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Abstract

In [Shu08], Shulman describes a way to construct a fibrant double category from a monoidal
bifibration. In this thesis, we take an algebraic approach using indexed categories and string diagrams
to better understand this construction and the role that the Beck-Chevalley transformation has within
it. We give an explicit calculation of the niche-filling morphism arising from cartesian and opcartesian
lifting properties, and we use this to give a more intuitive string-diagrammatic proof of a result
on conditions equivalent to the Beck-Chevalley conditions. We give a detailed examination of the
construction and make explicit calculations—in string diagrammatic language—of the unit loose 1-cell
U f and the loose composition (left) unitor l⊙ of the constructed fibrant double category.

Motivating examples are given throughout, including proofs that the forgetful functor GrpRep→
FinGrp that maps a G-module V to the group G that acts on it is a weakly Beck-Chevalley and in-
ternally closed monoidal bifibration.
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Introduction

The aim of this thesis is to use indexed categories and string diagrams to better understand the Beck-
Chevalley condition and the construction of fibrant monoidal double categories by Shulman [Shu08]. The
advantage of using indexed categories is that we can make explicit calculations of the data involved in the
construction, and the advantage of using string diagrams is that we can see at a glance how the hypotheses
of the construction imply the necessary properties of the data.

Fibrant double categories

Double categories were originally introduced by Ehresmann [Ehr63], and the series of papers by Grandis
and Paré are a comprehensive study [GP99, GP04, GP08, GP07]. A double category can be defined to
be an internal category in the 2-category Cat of categories; more explicitly, a double category has 0-cells,
two kinds of morphism—called tight 1-cells and loose 1-cells—between the 0-cells and 2-cells between the
loose 1-cells. It is the two different kinds of morphism that means certain mathemtaical objects are better
understood using double categories. Applications of double categories include the study of dynamical
systems [Mye23, BCV22, Cou20], universal 2-algebras [Kel74, Fio07] and derived functors [Shu11], to name
just a few examples. A double category that is a focus of this thesis—though this is not made explicit
until Example 4.3.4 once we have seen the construction Theorem 4.3.1—is the double category Bimod
of bimodules over finite groups. This double category has as 0-cells finite groups, as tight 1-cells group
homomorphisms, as loose 1-cells G ↛ H left G- right H-bimodules, and as 2-cells equivariant module
maps.

For the history of fibrant double categories, it should be noted that they are essentially the same as
proarrow equipments, in the sense that there are inverse constructions that identify proarrow equipments
with fibrant double categories whose underlying loose bicategory is a strict 2-category; we don’t give the
details of these constructions here, but details can be found in [Shu08, Appendix C]. Proarrow equipments
were introduced by Wood [Woo82, Woo85] and Street [Str80] and later studied by Carboni and others
[CJSV94]. The connection between proarrow equipments and double categories was made current by
Shulman [Shu08] and Verity [Ver11], but dates back to the study of Segal spaces by Segal [Seg68].
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Introduction

The construction: from fibrations to double categories

The double category Bimod can be constructed from the functor

Rep : GrpRep −→ FinGrp

(G,V) 7−→ G

( f , ϕ) 7−→ f

where GrpRep is the category of group representations and equivariant maps, and FinGrp is the category
of finite groups and group homomorphisms; this functor maps a G-module V to the group G and an
equivariant map ( f , ϕ) to its underlying group homomorphism f . The double category we construct
from this functor has as 0-cells and tight 1-cells the objects and morphisms of the category FinGrp, and
as loose 1-cells G ↛ H the objects in GrpRep that the functor Rep maps to the group G × H, i.e.
(G ×H)-modules. There are many common examples of double categories that arise this way, such as the
double category Span of spans, the double category Prof of profunctors, and the double category Mat of
matrices. We denote by Dbl(Φ) the double category constructed from the functor Φ. In order to define
the other data of the double category Dbl(Φ)—such as the composition of loose 1-cells, the associator
and unitors—the functor Φ is required to be a bifibration.

Fibrations were introduced by Grothendieck in the context of descent theory [Gro60, Gro71], and
some modern textbook references include [Joh02, Chapter B1], [Bor94b, Chapter 8] and [JY21, Chapter
9]. A fibration is a functor Φ : A → B that satisfies a universal property—called a cartesian lifting
property—that allows any morphism ψ in A satisying ψΦ = g # f to be factorised as ψ = χ # ϕ for
some morphisms ϕ and χ in A satisfying χΦ = g and ϕΦ = f . A bifibration is a functor that is both a
fibration and an opfibration, meaning that it also satisfies the opcartesian lifting property. Bifibrations
originate from [Gro71]; an early discussion on bifibrations (but which doesn’t use the term ‘bifibrations’)
is [Gra66]. It is the two lifting properties of satisfied by bifibrations that Shulman uses to define the other
data of the double category Dbl(Φ)—such as the composition of loose 1-cells, the associator and unitors.
However, this thesis aims to give explicit descriptions of this data, something that can’t be done using
universal properties. We will therefore use indexed categories.

An indexed category consists of a category B and a pseudofunctor I : Bop
→ Cat. They were

introduced by Grothendieck in [Gro71] alongside fibrations, and important early treatments include
[Bén75] and [PRS+78]. Indexed categories are an algebraicization of fibrations, meaning that, rather than
using a universal property, they require a structure to be specified. For example, a vector space V having
the property of having dimension n means that there exists a basis for V containing n vectors, but this
can be algebraicized by requiring a specific choice of basis (e1, . . . , en) for V. In the case of fibrations and
indexed categories, the factorisation given by the cartesian lifting property is required to be specified. By
specifying a factorisation for a fibration Φ : A → B, we obtain, for each morphism f : B→ B in B, a
functor

f ∗ : AB′ −→ AB,

where, for each object X in B, AX denotes the subcategory of A consisting of all objects M satisfying
MΦ = X and all morphisms ϕ satisfying ϕΦ = idX. The indexed category associated to the fibration Φ
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is given by

Bop
−→ Cat

B 7−→ AB

f 7−→ f ∗.

This construction and its inverse—which establish an equivalence between fibrations and indexed cat-
egories —are known as the Grothendieck construction; the Grothendieck construction originates in
[Gro71] and has textbook accounts in [Bor94b, Section 8.3], [Joh02, Chapters A1 & B1] and [JY21, Chapter
10].

We said above that the loose 1-cells G ↛ H in the double category Dbl(Rep) are the objects in
GrpRep that the functor Rep maps to the group G × H, and this is true of the general construction:
given a bifibration Φ : A → B, the loose 1-cells A ↛ B in the double category Dbl(Φ) are objects in
A that the functor Φ maps to A × B. We therefore require the bifibration Φ to be monoidal and for the
category B to be cartesian monoidal. Shulman introduced monoidal fibrations in [Shu08] where he also
explicitly constructed, for each cartesian monoidal category B, a 2-equivalence between the 2-category
MonFibB of monoidal fibrations with base B and the 2-category Bicatps(Bop,MonCat) of pseudo-
functors Bop

→ MonCat—called indexed (strong) monoidal categories in [HM06]—where MonCat
denotes the 2-category of monoidal categories, strong monoidal functors and strong monoidal transfor-
mations. In [MV20], Moeller and Vasilakopoulou establish the monoidal Grothendieck construction—a
collection of 2-equivalences involving 2-categories of monoidal fibrations, not restricted to the case of a
cartesian base—and perform a thorough investigation into both fibrewise and global monoidal structures
of a fibration.

The Beck-Chevalley condition

We saw above that if Φ : A → B is a fibration, then, for each morphism f : B → B′ in B, there is
a functor f ∗ : AB′ → AB. If Φ is a bifibration, then, for each morphism f : B → B′ in B, there are
functors

f ∗ : AB′ AB : f!

We think of the functor f ∗ as ‘pulling’ an object M in the category AB′ back along the morphism f : B→
B′ in B to obtain an object M f ∗ in the category AB, and we think of the functor f! as ‘pushing’ an
object N in the category AB forwards along the morphism f : B → B′ in B to obtain an object N f!
in the category AB′ . These functors are sometimes known as the pull-back and push-foward functors
associated to f . For the bifibration Rep : GrpRep → FinGrp, we pull an H-module W back along
a group homomorphism f : G → H to obtain the G-module Wf known as the restricted representation,
and we push a G-module V along f : G → H to obtain the H-module CH ⊗G V known as the induced
representation.
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Introduction

Given a commutative square

A B

C D

h

gk

f

in B, the Beck-Chevalley transformation is a canonical natural transformation

AA AB

AC AD

h∗

k! g!

f ∗

ζ

In some sense, this natural transformation is the difference between pulling then pushing and pushing
then pulling. The square in B is said to satisfying the Beck-Chevalley condition if the Beck-Chevalley
transformation ζ assoicated to that square is an isomorphism, i.e. when pulling then pushing is ‘the same
as’ pushing then pulling.

The Beck-Chevalley condition originated from the study of descent when Bénabou and Roubaud used
it to prove the Bénabou-Roubaud theorem in [BR70]. Beck and Chevalley studied the Beck-Chevalley
condition independently of one another, but neither of them ever appears to have published anything about
it. Lawvere mentions the Beck-Chevalley condition in the context of categorical semantics [Law70] and
Seely exapnded on this in [See83]. Since then, the Beck-Chevalley condition has been studied extensively
in, to name just a few examples, the contexts of subobject lattices [MM12, Chapter IV.9],∞-categories
[HL13, Chapter 4] and quasicategories [Joy08, p. 175].

Our interest in the Beck-Chevalley condition is due to its relevance to the construction of the dou-
ble category Dbl(Φ). A bifibration is called Beck-Chevalley if every pullback square satisfies the Beck-
Chevalley condition, and a bifibration is called weakly Beck-Chevalley if every pullback square with a
product projection leg satisfies the Beck-Chevalley condition. We can now state an abbreviated version
of the construction of the double category Dbl(Φ) due to Shulman [Shu08, Theorem 14.2].

Theorem 4.3.1. If Φ : A → B is a Beck-Chevalley monoidal bifibration, then there is a fibrant double category
Dbl(Φ) defined as follows.

(i) The tight category Dbl(Φ)0 is equal to B.

(ii) The loose category Dbl(Φ)1 and the functors S and T are given by the following pullback in Cat:

Dbl(Φ)1 A

B ×B B

Φ

×

(S,T)

⌟
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(iii) The loose composition of loose 1-cells M : A ↛ B and N : B ↛ C is equal to

M ⊙N = (M ⊗N)∆∗BπB!

and the loose composition of 2-cells is similar.

(iv) The loose unit of the object A is equal to

UA = Iπ∗A∆A!

where I denotes the monoidal unit of A .

String diagrams

A key focus of this thesis is to make explicit calculations of the certain objects, that are otherwise decribed
in the literatue by universal properties. This is of interest in its own right, but taking a diagrammatic
approach makes these explicit calculations all the more worthwhile as they allow the reader to see, for
example, the presence of the Beck-Chevalley transformation in the definition of the loose composition
left unitor

l⊙M : UA ⊙M→M

in the double category Dbl(Φ). The fact that the Beck-Chevalley transformation being an isomorphism
for pullback squares implies that the left unitor l⊙M is an isomorphism can be seen with ease with the aid
of string diagrams.

String diagrams were originally (and still are) used to express operations in a monoidal category;
Hotz [Hot65] used string diagrams in the monoidal category of finite sets, and Penrose [Pen71, PR84]
used string diagrams in the monoidal category of finite-dimensional vector spaces. String diagrams were
fomalised for aribtrary monoidal categories by Joyal and Street [JS91] and they are easily generalised to
bicategories. The idea of string diagrams is that pasting diagrams be replaced by their Poincaré duals. In a
pasting diagram in a bicategory B, 0-cells are represented as points, 1-cells as lines and 2-cells as regions,
whereas, in a string diagram in B, 0-cells are represented as regions, 1-cells as lines and 2-cells as points.
For example, the lax multiplicativity axiom

AF CF

AG CG

BG
f G gG

( f #g)G

( f #g)F

σA σA

σ f #g

G2
f g

=

AF CF

BF

AG CG

BG

f F gF
σA σC

f G gG

σB

σ f σg

( f #g)F

F2
f g

for a lax transformation between bicategories (see Definition 1.1.8) is an equality between two pasting
diagrams in the bicategory Cat of categories, and this equality is represented using string diagrams as
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Introduction

follows.

G2
f g

σ f #g

Gg

G f
G( f # g)

F( f # g)

σC

σA

=
σ f

σg

σA

G f

F2
f g

Gg

F( f # g)

σC

F f

σB Fg

Outline of the thesis

In Chapter 1, we give some useful definitions and propositions relating to bicategories, adjunctions, and
monoidal bicategories. In particular, we discuss mates, which we use in subsequent chapters to describe
internal and external closure of monoidal bifibrations and to describe the Beck-Chevalley transformation.
We also give the notation and conventions the we use for string diagrams in the subsequent chapters.

In Chapter 2, cover the basic definitions and properties relating to fibrations and indexed categories,
as well as a summary of the Grothendieck construction as a 2-equivalence. We also give a summary of
theory of monoidal fibrations due to Shulman [Shu08] and Moeller and Vasilakopoulou [MV20]. Through-
out this chapter, we give motivating examples, including proofs that together show that the functor
Rep : GrpRep→ FinGrp is an internally closed monoidal bifibration (see Examples 2.1.16, 2.4.9, 2.6.5
and 2.8.11). While fibrations are well studied, we give thorough proofs which fill gaps in the literature; we
provide a definition of the functor f ∗ (see Proposition 2.1.27), a thorough treatment of which appeared
absent from the literature until Johnson and Yau also provided such a definition in [JY21]; we also prove
that the pseudofunctoriality morphisms

Φ2∗
f g,P : Pg∗ f ∗ → P( f # g)∗ and Φ0∗

B,P : P→ Pid∗B

associated to a fibration Φ are natural in P (see Propositions 2.2.5 and 2.2.7). We also give string diagram-
matic proofs of the following results: Lemma 2.3.5, Proposition 2.3.6, Theorem 2.5.13, Proposition 2.5.16.

In Chapter 3, we study the Beck-Chevalley condition. We begin by giving a summary of the theory
of integral transfroms, which motivates the study of the Beck-Chevalley condition. We define the Beck-
Chevalley morphisms ζM, prove that they are natural in M and that the resulting natural transformation
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is given by a mate (see Proposition 3.2.3) which is the more common definition. In Remarks 3.2.8, 3.2.9
and 3.2.11, we give string diagrammatic arguments which show that the Beck-Chevalley transformation is
well-defined. We then prove that the bifibration Rep : GrpRep→ FinGrp is weakly Beck-Chevalley
(see Proposition 3.3.3), and we show how the Beck-Chevalley condition relates to Mackey’s formula of
representation theory. We give an explcit calculation of an important morphism arising from a universal
property (see Lemma 3.4.3), and, at the end of this chapter, we use this explicit calculation to prove
Corollary 3.4.4—a well-known result on conditions equivalent to the Beck-Chevalley conditions—which
is made a great deal more intuitive with a string diagrammatic proof.

In Chapter 4, we begin by giving useful definitions and propositions relating to double categories, in-
cluding fibrant double categories and monoidal double categories. The majority of this chapter contains
a detailed examination of Shulman’s construction of fibrant double categories from monoidal bifibra-
tions. We conclude with the main results of this thesis: the explicit calculations—in string diagrammatic
language—of the unit loose 1-cell U f and the (left) unitor for loose composition.
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Chapter 1

Background

In this chapter, we collect all the background material and conventions we will use in the following
chapters. We assume familiarity with basic category theory—e.g. functors, natural transformations, limits
and colimts—as well as the basics of monoidal categories.

We define bicategories, pseudofunctors and pseudonatural transformations, and we give brief defini-
tions of monoidal bicategories and pseudomonoids. We recall some terminology, definitions and basic
properties of adjunctions. In particular, we provide some of the basic theory of mates relating to adjunc-
tions as they are used frequently in later chapters to describe internal and external closure of monoidal
bifibrations and to describe the Beck-Chevalley transformation.

We also give a description of the conventions we use for the string diagrams used throughout this
document.

Notation 1.0.1. We will read composition left to right, and we will apply maps and functors on the right.
That is, for morphisms f : A → B and g : B → C in a category A , we will denote their composite by
f # g : A→ C, and, for a functor F : A → B, we denote it’s application to A and f as AF and f F. ⋄

1.1 Bicategories

The basic definitions and properties of bicategories and 2-categories were introduced by Bénabou [Bén65,
Bén67].

Definition 1.1.1. A bicategory B consists of the following data:

· a class ob B, whose elements are called 0-cells;

· for each pair A,B of 0-cells in B, a category B(A,B) whose objects are called 1-cells and whose
morphisms are called 2-cells;

· for each 0-cell A in B, a 1-cell idA in B(A,A) called the identity 1-cell on A;

1



1 . Background

· for each triple A,B,C of 0-cells in B, a functor

cABC : B(A,B) ×B(B,C) → B(A,C)
( f , g) 7→ f # g on 1-cells
(α, β) 7→ α # β on 2-cells

(1.1.2)

called composition;

· for each triple f ∈ B(A,B), g ∈ B(B,C), h ∈ B(C,D) of 1-cells in B, an invertible 2-cell

a f gh : ( f # g) # h→ f # (g # h)

called the associativity constraint;

· for each 1-cell f ∈ B(A,B) in B, invertible 2-cells

l f : idA # f → f and r f : f # idB → f .

called the left unitality constraint and the right unitality constraint.

These data are required to satisfy the following axioms.

· (Naturality of the associator) For all 2-cells α : f → f ′ in B(A,B), β : g → g′ in B(B,C) and
γ : h→ h′ in B(C,D), the following diagram commutes.

( f # g) # h ( f ′ # g′) # h′

f # (g # h) f ′ # (g′ # h′)

a f gh a f ′g′h′

(α#β)#γ

α#(β#γ)

(1.1.3)

· (Naturality of the unitors) For all 2-cells α : f → f ′ in B(A,B), the following diagrams commutes.

idA # f idA # f ′

f f ′α

ididA #α

l f l f ′

f # idB f ′ # idB

f f ′α

α#ididB

r f r f ′ (1.1.4)

· (Associativity) For all 1-cells f ∈ B(A,B), g ∈ B(B,C), h ∈ B(C,D), and k ∈ B(D,E), the
following diagram commutes.

( f # g) # (h # k)

(( f # g) # h) # k f # (g # (h # k))

( f # (g # h)) # k f # ((g # h) # k)

a f ,g,h#ka f #g,h,k

a f ,g,h#idk

a f ,g#h,k

id f #ag,h,k

2



1.1. Bicategories

· (Unitality) For all 1-cells f ∈ B(A,B) and g ∈ B(B,C), the following diagram commutes.

( f # idB) # g f # (idB # g)

f # g

a f ,idB ,g

id f #lgr f #idg

⋄

Definition 1.1.5. We call a bicategory B a 2-category if all associativity constraints, all left unitality
constraints and all right unitality constraints are identities. ⋄

Remark 1.1.6. Let B be a bicategory. We can compose 2-cells in B in two different ways. If A and B are
0-cells in B and if

A B

f

g

α and A B

g

k

γ

are 2-cells in B, then α and γ are morphisms in the category B(A,B). We can compose α and γ in
B(A,B) to get another morphism in B(A,B) which we denote α #1 γ because we are composing along a
common 1-cell. The following diagrammtic reprsentation of this is called a pasting diagram.

A B = A B

f

k

g

f

k

α

γ
α#1γ

The other way of composing 2-cells in B is by using the functor (1.1.2). Explicitly, if C is another 0-cell
in B and if

B C
h

i

β

is another 2-cell in B, then applying the functor cABC to the pair (α, β) gives a 2-cell α # β, as shown in
the folowing pasting diagram.

A C = A B C

f

g

h

i

f #h

g#i

α βα#β

Notice that α # β is the composite of α and β along a common 0-cell. One can therefore use the notation
#0 to mean # so as to clearly distinguish between using # to compose along 0-cells and using #1 to compose
along 1-cells. ⋄
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1 . Background

Remark 1.1.7. For each tuple A,B,C,D of 0-cells in B, the associativity constraint 2-cells a f gh are the
components of a natural isomorphism

B(A,B) ×B(B,C) ×B(C,D) B(A,C) ×B(C,D)

B(A,B) ×B(B,D) B(A,D)

cABC×id

cACD

cABD

id×cBCD
aABCD

called an associator. The naturality axiom for the associator is (1.1.3).
For each pair A,B of 0-cells in B, the left unit constraint 2-cells l f and the right unit constraint

2-cells r f are the components of natural isomorphisms

B(B,B) ×B(A,B)

1 ×B(A,B) B(A,B)�

IB×id cABB
lAB

and
B(A,B) ×B(A,A)

B(A,B) × 1 B(A,B)�

id×IA cAAB
rAB

called the left unitor and the right unitor. The naturality axioms for the unitors are (1.1.4). ⋄

Definition 1.1.8. Let B and B′ be bicategories. A lax functor F : B → B′ consists of the following
data:

· a function F : ob B → ob B′;

· for each pair A,B of 0-cells in B, a functor FAB : B(A,B)→ B′(AF,BF);

· for each pair f ∈ B(A,B), g ∈ B(B,C) of 1-cells in B, a 2-cell

f F # gF
F2

f g
−→ ( f # g)F

called the lax binary functoriality constraint;

· for each 0-cell A in B, a 2-cell

idAF
F0

A
−→ idAF

called the lax nullary functoriality constraint.

These data are required to satisfy the following axioms.
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1.1. Bicategories

· (Naturality of F2) For all 2-cells α : f → f ′ in B(A,B) and β : g→ g′ in B(B,C), the following
diagram commutes.

f F # gF f ′F # g′F

( f # g)F ( f ′ # g′)F

F2
f g

αF#βF

(α#β)F

F2
f ′g′

· (Lax associativity) For all 1-cells f ∈ B(A,B), g ∈ B(B,C), and h ∈ B(C,D), the following
diagram commutes.

( f F # gF) # hF f F # (gF # hF)

( f # g)F # hF f F # (g # h)F

(( f # g) # h)F ( f # (g # h))F

a′hF,gF, f F

a f ghF

id f F#F2
gh

F2
f ,g#h

F2
f g#idhF

F2
f #g,h

(1.1.9)

· (Lax left unitality) For all 1-cells f ∈ B(A,B), the following diagram commutes.

idAF # f F idAF # f F

idAF # f F

(idA # f )F

f F f F

F0
A#id f F

F2
idA , f

l f F

l f F (1.1.10)

· (Lax right unitality) For all 1-cells f ∈ B(A,B), the following diagram commutes.

f F # idBF f F # idBF

f F # idBF

( f # idB)F

f F f F

id f F#F0
B

F2
f ,idB

r f F

r′f F
(1.1.11)

⋄

5



1 . Background

Definition 1.1.12. We call a lax functor F : A → B a pseudofunctor if all lax binary functoriality con-
straints and all lax nullary functoriality constraints are invertible. In this case, we call these constraints
pseudofunctoriality constraints. We call a lax functor between two 2-categories a strict 2-functor if all
lax binary functoriality constraints and all lax nullary functoriality constraints are idenitites. ⋄

Definition 1.1.13. Let F and G be lax functors B → B′. A lax transformation σ : F→ G consists of the
following data:

· for each 0-cell A in B, a 1-cell
σA : AF→ AG;

· for each 1-cell f ∈ B(A,B), a 2-cell

AF BF

AG BG

f F

f G

σA σB
σ f

These data are required to satisfy the following axioms.

· (Naturality) For all 2-cells α : f → g in B(A,B), the following following equality holds.

AF BF

AG BG

σA σB

gF

f F

f G

σ f

αF

=

AF BF

AG BG

σA σB

gF

f G

σg

gG

αG

· (Lax unitality) For all 1-cells f ∈ B(A,B), the following equality holds.

AF AF

AG AG

σA σA

idAF

idAG

idAG

σidA

G0
A

=

AF AF

AG AG

σA σA

idAF

idAG

idAF

r#l−1

F0
A

6



1.1. Bicategories

· (Lax multiplicativity) For all 1-cells f ∈ B(A,B) and g ∈ B(B,C), the following equality holds.

AF CF

AG CG

BG
f G gG

( f #g)G

( f #g)F

σA σA

σ f #g

G2
f g

=

AF CF

BF

AG CG

BG

f F gF
σA σC

f G gG

σB

σ f σg

( f #g)F

F2
f g

⋄

Definition 1.1.14. We call a lax transformation σ : F → G a pseudonatural transformation if, for every
1-cell f in B, the 2-cell σ f is invertible. We call a lax transformation σ : F→ G between strict 2-functors
a strict 2-transformation if, for every 1-cell f in B, the 2-cell σ f is an identity. ⋄

Definition 1.1.15. Let F and G be lax functors B → B′, and suppose that σ and τ are lax transformations
F→ G. A modification Γ : σ→ τ consists of a 2-cell

FA

GA

σA τA
ΓA

for each object A in B. These 2-cells must satisfy the following equality for all 1-cells f ∈ B(A,B) in B.

FA FB

GA GB

F f

σA σB τB

G f

σ f
ΓB =

FA FB

GA GB

F f

σA τB

G f

τ fτA
ΓA

⋄

Definition 1.1.16. Let B and B′ be bicategories. Define the bicategory of lax functors Bicat(B,B′) by
the following data.

· The 0-cells of Bicat(B,B′) are the lax functors B → B′.

· For lax functors F,G : B → B′, the category Bicat(B,B′)(F,G) has

– the lax transformations F→ G as objects,

7



1 . Background

– the modifications α→ β between such lax transformations as morphisms,

– vertical composition of modifications as composition,

– identity modifications as identity morphisms.

· For each lax functor F : B → B′, the identity 1-cell idF is the identity lax transformation F→ F.

· Composition is given by δ #1 ε on lax transformations and by Γ #1 ∆ on modifcations.

· For lax transformations α : F→ G, β : G→ H andγ : H→ I between lax functors F,G,H : B →
B′, the associator constraint is the modifcation

B B′

I

F

(α#1β)#1γ α#1(β#1γ)
aαβγ

consisting of, for each 0-cell b ∈ B, the 2-cell

Fb

Ib

(αb#βb)#γb αb#(βb#γb)
aαbβbγb

in B′.

· For each lax transformation α : F → G between lax functors F,G : B → B′, the left unitor
constraint is the modifcation

B B′

F

G

idF#1α α
lα

consisting of, for each 0-cell b ∈ B, the 2-cell

Fb

Gb

idFb#αb αb
lαb

in B′.

⋄

Definition 1.1.17. Let B and B′ be bicategories. Define the bicategory of pseudofunctors Bicatps(B,B′)
to be the sub-bicategory of Bicat(B,B′) having

8



1.2. String diagrams

· the pseudofunctors B → B′ as 0-cells,

· the pseudonatural transformations between such pseudofunctors as 1-cells, and

· the modifications between such pseudonatural transformations as 2-cells.

⋄

1.2 String diagrams

In this section, we introduce the string diagram notation used for 2-cells in a bicategory. As we saw in
the introduction, a 2-cell

B C

A E D

f

g

h

i j

α

in a bicategory B is represented using string diagram notation as

α

f

g

h

i

j

We also saw the lax multiplicativity axiom

AF CF

AG CG

BG
f G gG

( f #g)G

( f #g)F

σA σA

σ f #g

G2
f g

=

AF CF

BF

AG CG

BG

f F gF
σA σC

f G gG

σB

σ f σg

( f #g)F

F2
f g

9



1 . Background

from Definition 1.1.8 represented using a string diagram in the bicategory Cat as follows.

G2
f g

σ f #g

Gg

G f
G( f # g)

F( f # g)

σC

σA

=

σ f

σg

σA

G f

F2
f g

Gg

F( f # g)

σC

F f

σB Fg

Notice that the composition of 2-cells along a 1-cell

A B

f

h

g
α

β

is represented by

βgf h
α ,

and the composition of 2-cells along a 0-cell

A B C

f

g

h

i

γ δ

is represented by

gf
γ

δ
h i

.

10



1.2. String diagrams

A convention that we will use is to omit drawing identity 1-cells. For example, the pasting diagram

C

B B D

E F

h

idB j

g

k
l

m

n

β

δγ

is depicted using string diagrams as

β

g

h
j

γ

δ
l

k

m

n
We can also use string diagrams to represent morphisms in a category. An object A in category A

can be thought of as a functor 1→ A and a morphism k : A→ A′ in A can be thought of as a natural
transformation

1 A

A

A′

k

where 1 denotes the category with one object and one morphism. With this perspective a string diagram in
a category is precisely a string diagram in the bicategory Cat. For example, if F : A → C and G : B → C
are functors, then a morphism f : AF→ BG in C is represented using a string diagram in the bicategory
Cat as

f

A B

F G

1

A B

C

where we have labelled the categories. To clearly distinguish string diagrams in a category from string
diagrams in a bicategory (and to avoid labelling the cateogry 1 each time) we use the following notation
for the morphism f : AF→ BG in C .

fA B

F G

11



1 . Background

This is the same notation used by Myers in [Mye23].
We can introduce natural transformations. Let H : C → D , I : B → D , J : E → B and K : E → D

be functors, and let α : G→ H # I and β : I # J→ K be natural transformations. Then the morphism

AFJ BGJ BHIJ DIJ DK D′K
f αB J gJ βD h

(1.2.1)
is depicted using strings diagrams as

fA B

α

g

β

h
D D′

F G
H

I

J
K

As a string diagram in the bicategory Cat, the morphism (1.2.1) would be represented as

fA B

α

g

β

h
D D′

F G
H

I

J
K

A

C

B

D

E

1

1.3 Adjunctions

Definition 1.3.1. An adjunction is a tuple (C ,B,F,G, ϕ) consisting of categories C and B, functors
F : C → B and G : B → C and a collection of bijections

ϕ =
(
ϕcb : B(Fc, b)→ C (c,Gb)

)
c∈C ,b∈B

12



1.3. Adjunctions

natural in c and b. By ‘natural in c’ we mean that, for each c ∈ C , the morphisms (ϕcb)b∈B are the
components of a natural transformation

B Set

C (c,G− )

B(Fc,− )

and similar for ‘natural in b’, where Set denotes the category of sets and maps between them. We will
often leave the categories implied and give an adjunction as a triple (F,G, ϕ). ⋄

Definition 1.3.2. Let F : C → B and G : B → C be functor, and let (F,G, ϕ) be an adjunction. The
adjunct h of a morphism h : Fc→ b in B is the morphism (h)ϕcb : c→ Gb in C . Also, the adjunct k of
a morphism k : c→ Gb in C is the morphism (k)ϕ−1

cb : Fc→ b in B. ⋄

Definition 1.3.3. Let F : C → B and G : B → C be functors. We say that F is left adjoint to G, and that
G is right adjoint to F, if there exists an adjunction of the form (F,G, ϕ). In this case we write F ⊣ G. ⋄

Definition 1.3.4. Let F : C → B and G : B → C be functors and let (F,G, ϕ) be an adjunction. The
unit of the adjunction (F,G, ϕ) is the natural transformation η : idC → F #G whose component, for each
c in C , is the morphism

ηc = idFc : c→ cFG.

The counit of the adjunction F ⊣ G is the natural transformation ε : G # F→ idB whose component, for
each b in B, is the morphism

εb = idGb : bGF→ b.

⋄

The remainder of this section discusses an equivalent definition of adjunction using the unit and
counit. This was done first by Huber [Hub61, Theorem 4.1], and Borceux [Bor94a, Chapter 3] is more
modern textbook reference.

