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Abstract

Internal anatomical motion (e.g. respiration-induced motion) confounds the precise de-

livery of radiation to target volumes during external beam radiotherapy. Precision is,

however, critical to ensure prescribed radiation doses are delivered to the target (tu-

mour) while surrounding healthy tissues are preserved from damage. If the motion

itself can be accurately estimated, the treatment plan and/or delivery can be adapted to

compensate.

Current methods for motion estimation rely either on invasive implanted fiducial mark-

ers, imperfect surrogate models based, for example, on external optical measurements or

breathing traces, or expensive and rare systems like in-treatment MRI. These methods

have limitations such as invasiveness, imperfect modelling, or high costs, underscor-

ing the need for more efficient and accessible approaches to accurately estimate motion

during radiation treatment. This research, in contrast, aims to achieve accurate motion

prediction using only relatively low-quality, but almost universally available planar X-

ray imaging. This is challenging since such images have poor soft tissue contrast and

provide only 2D projections through the anatomy. However, our hypothesis suggests

that, with strong priors in the form of learnt models for anatomical motion and image

appearance, these images can provide sufficient information for accurate 3D motion

reconstruction.

We initially proposed an end-to-end graph neural network (GNN) architecture aimed

at learning mesh regression using a patient-specific template organ geometry and deep

features extracted from kV images at arbitrary projection angles. However, this ap-

proach proved to be more time-consuming during training. As an alternative, a sec-

ond framework was proposed, based on a self-attention convolutional neural network

(CNN) architecture. This model focuses on learning mappings between deep seman-

tic angle-dependent X-ray image features and the corresponding encoded deformation

latent representations of deformed point clouds of the patient’s organ geometry.

iv



Both frameworks underwent quantitative testing on synthetic respiratory motion scenar-

ios and qualitative assessment on in-treatment images obtained over a full scan series

for liver cancer patients. For the first framework, the overall mean prediction errors

on synthetic motion test datasets were 0.16±0.13 mm, 0.18±0.19 mm, 0.22±0.34 mm,

and 0.12±0.11 mm, with mean peak prediction errors of 1.39 mm, 1.99 mm, 3.29 mm,

and 1.16 mm. As for the second framework, the overall mean prediction errors on syn-

thetic motion test datasets were 0.065±0.04 mm, 0.088±0.06 mm, 0.084±0.04 mm, and

0.059±0.04 mm, with mean peak prediction errors of 0.29 mm, 0.39 mm, 0.30 mm, and

0.25 mm.
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Chapter 1

Introduction

1.1 Background

Radiotherapy (RT) has become a pillar of cancer treatment all over the world during

the last few decades. Historically, RT involved large, square radiation fields delivered

to a large anatomical region surrounding the tumour (target), leading to significant tox-

icity, and limited deliverable dose. Medical imaging has revolutionized RT, leading to

precise, conformal radiation fields, optimized to a static single time-point represen-

tation of patient anatomy. This representation, however, does not account for patient

motion, which may cause overdosing of organs-at-risk (OARs), or under-dosing of the

tumour, leading to poorer outcomes for survival and post-treatment morbidity [1].

External beam radiation has become a standard of care in cancer RT clinics since it

is used daily in numerous hospitals and health-care centres to determine the internal

anatomical structure of organs and tumours during treatment planning and delivery

[2]. Precision is critical for achieving tumour coverage while preserving surrounding
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sensitive healthy tissues [1], as damage to normal tissues hinders the escalation of the

dose to the desired therapeutic level in the gross target volume (GTV). In treatments

with higher, but more precisely targeted doses (hypo-fractionated treatments) such as

Stereotactic Ablative Body RT (SABR), unaccounted patient motion is yet more criti-

cal, and sometimes even prohibitive [3]. Hence, to fully exploit the potential of external

beam radiation, tumour and organ movements must be addressed during the irradiation

process, ensuring that more radiation is delivered to the target tumour while sparing

OARs.

1.2 Clinical motivation: impact of motion on treatment

efficacy

1.2.1 Periodic motion impact

Numerous strategies have been developed to manage breathing-induced (i.e. periodic)

motions with external beam radiation techniques, such as SABR. These strategies can

be broadly categorized into two approaches: passive and active motion mitigation

(AMM) techniques [4, 1]. An example of a passive mitigation technique that has

generally been used in radiation treatment to account for breathing motion is defin-

ing an internal-target-volume (ITV) (see Figure 1.1). The ITV includes a motion-

encompassing safety margin, i.e., clinical target volume + internal margin to account

for target motion [4]. The motion-encompassing margin is normally estimated based

on 4D-CT data acquired at treatment planning and hence reflects an average estimate of

the motion that corresponds with in-treatment motion with uncertain accuracy. These

margins lead to inaccuracies during treatment and result in greater irradiation of nor-
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mal tissues [5], meaning overall radiation intensity must be reduced, and treating the

target tumour becomes more difficult.

Figure 1.1: An illustration of target volumes accommodating respiratory motion. The
visible or palpable extent of the tumour, known as the GTV, is depicted in blue, while
the ITV, designed to ensure comprehensive coverage despite variations in position and
shape, is represented in pink. The PTV is delineated in yellow and incorporates addi-
tional margins to address uncertainties in treatment delivery, such as setup errors and
organ motion.

Clinicians also take into account a planning target volume (PTV) margin in addition to

ITV, which is utilised to account for treatment-related patient positioning difficulties

(i.e., ITV plus setup margin). This can be reduced by accurately delineating the ITV,

which allows for dose escalation to the gross target volume (GTV). The aim is therefore

to reduce or eliminate ITVs. To achieve this goal, the utilization of an AMM technique

is required. This technique relies on real-time information about the tumour position,

as it has the potential to significantly reduce the ITV margin and, consequently, mini-
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mize the radiation dose to surrounding normal tissues.

Respiratory-gating and tracking are two popular AMM methods [5], although they

have their own limitations. Respiratory-gating is relatively easy to implement, but it

implies a longer time to deliver the specified dose because radiation is only delivered

for a segment of the respiratory cycle [1]. In contrast, real-time tracking, which repo-

sitions and/or reshapes the radiation beam as the target moves, implies no prolongation

of treatment sessions but is more technically challenging to realise. Moreover, its effec-

tiveness can be limited by the time delay between detecting a change in target position

and the system adjustment, resulting in a persistent lag in the system’s response to the

target position.

All active methods critically rely on real-time information on the tumour’s position

during treatment. Gating and tracking techniques often rely on implanted markers to

track the target’s mobility in real-time. These markers are invasive, and in any case,

only provide information on specific locations (i.e., marker positions) inside tissues,

rather than the target/OARs as a whole [6]. Moreover, implanting fiducial markers

(FMs) may lead to organ inflammation due to infection, bleeding, displacement or

migration during the treatment delivery [7, 8]. Therefore, techniques based on non-

invasive imaging are preferred. Treatment systems integrating magnetic resonance

imaging (MR-linac) arguably provide an excellent basis for this [9] in the form of real-

time in-treatment images that are radiation-free and have good soft tissue contrast and

resolution [10]. However, current MR-linacs provide only orthogonal pairs of 2D slices

rather than true 3D images and hence do not directly enable visualisation of the whole

3D geometry of a target tumour region and surrounding OARs. More importantly, such

systems are expensive and rare, meaning very few patients currently can access them.
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In contrast, most conventional linacs are equipped with on-board kV (kilovoltage) X-

ray imaging, and such systems will inevitably be used to treat most patients; techniques

that can recover anatomical motion from such images are therefore attractive.

1.2.2 Therapeutic Index with Motion impact

The purpose of this research is to enhance the probability of curing cancer by max-

imising tumour control probability (TCP) while minimising normal tissue complica-

tion probability (NTCP). The relationship between TCP and NTCP is shown in Figure

1.2.

Figure 1.2: The dose-response curve of TCP represented in pink colour and NTCP
represented in green colour with respect to radiation dose in conventional RT. Sparing
normal tissues shifts the NTCP curve to the right, allowing a lower incidence of normal
tissue damage for the same dose.

It is not feasible to select a radiation dose that would completely cure cancer while

producing no side effects to normal tissues since the separation of these two curves is

governed mostly by biological factors such as tumour characteristics, patient physiol-
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ogy, and genetic variability [11] and therefore clinicians have no control over it. The

ideal circumstance is to conduct a clinically gentle intervention. To achieve this, the

therapeutic index (TI), which is the difference between the likelihood of curing can-

cer and the probability of causing an unacceptable side effect, can be computed. The

graph shown in Figure 1.2 depicts the dose-response curve for a conventional RT dis-

tribution, indicating that a relatively low TCP value can be achieved while also having

a low NTCP value.

While the ideal TI in RT is set at one, clinicians often encounter challenges in reach-

ing this optimum value due to the inherent limitations imposed by biological factors as

described above. To address this challenge, the solution involves decoupling doses, en-

abling clinicians to administer a high radiation dosage to the tumour while minimizing

exposure to normal tissues. Conformal RT techniques, such as SABR, prove valuable

in this context by enhancing TCP while keeping NTCP low, thereby increasing the

TI. The graph in Figure 1.3 illustrates a favourable scenario where patients experience

significantly greater TCP for the same level of toxicity.
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Figure 1.3: Graphical visualization illustrates the increase of the TI by using a con-
formal radiation technique. This enables a comparable level of NTCP, akin to the
conventional approach, but at a higher dose.

However, when there is motion, the healthy tissue located in the low-dose zone may

migrate into the treatment field, leading to the delivery of a higher radiation dose to

the healthy tissue. This, in turn, leads to patients enduring intolerable levels of toxi-

city. Another scenario arises when the tumour moves away from the radiation field,

resulting in a reduced radiation dose to the tumour. Despite the consistent toxicity sta-

tus, with the healthy tissue remaining stationary while the tumour moves, the tumour

receives a suboptimal radiation dose, resulting in a lower TCP value. This necessi-

tates a reduction in the prescribed dose to bring the NTCP back to an acceptable level.

