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Abstract

With a rising number of enterprises adopting machine learning (ML) in their operations, the

issue of ML monitoring to ensure robustness has become increasingly relevant. Unfortunately,

implementing ML monitoring systems has proven challenging partly because it requires cross-

discipline collaboration between data scientists and software engineers. This thesis hypothesises

that a solution centred around model-driven engineering (MDE) comprising a domain-specific

language and an accompanying execution environment can address many of the challenges

associated with ML monitoring. To evaluate the validity of this hypothesis, such a solution was

designed at the architectural level and implemented. The solution’s design offers portability,

extensibility and separation of concerns between data scientists and software engineers. This

is validated through empirical studies involving professional data scientists. In addition, three

case studies with third-party ML models have been developed to further evaluate the solution’s

validity.
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Chapter 1

Introduction

Models, as in abstract representations of real-world phenomena or systems, are widely used

in science and engineering. A distinction can be made between descriptive and prescriptive

models [5]. Most models produced in the natural sciences are of the descriptive kind. As the

name suggests, the purpose of a descriptive model is to describe phenomena or systems that

exist in the real world, often for the purpose of explaining the inner workings of the subject or

predicting its future state. A weather model produced by a meteorologist and utilised to make

weather forecasts is a prime example of a descriptive model.

On the other hand, the subject of a prescriptive model does not yet exist. The model, once

produced, will be used to construct the modelled subject and thus contains all the information

needed to do so. Examples of prescriptive models are the blueprints that are used in building

construction.

This thesis deals with models of both kinds. On the one hand, machine learning models can be

classified as descriptive, as they seek to model real-world phenomena typically for the purpose

of making predictions. Models in the context of model-driven engineering, on the other hand,

are typically prescriptive, and this is also the case for the ones produced in the context of this

thesis. These models will be utilised to prescribe the behaviour of software systems.

This chapter presents a brief overview of the challenges that motivated the work presented in

1



2 Chapter 1. Introduction

this thesis. It then outlines the research hypothesis and summarises the thesis’s results and

main contributions. Finally, it provides an overview of the organisation of the thesis and a

summary of the remaining chapters.

1.1 Motivation

Machine learning (ML) models have been transformative for various sectors, driving them to

become more data-centric. However, as these ML models play a more decisive role, ensuring

consistency and bias-free operation is crucial. While a model might perform well during its

initial training, the ever-evolving nature of the real world means its effectiveness might not re-

main consistent. Hence, continuous monitoring of ML models is essential, especially in business

contexts where consistent performance is vital.

However, implementing ML monitoring is difficult. It demands the combined efforts of software

engineers and data scientists, a cross-disciplinary collaboration that poses unique challenges [6].

To resolve these issues, it is essential to facilitate a clear separation of concerns between the

practitioners of the two fields.

On the other hand, in the field of model-driven engineering, there is an established practice

of developing Domain Specific Languages (DSLs). As these languages are narrowly focused on

a single domain, they can cater to the needs of the domain’s experts more extensively. This

approach could be followed to alleviate the challenges of the ML monitoring domain.

1.2 Hypothesis and Objectives

In this context, the hypothesis of this thesis is stated as follows:

Commonly used supervised machine learning models exhibit diversity in their target

tasks, input and output modalities, and implementation technologies. Despite that,

it is hypothesised that a unifying representation of the workflows for monitoring
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against and mitigating potential performance degradation can be formulated as a

declarative domain-specific language (DSL). Additionally, this DSL can be agnostic

towards the underlying ML platform so that experts in statistical modelling who

might lack an extensive software engineering skillset can use it to specify and deploy

such workflows unassisted. Finally, the execution environment for workflows spec-

ified in this DSL can be designed to interface with a wide variety of ML platform

components to facilitate portability and extensibility.

Based on this research hypothesis, the objectives of the thesis are formulated as follows:

1. The design of a declarative domain-specific language for specifying ML monitoring work-

flows and implementing an accompanying execution environment.

(a) The solution must enable data scientists to deploy ML monitoring workflows inde-

pendently, without direct assistance from software engineers. In other words, it must

enable the separation of concerns between data science and software engineering dis-

ciplines.

(b) The overall system must offer extensibility by integrating dataset-shift-detection al-

gorithms created by data scientists written in the programming language of their

choice. Additionally, it must offer the possibility for software engineers to add soft-

ware components to support the execution of monitoring workflows across different

implementation technologies.

(c) The solution must be designed for portability. This means that it must be agnostic

towards the underlying computing infrastructure and not be strongly coupled to any

proprietary technologies limited to specific vendors.

2. Evaluate the solution from multiple angles. Namely, usability, domain coverage and

ability to lower technical barriers for data scientists.

(a) To evaluate usability, design a laboratory environment to measure whether data

scientists can complete, unassisted, the specification of monitoring workflows using

the developed solution.
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(b) To evaluate domain coverage, carry out several case studies that include ML models

with different target tasks, input and output modalities and implementation tech-

nologies. Additionally, the expert opinion of data scientists can be called upon to

judge domain coverage and increase confidence.

(c) To evaluate the extent to which technical barriers have been lowered for data scien-

tists, ask data scientists to judge the potential of the proposed solution to aid them

in the implementation of ML monitoring workflows.

1.3 Research Results

The main result of this thesis is the design of a distributed architecture of loosely coupled

components for a solution that targets the ML monitoring workflow domain. The solution is

centred around an MDE layer that provides a DSL that data scientists can utilise to specify

their desired monitoring workflows without delving into technical details.

The design and implementation of this DSL and its accompanying execution environment covers

the first objective of this thesis with its three sub-objectives. Specifically, these sub-objectives

are covered in the following places within the thesis:

• Chapter 3 explains the technical architecture of the solution. Furthermore, sections 3.4

and 3.5 delve into the various layers that comprise the architecture and how the design de-

cisions taken enable separation of concerns, extensibility and portability, thus addressing

all three sub-objectives.

• Chapter 4 introduces the DSL developed in the context of this thesis. The chapter shows

how the declarative nature of the DSL enables data scientists to independently define and

deploy monitoring workflows, thus addressing sub-objective 1a.

• Chapter 5 covers the technical implementation of the solution. It shows how the choice

of suitable implementation technologies streamlines the process of deploying the solution

atop different computing infrastructure thus addressing sub-objective 1c. Additionally, it
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is shown how additional components that interface with the solution’s main components

can be implemented, thus addressing sub-objective 1b.

To satisfy the second objective, the research hypothesis has been validated by conducting three

empirical studies that showcase the solution’s usability, domain coverage and ability to lower

the technical barriers for data scientists and enable them to deploy ML monitoring workflows

more efficiently. Specifically, each of the three sub-objectives are covered in the following places

within the thesis:

• Section 6.1, presents the results of a judgement study which calls upon experts to evaluate

the solution’s domain coverage and technical barrier lowering potential, thus addressing

sub-objectives 2b and 2c.

• Section 6.2, presents the results of a laboratory experiment which seeks to evaluate the

solutions usability and technical barrier lowering potential, thus addressing sub-objectives

2a and 2c.

• Section 6.3, presents the results of three experimental simulations, conducted to evaluate

the solution’s domain coverage, thus addressing sub-objective 2b.

1.4 Thesis Structure

Chapter 2 presents a review of relevant background material. The chapter covers the theoretical

foundations of machine learning and introduces the concept of dataset shift along with its causes

and techniques that can be applied to mitigate its adverse effects. In addition, the chapter

presents an overview of how machine learning is applied in Industry. Finally, the chapter

presents relevant background material for the field of model-driven engineering.

Chapter 3 presents a high-level overview of Panoptes, the proposed solution for facilitating

the deployment of ML monitoring workflows. The chapter begins by providing the context in

which the solution was developed and an illustrative example used throughout the thesis to
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present the various aspects of Panoptes. Subsequently, a high-level overview of the solution’s

architecture and the roles and responsibilities of the different stakeholders is given. Finally, the

chapter presents Panoptes’ main design decisions and how they contribute towards the desired

attributes of portability, extensibility and separation of concerns.

Chapter 4 presents Panoptes Description Language (PDL), the DSL developed in the context

of Panoptes to allow data scientists to specify ML monitoring workflows at a high level of

abstraction. The chapter starts with a description the core classes of the DSL’s metamodel.

Then the classes of the metamodel related to dataset shift and the ones related to scheduling

are introduced. Finally, the model validation features of the DSL that can help data scientists

construct correct PDL models are presented.

Chapter 5 covers the technical aspects of Panoptes that are implementation-specific and intro-

duces Panoptes’ reference implementation, built to validate the approach. The chapter covers

the open-source technologies used as a base layer upon which the reference implementation was

built. Additionally, the chapter introduces the format that Panoptes’ components use to seri-

alise the events they produce. The rest of the sections cover the technical details of Panoptes’

major components as well as the process that a project team would need to follow to adopt the

solution.

Chapter 6 presents three empirical studies conducted to evaluate the work and validate the

research hypothesis. The first study was conducted in the form of structured interviews with

expert data scientists who were asked to judge the proposed approach in principle. In the second

study, participants were asked to use Panoptes in the context of a simulation system in order

to evaluate its usability. After this hands-on experience with Panoptes, participants were again

asked to evaluate it. In the third study, third-party ML models of different characteristics were

used with Panoptes to evaluate its domain coverage. The chapter concludes with a discussion

about potential threats to validity posed by the chosen evaluation methodology.

Chapter 7 concludes the thesis by summarising its main contributions, discussing its limitations

and suggesting future work that can potentially improve the proposed solution’s suitability for

enterprise users.
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Finally, Appendix A provides the complete Xtext grammar of PDL’s textual syntax, and Ap-

pendix B provides information regarding the research ethics process that was followed for the

empirical studies that involved external participants.



Chapter 2

Background

This chapters reviews the background material in the field of machine learning and model-driven

engineering relevant to this thesis. Regarding machine learning, Section 2.1 provides definitions

and a brief overview of the theoretical foundations. Section 2.2 analyses how machine learning

models can fail in constantly-changing environments such as those encountered in the real

world. Section 2.3 describes how machine learning is applied in industry. Regarding model-

driven engineering, Section 2.4 covers some of the theoretical and practical aspects of the field.

2.1 Machine Learning

Since Alan Turing posed the question, “Can machines Think?” in 1950 [7], a large body of

work has been devoted to artificial intelligence research. Nowadays, machine learning, which

can be informally described as ”learning from examples”, is perceived as the most promising

approach to artificial intelligence, but this has not always been the case. Based on logic rules

and automated deductive procedures, Symbolic AI was the preferred approach until the 1990s

[8]. In hindsight, this makes intuitive sense since, to produce results competitive with symbolic

AI, machine learning requires computing resources and data quantities, which until recently

were prohibitive.

The following are some of the historical milestones in the development of machine learning.

8
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• 1962: F. Rosenblatt proposes the perceptron as the mathematical basis of a learning

machine [9]. He based the perceptron on the McCulloch-Pitts model of a biological

neuron [10].

• 1974-1980: First ”AI winter”. Due to the failure of early AI systems to live up to

expectations, government funding is significantly reduced. [11]

• 1986: Backpropagation is discovered, which allows efficient training of larger neural net-

works [12].

• late 1980s - late 1990s: Second ”AI winter” [13, 11].

• 2011: IBM’s Watson beats human players in the popular American game show ”Jeop-

ardy!” [14].

• 2012: Alex-net, a deep convolutional neural network, achieves 15.36% top-five error in

the ImageNet Large Scale Visual Recognition Challenge [15].

• 2015: Deepmind’s AlphaGo beats Go champion Lee Se-dol [16].

• 2017: Researchers from Google introduce the transformer architecture and apply it to the

natural language processing domain. The transformer proves to be a highly influential

development and is consequently widely adopted [17].

2.1.1 Machine Learning Scenarios

Mohri [18] broadly defines machine learning as ”computational methods using experience to

improve performance or to make accurate predictions”. While all scenarios in which machine

learning can be applied adhere to this definition, there is some variation to the techniques

based on the specifics of the scenario. Mohri specifies eight such scenarios, which include

supervised learning, unsupervised learning, semi-supervised learning, transducive inference,

on-line learning, reinforcement learning and active learning.
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According to industry reports [19], of these machine learning scenarios, supervised learning is

the one most commonly applied in practice and is also backed by rigorous mathematical theory

[20]. For these reasons, this thesis specifically focuses on this type of machine learning.

2.1.2 Supervised Learning

In the supervised learning setting, one wants to predict the value of a target variable (e.g.

whether a given email is spam) from the value of an observed variable (e.g. the body of the

said email). We denote by X the set of possible values for the observed variable and Y the set

of possible values for the target variable. Given a set of labelled examples (paired elements

of X, Y), the goal is to extract a mapping from X to Y, which can be used to predict labels

Y for all unseen instances of X [18]. Hastie et al. [21] further distinguish supervised learning

tasks based on the target variable type. When the target variable is categorical (i.e. the set of

possible values is finite), we have the classification task. On the other hand, for quantitative

target variables, the task is called regression.

From a theoretical viewpoint, statistical learning theory [20] studies various aspects of the

learning problem, such as the rate of convergence, consistency and generalization of the learning

processes. In this theoretical framework, the learning problem is formulated as follows:

• There is a fixed but unknown probability distribution P (x) from which random samples

are drawn.

• For a number of samples, values y can be obtained for each value x. The samples follow

the conditional distribution P (y|x). This is typically referred to as the training set.

• There is a set of functions f(x, α), α ∈ Λ, where Λ is a set of parameters. The learning

process can search this space of functions for potential solutions.

The goal of the learning process, then, is to select a function f(x, α0) from the set of possible

functions such that its outputs approximate the values y well. Naturally, the question “What
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is a good approximation” arises. For this, the notion of the loss function is introduced. A

loss value L(y, f(x, α)) measures how close a predicted value of the target variable is to the

ground truth y. Given the notion of loss, the learning process is then distilled down to selecting

function f(x, α0), which results in the lowest expected loss over the sample distribution. This

expected loss is referred to as risk and is formally defined as:

R(a) =

∫
L(y, f(x, α))dP (x, y)

In most cases, the joint probability distribution function P (x, y) is unknown. In such a case,

the function f(x, α0) that minimises the risk is approximated by the function f(x, αl) that

minimises the empirical risk, which is formally defined by the following with (xi, yi), 1 ≤ i ≤ N

being the training set samples:

Remp(α) =
1

N

N∑
i=1

L(yi, f(xi, α))

2.2 Dataset Shift

As mentioned in the previous section, the standard assumption in supervised learning is that

the training set is sampled from the same probability distribution as future unlabelled samples

for which the value of the target variable needs to be predicted. On the other hand, due to

the dynamic and ever-changing nature of the world, the assumption of a static probability

distribution often does not hold with potentially detrimental effects on the accuracy of trained

ML models. This scenario has been studied in the literature under numerous terms, such as

concept drift/shift [22, 23], covariate/sampling shift [24, 23, 25] and prior probability shift

[23, 25].

In recent years, the more general term ”dataset shift” has been introduced in [26] and further

standardised in [27] and [28]. In this thesis, the terminology of [28] is adopted as the more
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general one, which defines dataset shift as follows:

Dataset shift appears when training and test joint distributions are different. That

is, when Ptr(y, x) ̸= Ptst(y, x).

The phrase ”test joint distribution” refers to the joint probability distribution of the test set.

The term test set is primarily used in the machine learning domain to describe a set of samples

not utilised during training and used to evaluate the performance of the trained model. This

section examines the causes of dataset shift and how its various types affect the joint probability

distribution of observed and target variables.

2.2.1 Causes of Dataset Shift

Storkey’s work [25] explores the root causes of dataset shift by leveraging causal probabilistic

models. These models are visually represented as graphs, where nodes symbolise random

variables and directed edges signify a causal relationship between these variables.

Figure 2.1 provides a visual representation of two such causal graphs. The left subfigure of

Figure 2.1 demonstrates a scenario where random variable X causally influences random variable

Y. To illustrate this, Storkey provides an example where X symbolises a person’s smoking habits,

while Y denotes the likelihood of that individual developing lung cancer in their lifetime. The

graph indicates that smoking habits (X) are a causal factor for lung cancer (Y), but the reverse

is not true. This is intuitive, as the onset of lung cancer cannot retroactively affect one’s past

smoking habits. Such a causal relationship can lead to covariate shift, a form of dataset shift.

Covariate shift arises when there is a change in the distribution of X due to an altered context,

such as a government-imposed smoking ban in enclosed spaces. However, the probability of

developing lung cancer remains consistent for individuals with the same smoking habits across

different contexts. The relationship between the context and variable X is depicted in the right

subfigure of Figure 2.1.

Conversely, the left subfigure of Figure 2.2 portrays a situation where Y is the causal factor for
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Figure 2.1: Covariate Shift

YX

(a) Initial Scenario
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(b) Prior Probability Shift

Figure 2.2: Prior Probability Shift

X. Fawcett and Flach provide an illustrative example: the onset of specific medical symptoms

(X) in individuals is caused by the presence of an infectious disease (Y). During a pandemic,

when a particular disease becomes more prevalent, the associated symptoms will also manifest

more frequently. A change in the distribution of Y leads to prior probability shift, another form

of dataset shift. The relationship between the context and variable Y is visually represented in

the right subfigure of Figure 2.2.

Building upon Storkey’s work, Kull and Flach [27] propose a way to systematically model the

causes of the dataset shift. They claim that their systematisation is complete regarding dataset

shift causes but leave the formal proof of this claim as future work.

2.2.2 Effects of Dataset Shift on the Joint Probability Distribution

Torres et al. [28] introduce an alternative way to classify the different types of dataset shift

based on the effects on the joint probability distribution. A relatively simple causal model is

used based on the work of Fawcett and Flach [29] where either X causes Y or Y causes X. Based

on that, the following dataset shift types are introduced:
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• Covariate Shift, which is defined as the case where Ptr(x) ̸= Ptst(x) but Ptr(y|x) =

Ptst(y|x). It only appears in scenarios where X causes Y.

• Prior probability shift, which is defined as the case where Ptr(y) ̸= Ptst(y) but Ptr(x|y) =

Ptst(x|y). It only appears in scenarios where Y causes X.

• Concept shift, which is defined as Ptr(y|x) ̸= Ptst(y|x) and Ptr(x) = Ptst(x) in scenarios

where X causes Y. On the other hand, it is defined as Ptr(x|y) ̸= Ptst(x|y) and Ptr(y) =

Ptst(y) in scenarios where Y causes X.

• Dataset shift which does not fit any of the above cases is denoted ”other type of dataset

shift”. It is defined either as Ptr(y|x) ̸= Ptst(y|x) and Ptr(x) ̸= Ptst(x) for scenarios where

X causes Y or Ptr(y|x) ̸= Ptst(y|x) and Ptr(y) ̸= Ptst(y) for scenarios where Y causes X.

2.2.3 Techniques for Dataset Shift Mitigation

In the interest of robustness in the context of production-grade ML systems, practitioner-

focused resources recommend the periodic execution of dataset shift detection procedures and

the subsequent adaptation as needed [30, 31]. The relevant academic literature also supports

the validity of this approach. Specifically, Lu et al. [32] conduct an extensive literature review

of the dataset shift field and find that an effective workflow for addressing dataset shift consists

of detection and adaptation steps.

Concretely put, an ML monitoring workflow consists of the following phases:

Serving phase: In this phase, an ML model has either been recently adapted to a prior

dataset shift or deployed for the first time. The system is thus waiting to serve enough predic-

tions to warrant the execution of a dataset shift detection procedure.

Detection Phase: Once enough new data points are available, a dataset shift detection

algorithm is executed.
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Adaptation Phase: In case the result of the algorithm execution indicates the presence of

dataset shift, an action is taken to adapt the ML model to the new situation.

For the rest of this thesis, the recurring application of the three phases described above will be

referred to as a monitoring workflow.

In addition to the above literature review, the following more recent works also suggest tech-

niques for dataset shift mitigation:

• Zenisek et al. [33] describe an interesting application of dataset shift in the context

of predictive maintenance of industrial machinery. Their method relies on training a

regression model that predicts future states of an industrial machine. The ML model is

trained on data from the machine in a healthy state. When the predictions of the ML

model no longer agree with the ground truth data gathered from sensors attached to the

machine (ie. dataset shift is present), this indicates that the machine is no longer in a

healthy state and is in need of maintenance. What is unusual with the approach proposed

in this work is that the detection of dataset shift itself is the end goal as the ML model’s

predictions are not useful by themselves.

• Ackerman, Raz et al. [34] propose a dataset shift detection algorithm that relies solely

on classifier confidence without the need for ground truth labels. Their method assesses

whether the classifier’s confidence levels in production deviate significantly from those

during the model’s training phase. The approach employs classical statistical tests to

measure this deviation, thereby determining the presence of dataset shift.