Definition 1.3.5. Let F : C → B and G : B → C be functors, and let α : idC → F # G and β : G # F→
idB be natural transformations. We say that α and β satisfy the snake identities if the following diagrams
(in the functor categories Cat(C ,B) and Cat(B,C ) respectively) commute.

F F # G # F

F

α#F

F#β
idF

G G # F # G

G

G#α

β#G
idG

(1.3.6)

⋄
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1 . Background

If we represent the equalities in (1.3.6) using string diagrams, then we see why they’re called the snake
identities:

F

G

G

α

β

=

G

and

G

F

F

β

α

=

F
We will sometimes use the work ‘yank’ to refer to the application of the snake identities; this terminology
comes from thinking about the string diagrams as being literal strings which can be yanked to give a
taught, straight piece of string.

Proposition 1.3.7. Let F : C → B and G : B → C be functors, and let (F,G, ϕ) be an adjunction. Then the
unit and counit of this adjunction satisfy the snake identities.

Notation 1.3.8. When drawing the unit and counit of an adjunction (F,G, ϕ) in a string diagram, we will
often not write its name—coupled with the convention of not drawing identities (see), the unit and counit
will be be drawn as a ‘cup’ and ‘cap’:

G

F
and

G

F

14



1.3. Adjunctions

For example, with this notation the snake identities are draw as

F

G

G

=

G

and

G

F

F

=

F
⋄

Proposition 1.3.9 ([Bor94a][Theorem 3.1.5]). Let F : C → B and G : B → C be functors. There is a bijective
correspondence between adjunctions of the form (F,G, ϕ) and tuples (F,G, η, ε) such that η : idC → F # G and
ε : G # F→ idB are natural transformations that satisfy the snake identities.

Proof. The bijection maps each adjunction (F,G, ϕ) to the tuple (F,G, η, ε) where η and ε are the unit
and counit. The inverse of this bijection maps each tuple (F,G, η, ε) to the adjunction (F,G, ϕ) defined
as follows.

ϕ : B(Fc, b) −→ C (c,Gb) :ψ
x 7−→ ηc # xG

yF # εb ←−[ y

□

Notation 1.3.10. We can now write an adjunction as either a tuple (F,Gϕ) or as a tuple (F,G, η, ε). Some-
times we won’t explicitly mention ϕ, η or ε, and we’ll just say ‘let F ⊣ G be an adjunction’. When we want

15



1 . Background

to be particularly clear about the source and target of the functors F and G, it can be helpful to draw an
adjunction F ⊣ G as follows.

C

B

F G⊣

⋄

1.3.1 Mates

Maclane discusses conjugate transformations of adjoints in [Mac71], but the first explicit mention of mates
is by Kelly and Ross [KS74]. We state the definitions and results in this section for a general bicategory,
but this thesis will mostly apply these only to the bicategory Cat.

Adjunctions in 2-categories were introduced by Maranda [Mar65], and soon after Kelly [Kel69] studied
them further using what is now modern terminology.

Definition 1.3.11. Let B be a bicategory.

· An adjunction in B is a tuple ( f ,u, η, ε) consisting of 1-cells f : A→ B and u : B→ A in B and
2-cells η : idA → f # u and ε : u # f → idB in B such that the snake identities hold.

· An equivalence in B is a tuple ( f ,u, η, ε) consisting of 1-cells f : A→ B and u : B→ A in B and
invertible 2-cells η : idA → f # u and ε : u # f → idB in B.

· An adjoint equivalence in B is a tuple ( f ,u, η, ε) that is an adjunction and an equivalence.

⋄

Proposition 1.3.12. Let B be a bicatgory, and let ( f ,u, η, ε) and ( f ′,u′, η′, ε′) be adjunctions in B as shown
in the following diagram.

A A′

B B′

uf f ′ u′⊣ ⊣

For each pair of 1-cells x : A→ A′ and y : B→ B′ in B, the map

µ : B(A,B′)(x # f ′, f # y) −→ B(B,A′)(u # x, y # u′)

16



1.3. Adjunctions

defined by

α
x

y

f ′ f

u

u′

α
x

yf ′

f

7→

is a bijection with inverse

µ−1 : B(B,A′)(u # x, y # u′) −→ B(A,B′)(x # f ′, f # y)

given by

β
u y

x u′

β

x

y

u u′

f ′

f

7→

.

17
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Proof. Let α ∈ B(A,B′)(x # f ′, f # y). Then the two-cell (α)µ−1µ is equal to

α
x

y

f

u

f ′

f

f ′

u′

which is equal to α by the snake identities. The proof that (α)µµ−1 is similar. □

Definition 1.3.13. If

α
x

yf ′

f
(1.3.14)

and

β
u y

x u′

(1.3.15)

are 2-cells in B that correspond to each other under the bijection in Proposition 1.3.12, then we say that
β is the mate of α, that α is the mate of β and that α and β are mates. ⋄

Definition 1.3.16. Let B be a bicategory. The 2-category AdjB of adjucntions in B is defined as follows.

· The collection of objects in AdjB is ob AdjB = ob B.

· The category AdjB(A,B) has

– as objects adjunctions ( f ,u, η, ε) in B such that f : A→ B and u : B→ A and

– as morphisms ( f ,u, η, ε)→ ( f ′,u′, η′, ε′) tuples (x, y, α, β) consisting of 1-cells x : A→ A′

and y : B → B′ in B and 2-cells α and β in B of the form (1.3.14) and (1.3.15) such that α
and β are mates.

We write AdjCat for the 2-category AdjCat of adjunctions in Cat. ⋄
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1.3. Adjunctions

We write Riehl’s proof of the following result using string diagrams.

Proposition 1.3.17 ([RV22, B.3.10]). Let B be a bicategory, and let

A

B

uf ⊣ and

A′

B′

u′f ′ ⊣

be adjunctions in B, and suppose that α and β are 2-cells in B of the form (1.3.14) and (1.3.15) that are mates
with respect to the above adjunctions.

If x and y are equivalences, then α is invertible if, and only if, β is invertible.

Proof. Suppose that α is invertible. Since x and y are equivalences, there exist adjoint equivalences
(x, x†, ηx, εx) and (y, y†, ηy, εy). The following series of equalities shows that the 2-cell

α−1
x

f ′

y

u′

u

x

f

y

x†

y†

is an inverse to β.

α−1
x

f ′

y

u′

u

x

f

y

x†

y†

β y

u′

19



1 . Background

(1) =

α−1 x

f ′

y

u′

u

x

f

y

x†

y†

y

u′

α
f ′

f

(2) =

α−1 x

f ′

y

u′

u
x

f

y

x†

y†

y

u′

α

y†

y

f

f ′

(3) =

20



1.3. Adjunctions

α−1 x

f ′

y

u′

u
x

f

y

x†

y†

y

u′

α

y†

y

f

f ′

(4) =

α−1
x

f ′

y

u′

f

y

x†

u′

α

y

f ′

x

(5) =

y

u′

x†

u′

y

f ′

x

(6) =
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y

u′

y

u′

The equality (1) holds because β is the mate of α, the equality (2) holds by the snake identities for the
adjunction (y, y†, ηy, εy), the equality (3) holds because ηy and εy are part of the adjoint equivalence
(y, y†, ηy, εy), the equality (4) holds by the snake identities for the adjunctions f ⊣ u and (y, y†, ηy, εy),
the equality (5) holds because α # α−1 = idx# f ′ , and the equality (6) holds by the snake identities for the
adjunction f ′ ⊣ u′ and because ηx and εx are part of the equivalence (x, x†, ηx, εx). □

We prove the following lemma which gives a common situation where one mate is an isomorphism if,
and only if, the other is.

Lemma 1.3.18. Let B be a bicategory, suppose we have the adjunctions

A B

C D

l

r

f u f ′ u′

l′

r′

⊣ ⊣

⊣
⊣

in B, and let the following be a 2-cell in B.

α
R

R′F

F′

Then, the 2-cell

α
r

r′

f f ′

u′

u

(1.3.19)
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1.3. Adjunctions

is invertible if, and only if, the 2-cell

α

f

f ′

R r′

l′

l

(1.3.20)

is invertible.

Proof. We can rewrite (1.3.19) as follows.

α
r

r′
f f ′

= u′

u

=

u′ # r
idD

l # f ′idA

Take the mate of this with respect to the adjunctions

A

C C

D

l′

f u

r′

⊣
and

A

B B

D

l

f ′

r

u′

⊣
(1.3.21)
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to get

α
r

r′
f f ′

= u′

u

=

u′ # r
idD

f # l′

idA r′ # u

l # f ′

(1.3.22)

By Proposition 1.3.17, the 2-cell (1.3.22) is invertible if, and only if, the 2-cell (1.3.19) is invertible. Therefore,
it suffices to show that the 2-cell (1.3.22) is equal to the 2-cell (1.3.20). Consider the 2-cell

α
r

r′
f f ′

u′

u

idD

idA

f ′
l

f

l′

This 2-cell is equal to the 2-cell (1.3.19) via the snake identities, and it is equal to the 2-cell (1.3.22) via the
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1.4. Monoidal bicategories

following two identities satisfied by the unit and counit of the composite adjunctions (1.3.21).

u′ # r

l # f ′

=
r

l

u′

f ′

=

l′

r′

f

u

f # l′

r′ # u

□

1.4 Monoidal bicategories

In this section, we sketch some basic definitions and constructions relating to monoidal bicategories.
References where explicit axioms can be found are [GPS95] and [Gur06].

Definition 1.4.1. A monoidal bicatgory consists of the following data:

· a bicategory B;
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1 . Background

· a pseudofunctor ⊗ : B ×B → B;

· a 0-cell I in B called the unit 0-cell;

· for each triple A, B, C of 0-cells in B, an adjoint equivalence

aABC : (A ⊗ B) ⇄ CA ⊗ (B ⊗ C) :a•ABC

whose constituent 1-cells are called monoidal associativity constraints;

· for each 0-cell A in B, adjoint equivalences

lA : I ⊗ A ⇄ A : l•A and rA : A ⊗ I ⇄ A :r•A

whose constituent 1-cells are called monoidal unitality constraints;

· for each tuple A, B, C, D of 0-cells in B, a 2-cell

αABCD

aA,B,C⊗D

aA⊗B,C,D

A ⊗ aBCD

aA,B⊗C,D

aABC ⊗D

called a monoidal associativity 2-constraint;

· for each pair A, B of 0-cells in B, invertible 2-cells

λABlA ⊗ B

aIAB

lA⊗B

µAB

r•A ⊗ B

aAIB

A ⊗ lB
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1.4. Monoidal bicategories

ρABrA⊗B

aABI

A ⊗ rB

called monoidal unitality 2-constraints.

These data are required to satisy axioms, which we choose to omit here but can be found in, for example,
Stay’s paper on compact closed bicategories [Sta16]. ⋄

In Sections 2.6 and 2.7, we will study monoidal fibrations and monoidal indexed categories. These
are fibrations and indexed categories with added monoidal structure, and one way in which we add a
monoidal structure is using pseudomonoids. Pseudomonoids were first introduced by Day and Street
[DS97].

Definition 1.4.2. Let (B,⊗, I) be a monoidal bicategory. A pseudomonoid in B consists of the following
data:

· a 0-cell A in B;

· a 1-cell m : A ⊗ A→ A called multiplication;

· a 1-cell i : I→ A called the unit;

· an invertible 2-cell

α

m ⊗ idA

m

idA ⊗m

m

called the associator;
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· invertible 2-cells

λ idA

i ⊗ idA

m

ρ
idA

idA ⊗ i

m

called the left and right unitors.

These data are required to satisy axioms, which we choose to omit here but can be found in [DS97, Section
3]. ⋄

There are braided and symmetric versions of psedomonoids, definitions of which can be found in
[DS97, Sections 4 & 5].

Definition 1.4.3. Let B be a monoidal bicategory. The 2-category PsMon(B) of pseudomonoids consists
of pseudomonoids, strong pseudomonoid 1-cells and pseudomonoid 2-cells. ⋄

There are 2-categories of braided pseudomonoids and of symmetric pseudomonoids which we denote
by BrPsMon(B) and SymPsMon(B) respectively.
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Chapter 2

Fibrations and Indexed Categories

In this chapter, we study the objects from which the construction of fibrant double categories by Shulman
start: fibrations.

The first section is dedicated to defining cartesian morphisms and fibrations, as well as establishing
notations and conventions for them. We introduce examples that will appear throughout the chapter,
and we give a thorough definition of the functor f ∗ (see Proposition 2.1.27). In the second section, we
define indexed categories and give examples. We also define the indexed category associated to a cleaved
fibration, and we prove that the pseudofunctoriality morphisms

Φ2∗
f g,P : Pg∗ f ∗ → P( f # g)∗ and Φ0∗

B,P : P→ Pid∗B

associated to a fibration Φ are natural in P (see Propositions 2.2.5 and 2.2.7). In the third section, we
give a summary of the Grothendieck construction as a 2-equivalence. In the fourth section, we give, for
opfibrations and opindexed categories, all of the analogous definitions, propositions and examples that we
gave for fibrations and indexed categories. In the fifth section, we prove two fundamental results relating
to bicleaved bifibrations and their associated indexed and opindexed categories.

In the sixth and seventh sections, we give a summary of theory of monoidal fibrations and monoidal
indexed categories due to Shulman [Shu08] and Moeller and Vasilakopoulou [MV20]. In the eighth and
final section, we provide string-diagrammatic treatments of internally closed and externally closed bifi-
brations, and we prove that the bifibration Rep : GrpRep→ FinGrp is an internally closed monoidal
bifibration (see Examples 2.6.5 and 2.8.11).

2.1 Fibrations

Suppose that f : G → H is a group homomorphism. Given an H-module W, we can define a G-action
on the underlying vector space of W by g · w := (g) f · w, and we denote this G-module by Wf . If G
is a subgroup of H and f : G→ H is inclusion, then obtatining the G-module Wf from the H-module
W is done by restricting the action to be just by elementsof the subgroup G. This is why we call the
construction of Wf restriction.

In this section, we’ll study fibrations, which we’ll see has restriction of G-modules as an example.
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2 . Fibrations and Indexed Categories

Definition 2.1.1. LetΦ : A → B be a functor and let f : B→ B′ be a morphism in B. We’ll say that an
object M in A lies over B if MΦ = B, and we’ll say that a morphism ϕ in A lies over f if ϕΦ = f ; we’ll
denote by A h(N,A) the set of morphisms N→ A in A that lie over f . ⋄

Definition 2.1.2. Let Φ : A → B be a functor, let ϕ : A→M be a morphism in A , and let f : B→ B′

denote the morphism ϕΦ in B. We say that the morphism ϕ : A→M is cartesian if, for each morphism
g : D → B in B and each morphism ψ : N → M in A that lies over g # f , there exists a unique map
χ : N→ A that lies over g and that satisfies ψ = χ #ϕ. This situation is depicted in the following figure.

N

A M

D

B B′

ψ

χ

ϕ

g

f

A

B

Φ (2.1.3)

⋄

The definition of cartesian morphism is quite verbose, but we can instead phrase it as follows.

Proposition 2.1.4. Let Φ : A → B be a functor, let ϕ : A → M be a morphism in A , and let f : B → B′

denote the morphism ϕΦ in B. Then the morphism ϕ : A → M is cartesian if, and only if, for each morphism
g : D→ B in B and each object N in A , the map

A g(N,A) −→ A g# f (N,M)
χ 7−→ χ # ϕ

(2.1.5)

is a bijection.

The ability to factorise the morphism ψ as χ # ϕ using the cartesian morphism ϕ is called cartesian
factorisation. We have the following notation to describe cartesian factorisation.

Notation 2.1.6. The unique morphism χ in (2.1.3) will be written as ψ
⊸
ϕ. This is meant to make the

reader think of taking the equation χ # ϕ = ψ and ‘dividing’ both sides on the right by ϕ to get the
equation χ = ψ

⊸
ϕ. With this notation we can write the inverse to the bijection (2.1.5) as

A g# f (N,M) −→ A g(N,A)
ψ 7−→ ψ

⊸
ϕ

⋄

Definition 2.1.7. We say that the functor Φ : A → B is a fibration if, for every morphism f : B→ B′

in B and every object M in A lying over B′, there exists a cartesian morphism ϕ : A→M that lies over
f . ⋄
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2.1. Fibrations

Definition 2.1.8. Let Φ : A → B be a fibration. We call A the total category of Φ and we call B the
base category of Φ. ⋄

Definition 2.1.9. Let Φ : A → B be a fibration. A cleaving for Φ is a choice, for each morphism
f : B → B′ in B and each object M in A lying over B′, of cartesian morphism cart f

M : A → M in A
that lies over f . A cleaved fibration is a fibration equipped with a cleaving. ⋄

Notation 2.1.10. Given a cleaved fibrationΦ : A → B, we will—unless it’s unclear from context—denote
by cart f

M the cartesian morphism in the cleaving that lies over f and has target M. ⋄

Remark 2.1.11. A cleaving is an ‘algebraicization’ of the universal property given in Definition 2.1.2. A
property-like structure can be algebraicized by requiring a specific choice of the objects that are required
to exist. For example, a vector space V having the property of having dimension n means that there exists
a basis for V containing n vectors, but this can be algebraicized by requiring a specific choice of basis
(e1, . . . , en) for V. We’ll see later (see Theorem 2.3.15) that indexed categories are an algebraicization of
fibrations via the notion of cleavings. ⋄

Definition 2.1.12. A morphism χ in A is called pure if χ lies over an identity morphism. ⋄

Remark 2.1.13. The more standard term for pure morphisms is ‘vertical’ (see e.g. [Joh02, §B1.3]). David
Jaz Myers uses the term ‘pure’ in [Mye23, Definition 2.6.1.7] so as to avoid a clash in terminology in the
context of double categories; we prefer not to use the term ‘vertical’ here or in the context of double
categories (see Definition 4.1.1) so that the name of the morphism doesn’t depend on the way you chose
to draw it. ⋄

Applying the definition of cartesian morphism with g = id, we get the following result called pure-
cartesian factorisation.

Proposition 2.1.14. Let Φ : A → B be a fibration. Then, for each morphism ψ : N →M in A , there exists a
pure morphism χ and a cartesian morphism ϕ such that ψ = χ # ϕ. In particular, if we fix a cleaving for Φ, there
exists a unique pure morphism χ and a unique cartesian morphism ϕ in the cleaving such that ψ = χ # ϕ. □

Definition 2.1.15. The category GrpRep of representations of finite groups is defined as follows. An
object in GrpRep is a pair (G,V) consisting of a finite group G and a G-module V, and a morphism
(G,V) → (H,W) in GrpRep is a pair ( f , ϕ) consisting of a group homomorphism f : G → H and a
linear map ϕ : V →W satisfying, for every g ∈ G and every v ∈ V, (g · v)ϕ = (g) f · v. We call an object
in GrpRep a representation, and we call a morphism in GrpRep a module map. ⋄

Example 2.1.16. Let FinGrp denote the category of finite groups. The acting group functor

Rep : GrpRep −→ FinGrp

(G,V) 7−→ G

( f , ϕ) 7−→ f

takes a representation (G,V) to its acting group G. We’ll show now that Rep is a fibration.
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2 . Fibrations and Indexed Categories

Let f : G → H be a group homomorphism and let (H,W) be a representation lying over H. We’ll
show that the morphism ( f , id) : (G, Wf )→ (H,W) in GrpRep, which lies over f , is cartesian. Given a
group homomorphism g : K→ G and a module map (g # f , ψ) : (K,U)→ (H,W) that lies over g # f , the
module map (g, ψ) : (K,U)→ (G,W) is the only module map that lies over g and makes the following
diagram in GrpRep commute.

(K,U)

(G, Wf ) (H,W)

(g# f ,ψ)

( f ,id)

(g,ψ)

Therefore, ( f , id) : (G, Wf ) → (H,W) is cartesian, which means that Rep : GrpRep → FinGrp is a
fibration. ⋄

Remark 2.1.17. From now on, whenever we refer to a cleaving for the fibration Rep, the reader should
assume that this refers to the cleaving cart f

(H,W) = ( f , id) : (G, Wf )→ (H,W). ⋄

Definition 2.1.18. Let C be a category. The category FamC of families of objects in C is defined as follows.
An object in FamC is a pair (A,X) consisting of a set X and an X-indexed set A = {Ax}x∈X of objects in
C , and a morphism (A,X)→ (B,Y) in FamC is a pair (α, f ) consisting of a map of sets f : X→ Y and
an X-indexed set α = {αx : Ax → B(x) f }x∈X of morphisms in C . We call an object in FamC a family of
objects. ⋄

Example 2.1.19. Let C be a category. The indexing set functor

FamC : FamC −→ Set

(A,X) 7−→ X

(α, f ) 7−→ f

takes a family of objects (A,X) to its indexing set X. We’ll show now that FamC is a fibration.
Let f : X → Y be a map of sets, and let (B,Y) be a Y-indexed family of objects. Let Bf denote X-

indexed family of objects {B(x) f }x∈X, and let ι denote the X-indexed family of morphisms {idB(x) f }x∈X. We’ll
show that the morphism (ι, f ) : ( Bf , f )→ (B,Y) in FamC , which lies over f , is cartesian. Given a map
of sets g : Z→ X and a morphism (ψ, g # f ) : (Z,C)→ (Y,B), the morphism (ψ, g) : (C,Z)→ ( Bf ,X)
is the only morphism that lies over g and makes the folowing diagram in Set commute.

(C,Z)

( Bf ,X) (B,Y)

(ψ,g# f )

(ι, f )

(ψ,g)

Therefore, (ι, f ) : ( Bf ,X) → (B,Y) is cartesian, which means that FamC : FamC → Set is a fibration.
⋄

32



2.1. Fibrations

Remark 2.1.20. From now on, whenever we refer to a cleaving for the fibration FamC , the reader should
assume that this refers to the cleaving cart f

(B,Y) = (ι, f ) : ( Bf ,X)→ (B,Y). ⋄

Definition 2.1.21. Let A be a category. The arrow category A → of A is defined as follows. An object in
A → is a morphism f : A→ B in A , and a morphism ( f : A→ B)→ ( f ′ : A′ → B′) in A → is a pair
(θ, ρ) of morphisms in A that makes the following diagram in A commute.

A B

A′ B′

f

f ′

θ ρ

⋄

Example 2.1.22. Let A be a category with pullbacks. The codomain functor

ArrA : A →
−→ A

( f : A→ B) 7−→ B

(θ, ρ) 7−→ ρ

takes a morphism f : A→ B to its codomain B. We’ll show now that ArrA is a fibration.
Let f : A → B and t : K → B be morphisms in A , so t is an object in A → and (t)ArrA = B. Let

the following be a pullback square in A .

M A

K Bt

fh

s

⌟

We’ll show that the morphism (h, f ) : s→ t in A →, which lies over f , is cartesian.
Suppose that g : C→ A, r : L→ C and u : L→ K are morphisms in A , as shown in the following

figure.

(r : L→ C)

(s : M→ A) (t : K→ B)

C

A B

(u,g# f )

(h, f )

f

g

A →

A

ArrA
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2 . Fibrations and Indexed Categories

Rewrite the square
L C

K B

r

t

g# fu

that defines the morphism (u, g # f ) : r→ t as

L A

K B

r#g

f

t

u

The universal property of pullbacks gives a unique morphism v : L→M in A that makes the following
diagram commute.

L

M A

K B

r#g

f

t

u

s

h

v

⌟

Therefore, (v, g) : r → s is the unique morphism in A → that lies over g and that makes the following
diagram in A → commute.

r

s t

(u,g# f )

(h, f )

(v,g)

So (h, f ) : s→ t is cartesian, which means that ArrA : A →
→ A is a fibration. ⋄

Remark 2.1.23. A choice of pullback

K ×t f A A

K B

t⌟ f

f

t

f⌟t

⌟

for each morphism f : A→ B in B and each object t in A /B, defines a cleaving

cart f
t = ( f⌟t, f ) : t⌟ f → t
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2.1. Fibrations

for the fibration ArrA . ⋄

We now give some basic properties of cartesian morphisms, for which we give detailed proofs.

Proposition 2.1.24 ([Shu08, Proposition 3.4]). Let Φ : A → B be a functor.

(i) Let ϕ : A→M and ϕ′ : M→ P be morphisms in A . If ϕ and ϕ′ are cartesian, then ϕ #ϕ′ is cartesian.

(ii) Let χ : N→ A and ϕ : A→M be morphisms in A . If ϕ and χ # ϕ are cartesian, then χ is cartesian.

(iii) Let ϕ : A→M and ψ : N→M be cartesian morphisms in A . If ϕΦ = ψΦ, then there exists a unique
pure isomorphism χ : N→ A that satisfies ψ = χ # ϕ.

(iv) Every isomorphism in A is cartesian.

(v) Let ϕ be a morphism in A and suppose that ϕΦ is an isomorphism in B. Then, ϕ is cartesian if, and only
if, ϕ is an isomorphism.

Proof.

(i) Let f : B → B′ and f ′ : B′ → B′′ denote ϕΦ and ϕ′Φ. Let g : C → B be a morphism in B and
let ψ : N→ P be a morphism in A lying over g # f # f ′. Since ϕ′ is cartesian, there exists a unique
morphism χ′ that lies over g # f and that satisfies ψ = χ′ # ϕ′; this situtation is shown in the
following figure.

N

M P

C

B′ B′′

ψ

ϕ′

f ′

g# f g# f # f ′

χ′
A

B

Φ

Then, since ϕ is cartesian, there exists a unique morphism χ that lies over g and that satisfies
χ′ = χ # ϕ; this situtation is shown in the following figure.

N

A M

C

B B′

χ′

ϕ

f

g g# f

χ
A

B

Φ
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2 . Fibrations and Indexed Categories

Therefore, χ is the unique morphism that lies over g and satisfies ψ = χ # (ϕ # ϕ′). Hence, ϕ # ϕ′

is cartesian.

(ii) Let f : B → B′ and g : C → B denote ϕΦ and χΦ. Let h : D → C be a morphism in B and
let θ : Q → N be a morphism in A lying over h. Since χ # ϕ is cartesian, there exists a unique
morphism ρ that lies over h and that satisfies θ # ϕ = ρ # (χ # ϕ); this situtation is shown in the
following figure.

Q

N M

D

C B′

θ#ϕ

χ#ϕ

g# f

h h#g# f

ρ
A

B

Φ

Since ϕ is cartesian, there exists a unique morphism σ that lies over h # g and satisfies ϕ #σ = θ #ϕ;
this situtation is shown in the following figure.

Q

A M

D

C B′

θ#ϕ

ϕ

g# f

h h#g# f

σ
A

B

Φ

Both θ and ρ # χ satisfy the defining properties of σ, so they must be equal. So ρ is the unique
morphism that lies over h and that satisfies θ = ρ # χ. Hence, χ is cartesian.

(iii) Let f : B → B′ denote the morphism ϕΦ = ψΦ. Since ϕ is cartesian, there exists a unique
morphism χ : N → A that lies over idB and that satisfies ψ = χ # ϕ. Since ψ is cartesian, there
exists a unique morphism τ : A → N that lies over idB and that satisfies ϕ = τ # ψ. These two
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2.1. Fibrations

situtations are shown in the following figure.

N

A M

B

B B′

ψ

ϕ

f

idB
f

χ

A

N M

B

B B′

ϕ

ψ

f

idB
f

τ
A

B

Φ

Since ϕ is cartesian, there is a unique morphism ξ : A → A that lies over idB and that satisfies
ϕ = ξ #ϕ. Both idA and τ # χ satisfy the defining properties of ξ, so they must be equal. Similarly,
since ψ is cartesian, we can deduce that idN = χ # τ. Therefore, χ : N → A is an isomorphism,
and, since ϕ is cartesian, χ is the unique morphism satisfying ψ = χ # ϕ.

(iv) Let ϕ be an isomorphism in A and let f : B→ B′ denote ϕΦ. Let g : C→ B be a morphism in
B and let ψ : N→ P be a morphism in A lying over g # f . Then ψ #ϕ−1 is the unique morphism
χ : N→ A in A that lies over g and that satisfies ψ = χ # ϕ. Hence, ϕ is cartesian.

(v) Let f : B → B′ denote ϕΦ. Suppose that ϕ is cartesian. Then there exists a unique morphism
χ : A→ A that lies over f−1 and that satisfiesχ#ϕ = idM; this situtation is shown in the following
figure.

M

A M

B′

B B′

idM

ϕ

f

f−1 idB′

χ
A

B

Φ

Again, since ϕ is cartesian, there exists a unique morphism ω : A→ A that lies over idB and that
satisfies ϕ = ω # ϕ. Both idA and ϕ # χ lie over idB and satisfy the defining property of ω, so they
must be equal. Hence, ϕ is an isomorphism.

□

Given a cleaving of Φ, all other cartesian morphisms can be obtained from those in the cleaving.

Corollary 2.1.25. Let Φ : A → B be a fibration. A morphism ψ in A is cartesian if, and only if, there exists
a pure isomorphism χ and a cartesian morphism ϕ such that ψ = χ # ϕ. In particular, if we fix a cleaving for Φ,
there exists a unique pure isomorphism χ and a unique cartesian morphism ϕ in the cleaving such that ψ = χ # ϕ.
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2 . Fibrations and Indexed Categories

Proof. Using pure-cartesian factorisation, there exists a pure morphism χ and a cartesian morphism ϕ
such that ψ = χ # ϕ. By Proposition 2.1.24 (ii), χ is also cartesian, so, by Proposition 2.1.24 (v), χ is an
isomorphism. On the other hand, if ψ is the composite of a pure isomorphism and a cartesian morphism,
then, by Proposition 2.1.24 (iv) and (i), ψ is cartesian. □

Definition 2.1.26. Let Φ : A → B be a functor. For each object B ∈ B, the fibre category AB is the
subcategory of A given by objects lying over B and morphisms lying over idB. That is, ob AB = {M ∈
ob A |MΦ = B} and AB(M,N) = {ψ ∈ A (M,N) | ψΦ = idB}. ⋄

If Φ : A → B is a cleaved fibration, then we have, for each morphism f : B→ B′ in B, a specified
cartesian morphism cart f

M in A that lies over f . One key piece of information given by the cleaving is

the source of the morphism cart f
M. In general, we denote the source of cart f

M by M f ∗. We now show
that this extends to a functor f ∗ : AB′ → AB. We call this functor the pull-back functor associated to f
because we think of it as pulling an object lying over B′ back along f : B→ B′ to obtain an object lying
over B.

The following is a result is a standard one. We provide detailed proof which seems to have been absent
from the literaturee until Johnson and Yau also provided such a proof [JY21, Lemma 10.4.7].

Proposition 2.1.27. Let Φ : A → B be a cleaved fibration and let f : B→ B′ be a morphism in B. Then the
following defines a functor f ∗ : AB′ → AB.

· For each object M in AB′ , define M f ∗ to be the domain of cart f
M.

· For each morphism ψ : M→ N in AB′ , using the fact that cart f
N is cartesian, define ψ f ∗ to be the unique

morphism M f ∗ → N f ∗ in A that lies over idB and satisfies ψ f ∗ # cart f
N = cart f

M # ψ. This situtation
is shown in the following figure.

M f ∗ M

N f ∗ N

B

B B′

cart f
N

ψ

cart f
M

f

f

idB

ψ f ∗
A

B

Φ

Proof. The fact that idM f ∗ = idM f ∗ follows from the fact that, for each object M in A ′

B , the morphism
idM f ∗ lies over idB and makes the following diagram in A commute.

