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Abstract

In [Shu08], Shulman describes a way to construct a fibrant double category from a monoidal
bifibration. In this thesis, we take an algebraic approach using indexed categories and string diagrams
to better understand this construction and the role that the Beck-Chevalley transformation has within
it. We give an explicit calculation of the niche-filling morphism arising from cartesian and opcartesian
lifting properties, and we use this to give a more intuitive string-diagrammatic proof of a result
on conditions equivalent to the Beck—Cheva]ley conditions. We give a detailed examination of the
construction and make exp]icit calculations—in string diagrammatic 1anguage—of‘the unit loose 1-cell
Uy and the loose composition (left) unitor I° of the constructed fibrant double category.

Motivating examples are given throughout, including proofs that the forgetful functor GrpRep —
FinGrp that maps a G-module V' to the group G that acts on it is a weakly Beck-Chevalley and in-
ternally closed monoidal bifibration.
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Introduction

The aim of this thesis is to use indexed categories and string diagrams to better understand the Beck-
Chevalley condition and the construction of fibrant monoidal double categories by Shulman [Shu08]. The
advantage ofusing indexed categories is that we can make explicit calculations of the data involved in the
construction, and the advantage of using string diagrams is that we can see at a glance how the hypotheses
of the construction impiy the necessary properties of the data.

Fibrant double categories

Double categories were originally introduced by Ehresmann [Ehr63], and the series ofpapers by Grandis
and Par¢ are a comprehensive study [GP99, GP04, GP08, GP07]. A double category can be defined to
be an internal category in the 2-category Cat oficategories; more exp]icitly, a double category has 0-cells,
two kinds of morphism—called tight 1-cells and loose 1-cells—between the 0-cells and 2-cells between the
loose 1-cells. Tt is the two different kinds of morphism that means certain mathemtaical objects are better
understood using double categories. App]ications of double categories include the study of dynamical
systems [Mye23, BCV22, Cou20], universal 2-algebras [Kel74, Fio07] and derived functors [Shull], to name
just a few Cxampicsi A double category that is a focus of this thcsis—though this is not made Cxpiicit
until Example 4.3.4 once we have seen the construction Theorem 4.3.1—is the double category Bimod
of bimodules over finite groups. This double category has as O-cells finite groups, as tight 1-cells group
homomorphisms, as loose 1-cells G - H left G- right H-bimodules, and as 2-cells equivariant module

maps.

For the history of fibrant double categories, it should be noted that they are essentiaiiy the same as
proarrow equipments, in the sense that there are inverse constructions that identify proarrow equipments
with fibrant double categories whose underlying loose bicategory is a strict 2-category; we don’t give the
details of these constructions here, but details can be found in [Shu08, Appendix CJ. Proarrow equipments
were introduced by Wood [Wo082, Woo85] and Street [Str80] and later studied by Carboni and others
[CJ SV94]. The connection between proarrow equipments and double categories was made current by

Shulman [Shu08] and Verity [Ver11], but dates back to the study of Segal spaces by Segal [Seg68].
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INTRODUCTION

The construction: from fibrations to double categories

The double category Bimod can be constructed from the functor

Rep: GrpRep — FinGrp
G V)—G
(i) — f

where GrpRep is the category of group representations and equivariant maps, and FInGrp is the category
of finite groups and group homomorphisms; this functor maps a G-module V' to the group G and an
equivariant map (f, @) to its underlying group homomorphism f. The double category we construct
from this functor has as 0-cells and tight 1-cells the objects and morphisms of the category FinGrp, and
as loose 1-cells G - H the objects in GrpRep that the functor Rep maps to the group G X H, i.c.
(G X H)-modules. There are many common examples of double categories that arise this way, such as the
double category Span of spans, the double category Prof of profunctors, and the double category Mat of
matrices. We denote by DbI(®) the double category constructed from the functor @. In order to define
the other data of the double category Dbl(P)—such as the composition of loose 1-cells, the associator
and unitors—the functor @ is required to be a bifibration.

Fibrations were introduced by Grothendieck in the context of descent theory [Gro60, Gro71], and
some modern textbook references include [_]ohOZ, Chapter B1], [Bor94b, Chapter 8] and []YZI, Chaptcr
9]. A fibration is a functor @: &/ — Z that satisfies a universal property—called a cartesian lifting
property—that allows any morphism Y in o satisying IleD =93 f to be factorised as v =x53 gb for
some morphisms ¢ and x in & satistying Y@ = g and ¢® = f. A bifibration is a functor that is both a
fibration and an opfibration, meaning that it also satisfies the opcartesian lifting property. Bifibrations
originate from [Gro71]; an early discussion on bifibrations (but which doesn’t use the term ‘bifibrations’)
is [Gra66]. It is the two lifting properties of satisfied by bifibrations that Shulman uses to define the other
data of the double category Dbl(®P)—such as the composition of loose 1-cells, the associator and unitors.
However, this thesis aims to give explicit descriptions of this data, something that can’t be done using
universal properties. We will therefore use indexed categories.

An indexed category consists of a category & and a pseudofunctor J: AP — Cat. They were
introduced by Grothendieck in [Gro71] alongside fibrations, and important early treatments include
[Bén75] and [PRS*78]. Indexed categories are an algebraicization of fibrations, meaning that, rather than
using a universal property, they require a structure to be specified. For example, a vector space V having
the property ofhaving dimension # means that there exists a basis for V containing 7 vectors, but this
can be algebraicized by requiring a specific choice of basis (ey, .. ., €,) for V. In the case of fibrations and
indexed categories, the factorisation given by the cartesian lifting property is required to be specified. By
specifying a factorisation for a fibration @: &/ — 2, we obtain, for cach morphism f: B — Bin %, a
functor

f*: Q(Z{B' _>'/(Z{B/

where, for each object X in %, ox denotes the subcategory of @7 consisting of all objects M satistying
M® = X and all morphisms ¢ satistying ¢@ = idx. The indexed category associated to the fibration ®



is given by

PP — Cat
B+ o

fr=f

This construction and its inverse—which establish an equiva]ence between fibrations and indexed cat-
egories —are known as the Grothendieck construction; the Grothendieck construction originates in
[Gro71] and has textbook accounts in [Bor94b, Section 8.3, [Joh02, Chapters A1 & B1] and [JY21, Chapter
10].

We said above that the loose 1-cells G - H in the double category Dbl(Rep) are the objects in
GrpRep that the functor Rep maps to the group G X H, and this is true of the general construction:
given a bifibration @: &/ — %, the loose 1-cells A - B in the double category Dbl(®) are objects in
</ that the functor @ maps to A X B. We therefore require the bifibration @ to be monoidal and for the
category A 10 be cartesian monoidal. Shulman introduced monoidal fibrations in [Shu0O8] where he also
explicitly constructed, for each cartesian monoidal category %, a 2-equivalence between the 2-category
MonFib g of monoidal fibrations with base # and the 2-category BicatP®*(#°P, MonCat) of pseudo-
functors Z°P — MonCat—called indexed (strong) monoidal categories in [HM06]—where MonCat
denotes the 2-category of monoidal categories, strong monoidal functors and strong monoidal transfor-
mations. In [MV20], Moeller and Vasilakopoulou establish the monoidal Grothendieck construction—a
collection of 2-equivalences involving 2-categories of monoidal fibrations, not restricted to the case of a
cartesian base—and perform a thorough investigation into both fibrewise and global monoidal structures
of a fibration.

The Beck-Chevalley condition

We saw above that it @: &/ — 2 is a fibration, then, for each morphism f: B — B’ in 4, there is
a functor f*: @y — . If @ is a bifibration, then, for each morphism f: B — B’ in 4, there are

functors
e ol : > oy i

We think of the functor f* as ‘pulling’ an object M in the category @7p back along the morphism f: B —
B’ in 4 to obtain an objcct ]\/If’e in the category a7, and we think of the functor fu as ‘pushing’ an
object N in the category @73 forwards along the morphism f: B — B’ in # to obtain an object N fi
in the category @p. These functors are sometimes known as the pull-back and push-foward functors
associated to f. For the bifibration Rep: GrpRep — FinGrp, we pull an H-module W back along

a group homomorphism f: to obtain the G-module nown as the restricted representation
group h phism f: G = H to obtain the G dlfWk he restricted representation,

and we push a G-module V along f: G — H to obtain the H-module CH ®¢ V known as the induced

representation.



INTRODUCTION

Given a commutative square

A*}B
kl g
C——D

in 4, the Beck—Chevalley transformation is a canonical natural transformation
7N e —
K N 8
e & 9D

In some sense, this natural transformation is the difference between pulling then pushing and pushing
then pulling. The square in & is said to satisfying the Beck—ChevaHey condition if the Beck—Chevalley
transformation C assoicated to that square is an isomorphism, i.c. when pulling then pushing is ‘the same
as’ pushing then puliing.

The Beck-Chevalley condition originated from the study of descent when Bénabou and Roubaud used
it to prove the Bénabou-Roubaud theorem in [BR70]. Beck and Chcvallcy studied the Bcck—Chcvchy
condition independently of one another, but neither of them ever appears to have published anything about
it. Lawvere mentions the BCCk—ChevaHey condition in the context ofcategoricai semantics [Law70] and
Seely exapnded on this in [See83]. Since then, the Beck-Chevalley condition has been studied extensively
in, to name just a few examples, the contexts of subobject lattices [MM12, Chapter IV.9], co-categories
[HL13, Chapter 4] and quasicategories [Joy08, p. 175].

Our interest in the Beck-Chevalley condition is due to its relevance to the construction of the dou-
ble category DbI(®). A bifibration is called Beck-Chevalley if every pullback square satisfies the Beck-
Chevalley condition, and a bifibration is called weakly Beck-Chevalley if every pullback square with a
product projection lcg satisfies the Bcck—Chcvchy condition. We can now state an abbreviated version
of the construction of the double category DbI(®) due to Shulman [Shu08, Theorem 14.2].

Theorem 4.3.1. If @: &/ — A is a Beck-Chevalley monoidal bifibration, then there is a fibrant double category
DbI(®) defined as follows.

(i) The Eight category Dbl(®)y is equal to A.

(ii) The loose category DbI(®)1 and the functors S and T are given by the following pullback in Cat:
Dbl(®); —— &

J
(ST) D

BXPB ———— B

vi



(iii) The loose composition of loose 1-cells M: A —+ B and N: B - C is equal to
MON = (M®N)Aymp
and the loose composition of 2-cells is similar.
(iv) The loose unit of the object A is equal to
Ua = I, A

where I denotes the monoidal unit of 7.

String diagrams

A key focus of this thesis is to make explicit calculations of the certain objects, that are otherwise decribed
in the literatue by universal properties. This is of interest in its own right, but taking a diagrammatic
approach makes these explicit calculations all the more worthwhile as they allow the reader to see, for
example, the presence of the Beck-Chevalley transformation in the definition of the loose composition

left unitor

l](;)/I: usoM->M

in the double category DbI(®). The fact that the Beck-Chevalley transformation being an isomorphism
for pullback squares implies that the left unitor ZJ?/I is an isomorphism can be seen with ease with the aid
of string diagrams.

String diagrams were originally (and still are) used to express operations in a monoidal category;
Hotz [Hot65] used string diagrams in the monoidal category of finite sets, and Penrose [Pen71, PR84]
used string diagrams in the monoidal category of finite-dimensional vector spaces. String diagrams were
fomalised for aribtrary monoidal categories by ]oyal and Street []891] and thcy are Casily gcncraliscd to
bicategories. The idea of string diagrams is that pasting diagrams be replaced by their Poincaré¢ duals. In a
pasting diagram ina bicatcgory A, 0-cells are rcprescntcd as points, 1-cells as lines and 2-cells as regions,
whereas, in a string diagram in %, 0-cells are represented as regions, 1-cells as lines and 2-cells as points.

For example, the lax multip]icativity axiom

(fs9)F (f5)F
—
AF— *cr AF e CF
Ifsg fg
OA 0A oA BF oc
(f39)G - ° %
AG CG AG OB CG

for a lax transformation between bicategories (see Definition 1.1.8) is an equality between two pasting
diagrams in the bicategory Cat of categories, and this equality is represented using string diagrams as

vii



INTRODUCTION

follows.

Gg oc

Outline of the thesis

In Chapter 1, we give some useful definitions and propositions re]ating to bicategories, adjunctions, and
monoidal bicategories. In particular, we discuss mates, which we use in subsequent chapters to describe
internal and external closure of monoidal bifibrations and to describe the Beck-Chevalley transformation.
We also give the notation and conventions the we use for string diagrams in the subsequent chaprers.

In Chaptcr 2, cover the basic definitions and properties rc]ating to fibrations and indexed categories,
as well as a summary of the Grothendieck construction as a 2-equivalence. We also give a summary of
theory of monoidal fibrations due to Shulman [Shu08] and Moeller and Vasilakopoulou [MV20]. Through—
out this chapter, we give motivating examples, including proofs that together show that the funcror
Rep: GrpRep — FinGrp is an internally closed monoidal bifibration (see Examples 2.1.16, 2.4.9, 2.6.5
and 2.8.11). While fibrations are well studied, we give thorough proofs which fill gaps in the 1itemture; we
provide a defiition of the functor f* (see Proposition 2.1.27), a thorough treatment of which appeared
absent from the literature until Johnson and Yau also provided such a definition in [JYZl]; we also prove
that the pseudofunctoriality morphisms

@% 51 PS'f = P(f58) and @Y p: P — Pidy
associated to a fibration @ are natural in P (see Propositions 2.2.5 and 2.2.7). We also give string diagram-
matic proofs of the following results: Lemma 2.3.5, Proposition 2.3.6, Theorem 2.5.13, Proposition 2.5.16.

In Chapter 3, we study the Beck-Chevalley condition. We begin by giving a summary of the theory
of integral transfroms, which motivates the study of the Beck-Chevalley condition. We define the Beck-
Chevalley morphisms Cpz, prove that they are natural in M and that the resulting natural transformation
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is given by a mate (see Proposition 3.2.3) which is the more common definition. In Remarks 3.2.8, 3.2.9
and 3.2.11, we give string diagrammatic arguments which show that the Beck-Chevalley transformation is
well-defined. We then prove that the bifibration Rep: GrpRep — FinGrp is weakly Beck-Chevalley
(see Proposition 3.3.3), and we show how the Beck-Chevalley condition relates to Mackey’s formula of
representation theory. We give an explcit calculation of an important morphism arising from a universal
property (see Lemma 3.4.3), and, at the end of this chaptcr, we use this Cxplicit calculation to prove
Corollary 3.4.4—a well-known result on conditions equivalent to the Beck-Chevalley conditions—which
is made a great deal more intuitive with a string diagrammatic proof

In Chapter 4, we begin by giving useful definitions and propositions relating to double categories, in-
Cluding fibrant double categories and monoidal double categories. The majority of this Chapter contains
a detailed examination of Shulman’s construction of fibrant double categories from monoidal bifibra-
tions. We conclude with the main results of this thesis: the explicit calculations—in string diagrammatic
language—of the unit loose 1-cell Uy and the (left) unitor for loose composition.
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Chapter 1

Background

In this Chaptcr, we collect all the background material and conventions we will use in the following
chapters. We assume familiarity with basic category theory—e.g. functors, natural transformations, limits
and colimts—as well as the basics of monoidal categories.

We define bicategories, pseudofunctors and pseudonatural transformations, and we give brief defini-
tions of monoidal bicategories and pseudomonoids. We recall some terminology, definitions and basic
properties of adjunctions. In particular, we provide some of the basic theory of mates relating to adjunc-
tions as they are used frequently in later chapters to describe internal and external closure of monoidal
bifibrations and to describe the Beck-Chevalley transformation.

We also give a description of the conventions we use for the string diagrams used throughout this

documcnt.

Notation 1.0.1. We will read composition left to right, and we will apply maps and functors on the right.
That is, for morphisms f: A — B and g: B — C in a category &, we will denote their composite by

feg:A— C, and, for a functor F: & — %, we denote it’s application to A and f as AF and fF. ¢

1.1 Bicategories

The basic definitions and properties of bicategories and 2-categories were introduced by Bénabou [Bén65,
Bén67].

Definition 1.1.1. A bicategory A consists of the following data:
+ a class ob #, whose elements are called 0-cells;

« for cach pair A, B of O-cells in 4, a category (A, B) whose objects are called 1-cells and whose

morphisms are called 2-cells;

« for cach 0-cell A in A, a 1-cell id4 in (A, A) called the identity 1-cell on A;
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« for cach triple A, B, C of O-cells in 4, a functor

casc: BAB)x BB,C) — BA,C)
(f, 9 - fsg on 1-cells (1.1.2)
(a, B) = asp on 2-cells

called composition;
+ for each triple f € #B(A,B), g € #(B,C), h € #(C,D) of 1-cells in 4, an invertible 2-cell
agen: (f$8)sh— f3(g5h)
called the associativity constraint;
« for cach 1-cell f € #(A, B) in A, invertible 2-cells
leridas f— f and 7 f3idg — f.
called the left unitality constraint and the right unitality constraint.

These data are required to satisty the following axioms.

« (Naturality of the associator) For all 2-cells a: f — f” in B(A,B), p: § — g’ in B(B,C) and
y:h — h' in B(C, D), the following diagram commutes.

(a3p)s ;o ,
(Fsg)sh —2P s (f50ysh

afgh\L \tlf/g/h/ (]13)

f3@sh) —gm f/5(&5h)

« (Naturality of the unitors) For all 2-cellsa: f — f” in Z(A, B), the following diagrams commutes.

idjq , e asidigy

ida s f ida 5 f fsidpg ———> f'5ids

zfl lzf, rfl lrf, (1.1.4)

f a > f f m > f

« (Associativity) For all 1-cells f € #(A,B), g € #(B,C), h € #(C,D), and k € #(D, E), the

following diagram commuctes.

(f58)5(5k)
(fs8)5h) 5k f5(85(hs5k)
idf;ag,;,,k
(f5@35h)sk e G R (CRTOR V)




1.1. Bicategories

+ (Unitality) For all 1-cells f € Z(A, B) and g € (B, C), the following diagram commutes.

afidp.g

(fsidp) s g > f3(idp s g)

fm %g

fsg
&

Definition 1.1.5. We call a bicategory % a 2-category if all associativity constraints, all left unitalicy
constraints and all right unitality constraints are identities. o

Remark 1.1.6. Let & be a bicategory. We can compose 2-cells in & in two different ways. If A and B are
0-cells in £ and if

f 8
/_N /_N
A \g‘){ B «'.{l’ld A \*U'y/( B

k

are 2-cells in A, then a and y are morphisms in the category (A, B). We can compose & and y in
HB(A, B) to get another morphism in #(A, B) which we denote a §1 ) because we are composing along a
common I-cell. The following diagrammtic reprsentation of this is called a pasting diagram.

f f
m
A ﬂasw B = A g S B
\V
k k

The other way of composing 2-cells in Z is by using the functor (1.1.2). Explicitly, if C is another 0-cell
in 4 and if

is another 2-cell in 4, then applying the functor capc to the pair (a, f) gives a 2-cell @ § B, as shown in
the fo]owing pasting diagram.

fsh
/\ f h
8 i

8si

Notice that a § B is the composite of @ and § along a common 0-cell. One can therefore use the notation
$0 to mean § so as to clearly distinguish between using § to compose along 0-cells and using §1 to compose
along 1-cells. o
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Remark 1.1.7. For each tuple A, B, C, D of O-cells in %, the associativity constraint 2-cells afg, are the

components of a natural isomorphism

B(A, B) x B(B,C) x B(C,D) —22 « 2(4,C) x B(C,D)

. AABCD
idxcpcp = CACD

#(A,B) x (B, D)

\
CABD > #(A,D)
called an associator. The naturality axiom for the associator is (1.1.3).
For each pair A, B of 0-cells in 4, the left unit constraint 2-cells lf and the right unit constraint
2-cells Iy are the components of natural isomorphisms

AB(B,B) x B(A,B)
Ipxid CABB
MB\\\ﬁ
1x A(A,B) = > B(A,B)
and
B(A,B) X B(A,A)
idxIy CAAB
o
B(A,B)x1 — > B(A,B)
called the left unitor and the right unitor. The naturality axioms for the unitors are (1.1.4). o

Definition 1.1.8. Let Z and %’ be bicategories. A lax functor F: 8 — %’ consists of the following
data:

- afunction F: ob % — ob %#’;
+ for cach pair A, B of O-cells in #, a functor Fap: %(A, B) — %’ (AF, BF),
« for cach pair f € B(A,B), g € B(B,C) of 1-cells in A, a 2-cell

2
ﬂ%ﬁiMHQF
called the lax binary functoriality constraing;
« for each O-cell A in A, a 2-cell
idar F—OA> idaF

called the lax nullary functoriality constraint.

These data are required to satisfy the following axioms.
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+ (Naturality of F?) For all 2-cells a: f— f inB(A B)and B: g — ¢’ in B(B, C), the following
diagram commutes.

F3pF ’ ’
FEsgF — 2 o frpg orF

2 2
F f&L f 2

(f 3 OF —r— (F/58)F

« (Lax associativity) For all 1-cells f € ZA(A,B), g € #A(B,C), and h € B(C,D), the following
diagram commutes.

’
MhEGF, fF

(fF 5 gF) hF ————— fF5(gF ¢ hF)

P i | Lam,

(f 3 Q)F s hF fE3(gsh)F (1.1.9)

2 2
Ff sgﬁl \LFf,gsh

(f38) s MF ————> (f3 (g3 hDF

+ (Lax left unitality) For all 1-cells f € Z(A, B), the following diagram commutes.

idar § fF == idar s fF
Fosidr

idA;:; fF

F2 I (1.1.10)

1dA/f\/
(ida s f)F
I

fE == /F

+ (Lax right unitality) For all 1-cells f € Z(A, B), the following diagram commutes.

fF ¢idpr === fF5idpr
idﬂgpgv
fFsidgF
Fian), Y (1.1.11)
(f 3idp)F
rfF\ ~

fF = fF
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Definition 1.1.12. We call a lax functor F: & — % a pseudofunctor if all lax binary functoriality con-
straints and all lax nullary functoriality constraints are invertible. In this case, we call these constraints

pseudofunctoriality constraints. We call a lax functor between two 2-categories a strict 2-functor if all
lax binary functoriality constraincs and all lax nullary functoriality constraints are idenitites. <o

Definition 1.1.13. Let F and G be lax functors Z — %’. A lax transformation 0: F — G consists of the

following data:

- for each O-cell A in A, a 1-cell
op: AF — AG;

- for cach 1-cell f € A(A, B), a 2-cell
fF
AF ——— > BF
oA Uf/' oB

AGT>BG

These data are required to satisty the following axioms.

- (Naturality) For all 2-cells a: f — g in B(A, B), the following following equality holds.

gF gF
— —

AF \T;%F/{ BF AF . BF
0A Op = 04 / OB
Gf/' G
AG - BG AG @ BG

G G

+ (Lax unitality) For all 1-cells f € Z(A, B), the following equality holds.

idaF idaF
/N /_N
AF AF AF ﬁ) AF

0Oj
dA/{ idar
oA OA = 0A al—l 0A
idsG s /
AG @ AG AG L AG
idag idac
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+ (Lax mulciplicativity) For all 1-cells f € (A, B) and g € #(B, C), the following equality holds.

(fs9)F (F5)F
/_\
AF— *cF AF " CF
Ofsg fg
e S~
oA oA 0A BF ac
(f39)G - C’f/, ag/{
fs /
PN P4

<&

Definition 1.1.14. We call a lax transformation 0: F — G a pseudonatural transformation if; for every
l-cell f in B, the 2-cell 0 is invertible. We call a lax transformation 0: F — G between strict 2-functors
a strict 2-transformation if; for every 1-cell f in 4, the 2-cell Ofisan identity. o

Definition 1.1.15. Let F and G be lax functors 8 — %, and suppose that 0 and 7 are lax transformations
F — G. A modificationI': 0 — T consists of a 2-cell

FA
0A ré TA

GA

for cach object A in Z. These 2-cells must satisfy the following equality for all 1-cells f € Z(A, B) in A.

FA—1 B FA— B
of
/ FB = r T
oA op| =B |18 oal =4 |Ta f/z TB
GA —— GB GA —— GB

<

Definition 1.1.16. Let Z and %’ be bicategories. Define the bicategory of lax functors Bicat(#, %) by
the following data.

+ The O-cells of Bicat(#, #’) are the lax functors B — A’.
- For lax functors F,G: 8 — %', the category Bicat(#, #’)(F, G) has

— the lax transformations F — G as objects,
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— the modifications @ —  between such lax transformations as morphisms,

— vertical composition of modifications as composition,

— identity modifications as identity morphisms.
« For each lax functor F: & — %', the identity 1-cell idF is the identity lax transformation F — F.
- Composition is given by 0 §1 € on lax transformations and by I' §1 A on modifcations.

- For lax transformationsa: F — G, : G = Handy: H — I between lax functors F, G, H: £ —

P’ the associator constraint is the modifcation

F

\_/r

I

consisting of, for each 0-cell b € A, the 2-cell

Fb
a
(p3B)y L2 ) a3(Bosys)

Ib
in %',

- For each lax transformation @: F — G becween lax functors F,G: 8 — %', the left unitor

constraint is the modifcation

1

\_/r

consisting of, for each 0-cell b € A, the 2-cell

F
B B T
G

Fb
idpp3ary g ap
Gb
in #’.
<&

Definition 1.117. Let % and %’ be bicategories. Define the bicategory of pseudofunctors BicatP®*(%, #’)
to be the sub-bicategory of Bicat(#, #’) having

8



1.2. String diagrams

+ the pseudofunctors B — A’ as 0-cells,
- the pseudonatural transformations between such pseudofunctors as 1-cells, and

+ the modifications between such pseudonatural transformations as 2-cells.

1.2 String diagrams

In this section, we introduce the string diagram notation used for 2-cells in a bicategory. As we saw in

f B—— ——C h
SN

A . > E > D

the introduction, a 2-cell

ina bicatcgory B is rcprcscntcd using string diagram notation as

. f8
= \fN /g;
gA oA 0A

9
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from Definition 1.1.8 represented using a string diagram in the bicategory Cat as follows.

is represented by

f‘@g@ "

and the composition of 2-cells along a 0-cell

f h
AV SB ® 5C

8 i

f‘@ig_

is represented by

10



1.2. String diagrams

A convention that we will use is to omit drawing identity 1-cells. For example, the pasting diagram

We can also use string diagrams to represent morphisms in a category. An objcct Ain category o
can be thought of as a functor 1 — &/ and a morphism k: A — A’ in &7 can be thought of as a natural
transformation

A
— . A

1 k o
\i:_/)(
where 1 denotes the category with one objcct and one morphism. With this perspective a string diagram in
a category is precisely a string diagram in the bicategory Cat. For example, if F: @/ — € andG: # — €
are functors, then a morphism f: AF - BGin % is rcprcscntcd using a string diagram in the bicatcgory
Cat as

1
A B

F G
€
where we have labelled the categories. To clearly distinguish string diagrams in a category from string
diagrams ina bicatcgory (and to avoid 1abciling the cateogry 1 cach time) we use the following notation

for the morphism f: AF — BGin %.