• Soin et al. [35] present an interesting application of dataset shift detection in the domain

of medical imaging. The authors introduce a novel approach which once again does

not require ground truth labels and test it on two open medical imaging datasets. The

method relies on constructing a unified multi-model metric for each medical image based

on it’s metadata as well as the imaging data. For the imaging data, the method utilises

variational autoencoders (VAEs) to reduce images to a latent representation. Afterwards,

statistical tests like the Kolmogorov-Smirnov and chi-square tests are applied to detect
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differences in the distributions of the unified metric between the reference dataset and

recent data.

• Ackerman, Farchi et al. [36] propose a general methodology that has gives fewer false

positives compared with a repeated application of two-sample statistical testing meth-

ods such as the Kolmogorov-Smirnov test. The authors claim that the application of

the Change Point Model technique is superior for dataset shift detection as it does not

look at sequentially arriving sets of data in isolation but considers the whole sequence.

The methodology is empirically validated using modified MNIST datasets, where specific

classes are omitted during training to simulate dataset shift during deployment. This

setup tests the model’s ability to detect new, unseen classes as well as changes in class

distribution. The results demonstrate the robustness of the proposed method under var-

ious scenarios, including gradual and sudden drifts.

• Mirza et al. [37] present two approached to mitigate dataset shift in the domain of image

segmentation. The first approach leverages Image Quality Assessment (IQA) metrics to

select high-quality images for training. It aims to prevent the inclusion of poor-quality

data which could degrade model performance. The second approach uses feature vectors

extracted from the existing model to guide the selection and use of new data for model

retraining. This approach ensures that new data aligns with what the model has previ-

ously learned, potentially increasing the robustness of the model. The two approaches

are evaluated based on three open image segmentation datasets with good results.

Overall, each of the above papers proposes techniques that detect some kind of dataset shift.

While some of the techniques are general and some target a specific application domain, all

of are consistent with the three-phase general framework of serving, detection and adaptation.

This provides additional confidence that the framework remains valid some years after its

introduction.
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2.3 Machine Learning in Industry

In recent years, there has been a lot of interest in leveraging machine learning approaches for

commercial purposes. According to Delloite’s latest state of AI report [38], 94% of business

leaders agree that AI/ML is critical to success over the next five years.

This section covers the various aspects related to developing production-grade ML systems.

Subsection 2.3.1 covers the stakeholders involved in the various stages of an ML project. Sub-

section 2.3.2 presents the typical workflow data scientists follow to develop ML models. Subsec-

tion 2.3.3 covers the platforms that organisations need to put in place to support ML workflows

and presents some of the relevant commercial services. Lastly, subsection 2.3.4 presents some

of the challenges organisations face when attempting to develop ML projects.

2.3.1 ML Project Stakeholders

As with traditional software projects, an ML project progresses through various stages from

its inception until its eventual decommission. Throughout these stages, different stakeholder

groups are involved in the project’s development and are invested in and affected by its outcome.

At the highest level, stakeholders can be put in two broad categories: technical and non-

technical [30].

From a business point of view, the stakeholders of an ML project can include:

Business Executives/Leadership: They set the strategic direction and provide resources

for the project. They are concerned about financial and commercial aspects such as Return on

investment (ROI), alignment with business goals, and gaining a competitive advantage in the

marketplace.

Product Managers: They define product requirements, prioritise features, and ensure the

ML solution meets user needs. They are concerned with product-market fit, user adoption, and

feedback.
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From a technical point of view, two groups of contributors can be distinguished: data scientists

and software engineers. These two groups work in collaboration in order to build an ML-enabled

system successfully [6].

Firstly, there are data scientists. This term describes people who use statistical analysis and

machine learning techniques to extract insights from large datasets. They work on data explo-

ration, feature engineering, model selection, and evaluation. They may also be involved in data

visualisation and storytelling to communicate findings effectively.

The second group are software engineers. This group contains many different types of contrib-

utors who specialise in different parts of an ML project. Amongst them, the following software

engineering specialities are especially relevant:

Data Engineers: They are responsible for designing, building, and maintaining the infras-

tructure required to support machine learning projects. They develop data pipelines, manage

databases, and ensure the availability and reliability of data for analysis and model training.

Infrastructure/Cloud Engineers: They manage and optimise the cloud resources or on-

premises infrastructure where the ML models are trained and deployed.

DevOps Engineers: They focus on the deployment, scaling, monitoring, and continuous

integration/continuous deployment (CI/CD) of the ML models and associated software. They

ensure that models are deployed in a scalable and maintainable manner.

Application Engineers: They develop user interfaces and experiences that allow users to

interact with ML models, visualise results, or input data.
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Figure 2.3: Machine Learning workflow (adapted from[4])

2.3.2 ML Workflow

Once an ML project is approved, the team tasked with the implementation needs to follow

specific steps. Microsoft reports a nine-stage workflow presented by Amershi et al. [4] that they

claim to be similar to other commonly followed data science workflows such as TDSP, KDD

and CRISP-DM. Figure 2.3 shows the steps of the workflow grouped into three categories: data

preparation, model creation and post-creation activities.

Data Preparation

As ML systems rely on data to be effective, a large portion of the machine learning workflow

is devoted to data-related activities. According to an internal survey conducted by Microsoft,

the top-ranked challenge in the field of machine learning, as perceived by employees working in

it, is data availability, collection, cleaning, and management [4].

Due to the importance of data, organisations that integrate machine learning in their prod-

ucts have invested substantial engineering resources in developing systems that can validate

incoming data, as discussed in [39, 40, 41]. In these publications, the authors present systems

enabling users to specify the expected data properties to be received. Subsequently, the system

automatically checks that the incoming data meets the specifications. The goal is to keep the

quality of incoming data consistent and alert the engineers of any anomalies. By ensuring that

all of the data are of high quality, they can then safely be used for training new models or

fed into existing models for inference. In that regard, one could draw a parallel to software

testing. Similar to how developers of traditional software products test new code to ensure it

does not introduce bugs in their code base, developers of machine learning systems should test
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new incoming data to ensure that they are consistent with what the system expects to receive.

Model Creation

The second group of activities in the machine learning workflow has to do with the creation of

the model artefact. These are perhaps the activities mostly perceived to be the core of machine

learning but are usually just a small part of the overall system in terms of code volume [42]. The

model created at this stage results from an iterative process by which different aspects of the raw

data, algorithms and input parameters for these algorithms are experimented with to determine

which combination delivers the best performance. Keeping in mind that this experimentation

might take place over several days and be performed collaboratively by several data scientists,

it becomes evident that there is a need for a system that can keep track of the performance

metrics of every combination of factors that was attempted.

Such systems have indeed been designed and used by teams that train machine learning models.

The systems encountered in the literature [43, 44] follow a similar approach. Every time a ma-

chine learning model is trained, the system stores a variety of metadata in a database for future

reference. The metadata stored can include the dataset used for training and evaluating the

model, the performance metrics achieved by the model when evaluated, the input parameters

used for the training of the model and also custom fields that the developer wants to associate

with that particular training run. These metadata databases are usually private, and access

is given selectively to members of a specific team or company. One exception is the OpenML

database, which essentially shares the same capabilities described above but is open for anyone

to contribute their ML-related metadata. [45].

Post-Creation Activities

In a research setting, the machine learning workflow of the researcher commonly concludes

with the training and evaluation of the model. If the produced model achieves performance

metrics superior to the state of the art, the results would be published for other researchers to
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be informed and build upon. On the other hand, when applying machine learning techniques in

a commercial setting, the goal is to incorporate the model’s output in a product that customers

(internal or external) will use. For this reason, the model artefact will have to be deployed so

that it is reachable by the customer-facing part of the application. Various tools can facilitate

serving machine learning models, such as TensorFlow-serving [46].

The final phase of the typical ML workflow is the continuous monitoring of deployed ML models

to guard against the adverse effects of dataset shift, as explained in Section 2.2.

2.3.3 ML Platforms

To support data scientists throughout the typical ML workflow presented above, an organisa-

tion’s software engineers develop and maintain ML platforms comprising multiple components

[47, 48, 49, 40]. These components can include, for example, notebook servers used to conduct

exploratory data analysis and training of ML models, ML model registries used to store trained

ML models alongside training metadata, data warehouses for the storage of an organisation’s

raw data, feature stores that transform the raw data into usable features and ML model servers

that are used to deploy models and respond to prediction requests.

Instead of developing and maintaining an ML Platform in-house, organisations could also choose

to utilise a managed ML Platform solution from a third party. Relevant solutions from the three

largest cloud providers are Amazon’s Sagemaker [50], Microsoft’s Azure ML [51] and Google’s

Vertex AI [52]. These cloud providers are uniquely positioned to offer managed ML Platforms,

including ML monitoring features, to a large customer base that already uses their infrastructure

to store data and execute ML workloads. Their products are, therefore, useful as a baseline

for solutions that similarly target the ML monitoring domain. Regarding ML monitoring, the

following are some of the technical limitations of these three managed solutions.

All three products offer covariate shift detection functionality, albeit with varying levels of

support for customisation. Vertex AI exposes an API for creating/updating monitoring jobs

that execute periodically. The algorithm used to detect covariate shift is fixed, namely L-
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infinity distance for categorical features and Jensen-Shannon divergence for continuous ones

[53]. Every feature is considered in isolation, so multivariate analysis is not possible. The

user can parametrise the algorithms by setting a threshold per feature for the algorithm’s

output, above which covariate shift will be detected. Upon detection, the user can receive an

email notification or have a message published to a message queue to which other services can

subscribe. Vertex AI does not expose any mechanism for merging ground truth labels with

the values predicted by the deployed ML models. Therefore, concept shift detection is not

supported.

Azure ML offers very similar functionality to Vertex AI. In terms of covariate shift detection,

there is a fixed number of metrics calculated per feature depending on its statistical type, such

as Wasserstein distance for continuous features and Euclidean distance for categorical ones

[54]. The main difference from Vertex AI is that covariate shift is not detected per feature but

holistically by combining every feature metric into one scalar value for which the user can set a

detection threshold. However, the algorithm for calculating this scalar value is undocumented,

which may cause uncertainty when setting the detection threshold. Similarly to Vertex AI,

Microsoft’s product does not offer ground truth ingestion. Therefore, users interested in concept

shift detection must build their own solutions to augment Azure ML.

Among the three products examined, Sagemaker is the most feature-complete. It offers similar

functionality for detecting covariate shift using a fixed algorithm. Additionally, it supports

ground truth label ingestion that enables the detection of concept shift using a fixed algorithm.

The main difference compared to the other services is that it allows users to change the detection

algorithms by providing their own container image. However, this extensibility mechanism does

not facilitate an explicit separation between the tasks of data scientists and software engineers.

The container image provided must follow a particular technical specification, such as reading

and writing specific files based on environment variables. Implementing such technical details

falls outside the domain of data science.

The following table summarises the features of the three ML platforms presented above:
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Table 2.1: ML Platform Comparison

Feature Vertex AI Azure ML Sagemaker
email notifications ✓ ✓ ✓

covariate shift ✓ ✓ ✓
custom algorithms - - ✓

ground truth ingestion - - ✓
concept shift - - ✓

An important weakness of the above platforms is that they fail to facilitate the collaboration

between software engineers and data scientists that is required for the effective development

of ML monitoring systems. Nahar et al. [6] report on the unique challenges that this collab-

oration brings. One reported challenge is the potential mismatch between the responsibilities

assigned to a person and their capabilities and preferences. Specifically, data scientists prefer

to receive support with software engineering tasks rather than doing it all themselves. On

the other hand, software engineers find it challenging to perform ML tasks due to a lack of

domain knowledge. Additionally, using different terminology in the two disciplines can lead to

ambiguity, misunderstandings and inconsistent assumptions. Finally, they report that many of

these conflicts stem from the lack of clear responsibility boundaries and recommend that teams

carefully define them.

In this context, the following are some of the weaknesses that might limit the applicability of

the reviewed ML platforms in the context of ML monitoring:

Vendor Lock-In In all three cases, the monitoring workflow definitions are vendor-specific.

This means that in case an organisation wants to switch vendors, all monitoring workflows

would have to be modified to fit the new vendor’s API. From a vendor’s point of view, there is

little incentive to adopt open standards that allow compatibility with other vendor products,

as that might lead to them losing customers to competitors. On the other hand, strongly

coupling ML monitoring workflows to a single vendor’s product poses commercial risks for

client organisations.
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Limited Customisability As discussed in Subsection 2.2.3, an integral part of a monitoring

workflow is the selection of the dataset shift detection algorithm and the subsequent action

taken. Two of the three products examined do not offer a built-in way for users to provide

their own dataset shift detection algorithms or actions. Only Sagemaker provides a documented

way for achieving this. However, it requires users to develop a containerised application that

adheres to specific technical requirements, so it primarily caters to software engineers. For

these reasons, all three services might have limited appeal to data scientists.

Unclear Boundaries As explained above, defining clear responsibility boundaries between

software engineers and data scientists is paramount. None of the examined products achieves

this as their usage requires a mixed software engineering and data science skillset.

2.3.4 ML-Related Challenges

While interest in ML is very high, translating a research achievement into a commercial success

can be challenging. Organisations report that there are multiple obstacles deploying production

AI/ML systems, with Delloite reporting ”lack of technical skills” as a major challenge [38] and

Gartner reporting that while launching AI/ML pilot projects is relatively easy, turning them

into production systems is ”notoriously challenging” [55].

These challenges are not a new phenomenon. Researchers from Google, an organisation that

was an early adopter of ML in production, argue that ML systems are challenging to implement

as they have all the challenges of traditional software systems in addition to ML-specific issues

[42]. Additionally, they claim that in ML systems, only a fraction of the code is ML-specific,

with the rest of the code concerning typical software system aspects such as data management or

infrastructure configuration. This duality of ML systems often means their development needs

multi-disciplinary teams comprising software engineers and data scientists. Nahar et al. [6]

find that this collaboration between people from different disciplines brings unique challenges.

One reported challenge is the potential mismatch between the responsibilities assigned to a

person and their capabilities and preferences. Specifically, data scientists prefer to receive
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support with software engineering tasks rather than doing it all themselves. On the other

hand, software engineers find it challenging to perform ML tasks due to a lack of domain

knowledge. Additionally, the use of different terminology in the two disciplines can lead to

ambiguity, misunderstandings and inconsistent assumptions. The paper concludes that many

of these conflicts stem from the lack of clear responsibility boundaries and recommend that

teams should carefully define them.

2.4 Model-Driven Engineering

So far, this chapter has been concerned with the descriptive models of the ML domain. This

section covers the different aspects related to prescriptive modelling in the context of software

engineering.

From machine code to assembly, to systems programming in C, to object-oriented programming

in Java, the history of computer programming can be viewed through the lens of abstraction.

Over the years, software engineers have constructed a stack of abstraction layers to move further

away from the inner workings of the hardware and closer towards the concepts they want

to express. As computing became mainstream, increasingly more complex software systems

started to be constructed. In the backdrop of ever-increasing software costs [56], the idea of

utilising models to formalise and automate parts of the software engineering process started to

gain ground. From the CASE tools of the 80s to contemporary model-driven engineering and

low-code platforms, progress was not always straightforward and well-received. Similarly to

the timeline of AI progress, there was, at times, a lot of excitement, inflated expectations, and

disillusionment. The following are some of the milestones in the history of modelling applied

in the software engineering context.

• Early Attempts: As evident by the term computer-aided software engineering (CASE),

which alludes to the term computer-aided design (CAD), the intention was to adopt

processes for designing and documenting software systems akin to other engineering dis-

ciplines such as mechanical engineering. The acronym CASE, for computer-aided software
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engineering, first appeared in the early 1980s [57] to describe software packages meant

to support software engineers in constructing software systems. As evident by the term,

the vision was to recreate the success that computer-aided design (CAD) tools have en-

joyed in other engineering disciplines such as aerospace and automotive. Some CASE

tools mainly focused on graphical aspects such as flow or entity-relationship diagrams,

but the most capable also included code-generation capabilities. The launch of the com-

mercially successful EXCELERATOR greatly expanded the market for CASE tools, with

sales growing at a rate of 70% at some points during the mid-80s. At the same time,

partly due to inflated expectations created by the marketing departments of CASE tool

vendors, these software packages drew a fair amount of criticism regarding low adoption

[58] and unsubstantiated productivity gains [59, 60]. Nevertheless, CASE tools were an

essential first step towards modelling being utilised in the context of software engineering.

• Standardisation efforts: A big problem with CASE tools was the lack of standardisation,

which hindered interoperability between tools and the portability of the modelling arte-

facts. In 1989, the object management group (OMG) was founded to develop standards

related to modelling in the software engineering domain. Indeed, in 1997, they publi-

cally released the unified modelling language (UML), which became a widely adopted

standard for modelling software systems. The organisation has since published various

related standards, such as MOF, BPMN, SysML and others [61].

• Proliferation of modelling approaches: With the success of UML and a more holistic

approach compared to the one offered by the CASE tools of the 80s, modelling started

to pick up steam again. In 2001, OMG released its vision of how its modelling standards

should be jointly applied to software projects, termed model-driven architecture (MDA).

MDA focuses on separating business logic from platform-specific details by using platform-

independent models that are to be transformed into platform-dependent models and can

be used for generating code artefacts. This approach seeks to reduce manual programming

effort and improve portability between platforms [62].

Similar ideas have also been the subject of academic research. In the software world, the
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terms model-driven software engineering (MDSE) and model-driven development (MDD)

advocate for similar workflows that elevate the importance of models, model transforma-

tions and code generation without necessarily relying on OMG standards. A more gen-

eral term considered a superset of MDSE and MDD is model-driven engineering (MDE).

MDE’s scope goes beyond the modelling of only pure software artefacts to cover more

aspects of the engineering process, such as the modelling of cyber-physical systems [62].

For the remainder of this thesis, the term MDE will be the term used to refer to the

application of modelling in the software domain.

• Industry Adoption: Over the years, MDE gained traction in various industries, including

automotive, aerospace, IT, and defence [63]. Many companies have adopted MDE princi-

ples and tools to improve software development productivity, quality, and maintainability.

Open-source MDE frameworks and modelling tools, such as Epsilon and Eclipse Modeling

Framework, became widely used.

• Ongoing Development: MDE continues to evolve with ongoing research and advancements

in modelling techniques, languages, and tools.

2.4.1 Modelling Fundamentals

In the context of MDE, an essential concept is that of metamodelling. As the etymology of

the term suggests, metamodelling is the modelling of models. In fact, a hierarchy of modelling

layers can be built this way, with each layer modelling the one below. The standard approach, is

to have three modelling layers (M1-M3) built on top of each other [62]. The bottom modelling

layer (M1) models physical or digital objects in the real world (M0). The highest layer (M3)

can self-referentially model itself, thus closing the loop. Figure 2.4 shows a simple example

of using this modelling hierarchy to model a physical object. At the top, there is OMG’s

metamodelling language, MOF, which can be used to define metamodels, which are also called

modelling languages. Below that is UML, a modelling language that can be used to create

models. In the base modelling layer, there is a model which conforms to the UML specification

and which, in turn, describes the physical object that is to be modelled.
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Figure 2.4: M0-M3 Modelling Layers

2.4.2 Language Definition and Development Techniques

As mentioned above, models in the M2 layer can be seen as modelling languages that can be

used to create models in the M1 layer. This sections covers the different kinds of modelling

languages and certain aspects of their development.

General and Domain-Specific Languages

Modelling languages can be broadly categorised into two types: General Modelling Languages

(GMLs) and Domain-Specific Modelling Languages (DSMLs or DSLs) [62].

GMLs are designed to be applicable across a wide range of domains and problems. They

provide a broad set of constructs and semantics that can be employed in multiple contexts.

The versatility of GMLs can be helpful, but their broad scope can also lead to unnecessary

complexity for specific tasks.

DSLs, on the other hand, are tailored for specific application domains or problem areas. They
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encapsulate domain knowledge and provide constructs that are directly aligned with the con-

cepts and abstractions of that domain. The main trade-off is the ease of use for a specific

domain but, at the same time, unsuitability for general-purpose modelling.

Modelling Language Syntax

As described above, a modelling language can be defined using a metamodelling language, but

this only covers the language’s abstract syntax. The abstract syntax defines the conceptual

structure of models. It represents the core entities, their attributes, and the relationships

between them without defining how these entities are concretely represented [62].

On the other hand, the concrete syntax of a modelling language deals with the tangible represen-

tation of models. It specifies how the concepts defined in the abstract syntax will be presented.

Based on the type of concrete syntax, a modelling language can be textual, graphical, or even

have both types of concrete syntax [62].

Standalone and embedded DSLs

An interesting distinction that can be made mainly for textual DSLs is between standalone/ex-

ternal and embedded/internal DSLs [64].

A standalone DSL has its own syntax and tools for parsing, compiling, and execution. It is

designed from the ground up for a specific domain and does not rely on the constructs of

another general-purpose language.