M f ∗ M

M f ∗ M

idM

cart f
M

idM f ∗

cart f
M
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2.1. Fibrations

Now let’s check, for each pair of composable morphisms ψ : M → N and ρ : N → P in AB, that
ψ f ∗ # ρ f ∗ = (ψ # ρ) f ∗. The following diagram in A commutes by the defining properties of ψ f ∗ and
ρ f ∗.

M f ∗ M

N f ∗ N

P f ∗ P

cart f
N

ψ

cart f
M

ρ

cart f
P

ψ f ∗

ρ f ∗

But (ψ # ρ) f ∗ is the unique morphism M f ∗ → P f ∗ in A that lies over idB and that makes the diagram

M f ∗ M

N

P f ∗ P

ψ

cart f
M

ρ

cart f
P

(ψ#ρ) f ∗

in A commute, so ψ f ∗ # ρ f ∗ = (ψ # ρ) f ∗. □

Remark 2.1.28. Let Φ : A → B be a cleaved functor, and let f : B→ B′ be a morphism in B. Suppose
that ϕ : A→M is a cartesian morphism in A that lies of f . Since the morphism

cart f
M : M f ∗ −→M

is also cartesian, there exists, by Proposition 2.1.24(iii), a pure isomorphism χ : M f ∗ → A that satisfies
cart f

M = χ # ϕ. ⋄

We’ll give examples of pull-back functors soon in Examples 2.1.30, but first we need to define notation
that particular fibrations use for their fibre categories.

Definition 2.1.29.

· Let G be a group. We write RepG for the category of G-modules and G-module maps.

· Let C be a category and let X be a set. The category C X of X-indexed family objects in C is defined
as follows. An object in C X is an X-indexed set A = {Ax}x∈X of objects in C , and a morphism
A→ B in C X is an X-indexed set α = {αx : Ax → Bx}x∈X of morphisms in C .

· Let A be a category and let B be an object in A . The over category A /B of A over B is a
subcategory of the arrow category A → and is defined as follows: the objects of A /B are the
morphisms in A with target B, and the morphisms of A /B are the pairs of the form (θ, idB).

⋄
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2 . Fibrations and Indexed Categories

Examples 2.1.30.

(i) For the fibration Rep : GrpRep→ FinGrp and a group homomorphism f : G→ H, we have

f ∗ : RepH −→ RepG

W 7−→ Wf

α 7−→ α

(ii) For the fibration FamC : FamC → Set and a map of sets f : X→ Y, we have

f ∗ : C Y
−→ C X

(By)y∈Y 7−→ (B f (x))x∈X

(αy)y∈Y 7−→ (α f (x))x∈X

(iii) For the fibration ArrA : A →
→ A and a morphism f : D→ C in A , the functor f ∗ : A /C→

A /D is given as follows. For each object j : J → C in A /C, take j f ∗ = j⌟ f as in the following
pullback square.

J ×j f D D

J C
j

f

j⌟ f

f⌟ j

⌟

For each morphism α : ( j : J → C) → (k : K → C) in A /C, the morphism α f ∗ : j⌟ f → k⌟ f in
A /D is given by the unique morphism J ×j f D→ K ×k f D in C that makes the diagram

J ×j f D

J K ×k f D D

K C
k

ff⌟k

k⌟ f

⌟

j⌟ f

f⌟ j

α

in A commute; this morphism exists by the universal property of pullbacks.

⋄

The following standard result follows from the definition of the functor f ∗ on morphisms (see Propo-
sition 2.1.27).
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2.2. Indexed categories

Proposition 2.1.31. Let Φ : A → B be a cleaved fibration and let f : B→ B′ be a morphism in B. Then the
bijections

AB(N,M f ∗) −→ A f (N,M)

χ 7−→ χ # cart f
M

are natural in both N and M.

2.2 Indexed categories

Given a fibration Φ : A → B we have fibre categories AB and we have functors f ∗ between them. We’ll
show that these form part of the structure of an indexed category, which we define now.

Definition 2.2.1. An indexed category I consists of a category B and a pseudofunctor Bop
→ Cat,

where we consider B as a bicategory with identity 2-cells. We call B the base category of the indexed
category I. ⋄

Remark 2.2.2. Let’s unpack this definition. An indexed category I : Bop
→ Cat consists of the following

data:

(i) a base category B ;

(ii) for each object B in B, a category BI ;

(iii) for each morphism f : B→ B′ in B, a functor fI : B′I→ BI ;

(iv) for each pair f : B→ B′, g : B′ → B′′ of morphisms in B, a natural isomorphism

I2∗
f g : gI # fI→ ( f # g)I ;

(v) for each object B in B, a natural isomorphism

I0∗
B : idBI → idBI .

These data are required to satisfy the following axioms.

· (Associativity) For every composable triple f : B→ B′, g : B′ → B′′, h : B′′ → B′′′ of morphisms
in B, the following diagram commutes.

hI # gI # fI (g # h)I # fI

hI # ( f # g)I ( f # g # h)I

hI#I2∗
f g

I2∗
gh# fI

I2∗
f #g,h

I2∗
f ,g#h
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2 . Fibrations and Indexed Categories

· (Unitality) For every morphism f : B→ B′ in B, the following diagrams commute.

idB′I # fI ( f # idB′)I

idB′I # fI fI

(I0∗
B′ )
−1# fI

I2∗
f ,idB′ fI # idBI (idB # f )I

fI # idBI fI

fI#(I0∗
B )−1

I2∗
idB , f

⋄

We said we will show that, given a fibration Φ : A → B, the fibre categories AB and pull-back
functors f ∗ form part of the structure of an indexed category; namely these are items (ii) and (iii) in
Remark 2.2.2. We now define the remaining structure—items (iv) and (v) in Remark 2.2.2—of the indexed
category of which the fibre categories AB and pull-back functors f ∗ form part of the structure.

Definition 2.2.3. LetΦ : A → B be a cleaved fibration. For each pair of composable morphism f : B→
B′ and g : B′ → B′′ in B and each object P in AB′′ , define the morphism

Φ2∗
f g,P : Pg∗ f ∗ → P( f # g)∗

in AB to be the unique pure morphism Pg∗ f ∗ → P( f # g)∗ in A that satisfiesΦ2∗
f g,P # cart f #g

P = cart f
Pg∗ #

cartg
P. The existence of this morphism follows from the morphism cart f #g

P being cartesian, and the
situtaion is shown in the following figure.

Pg∗ f ∗ Pg∗

P( f # g)∗ P

B

B B′′

cart f #g
P

cartg
P

cart f
Pg∗

f #g

f #g

idB

Φ2∗
f g,P

A

B

Φ

⋄

Remark 2.2.4. The morphismΦ2∗
f g,P is cartesian since cart f #g

P and cart f
Pg∗ # cartg

P are cartesian; this means

that Φ2∗
f g,P is both pure and cartesian and is therefore an isomorphism. ⋄

We provide a proof of the following result which appears absent from the literature, including the
otherwise thorough book by Johnson and Yau [JY21, Lemma 10.4.7].

Proposition 2.2.5. The morphismsΦ2∗
f g,P form the components of a natural isomorphismΦ2∗

f g : g∗ # f ∗ → ( f # g)∗.
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2.2. Indexed categories

Proof. In the following diagram, the squares (1) and (2) commute by definition of Φ2∗
f g,P and Φ2∗

f g,P′ , and
the squares (3), (4) and (5) commute by definition of ξg∗ f ∗, ξg∗ and ξ( f # g)∗.

Pg∗ f ∗ P′g∗ f ∗

Pg∗ g∗P′

P P′

P( f # g)∗ P′( f # g)∗

ξg∗ f ∗

ξ( f #g)∗

Φ2∗
f g,P Φ2∗

f g,P′

cart f #g
P′cart f #g

P

ξg∗

ξ

cart f #g
P cart f #g

P′

cartg
P cartg

P′

(3)

(1) (2)(4)

(5)

Therefore, the outer square—the naturalilty square for Φ2∗
f g : g∗ # f ∗ → ( f # g)∗—commutes. □

Definition 2.2.6. Let Φ be a cleaved fibration. For each object B in B and each object M in AB, the
morphism cartidB

M : Mid∗B →M is an isomorphism since it is pure and cartesian. Define the morphism

Φ0∗
B,M : M→Mid∗B

in AB to be the inverse of cartidB
M . ⋄

The following result also appears absent from the literature. Note that the cleaving for the fibration
Φ : A → B is often taken to be a unitary cleaving—meaning a cleaving for which the cartesian morphism
cartidB

M : Mid∗B →M is the identity for each object B in B—and in this case the following result is trivial
[JY21, Convention 10.4.2, Lemma 10.4.7].

Proposition 2.2.7. The morphisms Φ0∗
B,M are the components of a natural isomorphism Φ0∗

B : idAB → id∗B.

Proof. Let ψ : M → N be a morphism in AB. By the definition of the functor id∗B on morphisms, the
following diagram commutes.

Mid∗B Nid∗B

M N
ψ

cartidB
M cartidB

N

ψid∗B
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2 . Fibrations and Indexed Categories

Therfore, since Φ0∗
B,M and cartidB

M are inverses, the naturality square

M N

Mid∗B Nid∗B

ψ

ψid∗B

Φ0∗
B,M Φ0∗

B,N

for Φ0∗
B commutes. □

We now define the indexed categoryΦG−1 following the unpacked definition of an indexed category
(see Remark 2.2.2). This forms one direction of the Grothendieck construction between fibrations and
indexed categories; we will see the other direction in the following section.

Definition 2.2.8. Let Φ : A → B be a cleaved fibration. The indexed category ΦG−1 : Bop
→ Cat,

called the indexed category associated to Φ, is given by the following data:

· a base category of ΦG−1 is B;

· for each object B in B, the category (B)ΦG−1 is the fibre category AB;

· for each morphism f : B→ B′ in B, the functor fΦG−1 is the functor f ∗ : AB′ → AB defined in
Proposition 2.1.27;

· for each pair of composable morphisms f : B→ B′ and g : B′ → B′′ in B, the natural isomorphism
ΦG−12∗

f g is the natural isomorphism

Φ2∗
f g : g∗ # f ∗ → ( f # g)∗

defined in Definition 2.2.3 and Proposition 2.2.5.

· for each object B in B, the natural isomorphism ΦG−10∗
B is the natural isomorphism

Φ0∗
B : idAB → id∗B

defined in Definition 2.2.6 and Proposition 2.2.7.

⋄

Example 2.2.9. The indexed category Rep : FinGrpop
→ Cat consists of the following data:

· the base category is the category FinGrp of finite groups;

· for each group G, (G)Rep is the category RepG of representations of G;
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2.2. Indexed categories

· for each group homomorphism f : G → H, the functor f ∗ : RepH → RepG is the restriction
functor

RepH −→ RepG

W 7−→ Wf

α 7−→ α

· for each pair f : G→ H, g : H→ K of group homomorphisms, the natural isomorphism

g∗ # f ∗ → ( f # g)∗

is the identity;

· for each group G, the natural isomorphism

idRepG
→ id∗G

is the identity.

⋄

Example 2.2.10. For each category C , the indexed category FamC consists of the following data:

· the base category is the category Set of sets;

· for each set X, (X)Fam is the category C X of X-indexed families of objects in C ;

· for each map of sets f : X→ Y, the functor f ∗ : C Y
→ C X is given by

C Y
−→ C X

(By)y∈Y 7−→ (B f (x))x∈X

(αy)y∈Y 7−→ (α f (x))y∈Y

· for each pair f : X→ Y, g : Y→ Z of maps of sets, the natural isomorphism

g∗ # f ∗ → ( f # g)∗

is the identity;

· for each set X, the natural isomorphism

idC X → id∗X

is the identity.

⋄
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2 . Fibrations and Indexed Categories

Example 2.2.11. For each category A with finite limits, the indexed category ArrA consists of the follow-
ing data:

· the base category is the category A ;

· for each object A in A , (A)Arr is the over category A /A;

· for each morphism f : A → B in A , the functor f ∗ : A /B → A /A is given in Examples 2.1.30
(iii);

· for each composable pair f : D→ C, g : C→ C′ of morphisms in A and each object l : L→ C′

in A /C′, we compose the pullback squares

(L ×l g C) ×l⌟g f D D

L ×l g C C

L C′

f

l⌟g

(l⌟g)⌟ f

f⌟(l⌟g)

⌟

gg⌟l

l

⌟

and define the isomorphism
(l)(g∗ # f ∗)→ (l)( f # g)∗

to be the unique morphism (L ×l g C) ×l⌟g f D→ L ×l f #g D in A that makes the diagram

(L ×l g C) ×l⌟g f D

L ×l g C L ×l f #g D D

C

L C′

f

(l⌟g)⌟ f

f⌟(l⌟g)

g
g⌟l

l

( f #g)⌟l

l⌟( f #g)⌟

commute;

· for each object A in A and each object j : J→ A in A /A, the isomorphism

( j)idA /A → ( j)id∗A
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2.3. The Grothendieck construction

is given by the pair ((idA⌟ j)−1, idA) : j→ j⌟idA, as shown in the following pullback diagram.

J ×j idA
A A

J A
j

idA

j⌟idA

idA⌟ j

⌟

⋄

2.3 The Grothendieck construction

We’ve seen how to construct an indexed category from a fibration, and we’ll now see how to construct
a fibration from an indexed category. These are the two directions of the Grothendieck construction.
The following definition, which define the total category of the fibration obtained by the Grothendieck
construction is also sometimes called the Grothendieck construction or the Grothendieck category.

Definition 2.3.1. Let I : Bop
→ Cat be an indexed category. The total category of I, denoted by∫

I,

is the category defined as follows.

· An object is a pair
(
M
B

)
consisting of an object B in B an object M in BI.

· A morphism
(
M
B

)
→

(
M′

B′

)
is a pair

(
ϕ
f

)
consisting of a morphism f : B→ B′ in B and a morphism

ϕ : M→M′ f ∗ in BI.

· The composite of the morphisms
(
ϕ
f

)
:
(
M
B

)
→

(
M′

B′

)
and

(
ψ
g

)
:
(
M′

B′

)
→

(
M′′

B′′

)
in

∫
I is given

by the pair (
ϕ # ψ f ∗ # I2∗

f g,M′′

f # g

)
:
(
M
B

)
→

(
M′′

B′′

)
.

· For each object
(
M
B

)
in

∫
I, the identity id( M

B
) is given by the pair

(
I0∗

B,M
idB

)
:
(
M
B

)
→

(
M
B

)
.

⋄
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2 . Fibrations and Indexed Categories

We can use string diagrams to represent categories, functors and natural transformations, and we can
use string diagrams to represent morphisms in a category (see Section 1.2). Using string diagrams will be
very useful when talking about morphisms in the total category of an indexed category, and we’ll explain
now how we do this.

Let I : Bop be an indexed category and let(
ψ : M→M′ f ∗

f : B→ B′

)
:
(
M
B

)
→

(
M′

B′

)

be a morphism in
∫
I. The morphism ψ : M→M′ f ∗ in BI is called the total part of the morphism

(
ψ
f

)
in

∫
I and we can represent it using a string diagram as follows.

ψM M′

f ∗

Let (
ϕ : M′ →M′′h∗

h : B′ → B′′

)
:
(
M′

B′

)
→

(
M′

B′′

)
be another morphism in

∫
I. The composite of these two morphisms in

∫
I is defined using the functors

f ∗ and h∗ as well as the natural transformation I2∗
f h. We denote the natural transformation I2∗

f h in string
diagrams by

f ∗

h∗

( f # h)∗

and we denote its inverse (I2∗
f h)−1 in string diagrams by

f ∗

h∗

( f # h)∗
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2.3. The Grothendieck construction

The total part of the composite
(
ψ
f

)
#
(
ϕ
h

)
can therefore be represented using string diagrams as follows.

ψM M′′

f ∗

ϕ

h∗

( f # h)∗

M′

The identity morphisms in
∫
I are defined using the natural transformation I0∗

B . We denote the natural
transformation I0∗

B in string diagrams by

id∗B

and we denote its inverse (I0∗
B )−1 in string diagrams by

id∗B

As a demonstration of the notation we’ve just explained, we will now express the the associativity
axiom (see (1.1.9)) and the left and right unitality axioms (see (1.1.10) and (1.1.11)) for the pseudofunctor
I : Bop

→ Cat using string diagrams. The associativity axiom is written as the equality

gI

fI

hI

( f # g # h)I

(g # h)I

=

(2.3.2)

gI

fI

hI

( f # g # h)I

( f # g)I
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2 . Fibrations and Indexed Categories

the left unitality axiom is written as the equality

fI

fI

idAI

=

(2.3.3)

fI

and the right unitality axiom is written as the equality

fI

fI

idBI

=

(2.3.4)

fI

We can use these axioms to prove the following lemma. We will then use this lemma to prove Propo-
sition 2.3.6 which will help us to understand isomorphisms in the total category

∫
I.

Lemma 2.3.5. Let I : Bop
→ Cat be an indexed category, and let f : B→ B′ be an isomorphism in B. Define

the natural transformation
η : idB′I → f ∗ # f−1∗

by

f−1I

fI

idB′I

η

=

f−1I

fI

,

and define the natural transformation
ε : f−1∗ # f ∗ → idBI
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2.3. The Grothendieck construction

f−1I

fI

idB′I

ε

=

f−1I

fI

.

In non-string diagrammatic language, η and ε are given by

η = I0∗
B′ # (I2∗

f−1 f )
−1 and εN = I

2∗
f f−1 # (I0∗

B )−1

Then

( f ∗, f−1∗, η, ε) : B′I→ BI

is an adjoint equivalence.

Proof. It’s easy to see that η and ε are invertible. The following series of equalities proves one of the snake
identities; the proof of the other is similar.

fI

idB′I

=(1)

fI

f−1I

idBI

fI

idB′I

=

fI
f−1I

idBI

idB′I

fI
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2 . Fibrations and Indexed Categories

fI

=(2)

fI
f−1I

idBI

idB′I

fI

fI

=
fI

f−1I

idBI

fI

idBI

fI

=

fI
f−1I

idBI idBI

fI

idBI

fI

=(3)

fI

idBI

fI
The equality (1) follows by the right unitality axiom (2.3.4), the equality (2) follows by the associativity
axiom (2.3.2), and the equality (3) follows by the left unitality axiom (2.3.3). □

The strict version of the following result is given as Proposition 2.6.1.6 in [Mye23]; we provide a proof
using string diagrams.
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2.3. The Grothendieck construction

Proposition 2.3.6. A morphism

(
ψ
f

)
:
(
M
B

)
→

(
N
B′

)
in

∫
I is an isomorphism if, and only if,ψ is an isomorphism

in BI and f is an isomorphism in B.

Proof. Suppose thatψ is an isomorphism in BI and that f is an isomorphism in B. Define the morphism
ϕ : N→M f−1∗ in B′I using a string diagram as follows.

ϕN M

f−1∗

=

N M
ψ−1

f−1∗

id∗B′
f ∗

We’ll show that
(
ϕ
f−1

)
is inverse to

(
ψ
f

)
in

∫
I, where ϕ is given by the following figure. The total part of(

ψ
f

)
#
(
ϕ
f−1

)
is equal to I0∗

B,M : M→Mid∗, as shown by the following series of equalities.

M M
ψ−1

f−1∗

id∗B′
f ∗

id∗B

ψ

f ∗

N

=

M M
ψ−1

f−1∗

id∗B′
f ∗

id∗B

ψ

f ∗

id∗B

N

=
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M M
ψ−1

f ∗
id∗B

ψ

(1) =

M M

id∗B
The equality (1) follows from Lemma 2.3.5. Therefore,(

ϕ
f

)
#
(
ψ
f−1

)
= id( M

B
).

The total part of
(
ϕ
f−1

)
#
(
ψ
f

)
is equal to I0∗

B′,N : N→ Nid∗, as shown below.

N Nψ

f ∗

ψ−1

=

f−1∗

id∗B′ id∗B′

N N

f ∗

(2) =

f−1∗

id∗B′ id∗B′

N N

f ∗

=

f−1∗

id∗B′ id∗B′id∗B′
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N N

id∗B′

The equality (2) follows from Lemma 2.3.5. Therefore,
(
ϕ
f

)
#
(
ψ
f−1

)
= id( N

B′
).

We’ve proved that
(
ψ
f

)
is an isomorphism if ψ and f are both isomorphisms. Now we prove the

converse. Suppose that
(
ψ
f

)
is an isomorphism in

∫
I with inverse

(
ϕ
g

)
. So f # g = idB, g # f = idB′ and

the following two equalities (2.3.7) and (2.3.8).

ϕM M

f−1∗

ψ

f ∗

id∗B′

N

=

M M

id∗B

(2.3.7)

ψM M

f ∗

ϕ

f−1∗

id∗B

N

=

M M

id∗B

(2.3.8)

We have immediately that f is an isomorphism in B with inverse g. We’ll now show that ψ is an isomor-

55



2 . Fibrations and Indexed Categories

phism in BI with inverse

M

f ∗

ϕ

f−1∗

id∗B

N

χN M

f ∗

=

The fact that ψ # χ = id follows almost immediately from (2.3.7). The fact that χ # ψ = id is shown by
the following series of equalities.

M

f ∗

ϕ

f−1∗

id∗B

N

(1) =

ψ N

f ∗

M

f ∗

ϕ

f−1∗

N

(2) =

ψ N

f ∗

f ∗

f−1∗

id∗B id∗B

id∗B′
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2.3. The Grothendieck construction

ϕ M N

f−1∗

ψ

f ∗

id∗B′

N

(3) =

f ∗

M M

id∗B

f ∗

=

M M

f ∗

The equalities (1) and (2) follow by Lemma 2.3.5 and the equality (3) follows by (2.3.7). □

Grothendieck originally used the term ‘catégorie fibrée’ (fibred category) for indexed categories
[Gro71], but, due to Bénabou [Bén75], this later became the standard term for the fibration associated to
an indexed category via the Grothendieck construction, the definition of which we give now.

Proposition 2.3.9. Let I : Bop
→ Cat be an indexed category. The following functor is a fibration.

IG :
∫
I −→ B(

M
B

)
7−→ B(

ϕ
f

)
7−→ f

We call this fibration the fibration associated to I.

Proof. For each morphism f : B→ B′ in B and each object M in B′I, we’ll see that the morphism(
id : M f ∗ →M f ∗

f

)
: M f ∗ →M
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is cartesian. Suppose that g : C → B is a morphism in B and that
(
ψ

g # f

)
: N → M is a morphism in∫

I, as shown in the following figure.(
N
C

)
(

M f ∗
B

) (
M
B′

)
C

B B′

(
ψ

g# f

)

(
id
f

)

f

g g# f

∫
I

B

Then the morphism (
ψ # (I2∗

g f ,M)−1

g

)
: N→M f ∗

in
∫
I is the only morphism that lies over g and makes the following diagram commute.(

N
C

)
(

M f ∗
B

) (
M
B′

)
(
ψ

g# f

)

(
id
f

)
ψ#(I2∗

g f ,M)−1

g



Therefore, the morphism
(
id : M f ∗ →M f ∗

f

)
: M f ∗ → M is cartesian, which means that IG :

∫
I→

B is a fibration. □

The following proposition is given as the definition of cartesian morphisms by Johnstone, though he
uses the terminology ‘prone morphisms’.

Proposition 2.3.10 ([Joh02, Lemma 1.3.2]). Let I be an indexed category. A morphism

(
ψ
f

)
in

∫
I is cartesian

with respect to the fibration IG if, and only if, ψ is an isomorphism.

Proof. From Proposition 2.3.9 we have a cleaving cart f
M =

(
idM f ∗

f

)
for the fibration IG . By Corol-

lary 2.1.25,
(
ψ
f

)
is cartesian if, and only if, there exists a pure isomorphism

(
χ
id

)
and a cartesian morphism(

id
f

)
in the cleaving such that

(
ψ
f

)
=

(
χ
id

)
#
(
id
f

)
. The total part of this equality is ψ = χ # I2∗

id, f ,M, which
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2.3. The Grothendieck construction

can be rearanged to χ = ψ # (I2∗
id, f ,M)−1. Therefore, the morphisms

(
ψ
f

)
for which there exists a pure

isomorphism
(
χ
id

)
such that ψ f =

(
χ
id

)
#
(
id
f

)
are exactly those for which ψ is an isomorphism. □

2.3.1 The Grothendieck construction as a 2-equivalence

In this subsection, we state the Grothendieck construction as a 2-equivalence. This is given in [Bor94b,
Theorem 8.3.1] and [Joh02, Theorem 1.3.6]; a more detailed breakdown can be found in [JY21, Section
10.6]. We begin by defining a 2-category of fibrations. This 2-equivalence will be useful in Section 2.7
where we discuss monoidal fibrations and monoidal indexed categories.

Definition 2.3.11 ([JY21, Theorem 10.6.16]).

· Let Φ : A → B and Φ′ : A ′
→ B′ be fibrations. A fibred 1-cell Φ → Φ′ consists of a pair of

functors F : A → A ′ and G : B → B′ such that the diagram

A A ′

B B′

Φ

F

Φ′

G

in Cat commutes and, for every Φ-cartesian morphism ϕ in A , the morphism ϕF in A ′ is Φ′-
cartesian.

· We call a fibred 1-cell (F,G) : Φ→ Φ′ pure if B = B′ and G = idB .

· Let (F,G) and (F′,G′) be fibred 1-cells Φ → Φ′. A fibred 2-cell consists of a pair of natural
transformations α : F → F′ and β : G → G′ such that, for every object M in A , the morphism
αM : MF→ MF′ in A ′ lies over the morphism βMΦ : MΦG→ MΦG′ in B′. This situation is
shown in the following figure.

A A ′

B B′

Φ

F

F′

Φ′

G

G′

α

β

· We call a fibred 2-cell (α, β) : (F,G) → (F′,G′) pure if (F,G) and (F′,G′) are pure fibred 1-cells
and if, for every object M in A , the morphism αM : MF→MF′ in A ′ lies over the identity.

⋄
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Definition 2.3.12.

· The 2-category Fib of fibrations consists of fibrations, fibred 1-cells and fibred 2-cells.

· Let B be a category. The 2-category FibB of fibrations over B consists of fibrations over B, pure
fibred 1-cells and pure fibred 2-cells.

⋄

We now define a 2-category of indexed categories.

Definition 2.3.13.

· Let I : Bop
→ Cat and K : B′op

→ Cat be indexed categories. An indexed 1-cell I → K
consists of a functor F : B → B′ and a pseudonatural transformation τ:

Bop B′op

Cat

I K

Fop

τ

· We call an indexed 1-cell (F, τ) : I→ K pure if X = B′ and F = idB .

· Let (F, τ) and (G, σ) be indexed 1-cells I → K. An indexed 2-cell I → K consists of a natural
transformation α : F→ G and a modification m:

Bop B′op

Cat

I K

Fop

τ m
⇛

Bop B′op

Cat

I K

Fop

Gop

σ

αop

· We call an indexed 2-cell (α,m) : (F, τ)→ (G, σ) a pure if (F, τ) and (G, σ) are pure indexed 1-cells
and α = ididB

.

⋄

Definition 2.3.14.

· The 2-category IndCat of indexed categories consists of indexed categories, indexed 1-cells and
indexed 2-cells.

· Let B be a category. The 2-category IndCatB of indexed categories over B consists of indexed
categories over B, pure indexed 1-cells and pure indexed 2-cells; this is equal to the 2-category
2Catps(Bop,Cat).
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2.4. Opfibrations and opindexed categories

⋄

Now that we’ve defined 2-categories of fibrations and of indexed categories, we can state the Gro-
thendieck constrction as a 2-equivalence of 2-categories.

Theorem 2.3.15.

· The function that associates a cleaved fibration IG :
∫
I→ B to an indexed category I : Bop

→ Cat
extends to a functor of 2-categories

G : IndCatB → FibB .

· The function that associates an indexed categoryΦG−1 : Bop
→ Cat to a cleaved fibrationΦ : A → B

extends to a functor of 2-categories

G−1 : FibB → IndCatB .

· The functors G and G−1 are part of a 2-equivalence IndCatB ≃ FibB .

· The above 2-equivalence extends to a 2-equivalence IndCat ≃ Fib .

2.4 Opfibrations and opindexed categories

In this section, we look at the dual notions of cartesian morphism and fibration: opcartesian morphisms
and opfibrations. The property of a functor Φ : A → B being a fibration enables us to ‘pull’ an object
M in the fibre category AB′ back along a morphism f : B → B′ in B to obtain an object M f ∗ in the
fibre category AB. Our first example of this (see Section 2.1) was pulling an H-module W back along
a group homomorphism f : G → H to obtain the G-module Wf known as the restriction. The dual of
restriction is induction. Given a group homomorphism f : G → H and a G-module V, the induced
H-module is CH⊗G V, where the group algebra CH is a G-module via restriction! Notice that induction
‘pushes’ the G-moudle V along the group homomorphism f : G→ H to obtain an H-module. We’ll soon
use induction in Example 2.4.9 to show that the acting group functor Rep : GrpRep→ FinGrp is an
opfibration.

Definition 2.4.1. We call a functorΦ : A → B an opfibration if the opposite functorΦop : A op
→ Bop

is a fibration. ⋄

Definition 2.4.2. We call a morphism ρ : C→ P in A opcartesian if it Φop-cartesian as a morphism in
A op. ⋄

The following proposition unpacks what it means for a morphism to be opcartesian.

Proposition 2.4.3. LetΦ : A → B be a functor, let ρ : C→ P be a morphism in A and let f : B→ B′ denote
the morphism ρΦ in B. The morphism ρ : C→ P is opcartesian if, and only if, for each morphism h : B′ → E
in B and each morphism ω : C → Q in A that lies over f # h, there exists a unique map ξ : P → Q that lies
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over h and that satisfies ω = ρ # ξ. This situation is depicted in the following figure.

Q

C P

E

B B′

ω

ρ

ξ

f

h

A

B

Φ (2.4.4)

□

In analogy to Proposition 2.1.4, the following is a less verbose definition of an opcartesian morphism.

Proposition 2.4.5. Let Φ : A → B be a functor, let ρ : C → P be a morphism in A , and let f : B → B′

denote the morphism ρΦ in B. Then the morphism ρ : C→ P is opcartesian if, and only if, for each morphism
h : B′ → E in B and each object Q in A , the map

A h(P,Q) −→ A f #h(C,Q)
ξ 7−→ ρ # ξ

(2.4.6)

is a bijection.

Notation 2.4.7. The unique morphism ξ in (2.4.4) will be written as ρ⊸ ω. This is meant to make the
reader think of taking the equation ρ #ξ = ω and ‘dividing’ both sides on the left by ρ to get the equation
ξ = ρ⊸ ω. With this notation we can write the inverse to the bijection (2.4.6) as

A f #h(C,Q) −→ A h(P,Q)
ω 7−→ ρ⊸ ω

.

⋄

It is easy to check that opcartesian morphisms and opfibratios and are analogous to cartesian mor-
phisms and fibrations:

Proposition 2.4.8. The functor Φ : A → B is an opfibration if, and only if, for every morphism f : B→ B′ in
B and every object C in A lying over B, there exists an opcartesian morphism ρ : C→ P that lies over f . □

In Examples 2.1.16 and 2.1.19, we showed that the functors Rep and FamC are fibrations. We now
show that they are also opfibrations in Examples 2.4.9 and 2.4.11.