Hence, patients may not fully benefit from conformal radiation treatments like SABR

due to challenges associated with motion. This, in turn, poses challenges for clinicians

in delivering an optimal radiation dosage to patients, ultimately influencing the overall

outcomes for patients.

This project aims to ameliorate patient motion effects and improve TI via AMM, en-
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abling clinicians to reduce the NTCP to acceptable levels, thus allowing for larger

prescription doses that will result in better outcomes for the patient. This will then

enable clinicians to adapt therapies for diverse patient cohorts.

1.2.3 Target Under-Coverage

Suppose that the ITV always encompasses the complete motion of the GTV, despite

the fact that it is a snapshot taken during the simulated CT scan and that the GTV may

spend some time outside the ITV. If the tumour is always located inside the planned

radiation dosage (i.e., within the pink region in Figure 1.4), a TCP of 85-90% can be

achieved. However, if the tumour escapes the radiation field even 20% of the time, the

TCP falls nearly 60%. This implies that tumour moves outside the radiation field result

in a loss of almost 30% of TCP [12]. As shown in Figure 1.4, decreasing the effective

radiation dosage has a significant impact on TCP.

Figure 1.4: Target Coverage during Treatment

Ideally, radiation delivery should be designed to follow a moving target if the tu-
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mour/organ movement can be tracked continuously in real-time without markers. This

would eliminate the requirement for a tumour-motion margin, resulting in less irradia-

tion of normal tissue.

1.3 Aims

The overall aim of the work was to develop artificial intelligence (AI)-based patient-

specific motion modelling techniques that enable the prediction of internal anatomical

motion from highly sparse, low-quality in-treatment kV projection images. To this

end, three main research streams were pursued:

• Development of techniques for generating synthetic training data, as model train-

ing necessitates paired sets of organ motion instances and corresponding kV im-

ages. This involved synthesizing data based on patient-specific motion patterns

derived from 4D-CT images.

• Development of an end-to-end GNN-based approach to predict 3D volumetric

organ shape deformation from a single in-treatment kV planar X-ray image ac-

quired at any arbitrary projection angle.

• Development of a simpler CNN approach that exploits learnt patterns of tissue

motions by extracting semantic information from single in-treatment kV planar

X-ray images.
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1.4 Potential Challenges

It is difficult to predict complex internal anatomical motion from highly sparse kV

planar X-ray image details. One primary difficulty arising from these images involves

instantaneous projection over the patient volume, compressing volumetric information

along projection directions, i.e., in the direction of the beam axis. Additionally, kV

image contrast is very poor in soft tissue regions, which in any given projection can

be obscured by bony anatomical features. Although deep learning techniques have

been shown to enable up-sampling and image synthesis based on low-contrast or low-

resolution medical images, combining this requirement with inferring a 3D geometry

from a 2D image poses a significant challenge. To overcome this challenge, we use the

corresponding patient-specific organ as a volumetric 3D mesh prior which is extracted

from the reference CT volume.

1.5 Contributions

Two distinct patient-specific deep learning techniques have been developed for recon-

structing 3D volumetric organ models from an arbitrary angled single-view kV X-ray.

In the first phase of the research, we proposed a model that learns mesh regression

from a patient-specific template and deep features extracted from kV images at arbi-

trary projection angles. A 2D-CNN encoder extracts image features, and four feature

pooling networks fuse these features to the 3D template organ mesh. A ResNet-based

graph attention network then deforms the feature-encoded mesh. The first phase of the

research offered the following contributions:

• An end-to-end deep learning technique that integrates a convolutional neural
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network (CNN) image encoder and a graph-attention network through learnable

feature pooling networks (FPNs) for reconstructing 3D volumetric organ models

from an arbitrary gantry-angled single-view kV planar x-ray image.

• The arbitrary projection angle information is incorporated via an additional chan-

nel to the input image to extract angle-dependent features so that the model can

reconstruct the 3D anatomy from kV images acquired at any projection angle.

• The image features are fused into the 3D mesh space through four learnable

FPNs where each FPN is associated with its corresponding convolutional layer

in the encoder to extract hierarchical features for each vertex. This enables non-

trainable components (i.e. the vertex projection operation) to be eliminated from

the model architecture, making it end-to-end trainable.

• To the best of our knowledge, this is the first time a deep learning framework has

been used to reconstruct volumetric 3D organ models from an arbitrary gantry-

angled single-view medical image.

In the second phase of the research, an attention-based CNN model was proposed that

enables estimating lower-dimensional representations of the vertex-wise displacement

field for the motion of internal anatomy. This second approach was introduced to ad-

dress the time-consuming nature of the first approach based on the GNN framework. In

contrast, the CNN-based method efficiently learns a mapping from kV image-derived

features to the lower-dimensional representation of the vertex-wise displacement field

of deformed meshes. This reduction in learnable model parameters results in a more

efficient and robust approach, with the CNN-based method taking only around 4 msec

per input image during inference, compared to the GNN method’s requirement of ap-

proximately 27 msec.
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Moreover, a CycleGAN, conditioned on the projection angle, was developed and trained

using an unpaired set of real kV X-rays and DRRs as part of the synthetic data gen-

eration process. The purpose of this model is to facilitate the style transfer from real

kV images to DRRs. The motivation behind adopting this approach is to address the

inherent limitations of DRRs, which lack the scatter properties and noise characteris-

tics found in real kV X-ray images. This model was trained for each case individually

since the field of view (FOV) acquisition varies from patient to patient.

1.6 Research Articles and other outputs

In addition to the contributions listed above, the following research papers have been

submitted for publication so far.

• Deep-Motion-Net: GNN-based volumetric organ shape reconstruction from single-

view 2D projections, submitted to Medical Image Analysis Journal.

Moreover, the following research papers have been prepared for publication.

• An attention-based CNN framework for volumetric organ shape reconstruction

from single-view 2D projections.

In addition to that, I showcased my research in:

• AI workshop/AI theme category at the Annual Meeting for Radiation Research

(ARR) in 2021.

• A poster abstract presented in CRUK-ARR Radiation Research Conference in

Glasgow 2023.

• A poster abstract presented in CRUK RadNet PhD & Postdoc Symposium in
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London 2023.

1.7 Organization of the Thesis

The content of this thesis is organised as follows.

• Chapter 2 provides a systematic review of motion monitoring and management

in RT. This chapter encompasses an exploration of X-ray-based motion monitor-

ing methods, surface-guided methods, and hybrid, hypo-fractionated and MRI

treatment techniques for motion mitigation. Additionally, it delves into recent

advancements that leverage machine learning and deep learning models to esti-

mate internal anatomical motions.

• Chapter 3 presents a patient-specific end-to-end deep learning model to build

the complex relationship between deformations of the target anatomy and the

corresponding appearance of that anatomy in X-ray images acquired at any arbi-

trary projection angle. The evaluation outcomes are subjected to both quan-

titative and qualitative analysis, utilizing a synthetic motion dataset, and in-

treatment images obtained throughout the full scan series for four liver cancer

patients respectively. This chapter is derived from my paper “Deep-Motion-Net:

GNN-based volumetric organ shape reconstruction from single-view 2D projec-

tions” submitted to the Medical Image Analysis Journal.

• Chapter 4 presents a novel self-attention-based CNN framework for estimat-

ing the relationship between the lower-dimensional representation of 3D organ

deformations and single in-treatment kV planar X-ray images. This proposed

method addresses the high time cost of the model training process highlighted
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in the previous model discussed in Chapter 3. This chapter is derived from my

paper ”An attention-based CNN framework for volumetric organ shape recon-

struction from single-view 2D projections”.

• Chapter 5 provides a concise overview of the research outcomes, offering in-

sights into the practical application of my findings. It also includes the limita-

tions identified during the study and outlines potential future work.
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Chapter 2

Literature Review

This chapter provides a comprehensive exploration of existing approaches related to

motion monitoring and management in RT, systematically divided into six main sec-

tions. Section 2.1 describes kV and megavoltage (MV) X-ray approaches used during

the past few decades including their limitations. Section 2.2 describes Surface-guided

approaches. Section 2.3 explains hybrid methods used during the past few decades

including their limitations. Section 2.4 and 2.5 explicate the extended systems that can

be used for motion monitoring with electromagnetic markers and ultrasound-based ap-

proaches, respectively. Section 2.6 describes the magnetic resonance imaging for mo-

tion management and its limitations. (For a detailed review of topics outlined in sec-

tions 2.1-2.6, see Bertholet et al. [13]). Finally, section 2.7 describes learning-based

techniques, and comprises four parts, namely machine learning techniques (particu-

larly deep neural networks that were used for respiratory motion management tasks),

deep learning-based image registration techniques, surrogate-based motion models and

shape reconstruction from single-view projections. Finally, Section 2.8 offers a sum-
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2.1 X-ray-based motion monitoring

mary of this chapter.

2.1 X-ray-based motion monitoring

Image-guided RT (IGRT) based on kV and MV X-ray imaging is progressively being

used for target tumour localization and patient setup in RT treatments. These tech-

niques play an essential role in delivering a highly conformed dose to the target with

precision. MV X-ray imaging gives poor soft-tissue contrast compared to the kV X-

ray imaging techniques. The main issue, apart from poor soft tissue contrast, is that

the MV FOV is also very truncated and irregular since the collimator leaves shape the

beam to conform to the target. Electronic Portal Imaging Devices (EPIDs) and kV

X-ray devices that are integrated into the treatment unit are the most commonly used

X-ray imaging devices. These strategies come in various hardware configurations of

monoscopic or stereoscopic imaging and it is possible to combine these techniques

with external monitoring as well. To extract the target position from the planar image

or sequence of images, image processing algorithms are used by these image-guided

approaches. Moreover, the acquisition and the processing time of the image directly

impact the latency of these methods [14].