11
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This is the same notation used by Myers in [Mye23].
We can introduce natural transformations. Let H: € = 2,1: B — 2,]: & - BandK: & - @
be functors, and leta: G — H §I and f: 1§ ] — K be natural transformations. Then the morphism

AFf— B — _spup— & spyp— P spx— " spk
(1.2.1)

is depicted using strings diagrams as

—————— X O%

J

1

1.3 Adjunctions

Definition 1.3.1. An adjunction is a tuple (¢, %, F, G, ¢) consisting of categories € and %, functors
F: ¢ — #and G: # — € and a collection of bijections

¢ = (¢: B(Fe,b) = €(c,Gh)) .,

12
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natural in ¢ and b. By ‘natural in ¢ we mean that, for each ¢ € €, the morphisms (Pgp)pez are the
components of a natural transformation

B(Fc,-)

@/ﬂ\Set

€(c,G—)

and similar for ‘natural in D", where Set denotes the category of sets and maps between them. We will
often leave the categories implied and give an adjunction as a triple (F, G, (]5) o

Definition 1.3.2. Let F: € — 2 and G: 8 — € be functor, and let (F, G, ¢) be an adjunction. The

adjunct hofa morphism hi: Fc — b in # is the morphism () : ¢ = Gb in €. Also, the adjunct k of
amorphism k: ¢ = Gb in € is the morphism (k)(PC_b1 :Fc—> bin &. o

Definition 1.33. Let F: € — B and G: # — € be funcrors. We say that F is left adjoint to G, and that
G is right adjoint to F, if there exists an adjunction of the form (F, G, @). In this case we write F 4 G, ©

Definition 1.34. Let F: € — % and G: B8 — € be functors and let (F, G, ¢) be an adjunction. The
unit of the adjunction (F, G, @) is the natural transformation 17: id¢ — F§G whose component, for each
€in €, is the morphism

1N = idpc: ¢ = cFG.
The counit of the adjunction F 4 G is the natural transformation €: G § F — id g whose component, for
cach b in 4, is the morphism

&p = idgp: bGF — b.

<&

The remainder of this section discusses an cquivalcnt definition of adjunction using the unit and
counit. This was done first by Huber [Hub61, Theorem 4.1], and Borceux [Bor94a, Chapter 3] is more
modern textbook reference.

Definition 1.3.5. Let F: € — % and G: 8 — € be functors, and let a: idy — F§Gand f: G§F —
id g be nacural transformations. We say that & and f satisfy the snake identities if the following diagrams
(in the functor categories Cat(€’, %) and Cat(#, €) respectively) commute.

F— % SFsGsF G— s G3F3G
: o (13.6)
idr Fip idg piG
F G

13
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If we represent the equalities in (1.3.6) using string diagrams, then we see why they’re called the snake

identities:
G
F
G
Il
G
and
F
G
F
[
F

We will sometimes use the work ‘yank’ to refer to the application of the snake identities; this terminology
comes from thinking about the string diagrams as being liceral strings which can be yanked to give a

taught, straight piece of string.

Proposition 1.3.7. Let F: € — % and G: 8 — € be functors, and let (F, G, @) be an adjunction. Then the
unit and counit of this adjunction satisfy the snake identities.

Notation 1.3.8. When drawing the unit and counit of an adjunction (F, G, @) in a string diagram, we will
often not write its name—coupled with the convention of not dmwing identities (see), the unit and counit

will be be drawn as a ‘cup’ and ‘cap’:

F G
and

14



1.3. Adjunctions

For example, with this notation the snake identities are draw as

G
F
G
Il
G
and
F
G
F
Il
F

o

Proposition 1.3.9 ([Bor94a][Theorem 3.1.5]). Let F: € — P and G: BB — € be functors. There is a bijective
correspondence between adjunctions of the form (F, G, @) and tuples (F, G, 1, €) such that n: id¢ — F § G and

¢: G §F — idg are natural transformations that satisfy the snake identities.

Proof. The bijection maps each adjunction (F, G, @) to the tuple (F, G, 1, €) where 17 and € are the unit
and counit. The inverse of this bijection maps each tuple (F, G, 7, €) to the adjunction (F, G, ¢) defined

as follows.
¢: B(Fc,b) — €(c,Gb) :¢
x> 1 5xG
yFsep «—y
O

Notation 1.3.10. We can now write an adjunction as cither a tuplc (F, G(P) orasa tuplc (F G, n, €). Some-
times we won't explicitly mention @, 17 or €, and we'll just say ‘lec F 4 G be an adjunction’. When we want

15
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to be particularly clear about the source and target of the functors F and G, it can be helpful to draw an
adjunction F 4 G as follows.

1.3.1 Mates

Maclane discusses conjugate transformations ofadjoints in [Mac71], but the first Cxplicit mention of mates
is by Kelly and Ross [KS74]. We state the definitions and results in this section for a general bicategory,
but this chesis will mostly apply these only to the bicatcgory Cat.

Adj unctions in 2-categories were introduced by Maranda [Mar65], and soon after Kclly [Kel69] studied

them furcher using what is now modern terminology.

Definition 1.3.11. Let % be a bicategory.

« An adjunction in 4 is a tuple (f, 4, 1, €) consisting of 1-cells f: A — Bandu: B — A in & and
2-cellsn:idg — fsuand e: u§ f — idp in & such that the snake identities hold.

- An equivalence in & is a tuple (f, u, 1, €) consisting of 1-cells f: A = Bandu: B — Ain % and
invertible 2-cells n: idy — fsuande: u§ f — idp in A.

- An adjoint equivalence in & is a tuple (f, 4,1, €) that is an adjunction and an equivalence.

<&

Proposition 1.3.12. Let A be a bicatgory, and let (f, 1,1, €) and (f',u’, 1, €") be adjunctions in B as shown
in the following diagmm.

A A’
fl 4 |u 4w
B B’

For each pair of 1-cells x: A — A" and y: B — B’ in B, the map
u: BAB)xs f, fsy) — BBA)usx, ysu’)

16



1.3. Adjunctions

defined by

—
7 NS

y
ul
isa bijecrion with inverse
't BBAYusx,ysu’) — BAB)xsf,fiy)
given by
u y
X u/
I
f
y
u ﬁ u’
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Proof. Leta € B(A,B') (x5 f', f 3 ). Then the two-cell (@)™ is equal to

f/
which is equal to a by the snake identities. The proof that (a)yy‘l is similar. O

Definition 1.3.13. If

X f

(1.3.14)
f y
and
u Yy
(1.3.15)
X 1/[,

are 2-cells in Z that correspond to cach other under the bijection in Proposition 1.3.12, then we say that
p is the mate of «, that & is the mate of  and that @ and  are mates. o

Definition 1.3.16. Let % be a bicategory. The 2-category Adj 4, of adjucntions in Z is defined as follows.
+ The collection of objects in Adj 4, is ob Adj, = ob Z.
+ The category Adj 4(A, B) has

— as objects adjunctions (f, u, 1, €) in & such that f: A = Bandu: B — A and

— as morphisms (f,u,n,&) = (f,u',n’, &) wuples (x, y, a, B) consisting of 1-cells x: A — A’
and y: B — B’ in & and 2-cells a and  in A of the form (1.3.14) and (1.3.15) such that &

and f are mates.

We write AdjCat for the 2-category Adjc,, of adjunctions in Cat. o

18



1.3. Adjunctions

We write Richl’s proof of the fo]lowing result using string diagrams.

Proposition 1.3.17 ([RV22, B.3.10]). Let A be a bicategory, and let

A A’
f 4 lu and f/ T
B B’

be adjunctions in %, and suppose that & and B are 2-cells in A8 of the form (1.3.14) and (1.3.15) that are mates
with respect to the above adjunctions.
If x and y are equivalences, then a is invertible if, and only if, B is invertible.
Proof. Suppose that a is invertible. Since x and y are equivalences, there exist adjoint equivalences
(x, er, n*, €*) and (y, er, nY, e¥). The following series of equalities shows that the 2-cell

y

is an inverse to f3.

y

’

u

19
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f/

2)n

(L

20



1.3. Adjunctions

Yy Yy
ul
ul
)
Yy Yy
u/
ul
Gy
Yy Yy
ul
C : D
X
fl
ul
)

21
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Yy y

/ ’

u u

The equality (1) holds because f is the mate of @, the equality (2) holds by the snake identities for the
adjunction (y, er, Uy, eY), the Cquaiity (3) holds because T]y and &Y are part of the adjoint Cquivalence
(v, y+, nY, €Y), the equality (4) holds by the snake identities for the adjunctions f 4 1 and (y, y+, nY, eY),
the equality (5) holds because o 5 al= idx;fr, and the equality (6) holds by the snake identities for the
adjunction f’ 4 1’ and because T]x and &¥ are part of the Cquivalcncc (x, er, T]x, Ex). m|

We prove the fbl]owing lemma which gives a common situation where one mate is an isomorphism if,
and only if; the other is.

Lemma 1.3.18. Let A be a bicategory, suppose we have the adjunctions

f u
in A, and let the following be a 2-cell in A.
R F
F R’

Then, the 2-cell

(1.3.19)

22
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is invertible if, and only if, the 2-cell

< il 4 (1320)
[24

l/

is invertible.

Proof. We can rewrite (1.3.19) as follows.

Take the mate of this with respect to the adjunctions

[

C

N
Lo

(1.3.21)

23
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to get

(1.3.22)

By Proposition 1.3.17, the 2-cell (1.3.22) is invertible if, and only if, the 2-cell (1.3.19) is invertible. Therefore,
it suffices to show that the 2-cell (1.3.22) is cqual to the 2-cell (1.3.20). Consider the 2-cell

—

ida

ll

This 2-cell is equal to the 2-cell (1.3.19) via the snake identities, and it is equal to the 2-cell (1.3.22) via the

24



1.4. Monoidal bicategories

following two identities satisfied by the unit and counit of the composite adjunctions (1.3.21).

1.4 Monoidal bicategories

In this section, we sketch some basic defmitions and constructions relating to monoidal bicategories.
References where Cxplicit axioms can be found are [GPS95] and [Gur06].

Definition 1.4.1. A monoidal bicatgory consists of the following data:

- a bicategory %,

25
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- a pseudofunctor ®: B X B — %;
+ a 0-cell I in A called the unit 0-cell;
- for cach triple A, B, C of 0-cells in 4, an adjoint equivalence
aspc: (A®B) = CA®(B®C) :a5,-
whose constituent 1-cells are called monoidal associativity constraints;
- for cach 0-cell A in 4, adjoint equivalences
g I@AZ AL, and 14: A®I= A,
whose constituent 1-cells are called monoidal unitality constraints;

- for each tuple A, B, C, D of 0-cells in 4, a 2-cell

A ®agcp

aA,BeC,D

AA®B,C,D

aapc ® D

called a monoidal associativity 2-constraint;

« for cach pair A, B of 0-cells in 4, invertible 2-cells

a1AB
I,®B Aap
lasB
r,®B
AAIB Hap
AQ®lp

26



1.4. Monoidal bicategories

AABI

PAB
YA®B

A®rp

called monoidal unitality 2-constraints.

These data are rcquired to satisy axioms, which we choose to omit here but can be found in, for Cxample,
Stay’s paper on compact closed bicategories [Stal6]. o

In Sections 2.6 and 2.7, we will study monoidal fibrations and monoidal indexed categories. These
are fibrations and indexed categories with added monoidal structure, and one way in which we add a

monoidal structure is using pseudomonoids. Psecudomonoids were first introduced by Day and Street

[DS97].

Definition 1.4.2. Let (%, ®, I) be a monoidal bicategory. A pseudomonoid in % consists of the following
data:

« a0-cell Ain %;
- al-cellm: A® A — A called multiplication;
- al-celli: I > A called the unit;

- an invertible 2-cell

m®idy idg ®@m

called the associator;

27
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- invertible 2-cells

i®ida

A i
m
Iy

P i,
m

called the left and right unitors.

These data are required to satisy axioms, which we choose to omit here but can be found in [DS97, Section
3]. o

There are braided and symmetric versions of psedomonoids, definitions of which can be found in

[DS97, Sections 4 & 5].

Definition 1.4.3. Let % be a monoidal bicategory. The 2-category PsMon(#) of pseudomonoids consists
of pseudomonoids, strong pseudomonoid 1-cells and pseudomonoid 2-cells. o

There are 2-categories of braided pseudomonoids and of symmetric pseudomonoids which we denote

by BrPsMon(#) and SymPsMon(%) respectively.

28



Chapter 2

Fibrations and Indexed Categories

In this chapter, we study the objects from which the construction of fibrant double categories by Shulman
start: fibrations.

The first section is dedicated to defining cartesian morphisms and fibrations, as well as establishing
notations and conventions for them. We introduce examples that will appear throughout the chapter,
and we give a thorough definition of the functor f* (see Proposition 2.1.27). In the second section, we
define indexed categories and give examples. We also define the indexed category associated to a cleaved
fibration, and we prove that the pseudofunctoriality morphisms

®% 5 PS'f = P(f5g) and ®Y,: P — Pidy
associated to a fibration @ are natural in P (see Propositions 2.2.5 and 2.2.7). In the third section, we
give a summary of the Grothendieck construction as a 2—cquivalcncc. In the fourth section, we give, for
opfibrations and opindexed categories, all of the analogous definitions, propositions and examples that we
gave for fibrations and indexed categories. In the fifth section, we prove two fundamental results rclatmg
to bicleaved bifibrations and their associated indexed and opindexed categories.

In the sixth and seventh sections, we give a summary of thcory of monoidal fibrations and monoidal
indexed categories due to Shulman [Shu08] and Moeller and Vasilakopoulou [MV20]. In the eighth and
final section, we provide string—diagrammatic treatments ofinternally closed and externally closed bifi-
brations, and we prove that the bifibration Rep: GrpRep — FinGrp is an internally closed monoidal
bifibration (see Examples 2.6.5 and 2.8.11).

2.1 Fibrations

Suppose that f: G — H is a group homomorphism. Given an H-module W, we can define a G-action
on the underlying vector space of W by ¢ - w := (g)f - w, and we denote this G-module by fW. G

is a subgroup of H and f: G — H is inclusion, then obtatining the G-module fW from the H-module
W is done by restricting the action to be just by elementsof the subgroup G. This is Why we call che

construction of fW restriction.

In this section, we'll scudy fibrations, which we'll see has restriction of G-modules as an example.
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Definition 2.1.1. Let @: &/ — % be a funcror and let f: B — B’ be a morphism in 8. We'll say that an
object M in &7 lies over B if M@ = B, and we’ll say that a morphism ¢ in & lies over f if @ = f; we'll
denote by @"(N, A) the set of morphisms N — A in @ that lie over f. o

Definition 2.1.2. Let @: &/ — % be a functor, let ¢: A — M be a morphism in &7, and let f: B — B’
denote the morphism ¢® in A. We say that the morphism ¢: A — M is cartesian if, for cach morphism
g¢: D — Bin % and each morphism ¢: N — M in &7 that lies over g § f, there exists a unique map
X: N — A that lies over g and that satisfies 1) = x § ¢. This situation is depicted in the following figure.

N
4 o
XA
A p M
® (2.13)
D
\

V
=
N

The definition of cartesian morphism is quite verbose, but we can instead phrasc it as follows.

Proposition 2.1.4. Let @: o/ — 9B be a functor, let p: A — M be a morphism in <7, and let f: B — B’
denote the morphism ¢® in . Then the morphism ¢p: A — M is cartesian if, and only if, for each morphism
g: D — Bin % and each object N in o7, the map

A8(N, A) — 3 (N, M)

(2.15)
XF X350

is a bijection.
The ability to factorise the morphism Y as x § ¢ using the cartesian morphism ¢ is called cartesian

factorisation. We have the following notation to describe cartesian factorisation.

Notation 2.1.6. The unique morphism x in (2.1.3) will be written as 1)« @. This is meant to make the
reader think of taking the equation x § ¢ = ¢ and ‘dividing’ both sides on the right by ¢ to get the
equation ¥ = 1" @. With this notation we can write the inverse to the bijection (2.1.5) as
A8(N,M) — /3(N, A)
V=9
o

Definition 2.1.7. We say that the functor @: &/ — 2 is a fibration if, for every morphism f: B — B’
in % and every object M in &7 lying over B’, there exists a cartesian morphism ¢p: A — M that lies over

f o
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2.1. Fibrations

Definition 2.1.8. Let @: .o/ — 2 be a fibration. We call o7 the total category of @ and we call Z the
base category of ®. o

Definition 2.1.9. Let @: &/ — 2 be a fibration. A cleaving for @ is a choice, for each morphism
f: B — B’ in # and each object M in &7 lying over B’ of cartesian morphism CartI{/I: A—> Mingo
that lies over f. A cleaved fibration is a fibration equipped with a cleaving. o

Notation 2.1.10. Given a cleaved fibration @: & — %, we will—unless it’s unclear from context—denote

by carti’:/l the cartesian morphism in the Cleaving that lies over f and has target M. o

Remark 2.1.11. A cleaving is an ‘algebraicization’ of the universal property given in Definition 2.1.2. A
property-like structure can be algebraicized by requiring a specific choice of the objects that are required
to exist. For example, a vector space V having the property of having dimension 7 means that there exists
a basis for V containing 1 vectors, but this can be a]gcbraicizcd by requiring a spcciﬁc choice of basis
(e1,...,ey) for V. We'll see later (see Theorem 2.3.15) that indexed categories are an algebraicization of
fibrations via the notion ofclcavings. 3

Definition 2.1.12. A morphism x in & is called pure if x lies over an identity morphism. o

Remark 2.1.13. The more standard term for pure morphisms is ‘vertical’ (see e.g. [Joh02, §B1.3]). David
Jaz Myers uses the term ‘pure’ in [Mye23, Definition 2.6.1.7] so as to avoid a clash in terminology in the
context of double categories; we prefer not to use the term ‘vertical’ here or in the context of double
categories (see Definition 4.1.1) so that the name of the morphism doesn’t depend on the way you chose
to draw it. o

Applying the definition of cartesian morphism with ¢ = id, we get the following result called pure-
cartesian factorisation.

Proposition 2.1.14. Let @: .o/ — 2 be a fibration. Then, for each morphism : N — M in @/, there exists a
pure morphism X and a cartesian morphism qZ) such that Y =x3 q§ In parficular, if'we ﬁx a Cleaving fbr D, there
exists a unique pure morphism X and a unique cartesian morphism ¢ in the cleaving such that \ = x § ¢. O

Definition 2.1.15. The category GrpRep of representations of finite groups is defined as follows. An
object in GrpRep is a pair (G, V) consisting of a finite group G and a G-module V, and a morphism
(G, V) = (H,W) in GrpRep is a pair (f, ¢) consisting of a group homomorphism f: G — H and a
linear map @: V — W satisfying, for every ¢ € G and everyv € V, (- 0)¢p = () f - v. We call an object
in GrpRep a representation, and we call a morphism in GrpRep a module map. o

Example 2.1.16. Let FinGrp denote the category of finite groups. The acting group functor

Rep: GrpRep — FinGrp
G V)—G
(f,p)— f

takes a representation (G, V) to its acting group G. We'll show now that Rep is a fibration.
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Let f: G = H be a group homomorphism and let (H, W) be a representation lying over H. We'll
show that the morphism (f, id): (G, fW) — (H, W) in GrpRep, which lies over f, is cartesian. Given a
group homomorphism g: K — G and a module map (g5 f, ) (K, U) — (H, W) that lies over g f, the
module map (g, ) : (K, U) = (G, W) is the only module map that lies over ¢ and makes the following
diagram in GrpRep commute.

(K, U)

\ (5 £0)
&Y)
(G, ;W) (H, W)

(fid)

Therefore, (f,id): (G, fW) — (H, W) is cartesian, which means that Rep: GrpRep — FinGrp is a

fibracion. o

Remark 2.1.17. From now on, whenever we refer to a clcaving for the fibration Rep, the reader should

(f’ ld) (Gr fW) - (H/ W) <o

assume that this refers to the cleaving Cart{H,W) =

Definition 2.1.18. Let € be a category. The category Famg of families of objects in € is defined as follows.
An object in Famg is a pair (A, X) consisting of a set X and an X-indexed set A = {Ay}xex of objects in
%, and a morphism (A, X) — (B, Y) in Famy is a pair (@, f) consisting of a map of sets f: X — Y and
an X-indexed set @ = {ax: Ay = By flrex of morphisms in €. We call an object in Famg a family of
objects. o

Example 21.19. Let € bea category. The indexing set functor

Famgg: Famcg —> Set
A X)— X
(a,f)— f
takes a family of objects (A, X) to its indexing set X. We'll show now that Famg is a fibration.
Let f: X = Y be a map of sets, and let (B, Y) be a Y-indexed family of objects. Let fB denote X-

indexed family of objects {B(x)f}xex, and let t denote the X-indexed family of morphisms {idB(X)f}x€X~ We'll
show that the morphism (i, f): (fB’f) — (B,Y) in Famy, which lies over f, is cartesian. Given a map

of sets g: Z — X and a morphism (¢, g5 f): (Z,C) = (Y, B), the morphism (¢, §): (C,Z) — (fB,X)

is the only morphism that lies over g and makes the folowing diagram in Set commute.

(€ 2)

\ (¥.83f)
®.8)
B, X) ) (B,Y)

(s y;

Therefore, (1, f): (fB,X) — (B, Y) is cartesian, which means that Famg : Famy — Set is a fibration.
<&
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2.1. Fibrations

Remark 2.1.20. From now on, whenever we refer to a cleaving for the fibration Fame, the reader should
assume that this refers to the cleaving Carth ¥ =(4, f): (fB’ X) — (B,Y). o

Definition 2.1.21. Let o7 be a category. The arrow category &7~ of &7 is defined as follows. An object in
&/~ is a morphism f: A — B in &/, and a morphism (f: A = B) = (f': A” = B’) in &/~ is a pair
(0, p) of morphisms in &7 that makes the following diagram in &7 commute.

Example 2.1.22. Let &7 be a category with pul]backs. The codomain functor
Arr T —
(f:tA—>B)+—B
0,p) —p

takes a morphism f: A — B to its codomain B. We'll show now that Arry is a fibration.
Let f: A — Band t: K — B be morphisms in @7, so t is an object in &/~ and (t)Arr, = B. Let
the following be a pullback square in .

M— 3 A
_
h f

K———8B

We'll show that the morphism (i, f): s — t in ./, which lies over f, is cartesian.
Suppose that g: C = A,7: L — Cand u: L — K are morphisms in .27, as shown in the following
(r:L—>C)

(,85)
%—)
(s: M — A) (t: K> B)

ﬁgurc .

(1)
Arr oy
¢ \ o
8 \
A
7 B
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2. FIBRATIONS AND INDEXED CATEGORIES

Rewrite the square

—T>C

L

MJ/ 8sf

K — B
that defines the morphism (u, g3 f) r—tas

h
—

~
o~

The universal property of pullbacks gives a unique morphism v: L - M in &7 that makes the fol]owing

diagram commute.

Therefore, (v, g): r — s is the unique morphism in &/~ that lies over ¢ and that makes the following
diagram in &/~ commute.
r

(,83f)
(v,8)
S t

(h,f)
So (h, f): s — tis cartesian, which means that Arr,/: &/~ — &7 is a fibration. o
Remark 2.1.23. A choice of pullback

t

Kfo;J()A

~

|
fat f
K———B

for cach morphism f: A — B in % and each object t in &7 /B, defines a cleaving
cart{ =(fat, f): taf >t
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2.1. Fibrations

for the fibration Arr,. o

We now give some basic properties of cartesian morphisms, for which we give detailed proofs.
Proposition 2.1.24 ([Shu08, Proposition 3.4]). Let @: &/ — % be a functor.
(i) Leep: A — Mand @": M — P be morphisms in o7 If p and ¢” are cartesian, then ¢ § @’ is cartesian.
(i) Let x: N — A and ¢p: A — M be morphisms in & If ¢ and x § ¢ are cartesian, then X is cartesian.

(iii) Lecp: A — Mand : N — M be cartesian morphisms in & If @ = 1pD, then there exists a unique
pure isomorphism x: N — A that satisfies = x § .

(iv) Every isomorphism in &7 is cartesian.
(v) Let ¢ be a morphism in &7 and suppose thar @@ is an isomorphism in ZB. Then, ¢ is cartesian if, and only
1f, (]5 is an isomorphism.
Proof.

(i) Let f: B— B’ and f’: B" = B” denote ¢® and ¢'P. Let g: C — B be a morphism in & and
let p: N — P be a morphism in @7 lying over g§ f § f’. Since ¢ is cartesian, there exists a unique
morphism )’ that lies over ¢ § f and that satisfies Y = X' 5 @; this situtation is shown in the
following figure.

N .
) of
[}
C
\ -
g;f\/l $sf3f P

BI - é B//

f

Then, since (P is cartesian, there exists a unique morphism X that lies over g and that satisfies
X' = X § ¢ this sicutation is shown in the following figure.

]

A
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2. FIBRATIONS AND INDEXED CATEGORIES

Therefore, x is the unique morphism that lies over g and satisfies = x § (¢ § ¢”). Hence, ¢ § ¢’

is cartesian.

(ii) Let f: B — B’ and g: C — B denote ¢@ and x®. Let h: D — C be a morphism in % and
let 0: Q — N be a morphism in & lying over h. Since X § ¢ is cartesian, there exists a unique
morphism p that lies over ki and that satisfies 6 § ¢ = p § (X § ¢); this situtation is shown in the
following figure.

]

A

Since ¢ is cartesian, there exists a unique morphism o that lies over 1§ g and satisfies p§0 = 0§ ¢y
this situtation is shown in the following figure.

]

N

Both 0 and p § x satisfy the defining properties of 0, so they must be equal. So p is the unique
morphism that lies over /1 and that satisfies 6 = P § X. Hence, x is cartesian.

(iii) Let f: B — B’ denote the morphism ¢p@ = 1p®. Since ¢ is cartesian, there exists a unique
morphism x: N — A that lies over idp and that satisfies i) = x § ¢. Since 1 is cartesian, there
exists a unique morphism 7: A — N that lies over idg and that satisfies ¢ = T § 1. These two
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2.1. Fibrations

situtations are shown in the following figure.

o
()
B B
\ \
ids T~ f ids 7 Z
B % B B % B

Since ¢ is cartesian, there is a unique morphism £: A — A that lies over idp and that satisfies
¢ = E5¢. Bothida and 7§ x satisfy the defining properties of €, so they must be equal. Similarly,
since Y is cartesian, we can deduce that idy = x ¢ 7. Therefore, y: N — A is an isomorphism,

and, since ¢ is cartesian, X is the unique morphism satisfying ¢ = x § ¢.

(iv) Let ¢ be an isomorphism in &/ and let f: B — B’ denote ¢@. Let g: C — B be a morphism in
% and let : N — P be a morphism in &7 lying over §§ f. Then ¢ § (]5_1 is the unique morphism
X: N — Ain & that lies over § and that satisfies = x § ¢. Hence, ¢ is cartesian.

(v) Let f: B = B’ denote ¢®. Suppose that @ is cartesian. Then there exists a unique morphism
X A — Athatlies over £~ and thac satisfies x 3¢ = idas; this situtation is shown in the following

ﬁgurc.

]

R

Again, since @ is cartesian, there exists a unique morphism w: A — A that lies over idp and that
satisfies @ = w § @. Bothidg and ¢ § x lie over idp and satisfy the defining property of w, so they

must be equal. Hence, ¢ is an isomorphism.

