the ratio of the standard deviation 

to the mean of all products. To assess the source of variation in derived FRELs, the CV 

was calculated across deforestation products whilst fixing each AGB product, and vice-

versa, fixing each deforestation product and calculating the CV across the AGB products. 

3.4.4 Identifying spatial patterns of agreement 

Datasets were overlaid and combined to identify agreement between both deforestation 

and AGB products. To facilitate the visual interpretation of different spatial patterns, 

datasets were aggregated to a 10-km spatial resolution with each pixel representing the 
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proportion of deforestation by area of national land (%) for AD and the mean AGB (t ha-

1). Per-pixel statistics were computed including mean of all products, standard deviation 

and variation as a proportion of the mean given by the CV (%). The correlation between 

these statistical variables was assessed using the Spearman’s rank correlation 

coefficient. 

To understand the patterns of agreement between datasets we stratified the land area 

into four regions based on the National land-cover map (depicting Mangroves and 

Terrestrial Forests) stratified by climatic data (mean annual precipitation for the years 

1970-2000 below or above 1500 and 2000 mm yr-1) from WorldClim (Fick and Hijmans, 

2017) version 2. The 20 FREL combinations and their CV (%) were calculated per region. 

3.5 Results 

3.5.1. Above-ground biomass and emission factors 

The aggregated AGB mean for the entire country varies little between products (Figure 

3-2). All AGB estimates range between 54 and 65 t ha-1 (SA11 and BA12 respectively), 

and are similar to estimates derived from in-situ data (National, 62.8 t ha-1). They are 

also substantially lower than the IPCC default for sub-tropical dry forests (130 t ha-1, 

(IPCC, 2006)). Mean AGB densities from deforested areas tend to be lower than the 

aggregated national average indicating that deforestation occurs in areas of lower AGB 

(this is particularly evident for AD-National and true for all deforestation products except 

GFC in three of four AGB datasets). All AGB products show higher values in the south 

of Guinea-Bissau (Figure 3-3) where patches of sub-humid forest are documented 

(Malaisse, 1996). Some differences are observed elsewhere such as the lower densities 

in the North of the country in SA11, but overall variation in the AGB spatial distribution is 

low nationwide with 95% of 10-km pixels having a CV below 30% (Figure 3-3). 

 
Figure 3-2. Distribution of above-ground biomass (AGB, t ha-1) estimates from SA11, BA12, CA12, and 
BO18, including minimum, first quartile, median, third quartile, maximum, [continues in next page……….] 
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and mean AGB. Estimates at the country level are highlighted in grey and the mean marked with the symbol 
×. The remaining distributions describe data from SA11, BA12, CA12, and BO18 in areas mapped as 
deforested by each activity data product: GFC, GLCF, JAXA, and National (mean values marked with 

symbols △, ◻, ◇, *, respectively). Right panel depicts National (N) mean AGB (t ha-1) and the error bars the 
95% confidence interval (CI) obtained from data collected nationwide in 309 sampled field plots. The 95% 
CI is also depicted by a blue bar for comparison with the remaining country-wide estimates. Table A.2.3 
shows mean and standard deviation values for all distributions. The National mean AGB density for the 
entire country (62.8 t ha-1, Table A.2.2) is used directly as proxy of pre-deforestation carbon stock or EF. 
The IPCC default AGB value for sub-tropical dry forests (130 t ha-1, Table 4.12, IPCC 2006) is also illustrated 
here with a dashed line. 
 
 

a) 

 

 

 

b) 

 

   

Figure 3-3. Spatial patterns of above-ground biomass (AGB, t ha-1) in Guinea-Bissau at 10-km resolution, 
including: a) AGB distribution from different products (SA11, BA12, CA12 and BO18), and b) per-pixel 
statistics including average AGB of all products and measure of spread given by the coefficient of variation 
(CV, %) in each pixel. The National EF is not depicted as it is estimated as the area-weighted average AGB 
of all forest classes with the same value of 62.8 t ha-1 used country-wide with no spatial variation. 

3.5.2. Deforestation magnitude and spatial disagreement 

In contrast to the AGB datasets, deforestation varies greatly among products with rates 

ranging between 0.3 and 1.8 % yr-1 for GFC and National maps respectively (Table 

A.2.4). Even more striking are the different spatial patterns of deforestation: the different 

products show almost complete disagreement (Figure 3-4). For instance, GFC identifies 

deforestation in the south of the country where the densest forests exist, while GLCF 

shows deforestation to the north in the border with Senegal and the Casamance region. 

Both National and JAXA highlight deforestation to the east of the country, in areas 

dominated by savannas, but these do not overlap. Variation as proportion of the mean 

(CV, %) is high to very high: over 90% of pixels have a CV above 50%. 
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a) 

 

 

 

b) 

 

   
Figure 3-4. Spatial patterns of deforestation in Guinea-Bissau between 2007 and 2010 derived from different 
products (GFC, GLCF, JAXA and National) at 10-km resolution: a) per-pixel deforestation values shown as 
the proportion (%) of deforestation by the land area of national territory (blue color denotes no change), and 
b) per-pixel statistics with average and measure of spread given by the coefficient of variation (CV, %). 

3.5.3. Forest Reference Emission Level combinations 

Results for the 20 combinations of EO products show that AD and EF derived from 

different datasets render very different FRELs, or annual emissions (MtCO2 yr-1; Table 

3.3). Using National data produced an estimate of 5.71 MtCO2 yr-1, a value which is more 

than 10-times higher than the 0.48 MtCO2 yr-1 obtained when combining GFC (AD) and 

BO18 (EF). While the spread of all FRELs is high (overall CV of 64%), the results 

highlight that the magnitude of variation is dominated by differences in the deforestation 

dataset (AD), with CV ranging between 58 and 71% when compared to the 20-32% 

variation in EFs. In both AD and EF higher spread is linked to National data, while the 

lowest spread in AD is obtained for the two EF products derived from L-band backscatter 

(CA12 and BO18, 58% CV). 

Table 3.3. Forest Reference Emission Levels (in MtCO2 yr-1) for the reference period 2007-2010 and 
country-wide spread given by the Coefficient of Variation (CV, %) for AD by fixing each AGB product, and 
for EF by fixing each deforestation product. The different FREL estimates are obtained as the product of 
Activity Data (AD, ha yr-1) derived from each dataset (National, GFC, GLCF, and JAXA) and Emission 
Factors (EF, tCO2 ha-1) obtained by each dataset (National, SA11, BA12, CA12, BO18). 

   -GFC   -GLCF   -J X    -National    CV 

EF-National  . 2 1.   4.    .71 71 % 

EF-S 11  .79 1.17 2.97  .    4 % 

EF-B 12  . 7 1.    . 4 4.19  2 % 

EF-C 12  .79 1.49  .4   .1     % 

EF-BO18  .4  1.14 1.7  2.4     % 

EF CV 21 % 2  % 2  %  2 %  4 %  
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3.5.4. Relationship between spatial patterns 

As suggested by the analysis of AGB densities (Figure 3-2), there is a strong and 

significant relationship between higher deforestation estimates and lower AGB (Table 

3.4, Spearman’s correlation 0.641; p<0.001). There is no observed correlation between 

the variability of estimates of deforestation and mean AGB. 

Table 3.4. Spearman’s rank correlation coefficient between per-pixel mean and coefficient of variation (CV, 
%) for AD and AGB. Correlation values above 0.3 are in boldface; p > 0.05 in round brackets. 

  
   mean    CV  GB mean 

   CV  .112     

 GB mean -0.641 ( .  4)   

 GB CV ( . 47)  .21  (- .  7) 

No clear relationship between different emission estimates and regions defined based 

on vegetation and precipitation gradient is observed either (Figure 3-5), which was also 

suggested by the lack of spatial pattern in per-pixel spread (Figure 3-4b). Spread in AGB 

is always low with slightly higher values (30-47% CV) in forests with mean annual 

precipitation above 2000 mm. The spread in deforestation is always higher than that of 

AGB in all regions, and is particularly high in mangroves. However, mangroves are the 

least deforested biome and account for less than 3% of total deforestation in all datasets 

except JAXA, where it corresponds to 17% of total deforestation. Apart from mangrove 

areas, the disagreements in deforestation are not linked to specific vegetation types. 

 

Figure 3-5. Country-wide and regional spread analysis given by the Coefficient of Variation (CV, %) in 
Activity Data (AD) and Emission Factors (EF). Forest types or regions (F) were stratified based on mean 
annual precipitation. For Mangroves the BO18 dataset is excluded, as mangrove areas are masked in the 
original above-ground biomass map. 
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3.6 Discussion 

We produced different estimates of historical emissions from deforestation by combining 

pairs of deforestation and associated carbon stocks derived from different products. We 

show that there is a high variation in estimated emissions and that this is almost entirely 

due to variation in estimates of annual deforestation. 

3.6.1. Understanding spatial disagreements in deforestation (Activity 

Data) 

The observed differences in the patterns and magnitude of deforestation may be linked 

to different imagery acquisition dates coupled with difficulties in distinguishing 

seasonality from deforestation. For example, the seasonality of certain crops can have 

a spectral signal that is difficult to separate from deforestation events without imagery 

from the dry season. For example, in some cases of rice plantations that have been 

established in previously forested mangrove areas (Figure 3-6), images from the 

growing season depict a signal from swamped rice which is nearly identical to that of 

mangrove forest (they are “green” from August to October). As a result, the conversion 

from mangrove to another land-use may be missed. However, if images are acquired in 

the dry season when fields are drier and the rice has been cropped (between November 

and July) the spectral signal will be that of bare land (“red”). In this case, deforestation 

events are likely to be detected. The challenge of separating the temporal spectral signal 

of rice production from that of conversion of mangrove forest to rice fields may have 

contributed to the observed higher spread in emissions in this biome (Figure 3-5).  

The occurrence of fire in dry biomes is another example of how seasonality may affect 

estimates of deforestation. African savanna fires are of low intensity and high frequency 

(Bowman and Murphy, 2010) and in the northern hemisphere burn extensively in the 

early dry season (Cahoon et al., 1992; Roberts et al., 2009). However, typically these 

wildfires burn primarily grass and tree litter (Van Wilgen and Scholes, 1997) and are not 

necessarily linked to conversion from forests to other land-uses. Consequently, the 

National deforestation product, relying on imagery from the dry season, may have 

incorrectly mapped bushfires in savannas as deforestation (Figure 3-7). 
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Figure 3-6. Example of deforestation in Mangrove through inspection of: a) very high spatial resolution 
imagery available in Google Earth (16 May 2004 and 23 January 2011) showing an area of mangrove in 
2004 that in 2011 was a swamped rice field; and b) the Landsat archive with its higher temporal resolution 
(images ranging from May 2004 to April 2010 and displayed in RGB color composites: band 7, band 4, band 
3) identifying 2007 as the conversion year. The high temporal resolution of Landsat images also highlight 
the different spectral signals of the cycle of rice production: from August to October rice is cultivated in 
swamped fields (green signal) while in November the field dries out and the rice is cropped. In this study, 
only AD-National and AD-GLCF identified this area as deforested between 2007 and 2010. 

 

Figure 3-7. Example of bushfires in Guinea-Bissau. Figure shows a) high spatial resolution imagery from 
Google Earth identifying this area as forest in 2005 and remaining forest in 2012, regarding of the prevalence 
of fire as shown by the b) temporal analysis of Landsat imagery with annual evidence of active fires or fire 
scars (displayed in RGB color composites: band 7, band 4, band 3). The area marked (yellow square) was 
mapped as deforested only by the AD-National product which is based on Landsat imagery from the dry 
season. Wildfires in African savannas typically occur in the beginning of the dry season (November-
February) and their scars are very difficult to detect using remote sensing imagery from the late dry season 
(March-May) and growing season (June-October) 

Different acquisition dates and seasonality can therefore partially explain the lower 

estimates of deforestation rates in GFC and higher estimates of deforestation in National, 

and why, in this study, these products are associated with the lowest and highest 
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emission estimates respectively. Importantly, there is no single acquisition date that 

would resolve both problems: while relying on dry season imagery is helpful for the 

example of mangrove conversion, this season is not suitable for detecting deforestation 

in fire prone areas. 

While seasonality appears to be the main issue, other possibilities for the differences in 

estimates of deforestation can be highlighted. One is linked to the different method that 

was used to quantify forest loss. The GFC is the only product that detects changes by 

directly comparing multi-temporal images. For the remaining products, detection of 

deforestation was made by comparing results from independent F/NF maps, which is 

considered to be less accurate and may lead to an overestimation of deforestation rates 

(GFOI, 2016). Another possible explanation for the disagreements in AD include the use 

of different data layers by these products. The L-band SAR backscatter has been 

reported to be very similar amongst mangroves, forests and plantations (Lucas et al., 

2014) which could explain the higher estimates of deforestation in mangroves using the 

JAXA product. However, the same mapping limitation is known to exist with optical data 

(e.g., Lui and Coomes, 2015). Finally, it is also worth noting issues related with forest 

definitions and the complexities of using land-cover change and tree-cover change as 

proxy for land-use change. Although a tree-cover threshold consistent with that of 

national forest definition was used while processing all products, some limitations can 

still arise. It is considered particularly difficult to extract areas with low tree-cover 

densities using optical data (Achard et al., 2014; Hojas-Gascon, 2015). As a result, the 

use of 10% tree cover as a cut-off likely contributes to increased mapping errors and 

uncertainty in AD estimates. Additionally, defining forests using tree-cover thresholds 

fails to distinguish natural forests and plantations (Tropek et al., 2014; Lui and Coomes, 

2015; Zarin et al., 2016).  

Overall, to overcome all the identified issues and map deforestation more accurately, 

countries would need to use very high spectral resolution imagery or increased intra-

annual temporal resolution when producing their maps and estimates. 

3.6.2. Opportunities and limitations for using available AGB datasets 

While the development of emission factors is considered a major monitoring capacity 

gap for national GHG reporting (Romijn et al., 2015), our results show that for tree-AGB, 

using in-situ data from national inventories or available datasets, even when produced 

at a pantropical level, render relatively similar results. Our results also highlight that the 

magnitude of these estimates is in all cases lower than the IPCC Tier 1 default value, 

with the latter leading to estimates at least 2-times higher than with other EF alternatives 

(Table A.2.5). Moreover, it is expected that summing AGB values over larger areas 
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renders similar mean and total values (Mitchard et al., 2013), but in our study the spatial 

pattern of available datasets does not differ much either. The higher spread in EFs given 

by the CV in forests with mean annual precipitation above 2000 mm (30-47%) is likely 

not so much due to divergences in AGB products but more to limitations of data, such 

as the signal saturation of L-band SAR at higher levels of AGB. Nevertheless, a limitation 

for the use of AGB maps in baseline studies, and a possible explanation for some lower 

values observed in some products, is the reference year of these products. Using per-

pixel AGB values as proxy for pre-deforested stock is only possible if the reference year 

of the AGB map precedes that of the start of the deforestation period. Finally, this study 

focuses only on tree-AGB, which is but one component of terrestrial carbon stocks 

influencing the global carbon cycle. Remote sensing products can only estimate the 

carbon content of other pools as a function of AGB (e.g. inclusion of below-ground 

biomass in Saatchi et al. 2011), which is a limitation of these products for countries 

wanting to include emissions from other pools in their FRELs over time (i.e. in a stepwise 

approach). However, including other pools here as a proportion of AGB would not alter 

the main findings of this study. 

3.6.3. Implications of observed differences in Forest Reference 

Emission Level estimates 

This study finds that the variance in FRELs derived from different EO products is mostly 

due to the AD component. Although disagreement between products is not indicative of 

the accuracy of each product, it undoubtedly sheds suspicion over all products, confuses 

the user, and suggests producers are being overly confident in their products. While 

these AD products can be calibrated with reference data when developing a FREL 

(Olofsson et al., 2014b; Hojas-Gascon, 2015), there are consequences for the use of 

this information Tin the design of appropriate policy options and REDD+ strategies. Such 

strategies greatly rely on understanding where deforestation is occurring and the 

processes that are driving land-use change. Therefore, the risk of developing the FREL 

independently, and possibly favouring a product with higher historical deforestation in 

the hope of maximizing income from REDD+ results, may be counter-productive for the 

success of REDD+ implementation. The two REDD+ building blocks (the FREL and 

REDD+ strategy) should be developed in parallel, which requires accurate spatially 

explicit FRELs to guide the planning of interventions. Ultimately, and considering that the 

availability of products for continuous global monitoring of land-use processes is only 

expected to expand in the future (Wulder and Coops, 2014), it is important that products 

are carefully validated by their producers and users to quantify their uncertainty for 

national and subnational analysis. 
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3.7 Conclusions 

Our study shows major differences are obtained in estimated emissions (FRELs) using 

different EO products and that those differences are mostly due to variation in estimates 

of deforestation. Although there are many calls for improving the accuracy of AGB maps, 

here we found that in-situ AGB data and AGB maps relying on more sophisticated remote 

sensing approaches have sufficient precision for national reporting, especially when 

compared to the deforestation component. Divergences in the latter are striking, with 

almost total spatial disagreement between datasets. This finding calls for better 

incorporation and reporting of accuracy in land-cover (and land-cover change) EO 

products. In the meantime, we suggest that users focus their efforts in assessing the 

adequacy and quality of deforestation maps for their national circumstances by relying 

on reference data with higher spatial and temporal resolution to validate and calibrate 

existing products. Furthermore, it is also important to understand the accuracy (i.e. 

agreement with the truth) of those products and the causes of disagreement. This is an 

essential step if countries wish to use any of these products for both their FRELs and 

within their national REDD+ strategies to identify the drivers of change and plan activities 

to reduce rates of deforestation. 
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4. Chapter 4. Combining satellite-based global 

maps for improved estimates of deforestation in 

African savannas 

Abstract 

Deforestation maps derived from satellite Earth Observations are attractive tools to 

developing countries monitoring their forests and plan actions to protect them. However, 

the accuracy of these maps is often unknown. We compared a national-scale 

deforestation map produced by Guinea-Bissau (West Africa) for the period 2007-2010 

and used by the Government in national reporting to the UNFCCC, with deforestation 

maps derived from two global datasets. With a reference sample of 899 units, we 

validated and corrected the classification errors of the maps, both individually and when 

used in combination. We find that the errors associated with mapping deforestation are 

very high in all maps, but they are reduced when the maps are used together by 

combining them or intersecting them. Commission error varies from 29% to 60%, with 

the lowest commission error (CE = 29%) obtained by the intersection of all three 

deforestation maps. Omission error can reach as high as 99.9% with the lowest omission 

error (OE = 43%) obtained by the union of the three deforestation maps. The sources of 

errors are similar in all maps with most of the classification errors being linked to shifting 

agriculture (5-36%), swamped rice cultivation in mangrove areas (0-16%), or tree crops 

(3-11%). Most commission errors are in clusters around urban areas, where vegetation 

is expected to be more degraded, while most omission errors are in the western region 

dominated by dry forests. The practice of using wall-to-wall maps as stratified estimators 

and combining them with a reference sample to derive more accurate area estimates 

provides a better alternative for reporting areas than pixel-counting – the areas corrected 

for classification bias are relatively similar (CV=0.43 compared to CV=1.00 before 

correction) regardless of the deforestation map used as the basis for the stratification. 

Because the variation is still large, combining maps could be a good alternative to 

mitigate the effects of exacerbated omission areas corrections. To increase accuracy 

and confidence in the estimates, national definitions must clearly attribute shifting 

agriculture and trees outside forest to a land category (e.g., forest, cropland) used in the 

GHG inventory. Defining clear protocols for interpretation of sample units to be used 

either for map classification or for its validation and correction is also critical to harness 

the opportunities provided by satellite-based global maps to quantify deforestation and 

support the most vulnerable countries to protect their forests. 

Keywords: drivers of deforestation, Earth observation, shifting agriculture, 

measurement reporting and verification, Guinea-Bissau  
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4.2 Introduction 

Tropical dry forests occupy a vast extent of land and support the livelihood of many 

people across the world (Mcnicol et al., 2018; Miles et al., 2006; Bastin et al., 2017). 

Although sub-Saharan Africa experienced the lowest rate of biomass loss in the tropics 

during the 2000s, the proportion of biomass loss in dry forests was comparable to that 

of humid tropical forests, contrasting with other regions of the world (Tyukavina et al., 

2015). Highly dynamic and difficult to measure (Mcnicol et al., 2018), tropical dry forests 

remain under-studied and updated information on deforestation and forest degradation 

in these ecosystems remains a research priority (Sunderland et al., 2015; Tyukavina et 

al., 2015). In addition, given the increased urgency in acquiring near real-time 

information on forest dynamics and associated carbon fluxes to boost action towards 

climate change mitigation strategies (UNFCCC, 2015), such research is highly policy-

relevant. This research is particularly important for East and West African countries 

dominated by savannas, where the land use sector is the larger contributor to domestic 

GHG emissions (Valentini et al., 2014). 

Wall-to-wall deforestation maps provide information on the location and extent of 

deforestation events continuously in space and time (Hansen et al., 2013; Vancutsem et 

al., 2021). They are therefore widely used to spatially monitor forests and land dynamics 

and to report estimates of land change and associated GHG fluxes to the UNFCCC (Melo 

et al., 2023). However, large biases from map classification errors make the maps 

inaccurate (Stehman, 2013; McRoberts, 2011; Olofsson et al., 2014a). Therefore, to 

report a consistent and accurate time-series of deforestation, the good practice for area 

estimation using sample observations to correct the bias of the map introduced by 

classification errors (Olofsson et al., 2014a) must be employed. Is this case, 

deforestation maps are used as hotspots for stratification and the estimates are derived 

from the stratified sample (Achard et al., 2002; Vancutsem et al., 2021; Feng et al., 

2022). In addition to producing time-series estimates, wall-to-wall maps are very useful 

to prioritize and implement mitigation actions, to measure progress of those actions, or 

as alert systems for law enforcement (Reiche et al., 2021; Diniz et al., 2015; Doblas et 

al., 2022; Finer et al., 2018). 