2.1.1 Implanted fiducial markers

Due to the poor soft-tissue contrast, one key problem in X-ray imaging is the difficulty

in detecting the target tumour position compared to the nearby sensitive tissues. To

overcome this issue, radiologists surgically implant the high-contrast fiducial mark-

ers (FMs) close to the target tumour for the image guidance of pretreatment. This

technique helps pinpoint the location of tumours with much higher accuracy and the
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ability to deliver the homogeneous dosage to the tumour while keeping the radiation

to the critical surrounding tissues or organs to a minimum. These implantations can be

done through needle-punctures into the organs, for instance, lungs, pancreas, liver and

prostate [15, 16, 17].

It is also possible to implant surrogates using the endoscope into or close to the gas-

trointestinal (GI) tract [18, 19] whereas the surgical implantation approach is used to

monitor the paraspinal and spinal lesions [15]. Endovascular platinum coils were im-

planted in [20] to mark intrapulmonary lesions by placing them in branches of the

pulmonary artery that are very close proximity to the target tumour. Hepatocellular

carcinoma was detected using Coiled FMs as an internal surrogate in [21] while a thin

FM namely Gold Anchor implanted for 621 patients who have prostate cancer to re-

duce the infections due to conventional FMs associated with 17G-18G needles [22].

Later, an experiment using the airway-implanted FMs and an external surrogate for 28

patients with lung tumours was carried out by Willmann et al. [23]. Comparing tumour

motion in the anterior-posterior (AP) and superior-inferior (SI) directions, the authors

revealed that internal FMs appear to be more accurate predictors of lung tumour mo-

tion than the exterior surrogate. Akasaka et al. [24] conducted a study with 230 lung

cancer patients to investigate the relationship between ITV margin and FM position

using the SABR technique. Very recently, Joon et al. [25] conducted a clinical trial to

compare the effectiveness of gold and polymer FMs in the treatment of prostate cancer

with 28 patients.

Traditional FMs may result in complications due to migration or displacement and

therefore Rose et al. [26] used a liquid FM called Lipiodol to detect margins of the tar-

get tumour and to discover small peripheral malignancies for lung lesions. Moreover,
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there is evidence indicating that residual lipiodol on imaging can serve as a surrogate

marker for individuals who have undergone transarterial chemoembolization (TACE).

This approach helps avoid potential issues associated with placing FMs. [27].

The automatic segmentation of FMs must be done in real-time for any treatment based

on intra-fraction monitoring. By tracking the movement of the FMs in the images, it is

possible to adjust the radiation delivery in real-time. However, this is difficult for MV

X-rays due to their lower contrast compared to kV X-rays [28]. This further indicates

that the target and FMs may not be easily distinguishable from surrounding tissue in

MV X-rays, making it difficult to accurately segment the target tissue. To enhance the

contrast level of the MV X-rays, Short-arc digital tomosynthesis (SA-DTS) was used

in [29] and then joined with kV X-rays that were acquired in orthogonal directions

for monitoring the 3D motion of the target tumour. A simple parametric template was

used in [30, 31, 32, 33] to segment the spherical or cylindrical FMs in real-time from

MV or kV X-ray projections. The template is typically designed to match the shape

and size of the FM and is then applied to the X-ray image to extract the position and

orientation of the FM in real-time.

Complex templates can be used for accurately segmenting the FMs that exhibit arbi-

trary shapes. One way to generate such templates is by acquiring breath-hold CT [34]

or cone-beam CT (CBCT) projections before treatment [35]. These templates can then

be used to segment the FMs in real-time during treatment, allowing for more accurate

tracking of their position and orientation. However, the generation of these complex

templates may require additional time and resources, and may not always be neces-

sary depending on the shape and size of the FM. Template mapping needs to match

object shape that dramatically varies for various implantations and angles of projec-

18



2.1 X-ray-based motion monitoring

tion. Therefore, this requires a considerable number of templates to cover numerous

circumstances. However, to reduce the computational load, template-based methods

are usually forced to use a minor number of templates since they use an exhaustive

search in the region of interest (ROI). To solve this issue, a template-free approach was

introduced by Lin et al. [28] and the authors used discriminant analysis to segment

implanted FMs, and for the sequential tracking, they used mean-shift feature space

analysis. Another template-free approach was proposed by Wan et al. [36] to segment

the FMs based on dynamic programming for the projection images of CBCT. Then, it

was used to adjust the position of the couch optimally for the treatment and/or bounds

of the gating window.

The toxicity risk, complications and additional costs are often associated with FM im-

plantation. The most common complication is pneumothorax due to percutaneous im-

plantation in the lung as mentioned in [37] where the authors identified 20 pneumotho-

rax cases among 44 lung implantations. Another example is urinary tract infection due

to the implantation of trans-rectal FMs in the prostate [22]. These health complica-

tions due to FM implantation can be reduced by utilizing thin FMs that require a small

needle stick [22]. The insertion of FMs into the body takes considerable time, thereby

causing delays in the treatment delivery. Moreover, this FM insertion may lead to

organ inflammation and FM displacement or migration during the treatment. Another

complication is that the tumour position changes with respect to the implanted markers

due to the deformations of the target tissue. Some clinical approaches for tumour lo-

calization depend on internal anatomical surrogates such as chest wall and diaphragms,

however, the main limitation of this approach is the accuracy given the poor correlation

of the degree of motion between the target tumours and the anatomical surrogates [38].
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2.1.2 Stereoscopic X-ray imaging methods

Stereoscopic X-ray imaging is capable of providing 3D spatial information from 2D

projection X-ray images. However, this X-ray imaging technique requires additional

tools such as the CyberKnife system, real-time tracking RT system (RTRT), Vero sys-

tem, etc. These systems are designed to provide high-quality, real-time imaging that

can be used to track the position and movement of the target tissue during treatment.

Stereoscopic imaging, facilitated by multiple X-ray images taken from different an-

gles, allows for the creation of a 3D reconstruction of the target area. This, in turn,

enables more precise and accurate targeting of the radiation.

The CyberKnife device was invented in the early ’90s by applying stereoscopic prin-

ciples. It serves as an instrument for markerless tumour localization in frameless

stereotactic radiosurgery (SRS) and stereotactic body RT (SBRT) [39]. This is the

first clinical system with a linear accelerator (linac) for real-time motion tracking and

prediction. In early 2000, this system was improved by using FM implantation for

treating extra-cranial tumours in the pancreas and spinal cord [40]. The cyberknife

system comprises two flat-panel detectors that were placed as opposed to each other

and mounted on the floor to capture the images of the tumour from different angles,

kV X-ray imaging sources were mounted on the ceiling, allowing for accurate target-

ing of tumours. The system also includes an MV-linac, mounted on a robotic arm,

which delivers high-energy radiation beams to the tumour. This is the first machine

that was able to follow the target tumour motion and tracking since the treatment beam

can rotate six degrees of freedom by re-aligning the robotic linac. However, the main

limitation of this system is that it is inadequate to resolve the motion of the respiration

since X-rays can only be acquired every ten or twenty-second period of time during the
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treatment delivery. This system has been used to monitor the motion of prostrates in

the recent past during SBRT treatment [41, 42, 43, 44, 45] even inadequate to resolve

breathing motion. However, this system can only handle tiny tumour volumes and suf-

fers from system latency due to repeated verifications before each radiation delivery

through the beam.

The RTRT system [46] was designed to ensure that the patient’s tumour is within the

treatment field at all times during the radiation delivery. Employing high-frequency

stereoscopic X-ray imaging, this system provides continuous monitoring of the tu-

mour’s position and motion. It possesses the capability to dynamically adjust the radi-

ation beam’s position to compensate for any tumour movement. The initial system has

recognized the location of a 2 mm gold FM within the patient’s body with a 1 mm ac-

curacy for every 0.03 seconds during radiation delivery by utilizing synchronized linac.

This system consists of four kV X-ray imaging sources that were placed in the corners

of the floor with corresponding detectors that were mounted on the ceiling. The radia-

tion was stopped by the linac if the implanted gold FM was not within the range of the

gating window and radiation was delivered if the FM was within the gating window

range compared to the planned position. The pulses from the kV X-ray imaging and

linac systems were synchronized using MV scatter-free kV X-ray images. Hanazawa

et al. [21] developed a simple template-based matching algorithm to acquire pairs of

30 kV X-ray images per second for detecting a Visicoil or spherical FM position. The

RTRT system is associated with a high monitoring rate and therefore it has extensively

permitted for detection of the motion of the target tumour within numerous anatomi-

cal sites [15, 47]. Shiinoki et al. [48] proposed an approach for the respiratory-gated

RT verification with the SyncTrax system which was similar to the RTRT system by
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using cine EPID images and a log file. The authors used internal surrogates (inter and

intra-fractional variations of the implanted FM) to evaluate the gating accuracy.

Kamino et al. [49] described a system called Vero that consists of a gimbals-supported

small linac head with an o-ring gantry to deliver treatments by precisely locating mov-

ing tumour targets in real-time. It utilizes a robotic couch and a gimbaled treatment

head, which allows for six degrees of freedom in patient positioning and beam deliv-

ery. This system is equipped with two kV X-ray sources that are orthogonal to each

other and paired with opposite flat panel detectors. These components are attached to

the o-ring gantry at a 45-degree angle relative to the radiation beam. To follow the

respiratory motion of the target tumour, the treatment beam of this system used the

skew angle of the gantry along with the tilt and pan movement of the two gimbals.

This system also relies on the external correlation model (ECM) capability between a

superficial surrogate motion and internal anatomical target motion to predict the target

tumour position. This system is no longer accessible worldwide.

Mori et al. [50] designed a markerless stereoscopic monitoring approach to treat both

liver and lung cancer patients by detecting the moving target tumour. This system

acquired an image sequence for a patient during the respiration cycle. The authors

used a machine learning-based multi-template matching algorithm where learning is

conducted by using the pretreatment images for each patient. The authors evaluated

patient setup accuracy, radiation dosage, gating positional accuracy and workflow of

the treatment delivery. Patient setup accuracy was computed by using 2D to 3D image

registration technique between reference DRR and flat-panel detector images.
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2.1.3 Other X-ray-based approaches

Using MV projections during dynamic tumour tracking, Serpa et al. [51] suggested

a dense-feature-based technique for estimating the mobility of the soft tissues. The

authors evaluated the performance of their algorithm by applying it to fluoroscopic

sequences acquired at ∼2 Hz for a dynamic phantom and two lung cancer patients

treated with the SABR system. For the dynamic phantom, the root-mean-square error

(RMSE) was less than 1.2 mm, whereas for the clinical dataset, it was less than 1.8

mm. Roa et al. [52] recently conducted a research to investigate the dosimetric impact

on the lungs with a kV X-ray beam from an infrared fluoroscope to deliver low-dose

RT using Monte Carlo simulations and an acrylic phantom.