An embedded DSL, on the other hand, is hosted within a general-purpose programming lan-

guage. It leverages the host language’s syntax, semantics, and infrastructure, providing domain-

specific constructs as libraries or extensions to the host language.
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2.4.3 Model Management

In addition to defining models in the various layers of the modelling hierarchy, an integral part

of the MDE process is performing various tasks on these models to gradually turn them into

a concrete solution for the target domain. These tasks are often defined for models at the M2

layer and applied in every model in the M1 layer that adheres to the M2 layer model. This

section covers some of the most common model management tasks.

Model Validation

While metamodeling languages provide mechanisms to define certain structural constraints for

downstream models, it is possible that the metamodelling language used might not be enough

to express all requirements for a valid model.

Addressing this problem, model validation languages, such as OCL or EVL, are designed to

express more complex constraints. Using these model validation languages, one can construct

invariants for types in the M2 layer that must hold true for any instance of the type found in

an M1 layer model for it to be valid.

For example, for an M2 model that contains the type Person with a String attribute called

name, we could define an invariant that requires the name attribute to always be non-empty.

Then, for every Person instance in an M1 model that adheres to this metamodel, the name

attribute must be non-empty for the model to be valid.

Model-To-Model Transformation

A Model-to-Model (M2M) transformation is a process that produces one or more target models

from one or more source models. As shown in Figure [TODO], transformations are specified

at the metamodel layer and applied at the model layer [cite]. A popular method of specifying

M2M transformations is by using rule-based languages, such as ATL [cite] and ETL [cite]. The

target and source models can adhere to the same or different metamodels. In cases where the
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target and source models adhere to different metamodels, the transformation is classified as

exogenous. On the other hand, if the source and target models adhere to the same metamodel,

the transformation is classified as endogenous.

An example scenario where M2M transformations play an important role is in MDA. As de-

scribed in the introduction of this section, the MDA approach includes a step where platform-

independent models are mapped onto platform-specific models in order to gradually get closer

to a concrete solution for the problem domain. This mapping can be achieved by specifying an

M2M transformation.

Model-To-Text Transformation

A Model-to-Text (M2T) transformations is a process that produces text from a model. An

important use case for M2T transformation is the generation of code but other text can also be

generated such as documentation, test cases or deployment scripts. While M2T transformations

can be implemented in a general-purpose programming language, domain-specific languages,

such as EGL [cite], can also be used. The advantage of using a DSL for implementing M2T

transformations is ease of use. In the case of EGL, for example, its template-based nature

make it easier to mix the static and dynamic parts of the generated text while keeping the text

generator scripts highly readable.

An example use case of M2T transformations can once again be found in the MDA paradigm.

Once the platform-specific model has been produced, an M2T transformation can be leveraged

to generate code and accompanying artefacts, such as deployment scripts, that constitute a

concrete solution that can be used by end-users.

2.4.4 Modelling in Practice

For the application of model-driven engineering in practice, the community has developed a

vibrant ecosystem of open-source tools. Two such tools that have been extensively utilised in

the context of this thesis are EMF and Xtext.
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EMF

The Eclipse Modeling Framework (EMF) [65] is essential for implementing an MDE approach.

It offers tools for structured data modelling and code generation. It bridges design and imple-

mentation, facilitating model-driven application development.

The key features of EMF that have been utilised in this thesis are the following:

Metamodelling Central to EMF is ECore, an M3 metamodelling language which started as

a separate effort from MOF but has been developed into MOF’s de facto implementation.

Serialisation and Deserialisation EMF provides support for serialising and deserialising

model instances to and from various formats, including XML-based formats like XMI (XML

Metadata Interchange). This enables EMF users to transfer models across different tools or

services in a network.

Code Generation EMF can automatically generate Java code from Ecore models. This

generated code includes classes for representing domain model elements in-memory. These

in-memory models can be are compatible with the serialisation and deserialisation mechanism

described above.

Xtext

Xtext is a framework that facilitates the creation, editing, and processing of textual DSLs,

offering a comprehensive environment for language definition, editing, code generation, and

tool integration [66].

The central component of Xtext is its grammar language, which closely follows the Extended

Backus–Naur Form (EBNF) and can be used by users to define the concrete syntax of textual

DSLs. Given a user-created grammar file, the framework can automatically generate a parser
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that processes text files and outputs EMF models. These models conform to EMF metamodels

that can be explicitly provided by the user or automatically derived from the grammar rules.

In addition to parser generation, Xtext provides a number of convenience features that stream-

line the process of creating textual DSLs. For example, the framework supports the automatic

generation of language editors with syntax highlighting, error highlighting and autocomplete

support. The language editor can be generated as an Eclipse plugin, an LSP-compatible lan-

guage server, or a web-based service. Furthermore, the generated code that supports the

editor’s feature is easily extensible by the user to further customise the editing experience with

modifications such as custom model validation logic.

2.5 Chapter Summary

This chapter presented a review of background material in the fields of machine learning and

model-driven engineering. With regards to machine learning, the chapter covered the topic

of dataset shift which is a phenomenon that can degrade the performance of ML models. In

addition, various techniques found in the literature that can mitigate the negative effects of

dataset shift were covered and a common pattern between them was identified. The chapter

also covered the application of machine learning techniques in industry and the commercial

platforms that are available for this purpose along with their weaknesses that make them

unsuitable for the task of monitoring against dataset shift. With regards to model-driven

engineering, the chapter covered the fundamental concepts along with two commonly-used

tools that were utilised for this thesis.



Chapter 3

Architectural Overview

This chapter presents an overview of the architecture for the proposed solution to address the

challenges identified in Chapter 2. The solution is named Panoptes, a Greek adjective that

means all-seeing, inspired by the fact that it monitors ML models and checks whether they

perform well over time.

The chapter also introduces an illustrative example, which is used as an aid in presenting

the proposed solution in the rest of the thesis. The example describes a scenario in which

the performance of a deployed ML model might be negatively affected by dataset shift, and

therefore, implementing a monitoring workflow would be beneficial.

The rest of the chapter is organised as follows. Section 3.1 gives the context in which the

proposed solution was developed. In Section 3.2, the aforementioned illustrative example is

introduced. Section 3.3 presents the scope of the work presented in this thesis. Section 3.4

provides a high-level overview of the proposed solution. Finally, Section 3.5 cover the solution’s

major design decisions.

34
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3.1 Context

The presented work was undertaken within British Telecom’s (BT) applied research department.

BT is the largest telecommunications provider in the UK, providing telephony, fixed broadband

and mobile services to fourteen million households and employing more than ninety-nine thou-

sand people [67]. Similarly to other large enterprises, BT is interested in leveraging ML models

to attain a competitive advantage in the market. However, due to complex interactions between

algorithms and data, ML models can fail unexpectedly, potentially exposing their operators to

adverse economic and legal consequences. Wanting to hedge against these risks, BT has shown

strong interest in the area of AI governance, which can be defined as a system of rules, prac-

tices, processes, and technological tools that ensure the responsible usage of AI technologies

[68]. Attesting to BT’s interest is its involvement in the TM forum alliance[69], which resulted

in the publication of standardised guidelines regarding AI governance. The proposed approach

addresses one aspect of AI governance: continuously monitoring deployed ML models to ensure

they perform as expected.

3.2 Illustrative Example

In order to provide a clearer understanding of the domain of ML model monitoring, let us delve

into a simple hypothetical scenario. This scenario revolves around a customer support call

centre, where customers can seek assistance for issues they encounter with a purchased product.

Each incoming call follows a series of stages: Initially, the customer is placed in a waiting queue

until a customer support representative becomes available to assist them. Subsequently, they

converse with the representative, who attempts to resolve their issue. Finally, the call concludes

whether or not the customer’s problem was resolved.

For this example, let us imagine that the company’s marketing department is interested in

determining the satisfaction levels of customers who contact the customer support call cen-

tre. Armed with this information, they aim to offer appropriate compensation to dissatisfied

customers to enhance the company’s reputation. However, since it is impractical to contact
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every customer and directly inquire about their customer support experience, the marketing

department would like a dashboard implemented that shows the predicted satisfaction of each

customer based on the recorded information from each call.

From a data science perspective, this scenario aligns with a typical supervised learning classi-

fication task. As discussed in Section 2.1, such tasks require the collection of labelled samples,

which are then used to train an ML model. In this case, the labelled samples consist of the

recorded information from each call and whether or not the customer was satisfied with the

service. For our example, let us assume that the recorded information includes the duration

of the customer’s wait in the queue, the duration of the call with the customer support rep-

resentative, and whether or not the issue was resolved successfully. These three values can be

viewed as a three-dimensional vector variable denoted as X. The corresponding label can be

represented as a random variable Y that takes on values from the set {0, 1} for unsatisfied and

satisfied customers accordingly. Consequently, the trained ML model can be seen as a mapping

from X to Y derived from the training dataset. This mapping enables the prediction of future

customers’ satisfaction based on the information recorded during their calls.

Upon completing the initial training of the ML model, the company’s data scientists encounter

a challenge. Despite achieving good accuracy on the test set during the training phase, there is

no guarantee that the same level of accuracy will persist in the future. As discussed in Section

2.2, this uncertainty arises due to dataset shift, wherein the joint probability distribution of

variables X and Y might change, potentially leading to a negative impact on the accuracy of

the trained ML model.

In the context of the call centre example, the following are some of the scenarios that can lead

to the manifestation of the types of dataset shift:

3.2.1 Covariate Shift

On a particular day, an unusually high number of workers might be on leave, resulting in

increased customer waiting times. Assuming that customers’ preferences regarding waiting
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times remain constant, more customers will be left unsatisfied. According to the terminology

of dataset shift, this scenario exemplifies covariate shift.

Figure 3.1 visually depicts covariate shift for our example scenario. For ease of exposition,

we assume that customer satisfaction is deterministic, with customers being satisfied when

the sum of the wait and service duration is under twenty minutes and unsatisfied otherwise.

Additionally, we assume that issue resolution does not affect customer satisfaction, so that it

can be ignored in the figure. In both subfigures, satisfied customers are represented by a +

sign, while unsatisfied customers with a | sign. Additionally, a solid line shows the optimal

decision boundary that perfectly classifies customer satisfaction. In the left subfigure, wait and

service duration follow a normal distribution with a mean value of ten minutes and a standard

deviation of one minute. The right subfigure shows that the distribution of wait duration

values has shifted to now follow a normal distribution with a mean value of fifteen minutes and

a standard deviation of one minute. This shift has resulted in more data points falling above

the unchanged decision boundary.

In theory, covariate shift should not affect the performance of the ML model, as the input-to-

output mapping remains constant. However, when the ML model is relatively simple (e.g., a

linear classifier), it may accurately approximate the true mapping within a specific range of

input values but produce incorrect results when the input values deviate from that range [25].

In situations where it is known that a model’s performance deteriorates when the input falls

outside a particular range, identifying covariate shift can be advantageous, especially as it does

not require the collection of additional ground truth labels.

3.2.2 Concept Shift

Over time, customers might become more tolerant towards extended waiting times. Con-

sequently, even if waiting times remain constant, an increased number of customers will be

satisfied. In other words, the mapping between the input and output has changed. In the

terminology of dataset shift, this phenomenon represents concept shift. Detecting this type of
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(a) Initial Scenario (b) Covariate Shift

Figure 3.1: Covariate Shift

dataset shift necessitates the acquisition of ground truth labels, as no observable change occurs

in the distribution of input values.

Figure 3.2 visualises concept shift for our example scenario. The left subfigure once again

shows the initial distribution of wait and service times and customer satisfaction. The right

subfigure shows the same variables after customers’ attitudes towards waiting and service times

have changed. Here, in addition to the optimal decision boundary shown with a solid line, the

previous decision boundary is also shown with a dashed line. We can see that customers are

now satisfied when the sum of wait and service duration is below twenty-five minutes. As a

result, even though the distribution of wait and service duration values have remained constant,

there are more satisfied customers.

Compared to the covariate shift scenario described above, the presence of concept shift will be

more challenging to detect as there are no changes in the input data. In order to detect the

fact that customers’ preferences have changed, we will have to gather their feedback after they

have been served, which could add complexity to our monitoring system.

3.2.3 Other Types of Shift

The presence of covariate shift does not preclude concept shift and vice versa; the two types

of dataset shift can occur at the same time. In other words, the average waiting time could
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(a) Initial Scenario (b) Concept Shift

Figure 3.2: Concept Shift

(a) Initial Scenario (b) Covariate & Concept Shift

Figure 3.3: Other Types of Shift

increase while customers become less tolerant of lengthy waiting periods. This scenario falls

under the ”other types of shift” category in the dataset shift terminology.

Figure 3.3 is a visual depiction of this type of dataset shift for our example scenario. As we

can see, compared to the initial scenario on the left subfigure, both the distribution of wait

duration values and the decision boundary have changed.

3.2.4 Monitoring Solution for the Call Centre Example

In order to prevent potential performance degradation caused by any of the dataset shift sce-

narios described above, the data scientists of the example would like to implement a monitoring
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workflow. As discussed in Section 2.1, implementing a dataset shift monitoring workflow can

be split into several phases. For simplicity, the following monitoring workflow, which monitors

against covariate shift, is examined: Whenever a set of one hundred calls is logged (standby

phase), an algorithm shall be executed which compares the distribution of the call duration

variable from the log to that found in the ML model’s training set (algorithm execution phase).

If the algorithm execution detects covariate shift, an email notification is sent to the data

scientist responsible for this ML model so they can investigate further (action phase).

3.3 Scope

For a solution to address the challenges posed by the example introduced in the previous

section, multiple elements would have to be considered. In the scope of this thesis, some of

these elements might be less relevant. To this end, this section clarifies the scope of the thesis

and points out select out-of-scope elements.

Target Audience. The primary target audience for the developed solution is professionals

with expertise in statistical modelling but without software engineering skills necessary for large-

scale ML deployments, such as networking and cloud computing. This group of professionals

will be referred to as data scientists throughout this thesis. Our primary goal is to enable

them to deploy ML monitoring workflows autonomously. For this reason, we steer the design

and evaluation phases based on their feedback. At the same time, integrating the developed

solution with an underlying ML platform requires some software engineering effort. Care will

be taken to ensure this integration does not require specific MDE knowledge to keep it in line

with typical software engineering tasks, but measuring integration effort is considered outside

the scope of this thesis. Additionally, if a one-time integration effort automates multiple future

ML monitoring workflow deployments, it might be a worthwhile endeavour.

Dataset Shift Detection Algorithms. Selecting the appropriate algorithm or even devel-

oping a novel one for detecting dataset shift is a fundamental component of an ML monitoring
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workflow. This is considered the domain of data scientists, and this thesis does not aim to make

any contributions. On the other hand, part of our extensibility goal is to support as many such

algorithms as possible.

Machine Learning Scenario Support. As discussed in Section 2.1, theoretical analysis

of machine learning mainly focuses on the supervised learning scenario. Therefore, no claims

about the solution’s suitability for other scenarios are made.

Infrastructure Portability. While the developed execution environment aims to be portable

between computing infrastructures and interface with as many ML platforms as possible, it

does have some requirements. As we will present in Chapter 3, these are quite minimal, and

we consider it reasonable to expect that most platforms can meet them. At the same time,

evaluating this by porting to multiple environments was considered outside the scope of this

thesis.

Authentication and authorisation. In a professional setting with teams of multiple people

responsible for multiple deployed ML models, it would be essential to implement authentication

and authorisation mechanisms to enable effective and secure deployment of ML monitoring

workflows. On the other hand, this feature was considered outside the scope of this thesis as it

would contribute little to its academic merits.

3.4 High-Level Overview

This section provides a high-level overview of the proposed solution. Technical details provided

for each component will be coarse as finer details are provided in Chapters 3 and 4. As already

discussed in Chapter 2, implementing monitoring workflows is a complex technical project

that requires the interaction of different stakeholders. To elucidate how the proposed solution

can streamline the process of monitoring workflow implementation, Figure 3.4 shows how the
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various components interface with each other and the responsibilities of relevant stakeholders.

There are three architectural components: The ML platform, the Panoptes orchestrator and

the platform-specific components. This thesis focuses on three main stakeholder groups that are

relevant to the proposed solution, instead of the more comprehensive list presented in Section

2.3.1 that also includes non-technical stakeholders. The following paragraphs contain a brief

description of the responsibilities of each stakeholder group.

Language Engineers: These are software engineers who specialise in developing DSLs, pri-

marily using model-driven engineering techniques. In the context of Panoptes, the author has

assumed this role and developed the Panoptes Description Language (PDL) and the accompa-

nying execution environment in the form of the Panoptes orchestrator.

Data Scientists: Occupying a central role, data scientists leverage the ML platform for

training and deploying ML models. Using the provided DSL, they can also specify high-level

models of monitoring workflows, which the orchestrator subsequently ingests.

Software Engineers: Software engineering are responsible for implementing and maintaining

both the ML platform and the platform-specific components. Their role ensures that the

underlying infrastructure is robust, scalable, and resilient.

More in-depth details about the components shown in Figure 3.4 are provided below.

3.4.1 ML Platform Layer

ML platforms are vital for organisations wishing to use ML to improve their operational effi-

ciency or enhance their products. As such, they exist independently of the other components

shown in Figure 3.4. Despite that, it is included in the discussion of the proposed solution as

it is so critical. As explained in Section 2.3, an organisation’s software engineers develop and

maintain ML platforms that contain all of the components data scientists need to train and
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Figure 3.4: High-Level Architectural Overview

deploy ML models. The hosted ML models can then serve prediction requests from various

applications.

In the context of the example scenario, the ML platform is used to train the ML model, which

predicts the customers’ satisfaction. This ML model is subsequently used to serve the prediction

requests made by the marketing dashboard application used by the organisation’s marketing

department.

3.4.2 MDE Layer

In the middle section of Figure 3.4 lay the components for which language engineers are re-

sponsible. The central component of this layer is the orchestrator that, as the name suggests, is

responsible for orchestrating the phases of the monitoring workflows that data scientists would

like to implement. For the high-level specification of a monitoring workflow, data scientists can

use the Panoptes Description Language (PDL), a DSL designed explicitly for this purpose. The

information in a PDL model informs the orchestrator of the sequence of actions to implement
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the monitoring workflow correctly.

In the example scenario, the monitoring workflow progresses from the standby phase to the

algorithm execution phase whenever one hundred new calls are logged. For the orchestrator to

know when that happens, it needs to interface with the ML platform. To cover all scenarios,

a monitoring workflow can enter the algorithm execution phase under different conditions as

well. Chapter 4 covers these conditions in detail.

The orchestrator is not capable of executing dataset shift detection algorithms itself. Instead,

it interfaces with the algorithm runtime services, which are part of the platform-specific com-

ponents and are responsible for algorithm execution. After the algorithm specified in the PDL

model is executed, the result is fed back to the orchestrator. This brings the monitoring work-

flow to the action phase. To successfully conclude this phase, the PDL model specifies which

action, if any, needs to be executed depending on the algorithm execution result. Once again,

the orchestrator cannot execute actions itself but interfaces with the action services, which are

part of the platform-specific components and are responsible for action execution.

3.4.3 Integration Layer

This layer contains platform-specific components that are responsible for the actual execution

of a monitoring workflow’s phases. Two different kinds of services are part of the platform-

specific components: algorithm runtime and action services. As the names suggest, these are

responsible for the algorithm execution and action phases of a monitoring workflow, respectively.

Algorithm runtime services follow the function-as-a-service (FaaS) philosophy. This application

development and deployment model has gained popularity recently and is offered by major

cloud providers (e.g. AWS Lambda, Google Cloud Functions, and Azure Functions). With

FaaS, developers implement their applications’ business logic in one of the languages and web

frameworks supported by the providers’ FaaS runtime, typically in the form of a function with

a specific input/output signature as the runtime requires. The runtime then handles lower-level

technical concerns like server provisioning, request routing, and load balancing.
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In the case of Panoptes, the target audience of algorithm runtimes is data scientists. Similarly

to the FaaS model, data scientists would like to implement dataset shift detection algorithms

at the logical/mathematical level without being involved with lower-level technical details such

as the retrieval from the ML platform of the data necessary to execute the algorithm. By util-

ising a Faas-style algorithm implementation and the information provided by the orchestrator,

algorithm runtimes have all the necessary information to retrieve the correct data, execute the

algorithm and feed the result back to the orchestrator.

After receiving the result of the algorithm execution, the orchestrator checks whether an action

needs to be executed based on the PDL model of the monitoring workflow. Similarly to the

execution of algorithms, action executions are handled by action services. The main difference is

that for action executions, data scientists do not need to provide any part of the implementation.

Despite that, action executions can still be parametrised as needed. In the case of the call

centre scenario, for example, an action service that handles email notifications would need the

recipient’s email address.

More details about the information that the platform-specific components receive are provided

in Chapter 4. Additionally, Chapter 5 provides more technical details in the context of the

reference implementation of Panoptes.

3.5 Design Decisions

This section covers the major design decisions and how they contribute to the desired quality

attributes.