Guinea-Bissau is a least-developed country in West Africa. It is mostly covered by dry 

forests and mangroves (Vittek et al., 2014) and encompasses the climate and vegetation 

gradients of many areas of sub-Saharan Africa (Figure 4-1a). Satellite-based global 

maps of deforestation are particularly interesting to explore in this context, given these 

UNFCCC Party groupings (i.e., the group of least developed countries and the geo-

political African group) with lower MRV capacity are also those who most benefit from 

the use of satellite-based global maps (Melo et al., 2023), and given the inherent 
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challenges of accurately measuring the highly dynamic dry forests. Previous studies 

highlighted striking differences in the mapped area of deforestation by different global 

maps (Hansen et al., 2013; Sexton et al., 2013; Shimada et al., 2014), both in terms of 

spatial distribution and its magnitude (Melo et al, 2018). Bastin et al. (2017) compared 

the areas of forest in the drylands as mapped by Hansen et al. (2013) and Sexton et al. 

(2013) using Landsat with a map based on VHR data and noted a large underestimation 

of dry forests in Africa by the two global products, in particular Sexton et al. However, 

the accuracy of the individual maps to quantify deforestation remains unknown.  

Here, we therefore designed a sampling scheme to collect reference observations and 

quantify the errors of the deforestation maps and magnitude of those errors. We aim to 

understand i) which of the available deforestation maps is the most accurate ii) if 

combining deforestation maps reduces the classification errors of the estimates and iii) 

what are the main causes of classification errors in African mangroves and savanna 

ecosystems. Overall, we wish to understand the potential of global satellite-based maps 

to support developing countries dominated by dry forest ecosystems and with no 

domestic monitoring systems to respond to the urgent demands of the UNFCCC to 

achieve the objectives of its Paris Agreement. 

4.3 Materials and methods 

4.3.1 Deforestation maps 

To estimate forest loss from 2007 to 2010 for Guinea-Bissau, three deforestation maps 

were generated (Figure 4-1b). The first deforestation map was produced using official 

national Landsat-based land-cover maps for 2007 and 2010 used in reporting to the 

UNFCCC (Guinea-Bissau, 2019, 2020). The land cover maps discriminating terrestrial 

forests and mangroves and non-forest were based on Landsat TM and ETM+ images 

collected during the late dry season in 2007 and 2010 and used supervised classification 

algorithms. Two available global datasets were also used for this study. The Global 

Forest Change (GFC; Hansen et al. (2013)) is a widely used 30-m resolution dataset 

based on automated classification algorithms of a time-series of Landsat images from 

the growing season. Specifically, here we used its tree cover map for 2000 and the 

annual tree-cover loss between 2000 and 2010. We also used the global dataset of tree-

cover from the Global Land Cover Facility (GLCF; Sexton et al. (2013)). Although also a 

tree-cover global map, this dataset uses the 250-m MODerate-resolution Imaging 

Spectroradiometer (MODIS) Vegetation Continuous Fields (VCF) rescaled to 30-m 

resolution using Landsat data. Furthermore, imagery acquisition dates are not restricted 

to the wet season as in the GFC. 
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Figure 4-1. Study area and data used in this study, including: a) the location of Guinea-Bissau in Western 
Africa showing terrestrial ecoregions (adapted from Olson et al 2001); b) Guinea-Bissau subset showing 
deforestation between 2007 and 2010 obtained as the sum of deforestation derived from three independent 
maps - a map produced in-house using Landsat imagery and used by Guinea-Bissau in its submissions to 
the UNFCCC, and deforestation derived from two global scale maps, the Global Forest Change (GFC, 
Hansen et al, 2013) and the Global Land Cover Facility (Sexton et al, 2013); c) Guinea-Bissau subset 
depicting the sample units following a stratified sampling approach and identifying the 899 sample units 
visually interpreted with Google Earth imagery and included in this study as reference dataset (in blue), and 
the remaining 341 sample units where Google Earth imagery was not available for the period 2007-2010 (in 
yellow). The example of a very high-resolution imagery from Google Earth corresponding to one 0.5 ha 
sample unit also depicts the 49-point grid used to determine the proportion of land use and tree cover in 
each sample unit. 

We spatially tracked and estimated gross deforestation from these three datasets over 

the 2007-2010 period. The reference period chosen for the analysis was determined by 

the availability of the national maps. The procedure to reclassify the data to deforestation 

and no-change was described in detail by Melo et al. (2018). In summary: the two 

National land-cover maps (2007, 2010) were reclassified into forest and non-forest 

(F/NF). For GFC, F/NF maps were generated for the years 2007 and 2010 using the 

2000 tree-cover and annual loss maps; the 2000 tree-cover map was reclassified to F/NF 

with forest being defined as areas with tree-cover above 10%; loss in the period 2001-

2007 was used to update the 2000 F/NF map and generate a 2007 F/NF map; the same 

approach was followed to obtain the 2010 F/NF map. For GLCF, F/NF maps were 

generated for the years 2005 and 2010 by reclassifying areas with tree-cover above 10% 

as forests in the tree-cover maps for the corresponding years. In a post-classification 

change detection approach, the F/NF maps from the three different sources (national, 

GFC, and GLCF) were used to obtain three different deforestation and no-change maps 

(Figure 4-1b). For consistency with the national forest definition the minimum mapping 

unit of 0.5-ha and the tree-cover threshold of 10% was used for all maps. 
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Spatial operations of union and intersection were applied to derive combinations of pairs 

of deforestation maps or combinations of the three deforestation maps. These 

intersections and unions plus the original three maps resulted in a total of 11 maps: three 

individual maps (National, GFC, GLCF), four combinations of intersected maps (Nat Ո 

GFC, Nat Ո GLCF, GFC Ո GLCF, Nat Ո GFC Ո GLCF), and four combinations of union 

of maps (Nat Ս GFC, Nat Ս GLCF, GFC Ս GLCF, Nat Ս GFC Ս GLCF). The purpose of 

these operations is to validate combinations of maps, quantify their errors of omission 

and commission and identify if higher accuracies are achieved by combining maps. 

4.3.2 Reference data 

4.3.2.1 Sample design 

To quantify the classification errors of the deforestation maps and their combinations, as 

well as the magnitude and causes of those errors, we designed a sampling scheme to 

collect reference observations. We selected a stratified random sampling scheme with 

the deforestation maps and their combinations forming the basis of the stratification. A 

simple random sampling strategy would have allowed validation of the maps and also to 

make inferences based only on the sample (Stehman, 2013; Olofsson et al., 2020; Chen 

et al., 2023). However, because the areas of the deforestation classes are rare 

comparatively to the no-change classes (ranging from less than 1% in the GFC to 5% in 

the National map; see Table A.3.1), a stratified random approach was selected instead 

to ensure that these small classes were adequately sampled (Stehman, 2012). 

Therefore, our reference sample was randomly selected with the map classes defined 

as the strata (i.e. deforestation and no-change). We followed the recommendations for 

stratified estimators in the accuracy assessment of remote sensing maps (Olofsson et 

al., 2013; Olofsson et al., 2014a). We first estimated the area proportion of each class of 

deforestation and no-change to use as strata weights. Because one of the conditions in 

a probability sample is that the inclusion probability for each class must be greater than 

zero (Stehman, 2001), we needed to ensure that all classes had samples allocated to 

them. Therefore, in addition to deforestation from the individual maps (National, GFC, 

GLCF), we have also included the rare classes of agreement of deforestation between 

maps (Nat Ո GFC, Nat Ո GLCF, GFC Ո GLCF, Nat Ո GFC Ո GLCF) in the stratification. 

We did a proportional split of the total sample size according to the area weight of the 

strata. However, we also followed the good practice of increasing the sample size of the 

smaller classes to a minimum of 50 units (Olofsson et al., 2014a)(Table A.3.1). The 

result was a compromise of allocation of sample units between equal sample size 

(typically with lower commission errors) and proportional allocation (typically with lower 

omission errors and overall error; Stehman, 2012).  
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4.3.2.2 Sources of data 

To identify map classification errors and area bias, we collected a reference dataset by 

visually interpreting high-resolution satellite imagery between 2007 and 2010. Although 

our reference period is 2007-2010, we also visually interpreted an additional image 

around 2019 (±2 years) to confirm if the land use conversion had been a permanent 

conversion. We used the application Collect Earth (Bey et al., 2016) to facilitate access 

and visualization of high-resolution satellite data from Google Earth (including 

DigitalGlobe, SPOT, Sentinel 2, Landsat and MODIS imagery) combined with access to 

the full Landsat archive in Google Earth Engine (Gorelick et al., 2017). The latter data 

source, with its higher temporal resolution, is very useful to confirm the year of forest 

conversion or disturbance. For consistency in the classification, any sample unit with no 

high-resolution imagery in the beginning or end of the reference period (i.e., 2007 and 

2010) was excluded from the sample. The reference sample included a total of 899 

sample units visually interpreted with Google Earth imagery and 341 sample units where 

Google Earth imagery was not available for the period 2007-2010 (Figure 4-1c, in blue 

and yellow, respectively). 

4.3.2.3 Classification protocol 

We developed a response design to assign the sample to the class deforestation or no-

change (including stable forest, and stable non-forest) (Figure 4-2). We classified our 

sample units of 0.5-ha using a systematic grid of 49 points within each sample unit to 

determine the proportion of land use and tree cover in each sample unit (Figure 4-3). 

The method is similar to that described in the guidance for the use of Collect Earth 

(Finegold and Ortmann, 2016; Tzamtzis et al., 2019) and used in similar research studies 

(e.g., Bastin et al., 2017), and is also frequently applied in countries’ submissions to the 

UNFCCC using sample-based area estimate approaches (e.g. see REDD+ Forest 

Reference Level submissions from Mozambique 2018, Malawi 2020, Ghana 2021, Saint 

Lucia 2023 (Melo et al., 2023)). A sample unit is classified as forest if forest is the land 

use covering the larger proportion of the unit (i.e., more than 50% of the grid of points in 

forest land) and more than 10% of the unit is covered by trees (Figure 4-2). If the sample 

unit is not forest (NF in Figure 4-2), the prevailing land use is noted. In our classification, 

forest disturbances showed a reduction in tree cover but no sign of other land use 

(considered temporarily unstocked areas in Figure 4-2). However, if the prevailing land 

use is not forest in more than 50% of the sample unit (for example from conversion of 

mangrove forest to swamped rice field as in Figure 4-3b, or conversion of forest to tree 

crop, cropland, or settlement) the sample unit is classified as deforestation, even if the 

tree cover is above 10%. This is because settlements can have urban trees, cropland 

can have remaining trees standing, and tree crops are entirely covered by trees but are 
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not forest land use. Therefore, although quantifying canopy cover supported the 

classification of the sample unit, we did not attribute land use of a sample unit based 

solely on the percentage of canopy cover. 

Shifting agriculture deserves particular attention in the class attribution of our reference 

sample. Many ethnic groups in Guinea-Bissau practice sustainable shifting agriculture 

characterised by long fallow periods, short crop cycles, and leaving most of the trees 

standing (Temudo, 2011; Temudo and Abrantes, 2013). Here, we considered that these 

practices were not land use conversion because the land remained forest or fallow for 

the entire reference period and no evidence of other use was visible in the available 

imagery. However, if shifting agriculture was in a crop cycle in more than 50% of the 

sample unit and there was a reduction of tree cover below the 10% of the national 

definition during the reference period, this unit was classified as deforestation. A sample 

unit with crop prevailing land use in less than 50% of the unit and tree cover above 10% 

could also be considered deforestation if the trees are suspected to be tree crops or if 

the surrounding area shows evidence of expansion of tree crop plantations. This is 

because of the wide-spread conversion to cashew plantations in the country and the fact 

that these conversions are typically preceded by crop cycles (Temudo and Abrantes, 

2014). Here, again, percentage tree cover supports the classification but does not solely 

determine land use. Similarly, we classified the sample unit as deforestation in the case 

of conversion to settlement in more than 50% of the sample unit, regardless of the 

canopy tree cover percentage, because in Guinea-Bissau, remaining trees around 

settlements are very likely tree crops or fruit trees (e.g., cashew trees or mango trees). 

The response design implemented in the analysis set clear rules for interpretation and 

attribution of land use and land use change to each sample unit. To increase the 

consistency and accuracy of the results, with each 100 units classified, the interpreter 

reviewed the entire set of classified units from the beginning. This post-interpretation 

review procedure ensured more consistency in the criteria applied i) spatially, when 

interpreting different regions of the country with different dominant ethnic groups, 

different practices, and different drivers of deforestation; and ii) in time given the 

increased experience of the interpreter as more sample units were classified and the 

implementation of the response design protocol became clearer. 
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Figure 4-2. Response design or decision tree for the classification of the sampling units using Google Earth 
imagery to determine the prevailing land use in the year 2007 and 2010 and eventual land use changes in 
the reference period. Sample unit classified as “temporarily unstocked” correspond to areas affected by fire, 
logging, or low intensity shifting agriculture where the percentage tree cover is not reduced more than 30% 
and is not below the threshold of the national definition of forest in 2010 (i.e., 10% in Guinea-Bissau). When 
the land use is not forest (NF), the interpreter takes note of prevailing land use and percentage tree cover 
before and after conversion. Imagery available between 2010 and 2022 was also assessed to support and 
increase trust in the decision. 

 
Figure 4-3. Example of a time-series of google earth imagery between 2005 and 2019 used to classify one 
sampling unit and the use of the grid of 49 points used to determine land use and land use change between 
2005 and 2010. For each sample unit, the proportion of a) tree cover and a) land use was assessed in at 
least two time points through visual interpretation of very high-resolution satellite images. In this example, 
mangrove is converted to swamp rice cultivation (deforestation) between 2005 and 2010 with a reduction of 
a) tree canopy cover from 71% (35/49 points) to 4% (4/49 points) and a reduction of b) 88% (43/49 points) 
to 8% (4/49 points) of mangrove forest land use. An image from 2019 is also analysed to confirm the land 
use transition.   

4.3.3 Map validation and bias correction of area estimates 

To assess the accuracy of the available deforestation maps, we produced error matrices 

with a cross-tabulation between the deforestation and no-change classes allocated by 

the maps and reference data. We produced 11 error matrices: for the three individual 

maps (National, GFC, GLCF), for four combinations of intersected maps (Nat Ո GFC, 
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Nat Ո GLCF, GFC Ո GLCF, Nat Ո GFC Ո GLCF), and for four combinations of the union 

of maps (Nat Ս GFC, Nat Ս GLCF, GFC Ս GLCF, Nat Ս GFC Ս GLCF). The confusion 

matrices have the form: 

  Reference dataset 

  Deforestation No-change 

Map 
classification 

Deforestation 
n11 

(true deforestation) 
n12 

(false deforestation) 

No-change 
n21 

(false no-change) 
n22 

(true no-change) 

 

Based on the error matrix we estimated the errors of the deforestation classes of each 

of the 11 maps, namely: i) commission error (CE, eq. 1; complementary measure to 

user’s accuracy) given as the probability that the sample unit is wrongly classified as 

deforestation in the map because it is no-change (either stable forest or stable non-

forest) in the reference data; and ii) omission error (OE, eq. 2; complementary measure 

to producer’s accuracy) as the probability that the sample unit is wrongly classified as 

no-change (either stable forest or stable non-forest) in the map because it is 

deforestation in the reference data. 

𝐶𝐸 =
𝑛12

𝑛11+𝑛12
         (eq. 1) 

𝑂𝐸 =
𝑛21

𝑛11+𝑛21
         (eq. 2) 

We used the reference data to correct the bias attributable to map classification error of 

the areas of deforestation of each map and combination of maps and to estimate its 

standard errors following best practices from Olofsson et al (2014). According to the 

authors, overall accuracy and omission errors (eq. 2) should not be estimated from the 

error matrix because sample units from the two different strata (deforestation and no-

change) require different weights. Commission error (eq. 1), on the other hand, is 

quantified using data from the same strata only and therefore can be calculated directly 

from the error matrix of sample counts. Accordingly, here we derived the estimators of 

the overall map accuracy, omission error and commission error from the error matrix 

area proportions, or estimated error matrix (see equations 6-8, Olofsson et al., 2013).   

4.3.4 Spatial distribution of the errors and causes of the classification 

errors 

We used the Hotspot analysis tool in ArcGIS to identify statistically significant clusters of 

sample units correctly (1) and incorrectly (0) classified as deforestation and as no-

change in the 11 deforestation maps assessed. A hotspot is a cluster of high values (1) 

surrounded by other high values. Here, it corresponds to clusters of sample units 

correctly classified. A coldspot is a cluster of low values (0) surrounded by other low 
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values, and in our analysis corresponds to clusters of sample units wrongly classified in 

the maps. Our objective is to understand if there are spatial patterns and specific areas 

with high concentrations. The tool measures the spatial autocorrelation of the attribute 

values and display the results in a thematic map showing the location and intensity of 

hotspots and coldspots. 

4.4 Results and discussion 

4.4.1 Deforestation areas and classification errors of the maps 

Comparing the deforestation areas of the three individual deforestation maps (National, 

GFC, and GLCF) with the area obtained by the combination of the maps confirms the 

findings from Melo et al (2018) of striking disagreements between these maps. The 

intersection of all maps shows that the area of agreement (1.3 kha; Table 4.1) 

corresponds to less than 1% of the area mapped as deforestation by the National map, 

1.5% of the area mapped as deforestation in the GLCF, and 6% of the GFC. Comparing 

the maps and combining them confirms the spatial disagreement and highlights the 

different magnitudes in the deforestation estimates (Table 4.1, Figure 4-4). However, 

after adjustment of the mapped deforestation area (from pixel-counting) to eliminate bias 

from map classification error, the variability is significantly less striking between 

deforestation measurements from the three maps and their combinations. The coefficient 

of variation (CV) of the corrected deforestation areas is 43% compared to 100% in the 

original areas. Deforestation was greatly underestimated in all maps, as shown by the 

large omission errors (Figure 4-4). Note that it is considered statistical good practice 

(Olofsson et al (2013)) to use the stratified estimator to adjust the map area obtained 

from pixel-counting to account for the large omission error of deforestation. 

Consequently, the deforestation areas reported after correction are considerably higher 

than the original areas (Table 4.1, Figure 4-4) with increases ranging from 43% (Nat Ս 

GFC Ս GLCF) to 100% (in the intersection of maps). 
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Table 4.1. Aggregated deforestation between 2007 and 2010 obtained from the individual deforestation 
maps (National, GFC, and GLCF), the intersection of maps (National Ո GFC; National Ո GLCF; GFC Ո 
GLCF; National Ո GFC Ո GLCF) and union of maps (National Ս GFC; National Ս GLCF; GFC Ս GLCF; 
National Ս GFC Ս GLCF) before and after correction of classification bias calculated as in Olofsson et al. 
2014 

  

 
Figure 4-4. Omission and commission errors of the individual maps (National, GFC, and GLCF), intersection 
of maps (National Ո GFC; National Ո GLCF; GFC Ո GLCF; National Ո GFC Ո GLCF) and union of maps 
(National Ս GFC; National Ս GLCF; GFC Ս GLCF; National Ս GFC Ս GLCF) a) before and b) after correction 
of classification bias. The size of each circle is proportional to the area mapped as deforestation by each 
map (black circle), intersection of maps (red) or union of maps (blue), a) before, and b) after correction for 
classification bias. 

The accuracy assessment from the visually interpretation of 899 sample units using very-

high resolution imagery accessed through Collect Earth shows that, for the 2007-2010 

reference period, the GFC deforestation map was the most accurate of the three 

individual deforestation maps analysed, with the highest number of sample units 

correctly classified and the lowest number wrongly classified (Figure 4-5; Table A.3.2). 

It had an overall accuracy (OA) of 85%, compared to 77% of the GLCF and 76% of the 

national deforestation map. Its OA is always higher when combined with the other two 

maps (Nat Ս GFC, GFC Ս GLCF, Nat Ս GFC Ս GLCF) ranging from 89% OA to 93%, 

with the highest OA obtained from the union of the three deforestation maps (Nat Ս GFC 

Ս GLCF). All maps show high omission and commission errors both before and after 

correction (Figure 4-4). Before correction the GFC shows the lowest errors, both of 

omission and commission (OE and CE, respectively; Figure 4-4, Table A.3.2). However, 

deforestation map
original

(kha)

corrected

(kha)

National 158.3 746.5              

GFC 22.6 479.0              

GLCF 84.4 737.9              

Nat Ս GFC 177.7 337.7              

Nat Ս GLCF 229.4 459.7              

GFC Ս GLCF 103.0 341.8              

Nat Ս GFC Ս GLCF 246.1 188.6              

Nat Ո GFC 1.9 857.3              

Nat Ո GLCF 11.9 956.6              

GFC Ո GLCF 2.7 877.0              

Nat Ո GFC Ո GLCF 1.3 886.0              
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omission errors need to be quantified and adjusted using the estimator from the 

proportion matrix (Table A.3.3) before drawing conclusions on the accuracy of the maps 

(Olofsson et al., 2014a). The omission error of the GFC increases more than any other 

map when considering the low area proportion of the deforestation class, moving the 

GFC from the deforestation map with lowest (32%) to the highest (97%) OE of all 

individual maps (Figure 4-4, Table A.3.2, Table A.3.3) This result was expected 

considering the GFC has the lowest mapped area of deforestation of the three maps 

analysed (Table 4.1). 

 

Figure 4-5. Number of the total 899  sampling units corresponding (correct, green) or not corresponding 
(wrong, red) to the classification of deforestation and stable forest or non-forest from the individual 
deforestation maps (National, GFC, and GLCF), the intersection of maps (National Ո GFC; National Ո GLCF; 
GFC Ո GLCF; National Ո GFC Ո GLCF) and union of maps (National Ս GFC; National Ս GLCF; GFC Ս 
GLCF; National Ս GFC Ս GLCF) 

Omission errors are reduced in all three individual maps when combined with another 

deforestation map (Figure 4-4, Table A.3.2) with the lowest being obtained in the union 

of all three maps (OE = 42%). Intersecting maps always increases the already high (in 

the individual maps) omission error. These reach as high as 99.9% in the intersection of 

National and GFC maps. Intersecting the three maps renders the lowest commission 

error of all 11 maps (Figure 4-4, Table A.3.2). Variations in the commission error vary 

depending on the map and map combinations. For the National deforestation map, it 

slightly decreases with the union with any of the other maps, with the maximum reduction 

being from 59% to 53% when combined with GFC. Conversely, the GFC map always 

increases its commission error if combined with any of the other maps. The National map 

commission error decreases if intersected with the GFC, and for both the GFC and GLCF 

it decreases if intersected with each other. However, reductions in commission errors 

are very small, with the lowest value, from the combination of all three maps, remaining 

high (CE = 29%). 