Fergusen et al. [53] proposed a markerless tumour monitoring algorithm which is

based on MV cine EPID images for lungs derived from a dynamic thorax phantom.

During the delivery of radiation, dynamic phantom images were acquired for several

lung SABR breathing traces and a sample patient data set. The phantom data had a

tracking error of 1.34 mm, while the patient data had a tracking error of 0.68 mm.

Later, Bruin et al. [54] proposed a marker-less approach to track the lung tumours

in real-time using kV-based SABR during VMAT. A series of planar kV images was

acquired at 7 Hz during treatment delivery from a 3D phantom which comprises three

lung tumour targets. The authors used the inspiration phase in 4D-CT to generate 2D

reference templates for different gantry angles. Normalized cross-correlation was used

to match the kV X-rays and templates to recognize the tumour positions. The third

dimension was recognized by the triangularization of 2D-matched projections. In 92%

and 96% of the kV projections for the phantom’s targets, 1 and 2, 3D findings within

the 2 mm range of the known position were present, respectively. This percentage
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plummeted to 80% for target 3. Recently, Mueller et al. [55] proposed a markerless

tumour tracking technique utilizing intra-fractional kVs to perform a trial for 30 lung

cancer patients. The treatment is interrupted by the clinician if the mean lung tumour

position shifts by more than 3 mm, and it is then resumed after adjusting the treatment

couch to account for the shift. This technique is considered effective if the tracking

accuracy is less than 3 mm in each dimension for more than 80% of the treatment

time.

2.2 Surface guided motion monitoring

Surface imaging is a technique which has the ability to track the patient’s skin surface

through advanced 3D camera technologies. This employs real-time optical imaging

techniques such as structured-light-imaging [56], time-of-flight [57], laser scanning

[58] and stereo-vision [59] to generate a 3D surface of the patient. The primary benefit

of surface-guided radiation lies in the fact that it does not involve ionizing radiation.

This approach is progressively used for motion management in radiation treatments.

During the surface-guided RT (SGRT) treatment, a camera is used to position and

monitor the external surface of the patient to ensure whether the radiation is accurately

targeted.

2.2.1 Infrared marker-based approaches

Stereoscopic in-room cameras are acting as an external surrogate for the target position

to detect the position of the IR reflectors [60, 61]. Besides, systems such as real-time

position management (RPM) and ExacTrac 6D [62] can be utilized for extracranial

respiratory-gated RT. The geometric accuracy of RPM was computed by using FM
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trajectories for pancreas, lung and liver patients [63] and deep-inspiration breath-hold

(DIBH) used to treat lung patients with visual feedback [64]. In 2018, Fassi et al. [65]

reported a 5.8 mm error for 3D median residual set-up compared to the kV images with

implanted clips utilizing multiple reflectors for the treatments of RPM-guided left-

sided breast DIBH. The treatment can be interrupted and the position of the patient can

be changed based on the acquired volumetric imaging when the position of the internal

anatomical structure gets changed [66].

The advantages of using infrared markers for motion monitoring in radiotherapy in-

clude providing a non-invasive and non-ionizing method to monitor patient motion

during treatment sessions. This approach reduces discomfort and eliminates the risk

associated with additional ionizing radiation exposure for patients. However, there are

several limitations associated with using infrared marker systems for motion moni-

toring in radiotherapy. These systems typically require an unobstructed line of sight

between the markers and monitoring cameras, which can restrict their use in certain

treatment setups where obstructions or patient positioning may interfere with moni-

toring accuracy. Achieving and maintaining accurate calibration and positioning of

infrared markers can be challenging, often requiring regular adjustments to maintain

accuracy. Additionally, external factors such as ambient lighting and reflections can

influence the performance of infrared marker systems, potentially affecting the accu-

racy of motion monitoring. Furthermore, patients must remain still and cooperative

during treatment to ensure accurate data capture with infrared markers, which can be

challenging for some individuals. Lastly, it’s important to note that infrared mark-

ers primarily capture surface motion and may not provide comprehensive information

about internal organ motion due to imperfect correlation between surface and internal
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motion dynamics [67].

2.2.2 Optical surface-based approaches

To map the surface of a given patient, one or more high-definition cameras are used

in the optical surface monitoring systems. Catalyst and AlignRT are such kinds of

systems that use two and three room-mounted cameras, respectively, for estimating

the six degrees of freedom organ motion by projecting the structured light patterns

[61]. The reference surface which is obtained through a simulated CT can be used to

compare the patient surface that is detected in real-time during the treatment delivery.

Image registration techniques have been used to register the subsets of the surface with

respect to the reference surface to report the real-time rotation and translation of the

patient [68, 69, 70]. The beam-hold is triggered automatically by certain integrated

systems, for instance, AlignRT when there exists a mismatch between the reference

surface and the current surface. The patient adjustment is also possible with this system

for optimal matching by using immediate in-room feedback.

Surface guidance for monitoring the intra-fraction motion was primarily used for DIBH

breast treatments [71, 72, 73]. Moreover, AlignRT employs active stereovision tech-

nology to track patient movement with precision to the sub-millimetre level [74, 75,

76, 77]. Recently, Sorgato et al. [78] conducted a study to evaluate the precision of

the AlignRT technique in identifying and measuring oedema during RT for breast can-

cer using water-equivalent boluses and a female torso phantom. Recently, a clinical

workflow based on an SGRT procedure was proposed by Li et al. [79] for treating

breast cancer patients using DIBH. During simulation, both free-breathing and DIBH

CT scans were obtained to measure the anterior surface displacement and then the au-
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thors performed an alignment from free-breathing to DIBH to obtain the residual setup

errors. This research was conducted using 26 optical surface imaging systems in nine

clinical centres.

Optical surface monitoring techniques are non-invasive and rely on cameras to capture

surface movements without requiring implanted markers. These methods avoid the

use of ionizing radiation by utilizing cameras and sensors to detect surface points or

features on the patient’s skin. However, the accuracy of surface monitoring depends

on certain factors such as the colour of the patient’s clothes, skin tone, the visible light

and the reflectivity from in-room lighting [61].

2.2.3 Other surrogate-driven approaches

The use of a spirometer allows for the measurement of air volume within the lungs at

a particular moment in time. To ensure accurate readings, a nose clip is worn by the

patient while undergoing the breathing procedure [80]. Moreover, the incorporation of

a scissor valve is advantageous for regulating the air volume at a desired level, as it

aids in enforcing a breath-hold to reduce the motion of the target area. This concept

is called active breathing control (ABC) [81] and is particularly relevant in treatments

where respiratory motion can lead to inaccuracies in delivering radiation. This has

been used for the lung [82], breast cancers [83, 84, 85], and liver [86, 87] cancer pa-

tients. Despite its advantages, there are several drawbacks including the necessity for

coaching sessions, ensuring patient compliance, and fostering effective communication

between the patient and the radiologist since some individuals may find it challenging

to consistently hold their breath, leading to variations in treatment sessions. Moreover,

using this technique can lengthen the overall treatment time and therefore, patients
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must practise breath-holding techniques, and each treatment session may last longer

due to the need for precise coordination [88]. This approach is particularly effective

for analyzing cancers in thoracic and abdominal regions where respiratory motion is

significant. In cases where breath-holding is not feasible or where there is minimal res-

piratory impact on tumour position, this method may not provide significant benefits.

2.3 Hybrid motion monitoring approaches

The use of respiratory monitoring may prove inadequate for accurately detecting the

position of internal target tumours, as it has been identified as a suboptimal surro-

gate [89]. This implies that relying solely on respiration-based tracking methods may

not provide the precision required to effectively monitor and locate internal target tu-

mours during motion monitoring. To overcome this issue, one solution that scientists

investigated was to develop hybrid monitoring techniques specifically by combining

the sparse imaging approaches with respiratory monitoring for internal tumour motion

estimation over time.

2.3.1 Synchrony systems

Ozhasoglu et al. [90] proposed an approach called Synchrony by modifying the exist-

ing CyberKnife system [39] to track the real-time organ motion in three-dimensional

space due to respiration. This system comprises light-emitting diode (LED) markers

and three sets of cameras that were mounted in the ceiling in addition to the x-ray kV

imaging and the robotic linac system of the CyberKnife. Moreover, this system helps

manage the robotic arm to move the radiation beam progressively to such an extent that

the beam consistently stays lined up with the tumour object by using external FMs. In
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2009, Hoogeman et al. [91] used the Synchrony system to analyze lung cancer patients

by taking the correlation error between the external breathing motion and the internal

tumour motion utilizing the intra-treatment images. The SI direction demonstrated

mean errors ranging from 0.2 to 1.9 mm, whereas left-right (LR) directions and AP

possessed mean errors ranging from 0.1 to 1.9 mm and 0.2 to 2.5 mm, respectively.

Later, Bibault et al. [92] conducted research based on fiducial-free lung tumour esti-

mation for 51 patients using the Synchrony system. The authors achieved the overall

survival rate was 85.5% and 79.4% at one year and two years respectively whereas the

actuarial local control rate was 92% and 86% at one year and two years respectively.

Ferris et al. [93] conducted a study focused on monitoring and synchronizing 3D res-

piratory motion with radiation delivery, investigating various phantom motions using

the motion Synchrony system on the Radixact for helical tomotherapy. To capture mo-

tion, LEDs were strategically placed on the patient’s chest. In this research, 4D-CT

scans were obtained from 13 subjects to formulate helical plans. This study achieved

an RMSE of less than 1.5 mm between the programmed phantom positions and the

Synchrony-modeled positions. In a related study, Tse et al. [94] recently conducted

an assessment of this system’s accuracy, employing a patient-specific breathing pattern

with respiratory phase shifts. The authors observed that as the degree of phase shifts

increased, tracking errors also escalated.