3.5.1 Component Interfacing

In order to achieve portability and extensibility, Panoptes has been designed on the basis of

the service-oriented and event-driven architectural patterns. The following is an explanation of

how these architectural patterns aid in achieving the stated goals:
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In a service-oriented architecture, a system is implemented as a collection of software com-

ponents, known as services, that communicate with each other over a network. Each service

provides a specific functionality and can be accessed and used independently by other services

or external applications. Additionally, each service exposes its functionality through a stan-

dardised interface and hides its implementation details. This aids in the loose coupling of the

services and makes it feasible to replace existing services or add new ones without affecting the

overall system.

The loose coupling attribute that the service-oriented architectural pattern offers, make it suit-

able for Panoptes’ needs. An organisations’ software engineers can add new functionality in

the ML Platform and integration layers in the form of new services, without having to be con-

cerned about the inner workings of the MDE layers, thus enabling extensibility. Additionally,

the services that constitute the MDE layer can be deployed in different environments, such as

cloud or on-premise infrastructure, which makes the solution portable.

In the context of Panoptes, the event-driven architectural pattern is also critical and comple-

ments the service-oriented architectural pattern well. At its core, an event-driven system is

predicated on producing, detecting, consuming, and reacting to events. In this context, an

event refers to a change in state or a significant occurrence within a system. For example,

logging a new call would be an event in the call centre scenario. This paradigm facilitates sys-

tems to respond in real-time to specific triggers, promoting decoupling between components,

enhancing flexibility and ensuring the system is robust to evolving needs.

From a technical point of view, the following are the main points of an event-driven architecture:

Message-based: Events are serialised in a specific format to be passed between various

services.

Producers: Services that generate or produce events. In the call centre example, a call

logging service would be an event producer.
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Consumers: Services that are interested in specific events and react to them. They listen

for and handle the events they are interested in. In the call centre example, the orchestrator

would be an event consumer.

Event channel: A system that transports the events from producer to consumer. This can

be implemented in various ways, including message queues, enterprise messaging systems, or

even simpler constructs like in-memory queues. This design allows the producer of an event to

be agnostic towards the consumer; it just emits the event. Likewise, the consumer does not

need to know who the producer is; it just listens for the event.

The adoption of event-driven architecture further enhances the portability and extensibility of

Panoptes. The orchestrator can consume and produce a specific set of events in a standardised

format. As long as the message format is followed, it becomes feasible to substitute individual

components without changing the rest of the system. This also means the orchestrator can

be deployed on different computing infrastructures or cloud providers with minimal friction.

Extensibility is also enhanced as additional algorithm runtime and action services can be added

as long as they can consume the events produced by the orchestrator and produce the events

that the orchestrator expects.

3.5.2 Panoptes Description Language

Developing a DSL is a strategic decision in our proposed solution to facilitate the distinct roles

of data scientists and software engineers. A DSL caters specifically to a particular domain or

area of interest, and in our context, it targets the domain of ML model monitoring.

The key benefit of implementing a DSL in this scenario is its ability to support the specification

of monitoring workflows at a high level of abstraction. Instead of burdening data scientists with

the intricate details of the software implementation or the underlying infrastructure, a DSL

abstracts these complexities. Data scientists can define the requirements of their monitoring

workflows using familiar concepts. This reduces the learning curve and allows data scientists
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to express their monitoring logic concisely and accurately.

In terms of concern separation, offering a DSL allows Panoptes to erect clear boundaries be-

tween the responsibilities of data scientists and software engineers. Data scientists are empow-

ered to focus solely on the domain logic – defining how dataset shift should be detected, the

detection thresholds, and the desired corrective actions. Conversely, software engineers can

concentrate on the ML platform’s technical aspects, ensuring, for example, that it achieves the

required performance levels. This separation simplifies the workflow and reduces the potential

for miscommunication.

A stable DSL can also offer inherent portability. Once a monitoring workflow model is con-

structed using the DSL, its logic remains consistent even if there is a change to the other

components of the system. This means that data scientists do not need to reimplement their

monitoring workflows when software engineers need to migrate the solution across different ML

platforms or infrastructures.

3.5.3 Separation of Orchestrator and Platform-specific components

The orchestrator stands at the centre of the proposed solution. It serves as an intermediary,

bridging the gap between high-level monitoring workflow specifications by data scientists, as

described in the DSL, and the platform-specific components that ensure the execution of these

specified tasks. The decision to architect Panoptes as a set of distributed services instead

of a monolith is essential for achieving the goals of portability, separation of concerns, and

extensibility.

Separation of Concerns

The orchestrator is instrumental in separating concerns between data scientists and software

engineers. The previous subsection mainly focused on the benefits data scientists receive from

using the DSL. Complementary to that are the benefits software engineers receive from the
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separation of concerns that the orchestrator, coupled with the DSL, enables. Since the orches-

trator produces a standardised set of event messages documented by the language engineers

in charge of the orchestrator, the software engineers only need to implement web services that

respond to those without needing to delve into the details of the ML monitoring domain or

have experience with MDE and DSLs. This arrangement means that data scientists are insu-

lated from the underlying technical complexities of executing these workflows, allowing them

to remain focused on the scientific and algorithmic aspects. Conversely, software engineers,

who are more attuned to these complexities, can channel their expertise into developing and

refining the platform-specific components without needing to delve into the intricacies of the

ML model or its monitoring workflows.

Portability

The orchestrator’s design is intentionally decoupled from any specific ML platform or platform-

specific components. This modular design ensures that the core logic and functionality of the

orchestrator remain consistent, regardless of the underlying infrastructure.

For instance, consider a scenario where an organisation decides to migrate from one cloud

provider to another, or even from a cloud-based solution to an on-premises one. In such cases,

the orchestrator remains unaffected. As long as the new ML platform and accompanying

platform-specific components adhere to the standardised interface, all monitoring workflows

can continue to be executed without any necessary modifications. This flexibility reduces

engineering effort and ensures a smoother transition between computing infrastructures.

Extensibility

The modular nature of the orchestrator and the platform-specific components contribute to the

solution’s extensibility. On the one hand, software engineers can easily support new languages

for implementing algorithms by developing additional algorithm runtimes. Likewise, as data

scientists innovate and develop new dataset shift detection algorithms, they can seamlessly inte-
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grate these into monitoring workflows, confident that the orchestrator and algorithm runtimes

will manage their execution.

3.6 Chapter Summary

This chapter has presented an architectural overview of the proposed solution for monitoring

ML models, focusing on effective collaboration between data scientists and software engineers,

enabled by the work of language engineers. The architecture contains three dictinct layers, the

ML platform layer, the MDE layer and the integration layer. Through the deliberate design

decisions documented in this chapter, the solution achieves the three desired quality attributes

of portability, extensibility and separation of concerns that are set as the objectives of this

thesis. Building on this chapter, Chapter 4 covers how PDL expresses the different aspects

of the modelled domain and Chapter 5 covers the technical considerations that went into the

reference implementation of Panoptes.



Chapter 4

Panoptes Description Language

This chapter introduces the Panoptes Description Language (PDL). This is the DSL specifically

designed for the domain of ML monitoring workflows. Both the PDL metamodel and its textual

syntax are covered.

4.1 Core

Before discussing anything related to dataset shift, some core classes must be introduced to the

DSL’s metamodel. These classes lay the foundation by representing the available ML models,

the inputs used to train them, their outputs, and whether they are currently deployed and

serving prediction requests. Figure 4.1 shows the classes discussed in this subsection.

The first core class is Platform. A Platform instance is the top-level element in a PDL model.

It represents the infrastructure that hosts all ML-related components. A Platform directly con-

tains instances of Model, FeatureStore, AlgorithmRuntime, Algorithm, Action and Deployment.

An ML platform can be utilised to deploy one or more ML models in production. Over time, as

more data become available and more advanced ML techniques are developed, data scientists

might choose to replace an older ML model with a newer one. This can be hidden from any

downstream service that consumes the predictions of an ML model.

51
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Figure 4.1: Core classes of the PDL Metamodel.

A distinction has been made between the Deployment and Model classes to accurately represent

this. Model instances represent ML models regardless of whether they are currently being used

in production or not. A Model references one or more Features and a Prediction to express an

ML model’s inputs and output, respectively. Additionally, a Prediction references a Label that

represents the ground truth values the ML model tries to predict. Since the Feature, Prediction

and Label classes are all related to the input and output of ML models, they subclass the

abstract class ModelIO.

On the other hand, Deployment instances represent a specific task that can leverage an ML

model, such as predicting customer satisfaction in the call centre example. Each Deployment

references a Model instance, representing the current ML model used to accomplish the task.

Finally, the concept of a feature store is introduced to express the fact that multiple ML models

can use each feature, and those ML models might attempt to predict the values of the same

variable. Feature stores are represented in the metamodel by the FeatureStore class whose

instances contain multiple Feature and Label instances so that they can be referenced by as
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many Model instances as needed.

With the metamodel classes introduced so far, an initial model of the call centre scenario

can be constructed. In the rest of the chapter, PDL models will be presented in a textual

concrete syntax that was developed using Xtext [66]. The full grammar of this concrete syntax

is available in Appendix A. As will be discussed in chapter 5, the overall system is architected

in such a way that the concrete syntax of PDL is loosely coupled with the rest of the system

so that adding an additional concrete syntax is relatively easy.

Listing 4.1 shows the initial PDL model for the call centre scenario Model elements are defined

by the name of their class, followed by the name of the instance and brackets that include

the attribute values and references of the instance. In this example, Lines 1-5 define a Model

instance named callcentreDecisionTree. Line 2 specifies the Features that this Model references

using the keyword ”uses”, line 3 defines the Model’s Prediction using the keyword ”outputs”.

Line 4 specifies the Label that the Prediction references using the keyword ”predicts”. Lines

7-14 define a FeatureStore instance, with lines 8-11 defining the three Features referenced by

the afformentioned Model using the keyword ”features”. Lines 12-14 define the Label referenced

by the Model’s Prediction using the keyword ”labels”. Finally, lines 16-18 define a Deployment

instance named callcentreDeployment, with line 17 showing the Model that the Deployment

references using the keyword ”model”.

4.2 Dataset Shift

This subsection introduces the metamodel classes used to specify the policies for detecting

dataset shift and the subsequent application of corrective actions. These can be seen in Figure

4.2.

To detect dataset shift, data scientists implement algorithms using general-purpose languages

and create Algorithm instances to represent them in a PDL model. For example, Listing 4.2

shows a Python [70] script that uses the Kolmogorov-Smirnov [71] statistical test to check if

two datasets are sampled from the same underlying statistical distribution and lines 18-23 in
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1 Model callcentreDecisionTree{

2 uses wait_duration , service_duration , is_solved

3 outputs callcentreDecisionTreePrediction

4 predicts is_happy

5 }

6
7 FeatureStore{

8 features

9 wait_duration ,

10 service_duration ,

11 is_solved

12 labels

13 is_happy

14 }

15
16 Deployment callcentreDeployment{

17 model callcentreDecisionTree

18 }

Listing 4.1: PDL model showcasing the metamodel’s core classes.

Listing 4.3 show the corresponding Algorihtm instance. Notice how the script does not seem

complete. Specifically, the script only defines a function that expects specific arguments and

returns certain values based on the result of the statistical test. There is no code for fetching

the relevant data and passing it to the function or any code that shows how the returned result

is used.

Filling in the gaps mentioned above is the responsibility of algorithm runtimes. These are

components of the ML platform implemented by software engineers capable of fetching data

from an ML platform’s data store, executing algorithms and handling the results of the execu-

tion. The developer of an algorithm runtime documents the requirements that the supported

algorithm implementations must fulfil and makes them available to data scientists. In line 20

of Listing 4.3, for example, we can see that the “kolmogorovSmirnov” Algorithm references the

“pythonFunction” AlgorithmRuntime. This runtime requires the algorithm to be implemented

as a Python function with the input/output signature seen in Listing 4.2. Further technical

details about algorithm runtimes are given in Chapter 5.

Given the attributes of the Kolmogorov-Smirnov algorithm, we can apply it to the call centre

scenario to monitor the values of the “wait duration” variable against covariate shift. For this,

the algorithm needs to receive as inputs the values of the “wait duration” variable in the training
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Figure 4.2: Classes of the PDL Metamodel related to Dataset Shift.
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1 from scipy import stats

2
3 def ksTest(trainSet , liveSet , parameters):

4 pValue = stats.ks_2samp(trainSet , liveSet))[1]

5 if pValue < parameters[’pValue ’]:

6 return 1, pValue

7 else:

8 return 0, pValue

Listing 4.2: Dataset shift detecting algorithm implementation in Python.

set and in recent prediction requests received by the deployed ML model. Information regarding

the inputs of an algorithm to apply it in a specific scenario is contained in AlgorithmExecution

instances, as seen for examples in lines 32-38 of Listing 4.3. Additionally, algorithms can be

parameterised. The names of the parameters are defined in the Algorithm definition (e.g. line

22 of Listing 4.3), and their values are provided in the AlgorithmExecution (e.g. line 36 of

Listing 4.3). The algorithm runtime passes the parameter values to the algorithm along with

the rest of the inputs. Finally, AlgorithmExecutions also include a mapping that links the

algorithm execution results to the relevant action execution (e.g. line 37 of Listing 4.3).

Related to the execution of actions in response to dataset shift are the Action and ActionExecu-

tion classes. An example of an action is sending an email notification to the data scientist that

trained the affected ML model. Similarly to algorithm runtimes, action execution functionality

is provided by specific software components in the underlying ML platform. These components

are represented by Action instances in PDL models.

Based on the same principle that links Algorithms with AlgorithmExecutions, while Action

instances represent a capability of the underlying platform, its usage is represented by an

ActionExecution instance that parametrises the Action to fit in the context of a particular

scenario. As an example, lines 40-43 of Listing 4.3 show the “emailMe” ActionExecution that

uses the “email” Action defined in lines 25-27. The ActionExecution is parametrised in line 42

with the email address of the intended email recipient.
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1 Model callcentreDecisionTree{

2 uses wait_duration , service_duration , is_solved

3 outputs callcentreDecisionTreePrediction

4 predicts is_happy

5 }

6
7 FeatureStore{

8 features

9 wait_duration ,

10 service_duration ,

11 is_solved

12 labels

13 is_happy

14 }

15
16 BaseAlgorithmRuntime PythonFunction

17
18 BaseAlgorithm kolmogorovSmirnov{

19 codebase "http :// repo.com/kolmogorov -smirnov"

20 runtime PythonFunction

21 severity levels 2

22 parameters pValue

23 }

24
25 Action email{

26 parameters email

27 }

28
29 Deployment callcentre{

30 model callcentreDecisionTree

31
32 BaseAlgorithmExecution ksWaitTime{

33 algorithm kolmogorovSmirnov

34 live data wait_time

35 historical data wait_time

36 parameter values pValue = 0.05

37 actions 1->emailMe

38 }

39
40 ActionExecution emailMe{

41 action email

42 parameter values email=user@company.com

43 }

44 }

Listing 4.3: PDL model showing a simple dataset shift detection scenario.
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4.2.1 Base and Higher Order Algorithms

Algorithm, AlgorithmExecution and AlgorithmRuntime are abstract classes. So far, the ex-

amples showcase the subclasses BaseAlgorithm, BaseAlgorithmExecution and BaseAlgorithm-

Runtime. Instances of BaseAlgorithm represent algorithms that can detect dataset shift from

ModelIO values (i.e. features, predictions and labels) in the training and live datasets. On the

other hand, HigherOrderAlgorithm instances represent algorithms that take as input a set of

outputs from the execution of another algorithm.

As Listing 4.2 shows, the execution of a base algorithm returns a pair of values. The first

value is an integer representing the presence and severity of dataset shift. It corresponds to the

“keys” of the result-action execution map of the algorithm executions that utilise the algorithm.

The possible values must be in the [0,N) range where N is the severity levels attribute of the

relevant Algorithm instance. The second return value of the algorithm is the “raw result” and

is meant to be used as input to higher-order algorithms for further analysis.

Listing 4.4 shows how a HigherOrderAlgorithm can be used. It expresses a scenario where a

data scientist wants to increase covariate shift detection robustness by considering the last N

execution results of the abovementioned Kolmogorov-Smirnov algorithm. An example algo-

rithm that can be used for this is the exponential moving average that calculates a weighted

average of the results, with more recent results having a higher weight.

From this listing, one can notice that a HigherOrderAlgorithmExecution has a few differences

compared to a BaseAlgorithmExecution. One needs to define the AlgorithmExecution (Base or

HigherOrder) whose output will serve as the input of the newly created HigherOrderAlgorith-

mExecution (seen in line 39 of Listing 4.4). In addition, the minimum and maximum number

of observations must be defined (seen in lines 41-42 of Listing 4.4).
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1 Model callcentreDecisionTree{

2 uses wait_duration , service_duration , is_solved

3 outputs callcentreDecisionTreePrediction

4 predicts is_happy}

5
6 FeatureStore{

7 features wait_duration , service_duration , is_solved

8 labels is_happy}

9
10 BaseAlgorithmRuntime PythonFunction

11
12 BaseAlgorithm kolmogorovSmirnov{

13 codebase "http :// repo.com/kolmogorov -smirnov"

14 runtime PythonFunction

15 severity levels 2

16 parameters pValue}

17
18 HigherOrderAlgorithmRuntime higherOrderPythonFunction

19
20 HigherOrderAlgorithm exponential -moving -average{

21 codebase "http :// repo.com/exponential -moving -average"

22 runtime higherOrderPythonFunction

23 parameters alpha ,threshold

24 severity levels 2}

25
26 Action email{

27 parameters email}

28
29 Deployment callcentre{

30 model callcentreDecisionTree

31
32 BaseAlgorithmExecution ksWaitTime{

33 algorithm kolmogorovSmirnov

34 live data wait_time

35 historical data wait_time

36 parameter values pValue = 0.05}

37
38 HigherOrderAlgorithmExecution ema -service -duration{

39 algorithm exponential -moving -average

40 observed execution ksWaitTime

41 min observations 3

42 max observations 3

43 parameter values alpha = 0.5, threshold = 0.05

44 actions 1->emailMe}

45
46 ActionExecution emailMe{

47 action email

48 parameter values email=user@company.com}

49 }

Listing 4.4: PDL model showing the usage of higher order algorithms.
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Figure 4.3: Classes of the PDL metamodel related to scheduling.

4.3 Scheduling

An essential aspect of the modelled domain is defining the frequency of algorithm executions

and the subsequent execution of corrective actions as needed. For this purpose, classes that

represent various triggers and classes that represent a combination of triggers are provided.

More specifically, TemporalTrigger, SampleBasedTrigger, PredictionBasedTrigger, and Label-

BasedTrigger can express the frequency of one or more algorithm executions in terms of how

long it has been since the latest execution, how many unlabelled samples have been received,

how many predictions have been served and how many labels have been received for previously

unlabelled samples respectively. For more complex scenarios, data scientists can create Com-

positeTrigger instances containing up to one instance for each kind of individual trigger and

represent scenarios in which the requirements must be met for multiple individual triggers si-

multaneously. Lastly, CompositeTrigger instances can be grouped in a TriggerGroup instance.

A TriggerGroup instance tracks which BaseAlgorithmExecution is to be executed when the

requirements for at least one of the contained TriggerGroups are met.



4.4. Validation 61

Lines 51-53 of Listing 4.5 shows a trigger group has been added to the “callcentre” Deployment

to showcase all possible combinations. It should be noted that trigger groups only trigger base

algorithm executions as higher order algorithm executions are triggered indirectly when the

algorithm execution they observe executes (provided that the observed algorithm execution

has been triggered at least the minimum number of times required).

4.4 Validation

Although the metamodel of PDL already captures certain typing and cardinality constraints,

there is still the possibility of creating a model that contains errors according to the semantics

of the domain. This Section discusses a series of constraints, based on the semantics of the

domain, that are used to validate PDL models. This section also explains certain parts of the

metamodel that have yet to be presented. These are not necessary to describe dataset shift

strategies, but including them in a PDL model enables the error detection features.

Listing 4.6 shows an example PDL model that uses features of the DSL that enable the optional

feature and type validation.

4.4.1 Feature Validation

Feature validation ensures that every deployment uses a suitable ML model. This is true when

every feature used as input by the ML model is retrievable from the deployment’s inputs. This

validation can prove valuable when a deployment transitions to a newer ML model utilising

more or different features to ensure compatibility with the existing prediction consumers.