4.4.2 Sampling design as a source of bias 

Our accuracy assessment of deforestation maps shows exacerbated omission errors 

leading to apparently exacerbated area corrections, particularly in the intersection of 

maps (Table 4.1). While research is still needed on how to contain the effects of omission 
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errors, the main causes of this effect are known. In our case, the area of no-change is 

very large relative to the area of deforestation, particularly in the intersection of maps 

(Table 4.1). Because of the very large difference in the weights of the two classes, 

omissions of deforestation in the class no-change carried a very large weight in the error 

matrices expressed as error proportions (Table A.3.3). This difference means that a 

single error of omission represents a large area proportion while a single sample 

correctly classified as deforestation carries a much lower area proportion weight. 

Olofsson et al (2020) provide practical suggestions to address these exacerbated errors 

by splitting the large strata into sub-classes. For example, by applying a buffer around 

areas of deforestation corresponding to areas of no-change in the maps with higher 

probability of having been deforested (Tyukavina et al., 2013; Arevalo et al., 2020; 

Olofsson et al., 2020). While we did not apply a buffer to the deforestation areas, by 

combining maps we are biasing our reference data to areas of likely deforestation as 

well. Consequences of this decision are discussed below. 

Firstly, our sample is not allocated proportionally to the size of each class (Table A.3.1). 

This was because we wanted to ensure the small classes were adequately sampled and 

therefore we increased the sample size of the smaller classes to a minimum of 50 units. 

Furthermore, a large proportion of the sample units without Google Earth data were from 

the classes of no-change which means these classes were under-sampled while the 

deforestation classes were oversampled relative to their size. Consequently, the 

omission errors that are expected to be reduced in proportional allocation are always 

very high in our case because we had less sample units in a class that carried a very 

large area weight (no-change). 

Secondly, we used the same sample of 899 units for the accuracy assessment of all 11 

maps containing only two classes: deforestation and no-change. However, many of the 

sample units mapped as no-change by any of the maps, were very likely mapped by 

another map as deforestation (Table A.3.1). In practice, using independent maps of 

deforestation to identify areas of no-change that are more likely to contain omission 

errors than the class of agreement of no-change (class 1 in Table A.3.1) is the same 

concept as incorporating a spatial buffer around deforested areas. Hypothetically, it 

could even be considered a better alternative in the case of mosaic deforestation as 

opposed to fish bone deforestation in tropical forests. One possible solution to address 

the issue of including areas of more likelihood of omission errors would be to assign 

weights to each sample unit based on their probability of selection. Nevertheless, we 

note that Arevalo et al. (2020), presenting a methodology for monitoring and estimating 

areas of deforestation removing the classification bias of wall-to-wall maps, also used 

the combined sample units from the classes no-change and buffer as no-change to 

assess the effectiveness of the buffer to contain omission errors. 
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Therefore, while we must use our subjective judgment and point to the limitations of the 

sample and the likely bias of the estimates, we must also acknowledge that estimating 

an area that is assumed to be <1% of the population in all deforestation maps except the 

union of independent maps is inherently difficult. However, our sample still provides 

useful information because it is still sufficiently large and randomly selected from the 

population (Stehman, 2012; Olofsson et al., 2014a), specially to identify the main 

sources of classification errors in the most widely used global maps of deforestation 

(Hansen et al., 2013; Sexton et al., 2013) and to identifying the challenges faced by 

technical teams producing domestic deforestation maps. 

4.4.3 Causes of classification errors and drivers of deforestation 

The interpretation of the post deforestation land use in the reference dataset showed 

that most of the classification errors, both commission and omission, are linked to shifting 

agriculture (Figure 4-6). Most of the errors in the National and the GFC deforestation 

maps are from wrongly identifying areas of stable cropland and shifting agriculture as 

deforestation (commission errors). Both had an equal number of sample units in stable 

cropland wrongly classified as deforestation (n = 78 and n = 74 for National and GFC, 

respectively). However, because more units are wrongly classified in the National map 

than the GFC (Figure 4-5, Table A.3.2), the proportion of errors due to stable cropland 

is lower in the National map (36% of wrongly classified sample units) than in the GFC 

(22%, Figure 4-6a). The GLCF also had most of its commission errors from wrongly 

classifying deforestation in areas of shifting agriculture (n = 62, 22%). However, the 

highest proportion of errors in this map was of omission errors in forest converted to 

shifting agriculture (n = 92, 33%).  

 

Figure 4-6. Percentage of classification errors of the satellite-based deforestation maps analysed by land 
use and land use conversion. Conversions from forest to other land uses (i.e., deforestation) is highlighted 
in red and errors in these classes are omission errors in the maps.  Errors in the remaining classes with no 
red shading correspond to omission errors in the maps. In a) the individual maps (National, GFC, and GLCF) 
and b) the main errors of union and intersection of maps of the three maps. 
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Other causes of omission errors in the National map were mostly found to be in forest 

conversion to tree crops (n=40, 11%), in the GFC from forest conversion to tree crops 

(n=14, 7%) and from mangroves to swamped rice cultivation (n=11, 5%), and in the 

GLCF also mostly from forest conversion to tree crops (n=21, 8%). Other main causes 

of commission errors in addition to shifting agriculture are mostly from wrong 

classification of deforestation in stable swamped rice cultivation fields (n=55, 16%) and 

stable forest (n=37, 11%) in the National map, in stable forest (n=16, 8%) and shifting 

agriculture to tree crops (n=14, 7%; both classes in cropland land use) in the GFC, and 

stable forest (n=36, 13%) and swamped rice cultivation fields (n=18, 7%) in the GLCF. 

The intersection of maps have higher omission errors (Figure 4-4) mostly from missed 

conversions from forest land to shifting agriculture (ranging from 40% to 55% of wrongly 

classified sample units) and to tree crops (ranging from 13% to 20%) (Figure 4-6b). 

Commission errors in the intersection of maps are due to the wrong classification of 

deforestation in areas of stable cropland (including shifting agriculture) and ranged from 

9% to 20% of wrongly classified sample units. Unions of maps have a lower proportion 

of sample units wrongly classified as deforestation (Figure 4-6b), due to the lower 

omissions errors (Figure 4-4). For example, only 1% to 10% of the sample units are 

classified as stable forest instead of forest converted to shifting agriculture in the union 

of maps. Most errors are commission errors, or stable areas wrongly mapped as 

deforestation, such as in the case of stable shifting agriculture (29-38%), stable swamp 

rice cultivation (7-18%) and stable forest (15-21%). 

Because we selected a stratified sampling design to ensure we had data in all our small 

classes of deforestation, we cannot use our sample for direct area estimation (Stehman, 

2014).  However, the information collected provides important insight on the main drivers 

of deforestation in Guinea-Bissau during the period 2007-2010. From the analysis of the 

reference dataset, the main post deforestation land use was cropland, including intensive 

shifting agriculture (Figure 4-7). In the period 2007-2010, 64% of deforestation 

corresponded to a transition to this land use, with most of the forest having already some 

evidence of past disturbance (degraded forest in Figure 4-7). The second most frequent 

post deforestation land use was tree crops (23%). This analysis confirms the findings 

from global studies identifying shifting agriculture as the main driver of deforestation 

(Curtis et al., 2018) but also highlights that existing maps often miss conversion of forest 

to commodities such as tree crops. The uncertainty in attribution between commodity-

driven deforestation and shifting agriculture in sub-Saharan Africa was also noted by 

Harris et al. (2021). This observation is consistent with our findings showing that the main 

cause of classification errors are found in the transition from forest land to shifting 

agriculture and tree crops (Figure 4-6) which is not surprising when these were the 

dominant drivers of deforestation in the study period. 
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Figure 4-7. Drivers of deforestation in Guinea-Bissau, estimated from the reference dataset comprising 899 
sample units where Google Earth imagery was visually interpreted to assess the accuracy of existing 
deforestation maps. Forest land use is separated by classes: forest, degraded forest and mangrove. The 
proportion of these forest classes converted to other land use (crop/shifting agriculture, tree crops, swamp 
rice cultivation, urban, and other non forest land uses not clearly identified) between 2007 and 2010 is 
identified in the chart by the size of the channels.   

The spatial analysis of the autocorrelation of errors (in red, Figure 4-8) shows that 

clusters of errors are found mostly around the capital city of Bissau in the National and 

GFC maps, but not on the GLCF map. The GLCF has most clusters of errors in the 

northern region, closer to the border with Senegal and in the northwest drylands. With 

the intersection of maps, most of the clusters of errors are not in larger cities but in the 

western drylands, while in the union of maps errors are all clustered around the capital 

city of Bissau. Therefore, most errors are close to more populated areas or drylands. 

The union of maps increases the clusters of errors around the capital city, while the 

intersection of maps had all their clusters of errors in the western region of the country, 

which is mostly dominated by savannas. This pattern indicates that most commission 

errors (false deforestation in stable classes) are around cities while most omissions from 

conversion of forest to shifting agriculture and tree crops (Figure 4-6) are in the western 

drylands (Figure 4-8). This finding is intuitive given that large urban centres are more 

likely to have been converted to other land uses in the past in a, known but not well 

quantified, process of intensification of shifting agriculture cycles and transition to 

cashew plantations (Temudo and Abrantes, 2013; Temudo and Abrantes, 2014). 
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Figure 4-8. Map of the study area (Guinea-Bissau) showing high concentrations or clusters of the 899 
sample units wrongly (red) of correctly (green) classified in the maps as deforestation or stable land use. 
One figure of the study area for each of the 11 maps or combination of maps: individual deforestation maps 
- National, GFC, and GLCF; intersection of maps - National Ո GFC, National Ո GLCF, GFC Ո GLCF, 
National Ո GFC Ո GLCF; and union of maps - National Ս GFC, National Ս GLCF, GFC Ս GLCF, National 
Ս GFC Ս GLCF.  

4.4.4 Trends in the 21st century 

This analysis shows that the assumed magnitude of deforestation in Guinea-Bissau in 

the period 2007-2010 is low (varying between 8 and 53 kha per year in the three 

individual maps; Table 4.1) and identifies the main drivers of deforestation, as well as 

the main sources of errors in available global deforestation maps. We also validated and 

explored possible uses of the most widely used global maps of forest change both in 

research (Harris et al., 2021; Feng et al., 2022) and in national reporting to the UNFCCC 

(Melo et al., 2023). If global maps derived from satellite data are deemed suitable to be 

adapted to national definitions to provide near real-time information on deforestation, 

they would ease the burden on national teams from least developed countries with lower 

MRV capacity who can only produce domestic deforestation maps with a great deal of 

effort.  
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For a comparison between national and global data sources, we had to restrict our 

analysis to the first decade on the 21st century. However, several global studies show a 

sharp increase in deforestation in West Africa during 2010-2020 (Feng et al., 2022; 

Harris et al., 2021). In Guinea-Bissau specifically, deforestation has increased sharply 

after the political coup in 2012, due to the foreign interest in African rosewood 

(Pterocarpus  rinaceus) coupled with political instability, which translated in the 

widespread felling and export of this species. According to the latest nationally 

determined contribution (NDC, (Guinea-Bissau, 2021)), deforestation in 2020 has an 

order of magnitude 3 times greater than in 2010. The average annual emissions in 2013-

2020 was close to 4 Mt CO2e which was a striking increase considering the sector was 

a net sink in 2006-2012 (with an average annual removal of 230 kt CO2e). The 

Government issued a 5-year moratorium to all timber felling and export to stabilize clear 

cut rates. During that period, it accumulated one of the largest timber stockpiles on the 

continent, estimated to be greater than 400,000 logs (Eia, 2018). At present, and despite 

the moratorium imposed by the Government, the global maps continue to show that land 

clearing between 2013 and 2023 remained much higher than in the pre-2012 period 

((Hansen et al., 2013) updated in the Global Forest Watch portal).  

Here, we show that all maps have large errors and that the main drivers of deforestation 

were shifting agriculture and conversion to tree crops. Guinea-Bissau has not been able 

to update its deforestation maps to cover the 2010-2020 decade and the latest NDC 

used information downloaded from the Global Forest Watch portal. Understanding the 

magnitude of deforestation, its trends, and the new drivers of deforestation in a more 

recent period post military coup is of the upmost urgency to protect the country’s 

remaining forests from such unprecedented pressure. Our analysis shows that the Earth 

Observation community has a great potential to support countries achieving the climate 

change mitigations objectives of the UNFCCC but further efforts are needed to produce 

more accurate maps. To produce accurate maps, national definitions and classification 

protocols need to include clear information on shifting agriculture and trees outside 

forest. 

4.5 Conclusions 

Comparing a national deforestation map of Guinea-Bissau (West Africa) with two global 

deforestation maps covering the period 2007-2010 showed large differences in the 

magnitude (CV = 77%) and spatial distribution of deforestation (1-6% of their area 

overlap with each other). The reference dataset of 899 sample units collected to validate 

the maps showed the three maps had large errors both of omission (91-97%) and 

commission (38-59%). Although still high, combining the maps (intersect and union) 

reduces the errors. The lowest omission error is obtained by the union of the three maps 
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(43%) and the lowest commission error by their intersection (29%). Combining maps can 

therefore contribute to mitigating the impact of exacerbated omission errors and 

corresponding exacerbated omission areas corrections. The causes of classification 

errors are similar in all maps and mostly linked to shifting agriculture and tree crops. Most 

of the commission errors (ranging from 1% to 38% of the sample units wrongly classified) 

are around the main urban areas and correspond to the wrong attribution of deforestation 

in the maps to areas of stable cropland (including shifting agriculture or tree crops). Most 

of the omission errors (ranging from 2% to 55%) are due to missed forest conversions 

to shifting agriculture or tree crops and are found in clusters in the western region of the 

country which is mostly dominated by dry forests. More accurate deforestation maps in 

mosaics of highly dynamic dry forests and conversion to shifting agriculture and tree 

crops are needed to harness the potential offered by the satellite Earth Observation 

community in support of the pressing needs of national Governments and the UNFCCC. 
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5. Thesis Conclusions 

5.1 Cross chapter synthesis 

The research in this thesis aimed at understanding whether satellite-based EO products 

are supporting or could support countries in their reporting of emissions from 

deforestation to the UNFCCC and in planning mitigation actions in the forest and land 

use sector. In Chapter 2, I show that despite the large investments made by Space 

Agencies, there is a notable underutilization of EO products in forest reference level 

submissions to the UNFCCC. Of all the available maps of deforestation and land cover 

change, only the Global Forest Change (GFC; Hansen et al., 2013) was used to measure 

forest loss, and this often involved some level of ingenuity to adapt it to national 

definitions and to correct classification errors. The GFC was used for Activity Data (AD) 

in 29% of the submissions, or 43% if considering its use for comparison of results (i.e., 

verification or quality control, not as a source of AD). The use of satellite-based biomass 

maps is almost negligible – they only contributed to the submissions of four countries 

(out of 56 countries with 75 forest reference levels submitted up to 2022) and only 

indirectly, such as for comparing with biomass estimates from field plot measurements 

or to IPCC defaults. Nevertheless, I also show that, overall, the availability of EO products 

enhances MRV capacity: 70% of LDCs and 65% of African States with forest reference 

level submissions relied on EO products, and for 22 of the countries using EO products 

in their submission, this was their first reviewing process under the UNFCCC. The 

analysis presented in Chapter 2, coincided with the end of the first Global Stocktake and 

may serve as a baseline to assess progress by the EO community in their objective of 

enhancing the uptake of satellite-based global datasets in NGHGIs. 

The following chapters (Chapter 3 and Chapter 4) used Guinea-Bissau as a case study 

and focused on understanding and addressing why the uptake of EO products is so low. 

Guinea-Bissau is a LDC in West Africa mostly covered by highly dynamic and inherently 

challenging to measure forest-savanna mosaics (Vittek et al., 2014; Mcnicol et al., 2018). 

These dry forests have been under unprecedented pressure with the widespread felling 

of African rosewood and conversion to tree crops (EIA, 2018). However, the country’s 

forest monitoring capacity is very low, there is no national forest monitoring system in 

place to quantify such pressure, its trends and location, and therefore no capacity to plan 

adequate action. Guinea-Bissau is a good example of the (still far too) many countries 

that cannot answer the most fundamental question in their NGHGIs – what is the extent 

and trend of deforestation and associated carbon emissions in the first two decades of 

the 21st century? With all the investments made in observing the Earth surface from 
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space, by now, arguably every government should have a timely, accurate and 

straightforward answer to this question. 

In Chapter 3, I combined and compared available global EO products to quantify 

deforestation and associated carbon emissions as a possible solution to the lack of 

domestic systems. I showed that in situ above-ground biomass data and the available 

above-ground biomass maps relying on more sophisticated remote sensing approaches 

do not vary substantially. In contrast, deforestation maps show striking differences in 

both the magnitude (CV = 77%) and spatial distribution of deforestation, with almost total 

spatial disagreement between datasets (only 1-6% of overlapping area), which hinders 

their use for national reporting.   

In Chapter 4, I assessed the accuracies of the deforestation maps produced in Chapter 

3 and their combinations (union and intersection of maps). Following good practice 

(Olofsson et al., 2014; GFOI, 2020) and the examples from other countries using global 

deforestation maps in official reporting (seen in Chapter 2), I collected circa 900 sample 

units using very high-resolution imagery to validate the maps, correct their areas, and 

understand the causes of the classification errors. I concluded that the classification 

errors of the deforestation class are high in all maps. The Global Forest Change (GFC) 

dataset is the most widely used EO product in domestic reporting to the UNFCCC 

(Chapter 2) and is also the map with most sample units correctly classified as 

deforestation in Guinea-Bissau (Chapter 4). However, the area-corrected errors of 

omission and commission are very large, even when combining maps. Commission error 

varies from 29% to 60%, with the lowest commission error (CE = 29%) obtained by the 

intersection of the three deforestation maps. Omission error can reach as high as 99.9% 

with the lowest omission error (OE = 43%) obtained by the union of the three 

deforestation maps. The sources of errors are similar in all maps with most of the 

classification errors being linked to shifting agriculture (45-69%). Although the magnitude 

of deforestation is very different in the three individual maps, the corrected area is 

relatively similar regardless of the map used to stratify the sample (CV=102% in the 

original areas and CV=23% after correction). 

5.1.1 Summary answers to the research questions raised in the 

previous chapters 

How extensively are the wide range of EO products offered by the EO community 

being used in national reporting and are thus contributing to the Global 

Stocktake?  
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I addressed this question in Chapter 2, revealing a notable underutilization of EO 

products in forest reference levels reported to the UNFCCC between 2014 and 2022, 

with a lack of diversity in those used for AD and their very limited use to map fire and 

support estimates of EFs. Only one out of the 12 global land cover maps listed in Table 

2.2 was used (see Table 2.3). The Global Forest Change (GFC) was used for Activity 

Data (AD) in 29% of the submissions, and was used by almost half the countries (n=24 

or 43% of the total 56 countries with forest reference level submissions) if considering its 

use for comparison of results (i.e., verification or quality control). No country used 

available global biomass maps to derive EFs but two maps (out of the 9 listed in Table 

2.2; Saatchi et al., (2011) and Baccini et al., (2012)) were used indirectly in four out of 

75 submissions (Table 2.3). Of the 16 countries including emissions from forest fires or 

non-CO2 emissions from biomass burning from deforestation, only three used fire EO 

products (MODIS Burned Area, MODIS Active Fire and NOAA fire hotspots). The uptake 

is limited but improved the MRV capacity of 22 countries. Nevertheless, it is important to 

note a limitation of chapter 2 to answer the question posed. I used a sample of 56 

developing countries (out of 155) with REDD+ submissions under the UNFCCC, 

because REDD+ submissions are more detailed and transparent than National 

Communications and Biennial Update Reports (BURs) that include all sectors and don’t 

focus exclusively on LULUCF, and because at the time the study was undertaken almost 

80% of developing countries had never submitted a BUR. Using REDD+ reduces the 

uncertainty of the results because it is difficult to extract information on data sources from 

National Communications and BURs. However, it is possible that my sample of 56 

countries is targeting the developing countries with higher MRV capacity and therefore 

are not representative of the population of developing countries. In principle, countries 

with REDD+ submissions are those with more REDD+ readiness support and 

consequently higher MRV capacity and higher use of EO data. It is likely, although 

unquantified, that the remaining developing countries rely on statistics when reporting 

fluxes from LULUCF.  

The GFC is used to directly quantify deforestation by 10 countries, to quantify other 

REDD+ activities by 6 countries (noting the overlap), and as auxiliary data (for example 

as training data or map correction) by 6 countries. Furthermore, 14 countries used it 

indirectly, e.g., for quality control or verification. It was used directly, for example, to fill 

cloud gaps, to produce forest maps according to the national thresholds in the national 

definition of forest selecting the tree cover threshold and resampling pixel blocks and a 

reference dataset for the correct attribution of land use. It was also used in combination 

with other data, including very high-resolution imagery, to train a map classifier or to 

correct mapped areas. Two biomass maps (Saatchi et al., 2011; Baccini et al., 2012) 
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were used indirectly in four (5%) submissions, for example to compare estimates with 

the reported values in the FRL (verification). Fire products were used directly to map 

burnt areas for activity data by two countries. However, Ghana dropped the wall-to-wall 

mapping and the use of MODIS Burned Area product in subsequent submissions, 

choosing instead to use a systematic sample approach and interpretation of very high-

resolution imagery, including to quantify emissions from fire occurrences. See summary 

of uses in Table 2.3 and Table 2.4, and a more detailed and disaggregated description 

country by country in Table A.1.2. 

The results from the analysis on Chapter 2 suggest that a low uptake in national reporting 

means a low contribution to the Global Stocktake. Furthermore, the aggregation of 

countries GHG inventories is used as input data (decision 19/CMA.1, para 37a). While 

the consistency and harmonization in data and methods used for REDD+ and GHG 

inventories submitted in National Communications and Biennial Update Reports (soon 

to be replaced by Biennial Transparency Reports) is expected, many countries are still 

working towards that objective. 

Building on the knowledge and results from Chapter 2, in the next Chapters (3 and 4), I 

explored the possibility of using EO products to estimate emissions from deforestation 

using a least developed country in West Africa (Guinea-Bissau) as a case study. In 

Chapter 3 I delved into the question: 

Is the uncertainty in the EO-based carbon flux estimates mostly linked to land 

and land use change  Activity Data  or biomass  Emission/Removal factors ? 