Given a cleaving of @, all other cartesian morphisms can be obtained from those in the cleaving.

Corollary 2.1.25. Let @: & — A be a fibration. A morphism ) in & is cartesian if, and only if, there exists
a pure isomorphism X and a cartesian morphism (]5 such that 170 =X (f) In particular, if we ﬁx a cleaving for D,
there exists a unique pure isomorphism X and a unique cartesian morphism ¢ in the cleaving such that { = x § .
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2. FIBRATIONS AND INDEXED CATEGORIES

Proof. Using pure-cartesian factorisation, there exists a pure morphism X and a cartesian morphism ¢
such that Y = x § ¢. By Proposition 2.1.24 (ii), x is also cartesian, so, by Proposition 2.1.24 (v), x is an
isomorphism. On the other hand, if ¢ is the composite of a pure isomorphism and a cartesian morphism,
then, by Proposition 2.1.24 (iv) and (i), 1 is cartesian. m|

Definition 2.1.26. Let @: &/ — 2 be a functor. For each object B € #, the fibre category @7 is the
subcategory of &7 given by objects lying over B and morphisms lying over idg. That is, ob @ = {M €
obA | M® = B} and oZ5(M,N) = {¢ € o/ (M, N) | p® = id). o

IfD: of — A is acleaved fibration, then we have, for each morphism f: B — B’ in 4, a specified
cartesian morphism CaI"(f/I in @ that lies over f One kcy piece of information given by the clcaving is
the source of the morphism Cart]{A. In general, we denote the source ofcart{/I by Mf*. We now show
that this extends to a functor f*: @ — o7g. We call this functor the pull-back functor associated to f
because we think of it as pulling an object iying over B’ back along f: B — B’ to obtain an object lying
over B.

The foilowing is a result is a standard one. We provide detailed proofwhich seems to have been absent
from the literaturee until Johnson and Yau also provided such a proof [JYZl, Lemma 10.4.7].

Proposition 2.1.27. Let @: .o/ — 2 be a cleaved fibration and let f: B — B’ be a morphism in 9. Then the
following defines a functor f*: afpr — 3.
« For each object M in o/p:, define MLf* to be the domain ofcart‘lf/[.

« For each morphism 11[): M — N in o, using the fact that cart;:} is cartesian, deﬁne Y f * to be the unique
. % NI . . . . % o _ ° T .
morphism Mf* — N f*in @ that lies over idp and satisfies P f* § Cart{] = Cart“](/l $ 1. This situtation

is shown in the following ﬁgure.

cart{A
Mf —25 M

or
Nf*

N
B Rl\f l

B%B'

Proof. The fact thatidy f* = idpjp- follows from the face that, for each object M in 75, the morphism
ide* lies over idp and makes the following diagram in &/ commute.

car

4

A

tf
Mf* car M M
idyp ot
MfF* M
f Carth
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2.1. Fibrations

Now let’s check, for each pair of composable morphisms ¢: M — N and p: N — P in @/, that
Y spf = (s p)f. The following diagram in &/ commutes by the defining properties of 1 f* and

pf.
cartf

_M> M
Nf* cartl, —3 N
Pf P

/4

MF*

Carl{,

But (¢ § p)f* is the unique morphism M f* — Pf* in o/ that lies over idp and that makes the diagram

\
Wio)f . N ,

Pf P
f Cart{) ’

in & commute, so Pf s pf = Wsp)f. i

Remark 2.1.28. Let @: .o/ — A be a cleaved functor, and let f: B — B’ be a morphism in Z. Suppose
that ¢: A — M is a cartesian morphism in &7 that lies of f. Since the morphism

Carti}
Mf— M

cartjl:d: Mf*— M
is also cartesian, there exists, by Proposition 2.1.24(iii), a pure isomorphism x: Mf* — A that satisfies
cart{w =Xs5o. o

We'll give examples of pull-back functors soon in Examples 2.1.30, but first we need to define notation

that particular fibracions use for their fibre categories.

Definition 2.1.29.
- Let Gbea group. We write RePG for che category of G-modules and G-module maps.

+ Let € be a category and let X be a set. The category € of X-indexed family objects in € is defined
as follows. An object in %X is an X-indexed set A = {Ay)rex of objects in €, and a morphism
A — Bin €% is an X-indexed set @ = {ay: Ay = Bylrex of morphisms in €.

- Let 7 be a category and let B be an object in 7. The over category .7 /B of &/ over B is a
subcategory of the arrow category &/ and is defined as follows: the objects of &7 /B are the
morphisms in &7 with target B, and the morphisms of .7 /B are the pairs of the form (0, idp).
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2. FIBRATIONS AND INDEXED CATEGORIES

Examples 2.1.30.
(i) For the fibration Rep: GrpRep — FinGrp and a group homomorphism f: G — H, we have

f*: Repy; — Repg

W|—>fW

arH—

(ii) For the fibration Famy : Famy — Set and a map of sets f: X — Y, we have

frer — X
(By)er L (Bf(x))xeX

(o‘y)er — (af(x))xex

(iii) For the fibration Arr, : &/~ — &/ and a morphism f: D — C in &7, the functor f*: &/ /C —
&/ [ D is given as follows. For cach object j: | = Cin &7/C, take jf* = juf as in the following
pullback square.

]jxfpj;fn)
|

fui f
%
J ; C

For each morphism a: (j: ] = C) = (k: K = C) in &/ /C, the morphism af*: jof — kuf in
&/ D is given by the unique morphism | X D—->K X D in € that makes the diagram

| D
N fk J/f
C

K k ;

]ijD

in & commute; this morphism exists by the universal property ofpullbacks.

<

The following standard result follows from the definition of the functor f * on morphisms (see Propo—
sition 2.1.27).
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2.2. Indexed categories

Proposition 2.1.31. Let @: &/ — 2B be a cleaved fibration and let f: B — B’ be a morphism in 9. Then the
bijections

(N, Mf) — (N, M)
X— X3 cart{A

are natural in both N and M.

2.2 Indexed categories

Given a fibration @: &/ — % we have fibre categories /g and we have functors f* between them. We'll
show that these form part of the structure of an indexed category, which we define now.

Definition 2.2.1. An indexed category J consists of a category % and a pseudofunctor #°P — Cat,
where we consider & as a bicategory with identity 2-cells. We call Z the base category of the indexed
category 3. <o

Remark 2.2.2. Let’'s unpack this definition. An indexed category J: Z°P — Cat consists of the following
data:

(i) abase category # ;
(ii) for each object B in %, a category BJ ;
(iii) for each morphism f: B — B’ in %, a functor f3: B'3 — BJ ;
(iv) for each pair f: B — B’, g: B” = B” of morphisms in %, a natural isomorphism
35835 f3 > (f59)3;
(v) for each object B in 4, a natural isomorphism
35 idpy — idpS .
These data are required to satisfy the following axioms.

. (Associativity) For every composable triple f: B — B, g: B’ — B” h: B” — B ofmorphisms
in A, the fo]lowing diagram commuctes.

Sgif3

—
h35(f58)3 ——=—> (f5835M3
fsgh
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2. FIBRATIONS AND INDEXED CATEGORIES

. (Unitality) For every morphism f : B — B’ in %, the fo]lowing diagrams commute.

Rey
Yfid B

32
idpds f3 ——2 5 (Foidp)d  fI5idpS —2L 3 (idp 3 I

(Sgt)‘lsfﬁl sz(S?;)‘ll ‘

idB/S ;fs _ fC:S fS ;idB’:S _ fs

<&

We said we will show that, given a fibration @: &/ — A, the fibre categories @7 and pull-back
functors f* form part of the structure of an indexed categorys; namcly these are items (ii) and (iii) in
Remark 2.2.2. We now define the remaining structure—items (iv) and (v) in Remark 2.2.2—of the indexed
category of which the fibre categories 73 and pull-back functors f* form part of the structure.

Definition 2.2.3. Let @: & — A be a cleaved fibration. For each pair ofcomposable morphism f: B —
B’ and g: B — B” in % and cach object P in @/, define the morphism

@% p: PEf > P(f58)

in o7 to be the unique pure morphism Pg* f* — P(f § )" in &7 that satisfies ®]2‘;,P $ Cartlj;;g = CaI"L'Ing* S

Cart}g,. The existence of this morphism follows from the morphism Cart{;’g being cartesian, and the
situtaion is shown in the following ﬁgurc.

cart{,g*
P * * ; P *
g f g cart?, %
(D?;,P ; 'A o *

P(f ’ g) cartl/:"g P

0]
B \
P
idp T fsg
B BII
f38

<&

Remark 2.2.4. The morphism @2 s cartesian since Cart{:g and Cartlig* S cartig are cartesian; this means

f&r
that (Di;p is both pure and cartesian and is therefore an isomorphism. o

We provide a proof of the following result which appears absent from the literature, including the
otherwise thorough book by Johnson and Yau [JY21, Lemma 10.4.7].

Proposition 2.2.5. The morphisms CD;;F form the components of a natural isomorphism (I)};: i f = (f39)"
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2.2. Indexed categories

Proof. In the following diagram, the squares (1) and (2) commute by definition of@f{; p and CD?; o and
the squares (3), (4) and (5) commute by definition of £¢" f*, £¢" and £(f § §)".

* * '5 f * %
Pg'f H — P'g'f
cartfgg Cal‘tf:g
\” ® /
P gx- T g*P/
Ol p M cartf (4 cart), @) O

p— % sp

: 5) \
~ /cartlf:g cart'lf,ig g

P(f58) e SEGT)

Therefore, the outer square—the naturalilty square for CD;;: g5 f* = (f ¢ Q)" —commutes. i

Definition 2.2.6. Let @ be a cleaved fibration. For each object B in % and each object M in 7, the

morphism cart}\ig : Mid% — Misan isomorphism since it is pure and cartesian. Define che morphism
0+ . . 1%
CDB,M. M — Midy

in &7 to be the inverse of Cart}\ig ) o

The following result also appears absent from the literature. Note that the cleaving for the fibration
D: of — Aisoften taken to be a unitary Cicaving—mcaning a Clcaving for which the cartesian morphism
idp

cart,,”: Midy — M is the identity for each object B in Z8—and in this case the following result is trivial

[]YZL Convention 10.4.2, Lemma 10.4.7].

Proposition 2.2.7. The morphisms CD(E);M are the components of a natural isomorphism (D%*: idg, — id*B.

Proof. Let : M — N be a morphism in @75. By the definition of the functor id*B on morphisms, the
following diagram commutes.

.
Mid, — 2% Nid

idB idg
cartM

cartN

_
M " N
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2. FIBRATIONS AND INDEXED CATEGORIES

Therfore, since CD%‘:M and cartﬁB are inverses, the naturality square
M #} N
Py Dy
Midy —>¢i T Nidy
for CD%* commurtes. |

We now define the indexed category (Dg_l following the unpacked definition of an indexed category
(see Remark 2.2.2). This forms one direction of the Grothendieck construction berween fibrations and
indexed categories; we will see the other direction in the following section.

Definition 2.2.8. Let @: &7 — % be a cleaved fibration. The indexed category @®G™1: %°P — Cat,
called the indexed category associated to @, is given by the following dara:

- abase category ofq)g_l is A,
+ for each object B in %, the category (B)Y®G ! is the fibre category o7;

« for each morphism f: B — B’ in &, the functor f@g_l is the functor f*: @ — o7 defined in
Proposition 2.1.27,

- for each pair of composable morphisms f: B — B’ and g: B’ — B” in 4, the natural isomorphism

q)g_ljzc; is the natural isomorphism
L85 f o (f59)
defined in Definition 2.2.3 and Proposition 2.2.5.
+ for each object B in %, the natural isomorphism q)g_lg* is the natural isomorphism
DY+ idy, — idj

defined in Definition 2.2.6 and Proposition 2.2.7.

Example 2.2.9. The indexed category Rep: FinGrp°F — Cat consists of the following data:
+ the base category is the category FinGrp of finite groups;
+ for cach group G, (G)Rep is the category Rep; of representations of G;
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2.2. Indexed categories

- for each group homomorphism f: G — H, the functor f*: Repy; — Repg is the restriction
functor

Rep;; — Rep,

W|—>fW

arH—«a

+ for each pair f: G = H, g: H — K of group homomorphisms, the natural isomorphism
8§35 f = (f38)
is the identity;
+ for each group G, the natural isomorphism
idrep, — idg

is the identity.

Example 2.2.10. For cach category €, the indexed category §amg consists of the following data:
+ the base category is the category Set of sets;
+ for each set X, (X)Fam is the category €% of X-indexed families of objects in %,
« for each map of sets f: X = Y, the functor f*: ¢V — €Xis given by
¢ — ¢
(By)yey ¥ (Bfx))xex
(ay)yey > (afm)yer

- forecachpair f: X = Y, g: Y — Z of maps of sets, the natural isomorphism
§3f = (fsg)r
is the identity;
« for each set X, the natural isomorphism
id(bpx — id;(

is the identity.
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Example 2.2.11. For cach category &7 with finite limits, the indexed category rr consists of the follow-

ing data:
+ the base category is the category 7;
- for each object A in o7, (A)Urx is the over category &7 /A;

« for ecach morphism f: A — B in &7, the functor f*: &/ /B — &/ /A is given in Examples 2.1.30
(iii);

« for each composable pair f: D — C, g: C = C’ of morphisms in &/ and each object I: L — C’
in o7 /C’, we compose the pullback squares

lJ 4
(L x O, %D —= s D
_|

Falg) f
L x C > C

I I

a <
ng g
L s C’

and define the isomorphism
DG 3= s8)°

to be the unique morphism (L ng 0) ngXf D—L le°g D in 7 that makes the diagram

D

(L lxg ) ngxf (1g)of
| »
LxC LXpe D =5 7 D
- f
o (f58)-1 C
8
L —

commute;
- for each object A in &7 and each object j: ] = A in &7/ /A, the isomorphism
(Didera — (Pid,
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2.3. The Grothendieck construction

is given by the pair ((idaoj)™!,id4): j — jaida, as shown in the following pullback diagram.

jaida
X. >
i ]><1 4 A

A
J
idaaj ida

%
J ; A

2.3 The Grothendieck construction

We’ve seen how to construct an indexed category from a fibration, and we’ll now see how to construct
a fibration from an indexed category. These are the two directions of the Grothendieck construction.
The following definition, which define the total category of the fibration obtained by the Grothendieck
construction is also sometimes called the Grothendieck construction or the Grothendieck category.

Definition 2.3.1. Let J: A°P — Cat be an indexed category. The total category of I, denoted by

J

is the category defined as follows.

- An object is a pair (A;) consisting of an object B in & an object M in B3.

- A'morphism (A;) - (Ag, ) is a pair (j?) consisting of a morphism f: B = B” in % and a morphism
¢: M — M f*inBS3.

+ The composite of the morphisms (?) : (Ag) - (AB/I,) and (Z;) : (Ag,) - (A;,, ) in fS is given

by the pair
) (5) - ()
fsg B B

- For each object (AB/I) in fﬁ, the identity id(M) is given by the pair
B
~0=%
Seam) . M . M .
idg B B
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We can use string diagrams to represent categories, functors and nacural transformations, and we can
use string diagrams to represent morphisms in a category (see Section 1.2). Using string diagrams will be
very useful when talking about morphisms in the total category of an indexed category, and we'll explain
now how we do this.

Let I3: A°P be an indexed category and let
£OT)

) (-0

be a morphism in fS The morphism : M — M’ f* in B3 is called the total part of the morphism (lf'b)

in IS and we can represent it using a string diagram as follows.

Let

¢: M - M7\ (M) (M
h:B —B" ) \B |7 \B”

be another morphism in fS The composite of these two morphisms in fS is defined using the funcrors

f* and h* as well as the natural transformation 3}2{;[ We denote the natural transformation 5}2;;[ in string
diagrams by

(fshy
fx—
-1

and we denote its inverse (SJ%Z) in string diagrams by

ha(-

(fshy
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2.3. The Grothendieck construction

The total part of the composite v g ¢ can therefore be represented using string diagrams as follows.
P posite | ¢ )5, P g string diag

(fshy
f*

The identity morphisms n fc:S are defined using the natural transformation C:S%*. We denote the nacural

transformation 5%* in string diagrams by

O

and we denote its inverse (3%*)_1 in string diagrams by

— O
idp

As a demonstration of the notation we've just explained, we will now express the the associativity

axiom (see (1.1.9)) and the left and right unitality axioms (see (1.1.10) and (1.1.11)) for the pseudofunctor

J: #°P — Cat using string diagrams. The associativity axiom is written as the equality

(2.3.2)

(f3g3M3
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2. FIBRATIONS AND INDEXED CATEGORIES

the left unita]ity axiom is written as the equa]ity

3

PR

13

and the right unitality axiom is written as the Cquality

idp3J

—
LR

73

(23.3)

(2.34)

We can use these axioms to prove the following lemma. We will then use this lemma to prove Propo-

sition 2.3.6 which will help us to understand isomorphisms in the total category ffS

Lemma 2.3.5. Let 3: °P — Cat be an indexed category, and let f: B — B’ be an isomorphism in 2. Define

L’hC natuml tmnsforma tion

n: idBrs - f* ;f‘l*

@C

[N

73

© A3
[BS

and define the natural transformation

by

4

&: f_l* s f* — idps
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2.3. The Grothendieck construction

- O
ldBfS
13
In non-string diagmmmatic languagc, n and € are given by
— 0% o (x2¢ \—1 _ X2 5 (x0xy—1
N=9%5@% )7 and ey =5 (3Y)

Then
(f f"n,€: B3I —>B3

is an adjoint equivalcnce.

Proof. It’s easy to see that n and € are invertible. The following series ofcqualitics proves one of the snake
identities; the proof of the other is similar.

73

(1)
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11(2)

idp3J

idp3J

1(3)

3
The equality (1) follows by the right unitality axiom (2.3.4), the equality (2) follows by the associativity
axiom (2.3.2), and the Cquality (3) follows by the left unitality axiom (2.3.3). O

The strict version of the following result is given as Proposition 2.6.1.6 in [MyCZ3]; we providc a proof
using string diagrams.
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2.3. The Grothendieck construction

N
Proposition 2.3.6. A morphism (1’;) : (A;) — (B ,) in f 3 is an isomorphism if, and only if, Y is an isomorphism

in B3 and f is an isomorphism in 2.

Proof. Suppose that 11[1 is an isomorphism in B and that f is an isomorphism in . Define the morphism
¢: N — Mf_l* in B’ using a string diagram as follows.

fr

We'll show that (fqél) is inverse to (I—’;) in fS, where ¢ is given by the following figure. The total part of

f

(4}) $ (fﬁ?l) is equal to Sg*M: M — Mid’, as shown by the following series of equalities.
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2. FIBRATIONS AND INDEXED CATEGORIES

The equality (1) follows from Lemma 2.3.5. Therefore,

(?) 3 (fll‘jl) =idg)

The total part of( ¢ ) S (¢) is equal to S%t,N: N — Nid", as shown below.

fP\S

54



2.3. The Grothendieck construction

The equality (2) follows from Lemma 2.3.5. Therefore, (?) S (fy[_fl) = id(g],).

We've proved that (l’;) is an isomorphism ifl][J and f are both isomorphisms. Now we prove the

converse. Suppose that (l’;) is an isomorphism in fi”s with inverse (z) So f3g=1dp, g¢ f =idp and
the following two equalities (2.3.7) and (2.3.8).

(237)
I
M M
© i
(23.8)
]
M M
© i

We have immediately that f is an isomorphism in % with inverse g. We'll now show that ¢ is an isomor-
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phism in B3I with inverse

F

The fact that 1 § x = id follows almost immediately from (2.3.7). The fact that x § ¢ = id is shown by
the following series of equalities.

2)n
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2.3. The Grothendieck construction

| =

The equalities (1) and (2) follow by Lemma 2.3.5 and the equality (3) follows by (2.3.7). m]

Grothendieck originally used the term ‘Catégorie fibrée’ (fibred category) for indexed categories
[Gro71], but, due to Bénabou [Bén75], this later became the standard term for the fibration associated to
an indexed category via the Grothendieck construction, the definition of which we give now.

Proposition 2.3.9. Let J: B°P — Cat be an indexed category. The following functor is a fibration.
3G: f S— A
(1\1;1) +— B
(7=
We call this fibration the fibration associated to 3.

Proof. For each morphism f: B — B’ in % and each object M in B’J, we'll see that the morphism

(id: Mf* — Mf*

PR
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2. FIBRATIONS AND INDEXED CATEGORIES

is cartesian. Suppose that g§: C — B is a morphism in % and that (gl’obf) : N = M is a morphism in
g

f%, as shown in the following figure.
(¢)
C
-
~— .
g &f
B g B

(¢ (32,7
8

Then the morphism
) : N — Mf*

in fS is the only morphism that lies over g and makes the following diagram commute.
N
(&)
[wsag;M)}

8 id

(7)
Therefore, the morphism (ld: Mff_) Mf ) : Mf* — M is cartesian, which means that 3G fﬁ —
A is a fibration. O
The following proposition is given as the definition of cartesian morphisms byjohnstone, though he

uses the terminology ‘prone morphisms’.

Proposition 2.3.10 ([Joh02, Lemma 1.3.2]). Let 3 be an indexed category. A morphism (Ijj) in fS is cartesian

with respect to the fibration IG if, and only if, Y is an isomorphism.

iy
f

lary 2.1.25, ? is cartesian if, and only if, there exists a pure isomorphism l)CCI and a cartesian morphism

Pmof. From Proposition 2.3.9 we have a Clcaving cart]’i/f = ( ) for the fibracion Sg By Corol-

(1?) in the cleaving such that (ﬁ) = (1)((1) 5 (1}1) The total part of this equality s =x3 ?5125 FAMD which
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2.3. The Grothendieck construction

can be rearanged to ¥ = ¢ § (Sfé,f,M)_l' Therefore, the morphisms (l’;) for which there exists a pure

isomorphism (1)((:1) such chat gbf = (l)é) 5 (lfc.l) are exactly those for which Y is an isomorphism. O
231 The Grothendieck construction as a 2-equivalence

In this subsection, we state the Grothendieck construction as a 2-equivalence. This is given in [Bor94b,
Theorem 8.3.1] and [Joh02, Theorem 1.3.6]; a more detailed breakdown can be found in [JY21, Section
10.6]. We bcgin by dcﬁning a 2-category of fibrations. This 2—cquivalcncc will be useful in Section 2.7

where we discuss monoidal fibrations and monoidal indexed categories.
Definition 2.3.11 ([JY21, Theorem 10.6.16]).

s Let ®P: o — B and O': &7’ — P’ be fibrations. A fibred 1-cell @ — @’ consists of a pair of
functors F: &/ — &7/’ and G: B — A’ such that the diagram

o —E s o
[} o’
P—a ¥

in Cat commutes and, for every ®-cartesian morphism ¢ in &7, the morphism ¢F in &7" is @’-

cartesian.
+ We call a fibred 1-cell (F,G): ® — @’ pure if Z = %’ and G = id 4.

+ Let (F G) and (F/, G’) be fibred 1-cells @ — @’. A fibred 2-cell consists of a pair of natural
transformations a: F — F" and f: G — G’ such that, for every object M in &7, the morphism
ay: MF — MF’ in &/’ lies over the morphism Sy : MPG — MOG’ in Z’. This situation is

shown in the following figure.

F
—
o !
\liﬁf)(
(0] @’
G
—

%\tﬁ’)(%’

+ We call a fibred 2-cell (o, B): (F, G) — (F/,G’) pure if (F, G) and (F’, G") are pure fibred 1-cells
and if, for every object M in &7, the morphism apr: MF — MF’ in &7” lies over the identity.
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2. FIBRATIONS AND INDEXED CATEGORIES

Definition 2.3.12.
- The 2-category Fib of fibrations consists of fibrations, fibred 1-cells and fibred 2-cells.

- Let & be a category. The 2-category Fib 5 of fibrations over A consists of fibrations over %, pure
fibred 1-cells and pure fibred 2-cells.

We now define a 2-category of indexed categories.
Definition 2.3.13.

-+ Let J: P — Cat and R: AP — Cat be indexed categories. An indexed 1-cell 3 — K
consists of a functor F: # — %’ and a pscudonatural transformation 7:

GBOP Fop S o
T
R : K
Cat

- We call an indexed 1-cell (F,7): I = & pure if " = %’ and F = id 4.

- Let (F, 7) and (G, 0) be indexed 1-cells I — K. An indexed 2-cell 3 — K consists of a natural
transformation a: F — G and a modification

Fop
s 8P PP /_N %rop

o S

- We call an indexed 2-cell (o, m): (F, T) = (G, 0) a pure if (F, ) and (G, 0) are pure indexed 1-cells
and a = idjq,.

Definition 2.3.14.

+ The 2-category IndCat of indexed categories consists of indexed categories, indexed 1-cells and
indexed 2-cells.

- Let B bea category. The 2-category IndCat 5 of indexed categories over P consists of indexed
categories over &, pure indexed 1-cells and pure indexed 2-cells; this is equal to the 2-category

2CatP®(#°P, Cat).
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&

Now that we've defined 2-categories of fibrations and of indexed categories, we can state the Gro-
thendieck constretion as a 2-equivalence of 2-categories.

Theorem 2.3.15.

« The function that associates a cleaved fibration 3G : f I — P to an indexed category I: P — Cat
extends to a functor of 2-categories

g: ITLLfCat%J — _’Flﬁgg

« The function that associates an indexed category @G -1, °P — Cat o a cleaved fibration ®: o — A
extends to a functor of 2-categories

g_l: Fibz — IndCat .

« The functors G and g_1 are part of a 2-equivalence IndCatgy ~ Fibp.

« The above 2-equivalence extends to a 2-equivalence IndCat ~ Fib.

2.4 Opfibrations and opindexed categories

In this section, we look at the dual notions of cartesian morphism and fibration: opcartesian morphisms
and opfibrations. The property of a functor @: &/ — % being a fibration enables us to ‘pull” an object
M in the fibre category @7 back along a morphism f: B — B’ in % to obtain an object Mf* in the
fibre category @78. Our first example of this (see Section 2.1) was pulling an H-module W back along
a group homomorphism f: G — H to obtain the G-module ;W known as the restriction. The dual of
restriction is induction. Given a group homomorphism f: G — H and a G-module V| the induced
H-module is CH ®¢ V, where the group algebra CH is a G-module via restriction! Notice that induction
‘pushes’ the G-moudle V along the group homomorphism f: G — H to obtain an H-module. We'll soon
use induction in Example 2.4.9 to show that the acting group functor Rep: GrpRep — FinGrp is an
opﬁbration.

Definition 2.4.1. We call a functor®@®: & — A an opﬁbration if the opposite functor ®°P: /P — ZB°P
is a fibration. o

Definition 2.4.2. We call a morphism p: C — P in & opcartesian if it @°P-cartesian as a morphism in

o °P. o
The following proposition unpacks what it means for a morphism to be opcartesian.

Proposition 2.4.3. Let @: &/ — A be a functor, lec p: C — P be a morphism in o7 and let f: B — B’ denote

the morphism p® in . The morphism p: C — P is opcartesian if, and only if, for each morphism h: B" — E
in % and each morphism w: C — Q in & that lies over f § h, there exists a unique map &: P — Q that lies
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2. FIBRATIONS AND INDEXED CATEGORIES

over h and that satisfies @ = p § &. This situation is depicted in the following figure.