For instance, in the call centre scenario, for a specific call, one can retrieve the associated

“wait duration”, “service duration”, and “is solved” values. Thus, instead of sending the actual

values of the variables, a prediction requester can send just a “call ID” that can be used

to uniquely identify the call and retrieve all the necessary inputs for a customer satisfaction

prediction. If additional features are available per call, these can be added as inputs to a
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1 Model callcentreDecisionTree{

2 uses wait_duration , service_duration , is_solved

3 outputs callcentreDecisionTreePrediction

4 predicts is_happy}

5
6 FeatureStore{

7 features wait_duration , service_duration , is_solved

8 labels is_happy}

9
10 BaseAlgorithmRuntime PythonFunction

11
12 BaseAlgorithm kolmogorovSmirnov{

13 codebase "http :// repo.com/kolmogorov -smirnov"

14 runtime PythonFunction

15 severity levels 2

16 parameters pValue}

17
18 HigherOrderAlgorithmRuntime higherOrderPythonFunction

19
20 HigherOrderAlgorithm exponential -moving -average{

21 codebase "http :// repo.com/exponential -moving -average"

22 runtime higherOrderPythonFunction

23 parameters alpha , threshold

24 severity levels 2}

25
26 Action email{

27 parameters email}

28
29 Deployment callcentre{

30 model callcentreDecisionTree

31
32 BaseAlgorithmExecution ksWaitTime{

33 algorithm kolmogorovSmirnov

34 live data wait_time

35 historical data wait_time

36 parameter values pValue = 0.05}

37
38 HigherOrderAlgorithmExecution emaWaitTime{

39 algorithm exponential -moving -average

40 observed execution ksWaitTime

41 min observations 3

42 max observations 3

43 parameter values alpha = 0.5, threshold = 0.05

44 actions 1->emailMe}

45
46 ActionExecution emailMe{

47 action email

48 parameter values email=user@company.com}

49
50 Trigger t1{

51 every 100 samples 100 predictions 100 labels

52 or every one day

53 execute ksWaitTime}

54 }

Listing 4.5: PDL model showing a dataset shift detection scenario with scheduling.
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1 FeatureStore{

2 entities

3 call{keys callID}

4 request data additional_data

5 features

6 wait_duration:continuous{requires entities call},

7 service_duration:continuous{requires entities call},

8 is_solved:categorical{requires entities call},

9 additional_feature{requires request data additional_data}

10 labels

11 is_happy:categorical

12 }

13
14 Model callcentreDecisionTree{

15 uses wait_duration , service_duration , is_solved

16 outputs happiness_prediction

17 predicts is_happy

18 }

19
20 BaseAlgorithmRuntime PythonFunction

21
22 BaseAlgorithm kolmogorovSmirnov{

23 codebase "http :// repo.com/kolmogorovsmirnov"

24 runtime PythonFunction

25 severity levels 2

26 accepts only continuous

27 parameters mandatory pValue:Real

28 }

29
30 Action email{

31 parameters mandatory email:String

32 }

33
34 Deployment callcentre{

35 inputs callID

36 model callcentreDecisionTree

37
38 BaseAlgorithmExecution ksWaitTime {

39 algorithm kolmogorovSmirnov

40 live data service_duration

41 historical data service_duration

42 actions 1->emailMe

43 parameter values pValue = 0.05

44 }

45
46 ActionExecution emailMe{

47 action email

48 parameter values email=user@company.com

49 }

50
51 Trigger t1{

52 every 100 samples

53 execute ksWaitTime

54 }

55 }

Listing 4.6: PDL model utilising validation features.
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newer version of the satisfaction prediction ML model while keeping the data that prediction

consumers have to send unchanged.

This is reflected in the PDL metamodel with a pattern already familiar to data scientists using

a feature store in their workflow. Every Feature can reference zero or more Entities. An Entity

represents a concept in the domain within which a data scientist builds a predictive model,

for example, a call in the call centre scenario. Entities contain one or more Keys which can

uniquely identify them. Keys can also be referenced by a Deployment as inputs. For a PDL

model to be valid, every Deployment must reference the relevant Keys such that all features

that the Deployment’s referenced Model uses can be retrievable.

Alternatively, some features are calculated on-the-fly based on data only available when a

prediction is requested. This, for example, could be a search query that a user submits to a

search engine. This is represented in the PDL metamodel by the RequestData class. If a Feature

references a RequestData instance, this must also be referenced as input by any Deployment

that uses an ML Model that uses said Feature.

Algorithm 1 shows in pseudocode the validation steps performed for feature validation.

Algorithm 1 Feature Validation

function checkDeploymentInputs(deployment)
deploymentInputs ← deployment.getInputs()
mlModel ← deployment.getMLModel()
features ← mlModel.getInputs()
for each feature in features do

entities ← feature.getEntities()
for each entity in entities do

keys ← entity.getKeys()
for each key in keys do

if key not in deploymentInputs then
warning()

requestData ← feature.getRequestData()
for each requestDatum in RequestData do

if requestDatum not in deploymentInputs then
warning()
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4.4.2 Parameter validation

Instances of Parameter are contained by Algorithm and Action instances to denote that they

are parameterisable at runtime. An additional model validation procedure that can be per-

formed with regard to Parameters consists of checking that the ParameterValueMap contained

in AlgorithmExecution and ActionExecution instances have valid keys-value entries based on

the Algorithm or Action that the Execution references. For example, in Listing 4.6, the kol-

mogorovSmirnov BaseAlgorithm contains a Parameter named “pValue” of type “Real”. There-

fore it should be checked that every AlgorithmExecution that references this BaseAlgorithm

contains a ParameterValueEntry with “pValue” as the key and a value that is a valid real

number. Additionally, we check that every Parameter denoted as mandatory is given a value.

Algorithm 2 shows in pseudocode the steps performed to verify that every mandatory parameter

is given a value and that those values are valid according to the expected data types.

4.4.3 Statistical Type Validation

The last type of validation checks that every BaseAlgorithmExecution takes in as input valid

ModelIO based on the selected BaseAlgorithm. To enable this check, the type attribute of Fea-

ture and Label instances can optionally be given a value. This type attribute is enumerative.

It can take the values continuous, categorical and orderedCategorical that correspond to the

different types of statistical variables found in the literature [21]. Additionally, BaseAlgorithms

can optionally be given one or more values of the same enumerative type in their supported-

Types attribute. Based on this information, we can validate whether the ModelIO instances

referenced by a BaseAlgorithmExecution are of suitable statistical type for the BaseAlgorithm

used. Additionally, the strict attribute of a BaseAlgorithm is can be set. Depending on its

value, only a warning will be generated in case of statistical variable type mismatch instead of

an error, which will not cause the rejection of the validated PDL model but still notify the user

of the potential problem.

For example, in line 26 of Listing 4.6, the keywords “accepts only” specify that the kolmogorovS-
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Algorithm 2 Parameter Validation

function checkMandatory(execution)
algorithm ← execution.getAlgorithm()
parameters ← algorithm.getAdditionalParameters()
parameterValueMap ← execution.getParameterValueMap()
for each parameter in parameters do

if parameter.isMandatory() then
for each entry in parameterValueMap do

if parameter not in parameterValueMap then
error()

function checkDataTypes(execution)
algorithm ← execution.getAlgorithm()
parameters ← algorithm.getAdditionalParameters()
parameterValueMap ← execution.getParameterValueMap()
for each entry in parameterValueMap do

key ← entry.getKey()
value ← entry.getValue()
for each parameter in parameters do

if key = parameter.getName() then
parameterType ← parameter.getType()
break;

if parameterType = ”Integer” then
checkValidInteger(value)

else if parameterType = ”Boolean” then
checkValidBoolean(value)

else if parameterType = ”Real” then
checkValidReal(value)
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mirnov BaseAlgorithm only supports continuous statistical variables as inputs. This is because

while variants of the Kolmogorov-Smirnov statistical test can be used for statistical variables

of ordered categorical type [72], the algorithm implementation shown in Listing 4.2 depends on

the Kolmogorov-Smirnov implementation found in the SciPy Python package [73] which only

supports continuous statistical variables. This could lead to errors that are difficult to detect

since the data scientist that implemented the algorithm could be other than the one using the

algorithm to detect covariate shift in a specific context. To avoid this situation, this type of

validation is provided.

Algorithm 3 shows in pseudocode the steps that are taken to verify that the currentIOValues

and historicalIOValues that are referenced by BaseAlgorithmExecutions have valid statistical

types for the selected BaseAlgorithm.

Algorithm 3 Statistical Type Validation

function checkStatisticalTypes(execution)
algorithm ← execution.getAlgorithm()
supportedTypes ← algorithm.getSupportedTypes()
strict ← algorithm.isStrict()
currentIOValues ← execution.getCurrentIOValues()
for each io in currrentIOValues do

statisticalType ← io.getType()
if statisticalType not in supportedTypes then

if strict then
error()

else
warning()

historicalIOValues ← execution.getHistoricalIOValues()
for each io in historicalIOValues do

statisticalType ← io.getType()
if statisticalType not in supportedTypes then

if strict then
error()

else
warning()
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4.5 Editing Support

To provide data scientists with a simple user experience for creating PDL models and submiting

them to the orchestrator, an Xtext-based web editor was developed. As shown in figure 4.4,

the editor offers various convenient features such as syntax highlighting, syntax error detection

and auto-completion.

The syntax error detection, which is automatically generated from the Xtext grammar file, does

not cover the kind of semantic validation described in the previous section. To cover this, a

custom validation class that implements the algorithms presented in the previous section was

created. In this manner, the editor backend service continuously performs model validation

and users are given immediate feedback while editing.

Another nice feature of a web-based editor is that it does not require installation. When the

user has finished creating or updating a PDL model, the editor backend service parses the

textual syntax and generates an equivalent model in XMI. The XMI document is then sent to

the orchestrator to be processed. Following this pattern, the orchestrator only needs to support

XMI, while multiple concrete syntaxes can be developed based on users’ preferences.

4.6 Chapter Summary

This chapter introduced the Panoptes Description Language (PDL), which is designed to fa-

cilitate the deployment of ML monitoring workflows. The chapter provided an overview of

the PDL metamodel and textual syntax that can be used to specify the different aspects of a

monitoring workflow. The chapter also documents the model validation features of PDL that

aid data scientists in the specification of error-free PDL models. The next chapter focuses on

the technical aspects of Panoptes, which have only been lightly covered in this chapter.
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Figure 4.4: The Panoptes web editor user interface.



Chapter 5

Monitoring of ML Systems

This chapter covers the technical decisions that must be made to produce a concrete imple-

mentation of Panoptes from the conceptual description presented in Chapters 3 and 4, which

leaves certain technical decisions undefined since these can vary between implementations.

The rest of the chapter is structured as follows: Section 5.1 covers the infrastructure used as a

base to develop the reference implementation. Section 5.2 covers the serialisation format of the

different events exchanged between the various components. The rest of the chapters’ sections

then cover the technical details of all the major components of a Panoptes implementation as

well as the process that can be followed to adopt Panoptes.

5.1 Base Infrastructure

Chapter 3 described the Panoptes architecture as service-oriented and event-driven. However,

to satisfy the requirements of these high-level architectural styles, there are various practical

decisions that an implementer has to make. The reference implementation uses modern, cloud-

native technologies to implement Panoptes as a set of loosely coupled containerised web services.

In the interest of making Panoptes easier for organisations to adopt, the usage of well-established

technologies was deemed important. All the technologies described in this section are industry-

70
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standard, open-source technologies, hosted by the Cloud-Native Computing Foundation (CNCF).

The CNCF is a non-profit organisation that in addition to hosting the development of cloud-

related open source projects, offers additional services such as training and certification pro-

grams.

5.1.1 Kubernetes

Kubernetes is an open-source container orchestration platform designed to automate the de-

ployment, scaling, and management of containerised applications. It was initially developed by

Google but has been donated to CNCF, which oversees its development and keeps the project

vendor-neutral. Kubernetes has become a cornerstone in the world of cloud-native applications,

offering a robust and extensible framework for managing complex systems at scale.

Central to Kubernetes is the concept of containers. Containers are lightweight, standalone, and

executable software packages encompassing an application and all its dependencies, ensuring

consistent environments across different development and deployment stages. This consistency

is particularly valuable in service-oriented architectures, where an application is decomposed

into small, independent services that run in their own containers.

Kubernetes plays a pivotal role in the implementation and management of service-oriented

architectures by providing the following valuable features:

Service Discovery and Load Balancing: In a service-oriented architecture, services need

to discover and communicate with each other. Kubernetes provides built-in service discovery,

allowing services to find each other by name and load balancing to distribute traffic among

multiple service instances.

Automatic Scaling: As demand for a particular service increases, Kubernetes can automat-

ically scale the number of container instances, ensuring the system can handle varying loads

without manual intervention.
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Self-healing: If a container or a node fails, Kubernetes can detect the failure and restart it

or reschedule it to a healthy node, ensuring high availability and resilience.

Rollouts and Rollbacks: Kubernetes facilitates continuous deployment and integration.

New versions of services can be rolled out gradually, and if issues arise, rolled back to a previous

stable version.

Configuration and Secret Management: In a service-oriented architecture, services often

require configuration data or secrets (like API keys). Kubernetes provides mechanisms to

manage and inject these configurations and secrets, ensuring security and consistency.

Resource Management: Kubernetes allows for setting CPU and memory quotas for con-

tainers, ensuring that each service gets the resources it needs and that no single service can

monopolise shared resources.

In conclusion, Kubernetes, with its rich set of features tailored for container management, has

emerged as an indispensable tool for implementing service-oriented architectures. By providing

automated deployment, scaling, and management capabilities, Kubernetes ensures that SOA

principles can be realised with efficiency, resilience, and scalability in the modern cloud-native

landscape.

5.1.2 KNative

KNative is an open-source platform that extends Kubernetes to provide a set of middleware

components for serverless applications. It aims to simplify the complexities associated with

building, deploying, and running cloud-native applications, allowing developers to focus on

writing code without the intricacies of the underlying infrastructure. KNative includes two

main components:
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Serving: Provides a rapid deployment model with features like automatic scaling, rollouts,

and rollbacks. It ensures that applications can scale to zero when not in use, optimising resource

utilisation.

Eventing: Facilitates the creation of event-driven applications by offering primitives to con-

sume and produce events. It supports various event sources and allows for flexible event routing.

For the implementation of the event-driven aspects of the Panoptes architecture, KNative’s

eventing component was instrumental by providing the following functionality:

Event Sources: KNative supports a plethora of event sources, from traditional ones like

databases and message queues to cloud-native sources such as cloud storage and analytics

platforms. This flexibility allows systems to react to a diverse set of stimuli.

Event Routing: Once an event is detected, it needs to be routed to the appropriate service or

function. KNative’s eventing component provides mechanisms to filter and route these events

based on their attributes, ensuring they reach the right destination.

In conclusion, KNative, with its robust serving and eventing components, has emerged as a

cornerstone in the development of event-driven architectures in the cloud-native ecosystem. By

abstracting the complexities of infrastructure management and providing tools to seamlessly

integrate events into applications, KNative empowers developers to build responsive, scalable,

and resilient systems.

5.2 Event Serialization Format

Another practical decision that needed to be made for the reference implementation of Panoptes

was the serialisation format of the events that the various services need to produce and consume.

All serialised events follow the CloudEvents v1.0 specification, the format supported by KNative

eventing.
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The CloudEvents specification is designed to help ease event declaration and delivery across

services. The specification details how an event should be formatted. An event generally has

a number of attributes which can be used to describe the event. An event has the following

attributes:

Data: Contains the event payload. The schema of this is usually application-specific.

Data Content Type: Describes the data content type. For example, application/json.

Id: A unique identifier for the event.

Source: Identifies the context in which an event happened, usually a URI.

Specversion: The version of the CloudEvents specification which the event uses.

Type: Describes the type of event related to the originating occurrence.

Time: Timestamp of when the event happened.

Subject: Describes the subject of the event in the context of the event producer.

Extensions: Additional metadata without a prescribed meaning. These are named using

lowercase alphabetic characters.

The CloudEvents spec does not mandate a transport protocol but defines several bindings,

including HTTP, AMQP, MQTT, Kafka, and NATS. These bindings help ensure consistency

when transmitting CloudEvents over different protocols.

Additionally, an event can be serialised using one of two content modes. In structured content

mode, the event is serialised into a document, and the document is transported as the transport
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protocol’s message body. In binary content mode, the event attributes are mapped to message

protocol headers/metadata, and the event data is transported as the message body without

modification.

For the Panoptes implementation, events were serialised in structured content mode and trans-

ported over HTTP in the Json data format. In the following sections that discuss the technical

details of the various Panoptes components, the different messages that each component pro-

duces will also be given.

5.3 ML Platform Implementation

As discussed in Chapter 2, an ML platform comprises multiple components supporting the

stages of the typical ML workflow. The ML platform is a component that exists independently

of Panoptes but still needs to produce the events that the orchestrator expects. As a proof of

concept, a minimal ML platform has been implemented to show how the interfacing of Panoptes

deployments with pre-existing ML platforms can be approached. This ML platform was also

utilised to conduct the empirical studies presented in Chapter 6.

The implementation of the example ML platform was based on Kubeflow. Kubeflow is a

platform optimised for ML operations within a Kubernetes environment. It offers tools for

various stages of the ML lifecycle, from data preprocessing to model deployment. Kubeflow’s

integration simplifies the often complex process of managing ML workflows, making them more

accessible and scalable.

The component of Kubeflow most relevant for the minimal ML platform implemented to help

showcase Panoptes’ features is KServe, which is the component that offers ML model deploy-

ment functionality. A KServe inference service can produce events in the CloudEvent v1.0

format for every request it receives, making it easy to integrate with Panoptes.

Listings 5.1 and 5.2 show examples of the two kinds of events a KServe inference service can

produce. Listing 5.1 is an event produced when a request is received. On the other hand,
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1 {
2 "specversion" : "1.0",

3 "type" : "org.kubeflow.serving.inference.request",

4 "source" : <The URL of the Model Server >,

5 "subject": null,

6 "id" : <Random Identifier >,

7 "time" : <Time that the Event was emitted >,

8 "datacontenttype" : "application/json",

9 "data" : {
10 <The feature values used to produce the prediction >

11 }
12 }

Listing 5.1: KServe Request Logging Event.

1 {
2 "specversion" : "1.0",

3 "type" : "org.kubeflow.serving.inference.request",

4 "source" : <The URL of the Model Server >,

5 "subject": null,

6 "id" : <Random Identifier >,

7 "time" : <Time that the Event was emitted >,

8 "datacontenttype" : "application/json",

9 "data" : {
10 <The Model ’s prediction >

11 }
12 }

Listing 5.2: KServe Response Logging Event.

Listing 5.2 shows an event produced when a response is sent back.

As it can be seen in the listings, the events follow While the above events contain information

relevant to the orchestrator, they are not in a format that it supports. For this reason, the

events are first consumed by an event transformation service that receives the information and

produces equivalent events in the format that the orchestrator expects. Listings 5.3 and 5.4

show the events produced by the event transformation service.

In addition to the above, the ML platform is responsible for emitting one additional event

1 {
2 "specversion" : "1.0",

3 "type" : "org.lowcomote.panoptes.trigger.sample",

4 "source" : "eventTransformer",

5 "subject": null,

6 "id" : <Random identifier >,

7 "time" : <Time that the event was emitted >,

8 "datacontenttype" : "application/json",

9 "data" : {
10 "triggerType": "sample",

11 "count": <The number of samples in the request in case of batch prediction >,

12 "deployment": <The name of the deployment that this event is for >

13 }
14 }

Listing 5.3: Panoptes Sample Trigger Event.
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1 {
2 "specversion" : "1.0",

3 "type" : "org.lowcomote.panoptes.trigger.prediction",

4 "source" : "<The URL of the Model Server >",

5 "subject": null,

6 "id" : "<Random Identifier >",

7 "time" : "<Time that the Event was emitted >",

8 "datacontenttype" : "application/json",

9 "data" : {
10 "triggerType": "prediction",

11 "count": <The number of predictions in the response in case of batch prediction >,

12 "deployment": <The name of the deployment that this event is for >

13 }
14 }

Listing 5.4: Panoptes Prediction Trigger Event.

1 {
2 "specversion" : "1.0",

3 "type" : "org.lowcomote.panoptes.trigger.prediction",

4 "source" : "<The URL of the Model Server >",

5 "subject": null,

6 "id" : "<Random Identifier >",

7 "time" : "<Time that the Event was emitted >",

8 "datacontenttype" : "application/json",

9 "data" : {
10 "triggerType": "label",

11 "count": <The number of ground truth labels ingested >,

12 "deployment": <The name of the deployment that this event is for >

13 }
14 }

Listing 5.5: Panoptes Label Trigger Event.

whenever a ground truth label is ingested. Listing 5.5 shows the format of these events.

5.4 Panoptes Orchestrator

As discussed in Chapter 3, the orchestrator ingests the PDL models received from the model

editor and is responsible for implementing the runtime behaviour specified in them. While the

PDL metamodel is designed so that data scientists can conveniently specify how deployed ML

models are to be monitored, it does not provide the orchestrator with a way to keep track of its

internal state to determine when algorithm and action executions must be triggered. For this

reason, after the orchestrator receives a PDL model, it constructs Finite State Machine (FSM)

objects that directly map to the required runtime behaviour.

Specifically, an FSM object is constructed for every Deployment in a processed PDL model. As

shown in Figure 5.1, this FSM only has one state, labelled STANDBY, and multiple transitions
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STANDBY

Algorithm Execution Result 
A2

Algorithm Execution Result 
A1

Higher Order Algorihtm Activation 
A2

TriggerGroup
T1

Figure 5.1: Example FSM representation of a PDL model used by the orchestrator.

from STANDBY back to itself that are triggered based on the events ingested by the FSM.