Results for 20 combinations of EO products (four maps of deforestation and four biomass 

maps plus the national AGB plot data), show that AD and EF derived from different 

datasets render very different annual emission estimates (MtCO2 yr-1; Table 3.3). The 

spread of all emissions estimates is high (overall CV of 64%) and using the National 

deforestation map and biomass plot data produced an estimate 10-times higher than that 

obtained when combining the GFC global map and the above-ground biomass map for 

African savannas published by Bouvet et al (2018). 

The results highlight that the magnitude of variation is dominated by differences in the 

deforestation dataset (AD), with CV ranging between 58 and 71% when compared to the 

20-32% variation in EFs (Table 3.3). Deforestation rates ranged between 0.3 and 1.8 % 

yr-1 (Table A.2.4) and the maps show almost complete spatial disagreement (Figure 3-4) 

with only 1-6% overlap of deforestation area and over 90% of the 10-km pixels having a 

CV above 50%.  
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The aggregated AGB mean for the entire country varies little between products (Figure 

3-2). All AGB estimates range between 54 and 65 t ha-1 and are consistent with IPCC 

default for sub-tropical dry forests in the 2019 refinement to the 2006 Guidelines (65.2 t 

ha-1; Table 4.7 in IPCC, 2019). Note that Chapter 3 of this thesis was published in 

Environmental Research Letters in 2018 and at the time I used (in Figure 3-2) the much 

higher default value of the 2006 guidelines (130 t ha-1; IPCC, 2006). 

What are the reasons for the main discrepancies and errors? 

In Chapter 3, I explored the potential reasons for the different patterns and magnitude of 

deforestation using i) expert knowledge, ii) information from the EO data used in each 

product, iii) time series of high-resolution imagery where available to illustrated random 

examples (Figure 3-6 and Figure 3-7). The main issues appear to be: i) the different 

imagery acquisition dates (GFC uses imagery from the wet season and National from 

the dry season) coupled with ii) difficulties in distinguishing seasonality (e.g., from rice 

cultivation and its green signal in the wet season, and use of fire in shifting agriculture 

cycles in the dry season) from deforestation, and iii) issues related with forest definitions 

and the complexities of using land-cover change and tree-cover change as proxy for 

land-use change (including confusion between forests and tree crops). The potential 

reasons discussed in Chapter 3 are supported by the results of the map validation in 

Chapter 4 which uses a reference dataset based on a stratified sample and the visual 

interpretation of high-resolution imagery from google earth. 

The reference dataset collected in Chapter 4 showed that for the period 2007-2010, the 

GFC deforestation map had the highest number of sample units correctly classified and 

the lowest number wrongly classified (Figure 4-5; Table A.3.2). It had an area-adjusted 

overall accuracy (OA) of 85%, compared to 77% of the GLCF and 76% of the national 

deforestation map (Table A.3.3). However, deforestation was greatly underestimated in 

all maps, as shown by the large omission errors (Figure 4-4). The deforestation areas 

reported after correction are considerably higher than the original areas (Table 4.1, 

Figure 4-4) but vary less among products (CV=102% in the original areas and CV=23% 

after correction). The GFC had the highest area-adjusted omission error (97%) and the 

corrected deforestation area was more than 20 times greater than the original mapped 

area. This issue of a single error in a very large class having a much stronger weight 

than an error in a small class with consequent exacerbated omission areas leading to 

exacerbated area corrections is well recognized when stable classes (in my case, the 

class of no deforestation) represent more than 90% of the total area (Olofsson et al., 

2020 and Arevalo et al., 2020). 
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The sources of errors are similar in all maps with most of the classification errors being 

linked to shifting agriculture (45-69%), swamped rice cultivation in mangrove areas (5-

16%), or tree crops (11-17%). Most commission errors are in clusters around urban 

areas, where vegetation is expected to be more humanized, while most omission errors 

are in the western region dominated by dry forests. For all maps the highest percentage 

of both omission and commission errors is linked to shifting agriculture areas, noting that 

in this analysis and according to the national definition, shifting agriculture is considered 

forest land if of low intensity with long fallow cycles and most trees left standing, but it is 

considered cropland if in shorter fallow cycles, if it shows reduction of canopy cover, or 

evidence of conversion to permanent cropland in subsequent years (we analysed high 

resolution imagery up to 2019 but assessed changes only between 2007 and 2010). The 

results of the analysis in Chapter 4 confirmed the suspicion in Chapter 3 – the GFC is 

the only map missing/omitting conversion of mangrove to swamped rice fields. The 

national map misses more conversion of forest to tree crops than the other maps, and 

wrongly classifies stable rice fields as deforestation, maybe due to the burning of the 

fields. 

How can the combination of maps improve the estimates? 

In Chapter 4 I tested if combining deforestation maps could reduce the errors of their 

estimates. In the individual products, commission error varies from 29% to 60%, and 

omission error reached as high as 99.9%. The errors are reduced when combining 

deforestation maps, by intersecting areas of deforestation or the union of those areas. 

The lowest commission error (CE = 29%) is obtained by the intersection of the three 

deforestation maps, and the lowest omission error (OE = 43%) obtained by their union. 

The union of the maps, where the class of deforestation is larger than in the individual 

maps, is the least affected by the exacerbated omission areas. Given the political 

implications of these exacerbated areas corrections, in the context of REDD+ results-

based payments, this study suggests it could be advantageous to use a union of 

deforestation maps to reduce the area of the stable classes and consequently the impact 

of exacerbated area corrections. At least until better recommendations on how to 

contain, mitigate and potentially eliminate the effects of omission errors are provided 

(Olofsson et al., 2020). 
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5.2 Contributions to the overarching questions and future 

directions to science and policy 

The main conclusion of this thesis is that available EO products are not as widely 

employed nor as accurate as perceived within the EO community. Accurately mapping 

deforestation in dry forests, where the main driver of deforestation is shifting agriculture, 

is very complex. The mapping difficulties and map errors are not only linked to the small 

scale and more subtle change in the spectral signal which can be mistaken with 

seasonality. It is also connected with difficulties in the correct attribution between satellite 

image and tree canopy cover and land use. And even in the attribution of shifting 

agriculture to the right land use. Throughout this thesis I have discussed how EO 

products are very timely and needed and can be of support if some attention is given to 

the way they are handled and presented. This section reflects on the findings from 

Chapters 2, 3 and 4, and suggests future directions with a focus on the contributions 

from this thesis to the overarching questions.  

The results shown in the chapters above highlighted opportunities and limitations to the 

uptake of EO products in national reporting to the UNFCCC largely linked to the need for 

compliance with IPCC methods and good practice. A first short answer from this study 

to the overarching questions posed is below.  

Why do we get conflicting estimates from the aggregation of land carbon fluxes 

from GHG inventories submitted to the UNFCCC and independent global 

estimates from EO products? 

Firstly, we get conflicting messages between estimates from EO products and GHG 

inventories because i) the maps can have large errors and ii) map classes may not 

correspond to the land categories used in the inventory. For example, if shifting 

agriculture is considered forest land remaining forest land in the inventory but is included 

in deforestation in the EO products. The future directions sections below will expand on 

these ideas. 

How has the EO community contributed to the first Global Stocktake if their 

independent estimates and the conclusions from the Global Stocktake are 

divergent? 

Secondly, the contribution to the first Global Stocktake was lower than expected by the 

EO community. Namely because: i) the independent submissions from the EO 

community using the black pathway Figure 1-5 (e.g., ESA, 2022) were not considered 

in the synthesis reports by the UNFCCC secretariat; ii) the conclusions from the 
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synthesis reports included information from the land use sector that is contrasting to the 

estimates from the EO community (e.g. reporting decreasing emissions from 

deforestation in developing countries compared to the increasing emissions from 

deforestation from EO products in the tropics); and iii) Chapter 2 identifies an 

underutilization of EO products in countries reporting to the UNFCCC, and the uptake of 

the GFC was only possible if adapted or corrected to adhere to national definitions with 

consequent changes in the trend and magnitude of associated carbon fluxes. The future 

directions sections below will expand on these ideas with a focus on proposing ways to 

enhance the uptake of EO products in the next Global Stocktake. 

The future directions suggested in this section are motivated by the findings of Chapters 

2, 3 and 4, and by the necessity to provide further recommendations to address the 

overarching questions ahead of the next Global Stocktake in 2028. The discussion is 

primarily directed to space agencies and the EO scientific community wishing to support 

the Global Stocktake but are also relevant to national teams preparing their reports to 

the UNFCCC. 

5.2.1 Provision of high quality EO data for maps and sampling 

approaches. 

Chapter 2 found that in forest reference level submissions to the UNFCCC, there is a 

trend towards reduced dependency on wall-to-wall maps to derive AD, which partially 

explains the limited uptake of EO products. Of the 76 submissions analysed, 70% used 

a reference dataset to estimate AD, of which 40% stratified the sample with a map 

(including the GFC product), as recommended to reduce omission errors (Olofsson et 

al., 2020; GFOI, 2020), and 30% relied only on the sample. One reason for the change 

in trend in the approach used is that pixel-counting methods introduce bias in the 

estimate from map classification errors (McRoberts, 2011; Olofsson et al., 2013). 

Stratified area estimation corrects the bias and the area. This approach also corrects any 

temporal inconsistencies from changes in the classification algorithm (Ceccherini et al., 

2021), or changes in the source data, for example, due to sensor degradation or sensor 

and technology changes between successive missions (Roy et al., 2016; Vogeler et al., 

2018) or due to adding additional higher-quality data in more recent years. Ultimately, it 

helps ensuring time-series consistency, a fundamental IPCC requirement. Chapter 4 

showed a case study where the available deforestation maps had large classification 

errors and the corresponding emissions were very different depending on the 

deforestation maps that were selected (Chapter 3). In this case, correction of the 

estimates with a reference dataset was essential (Chapter 4).  
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Developing the NGHGI should be done in synergy with other policy needs and 

requirements, and therefore wall-to-wall maps, even with errors, are useful. For example, 

for planning actions in priority areas in the NDCs, to monitor natural disturbances (a 

memo item in the new reporting tables), or for developing and maintaining operational 

alert systems (e.g., the alert system DETER in Brazil is used also to report emissions 

from forest degradation in the Amazon in the 2023 forest reference level). For example, 

even if the maps in Guinea-Bissau have large errors, the intersection of the maps (with 

the lowest commission errors) could provide timely and important information on 

hotspots for action, in a conservative way, to avoid false positives and waste of resources 

on ground intervention. This thesis, therefore, supports the recommendation in GFOI 

MGDs (GFOI, 2020) of moving towards using stratified area estimation and the priority 

action point in the CEOS AFOLU roadmap (Poulter et al., 2023) for the EO community 

to work towards providing to national teams, including the inventory community, access 

to quality imagery for statistical estimates and maps. Furthermore, satellite data and 

derived maps should have long-term continuity and backward compatibility, and be 

properly documented in terms of the data sources used, classification algorithm changes, 

and any other information required to correct inconsistencies.  

5.2.2 Improve mapping of shifting agriculture. 

Chapter 4 identified land areas under shifting agriculture cycles as the main source of 

error in all the deforestation maps, both errors of commission and omission. Furthermore, 

the reference dataset of circa 900 sample units collected in a stratified random sampling 

design identified shifting agriculture as the main cause of deforestation in Guinea-Bissau 

for the period 2007-2010. Other studies report similar findings in other countries (e.g., 

Ryan et al., 2014; Chen et al., 2023) and, at the global level, the impact of shifting 

agriculture in global tree cover loss is also considerable (Curtis et al., 2018). According 

to the study of Curtis et al (2018) on global drivers of tree cover loss from deforestation 

and other disturbances, shifting agriculture is responsible for 24% of tree cover loss at 

global level, and is the dominant driver of loss in sub-Saharan Africa, representing 92 to 

93% of tree cover loss depending on which method is used, map-based (with the GFC 

dataset) or sample-based, respectively. However, the authors note the difficulty in 

accurately separating shifting agriculture from commodity driven agriculture in sub-

Saharan Africa because the small-scale clearing pattern is similar, and some commodity 

driven agriculture areas are wrongly classified as shifting agriculture in their model. In 

fact, Curtis et al (2018), accessed in the global forest watch portal (GFW, 2023), 

quantified that in Guinea-Bissau shifting agriculture was responsible for 98-100% of tree 

cover loss in the period 2007-2010 (GFW, 2023). In Chapter 4, I found that shifting 



 

140 
 

agriculture together with permanent agriculture were responsible for 64% of 

deforestation in Guinea-Bissau in the same period 2007-2010 (Figure 4-7). This 

difference indicates a large overestimation of the share of shifting agriculture in the 

drivers of deforestation by Curtis et al. (2018). 

The EO flux model from Harris et al (2021) uses the map of global drivers from Curtis et 

al (2018) and, in their sensitivity analysis, the global effect of the classification errors was 

minimal. Nevertheless, given the relevance of shifting agriculture as driver of tree cover 

loss, and the large errors in mapping those areas identified in Chapter 4 and independent 

studies, it is important that the EO community is aware of this challenge, particularly 

because technical national teams who rely on EO data as main source of AD (Figure 

2-2) also face the same challenge. This finding is consistent with other studies reporting 

omission errors mapping small scale changes in sub-Saharan Africa and drylands with 

lower canopy cover (Tyukavina et al., 2013; Tyukavina et al., 2015). 

5.2.3 Better alignment between EO products and IPCC categories. 

In Chapter 2.5.1, I discussed some of the factors included in the IPCC Guidelines (IPCC, 

2019) that need to be considered by producers of EO products for alignment with national 

requirements and uptake of their products in countries’ NGHGI. These factors include 

spatial and temporal resolution, and temporal coverage and consistency. Links with time-

series consistency were also discussed above (5.2.1). Failing to consider a single one 

of these factors can render the product unsuitable for reporting to the UNFCCC and 

therefore all of these criteria need to be taken into account in future developments by the 

EO community. This section does not replace nor repeat the discussion in Chapter 2.5.1 

but is intended to emphasise the issue of the disconnect between EO products and the 

national definitions and of attribution of land use and land use change according to the 

IPCC categories (Table 1.1). Although discussed in Chapter 2.5.1, it is mentioned here 

again because the importance of considering national definitions and the correct 

attribution of land use binds all the chapters of this thesis – it is connected to i) the low 

diversity in the choice of EO products to map deforestation (Chapter 2), ii) the low 

accuracy of the maps at national level (Chapter 3 and 4), iii) the option and 

recommendation of using a stratified area approach (Chapter 2 and 4), and iv) the 

reconciliation between datasets (wider scope in Chapter 1). 

The flexibility to adhere to varying national definitions is one of the attractive 

characteristics of the GFC (Hansen et al., 2013) and reason for its use by half the 

countries with forest reference level submission between 2014 and 2022 (Chapter 2). 

Rigid thematic classes (for example, of land cover) cannot possibly match the IPCC 
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categories of all countries simultaneously (e.g., Forest Land, Cropland, see Table 1.1), 

and products that impose a definition (e.g., from Table 2.2) are not as attractive to 

national teams. There is no universal definition of Forest Land, not in terms of biophysical 

parameters, nor other characteristics of land use. Nations, that are sovereign, make the 

decision on how they define their own land. For example, for Forest Land, canopy cover 

thresholds vary between 10 and 60% among the forest definitions used in the forest 

reference level submissions analysed in Chapter 2 (Table A.1.2). Furthermore, palm 

trees, mangroves or shifting agriculture can constitute a forest or not, and timber 

plantations are considered Forest Land in the NGHGI but are typically excluded in 

REDD+. The GFC, when used to directly derive AD in national submissions (Chapter 2), 

is always used in combination with national maps, or a sample of visually interpreted 

high-resolution imagery. While the authors of the GFC product are clear in noting that 

“forest loss” employed in the study is defined as the removal or mortality of all tree cover 

in a Landsat pixel (Hansen et al., 2014), the use of the term “forest loss” is misleading 

and means the GFC data must be handled with care to match the categories in the 

NGHGIs (Table 1.1). This is because under the UNFCCC, the carbon removals of all 

trees in a timber plantation (harvest) are reported in the category Forest Land remaining 

Forest Land and is not forest conversion to other land use category. 

I’ll use again the shifting agriculture example discussed in this thesis because the 

challenges of accurately mapping and quantifying it are not only spectral (Chen et al., 

2023; Miettinen et al., 2014; Ryan et al., 2012), but are also related to national definitions 

and attribution to IPCC categories. From the comprehensive analysis in Chapter 2 on 76 

reference level submissions, it was noted that the land use of areas under shifting 

agriculture cycles are not always clearly defined by national teams nor are the protocols 

for land classification properly developed and implemented. This issue must, therefore, 

be addressed by both the EO community and the national technical teams. In Chapter 

4, Guinea-Bissau illustrates an approach implemented by many other countries as well 

of using a sample of very-high resolution imagery for the correct attribution of land use 

(e.g., Ghana, Malawi, Mozambique). The classification protocol is described in Section 

4.3.2.3 and was designed considering that shifting agriculture can be: i) a temporary tree 

cover loss in forest land remaining forest land if the fallow period is long and most trees 

remain standing (i.e., stable forest); ii) cropland (or stable non-forest) if in intensive 

management with short cycles and lower canopy coverage; or iii) deforestation if the 

management intensifies with reduction of tree canopy cover and can transition to 

permanent agriculture or tree crop. The difference between the findings in Chapter 4, i.e. 

shifting agriculture responsible for 64% of deforestation, and Curtis et al. (2018), i.e. 

shifting agriculture responsible for 98-100% of tree cover loss for the same period, can 



 

142 
 

potentially be explained by attribution to land use categories and national definitions. In 

this thesis, I am only looking at deforestation and, according to the national definition, 

did not include sustainable shifting agriculture cycles in forest land remaining forest land 

nor more intensive crop cycles in cropland remaining cropland. Those losses may not be 

included in national LULUCF fluxes in incomplete NGHGI if only emissions from 

deforestation are quantified. 

These two examples, harvest and shifting agriculture, indicate the need to move from 

forest area change to land use change and from forest change to a land-based approach 

that includes all other IPCC land use categories. For example, in the NGHGI, GHG fluxes 

from shifting agriculture can be included in Forest Land or Cropland, and fluxes from 

harvest included in Forest Land. Also, GFC worked well for REDD+ (Chapter 2) but 

REDD+ focuses on Forest Land and forest land conversion while the NGHGI reports 

fluxes in the LULUCF sector, which is more comprehensive. This recommendation of 

moving towards a land-based approach is aligned with the priority action points to the 

EO community in the CEOS AFOLU roadmap (Poulter et al., 2023). 

5.2.4 Link EO products to IPCC variables 

Because Chapter 3 identified Activity Data (in this thesis, deforestation) as the main 

source of variability when estimating emissions from deforestation, Chapter 4 of this 

thesis focused on the challenges of mapping deforestation and not the biomass 

component. However, countries report fluxes to the UNFCCC (in NGHGI, REDD+, 

NDCs) in tCO2yr-1 using different methods (Section 1.2.3). Even in NDCs, countries are 

encouraged to include quantitative metrics but especially, GHG targets (also in tCO2yr-1; 

see Table 2.1). To estimate land fluxes according to the IPCC Guidance and to facilitate 

communication with national technical teams to develop practical demonstrations of 

uptake of EO products, EO products should be linked to IPCC variables (Table 1.2).  

Furthermore, the different groups in the EO community, working on land dynamic, on fire 

mapping, and on biomass mapping, must work together to prioritize research 

developments because the variables need information from more than one expert EO 

group. Here, I present a very preliminary and coarse attempt to identify EO data 

requirements for each IPCC variable (Table 5.1). The requirements consider the IPCC 

factors discussed in section 2.5.1 (spatial resolution, temporal resolutions, and temporal 

coverage) and differ depending on how the product is used. The requirements in this 

table were based on the examples found in country submissions in Chapter 2 and must 

be explored further, including with specific EO products. The table is intended to present 

the idea of preliminary work that can be done to bridge the EO and NGHGI communities 
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and does not contain a final set of criteria. Additionally, this table is simplified. For area 

representation, for example, all the complexities on the attribution to the correct category 

and sub-category of land must be considered. 

Table 5.1. Preliminary reflections on the requirements in terms of spatial and temporal resolutions and 
temporal coverage for satellite-based products to estimate emissions and removals from the LULUCF, i.e., 
to the IPCC variable to report (IPCC, 2006). The options of products, uses and characteristics are not 
exhaustive and only builds on the range of data and uses in Forest Reference Level submissions from the 
analysis in Chapter 2 

Map Use 1 Use 2 Spatial 
resolution 

temporal resolution, temporal 
coverage or Year 

Area 
representation  

directly derive 
area of 
conversion 
(ADij) 

Post-classification change 
detection 

0.5 to 1 ha 
Start and end of reference 
period ranging ~10-15 years 

Direct change detection 

Stratification 

Strata are areas of conversion 
(ADij) 
Strata are areas of land i (i = 1 to 
n) to support field inventory and 
determine EFs per land type 

Coarser 
resolutions are 
possible 

One point in time is enough. The 
year is flexible 

Biomass 
BBEFOREi or 
BAFTERi  

Average biomass value for each 
land type i (i= 1 to n)  

Coarser 
resolutions are 
possible 

One point in time is enough. 
The year is flexible but needs 
to be the same year of the land 
stratification map 

Stratification. Strata are classes 
of biomass density combined 
with the land stratification map. 
Average value = BBEFORE or 
BAFTER for each combination of 
biomass density class and land 
strata 

Biomass 
change 

A per pixel estimate of biomass change 
corresponds to applying the two Equations 2.15 
and 2.16 (IPCC, 2006) of the Gain-loss method:  
BBEFOREi, BAFTERi, ADij, ΔCG and ΔCL 

0.5 to 1 ha Start and end of reference 
period ranging ~10-15 years 

ΔCG and ΔCL 

In large and homogeneous strata 
Coarser 
resolutions are 
possible 

At last in two different years 
representing two inventory 
round. Resolution ~10 years  

Ct1  0.5 to 1ha Start of the reference period or 
proxy 

Ct2  0.5 to 1ha End of the reference period or 
proxy 

Burnt areas to estimate the area affected by fire and the non-
CO2 emissions from fires separated by driver: to be 
combined with AD deforestation and AD forest 
remaining forest (degradation) 

Coarser 
resolutions are 
possible 

Annual, for the duration of the 
reference period or matching 
the years of the conversion 
maps  

5.2.5 Implement a collaborative interface between national and global 

land monitoring experts. 