2.3.2 ExacTrac systems

Willoughby et al. [95] introduced an approach by using implanted FMs to deliver gated

treatment for the target tumour or OAR localization. This system, ExacTrac, typically

employs a combination of imaging modalities, such as infrared cameras or X-rays,
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to continuously monitor and verify the position of the target region and OARs. This

was designed to address issues such as accurate alignment during patient setup and

the need for on-the-fly adjustments to ensure optimal targeting during treatment. The

breathing pattern of the patient was extracted from infrared reflectors and acted as the

gating signals. To facilitate automated couch adjustments, a strategically positioned

infrared reflective star on the couch is employed. Additionally, an array of five to

seven external infrared reflective markers is placed atop the patient, detected through

infrared cameras mounted in the ceiling. During treatment, a pair of X-ray images are

acquired when the reference gating level aligns with the external signal. Subsequently,

a comparison is made between the 3D triangulated position of FMs and their respective

reference positions. Moreover, if a discrepancy surpassing a predetermined tolerance

is identified, the radiation beam is deactivated, and the couch position is dynamically

adjusted to ensure alignment with the treatment plan. Later, Jin et al. [96] extended this

approach by utilizing the kV X-ray imaging system to allow six degrees of freedom

tumour localization. Recently, this technique extended by combining stereoscopic X-

ray, optical surface, and thermal tracking in a single system (ExacTrac Dynamic) [62,

97] to reduce the limitations such as misalignment of live surface and reference surface.

2.3.3 Vero system-based approaches

The Vero system [49] is equipped with real-time imaging tools, including CBCT and

fluoroscopy, allowing clinicians to visualize the tumour and surrounding anatomy im-

mediately before and during treatment. In this system, an implanted FM becomes the

focal point as the radiation beam gracefully orbits around the centre of gravity of the

linac assembly. This system visually presented a tolerance radius of 3 mm as the ROI
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for the position of estimated FM and if the tolerance exceeds a certain threshold then

the radiologists have a chance to terminate the session. Depuydt et al. [98] conducted

research for a group of ten lungs and liver SBRT patients utilizing the Vero SBRT

gimbaled linac system for the first time to monitor the moving tumours in real-time.

In 2013, Akimoto et al. [99] conducted a very similar analysis by considering 110

log files for 10 lung cancer patients and the authors recommended updating the model

often to avoid drift-related errors. Later, Orecchia et al. [100] evaluated the radiation

toxicity and feasibility of this system by utilizing a cohort of 789 cancer patients with

957 lesions, observing an acceptable level of acute toxicity.

2.3.4 Other hybrid approaches

Berbeco et al. [101] proposed an approach to predict the motion of the lung tumours by

utilizing the optical Anzai belt and RTRT. This Anzai sensor belt was placed around the

patient’s abdomen to track the breathing signal and the placement of infrared reflectors

on the treatment couch was tracked with an infrared camera. The authors evaluated

the residual motions that were treated with respiratory gating by using eight lung can-

cer patients. However, this snug fit of the Anzai belt and the need to follow specific

breathing instructions can indeed cause discomfort for some patients. Patients may

find it challenging to maintain the required breathing pattern consistently throughout

the treatment session, especially if they experience discomfort or difficulty with the

breathing instructions[102].

Bertholet et al. [103] developed a hybrid approach, namely COSMIK, to monitor the

real-time intra-fraction motion of the target tumours. This approach combines the linac

system with sparse and optical monoscopic imaging techniques along with kV X-rays.
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This system involves an auto-segmentation method for implanted FMs in pre-treatment

CBCT projections [35]. To estimate the external 3D trajectories of FMs, the authors

utilized the Gaussian distribution [104]. These trajectories are used for setting up the

patients automatically and to fit an augmented linear ECM [105]. The authors used a

continuous external signal from the ECM to estimate the positions of the internal FMs

during the treatment time. Moreover, the authors used phantom-based simulations

to validate this system. Recently, Ravkilde et al. [106] and Skouboe et al. [107]

combined this COSMIK approach together with the reconstruction of the 4D tumour

dose in real-time for online treatment verification during RT delivery.

Amoush et al. [108] conducted a study to analyze the impact of intra-fraction motion

on breast cancer by using a two-hybrid approach namely a two-isocenter conventional

technique versus a Single-isocenter hybrid IMRT technique. Later Liang at al. [109]

proposed a robust optimization approach in IMRT based on a skin flashing to detect

the position of the target tumour due to respiratory movements with five breast cancer

patients.

Xiong et al. [110] conducted a study using MRI-linac with gating to monitor the

intra-fractional motion of the prostate and its dosimetric impact. The authors used 174

sagittal 2D cine-MRI fractions from 10 patients for this study. With reference to the

centroid position of the gating boundary, the mean prostate motion without gating was

0.6±1.0 mm and 0.0±0.6 mm in AP and SI direction, respectively.

Recently, pencil beam proton treatment with respiratory gating was used by Nanakali

et al. [111] to track the movements of the internal target tumour. Three implanted

FMs were used to collect the tumour motion for the CBCT projections, and an external

marker was used to acquire the RPM signal and synchronise it with the motion.
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2.4 Electromagnetic markers

This section describes the systems that can be used to monitor the motion with elec-

tromagnetic markers. The continuous 3D localization in real-time embedded trans-

mitters/transponders is provided by electromagnetic systems eliminating the need for

ionizing radiation. Calypso is a widely adopted non-ionizing medical device used for

real-time tumour tracking and localization during RT. To provide continuous and pre-

cise 3D localization of implanted transponders, the system employs electromagnetic

technology [112]. These transponders are implanted within or near the target tumour,

allowing them to act as FMs. The system tracks the position of these transponders in

real-time during radiation treatment and provides accurate information about the lo-

cation and motion of the tumour. In this setup, a panel containing multiple excitation

coils is placed above the patient. These excitation coils emit electromagnetic signals,

which are used to stimulate the transponders one at a time. Each transponder responds

by resonating with a unique electromagnetic frequency when excited. As the transpon-

ders are sequentially aroused, a second set of receiver coils, possibly placed around the

patient or integrated into the treatment machine, detect the resonating signals emitted

by the active transponder. The receiver coils pick up the electromagnetic responses

from the transponders and relay the information to the tracking system. The tracking

system then uses triangulation techniques, based on the time delay and intensity of

the received signals, to accurately calculate the position of the resonating transponder

in three-dimensional space. By triangulating the signals from multiple receiver coils,

the system can precisely determine the transponder’s location relative to the patient’s

anatomy.

The first clinical use-case was prostate cancer treatment from the Calypso [113]. One
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of the key advantages of using Calypso in prostate cancer treatment was its ability

to provide continuous monitoring without the use of ionizing radiation. This unique

feature enabled Kupelian et al. [114] to conduct a systematic investigation of motion

patterns in the prostate region. Shinohara et al. [115] evaluated the feasibility of

implanting transponders with Calypso for intra- and interfraction motion monitoring

in five pancreatic cancer patients. The mean shift from patient setup was used to assess

interfraction motion in the X, Y, and Z axes, and the corresponding values were 4.5±1.0

mm, 6.4±1.9 mm, and 3.9±0.6 mm, respectively. The superior, inferior, left, right,

anterior, and posterior mean intra-fraction motions were 7.2±0.9 mm, 11.9±0.9 mm,

2.2±0.4 mm, 3.1±0.6 mm, 4.9±0.5 mm, and 2.9±0.5 mm, respectively. The stability

of the smooth transponder in lung tissue has posed a challenge as described in the

study conducted by Shah et al. in 2013 [116]. To address this issue, an anchored

version of the transponder with improved attachment within the bronchia has been

developed. This modified version of the transponder includes five nitinol legs, which

provide better fixation and stability within the lung tissue [117]. Later, Vanhanen et al.

[118] conducted research on the potential impact of intra-fraction motion correction

in prostate SABR by evaluating dose accumulation with Calypso-based continuous

motion monitoring localization. The authors used 22 cancer patients with 308 fractions

for this study. More recently, Capaldi et al. [119] developed a quality-assurance digital

phantom for evaluating the performance of Calypso for lung cancers.

The Calypso system consists of certain limitations. One limitation is the detection

range which may not extend adequately below the antenna panel limiting its ability to

track targets located deeper within the body. Moreover, the system may lack flexibility

when transferring between treatment rooms, necessitating a dedicated non-conducting
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couch top, which could be cumbersome and time-consuming. Another concern is the

potential for magnetic resonance (MR) artefacts caused by the transponders, which

can affect the quality of MR imaging (MRI) in patients with implanted markers [120].

Additionally, the size of the transponders in the first-generation Calypso system was

larger than standard FMs, potentially leading to more invasive implantation proce-

dures. However, more recent developments have introduced thinner transponders that

can be inserted with a 17-gauge needle to address this issue.

2.5 Ultrasound augmented monitoring

Ultrasound systems (US) with good soft-tissue contrast are capable of providing real-

time continuous image acquisition, enabling clinicians to visualize internal structures

dynamically. One significant advantage of ultrasound is that it does not involve ion-

izing radiation, making it a safer imaging modality for patients, particularly when re-

peated imaging sessions are required. One of the key strengths of ultrasound lies in

its ability to directly observe the deformation of internal tissues in real-time. With

high spatiotemporal resolutions, ultrasound can capture even subtle changes in tis-

sue position and shape during various physiological processes, such as respiration or

anatomical motion. Elekta’s Clarity Autoscan is a commercial system designed for

tracking intra-fraction motion [121]. This is used particularly to monitor the motion of

the prostate during treatment delivery.