Example 2.4.9. We’ll show that the forgetful functor Rep : GrpRep→ FinGrp is an opfibration. Let
f : G→ H be a group homomorphism, let (G,V) be a representation lying over G, and define the linear
map i : V → CH f ⊗G V by (v)i = eH⊗v. We’ll show that the morphism ( f , i) : (G,V)→ (H,CH f ⊗G V)
in GrpRep, which lies over f , is opcartesian.
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Suppose that x : H→ K is a group homomorphism and suppose that ( f # x, ω) : (G,V)→ (K,U) is
a module map that lies over f # x. Define the morphism (h, ξ) : (H,CH f ⊗G V)→ (K,U) in GrpRep
by (h ⊗ v)ξ = (h)x · (v)ω. The diagram

(K,U)

(G,V) (H,CH f ⊗G V)
( f ,i)

(h,ξ)

( f #h,ω) (2.4.10)

in GrpRep commutes because, for each v in V, (v)ω = (eH⊗v)ξ = (v)(i#ξ). If (h, ζ) : (H,CH f⊗GV)→
(K,U) is a morphism in GrpRep making (2.4.10) commute, then

(h ⊗ v)ζ = (h · (eH ⊗ v))ζ = (h)x · (eH ⊗ v)ζ = (h)x · (v)(i # ζ) = (h)x · (v)ω.

Therefore, (h, ξ) is the unique morphism (H,CH f ⊗G V) → (K,U) that lies over h and makes (2.4.10)
commute. Hence, ( f , i) is opcartesian, and so Rep : GrpRep→ FinGrp is an opfibration. ⋄

Example 2.4.11. Let C be a category with arbitrary coproducts; we’ll denote coproducts by
∑

. We’ll
show that the forgetful functor FamC : FamC → Set is an opfibration. Let f : X → Y be a map
of sets, let (A,X) be an X-indexed family of objects. Let A f denote the Y-indexed family of objects
(
∑

w∈(y) f−1 Aw)y∈Y, and, for each x ∈ X, let ιx denote the inclusion morphism A f (x) →
∑

w∈ f−1( f (x)) Aw.
We’ll show that the morphism (ι, f ) : (A,X)→ (A f ,Y) in FamC , which lies over f , is opcartesian.

Suppose that h : Z→ X is a map of sets and suppose that (ω, f # h) : (A,X)→ (C,Z) is morphism
in FamC lying over f # h. Suppose that (ξ, h) : (A f ,Y) → (C,Z) is a morphism in FamC satisfying
(ι, f ) # (ξ, h) = (ω, f # h). Then the following diagram in C commutes.

Ax
∑

w∈(y) f−1 Aw

Ax C((x) f )h)

ξ(x) f

ιx

ξ(x) f |Ax

ωx

Therefore, if y ∈ ( f ) im, we have, for each w ∈ (y) f−1, ξy|Aw = ωx, and if y < ( f ) im, then we must take
ξy to be the unique morphism

∑
w∈ f−1(y) Aw → Ch(y). Therefore, (ξ, h) is the unique morphism that lies

over h and that satisfies (ι, f ) # (ξ, h) = (ω, f # h), so (ι, f ) is opcartesian. ⋄

Example 2.4.12. We’ll show that the codomain functor ArrA : A →
→ A is an opfibration. Let f : A→

B and r : L → A be a morphisms in A , so r is an object in A → and (r)Arr = A. Consider the
commutative square

L A

L B

f

r

r# f
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in A . We’ll show that the morphism (idL, f ) : r→ r # f in A →, which lies over f , is opcartesian.
Suppose that h : B→ D, q : N→ D and u : L→ N are morphisms in A , as shown in the following

figure.
(q : N→ D)

(r : L→ A) (r # f : L→ B)

C

A B

(idL, f )

f

h

(u, f #h)

Rewrite the square
L A

N D

u f #h

r

q

that defines the morphism (u, f # h) : r→ q as

L A

L B

N D.

r

f

r# f

u h

q

It then becomes clear that (u, h) : r # f → q is the unique morphism r # f → q in A → that lies over h (that
is, of the form (,̃h)) and satisfies (idL, f ) # (u, h) = (u, f # h). Therefore, the morphism (idL, f ) : r→ r # f
is opcartesian. ⋄

The reader may wish to skip the remainder of this section on first reading as the definitions and
propositions stated are directly analogous to those in Sections 2.1 and 2.2.

Definition 2.4.13. Let Φ : A → B be an opfibration.

· An opcleaving forΦ is a choice, for each morphism f : B→ B′ in B and each object C in A lying
over B, of opcartesian morphism opcart f

C : C→ P in A that lies over f .

· An opcleaved fibration is an opfibration equipped with an opcleaving.
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2.4. Opfibrations and opindexed categories

· A morphism ξ in A is called pure if it lies over an identity morphism.

· We call A the total category of Φ and we call B the base category of Φ.

⋄

Notation 2.4.14. Given an opcleaved fibration Φ : A → B, we will—unless it’s unclear from context—
denote the opcartesian morphisms the opcleaving by opcart = (opcart f

C). ⋄

IfΦ : A → B is a fibration, then we have pure-cartesian factorisation of morphism in A (see Propo-
sition 2.1.14). Similarly, if Φ : A → B is an opfibration, then we have opcartesian-pure factorisation of
morphisms in A .

Proposition 2.4.15. LetΦ : A → B be an opfibration. Then, for each morphism ω : C→ Q in A , there exists
an opcartesian morphism ρ and a pure morphism ξ such that ω = ρ # ξ. In particular, if we fix an opcleaving
for Φ, there exists a unique opcartesian morphism ρ in the opcleaving and a unique pure morphism χ such that
ψ = χ # ϕ. □

We have the following basic properties of opcartesian morphisms; these are analogous to those for
cartesian morphisms we gave in Proposition 2.1.24.

Proposition 2.4.16. Let Φ : A → B be a functor.

(i) Let ρ : C→ P and ρ′ : P→ R be morphisms in A . Ifϕ andϕ′ are opcartesian, thenϕ#ϕ′ is opcartesian.

(ii) Let ρ : C→ P and ξ : P→ Q be morphisms in A . If ρ and ρ # ξ are opcartesian, then ξ is opcartesian.

(iii) Let ρ : C→ P and ω : C→ Q be opcartesian morphisms in A . If ρΦ = ωΦ, then there exists a unique
isomorphism ξ : P→ Q that lies over idB′ and satisfies ω = ρ # ξ.

(iv) Every isomorphism in A is opcartesian.

(v) Let ρ be a morphism in A and suppose that ρΦ is an isomorphism in B. Then, ρ is opcartesian if, and
only if, ρ is an isomorphism.

Given an opcleaving ofΦ, all other opcartesian morphisms can be obtained from those in the opcleav-
ing.

Corollary 2.4.17. LetΦ : A → B be a cleaved opfibration. Then, a morphismω in A is opcartesian if, and only
if, there exists an opcartesian morphism ρ and a pure isomorphism ξ such that ω = ρ # ξ. In particular, if we fix
an opcleaving forΦ, there exists a unique opcartesian morphism ρ in the opcleaving and a unique pure isomorphism
ξ such that ω = ρ # ξ.

Just as a cleaved fibration gives us a pull-back functor functor f ∗ : AB′ → AB for each morphism
f : B → B′ in B (see Proposition 2.1.27), an opcleaved opfibration gives us a push-forward funtor
f! : AB → AB′ for each morphism f : B→ B′ in B.

Proposition 2.4.18. Let Φ : A → B be an opfibration, let opcart be an opcleaving for Φ, and let f : B→ B′

be a morphism in B. Then the following defines a functor f! : AB → AB′ .
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· For each object C in AB, define f!C to be the domain of opcart f
C.

· For each morphism ω : C → Q in AB, using the fact that opcart f
C is cartesian, define ω f! to be the

unique morphism C f! → Q f! in A that lies over idB′ and satisfies opcart f
C #ω f! = ω # opcart f

Q. This
situtation is shown in the following figure.

Q Q f!

C C f!

B′

B B′

opcart f
Q

idB′

f

f

ω

opcart f
C

ω f!
A

B

Φ

□

Examples 2.4.19.

· For the opfibration Rep : GrpRep→ FinGrp and a group homomorphism f : G→ H, we have

f! : RepG −→ RepH

V 7−→ CH ⊗G V
α 7−→ idCH ⊗G α.

· Let C be a category with coproducts. For the opfibration FamC : FamC → Set and a map of sets
f : X→ Y, we have

f! : C X
−→ C Y

(Ax)x∈X 7−→

 ∑
w∈(y) f−1

Aw


y∈Y

(βx : Ax → A′x)x∈X 7−→

 ∑
w∈(y) f−1

βx # ι′w


y∈Y

,

where, for each y ∈ Y and each w ∈ (y) f−1, we denote by ι′w the inclusion morphism A′w ↪→∑
w∈(y) f−1 A′w.

⋄
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For the bifibration Rep : GrpRep → FinGrp, we have the following well-known isomorphism
between πGH

H ! and the coinvariants functor.

Example 2.4.20. Let G and H be finite groups and let πG : G ×H→ H denote the projection map. The
coinvariants functor (− )(G) : RepG×H → RepH is defined on objects by

V(G) = V/⟨g · v − v | g ∈ G, v ∈ V⟩.

The space V(G) is called the space of coinvariants and it’s largest quotient of V on which G acts trivially.
We’ll show that the following are mutually inverse H-module maps.

ϕ : V(G) −→ CHH ⊗G×H V :ψ
[v] 7−→ eH ⊗ v

[h · v]←−[ h ⊗ v

They are H-module maps since

(h · [v])ϕ = ([h · v])ϕ = eH ⊗ (h · v) = h ⊗ v = h · (eH ⊗ v) = h · ([v])ϕ,

and
(h · (x ⊗ v))ψ = (hx ⊗ v)ψ = [hx · v] = h · [x · v] = h · (x ⊗ v)ψ,

and they are mutually inverse since

(([v])ϕ)ψ = (eH ⊗ v)ψ = [e · v] = [v]

and
((h ⊗ v)ψ)ϕ = ([h · v])ϕ = eH ⊗ (h · v) = h ⊗ v.

These maps are the components of a natural isomorphism (πG)! � (− )(G). ⋄

Proposition 2.4.21. LetΦ : A → B be an opcleaved opfibration and let f : B→ B′ be a morphism in B. Then
the bijections

AB′( f!N,M) −→ A f (N,M)

ξ 7−→ opcart f
N # ξ

are natural in both N and M.

Now for the analogues of indexed categories and the Grothendieck construction.

Definition 2.4.22. An opindexed category I consists of a category B and a pseudofunctor B → Cat,
where we consider B as a bicategory with identity 2-cells. We call B the base category of the opindexed
category I. ⋄

Remark 2.4.23. Let’s unpack this definition. An opindexed categoryI : B → Cat consists of the following
data:
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(i) a base category B ;

(ii) for each object B in B, a category BI ;

(iii) for each morphism f : B→ B′ in B, a functor fI : BI→ B′I ;

(iv) for each pair f : B→ B′, g : B′ → B′′ of morphisms in B, a natural isomorphism

I2!
f g : fI # gI→ ( f # g)I ;

(v) for each object B in B, a natural isomorphism

I0!
B : idBI → idBI .

These data are required to satisfy the following axioms.

· (Associativity) For every composable triple f : B→ B′, g : B′ → B′′, h : B′′ → B′′′ of morphisms
in B, the following diagram commutes.

fI # gI # hI fI # (g # h)I

( f # g)I # hI ( f # g # h)I

I2!
f g#hI

fI#I2!
gh

I2!
f #g,h

I2!
f ,g#h

· (Unitality) For every morphism f : B→ B′ in B, the following diagrams commute.

fI # idB′I ( f # idB′)I

fI # idB′I fI

fI#(I0!
B′ )
−1

I2!
f ,idB′ idBI # fI (idB # f )I

idBI # fI fI

(I0!
B )−1# fI

I2!
idB , f

⋄

Definition 2.4.24. Let I : B → Cat be an opindexed category. The total category of I, denoted by∫
I

is the category defined as follows.

· An object is a pair
(
M
B

)
consisting of an object B in B an object M in BI.
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· A morphism
(
M
B

)
→

(
M′

B′

)
is a pair

(
ρ
f

)
consisting of a morphism f : B→ B′ in B and a morphism

ρ : M f! →M′ in BI.

· The composite of the morphisms
(
ρ
f

)
:
(
M
B

)
→

(
M′

B′

)
and

(
ω
g

)
:
(
M′

B′

)
→

(
M′′

B′′

)
in

∫
I is given

by the pair (
(I2!

f g)−1 # ρg! # ω
f # g

)
:
(
M
B

)
→

(
M′′

B′′

)
.

· For each object
(
M
B

)
in

∫
I, the identity id( M

B
) is given by the pair

(
(I0!

B,M)−1

idB

)
:
(
M
B

)
→

(
M
B

)
.

⋄

2.5 Bifibrations

We’ve seen that the functor Rep : GrpRep → FinGrp, the functor FamA : FamA → Set (for a
category A with coproducts), and the functor ArrA : A →

→ A (for a category A with pullbacks) are
both fibrations and opfibrations (see Examples 2.1.16, 2.1.19, 2.1.22, 2.4.9, 2.4.11 and 2.4.12). Such functors
are called bifibrations.

Definition 2.5.1.

· We call a functor Φ : A → B a bifibration if it is both a fibration and an opfibration.

· A bicleaving for a bifibration Φ consists of a cleaving and an opcleaving for Φ.

· A bicleaved bifibration is a bifibration equipped with a bicleaving.

⋄

Before continue this secion where we discuss bifibrations, we’ll give a non-example: an opfibration
that is not a fibration. In Example 2.1.22, we proved that, if A is a category with pullbacks, then the
codomain functor ArrA : A →

→ A is a fibration. In a moment, we’ll prove the converse: if the
codomain functor ArrA is a fibration then the category A has pullbacks. Therefore, given any choice of
category A without pullbacks (e.g. the category with two objects and no non-identity morphisms), the
codomain functor ArrA is an opfibration (this fact doesn’t depend on A ) but not a fibration.

Proposition 2.5.2. Let A be a category, and suppose that the codomain functorArrA : A →
→ A is a fibration.

Then A has pullbacks.
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Proof. Let f : A → B and t : K → B be morphisms in A , so t is an object in A → and (t)ArrA = B.
Since ArrA is a fibration, there exists a cartesian morphism (h, f ) : s → t in A → that lies over f . We
will show that the square

M A

K B

h f

s

t

(2.5.3)

in A is a pullback square.
Suppose that the following is a cone.

L

M A

K B

l1

f

t

l2

s

h

Since the morphism (h, f ) : s→ t is cartesian, there exists a unique morphism (v, idA) : l2 → s in A →

that lies over idA and that makes the following diagram in A → commute.

l2

s t

(l1, f )

(h, f )

(v,idA)

In other words, there exists a unique morphism v : L→M in A such that v # s = l2 # idA and v # h = l1.
Therefore, the square (2.5.3) is a pullback square. □

Let Φ : A → B be a bifibration and let f : B → B′ be a morphism in B. By Propositions 2.1.31
and 2.4.21, we have bijections

AB(N,M f ∗)→ A f (N,M) and AB′(N f!,M)→ A f (N,M)

natural in N and M. Composing these gives a bijection

AB′(N f!,M)→ AB(N,M f ∗) (2.5.4)

natural in N and M, i.e. an adjunction f! ⊣ f ∗.

Proposition 2.5.5 ([Jac91, Lemma 9.1.2]). LetΦ : A → B be a bicleaved bifibration. Then, for each morphism
f : B→ B′ in B, the functor f! : AB → AB′ is left adjoint to the functor f ∗ : AB′ → AB. □
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Explicity the bijection (2.5.4) is given by

AB′(N f!,M) −→ AB(N,M f ∗)

ξ 7−→ (opcart f
N # ξ)

⊸
cart f

M.
(2.5.6)

Later it’ll be useful to have explicit descriptions of the unit and counit of the adjunction f! ⊣ f ∗ using
(2.5.6); this is subject of the following remark.

Remark 2.5.7. Recall from Definition 1.3.4 that, for each object N in AB, the component η f
N : N→ N f! f ∗

of the unit of the adjunction f! ⊣ f ∗ is the adjunct of id f!N : N f! → N f!. So, using (2.5.6), we have

opcart f
N

⊸
cart f

N f!
.

In other words, η f
N : N → N f! f ∗ is the unique pure morphism N → N f! f ∗ that makes the following

diagram in A commute.

N

N f! f ∗ N f!
cart f

N f!

opcart f
N

Similarly, for each object M in AB′ , the component ε f
M : M f ∗ f! → M of the counit of the adjunction

f! ⊣ f ∗ is given by

cart f
M
⊸ opcart f

M f ∗ ,

or in other words, it is the unique pure morphism M f ∗ f! →M that makes the following diagram in A
commute.

M

M f ∗ M f ∗ f!
opcart f

M f ∗

cart f
M

⋄

Now, for the bifibrations Rep and Fam, we look at examples of the unit and counit of the adjunction
f! ⊣ f ∗.

Example 2.5.8. Consider the bifibration Rep : GrpRep → FinGrp. For each group homomorphism
f : G→ H, we have an adjunction f! ⊣ f ∗. For each G-module W, the unitη f

(G,W) : (G,W)→ (G,W) f! f ∗

is given by the G-module map

W −→ (CH ⊗H W)f

w 7−→ eH ⊗ w
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and, for each H-module V, the counit ε f
(H,V) : (H,V) f ∗ f! → (H,V) is given by the H-module map

CH ⊗G Vf −→ V

h ⊗ v 7−→ h · v

⋄

Example 2.5.9. Consider the bifibration FamC : FamC → Set. For each maps of sets f : X → Y, we
have an adjunction f! ⊣ f ∗. For each X-indexed family of objects A = (Ax)x∈X, the unit η f

(A,X) : (A,X)→
(A,X) f! f ∗ is given by the inclusion map

Ax
∑
α∈X

(α) f=(x) f

Aα

and, for each Y-indexed set B = (By)y∈Y, the counit ε f
(B,Y) : (B,Y) f ∗ f! → (B,Y) is given by the codiagonal

map ∑
w∈ f−1(y)

idBy :
∑

w∈ f−1(y)
By By

⋄

The following proposition gives a way of upgrading a fibration to a bifibration.

Proposition 2.5.10 ([Jac91, Lemma 9.1.2]). Let Φ : A → B be a cleaved fibration. If, for every morphism
f : B→ B′, the functor f ∗ : AB′ → AB has a left adjoint, then Φ : A → B is a bifibration.

Proof. For each morphism f : B → B′ in B, let f! : AB → AB′ denote a left adjoint to the functor
f ∗ : AB′ → AB. The adjunction f! ⊣ f ∗ gives the bijection

AB′(N f!,M) −→ AB(N,M f ∗)
ξ 7−→ ηN # ξ f ∗

and Proposition 2.1.31 gives the bijection

AB(N,M f ∗) −→ A f (N,M)

χ 7−→ χ # cart f
M

.

Compose these to get the bijection

AB′(N f!,M) −→ A f (N,M)

ξ 7−→ ηN # ξ f ∗ # cart f
M

. (2.5.11)
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The diagram

N f! f ∗ N f!

M f ∗ M

ξ f ∗ ξ

cart f
M

cart f
N f!

in A commutes by definition of ξ f ∗. Therefore, the bijection (2.5.11) is equal to the following bijection.

AB′(N f!,M) −→ A f (N,M)

ξ 7−→ ηN # cart f
N f!

# ξ

This means that, for each morphism f : B→ B′ in B, the morphism ηN#cart f
N f!

: N→ N f! is opcartesian
and lies over f . Therefore, Φ : A → B is an opfibration and hence a bifibration. □

In Example 2.4.12, we saw that the codomain functor ArrA : A →
→ A is an opfibration where, for

each morphism f : A→ B in A and each morphism r : L→ A in A , the opcartesian morphism r→ r f!
we gave was given by the commutative square

L A

L B

f

r

r# f

in A . The following example shows—assuming only the proof that Arr is a fibration—how we can use
Proposition 2.5.10 to deduce that Arr is a bifibration.

Example 2.5.12. We showed in Example 2.1.22 that the codomain functorArr is a fibration. The following
diagram shows, by the universal property of pullbacks, that there is a natural correspondence between
morphisms α : L→ K ×t f A that satisfy α # t f ∗ = r and morphisms β : L→ K that satisfy β # t = r # f .

L

K ×t f A A

K B

r

α

β

t f ∗

⌟
f

t
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Therefore, there is a natural bijection between commutative squares

L A

K ×t f A A

r

α

t f ∗

in A and commutative squares

L B

K B

r# f

β

t

in A . In other words, this is a natural bijection between morphisms r → t f ∗ in A →

A and morphisms
r # f → t in A →

B . So taking r f! = r # f : L→ B makes Arr a bifibration via Proposition 2.5.10 since we
have an adjunction f! ⊣ f ∗. ⋄

The following theorem states useful identities relating the pseudofunctoriality constraints Φ2∗
f g, Φ0∗

B ,

Φ2!
f g and Φ0!

B .

Theorem 2.5.13. Let Φ : A → B be a bicleaved bifibration. Then the following equalities holds.

(i)

g!

f!

=

( f # g)!

g!

f!

( f # g)!

f ∗

g∗
( f # g)∗
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(ii)

g!

f!

=

( f # g)!

g!

f!

( f # g)!

f ∗

g∗
( f # g)∗

(iii)

f ∗

g∗

=

( f # g)∗

f ∗

g∗

( f # g)∗

g!

f!
( f # g)!
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(iv)

f ∗

g∗

=

( f # g)∗

f ∗

g∗

( f # g)∗

g!

f!
( f # g)!

(v)

=

idB!

id∗B

idB!

(vi)

=

idB!

id∗B

idB!
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(vii)

=

id∗B

idB!

id∗B

(viii)

=

id∗B

idB!

id∗B

Proof. We’ll prove the equalities (i) and (v); the equalities (ii)–(iv) follow by application of the snake
identities for the adjunctions f! ⊣ f ∗ and g! ⊣ g∗ to (i), and the equalities (vi)–(vii) follow by application
of the snake identities for the adjunction idB! ⊣ idB

∗ to (v).
First, the proof of (i). Let Q be an object in AB. The component morphism Q( f # g)! → Qg! f! of the

right-hand side is equal to the following composite.

Q f!g!

Q f!g!( f # g)∗( f # g)!

Q f!g!g∗ f ∗( f # g)!

Q f! f ∗( f # g)!

Q( f # g)!

η
f
Q( f #g)!

(Φ2∗
f g)Q f! g! ( f #g)!

η
g
Q f!

f ∗( f #g)!

ε
f #g
Q f! g!

(2.5.14)
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The component morphism Q( f # g)! → Qg! f! of the left-hand side is defined to be the unique pure
morphism Q( f # g)! → Qg! f! that makes the following diagram in A commute.

Q f!g!

Q f!

Q Q( f # g)!
opcart f #g

Q

opcart f
Q

opcartg
Q f!

(2.5.15)

The morphism (2.5.14) is pure since it is the composite of pure morphisms. Therefore, it suffices to show
that the morphism (2.5.14) makes the diagram (2.5.15) commute; this follows from the fact that following
diagram commutes.

Q f!g!

Q f! Q f!g!( f # g)∗( f # g)!

Q f!g!g∗ Q f!g!( f # g)∗

Q f!g!g∗ f ∗( f # g)!

Q f!g!g∗ f ∗

Q f! f ∗ Q f! f ∗( f # g)!

Q Q( f # g)!
opcart f #g

Q

η
f
Q

η
f
Q( f #g)!

opcart f #g
Q f! f ∗

opcart f
Q

cart f
Q f!

η
g
Q f!

η
g
Q f!

f ∗

cart f
Q f! g! g∗

opcartg
Q f!

cartg
Q f! g!

(Φ2∗
f g)Q f! g!

opcart f #g
Q f! g! g∗ f ∗

opcart f #g
Q f! g!

(Φ2∗
f g)Q f! g! ( f #g)!

η
g
Q f!

f ∗( f #g)!

cart f #g
Q f! g!

ε
f #g
Q f! g!

(8)

(6)

(1)

(2)

(4)

(5)

(7)

(3)

The triangles (1), (2) and (3) commute by the definitions of η f
Q, η f

Q f!
and ε f #g

Q f! g!
. The squares (4), (5) and

(6) commute by the definition of ( f # g)! on morphisms, and (7) commutes by the definition of f ∗ on
morphisms. Finally, the square (8) commutes by the definition of (Φ2∗

f g)Q f! g! .
And now, the proof of (v). Let Q be an object in AB. For ease of reading we’ll write idB as just id. The

component morphism Qid! → Q of the left-hand side is defined to be (opcartid
Q )−1, and the component

78



2.5. Bifibrations

morphism id!Q→ Q is equal to the following composite.

Qid! Qid∗id! Q
(cartid

Qid!
)−1id! εid

Q

The following diagram commutes by the definition of (cartid
Qid!

)−1id! and the definition of εidB
Q , and the

result follows.

QidB! Qid∗id! Q

Q Qid∗

(cartid
Qid!

)−1id! εid
Q

opcartid
Q opcartid

Mid∗

(cartid
Qid!

)−1

cartid
Q

□

Given a bifibration Φ : A → B, we have an indexed category I : Bop
→ Cat and an opindexed

category K : B → Cat that satisfy BI = BK for each object B in B and fK ⊣ fI for each morphism
f : B→ B′ in B. It’s natural to ask “Are the total categories

∫
I and

∫
K are equivalent?”; we describe

an isomorphism between these two categories using string diagrams.

Proposition 2.5.16. Suppose thatI : Bop
→ Cat is an indexed category and thatK : B → Cat is an opindexed

category such that BI = BK for each object B in B and fK ⊣ fI for each morphism f : B→ B′ in B. Then
the following functor, which is given by taking the adjunct (see Definition 1.3.2), is an isomorphism of categories.∫

I −→

∫
K(

M
B

)
7−→

(
M
B

)
(
ϕ : M→M′ f ∗

f : B→ B′

)
7−→

(
ϕ : M f! →M′

f : B→ B′

) (2.5.17)

Proof. We’ll show that (2.5.17) is a functor; the inverse is also given by taking the adjunct. Let
(
M
B

)
be an

object in
∫
I. The following string diagrams show that id( M

B
) 7→ id( M

B
) using Theorem 2.5.13.

id∗B

M

7→
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id∗B

idB!

M

=

idB!

M

Let
(
ϕ : M→M′ f ∗

f : B→ B′

)
:
(
M
B

)
→

(
M′

B′

)
and

(
ψ : M′ →M′′g∗

g : B′ → B′′

)
:
(
M′

B′

)
→

(
M′′

B′′

)
be morphisms in

∫
I.

The following series of equalities proves binary functoriality.

ϕM M′′

f ∗

ψ

g∗

( f # g)∗

M′

7→

ϕM M′′

f ∗

ψ

g∗

( f # g)∗

M′

(1) =

( f # g)!

ϕM M′′

f ∗

ψ

g∗

( f # g)∗

M′

(2) =

( f # g)!

f!

g!
( f # g)!
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ϕM M′′

f ∗

ψ

g∗

M′

=

( f # g)!

f!

g!

ϕM M′′

f ∗

ψ

g∗

M′

=
( f # g)!

f!

g!

ψ
M′′M

g!

ϕ

f!
( f # g)!

M′

The equality (1) follows from Theorem 2.5.13(iii), and the equality (2) follows from the snake identities
for the adjunction ( f # g)! ⊣ ( f # g)∗. □

So far, we’ve seen the Grothendieck construction give a 2-equivalence between fibrations and indexed
categories and between opfibrations and opindexed categories. Recall from Proposition 2.5.10 that a
functor is a bifibration if, and only if, it is a fibration for which each pull-back functor f ∗ has a left
adjoint. This idea is what leads to Theorem 2.5.20, which is analogy of the Grothendieck construction for
bifibrations. We first need to give the definitions of the 2-category of bifibrations and the 2-category of
bifibrations over a fixed category B, both of which are very similar to the definitions of Fib and FibB

(see Definitions 2.3.11 and 2.3.12).

Definition 2.5.18.

· Let Φ : A → B and Φ′ : A ′
→ B′ be bifibrations. A bifibred 1-cell Φ→ Φ′ consists of a pair
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of functors F : A → A ′ and G : B → B′ such that the diagram

A A ′

B B′

Φ

F

Φ′

G

in Cat commutes and, for everyΦ-cartesian morphism ϕ in A and everyΦ-opcartesian morphism
ρ in A , the morphism ϕF in A ′ is Φ′-cartesian and the morphism ρF in A ′ is Φ′-opcartesian.

· We call a bifibred 1-cell (F,G) : Φ→ Φ′ pure if B = B′ and G = idB .

· Let (F,G) and (F′,G′) be bifibred 1-cells Φ → Φ′. A bifibred 2-cell consists of a pair of natural
transformations α : F → F′ and β : G → G′ such that, for every object M in A , the morphism
αM : MF→ MF′ in A ′ lies over the morphism βMΦ : MΦG→ MΦG′ in B′. This situation is
shown in the following figure.

A A ′

B B′

Φ

F

F′

Φ′

G

G′

α

β

· We call a bifibred 2-cell (α, β) : (F,G)→ (F′,G′) pure if (F,G) and (F′,G′) are pure bifibred 1-cells
and if, for every object M in A , the morphism αM : MF→MF′ in A ′ lies over the identity.

⋄

Definition 2.5.19.

· The 2-category Bifib of fibrations consists of bifibrations, bifibred 1-cells and bifibred 2-cells.

· Let B be a category. The 2-category Bifib
B

of bifibrations over B consists of bifibrations over B,
pure bifibred 1-cells and pure bifibred 2-cells.

⋄

The following result is an analogy of the Grothendieck construction for bifibrations.

Theorem 2.5.20 ([HP15, Proposition 2.2.1]). There exists a 2-equivalence

G : Bicatps(Bop,AdjCat)→ Bifib
B
.
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2.6. Monoidal fibrations

Notation 2.5.21. Let Φ : A → B be a bifibration and let I : Bop
→ Cat and K : B → Cat be the

corresponding indexed and opindexed categories. The categories
∫
I and

∫
K are isomorphic and use

very similar notation for their morphisms; we therefore use the notation(
ϕ : P→ Q f ∗

f : B→ B′

)∗
:
(
P
B

)
→

(
Q
B′

)
for a morphism in

∫
I and the notation(

ϕ : P f! → Q
f : B→ B′

)
!

:
(
P
B

)
→

(
Q
B′

)
for a morphism in

∫
K. ⋄

2.6 Monoidal fibrations

The 2-category MonFib of monoidal fibrations is defined to be the 2-category PsMon(Fib) of pseu-
domonoids in the 2-category of fibrations. Unpacking this definition, we get definitions of monoidal
fibrations, monoidal fibred 1-cells and monoidal fibred 2-cells that are similar to their non-monoidal coun-
terparts (see Definition 2.3.11). A detalied argument regarding the equivalence of the definition of a
monoidal fibration as a pseudomonoid and the following ‘unpacked’ definition—orignally given by Shul-
man [Shu08]—can be found in [Vas18].

Definition 2.6.1.

· Let A and B be monoidal categories. A monoidal fibration A → B is a strict monoidal func-
tor Φ : A → B such that Φ is a fibration and the monoidal product ⊗A preserves cartesian
morphisms—by which we mean that if ϕ and ψ are cartesian morphisms in A , then ϕ ⊗A ψ is
cartesian.