The divergences found in existing EO products (Chapter 3) and their large errors 

(Chapter 4) demonstrates there are technical issues in the EO products that limited their 

use in national submissions to the UNFCCC (Chapter 2). While actions are undertaken 

within countries to address institutional capacity gaps and poor governance (Ochieng et 

al., 2016), developers of EO products should in parallel make an effort to interact with 

groups responsible for GHG inventories and experts familiar with IPCC guidance so to 

improve their products and make them suitable for national reporting, and thus contribute 

to the processes under the UNFCCC (Figure 1-5). This collaboration could include 

sharing of data for calibration of maps and their improvement, steps for identifying 
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together the needs and requirements in national reporting, for handling and presenting 

them in a way that is consistent with the IPCC Guidelines. Such collaborative efforsts 

could, ultimately, enhance the uptake of EO products in national reporting and support 

more complete, accurate and transparent NGHGI and a stronger Global Stocktake. 

It is worth noting that some cases, e.g., use of biomass maps, are still areas of active 

research, the IPCC Guidelines (IPCC, 2019) have only generic text, and there are not 

many examples on the practical implementation of the guidance. The existing examples 

using satellite data to produce biomass maps in national reporting are too few (Zambia 

2017, Honduras 2020 and Togo 2020, Figure 2-2, Table A.1.2), including using airborne 

measurements, for example in Brazil (Ometto et al., 2023; in the latest forest reference 

level submitted in 2023).  Enhancing the uptake of EO products in national reporting to 

the UNFCCC (CEOS AFOLU roadmap recommendation 2, Box 1.2, Poulter et al., 2023) 

will be more successfully achieved if the disconnect between producers and users is 

addressed and an interface for collaboration between EO global biomass monitoring, 

GHG inventory, and national forest inventory experts is created (CEOS AFOLU roadmap 

recommendation 3, Box 1.2, Poulter et al., 2023). Such an interface exists to some extent 

in capacity building programmes although the approaches used tend to be more of 

imposing data and methods rather than listening.  

The objective of this section is to highlight that capacity building works both ways and for 

the purpose of enhancing the uptake of EO products, the way that these are handled 

and presented by the people that develop then to potential users is crucial. Therefore, 

below are some suggestions of requirements and steps for an effective engagement 

between the EO community developing global maps and NGHGI experts for the purpose 

of developing practical examples of uptake in national reporting to the UNFCCC:  

i. first, it is necessary to recognize that only individual countries, given their national 

circumstances, can determine if satellite-based data and derived products 

developed over large areas are suitable for use in national GHG inventories, 

ii. a well-established relationship with Government institutions responsible for 

reporting to the UNFCCC through the use of existing channels, i.e. long-standing 

relationships and trust takes time and consistency to build,  

iii. a champion in the national team and a champion in the EO group for each country 

cluster of selected scientists and national teams to explore nationally appropriate 

opportunities for the use of EO data and derived maps,  

iv. at least one member with GHG inventory experience included in the cluster (e.g. 

from the UNFCCC roster of experts) that may help in the interface, for example 

in understanding differences in definitions used,  
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v. preparation steps ahead of the introduction meeting are undertaken, e.g., 

understanding the MRV capacity of the country and knowing the key priority 

areas of technical improvement identified in country reports,  

vi. link country needs and priorities with IPCC variables and existing EO data and 

methods to collaboratively explore opportunities to use satellite data and derived 

maps to estimate those variables following IPCC Guidelines and Principles. 

Such an interface would address the disconnect and facilitates the collaboration and 

sharing of data between groups. Furthermore, it sets a framework for the best scientists 

in the remote sensing field to collaborate with GHG inventory experts to address some 

of the outstanding issues that hinder the use of maps by national teams preparing their 

reports to the UNFCCC. This is also essential and very timely for tropical countries and 

least developed countries given the impending more stringent reporting requirements 

they have committed to under the enhanced transparency framework of the Paris 

Agreement. Accordingly, these ideas are reflected in some of the outputs of the CEOS 

AFOLU harmonization ongoing efforts (Ochiai et al., 2023; Poulter et al., 2023; Hunka et 

al., 2023). 

5.2.6 Reconcile the differences at national and global level. 

One important topic discussed in the motivation for this thesis was the need to reconcile 

or at least explain the differences in the estimates of carbon fluxes informing the Global 

Stocktake. Such reconciliation could potentially help converge the conflicting estimates 

from aggregation of carbon fluxes from NGHGI and independent estimates from EO 

products (one of the overarching questions of this thesis). This thesis focuses on 

deforestation, because the magnitude and trends of deforestation from different 

estimates are still conflicting at the global level. These conflicting messages were also 

observed in this thesis’ case study – in Guinea-Bissau the deforestation maps were very 

divergent in magnitude and spatial distribution (1-6% area overlap), and all had large 

classification errors (area-corrected OE = 91-97% CE = 38-59%) linked to shifting 

agriculture.  

So far, there is no systematic review of the impacts of shifting agriculture in LULUCF 

emissions in the aggregated NGHGI. This is because it is not clear in every inventory, 

nor in the IPCC Guidelines, what is the prevailing land use in shifting agriculture. There 

is no global consensus either. According to the IPCC Guidance, if the prevailing land use 

is cropland, then the fluxes should be reported in the corresponding category in the 

NGHGI. Curtis et al (2018) identifies it as tree loss other than deforestation, although it 

remains unclear if the authors mean to say these losses correspond to emissions in the 
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IPCC categories forest land remaining forest land, or cropland remaining cropland. Other 

local studies describe it as driver of deforestation (e.g., Ryan et al., 2014; Chen et al., 

2023). Ultimately, it is up to nations, who are sovereign, to make decisions on what is 

considered forest or other land uses in their territory and, accordingly, the UNFCCC and 

the IPCC Guidelines do not prescribe a common definition (discussed in section 5.2.3). 

The most recent GCB (Friedlingstein et al, 2023) quantifies for the first time the impact 

of shifting agriculture in the total land use fluxes and split total emissions from 

deforestation into permanent deforestation and deforestation from shifting agriculture, as 

well as total removals from forest recovery into afforestation/reforestation and regrowth 

from shifting agriculture (Figure 5-1). Averaged over the 2013–2022 period and over the 

three bookkeeping estimates, fluxes from total deforestation amount to 6.97 GtCO2yr-1 

of which 2.94 GtCO2yr-1 are due to shifting agriculture and are entirely balanced out by 

removals during fallow. Emissions from permanent deforestation are therefore around 4 

GtCO2yr-1 which is of the same magnitude of emissions from deforestation in the 

aggregation of NGHGI in Grassi et al (2022) (Figure 5-1) and may explain the remaining 

gap in Grassi et al (2023). Overlaying data from the GFC (Hansen et al., 2013) updated 

annually on Global Forest Watch combined with Curtis et al (2018) to exclude emissions 

from the drivers shifting agriculture and wildfires (GFW, 2023), still shows a large gap 

and maintains the different trend. The Forestry class was not excluded because although 

including harvest, it also includes deforestation of primary forest which, in the NGHGI, 

are reported in different categories. In the case of the GFW, it seems the disagreements 

are not explained by shifting agriculture.  

For the future, it is important to explore where these differences come from to increase 

confidence in the EO products by making sure the contrasting estimates are not due to 

conceptual differences. To explain all the differences, assessments at the national levels 

are required because MRV capacity, completeness, and accuracy of the NGHGI, as well 

as the drivers of deforestation are largely different and the reasons for the disagreements 

will vary from country to country accordingly. Doing this exercise in articulation with the 

recommendations above is encouraged. 
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Figure 5-1 Figure 7(d) from the Global Carbon Budget 2023 (Friedlingstein et al, 2023) overlaid with 
emissions from deforestation from the aggregated NGHGI in Figure 2(a) of Grassi et al (2022) (in black) and 
the global emissions from tree cover loss (Hansen et al., 2013) combined with the map of drivers from Curtis 
et al. (2018) to exclude emissions from shifting agriculture (in blue; from Global Forest Watch, GFW, 2023). 
The figure from Friedlingstein et al, (2023) shows the sub-components of “deforestation” and of “forest 
(re)growth” in the component of emissions from land use (ELUC): (i) deforestation in shifting cultivation cycles, 
(ii) permanent deforestation, (iii) forest (re)growth due to afforestation and/or reforestation, and (iv) forest 
regrowth in shifting cultivation cycles. 

5.3 Closing Remarks 

Accurate and timely information on the carbon fluxes from forests and land use is 

required to plan climate change mitigation actions and address the greatest challenge 

humanity is facing this century. The science is clear that we need to act very fast (IPCC, 

2022; UNEP, 2023). With the end of the first Global Stocktake (UNFCCC, 2023), 

scientists are expressing frustration about the slow political response to the “broken 

record” messages of the IPCC ARs and requesting power to prescribe policies (Neslen, 

2023 December 7). The work presented in this thesis disagrees with the idea that 

scientists reached a point where they can no longer “be policy relevant without being 

prescriptive”.  

This thesis reveals that, despite the large investments made by Space Agencies and the 

EO community to provide satellite data and derived global maps to measure carbon 

fluxes from land, there is a notable underutilization of EO products in national reporting. 

One reason for their low uptake is exactly the disconnect between science and policy, or 

between the available maps and the IPCC requirements used in NGHGI to report to the 

UNFCCC. I show that maps relying on more sophisticated satellite data and remote 

sensing approaches have large errors at national levels, many times simply because 

they don’t use the same definitions and therefore present results that are conceptually 

Deforestation NGHGI 
(Grassi et al., 2022)

tree cover loss excluding shifting agriculture
and wildfires (GFW, 2023)
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different. On the land use sector, the message from the scientific community, including 

modelling and EO experts, is still not crystal clear. In fact, the most widely used satellite-

based forest loss global map (GFC, Hansen et al., 2013; Harris et al., 2021) had an area-

corrected omission error of 97% in my case-study and using national definitions and 

IPCC Guidelines, for a time period (2007-2010) prior to the 2016 methodological change 

and sharp increase in detected forest loss (Galiatsatos et al., 2020; Palahi et al., 2021; 

Ceccherini et al., 2021). The errors, which are mostly linked to shifting agriculture, were 

equally large in other satellite-based maps and can be connected to the same conceptual 

differences.  

Nations are sovereign, governments make decisions on land definitions and on 

mitigation actions on their land. The role of the research community is to provide clear, 

accurate, timely information so that all countries that wish to, have the necessary data to 

make informed decisions and can answer in their NGHGI the most fundamental question 

– what is the extent and trend of deforestation and associated carbon emissions in the 

first two decades of the 21st century? If many countries do not have a straightforward 

answer yet, and at the global level we still have contradictory messages, more effort is 

required to translate science, to handle and present data in a way that resonates with 

policy makers and technical teams. Tropical forests are vulnerable and the enhanced 

transparency that accurate and adequate EO maps and products bring to the climate 

change arena is essential given that many developing countries are still far from being 

ready to implement domestic monitoring systems. Their forests, including the carbon 

they store and removal capacity that are so essential to achieve climate neutrality 

objectives, are too vulnerable to wait. 
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Appendix 1 

We selected REDD+ FRLs as our data source because our focus is on the use of EO 

products to monitor forests and conversions to/from forests; this is the part of LULUCF 

where most GHG fluxes are reported and where most of the uncertainties exist. FRLs 

provide the most detailed technical information on the data and methods used to derive 

carbon flux estimates in tropical forests and are technically assessed under the 

UNFCCC. Alternative sources not included in this study are NDCs, national 

communications and biennial update reports, of which only the latter are technically 

reviewed. However, many countries have never submitted a biennial update report, or if 

they have, this may exclude the LULUCF sector or use IPCC default values due to lack 

of national data. 

Furthermore, REDD+ decisions establish that the data, methodologies and procedures 

used in FRLs should be consistent with corresponding anthropogenic forest-related GHG 

emissions by sources and removals by sinks as contained in the national GHG inventory 

(GHGi). Hence, the use of satellite data and EO products in the FRL is evidence of the 

opportunity for its use in the LULUCF sector of the GHGi. Although methodologies are 

often not yet harmonized between FRLs and GHGi, countries are working towards that 

objective.  

REDD+ activities and the classes in our study can be mapped to the IPCC categories 

used in GHGi (Table A.1.1). For example, the class ‘deforestation’ in our study includes 

uses of EO products for AD or EF in carbon flux estimates of ‘forest land converted to’ 

either ‘cropland’, ‘grassland’, ‘wetlands’, ‘settlements’, or ‘other land’ in the GHGi. Also, 

the class ‘other REDD+ activities’ includes uses of EO products for AD or EF in estimates 

of the sub-categories of the GHG inventory ‘land converted to forest land’ and ‘forest 

land remaining forest land’. Due to the focus of REDD+ on forest land, uses of EO 

products for other sub-categories of the GHG inventory are not included in the analysis. 

Furthermore, some of the sub-categories of the GHGi corresponding to fluxes to and 

within forest land (in our study, ‘other REDD+ activities’) may be under-represented. For 

example, although most countries included fluxes from forest degradation (DEG, n=32, 

57%) and enhancement of forest carbon stocks (ECS, n=35, 63%) in their FRLs, only a 

few included the remaining activities (conservation of forest carbon stocks CCS=18%, 

and sustainable management of forests SMF=18%). 
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Table A.1.1. IPCC categories for the land use, land use change and forestry (LULUCF) sector in GHG 
inventories reported to the UNFCCC (see LULUCF tabs of the common reporting tables) mapped to the 
activities reported under the UNFCCC REDD+ framework and the classes in this study (‘deforestation’ and 
‘other       activities’). This mapping is not fixed, though. For      , some countries choose a land-
based approach and may report emissions and removals from most land-use categories under ‘sustainable 
management of forests’ (SMF) or ‘conservation of forest carbon stocks’ (CCS), or on the contrary, include 
the activities SMF and CCS in the other three activities. For example, India’s forest reference level only has 
the activity SMF covering fluxes from afforestation as a management practice, harvesting, thinning and forest 
conservation as a management practice. Given the focus of REDD+ on forest land, some categories in the 
GHG inventory have no correspondence to REDD+ activities, hence NA = not applicable 

IPCC land-use categories and sub-categories RE  + activit  categories in t is stud  

forest land remaining forest land (4.A.1.) forest degradation (DEG) 

enhancement of forest carbon stocks (ECS) 

sustainable management of forests (SMF) 

conservation of forest carbon stocks (CCS) 
included 

E  uses to estimate fluxes from ‘other 

 EDD+ activities’ 

land converted to forest land (4.A.2.)  

cropland converted to forest land (4.A.2.a) 

enhancement of forest carbon stocks (ECS) 

grassland converted to forest land (4.A.2.b) 

wetlands converted to forest land (4.A.2.c) 

settlements converted to forest land (4.A.2.d) 

other land converted to forest land (4.A.2.e) 

cropland remaining cropland (4.B.1.) NA not included 

land converted to cropland (4.B.2.)   

forest land converted to cropland (4.B.2.a) deforestation (DEF) included. E  uses for ‘deforestation’ 

other land uses converted to cropland (4.B.2.b-e) NA not included 

grassland remaining grassland (4.C.1.) NA not included 

land converted to grassland (4.C.2.)   

forest land converted to grassland (4.C.2.a) deforestation (DEF) included. E  uses for ‘deforestation’ 

other land uses converted to grassland (4.C.2.b-e) NA not included 

wetlands remaining wetlands (4.D.1.) NA not included 

land converted to wetlands (4.D.2.)   

forest land converted to wetlands (4.D.2.a) deforestation (DEF) included. E  uses for ‘deforestation’ 

other land uses converted to wetlands (4.D.2.b-e) NA not included 

settlements remaining settlements (4.E.1.) NA not included 

land converted to settlements (4.E.2.)   

forest land converted to settlements (4.E.2.a) deforestation (DEF) included. E  uses for ‘deforestation’ 

other land uses converted to settlements (4.E.2.b-e) NA not included 

other land remaining other land (4.F.1.) NA not included 

land converted to other land (4.F.2.)   

forest land converted to other land (4.F.2.a) deforestation (DEF) included. E  uses for ‘deforestation’ 

other land uses converted to other land (4.F.2.b-e) NA not included 
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Table A.1.2. List of the 56 country Parties to the UNFCCC with a total of 75 REDD+ Forest Reference Emission Levels / Forest reference Level (FREL/FRL) submissions 
to the UNFCCC since 2014 and up to 2022. Identification of the REDD+ activities included in the FREL/FRL (DEF: deforestation, DEG: forest degradation, SMF: Sustainable 
Management of Forests, CCS: Conservation of forest Carbon Stocks, or ECS: Enhancement of forest Carbon Stocks. ECS can include fluxes from ‘forest land remaining 
forest land’ (F>F) or only fluxes from conversion of non-forest land to forest land (NF>F). If only one component is included, that information is included). Identification of 
the greenhouse gases reported in the FREL/FRL, and some biophysical parameters of the national definition of forest land. Identification of the technical method used to 
derive Activity Data (AD, area of land converted to other land-use or remaining in the same land-use) and description of how AD and Emission Factors and Removal 
Factors (EF/RFs, biomass and biomass change) were estimated, and if and how satellite data and derived products contributed to these estimates. Countries are listed 
alphabetically with symbols identifying the UN geopolitical and negotiating groups mentioned in this study († Latin American and Caribbean States; ‡ African States; § 
Asian and the Pacific States; & Least Developed Countries). Following the step-wise approach (Decision 12/CP.17), 17 countries submitted more than one FREL/FRL 
(Brazil, Cambodia, Colombia, Dominican Republic, Ecuador, Ghana, Honduras, Indonesia, Madagascar, Malaysia, Mexico, Nigeria, Panama, Paraguay, Peru, Suriname, 
and Zambia), although Brazil has separate sub-national FRELs for biomes. Submissions marked with * in the submission year are still undergoing technical assessment 
(n=6; from Ecuador, Ghana, Dominica, Guatemala, Indonesia, and Paraguay) and changes are expected in a future modified submission (cut-off date December 2022). 

Countr  
Tec nical 
 ssess. 
 ear(s) 

 ctivit  
Non-CO2 
Gases 

Forest definition 
Biop  sical 
t res olds    met od 

Notes on Emission Factors (EFs), 
including satellite-based data sources 

Notes on  ctivit   ata (  ), including satellite-based data sources 
Use of products derived 
from satellite data? 

Argentina †  2 19 DEF No  . -ha 
 -2 % canopy cover 

pixel-counting NFI volumetric plot data Landsat: manual editing and accuracy assessment. No 

Bangladesh §,& 2 19 DEF 
DEG 
ECS 

No  . -ha 
1 % canopy cover 

stratified area 
estimate 

Harmonized national and subnational forest 
inventories 

Landsat, S  T and Sentinel-2: land-cover maps and change detection for the 
activities DEF, DEG and ECS 
Collect Earth imagery: reference data to correct bias. 
Low confidence in the attribution of AD method. The area values in the F L from 
Table 12 (AD) and Table 1  (Uncertainty) don't match. The map bias-corrected 
areas may not have been used to derive the F EL (Table 1 ).but the method was 
left left bias-correction approach to match FA  (2 2 a) analysis 

No 

Belize † 2 2  DEF 
DEG  
SMF 
CCS 
ECS 

 es  . -ha 
  % canopy cover 

systematic 
sampling 

No NFI. Data from research studies, I CC 
default values, and expert judgment 

Collect Earth and Google Earth Engine to access NASA and ESA archive (Landsat, 
M DIS, Sentinel-2) 
Land-based approach. Mapathon. Visual interpretation of sample units to identify 
initial and final land-use and units affected by fire to estimate non-C 2 emissions. 

No 

Bhutan §,& 2 2  DEF 
DEG 
SMF 
CCS 
ECS 

 es  . -ha 
1 % canopy cover 

stratified area 
estimate 

NFI and harvested timber records maintained by 
the Department of Forests and  ark Services 

Landsat: stacking imagery to obtain two layers with multi-temporal segmentation. 
GFC yearly loss dataset was aggregated by down-sampling the product to reach 
the minimum mapping unit  .  ha (see page   of F L submission).  early GFC 
loss was combined with multi-temporal segmentation based on Landsat imagery 
using zonal statistics to produce information at the polygon level in SE AL. GFC 
gain was assumed to be equally distributed between the different years. 
Using a stratified random sampling approach, sample units were assessed in the 
Collect Earth interface. The error matrix was used to correct the bias of the map 
estimates 
Forest fire burnt area obtained from annual forest fire statistics maintained by the 
Department of Forests and  ark Services, and no mention to satellite data use. 

 es. Global Forest Change 
(GFC) for AD 

Brazil † Amazonia 
2 14 
 2 1   

 
Cerrado 
 2 17 

DEF  es, for 
Cerrado 
only 

 . -ha 
1 % canopy cover 

pixel-counting Amazonia:  ADAMB ASIL project constructed 
a carbon map for the Amazonia biome using 
airborne radar sensors and dendometric 
measurements from plots 
Cerrado:  
scientific publications and default I CC values 

Amazonia:    DES gross deforestation mapping using Landsat data 
(complemented with imagery from other satellites - CBE S-2, CBE S-2B, 
 esourcesat-1, and UK-DMC2) on a wall-to-wall basis.  
 eference to  metto et al (2 14) comparing and highlighting large differences 
between the Amazon  ADAM-based carbon map and Saatchi et al (2 11) and 
Baccini et al (2 12) maps 
 
Cerrado: Mainly Landsat. Collect Earth for validation and to assist in the thematic 
mapping process. Assumption that all forest conversion led to a post-conversion 
fire and AD fire is not estimated separately from AD DEF 

No 
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Countr  
Tec nical 
 ssess. 
 ear(s) 

 ctivit  
Non-CO2 
Gases 

Forest definition 
Biop  sical 
t res olds    met od 

Notes on Emission Factors (EFs), 
including satellite-based data sources 

Notes on  ctivit   ata (  ), including satellite-based data sources 
Use of products derived 
from satellite data? 