The US can track a number of anatomical surrogates as a modality of soft tissue imag-

ing where it is difficult to distinguish the lesion. US-based methods widely used

to monitor internal anatomical motions (including both intra- and interfraction) for

prostate cancers [122, 123, 124]. It inspired the use of advanced USs to study a num-
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ber of treatment sites beyond the prostate. Liver motion monitoring was assessed in a

free-breathing patient immediately after liver SABR using an adapted Vivid 7 Dimen-

sion probe against Calypso [125]. For abdominal regions, an experimental analysis

using US scanning has been conducted by several research groups by using breath-

hold RT to track the liver’s 3D position [126, 127]. Recently, Tianlong et al. [128]

conducted research to track the intra-fraction tumour motion in the pancreas with USs

using an abdominal phantom.

The careful positioning of the probe is required for optimal imaging to optimize patient

interaction. Fargier et al. [129] and Li et al. [130] have identified a need for anatom-

ical deformation control and changes in image quality associated with variations in

the pressure of the probe. In addition to that, the probe must be manually calibrated

during the patient setup to ensure both sufficient coverage of the target volume and

reproducible positioning. To optimize the location of the probe during patient setup

and radiation delivery, Sen et al. [131] developed robotic systems together with re-

mote probe support. Further considerations are necessary when placing an ultrasound

probe within the gantry arc due to potential implications on beam attenuation. This

placement may affect the passage of the radiation beam, leading to alterations in dose

delivery and potentially impacting treatment efficacy.

2.6 MRI for motion management

The use of MRI technology to aid RT has recently been implemented in clinical prac-

tice. The main reason to introduce this MR-guided RT is that it provides radiation-free,

wonderful soft-tissue contrast and high-resolution images for RT treatment planning

and motion management [10]. Using this approach, patients are not exposed to addi-
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tional radiation and are not required to have FMs implanted within their body. With the

advent of the MR-linac, some real-time imaging information (intersecting 2D planes,

updated at 5-10 Hz) has recently become available. However, this technological solu-

tion is expensive and has a high associated time cost, limiting availability to a small

cohort of patients in a few centres internationally. Additionally, metal-implanted can-

cer patients and/or very large patients could not be inspected with MR imaging. In

this section, we describe the previous studies that have been done on MR imaging for

real-time motion management.

MR-linac can acquire real-time imaging in two orthogonal scan planes and not yet pos-

sible to acquire, reconstruct and post-process 3D imaging at an acceptable resolution

and imaging rate to estimate the motion of the target tumour. A single radio-frequency

pulse is generally used in gradient-echo MR sequences, which are the foundation of

cine MR imaging [132, 133]. This pulse helps to create a magnetic field gradient that is

used to generate the images. It is feasible to generate a sequence of images that depict

the movements of the tissues and fluids that are captured over time by using gradients

of various strengths and orientations. These images can be used to create a movie-like

sequence that provides a detailed view of the movement of the tissues and fluids being

imaged.

By acquiring MR images from only a subset of k-space, the amount of data that needs

to be processed is reduced, which can lead to faster image processing times. The pro-

cess of gathering data from k-space, which is a mathematical representation of the

spatial frequencies that make up an image, is referred to as under-sampling. A vari-

ety of techniques, such as randomly sampling k-space or collecting data solely from

selected regions of k-space, can be used to achieve under-sampling. However, under-
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sampling k-space can result in a loss of image detail and the introduction of artefacts,

so careful optimization is necessary to balance processing speed with image quality.

For example, parallel imaging methods may be used to reconstruct undersampled k-

space data using several independent coils [134]. The additional spatial knowledge

can be used during image reconstruction since the signal generated by each coil de-

pends on its location relative to the patient. This allows for improved image quality

and the ability to reconstruct images with higher spatial resolution. However, many

MR-guided RT systems have limited parallel imaging capabilities compared to diag-

nostic MR scanners that are commercially available. This is a hardware limitation that

needs to be addressed to improve the performance of MR-guided RT systems.

The location of a target tumour can be determined directly by tracking the tumour’s

motion over time using sequential MR images. However, these images can also be

used indirectly by identifying a surrogate structure that correlates with the motion of

the target tumour. For instance, if the tumour is in the lung, its movement can be linked

to the diaphragm’s movement. By analyzing the motion of anatomical structures using

deformable motion models, it is possible to gain a more accurate understanding of how

these structures move in 3D space. These models can be created by mapping 2D cine

MR images to 3D anatomical models, which can then be deformed and transformed to

match the motion of the structures observed in these 2D images [135, 136]. With the

aid of segmentation or deformable image registration techniques and 2D cine MR im-

ages, a number of algorithms have been developed to efficiently and accurately extract

the position or outline of a volume of interest [137, 138, 139, 140]. Even though 2D

imaging methods, such as 2D cine MR, can provide high-resolution images of struc-

tures in a single plane, they may not provide enough information to accurately assess
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the location and scale of the structure in 3D space. This is because structures in the

body can move and deform in complex ways, and a single 2D image may not capture

all the relevant information about the structure’s 3D position and shape. Therefore, To

improve the orientation of 2D cine MR images for adaptive RT in real-time, numerous

studies have been conducted [122, 141, 142].

MR guidance for the monitoring of intra-fractional motion is still at its early stage.

Using the ViewRay MRIdian, a few clinics have started to implement on-board MR

imaging to control intra-fractional therapy beam gating [143, 144, 145]. For the first

MR-guided procedure, which was used to treat tumours in thoracic and abdominal re-

gions, around 33% of patients receiving MR-guided RT were diagnosed with gating

[146]. Insight into the potential of using intra-fractional motion control for MR imag-

ing can be gained from preliminary clinical trials and further research studies [147,

144]. To achieve this, special attention must be paid to the MR-linac’s positioning

and the use of specialized radiation delivery techniques, which can be challenging

and require specialized training. Recently, Evan et al. [148] conducted a study using

an MR-linac to evaluate the possibility of using continuous positive airway pressure,

with or without DIBH, to control respiratory motion during treatment delivery with six

healthy patients.

Uijtewaal et al. [149] proposed an MRI-guided multi-leaf collimator (MLC) tracking

approach to monitor the tumour motion throughout intensity modulated radiation using

an Elekta research tracking interface. The motion was generated using a Quasar MRI

4D phantom with and without 1.0 mm/min cranial-drift. The authors used a template

matching method based on Cross-correlation to predict the positions of phantom tu-

mours in sagittal 2D cine-MRI. They used two ways to train a linear regression model,
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one based on several traces and the other based on a single trace, to optimize for online

MRI and account for the expected system delay. Later, Subashi et al. [150] proposed

a method that utilizes peripheral k-space view-sharing and a quasi-random projection-

encoding sampling function to enhance the spatiotemporal resolution of respiratory

motion in 4D-MRI. The authors optimised the spatial resolution and reduced temporal

blurring effects of the MRI by directly extracting the respiratory signal from k-space

without using any surrogate marker. More recently, Tallet et al. [151] used 59 liver

cancer patients in a study to compare the use of MRI-linac with conventional IGRT for

SABR. The authors reported that the boundaries of the liver tumours were not visible

in any of the cases where CBCT was used as an IGRT tool, however when MRI was

utilised as an IGRT tool, the tumour boundaries were evident in 72% of the cases.

2.7 Learning-based Techniques

2.7.1 Machine learning with respiratory motion tracking

Today, the widespread use of machine learning methods in the field of managing res-

piratory motion, as well as other medical applications, is growing rapidly. This section

explores the role of machine learning in RT in the context of motion modelling. Su-

pervised and unsupervised learning approaches are used to predict respiratory motion

in short time intervals [152, 153]. In general, AI methods are used in image-guided 4D

RT to take full advantage of the knowledge provided by radiographic verification and

tumour tracking [154].

Recently, deep learning techniques have shown their remarkable performance and im-

pressive learning power in analyzing numerous types of images including medical
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images [155]. These approaches normally beat other different methodologies in the

previously mentioned fields, which proves that deep learning can capture the seman-

tic information of the data by learning robust features. Most of the recent work in

real-time motion management has been used in deep learning techniques.

Several recent experiments have employed deep learning techniques to anticipate lung

motions [156, 157, 158]. Some of these studies, such as [156, 158], have incorporated

the concept of RNNs to construct a predictive model for pulmonary movements. The

proposed methodologies aim to forecast the tumour’s subsequent position based on its

current location, dividing the data into a training set and a test set. RNNs, leverag-

ing hidden neurons, memorize the relationships within input sequences as historical

information, comprehending how elements transform and operate [159].

A study conducted by Kai et al. [156] utilized an RNN to predict lung motion, a tech-

nique subsequently applied in RT to model lung tumour trajectories. The motivation

behind employing RNNs was to accurately estimate the future position of the tumour

to compensate for the approximately one-second delay in the movement of the clinical

linac gantry. Therefore, the study aimed to accurately estimate the tumour’s position

one second ahead, with a maximum allowable prediction error of 1mm in 3D space.

To achieve this, the authors utilized three separate RNN models to estimate lung tu-

mour trajectory for the x, y, and z axes motions for each patient case. They inputted

past coordinates over a period of four seconds, with each data point in the measured

tumour trajectory representing a sampling interval lasting 1/30 seconds. With 120 past

coordinate data samples used for the estimation of the future position, the RNN’s input

layer consisted of 120 nodes to supply this data, while the hidden layer comprised 10

nodes. The RNN predictor was designed to forecast the tumour’s position one second
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ahead. They set a prediction horizon of 30 data points, approximately equivalent to

one second into the future. The authors compared the proposed RNN model with a

three-layer ANN formulated for a single-axis prediction for each patient case. The

study calculated RMSE values of the predicted error in 3D space for all seven patient

cases for both models. For the RNN model, these error values were 0.6822, 1.3720,

0.5957, 0.8612, 0.4799, 0.8160, and 0.9213 mm, whereas for the ANN model, they

were 1.9684, 4.0334, 3.9098, 7.8485, 2.7157, 8.8041, and 8.4417 mm. The RNN

predictor generated the predicted trajectory for six out of seven patient cases with an

RMSE of less than 1 mm in 3D space. Another approach was introduced by Park et

al. [157], who proposed a method based on intra-fraction and inter-fraction fuzzy deep

learning. This technique not only predicted the breath-induced motion of the target

tumour but also reduced computational time. The RMSE showed a noteworthy im-

provement of 29.98%. Later, Wang et al. [158] aimed to enhance the effectiveness of

RT treatment during sessions by real-time prediction of tumour motion. To achieve this

objective, the authors employed a bidirectional LSTM network. The dataset comprised

respiratory motions from 103 patients with malignant lung tumours.