· Let Φ : A → B and Φ′ : A ′
→ B′ be monoidal fibrations. A monoidal fibred 1-cell Φ → Φ′

consists of a pair of monoidal functors (F, ϕ, ϕ0) : A → A ′ and (G, ψ, ψ0) : B → B′ such that
(F,G) is a fibred 1-cell, ϕ lies over ψ and ϕ0 lies over ψ0.

· We call a monoidal indexed 1-cell (F,G) : Φ→ Φ′ pure if B = B′ and (G, ψ, ψ0) = idB .

· Let (F,G) and (F′,G′) be monoidal fibred 1-cells Φ → Φ′. A monoidal fibred 2-cell (F,G) →
(F′,G′) is a fibred 2-cell (α, β) : (F,G) → (F′,G′) such that α and β are both monoidal transfor-
mations.

· We call a monoidal fibred 2-cell (α, β) : (F,G)→ (F′,G′) pure if its underlying fibred 2-cell is pure.

⋄

Definition 2.6.2. Let B be a monoidal category. The 2-category MonFibB consists of monoidal fibrations
over B, pure monoidal fibred 1-cells and pure monoidal fibred 2-cells. ⋄
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Definition 2.6.3. The 2-categories BrMonFib of braided monoidal fibrations and SymMonFib of sym-
metric monoidal fibrations are respectively defined to be the 2-category BrPsMon(Fib) of braided pseu-
domonoids in Fib and the 2-category SymPsMon(Fib) of symmetric pseudomonoids in Fib . Of course,
for a fixed monoidal category B, these 2-categories have sub-2-categories BrMonFibB and SymMonFib

B
for fibrations of the appropriate type with base B. ⋄

Definition 2.6.4. IfΦ is a monoidal fibration and an opfibration and⊗ preserves opcartesian arrows, then
we call Φ a monoidal bifibration. ⋄

Example 2.6.5. We’ll show that the forgetful functor Rep : GrpRep→ FinGrp is a monoidal bifibra-
tion. Firstly, the category of finite groups FinGrp is a cartesian monoidal category, and the category
GrpRep is a monoidal category with monoidal product

(G,V) ⊗ (H,W) = (G ×H,V ⊗W)

and monoidal unit ({1},C). Secondly, it’s easy to check that Rep is a strict monoidal functor. It’s straight-
forward to check that the monoidal product,⊗, in GrpRep of cartesian morphisms is cartesian, It remains
to show that the monoidal product also preserves opcartesian morphisms.

Let f : G → H and g : K → L be group homomorphisms, and let (G,U) and (K,X) be objects in
GrpRep. The monoidal product of the two opcartesian morphisms

( f , u 7→ eH ⊗ u) : (G,U) −→ (H,CH ⊗G U)

and
(g, x 7→ eL ⊗ x) : (K,X) −→ (L,CL ⊗K X)

in GrpRep is the morphism

( f × g, u ⊗ x 7→ (eH ⊗ u) ⊗ (eL ⊗ x)) : (G × K,U ⊗ X) −→ (H × L, (CH ⊗G U) ⊗ (CL ⊗K X)).

This morphism is opcartesian because it’s the composite of the opcartesian morphism

opcart f×g
(G×K,U⊗X) : (G × K,U ⊗ X) −→ (H × L,C(H × K) ⊗G×K U ⊗ X)

and the isomorphism

(idH×L, (h, l) ⊗ (u ⊗ x) 7→ (h ⊗ u) ⊗ (l ⊗ x)) :
(H × L,C(H × K) ⊗G×K U ⊗ X) −→ (H × L, (CH ⊗G U) ⊗ (CL ⊗K X)).

⋄

Example 2.6.6. Let A be a category with pullbacks. Then A and A → are both cartesian monoidal. The
codomain functor ArrA : A →

→ A is a monoidal bifibration: the cartesian product in A → preserves
cartesian morphisms since it preserves pullbacks, and it preserves opcartesian morphism since it’s a functor
and so preserves composition. ⋄
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2.7 Monoidal indexed categories

In this section we’ll summarise the two approaches to defining monoidal indexed categories over a mon-
oidal category X . We follow the expositions of Shulman [Shu08] and of Moeller and Vasilakopoulou
[MV20]; the results of this section also belong to these two papers.

2.7.1 Global monoidal indexed categories

Definition 2.7.1.

· A monoidal indexed category consists of a monoidal category X and a lax monoidal pseudofunctor

(I, µ2, µ0) : (X op,⊗op,1)→ (Cat,×, 1).

· Let I : X op
→ Cat and K : Y op

→ Cat be monoidal indexed categories. A monoidal indexed 1-
cell I→ K is an indexed 1-cell (F, τ) such that the functor F and the pseudonatural transformation
τ are both monoidal.

· Let (F, τ) and (G, σ) be monoidal indexed 1-cells. A monoidal indexed 2-cell is an indexed 2-cell
(α,m) such that the natural transformation α and the modification m are both monoidal.

⋄

Definition 2.7.2.

· The 2-category MonIndCat of monoidal indexed categories consists of monoidal indexed categories,
monoidal indexed 1-cells and monoidal indexed 2-cells.

· Let X be a monoidal category. The 2-category MonIndCat global
X

of monoidal indexed categories
over X consists of monoidal indexed categories over X , pure monoidal indexed 1-cells and pure
monoidal indexed 2-cells; this is equal to the 2-category Mon2Catps(X op,Cat).

⋄

Proposition 2.7.3 ([MV20, Section 3.6]). The 2-category MonIndCat is equal to the 2-category PsMon(IndCat )
of pseudomonoids in IndCat , where the monoidal structure on IndCat defined as follows:

· for each pair of indexed categories I : X op
→ Cat and K : Y op

→ Cat, their monoidal product I⊗K
is the following composite

(X × Y )op X op
× Y op Cat × Cat Cat� I×K ×

· the monoidal unit is the indexed category ∆1 : 1op
→ Cat which has constant value 1.

□
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The two 2-categories Fib and IndCat are both cartesian monoidal 2-categories. Therefore, since
2-equivalences preserve limits, the constituent 2-functors of the 2-equivalence

Fib ≃ IndCat (2.7.4)

from Theorem 2.3.15 are monoidal 2-functors. In order for the 2-equivalence (2.7.4) to be a monoidal
2-equivalence, it remains to show that the unit and counit of the equivalence are monoidal, but this follows
from the universal property of products.

Lemma 2.7.5 ([MV20, Lemma 3.12]). The 2-equivalence Fib ≃ IndCat between the cartesian monoidal 2-
categories of fibrations and indexed categories is symmetric monoidal. □

Every 2-functor between 2-categories preserves equivalences. In particular, this is true from the
2-functors PsMon, BrPsMon and SymPsMon.

Lemma 2.7.6 ([MV20, Proposition 2.11]). A monoidal 2-equivalence K ≃ L induces 2-equivalences

PsMon(K ) ≃ PsMon(L)
BrPsMon(K ) ≃ BrPsMon(L)

SymPsMon(K ) ≃ SymPsMon(L)

between the 2-categories of pseudomonoids in L and pseudomonoids in L , as well as their braided and symmetric
versions.

The following theorem is just a special case of this lemma with K = Fib and L = IndCat .

Theorem 2.7.7 ([MV20, Theorem 3.13]). There exist 2-equivalences

MonFib ≃MonIndCat global

BrMonFib ≃ BrMonIndCat global

SymMonFib ≃ SymMonIndCat global

between the 2-categories of monoidal fibrations and monoidal indexed categories, as well as their braided and
symmetric versions.

The reason we call these monoidal indexed categories global is because they are equivalent to monoidal
fibrations where the total category has a monoidal structure as a whole; Section 2.7.2 deals with the
alternative which is to instead give a monoidal structure to each of the fibre categories.

2.7.2 Fibrewise monoidal indexed categories

Definition 2.7.8. Let X be a monoidal category. The 2-category MonIndCat fibre
X is defined to be equal

to the 2-category 2Catps(X op,MonCat). ⋄

Street [Str80, 1.34] states, for monoidal 2-categories A , K and L , equivalences

2Catps(A , 2Catps(K ,L)) ≃ 2Catps(A ×K ,L) ≃ 2Catps(K , 2Catps(A ,L)).

In the following lemma, Moeller and Vasilakopoulou extend these to monoidal structures.
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Lemma 2.7.9 ([MV20, Lemma 4.3]). Let K and L be monoidal 2-categories.

1. For any monoidal 2-category A ,

2Catps(A ,Mon2Catps(K ,L)) ≃Mon2Catps(K , 2Catps(A ,L))

2. For any cocartesian monoidal 2-category A ,

2Catps(A ,Mon2Catps(K ,L)) ≃Mon2Catps(A ×K ,L).

Corollary 2.7.10 ([MV20, Proposition 4.4]). Let X be a monoidal category. There exists a 2-equivalence

MonIndCat fibre
X ≃ PsMon(IndCatX ).

Corollary 2.7.11. If X is a cartesian monoidal category, then there exists a 2-equivalence

MonIndCat global
X

≃MonIndCat fibre
X .

This implies the following theorem which states that, when X is cartesian monoidal, the two notions
of monoidal indexed category coincide and so, ifΦ : A → B is a monoidal fibration with cartesian base,
we can think of the monoidal structure on A as on the whole of A or the fibre categories AB : B ∈ B.
This theorem was proved by Shulman in [Shu08], but the way we have presented its deduction mirrors
Moeller and Vasilakopoulou’s approach in [MV20].

Theorem 2.7.12 ([Shu08, Thm. 12.7]). If X is a cartesian monoidal category, then there exist 2-equivalences

MonFibX ≃MonIndCat global
X

≃MonIndCat fibre
X ≃ 2Catps(X op,MonCat)

BrMonFibX ≃ BrMonIndCat global
X

≃ BrMonIndCat fibre
X ≃ 2Catps(X op,BrMonCat)

SymMonFib
X
≃ SymMonIndCat global

X
≃ SymMonIndCat fibre

X
≃ 2Catps(X op,SymMonCat).

There are some important consequences of Theorem 2.7.12 which we note now.
IfΦ : A → B is a monoidal fibration, then we have, by definition, a monoidal structure on A , which

we denote by ⊗, and we call this the external monoidal structure. If the base category B is cartesian
monoidal, then, due to the 2-equivalence MonFibX ≃ 2Catps(X op,MonCat), the fibres AB : B ∈ B
each have their own monoidal structure, which we denote by ⊠B, and we call this the internal monoidal
structure.

Recall that the indexed category ΦG−1 associated to the fibration Φ : A → B maps a morphism
f : B→ B′ in B to the pull-back functor f ∗ : AB′ → AB. Since the 1-cells in 2Catps(X op,MonCat)
are strong monoidal functors, Theorem 2.7.12 implies that, when the base category B of a monoidal
fibration is cartesian, the functor f ∗ : AB′ → AB is strong monoidal.

Lastly, an important fact that arises in the proof of Theorem 2.7.12 is the following relationship
between the monoidal product, ⊗, on A and the monoidal product ⊠ on each fibre category:

· for each pair of objects A,B in B, each object M in AA and each object N in AB,

M ⊗N �MπAB∗
B ⊠A×B NπAB∗

A , and

· for each object A in B and each pair P,Q of objects in AA,

P ⊠A Q � (P ⊗Q)∆∗A. (2.7.13)
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2.7.3 Summary

The following schematic from [MV20] summarises what we’ve studied in this section. The squiggly
arrows indicate the global and fibrewise approaches: the global approach takes pseudomonoids in IndCat
and then restricts attention to those that are over X , and the fibrewise approach restricts attention to
IndCatX and then takes pseudomonoids in IndCatX . The dashed 2-equivalence exists in the case that
X is a cartesian monoidal category.

IndCat

MonIndCat IndCat (X )

MonIndCat global
X

MonIndCat fibre
X

Mon2Catps(X op,Cat) 2Catps(X op,MonCat)

PsMon(− ) fixX

fixX PsMon(− )

≃

≃

2.8 Closed monoidal fibrations

This section follows the work of Shulman [Shu08, Section 13]. We take the approach of defining internal
and external closure using mates instead of adjuncts, but the two approaches are equivalent. The advantage
of using mates is the geometric perspective of string diagrams, and it also enables us to see why one mate
might be an isomorphism if, and only if, the other is.

2.8.1 Internal closure

LetΦ : A → B be a monoidal fibration with B cartesian monoidal. We saw in Section 2.7 that, for each
object B in B, the fibre category AB is monoidal, and, for each morphism f : A→ B in B, the functor
f ∗ : AB → AA is strong monoidal. We can ask if, for each object B in B, the fibre category AB is left
and right closed monoidal; that is, for each object M in AB, the functors

− ⊠ M : AB → AB and M ⊠ − : AB → AB

have right adjoints

M ▶ − : AB → AB and − ◀ M : AB → AB.

For each object B in B, the isomorphisms

M f ∗ ⊠ M′ f ∗ → (M ⊠ M′) f ∗,
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2.8. Closed monoidal fibrations

given for each pair of objects M and M′ in AB, define natural transformations

α
f
M′

f ∗

− ⊠ M′ f ∗ f ∗

− ⊠ M′

and

α
f

M

M f ∗ ⊠ −

f ∗

f ∗

M ⊠ −

With respect to the adjunctions

AB

AB

−⊠M′ M′▶−⊣ and

AA

AA

−⊠ f ∗M′ f ∗M′▶−⊣ ,

the transformation α f
M′ has mate

α
f
M′

f ∗

− ⊠ M′ f ∗ f ∗

− ⊠ M′

M′ f ∗ ▶ −

M′ ▶ −

(2.8.1)

whose component morphism, for each object M in AB, is of the form

(M′ ▶ M) f ∗ →M′ f ∗ ▶ M f ∗ . (2.8.2)

Similarly, with respect to the adjunctions

AB

AB

M⊠− −◀M⊣ and

AA

AA

M f ∗⊠− −◀M f ∗⊣ ,
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the transformation α
f

M has mate

α
f

M

f ∗

M f ∗ ⊠ − f ∗

M ⊠ −

− ◀ M f ∗

− ◀ M

(2.8.3)

whose component morphism, for each object M′ in AB, is of the form

(M′ ◀ M) f ∗ →M′ f ∗ ◀ M f ∗ . (2.8.4)

Definition 2.8.5. LetΦ : A → B be a monoidal fibration with B cartesian monoidal. We callΦ : A →
B internally closed if, for each object B in B, the fibre category AB is closed monoidal and if, for every
morphism f : A→ B in B and every pair of objects M,M′ in AB, the morphisms

(M′ ▶ M) f ∗ →M′ f ∗ ▶ M f ∗ and (M′ ◀ M) f ∗ →M′ f ∗ ◀ M f ∗.

given by (2.8.2) and (2.8.4) are isomorphisms. ⋄

Let Φ : A → B be a monoidal fibration with B cartesian monoidal and suppose that, for each
morphism f : A→ B in B, the functor f ∗ : AB → AA has a left adjoint f!. The mate of α f

M′ with respect
to the adjunction f! ⊣ f ∗ is

α
f
M′

f ∗− ⊠ M′ f ∗

f ∗ − ⊠ M′

f!

f!

(2.8.6)

and the mate of α
f

M with respect to the adjunction f! ⊣ f ∗ is

α
f

M

f ∗M f ∗ ⊠ −

f ∗ M ⊠ −

f!

f!

(2.8.7)

90



2.8. Closed monoidal fibrations

These have component morphisms

(M ⊠ f ∗M′) f! →M f! ⊠ M′ and (M f ∗ ⊠ M′) f! →M ⊠ M′ f!

called the projection morphisms, which we call the projection formulas if they are isomorphisms.
We have seen that (2.8.1) and (2.8.6) are mates of α f

M′ . Since the functor

f ∗ : AB → AA

is a right adjoint and the functors

− ⊠ M′ : AB → AB and − ⊠ M′ f ∗ : AA → AA

are left adjoints, Lemma 1.3.18 gives that the natural transformation (2.8.1) is an isomorphism if, and only
if, the natural transformation (2.8.6) is an isomorphism. Similarly, the natural transformation (2.8.3) is an
isomorphism if, and only if, the natural transformation (2.8.7) is an isomorphism. So we have shown that

Φ is internally closed if, and only if, the projection formulas hold.

We defined the projection morphisms

(M ⊠ f ∗M′) f! →M f! ⊠ M′ and (M f ∗ ⊠ M′) f! →M ⊠ M′ f!

using mates of the isomorphisms

M f ∗ ⊠ M′ f ∗ → (M ⊠ M′) f ∗

whihc make f ∗ strong monoidal. One can also define each projection morphism being the unique mor-
phism satisfying a universal property; this is the subject of the following lemma and its corollary, which
will be used later in the proof of Theorem 4.3.1.

Lemma 2.8.8 ([Shu08, Lemma 16.4]). Let Φ : A → B be a monoidal fibration with B cartesian monoidal.
Let f : B→ B′ be a morphism in B, let M ∈ AB and let N ∈ AB′ . Then the following diagram

M ⊗N f ∗ (M ⊗N f ∗)∆∗B M ⊠ N f ∗

(M ⊠ N f ∗) f!

M f! ⊗N (M f! ⊗N)∆∗B′ M f! ⊠ N
cart

∆B′
M f!⊗N

opcart f
M⊗cart f

N

cart∆B
M⊗N f ∗

opcart f
M⊠N f ∗

�

�

proj

in A commutes, where ‘proj’ denotes the projection morphism and the isomorphisms are given by (2.7.13).
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Corollary 2.8.9. Let Φ : A → B be a moniodal bifibration with B cartesian monoidal, and let f : B→ B′ be
a morphism in B.

The niche

M ⊗N f ∗ (M ⊗N f ∗)∆∗B

M f! ⊗N (M f! ⊗N)∆∗B′
cart

∆B′
M f!⊗N

opcart f
M⊗cart f

N

cart∆B
M⊗N f ∗

(2.8.10)

in A lies over the niche
B × B B

B′ × B′ B′

∆B

f× f

∆B′

in B. If Φ is internally closed, then the unique morphism that fills the niche (2.8.10) and lies over f is opcartesian.

Example 2.8.11. In this example we show that the monoidal bifibration Rep : GrpRep → FinGrp is
internally closed. Given a G-module V, the dual G-module V∨ = LinC(V,C) has G-action (v)(g · f ) =
(g−1
· v) f . The fibre category RepG is closed monoidal with internal hom [ WG , UG ] = LinC(W,C)G ⊗

UG � LinC(W,U)G which has G-action given by

(w)(g · f ) = g · (g−1
· w) f .

It remains to check that, for each group homomorphism f : G→ H, the restriction functor f ∗ : RepH
→ RepG is closed monoidal; that is, for any H-modules V and W, the canonical morphism

Γ : [V,W] f ∗ → [V f ∗,W f ∗]

is an isomorphism. This morphism is the adjunct of the following composite.

Γ : [V,W] f ∗ ⊗ V f ∗ ([V,W] ⊗ V) f ∗ W f ∗
ev f ∗

This G-module map is given by (ϕ⊗ v)Γ = (v)ϕ. So we’ll find the adjunct of this morphism Γ and check
if it’s an isomorphism. We do this using the following series of isomorphisms.

[[V,W] ⊗ V,W] �W ⊗ ([V,W] ⊗ V)∨

�W ⊗ (V∨ ⊗ [V,W]∨)
� (W ⊗ V∨) ⊗ [V,W]∨

� [V,W] ⊗ [V,W]∨

� [[V,W], [V,W]].

(2.8.12)

92



2.8. Closed monoidal fibrations

Let (xi)n
i=1 be a basis for [V,W] and let (y j)n

j=1 be a basis for V. Then, under the isomorphisms (2.8.12),

Γ 7→
∑

i, j

(xi ⊗ y j)Γ ⊗
(
xi
∨
⊗ y j

∨
)

7→

∑
i, j

(
(xi ⊗ y j)Γ ⊗ y j

∨
)
⊗ xi

∨

7→

∑
i, j

(
v 7→ (v)y j

∨(xi ⊗ y j)Γ
)
⊗ xi

∨

7→

∑
i, j

(
ϕ 7→

(
v 7→ (ϕ)xi

∨(v)y j
∨(xi ⊗ y j)Γ

) )
.

That is, (v)(ϕ)Γ =
∑

i, j(ϕ)xi
∨(v)y j

∨(xi ⊗ y j)Γ = (ϕ ⊗ v)Γ = (v)ϕ, so Γ = id [V,W]G
. This is an

isomorphism, so f ∗ is closed monoidal. ⋄

2.8.2 External closure

In Section 2.8.1, we used the monoidal structure of the fibres categories AB : B ∈ B to define internal
closure for monoidal fibrations with cartesian base. In this section, we’ll use the monoidal structure of
the total category A to define external closure for monoidal fibrations.

We can ask if, for each pair of objects E and F in B and each object Q in AE, the functors

− ⊗Q : AF → AF⊗E and Q ⊗ − : AF → AE⊗F (2.8.13)

have right adjoints
Q ▷ − : AF⊗E → AF and − ◁ Q : AE⊗F → AF. (2.8.14)

Example 2.8.15. Consider the monoidal fibration Rep : GrpRep→ FinGrp. The functors

− ⊗W : RepG → Rep(G×H) and V ⊗ − : RepH → Rep(G×H)

have right adjoints

W ▷ − : Rep(G×H) → RepG and − ◁ V : Rep(G×H) → RepH

given by W ▷ U = HomH(W,U) and U ◁ V HomG(U,V). ⋄

Remark 2.8.16. Note that the functors (2.8.13) having right adjoints (2.8.14) is not the same as asking that
A be left and right closed monoidal, i.e. that, for each object Q in A , the functors

− ⊗Q : A → A and Q ⊗ − : A → A

have right adjoints
Q ▷ − : A → A and − ◁ Q : A → A .

This is because, given a fixed object R in A , we can’t, in general, construct a functor − ⊗ R : A → A
from the functors (

R ▷ − : AF⊗RΦ → AF
)

F∈B
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2 . Fibrations and Indexed Categories

since they are defined only on objects in A that lie over objects in B of the form F ⊗ RΦ for some F in
B. ⋄

Just as we did for internal closure, we use mates to define the notion of external closure for a monoidal
fibration Φ : A → B. For each object B in B, each object N in AB and each morphism f : C→ A in
B, define the natural transformation

β
f

N

f ∗

− ⊗N ( f ⊗ idB)∗

− ⊗N

to have components

M f ∗ ⊗N M f ∗ ⊗Nid∗B (M ⊗N)( f ⊗ idB)∗
idM f ∗⊗Rep

0∗
B,N (cart f

M⊗cartidB
M )⊸ cart f⊗idB

M⊗N .

For each object A in B, each object M in AA and each morphism g : D → B in B, define the natural
transformation

β
g

M

g∗

M ⊗ − (idA ⊗ g)∗

M ⊗ −

to have components

M ⊗Ng∗ Mid∗A ⊗Ng∗ (M ⊗N)(idA ⊗ g)∗
Rep0∗

A,M⊗idNg∗ (cart
idA
M ⊗cartg

M)⊸ cart
idA⊗g
M⊗N .

With respect to the adjunctions

AA

AA⊗B

−⊗N N▷−⊣ and

AC

AC⊗B

−⊗N N▷−⊣

the mate of β
f

N is

β
f

N

f ∗

− ⊗N ( f ⊗ idB)∗

N ▷ −

N ▷ −

− ⊗N
(2.8.17)
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2.8. Closed monoidal fibrations

whose component morphism, for each object P in AA⊗B, is of the form

(N ▷ P) f ∗ → N ▷ P( f ⊗ idB)∗. (2.8.18)

Similarly, with respect to the adjunctions

AB

AA⊗B

M⊗− −◁M⊣ and

AD

AA⊗D

M⊗− −◁M⊣

the mate of β
g

M is

β
g

M

g∗

M ⊗ − (idA ⊗ g)∗

− ◁ M

− ◁ M

M ⊗ −
(2.8.19)

whose component morphism, for each object P in AA⊗B, is of the form

(P ◁ M)g∗ → P(idA ⊗ g)∗ ◁ M. (2.8.20)

Definition 2.8.21. We call a monoidal fibration Φ : A → B externally closed if, for every pair of mor-
phisms f : C → A and g : D → B in B and every triple of objects M ∈ AA, N ∈ AB, P ∈ AA⊗B, the
morphisms

(N ▷ P) f ∗ → N ▷ P( f ⊗ idB)∗ and (P ◁ M)g∗ → P(idA ⊗ g)∗ ◁ M

given by (2.8.18) and (2.8.20) are isomorphisms. ⋄

We will now work towards Proposition 2.8.26, after which we’ll see that the monoidal bifibration
Rep : GrpRep→ FinGrp is externally closed.

Let Φ : A → B be a monoidal fibration and suppose that, for each morphism f : C→ A in B, the
functor f ∗ : AA → AC has a left adjoint f!. With respect to the adjunctions

AC

AA

f! f ∗⊣ and

AC⊗B

AA⊗B

( f⊗idB)! ( f⊗idB)∗⊣

95



2 . Fibrations and Indexed Categories

the mate of β
f

N is

β
f

N

− ⊗N

f ∗

f!

( f ⊗ idB)!

( f ⊗ idB)∗

− ⊗N

(2.8.22)

whose component morphism, for each object R in AC, is of the form

(R ⊗N)( f ⊗ idB)! −→ R f! ⊗N.

With respect to the adjunctions

AD

AB

g! g∗⊣ and

AA⊗D

AA⊗B

(idA⊗g)! (idA⊗g)∗⊣

the mate of β
g

M is

β
g

M

M ⊗ −

g∗

g!

(idA ⊗ g)!

M ⊗ −

(idA ⊗ g)∗

(2.8.23)

whose component morphism, for each object T in AD, is of the form

(M ⊗ T)(idA ⊗ g)! −→M ⊗ Tg!

The projection morphism (M ⊠ N f ∗) f! → M f! ⊠ N was defined as a mate (see (2.8.6) and (2.8.7))
and Lemma 2.8.8 stated that it is also given by a universal property. Similarly, we defined the morphism
(R⊗N)( f ⊗ idB)! → R f! ⊗N using the mate (2.8.22), and the following proposition follows by the same
method as Lemma 2.8.8.
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2.8. Closed monoidal fibrations

Proposition 2.8.24. The unique pure morphism (X ⊗ Z)( f ⊗ id)! → X f! ⊗ Z in A that makes the diagram

X f! ⊗ Z

X ⊗ Z (X ⊗ Z)( f ⊗ id)!

opcart f
X⊗idZ

opcart f⊗id
X⊗Z

commute is (2.8.22). □

Corollary 2.8.25. Let Φ : A → B be a monoidal fibration. The functor ⊗A preserves opcartesian morphisms if,
and only if, the natural transformations (2.8.22) and (2.8.23) are natural isomorphisms.

Proof. Suppose that ρ : X→ Y is an opcartesian morphism in A . Using opcartesian-pure factorisation
(see Proposition 2.4.15), write ρ = opcart # ξ for some pure isomorphism ξ in A . So ρ⊗Z = (opcart ⊗
Z) # (ξ⊗Z). Note that ξ⊗Z is opcartesian since it’s an isomorphism, so ρ⊗Z is opcartesian if, and only if,
opcart ⊗Z is opcartesian. By Proposition 2.8.24 and Proposition 2.4.16 (ii), opcart ⊗Z is opcartesian if,
and only if, (2.8.22) is opcartesian, and this occurs if, and only if, (2.8.22) is an isomorphism since it’s pure.
Therefore, − ⊗ Z preserves opcartesian morphisms if, and only if, (2.8.22) is an isomorphism. Similarly,
W ⊗ − preserves opcartesian morphisms if, and only if, (2.8.23) is an isomorphism.

To finish the proof, we will show that the functor ⊗ preserves opcartesian morphisms if, and only if,
for all objects Z in A , the functors − ⊗ Z and Z ⊗ − both preserve cartesian morphisms. Of course
if, for all opcartesian morphisms ϕ and ψ, the morphism ϕ ⊗ ψ is opcartesian, then, for all opcartesian
morphisms σ and τ, the morphisms σ ⊗ id and id ⊗ τ are opcartesian. On the other hand, if, for all
opcartesian morphisms σ and τ, the morphisms σ⊗ id and id⊗τ are opcartesian, then, for all opcartesian
morphisms ϕ and ψ, the morphism

ϕ ⊗ ψ = (ϕ # id) ⊗ (id # ψ) = (ϕ ⊗ id) # (id ⊗ ψ)

is opcartesian. □

Proposition 2.8.26 ([Shu08, Proposition 13.17]). Let Φ : A → B be a cleaved monoidal fibration. Suppose
that, for each morphism f : C→ D in B, the functor f ∗ : AD → AC has a left adjoint f!. Suppose also that, for
each pair of objects E and F in B and each object Q in AE, the functors

− ⊗Q : AF → AF⊗E and Q ⊗ − : AF → AE⊗F

have right adjoints
Q ▷ − : AF⊗E → AF and − ◁ Q : AE⊗F → AF.

Then Φ is a monoidal bifibration if, and only if, Φ is external closed.

Proof. For each object B in B, each object N in AB and each morphism f : C→ A in B, we have defined
the natural transformations (2.8.17) and (2.8.22) to be mates of the natural transformation β

f
N . Since the

functors
f ∗ : AA → AC and ( f ⊗ id)∗ : AA⊗B → AC⊗B
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are right adjoints and the functors

− ⊗N : AC → AC⊗B and − ⊗N : AA → AA⊗B

are left adjoints, we can use Lemma 1.3.18 to get that (2.8.17) is an isomorphism if, and only if, (2.8.22)
is an isomorphism. Similarly, (2.8.19) is an isomorphism if, and only if, (2.8.23) is an isomorphism. The
result then follows from Corollary 2.8.25. □
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Chapter 3

The Beck-Chevalley Condition

In this chapter, we study the Beck-Chevalley condition.
In the first section, we provide an account of the theory of integral transfroms and prove some basic

properties of their composition; this will give some motiviation the study of the Beck-Chevalley condition.
In the second section, we define the Beck-Chevalley morphisms ζM, prove that they are natural in M

and that the resulting natural transformation is given by a mate (see Proposition 3.2.3) which is the more
common definition. In Remarks 3.2.8, 3.2.9 and 3.2.11, we give string diagrammatic arguments which
show that the Beck-Chevalley transformation is well-defined.

In the third section, we give the definition of Beck-Chevalley and weakly Beck-Chevalley bifibrations.
We then prove that the bifibration Rep : GrpRep → FinGrp is weakly Beck-Chevalley (see Proposi-
tion 3.3.3), and we show how the Beck-Chevalley condition relates to Mackey’s formula of representation
theory.

In the fourth section, we give an explcit calculation of the morphism that fills a niche defined by
cartesian and opcartesian lifting properties (see Lemma 3.4.3), and, at the end of this chapter, we use
this explicit calculation to prove Corollary 3.4.4—a well-known result on conditions equivalent to the
Beck-Chevalley condition—which is made a great deal more intuitive with a string diagrammatic proof.

3.1 Integral transforms

The history of integral transforms begins with the Fourier transform. One can see [Tre67] for a discussion
of integral transforms in functional analysis, or [Huy06, Chapter 5] for a discussion of Fourier-Mukai
kernels: integral transforms in derived algebraic geometry.