Burkina Faso ‡,& 2 2  DEF 
DEG 
ECS 

 es  . -ha 
1 % canopy cover 

pixel-counting NFI (2nd cycle) Landsat land cover mapping and post classification change detection 
Not clear what was the source of data for validation 
Forest fire historical data observations from a station of the Monitoring for 
Environment and Security in Africa (MESA) programme. Third National 
Communication 

No 

Cambodia §,& 2 17 
2 21 

DEF 
DEG 
ECS 

No  . -ha 
1 % canopy cover 

stratified area 
estimate 
-- 
pixel-counting 
in the previous 
2 17 
submission 

No NFI. 
Forest AGB from harmonized plot data from 
subnational forest inventories. I CC (2   ) 
default values for pine forests and plantations. 
 ost-deforestation carbon stock assumed to be 
zero.  
ECS: a carbon stock value was assumed to be 
reached without carbon sequestration increasing 
as forests matured. 
Bamboo AGB assumed to be zero. 

Landsat, S  T and Sentinel-2: Segmentation and classification of segments into 
two land cover maps.  ost-classification change detection. The land-cover class of 
each segment of the initial map being compared with the corresponding segment 
of the subsequent map. 
Collect Earth synchronized with Earth Engine and with the GLAD tree canopy cover 
to collect a reference dataset which was used to correct the area estimates of the 
maps. 

No 

Chile † 2 1  DEF 
DEG 
CCS 
ECS 

 es. For 
DEG only 

 . -ha 
1 -2 % canopy 
cover 

pixel-counting NFI for forests, literature for other land uses DEF: mostly based on the national cadastral data that uses aerial photogrammetry 
or interpretation of Landsat MSS complemented with aero photos. DEG, C, ECS: 
Landsat to estimate variations in FL>FL. Spot and  apidEye images to update the 
final maps. 
Collect Earth: reference dataset to validate change 
Assessment Team compared DEF estimates with the Global Forest Watch (i.e. 
GFC) as well as Landsat time series for the respective reference periods available 
for each region. 

 es. Global Forest Change 
(GFC) to compare results 

Colombia † 2 1  
2 2  

DEF No 1-ha 
  % canopy cover 

pixel-counting NFI (1st cycle) Mainly Landsat.  ther sources to complement in case of cloud coverage (CBE S, 
 apidEye, ASTE  and Sentinel 2). Direct change detection to measure 
deforestation biennially. 
Accuracy assessment: visual interpretation of sampling units following a stratified 
random sampling design. Landsat and other high-resolution images available in 
Google Earth were used for this assessment. 

No 

Congo ( epublic 
of the) ‡ 

2 1  DEF 
DEG 

No  . -ha 
  % canopy cover 

stratified area 
estimate 

NFI for forests. Croplands carbon stocks (post-
deforestation land-use) assumed to be zero 
Saatchi et al. (2 11) above-ground density map 
used by the  arty and assessment team to 
compare with the NFI estimates. Baccini et al. 
(2 12) to compare rate of emissions 

The approach followed to map deforestation used a combination of three products, 
including the GFC and two Landsat-based national maps (FACET, GAF).  olygons 
are identified as loss/deforestation if there is agreement between at least two of 
the three maps. The maps have different spatial resolutions (from  . 9,  .   and 
1-ha)) not compatible with the national definition but the combined map has 
segments with a minimum mapping unit of  . -ha. 
Collect Earth imagery: reference data to correct bias. 
GFC used to support some decisions regarding the choice of adjustment of the 
F L 

 es. Global Forest Change 
(GFC) for AD-DEF and 
indirectly. Saatchi et al (2 11) 
to compare AGB (AT). Baccini 
et al. (2 12) to compare rate of 
emissions (Guyana approach). 

Costa  ica † 2 1  DEF 
ECS 

 es 1-ha 
  % canopy cover 

pixel-counting NFI (partially complete) complemented with data 
published in the literature for non-forest classes 
and secondary forests. 

AD were estimated by combining all land-use maps based on Landsat data (post-
classification change detection). 
 apidEye and Google Earth imagery used to collect training sites and improve the 
maps, e.g. by removing shrubland, urban areas and eliminate improbable 
transitions in mangrove and palm forests. 
GFC dataset used to fill cloud gaps. 
The supporting report (Agresta, 2 1 ; FC F) describes how the global mosaics for 
2    ("first") and 2 12 ("last") from GFC and a selection of  apidEye images were 
used to derive a tree cover index and non-parametric regression models to 
estimate tree cover for the entire country. The two tree cover maps were compared 
to derive a spatially explicit map of changes within the forest stratum (ECS) 

 es. Global Forest Change 
(GFC) for AD 
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Countr  
Tec nical 
 ssess. 
 ear(s) 

 ctivit  
Non-CO2 
Gases 

Forest definition 
Biop  sical 
t res olds    met od 

Notes on Emission Factors (EFs), 
including satellite-based data sources 

Notes on  ctivit   ata (  ), including satellite-based data sources 
Use of products derived 
from satellite data? 

Cote d'Ivoire ‡ 2 17 DEF No  .1-ha 
  % canopy cover 

stratified area 
estimate 

No NFI. 
DEF: plot data for Forests AGB (not 
representative of the whole country); post-
deforestation carbon stocks assumed to be zero  
ECS: literature annual increment values for teak. 

Mainly Landsat data complemented with one Sentinel-2 image to produce land 
cover maps for three years.  ost-classification change detection. 
Google Earth imagery used for training the classifier. 

No 

Democratic 
 epublic of the 
Congo ‡,& 

2 1  DEF No  . -ha 
  % canopy cover 

stratified area 
estimate 

No NFI. 
AGB from harmonized plot data from pre-NFI 
testing sites in some provinces combined with 
other plot data from two other initiatives (JICA 
and WWF). 
A national AGB map based on airborne lidar was 
described in the annex and the average results 
compared with the F L estimates, but it was not 
used in the F L. 

Landsat mosaics for three years (12,    images) created in Google Earth Engine. 
Direct change detection using the same algorithm as the GFC product. 
Google Earth Engine also used to collect training data and Collect Earth for 
reference samples. 
Deforestation maps were overlapped with the Landsat mosaics to identify false 
changes. 
GFC used to understand the implications of selecting an operational tree cover 
threshold. 

 es. Global Forest Change 
(GFC) used indirectly to support 
decisions 

Dominica †  2 22 SMF 
CCS 
ECS 

 es 1-ha 
  % canopy cover 

systematic 
sampling 

AGB was obtained from the NFI from Saint Lucia 
(2  9), as both islands share the same forest 
types and there is no recent Forest inventory 

Collect Earth: national systematic grid of sample units were visually interpreted 
following a hierarchical key 

No 

Dominican 
 epublic † 

2 2  
2 22 

DEF 
DEG (inc. 
SMF, CCS) 
ECS 

 es. For 
DEG only 

1-ha 
  % canopy cover 

systematic 
sampling 

NFI for forest AGB, including for annual 
increments (ECS). 
AGB of other land uses (post-deforestation 
carbon stock) are I CC defaults 

Collect Earth: AD were collected through visual interpretation of sample units 
distributed over the country in a systematic grid. Fluxes from forest land remaining 
forest land are measured by changes in % canopy cover. E.g., DEG   transition 
from higher tree cover to lower tree cover while remaining above the % tree cover 
threshold of the definition of forest 

No 

Ecuador † 2 1  
 2 2  

DEF No 1-ha 
  % canopy cover 

pixel-counting NFI for forests.  ost-deforestation carbon stocks 
assumed to be zero 

Landsat imagery processed in SE AL. Land Cover map with I CC classes for the 
reference year and subsequent gross forest loss mapping for two periods. 
 lantations are separated and excluded from AD-DEF 
-- 
Assessment team of the 2 1  submission compared deforestation estimates in the 
F EL with those obtained with the GFC product. 

 es. Global Forest Change 
(GFC) to compare results (1st 
submission) 

El Salvador † 2 21 DEF 
DEG 
ECS 

No  . -ha 
  % canopy cover 

systematic 
sampling 

NFI for forest land.  ost deforestation carbon 
stocks were estimated on the basis of the 
number of trees remaining on site and assuming 
forest cover correlates 1:1 with biomass. Same 
for DEG EFs, as well as  F for forest land 
remaining forest land. Default I CC factors for 
conversion to forest (ECS). 

Collect Earth: AD were collected through visual interpretation of sample units 
distributed over the country in a systematic grid in three points in time. A LIDA  
image was used to check tree hights. 
Fluxes from forest land remaining forest land are measured by changes in % 
canopy cover. E.g., DEG   transition from higher tree cover to lower tree cover 
while remaining above the % tree cover threshold of the definition of forest 

No 

Equatorial 
Guinea ‡ 

2 2  DEF 
DEG 

No 1-ha 
  % canopy cover 

stratified area 
estimate 

No NFI. I CC defaults were used and the 
decision supported through comparison with 
independent estimates from Saatchi et al. (2 11) 
biomass map, values reported by neighbouring 
countries and expert judgement 

Segmentation of the GFC Landsat mosaics for mainland and Bioko, and mosaics 
of Landsat, AL S, Sentinel-1 for island of Annobon. Classification of stable, 
deforested or degraded segments with support from GFC (see TA , para 14). DEG 
was classified with visual inspection of tree cover loss in VH  images collected 
over selected segments. GFC also used to support the definition of forest including 
tree cover threshold (  %) and minimum area (1-ha). See page 19 of F L. 
Collect Earth: visual interpretation of sample units following a stratified random 
sampling design.  eference dataset used to correct bias (upward adjustment of 
74%) 
M DIS Burnt Area to justify omission of non-C 2 emissions. 

 es. 
Global Forest Change (GFC) 
for AD (DEF and DEG) and 
indirectly to support decisions 
Saatchi et al. (2 11) for 
comparison 
M DIS Burnt Area to justify 
omission of non-C 2 emissions 
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Ethiopia ‡,& 2 1  DEF 
ECS (F>F) 

No  . -ha 
2 % canopy cover 

stratified area 
estimate 

NFI (1st cycle) plot data following a stratified 
systematic sampling. 
To estimate emissions and removals from land 
converted to forest land, Ethiopia applied the 
removal of the full carbon stock in a single year. 

Forest change (both gain and loss) is detected through supervised classification 
using Landsat imagery (direct change detection).  lantations are not separated. 
GFC used to collect training data. 
 oints for loss and gains from the GFC were carefully assessed through visual 
interpretation of Landsat time series, vegetation indices and VH  imagery through 
the Collect Earth tool. GFC product also used to compare results and to identify an 
historical increase of emissions which could be used in the future to justify a trend 
approach instead of historical average. 

Global Forest Change (GFC) as 
auxiliary data for AD and to 
compare results 

Gabon ‡ 2 21 DEF 
DEG 
SMF 
CCS 
ECS (F>F) 

No 1-ha 
  % canopy cover 

systematic 
sampling 

The EFs were obtained from Gabon’s national 
resource inventory, additional measurements 
and I CC default values. 

AD were extracted from a historical time series of land-use maps. Digitalization of 
the land-use /land cover segments in sampling units using Landsat, S  T and 
Sentinel data. Collect Earth also used to support the classification 

No 

Ghana ‡ 2 17 
 2 21 

DEF 
DEG 
ECS (F>F) 

 es 1-ha 
1 % canopy cover 

systematic 
sampling 
-- 
 ixel-counting 
in the previous 
2 17 
submission 

Biomass data for BBEF  E and BAFTE  were 
derived from a subnational project or the 
literature 

Collect Earth: interpretation of sample points on a systematic grid across the 
country with different levels of intensification. This reference dataset is used for all 
activities included in the F L and to identify burned areas. DEG and ECS are 
quantified by measuring tree canopy losses in the sample units by identifying tree 
cover loss within the thresholds for forest (i.e., transition from higher tree cover to 
lower tree cover while remaining above the % tree cover threshold of the definition 
of forest   DEG) 
-- 
M DIS Burned Area product (    m spatial resolution) was used to map fires in 
the 2 17 submission and combined with I CC defaults to estimate non-C 2 
emissions from forest fires, i.e., for DEG only. In the 2 21 submission, the product 
is not used anymore. Fire occurrences are identified in the samples by visual 
interpretation of active fires or fire scars. Due to the low temporal resolution of 
Google Earth imagery for burnt area mapping, underestimation of non-C 2 
emissions estimates is likely. 
Low confidence in the attribution of the AD method in the 2 17 submission because 
Ghana states in the latest 2 21 submission that the approach was stratified area 
estimate. It was not possible to confirm with the technical team if that was a 
mistake.  ur classification as pixel-counting agrees with FA  (2 2 a) 

 es. M DIS Burned Area in the 
2 17 submission but 
abandoned in the most recent 
2 21 submission 

Guatemala †  2 22 DEF 
DEG 
ECS 

No  . -ha 
  % canopy cover 

systematic 
sampling 

Map of carbon obtained by combining field plot 
data with bioclimatic strata from WorldClim. 
carbon estimate is extracted for each sampling 
unit for AGB of forest before conversion or 
degradation 
DEG: carbon stock losses estimated on the basis 
of % canopy remaining and assuming that forest 
cover correlates 1:1 with biomass 

Collect Earth: interpretation of sample points on a systematic grid  No 

Guinea-Bissau 
‡,& 

2 19 DEF No  . -ha 
1 % canopy cover 

stratified area 
estimate 

harmonized national and subnational forest 
inventories 

Land cover maps classified using Landsat imagery.  ost-classification change 
detection. Maps were manually corrected for classification errors through visual 
inspection of hot stops with expert judgement and VH  imagery from Google Earth. 
“The process revealed that many of the mapped change areas were in fact stable 
classes (either F to F our NF to NF). For example, 41% of the manually reclassified 
pixels corresponded to reclassifications from NF>F to NF>NF, and   % from 
SA>NF to NF>NF. Many of these cases were identified as cashew plantations” 
(page 1 ) 
Collect Earth: reference dataset to correct bias 

No 
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Guyana † 2 1  DEF 
DEG 

No 1-ha 
  % canopy cover 

pixel-counting C stocks from plot data installed in concession 
areas.  ost-deforestation carbon stocks equal to 
zero. 

DEF: Land cover maps classified using Landsat, Landsat and  apidEye, and full 
wall-to-wall coverage with  apidEye depending on the year.  ost-classification 
change detectionDEG: records on volume of timber extracted (including illegal 
logging). 

 es. Baccini et al. (2 12) to 
obtain the average annual 
global forest carbon stock 
emissions % for the ref. period. 
Used to adjust the F L 

Honduras † 2 17 
2 2  

DEF 
DEG 
SMF 
CCS 
ECS (F>F) 

No 1-ha 
1 % canopy cover 
(although for 
mapping 
deforestation the 
  % threshold was 
used) 

pixel-counting NFI. Carbon change map produced for two 
points in time to assess DEG. Not very 
transparent in the submission. 

Landsat mosaics. VH  imagery and NFI as training data for all classes (including 
degradation and enhancement). Classification of mosaics using the  andom 
Forest algorithm. Manual edition of classification errors 
Google Earth images for validation. 
-- 
In the 2 17 F L GFC was used in the quality control phase to help improve the 
map classification. 

 es. In the first F L (2 17) 
Global Forest Change (GFC) as 
auxiliary data. 

India § 2 1  SMF No 1-ha 
1 % canopy cover 

pixel-counting NFI and complemented by a separate inventory 
on smaller trees (<1 cm dbh). 

AD based on wall-to-wall mapping using I S-LISS-  satellite data. Classification 
according to the density of forest cover using the NDVI Index in three time points. 
Accuracy assessed with sample plots from the NFI and VH  imagery. 
Information on plantations from national records. 

No 

Indonesia § 2 1  
  2 22 

DEF 
DEG 
ECS (F>F) 

 es  .2 -ha 
  % canopy cover 
 
( fficial definition. 
Indonesia defines a 
working definition too 
with minimum area   
 .2 -ha) 

pixel-counting NFI permanent plots complemented with 
temporary plots and basal area for mangroves. 
GFC for stratification to support the selection of 
carbon stocks of non-forest classes (shrub, 
agriculture and transmigration) obtained from the 
literature and research groups. The combination 
between % canopy cover and carbon stock was 
used to determine weighting score for each 
category. 
 arameters to estimate peat fire emissions from 
the literature. 

Landsat: wall-to-wall land cover maps digitised manually for each monitoring year. 
 lantations and oil palm excluded. 
Burn areas visually interpreted using Landsat and Sentinel 2A and 2B, and 
validated using M DIS and N AA hotspot, ground truthing data and burn area 
model based on normalized burnt ratio. 
Map of peatland distribution was already available and was based on high-
resolution imagery and soil survey data. 
GFC used for comparison (GLAD) and to enhance confidence in the national maps 
(in the study of study of Margono et al, 2 14) 

 es. Global Forest Change 
(GFC) indirectly, for 
stratification of NFI plots and to 
compare results. M DIS and 
N AA Active Fire products to 
support and validate the 
classification of burnt areas for 
non-C 2 emissions. 

Kenya ‡ 2 2  DEF 
DEG 
SMF 
ECS 

No  . -ha 
1 % canopy cover 

pixel-counting No NFI. Data from pilot forest inventories.  ost-
deforestation carbon stocks (BAFTE ) assumed 
to be zero and stocks from land-use following 
deforestation from I CC defaults. Growth rates 
for ECS also I CC defaults. 

Landsat:   land cover maps produced using a semi-automated method and 
stratified into ecozones and % tree cover classes 
Training and validation data included ground surveys complemented by Google 
Earth imagery. 

No. 

Lao  eople's 
Democratic 
 epublic §,& 

2 1  DEF 
DEG 
ECS 

No  . -ha 
2 % canopy cover 

stratified area 
estimate 

NFI (2nd cycle) and default parameters from 
I CC 2   . 
ECF: zero annual increment from forest growth 
was assumed because using the I CC default 
would result in overestimation. 

S  T and  apidEye for wall-to-wall mapping (object‐based classification). Forest 
type map for a reference year and direct change detection for the following periods. 
Collect Earth: visual interpretation of sample units.  eference dataset used to 
correct bias. 
GFC used for map correction related with shifting agriculture and fallow. Mature 
forests where vegetation loss was confirmed in the past one to eight years with 
GFC loss product, were revised to secondary forests. 
Low confidence in the attribution of method to derive AD. FA  (2 2 ) classifies as 
pixel-counting. Not clearly stated in the F L and TA , however, the tables in Annex 
1 after stratified area estimate (Table 1 -21 in the F L) are the final AD estimates 
for the F L shown in Table 11 and 12 (see F L submission) 

 es. Global Forest Change 
(GFC) as auxiliary data 

Liberia ‡, & 2 2  DEF 
DEG 

No 1-ha 
  % canopy cover 

stratified area 
estimate 

NFI. Values are above the upper threshold of 
defaults I CC (2   ). 

GFC (Hansen et al. 2 1 ) tree cover and tree cover loss layers were combined 
with additional national data layers depicting agricultural extents.  
Collect Earth: The sample was stratified using the available classes from the map  
Stratified Area Estimation approach. 
Not clear in the submission if the map area estimates for all strata (stable forest, 
stable non-forest, deforestation from intact and secondary forest, DEG and ECS) 
were used, and the bias corrected with the sample. Low confidence in the 
attribution of stratified area estimate based on the submission but confirmed in 
personal communication with the technical team  

 es. Global Forest Change 
(GFC) for AD 
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Madagascar ‡,& 2 17 
2 1  

DEF  es 1-ha 
  % canopy cover 

stratified area 
estimate 
-- 
 ixel-counting 
in the previous 
2 17 
submission 

Harmonized data from and old NFI, subnational 
inventories and a study on mangroves.  ost-
deforestation carbon stocks were obtained from 
the literature. 

Fusion of data to create a deforestation map of four forest types: 1) a historical time 
series of Landsat satellite imagery to produce forest type maps.  ost-classification 
change detection to map forest loss; 2) forest loss from GFC. 
Collect Earth: visual interpretation of sample units following a stratified sampling 
design to adjust the AD estimates. 
-- 
In the 2 17 submission (pixel-based approach) the GFC product was also used to 
complement the national map in areas of cloud coverage and to select hotspots for 
validation 

 es. Global Forest Change 
(GFC) for AD (in a pixel-
counting approach in 2 17, and 
stratified area estimate in 2 1 ) 
Also indirectly in 2 17 for 
validation. 

Malawi ‡,& 2 2  DEF 
DEG 
ECS 

No  . -ha 
1 % canopy cover 

systematic 
sampling 

harmonized plot measurements from the NFI 
The carbon stocks after conversion were 
estimated under the assumption that all land that 
was deforested was converted to grassland 

Collect Earth: interpretation of sample points on a systematic grid. Simple random 
sampling approach, without stratification (DEF, and ECS) 
Wisdom model for DEG (fuelwood harvest)  

No 

Malaysia § 2 1  
2 1  
2 19 

DEF 
SMF 
CCS 

 es  . -ha 
  % canopy cover 

pixel-counting NFI data for gross tree growth rates, default 
biomass conversion and expansion factor (I CC 
2   ) and information from literature for growth 
rates of specific forest types. 

The total forest area was obtained from gazettement notifications and geospatial 
maps, which were developed by the forestry department through analysis of 
satellite images. S  T imagery used biennially to update the geospatial maps.  
The reported area damaged by fire is very small (source of data not clear in the 
F L) 
In the 2 1  submission only national statistics were used, no satellite data and no 
AD methods as defined in this study. Satellite data (Landsat) was used for 
validation 

No 

Mexico † 2 1  
2 2  

DEF 
DEG 

No 1-ha 
1 % canopy cover 

stratified 
systematic 
sampling 
-- 
 ixel-counting 
in the previous 
2 1  
submission 

NFI for forests before conversion (mainly from 
the 2nd cycle).  ost-disturbance carbon stock of 
remaining woody vegetation also from the NFI 
and zero assumed when no NFI information 
exists 

Collect Earth: interpretation of sample points on a systematic grid with different 
intensification according to forest type (stratified). For each sample, if there is a 
total loss of canopy cover but there is no evidence of conversion to other land-use, 
that sample unit is classified as DEG 
-- 
 revious submission (2 1 ) used a pixel-counting approach and relied on S  T 
and Landsat imagery. The second F L is considerably lower than that of the first 
F L (2 ,  9,24  versus 44,   , 2  t C 2 eq/year) 

No 

Mongolia § 2 1  DEF 
DEG 
ECS (F>F) 

No 1-ha 
1 % canopy cover 

stratified 
systematic 
sampling 

data from NFI plots aligned with the AD samples 
for only one forest class 

Collect Earth: interpretation of sample points on a systematic grid with different 
intensification according to the forest type (stratified, boreal forests and other) 
The optimal size of the sampling grid was determined with support from the GFC 
product 

 es. Global Forest Change 
(GFC) to support decisions 

Mozambique ‡,& 2 1  DEF No 1-ha 
  % canopy cover 

systematic 
sampling 

NFI for forests. No post-deforestation emissions 
or removals were considered (i.e., 1  % instant 
oxidation) 
I CC (2   ) default values for the post-
deforestation carbon stocks for conversion to 
cropland and grassland, while a complete loss of 
carbon stock was assumed for other land-use 
conversions.  