Steiner et al. [160] conducted a study to investigate whether measurements from both

4D-CT and 4D-CBCT images could effectively predict the range of motion of the tar-

get area during SABR treatment for lung cancer. In this research, Calypso beacons

were implanted in 10 patients undergoing lung SABR. The null hypothesis posited

that there would be no significant difference between the measurements obtained from

4D-CT and 4D-CBCT images and the range of motion of the target area during SABR

treatment for lung cancer. Conversely, the alternative hypothesis suggested a signif-

icant difference in these measurements. The authors calculated the RMSE for each
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phase by analyzing the reconstructed motion, imaging, and treatment motion. They

explored the relationship of motion ranges in three directions: AP, LR, and SI views.

Their findings revealed a rejection of the null hypothesis due to a Pearson correlation

of less than 0.0001. They observed that both 4D-CT and 4D-CBCT significantly un-

derpredicted the motion ranges of the treatment target during SABR treatment, with

factors of SI=1.7, AP=1.7, LR=1.9, and SI=1.5, AP=1.6, LR=1.6, respectively.

Chenga et al. [161] presented a method employing RNN to predict heart motion using

US images, aiming to enhance computational efficiency by mitigating the time asso-

ciated with image acquisition and processing. The sequences of acquired US images

were processed through an image processing algorithm to determine the position of

interest using a surgical instrument captured by the same US scanner. Subsequently,

the collected data points were input into an RNN to predict heart motion. Two types of

datasets were utilized: the first comprised a fixed heart rate and maximum amplitude,

while the second involved varying heart rates and maximum amplitudes. The authors

assessed their approach using RMSE and mean absolute error (MAE), comparing the

results with those obtained from an extended Kalman Filter (EKF) algorithm. Two neu-

ral network models were developed for the two datasets separately. In the first dataset,

there was a 60% reduction in both MAE and RMSE compared to the EKF, while there

was an approximate 70% reduction than the EKF when utilizing the second dataset for

both evaluation metrics.

Lin et al. [162] devised a real-time respiratory signal prediction method based on deep

learning, employing an LSTM model since the target respiratory motion needs to be

predicted ahead of time a certain margin during the treatment delivery to accommo-

date for the latency associated with beam and field adjustments. A total of 1703 sets
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of respiratory signals were gathered through an RPM system from 985 patients. The

dataset was partitioned into training, internal validity, and test sets, with 1187 respira-

tory curves designated for the training set and the remaining 516 for the test dataset to

ensure unbiased estimation of generalized performance. During training, each signal

was split into training and internal validity parts. The LSTM model received input

vectors containing 100 data points (corresponds to the length of time lag), representing

segments of the breathing signal, with the aim of predicting the next 15 data points im-

mediately following the input. This prediction task was achieved using a sliding win-

dow approach, where input and output pairs were extracted from the signal and moved

along the time axis. The sliding window was shifted by 15 data points to continuously

predict subsequent data points after the training input, and errors were calculated for

each set of 15 predicted data points. The authors fine-tuned hyperparameters using an

exhaustive grid search strategy and assessed the proposed LSTM model using three

evaluation metrics: MAE, RMSE, and Maximum Error (ME). In the internal validity

dataset, the LSTM model achieved 0.037, 0.048, and 1.687 for average MAE, RMSE,

and ME, respectively. For the test dataset, the corresponding values for these evalu-

ation metrics were 0.112, 0.139, and 1.811. However, this model is not suitable for

real-time target motion monitoring, as it can only predict external respiratory signals.

Teo et al. [163] proposed a method to predict tumour motion during treatment delivery,

employing a multi-layer perceptron (MLP) network trained through a combination of

online and offline learning on tumour trajectories. The final model comprises a sin-

gle hidden layer MLP with 20 neurons. The study utilized 35 input data samples,

with an average sliding window size of 28 data samples. Hyperparameters were fine-

tuned through a trial-and-error approach, and the model’s performance was assessed
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using two evaluation metrics: MAE and RMSE. To evaluate the generalized model

performance, 20 tumour traces were used in a leave-one-out cross-validation. The

MLP model demonstrated an overall MAE of 0.57±0.17 mm and an average RMSE of

0.67±0.36 mm.

Huang et al. [164] developed a deep learning approach for motion-compensated dy-

namic MRI reconstruction to enhance image quality using under-sampled MRI k-space

data. This complex problem involves three key tasks: dynamic reconstruction, mo-

tion estimation, and motion compensation. For model-based dynamic reconstruction,

the authors employed an RNN-based technique, specifically a convolutional gated re-

current unit (ConvGRU) architecture with a U-Net serving as an encoder and two

decoders. U-Net acted as the backbone, while ConvGRU detected the dynamic be-

haviour of the image sequence. In the second component, they utilized a CNN-based

architecture called U-FlowNet to estimate the motion field. In the third component,

the estimated motion was applied to the reconstructed images to refine and generate

a motion-compensated image. The authors utilized a short-axis cardiac dataset from

fifteen patients, employing a 3-fold cross-validation technique for evaluation. Quanti-

tative metrics such as RMSE, peak signal-to-noise ratio (PSNR), and structural simi-

larity index measure (SSIM) were employed. Later, the authors published an extended

version of this approach to further enhance the quality of the reconstructed results

[165].

Mafi et al. [166] devised a real-time respiratory motion prediction approach using a

neural network. This design incorporated a three-layer static feed-forward ANN con-

nected to a single-layer RNN in the second hidden layer of the ANN. The network was

trained on a dataset of tumour motion, comprising 143 treatment fractions from 42
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thoracic and abdominal cancer patients. The dataset was partitioned into sets of 100,

13, and 30 signals for training, validation, and testing, respectively. A fixed input slid-

ing window size of 35 data samples was utilized, along with a five-sample prediction

horizon to minimize system latency. The model aimed to capture the fifth oncoming

sample. The authors conducted various experiments, altering the output window size

to 1, 3, and 5, and assessed the results using RMSE for three types of models: static

ANN, static ANN + online retraining, and the proposed dynamic neural network. The

findings indicated that the dynamic neural network model with an output window size

of 3 achieved the lowest RMSE, establishing itself as the optimal model for motion

prediction.

Lee et al. [167] introduced a method to enhance image quality by mitigating streaking

artefacts arising from sparse-angle projections in 4D CBCT. The authors used a convo-

lutional neural network (CNN), in particular, residual U-Net with a wavelet-based ap-

proach. The proposed approach was compared against three existing methods: filtered-

back-projection (FBP), compressed sensing (CS), and a simple residual CNN. Image

quality was assessed using RMSE, universal quality index (UQI), and SSIM. The pro-

posed approach yielded RMSE values 0.24, 0.22, and 0.017 times lower compared to

CS, FBP (4D), and FBP (3D) algorithms, respectively. Correspondingly, SSIM and

UQI values for the proposed technique were 0.950 and 0.998.

Lin et al. [168] proposed an ensemble method for estimating the motion of lung tu-

mours in 3D space along the AP, SI, and LR directions, employing machine learning

algorithms. The proposed model architecture incorporates four foundational machine

learning models: XGBoost, LightGBM, MLP, and random forest. The training utilized

16 visual features derived from non-4D CT images and 11 clinical features extracted
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from the Electronic Health Record (EHR) database encompassing 150 patients. The

assessment was conducted based on MAE and RMSE. In the SI direction, the corre-

sponding values were 1.23 mm and 1.70 mm, in the AP direction, the predictions were

0.81 mm and 1.19 mm, and for the LR direction, the error values were 0.70 mm and

0.95 mm.

Zhang et al. [169] introduced a deep learning-based technique for 4D-CBCT image re-

construction that incorporates simultaneous motion estimation and image reconstruc-

tion. This method was evaluated with a focus on fine details in lung 4D-CBCTs. The

model architecture, based on U-Net, was employed for estimating the deformation

vector field (DVF), which represents the final position of each voxel after it has been

transformed, i.e. it is the initial position of the voxel + the displacement of the voxel,

to enhance the accuracy of intra-lung DVFs. Subsequently, Zhehao et al. [170] pro-

posed a CNN-based approach to enhance image quality by reducing motion artifacts in

phase-correlated Feldkamp, Davis and Kress (FDK) reconstructed 4D-CBCT images.

To gauge the effectiveness of their method, the authors utilized the XCAT phantom

and SPARE dataset, quantitatively assessing the results using RMSE and normalized

cross-correlation (NCC). The outcomes revealed that the authors achieved an RMSE

error of 0.0021±0.0003 and an NCC value of 0.93±0.04.

Mendizbal et al. [171] presented a method employing a U-Net variant architecture

capable of learning the function describing the relationship between an input force and

the resulting deformation across diverse geometries, enabling rapid predictions. The

authors utilized finite element (FE) simulations to acquire deformations for the training

process. When subjected to an applied force, the U-Net demonstrated the ability to

approximate deformations in the liver anatomy, achieving an MAE of 0.22 mm with
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a prediction time of 3 ms. The model requires, as input, point clouds derived from

tetrahedral meshes mapped to a sparse hexahedral grid. This study assumes uniform

material characteristics throughout the deformable region.

Recently, Shi et al. [172] introduced a temporal CNN-based approach for estimating

respiratory motion in thoracoabdominal tumours. The study utilized a dataset compris-

ing 103 cancer patients to generate the motion dataset. In related work, Li et al. [173]

employed a machine learning-based method that leverages radiomic features extracted

from average intensity projections to estimate motion in the lung (using 33 radiomic

features) and liver tumours (using 22 radiomic features). The dataset for this study

included 108 lung and 71 liver cancer patients. Validation involved 26 independent

models, 13 for lung motion, and the remaining for liver motion. The achieved maxi-

mum sensitivity and specificity for lung motions were 0.848 and 0.936, respectively,

while for liver motions, they were 0.862 and 0.829.