Whenever a transition is triggered, an accompanying function is executed that sends out an

event message to either an algorithm runtime or action service as needed. Transitions are added

to the FSM according to the following rules:

• One transition is added for every TriggerGroup a Deployment contains. These trigger

whenever a base algorithm must be executed and will always send an event message to

the relevant algorithm runtime.

• One transition is added for every AlgorithmExecution a Deployment contains. These

trigger after an algorithm execution finishes. Based on the result of the execution, if an

action needs to be executed, a message is sent out to the relevant action service.

• One additional transition is added if the above AlgorithmExecution is a HigherOrderAlgo-

rihtmExecution. These trigger whenever the observed algorithm executes. If the observed

algorithm has been executed a sufficient number of times, a message is sent out to the

algorithm runtime of the higher-order algorithm.

For the transitions to be triggered at the right time, the ML platform need to sends the events

shown in the previous section message to the orchestrator whenever a monitoring-related event

occurs. These events correspond to the EventBasedTrigger classes. No external messages

are needed for TemporalTriggers since the orchestrator can independently keep track of the

amount of time passed since the last time a TriggerGroup transition was triggered. The events

corresponding to SampleBasedTriggers and PredictionBasedTriggers are emitted by a model
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1 {
2 "specversion" : "1.0",

3 "type" : "org.lowcomote.panoptes.higherOrderAlgorithmExecution.trigger",

4 "source" : "<The URL of the Model Server >",

5 "subject": <Name of the receiving runtime >,

6 "id" : "<Random Identifier >",

7 "time" : "<Time that the Event was emitted >",

8 "datacontenttype" : "application/json",

9 "data" : {
10 "name": <Name of the algorithm >,

11 "codebase": <Repository containing the algorithm ’s source code >

12 }
13 }

Listing 5.6: Algorithm Creation Request Event.

server when it responds to a prediction request. These inform the orchestrator that a new

sample has been received and was used to produce a new prediction. Events correspond-

ing to LabelBasedTriggers are emitted by any service that ingests a ground-truth label for

a previously served prediction. Once enough messages have been accumulated to satisfy the

TriggerGroupconditions, the transition occurs, and the corresponding counters are reset.

5.5 Algorithm Runtime Implementation

As mentioned in Chapter 4, algorithm runtime services are responsible for packaging the algo-

rithms that data scientists develop and executing them with the right inputs when asked by

the orchestrator.

For the packaging step, an algorithm runtime service must be able to ingest events informing

it of the creation of a new algorithm. The orchestrator sends this message whenever a PDL

model introduces a new algorithm. The event message includes the algorithm’s git repository

from which the runtime can retrieve all the artefacts needed for the packaging. In the Python

function runtime, for example, when an algorithm creation message is received, the runtime

clones the repository and copies the file containing the algorithm function and the pip [74]

requirements file into a Python project template. From that, a docker image is built that,

when executed, can fetch the relevant data, execute the algorithm, and send a message to the

orchestrator with the execution result. Listing 5.6 shows an example of an algorithm creation

event.
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1 {
2 "specversion" : "1.0",

3 "type" : "org.lowcomote.panoptes.baseAlgorithmExecution.trigger",

4 "source" : "<The URL of the Model Server >",

5 "subject": <Name of the receiving runtime >,

6 "id" : "<Random Identifier >",

7 "time" : "<Time that the Event was emitted >",

8 "datacontenttype" : "application/json",

9 "data" : {
10 "modelName": <Name of the monitored ML model >,

11 "deploymentName": <Name of the deployment >,

12 "historicalFeatures": <The names of the historical values to be used in the algorithm

execution >,

13 "liveFeatures": <The names of the recent values to be used in the algorithm execution >

,

14 "baseAlgorithmExecutionName": <The name of the algorithm execution >,

15 "startDate": <Starting time for retrieval of recent data >,

16 "endDate": <Ending time for retrieval of recent data >,

17 "algorithmName": <The name of the algorithm to be executed >,

18 "parameters": {<Parameter names and coresponding value pairs >}
19 }
20 }

Listing 5.7: Base Algorithm Execution Request Event.

For the execution step, an algorithm runtime service must be able to ingest a message instructing

it to execute a previously packaged algorithm with specific inputs. The messages received for

this step differ slightly between base and higher-order algorithm runtimes. For base algorithm

runtimes, the message includes the names of the features/predictions/labels to be used as

inputs. Listing 5.7 shows an example of a base algorithm execution event. After receiving it, the

runtime triggers the execution of the packaged algorithm. It passes the names in as environment

variables so the actual values can be fetched from a platform-specific data repository.

On the other hand, for higher-order runtimes, the message will include the name of the observed

algorithm execution instead. Listing 5.8 shows an example of such an event. After receiving

it, the runtime will similarly trigger the execution of the packaged algorithm with the name

passed in as an environment variable. The past execution results of the observed algorithm

execution will be retrieved by an API that the orchestrator exposes.

Once the execution of either type of algorithm execution is complete, the runtimes emmit an

event that contains the result of the execution so that the orchestrator can request an action

execution if necessary. Listing 5.9 shows an example of such an event
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1 {
2 "specversion" : "1.0",

3 "type" : "org.lowcomote.panoptes.higherOrderAlgorithmExecution.trigger",

4 "source" : "<The URL of the Model Server >",

5 "subject": <Name of the receiving runtime >,

6 "id" : "<Random Identifier >",

7 "time" : "<Time that the Event was emitted >",

8 "datacontenttype" : "application/json",

9 "data" : {
10 "deploymentName": <Name of the deployment >,

11 "startDate": <Starting time of the period >,

12 "endDate": <Ending time of the period >,

13 "higherOrderAlgorithmName": <The name the higher order algorihtm to be executed >,

14 "higherOrderalgorithmExecutionName": <The name of the algorithm execution >,

15 "observedAlgorithmExecutionName": <The name of the observed algorihtm execution >,

16 "windowSize": <How many results of the observed algorithm execution are needed >,

17 "parameters": {<Parameter names and coresponding value pairs >}
18 }
19 }

Listing 5.8: Higher Order Algorithm Execution Request Event.

1 {
2 "specversion" : "1.0",

3 "type" : <"org.lowcomote.panoptes.baseAlgorithmExecution.result" or

4 org.lowcomote.panoptes.higherOrderAlgorithmExecution.result >,

5 "source" : "<The URL of the Model Server >",

6 "subject": <Name of the receiving runtime >,

7 "id" : "<Random Identifier >",

8 "time" : "<Time that the Event was emitted >",

9 "datacontenttype" : "application/json",

10 "data" : {
11 "deployment": <Name of the deployment >,

12 "startDate": <Starting time of the period >,

13 "endDate": <Ending time of the period >,

14 "algorithmExecution": <The name of the algorithm execution >,

15 "level": <The discretised result of the algorithm execution that caused the action

execution >,

16 "rawResult": <The raw result of the algorithm execution that caused the action

execution >

17
18 }
19 }

Listing 5.9: Algorithm Execution Result Event.
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1 {
2 "specversion" : "1.0",

3 "type" : "org.lowcomote.panoptes.actionExecution.trigger",

4 "source" : "<The URL of the Model Server >",

5 "subject": <Name of the receiving runtime >,

6 "id" : "<Random Identifier >",

7 "time" : "<Time that the Event was emitted >",

8 "datacontenttype" : "application/json",

9 "data" : {
10 "deployment": <Name of the deployment >,

11 "startDate": <Starting time of the period >,

12 "endDate": <Ending time of the period >,

13 "algorithmExecution": <The name of the algorithm execution that caused the action

execution >,

14 "parameters": {<Parameter names and coresponding value pairs >},
15 "level": <The discretised result of the algorithm execution that caused the action

execution >,

16 "rawResult": <The raw result of the algorithm execution that caused the action execution >

17 }
18 }

Listing 5.10: Action Execution Request Event.

5.6 Action Implementation

Action services are more straightforward to implement than algorithm runtime services since

they do not have to execute any code dynamically. The only message that an action service

must be able to ingest is instructing it to perform the action it represents. The message includes

values of the parameters that the action accepts and auxiliary information, such as the name

of the algorithm execution that has caused the action to execute in case it is useful. Listing

5.10 shows an example of such an event.

5.7 Adoption Process

This section presents the steps that need to be followed by a team that would like to adopt

Panoptes by means of the provided reference implementation. The following subsections present

the steps that a team’s software engineers and data scientists need to take.

5.7.1 Software Engineers

The responsibilities for the software engineers are: setting up the base infrastructure, deploying

the relevant Panoptes services and implementing and deploying new algorithm runtime and ac-
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tion services. Regarding the infrastructure, the software engineers need to set up a Kubernetes

cluster with KNative installed. To ease adoption, the authors’ GitHub profile contains a repos-

itory1 which contains the Kubernetes manifest necessary to install all the relevant KNative

components on a Kubernetes cluster. Additionally, the manifests install all of the necessary

Panoptes services as well as the example algorithm runtime and action services provided in

the reference implementation. Onwards, the software engineers would be responsible for imple-

menting new algorithm runtimes and actions that satisfy the requirements of their team. They

should also document the algorithm runtimes to help data scientists implement their algorithms.

For that, the Python runtime documentation2 provided in the reference implementation can be

used as a guide.

5.7.2 Data Scientists

The steps that data scientists need to follow are: becoming familiar with PDL, implement-

ing dataset-shit-detection algorithms and finally using PDL to deploy their ML monitoring

workflows. While the present thesis contains an in-depth documentation of PDL, the author’s

GitHub profile also contains a more succinct version3 that might be more accessible for some.

After becoming familiar with PDL, data scientists can start implementing their own algorithms

to detect dataset shift. For that, they can leverage algorithm runtimes implemented by their

software engineer colleagues or start with the example Python runtime provided in the ref-

erence implementation and documented in the provided GitHub repository. For convenience,

the Python runtime also comes with a CLI tool4 that allows data scientists to test algorithms

under development on their local machines. The final step is to put it all together to start de-

ploying ML monitoring workflows specified using PDL that periodically execute the developed

algorithms to detect dataset shift and take mitigative action when needed.

1https://github.com/pkourouklidis/panoptes-example-cluster
2https://github.com/pkourouklidis/panoptes-wiki/blob/main/Algorithm-Runtimes.md
3https://github.com/pkourouklidis/panoptes-wiki/
4https://github.com/pkourouklidis/python-function-runtime-cli

https://github.com/pkourouklidis/panoptes-example-cluster
https://github.com/pkourouklidis/panoptes-wiki/blob/main/Algorithm-Runtimes.md
https://github.com/pkourouklidis/panoptes-wiki/
https://github.com/pkourouklidis/python-function-runtime-cli
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5.8 Chapter Summary

This chapter presented the technical details of Panoptes’ reference implementation to showcase

how the architecture presented in chapter 3 can be implemented in practice. Additionally, the

chapter presented the required steps that a team needs to take in order to adopt Panoptes.

The reference implementation presented in this chapter was utilised in the empirical studies

presented in the next chapter that were conducted to evaluate the proposed approach.
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Evaluation

For the evaluation of the proposed solution presented in this thesis, three separate empirical

studies were conducted. The studies were designed based on the ABC framework for software

engineering research [75]. This framework provides a taxonomy of eight archetypes based on the

level of obtrusiveness of the research and the generalisability of the results. For this evaluation,

three of these archetypes have been used: the judgement study, laboratory experiment and

experimental simulation archetypes. All three studies were performed towards the end of the

project. As such, their purpose was to evaluate rather than shape the proposed solution.

The following sections present each study’s goals, explain the ABC framework archetype they

are based upon, and discuss the results.

6.1 Initial Approach Validation

The first empirical study was conducted following the finalisation of PDL to verify that the

domain has been modelled correctly and evaluate the solution’s potential value for data scien-

tists.

Specifically, the following research questions were formulated before the study was conducted:

RQ1 Is the proposed DSL sufficiently expressive for the modelled domain?

85
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RQ2 How do data scientists evaluate the solution’s potential for lowering the technical barrier

in the dataset shift management domain?

RQ3 Does the developed set of constraints provide value through error prevention?

The study designed to answer the above research questions follows the judgement study archetype.

In the ABC framework, judgement studies involve seeking input and opinions from experts in

the field to evaluate or validate certain practices, methods, or concepts. These studies rely on

the expertise and judgement of selected individuals with relevant experience and knowledge.

The experts are typically presented with specific questions or scenarios, and their responses are

analysed to gain insights and make informed decisions. Judgement studies are conducted in

neutral settings that play no role in the study.

More concretely, the study was conducted in semi-structured interviews with the following

format. Each participant was given a detailed introduction to the proposed solution through

a one-to-one session with the author. PDL’s metamodel was explained in depth, and they

were shown samples of the textual syntax in the developed web editor, which provided some

context about how they would be expected to interact with the system. Subsequently, a free-

form discussion commenced with organically occurring questions about the system, as well as

feedback and impressions. At the end of the session, to distil the participants’ feedback in

a standardised manner, they were given a number of prepared questions about the proposed

solution and asked to answer with a positive, neutral or negative sentiment explicitly. Since this

empirical study involved external participants, the University of York research ethics process

was followed. More information about this process is provided in Appendix B.

The rest of the section presents the participants’ demographics, followed by the questions asked

and the results of the study.

6.1.1 Participant Demographics

The study’s participants are eleven professional data scientists working in the Applied Research

department of British Telecom (BT), where the author was also employed at the time of the
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Figure 6.1: Participants’ professional experience

study. As seen in Figure 6.1, all participants had a minimum of 3.5 years of professional

experience in data science, with seven having ten or more years of experience and three having

thirty or more years of experience.

Regarding academic qualifications, all participants held a degree in a quantitative field related

to data science. Of the 11 participants, 2 held a Bachelor’s degree, 3 held a Master’s degree,

and 6 held a Doctorate.

6.1.2 Study Questions and Results

In order to answer the first research question, the participants the following questions were

asked:

RQ1.1 Could a model-based approach, in general, provide sufficient coverage of the dataset shift

domain?

RQ1.2 Is PDL expressive enough to provide sufficient coverage of the dataset shift domain?

For both RQ1.1 and RQ1.2, 10 participants answered with a positive sentiment and 1 partici-

pant answered with a neutral sentiment.
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In order to answer the second research question, the following questions were asked:

RQ2.1 Could a model-based workflow potentially lower the technical barrier for data scientists

who would like to implement dataset-shift-related functionality?

RQ2.2 Does the proposed solution have the potential to lower the technical barrier for data

scientists who would like to implement dataset-shift-related functionality?

For both RQ2.1 and RQ2.2, 10 participants answered with a positive sentiment and 1 partici-

pant answered with a neutral sentiment.

In order to answer research question number three, the following question was asked:

RQ3.1 Does model validation provide substantial value through error prevention?

For question RQ3.1, 10 participants answered with a positive sentiment and 1 participant

answered with a neutral sentiment.

Finally, to document any reservations expressed by the participants and offer a response, the

following question was asked: Are there any omissions in the metamodel or the functionality

offered by the solution? The responses of the two participants who responded with a neutral

sentiment to some of the questions offered the following insights.

The first participant expressed a neutral sentiment in the first two questions regarding domain

coverage based on a particular use case they had in mind. More specifically, they posed a sce-

nario in which, to determine the existence of dataset shift, one would need external information

in addition to data handled by an ML platform (e.g. features, labels, predictions). This sce-

nario could indeed be challenging to address whether one is using Panoptes or not. This kind

of edge case could be addressed within the scope of Panoptes by adding a manual data retrieval

process within an algorithm’s implementation. This is suboptimal as it requires more effort

to implement compared to a standard algorithm. However, it could be considered acceptable

because it is only required in specific scenarios and would also be required if Panoptes was not
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used. Ideally, all data needed to train ML models and detect dataset shift is handled by the

ML Platform.

The second participant expressed a neutral sentiment in the last three questions regarding the

lowering of the technical barrier when implementing dataset-shift-related functionality and the

utility of model validation. It should be noted that this participant had an extensive software

engineering background. It is therefore considered understandable that they did not perceive

the potential of Panoptes for effort reduction as significant as the rest of the participants. The

participant’s main concern was related to the capacity of the solution to handle large amounts

of data. The way that this is addressed within the scope of Panoptes is through the concept of

algorithm runtimes. This allows for the usage of technologies that can handle large amounts of

data while keeping the complexity exposed to data scientists at acceptable levels.

In conclusion, most of the participating data scientists expressed a positive sentiment and

willingness to further experiment with PDL and the Panoptes system in general.

6.2 Hands-On Validation

This section presents the second empirical study conducted to evaluate the proposed solution,

with the participation of 10 data scientists working within British Telecom (BT). Out of the

10 participant, 5 of them also participated in the first empirical study. For the rest of the

participants, this was their first time interacting with Panoptes. The participants’ years of

experience and academic qualifications were similar to those in the first study, as they were

recruited from the same pool of people. Explicit information about participant demographics

was not collected for this study.

The study took place after the technical aspects of the solution were finalised, making it possible

for the participants to have a first-hand experience with it. It sought to answer the following

research questions:

RQ1 Are the concepts of the DSL easily understood by data scientists?
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RQ2 Can data scientists effectively utilise the DSL to implement dataset shift detection strate-

gies?

RQ3 How do data scientists evaluate the solution’s potential for reducing the effort of imple-

menting ML performance monitoring policies?

6.2.1 Study Design

The study was split into three parts, each seeking to answer one of the research questions.

The first two parts are in the form of a laboratory experiment in the ABC framework. Labora-

tory experiments are conducted in a controlled and contrived setting. These experiments aim

to neutralise confounding factors and extraneous conditions, allowing researchers to exercise

maximum precision in measuring behaviour on the studied object. Laboratory experiments

often involve a limited number of subjects and discrete trials of relatively short time spans.

While the context in a laboratory experiment is removed from real-world software development

environments, it provides a controlled environment to study human behaviour and performance

in software-related tasks. Researchers can observe and measure how individuals or teams inter-

act with software systems, tools, or processes and identify factors influencing their behaviour

and performance.

First Part

More concretely, in the first part, the participants were given access to documentation material

describing PDL, similar to Chapter 4. The documentation provided is publicly available1. After

reading the material, the participants were shown the example PDL model in Listing 6.1, which

utilises every feature of the DSL. After reading the PDL model, participants were given fifteen

comprehension questions to answer to quantify how well data scientists can comprehend PDL

concepts in a short amount of time.

1https://github.com/pkourouklidis/panoptes-wiki
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The following are the comprehension questions that the participants were called to answer:

1. What is the name of the Model that the callcentre Deployment uses?

2. What are the names of the AlgorithmExecutions defined in the callcentre Deployment?

3. What is the name of the Algorithm used by the service-duration-shift AlgorithmExecu-

tion?

4. What is the URL of the git repo that contains the code for the Algorithm accuracy-check?

5. Which ActionExecution will be triggered in case dataset shift is detected by the service-

duration-shift Algorithm Execution?

6. Which parameters does the retrain Action define?

7. In the retrainCallcentre ActionExecution, can we omit providing a value to the ioNames

parameter? Please justify.

8. In the service-duration-shift AlgorithmExecution, is the value true appropriate for the

pValue parameter? Please justify.

9. What is the statistical type of the live data input for the service-duration-shift Algorith-

mExecution?

10. Could we have used the Feature is solved as input to the service-duration-shift Algorith-

mExecution without causing any warnings/errors? Please justify.

11. In a scenario where one day has passed since trigger t1 has been activated, but the

Deployment has only served 900 requests, will AlgorithmExecution service-duration-shift

run? Please justify.

12. In a scenario where no AlgorithmExecution has run yet, and callcentre-accuracy runs for

the first time, will AlgorithmExecution ema-accuracy run? Please justify.

13. What are the inputs of the callcentre Deployment?
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14. Based on the inputs of the callcentre Deployment, which features are allowed as input for

the Model that callcentre uses?

15. How would we need to modify the inputs of the callcentre Deployment if we wanted to

substitute the current Model that is being used with Model callcentre-alternative without

causing any warnings/errors?

The above questions were selected to check the participants’ comprehension of PDL in the

following ways:

• A number of the questions check whether participants understand the way PDL’s textual

syntax is used to instantiate the various classes of the metamodel. To answer the first

question, for example, one needs to understand where in the example model the “call-

centre” Deployment is defined and which ML Model it refers to. Questions 1-6, 9 and 13

belong in this category.

• A number of questions check whether the participants understand PDL’s model validation

mechanism described in Section 4.4. Questions 7-8, 10 and 14-15 belong in this category.

• Finally, questions 11 and 12 check whether the participants understand PDL’s algorithm

execution scheduling mechanism described in Section 4.3.