Collect Earth: interpretation of sample points on a systematic grid. Each point from 
the internal grid has a weight coverage of 4%. 
 
The F L submission compares results to those obtained in the  EDD+ strategy 
(study from CEAG E and Winrock international) producing independent estimates 
using global datasets to derive AD (GFC) and EF (Saatchi et al). Information not 
directly in the F L, found in the  EDD+ strategy 

 es. Global Forest Change 
(GFC) and Saatchi et al. (2 11) 
to compare results 

Myanmar §,& 2 1  DEF 
ECS (F>F) 

No  . -ha 
1 % canopy cover 

stratified area 
estimate 

NFI data but only for pre-deforestation carbon 
stocks and only for a few districts with protected 
status 
ECS: default values for biomass consumption for 
all savannah grasslands (I CC 2   ) and 
biomass increment (I CC 2   ) 

Collect Earth: interpretation of stratified random samples based on the stratification 
obtained from GFC maps adjusted for the national forest definition. Two options to 
estimate AD were tested: a) modified GFC loss map corrected for bias with the 
reference sample (17 ,    hayr-1); and b) Sample-based estimates with 
confidence intervals (42 ,9 4 ha/yr).  
ECS: database on the area of forest plantations maintained by the forest 
department. 
Low confidence in the attribution of AD method. FA  (2 2 a) identifies the method 
as stratified area estimate, also confirmed by personal communication and from 

 es. Global Forest Change 
(GFC) to support decisions 
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page 47: "The stratified area estimate of annual deforestation is estimated with 
42 ,9 4 ha per year during 2   -2 1 " 
Not entirely clear only because Table 7.  in the submission shows two options to 
estimate AD: a) GFC Map (modified), or bias-corrected, area   17  799 ha for the 
1  years of the reference period   17 ,    ha/yr; and b) Sample-based estimates 
  42 9  9 ha   42 ,9 4 ha/yr. The reader would assume the approach selected 
was simple sampling and not stratified area estimate. 

Nepal §,& 2 17 DEF 
DEG 
ECS (F>F) 

No  . -ha 
1 % canopy cover 

stratified area 
estimate 

NFI permanent sample plots Landsat mainly and ASTE , S TM-DEM and  apidEye used as ancillary data. 
 bject-based multi-resolution segmentation image analysis (e-Cognition). Collect 
Earth: reference dataset for stratified area estimate. GFC used to compare results 
magnitude 
DEG: Land cover maps based on  apidEye and Forest Type map were used as 
input to WISD M to model fuelwood harvesting 

 es. Global Forest Change 
(GFC) to compare results 

Nicaragua † 2 19 DEF 
DEG 
ECS (F>F) 

No 1-ha 
  % canopy cover 

systematic 
sampling 

NFI. A linear regression model was developed to 
estimate average carbon stock of NFI plots with 
canopy cover classes visually interpreted for AD. 
The model demonstrated the relationship 
between canopy cover and above-ground 
biomass carbon stock as measured in the NFI, 
which was applied to obtain biomass carbon 
stocks 
ECS: Forest growth rates from national studies 
using sampling plots 

Collect Earth: interpretation of sample points on a systematic grid  No 

Nigeria ‡ 2 1 , 2 19 DEF No  . -ha 
1 % canopy cover 

stratified area 
estimate 

NFI. No information on post-deforestation carbon 
stocks and AGB of non-forest classes 

Collect Earth: visual interpretation of sampling units. The reference dataset was 
collected following a probability based stratified random sampling design. GFC 
product adjusted to national definitions was used to obtain a  -class map with 
stable forest, stable non-forest and deforestation. AD DEF the GFC-derived map 
used for stratification and the final estimates correspond to the areas in the map 
corrected with the reference dataset (same in the first 2 1  submission). 
Information obtained through personal communication with the technical team and 
FA . The modified F L (page  1) reads the opposite and hence is not transparent: 
“The Nigeria map was created from Landsats 7 and  ,   -metre resolution imagery 
using the following three classes: stable forest, stable non-forest, forest loss based 
on the GFC map with a tree cover threshold of 1 % and a loss period from 2   -
2 1 . The activity data (AD) is however derived from the reference data, the map 
is only used for stratification and the final estimates do not correspond to the areas 
in the map.”  
GFC used to justify the omission of DEG (2 19 TA , para 14) - pixel-counting as 
a preliminary indicator of the magnitude of degradation at the national scale. 

 es. Global Forest Change 
(GFC) for AD DEF and to justify 
omission of DEG. 

 akistan § 2 2  DEF No  . -ha 
1 % canopy cover 

sampling  ilot NFI complemented by subnational 
inventory plot data. 
 ost-deforestation carbon stocks also from NFI 
plots measured in non-forest plots with woody 
vegetation and AGB of post-deforestation land 
uses assumed to be zero 

Landsat for wall-to-wall land-cover mapping in three points in time.  ost-
classification change detection and the resulting change maps used for 
stratification 
Collect Earth: visual interpretation of sampling units over a stratified systematic grid 
complemented with random units over deforestation hotspots 
Low confidence in the attribution of AD method. The F L and TA  are not clear. 
FA  (2 2 a) identifies as bias-correction but from personal communication with 
FA  team, it was clarified as sampling given the areas of the map were not used 
to derive AD 

No 

 anama † 2 1  
2 22 

DEF 
DEG 
SMF 
CCS  

 es  . -ha 
  % canopy cover 

stratified 
sampling 
-- 

NFI (complete in the 2 22 F L for all forest 
types) 
 

Collect Earth: visual interpretation of sampling units in a "Mapathon" exercise. The 
reference dataset was collected following a stratified random sampling design 
using four strata (stable forests, mangroves, areas of land-use change and other 
land) and post-stratification according to three climate regions. (systematic design 

No 
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ECS systematic 
sampling 
(2 1 ) 

ECS: assumed the complete stock secondary 
forests is available immediately after conversion 

in the 2 1  submission). Existing maps were used for stratification. 
DEG: Fire occurrences and fuelwood from regional tabular records. 

 apua New 
Guinea § 

2 17 DEF 
DEG 
ECS (F>F) 

No 1-ha 
1 % canopy cover 

systematic 
sampling 

DEF: research study and I CC defaults 
depending on the ecological zone. 
 ost-deforestation growth from I CC defaults 
DEG: assumption that carbon stock of degraded 
forests     . % of those in the primary forests.  

Collect Earth: interpretation of sample points on a systematic grid with different 
intensifications 
Comparison of results obtained by the sampling method used for the F L and a 
wall-to-wall map produced for 2 1  using the TerraAmazon software (Landsat 
imagery) with an agreement of  9% 

No 

 araguay † 2 1  
 2 22 

DEF No 1-ha 
  % canopy cover 

stratified area 
estimate 

NFI Landsat. Supervised classification of a time series. Segmentation with direct 
change detection. 
Landsat mosaics and VH  imagery used in ArcGis and Qgis to interpret a 
reference dataset for stratified area estimate of the estimates 

No 

 eru † 2 1  
2 21 

DEF No  . -ha 
  % canopy cover 

stratified 
systematic 
sampling 
-- 
pixel-counting 
(2 1 ) 

plot data from the ongoing NFI complemented by 
plot data from research studies 
(e.g.Forest lots.net) 

Collect Earth: visual interpretation of sampling units selected randomly in a 
systematic grid. Landsat mosaics were used for the deforestation map used to 
stratify the sample (ex-post). Stratification based on ecozones, deforestation and 
buffer around deforestation 

No 

Saint Lucia † 2 21 DEF 
DEG 
CCS 
ECS 

 es 1-ha 
  % canopy cover 

systematic 
sampling 

EFs were obtained from the NFI carried out in 
2  9 and the FA  GS Cmap, and 
complemented by I CC default values of the 
2    I CC Guidelines, 2 1  I CC Wetlands 
supplement and 2 19  efinement to the 2    
I CC Guidelines 

Collect Earth: interpretation of sample points on a systematic grid. Land based 
approach using I CC categories 
The information on wood removals was derived from the Collect Earth assessment 
as % tree cover loss instead of volume loss. Losses due to Hurricanes, Fires, 
Logging and Shifting Cultivation, specifically on Forest lands were also identified 
Ground truthing to validate the findings from the Collect Earth exercise 

No 

Solomon Islands 
§,& 

2 19 DEF 
DEG 
ECS (F>F) 

No 1-ha 
1 % canopy cover 

systematic 
sampling 

No NFI. EFs obtained from I CC defaults (DEF) 
and country-specific data from  apua New 
Guinea (assumption that carbon stocks in 
degraded forests are   .  per cent of those in the 
primary forests) 

Collect Earth: interpretation of sample points on a systematic grid. 
GFC data used to assess tree cover loss and support the identification of the 
sample units.  e-assessment of all plots where Hansen data shows a tree cover 
loss >1  ha within a surrounding area of 1   ha but neither deforestation nor forest 
degradation was recorded by Collect Earth assessment. All the plots were re-
assessed where deforestation or forest degradation was recorded in Collect Earth 
but the GFC showed a tree cover loss <   ha within 1   ha around the plot. 
 age 21. In most cases the differences between Collect Earth data and Hansen 
data occurred due to the lack of detail in the land cover interpretation in the Hansen 
data. For instance, harvesting and replanting of oil palm plantations is reported as 
tree cover loss and gain in Hansen data but in Collect Earth assessment, this is 
considered cropland remaining cropland. 

 es. Global Forest Change 
(GFC) for AD 

Sri Lanka § 2 17 DEF 
ECS (F>F) 

No  . -ha 
1 % canopy cover 

stratified area 
estimate 

No NFI. Use of I CC defaults The GFC tree cover map and a national forest map were combined to adapt the 
GFC to national definitions (e.g. exclude agriculture and agroforestry lands). The 
estimates from the GFC loss dataset adapted to national definitions were corrected 
using a reference dataset compiled in Collect Earth through visual interpretation of 
sample units. The distribution of the reference data points follows a stratified 
random sampling. Sri Lanka also used the GFC gain layer to include ECS but 
during the technical assessment, it was noted that, because the existing 
methodology cannot clearly identify horticultural, rubber and coconut plantations, 
the area under reforestation could be overestimated owing to the possible inclusion 
of such areas, which are not included in the forest definition. Sri Lanka listed the 
use of high-resolution satellite imagery instead of the mid-resolution imagery 
available from the GFC product for preliminary change assessment as a potential 
future improvement. 

 es. Global Forest Change 
(GFC) for AD 
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Countr  
Tec nical 
 ssess. 
 ear(s) 

 ctivit  
Non-CO2 
Gases 

Forest definition 
Biop  sical 
t res olds    met od 

Notes on Emission Factors (EFs), 
including satellite-based data sources 

Notes on  ctivit   ata (  ), including satellite-based data sources 
Use of products derived 
from satellite data? 

Sudan ‡,& 2 2  DEF 
ECS (F>F) 

No  .4-ha 
  % canopy cover 

stratified area 
estimate 

NFI for DEF, I CC defaults for ECS 
The NFI stratified sampling design used a 
combination of maps, including CGIA -CSI and 
Africover2   , to stratify forests and select 
number of plots per stratum (assumed domestic 
E  product). 
Assumptions:  Carbon stocks after forest 
conversion to other land uses were zero; for ECS 
the annual decrease in carbon stocks from 
harvesting, fuelwood and disturbances on land 
converted to forest was zero. 

Landsat for 2 1 , 2 14, 2 1 ; Aster for 2   .  bject based analysis approach 
using segmentation (eCognition). The polygons were visually interpreted  
Collect Earth: reference dataset for stratified area estimate following a systematic 
sampling design with different intensifications according to strata (vegetation 
density). 
The Sudan used records of planted areas to establish AD for ECS instead of data 
from the land-cover. 

No. 

Suriname † 2 1  
 2 21 

DEF 
DEG 

 es 1-ha 
  % canopy cover 

stratified area 
estimate 

No NFI. DEF: Harmonization of plot data from 
different inventories and additional plots 
measured for mangroves. DEG: average from 
same plots and literature values for shifting 
cultivation.  

Landsat imagery. Forest Non--Forest wall to wall maps.  ost classification change 
detection. Sentinel-2A imagery was used from 2 17 onwards. Unbiased area 
estimates produced using a stratified random sampling approach with visual 
inspection of sample units in Landsat and Sentinel images (using SE AL). Fire AD 
from post-deforestation LULC maps. 
DEF: includes shifting cultivation converted to non-forest area although emissions 
from the use of fire are excluded. 
DEG: Conversions to shifting agriculture measured through tree cover losses also 
combined with fire occurrences for non-C 2 emissions; harvest through tabular 
recordings on extracted volume, and same for fuelwood. Illegal logging is not 
included. 
Low confidence in the attribution of AD method. The error matrices are not 
available and it is not clear how the values in in the F L (Table 2) and TA  are 
obtained. From the table caption ‘the stratified estimated areas will be used in 
further’ we assumed ‘stratified area estimates’ (same as FA , 2 2 a). 

No 

Tanzania 
( epublic of)  ‡,& 

2 17 DEF No  . -ha 
1 % canopy cover 

pixel-counting NFI (from two comprehensive inventory 
initiatives), including post-disturbance carbon 
stock of remaining woody vegetation. 

Landsat for mainland and ortho-photographs and  apidEye images for Zanzibar 
Islands. Training data collected from Landsat (layer stacked bi-temporal) and the 
GFC to map deforestation, stable forest, wetland, water and other non-forest 
classes. Classification of the bi-temporal stacked scenes was carried out using the 
 andom forests algorithm (direct change detection).  

 es. Global Forest Change 
(GFC) as auxiliary data 

Thailand § 2 21 DEF 
DEG 
ECS 

No  . -ha 
1 % canopy cover 

stratified area 
estimate 

NFI (cycle 1 and  ) complemented by plot data 
on mangroves. The emission and removal 
factors were calculated as the difference 
between the carbon stock of the NFI cycle 1 and 
  divided by the time period between the two 
inventories. 
The I CC default carbon stock of annual crop 
was chosen as the carbon stock for non-forest. 

Landsat imagery combined in best pixel mosaics for two time points. Forest areas 
were visually interpreted and manually digitized through inspection of Landsat, 
high-resolution images from Google Earth, and national auxiliary data sets. 
Unbiased area estimates produced using a stratified random sampling approach 
with visual inspection of sample units in Collect Earth. 
DEG was not mapped; instead, emissions were calculated using NFI data from two 
cycles 

No 

Togo ‡,& 2 2  DEF 
ECS (F>F) 

No  . -ha 
1 % canopy cover 
 
operational 
definitions:  
>  % tree cover are 
included 

pixel-counting Worldclim and Landsat data for 2 1  calibrated 
with field data to generate a biomass map. 
 apidEye images and ortophotomaps used to 
support the NFI by classifying the sample unit 
prior to the field measurements. 
Global Forest Watch portal used for comparison. 

Wall to wall mapping using Landsat imagery. F/NF maps produced for 4 time 
points.  ost-classification change detection. 
Google Earth data and Landsat used for training for validation of the F/NF maps. 
Bias-corrected areas were also derived but chosen not to be used. The reference 
dataset was used for validation of the maps only. 
Global Forest Watch portal used for comparison in the introduction section only. 

 es. Global Forest Watch portal 
/ Global Forest Change (GFC) 
used to compare results 

Uganda ‡,& 2 17 DEF No 1-ha 
  % canopy cover 
 

stratified area 
estimate 

No NFI. Harmonization of field plots from 
different sources, including exploratory 
inventories with permanent plots, and planting 
statistics. The forest average carbon stock was 
calculated using an area weighted mean with 
area proportions from the land cover maps. 

Land cover maps for   years classified using S  T and Landsat.  ne of the maps 
used a Landsat mosaic to produce a F/NF mask. Training data from land cover 
maps from the two closer periods and from the GFC dataset. The F/NF mask was 
combined with the Africover 2    land cover map (assumed domestic E  product). 
Unbiased area estimates produced using a stratified random sampling approach 
with visual inspection of sample units in Collect Earth. 
GFC for comparison. 

 es. Global Forest Change 
(GFC) as auxiliary data and to 
compare results.  
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Countr  
Tec nical 
 ssess. 
 ear(s) 

 ctivit  
Non-CO2 
Gases 

Forest definition 
Biop  sical 
t res olds    met od 

Notes on Emission Factors (EFs), 
including satellite-based data sources 

Notes on  ctivit   ata (  ), including satellite-based data sources 
Use of products derived 
from satellite data? 

Viet Nam § 2 1  DEF 
DEG 
ECS 

No  . -ha 
1 % canopy cover 
 
(includes timber 
forest plantations) 
 

pixel-counting NFI (cycles I to IV). EF/ F matrices for each 
combination of classes. Assuming all NF classes 
(including cropland) with   carbon stock 

S  T and Landsat to produce land cover maps for 4 years. Google Earth Engine 
tool was applied to mosaic Landsat images.  bject-based interpretation (using the 
software eCognition) for automated segmentation was used as well as a process 
(decision tree) to correct illogical changes.  ost-classification change detection 
between pairs of land cover maps. 
Accuracy assessment through observation of sample points over Landsat imagery 
using Collect Earth 

No 

Zambia ‡,& 2 1  
2 21 

DEF 
DEG 

No  . -ha 
1 % canopy cover 
 

systematic 
sampling 
-- 
Stratified area 
estimate (2 1 ) 

NFI (two cycles) for DEF and DEG (classes of 
canopy coverage). Carbon stock of non-forest 
classes also available from the NFI 
-- 
The 2 1  submission included a spatially explicit 
carbon map with carbon density classes derived 
from plot data and optical and  adar (AL S) 
data 

Collect Earth: interpretation of sample points using a random systematic sampling 
approach with different intensifications of the grid.  
DEG: reduction in tree cover in forest land remaining forest land of an intact forest 
by at least two tree canopy cover predetermined classes. 
As QC, random samples or samples flagged as low confidence should be 
compared with other datasets from a list. 
-- 
The 2 1  submission used wall-to-wall maps based on Landsat  using GFC 
aggregated at  x  pixel blocks to create an initial point training dataset for stable 
forest, non-forest and deforestation (stratifier). The Assessment team (AT) of the 
2 1  F L submission compared results with Global Forest Watch 

 es. Auxiliary data in 2 21. A 
list of available products is 
included in the quality control 
protocol to assist in the 
interpretation of samples for 
AD.  
-- 
In the 2 1  submission, Global 
Forest Change (GFC) is used 
as auxiliary data and for 
comparing results (AT) 

† Latin American and the Caribbean States; ‡African States; §Asian and the  acific States; &Least Developed Countries 
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Figure A.1.1. Indicators of Measurement, Reporting and Verification (MRV) capacity and contribution of EO 
products (in percentage of countries with FRL submissions). Number of submissions of GHG fluxes in 
biennial update reports (BUR) and REDD+ forest reference emission levels / forest reference levels (FRLs) 
from non-Annex I (NAI) country-Parties to the UNFCCC up to 2021 (for BURs) or 2022 (for REDD+ FRLs). 
Includes NAI Parties from the Latin American and Caribbean (LAC) States, African States, Asian States, 
and Least Developed Countries. Adapted and expanded from Federici et al (2017) using information 
available in the UNFCCC web portal for BUR submissions (https://unfccc.int/BURs) and REDD+ FRLs 
information, including on the use of EO products, compiled for this study. Except for LAC States, the main 
contribution of EO products is for country Parties which have never submitted a BUR but have submitted a 
FRL. The bar charts show the timeline with BUR and FRL submitted every year since 2014. Note that the 
number of submissions in the bar charts is larger than number of countries in the table with absolute number 
in 2014-2021 (or 2014-2022 for FRLs) because while some Parties have never submitted a BUR, others 
have submitted four. 
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Table A.1.3. List of the 56 developing countries that have submitted at least one Forest Reference Level / 
Forest Reference Emission Level (FRL/FREL) to the UNFCCC between 2014 and 2022, listed alfabetically 
and identified by Regional group and Least Developed Country († Latin American and the Caribbean States; 
‡ African States; § Asian and the Pacific States; & Least  eveloped Countries). For each country Party, it is 
identified if the FRL/FREL uses satellite-based global maps (or EO products) in its construction or 
verification, and if, when, and how many Biennial Update Reports (BUR) were submitted to the UNFCCC. 
The dates of submission indicate if the FRL/FREL was submitted before or after the BUR including a national 
GHG inventory. 

Part  BUR1 
total 
BURs 

FRL  ear 
EO 

products in 
FRL? 