Notation 3.1.1. We write F to denote a field that is R or C. For topological spaces W and Z, we write
Hom(W,Z) for the set of continuous maps W → Z. For continuous maps f and g in Hom(Z,F), we
write f · g for their pointwise product z 7→ (z) f · (z)g. ⋄

Definition 3.1.2. An integral transform

(S, κ)

X Y
p q
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3 . The Beck-Chevalley Condition

consists of

· three topological spaces X, Y and S,

· a pair of continuous maps p : S→ X and q : S→ Y,

· a continuous map κ : S→ F called a kernel,

· for each continuous map f : W → Z, maps f ∗ : Hom(Z,F)→ Hom(W,F) and f∗ : Hom(W,F)
→ Hom(Z,F),

such that, for each composable pair of continuous maps f : W → Z and g : Z → A, ( f # g)∗ = g∗ # f ∗

and ( f # g)∗ = f∗ # g∗. ⋄

We’ve stated our definition of an integral transform in a more general form than the three examples
we’ll give below, which are all integral transforms of the following form: the two maps p and q are product
projections

X × Y

X Y
p q

and, for each map f : W → Z, the map f ∗ is given by precomposing with f and the map f∗ is given
by an integral— integrals in the examples below are over a discrete space (i.e. a sum), an integral over
(0,∞) ⊂ R, and an integral over R2.

The idea of an integral transform

(S, κ)

X Y
p q

is to map scalar maps X → F to scalar maps Y → F, and we do this by defining a map (which is also
called an integral transform) τκ : (X)F→ (Y)F given by

τκ : (X)F −→ (Y)F
h 7−→ (hp∗ · κ)q∗.

Definition 3.1.3. Let p and q denote the following projection maps.

R × C

R C
p q

Define the map p∗ : Hom(R,C)→ Hom(R × C,C) on a map h : R→ C by

(t, s)hp∗ = (t)h

and define the map q∗ : Hom(R × C,R)→ Hom(C,C) on a map k : R × C→ C by

(s)kq∗ =
∫
∞

0
(t, s)k dt.
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Define K : R×C→ C, (t, s) 7→ e−ts. The Laplace transform is the mapτK : Hom(R,C)→ Hom(C,C),
h 7→ (hp∗ · K)q∗. Explicity, this is the map

h 7→
(
s 7→

∫
∞

0
(t)h · e−ts dt

)
.

⋄

Definition 3.1.4. Let n, m and n ×m denote the discrete topological spaces with n, m and nm points
respectively, and let Rn deonte the set of maps n→ R. Of course, an element of Rn can be thought of as
a vector with entries in R and an element of Rnm can be thought of as an (n ×m)-matrices with entries
in R.

Fix an (n ×m)-matrix K, and let p and q denote the following projection maps.

n ×m

n m
p q

Define the map p∗ : Rn
→ Rnm by 

v1
...

vn

 7−→

v1 v1 · · · vn
...

...
. . .

...
v1 v2 · · · vn


and define the map q∗ : Rnm

→ Rm by
a11 · · · a1n
...

. . .
...

am1 · · · amn

 7−→

∑n

i=1 a1i
...∑n

i=1 ami

.
The matrix mulitplication transform is the map τK : Rn

→ Rm, v 7→ (vp∗ · K)q∗. Explicity, this is the
map 

v1
...

vn

 7−→ Kv =


∑n

i=1 Ki1vi
...∑n

i=1 Kimvi

.
⋄

Definition 3.1.5. Fix σ > 0. The two-dimensional Gaussian function with standard deviation σ is the
function Gσ : R2

× R2
→ R defined by

(x1, y1, x2, y2) 7→
1

2πσ2 e−
(x1−x2)2+(y1−y2)2

2σ2 .

To get an idea of what this function Gσ looks like, we could look at, for a fixed point (x1, y1) ∈ R2, the
graph of the function (x, y, − , − )Gσ : R2

→ R. Figure 3.1 shows a plot of the function

(0, 0, − , − )G 1
2

: R2
→ R.
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Figure 3.1: A plot of the function (x, y) 7→ 1
2π( 1

2 )2 e
−

x2+y2

2( 1
2 )2 created using Wolfram Mathematica.

Let p and q denote the following projection maps.

R2
× R2

R2 R2

p q

Define the map p∗ : Hom(R2,R)→ Hom(R2
× R2,R) on a map h : R2

→ R by

(x1, y1, x2, y2)hp∗ = (x1, y1)h

and define the map q∗ : Hom(R2
× R2,R)→ Hom(R2,R) on a map k : R2

× R2
→ R by

(x1, y1)kq∗ =
∫
R2

(x1, y1, x2, y2)k dx2dy2.

The Gaussian blur transform is the mapτGσ : Hom(R2,R)→ Hom(R2,R), h 7→ (hp∗·Gσ)q∗. Explicitly,
this is the map

h 7→
(
(x1, y1) 7→

∫
R2

(x1, y1, x2, y2)Gσ · (x2, y2)h dx2dy2

)
.

⋄

The Gaussian blur transform is also known as the two-dimensional Weierstrass transform (after the
the transform used to prove the Weierstrass approximation theorem [Wei85]) and as the Gaussian filter
in signal analysis. The name ‘Gaussian blur’ comes from image processing where we can think of the
Gaussian blur transform as blurring a two-dimensional image in the following way.

Remark 3.1.6. Given a two-dimensional image, we can define three maps r, g, b : R2
→ R as the intensity

of red, green and blue of each pixel in the image. Applying the Gaussian blur transform to each of these
maps gives three new maps rτGσ , gτGσ , bτGσ : R2

→ R which we can think of being the intensities of
red, green and blue of each pixel in a new image.
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3.1. Integral transforms

Figure 3.2: An image and the result of apply Gaussian blurs with standard deviations 3 and 10 respectively
to that image [Ika15].

But what does the function τGσ do? If we fix a point (x1, y1) in R2, then we can think of

(x1, y1)(rτGσ) =
∫
R2

(x1, y1, x2, y2)Gσ · (x2, y2)r dx2dy2

as being the average, across all points (x2, y2) in R2, of the values (x2, y2)r weighted by the function
(x1, y1, − , − )Gσ. The value of the function (x1, y1, − , − )Gσ is greatest at (x1, y1) and decreases as the
distance to (x1, y1) increases. So, in a nutshell, the Gaussian blur transform alters the intensity of a pixel
based largely on the intensities of nearby pixels and this results in a blurred version of the original image;
an example is shown in Figure 3.2. ⋄

What interests us about integral transforms is their connection with the Beck-Chevalley condition;
this connection is via the composition of integral transforms.

Definition 3.1.7. We say that the integral transform

(U, µ)

X Z
p q

is a composite of the two integral transforms

(S, κ)

X Y
p1 q1 and

(T, λ)

Y Z
p2 q2

if τµ = τκ # τλ : Hom(X,F)→ Hom(Z,F). ⋄

We have the definition of a composite of two integral transforms, and now we’ll work towards con-
structing a composite. Given two integral transforms

(S, κ)

X Y
p1 q1 and

(T, λ)

Y Z
p2 q2

we need to construct a space U, a pair of maps

U

X Z

p q
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3 . The Beck-Chevalley Condition

and a kernel µ in Hom(U,F). Take U = S ×Y T, p = p3 # p1 and q = q3 # q1, where S ×Y T, p3 and q3
denote the pullback and associated maps shown in the following figure.

S ×Y T

S T

X Y Z

p2 q2p1 q1

p3 q3⌟
(3.1.8)

What about the kernel µ? For the chosen U, p and q, the equality τµ = τκ # τλ holds if, and only if, the
equality

(φ(p3 # p1)∗ · µ)(q3 # q2)∗ = ((φp∗1 · κ)q1∗p∗2 · λ)q2∗

holds for every φ in Hom(X,F).

The following result was shown to the author by Simon Willerton.

Proposition 3.1.9. Consider the following integral transforms.

(S, κ)

X Y

p1 q1

(T, λ)

Y Z

p2 q2

Let κ ⊙ λ denote the map in Hom(S ×Y T,F) given by (s, t) 7→ (s)κ · (t)λ. If p∗3 # q3∗ = q1∗ # p∗2 and, for
every ψ in Hom(S ×Y T,F), (ψ · λq3∗)q3∗ = ψq3∗ · λ, then the integral transform

(S ×Y T, κ ⊙ λ)

X Z

p#p1 q#q2

is a composite of

(S, κ)

X Y

p1 q1 and
(T, λ)

Y Z

p2 q2
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3.1. Integral transforms

Proof. For each φ in Hom(X,F),

(φ)(τκ # τλ) = ((φp∗1 · κ)q1∗)τλ

=
(
(φp∗1 · κ)q1∗p∗2 · λ

)
q2∗

=
(
(φp∗1 · κ)p∗3q3∗ · λ

)
q2∗

=
(
(φp∗1p∗3 · κp∗3)q3∗ · λ

)
q2∗

=
(
(φ(p3 # p1)∗ · κp∗3)q3∗ · λ

)
q2∗

=
(
φ(p3 # p1)∗ · κp∗3 · λq∗3

)
q3∗q2∗

=
(
φ(p3 # p1)∗ · κp∗3 · λq∗3

)
(q3 # q2)∗

=
(
φ(p3 # p1)∗ · (κ ⊙ λ)

)
(q3 # q2)∗

= (φ)τκ⊙λ.

□

If the kernels κ and λ are both trivial—meaning that (s)κ = 1 for every s ∈ S and (t)λ = 1 for every
t ∈ T—then the hypotheses of Proposition 3.1.9 simplify, as shown in the following corollary.

Corollary 3.1.10. Let the following be integral transforms with trivial kernels.

(S, 1)

X Y

p1 q1

(T, 1)

Y Z

p2 q2

If p∗3 # q3∗ = q1∗ # p∗2, then the integral transform

(S ×Y T, 1)

X Z

p3#p1 q3#q2

is a composite of

(S, 1)

X Y

p1 q1 and
(T, 1)

Y Z

p2 q2

Proof. For each φ in Hom(X,F),(
φ(p3 # p1)∗ · 1

)
(q3 # q2)∗ = φp∗1p∗3q3∗q2∗

= φp∗1q1∗p∗2q2∗

=
(
(φp∗1 · 1)q1∗p∗2 · 1

)
q2∗.

□
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3 . The Beck-Chevalley Condition

The equality p∗3 # q3∗ = q1∗ # p∗2 should make the reader think that that pulling a map φ in Hom(X,F)
up along p3 and then pushing it down along q3 is equal to pushing φ down along q1 then pulling it ip
along p2. This is sufficent for the path over the top of (3.1.8) to be equal to the zig-zag path along the
bottom of (3.1.8).

3.2 The Beck-Chevalley transformation

Recall that bicleaving for a bifibration Φ : A → B is a choice, for each morphism j : B → B′ in
B, each object M in A lying over B′ and each object C in A lying over B, of cartesian morphism
cart j

M : Mj∗ → M in A that lies over j and of opcartesian morphism opcart j
N : N → N j! in A that

lies over j. These choices define functors

j∗ : AB′ AB : j!

called the pull-back and push-forward functors (see Propositions 2.1.27 and 2.4.18). These names come from
the idea that the functor j∗ pulls an object M in AB′ along j to get an object Mj∗ in AB, and the functor
j! pushes an object N in AB along j to get an object N j! in AB′ . Now we ask “What happens when we
pull then push or push then pull?” More formally, if the square

A B

C D

h

gk

f

(3.2.1)

in B commutes, then we can ask if the functors h∗ # k! and g! # f ∗ are isomorphic. This a natural question
to ask, and we also saw in Section 3.1 the relevance of this property.

For each object M ∈ AB, there are cartesian and opcartesian morphisms as shown in the following
diagram.

Mh∗ M

Mh∗k! Mg!

Mg! f ∗

carth
M

opcartg
M

cart f
Mg!

opcartk
Mh∗

Intuitively, we’re either pulling M along h and then pushing Mh∗ along k, or we’re pushing M along g and
then pulling Mg! along f . Using the universal property of the opcartesian morphism opcartk

Mh∗ : Mh∗ →
Mh∗k!, there is a unique morphism Mh∗k! →Mg! that lies over f and that makes the following diagram
in A commute.

Mh∗ M

Mh∗k! Mg!

carth
M

opcartg
M

opcartk
Mh∗
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3.2. The Beck-Chevalley transformation

Therefore, using the universal property of the cartesian morphism Mg! f ∗ → Mg!, there is unique
morphism ζM : Mh∗k! →Mg! f ∗ that lies over idC and that makes the following diagram in A commute.

Mh∗ M

Mh∗k! Mg!

Mg! f ∗

carth
M

opcartg
M

opcartk
Mh∗

ζM cart f
Mg!

(3.2.2)

We call ζM the Beck-Chevalley morphism associated to the square (3.2.1) at M.
We now know that there is a canonical morphism Mh∗k! → Mg! f ∗. We can use mates to give an

explicit description of this morphism. We add a more detailed explanation to Shulman’s proof of the
following result.

Proposition 3.2.3 ([Shu08, Lemma 16.1]). Let Φ : A → B be a bifibration and suppose that the square

A B

C D

h

gk

f

in B commutes. Then the Beck-Chevalley morphisms (ζM : k!h∗M → f ∗g!M)M∈AB are the components of a
natural transformation

AA AB

AC AD

h∗

k! g!

f ∗

ζ

Specifically, ζ is the following natural transformation:

(k # f )∗
g∗

(h # g)∗
=

f ∗

h∗

k!

k∗

g!

(3.2.4)
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3 . The Beck-Chevalley Condition

Proof. The following diagram adds to (3.2.2).

Mh∗ M

Mg!g∗h∗ Mg!g∗

Mh∗k! Mg! f ∗k∗ Mg!

Mg!g∗h∗k!

Mg! f ∗k∗k!

Mg! f ∗

opcartk
Mg! g∗h∗

γ

opcartk
Mg! f ∗k∗

γk!

carth
M

opcartk
Mh∗ opcartg

M

η

carth
Mg! g∗

cartg
Mg!

cartk
Mg! f ∗

ε f ∗g!M

cart f
Mg!

ηMh∗k!

ηh∗

(2)

(3)
(6)

(1)

(4)

(5)

The square (1) commutes by definition of h∗ on morphisms, and the squares (2) and (3) commute by
definition of k! on morphisms. It becomes clear that the triangles (4) and (5) commute when we write
them in terms of indexed categories:

(
M
B

)

(
Mg!g∗

B

)

(
Mg!
D

)
ηg


∗

 ηidB


∗

idMg! g∗

g


∗

(
Mg! f ∗k∗

A

)

(
Mg! f ∗k∗k!

C

)

(
f ∗g!M

C

)
εMg! f ∗

k


!

idMg! f ∗k∗k!

k


!

εMg! f ∗

idC


!
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3.2. The Beck-Chevalley transformation

The pentagon (6) can be written in terms of indexed categories as the following.

Mg!g∗h∗ Mg!g∗

Mg!(h # g)∗

Mg!( f # k)∗

Mg! f ∗k∗ Mg!

Mg! f ∗

idMg! g∗h∗

h



id

g



idMg! f ∗

f


idMg! f ∗k∗

k



Φ2∗
hg,Mg!

(Φ2∗
f k,Mg!

)−1

This diagram commutes by definition of composition in A .
We’ve shown that the component of the natural trnasformation (3.2.4) at M lies over idC and makes

the diagram (3.2.2) commute. Hence, it is equal to the Beck-Chevalley morphism. □

Definition 3.2.5. The natural transformation

(k # f )∗
g∗

(h # g)∗
=

f ∗

h∗

k!

k∗

g!

(3.2.6)

is called the Beck-Chevalley transformation corresponding to the square

A B

C D

h

gk

f

(3.2.7)

and the bifibration Φ : A → B. We say that the square (3.2.7) satisfies the Beck-Chevalley condition
with respect to Φ if the Beck-Chevalley transformation is an isomorphism. When it’s clear from context,
we won’t say to what bifibration and commuting square a Beck-Chevalley transformation corresponds. ⋄
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3 . The Beck-Chevalley Condition

Remark 3.2.8. Let Φ : A → B be a bifibration. It is important to note that the following two ways of
drawing the same square in B give Beck-Chevalley transformations that are not, in general, equal.

A B

C D

h

gk

f

A C

B D

h

g

k

f

The Beck-Chevalley transformation associated to the square on the left is

(k # f )∗
g∗

(h # g)∗
=

f ∗

h∗

k!

k∗

g!

which is the mate of the natural isomorphism

=

h∗

f ∗

(h # g)∗
g∗

k∗
(k # f )∗

whereas the Beck-Chevalley transformation associated to the square on the right is

(h # g)∗
f ∗

(k # f )∗
=

g∗

k∗

h!

h∗

f!
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3.2. The Beck-Chevalley transformation

which is the mate of the natural isomorphism

=

h∗

f ∗

(h # g)∗
g∗

k∗
(k # f )∗

We’ll see a clear example of the two not being equal in Example 3.2.12. ⋄

Remark 3.2.9. Another candidate for the Beck-Chevalley transformation associated to the square

A B

C D

h

gk

f

might be

(h # g)!

f!
(k # f )!

=

g!

k!

h∗

h!

f ∗

(3.2.10)

which is the mate of the natural isomorphism

=

g!

k!
(h # g)!

h!

f!
(k # f )!

In fact, the natural transformation (3.2.10) is equal to the Beck Chevalley transformation (3.2.6), as shown
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3 . The Beck-Chevalley Condition

by the folowing series of equalities.

(h # g)!

f!
(k # f )!

=

g!

k!

h∗

h!

f ∗

= (1)

=

h∗

h!

h∗
g∗

g!

(h # g)∗

(h # g)!(k # f )!

(k # f )∗ f ∗
k∗

k!

f!

f ∗
= (2)

(k # f )∗
g∗

(h # g)∗
=

f ∗

h∗

k!

k∗

g!

The equality (1) follows from Theorem 2.5.13(i),(ii), and the equality (2) follows from the snake identities
for the adjunctions f! ⊣ f ∗, (k # f )! ⊣ (k # f )∗ and h! ⊣ h∗. ⋄
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3.2. The Beck-Chevalley transformation

Remark 3.2.11. It is straightforward to check that ifΦ : A → B is a bifibration, then the opposite functor
Φop : A op

→ Bop is also a bifibration. Using the notation f̃ : D → C for the morphism in Bop that
corresponds to the morphism f : C→ D in B, we have f̃ ∗ = f! and f̃! = f ∗, and

(̃k # f )
∗

g̃∗

(̃h # g)
∗
=

f̃ ∗

h̃∗

k̃!

k̃∗

g̃!

=

(h # g)!

f!
(k # f )!

=

g!

k!

h∗

h!

f ∗

We can therefore think of Remark 3.2.9 as proving that the Beck-Chevalley transformation associated to
the square

A C

B D

h

g

k

f

and the bifibration Φ : A → B is equal to the Beck-Chevalley transformation associated to the square

D B

C A

ĥ

ĝ

k̂

f̂

and the bifibration Φop : A op
→ Bop. ⋄

The remainder of this section is devoted to calculating the Beck-Chevalley transformation in some
examples.
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3 . The Beck-Chevalley Condition

Example 3.2.12. Consider the bifibration Rep : GrpRep→ FinGrp, and suppose that the following is
a pullback square in FinGrp.

H ×G K K

H G

π2

π1 β

α

⌟
(3.2.13)

Let V be a K-module. The component morphism ζV of the Beck-Chevalley transformation

Rep(H×GK) RepK

RepH RepG

π∗2

π1! β!

α∗

ζ

at V is the morphism

Vπ∗2π1! Vβ!β∗π∗2π1! Vβ!α∗π∗1π1! Vβ!α∗
ηVπ∗2π1! εVβ!α

∗

The unit ηV : V → Vβ!β∗ is given by

V −→ CG ⊗K V
v 7−→ eG ⊗ v

and the counit εVβ!α∗ : Vβ!α∗π∗1π1! → Vβ!α∗ is given by

CH ⊗H×GK (CG ⊗K V) −→ CG ⊗K V
h ⊗ (g ⊗ v) 7−→ (h)αg ⊗ v

Therefore, the component morphism ζV of the Beck-Chevalley transformation associated to the square
(3.2.13) and the bifibration Rep is the K-module map

ζV : CH ⊗H×GK V −→ CG ⊗K V
h ⊗ v 7−→ (h)α ⊗ v.

⋄

Example 3.2.14. Consider the bifibration FamC : FamC → Set, and suppose that the following is a
pullback square in Set.

Y ×W Z Y

Z W

h

k g

f

⌟
(3.2.15)
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3.2. The Beck-Chevalley transformation

Let B = (By)y∈Y be a Y-indexed family of objects. The component morphism ζB of the Beck Chevalley
transformation

C Y×WZ C Y

C Z C W

h∗

k! g!

f ∗

ζ

at B is the morphism

Bh∗k! Bg!g∗h∗k! Bg! f ∗k∗k! Bg! f ∗.
ηBh∗k! εBg! f ∗

The unit (ηB)y : By → (Bg!g∗)y is the inclusion map

By −→
∑
α∈Y

(α)g=(y)g

Bα

and the counit (εBg! f ∗)y : (Bg!g∗h∗k!)y → (Bg! f ∗)y is the map

{id}y∈((z) f )k−1 :
∑
y∈Y

(y)g=(z) f

∑
α∈Y

(α)g=(z) f

Bα −→
∑
y∈Y

(y)g=(z) f

By.

Therefore, the component morphism ζB of the Beck-Chevalley transformation associated to the square
(3.2.15) and the bifibration FamC is the identity

id :
∑
y∈Y

(y)g=(z) f

By −→
∑
y∈Y

(y)g=(z) f

By.

⋄

In the following section, we prove that the Beck-Chevalley transformation associated to a square of a
particular form and the bifibration Rep : GrpRep → FinGrp is an isomorphism. Before we do that,
we give an example where the the Beck-Chevalley transformation associated a square and the bifibration
Rep : GrpRep→ FinGrp is not an isomorphism.

Letα : H→ G be a group homomorphism, let {e} denote the trivial group, and let V be an {e}-module
(i.e. a vector space). The component morphism ζV of the Beck-Chevalley transformation associated to
the square

ker(α) � H ×G {e} {e}

H Gα

⌟
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3 . The Beck-Chevalley Condition

and the bifibration Rep is the {e}-module map

ζV : CH ⊗ker(α) V −→ CG ⊗{e} V
h ⊗ v 7−→ (h)α ⊗ v.

This is equal to the linear map

ζV : (CH/ker(a)) ⊗ V −→ CG ⊗ V
h ⊗ v 7−→ (h)α ⊗ v

since ker(a) acts trivially on V. If we choose a group homomorphism α : H → G that is not surjective,
then this serves as an example of when the Beck-Chevalley transformation is not an isomorphism.

3.3 Beck-Chevalley bifibrations

Definition 3.3.1. LetΦ : A → B be a bifibration. We say thatΦ is Beck-Chevalley if, for every pullback
square

B ×B′ C C

B B′

q

p

f

g
⌟

in B, the Beck-Chevalley transformation is an isomorphism. We say that Φ is weakly Beck-Chevalley if,
for every pullback square of the form

B ×B′ (D × B′) D × B′

B B′

q

p

f

πD

⌟

in B and every pullback square of the form

(D × B′) ×B′ C C

D × B′ B′

p

q

g

πD

⌟

in B, the Beck-Chevalley transformation is an isomorphism. ⋄

Example 3.3.2. We saw in Example 3.2.14 that the Beck-Chevalley transformation corresponding to a
pullback square and the bifibration Fam : FamV → Set is always the identity, so Fam is a Beck-Chevalley
bifibration. ⋄
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Proposition 3.3.3. The bifibration Rep : GrpRep→ FinGrp is weakly Beck-Chevalley.

Proof. Let the following be a pullback square in FinGrp.

H ×G K K

H G

π2

π1 β

α

⌟
(3.3.4)

Recall from Example 3.2.12 that the Beck-Chevalley transformation

Rep(H×GK) RepK

RepH RepG

π∗2

π1! β!

α∗

ζ

is given, for each K-module V, by the H-module map

ζV : CH ⊗H×GK V −→ CG ⊗K V
h ⊗ v 7−→ (h)α ⊗ v.

We will show that ζV is an invertible H-module map when (Case 1) α is a product projection, and when
(Case 2) β is a product projection. To do this, we’ll define, for each K-module V, an H-module map

θV : CG ⊗K V → CH ⊗H×GK V

that is inverse to ζV .
(Case 1) Suppose that H = G × N for some group N, and suppose that α is the projection map

G ×N→ G. This means that the square (3.3.4) is given by

(G ×N) ×G K K

G ×N G

π2

π1 β

α

⌟

Let V be a K-module. Define the (G ×N)-module map θV by

θV : CG ⊗K V −→ C(G ×N) ⊗(G×N)×GK V
g ⊗ v 7−→ (g, eN) ⊗ v.

We just need to check a few things.
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3 . The Beck-Chevalley Condition

· (θV is well-defined) To check that θV is well-defined, we need to prove that, for every k ∈ K, every
g ∈ G and every v ∈ V, θV(g · k ⊗ k−1

· v) = θV(g ⊗ v).

(g · k ⊗ k−1
· v)θV = (g(k)β ⊗ k−1

· v)θV

= (g(k)β, eN) ⊗ k−1
· v

= (g(k)β, eN) ⊗ (k−1, ((k)β−1, eN)) · v

= (g(k)β, eN) · (k−1, ((k)β−1, eN)) ⊗ v
= (g, eN) ⊗ v
= θV(g ⊗ v).

· (θV is inverse to ζV) Let g ⊗ v ∈ CG ⊗K V. Then,

(g ⊗ v)θVζV = ((g, eN) ⊗ v)ζV

= (g, eN)α ⊗ v
= g ⊗ v.

Let (g,n) ⊗ v ∈ C(G ×N) ⊗(G×N)×GK V. Then,

((g,n) ⊗ v)ζVθV = ((g,n)α ⊗ v)θV

= (g ⊗ v)θV

= (g,n) · ((eG,n−1), eK) ⊗ v

= (g,n) ⊗ ((eG,n−1), eK) · v
= (g,n) ⊗ v.

· (θV is a (G ×N)-module map) Let g ∈ G, v ∈ V and (g′,n) ∈ G ×N. Then,

(g′,n) · θV(g ⊗ v) = (g′,n) · (g, eN) ⊗ v
= (g′,n) · (g, eN) ⊗ v
= (g′g,n) ⊗ v
= (g′g, eN) · ((eG,n), eK) ⊗ v
= (g′g, eN) ⊗ ((eG,n), eK) · v
= (g′g, eN) ⊗ v
= θV(g′g ⊗ v)
= θV((g′,n) · (g ⊗ v)).

(Case 2) Suppose that K = G × L for some group L, and suppose that β is the projection map
G × L→ G. This means that the square (3.3.4) is given by

H ×G (G × L) G × L

H G

π2

π1 β

α

⌟
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3.3. Beck-Chevalley bifibrations

Let V be a (G × L)-module. Define the H-module map θV by

θV : CG ⊗G×L V −→ CH ⊗H×G(G×L) V
g ⊗ v 7−→ eH ⊗ (g, eL) · v.

Again, we need to check a few things.

· (θV is well-defined) To check thatθV is well-defined, we need to prove that, for every (g′, l) ∈ G×L,
every g ∈ G and every v ∈ V, θV(g · (g′, l) ⊗ (g′, l)−1

· v) = θV(g ⊗ v).

(g · (g′, l) ⊗ (g′, l)−1
· v)θV = (gg′ ⊗ (g′, l)−1

· v)θV

= eH ⊗ (gg′, eL) · (g′, l)−1
· v

= eH ⊗ (g, l−1) · v

= eH ⊗ (eH, (eG, l−1)) · (g, eL) · v

= eH · (eH, (eG, l−1)) ⊗ (g, eL) · v
= eH ⊗ (g, eL) · v
= θV(g ⊗ v).

· (θV is inverse to ζV) Let g ⊗ v ∈ CG ⊗K V. Then,

(g ⊗ v)θVζV = (eH ⊗ (g, eL) · v)ζV

= eG ⊗ (g, eL) · v
= eG · (g, eL) ⊗ v
= g ⊗ v.

Let h ⊗ v ∈ H ⊗H×G(G×L) V. Then,

(h ⊗ v)ζVθV = ((h)α ⊗ v)θV

= eH ⊗ ((h)α, eL) · v
= eH ⊗ (h, ((h)α), eL) · v
= eH · (h, ((h)α), eL) ⊗ v
= h ⊗ v.

· (θV is a H-module map) Let g ∈ G, v ∈ V and h ∈ H. Then,

θV(k · (g ⊗ v)) = θV((k)αg ⊗ v)
= eH ⊗ ((k)αg, eK) · v
= eH ⊗ (((k)αg, eK), k) · (g, eK) · v
= eH · (((k)α, eK), k) ⊗ (g, eK) · v
= k · eH ⊗ ((g, eK) · v)
= k · θV(g ⊗ v).

□
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3 . The Beck-Chevalley Condition

3.3.1 Mackey’s formula

We now have an aside where we’ll briefly explain how Mackey’s formula relates to the Beck-Chevalley
condition of a comma square. Mackey’s formula appears as the ‘Mackey axiom’ in one of the original
definitions of a Mackey functor [Bou97].

Let G be a group, let H and K be subgroups of G, and let W be a K-module. For each g ∈ G, let
Kg = H ∩ gKg−1. Since, for each x ∈ Kg, g−1xg is an element of K, we can define the Kg-module Wg
to have the same underlying vector space as W and Kg-action

x · w := (g−1xg) · w.

Mackey’s formula states
WIndG

KResG
H =

⊕
HgK∈H\G/K

WgIndH
Kg
.

where H\G/K denotes the set of (H,K)-double cosets, Res denotes restricted representation, and Ind
denotes induced representation.

A comma square is a generalisation from category theory to 2-category theory of a pullback square.
The comma square that relates to Mackey’s formula is in the 2-category Cat, so we now give the definition
of a comma square in Cat.

Definition 3.3.5. Let F : A → C and G : B → C be functors. The comma square of F and G consists
of a category (F ↓ G), called the comma category, functors P : (F ↓ G) → A and Q : (F ↓ G) → B,
and a natural transformation

(F ↓ G) B

A CF

G

P

Q κ

all of which are defined as follows.

· An object in (F ↓ G) is a triple (A,B, γ) where A is an object in A , B is an object in B, and
γ : (A)F → (B)G is a morphism in C . A morphism (A,B, γ) → (A′,B′, γ′) in (F ↓ G) is a
pair (α, β) where α : A → A′ is a morphism in A and β : B → B′ is morphism in B such that
(α)F # γ′ = γ # (β)G.

· The functor P is given by

P : (F ↓ G) −→ A

(A,B, γ) 7−→ A
(α, β) 7−→ α,

and the functor Q is given by

Q : (F ↓ G) −→ B

(A,B, γ) 7−→ B
(α, β) 7−→ β,
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3.3. Beck-Chevalley bifibrations

· The natural isomorphism κ : P # G→ Q # F has components

κ(A,B,γ) = γ : (A)F→ (B)G

⋄

Let BG, BH, and BK denote the one-object categories whose morphisms are the elements of the
groups G, H and K respectively, and let iH and iK denote the functors corresponding to the subgroup
inclusions. Let P denote the comma category (iH ↓ iK) in the comma square below.