=

o (2.4.4)

i
1

O

In analogy to Proposition 2.1.4, the following is a less verbose definition of an opcartesian morphism.

Proposition 2.4.5. Let @: &/ — A be a functor, let p: C — P be a morphism in <7, and let f: B — B’
denote the morphism p® in ZB. Then the morphism p: C — P is opcartesian if, and only if, for each morphism
h: B" — E in % and each object Q in &, the map

/"(P,Q) — «/M(C,Q)

(2.4.6)
cropse

is a bijection.
Notation 2.4.7. The unique morphism & in (2.4.4) will be written as PN . This is meant to make the

reader think of taking the equation p §& = w and ‘dividing’ both sides on the left by p to get the equation
& = p o w. With this notation we can write the inverse to the bijection (2.4.6) as

/TM(C,Q) — F"(P,Q) .

W P Nhw

o

It is easy to check that opcartesian morphisms and opfibratios and are analogous to cartesian mor-
phisms and fibrations:

Proposition 2.4.8. The functor @: o/ — 28 is an opfibration if, and only if, for every morphism f: B — B’ in
2B and every object C in o7 lying over B, there exists an opcartesian morphism p: C — P that lies over f. O

In Examples 2.1.16 and 2.1.19, we showed that the functors Rep and Famy are fibrations. We now
show that they are also opfibrations in Examples 2.4.9 and 2.4.11.

Example 2.4.9. We'll show that the forgetful functor Rep: GrpRep — FinGrp is an opfibration. Let
f: G — H be a group homomorphism, let (G, V) be a representation lying over G, and define the linear

mapi: V — CH;®c V by (v)i = eg®v. We'll show that the morphism (f,7): (G, V) — (H,CHf®¢ V)
in GrpRep, which lies over f, is opcartesian.
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2.4. Opfibrations and opindexed categories

Suppose that x: H — Kiis a group homomorphism and suppose that (f 5 x, w): (G, V) = (K, U) is
a module map that lies over f §x. Define the morphism (h, &): (H, CHf ® V) — (K, U) in GrpRep
by (h ® v)& = (h)x - (v)w. The diagram

(K, u)
(fshw) (2.4.10)
09

G, V) T> (H,CHf ®¢ V)
in GrpRep commutes because, for eachvin V, (v)w = (ey®v)& = (0)(i5€). 1t (h, 0): (H, CHf®cV) —
(K, U) is a morphism in GrpRep making (2.4.10) commute, then

(h®v)C=(h-(en ®v))C = (Wx- (e ®v)C = (M)x - (v)(i5C) = (M)x - (V).

Therefore, (h, &) is the unique morphism (H, CHy ®c V) — (K, U) that lies over h and malkes (2.4.10)
commute. Hence, (f, i) is opcartesian, and so Rep: GrpRep — FinGrp is an opfibration. o

Example 2.4.11. Let € be a category with arbitrary coproducts; we'll denote coproducts by Y. We'll
show that the forgetful functor Famy : Famy — Set is an opfibration. Let f: X — Y be a map
of sets, let (A, X) be an X-indexed family of objects. Let Ay denote the Y-indexed family of objects
(Zwe(y)f* Aw)ye% and, for each x € X let ty denote the inclusion morphism Af(x) - Zwef” (F() Ay
We'll show that the morphism (¢, f): (A, X) — (Af,Y) in Famg, which lies over f, is opcartesian.

Suppose that h: Z — X is a map of sets and suppose that (w, f §h): (A, X) = (C, Z) is morphism
in Famy lying over f § h. Suppose that (¢, h): (Af, Y) — (C, Z) is a morphism in Famg satisfying
(4, f) (& h) = (a),f ¢ h). Then the following diagram in ¢’ commutes.

Ar — s T A

Wy J:S(x)f

T C@nn
Therefore, if y € (f)im, we have, for eachw € ()f 1, &la, = @y, and if y & (f) im, then we must take

&y to be the unique morphism Zwef—l(y) Ay = Cyy). Therefore, (&, h) is the unique morphism that lies
over h and that satisfies (1, f) § (£, 1) = (w, f § ), so (¢, f) is opcartesian. o

Example 2.4.12. We'll show that the codomain functor Arr/: @/~ — &7 is an opfibration. Let f: A —
Bandr: L — A be a morphisms in &7, so 7 is an object in &/~ and (r)Arr = A. Consider the

commutative squ are

L———A

|

L——B
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in 7. We'll show that the morphism (idg, f): ¥ — 7§ f in &/, which lies over f, is opcartesian.
Suppose thath: B — D, q: N = D and u: L — N are morphisms in .27, as shown in the following
figure.

(g: N = D)
(u,f3h)
(r:L_)A)(id—L,f)>(rgf:L_>B)
C
A S 7 > B

Rewrite the square
L— 3 A
ul
N —

that defines the morphism (u, f §h): r — g as

q

L———>A

rsf

=
=

N

Z

[t then becomes clear that (4, h): 7§ f — g is the unique morphism 7§ f — gin o7~ that lies over i (that
is, of the form (h)) and satisfies (idy, f) § (u, h) = (u, f $h). Therefore, the morphism (id, f): ¥ — 7§ f

is opcartesian. o

The reader may wish to skip the remainder of this section on first reading as the definitions and
propositions stated are directly analogous to those in Sections 2.1 and 2.2.

Definition 2.4.13. Let @: &/ — % be an opfibration.

- An opcleaving for @ is a choice, for each morphism f: B — B’ in % and cach object C in & lying
over B, of opcartesian morphism Opcart{j: C — P in & that lies over f.

« An opcleaved fibration is an opfibration equipped with an opcleaving.
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- Amorphism & in &7 is called pure if it lies over an identity morphism.
+ We call &7 the total category of @ and we call Z the base category of ®.
o

Notation 2.4.14. Given an opcleaved fibration @: &/ — %, we will—unless it’s unclear from context—
denote the opcartesian morphisms the opcleaving by opcart = (opcarté). o

If®: of — A isatibration, then we have pure-cartesian factorisation ofmorphism in .o/ (see Propo-
sition 2.1.14). Similarly, if @: &/ — 24 is an opfibration, then we have opcartesian-pure factorisation of
morphisms inof.

Proposition 2.4.15. Let @: o/ — 9B be an opfibration. Then, for each morphism w: C — Q in o, there exists
an opcartesian morphism p and a pure morphism & such that w = p § &. In particular, if we fix an opcleaving
for D, there exists a unique opcartesian morphism p in the opcleaving and a unique pure morphism X such thar
Y=x5¢. O

We have the following basic properties of opcartesian morphisms; these are analogous to those for
cartesian morphisms we gave in Proposition 2.1.24.

Proposition 2.4.16. Let @: o/ — B be a functor.
(i) Lecp: C = Pandp’: P — R be morphismsin /. If ¢ and ¢’ are opcartesian, then ¢3¢’ is opcartesian.
(i) Leep: C— Pand &: P — Q be morphisms in & If p and p § & are opcartesian, then & is opcartesian.

(iii) Let p: C = Pand w: C — Q be opcartesian morphisms in 7. If p@ = w®, then there exists a unique
isomorphism &: P — Q that lies over idp: and satisfies w = p § &.

(iv) Every isomorphism in &7 is opcartesian.

(v) Let p be a morphism in &7 and suppose that p@ is an isomorphism in Z8. Then, p is opcartesian if, and
only if, p isan isomorphism

Given an opcleaving of @, all other opcartesian morphisms can be obtained from those in the opcleav-
ing.

Corollary 2.4.17. Let ®@: o/ — 2B be a cleaved opfibration. Then, a morphism w in < is opcartesian if, and only
if, there exists an opcartesian morphism p and a pure isomorphism & such that w = p § &. In particular, if we fix
an opclmving for D, there exists a unique opcartesian morphism pin the opclmving and a unique pure isomorphism

& such thatw = p § &.

Just as a cleaved fibration gives us a pull-back functor functor f*: @ — @ for cach morphism
f: B — B’ in £ (sce Proposition 2.1.27), an opcleaved opfibration gives us a push-forward funtor

fir o — o for each morphism f: B — B’ in £.

Proposition 2.4.18. Let @: .o/ — 98 be an opfibration, let opcart be an opcleaving for @, and let f: B — B’
be a morphism in ZB. Then the following defines a functor fi: a/p — p.
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« For each object C in a7, define fiC to be the domain ofopcarté.

« For each morphism w: C — Q in @, using the fact that Opcartjé is cartesian, define @ fi to be the
unique morphism Cﬁ - Qﬁ in &/ that lies over idps and satisfies opcarté 5 a)ﬁ =w;3 opcartg. This

situtation is shown in the following figure.

O cartf
0 X8 0of,

c—scf
opcart,
@
B/
f— 7 #
1dpr
B é B’

Examples 2.4.19.
- For the opfibration Rep: GrpRep — FinGrp and a group homomorphism f: G — H, we have

fi: Rep; — Repy
Vi— CHQ®gV
a +— idey Q¢ a.

+ Let € be a category with coproducts. For the opfibration Famy : Famy — Set and a map of sets
f: X =Y, wehave

fir €% — €Y

(Ax)xeX — Z Aw

we(y)f_l er

(ﬁx: Ay — A;)XGX — Z ﬁx 9 léu ’
we(y)f;l yey

where, for cach y € Y and ecach w € (]/)f_1

Zwe(y)f‘l A;u

, we denote by (7, the inclusion morphism A}, —
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For the bifibration Rep: GrpRep — FinGrp, we have the following well-known isomorphism
GH

o and the coinvariants functor.

between 7t

Example 2.4.20. Let G and H be finite groups and let 1g: G X H — H denote the projection map. The
coinvariants functor (—)g): Repg,y — Repy is defined on objects by

Vi =VIKg-v-v|geGuveV).

The space V() is called the space of coinvariants and it’s largest quotient of V on which G acts trivially.
We'll show that the following are mutually inverse H-module maps.

(;[)I V(G) e H(CH RcxH 1% 2170
[v]— eg®v
[h-v]—h®v

They are H-module maps since
(h-[oDp=(h-vDp=en®(h-v)=h®@v="h-(eg®0v) =h-([v])},

and
h-x@v)p=Mhxv)p=[hx-v]=h-[x-v]=h-(x®0)),

and they are mutually inverse since
(([vDP)y = (en @ V)Y = [e - v] = [v]

and
(h@ o)) = ([h- o) = ey ® (h-0) = h @ .

These maps are the components of a natural isomorphism (116), = (=) ). o

Proposition 2.4.21. Let @: &/ — P be an opcleaved opfibration and let f: B — B’ be a morphism in 9. Then
the bijections

g (N, M) —s o7f(N, M)
& r— opcartZ’:, S

are natural in both N and M.

Now for the analogues of indexed categories and the Grothendieck construction.

Definition 2.4.22. An opindexed category J consists of a category & and a pseudofuncror # — Cat,
where we consider % as a bicatcgory with idcntity 2-cells. We call & the base category of the opindcxcd
category J. o

Remark 2.4.23. Let’s unpack this definition. An opindexed category J: # — Cat consists of the following
data:
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(i) a base category B :
(ii) for each object B in %, a category BJ ;
(iii) for each morphism f: B — B’ in %, a functor f3: B3 — B'J ;
(iv) for each pair f: B — B’, g: B’ — B” of morphisms in %, a natural isomorphism
3 fI383 - (F59)3;
(v) for each object B in #, a natural isomorphism
39 idpy — idpJ

These data are required to satisfy the following axioms.

- (Associativity) For every composable triple f: B — B’, g: B — B” h: B” — B"” of morphisms
in 4, the following diagram commutes.

£33,
f35835hS —— f35(g5h)3
i s
(f39)35hd ——— (F3831)3
fsgh

+ (Unitality) For every morphism f: B — B’ in %, the following diagrams commute.

~2! 2!
Tidp.f

Ny
F33idpd — 2 (F3idp)3 idpI3 f3 ——=L s (idp 3 )3

Fag| Qs |

fs sidpy =—= fs idps 3f3 —_— fS

Definition 2.4.24. Let J: % — Cat be an opindexed category. The total category of I, denoted by
f 3
is the category defined as follows.

M
) consisting of an object B in % an object M in B3.

- An object is a pair (B
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- A morphism (AI;I) - (Ag, ) is a pair (]e) consisting ofa morphism f: B— B 'in%anda morphism
p: Mfi = M in B3.

+ The composite of the morphisms (?) : (A;) - (Ag,) and ((g) : (]I\;I,) - (A;I,,) in IS is given

by the pair
) spgisw) (M) _ (M7
f ; g * B B// M

- For each object M in [ 3, the identity id, a1y is given by the pair
ject | p  id(y is given by che p
G907, () i
idg "\B B/’

2.5 Bifibrations

We've seen that the functor Rep: GrpRep — FinGrp, the functor Fam, : Fam, — Set (for a
category &/ with coproducts), and the functor Arr, : &~ — & (for a category .7 with pullbacks) are
both fibrations and opfibrations (see Examples 2.1.16, 2.1.19, 2.1.22, 2.4.9, 2.4.11 and 2.4.12). Such functors
are called bifibrations.

Definition 2.5.1.
+ We call a functor @: &/ — A a bifibration if it is both a fibration and an opfibration.
- A bicleaving for a bifibration @ consists of a cleaving and an opcleaving for ®.
- A bicleaved bifibration is a bifibration equipped with a bicleaving.

<&

Before continue this secion where we discuss bifibrations, we’ll give a non-example: an opfibration
that is not a fibration. In Example 2.1.22, we proved that, if &7 is a category with pullbacks, then the
codomain functor Arr, : &/~ — &/ is a fibration. In a moment, we’ll prove the converse: if the
codomain functor Arr s is a fibration then the category o7 has pullbacks. Therefore, given any choice of
category &7 without pullbacks (e.g. the category with two objects and no non-identity morphisms), the
codomain functor Arr is an opfibration (this fact doesn’t depend on .27) but not a fibration.

Proposition 2.5.2. Let & be a category, and suppose that the codomain functor AYY oy 1 /= — o/ is a fibration.
Then 7 has pullbacks.
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Proof. Let f: A — Band t: K = B be morphisms in 7, so t is an object in &/~ and (f)Arr,, = B.
Since ArT .y is a fibration, there exists a cartesian morphism (i, f): s — t in &/~ that lies over f. We
will show that the square

i

(2.5.3)

NE—— X
\\")

|

ing isa puﬂback square.
Suppose that che following is a cone.

M
lzl
h

K

Since the morphism (h, f) § — t is cartesian, there exists a unique morphism (v,ida): [ = sin &~

L

/

|

S

—

|

t

that lies over id4 and that makes the following diagram in &/~ commute.

I
(h.f)
N
S t

(h.f)

In other words, there exists a unique morphism v: L — M in & such thatv§s =l §idg andv§h = 1.
Therefore, the square (2.53) is a pu]lback square. O

Let @: & — A be a bifibration and let f: B — B’ be a morphism in . By Propositions 2.1.31
and 2.4.21, we have bijections

(N, Mf) = o/f(N,M) and o (Nf,, M) — «/f (N, M)
natural in N and M. Composing these gives a bijection
(N fi, M) = a/5(N, Mf*) (2.5.4)
natural in N and M, i.e. an adjunction f 4 f*.

Proposition 2.5.5 ([Jac91, Lemma 9.1.2]). Let @: &/ — 9B be a bicleaved bifibration. Then, for each morphism
f: B = B in B, the functor fi: ofg — o is left adjoint to the functor f*: ofp — ofp. |
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Explicity the bijection (2.5.4) is given by

DQ‘{B/ (Nfu, M) —> %B(N, Mf*)

(2.5.6)

Er— (opcartl’i] $8) ¢ cart]’;[.
Later i’ll be useful to have explicit descriptions of the unit and counit of the adjunction fr - f* using
(2.5.6); this is subject of the following remark.

Remark 2.5.7. Recall from Definition 1.3.4 that, for each object N in o7, the component 17{\]: N — Nfif*

of the unit of the adjunction fi 4 f* is the adjunct of id ;n : Nfi = Nf1. So, using (2.5.6), we have

f

opcart{] o carty, -

In other words, T]L: N — Nfif" is the unique pure morphism N — Nf f* that makes the following

diagram in &/ commute.

N
cartl):] A ﬁ

Similarly, for each object M in o7, the component 6{4: MFf* fi = M of the counit of the adjunction
fi 4 f*is given by
c:art])\c/I o opcar‘r;\(/I "

or in other words, it is the unique pure morphism Mf*fu — M that makes the following diagram in .o/

commute.

M

Cal‘t']f\f/I

Mf* opcartf Mf*f'

Mf*
&
Now, for the bifibrations Rep and Fam, we look at Cxamplcs of the unit and counit of the adjunction

fiA £

Example 2.5.8. Consider the bifibration Rep: GrpRep — FinGrp. For each group homomorphism
f: G — H, wehave an adjunction fi 4 f*. For cach G-module W, the unit n{le) (G W) = (GW)fif

is given by the G-module map

W — (CH®u W)

W egQw

71



2. FIBRATIONS AND INDEXED CATEGORIES

and, for each H-module V| the counirt €{H v (H,V)f fi = (H,V) is given by the H-module map

CH@GfV—>V
h®vr— h-v

o

Example 2.5.9. Consider the bifibration Famg : Famy — Set. For cach maps of sets f: X — Y, we
have an adjunction fi 4 f*. For each X-indexed family of objects A = (Ay)xex, the unit n{A %" (A, X) >
(A, X)fif* is given by the inclusion map

Ay, —— Y A,
aeX
() f=(f

and, for each Y-indexed set B = (By) ey, the counit S{B,Y) : (B, Y)f*fi = (B,Y) is given by the codiagonal

Y, idg: Y By, ——> By
wef1(y) wef~Hy)

The following proposition gives a way ofupgrading a fibration to a bifibration.

Proposition 2.5.10 ([Jac91, Lemma 9.1.2]). Let @: &/ — A be a cleaved fibration. If, for every morphism
f: B — B, the functor f*: @y — @B has a left adjoint, then @: &/ — A is a bifibration.

Proof. For each morphism f: B — B’ in &, let fi: @3 — o/ denote a left adjoint to the funcror
f*: g — /. The adjunctionfg 4 f* gives the bijection

(N fi, M) — (N, Mf")
Er—onnséf

and Proposition 2.1.31 gives the bijection
(N, Mf*) — o/ (N, M)
XH— X3 Carl'](/[ .
Compose these to get the bijection

<ty (N fi, M) — </f (N, M)
. (2.5.11)
£ N3 Ef s cart],
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2.5. Bifibrations

The diagram

cart{, ;i

Nfift ——— Nf
Eft 3

Mff ——— M

car M
in &/ commutes by definition of € f*. Therefore, the bijection (2.5.11) is equal to the following bijection.
(N fi, M) — «7f (N, M)
£y cart ;5

This means that, for cach morphism f: B — B’ in %, the morphism nN;carth\]ﬁ : N = Nfiisopcartesian
and lies over f. Therefore, @: &/ — 2 is an opfibration and hence a bifibration. m|

In Example 2.4.12, we saw that the codomain functor Arr /1 &/~ — &7 is an opfibration where, for
cach morphism f: A — B in &/ and each morphism r: L — A in &7, the opcartesian morphism r — 7 f,

we gave was given by the commutative square
T
L ——3 A
f

9.
in 7. The following example shows—assuming only the proof that Arr is a fibracion—how we can use
Proposition 2.5.10 to deduce that Arr is a bifibration.

Example 2.5.12. We showed in Example 2.1.22 that the codomain functor Arr is a fibration. The following
diagram shows, by the universal property of pullbacks, that there is a natural correspondence between
morphisms a: L — K X A thatsatisty a § tf* = r and morphisms f: L — K chat satisty B st =7¢ f.

tf*
, KxA——A
J
-
K———B
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2. FIBRATIONS AND INDEXED CATEGORIES

Therefore, there is a natural bijection between commutative squares

L———3 A

KtfoTA

in &/ and commutative squares

in 7. In other words, this is a natural bijection between morphisms r— tf* in %A—) and morphisms
rs f — tina/g”. Sotakingrfi =73 f: L — B makes Arr a bifibration via Proposition 2.5.10 since we
have an adjunction f 4 f*. o

The following theorem states useful identities relating the pseudofunctoriality constraints CDZ;, CD%*,

®< and CI)%’,

2!
fs

Theorem 2.5.13. Let @: &/ — A be a bicleaved biﬁbram’on. Then the following equalitics holds.

(i)
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2.5. Bifibrations

(ii)

(iii)

(f38) <

=

(fs9h

8!

(fs8)

(fs8)
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2. FIBRATIONS AND INDEXED CATEGORIES

(iv)
g’(‘
(fsg)r
f*
(fsg)r
f*
()
© idp
I
( idps
i
(vi)
idp, ©
I
© i
idp
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2.5. Bifibrations

(vii)

( idp; ©

idp

(viii)

idj )
O

idp

Proof. We'll prove the equalities (i) and (v); the equalities (ii)-(iv) follow by application of the snake
identities for the adjunctions fi 4 f* and g1 4 ¢" to (i), and the equalities (vi)—(vii) follow by application
of the snake identities for the adjunction idp, 4 idg* to (v).

First, the proof of (i). Let Q be an object in @7p. The component morphism Q(f ¢ ¢)1 — Qg1 fi of the

right-hand side is equal to the following composite.

Qfig

A
f38
“Qha

Qfigi(f 58 (f58)
(AN
Qfigig f(fs8h (2.5.14)
T (Figh
Qff (fs9)
Tl se)

Q(f s &)
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2. FIBRATIONS AND INDEXED CATEGORIES

The component morphism Q(f § ¢)r = Qg1 fi of the left-hand side is defined to be the unique pure
morphism Q(f § &)1 — Qg1 fi that makes the following diagram in %/ commute.

opcart

. Qg
=

QA

f (255.15)

Q —> Q(f33):
opcartQ‘

The morphism (2.5.14) is pure since it is the composite of pure morphisms. Therefore, it suffices to show
that the morphism (2.5.14) makes the diagram (2.5.15) commute; this follows from the fact that following
diagram commutes.

Qf!g1

é.f$g
3) Qfig

) Cartf i

P Qfigi(F38) (F39)

g
Q f, CartQ g
\ / y
g $
by i opcart{2 ﬁgl

Qfgg” ® Qfg(f38) @0 59
T ©
D et @dos Qfigig"f(f5 8
Cartéﬁ o N
opcartf I
¢ oo Qfgg’f ! (3
Mosf ) i

opcar’fg;;f* % Qf‘f*(f 9 g)'

77{3 . A
/ ) 5 (f52)

> Q(f 9

opcarthsg

j(;’ anf‘ and gg}g:gl' The squares (4), (5) and

(6) commute by the definition of (f § )1 on morphisms, and (7) commutes by the definition of f* on

The triangles (1), (2) and (3) commute by the definitions of 1

morphisms. Finally, the square (8) commutes by the definition of(CDf{;)Qﬂg!.

And now, the proofof (v). Let Q be an objcct in 7. For case ofrcading we'll write idp as just id. The
component morphism Qid — Q of the left-hand side is defined to be (Opcartig)_l, and the component
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2.5. Bifibrations

morphism idiQ — Q is equal to the following composite.

(cartgl d )~ lid,

Qidy ———— Qid"id, % Q

1id, and the definition of &% and the

The following diagram commutes by the definition of (Car’[Q id, )~ Q)

result follows.

(cart‘g1 a )~ lid,

Qidg; ——— Qid"id, —) Q

id id
opcartQ opcartMi a cartid
Q
. *
Q (cartid )1 Qld
Qldl

Given a bifibration @: &/ — %, we have an indexed category J: #°P — Cat and an opindexed
category 8: A — Cat thac satisfy B3 = BR for cach object B in # and f& 4 f3 for cach morphism
f: B — B’ in A. It’s natural to ask “Are the total categories fS and fﬁ are equivalent?”; we describe
an isomorphism between these two categories using string diagrams.

Proposition 2.5.16. Suppose that J: F8°P — Cat is an indexed category and that R : 78 — Catis an opindexed
category such that B3 = B for each object B in % and f& 4 f3 for each morphism f: B — B’ in Z. Then
the following functor, which is given by taking the adjunct (see Deﬁnirion 1.3.2), s an isomorphism of categories.

o [
-

sl E U ey

. M
Proof. We'll show that (2.5.17) is a functor; the inverse is also given by taking the adjunct. Let (B) be an

object in fﬁ The following string diagrams show that id(M) — id(M) using Theorem 2.5.13.
B B
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M
O T
idj )
idp
1
Mo
idp ©
Let (qb fMB—;Ag,f ) : (]\é[) — (A;,) and (l’b :g]:\/IB/—_>>]\]/31”g ) : (Ag,) - (Z\;,, ) be morphisms in fS
The following series of equalities proves binary functoriality.
_______ M”
(fs8)
l
M
(fs9)

(f58)
(2)n
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2.5. Bifibrations

(fs9h

The equality (1) follows from Theorem 2.5.13(iii), and the equality (2) follows from the snake identities

for the adjunction (f §g)r 4 (f $8)". |

So far, we've seen the Grothendieck construction give a 2-equivalence between fibrations and indexed
categories and between opfibrations and opindexed categories. Recall from Proposition 2.5.10 that a
functor is a bifibration if; and only if] it is a fibration for which each pull-back functor f* has a left
adjoint. This idea is what leads to Theorem 2.5.20, which is analogy of the Grothendieck construction for
bifibrations. We first need to give the definitions of the 2-category of bifibrations and the 2-category of
bifibrations over a fixed category 4, both of which are very similar to the definitions of Fib and Fib
(see Definitions 2.3.11 and 2.3.12).

Definition 2.5.18.

c Let ®: & = B and D' &' — F’ be bifibrations. A bifibred 1-cell @ — @’ consists of a pair
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2. FIBRATIONS AND INDEXED CATEGORIES

offilnctors F: e,Q( — JZ{I and G: e@ - e%l SLlCh thﬁlt the diagram

o —L s
O] '
B—"F
in Cat commutes and, for every @-cartesian morphism ¢ in & and every @-opcartesian morphism
p in &7, the morphism @F in &7” is @’ -cartesian and the morphism pF in &” is @’-opcartesian.
- We call a bifibred 1-cell (F,G): @ — @’ pure it Z = $’ and G = id ».

« Let (F,G) and (F’, G’) be bifibred 1-cells @ — @’. A bifibred 2-cell consists of a pair of natural
transformations @: F — F" and f: G — G’ such that, for every object M in &7, the morphism
ay: MF — MF’ in &’ lies over the morphism Sy : MPG — M®G’ in Z’. This situation is
shown in the following flgure,

F

a7 Y T

[ (o4

&p){
G
—

@\ij/(@

- We call a bifibred 2-cell (o, B): (F,G) — (F’, G") pure if (F, G) and (F’, G”) are pure bifibred 1-cells
and if; for every object M in &7, the morphism apr: MF — MF’ in &/” lies over the identity.

Definition 2.5.19.
» The 2-category Bifib of fibrations consists of bifibrations, bifibred 1-cells and bifibred 2-cells.