Argentina † 2 1  4 2 19 - 
Bangladesh §,& -   2 19 - 
Belize † 2 21 1 2 2  - 
Bhutan §,& -   2 2  yes 
Brazil † 2 14 4 2 14, 2 17, 2 1  - 
Burkina Faso ‡,& 2 21 1 2 2  - 
Cambodia §,& 2 2  1 2 21 - 
Chile † 2 1  4 2 1  yes 
Colombia † 2 1    2 1 , 2 2  - 
Congo ‡ -   2 1  yes 
Costa  ica † 2 1  2 2 1  yes 
Cote d'Ivoire ‡ 2 1  1 2 17 - 
D C ‡,& -   2 1  yes 
Dominica † -   2 22 - 
Dominican  epubl. † 2 2  1 2 2 , 2 22 - 
Ecuador † 2 17 1 2 1 , 2 2  yes 
El Salvador † 2 1  1 2 21 - 
Equatorial Guinea ‡ -   2 2  yes 
Ethiopia ‡,& -   2 1  yes 
Gabon ‡ 2 21 1 2 21 - 
Ghana ‡ 2 1    2 17, 2 21 yes 
Guatemala † -   2 22 - 
Guinea-Bissau ‡,& 2 2  1 2 19 - 
Guyana † -   2 1  yes 
Honduras † 2 2  1 2 17, 2 2  yes 
India § 2 1    2 1  - 
Indonesia § 2 1    2 1 , 2 22 yes 
Kenya ‡ -   2 2  - 
Lao  §,& 2 2  1 2 1  yes 
Liberia ‡, & 2 21 1 2 2  yes 
Madagascar ‡,& -   2 17, 2 1  yes 
Malawi ‡,& 2 21 1 2 2  - 
Malaysia § 2 1    2 1 , 2 1 , 2 19 - 
Mexico † 2 1    2 1 , 2 2  - 
Mongolia § 2 17 1 2 1  yes 
Mozambique ‡,& -   2 1  yes 
Myanmar §,& -   2 1  yes 
Nepal §,& -   2 17 yes 
Nicaragua † -   2 19 - 
Nigeria ‡ 2 1  2 2 19 yes 
 akistan § 2 22 1 2 2  - 
 anama † 2 1  2 2 19 - 
 apua New Guinea § 2 19 2 2 17 - 
 araguay † 2 1    2 1 , 2 22 - 
 eru † 2 14 2 2 1 , 2 21 - 
Saint Lucia † 2 21 1 2 21 - 
Solomon Islands §,& -   2 19 yes 
Sri Lanka § -   2 17 yes 
Sudan ‡,& -   2 2  - 
Suriname † -   2 1 , 2 21 - 
Tanzania ‡,& -   2 17 yes 
Thailand § 2 1    2 21 - 
Togo ‡,& 2 17 2 2 2  yes 
Uganda ‡,& 2 19 1 2 17 yes 
Viet Nam § 2 14   2 1  - 
Zambia ‡,& 2 2  1 2 1 , 2 21 yes 

† Latin American and the Caribbean States; ‡African States; §Asian and the  acific States; &Least Developed Countries 
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Appendix 2 

National deforestation and above-ground biomass data 

Description of existing National data 

Land-cover maps produced and above-ground biomass (AGB) data collected under the 

CARBOVEG-GB nation-wide project and a subsequent project in three protected areas 

(IBAP 2015, Vasconcelos et al. 2015) were used for this analysis and are referred 

throughout this study as National data. More detailed information on the production of 

land-cover maps, as well as field protocol and plot location is described in (Vasconcelos 

et al., 2015). 

Under these projects, Landsat TM and ETM+ images covering the entire territory of 

Guinea-Bissau during the late dry season in 2007 and 2010 were processed and used 

to discriminate four forest classes using supervised classification algorithms. The four 

homogeneous sub-classes of forest (Closed-Forest, Open-Forest, Savanna-Woodland 

and Mangrove) were aggregated into Terrestrial Forests and Mangrove to improve 

overall accuracy from 69% and 96%.  

Tree AGB data was also collected under these projects at the plot level. A 250 x 250 

meter stratified systematic sampling grid was created covering the entire national 

territory and used as a basis for plot location. In each location (randomly selected over 

the grid) a circular nested plot (4, 14, and 20 m concentric sub-plots) was installed 

following the measurement methodology described in (Pearson, 2005). The sampling 

design was stratified by forest class (Closed-Forest, Open-Forest, Savanna-Woodland 

and Mangrove) and a total of 492 plots were measured between 2007 and 2012. Several 

tree parameters were recorded, including diameter at breast height (DBH), height (h) 

and individuals identified at the species level. For some species where no wood density 

values were found in the literature, wood samples were also collected to estimate their 

specific wood density.   

Carbon assessment of in-situ data 

For this study, an exhaustive process of quality control of the data led to the exclusion 

of plots without coordinates, plots where heights of trees were not measured, or plots 

with other missing information. From the entire dataset a total of 309 plots were used 

with 49 plots measured in Closed-Forests, 120 in Open-Forests, 70 in Savanna-

Woodlands, and 70 in Mangroves. These data were compiled and analysed here to 



 

168 
 

estimate carbon densities (Mg ha-1) per forest class and total forest. For that, three 

different equations for estimation of AGB were selected (Table A.2.1). To estimate AGB 

of terrestrial forests we used the pantropical model proposed by Chave et al. (2014) 

requiring information on tree DBH, height (H) and wood density (ρ). For mangrove 

species, the Chave et al. (2005) common allometric equation for mangroves requiring 

only two parameters (DBH and ρ) was proposed due to the advantage of having used a 

bigger sample (n=84) for its construction, and having more similar DBH classes than 

other species specific models available. No palm biomass equations were found that 

were specific to Guinea-Bissau, the West Africa region or even the tropics as a whole. 

Therefore, we selected the example allometric equation from the IPCC Good Practice 

Guidance (GPG) for LULUCF (IPCC 2003; Table 4A.2, GPG-LULUCF) for estimating 

AGB of palm trees relying only on height measurements as key predictor for AGB. For 

both terrestrial forest and mangrove species where specific wood density was required, 

values from a national database were used. This database includes values from 

literature revision (when available) and values calculated from tree wood samples 

collected and analyzed under the CARBOVEG-GB project. When the species was not 

known or wood density values were not published/available, an average wood density 

was calculated from the data collected under CARBOVEG-GB (ρ≡0.731 g cm-3). AGB 

data obtained at plot level was extrapolated to the area of 1-ha (10,000 m2) by calculating 

the proportion that is occupied by a given plot using a dimensional scaling factor (e), 

defined by the equation e = (10,000/π*r2), where r is the plot radius in meters (Pearson 

et al. 2005). Resulting AGB estimates are shown for the sampled forest sub-classes 

(Closed-Forests, Open-Forests, Savanna-Woodlands and Mangroves) and for the total 

forest as the weighted average of the AGB density in all forest classes (Table A.2.2). 

Table A.2.1 Allometric equations used to estimate above-ground biomass of terrestrial forest species, 
mangroves species, and palm trees; diameter at breast height (1.3 m; DBH), height (H), wood density (ρ) 

Equation Strata Source 

0.0673 × (ρ × DBH2 × H)0.976 Terrestrial Forest Chave et al. (2014) 

0.168 × ρ × DBH2.47 Mangrove Chave et al. (2005) 

6.666 + 12.826 × H0.5 × ln H Palm IPCC (2003) 
(Table 4.A.2, GPG-LULUCF) 

Table A.2.2 In-situ mean AGB density (Mg ha-1) per forest sub-class Closed-Forests (CF), Open-Forests 
(OF), Savanna-Woodlands (SW), Mangroves (M), and area-weighted average for total forest. Margin of error 
(MoE, 95% confidence) included as measure of spread. The area-weighted average AGB density is used 
as National emission factor after conversion from t ha-1 to CO2 ha-1. 

Strata 
Number of  GB densit  Standard 

deviation 
 oE (9   

CI) 

Error (as   
of mean) 

plots (t  a-1) 

Closed-Forests 49 1  .  122.   4.7 19 

Open-Forests 12    .    .7 11.  2  

Savanna- oodlands 7    .2  2.7 12.2 1  

 angroves 7  4 .   1.9 9.1 2  

Total area-weig ted   9  2.   4.   .1 1  
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Remote sensing datasets and methods to derive deforestation 

and associated emissions 

Global forest cover datasets to derive deforestation 

Available global datasets were used to derive deforestation. Firstly, the University of 

Maryland Global Forest Change (GFC) 30-m resolution dataset based on a time-series 

of Landsat images from the growing season (Hansen et al., 2013) was used to estimate 

forest cover change from 2007 to 2010. This product includes a global percent tree-cover 

map from 2000 and a map identifying the year when removal of all tree cover was 

observed (Hansen et al., 2013; 2014). This global dataset is freely available in 10x10 

degree tiles and the tile corresponding to Guinea-Bissau (granule with top-left corner at 

20°N, 20°W) was downloaded as version 1.3 

(https://earthenginepartners.appspot.com/science-2013-global-

forest/download_v1.3.html). For this study only data corresponding to the period 2000-

2010 was used. Therefore limitations of interannual consistency when integrating 2000-

2012 data and the updated 2011-2016 data should not have any impact in our analysis. 

This product is thereafter referred to as GFC. 

Secondly, we used the global dataset of tree-cover at 30-m resolution (Sexton et al., 

2013) which is freely available for download at the Global Land Cover Facility (GLCF) 

website (http://glcfapp.glcf.umd.edu/data/). This dataset uses the 250-m MODIS 

Vegetation Continuous Fields (VCF) rescaled to 30-m resolution using Landsat data. For 

this study we used the percent tree-cover layer for 2005 and 2010. Landsat scenes 

acquisition dates varied greatly (between November 2005 and December 2006 for the 

2005 product, and between October 2009 and November 2010 for the 2010 product). As 

consequence, it becomes harder to compare this product to the National product that 

uses Landsat imagery from the dry season, or the GFC with imagery from the growing 

season. This product is referred to as GLCF product.  

Thirdly we used the 25-m spatial resolution Forest/Non-Forest (F/NF) global mosaics 

from (Shimada et al., 2014) based on the Japan Aerospace Exploration Agency (JAXA) 

ALOS PALSAR. This product uses the lower levels of the L-band Synthetic Aperture 

Radar (SAR) backscatter as a threshold for mapping the transition of forest to non-forest, 

with forests being defined as areas of woody vegetation above 10% tree cover. Mosaics 

are available annually between 2007 and 2010 but only the maps for 2007 and 2010 

were used in this analysis (http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm). 

In contrast with the GFC and GLCF products, which require a cloud screening and a 

stack of layers to create a per-pixel set of cloud-free observations, SAR penetrates 

https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.3.html
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.3.html
http://glcfapp.glcf.umd.edu/data/
http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
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through clouds (a unique ability when compared to optical and lidar data). Therefore it 

does not require cloud screening processing and multi-temporal compositing, although 

has been recognized these mosaics should be generated with data acquired in the dry 

season to avoid the impact of rainfall events (Lucas et al., 2010). With this product we 

also don’t have a reference year, but rather four independent F/NF, and two options 

could have been chosen for estimating deforestation. The option followed in this analysis 

recognizes that post-classification change detection leads to increased errors in the 

estimates and prioritizes having more comparable datasets. Therefore, only the F/NF 

maps for 2007 and 2010 were used and any deforestation captured in between is not 

accounted for if it regrows in 2010 (e.g., F>NF>NF>F). These mosaics covering Guinea-

Bissau in 2007 and 2010 are referred to as the JAXA product. Acquisition dates are from 

the growing season between June and August of 2007 and from June to September of 

2010. 

A spatial tracking approach was used to estimate gross deforestation over the 2007-

2010 temporal boundary This period was selected due to the availability of data. The 

processing included the following steps: 

a) Producing mosaics from GLCF and JAXA scenes/tiles. National and GFC were 

already available in a single seamless raster; 

b) Resampling all datasets to a common spatial resolution (25-m) and coordinate 

system (UTM Zone 28N, WGS84 datum). A nearest neighbour algorithm was 

used to resample all datasets to a common resolution, thus not changing the 

original values of each dataset; 

c) “Water” and “No data” were eliminated by developing and applying a common 

land mask. In each dataset “water” and “no data” were reclassified to 0 and all 

other values to 1. The individual land masks were then combined to produce a 

common binary land mask. This common land mask was finally applied to all 

individual datasets to exclude “water” and “no data” from any given product;  

d) Generating Forest/Non-Forest (F/NF) maps. National: The two National 5-class 

land cover maps (Closed-Forest, Open-Forest, Savanna-Woodland, Mangrove, 

Non-Forest) were reclassified into F/NF maps. GFC: F/NF maps were generated 

for the years 2007 and 2010 using the 2000 percent tree-cover reclassified to 

F/NF with a threshold of 10% and annual loss maps in the period 2001-2007 and 

2001-2010. GLCF: F/NF maps were generated for the years 2005 and 2010 by 

reclassifying areas with tree cover above 10% as forests in the tree cover maps 

for the corresponding years. JAXA: maps were already available as F/NF for 

2007 and 2010. For both National and JAXA the threshold for forest is 10% tree 

cover, which is consistent with the national forest definition (FAO FRA 2010); 
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e) Selection of continuous patches of forest with area equal or larger than 0.5 ha (8 

pixels) to be consistent with the national forest definition of “Land spanning more 

than 0.5 hectares with trees higher than 5 meters and a canopy cover of more 

than 10 percent” (FAO FRA 2010); 

f) Generating deforestation maps for 2007-2010. For each product F/NF maps were 

combined to generate all transitions on a pixel-by-pixel basis. Deforestation maps 

were generated by reclassifying all possible transitions to deforestation and no-

change between 2007 and 2010.  

AGB datasets 

We used four available maps of AGB. Two AGB pantropical maps are based on Lidar 

and were developed at grid scales of 1-km (Saatchi et al., 2011) and 500-m (Baccini et 

al., 2012). They used similar input data layers of sparse transects derived from the Lidar 

dataset obtained by GLAS onboard the Ice, Cloud and land Elevation Satellite (ICESat) 

before its failure in 2009. However, they are based on different field data for calibration, 

different data for upscaling from MODIS data only (Baccini et al., 2012) or MODIS and 

Quick Scatterometer (QuikSCAT) data (Saatchi et al., 2011), and different 

methodologies for spatial modeling (Random Forests and Maxent respectively). Their 

reference year is 2000 for (Saatchi et al., 2011) and 2007-2008 for (Baccini et al., 2012). 

Both maps were downloaded from (https://carbon.jpl.nasa.gov/data/dataMain.cfm and 

http://whrc.org/publications-data/datasets/pantropical-national-level-carbon-stock/ 

respectively) and are referred to as SA11 and BA12 respectively.  

The other two AGB maps used ALOS PALSAR data. (Carreiras et al., 2012) created a 

country-scale mosaic of ALOS PALSAR data from 2008 and subsequently used a 

machine learning algorithm (boosted regression trees) to calibrate AGB observations 

obtained from national field data from 2007 and 2008 (Guinea-Bissau, 2011) as a 

function of ALOS PALSAR Fine Beam Dual (HH+HV polarization) backscatter intensity 

data to produce an AGB map for Guinea-Bissau at 50-m spatial resolution. Similarly, 

(Bouvet et al., 2018) used data from the same sensor but already in a mosaic format for 

the year 2010 (Shimada et al., 2014) over the entire African continent. They also used 

in-situ AGB data collected in eight African countries between 2000 and 2013 to produce 

a 25-m spatial resolution AGB map of African savannas, woodlands and dry forests. The 

method relies on a Bayesian inversion of a model relating ALOS PALSAR backscatter 

intensity as a function of AGB. Due to the saturation limitations of the L-band backscatter 

at higher AGB values (Collins et al., 2009; Mitchard et al., 2009) and its sensitivity to 

surface moisture conditions (Lucas et al., 2010), closed-forests and mangroves were 

masked out by using the ESA Climate Change Initiative Land Cover 2010 map. 

(Carreiras et al., 2012) map and the map corresponding to the bounding box of Guinea-

https://carbon.jpl.nasa.gov/data/dataMain.cfm
http://whrc.org/publications-data/datasets/pantropical-national-level-carbon-stock/
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Bissau from (Bouvet et al., 2018) were made available for this study by the authors, and 

are referred to here as CA12 and BO18 respectively. 

AGB maps were resampled to a common spatial resolution (25-m) and coordinate 

system (UTM Zone 28N, WGS84 datum), and a mask was applied to eliminate water 

values in all datasets as well as all values above 100 t/ha in BO18 which correspond to 

other classes rather than biomass (100 - dense forest, 160 - inundated forest, 170 – 

mangroves, 190 – urban, and 210 – water; see Bouvet et al. 2018 for details). 

Supplementary results 

Table A.2.3 Mean above-ground biomass (AGB, t ha-1) (± standard deviation) from SA11, BA12, CA12, 
BO18 (maps) and National (field plots) for the entire country and corresponding to deforested areas mapped 
by each activity data product: GFC, GLCF, JAXA, and National. 

 Countr -wide AD-GFC AD-GLCF AD-JAXA AD-National 

EF-SA11   .4 (±  . )   .  (± 9.1) 42.4 (±22.7)   .2 (±27. ) 42.4 (±24.1) 

EF-BA12   .4 (±2 .9) 72.  (±29. )  7.  (±19. )  1.1 (±24.4) 49.7 (±1 .1) 

EF-CA12  2.  (±  .9)   .  (±  . )   .  (± 4. )   .  (±  . )   .2 (± 2.2) 

EF-BO18   .4 (±21. ) 4 .4 (±21. ) 4 .  (±22. )   .  (±21.1)   .  (±24.4) 

EF-National  2.  (± 4. ) 

Table A.2.4 Deforestation values and rates obtain by different products between 2007 and 2010. 

Product 
Deforested 

area 
(ha) 

Deforestation rate 

ha yr-1 % yr-1 

 AD-National          158,290            52,763 1.8 

AD-GFC            22,631               7,544 0.3 

AD-GLCF             84,383            16,877 0.6 

 AD-JAXA          112,626            37,542 1.3 

Table A.2.5 Forest Reference Emission Level (in MtCO2 yr-1) given as the multiplication of deforestation 
(Activity Data, AD, ha yr-1) derived from each product (AD-GFC, AD-GLCF, AD-JAXA, and AD-National) and 
the above-ground biomass for tropical and sub-tropical dry forests (Tier 1, Table 4.12 IPCC 2006) as pre-
deforestation carbon stock or Emission Factor (EF-Tier1). 

 AD-GFC AD-GLCF AD-JAXA AD-National 

EF-Tier1 1. 9  .7   .41 11. 2 
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Appendix 3 

Table A.3.1 calculations to derive the required sample size to validate and correct the deforestation maps 
(National, GFC, and GLCF and their combinations - columns on the left) following a stratified sampling 
design. 

 

Table A.3.2 Error matrices of the maps expressed as number of reference units with estimate of commission 
errors (CE, %), omission errors (OE, %) and overall accuracy (OA, %) for a) the individual maps, b) union 
of maps, and c) intersection of maps 

 

 

 

 

Nat GFC GLCF Class Ui Si Pixels Wi ni
area 

proportion

reference 

dataset

0 0 0 1 0.95 0.2179 46,978,348 0.9 516 0.923 293

0 1 0 2 0.7 0.4583 266,361 0.0 3 0.005 57

0 0 1 3 0.7 0.4583 1,094,434 0.0 12 0.021 84

0 1 1 4 0.7 0.4583 43,959 0.0 0 0.001 67

1 0 0 5 0.7 0.4583 2,289,963 0.0 25 0.045 168

1 0 1 6 0.7 0.4583 190,887 0.0 2 0.004 53

1 1 0 7 0.7 0.4583 30,936 0.0 0 0.001 119

1 1 1 8 0.95 0.2179 20,846 0.0 0 0.000 58

n 559 899

S(O) 0.01

Individual maps Deforestation No change Total CE (%)
National Deforestation 162 236 398 59

no change 113 388 501 23
Total 275 624 899 61% OA
OE (%) 41 38

GFC Deforestation 187 114 301 38
no change 88 510 598 15
Total 275 624 899 78% OA
OE (%) 32 18

GLCF Deforestation 132 130 262 50
no change 143 494 637 22
Total 275 624 899 70% OA
OE (%) 52 21

Union of maps Deforestation No change Total CE (%)
Nat Ս GFC Deforestation 243 279 522 53

no change 32 345 377 8
Total 275 624 899 65% OA
OE (%) 12 45

Nat Ս GLCF Deforestation 232 317 549 58
no change 43 307 350 12
Total 275 624 899 60% OA
OE (%) 16 51

GFC Ս GLCF Deforestation 232 206 438 47
no change 43 418 461 9
Total 275 624 899 72% OA
OE (%) 16 33

Nat Ս GFC Ս GLCF Deforestation 267 339 606 56
no change 8 285 293 3
Total 275 624 899 61% OA
OE (%) 3 54

Intersection of maps Deforestation No change Total CE (%)
Nat Ո GFC Deforestation 65 54 119 45

no change 210 570 780 27
Total 275 624 899 71% OA
OE (%) 76 9

Nat Ո GLCF Deforestation 21 32 53 60
no change 254 592 846 30
Total 275 624 899 68% OA
OE (%) 92 5

GFC Ո GLCF Deforestation 46 21 67 31
no change 229 603 832 28
Total 275 624 899 72% OA
OE (%) 83 3

Nat Ո GFC Ո GLCF Deforestation 41 17 58 29
no change 234 607 841 28
Total 275 624 899 72% OA
OE (%) 85 3
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Table A.3.3 Error matrix of deforestation and no-change expressed as the proportion of area as suggested 
by good practice recommendations (Olofsson et al., 2014a) with estimate of the corrected commission errors 
(CE, %), omission errors (OE, %) and overall accuracy (OA, %) for a) the individual maps, b) union of maps, 
and c) intersection of maps 

 

 

 

 

 

a) Individual maps Deforestation No change Total CE (%)

National Deforestation 0.02 0.03 0.05 59
no change 0.21 0.74 0.95 23
Total 0.23 0.77 76% OA
OE (%) 91 4

GFC Deforestation 0.00 0.00 0.01 38
no change 0.15 0.85 0.99 15
Total 0.15 0.85 85% OA
OE (%) 97 0

GLCF Deforestation 0.01 0.01 0.03 50
no change 0.22 0.75 0.97 22
Total 0.23 0.77 77% OA
OE (%) 94 2

b) Union of maps Deforestation No change Total CE (%)
Nat Ս GFC Deforestation 0.03 0.03 0.056 53

no change 0.08 0.86 0.944 8
Total 0.11 0.89 89% OA
OE (%) 76 3

Nat Ս GLCF Deforestation 0.03 0.04 0.072 58
no change 0.11 0.81 0.928 12
Total 0.14 0.86 84% OA
OE (%) 79 5

GFC Ս GLCF Deforestation 0.02 0.02 0.032 47
no change 0.09 0.88 0.968 9
Total 0.11 0.89 89% OA
OE (%) 84 2

Nat Ս GFC Ս GLCF Deforestation 0.03 0.04 0.077 56
no change 0.03 0.90 0.923 3
Total 0.06 0.94 93% OA
OE (%) 43 5

c) Intersection of maps Deforestation No change Total CE (%)
Nat Ո GFC Deforestation 0.00 0.00 6E-04 45

no change 0.27 0.73 0.999 27
Total 0.27 0.73 73% OA
OE (%) 100 0

Nat Ո GLCF Deforestation 0.00 0.00 0.004 60
no change 0.30 0.70 0.996 30
Total 0.30 0.70 70% OA
OE (%) 100 0

GFC Ո GLCF Deforestation 0.00 0.00 9E-04 31
no change 0.28 0.72 0.999 28
Total 0.28 0.72 72% OA
OE (%) 100 0

Nat Ո GFC Ո GLCF Deforestation 0.00 0.00 4E-04 29
no change 0.28 0.72 1 28
Total 0.28 0.72 72% OA
OE (%) 100 0