P BK

BH BG
iH

iK

P

Q κ

After upacking the definition of comma category in this case, one can see that an object in P is an element
g in G, and a morphism g→ g′ in P is a pair (h, k) where h ∈ H and k ∈ K such that hg′ = gk. Every
morphism (h, k) is an isomorphism with inverse (h−1, k−1), so P is a groupoid. We say that two objects in
P are in the same connected component if there exists an isomorphism between them. Each connected
component of P is a groupoid, and so we can think of P as being split up into all of these groupoids. In
fact, there is an equivalence

P ≃

⊔
[g]∈Pπ0

B(Aut(g)), (3.3.6)

where Pπ0 denotes the set of connected components of P , Aut(g) denotes the group P(g, g), and
⊔

denotes coproduct in the category Cat.
This is beginning to look like Mackey’s formula, we just need to make a couple of observations. Firstly,

two objects g, g′ in (iH ↓ iK) are in the same connected component if, and only only if, there exists
elements h ∈ H and k ∈ K satisfying g′ = h−1gk, which is the same as saying that g and g′ lie in the same
double coset HgK = Hg′K. Secondly, Aut(g) =P(g, g) = {(h, k) | h = gkg−1

} which is isomorphic to
H ∩ gKg−1. Therefore, the equivalence (3.3.6) becomes

P ≃

⊔
HgK∈H\G/K

B(H ∩ gKg−1).

We recover the right hand side of Mackey’s formula using this form for P when restricting along P and
then inducing along Q, and the left hand side of Mackey’s formula comes from inducing along iK and
then restricting along iH . In this context, restriction is given by precomposition and induction is given
by left Kan extension; for more details see [Rie14, Chapter 1].
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3 . The Beck-Chevalley Condition

3.4 Lemmas for the Beck-Chevalley condition

Let Φ : A → B be a bifibration and let

A B

C D

h

k

f

g

be a square in B that commutes. In this section, we will prove some conditions on this square that are
equivalent to the Beck-Chevalley condition.

Suppose that the diagram

M′ M

M′′′ M′′

ϕ

ξχ (3.4.1)

in A lies over the diagram

A B

C D

h

k g

in B and suppose that ϕ is cartesian and χ and ξ are opcartesian. Since χ is opcartesian, there exists a
unique morphism ψ : M′′′ →M′′ that lies over f and that makes the following square commute.

M′ M

M′′′ M′′

ϕ

ξχ

ψ

(3.4.2)

We call a diagram the same shape as (3.4.1) a niche, and we say that a morphism ψ fills the niche if it
makes the square (3.4.2) commute.

We now give an explicit description of this morphism ψ.

Lemma 3.4.3. The unique morphism ψ that fills the niche (3.4.1) is equal to the following composite.

M′′′ M′k! Mh∗k! Mg! f ∗ Mg! M′′
χ⊸ opcartk

M′ opcartg
M
⊸ ξcart f

Mg!ζM(ϕ
⊸
carth

M)k!

where we have used the notation
⊸

and ⊸ as given in Notations 2.1.6 and 2.4.7.
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3.4. Lemmas for the Beck-Chevalley condition

Proof. Recall that we can factorise morphisms in A using pure-cartesian factorisation (see Proposi-
tion 2.1.14) and opcartesian-pure factorisation (see Proposition 2.4.15) and that we can express the results
of these factorisations using the the lollipop notation

⊸
and⊸ as given in Notations 2.1.6 and 2.4.7. Note

in particular that the morphisms that we obtain by using pure-cartesian factorisation and opcartesian-pure
factorisation will be isomorphisms (see Corollaries 2.1.25 and 2.4.17).

Factorize the morphisms in (3.4.1) using the cleaving and opcleaving ofΦ to get the following diagram

M′ Mh∗ M

M′k! Mg!

M′′′ M′′

ϕ
⊸
carth

M

opcartk
M′

⊸ χ opcartg
M
⊸ ξ

carth
M

opcartg
Mopcartk

M′

We then add some morphisms to obtain the following diagram.

M′ Mh∗ M

Mh∗k!

M′k! Mg! f ∗ Mg!

M′′′ M′′

opcartk
M′

⊸ χ opcartg
M
⊸ ξ

cart f
Mg!

opcartg
M

carth
M

ζM

opcartk
Mh∗

ϕ
⊸
carth

M

opcartk
M′

(�)k!

(1) (2)

The square labelled (1) commutes by the definition of k! on morphisms, and the pentagon labelled (2)
commutes by definition of the Beck-Chevalley morphism ζM. Therefore the morphism

M′′′ M′k! Mh∗k! Mg! f ∗ Mg! M′′
χ⊸ opcartk

M′ opcartg
M
⊸ ξcart f

Mg!ζM(ϕ
⊸
carth

M)k!

fills the niche (3.4.1) and lies over f . □

The fact that this morphism ψ is constructed using the Beck-Chevalley morphism leads us to the
following corollary which is given as Proposition 11 in [Pav91].

123



3 . The Beck-Chevalley Condition

Corollary 3.4.4. Let Φ : A→ B be a bifibration and let

A B

C D

h

k

f

g (3.4.5)

be a square in B that commutes. The following are equivalent:

(i) this square (3.4.5) satisfies the Beck-Chevalley condition;

(ii) for every niche

M′ M

M′′′ M′′

ϕ

ξχ (3.4.6)

in A that lies above the niche
A B

C D

h

k g

in B for whichϕ is cartesian and χ and ξ are opcartesian, the unique morphismψ that fills the niche (3.4.6)
and lies over f is cartesian.

Proof. The morphism

M′′′ M′k! Mh∗k! Mg! f ∗ Mg! M′′
χ⊸ opcartk

M′ opcartg
M
⊸ ξcart f

Mg!ζM(ϕ
⊸
carth

M)k!

is cartesian if, and only if, the morphism

Mh∗k! Mg! f ∗ Mg!

cart f
Mg!ζM

is cartesian. Using Proposition 2.1.24(ii), this morphism is cartesian if, and only if, ζM is cartesian. Finally,
since ζMΦ = idC, we can use Proposition 2.1.24(v) to get that ζM is cartesian if, and only if, ζM is an
isomorphism. □

In the following remark, we repeat the arguments of Lemma 3.4.3 and Corollary 3.4.4, but this time
using string diagrams. The advantage of this visual representation is that we can tell at a glance from
the string diagram (3.4.9) below that the unique morphism ψ that fills the niche (3.4.6) and lies over f is
cartesian.
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3.4. Lemmas for the Beck-Chevalley condition

Remark 3.4.7. Suppose that the commuting square

M′ M

M′′′ M′′

ϕ

ξχ

ψ

(3.4.8)

in A lies over the commuting square

A B

C D

h

k

f

g

in B, and suppose that ϕ is cartesian and χ and ξ are opcartesian. We can write the square (3.4.8) as the
following equality in the fibre category AD.

χ ψ
M′

(k # f )!

k!

f!

M′′′ M′′

=

ϕ ξ
M′

(h # g)!

h!

g!

M M′′
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3 . The Beck-Chevalley Condition

Precompose with the contraint isomorphism f! # k! → ( f # k)! to get

χ ψ
M′

k!

f!

M′′′ M′′

=

ϕ ξ
M′

(h # g)!

h! g!

M M′′

k!

f!

(k # f )!
=

Then precompose with f!(χ
−1) to get

ψ

f!

M′′′ M′′

=

ϕ ξ
M′′′

(h # g)!

h! g!

M M′′

k!

f!
(k # f )!

=

χ−1 M′

Take the adjunct to get

ψ

f ∗

M′′′ M′′

=

ϕ ξ
M′′′

(h # g)!
h!

g!

M M′′

k!

f!
(k # f )!

=

χ−1

f ∗

M′
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3.4. Lemmas for the Beck-Chevalley condition

Finally rearrange to get

ψ

f ∗

M′′′ M′′

=

ϕ ξ
M′′′

(h # g)!

h∗

g!

M M′′

k!

f!
(k # f )!

=

χ−1

f ∗

M′

h!

(3.4.9)

This is the unique morphism ψ : M′′′ →M′′ in A that fills the niche (3.4.6). By Proposition 2.3.10 , ψ
is cartesian if, and only if, (3.4.9) is an isomorphism in AC. Since χ−1, ψ and ξ are isomorphisms, (3.4.9)
is an isomorphism if, and only if, the morphism

(h # g)!

M

f!
(k # f )!

=

f ∗

h∗

k! h!

g!

is an isomorphism. But, by Proposition 3.2.3, this morphism is equal to the Beck-Chevalley morphism ζM.
So ψ is cartesian if, and only if, the Beck-Chevalley morphism ζM is an isomorphism. ⋄

The pull-back and push-forward functors h∗, f ∗, k! and g! are defined by the cleaving and opcleaving—
the cartesian and opcartesian morphisms that we chose. The following corollary of Corollary 3.4.4 says
that it doesn’t actually matter to the Beck-Chevalley condition which cartesian and opcartesian morphisms
we use to pull and push.

Corollary 3.4.10. Let Φ : A→ B be a bifibration and let

A B

C D

h

k

f

g (3.4.11)

be a square in B that commutes. The following are equivalent:
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3 . The Beck-Chevalley Condition

(i) this square (3.4.11) satisfies the Beck-Chevalley condition;

(ii) for every M ∈ AB, there exists a commuting square

M′ M

M′′′ M′′

ϕ

ξχ

ψ

in A that lies over (3.4.11) such that ϕ and ψ are cartesian and χ and ξ are opcartesian.

Proof. (i)⇒ (ii): We have the niche

Mh∗ M

Mh∗k! Mg!

carth
M

opcartg
Mopcartk

Mh∗
(3.4.12)

in A which lies over the niche
A B

C D

h

gk

in B. By Corollary 3.4.4, the unique morphism that fills the niche (3.4.12) is cartesian.
(ii)⇒ (i): Let M ∈ AB. Then there exists a commuting square

M′ M

M′′′ M′′

ϕ

ξχ

ψ

in A that lies over (3.4.11) such that ϕ and ψ are cartesian and χ and ξ are opcartesian. Since ψ is
cartesian, Corollary 3.4.4 gives that the Beck-Chevalley morphism ζM is an isomorphism. □
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Chapter 4

Fibrant Double Categories

In this chapter, we study fibrant double categories and give examples, we give a thorough account of
Shulman’s construction of fibrant double categories from monoidal bifibrations, and we give explicit
calculations of data in this construction.

In the first section, we define double categories and give examples. In the second section, we define
fibrant double categories to be those double categories for which the functor

(S,T) : D1 → D0 × D0

given by the source and target functors, S and T, is a bifibration, and we unpack this definition. We then
cover some of the basic properties of fibrant double categories, including the fact that that they can be
described using companions and conjoints, and that the pull-back and push-forward functors

( f , g)∗ : (D1)(B,D) (D1)(A,C) : ( f , g)!.

associated to the bifibration (S,T) can be described via loose composotion their action on the unit loose 1-
cells (see Theorems 4.2.5 and 4.2.10). At the end of this section, we define a 2-category of double categories
and a 2-category of fibrant double categories, we define monoidal double categories and we note how to
obtain a (monoidal) bicategory from a (monoidal) fibrant double category; the ability to obtain monoidal
bicategories from monoidal fibrant double categories is a key application of Shulman’s construction, and
it is studied in more detail by Shulman in [Shu10] and the functorially of this process is studied by Hansen
and Shulman in [HS19].

The third section contains a detailed examination of Shulman’s construction of fibrant double cat-
egories from monoidal bifibrations, and we carry out this construction for the weakly Beck-Chevalley
and internally closed bifibration Rep : GrpRep→ FinGrp. In the fouth section, we conclude with the
main results of this thesis: the explicit calculations—in string diagrammatic language—of the unit loose
1-cell U f and the (left) unitor for loose composition.

4.1 Double categories

Strict double categories were introduced by Ehresmann [Ehr63]. Grandis and Paré define pseudo double
categories in [GP99] and weak double categories in [GP19]. The definition we give now is that which
Shulman uses in [Shu08].
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4 . Fibrant Double Categories

Definition 4.1.1. A double category D consists of the following data:

· a category D0 whose objects are called 0-cells and whose morphisms are called tight 1-cells;

· a category D1 whose objects are called loose 1-cells and whose morphisms are called 2-cells;

· functors S,T : D1 → D0 called the source and target functors for which we have the notation
M : A ↛ B to mean a loose 1-cell M with SM = A and TM = B, and the notation

A B

A′ B′

Mp

M′
p

f gα

to mean a 2-cell α : M→M′ with Sα = f and Tα = g;

· a functor U : D0 → D1 called the unit functor;

· a functor
⊙ : D1 ×D0 D1 → D1

called loose composition, where

D1 ×D0 D1 D1

D1 D0S

T

⌟

is a pullback square in Cat;

· for each triple M : A ↛ B, N : B ↛ C, P : C ↛ D of loose 1-cells in D, an invertible 2-cell

A D

A D

(M⊙N)⊙Pp

M⊙(N⊙P)
p

idA idDa⊙MNP

called a (loose composition) associator;
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4.1. Double categories

· for each loose 1-cell M : A ↛ B in D, invertible 2-cells

A B

A B

UA⊙Mp

Mp

idA idDl⊙M
and

A B

A B

M⊙UBp

Mp

idA idDr⊙M

called (loose composition) left and right unitors.

These data are required to satisfy the following axioms.

· U # S = idD0 and U # T = idD0 .

· For all pairs M : A ↛ B, N : B ↛ C of 1-cells in D,

M ⊙N : A ↛ C.

· (Naturality of the associator) For all 2-cells α : M→M′, β : N→ N′, γ : P→ P′ in D satisfying
T(α) = S(β) and T(β) = S(γ), the following diagram commutes.

(M ⊙N) ⊙ P (M′ ⊙N′) ⊙ P′

M ⊙ (N ⊙ P) M′ ⊙ (N′ ⊙ P′)

(α⊙β)⊙γ

α⊙(β⊙γ)

a⊙MNP a⊙M′N′P′
(4.1.2)

· (Naturality of the unitors) For all pairs M : A → B, M′ : A′ → B′ of 1-cells in D and all 2-cells
α : M→M′ in D, the following diagrams commute.

UA ⊙M UA′ ⊙M′

M M′

USα⊙α

l⊙M l⊙M′

α

M ⊙UB M′ ⊙UB′

M N

α⊙UTα

r⊙M r⊙M′

α

(4.1.3)

· (Associativity) For all tuples M : A ↛ B, N : B ↛ C, P : C ↛ D, Q : D ↛ E of loose 1-cells in D
the following diagram commutes.

(M ⊙N) ⊙ (P ⊙Q)

((M ⊙N) ⊙ P) ⊙Q M ⊙ (N ⊙ (P ⊙Q))

(M ⊙ (N ⊙ P)) ⊙Q M ⊙ ((N ⊙ P) ⊙Q)

a⊙M⊙N.P,Q a⊙M,N,P⊙Q

idM⊙a⊙N,P,Q

a⊙M,N⊙P,Q

a⊙M,N,P⊙idQ

131



4 . Fibrant Double Categories

· (Unitality) For all pairs M : A ↛ B, N : B ↛ C of loose 1-cells in D the following diagram
commutes.

(M ⊙UB) ⊙N M ⊙ (UB ⊙N)

M ⊙N

a⊙M,UB ,N

r⊙M⊙idN idM⊙l⊙N

⋄

The terminology ‘tight’ and ‘loose’ for 1-cells in a double category was first used by Hansen and Shul-
man [HS19] after Shulman and Lack used these terms in their study of F -categories [LS12]. Historically,
the more standard terminology for 1-cells in a double category is ‘vertical’ and ‘horizontal’ [BS76, GP99],
and this terminology is still used today. However, just like with our use of the term ‘pure’ instead of
‘vertical’ when studying fibrations (see Remark 2.1.13), we favour the terms ‘tight’ and ‘loose’ because they
don’t depend on how things are drawn.

Remark 4.1.4. The left unitor 2-cells l⊙M and the right unitor 2-cells r⊙M are the components of natural
transformations

D1 D0 × D1 D1 ×D0 D1

D1

(S, idD1 ) U × idD1

idD1

⊙

=
⇒l⊙

and

D1 D1 × D0 D1 ×D0 D1

D1

(idD1 ,T) idD1 ×U

idD1

⊙

=
⇒r⊙

called the (loose composition) left unitor and the (loose composition) right unitor, where D1 ×D0 D1
denotes the category of loose-composable pairs defined by the following pullback in Cat.

D1 ×D0 D1 D1

D1 D0S

T

⌟

The naturality axioms for the unitors are (4.1.3). ⋄
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4.1. Double categories

Remark 4.1.5. The associativity 2-cells a⊙MNP are the components of a natural transformation

D1 ×D0 D1 ×D0 D1 D1 ×D0 D1

D1 ×D0 D1 D1

id ×D0 ⊙

⊙ ×D0 id ⊙

⊙

=⇒
a⊙

called the (loose composition) associator, where D1 ×D0 D1 ×D0 D1 denotes the category of loose-
composable triples defined by the following pullback in Cat.

D1 ×D0 D1 ×D0 D1 D1 ×D0 D1 D1

D1 ×D0 D1 D1 D0

D1 D0

S

T

S

T
⌟

⌟⌟

The naturality axiom for the associator is (4.1.2). ⋄

Notation 4.1.6. We have two kinds of composition of 2-cells in a double category D. We have the com-
position of 2-cells as morphisms in the category D1, which we call tight composition, and we have the
composition of 2-cells defined by the loose composition functor, ⊙, which we unsurprisingly call loose
composition. We’ll depict tight composition of 2-cells as vertically stacking,

A B

A′ B′

A′′ B′′

Mp

M′p

M′′
p

f

f ′

g

g′

α

β

and we’ll depict loose composition of 2-cells as horizontal stacking,

A B C

A′ B′ C′

Mp

M′
p

f g

Np

N′
p

hα γ
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4 . Fibrant Double Categories

⋄

Definition 4.1.7. Let D be a double category. We call a 2-cell α globular if Sα and Tα are both identity
tight 1-cells; this name is used because such a 2-cell can be written as

A B

Mp

Np
α

⋄

Definition 4.1.8. The category Bimod of bimodules has

· as objects triples (A,B,M), called bimodules, where A and B are finite groups, and M is a finite
dimensional vector space with the structure of a left A-module and a right B-module such that, for
all a ∈ A, b ∈ B and m ∈M, (a ·m) · b = a · (m · b), and

· as morphisms (A,B,M)→ (A′,B′,M′) triples ( f , g, α), called bimodule maps, where f : A→ A′

and g : B→ B′ are group homomorphisms and α : M→ M′ is a linear map that satisfies, for all
a ∈ A, b ∈ B and m ∈M, (a ·m · b)α = (a) f · (m)α · (b)g.

⋄

Example 4.1.9. The double category Bimod consists of the following data.

· The category Bimod0 is the category FinGrp of finite groups.

· The category Bimod1 is the category Bimod of bimodules.

· The source and target functors, S and T, are given by

(S,T) : Bimod −→ FinGrp × FinGrp
(A,B,M) 7−→ (A,B)

( f , g, α) 7−→ ( f , g).

· The functor unit functor, U, is given by

U : FinGrp −→ Bimod
G 7−→ CG
f 7−→ ( f , f ,C f ).

· The loose composition functor, ⊙, is given by

⊙ : Bimod ×FinGrp Bimod −→ Bimod(
(A,B,M), (B,C,N)

)
7−→ (A,C,M ⊗B N)(

( f , g, α), (g, h, β)
)
7−→ ( f , h, α ⊗B β).
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4.1. Double categories

⋄

Definition 4.1.10. Let A be a category with pullbacks. The category SpanA of spans in A has

· as objects tuples (X,Y,U, p, q), called spans, where X, Y and S are objects in A and p : U → X
and q : U→ Y are morphisms in A , and

· as morphisms (X,Y,U, p, q)→ (X′,Y′,U′, p′, q′) are triples ( f , g, h), called morphisms of spans,
where f : X → X′, g : U → U′ and h : Y → Y′ are morphisms in A that make the following
diagram in A commute.

X U Y

X′ U′ Y′

p q

p′ q′

f g h

⋄

Example 4.1.11. Let A be a category with pullbacks. The double categorySpanA consists of the following
data.

· The category SpanA ,0 is the category A .

· The category SpanA ,1 is the category SpanA of spans in A .

· The source and target functors, S and T, are given by

(S,T) : SpanA −→ A ×A

(X,Y,U, p, q) 7−→ (X,Y)
( f , g, h) 7−→ ( f , h).

· The functor unit functor, U, is given by

U : A −→ SpanA

A 7−→ (A,A,A, idA, idA)
f 7−→ ( f , f , f ).

· The loose composition functor, ⊙, is defined on loose 1-cells using pullbacks as shown below, and
is defined on 2-cells using the universal property of pullbacks.

U

X Y

p q
⊙

V

Y Z

r s =

U ×q r V

U V

X Y Z

r sp q

r⌟q q⌟r⌟

⋄
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4 . Fibrant Double Categories

4.2 Fibrant double categories

Definition 4.2.1. We call a double category D a fibrant double category if the functor

(S,T) : D1 → D0 × D0

is a bifibration. ⋄

Remark 4.2.2. It should be noted that Shulman originally termed these ‘framed bicategories’ in [Shu08],
but later decided on the term fibrant double category (see [Shu10, Remark 3.5]). ⋄

What does it mean for (S,T) : D1 → D0 × D0 to be a fibration? The definition states the following:
for each morphism ( f , g) : (A,C)→ (B,D) in D0 and each object M in D1 satisfying (S,T)(M) = (B,D),
there exists a cartesian morphism ϕ : P→ M in D1 that lies over ( f , g). Unpacked this means that, for
each pair of tight 1-cells f : A → B and g : C → D in D and each loose 1-cell M : B ↛ D in D, there
exists a 2-cell

A C

B D

f g

Mp

Pp

ϕ

such that, for each 2-cell

E F

A B

B DMp

Qp
h

f

k

g

ψ ,

there exists a unique 2-cell

E F

A CPp

Qp

h kχ
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4.2. Fibrant double categories

that satisfies

E F

A B

B DMp

Qp
h

f

k

g

ψ =

E F

A B

B DMp

Qp

h

f

k

g

P p

χ

ϕ

.

The description of what it means for (S,T) : D1 → D0 × D0 to be an opfibration is similar.

Recall that, if Φ : A → B is a bicleaved bifibration, then we have, for each morphism f : B→ B′

in B, functors f ∗ : AB′ → AB and f! : AB → AB′ (see Proposition 2.1.27 and Proposition 2.4.18). Given
a bicleaving for the bifibration (S,T) : D1 → D0 × D0, we have, for each pair of tight 1-cells f : A→ B
and g : C→ D in D, functors

( f , g)∗ : (D1)(B,D) (D1)(A,C) : ( f , g)!.

Notation 4.2.3. For loose 1-cells M : B ↛ D and P : A ↛ C, we use the following notation for the functors
( f , g)∗ and ( f , g)!.

f ∗Mg∗ := ( f , g)∗M
f!Pg! := ( f , g)!P
f ∗M := ( f , idD)∗M
Mg∗ := (idB, g)∗M

f!P := ( f , idC)!P
Pg! := (idA, g)!P

This notation is due to Shulman [Shu08]. ⋄

Using this notation, pure-cartesian factorisation says that each 2-cell

A C

B DMp

f g

Np

ψ
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4 . Fibrant Double Categories

can be uniquely factorised as

A C

B DMp

f g

Np

ψ =

A C

A C

B DMp

Np

f g

f ∗Mg∗
p

χ

cart( f ,g)
M

,

and opcartesian-pure factorisation says that each 2-cell

A C

B DMp

f g

Np

ψ

can be uniquely factorised as

A C

B DMp

f g

Np

ψ =

A C

B D

B DMp

Pp

f g

f!Pg!p

opcart( f ,g)
P

ξ

Lemma 4.2.4 ([Shu08, Theorem 4.1]). Let D be a fibrant double category and let f : A→ B be a tight 1-cell in
D. Define the 2-cells η f̂ and η f̌ using cartesian factorisation:

A A

B B

UAp

UB
p

f fU f =

A A

A B

B B

UAp

f ∗UBp

f

f

UB
p

η f̂

cart( f ,idB)
UB
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and

A A

B B

UAp

UB
p

f fU f =

A A

B A

B B

UAp

UB f ∗
p

f

f

UB
p

η f̌

cart(idB , f )
UB

.

Then

A B

A A B

A B B

A B

UAp

f

f ∗UB
p

f ∗UBp

UB
p

f ∗UBp

f ∗UB
p

η f̂ cart( f ,idB)
UB

(l⊙f ∗UB
)−1

r⊙f ∗UB

=

A B

A B
f ∗UB
p

f ∗UBp

id f ∗UB

and

B A

B A A

B B A

B A

UAp

f

UB f ∗
p

UB f ∗
p

UB
p

UB f ∗
p

UB f ∗
p

η f̌cart(idB , f )
UB

(r⊙UB f ∗ )
−1

l⊙UB f ∗

=

A B

A B
UB f ∗
p

UB f ∗
p

idUB f ∗
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4 . Fibrant Double Categories

Theorem 4.2.5. Let D be a fibrant double category. Let f : A→ B and g : C→ D be tight 1-cells in D, and let
M : B ↛ D be a loose 1-cell in D. Then there exists an invertible globular 2-cell

f ∗Mg∗ � f ∗UB ⊙M ⊙UDg∗.

Proof. The 2-cell

A B D C

B B D D

B D

f ∗UBp Mp
UD g∗
p

f g

Mp

UB
p UD

pMp

cart( f ,idB)
UB

cart(idD ,g)
UD

idM

�

lies over the morphism ( f , g) in B ×B, and it’s straightforward to check that it’s cartesian. Therefore,
by Remark 2.1.28, there exists an isomorphism f ∗Mg∗ � f ∗UB ⊙M ⊙UDg∗. □

Corollary 4.2.6. Let D be a fibrant double category, let M : B→ D and N : D→ G be loose 1-cells in D, and
let f : A→ B and g : C→ D be tight 1-cells in D. Then there exists an invertible globular 2-cell

f ∗(M ⊙N)g∗ � f ∗M ⊙Ng∗.

□

Theorem 4.2.5 tells us that we can construct a cleaving using the cartesian 2-cells

A B

B B

f ∗UBp

f

UB
p

cart( f ,idB)
UB

and

B A

B B

UB f ∗
p

f

UB
p

cart(idB , f )
UB

.

We therefore give 2-cells with the necessary properties a name.

Definition 4.2.7. Let D be a double category, and let f : A→ B be a tight 1-cell in D. A companion of f
consists of a loose 1-cell f̂ : A ↛ B and 2-cells

A B

B B

f

f̂
p

UB
p

ε f̂ and

A A

A B

UAp

f̂
p

fη f̂
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4.2. Fibrant double categories

such that

A A

A B

B B

UAp

f̂ p

f

f

UB
p

η f̂

ε f̂

=

A A

B B

UAp

UB
p

f fU f

and

A B

A A B

A B B

A B

UAp

f

f̂
p

f̂
p

UB
p

f̂
p

f̂
p

η f̂ ε f̂

(l⊙
f̂
)−1

r⊙
f̂

=

A B

A B
f̂
p

f̂
p

id f̂

⋄

Definition 4.2.8. Let D be a double category, and let f : A → B be a tight 1-cell in D. A conjoint of f
consists of a loose 1-cell f̌ : B ↛ A and 2-cells

B A

B B

f

f̂
p

UB
p

ε f̌ and

A A

B A

UAp

f̌
p

f η f̌
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4 . Fibrant Double Categories

such that
A A

B A

B B

UAp

f̌ p

f

f

UB
p

η f̌

ε f̌

=

A A

B B

UAp

UB
p

f fU f

and

B A

B A A

B B A

B A

UAp

f

f̌
p

f̌
p

UB
p

f̌
p

f̌
p

η f̌ε f̌

(r⊙
f̌
)−1

l⊙
f̌

=

A B

A B
f̂
p

f̂
p

id f̂

⋄

Compnaions and conjoints are well studied. This definition is due to [GP04], but the idea orginates
from Brown and Spencer’s work on double groupoids [BS76].

Proposition 4.2.9. Let D be a double category. Then the functor (S,T) : D0 → D1 × D1 is a fibration if, and
only if, there exists a companion and conjoint for every tight 1-cell in D. □

One can also use opcartesian factorisation to get a lemma analogous to Lemma 4.2.4 and a theorem
analogous to Theorem 4.2.5.

Theorem 4.2.10. Let D be a fibrant double category. Let f : A→ B and g : C→ D be tight 1-cells in D, and
let P : A ↛ C be a loose 1-cell in D. Then there exists an invertible globular 2-cell

f!Pg! � f!UA ⊙ P ⊙UCg!.

□

Corollary 4.2.11. Let D be a fibrant double category, let P : A→ C and Q : C→ H be loose 1-cells in D, and
let f : A→ B and g : C→ D be tight 1-cells in D. Then there exists an invertible globular 2-cell

f!(P ⊙Q)g! � f!P ⊙Qg!.
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4.2. Fibrant double categories

□

The existence of companions and conjoints is self-dual, and so we have the following theorem.

Theorem 4.2.12. Let D be a double category. Then the following are equivalent:

· D is a fibrant double category;

· the functor (S,T) is a fibration;

· the functor (S,T) is an opfibration;

· there exists a companion and conjoint for every tight 1-cell in D.

□

4.2.1 A 2-category of double categories

Definition 4.2.13. Let D and E be double categories. A double functor consists of the following data:

· two functors F0 : D0 → E0 and F1 : D1 → E1 satisfying F1 # S = S # F0 and F1 # T = T # F0;

· for each pair M,N of loose composable loose 1-cells in D, an invertible globular 2-cell F2
MN : MF1⊙

NF1 → (M ⊙N)F1;

· for each 0-cell A in D, an invertible globular 2-cell F0
A : UAF0 → UAF0.

These data must satisfy axioms similar to those of a pseudofunctor between bicategories (see Defini-
tion 1.1.8). ⋄

Definition 4.2.14. Let F,G : D→ E be double functors. A double transformation α : F→ G consists of
two natural transformations α0 : F0 → G0 and α1 : F1 → G1 that satisfy, for every loose 1-cell M in D,
α1,MS = α1,MS and α1,MT = α1,MT, as well as axioms similar to those of a pseudonatural transformation
between bicategories (see Definition 1.1.13). ⋄

Definition 4.2.15. A fibrant double functor is a double functor between fibrant double categories, and a
fibrant double transformation between two fibrant double functors is a double transformation between
their underlying double functors. ⋄

It may seem odd that we don’t insist that a fibrant double functor preserves (S,T)-cartesian 2-cells
and (S,T)-opcartesian 2-cells, but this is automatically true, as proved in [Shu09, Proposition 6.8].

Definition 4.2.16. The 2-category Dbl of double categories consists of double categories, double functors
and double transformations. This has a sub-2-category FibDbl consisting of fibrant double categories,
fibrant double functors and fibrant double transformations. ⋄
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4 . Fibrant Double Categories

4.2.2 (Monoidal) fibrant double categories to (monoidal) bicategories

An important application of the property of a double category being fibrant is to monoidal double
categories and the monoidal bicategories they induce. A monoidal double category is defined to be a
pseudomonoid in the 2-category Dbl of double categories. We give a brief unpacking of this definition
below; a full definition of monoidal double category is given in [Shu08, Definition 9.1].

Definition 4.2.17. A monoidal double category consists of

· monoidal categories (D0,⊗0, I0) and (D1,⊗1, I1),

· an invertible 2-cell

x : (M ⊗1 P) ⊙ (N ⊗1 Q)→ (M ⊙N) ⊗1 (P ⊙Q),

· an invertible 2-cell
u : UA⊗0B → (UA ⊗1 UB),

such that

· UI is the monoidal unit of D1,

· the functors S,T : D1 → D1 are strict monoidal,

· x and u satisfy the appropriate axioms,

· the associativity morphisms for the monoidal products in D0 and D1 form a natural transformation
of double categories D→ D,

· the unit morphisms for the monoidal products in D0 and D1 form a natural transformation of
double categories D→ D.