« Let Bbea category. The 2-category ﬂiﬁﬁgg of bifibrations over % consists of bifibrations over 4,
pure bifibred 1-cells and pure bifibred 2-cells.

The following result is an analogy of the Grothendieck construction for bifibrations.

Theorem 2.5.20 ([HP15, Proposition 2.2.1]). There exists a 2-equivalence
G: Bicat?*(#°F, AdjCat) — Bifib ,,.
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2.6. Monoidal fibrations

Notation 2.5.21. Let @: &/ — P be a bifibration and let IJ: 8°P — Cat and ] : & — Cat be the
corresponding indexed and opindexed categories. The categories fS and fR are isomorphic and use

very similar notation for their morphisms; we therefore use the notation
¢: P— Qf\ (P (9
BB | B \B

for a morphism in fS and the notation

(5525 () ()
f:B—> B | " \B B’
for a morphism in fﬁ. o

2.6 Monoidal fibrations

The 2-category MonFib of monoidal fibrations is defined to be the 2-category PsMon(Fib) of pseu-
domonoids in the 2-category of fibrations. Unpacking this definition, we get definitions of monoidal
fibrations, monoidal fibred 1-cells and monoidal fibred 2-cells that are similar to their non-monoidal coun-
terparts (see Definition 2.3.11). A detalied argument rcgarding the Cquivalcncc of the definition of a
monoidal fibration as a pseudomonoid and the following ‘unpacked’ definition—orignally given by Shul-
man [Shu08]—can be found in [Vas18].

Definition 2.6.1.

+ Let &/ and % be monoidal categories. A monoidal fibration &7 — 2 is a strict monoidal func-
tor @: &/ — % such that @ is a fibration and the monoidal product ® .y preserves cartesian
morphisms—Dby which we mean that if ¢ and 1 are cartesian morphisms in &7, then ¢ ®, ¢ is

cartesian.

cLet®: o > B and D' : &’ — A’ be monoidal fibrations. A monoidal fibred 1-cell ® — @’
consists of a pair of monoidal functors (F, @, ¢o): &7 — &/" and (G, ¢, g): B — %’ such that
(E, G) is a fibred 1-cell, ¢ lies over ¢ and ¢y lies over p.

- We call a monoidal indexed 1-cell (F,G): @ — @’ pure if Z = #’ and (G, ¢, Yo) = id ».

« Let (F,G) and (F’, G") be monoidal fibred 1-cells @ — @’. A monoidal fibred 2-cell (F, G) —
(F',G’) is a fibred 2-cell (a, B): (E,G) — (F’, G’) such that @ and B are both monoidal transfor-

mations.
+ We call a monoidal fibred 2-cell (@, B): (F, G) — (F/, G’) pure if its underlying fibred 2-cell is pure.
o

Definition 2.6.2. Let & be a monoidal category. The 2-category MonFib s consists of monoidal fibrations
over A, pure monoidal fibred 1-cells and pure monoidal fibred 2-cells. o
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Definition 2.6.3. The 2-categories BriMonFib of braided monoidal fibrations and SymMonFib of sym-
metric monoidal fibrations are respectively defined to be the 2-category BrPsMon(ib) of braided pseu-
domonoids in Fib and the 2-category SymPsMon( Fib) of symmetric pseudomonoids in Fib. Of course,
for a fixed monoidal category B, these 2-categories have sub-2-categories BrMonFib o and SymMonFib P
for fibrations of the appropriate type with base Z. o

Definition 2.6.4. If @ is a monoidal fibration and an opfibration and ® preserves opcartesian arrows, then
we call ® a monoidal bifibration. o

Example 2.6.5. We'll show that the forgetful functor Rep: GrpRep — FinGrp is a monoidal bifibra-
tion. Firstly, the category of finite groups FinGrp is a cartesian monoidal category, and the category
GrpRep is a monoidal category with monoidal product

G V)®HW)=(GXxH VW)

and monoidal unit ({1}, C). Secondly, it’s casy to check that Rep is a strict monoidal functor. It’s straight-
forward to check that the monoidal product, ®, in GrpRep of cartesian morphisms is cartesian, [t remains
to show that the monoidal product also preserves opcartesian morphisms.

Let f: G = Hand g: K — L be group homomorphisms, and let (G, U) and (K, X) be objects in
GrpRep. The monoidal product of the two opcartesian morphisms

(f, u>eg®u): (G, U) — (H,CH®c U)

’dl’ld
(g x—e®x): (K X) — (L, CL®k X)

in GrpRep is the morphism
(fXg u®xm— (ep®u)® (e ®x)): (GXK U®X) — (HXL,(CH®c U)®(CL® X)).

This morphism is opcartesian because it’s the composite of the opcartesian morphism

opcart{ngu@X): (GXKU®X)— (HxL,C(H X K)Qgxx U® X)

and the isomorphism

(idpxr, D@ uex) - (h®u)®(®x)):
(HXL,C(H X K)®gxx U® X) — (H X L, (CH ®g U) ® (CL ®k X)).

o

Example 2.6.6. Let &7 be a category with pullbacks. Then &7 and &/~ are both cartesian monoidal. The
codomain functor Arr : &/~ — & is a monoidal bifibration: the cartesian product in &7~ preserves
cartesian morphisms since it preserves pulibacks, and it preserves opcartesian morphism since it’s a functor

and so preserves composition. 3

84



2.7. Monoidal indexed categories

2.7 Monoidal indexed categories

In this section we’ll summarise the two approaches to defining monoidal indexed categories over a mon-
oidal category 2. We follow the expositions of Shulman [Shu08] and of Moeller and Vasilakopoulou
[MV20]; the results of this section also belong to these two papers.

2.7.1 Global monoidal indexed categories

Definition 2.7.1.
- A monoidal indexed category consists of a monoidal category 2 and a lax monoidal pscudofunctor

(3, 42, to): (Z°P,®P,1) — (Cat, x,1).

« Let J: Z7°P — Catand R : #°P — Cat be monoidal indexed categories. A monoidal indexed 1-
cell 3 = K is an indexed 1-cell (F, 7) such that the functor F and the pseudonatural cransformation
T are both monoidal.

- Let (F, 7) and (G, 0) be monoidal indexed 1-cells. A monoidal indexed 2-cell is an indexed 2-cell
(ar, m) such that the natural transformartion @ and the modification m are both monoidal.

Definition 2.7.2.

+ The 2-category MonIndCat of monoidal indexed categories consists of monoidal indexed categories,
monoidal indexed 1-cells and monoidal indexed 2-cells.

« Let 2 be a monoidal category. The 2-category Mon[nchatLgﬁlfobal of monoidal indexed categories
over 2 consists of monoidal indexed categories over 27, pure monoidal indexed 1-cells and pure
monoidal indexed 2-cells; this is equal to the 2-category Mon2CatP*(2 °P, Cat).

<&

Proposition 2.7.3 ((MV20, Section 3.6]). The 2-category MonIndCat is equal to the 2-category PsMon(IndCat)
of pseudomonoids in IndCat, where the monoidal structure on IndCat defined as follows:

+ for each pair of indexed categories J: 2 °P — Catand &: % °P — Cat, their monoidal product I ® |
is the following composite

(X XH)P —=5 2P x gop — 3y Cat x Cat —5 Cat

+ the monoidal unit is the indexed category A1: 1°P — Cat which has constant value 1.
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The two 2-categories Fib and IndCat are both cartesian monoidal 2-categories. Therefore, since
Z—equivalences preserve limits, the constituent 2-functors of the Z—equivalence

Fib ~ IndCat (2.7.4)

from Theorem 2.3.15 are monoidal 2-functors. In order for the Z—equivalence (2.7.4) to be a monoidal
2-equivalence, it remains to show that the unit and counit of the equivalence are monoidal, but this follows
from the universal property of products.

Lemma 2.7.5 ((MV20, Lemma 3.12]). The 2-equivalence Fib =~ IndCat between the cartesian monoidal 2-
categories of fibrations and indexed categories is symmetric monoidal. m]

Every 2-functor between 2-categories preserves equivalences. In particular, this is true from the

2-functors PsMon, BrPsMon and SymPsMon.

Lemma 2.7.6 ((MV20, Proposition 2.11]). A monoidal Z—Cquivalence K =~ L induces Z—Cquivalences

PsMon(X) ~ PsMon(£)
BrPsMon(X) ~ BrPsMon(L)
SymPsMon(X) =~ SymPsMon(L)

between the 2-categories of pscudomonoids in L and pscudomonoids in L, as well as their braided and symmetric

versions.

The following theorem is just a special case of this lemma with K = Fib and L = IndCat.
Theorem 2.7.7 ((MV20, Theorem 3.13]). There exist 2-equivalences

Mon'Fibp ~ MonIndCat® P
BriMonFib ~ ’Brﬂ\/[onImeatglObal
SymMonFib ~ 5ymM0nImeatg1°bal

between the 2-categories of monoidal fibrations and monoidal indexed categories, as well as their braided and
SYmmetric versions.

The reason we call these monoidal indexed categories global is because they are equivalent to monoidal
fibrations where the total category has a monoidal structure as a whole; Section 2.7.2 deals with the

alternative which is to instead give a monoidal scructure to each of the fibre categories.

2.7.2  Fibrewise monoidal indexed categories

Definition 2.7.8. Let 2" be a monoidal category. The 2-category Mon]meat%:re is defined to be equal
to the 2-category 2CatP®(2 °P, MonCat). o

Street [Str80, 1.34] states, for monoidal 2-categories 4, K and L, equivalences
2Cat?(4, 2CatP> (X, ) ~ 2CatP>(4 x K, L) ~ 2Cat?>( %K, 2Cat?>(4, L)).

In the following lemma, Moeller and Vasilakopoulou extend these to monoidal scructures.

86



2.7. Monoidal indexed categories

Lemma 2.7.9 (IMV20, Lemma 4.3]). Let K and L be monoidal 2-categories.

1. For any monoidal 2-category A,
2CatP®(4, Mon2CatP*(K, £)) ~ Mon2CatP*(K, 2CatP*(4, L))

2. For any cocartesian monoidal 2-category A,

2CatP*(4, Mon2CatP*(K, L)) ~ Mon2Cat?*(4 x X, L).

Corollary 2.7.10 ((MV20, Proposition 4.4]). Let 2" be a monoidal category. There exists a 2-equivalence

MonImeatg?re ~ PsMon(IndCat z°).

Corollary 2.7.11. If 2" is a cartesian monoidal category, then there exists a 2-equivalence

lobal i
9\/[0n[meat‘(;&,0 bal Mon[meat%?re,

This implies the following theorem which states that, when 2 is cartesian monoidal, the two notions
of monoidal indexed category coincide and so, it @: &7 — 2 is a monoidal fibration with cartesian base,
we can think of the monoidal structure on &7 as on the whole of & or the fibre categories .27 : B € 4.
This theorem was proved by Shulman in [Shu08], but the way we have presented its deduction mirrors
Moeller and Vasilakopoulou’s approach in [MV20].

Theorem 2.7.12 ([Shu08, Thm. 12.7]). If 2 is a cartesian monoidal category, then there exist 2-equivalences

MonFib 9 ~ ﬂlf[onlnc[Cat%[10 bal o MonIm[Catf;?re ~ 2Cat?*(2"°P, MonCat)

BrMonFib o ~ @rMonImeat%/lo bal o Q%r‘]l/[on[meatf;?re ~ 2Cat?*(2"°P, BrMonCat)

SymMonFib . ~ .5_1/1119\/[0nImeat‘E:lg0 bal SymMonlndCatfgre ~ 2CatP*(2 °P, SymMonCat).

There are some important consequences of Theorem 2.7.12 which we note now.

If®: of — 9B isamonoidal fibration, then we have, by definition, a monoidal structure on &7, which
we denote by ®, and we call this the external monoidal structure. If the base category 4 is cartesian
monoidal, then, due to the 2-equivalence MonFib o ~ 2CatP*(2"°P, MonCat), the fibres <7: B € A
cach have their own monoidal structure, which we denote by Xg, and we call this the internal monoidal
structure.

Recall that the indexed category @G ™1 associated to the fibration @: &/ — % maps a morphism
f: B — B’ in A to the pull-back functor f*: @ — 7. Since the 1-cells in 2CatP*(.2"°P, MonCat)
are strong monoidal functors, Theorem 2.7.12 implies that, when the base category # of a monoidal
fibration is cartesian, the functor f*: @p — o is strong monoidal.

Lastly, an important fact that arises in the proof of Theorem 2.7.12 is the following relationship
between the monoidal product, ®, on .27 and the monoidal product X on each fibre category:

« for cach pair of objects A, B in %, each object M in 274 and each object N in .27,
M®N = MngB* Xaxp NnﬁB*, and
« for each object A in # and each pair P, Q of objects in 274,
PR, Q= (PRQ)A}. (2.7.13)
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2. FIBRATIONS AND INDEXED CATEGORIES

2.73 Summary

The following schematic from [MV20] summarises what we've studied in this section. The squiggly
arrows indicate the g]obal and fibrewise approaches: the global approach takes pseudomonoids in IndCat
and then restricts attention to those that are over 27, and the fibrewise approach restricts attention to
IndCat o~ and then takes pseudomonoids in IndCat 3. The dashed 2-equivalence exists in the case that
A is a cartesian monoidal category.

IndCat
PSM::LW W
MonIndCat IndCat(Z)
ﬁxﬁ?fé \%/PsMon( -)
Monl meatgyl/Oba1 MonIndC at%re
Mon2CatP*(2°°P,Cat) - - - ---2------ > 2CatP*(2"°P, MonCat)

2.8 Closed monoidal fibrations

This section follows the work of Shulman [Shu08, Section 13]. We take the approach ofdeﬁning internal
and external closure using mates instead of adjuncts, but the two approaches are equivalent. The advantage
of using mates is the geometric perspective of string diagrams, and it also enables us to see why one mate
might be an isomorphism if; and only if, the other is.

2.8.1 Internal closure

Let @: o — 98 be a monoidal fibration with £ cartesian monoidal. We saw in Section 2.7 that, for each
object B in A, the tibre category 2/ is monoidal, and, for each morphism f: A — Bin %, the functor
f*: 9l — 4l is strong monoidal. We can ask if, for each object B in 4, the fibre category o7 is left
and right closed monoidal; that is, for each object M in .7, the functors

—gMZQfB—)JZ{B and M&—:MB—)WB

have right adjoints
Mw» —: a9 > o3 and — 4« M: o —> .

For cach object B in 4, the isomorphisms
MfRM "> (MEM)f,
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2.8. Closed monoidal fibrations

given for each pair of objects M and M’ in @7, define natural transformations

f* - XM

_IEM/f* fx-
and

f MKX —

Mf*X - f*

With respect to the adjunctions

A Ap
—wwr| 4 (e andmear| g | e
B Ip

thC transformation 0({/[, 1’135 mate

M » —
f>(-

(2.8.1)

whose component morphism, for each object M in @73, is of the form
M > M) — M f > Mf*. (2.82)

Simi]arly, with respect to the adjunctions

/B Ip
MR-| 4 | -aM and MfX-| 4 | —-<aMf
<R Ip

89



2. FIBRATIONS AND INDEXED CATEGORIES

the transformartion Maf has mate

- <4aM
f%

(2.8.3)

7

- <4 Mf”

whose component morphism, for each object M’ in @7, is of the form
(M <« M)f* — M f* 4« Mf* . (2.8.4)

Definition 2.8.5. Let @: & — % be a monoidal fibration with & cartesian monoidal. We call @: &/ —
2 internally closed if, for cach object B in 4, the fibre category o7 is closed monoidal and if; for every
morphism f: A — B in % and every pair of objects M, M” in .a7p, the morphisms

M > M)f > Mf oM and (M <M)f > M f* < Mf.

given by (2.8.2) and (2.8.4) are isomorphisms‘ o
Let @: &/ — % be a monoidal fibration with # cartesian monoidal and suppose that, for cach
morphism f: A — Bin %, the functor f*: o/ — 74 has aleft adjoint fi. The mate ofaf , with respect

M
to the adjunction fi 4 f* is
fi
- XM
(2.8.6)
— IX le*
fi
and the mate of Maf with respect to the adjunction f| 4 f* is
fi
MKX —
(2.87)
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2.8. Closed monoidal fibrations

These have component morphisms
MK M - MM and MfFRM ) > MX M f;

called the projection morphisms, which we call the projection formulas if they are isomorphisms.

We have seen that (2.8.1) and (2.8.6) are mates of &, Since the functor
fralg — Ay
is a right adjoint and the functors
- XM : o — of and - KM f*: dly — )y

are left adjoints, Lemma 1.3.18 gives that the natural transformation (2.8.1) is an isomorphism if; and only
if, the natural transformation (2.8.6) is an isomorphism. Similarly, the natural transformation (2.8.3) is an

isomorphism if, and only if, the nacural transformation (2.8.7) is an isomorphism. So we have shown that
® is internally closed if; and only if; the projection formulas hold.
We defined the projection morphisms
MR M) — MfIRM and MFfFRM)fr > MRM f;
using mates of the isomorphisms
MfFRIM f* > (MXM)f

whihc make f* strong monoidal. One can also define each projection morphism being the unique mor-
phism satisfying a universal property; this is the subject of the following lemma and its corollary, which
will be used later in the proof of Theorem 4.3.1.

Lemma 2.8.8 ([Shu08, Lemma 16.4]). Let @: o/ — 2 be a monoidal fibration with 9 cartesian monoidal.
Let f: B — B’ be a morphism in %, let M € af and let N € afp. Then the following diagram

M@Nf* & (M®Nf)A, —=— MR NS*
opeart]
opeart] seart], (MENF,
prej
Mfi@ N o MAENA, —=— Mfi®N
Mo

in &/ commutes, where ‘proj’ denotes the projection morphism and the isomorphisms are given by (2.7.13).
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2. FIBRATIONS AND INDEXED CATEGORIES

Corollary 2.8.9. Let @: &/ — 9B be a moniodal bifibration with 8 cartesian monoidal, and let f: B — B’ be
a morphism in 4.
The niche

Ap
cartM ONf*

MeNf N (MeNfIA,
opcartl{/l@cartj):, (2.8.10)

Mfi® N ——— (Mo N)A;,

cartM fiaN

in & lies over the niche

BxB+—2 B

f XfJ/

B’ x B’ A% B’
B/
in . If © is internally closed, then the unique morphism that fills the niche (2.8.10) and lies over f is opcartesian.

Example 2.8.11. In this example we show that the monoidal bifibration Rep: GrpRep — FinGrp is
internally closed. Given a G-module V, the dual G-module ¥V = Ling(V, C) has G-action (v)(g - f) =
(g7 0)f. The fibre category Repy is closed monoidal with internal hom [W, U] =  Ling(W,C)®
U =  Ling(W, U) which has G-action given by

w)g- =g " wf

It remains to check that, for each group homomorphism f: G — H, the restriction functor f*: RepH
- RepG is closed monoidal; that is, for any H-modules V and W, the canonical morphism

T [V,WIf — [Vf, Wf]

is an isomorphism. This morphism is the adjunct of the following composite.

T [V,WIf eV — s (VWle V) —=L & wy

This G-module map is given by (¢ ® v)I' = (v)¢. So we'll find the adjunce of this morphism I' and check
if'it’s an isomorphism. We do this using the following series ofisomorphisms.
[V, WleV,Wl=We(V,W|eV)’
=We((VYe[V,W]")
= (W Ve[V, W]" (2.8.12)
= [V,W]e[V, W]
= [[V, W] [V, W]].
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2.8. Closed monoidal fibrations

Let (x;)i; be a basis for [V, W] and let (yj)?:l be a basis for V. Then, under the isomorphisms (2.8.12),
- Z(xi QY (xiv ® ij)
ij

— Z ((xi ® y])r ® ]/]V) ® xiv
ij

=Y (o @y e yr) e x”
ij

N Z ( ¢ - (v B ()X )y (xi ® y]-)F) )
ij

That is, (V)(@)I = Lij(@)xi" @)y (xi ® y)T = (¢ @ )T = (v), so T = id_vwy. This is an
isomorphism, SO f* is closed monoidal. o
2.8.2 External closure

In Section 2.8.1, we used the monoidal structure of the fibres categories @g: B € 4 to define internal
closure for monoidal fibrations with cartesian base. In this section, we’ll use the monoidal structure of
the total category &7 to define external closure for monoidal fibrations.

We can ask if, for each pair of objects E and F in % and cach object Q in @7, the functors

- Q®Q: I > rgr and Q® —: A — reF (2.8.13)

have right adjoints
Q> —: 9rer = W and — <Q: Yrgr — . (2.8.14)

Example 2.8.15. Consider the monoidal fibration Rep: GrpRep — FinGrp. The functors
— ®W: Rep; — Repg,yyy and V& —: Repy — Rep,py
have right adjoints
W —: Repyy) = Repg and  — < V: Rep,py) — Repy
given by W > U = Hompg(W, U) and U < V Homg(U, V). o

Remark 2.8.16. Note that the funcrors (2.8.13) having right adjoints (2.8.14) is not the same as asking that
&/ be left and right closed monoidal, i.e. that, for cach object Q in .27, the functors

-QQ: @ -« and Q® —: o >
have right adjoints
O> - >/ and —<Q: & > 4.

This is because, given a fixed object R in &/ we can’t, in general, construct a functor — @ R: & — &
from the functors

(R > = Srgre = Q{F)Fe.%
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2. FIBRATIONS AND INDEXED CATEGORIES

since they are defined only on objects in &7 that lie over objects in Z of the form F ® R® for some F in

B.

<&

JUSE as we dld for intcrnal ClOSLll’C, Wwe use mates to dcﬁnc EhC notion ofcxtcrnal ClOSUI‘C for a monoidal

fibration @: &/ — Z. For cach object B in &, cach object N in . and each morphism f: C = A in

%, dCﬁl’lC thC natural transformation

f*

-®N

to have COl’I’lpOl’lCl’lES

idpype ®Repg*

Mf*® N ———— Mf* ® Nid;

(cart{/Ié@cart;\‘;‘I’3 ) > cartf

- ®N

(f ®idp)*

®idg

YNy (M®N)(f @ idp)* .

For each object A in %, cach object M in @74 and each morphism g: D — B in %, define the natural

transformation
*
&g
M —
to have components
Repg’* w®ldng .
M®Ng* - Mid, ® Ng*

With respect to the adjunctions

id
(cart}VIA ®cart‘§4) o cart

M® -

(idg ® g)*

idy®g

YN s (M@ N)(ida ® g)* .

7 e
-®N| 4 |N>-— -®N| 4 |N>-—
DAB coB
the mate offﬁN is
Np> —
f - QN
(2.8.17)
- ®N (f ®idp)*
Np -
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2.8. Closed monoidal fibrations

whose component morphism, for each object P in @4, is of the form
(N> P)f* = N> P(f ®idp)". (2.8.18)

Similarly, with respect to the adjunctions

the mate of Mﬁg is

- <M

*

4

M® —
@ (2.8.19)

M® - (ids ® 8)°

- <M
whose component morphism, for each object P in @/sgp, is of the form
(P<M)g" — Pida® g)" <M. (2.8.20)

Definition 2.8.21. We call a monoidal fibration @: &7 — A externally closed if, for every pair of mor-
phisms f: C = A and g: D — B in % and every triple of objects M € @74, N € a/p, P € 4/, the

morphisms
(N>P)f > N P(f®idg)” and (P <aM)g" — P(ids ® 9 <M

given by (2.8.18) and (2.8.20) are isomorphisms. o

We will now work towards Proposition 2.8.26, after which we'll see that the monoidal bifibration
Rep: GrpRep — FinGrp is externally closed.
Let @: &/ — 2B be a monoidal fibration and suppose that, for each morphism f: C = A in 4, the
functor f*: @7y — 9 has a left adjoint fi. With respect to the adjunctions
e ceB
A4 | and (eiday | 4 |(feidny
p TS
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2. FIBRATIONS AND INDEXED CATEGORIES

the mate of‘f‘BN is

-®N
(2.8.22)
- ®N (f ®idp)*
(f ®idp);
whose component morphism, for each object R in 2/, is of the form
(R®N)(f ®idp) — Rfi® N.
With respect to the adjunctions
D gD
g 4 | and  Gdaegn| 4 |Gdiegy
ol IAeB
the mate ofMﬁg is
8!
M® -
(2.8.23)

M® - (ids ® g)°

(ida ® Q):
whose component morphism, for each object T in @, is of the form
MeT)([ida®g) — M®Tg
The projection morphism (MK Nf*) fi — Mfi X N was defined as a mate (see (2.8.6) and (2.8.7))
and Lemma 2.8.8 stated that it is also given by a universal property. Similarly, we defined the morphism

(R®N)(f ®idg)r = Rfi ® N using the mate (2.8.22), and the following proposition follows by the same
method as Lemma 2.8.8.
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2.8. Closed monoidal fibrations

Proposition 2.8.24. The unique pure morphism (X ® Z)(f ® id); = Xfi ® Z in o that makes the diagram

XHeZ

opcart{(@idz

X®Z = (X®2)(f®id)
opcarty

commute is (2.8.22). m|

Corollary 2.8.25. Let @: o/ — B be a monoidal fibration. The functor ® o7 preserves opcartesian morphisms if,
and only if, the natural transformations (2.8.22) and (2.8.23) are natural isomorphisms.

Proof. Suppose that p: X — Yisan opcartesian morphism in.go. Using opcartesian-pure factorisation
(see Proposition 2.4.15), write p = opcart § £ for some pure isomorphism & in o7 So p® Z = (opcart ®
2)5(E®Z). Note that E®Z is opcartesian since it’s an isomorphism, so p®Z is opcartesian if, and only if,
opcart ® Z is opcartesian. By Proposition 2.8.24 and Proposition 2.4.16 (ii), opcart ® Z is opcartesian if,
and only if, (2.8.22) is opcartesian, and this occurs if, and on]y if, (2.8.22) is an isomorphism since it’s pure.
Therefore, — ® Z preserves opcartesian morphisms if, and only if] (2.8.22) is an isomorphism. Similarly,
W — preserves opcartesian morphisms if, and on]y if, (2.8.23) is an isomorphism.

To finish the proof; we will show that the functor ® preserves opcartesian morphisms if, and only if,
for all objects Z in &7, the functors — ® Z and Z® — both preserve cartesian morphisms. Of course
if; for all opcartesian morphisms ¢ and ¢, the morphism ¢ ® 1 is opcartesian, then, for all opcartesian
morphisms ¢ and 7, the morphisms ¢ ® id and id ® 7 are opcartesian. On the other hand, if; for all
opcartesian morphisms 0 and T, the morphisms o®id and id®T are opcartesian, then, for all opcartesian

morphisms ¢ and ¢, the morphism
PRy =(p5id)®(dsy) = (¢ ®id) s (id® P)
is opcartesian. O

Proposition 2.8.26 ([Shu08, Proposition 13.17]). Let @: &/ — A be a cleaved monoidal fibration. Suppose
that, for each morphism f: C — D in B, the functor f*: &/p — ¢ has a left adjoint fi. Suppose also that, for
each pair of objects E and F in % and each object Q in 7, the functors

- ®Q: G > drge and Q® —: I — rer

have right adjoinrs
QD —2JZ{F®E—>J27F and — <lQZJZfE®p—>$271:.
Then @ is a monoidal bifibration if, and only if, @ is external closed.
Proof. For each object B in 4, each object N in ./ and each morphism f: C — A in %, we have defined

the natural transformations (2.8.17) and (2.8.22) to be mates of the natural transformation fﬁN. Since the

functors

f*: ady — e and (f®id)*1 DaeB — DB
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2. FIBRATIONS AND INDEXED CATEGORIES

are right adjoints and the functors
— ®N: e — egg and — QN: .y — FagB

are left adjoints, we can use Lemma 1.3.18 to get that (2.8.17) is an isomorphism if, and only if, (2.8.22)
is an isomorphism. Similarly, (2.8.19) is an isomorphism if; and only if, (2.8.23) is an isomorphism. The

result then follows from Corollary 2.8.25. O
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Chapter 3

The Beck—Chevalley Condition

In this chapter, we study the Beck-Chevalley condition.