Second Part

For the second part, based on the call centre scenario, a system was developed that simulates

customers’ calls. The system includes the dashboard shown in figure 6.2 that can be used for

initiating simulations with different parameters such as how frequently calls are being made,

the number and the skill of the call centre’s workers and how patient customers are. The com-

bination of these parameters affects each call’s wait duration, service duration, issue resolution

and, ultimately, customer satisfaction.
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1 FeatureStore{

2 entities call{keys callID}

3 request data additional_data

4 features

5 wait_duration:continuous{requires entities call},

6 service_duration:continuous{requires entities call},

7 is_solved:categorical{requires entities call},

8 additional_feature{requires request data additional_data}

9 labels is_happy:categorical

10 }

11
12 Model callcentre -tree{

13 uses wait_duration , service_duration , is_solved

14 outputs happiness_prediction

15 predicts is_happy

16 }

17 Model callcentre -alternative{

18 uses wait_duration , service_duration , is_solved , additional_feature

19 outputs happiness_prediction_alt

20 predicts is_happy

21 }

22
23 BaseAlgorithmRuntime pythonFunction

24 BaseAlgorithm kolmogorov -smirnov{

25 codebase "https :// github.com/pkourouklidis/kolmogorov -smirnov -algorithm"

26 runtime pythonFunction

27 severity levels 2

28 accepts only continuous

29 parameters pValue:Real

30 }

31 BaseAlgorithm accuracy -check{

32 codebase "https :// github.com/pkourouklidis/accuracy -algorithm"

33 runtime pythonFunction

34 severity levels 2

35 parameters threshold:Real

36 }

37
38 HigherOrderAlgorithmRuntime higherOrderPythonFunction

39 HigherOrderAlgorithm exponential -moving -average{

40 codebase "https :// github.com/pkourouklidis/ema -algorithm"

41 runtime higherOrderPythonFunction

42 parameters alpha:Real , mandatory threshold:Real

43 severity levels 2

44 }

45
46 Action email{

47 parameters mandatory email:String

48 }

49 Action retrain{

50 parameters mandatory ioNames:String , mandatory containerImage:String

51 }

52
53 Deployment callcentre{

54 inputs callID

55 model callcentre -tree

56
57 BaseAlgorithmExecution service -duration -shift{

58 algorithm kolmogorov -smirnov

59 live data service_duration

60 historical data service_duration

61 actions 1->emailMe

62 parameter values pValue = 0.05

63 }

64 BaseAlgorithmExecution callcentre -accuracy{

65 algorithm accuracy -check

66 live data is_happy , happiness_prediction

67 parameter values threshold = 0.80

68 }

69 HigherOrderAlgorithmExecution ema -accuracy{

70 algorithm exponential -moving -average

71 observed execution callcentre -accuracy

72 min observations 3

73 max observations 3

74 parameter values alpha = 0.5, threshold = 0.8

75 actions 1->emailMe

76 }

77 ActionExecution emailMe{

78 action email

79 parameter values email=panagiotis.kourouklidis@bt.com

80 }

81 ActionExecution retrainCallcentre{

82 action retrain

83 parameter values ioNames="wait_duration ,service_duration ,is_solved ,is_happy",

84 containerImage="registry.docker.nat.bt.com/panoptes/callcentre -model -training:latest"

85 }

86 Trigger t1{

87 every 1000 samples or every one day

88 execute service -duration -shift

89 }

90 Trigger t2{

91 every 100 labels

92 execute callcentre -accuracy

93 }

94 }

Listing 6.1: PDL model provided to participants.
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Figure 6.2: Simulation Dashboard

The simulator generates data for each call in the backend, including the ground truth of cus-

tomer satisfaction. It also requests customer satisfaction predictions from an ML model trained

for this task and deployed on the ML platform described in Chapter 5. This data, in addition

to data from the orchestrator regarding algorithm execution results, is visualised on a separate

dashboard developed for this purpose and shown in Figure 6.3.

Participants were given access to the dashboards and asked to complete the following tasks:

• To let participants familiarise themselves with the mechanics of the simulator, they were

instructed to use the example PDL model and a set of settings for the simulator such

that no dataset shift is observed. After executing the simulation, the users could observe

in the visualisation dashboard that the algorithm execution detected no dataset shift.

• Keeping the PDL model unchanged, the participants were given a modified set of simula-

tor settings that introduced covariate shift in the service duration feature. The algorithm

execution defined in the given PDL model detected the shift, and participants received

an email notification.
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Figure 6.3: Overview Dashboard

• Finally, participants were given a set of simulator settings that changed the customers’

patience to introduce concept shift. They were asked to modify the PDL model so that

the shift would be detected and they would receive an email notification. An algorithm

that detects concept shift based on the ML model’s reduced accuracy on recent data was

provided to the participants as the algorithm implementation portion was not the object

of this study.

The PDL models created in the last step were collected and analysed to quantify how well data

scientists utilised PDL for the given task. Listing 6.2 shows the correct answer to the given

task.

One point was awarded for successfully completing each of the following subtasks:

1. Defining a BaseAlgorithmExecution that uses the “accuracy-check” Algorithm, included

in the PDL model provided as a baseline. This can be seen in lines 40-43 of Listing 6.2.

2. Adding the necessary data as input to the BaseAlgorithmExecution. This can be seen in
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1 FeatureStore{

2 features

3 wait_duration:continuous ,

4 service_duration:continuous ,

5 is_solved:categorical

6 labels

7 is_happy:categorical

8 }

9
10 Model callcentre -tree{

11 uses wait_duration , service_duration , is_solved

12 outputs happiness_prediction

13 predicts is_happy

14 }

15
16 BaseAlgorithmRuntime pythonFunction

17
18 BaseAlgorithm kolmogorov -smirnov{

19 codebase "https :// github.com/pkourouklidis/kolmogorov -smirnov -algorithm"

20 runtime pythonFunction

21 severity levels 2

22 accepts only continuous

23 parameters pValue:Real

24 }

25
26 BaseAlgorithm accuracy -check{

27 codebase "https :// github.com/pkourouklidis/accuracy -algorithm"

28 runtime pythonFunction

29 severity levels 2

30 parameters threshold:Real

31 }

32
33 Action email{

34 parameters mandatory email:String

35 }

36
37 Deployment callcentre{

38 model callcentre -tree

39
40 BaseAlgorithmExecution concept_shift{

41 algorithm accuracy -check

42 live data happiness_prediction , is_happy

43 actions 1->emailMe

44 }

45
46 ActionExecution emailMe{

47 action email

48 parameter values email=panagiotis.kourouklidis@bt.com

49 }

50
51 Trigger t1{

52 every 100 samples

53 execute concept_shift

54 }

55 }

Listing 6.2: Correct Answer.
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line 42 of Listing 6.2.

3. Adding the correct result to action execution map to the BaseAlgorithmExecution. This

can be seen in line 43 of Listing 6.2.

4. Defining a Trigger with the newly created BaseAlgorithmExecution as the execution tar-

get. This can be seen in lines 51-54 of Listing 6.2.

5. Setting the frequency of the Trigger every 100 Labels. This can be seen in line 52 of

Listing 6.2.

Third Part

The third part took the form of another judgment study. This qualitative form of evaluation

was selected due to the difficulty of quantifying the effort required to build a monitoring solution

and comparing it against a Panoptes-based solution with the same characteristics. Instead, five

tasks were selected that were deemed representative of the monitoring domain. Participants

were asked for their subjective evaluation in the following way: On a qualitative basis, how

much do you think Panoptes could reduce the effort required for the following tasks? Please

answer on a scale of one to five:

1. Implementing dataset shift algorithms.

2. Fetching the relevant data to check for dataset shift.

3. Scheduling the execution of dataset-shift-detecting algorithms.

4. Executing corrective actions in case of dataset shift.

5. Modifying various monitoring parameters (e.g. algorithm used, frequency of execution)

on a live system.

Notably, the questions also address parts of the domain where we did not expect Panoptes

to offer significant utility but were included to get a complete picture of the participants’
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opinions. The implementation of dataset shift algorithms, for example, is streamlined by the

runtime mechanism but still requires effort by data scientists.

6.2.2 Study results

Given that none of the participants had used PDL before, the results2 indicate that data

scientists can familiarise themselves with PDL relatively easily. They also expect Panoptes to

provide significant benefits in terms of effort reduction for ML performance monitoring tasks.

Regarding the first two research questions, the participants spent approximately one hour

reading the documentation material before answering the first questionnaire and completing

the requested PDL model. Considering that all participants were busy professionals who could

not afford to invest much time to complete the tasks, as participation was not part of their job

responsibilities, the fact that most of the questions were answered correctly by every participant

indicates that data scientists can pick up PDL very quickly.

Figure 6.4 shows the aggregate results for the questionnaire provided in the first part. In

essence, it shows for each question how many participants answered it correctly. In addition,

Figure 6.5 shows the number of mistakes for each individual participant. This Figure shows

that except for one outlier, the errors are distributed among various participants and most

participants made either zero or one mistake.

Figure 6.6 shows the aggregate results for the tasks given to the participants in the second

part of the study. In addition, Figure 6.7 shows the number of mistakes for each individual

participant. This shows that most participants were able to complete every task of the second

part, with only two participants making one mistake and one participants making two.

Regarding the third research question, Figure 6.8 shows the cumulative score for every aspect

participants were asked to evaluate. Since the evaluations were given on a scale of one to five,

the maximum score was fifty. As expected, certain features of Panoptes were valued more than

others. Specifically, the aspects requiring some degree of manual effort, namely developing new

2https://zenodo.org/record/8140392
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Figure 6.4: Aggregate results of the first questionnaire.
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Figure 6.5: Individual participant results of the first questionnaire.
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Figure 6.6: Aggregate results of PDL usage test.
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Figure 6.7: Individual participant results of PDL usage test.
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Figure 6.8: Aggregate effort reduction evaluation results.
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Figure 6.9: Individual participant effort reduction evaluation results.

algorithms and actions, received the lowest score. On the other hand, fully automated features,

such as scheduling, received a higher score. In addition, Figure 6.9 shows the total score each

individual participant gave for the five questions asked, for a maximum possible score of twenty-

five. Once again, the results are closely distributed, with no participant evaluating Panoptes

significantly higher or lower than the rest.

6.3 External ML Model Evaluation

The third empirical study examined the claim that Panoptes is general enough to support ML

models of different input and output modalities and implementation technologies. For this

purpose, three experimental simulations were conducted.

The ABC framework introduces experimental simulations as research strategies that aim to
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observe the behaviour of a system in a controlled environment. They are suitable for situations

where it is not feasible or practical to directly observe the system in question in a natural setting.

They offer a way to study and evaluate system features without costly or time-consuming real-

world implementations. Experimental simulations can provide insights into the behaviour and

performance of the observed object.

More concretely, the three Panoptes-based monitoring systems were implemented for three

ML model deployments of publicly available models developed by third parties. All three

implementations are publicly available3.

6.3.1 Image Classification

For the first experimental simulation, the EfficientNet-B0 image classifier was used [76]. As

this model architecture has multiple publicly available implementations, the simulation was

replicated twice based on a TensorFlow[77] and a Pytorch[78] implementation.

The model is trained on the ImageNet [79] dataset, but the Standford dogs [80] subset was used

for this simulation due to its more manageable size. After deployment, an image processing

bug that introduces covariate shift in the model’s incoming image classification requests is

simulated. The pixel values of one thousand randomly selected images were arbitrarily reduced

in half to make them darker than what is typically seen in the dataset, thus introducing the

shift.

To detect the introduced shift, a detection algorithm was developed for the “pythonFunction”

algorithm runtime. It calculates the luminance of recent images and checks to see if they are

distributed similarly to the luminances in the training set based on the Kolmogorov-Smirnov

two-sample test. A second algorithm was also developed that utilises ground truth labels,

when available, to calculate the model’s accuracy for recent inputs and checks to see if it has

dropped significantly below the model’s expected accuracy. As EfficientNet-B0 achieves a 76.3%

accuracy in ImageNet, an accuracy below 60% was chosen as indicative of a potential problem.

3https://github.com/pkourouklidis/panoptes
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Listing 6.3 shows the PDL model used in this experiment.

6.3.2 Speech Recognition

For the second experimental simulation, the publically available Silero speech-to-text model was

used [81]. The model’s dataset is not provided, so as a proxy, the common voice dataset [82],

a publically available voice dataset, was used. Similarly to the first experiment, we simulate a

signal processing bug introducing dataset shift. To achieve this, 1000 randomly selected voice

clips were captioned after white noise was added to them. To detect this shift, a detection

algorithm that compared the signal-to-noise ratio of the distorted audio clips to those in the

training set was developed. Additionally, a second algorithm that utilises ground truth data

was also implemented. It calculates the word error rate, an accuracy metric commonly used

for speech-to-text models, and checks to see if it is below what is typically expected from the

model.

Listing 6.4 shows the PDL model used in this experiment.

6.3.3 Credit Scoring

For the third case study, a credit-scoring model available on Kaggle and implemented using

scikit-learn was used [83]. The model was trained on a tabular dataset with multiple columns

containing information such as an applicant’s income bracket, savings, and employment status.

To simulate dataset shift, one thousand samples were classified after the value of the ”gender”

column was switched for some of them. To detect this shift, a detection algorithm that calculates

the L-infinity distance was implemented. Additionally, the accuracy calculation algorithm

developed for the first case study was reused since it applies to both models.

Listing 6.5 shows the PDL model used in this experiment.
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1 FeatureStore{

2 features dog_input

3 labels dog_label}

4
5 Model dogs -efficientnet{

6 uses dog_input

7 outputs dog_prediction

8 predicts dog_label}

9
10 BaseAlgorithm luma -check{

11 codebase "https :// github.com/pkourouklidis/luma -check -algorithm"

12 runtime pythonFunction

13 severity levels 2

14 parameters pValue:Real}

15
16 BaseAlgorithm accuracy -check{

17 codebase "https :// github.com/pkourouklidis/accuracy -algorithm"

18 runtime pythonFunction

19 severity levels 2

20 parameters threshold:Real}

21
22 Deployment dogs{

23 model dogs -efficientnet

24
25 BaseAlgorithmExecution luma -check -dogs{

26 algorithm luma -check

27 live data dog_input

28 historical data dog_input

29 actions 1->emailMe

30 parameter values pValue = 0.05

31 }

32
33 BaseAlgorithmExecution accuracy -check -dogs{

34 algorithm accuracy -check

35 live data dog_prediction , dog_label

36 parameter values threshold = 0.6

37 actions 1->emailMeDogs

38 }

39
40 ActionExecution emailMeDogs{

41 action email

42 parameter values email=panagiotis.kourouklidis@bt.com

43 }

44
45 Trigger s5{

46 every 1000 samples

47 execute luma -check -dogs

48 }

49
50 Trigger s6{

51 every 1000 labels

52 execute accuracy -check -dogs

53 }

54 }

Listing 6.3: PDL Model for the Image Classifier Experiment.
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1 FeatureStore{

2 features

3 input

4 labels

5 label

6 }

7
8 Model stt -silero{

9 uses input

10 outputs prediction

11 predicts label

12 }

13
14 BaseAlgorithm snr -check{

15 codebase "https :// github.com/pkourouklidis/SNR -check"

16 runtime pythonFunction

17 severity levels 2

18 parameters pValue:Real

19 }

20
21 BaseAlgorithm wer -check{

22 codebase "https :// github.com/pkourouklidis/word -error -rate -algorithm"

23 runtime pythonFunction

24 severity levels 2

25 parameters threshold:Real

26 }

27
28 Deployment stt{

29 model stt -silero

30
31 BaseAlgorithmExecution snr -check -stt{

32 algorithm snr -check

33 live data input

34 historical data input

35 actions 1->emailMe

36 parameter values pValue = 0.05

37 }

38
39 BaseAlgorithmExecution wer -check -stt{

40 algorithm wer -check

41 live data prediction , label

42 parameter values threshold = 0.3

43 actions 1->emailMeStt

44 }

45
46 ActionExecution emailMeStt{

47 action email

48 parameter values email=panagiotis.kourouklidis@bt.com

49 }

50
51 Trigger t3{

52 every

53 1000 samples

54 execute snr -check -stt

55 }

56
57 Trigger t4{

58 every

59 1000 labels

60 execute wer -check -stt

61 }

62
63 }

Listing 6.4: PDL Model for the Speech Recognition Experiment.
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1 FeatureStore{

2 features

3 sex

4 labels

5 credit_label

6 }

7 Model credit -nb{

8 uses sex

9 outputs credit_prediction

10 predicts credit_label

11 }

12 BaseAlgorithm l-infinity{

13 codebase "https :// github.com/pkourouklidis/l-infinity -algorithm"

14 runtime pythonFunction

15 severity levels 2

16 parameters threshold:Real

17 }

18
19 BaseAlgorithm accuracy -check{

20 codebase "https :// github.com/pkourouklidis/accuracy -algorithm"

21 runtime pythonFunction

22 severity levels 2

23 parameters threshold:Real

24 }

25
26 Deployment credit{

27 model credit -nb

28
29 BaseAlgorithmExecution l_inf_sex{

30 algorithm l-infinity

31 live data sex

32 historical data sex

33 actions 1->emailMe

34 parameter values threshold = 0.10

35 }

36
37 BaseAlgorithmExecution credit -accuracy -check{

38 algorithm accuracy -check

39 live data credit_label , credit_prediction

40 actions 1->emailMe

41 parameter values threshold = 0.60

42 }

43
44 ActionExecution emailMe{

45 action email

46 parameter values email=panagiotis.kourouklidis@bt.com

47 }

48
49
50 Trigger t4{

51 every

52 1000 labels

53 execute credit -accuracy -check

54 }

55 }

Listing 6.5: PDL Model for the Credit Scoring Experiment.
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6.4 Threats to Validity

While the empirical studies presented in this chapter provide a positive outlook on the validity of

the proposed approach, it is important to take into consideration the various potential threats

to their validity. In the following subsections these potential threats are presented in four

distinct categories as defined by Cook and Campbell [84] and also presented in the context of

software engineering by Wohlin et al. [85]

6.4.1 Conclusion Validity

As the name suggests, conclusion validity is concerned with whether a conclusion can be safely

made on the basis of the experimental results. The main threat to the conclusion validity of

the first two studies is the relatively low number of participants which could potentially limit

the generalisability of the results. Similarly, in the third study, only a small number of ML

models where utilised to evaluate the proposed approach.

6.4.2 Internal Validity

Threats to internal validity refers to factors affect the observed outcome but are unrelated to the

treatment under study. In our first two studies, for example, threats to internal validity would

be factors that affect participants’ evaluation of Panoptes but are unrelated to the solution

itself. On such factor is that study participants were all unpaid volunteers. As such, there is

the possibility of a selection effect. In particular, out of all the individuals that were contacted

to take part in the studies, the ones that accepted the invitation might be individual that are

more receptive to novel solutions that target the ML monitoring domain compared with the

average data scientist.
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6.4.3 Construct Validity

Construct validity refers to whether the measured quantity of an experiment accurately reflects

the construct under study. A construct validity threat in our case is the fact that the effort

reduction for deploying ML monitoring workflow using Panoptes is only measured indirectly.

Ideally, a group of data scientists would have been recruited and tasked with implementing

a production-quality ML monitoring system with and without using Panoptes. Then, the

number of engineering hours required in each case would be compared. Because this was

considered infeasible, it was replaced with a questionnaire that asked data scientists to evaluate

the solution’s potential for effort reduction.

6.4.4 External Validity

External validity refers to whether results of an experiment generalise to non-experimental

settings. More concretely, in the case of the the first two studies, all participating data scientists

worked for BT. This might negatively affect the results’ ability to generalise to the wider

population of data scientists. In addition, while an effort was made to incorporate industrial

best-practices when developing the simulation environment for the second experiment and the

case studies in the third experiments, they are not actual production systems. There is therefore

a risk that the results will not generalise to production settings.

6.5 Chapter Summary

In this chapter, the evaluation of the proposed solution, Panoptes, is presented. Three empirical

studies were conducted to assess Panoptes’ usability, domain coverage and potential to lower

technical barriers for data scientists.

Overall, the results of the studies provided positive insights into the usability and effectiveness

of Panoptes in the context of ML performance monitoring and dataset shift detection. The
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results suggest that Panoptes has the potential to streamline monitoring tasks and lower the

technical barriers for data scientists that deploy ML models in production environments.



Chapter 7

Conclusion

This thesis has investigated whether an MDE approach can be successfully applied in the novel

domain of ML monitoring to address the challenges indicated by the relevant literature. The

rest of the chapter is structured as follows: Section 7.1 enumerates the main contributions of

the thesis and how they map to the objectives defined in Chapter 1. Section 7.2 discusses the

perceived limitations of the proposed solution. Finally, Section 7.3 provides direction for future

work.

7.1 Thesis Contributions

This thesis makes contributions to the state of practice across various axes. In terms of the

developed solution, the following contributions are made:

• The design of PDL, a DSL narrowly focused on the ML monitoring domain. By narrowly

focusing on one domain, the DSL can better cater to the domain experts, as shown by

the positive usability evaluations. A detailed description of PDL has been published at

SAM 2023 [3].