⋄

Definition 4.2.18. A monoidal fibrant double category is monoidal double category for which the con-
stituent double category, double functors and double transformations are all replaced by their fibrant
counterparts. ⋄

Given a double category D we can throw away the tight 1-cells and the non-globular 2-cells to get a
bicategory.

Definition 4.2.19. The loose bicategory LD of a double category D consists of the 0-cells, loose 1-cells,
and globular 2-cells of D. ⋄

Given a monoidal double category D we can’t throw away the tight 1-cells and the non-globular 2-cells
to get a monoidal bicategory because the monoidal associativity and unitality constraints of D are tight
1-cells and we don’t want to throw away that information. However, if we have a monoidal fibrant double
category D, the companions and conjoints mean that the data of the tight 1-cells is also contained in the
loose 1-cells. This is the subject of Shulman’s [Shu10], and later Hansen and Shulman’s [HS19].
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4.3. Definition of Dbl(Φ)

Theorem 4.2.20 ([Shu10, Theorem 1.2]). Let D be a monoidal fibrant double category. Then the loose bicategory
LD is a monoidal bicategory.

The monoidal bicategories that can be expressed as the loose bicategory of a monoidal fibrant double
category are called monoidal equipments.

4.3 Definition of Dbl(Φ)

Recall the following two definitions from earlier.

Definition 3.3.1. LetΦ : A → B be a bifibration. We say thatΦ is Beck-Chevalley if, for every pullback
square

B ×B′ C C

B B′

q

p

f

g
⌟

in B, the Beck-Chevalley transformation is an isomorphism. We say that Φ is weakly Beck-Chevalley if,
for every pullback square of the form

B ×B′ (D × B′) D × B′

B B′

q

p

f

πD

⌟

in B and every pullback square of the form

(D × B′) ×B′ C C

D × B′ B′

p

q

g

πD

⌟

in B, the Beck-Chevalley transformation is an isomorphism. ⋄

Definition 2.8.5. LetΦ : A → B be a monoidal fibration with B cartesian monoidal. We callΦ : A →
B internally closed if, for each object B in B, the fibre category AB is closed monoidal and if, for every
morphism f : A→ B in B and every pair of objects M,M′ in AB, the morphisms

(M′ ▶ M) f ∗ →M′ f ∗ ▶ M f ∗ and (M′ ◀ M) f ∗ →M′ f ∗ ◀ M f ∗.

given by (2.8.2) and (2.8.4) are isomorphisms. ⋄
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4 . Fibrant Double Categories

In order to construct a fibrant double category from a moniodal bifibration Φ : A → B, we need
B to be cartesian moniodal and we need Φ to be either (i) Beck-Chevalley or (ii) weakly Beck-Chevalley
and internally closed. We call such a monoidal bifibration a doublable monoidal bifibration.

The following theorem is the main result of Shulman’s paper [Shu08]. We give the short version as
Shulman does; in the subsections that follow we add some necessary detail.

Theorem 4.3.1 ([Shu08, Theorem 14.2]). If Φ : A → B is a doublable monoidal bifibration, then there is a
fibrant double category Dbl(Φ) defined as follows.

(i) The tight category Dbl(Φ)0 is equal to B.

(ii) The loose category Dbl(Φ)1 and the functors S and T are given by the following pullback in Cat:

Dbl(Φ)1 A

B ×B B

Φ

×

(S,T)

⌟

(iii) The loose composition of loose 1-cells M : A ↛ B and N : B ↛ C is equal to

M ⊙N = (M ⊗N)∆∗BπB!

and the loose composition of 2-cells is similar.

(iv) The loose unit of the object A is equal to

UA = Iπ∗A∆A!

where I denotes the monoidal unit of A .

Example 4.3.2. Let A be a category with pullbacks. Then the codomain functor ArrA : A →
→ A is

a doublable monoidal bifibration. The tight category of Dbl(ArrA ) is A , the loose 1-cells A ↛ B in
Dbl(ArrA ) are objects in A → that lie over the object A × B in B, and the 2-cells in Dbl(ArrA ) are
morphisms of A → over f × g.

In fact, Dbl(ArrA ) is isomorphic to the fibrant double category SpanA of spans in the 2-category
FibDbl . This follows from the fact that a span A←M→ B is equivalently a morphism α : M→ A×B,
and this is precisely an object α of A → satisfying (α)ArrA = A × B. ⋄

Example 4.3.3. The forgetful functor Rep : GrpRep → FinGrp is doublable since it is weakly Beck-
Chevalley (see Proposition 3.3.3) and internally closed (see Example 2.8.11), so we may construct the fibrant
double category Dbl(Rep).
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The objects of Dbl(Rep) are finite groups, and the tight 1-cells of Dbl(Rep) are group homomor-
phisms. A loose 1-cell G ↛ H is a (G ×H)-module, and a 2-cell

G H

I J

Vp

Wp

f f ′α

is an ( f , f ′)-equivariant map α : V → W, by which we mean a linear map α : V → W such that, for
every (g, h) ∈ G ×H and every v ∈ V,

((g, h) · v)α = ((g) f , (h) f ′) · (v)α.

Now for composition of loose 1-cells. Theorem 4.3.1 tells us that this is

VG×H ⊙ WH×K = ( VG×H ⊗ WH×K )∆∗HπH!.

The obvious part is that ( VG×H ⊗ WH×K )∆∗H is equal to the G ×H × K-module V ⊗W with H acting
diagonally. Recall from Example 2.4.20 that induction along a product projection gives the space of
coinvariants. So the underlying vector space of VG×H ⊙ WH×K is

V ⊗W(H) = (V ⊗W)/⟨(h · v) ⊗ (h · w) − v ⊗ w | h ∈ H, v ∈ V,w ∈W⟩,

and G and K act on this space in the obvious way.
Lastly, we define the unit object UG. Theorem 4.3.1 tells us that this is

UG = Ctrivπ∗G∆G!.

The category Rep
{e} is equivalent to the category of vector spaces, and the base-change functorπ∗G : Rep

{e}
→ RepG maps a vector space V to the G-module V with trivial G-action; in particular Ctrivπ∗G is the
trivial G-module Ctriv

G . Then induction along the diagonal map ∆G gives

UG = CGG×G ,

where G × G acts on CG by (x, y) · g = xgy−1. ⋄

Example 4.3.4. The fibrant double categories Bimod and Dbl(Rep) are isomorphic as objects in the 2-
category FibDbl of fibrant double categories. The difference between these two fibrant double categories
is only very slight, but we’ll define mutually inverse double functors P : Dbl(Rep) ⇄ Bimod :Q.

To define P, we must define functors

Dbl(Rep)0 → Bimod0 and Dbl(Rep)1 → Bimod1,

as well as, for each pair M,N of loose composable loose 1-cells in Dbl(Rep), invertible globular 2-cells
P⊙ : VP ⊙ WP → (V ⊙ W)P and PU : UGP → UGP. The functor Dbl(Rep)0 → Bimod0 is the
identity on FinGrp. For a loose 1-cell V : G ↛ H in Dbl(Rep) (i.e. a (G × H)-module), the loose
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4 . Fibrant Double Categories

1-cell VP : G ↛ H in Bimod is the (G,H)-bimodule with underlying vector space V, with left G-action
g · v := (g, eH) · v, and right H-action v · h := (eG, h−1) · v. For a 2-cell

G H

I J

Vp

Wp

f f ′α

in Dbl(Rep), the 2-cell

G H

I J

VPp

WPp

f f ′αP

is the map Pα : VP→WP which is equal to α as maps of underlying sets V →W.
Now we will show that the natural transformations P⊙ and PU are both identities. We’ll show this for

P⊙, but not for PU as this is immediate from the definitions of UG in Dbl(Rep) and in Bimod. Suppose
that G, H and K are finite groups, that V is a (G ×H)-module and that W is an (H × K)-module. Let

X =
〈(

(eG, h) · v ⊗ (h, eK) · w
)
− v ⊗ w | h ∈ H, v ∈ V,w ∈W

〉
≤ V ⊗W,

and let
Y =

〈(
(eG, h−1) · v ⊗ w

)
−

(
v ⊗ (h, eK) · w

)
| h ∈ H, v ∈ V,w ∈W

〉
≤ V ⊗W.

The underlying vector space of VP⊙WP is (V ⊗W)/Y and the underlying vector space of (V ⊙W)P is
(V ⊗W)/X, which are equal since X = Y. It’s easy to see that VP ⊙WP and (V ⊙W)P have the same
left G- and right K-actions.

It’s very easy to define an inverse Q to P : Dbl(Rep)→ Bimod. As with P, the functor of vertical
categories Bimod0 → Dbl(Rep)0 is the identity. For a loose 1-cell V in Bimod (i.e. a (G,H)-bimodule),
the loose 1-cell VQ : G ↛ H in Dbl(Rep) is the (G ×H)-module with underlying vector space V, with
left G-action (g, eH)· := g · v, and with left H-action (eG, h) · v := v · h−1. Again as with P, for any 2-cell
α : V → W in Bimod, the 2-cell αQ : VQ → WQ is equal to α as maps of underlying sets V → W.
Lastly, the coherence natural transformations Q⊙ and QU are identities. ⋄

The following is stated by Shulman as part of the theorem defining the above construction. We don’t
study this part of the result in this thesis, but it is important to mention; specifying all of the data and
checking all of the axioms in order to define a monoidal bicategories is a laborious task, whereas specifying
the data and checking the axioms for a monoidal bifibrations is relatively simple.

Theorem 4.3.5 ([Shu08, Theorem 14.2]). Let Φ : A → B be a doublable monoidal bifibration. If Φ is
symmetric monoidal, then Dbl(Φ) is a symmetric monoidal fibrant double category.

The remainder of this section is a detailed account of how Shulman defines the remaining data needed
to define the double category Dbl(Φ).
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4.3.1 Definition of U

We define the functor U : D0 → D1. For each 0-cell A in D, define

UA = Iπ∗A∆A!.

For each tight 1-cell f : A→ B in D, define the 2-cell

A A

B B

f f

UAp

UB
p

U f

as follows. Define the morphism χ : Iπ∗A → Iπ∗B in A using cartesian factorisation as shown in the
following figure.

Iπ∗A

Iπ∗B I

A

B ∗

cart
πA
I

χ

cartπB
I

f
πA

πB

A

B

Φ (4.3.6)

Define the morphism U f : Iπ∗A∆A! → Iπ∗B∆B! in A using opcartesian factorisation as shown in the
following figure.

Iπ∗B Iπ∗B∆B!

Iπ∗A Iπ∗A∆A!

B × B

A A × A

opcart
∆A
Iπ∗A

∆A

∆A#( f× f ) f× f

χ

opcart∆B
Iπ∗B

A

B

Φ (4.3.7)
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Notice that χ #opcart∆B
Iπ∗B

does indeed lie over∆A # ( f × f ) because the following diagram in B commutes.

A B

A × A B × B

f

∆B∆A

f× f

4.3.2 Definition of ⊙

We’ll define the functor ⊙ : D1 ×D0 D1 → D1.
For each pair M : A ↛ B and N : B ↛ C of loose-composable loose 1-cells in D, define

M ⊙N = (M ⊗N)∆∗BπB!.

For each pair

A B

X Y

pMp
f g

p
Q
p
α and

B C

Y Z.

pNp
g h

p
R
p

β

of loose-composable 2-cells in D, define the 2-cell

A C

X Z

M⊙Np

Q⊙R
p

f hα⊙β

as follows. The diagram

M ⊗N (M ⊗N)∆∗B (M ⊗N)∆∗BπB! =M ⊙N

Q ⊗ R (Q ⊗ R)∆∗Y πY!∆
∗

Y(Q ⊗ R) = Q ⊙ R

α⊗β

cart∆B
M⊗N

cart
∆Y
Q⊗R

opcartπB
(M⊗N)∆∗B

opcart
πY
(Q⊗R)∆∗Y

in A lies over the diagram

ABBC ABC AC

XYYZ XYZ XZ

f×g×g×h

∆B

∆Y

πB

πY
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4.3. Definition of Dbl(Φ)

in B, and the diagram

ABBC ABC AC

XYYZ XYZ XZ

f×g×g×h

∆B

∆Y

πB

πY

f×g×h f×h

in B commutes. As shown in the figure below, we define χ to be the unique morphism that fills the niche
(1) and lies over f × g × h, and we define α ⊙ β to be the unique morphism that fills the niche (2) and
lies over f × h.

M ⊗N (M ⊗N)∆∗B (M ⊗N)∆∗BπB! =M ⊙N

Q ⊗ R (Q ⊗ R)∆∗Y (Q ⊗ R)∆∗YπY! = Q ⊙ R

α⊗β

cart∆B
M⊗N

cart
∆Y
Q⊗R

opcartπB
(M⊗N)∆∗B

opcart
πY
(Q⊗R)∆∗Y

α⊙βχ(1) (2)

4.3.3 Definition of a⊙

For each triple M : A ↛ B, N : B ↛ C and Q : C ↛ D of composbale loose 1-cells, we will define the
associator

A D

A D

(M⊙N)⊙Qp

M⊙(N⊙Q)
p

idA idDa⊙MNQ

as follows.
We begin by defining an opcartesian morphism χ and a cartesian morphism ψ to form the niche

(M ⊙N) ⊗Q (M ⊗N)∆∗B ⊗Q

((M ⊙N) ⊗Q)∆∗C ((M ⊗N) ⊗Q)(∆C # ∆B)∗

opcartπB
(M⊗N)∆∗B

⊗Q

cart
∆C
(M⊙N)⊗Q cart

∆C#∆B
(M⊗N)⊗Q

⊸
(cart∆B

(M⊗N)⊗Q) (4.3.8)
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4 . Fibrant Double Categories

in A which lies over the niche

A × C × C ×D A × B × C × C ×D

A × C ×D A × B × C ×D

∆C ∆C

πB

in B. Define χ by

χ = opcartπB
(M⊗N)∆∗B

⊗Q : (M ⊗N)∆∗B ⊗Q (M ⊗N)∆∗BπB! ⊗Q = (M ⊙N) ⊗Q

and define ψ by

cart∆C#∆B
(M⊗N)⊗Q

⊸
(cart∆B

M⊗N ⊗Q) : ((M ⊗N) ⊗Q)(∆C # ∆B)∗ −→ (M ⊗N)∆∗B ⊗Q

as shown in the following figure.

((M ⊗N) ⊗Q)∆∗BC

(M ⊗N)∆∗B ⊗Q (M ⊗N) ⊗Q

A × B × C ×D

A × B × C × C ×D A × B × B × C × C ×D

cart
∆BC
(M⊗N)⊗Q

cart∆B
M⊗N⊗Q

∆B

∆C
∆BC

ψ
A

B

Φ

The morphism χ is opcartesian because the functor − ⊗ Q preserves opcartesian morphisms. The
morphismψ is cartesian because the morphisms cart∆C#∆B

(M⊗N)⊗Q and cart∆B
M⊗N⊗Q are both cartesian, which

is because the functor − ⊗Q preserves cartesian morphisms. So we have the niche (4.3.8) that we sought.
The square

A × C × C ×D A × B × C × C ×D

A × C ×D A × B × C ×D

∆C ∆C

πB

πB

⌟

in B commutes and satisfies the Beck-Chevalley condition since one of its legs is a product projection
and the bifibration Φ is at least weakly Beck-Chevalley. Let ξ denote the unique morphism that fills the
niche (4.3.8) and that lies over πB. By Corollary 3.4.4, the morphism ξ is opcartesian.

Let ω1 denote the opcartesian morphism

ω1 = ξ # opcartπC
((M⊙N)⊗Q)∆∗C

: ((M ⊗N) ⊗Q)(∆C # ∆B)∗ −→ (M ⊙N) ⊙Q.
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4.3. Definition of Dbl(Φ)

We can similarly construct an opcartesian morphism

ω2 : ((M ⊗N) ⊗Q)(∆C # ∆B)∗ −→M ⊙ (N ⊙Q).

Define the morphism a⊙M,N,Q : (M ⊙ N) ⊙ Q → M ⊙ (N ⊙ Q) in A using opcartesian factorisation as
shown in the following figure.

(M ⊗N) ⊗Q ((M ⊗N) ⊗Q)∆∗BC (M ⊙N) ⊙Q

M ⊗ (N ⊗Q) (M ⊗ (N ⊗Q))∆∗BC M ⊙ (N ⊙Q)

ω1

a⊙M,N,Q(a⊗M,N,Q)∆∗BC

ω2

cart
∆BC
(M⊗N)⊗Q

cart
∆BC
M⊗(N⊗Q)

a⊗M,N,Q

Notice that a⊙M,N,Q is an isomorphism since it is pure and opcartesian.

4.3.4 Definition of l⊙M
For each loose 1-cell M : A ↛ B in D, we will define a 2-cell

A B

A BUA⊙Mp

Mp

idA idDl⊙M
−1

We will then show that it is invertible and define the left loose composition unitor l⊙M to be its inverse.
The right loose composition unitor r⊙M is defined similarly.

We begin by defining an opcartesian morphism χ and a cartesian morphism ψ to form the niche

M (UA ⊗M)∆∗A

Iπ∗A ⊗M UA ⊗M

ψ

χ

cart
∆A
UA⊗M

(4.3.9)

in A which lies over the niche

A × B A × A × B

A × A × B A × A × A × B

∆A×idB

∆A×idA×B

idA×∆A×idB
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4 . Fibrant Double Categories

in B. Define χ by

χ = opcart∆A
Iπ∗A
⊗M : Iπ∗A ⊗M Iπ∗A∆A! ⊗M = UA ⊗M

and define ψ by

ψ = l⊗M
−1 ⊸

cartπA
I ⊗M : M Iπ∗A ⊗M

as shown in the following figure.

M

Iπ∗A ⊗M I ⊗M

A × B

A × A × B ∗ × A × B

l⊗M
−1

cart
πA
I ⊗M

πA×idA×B

∆A×idB

ψ A

B

Φ

The morphism χ is opcartesian because the functor − ⊗ M preserves opcartesian morphisms. The
morphism ψ is cartesian because the morphisms l⊗M

−1 and cartπA
I ⊗ M are both cartesian, which is

because the functor − ⊗M preserves cartesian morphisms. So we have the niche (4.3.9) that we sought.
The square

A × A × A × B A × A × B

A × A × B A × B

∆A×idB

∆A×idA×B

idA×∆A×idB

∆A×idB

(4.3.10)

in B commutes. Let
ξ : M −→ (UA ⊗M)∆∗A (4.3.11)

denote the unique morphism that fills the niche (4.3.9) and that lies over ∆A × idB. Define the morphism
l⊙M
−1 : M→ UA ⊙M in A to be the following composite.

M (UA ⊗M)∆∗A (UA ⊗M)∆∗AπA! = UA ⊙Mξ
opcart

πA
(UA⊗M)∆∗A

4.3.5 Proof that l⊙ is an isomorphism

4.3.5.1 Case (1): Φ is Beck-Chevalley

The square (4.3.10) is a pullback square and therefore satisfies the Beck-Chevalley condition since Φ is
Beck-Chevalley. So, by Corollary 3.4.4, the morphism ξ (see (4.3.11)) is opcartesian. Therefore, l⊙M is an
isomorphism since it is pure and opcartesian.
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4.3. Definition of Dbl(Φ)

4.3.5.2 Case (2): Φ is weakly Beck-Chevalley and internally closed

The niche
M (UA ⊗M)∆∗A

Iπ∗A ⊗M UA ⊗M

ψ

χ

cart
∆A
UA⊗M

in A (see (4.3.9)) doesn’t lie over a pullback square in B that has a product projection as one of its legs,
and so, since Φ is only weakly Beck-Chevalley in this case, we can’t use Corollary 3.4.4 to show that the
morphism ξ (see (4.3.11)) is opcartesian. Instead, we’ll use cartesian factorisation to obtain a niche in A
that lies over the niche

A × B A × A × B

A × B × A × B A × A × B × A × A × B

∆A×B ∆A×A×B

∆A×idB×∆A×idB

in B, because we can then use Corollary 2.8.9.
Firstly, we will construct a niche

Iπ∗Aπ
∗

B ⊗M UAπ∗B ⊗Mπ∗A

Iπ∗A ⊗M UA ⊗M

cart cart

χ

ψ1⊗ψ2

in A , such that the morphisms labelled cart are cartesian and where χ is as in Section 4.3.4.
The niches

Iπ∗Aπ
∗

B UAπ∗B

Iπ∗A Iπ∗A∆A! = UA

cartπB
Iπ∗A

cartπB
UA

opcart
∆A
Iπ∗A

and

M Mπ∗A

M M

cart
πA
M

(4.3.12)

in A lie over the niches

A × B A × A × B

A A × A
∆A

πBπB and

A × B A × A × B

A × B A × B
∆A

πB
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4 . Fibrant Double Categories

in B, and the squares

A × B A × A × B

A A × A
∆A

πBπB

∆A×idB

⌟
and

A × B A × A × B

A × B A × B
∆A

πB

∆A×idB

(4.3.13)

in B commute. Let ψ1 : Iπ∗Aπ
∗

B → UAπ∗B denote the unique morphism that fills the left niche in (4.3.12)
and lies over ∆A × idB, and let ψ2 : M→Mπ∗A denote the unique morphism that fills the right niche in
(4.3.12) and lies over∆A× idB. We can use Corollary 3.4.4 to get that the morphismψ1 is opcartesian since
the left square in (4.3.13) is a pullback square with one of its legs a product projection and the bifibration
Φ is weakly Beck-Chevalley. The morphism ψ2 is cartesian by Proposition 2.1.24.

The monoidal product of two cartesian morphisms is cartesian and the monoidal product of two
opcartesian morphisms is opcartesian, and here we’ll write cart and opcart for the cartesian and op-
cartesian morphisms obtained this way. The following diagram shows the result of taking the monoidal
product of the two niches in (4.3.12); this is the niche we sought.

Iπ∗Aπ
∗

B ⊗M UAπ∗B ⊗Mπ∗A

Iπ∗A ⊗M UA ⊗M

cart cart

χ

ψ1⊗ψ2

(4.3.14)

Now, we use these two cartesian morphisms denoted cart to factorise the niche

M (UA ⊗M)∆∗A

Iπ∗A ⊗M UA ⊗M

ψ

χ

cart
∆A
UA⊗M

as
M (UA ⊗M)∆∗A

Iπ∗Aπ
∗

B ⊗M UAπ∗B ⊗Mπ∗A

Iπ∗A ⊗M UA ⊗M

ν ϕ

cart cart

χ
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4.3. Definition of Dbl(Φ)

That is, the morphism ν is obtained by cartesian factorisation as shown in the figure

M

Iπ∗Aπ
∗

B ⊗M Iπ∗A ⊗M

A × B

A × B × A × B A × A × B

ψ
ν

cart

∆A×B
∆A×idB

πB

A

B

Φ

and the morphism ϕ is obtained by cartesian factorisation as shown in the figure

(UA ⊗M)∆∗A

UAπ∗B ⊗Mπ∗A UA ⊗M

A × B

A × B × A × B A × A × B

cart
∆A
UA⊗M

ϕ

cart

∆A×A×B idA×∆A×idB

πA×πB

A

B

Φ

By Proposition 2.1.24, both ν and ϕ are cartesian.
The niche

M (UA ⊗M)∆∗A

Iπ∗Aπ
∗

B ⊗M UAπ∗B ⊗Mπ∗A

ν ϕ

ψ1⊗ψ2

(4.3.15)

in A lies over the niche

A × B A × A × B

A × B × A × B A × A × B × A × A × B

∆A×B ∆A×A×B

∆A×idB×∆A×idB
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4 . Fibrant Double Categories

in B, and the square

A × B A × A × B

A × B × A × B A × A × B × A × A × B

∆AB ∆AAB

∆A×idB×∆A×idB

∆A×idB

in B commutes. By Corollary 2.8.9, the unique morphism ρ : M → (UA ⊗M)∆∗A that fills the niche
(4.3.15) and lies over∆A×idB is opcartesian. Sinceρfills the niche (4.3.15) and the square (4.3.14) commute,
ρ also fills the niche

M (UA ⊗M)∆∗A

Iπ∗Aπ
∗

B ⊗M UAπ∗B ⊗Mπ∗A

Iπ∗A ⊗M UA ⊗M

ν ϕ

cart cart

χ

in A and lies over ∆A × idB. But ξ is the unique such morphism, so ξ = ρ, and so ξ is opcartesian.
Therefore, l⊙M is an isomorphism since it is pure and opcartesian.

4.3.6 Proof that Dbl(Φ) is a fibrant double category

The functor (S,T) is the pullback ofΦ along the product of B, and it’s easy to check that the pullback of
a bifibration is a bifibration, so (S,T) is a bifibration.

4.4 Definition of Dbl(Φ) using string diagrams

In this section, we have the main results of this thesis: the explicit calculations—in string diagrammatic
language—of the unit loose 1-cell U f and the (left) unitor for loose composition, l⊙.
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4.4. Definition of Dbl(Φ) using string diagrams

4.4.1 Definition of U using string diagrams

Recall the definition of U f from Section 4.3.1. Rewrite (4.3.6) as

(
Iπ∗A
A

)

(
Iπ∗B
B

) (
I
∗

)

A

B ∗

 id

πA


∗

χf

∗

 id

πB


∗

f
πA

πB

∫
ΦG−1

B

Then χ is the unique morphism satisfying

χ

πA∗
∗

I I

=

=
πA∗
∗f ∗

πB∗
∗

( f # πB
∗ )∗

I I

πA∗
∗

χ

πA∗
∗

I I

=

f ∗

πB∗
∗ (4.4.1)
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4 . Fibrant Double Categories

f ∗

π∗B

( f # πB)∗

I

=
πAi∗

Rewrite (4.3.7) as

(
Iπ∗B
B

) (
Iπ∗B∆B!
B × B

)

(
Iπ∗A
A

) (
Iπ∗A∆A!
A × A

)

B × B

A A × A

 id

∆A


!

 U f

f× f


!

∆A

∆A#( f× f ) f× f

χf


!

 id

∆B


! ∫

ΦG−1

B

Then U f is the unique morphism satisfying

χ

πA∗
∗

I

=

πB∗
∗

∆B!

f!

( f # ∆B)!
=

(∆A # ( f × f ))!

U f

πA∗
∗

I

πB∗
∗

( f × f )!

∆A!

(∆A # ( f × f ))! ∆B!
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4.4. Definition of Dbl(Φ) using string diagrams

Therefore, by substituting (4.4.1) into (4.4.1) and rearranging, we get

U f
UA

( f × f )!

UB

=

I

=
∆A!

( f × f )!

π∗A

(∆A # f × f )! ( f # ∆B)!

f!

∆B!

π∗B

f ∗

=
( f # πB)∗

4.4.2 Definition of l⊙ using string diagrams

We follow the definition of the unitor M→ UA⊙M from Section 4.3.4. The niche (4.3.9) in A is written
using indexed category notation as the niche

UA ⊗M Iπ∗A ⊗M

(UA ⊗M)∆∗A M

 ψ

∆A×idB


∗

 χ

∆A×idA×B


!

 id

idA×∆A×idB


∗

(4.4.2)

Since the functor − ⊗M presreves opcartesian morphisms, the morphism

χ = opcart∆A
Iπ∗A
⊗M : Iπ∗A ⊗M Iπ∗A∆A! ⊗M = UA ⊗M

is opcartesian, and so there exists a pure isomorphism

χ
UA ⊗MIπ∗A ⊗M

(∆A × idA×B)!
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4 . Fibrant Double Categories

in A such that

χ =

(
χ

∆A × idA×B

)
!

: Iπ∗A ⊗M −→ Iπ∗A∆A! ⊗M = UA ⊗M.

Since the functor − ⊗M presreves cartesian morphisms, the morphism

cartπA
I ⊗M : Iπ∗A ⊗M −→ I ⊗M

is cartesian, and so there exists a pure isomorphism

σ
Iπ∗A ⊗M I ⊗M

(πA × idA×B)∗

in A such that

cartπA
I ⊗M =

(
σ

πA × idA×B

)∗
: Iπ∗A ⊗M −→ I ⊗M.

With this, we can write the morphism ψ as

ψM Iπ∗A ⊗M

(∆A × idB)∗

=

σ−1
Iπ∗A ⊗MM

l⊗M
−1

=

(∆A × idB)∗

(πA, idA×B)∗ (∆A × idB # πA × idA×B)∗
(πA × idA×B)∗

I ⊗M

Using Remark 3.4.7, we can depict the the total part of the morphism(
ξ

∆A × idB

)
: M −→ (UA ⊗M)∆∗A

that fills the niche (4.4.2) using a string diagram: this diagram is shown in Figure 4.1. The morphism l⊙M
−1

is given by

l⊙M
−1
=

(
ξ

∆A × idB

)
#
(

η
πAAB

A B

)
−→M→ (UA ⊗M)(idA × ∆A × idB)∗πAAB

AB! = UA ⊙M.
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4.4. Definition of Dbl(Φ) using string diagrams

The total part of l⊙M
−1 is depicted using a string diagram in Figure 4.2.

In Section 4.3.5.1 we proved that if the fibration Φ : A → B is Beck-Chevalley then this morphism,
l⊙M
−1, is an isomorphism. In Figure 4.3 we show the total part of l⊙M

−1 again, but this time rearranged and
with the Beck-Chevalley transformation

(∆A × idB)∗

=
(idA × ∆A × idB)∗

(∆A × idB)∗

(∆A × idA×B)!

(∆A × idA×B)∗

(∆A × idB)!

associated to the square

A × A × A × B A × A × B

A × A × B A × B

∆A×idB

∆A×idA×B

idA×∆A×idB

∆A×idB

shown in a dotted box; this shows at a glance that if the fibration Φ : A → B is Beck-Chevalley then
the morphism l⊙M

−1 is an isomorphism.

163



4.
F
ibr

a
n
t
D
o
u
ble

C
a
teg

o
r
ies

σ−1 χ
Iπ∗A ⊗MM

l⊗M
−1

=

(∆A × idB)∗

(πA, idA×B)∗ (∆A × idB # πA × idA×B)∗
(πA × idA×B)∗

I ⊗M

=

(∆A × idB)!

(idA × ∆A × idB)∗

(∆A × idB)∗

(∆A × idA×B)!

(∆A × idA×B)∗

UA ⊗M

Figure 4.1: The total part of the morphism that fills the niche (4.4.2)
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D
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ofD

bl(Φ
)using

string
diagram

s

σ−1 χ
Iπ∗A ⊗MM

l⊗M
−1

=

(∆A × idB)∗

(πA, idA×B)∗ (∆A × idB # πA × idA×B)∗
(πA × idA×B)∗

I ⊗M

=

(∆A × idB)!

(idA × ∆A × idB)∗

(∆A × idB)∗

(∆A × idA×B)!

(∆A × idA×B)∗

UA ⊗M

id∗A×B
πAAB∗

AB

Figure 4.2: The total part of the morphism l⊙M
−1
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σ−1M
l⊗M
−1

=(πA, idA×B)∗ (∆A × idB # πA × idA×B)∗
(πA × idA×B)∗

I ⊗M

id∗A×B

χ
Iπ∗A ⊗M

(∆A × idB)∗

=
(idA × ∆A × idB)∗

(∆A × idB)∗

(∆A × idA×B)!

(∆A × idA×B)∗

UA ⊗M

(∆A × idB)!

πAAB
AB!

Figure 4.3: The total part of the morphism l⊙M
−1, rearranged to show the Beck-Chevalley transformation
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