In the first section, we provide an account of the theory of integral transfroms and prove some basic
properties of their composition; this will give some motiviation the study of the BCCk—Chcvallcy condition.

In the second section, we define the Beck-Chevalley morphisms Cpy, prove that they are natural in M
and that the resulting natural cransformation is given by a mate (see Proposition 3.2.3) which is the more
common definition. In Remarks 3.2.8, 3.2.9 and 3.2.11, we give string diagrammatic arguments which
show that the Beck-Chevalley transformation is well-defined.

In the third section, we give the definition of Beck-Chevalley and weakly Beck-Chevalley bifibrations.
We then prove that the bifibration Rep: GrpRep — FinGrp is weakly Beck-Chevalley (see Proposi-
tion 3.3.3), and we show how the Beck-Chevalley condition relates to Mackey’s formula of representation
theory.

In the fourth section, we give an expleit calculation of the morphism that fills a niche defined by
cartesian and opcartesian lifting properties (see Lemma 3.4.3), and, at the end of this chaptcr, we use
this explicit calculation to prove Corollary 3.4.4—a well-known result on conditions equivalent to the

Beck—ChevaHey condition—which is made a great deal more intuitive with a string diagrammatic proof.

31 Integral transforms

The history of integral transforms begins with the Fourier transform. One can see [Tre67] for a discussion
of intcgral transforms in functional anzﬂysis, or [Huy()6, Chaptcr 5] for a discussion of Fourier-Mukai

kernels: integral transforms in derived algebraic geometry.

Notation 3.1.1. We write [ to denote a field that is R or C. For topological spaces W and Z, we write
Hom(W, Z) for the set of continuous maps W — Z. For continuous maps f and g in Hom(Z, F), we
write f - g for their pointwise product z = (Z)f - (2)g. o

Definition 3.1.2. An integra] transform
) (S %) ]
X '/ It Y
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3. THE BECK-CHEVALLEY CONDITION

consists of
- three topological spaces X, Y and S,
+ a pair of continuous maps p: S = Xandg: S = Y,
- a continuous map k: S — F called a kernel,

+ for each continuous map f: W — Z maps f*: Hom(Z,F) - Hom(W,F) and f.: Hom(W,F)
— Hom(Z, F),

such that, for each composable pair of continuous maps f: W = Zand g: Z — A, (f$9)" =g 5 f°
and(fgg)*Zf*;g*. o
We've stated our defiition of an integral transform in a more general form than the three examples
we'll give below, which are all integral cransforms of the following form: the two maps p and g are product
projections
. XxXY g
x5 TSy
and, for each map f: W — Z, the map f* is given by precomposing with f and the map f* is given
by an integral— integrals in the examples below are over a discrete space (i.e. a sum), an integral over
(0,00) C R, and an integral over R2.
The idea of an integral transform

N
. )/ \ y
is to map scalar maps X — T to scalar maps Y — F, and we do this by defining a map (which is also

called an integral transform) 7, (X)F — (Y)F given by

et (X)F —> (Y)F
h— (hp* - 1)g.

Definition 3.1.3. Let p and g denote the following projection maps.
, RXC
L
Define the map p*: Hom(R, C) - Hom(R X C,C) onamaph: R — C by
(t,s)hp" = (O
and define the map g.: Hom(R x C,R) - Hom(C, C) on amap k: RX C — C by

(s)kq. = f(; oo(t, s)k dt.
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3.1. Integral transforms

Define K: RXC — C, (t,8) + e~ The Laplace transform is the map 7x : Hom(R, C) — Hom(C, C),
h + (hp* - K)g.. Explicity, this is the map

h— (s - foo(t)h et dt).
0

Definition 3.1.4. Let n, m and n X m denote the discrete topological spaces with n, m and nm points

<&

respectively, and let R” deonte the set of maps n — R. Of course, an element of R” can be thought of as
a vector with entries in R and an element of R™ can be thought of as an (1 X m)-matrices with entries

inR.
Fix an (n X m)-matrix K, and let p and g denote the following projection maps.

Define the map p*: R" — R™" by

’Un 01 ’02 e vn
and define the map g.: R — R by

n
ay o A Yieq @i

n
Aml - Amn Zi:1 Ani

The matrix mulitplication transform is the map 7x: R” — R™, v+ (vp” - K)g.. Explicity, this is the
map
1 Y, Kiav;
+— Ko = :
Un Z?:l Kinvi

&

Definition 3.1.5. Fix 0 > 0. The two-dimensional Gaussian function with standard deviation o is the

function G, : R? X R? — R defined by

1 G +u-n)?

e 202
2702

(xll Y1,%X2, ]/2) =

To get an idea of what this function G, looks like, we could look at, for a fixed point (xl, y1) € Rz, the
graph of the function (x,y, —, —)G,: R?2 > R. Figure 3.1 shows a plot of the function

(0,0,—,—)G%:R2—>R.
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3. THE BECK-CHEVALLEY CONDITION

24y?

1, 21
e %3
2n(3)?

Figure 3.1: A plot of the function (x, y) = created using Wolfram Mathematica.

Let p and q denote the following projection maps.
, REXRZ
RZ / \ RZ
Define the map p*: Hom(R?,R) — Hom(R? x R%,R) on a map h: RZ >R by

(x1,y1, X2, y2)hp* = (x1, y1)h

and define the map g,: Hom(R? x R?,R) —» Hom(R?, R) on a map k: R? Xx R? — R by

(x1, y1)kgq. = fz(xlrylle y2)k dxodyp.
R

The Gaussian blur transform is the map 7, : Hom(R?,R) — Hom(R?,R), h (hp*-Gs)g«. Explicitly,
this is the map

h- ((X1,y1) - fz(xLyl,xz, 12)Gg - (x2, y2)h ddeyz).
R

<&

The Gaussian blur transform is also known as the two-dimensional Weierstrass transform (after the
the transform used to prove the Weierstrass approximation theorem [Wei85]) and as the Gaussian filter
in signal analysis. The name ‘Gaussian blur’ comes from image processing where we can think of the

Gaussian blur transform as blurring a two-dimensional image in the following way.

Remark 3.1.6. Given a two-dimensional image, we can define three maps 7, g, b: R2 — R as the intensity
of red, green and blue of each pixel in the image. Applying the Gaussian blur transform to each of these
maps gives three new maps 17G,, 8TG,/ bTGg : R?> = R which we can think of bcing the intensities of
red, green and blue of each pixel in a new image.
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3.1. Integral transforms

Original StDev = 10

Figure 3.2: An image and the result of apply Gaussian blurs with standard deviations 3 and 10 respectively
to that image [Tkal5].

But what does the function Tg, do? If we fix a point (x1, y1) in R2, then we can think of

(x1, y1)(rTg,) = fz(xlzyLXZ/ Y2)Gg - (x2, y2)r dxodys
R

as being the average, across all points (x2, y2) in R?, of the values (xp, Y2)r weighted by the function
(x1,y1, —, —)Gg. The value of the function (x1, y1, —, —)Gg is greatest at (X1, Y1) and decreases as the
distance to (X1, ¥1) increases. So, in a nutshell, the Gaussian blur transform alters the intensity of a pixel
based largely on the intensities of nearby pixels and this results in a blurred version of the original image;

an example is shown in Figure 3.2. <

What interests us about integral transforms is their connection with the Beck-Chevalley condition;
this connection is via the composition of integral transforms.

Definition 3.1.7. We say that the integral transform
(U, )
X / T Z

is a composite of the two integral transforms

1 (5%) M and p2 (T, A) 7
if 7, = 7 § 721 Hom(X, F) —» Hom(Z, F). o

We have the definition of a composite of two integral transforms, and now we'll work towards con-
structing a composite. Given two integral transforms

(S x) (T, A)

P il and P2 72
N / \ y y / \ ,
we need to construct a space U, a pair of maps
T
X Z
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3. THE BECK-CHEVALLEY CONDITION

and a kernel g in Hom(U, F). Take U = S Xy T, p = p3 §p1 and g = g3 § q1, where S Xy T, p3 and g3

denote the pullback and associated maps shown in the following figure.

>N
S T (3.18)

What about the kernel p? For the chosen U, p and g, the equality T, = T § T2 holds if, and only if, the
equa]ity

(Pp3 5p1)" - 1)@3 8 q2) = (] - K)q1:P5 - A)g2-

holds for every ¢ in Hom(X, F).

The following result was shown to the author by Simon Willerton.

Proposition 3.1.9. Consider the following integral transforms.

S, k) (T, A)

(
P a P 02
X/ \Y Y/ \Z

Let k © A denote the map in Hom(S Xy T, F) given by (s,t) = (s)x - (DA If P} § 43+ = q1. § P and, for
every P in Hom(S Xy T, ), (¢ - Aq3.)g3. = ¥q3. - A, then the integral transform

(SxyT,kOA)
X Z
is a composite of
(5, %) (T, A)
y % and y &
X Y
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3.1. Integral transforms

Proof. For each ¢ in Hom(X, IF),
(@) (T §T1) = (PP - ©)q1:)TA

= (5 - 99193 - 1) 120
((@p5 - P393 - 1) 42s
(@pips - kP33 - A) g2
(@3 5 p1)" - kP3)3e - A) e
(P(ps 5 p1)* - x5 - Ag3) 93.42-
= (p(pssp1)’ - x5 - Ag3) (033 92)s

= (p(p33p1) - (kK © 1)) (g3 5 G2)-
= ((P)TKQ/\-

O

If the kernels x and A are both trivial—meaning that (s)x = 1 for every s € S and (f)A = 1 for every
t € T—then the hypotheses of Proposition 3.1.9 simplify, as shown in the following corollary.

Corollary 3.1.10. Let the following be integral transforms with trivial kernels.

N Ny

IfP5 § g3« = q1« § P5, then the integral transform

(SxyT,1)
V4

is a composite of

/(“\ w 2Ny

Proof. For each ¢ in Hom(X, F),

(p(p3 3p1) - 1) (43 § 92)« = PPIP393G2+
= QP191:P592+

= ((pp} - Davpy - 1) 2o
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3. THE BECK-CHEVALLEY CONDITION

The equality pg $03« = g1+ 3]9; should make the reader think that that pulling a map ¢ in Hom(X, F)
up along p3 and then pushing it down along g3 is equal to pushing () down along q1 then pulling itip
along po. This is sufficent for the path over the top of (3.1.8) to be equal to the zig-zag path along the
bottom of (3.1.8).

3.2 The Beck-Chevalley transformation

Recall that bicleaving for a bifibration ®: @/ — 2 is a choice, for cach morphism j: B — B’ in
A, each object M in & lying over B” and each object C in &7 lying over B, of cartesian morphism
Cartgw: Mj - Min &/ th:}t lies over j and of opcartesian morphism opcart;\]: N — Njiin &/ that
lies over j. These choices define functors
7l : 7 B

called the pull-back and push-forward functors (see Propositions 2.1.27 and 2.4.18). These names come from
the idea that the functor j* pulls an object M in @7 along j to get an object Mj* in @B, and the functor
ji pushes an object N in .7g along j to get an object Nji in @7p,. Now we ask “What happens when we
pull then push or push then pull?” More formally, if the square

A—" B

‘ g (3.2.1)

in &8 commutes, then we can ask if the functors * § ki and & ‘;f* are isomorphic. This a natural question
to ask, and we also saw in Section 3.1 the relevance of this property.
For each object M € o7, there are cartesian and opcartesian morphisms as shown in the following

diagram.
cartl!,
M —— M
opcartﬁ/m*
/ \Lopcarti/[
M]’l*k! ng
cartf
Mg f* "

Intuitively, we're either puliing M along h and then pushing Mh* along k, or we're pushing M aiong g and
then pulling Mg along f. Using the universal property of the opcartesian morphism Opcartlfwh* MKt —
MFky, there is a unique morphism Mh*ky — Mgy that lies over f and that makes the following diagram
in &/ commurte.

cartl,,
M —— M
Opcart];vm/ \Lopcartg
M
Mh*k! ............................. > Mg!
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3.2. The Beck-Chevalley transformation

Therefore, using the universal property of the cartesian morphism Mg f* — Mg, there is unique
morphism Cyr: Mh'ky — Mg f* that lies over id¢ and that makes the following diagram in .27 commute.

cart’l’w
Y Vi BN Y
Opcar)tV \Lopcartg
M
Mh*k Mg! (3.2.2)
CM,i cart!
Mg f* "

We call Cpy the Beck—Chevalley morphism associated to the square (3.2.1) at M.

We now know that there is a canonical morphism Mh'ky — Mg f*. We can use mates to give an

explicit description of this morphism. We add a more detailed explanation to Shulman’s proof of the
following result.

Proposition 3.2.3 ([Shu08, Lemma 16.1]). Let @: o/ — 2B be a bifibration and suppose that the square

A—I B
kl g
Cf}D

in % commutes. Then the Beck-Chevalley morphisms (Car: kih*™M — f*iM)pey, are the components of a
natural transformation

7N L —
ki \C 8

e &

Specifically, C is the following natural transformation:

8!

(=)
(hsQ) ~ (ks f) (3.24)
h* K

ki
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3. THE BECK-CHEVALLEY CONDITION

Proof. The following diagram adds to (3.2.2).

The square (1) commutes by definition of i* on morphisms, and the squares (2) and (3) commute by
definition of ki on morphisms. It becomes clear that the trianglcs (4) and (5) commute when we write
them in terms of indexed categories:

(o

idwig, e
k /

n) Mg f*k'k, Evtg

g C k \

Dy
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3.2. The Beck-Chevalley transformation

The pentagon (6) can be written in terms of indexed categories as the following.

[idMggg*h”]
h
Mgig'h* > Mgig*
T Mg gy {id]
\ g
Mgi(f s k)
@;;,Mg!)x
Mg[f*k* Mg!
{idMng*k*]
k (idMng*]
Mg F* f
af

This diagram commutes by definicion ofcomposition in&.
We've shown that the component of the natural trnasformation (3.2.4) at M lies over id¢ and makes

the diagram (3.2.2) commute. Hence, it is equal to the Beck-Chevalley morphism. O

Definition 3.2.5. The natural transformation

B!
(hsg)y = (ks f) -
I K

ki

is called the Beck—Chevalley transformation corresponding to the square

A
k\[
C

and the bifibration @: &/ — . We say that the square (3.2.7) satisfies the Beck-Chevalley condition
with respect to O if the Bcck—Chcvallcy transformation is an isomorphism. When it’s clear from context,
we won't say to what bifibration and commuting square a Beck-Chevalley transformation corresponds. ¢

RN
s

o

¢ (32.7)

O

f
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3. THE BECK-CHEVALLEY CONDITION

Remark 3.2.8. Let @: &/ — % be a bifibration. It is important to note that the following two ways of
drawing the same square in Z give Beck-Chevalley transformations that are not, in general, equal.

A%B A*}C

The Beck-Chevalley transformation associated to the square on the left is

g =~
(hsgy = (ks f)
h>{-

ki

which is the mate of the natural isomorphism

&
f){-
kx-
T e i
(hsg)y (ks f)y
n K

whereas the Beck-Chevalley transformation associated to the square on the right is

7 @ g
(ksfy = (hsg)
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3.2. The Beck-Chevalley transformation

which is the mate of the natural isomorphism

[~ R
ksfy  ~  (hsg)

k* h*

We'll see a clear example of the two not being equal in Example 3.2.12. o

Remark 3.2.9. Another candidate for the Beck-Chevalley transformation associated to the square

A—I B
kl g
C f} D
might be
hx—
~ h (3.2.10)

(ks f 2 (hs Q)

Q&

which is the mate of the natural isomorphism

ksfy ~—  (hsg)

fi g

In fact, the natural transformation (3.2.10) is equal to the Beck Chevalley transformation (3.2.6), as shown

111



3. THE BECK-CHEVALLEY CONDITION

by the folowing series of equalities.

h*
=) h
ks~ (hsQ)
&
f>(-
(1)
{ '
ki
vy k*
(ks f) 7
e
(ks ) ~
&
h*
I1(2)
4l
7 ~ f
(hsg) ~ (ks f)
h* K
ki

The equality (1) follows from Theorem 2.5.13(i),(ii), and the equa]ity (2) follows from the snake identities
for the adjunctions fr 4 f*, (k§ f)1 4 (k§ f)" and hy 4 h". o
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3.2. The Beck-Chevalley transformation

Remark 3.2.11. Itis straightforward to check that if @: @7 — 4 is a bifibration, then the opposite functor
DOP: /P — FB°P is also a bifibration. Using the notation f: D — C for the morphism in %°P that
corresponds to the morphism f: C — D in %, we have f* = fiand fi = f*, and

o

o
\?l

=)

e~

O —~——=
(hsg) (ks f) .

h*

hy

(=)
ks = (hsQ)
&
f*

We can therefore think of Remark 3.2.9 as proving that che Beck—ChevaHe_y transformation associated to
the square

A—k s
h f
B———D

and the bifibration @: &/ — % is equal to the Beck-Chevalley transformation associated to the square

D—2% B
f A
C— A
and the bifibration D : 7P —5 7P, N

The remainder of this section is devoted to Calculating the Bcck—Chcvallcy transformation in some
examples.
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3. THE BECK-CHEVALLEY CONDITION

Example 3.2.12. Consider the bifibration Rep: GrpRep — FinGrp, and suppose that the following is
a pullback square in FinGrp.
HxgK —2 3K
_|

- 8 (3.2.13)

Hﬁc

Let V be a K-module. The component morphism Cy of the Beck-Chevalley transformation

-
Rep(HXGK) —2 Repy

st \C B
RepH # RepG

at V is the morphism

o —_—
V7T§7T11 % Vﬁ;ﬁ*nznu _ Vﬁga*n’im! # VB
The unit gy : V. — VB is given by
V—oCGexV
Vo ec®U

and the counit EVpar Vﬁ!a*nj 11y — VBia® is given by
CH ®Hx.k (CG®k V) — CGCex V
h®(g®v) — (hag®v

Therefore, the component morphism Cy of the Beck-Chevalley transformation associated to the square
(3.2.13) and the bifibration Rep is the K-module map

Cv: CH®ux.k V— CGRkV
h®v+— (ha®o.

o
Example 3.2.14. Consider the bifibration Famg : Famy — Set, and suppose that the following is a

pullback square in Set.

h Y
J/g (3.2.15)
W

Y Xy Z ——
-

kl
‘ o
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3.2. The Beck-Chevalley transformation

Let B = (By)yey be a Y-indexed family of objects. The component morphism Cp of the Beck Chevalley

transformation

FYWZ ¢ h* Y
k[ \C k4l

%Z#CKW

at B is the morphism

Bitk, — ™ Beo*htky =—— Bagifkki —— s Bg,f*.

The unit (1) : By — (Bg18")y is the inclusion map

By — Y Ba

acY
(0)g=(n)g

and the counit (egg, r)y: (Bg1g™hk1)y — (Bg1f™)y is the map

fidlemrr: Y, ), Ba— ) By

yeYy aeY yey
)g=()f W8=@)f g=()f

Therefore, the component morphism Cp of the Beck-Chevalley transformation associated to the square
(3.2.15) and the bifibration Famy is the identity

id: )" B, — ) By
yey yey
We=@)f  (yg=@)f
o
In the following section, we prove that the Beck-Chevalley transformation associated to a square of a
particular form and the bifibration Rep: GrpRep — FinGrp is an isomorphism. Before we do that,
we give an example where the the Beck-Chevalley transformation associated a square and the bifibration
Rep: GrpRep — FinGrp is not an isomorphism.
Leta: H — G be a group homomorphism, let {e} denote the trivial group, and let V' be an {e}-module
(i.c. a vector space). The component morphism Cy of the Beck-Chevalley transformation associated to
the square

ker(a) = H Xg {e} ———— {e}
|
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3. THE BECK-CHEVALLEY CONDITION

and the bifibration Rep is the {e}-module map

Cv: CH ®xer(a) V — CG @ V
hevr— (ha®wv.

This is equal to the linear map

Cv: (CH/ker@)®V — CG®V
h®@v+— (ha®ov

since ker(a) acts trivially on V. If we choose a group homomorphism a: H — G that is not surjective,
then this serves as an cxample of when the Bcck—Chevchy transformation is not an isomorphismA

3.3  Beck-Chevalley bifibrations

Definition 3.3.1. Let @: &/ — A be a bifibration. We say that @ is Beck-Chevalley if, for every pullback

squarce

BXBrC%C
_

Bf)B’

in A, the Beck-Chevalley transformation is an isomorphism. We say that @ is weakly Beck-Chevalley if,
for every pullback square of the form

Bxp (DXB) —1—3 DxB
_

14 7D

B > B’

in % and every pu]lback square Oftl’le fOI'l’l’l

(DXB)xg C—1—3% C

|
P 8
DxB ————— B
D
in A, the Beck-Chevalley transformation is an isomorphism. o

Example 3.3.2. We saw in Example 3.2.14 that the Beck-Chevalley transformation corresponding to a
pullback square and the bifibration Fam: Famy — Set s always the idcntity, soFamisa Bcck—Chevallcy
bifibration. o
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3.3. Beck-Chevalley bifibrations

Proposition 3.3.3. The bifibration Rep: GrpRep — FinGrp is weakly Beck-Chevalley.

Proof. Let the following be a pullback square in FinGrp.

HxcK —=2 3K
|
0 B (3.3.4)

HﬁG

Recall from Example 3.2.12 that the Beck—Chevaﬂey transformation
-
Rep . k) $———— Repy

st \C B
Repy <———— Repg
is given, for each K-module V, by the H-module map

Cv: CH®px.k V—CGexV
h@v— (ha®o.

We will show that Cy is an invertible H-module map when (Case 1) & is a product projection, and when
(Case 2) B is a product projection. To do this, we'll define, for each K-module V, an H-module map

Oy: CG®xV —- CH ®HxcK 1%

that is inverse to Cy.
(Case 1) Suppose that H = G X N for some group N, and suppose that a is the projection map
G X N — G. This means that the square (3.34) is given by

(GXN)xcK —=2—3 K
_
s ﬁ

GXN ——FF——G
Let V be a K-module. Define the (G X N)-module map Oy by

Oy: CGxV — C(GXN) B(GXN)xcK 1%
g®V > (g,en) ® 0.

We just need to check a few things.
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3. THE BECK-CHEVALLEY CONDITION

« (Oy is well-defined) To check that Oy is well-defined, we need to prove that, for every k € K| every
g€Gandeveryv € V, Oy(g- k®k™-v) = Ov(g ®0).

(g-kok™-v)0y = (gk)pk™-0)0y
= (g(k)B,en) ®K L -0
= (g(k)B,en) ® (k' ((k)B",en)) - 0
= (g(o)B,en) - (K7, ()", en)) ® 0
=(g,en)®v
= Oy(g®0).
- (Oy is inverse to Cy) Let §® v € CG ®k V. Then,

(§®0v)0yCy = ((g, en) ®V)Cy
= (g, en)a®v
=g®u.

Let (g,n) ® v € C(G X N) ®GxNyxck V- Then,

((g,n) ®v)Cy Oy = (g, n)a ®v)0y
= (g®0)0y
=(gn) - (eg,n™"),ex) @
= (g, ® ((eg,n"),ex) - 0
=(g,n)®0.

+ (Oy is a (G X N)-module map) Let § € G, v € V and (', 1) € G X N. Then,

(g, n)-0v(g®0v) = (8, n)-(g,en)®0
=(g/n)-(gen)®v
=(§'gn) v
= (g'g,en) - ((e, 1), ex) ® v
= (g'gen) ® ((ec, m), ex) - v
=(g'gen)®0
=0v(g'g®0)
= 0v((g',n) - (g®0)).

(Case 2) Suppose that K = G X L for some group L, and suppose that § is the projection map
G X L — G. This means that the square (3.3.4) is given by

Hxc(GxL) —=2—3 GxL

.
Us| :B

H > G
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3.3. Beck-Chevalley bifibrations

Let V be a (G X L)-module. Define the H-module map Oy by
Oy: CG®gxr V — CH ®Hxc(GXL) \%
g®vir—eng®(g,er) 0.
Again, we need to check a few things.

- (Oy is well-defined) To check that Oy is well-defined, we need to prove that, for every (', 1) € GXL,
every ¢ € Gand everyv € V, Oy(g- (¢, ) ® (¢, 1) - v) = Ov(g ®0).
(g (g D&, D 0oy =(gg (@, D" 0oy

=en®(gge) (g, )7 v
=ey® (g,l_l) -0
= en ® (en, (e, 171) - (g e0) -0
= ey - (eq, (ec, I71)) ® (g eL)-v
=ey®(geL)-v
= O0y(g®0).

- (Oy is inverse to Cy) Let §® v € CG ®k V. Then,

(§®0v)0yCly = (eg ® (g, eL) - v)Cv
=ec®(g,e) v
=ec-(g,eL)®0
=g®u0.
Lech®v e H ®Hx(GxL) V- Then,

(h®v)CvOy = (ha ® )0y
=eg®((Wa,er) v
=ey ® (h,((Ma),er) - v
=eqg - (b (Wa),er) ®v
=h®v.

+ (Oy is a H-module map) Let g € G,v € V and h € H. Then,

Ov(k- (g ®0)) = Ov((k)ag®v)
=en ®((kag,ex) - v
=ey ® (((k)ag, ex), k) - (g,ex) - v
=ey - ((Ka,ex), k) ®(g,ex) - v
=k-en®((g ex) - v)
=k-0y(g®0).
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3. THE BECK-CHEVALLEY CONDITION

33.1 Mackey’s formula
We now have an aside where we'll briefly explain how Mackey’s formula relates to the Beck-Chevalley
condition of a comma square. Mackcy’s formula appears as the ‘Mackcy axiom’ in one of the original
definitions of a Mackey functor [Bou97].

Let G be a group, let H and K be subgroups of G, and let W be a K-module. For each g € G, let
Ke=HnN gKg_l. Since, for each x € K, g_lxg is an element of K, we can define the Kg-module Wy

to have the same underlying vector space as W and Kg-action
x-w:= (g xg) - w.
Mackey’s formula states
WindgRes; = (P Wend}!.
HgKeH\G/K

where H\G/K denotes the set of (H, K)-double cosets, Res denotes restricted representation, and Ind
denotes induced representation.

A comma square is a generalisation from category theory to 2-category theory of a pullback square.
The comma square that relates to Mackey’s formula is in the 2-category Cat, so we now give the definition

of a comma square in Cat.