• Designing Panoptes, a system that combines the DSL with an architecture that deliv-

ers multiple desirable attributes. Firstly, the loose coupling of the MDE layer with the

110
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underlying platform offers portability, a desirable attribute from a commercial advan-

tage point of view. This attribute satisfies Objective 1c. Additionally, decoupling the

algorithmic from the technical layers through a FaaS approach enables a separation of

concerns between data scientists and software engineers. This separation lowers the tech-

nical barriers for data scientists and empowers them to deploy ML monitoring workflows

autonomously. This attribute satisfies Objective 1a Finally, the architecture enables ex-

tensibility by making adding new algorithms and runtimes straightforward. This attribute

satisfies Objective 1b. A detailed description of Panoptes has been published at SAM

2023 [3] and an earlier version of the solution has been published at MDE Intelligence

2021 [2].

• Providing a publicly available reference implementation for the proposed solution using

popular open-source technologies further demonstrates the approach’s feasibility and en-

ables experimentation by others.

To support the validity of the proposed solution and achieve the remaining objectives of the the-

sis, three empirical studies were conducted to evaluate the solution’s usability, domain coverage

and technical barrier-lowering potential.

• Evaluating usability was part of Objective 2a. This evaluation took place during the

second empirical study as presented in Section 6.2.

• Evaluating domain coverage was part of Objective 2b. This evaluation took place in

the third empirical study as presented in Section 6.3. Domain coverage was also partly

evaluated in the first empirical study since it was the study’s first research question as

explained in Section 6.1.

• Evaluating the solution’s ability to lower technical barriers was part of Objective 2c. This

was evaluated via the questionnaires given to data scientists in both the first and second

empirical studies.
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Additionally, from a non-technical point of view, the application of MDE for a novel domain

within the wider AI governance domain uncovers new opportunities. This application raises

awareness about the capabilities of MDE amongst a new audience who might not have been

previously aware of it. For example, as mentioned in Section 3.1, people within BT’s applied

research department who have been collaborating with the TM Forum to develop a model for

the AI governance domain in the form of a REST API were not aware of the MDE field prior

to interacting with the author.

7.2 Solution Limitations

The following is a discussion about the perceived limitations of the proposed solution and

potential avenues to overcome them in the future:

Adoption hurdles: While the conducted empirical studies indicate that data scientists be-

come accustomed to the proposed solution quickly and even express positive opinions about it

when probed, there still remains to be seen whether the solution’s organic adoption will increase

over time. It is possible that the solution’s textual syntax could make data scientists perceive

it as a burden due to it being yet another tool that one has to put effort into learning. The

first future work avenue mentioned in the next Section explores a potential mitigation for this

limitation.

Organisational Buy-in: Apart from data scientists, another factor that could hinder the

adoption of the proposed solution is a potential reluctance from an organisations software

engineers or higher-level executives. Even though an effort was made when designing the

solution to hide the MDE-specific technologies for most software engineers, an organisation

would still need some software engineers with MDE experience to maintain the MDE layer

or to add new features to it. Therefore, organisations might be reluctant to adopt a new

technology, given that the solution is narrowly focused on one domain. One potential avenue
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to address this limitation would be to expand the domain which the solution addresses, as

explained further in the following Section.

7.3 Future Work

7.3.1 Enabling Adoption

The current solution strives to make adoption easy for data scientists. Contributing to this

is implementing a web-based editor, eliminating the need for a working Eclipse installation.

Additionally, by making it easy for software engineers to add new runtimes, data scientists can

implement their algorithms in the languages they prefer (e.g. Python or R) rather than the

language that the solution happens to be implemented in (i.e. Java).

Building upon this idea, it would be possible to make the adoption of PDL even more accessible

for data scientists by following an embedded DSL approach. Embedded DSLs, as explained

in Subsection 2.4.2, are hosted within a general-purpose programming language and use its

concrete syntax. This approach is enabled by the fact that PDL abstract and concrete syntaxes

are decoupled, and, as explained in Section 4.5, the architecture allows even the usage of

multiple concrete syntaxes simultaneously. Wasowski and Berger [86] provide an overview of

the different strategies that can be leveraged to implement an embedded DSL.

7.3.2 Domain Expansion

Panoptes’ architecture could be utilised to incrementally cover more of the AI governance

domain. The distributed architecture is well-suited to incrementally onboarding new domains

and slowly building credibility within an organisation as the technology is proven across multiple

domains. The following are examples of domains that could potentially benefit from a Panoptes-

style solution and are therefore suitable for future exploration.
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ML Model Rollouts: A straightforward way to expand the domain that the proposed so-

lution covers would be to include features that help data scientists roll out new ML models to

replace the previous ones used in a deployment. Currently, the process by which replacement

ML models are selected is not considered. One way, for example, that new ML models are se-

lected is from a pool of candidate models via A/B testing or even multi-armed bandits testing.

Further work would be needed to formalise this process as part of a DSL and designing the

relevant technical architecture.

Regulatory Compliance: As more and more governments seek to regulate the usage of AI

around the world, it is safe to assume that there is going to be a significant increase in the

engineering resources needed to ensure that production AI systems are compliant. Relevant to

this, Mökander [87] explores the field of AI auditing in the context of proposed regulations such

as the EU’s Artificial Intelligence Act. He draws parallels between AI auditing and financial

auditing which has been legally mandated for decades. He also depicts the process of AI auditing

as inherently multi-disciplinary. The above provides the motivation for the development of an

MDE-based solution akin to Panoptes to streamline certain aspects of the auditing process. As

a starting point, Bucaioni et al. [88] describe an MDE solution that automatically verifies the

compliance of a concrete software system to a predefined reference implementation. This could

potentially be extended to fit the AI auditing use case.
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PDL Grammar

1 grammar org.lowcomote.panoptes.PanoptesX with org.eclipse.xtext.common.

Terminals

2

3 import "http :// www.lowcomote.org/panoptes/panoptesdsl"

4 import "http :// www.eclipse.org/emf /2002/ Ecore" as ecore

5

6 Platform returns Platform:

7 (

8 featureStore=FeatureStore |

9 mlModels +=Model |

10 deployments += Deployment |

11 algorithms += Algorithm |

12 algorithmRuntimes += AlgorithmRuntime |

13 actions += Action

14 )*

15 ;

16

17 Model returns Model:

18 {Model}

19 ’Model ’

20 name=( STRING|SAFESTRING)

21 ’{’

22 (

115
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23 (’uses ’ inputs +=[ Feature|EString] ( "," inputs +=[ Feature|EString ])*) &

24 (’outputs ’ output=Prediction)

25 )

26 ’}’;

27

28 FeatureStore returns FeatureStore:

29 {FeatureStore}

30 ’FeatureStore ’

31 ’{’

32 (

33 (’features ’ features += Feature (’,’ features += Feature)*)? &

34 (’entities ’ entities += Entity ( "," entities += Entity)*)? &

35 (’labels ’ labels +=Label (’,’ labels +=Label)*)? &

36 (’request ’ ’data ’ requestData += RequestData (’,’ requestData +=

RequestData)*)?

37 )

38 ’}’

39 ;

40

41 Entity returns Entity:

42 name=( STRING|SAFESTRING)

43 ’{’

44 ’keys ’ keys+=Key ( "," keys+=Key)*

45 ’}’

46 ;

47

48 ModelIO returns ModelIO:

49 Feature | Prediction | Label;

50

51 Feature returns Feature:

52 name=( STRING|SAFESTRING)

53 (’:’ type=statisticalVariableType)?

54 (’{’

55 (
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56 (’requires ’ ’entities ’ entities +=[ Entity|EString] ( "," entities +=[

Entity|EString ])*)? &

57 (’requires ’ ’request ’ ’data ’ requestData +=[ RequestData|EString] ( ","

requestData +=[ RequestData|EString ])*)?

58 )

59 ’}’)?

60 ;

61

62 Prediction returns Prediction:

63 {Prediction}

64 name=( STRING|SAFESTRING)

65 (’predicts ’ label =[Label|EString ])?

66 ;

67

68 Label returns Label:

69 {Label}

70 name=( STRING|SAFESTRING)

71 (’:’ type=statisticalVariableType)?

72 ;

73

74 DeploymentIO returns DeploymentIO:

75 Key | RequestData;

76

77 RequestData returns RequestData:

78 {RequestData}

79 name=( STRING|SAFESTRING);

80

81 Key returns Key:

82 {Key}

83 name=( STRING|SAFESTRING);

84

85 enum statisticalVariableType returns statisticalVariableType:

86 continuous = ’continuous ’ | categorical = ’categorical ’ |

orderedCategorical = ’ordered categorical ’;

87
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88 Deployment returns Deployment:

89 ’Deployment ’

90 name=( STRING|SAFESTRING)

91 ’{’

92 (

93 ’model ’ mlModel =[ Model|EString] |

94 (’inputs ’ inputs +=[ DeploymentIO|EString] ( "," inputs +=[ DeploymentIO|

EString ])* ) |

95 (algorithmexecutions += AlgorithmExecution) |

96 (actionExecutions += ActionExecution) |

97 (triggerGroups += TriggerGroup)

98 )*

99

100 ’}’;

101

102 Algorithm returns Algorithm:

103 BaseAlgorithm | HigherOrderAlgorithm;

104

105 BaseAlgorithm returns BaseAlgorithm:

106 ’BaseAlgorithm ’

107 name=( STRING|SAFESTRING)

108 ’{’

109 (

110 (’codebase ’ codebase =( STRING|SAFESTRING)) &

111 (’runtime ’ runtime =[ BaseAlgorithmRuntime|EString ]) &

112 (’severity ’ ’levels ’ driftLevels=EIntegerObject) &

113 (’accepts ’ (strict?=’only ’)? supportedTypes += statisticalVariableType (

"," supportedTypes += statisticalVariableType)*)? &

114 (’parameters ’ additionalParameters += Parameter ( ","

additionalParameters += Parameter)*)?

115 )

116 ’}’;

117

118 HigherOrderAlgorithm returns HigherOrderAlgorithm:

119 {HigherOrderAlgorithm}
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120 ’HigherOrderAlgorithm ’

121 name=( STRING|SAFESTRING)

122 ’{’

123 (

124 (’codebase ’ codebase =( STRING|SAFESTRING)) &

125 (’runtime ’ runtime =[ HigherOrderAlgorithmRuntime|EString ]) &

126 (’severity ’ ’levels ’ driftLevels=EIntegerObject) &

127 (’parameters ’ additionalParameters += Parameter ( ","

additionalParameters += Parameter)*)?

128 )

129 ’}’;

130

131 AlgorithmRuntime returns AlgorithmRuntime:

132 BaseAlgorithmRuntime|HigherOrderAlgorithmRuntime

133 ;

134

135 BaseAlgorithmRuntime returns BaseAlgorithmRuntime:

136 {BaseAlgorithmRuntime}

137 ’BaseAlgorithmRuntime ’

138 name=( STRING|SAFESTRING)

139 (’{’

140 ’endpoint ’ endpoint =( STRING|SAFESTRING)

141 ’}’)?;

142

143 HigherOrderAlgorithmRuntime returns HigherOrderAlgorithmRuntime:

144 {HigherOrderAlgorithmRuntime}

145 ’HigherOrderAlgorithmRuntime ’

146 name=( STRING|SAFESTRING)

147 (’{’

148 ’endpoint ’ endpoint =( STRING|SAFESTRING)

149 ’}’)?;

150

151 AlgorithmExecution returns AlgorithmExecution:

152 BaseAlgorithmExecution | HigherOrderAlgorithmExecution;

153
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154 BaseAlgorithmExecution returns BaseAlgorithmExecution:

155 {BaseAlgorithmExecution}

156 ’BaseAlgorithmExecution ’

157 name=( STRING|SAFESTRING)

158 ’{’

159 (

160 (’algorithm ’ algorithm =[ BaseAlgorithm|EString ]) &

161 (’live ’ ’data ’ currentIOValues +=[ ModelIO|EString] ( ","

currentIOValues +=[ ModelIO|EString ])*)? &

162 (’historical ’ ’data ’ historicIOValues +=[ ModelIO|EString] ( ","

historicIOValues +=[ ModelIO|EString ])*)? &

163 (’actions ’ ActionExecutionMap += actionExecutionEntry ( ","

ActionExecutionMap += actionExecutionEntry)*)? &

164 (’parameter ’ ’values ’ parameterValueMap += parameterValueEntry ( ","

parameterValueMap += parameterValueEntry)*)?

165 )

166

167 ’}’;

168

169 HigherOrderAlgorithmExecution returns HigherOrderAlgorithmExecution:

170 {HigherOrderAlgorithmExecution}

171 ’HigherOrderAlgorithmExecution ’

172 name=( STRING|SAFESTRING)

173 ’{’

174 (

175 (’algorithm ’ algorithm =[ HigherOrderAlgorithm|EString ]) &

176 (’observed ’ ’execution ’ algorithmExecution =[ AlgorithmExecution|EString

]) &

177 (’actions ’ ActionExecutionMap += actionExecutionEntry ( ","

ActionExecutionMap += actionExecutionEntry)*)? &

178 ((’minimum ’|’min ’) ’observations ’ minDataPoints=EIntegerObject) &

179 ((’maximum ’|’max ’) ’observations ’ maxDataPoints=EIntegerObject) &

180 (’parameter ’ ’values ’ parameterValueMap += parameterValueEntry ( ","

parameterValueMap += parameterValueEntry)*)?

181 )
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182 ’}’;

183

184 actionExecutionEntry returns actionExecutionEntry:

185 {actionExecutionEntry}

186 key=EIntegerObject

187 ’->’

188 value=[ ActionExecution|EString]

189 ;

190

191 TriggerGroup returns TriggerGroup:

192 {TriggerGroup}

193 ’Trigger ’

194 name=( STRING|SAFESTRING)

195 ’{’

196 compositeTriggers += CompositeTrigger ("or" compositeTriggers +=

CompositeTrigger)*

197 ’execute ’ targets +=[ BaseAlgorithmExecution|EString] ("," targets +=[

BaseAlgorithmExecution|EString ])*

198 ’}’

199 ;

200

201 CompositeTrigger returns CompositeTrigger:

202 {CompositeTrigger}

203 ’every ’

204 (

205 (tt=TemporalTrigger)? &

206 (st=SampleBasedTrigger)? &

207 (pt=PredictionBasedTrigger)? &

208 (lt=LabelBasedTrigger)?

209 );

210

211 TemporalTrigger returns TemporalTrigger:

212 {TemporalTrigger}

213 (’one ’ frequency=frequencyEnum) | (cronString=STRING);

214
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215 enum frequencyEnum returns frequencyEnum:

216 hourly = ’hour ’ | daily = ’day ’ | weekly = ’week ’ | monthly = ’month ’ |

yearly = ’year ’;

217

218 SampleBasedTrigger returns SampleBasedTrigger:

219 {SampleBasedTrigger}

220 frequency=EIntegerObject ’samples ’;

221

222 PredictionBasedTrigger returns PredictionBasedTrigger:

223 {PredictionBasedTrigger}

224 frequency=EIntegerObject ’predictions ’;

225

226 LabelBasedTrigger returns LabelBasedTrigger:

227 {LabelBasedTrigger}

228 frequency=EIntegerObject ’labels ’;

229

230 Action returns Action:

231 {Action}

232 (’Action ’)

233 name=( STRING|SAFESTRING)

234 ’{’

235 (

236 (’endpoint ’ endpoint =( STRING|SAFESTRING))? &

237 (’parameters ’ additionalParameters += Parameter ( ’,’

additionalParameters += Parameter)*)?

238 )

239 ’}’;

240

241 Parameter returns Parameter:

242 {Parameter}

243 (mandatory ?=’mandatory ’)?

244 name=( STRING|SAFESTRING)

245 (’:’ type=parameterType)?

246 ;

247
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248 enum parameterType returns parameterType:

249 Integer = ’Integer ’ | Real = ’Real ’ | String = ’String ’ | Boolean = ’

Boolean ’;

250

251 parameterValueEntry returns parameterValueEntry:

252 {parameterValueEntry}

253 key=( STRING|SAFESTRING)

254 ’=’

255 value=EString

256 ;

257

258 ActionExecution returns ActionExecution:

259 {ActionExecution}

260 (’ActionExecution ’)

261 name=( STRING|SAFESTRING)

262 ’{’

263 (

264 (’action ’ action =[ Action|EString ]) &

265 (’parameter ’ ’values ’ parameterValueMap += parameterValueEntry ( ","

parameterValueMap += parameterValueEntry)*)?

266 )

267 ’}’;

268

269 EIntegerObject returns ecore:: EIntegerObject:

270 INT;

271

272 EString returns ecore:: EString:

273 FLOAT | INT | STRING | SAFESTRING;

274

275 terminal FLOAT returns ecore :: EFloat: ’-’? (’0’..’9’) ’.’ (’0’..’9’)+;

276

277 @Override

278 terminal INT returns ecore ::EInt: ’-’? (’0’..’9’)+;

279
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280 terminal SAFESTRING: (’a’..’z’|’A’..’Z’|’_’|’.’|’@’) (’a’..’z’|’A’..’Z’|’_

’|’.’|’-’|’@’|’0’..’9’)*;
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It involves analysing unpublished data from or about living human
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It involves animals?

It involves data protection
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There is a reputational risk to the University

It restricts academic freedom

It involves collaboration / partnership / funding from organisations
tainted by ethically questionable activities?

Other (please state) ____________________________________________________________
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The project seeks to investigate novel techniques for monitoring the performance
of ML models. We have created a domain specific language that can be used by
data scientists to define monitoring strategies.
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Has this work been approved by another external agency (collaborating
institution, NHS) etc.

No

If yes please state where:



1.10 I have read and understood the University’s Code of practice and
principles for good ethical governance
(https://www.york.ac.uk/staff/research/governance/research-policies/ethics-code/)

Yes
Section 2: HUMAN PARTICIPANTS
(If your project doesn’t involve people please skip to section 3)
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application form (or give a reason that they aren’t needed).

● If a survey / questionnaire is being conducted please include this alongside
the application.
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the survey and need to be included in this application.

2.1 Who will your participants be? (Describe the criteria for inclusion / exclusion)
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2.2 Will they be paid? No

If yes howmuch (you must obtain a signed receipt of payment)?

2.3 Do any of the following apply?

Children (under 18) No

If yes does the investigator have a current DBS check? N/A

Vulnerable groups No
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It involves taking bodily samples No

Is physically invasive / challenging No
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and explain the steps taken to safeguard individuals:

2.4 Recruitment (How will you recruit participants?)
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2.5 How will you guarantee anonymity? (This includes IP addresses and any
identifying information)
If anonymity will not be provided explain why this is necessary.
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participants use it with the help of the researcher. The feedback collected
will not be stored alongside each individual participant’s personal
information. After all the interviews are conducted, the evaluation data
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(https://www.york.ac.uk/records-management/dp/)

___ Physiological
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___ Medical (in which case you are likely to need NHS approval)

X Personal (names, contact details etc.)

___ Financial
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How will you protect this data?
No personal data will be linked to a specific participant’s feedback. Participants’
contact details (e.g email addresses) were accessed through BT’s directory on a
machine managed by BT’s IT department. Therefore, all contact details are
protected by BT’s organizational policies such as mandatory password protection
on all laptops and full disk encryption. No data will ever migrate from a secure
machine to an insecure personal device.

Section 3: DATA STORAGE AND TRANSMISSION

3.1 I have read and understood the University of York’s Data Protection Policy
(https://www.york.ac.uk/records-management/dp/policy/)

Yes

3.2 I will keep any data appropriately secure (e.g. in a locked cabinet),
maintaining confidentiality and anonymity (e.g. identifiers will be
encoded and the code available on a need to know basis) where
possible.

Yes



3.3 Please describe the special precautions will you take to ensure
anonymity when linking identifiable data to experimental data:

We will not be storing any personally identifying information.

3.4 If your data can be traced to identifiable participants/computer/address:
a) who will be able to access your data? N/A

b) approximately how long will you need to keep it in this identifiable
format? N/A

3.5 If your project requires deviation from traditional data protection practices
in research, or raises particular data protection issue please explain here:
N/A

3.6 STUDENTS ONLY: Will any identifying data be kept securely by supervisors?

No

If No state why:
We will not be storing any personally identifying information.

Section 4: RISK ASSESSMENT

4.1 Has a departmental risk assessment been completed for this project, if
appropriate?

No

If no why not?
No major risks have been identified

Section 5: ACADEMIC FREEDOM

5.1 Is there a secrecy clause to the research? No

If yes give details:

Section 6: REPUTATIONAL RISK (if associated with a collaborative partner
see section 7)

6.1 Why is it appropriate for the University to be associated with this project?
(please also state what action has been taken to mitigate against potential
reputational risk)

This is a standard evaluation procedure of a software artifact with no
reputational risk to the University.
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British telecom.
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organisation?
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Section 8: COMPLETION

The project team have read and understood this application:

Signed (PI): Panagiotis Kourouklidis Date: 20/04/2022
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this project at any time
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