Definition 3.3.5. Let F: &/ — € and G: & — € be functors. The comma square of F and G consists
of a category (F | G), called the comma category, functors P: (F | G) = &7 and Q: (F | G) — £,
and a nacural cransformacion

FlG) —L— 2
Q % lc
dﬁ%

311 ()fWhiCh are dcfmcd as fOHOWS

- An object in (F | G) is a triple (A, B, ) where A is an object in 7, B is an object in %, and
y: (A)F — (B)G is a morphism in €. A morphism (A,B,y) — (A’,B’,y)in(F | G)isa
pair («, B) where a: A — A’ is a morphism in & and f: B — B’ is morphism in % such that
@Fs3y" =y3(p)G.

« The functor P is given by

P.(FlG) — &
(A,B,y)— A
(a,p) — a,
and the functor Q is given by
Q:(FlG)— =%
(A,B,y)— B
(@, p) — B,
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3.3. Beck-Chevalley bifibrations

+ The natural isomorphism x: P § G — Q § F has components

KABy) =Vt (A)F — (B)G

<o

Let BG, BH, and BK denote the one-object categories whose morphisms are the elements of the
groups G, H and K respectively, and let i and ix denote the functors corresponding to the subgroup
inclusions. Let & denote the comma category (ig | ix) in the comma square below.

72— S BK
Q K/f ix
BHi—H>BG

After upacking the definition of comma category in this case, one can see that an object in P is an element
g in G, and a morphism g — ¢" in & is a pair (h, k) where h € H and k € K such that hg’ = gk. Every
morphism (1, k) is an isomorphism with inverse (A1, k1), so 2 is a groupoid. We say that two objects in
P are in the same connected component if there exists an isomorphism between them. Each connected
component of & is a groupoid, and so we can think of & as being split up into all of these groupoids. In
fact, there is an equivalence

P~ |_| B(Aut(g)), (33.6)
[gleZ Ty

where 21 denotes the set of connected components of &2, Aut(g) denotes the group Z(g, g), and ||
denotes coproduct in the category Cat.

This is beginning to look like Mackey’s formula, we just need to make a couple of observations. Firstly,
two objects g, 8" in (ig | ik) are in the same connected component if, and only only if; there exists
clements h € H and k € K satisfying ¢’ = h_lgk, which is the same as saying that g and g’ lic in the same
double coset HgK = Hg'K. Secondly, Aut(g) = 22(g, ) = {(h, k) | h = gkg™'} which is isomorphic to
HnN gKg_l. Therefore, the equivalence (3.3.6) becomes

2= || BHNgKe™M.
HgKeH\G/K

We recover the right hand side of‘Mackey’s formula using this form for & when restricting along P and
then inducing along Q, and the left hand side of Mackey’s formula comes from inducing along ig and
then restricting along ip. In this context, restriction is given by precomposition and induction is given
by left Kan extension; for more details see [Riel4, Chapter 1].
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3. THE BECK-CHEVALLEY CONDITION

3.4 Lemmas for the Beck—Chevalley condition

Let @: o — P be a bifibration and let

AL)B
kl g
C———D

be a square in P that commutes. In this section, we will prove some conditions on this square that are
equivalent to the Beck-Chevalley condition.
Suppose that the diagram

M — M

X i3 (3.4.1)
M/// M//
in & lies over the diagram
A—" B
C D

in # and suppose that @ is cartesian and x and & are opcartesian. Since X is opcartesian, there exists a
unique morphism ¢: M”" — M" that lies over f and that makes the following square commute.

M— s M

X c (342)

M/// lp ; MI/

We call a diagram the same shape as (3.4.1) a niche, and we say that a morphism l,l) fills the niche if it
makes the square (3.4.2) commute.
We now give an explicit description of this morphism 1.

Lemma 3.4.3. The unique morphism Y that fills the niche (3.4.1) is equal to the following composite.

(ps Cartﬁd)kv cart{d opcarth o &

M > Mh*ky i) Mg!f* ?} Mg' N M

X \oopcartt
s Mk

where we have used the notation o and o as given in Notations 2.1.6 and 2.4.7.

122



3.4. Lemmas for the Beck-Chevalley condition

Proof. Recall that we can factorise morphisms in &/ using pure-cartesian factorisation (see Proposi-
tion 2.1.14) and opcartesian-pure factorisation (see Proposition 2.4.15) and that we can express the results
of these factorisations using the the lollipop notation * and ™ as given in Notations 2.1.6 and 2.4.7. Note
in particular that the morphisms that we obtain by using pure-cartesian factorisation and opcartesian-pure
factorisation will be isomorphisms (see Corollaries 2.1.25 and 2.4.17).

Factorize the morphisms in (3.4.1) using the cleaving and opcleaving of @ to get the following diagram

ord cartﬂ(/I cartﬁ\’/I
M’ > Mh* > M
opcart’;w, opcar’cf/l

~N ~N

M’k M g1

opcartt , \, x opeartd, o &

~N ~N

M/// M//

We then add some morphisms to obtain the following diagram.

¢ cart! cart!
M Y Mh* Y > M
\Lopcart’j/[hi
k @ * 2) g
opcarty , Mh*k opcarty,
~ (=) % ~
Mk, Mg f* — Mg,
cart{dq
opcart , “, x opeartd, o &
~ ~N-
M’ 144 M//

The square labelled (1) commutes by the definition of ki on morphisms, and the pentagon labelled (2)
commutes by definition of the Beck-Chevalley morphism Cp. Therefore the morphism

cart

f
o carth )k ~ . TR
O Mitk, Sy Mg f* 8 Mg, P g

X o opcart’;/l,

M N M’k!

fills the niche (3.4.1) and lies over f O

The fact chat chis morphism l,b is constructed using the Beck—ChevaHey morphism leads us to the

foilowing corollary which is given as Proposition 11 in [Pav9l].
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3. THE BECK-CHEVALLEY CONDITION

Corollary 3.4.4. Let ®: A — B be a bifibration and let

AL)B
C———D

be a square in %8 that commutes. The following are equivalent:
(i) this square (3.4.5) satisfies the Beck-Chevalley condition;
(ii) for every niche
M’ L} M

M//I MN

A B
C D

in & that lies above the niche

o

(3.4.5)

(3.4.6)

in A for which ¢ is cartesian and ) and & are opcartesian, the unique morphism ¢ that fills the niche (3.4.6)

and lies over f is cartesian.

Proof The morphism

« cart! Yk
O W8 Mirk, =y Mg, f*

X > opcart’I‘W

M S M’k[

is cartesian if, and on]y if, the morphism

cart';/jg

1

Mk # Mg[f* _— Mg[

is cartesian. Using Proposition 2.1.24(ii), this morphism is cartesian if; and only if, Cp is cartesian. Finally,

since (P = idc, we can use Proposition 2.1.24(v) to get that Cy is cartesian if, and only if; Cp is an

isomorphism.

O

In the following remark, we repeat the arguments of Lemma 3.4.3 and Corollary 3.4.4, but this time

using string diagrams. The advantage of this visual representation is that we can tell at a glance from
the string diagram (3.4.9) below that the unique morphism 1 that fills the niche (3.4.6) and lies over f is

cartesian.
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3.4. Lemmas for the Beck-Chevalley condition

Remark 3.4.7. Suppose that the commuting square

M—" s M

M/// llb ) M//

in & lies over the commuting square

A—" B
k g
C—F—D

(3.4.8)

in 4, and suppose that (P is cartesian and X and & are opcartesian. We can write the square (3.4.8) as the

following equality in the fibre category o/p.
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3. THE BECK-CHEVALLEY CONDITION

Precompose with the contraint isomorphism fi § ki = (f § k) to get

ki -
} ks = (39

fi

Then precompose with fu(%_l) to get

N
(ks f " (h5Q)
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3.4. Lemmas for the Beck-Chevalley condition

Fmally rearrange to get

(3.4.9)
]&///

f’(—
This is the unique morphism 1p: M"”” — M" in &/ that fills the niche (3.4.6). By Proposition 2.3.10 , ¢

is cartesian if; and only if] (3.4.9) is an isomorphism in .27¢. Since )_(_1, Y and & are isomorphisms, (3.4.9)
is an isomorphism if; and only if, the morphism

h*
k; =\ l/l!
ks P = (hsg)
f! bY!
f*

is an isomorphism. But, by Proposition 3.2.3, this morphism is equal to the Beck-Chevalley morphism Cps.

So ¢ is cartesian if, and only if; the Beck-Chevalley morphism Cp is an isomorphism. o

The pull-back and push-forward functors b, f*, ky and g1 are defined by the cleaving and opcleaving—
the cartesian and opcartesian rnorphisms that we chose. The following corollary of Corollary 3.4.4 says
that it doesn’t actually matter to the Beck-Chevalley condition which cartesian and opcartesian morphisms
we use to pull and push.

Corollary 3.4.10. Let @: A — B be a bifibration and let

h

A—>B
kl 2 (34.11)
C ﬁ D

be a square in 8 that commutes. The following are equivalent:
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3. THE BECK-CHEVALLEY CONDITION

(i) this square (3.4.11) satisfies the Beck-Chevalley condition;

(ii) for every M € 7, there exists a commuting square
Ty B, g 5q

M—2 s M

M/II } M’/
Y
in & that lies over (3.4.11) such that ¢ and gb are cartesian and X and & are opcartesian.

Proof. (i) = (ii): We have the niche

cart’](/[
M — M

opcartt . opcarty,
Mh*k Mg
in & which lies over the niche
A h > B
k 4
C D

in A. By Corollary 3.4.4, the unique morphism that fills the niche (3.4.12) is cartesian.
(i1) = (i): Let M € @7g. Then there exists a commuting square

M— s M

M/// lp ; MI/

in o that lies over (3.4.11) such that ¢ and ¢ are cartesian and x and & are opcartesian.

cartesian, Corollary 3.4.4 gives that the Beck-Chevalley morphism Cpj is an isomorphism.
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Chapter 4

Fibrant Double Categories

In this chapter, we study fibrant double categories and give examples, we give a thorough account of
Shulman’s construction of fibrant double categories from monoidal bifibrations, and we give explicit
calculations of data in this construction.

In the first section, we define double categories and give examples. In the second section, we define

fibrant dOlelC catcgorics to bC thOSC dOUblC CathOI‘iCS for Wl’llCh EhC functor
(S, T): Dy — Do x Dy

given by the source and target functors, S and T, is a bifibration, and we unpack this definition. We then
cover some of the basic properties of fibrant double categories, including the fact that that thcy can be
described using companions and conjoints, and that the pull-back and push-forward functors

(f,8): PDwp) T B)uo (8

associated to the bifibration (S, T) can be described via loose composotion their action on the unit loose 1-
cells (see Theorems 4.2.5 and 4.2.10). At the end of this section, we define a 2-category of double categories
and a 2-category of fibrant double categories, we define monoidal double categories and we note how to
obtain a (monoidal) bicategory from a (monoidal) fibrant double category; the ability to obtain monoidal
bicatcgorics from monoidal fibrant double categories is a kcy application of Shulman’s construction, and
it is studied in more detail by Shulman in [Shu10] and the functorially of this process is studied by Hansen
and Shulman in [HS19].

The third section contains a detailed examination of Shulman’s construction of fibrant double cat-
egories from monoidal bifibrations, and we carry out this construction for the Weakly Bcck—Chcvalley
and internally closed bifibration Rep: GrpRep — FinGrp. In the fouth section, we conclude with the
main results of this thesis: the explicit calculations—in string diagrammatic 1anguage—0f the unit loose

1-cell Uy and the (left) unitor for loose composition.

4.1 Double categories

Strict double categories were introduced by Ehresmann [Ehr63]. Grandis and Par¢ define pseudo double
categories in [GP99] and weak double categories in [GP19]. The definition we give now is that which
Shulman uses in [Shu08].
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4. FIBRANT DOUBLE CATEGORIES

Definition 4.1.1. A double category ID consists of the following dara:
- a category Dy whose objects are called 0-cells and whose morphisms are called tight 1-cells;
- a category D1 whose objects are called loose 1-cells and whose morphisms are called 2-cells;

- functors S, T: D1 — Dy called the source and target functors for which we have the notation

M: A - B to mean a loose 1-cell M with SM = A and TM = B, and the notation

tomean a2-cella: M — M’ withSa = fand Ta = g;
- a functor U: Dy — Dy called the unit functor;

- a functor

©: Dy XDy D - Iy

called loose composition, where

D1 Xp, D ——— Dy
_l

D ——— Dy
is a pullback square in Cat;

« for cach triple M: A - B,N: B - C, P: C - D of loose 1-cells in I, an invertible 2-cell

(MON)OP

A————>D
ida ﬂﬂ?ANP idp
A M@(Nop) » D
called a (loose composition) associator;
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4.1. Double categories

« for each loose 1-cell M: A - B in ID, invertible 2-cells

Us,oM MoUp

A————B A————B
id, ﬂz& idp  and g, ﬂr]% idp
A———B A———B

called (loose composition) left and right unitors.
These data are required to satisty the following axioms.
- UsS=idp, and U §T = idp,.
- For all pairs M: A - B,N: B = C of 1-cells in D,
MOoN: A-»C
- (Naturality of the associator) For all 2-cellsa: M — M’,: N — N’,y: P — P’ in D satistying
T(a) = S(B) and T(B) = S(y), the following diagram commutes.

MoN)oP — P L amroN)o P

al?/INPJ/ J/”?A’ NP! (4.1.2)

MO (NOP) W}M O(N' oP)
- (Naturality of the unitors) For all pairs M: A — B, M': A” — B’ of 1-cells in D and all 2-cells
a: M — M inD, the following diagrams commute.

Us,0Oa a®Urty

UgoM ——— Up oM MoUp —— M' o Up

z%l ﬁ’ r%l l@, (4.13)

M > M’ M > N

a a

- (Associativity) For all cuples M: A - B/ N: B - C,P: C - D, Q: D - E of loose 1-cells in D

the following diagram commutes.

MON)OPoQ)

a® a®
MON.P.Q MN,PoQ

(MON)OP)OQ Mo (No((PoQ)

a?/I,N,PGidQ idy ©a®

N.PQ
Mo(NoP)oeQ g®—>MO((N®P)®Q)

MNOP,Q
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4. FIBRANT DOUBLE CATEGORIES

+ (Unitality) For all pairs M: A - B, N: B - C of loose 1-cells in D the following diagram

commutes.
u%,UB,N
(Mo Up)ON s Mo (Ug ©N)

<o

The terminology ‘tight’ and ‘loose’ for 1-cells in a double category was first used by Hansen and Shul-
man [HS19] after Shulman and Lack used these terms in their study of f—categories [LS12]. Historically,
the more standard terminology for 1-cells in a double category is ‘vertical’ and ‘horizontal’ [BS76, GP99],
and this terminology is still used today. However, just like with our use of the term ‘pure’ instead of
‘vertical’ when studying fibrations (see Remark 2.1.13), we favour the terms ‘tight’ and ‘loose’ because they

don’t depend on how things are drawn.

Remark 4.1.4. The left unitor 2-cells ll(l)/l and the right unitor 2-cells 7’1?4 are the components of natural
transformations
(S,idp,) U idp,
Dy — Dy x Dy 2, Dy xp, Dy
o)
I " o
idp,
D4
and
(idp, , T) idp, x U

1 D1XDO—>D1 XDy lDl

Dy

called the (loose composition) left unitor and the (loose composition) right unitor, where D Xp, Dy

denotes the category of loose-composable pairs defined by the following pullback in Cat.
Dy Xp, Dy ————— Dy
_
Dy ————— Do
The naturality axioms for the unitors are (4.1.3).
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4.1. Double categories

Remark 4.1.5. The associativity 2-cells al?/INP are the components of a natural transformation

id xp, ©
D XDy D XDy D — Dy XDy D4

O Xp, id QQ/ o

D4 XDy D4 5 Dy

called the (loose composition) associator, where D1 Xp, D1 Xp, D; denotes the category of loose-

composable triples defined by the following pullback in Cat.

D1 Xp, D1 Xp, D1 —— D1 Xp, D1 ——> Dy

_ _
T
~- ~-
D1 Xp, Dy > Dy — Do
|
T
~- ~-
Dy > Do
S
The naturality axiom for the associator is (4.1.2). o

Notation 4.1.6. We have two kinds of composition of 2-cells in a double category D. We have the com-
position of 2-cells as morphisms in the category D1, which we call tight composition, and we have the
composition of 2-cells defined by the loose composition functor, ®, which we unsurprisingly call loose

composition. We'll depict tight composition of 2-cells as Vertically stacking,

A—N B

Al/ - ; B//

and we'll depict loose composition of 2-cells as horizontal stacking,

A M__+B N scC
f ﬂa J/g ﬂ)/ J/h
A —— B ———C

133



4. FIBRANT DOUBLE CATEGORIES

<&

Definition 4.1.7. Let D be a double category. We call a 2-cell & globular if Sa and Ta are both identity

tight 1-cells; this name is used because such a 2-cell can be written as

Definition 4.1.8. The category Bimod of bimodules has

- as objects triples (A, B, M), called bimodules, where A and B are finite groups, and M is a finite
dimensional vector space with the structure of a left A-module and a right B-module such that, for

allae A,be Bandme M, (@a-m)-b=a-(m-b),and
- as morphisms (A, B, M) — (A’, B’, M’) triples (f, g, @), called bimodule maps, where f: A — A’

and g: B — B’ are group homomorphisms and @: M — M’ is a linear map thac satisfies, for all

a€AbeBandmeM, (a-m-b)a = (a)f - (m)a-(b)g.

Example 4.1.9. The double category Bimod consists of the following data.
+ The category Bimody is the category FinGrp of finite groups.
- The category Bimodj is the category Bimod of bimodules.
« The source and target functors, S and T, are given by

(S, T): Bimod — FinGrp X FinGrp
(A,B,M) — (A, B)
(f, g @) — (£,8).

+ The functor unit functor, U, is given by

U: FinGrp — Bimod
Gr— CG
fr=f£,Ch).

« The loose composition functor, G, is given by

©: Bimod XfinGgrp Bimod — Bimod
((4,B,M),(B,C,N)) — (A,C, M@z N)

((f, g, a),(g, h,ﬁ)) — (f,h,a ®g p).
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4.1. Double categories

Definition 4.1.10. Let &7 be a category with pullbacks. The category Span , of spans in .27 has

- as objects tuples (X, Y, U, p, 9), called spans, where X, Y and S are objects in & and p: U — X
and q: U — Y are morphisms in &7, and

- as morphisms (X, Y, U,p,q) = (X, Y, U, p’,q’) are wriples (f, g, h), called morphisms of spans,
where f: X = X', g: U — U and h: Y — Y’ are morphisms in &7 that make the following

diagram in ./ commute.

X¢—t—u—>"—vy
X —— U ———— Y
p q

3
Example 4.1.11. Let .o/ be a category with pullbacks. The double category Span , consists of the following
daca.
- The category Span,, q is the category &7.
- The category Span, ; is the category Span , of spans in 7.
+ The source and target functors, S and T, are given by
(5T): Span_, — o/ X o/
(XY, Up,q) — (X,Y)
(f, & 1) — (f, ).
+ The functor unit functor, U, is given by
U: o/ — Span_,
Avr— (A A A 1dy,idy)
fr= (£ f )

+ The loose composition functor, @, is defined on loose 1-cells using pullbacks as shown below, and

is defined on 2-cells using the universal property of pullbacks.

U v ux,.v
raq v qar
P q =
/ \ . / \ ’ §
SN TN
X Y Y Z
X Y Z

o
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4. FIBRANT DOUBLE CATEGORIES

4.2 Fibrant double categories

Definition 4.2.1. We call a double category D a fibrant double category if the functor
(S,T): D1 — Dy x Dy

is a bifibration. <o

Remark 4.2.2. Tt should be noted that Shulman originally termed these ‘framed bicategories’ in [Shu08],
but later decided on the term fibrant double category (see [Shul0, Remark 3.5]). 3

What does it mean for (S, T): D1 — Do X D to be a fibration? The definition states the following:
for each morphism (f, g): (A, C) = (B, D) in D and cach object M in Dy sacistying (S, T)(M) = (B, D),
there exists a cartesian morphism ¢: P — Miny that lies over (f, g). Unpacked this means that, for
cach pair of tight 1-cells f: A — Band g: C — D in D and ecach loose 1-cell M: B - D in D), there

exists a 2-cell

P

A———>C
f H«p J/g
B —r— D
such that, for each 2-cell

E—9% F
h k
A ¥ B/
il g
B —r— D

there exists a unique 2-cell

m
!

N

=
m =
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4.2. Fibrant double categories

that satisfies

E— % F
E—% r

h X k
Ly b
A ¥ B = A—p+—3B
fl g

f ¢ 8
B———>D JJ

B—r—D

The description of what it means for (S, T): D1 — Dy X Dy to be an opfibration is similar.

Recall that, if @: &/ — 2 is a bicleaved bifibration, then we have, for each morphism f: B — B’
in A, tunctors f*: o — /g and fi: @/ — @/p (see Proposition 2.1.27 and Proposition 2.4.18). Given
a bicleaving for the bifibration (S, T): D1 — Dy X Dy, we have, for each pair of tight 1-cells f: A — B
and g: C — D in D, functors

(f,8): D)en) T Mo :(£,Q)

Notation 4.2.3. For loose 1-cells M: B = D and P: A - C, we use the following notation for the functors

(f,8)" and (f, ).

fMg" = (f,9)'M
fiPgy:= (f,&)P
f*M := (f,idp)'M
Mg" := (idg, §)'M

ﬁP = (f, idc)gp
Pgy := (ida, P

This notation is due to Shulman [Shu08]. o

Using this notation, pure-cartesian factorisation says that each 2-cell

A—N—c
bk
B—r—PD
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4. FIBRANT DOUBLE CATEGORIES

can be uniquely factorised as

b

~~
KJ/ = J/z
=0
I
S
0O

o]

‘\,.’
?)
o)
=
=X
k2
o

and opcartesian-pure factorisation says that each 2-cell

A—Y s C
B —W D
can be uniquely factorised as
A—F—C
A—N f Hopcart;f@) g
1 qu s = Bl +p
B —M'—) D ﬂé
B —A'/I—> D

Lemma 4.2.4 ([Shu08, Theorem 4.1]). Let D be a fibrant double category and let f: A — B be a tight 1-cell in
. Define the 2-cells £ and n I using cartesian factorisation:

138



4.2. Fibrant double categories

and
A—Y A
A ya A
i fw = B—Y—a
B—— B ﬂcartgdﬂﬁ f
B —L,B—> B
Then
A A > B
[
AU w4 T g AL op
A—p—> B——— B A—g— B
iy
A f*UB > B
and
B Unf” v A
ﬂrﬁmﬁ)'l
L A L SNy A" op
ﬂcartg‘;&f ) i ﬂ’?f = ﬂiduB o
B——p— B—r— A A—p— B
[
B . s A
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4. FIBRANT DOUBLE CATEGORIES

Theorem 4.2.5. Let D be a fibrant double category. Let f: A — Band g: C — D be tight 1-cells in D, and let
M: B - D be a loose I-cell in . Then there exists an invertible globular 2-cell

f*Mg* = f*UB oOMO UDg*.
Proof. The 2-cell

ATl g M p_ U
f Hcartg;dB) ﬂidM Hcartng g
B B > B i > D i > D
B ; > D

lies over the morphism (f, §) in # X £, and it’s straightforward to check that it’s cartesian. Therefore,
by Remark 2.1.28, there exists an isomorphism f*Mg* = f*Up © M © Upg". O
Corollary 4.2.6. Let D be a fibrant double category, lec M: B — D and N: D — G be loose 1-cells in D, and
let f: A— Band g: C — D be tight 1-cells in D. Then there exists an invertible globular 2-cell

ffIMON)g = ffMONg"

Theorem 4.2.5 tells us that we can construct a Clcaving using the cartesian 2-cells

A _f'B_> B B 8f s A
f ﬂcartg;ds) and ﬂcartg(;’g'f) f-

b5 B—u—F
We therefore give 2-cells wich the necessary properties a name.

Definition 4.2.7. Let D be a double category, and let f: A — B be a tight 1-cell in D. A companion of f
consists of a loose 1-cell f: A - B and 2-cells

A—1L A—H s 4
f ﬂgf and Uqf ¥
B—Lf3—>B A—}HB
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4.2. Fibrant double categories

such that
A—Y A
ﬂ’lf lf A— s A
A—f+—B = f Jur
fJ/ | B—— B
B —utﬁ B
and
A 4 s B
Jlep
AU L . A—L B
ﬂ”f J|r ﬂff = idy
A—y >£ B A——p—B
g
A \A > B

Definition 4.2.8. Let D be a double category, and let f: A — B be a tight 1-cell in D. A conjoint of f
consists of a loose 1-cell f: B - A and 2-cells

f Uy

B—3+—3 A A—i— A
“ef J/f and J/f ﬂr;f
B —L}B—> B B —}—) A
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4. FIBRANT DOUBLE CATEGORIES

such that
At vp
f ﬂnf AU 4
B—fir—SA = f Jur
b p b——F5
B—,— B
and )
B f S A
ﬂ(r;z)l
B— 1 ya_ U 4 A—TL B
A I
B—g—B——4 A—7F—B
ﬂz‘%
f
B . v A

<&

Compnaions and conjoints are well studied. This definition is due to [GP04], but the idea orginates
from Brown and Spencer’s work on double groupoids [BS76].

Proposition 4.2.9. Let D be a double category. Then the functor (S, T): Do — Dy X Dy is a fibration if, and
only if, there exists a companion and conjoint for every Eight I-cell in D. O

One can also use opcartesian factorisation to geta lemma ana]ogous to Lemma 4.2.4 and a theorem
analogous to Theorem 4.2.5.

Theorem 4.2.10. Let D be a fibrant double category. Let f: A — Band g: C — D be tight 1-cells in D, and
lee P: A - C be a loose I-cell in ID. Then there exists an invertible globular 2-cell

fypgy = f[uA OPO6 ung.

O

Corollary 4.2.11. Let D) be a fibrant double category, lec P: A — C and Q: C — H be loose 1-cells in D, and
let f: A— Band g: C — D be tight 1-cells in D. Then there exists an invertible globular 2-cell

AP OQ)g = fiIP© Qg
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4.2. Fibrant double categories

O
The existence of companions and conjoints is self-dual, and so we have the following theorem.
Theorem 4.2.12. Let D be a double category. Then the following are equivalent:
« D is a fibrant double category;
+ the functor (S, T) is a fibration;
+ the functor (S, T) is an opfibration;
+ there exists a companion and conjoint for every tight 1-cell in .
O

4.2.1 A 2-category of double categories

Definition 4.2.13. Let D and E be double categories. A double functor consists of the following data:
- two functors Fo: Dy — Eg and F1: Dy — Eq satistying F1 §S =S§Foand F1 § T = T § Fo;

+ for each pair M, N of loose composable loose 1-cells in D, an invertible globular 2-cell F]2VIN: MF0
NF; - (MO N)Fy;

« for cach 0-cell A in D, an invertible globular 2-cell F?Ll: Uar, — UxFo.

These data must satisfy axioms similar to those of a pscudofunctor between bicategories (see Defini-
tion 1.1.8). o

Definition 4.2.14. Let F, G: D — E be double functors. A double transformation &: F — G consists of
two natural transformations ag: Fo — Go and aq: F1 — Gy that satisty, for every loose 1-cell M in D,
a1 mS = aims and @y mT = aq pmT, as well as axioms similar to those of a pseudonatural transformation
between bicatcgorics (see Definition 1.1.13). o

Definition 4.2.15. A fibrant double functor is a double functor between fibrant double categories, and a
fibrant double transformation between two fibrant double functors is a double transformation between

their underlying double functors. o

It may seem odd that we don’t insist that a fibrant double functor preserves (S, T)-cartesian 2-cells
and (S, T)-opcartesian 2-cells, but this is automatically true, as proved in [Shu09, Proposition 6.8].

Definition 4.2.16. The 2-category Dbl of double categories consists of double categories, double functors
and double transformations. This has a sub-2-category FibDb[ consisting of fibrant double categories,
fibrant double functors and fibrant double transformations. o
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4. FIBRANT DOUBLE CATEGORIES

4.2.2  (Monoidal) fibrant double categories to (monoidal) bicategories

An important application of the property of a double category bcing fibrant is to monoidal double
categories and the monoidal bicategories they induce. A monoidal double category is defined to be a
pseudomonoid in the 2-category Dbl of double categories. We give a briefunpacking of this defiition
below; a full definition of monoidal double category is given in [Shu08, Definition 9.1].

Definition 4.2.17. A monoidal double category consists of
- monoidal categories (Do, ®o, Ip) and (D1, ®1, 1),

- an invertible 2-cell

(M® P)O(N® Q) —» (MON)® (POQ),

- an invertible 2-cell
u: Uag,s — (Ua ®1 Up),

such that
- Uj is the monoidal unit of D,
- the functors S, T: Dy — ID; are strict monoidal,
- ¥and u satisfy the appropriate axioms,

+ the associativity morphisms for the monoidal products in D and Dy form a natural transformation
of double categories D — I,

- the unit morphisms for the monoidal products in Dy and D1 form a natural transformation of
double categories D — D.

<&

Definition 4.2.18. A monoidal fibrant double category is monoidal double category for which the con-
stituent double category, double functors and double transformations are all replaced by their fibrant
counterparts. o

Given a double category I we can throw away the tight 1-cells and the non-globular 2-cells to get a
bicategory.

Definition 4.2.19. The loose bicategory LI of a double category D consists of the 0-cells, loose 1-cells,
and globular 2-cells of . o

Given a monoidal double category D we can’t throw away the tight 1-cells and the non-globular 2-cells
to get a monoidal bicategory because the monoidal associativity and unitality constraints of D) are tight
1-cells and we don’t want to throw away that information. However, if we have a monoidal fibrant double
category D, the companions and conjoints mean that the data of the tight 1-cells is also contained in the
loose 1-cells. This is the subject of Shulman’s [Shul0], and later Hansen and Shulman’s [HS19].
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43. Definition of Dbl(D)

Theorem 4.2.20 ([Shul0, Theorem 1.2]). Let D be a monoidal fibrant double category. Then the loose bicategory
LD is a monoidal bicategory.

The monoidal bicategories that can be expressed as the loose bicategory of a monoidal fibrant double

category are called monoidal equipments.

4.3 Defmition of Dbl(®)

Recall the following two definitions from earlier.

Definition 3.3.1. Let @: &/ — A be a bifibration. We say that @ is Beck-Chevalley if, for every pullback

squarce

Bxp C—21 s C
_

Bf)B'

in A, the Beck—Chevalley transformation is an isomorphism. We say that @ is weakly Beck—Cheva]ley if,
for every pullback square of the form

Bxy (DXB) —1—3SDxB
|

P 7D

B > B’
in Z and every pullback square of the form

(DxB)xp C —1— C

_I
p 8
DXB ———— B
D
in A, the Beck—Chevalley transformation is an isomorphism. <

Definition 2.8.5. Let @: &/ — 2 be a monoidal fibration with & cartesian monoidal. We call ®: &/ —
RB internally closed if, for each object B in 4, the tibre category a7 is closed monoidal and if, for every
morphism f: A — B in & and every pair of objects M, M in @7, the morphisms

(Ml ’M)f*_)le*’Mf* and (Ml <M)f>e_)le>e <]\4.]('*
given by (2.8.2) and (2.8.4) are isomorphisms. o
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4. FIBRANT DOUBLE CATEGORIES

In order to construct a fibrant double category from a moniodal bifibration ®@: .o/ — %, we need
2 1o be cartesian moniodal and we need @ to be either (i) Beck-Chevalley or (ii) weakly Beck-Chevalley
and internally closed. We call such a monoidal bifibration a doublable monoidal bifibration.

The following theorem is the main result of Shulman’s paper [Shu08]. We give the short version as
Shulman does; in the subsections that follow we add some necessary detail.

Theorem 4.3.1 ([Shu08, Theorem 14.2]). If @: o/ — ZB is a doublable monoidal bifibration, then there is a
fibrant double category Db1(P) defined as follows.

(i) The tight category Db1(®)g is equal to A.

(ii) The loose category DbI(®) and the functors S and T are given by the following pullback in Cat:

Dbl(®)) —— &
_

S7T) P

BXPB —— B

(iii) The loose composition of loose 1-cells M: A = B and N: B - C is equal to
MON = (M®N)Aynp
and the loose composition of 2-cells is similar.
(iv) The loose unit of the object A is equal to
Ua = Ity Aa

where I denotes the monoidal unit of <7

Example 4.3.2. Let .7 be a category with pullbacks. Then the codomain functor Arrz: &/~ — o is
a doublable monoidal bifibration. The tight category of DbI(Arr,,) is &7, the loose 1-cells A - B in
Dbl(Arr,,) arc objects in &7~ that lie over the object A X B in %, and the 2-cells in Dbl(Arr,,) are
morphisms of &/~ over f X g.

In fact, DbI(Arr,,) is isomorphic to the fibrant double category Span.a” of spans in the 2-category
FibDbL . This follows from the fact that a span A <= M — B is equivalently a morphism a: M — A XB,
and this is precisely an object a of &/ satistying (a)Arr,, = A X B. o

Example 4.3.3. The forgetful functor Rep: GrpRep — FinGrp is doublable since it is weakly Beck-
Chcvallcy (see Proposition 3.3.3) and intcrnally closed (see Examplc 2.8.11), so we may construct the fibrant

double category Dbl(Rep).
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43. Definition of Dbl(D)

The objects of Dbl(Rep) are finite groups, and the tight 1-cells of Dbl(Rep) are group homomor-
phisms. A loose 1-cell G - H is a (G X H)-module, and a 2-cell

G—Y v H
f ﬂa f

S

is an (f, f’)-equivariant map a: V. — W, by which we mean a lincar map a: V- — W such tha, for
every (§,h) € GX H and everyv € V,

(g h)-v)a=(f, (W) (Va.
Now for composition of loose 1-cells. Theorem 4.3.1 tells us that this is
oxt’ © mxkW = (gxrV ® WA HL.

The obvious part is that (o, V ® . ( W)AJ, is equal to the G X H X K-module V ® W with H acting
diagonaﬂy. Recall from Examplc 2.4.20 that induction along a product projection gives the space of

Vo W is

coinvariants. So the underlying vector space of CxH

VeaWmwy =VeW)/{(h-v)®h -w)-v®w|heHveV,weW),

HxK

and G and K act on this space in the obvious way.
Lastly, we define the unit object Ug. Theorem 4.3.1 tells us that this is

LIG = CtrivﬂéAGg.

The category Rep,, is equivalent to the category of vector spaces, and the base-change functor TG Repy,
— Rep; maps a vector space V' to the G-module V' with trivial G-action; in particular (CmVTC*G is the

trivial G-module G(Ctriv. Then induction along the diagonal map Ag gives
Ug = 5,cCG,
where G X G acts on CG by (x,y) - ¢ = xgy™. o

Example 4.3.4. The fibrant double categories Bimod and Dbl(Rep) are isomorphic as objects in the 2-
category FibDbL of fibrant double categories. The difference between these two fibrant double categories
is only very slight, but we’ll define mutually inverse double functors P: Dbl(Rep) = Bimod : Q.

To define P, we must define functors
Dbl(Rep)y — Bimody and Dbl(Rep); — Bimod;,

as well as, for each pair M, N of loose composable loose 1-cells in DbI(Rep), invertible globular 2-cells
Po: VPO WP — (VO W)P and Py: Ugp — UgP. The functor Dbl(Rep)g — Bimody is che
identity on FinGrp. For a loose 1-cell V: G - H in Dbl(Rep) (i.c. a (G X H)-module), the loose
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4. FIBRANT DOUBLE CATEGORIES

l-cell VP: G -+ H in Bimod is the (G, H)-bimodule with underlying vector space V, with left G-action
g-v:= (g, eH) -0, and right H-actionv - h := (e(;,h_l) - 0. For a 2-cell

G—Y v H
f ﬂa f
[ ———]

in Dbl(Rep), the 2-cell
G—4%—H

f ﬂaP f

I —— ]
is the map Pa: VP — WP which is equal to a as maps of underlying sets V. — W.
Now we will show that the natural transformations Pg and Py are both identities. We'll show this for
Po, but not for Py as this is immediate from the definitions of Ug in Dbl(Rep) and in Bimod. Suppose
that G, H and K are finite groups, that V is a (G X H)-module and that W is an (H X K)-module. Let

X:(((ec,h)-v®(h,eK)~w)—v®wIheH,ve V,weW)S VoW,

and let
Y = (((ec,h_l)-U®w)—(v®(h,eK)-w)IheH,ve Vwe W> <VeW

The underlying vector space of VP © WP is (V ® W)/Y and the underlying vector space of (V © W)P is
(V ® W)/X, which are equal since X = Y. It’s casy to see that VP © WP and (V © W)P have the same
left G- and right K-actions.

It’s very easy to define an inverse Q to P: Dbl(Rep) — Bimod. As with P, the functor of vertical
categories Bimodg — Dbl(Rep)y is the identity. For a loose 1-cell V in Bimod (i.c. a (G, H)-bimodule),
the loose 1-cell VQ: G - H in Dbl(Rep) is the (G X H)-module with underlying vector space V, with
left G-action (g, ex)- := g+ v, and with left H-action (eg, h) - v := v+ |/ Again as with P, for any 2-cell
a:V — W in Bimod, the 2-cell aQ: VQ — WQ is equal to & as maps of underlying sets V. — W.
Lastly, the coherence natural transformations Qg and Qyy are identiries. o

The following is stated by Shulman as part of the theorem defining the above construction. We don’t
study this part of the result in this thesis, but it is important to mention; specifying all of the data and
chccking all of the axioms in order to define a monoidal bicatcgorics is a laborious task, whereas spccifying
the data and checking the axioms for a monoidal bifibrations is relatively simple.

Theorem 4.3.5 ([Shu08, Theorem 14.2]). Let ®: &/ — A be a doublable monoidal bifibration. If @ is
symmetric monoidal, then Db1(®D) is a symmetric monoidal fibrant double category.

The remainder of this section is a detailed account of how Shulman defines the remaining data needed

to define the double category Db1(®P).
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43. Definition of Dbl(D)

431 Defmition of U

We define the functor U: Dy — D). For each 0-cell A in D, define
UA = Iﬂ*AAA!.

For cach tight 1-cell f: A — B in D, define the 2-cell

as follows. Define the morphism x: ITT, — Im} in & using cartesian factorisation as shown in the

following ﬁgurc.

]

(4.3.6)

Define the morphism Uy: I, Aay — ImtpApy in &/ using opcartesian factorisation as shown in the

following ﬁgure.

opcartﬁg
Ity —k I, Ap,
T

X

I, ———— I, Aay

A
opcartlnz

B x B
SR %

A/A—A>A><A

]

© (43.7)

AN
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4. FIBRANT DOUBLE CATEGORIES

Notice that x§ opcartIA;i does indeed lie over Ay § (f Xf) because the following diagram in # commutes.
B

A%B
Ap Ag

AXATBXB

43.2 Definition of ®

We'll define the functor ©: Dy Xp, Dy — Dy.

For each pair M: A - B and N: B - C of loose-composable loose 1-cells in D, define

MON = (M®N)A*BT(B!.

For each pair

A-Ysp B C
f a 8 8 B h
XTY Y—,&—)Z

of loose-composable 2-cells in D, define the 2-cell

A MON \ C
f ny@ﬁ h
X—am 74
as follows. The diagram
opcart(M® N)A®
M®N % (M®N)A;, ——— (M®N)Aymp =
a®p
Q@R ¢———— (Q®R)IA}, ———— AL (Q®R) =
CartQ@R opeart (Q®R)A
in & lies over the diagram
ABBC <2 ABC — ™ 3 AC
fxgxgxh
XYYZ < . XYZ = > X7
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43. Definition of Dbl(D)

in 4, and the diagram

ABBC <—2¢ __ ABC — ™y AC

fxgxgxh fxgxh fxh

1

XYYZ ——— XYZ ——— XZ

in % commutes. As shown in the figure below, we define x to be the unique morphism that fills the niche

(1) and lies over f X g X h, and we define @ ® § to be the unique morphism that fills the niche (2) and
lies over f X h.

s
opcart B

B .
M&N 2 (M@ N)A, —— 8 (M N)Aymg = MON

a®p (1) X @) aop
1 g
Q@R ——— (Q®R)IA, ———— (Q@R)Ayy = QOR
cartQ®R 0pcart<Q®R)A§/

433 Definition of a®

For each triple M: A - B,N: B - Cand Q: C - D of composbale loose 1-cells, we will define the

associator

A (MON)OQ D
idg HQ%NQ idp

A Mo(NieQ) b

as follows.

We begin by deﬁning an opcartesian morphism X and a cartesian morphism P to form the niche

g
opeart . AL ®Q

(MoN)®Q < (M®N)A,®Q
cart(A/\%oN)@Q carté&éﬁ}j o (arth | @Q) (4.3.8)
(MoN)®Q)A: (M®N)®Q)(Ac 5 Ap)’
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4. FIBRANT DOUBLE CATEGORIES

in o7 which lies over the niche
AXCXCXxD<4+—2 — AxBxCxCxD
Ac Ac
AXCxD AXBXCxD

in %. Define x by

X = opcart’ ®Q: (MON)AL®Q ————— (M®N)A}i ®Q=(MON)®Q

(M®N)A,
and define Y by
cmxgmﬂkmﬁw®@wm®m®@m@Aﬁ—+m®m%®Q

as shown in the fo]lowing ﬁgure.

(M®N)®Q)Aye
v Ty
(M®N)AL®Q - SMeN)®Q
cartMl;N®Q
0]
AXBXCxD
—_ R h

BC
X
AxBxC;;;;i:;gzzAxBxBxCxCxD

The morphism x is opcartesian because the functor — ® Q preserves opcartesian morphisms. The

AcsAp Ap
(MoN)®0 and cart,

is because the functor — ® Q preserves cartesian morphisms. So we have the niche (4.3.8) that we sought.

morphism 1 is cartesian because the morphisms cart ®Q are both cartesian, which

The square
AXCXCxD4+—"2  AxBxCxCxD

Ac Ac
r
AXCXD#AXBXCXD

in # commutes and satisfies the Beck-Chevalley condition since one of its legs is a product projection
and the bifibration @ is at least Weakly Bcck—Chevallcy. Let & denote the unique morphism that fills che

niche (4.3.8) and that lies over 7. By Corollary 3.4.4, the morphism & is opcartesian.
Let w1 denote the opcartesian morphism

wy = &3 opcart?(g/[@N)@Q)Az :(M®N)® Q)(Ac 5 Ag) — (MON)© Q.
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43. Definition of Dbl(D)

We can similarly construct an opcartesian morphism
w2: (MON)®Q)Ac3Ap) — MO (NG Q).

Define the morphism al?/I,N,Q: MON)©Q — MO (N6 Q) in & using opcartesian factorisation as

shown in the following figure.

(M®N)®Q w (M®N)® QA —— (MON)0Q
| :

a}%{,N,Q (’Z%{,N,Q)AEC
1
M@(N®Q) <——— M (N®Q)A, T>M®(N®Q)

car tM®(N®Q

.
”MNQ

Notice that al(?/INQ is an isomorphism since it is pure and opcartesian.

4.3.4  Definition of I3
For each loose 1-cell M: A -» B in D, we will define a 2-cell

A—M B
idg ﬂl% -1 idp

A———B

u,oM

We will then show that it is invertible and define the left loose composition unitor ll?/{ to be its inverse.
The right loose composition unitor r]?/[ is defined similarly.
We begin by deﬁning an opcartesian morphism X and a cartesian morphism P to form the niche

M (Us ® M)A,

(4.3.9)

BL’ Cartﬁﬁ@w
IT(Z M f) UseM
in &7 which lies over the niche
AXB AXAXB

ApXidp idg XA Xxidp

AxAxBW)AxAxAxB
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4. FIBRANT DOUBLE CATEGORIES

in #. Define x by
X = opeart? @ M: I, ® M ———— I, Ay ® M = Uy ® M
A

and define 1 by
Y= lfaf_lo/cart?/* OM: M ——— I, ® M

as shown in the following ﬁgure.

o
@
AXB
\
Apxidp %
AxAxB:::::i*xAxB

TLAXidAxg

The morphism X is opcartesian because the functor — @ M preserves opcartesian morphisms. The

. . . . -1 . . .
morphism ¢ is cartesian because the morphisms l?;l and cart?*‘ ® M are both cartesian, which is
because the functor — ® M preserves cartesian morphisms. So we have the niche (4.3.9) that we sought.

The square

AAXidAxg

AXAXAXB<4— AXAXB

idg XA xidp ApXxidp (4310)

AXAXB 4 AXB

AaXidp

in # commutes. Let

&M — (Ug @ M)A (4.3.11)
denote the unique morphism that fills the niche (4.3.9) and that lies over Ay X idp. Define the morphism
l]%_l :M — Up ©M in & to be the following composite.

TA

opcart (Upemny,

M ——— (Us @ M)A,

> (UA ®M)AZ7TA! =UsoM

43.5 Proof that [®is an isomorphism
4.3.51 Case (1): @ is Beck-Chevalley

The square (4.3.10) is a pullback square and therefore satisfies the Beck-Chevalley condition since @ is
Beck—Chcvalley. So, by Corollary 3.4.4, the morphism & (see (4.3.11)) is opcartesian. Therefore, l]?/[ is an

isomorphism since it is pure and opcartesian.
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43. Definition of Dbl(D)

4352 Case(2): Dis Weakly Beck—Chevalley and internally closed

The niche
M (Us ® M)A,
Y cartﬁi®M
Ity @M ————— U4 &M

in @/ (see (4.3.9)) doesn’t lie over a pullback square in % that has a product projection as one of its legs,
and so, since @ is only weakly Beck-Chevalley in this case, we can’t use Corollary 3.4.4 to show that the
morphism & (see (4.3.11)) is opcartesian. Instead, we'll use cartesian factorisation to obtain a niche in .7
that lies over the niche

AXB AXAXB
Aaxs AaxaxB
AXBXAXB AMidngAxidB>A><A><B><A><A><B

in %, because we can then use Corollary 2.8.9.
Firstly, we will construct a niche

®
Iy, @ M —222 U, @ Mo,
cart cart
I, @M —————— Us &M

in &, such that the morphisms labelled cart are cartesian and where yx is as in Section 4.3.4.
The niches

ITe, Uaty M M,
Cal‘t?f,fA cartgi ‘dl’ld cart;\IAA (4312)
Iy ———— I, Aa = Ua M M
opcartm%
in & lie over the niches
AXB AXAXB AXB AXAXB
B T a]’]d T
_ _
A A AXA AXB A AXB
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4. FIBRANT DOUBLE CATEGORIES

in %, and the squares

AxB —22X9 A AxB AxB —22X9 A AxB
_
T g and T
A3 AXA AXB ——————% AXB
A A

(4.3.13)

in % commute. Let ¢q: I70, 1, = UaTty denote the unique morphism that fills the left niche in (4.3.12)
and lies over Ay X idp, and let p2: M — M7, denote the unique morphism that fills the righe niche in

(4.3.12) and lies over A4 Xidpg. We can use Corollary 3.4.4 to get that the morphism 11 is opcartesian since

the left square in (4.3.13) is a pullback square with one of its legs a product projection and the bifibration

D is Wcakly Bcck—Chcvallcy. The morphism 7 is cartesian by Proposition 2.1.24.

The monoidal product of two cartesian morphisms is cartesian and the monoidal product of two

opcartesian morphisms is opcartesian, and here we’ll write cart and opcart for the cartesian and op-

cartesian morphisms obtained this way. The following diagram shows the result of taking the monoidal

product of the two niches in (4.3.12); this is the niche we sought.

®
Iy, @ M —222 5 U, @ Mo,
cart cart

I, @M ————— Us®M

Now, we use these two cartesian morphisms denoted cart to factorise the niche

M (Ua ® M)A,
[ cartﬁ‘z@M
I, @ M ———— Us®M
as
M (Ua ® M)A,
v ¢
I, @M UaTt, @ MTT,
cart cart
Iy ®M ————— Us M
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43. Definition of Dbl(D)

That is, the morphism v is obtained by cartesian factorisation as shown in the figure

of
ITc;‘ QM
0]
AXB
\ - .
Apxp AaXxidp
AXBXAXB = AXAXB
and the morphism ¢ is obtained by cartesian factorisation as shown in the figure
Up® ]\/I)A;1 R
cartuA®M
A of
¢ A
UAT(B®MT(A ps UpedM
(0]
AxB\\\\\\\\
m T idgxAaxidg »
AXBXAXB T AXAXB
By Proposition 2.1.24, both v and ¢ are cartesian.
The niche
M (Ua ® M)A,
v ¢ (4.3.15)

IT(ZT(% M W) UAT(*B ®MT(2

in & lies over the niche

AXB AXAXB
Aaxs Aaxaxs
AXBXAXB AAxidng/MIB>A><A><B><A><A><B
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4. FIBRANT DOUBLE CATEGORIES

in 4, and the square

A xidp

AXB > AXAXB
Aap Aaas
AXBXAXB AAxideAAxidB>A><A><B><A><A><B

in % commutes. By Corollary 2.8.9, the unique morphism p: M — (U ® M)A;'i that fills the niche
(4.3.15) and lies over A4 Xidp is opcartesian. Since p fills the niche (4.3.15) and the square (4.3.14) commute,
p also fills the niche

M (U ® M)A,
v ¢
ITc;‘ng M Uty ®M7’c;\
cart cart

Iy ®M ———— Us®M

in & and lies over Ay X idp. But & is the unique such morphism, so & = p, and so ¢ is opcartesian.
Therefore, lIC;)/I is an isomorphism since it is pure and opcartesian.

4.3.6 Proof that Dbl(®) is a fibrant double category

The functor (S, T) is the pullback of @ along the product of #, and it’s casy to check that the pullback of
a bifibration is a bifibration, so (S, T) is a bifibration.

4.4 Definition of Dbl(®P) using string diagrams

In this section, we have the main results of this thesis: the Cxplicit calculations—in string diagrammatic
language—of the unit loose 1-cell U and the (left) unitor for loose composition, I°.
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4.4. Definition of DbI(®) using string diagrams

4.4.1 Definition of U using string diagrams

Recall the definition of Uy from Section 4.3.1. Rewrite (4.3.6) as

I n;‘
A

yi
h)

A

(4.4.1)
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4. FIBRANT DOUBLE CATEGORIES

Rewrite (4.3.7) as

id
I, [ABJl It Ay
[7«] ( B ) } (B X B
f), 3 T -1
! DG
/ - J
It I Ag
A APA! xf),
() = (30)

~

B X B
Aas(Fxf) " ﬁ

e
A > AxA

A

Then Uf is the unique morphism satisfying

ch*

Aas(fxfn

D

o

(Aa s (f X )

(f X f)
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4.4. Definition of DbI(®) using string diagrams

Therefore, by substituting (4.4.1) into (4.4.1) and rearranging, we get

(f X f)

N
= g

Ty ~ (f s )

Aa

=)
Aasfxf = (fsAp)
(f X f) Ap

442 Definition of [° using string diagrams

We follow the definition of the unitor M — U © M from Section 4.3.4. The niche (4.3.9) in & is written

using indexed category notation as the niche

X
[AAxidAxB]I
Us @M ——— I, @ M
[ id ] [ v ] (44.2)
idgxXAaxidp ApXxidp
(Ua ® M)A, M

Since the functor — ® M presreves opcartesian morphisms, the morphism
X = opeart;t ® M: Iy @ M ———— I, Ay ® M = Uy ® M
A

is opcartesian, and so there exists a pure isomorphism

(Aa xidaxp):
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4. FIBRANT DOUBLE CATEGORIES

in &7 such that

_ X o . _
X_(AAXidAxB)! T, @M — Iy Ap @M = Uy @ M.

Since the functor — ® M presreves cartesian morphisms, the morphism
cart/* @ M: I, @M — I M

is cartesian, and so there exists a pure isomorphism

(4 X idaxp)*

in & such that
o

A _
cart, QM = (RA  id ot

) I, @M — [® M.

With this, we can write the morphism 1 as

(14,idaxp)’ (Ag Xidp §1a X idaxp)*

Using Remark 3.4.7, we can depict the the total part of the morphism

Y .
o Eu) e

that fills the niche (4.4.2) using a string diagram: this diagram is shown in Figure 4.1. The morphism 11?4_1
is given by

-1 z . . *
©7 = (AA iidB) s (ngZBB) — M — (Ua ® M)(ida X Ag X idp)'mhnl = Ua © M.
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4.4. Definition of DbI(®) using string diagrams

The total part of‘ll?/l_l is depicted using a string diagram in Figure 4.2.

In Section 4.3.5.1 we proved that if the fibration @: &/ — Z is Beck-Chevalley then this morphism,
© _1, is an isomorphism. In Figure 4.3 we show the total part ofl]%_l again, but this time rearranged and
with the Beck-Chevalley transformation

(Aa X idaxp):

(Aa X idaxp)® (id4 X Ag X idp)”

(Aa Xidp)* (Aa Xidp)* )

(Aa Xidp);
associated to the square

Ap XidAxg

AXAXAXB+————— AXAXB

ida XA xidp Apxidp

AXAXB ¥4 AXB

Apxidp

shown in a dotted box; this shows at a glance that if the fibration @: & — £ is Beck-Chevalley then

. -1. . .
thC rnorphrsm l]?/[ 1S an 1somorphlsm.
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(1t4,idaxB)’

(Aa xidp § A X idaxB)*

(ta X idaxB)”

(Aa X idaxp):

(Aa x idaxp)*

(Ap xidp)”

(idA X Ap X idg)*

(Aa X idp):

Figure 4.1:

The total part of the morphism that fills the niche (4.4.2)

SAIYO0ODILV)) 179N0( LNVIII] '§
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(idA X Ap X idB)*

(Aa X idaxp)*

(Aa X idp)*

TR ES
idp

Figure 4.2: The total part of the morphism Z?A_l

swerderp Surns Juisn (g)[qq Jo uonuydq 'y
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(ta X idaxB)*

(1t4,idaxB)” (Ag X idp 5114 X idaxp)*

(idA X Ay X idB)>+

(Aa xidp)

. *
idy,p

AAB
AB!

Figure 4.3: The total part of the morphism l]%_l, rearranged to show the Beck-Chevalley transformation

SAIYO0ODILV)) 179N0( LNVIII] '§
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