2.7.2 Image registration approaches for motion estimation

Lv et al. [174] presented an approach based on employing a CNN within a deformable

image registration (DIR) technique to estimate deformations caused by respiration

in the abdominal region. The study utilized MR images obtained from ten patients

through a 1.5T MRI system. Employing non-Cartesian iterative SENSE reconstruc-

tion, the acquired images were organized into three bins based on corresponding res-

piratory signals. Subsequently, the authors utilized a trained CNN model to assess

the spatial transformations among the bins. Comparative evaluations with local affine

registration and non-motion corrected registrations demonstrated better registration re-

sults.
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Sokooti et al. [175] introduced a method centred on non-rigid image registration, em-

ploying a multi-scale CNN architecture to estimate the DVF. The study utilized 3D

CT chest data and conducted intra-subject registration by applying the estimated de-

formation to the images. In contrast to early fusion, this method opted for late fusion,

where patches are concatenated and utilized as inputs for the network. The system

demonstrated competitive performance compared to B-Spline registration.

Eppenhof et al. [176] proposed a 3D CNN based on U-Net architecture designed for

deformable image registration of Pulmonary CT images with synthetic random trans-

formations. The DIRLAB dataset was employed, revealing an average Target Reg-

istration Error (TRE) value of 2.17±1.89 mm. In comparison to actual lung motion,

random transformations exhibited significant differences. Consequently, supervised

training with random transformations failed to provide accurate regularization of the

DVF. To conserve memory and prevent loss of image information, the authors sug-

gested the use of a downsampled image rather than the entire image during the training

phase.

Uzunova et al. [177] applied a CNN for estimating the deformation region in the con-

text of 2D brain MR and 2D cardiac MR registration. They also adapted FlowNet for

dense image registration. The study involved generating numerous synthetic image

pairs with corresponding ground-truth deformations by learning a statistical appear-

ance model from a limited number of sample images. The pre-trained FlowNet ar-

chitecture was fine-tuned using these synthetic data, and the results demonstrated that

the data-driven, model-based augmentation approach outperformed generic but highly

unspecific methods.

Giger et al. [178] presented a patient-specific motion modelling approach using a con-
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ditional Generative Adversarial Network (GAN)-based image registration technique.

The model underwent training to understand the relationship between navigator-based

MRI images and their corresponding US images. By utilizing US images as surrogate

signals, it effectively anticipated 3D-MRI image volumes associated with different res-

piratory states. The evaluation of this methodology included three lung cancer patients.

However, a significant drawback of this method is its vulnerability to adverse effects

in instances of slight displacements of the US probe.

Fu et al. [179] introduced an approach reliant on unsupervised deformable registration

for estimating the DVF associated with lung motion. This method employs two GAN

sub-networks, namely CoarseNet and FineNet. Initially, CoarseNet performs whole-

image registration on a down-sampled image, followed by the use of the patch-based

FineNet to register image patches from the globally warped moving image to those of

the fixed image. The study utilized ten 4D CT images with five-fold cross-validation,

and an additional ten datasets from the DIRLAB [180] data repository were employed

for comprehensive comparison. To enhance registration accuracy, vessel enhancement

was applied before DIR. TRE was used as the evaluation metric, with an average TRE

of 1.00±0.53 mm for their dataset and 1.59±1.58 mm for the DIRLAB datasets.

Sokooti et al. [181] presented a supervised approach for non-rigid image registra-

tion, generating ground-truth DVF for model training. During the training phase, they

utilized randomly generated transformations with both single and mixed frequencies.

The study involved a comparison of different network architectures, such as U-Net

applied to the entire image and an advanced U-Net applied to image patches. Perfor-

mance evaluations were conducted based on the TRE and Jacobian determinants. The

experiment indicated that the network trained with model-based respiratory motion
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outperformed networks trained with random transformations.

Sentker et al. [182] proposed a deep learning-based framework for rapid 4D CT image

registration. In their approach, 4D CT images obtained in-house were utilized for

training, while external evaluation cohorts comprised open 4D CT data repositories.

They employed uncertainty maps based on dropout for analyzing different variations

of the proposed framework. By comparing their framework to standard DIR, they

demonstrated that the registration accuracy is comparable, with a speed-up factor from

around 15 minutes to a few seconds (speedup of approximately 60-fold).

Qin et al. [183] conducted a study employing a biomechanics-informed neural net-

work for image registration, specifically focusing on myocardial motion tracking in 2D

stacks of cardiac MRI data. The architecture utilized a variational autoencoder (VAE)

to learn a manifold for biomechanically plausible deformations, based on reconstructed

biomechanically simulated deformations. The trained VAE was then integrated with

a deep learning-based image registration network, providing a parameterized registra-

tion function that was regularized by application-specific prior knowledge to generate

biomechanically plausible deformations. Although their method demonstrated supe-

rior performance compared to reference methods, it is currently limited to 2D motion

tracking.

Zhang et al. [184] developed an approach for estimating high-quality CBCT image

volumes with limited-angle on-board kV X-ray projections, employing an unsuper-

vised 2D-to-3D deep learning-based (U-net) deformable registration technique. The

model’s inputs consisted of a high-quality CBCT image volume (source image) and a

reconstructed 3D-CBCT (target image), generated from a series of highly sparse kV

images acquired with limited angles. The model produced a predicted dense DVF.
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During the training process, the authors integrated a non-trainable Siddon-Jacobs ray

tracing algorithm [185, 186] to generate DRRs from the deformed 3D-CBCT image

volume. Forward similarity loss was calculated between these projections and the tar-

get kV X-ray projections used to generate the reconstructed 3D-CBCT. Additionally,

the authors incorporated inverse similarity loss between DRRs from the input and the

predicted high-quality source image into the total loss function. The predicted high-

quality source image was generated by applying the spatial transformation from the

inverse DVF to the deformed high-quality 3D-CBCT. Subsequently, the same authors

[187] applied a similar technique to reconstruct high-resolution MRI with limited k-

space data, enabling real-time tracking of anatomical motion.

Lee et al. [188] proposed a patient-specific registration framework based on deep

learning to estimate the rigid transform parameters of C-arm pose from intraopera-

tive fluoroscopy images. The authors generated training data using a parameterized

breathing motion model derived from patient-specific pre-operative 4D CT data. The

method underwent evaluation on both a synthetic test dataset and real preclinical swine

fluoroscopy images, with assessments made using 3D mean-target-registration-error

(mTRE) and mean-projection-distance (mPD). Results for the synthetic test dataset

showed an mTRE error of 6.4±3.3 mm and an mPD error of 7.8±3.9 mm. For real

fluoroscopy images, the mPD error was 14.1±2.7 mm. Subsequently, Lecomte et al.

[189] conducted a study aiming to estimate a dense 3D displacement vector field from

a single fluoroscopy image, utilizing a 2D-to-3D deep learning-based non-rigid regis-

tration technique. The model underwent evaluation on 4D-CT lung data, achieving a

landmark error range of 2.3 to 5.5 mm with mTRE.

Recently, Xie et al. [190] presented an unsupervised deformable registration method
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for inter-fraction CBCT-CBCT images based on deep learning. The entire network

comprises a global and a local GAN to estimate coarse-to-fine level deformation fields.

The total loss function integrates three components: a similarity loss, an adversarial

loss, and regularization based on the DVFs. The model underwent training on 100

fractional CBCTs using five-fold cross-validation and evaluation on an additional 105

CBCTs from 20 and 21 abdominal cancer patients. The authors reported an average

TRE of 1.91±1.18 mm, computed based on landmarks and implanted FMs.

Later, Dong et al. [191] proposed a 2D-3D non-rigid registration technique for mon-

itoring lung tumour motion using deep learning. This approach incorporates two or-

thogonal DRR projections to predict the 3D DVF. Initially, 3D feature maps were ex-

tracted from the orthogonal DRRs using a series of residual blocks. These feature maps

were then utilized as the fixed image, with a reference 3D-CT serving as the moving

image input to an attention-based U-Net architecture. The registration process was

completed in 1.2 seconds, yielding a dice coefficient exceeding 0.97 and a normalized

cross-correlation surpassing 0.92.

In a very recent study, Dai et al. [192] introduced a patient-specific 2D-3D deep

learning-based image registration method to monitor volumetric lung tumours using

a single kV projection image. Initially, synthetic motion instances, i.e., deformed 3D-

CTs and corresponding segmentations, were generated from 4D-CT data through a

hybrid data augmentation technique. From the augmented data, 9000 samples were

assigned for model training, while 500 samples were set aside for validation and an-

other 500 for testing. To align the DRR images with real kV images, a Contrastive

Unpaired Translation GAN model [193] was employed to transfer the style. The model

was trained to predict 3D deformation fields utilizing a spatial transformer network to
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transform the planning CT volume and the corresponding segmentation mask volume.

The study utilized a 4D-CT patient dataset from the TCIA image archive [194, 195,

196, 197], as well as 4D-CT data and 2D real kV images from CIRS phantom data.

The model’s performance was evaluated using real kV images from the CIRS phantom

data, specifically at projection angles of 0 and 90 degrees. The results demonstrated

that the authors achieved an RMSE of less than 1.5 mm for the tumour centroid when

compared to real kV images.

2.7.3 Surrogate-driven motion models

Surrogate-driven motion models estimate internal anatomical motion using some sur-

rogate signal under the assumption that the two are well correlated. External signals,

such as markers on the skin surface, or internal signals, such as diaphragm motion, can

be used as surrogate signals. A detailed review of existing respiratory motion models

was published by McClelland et al. [198]. Later, McClelland et al. [199] proposed

a technique that integrated the processes of motion model creation and image recon-

struction, using partial imaging data (i.e. slab and slice images) and unsorted 4D-CT

data as input, together with a corresponding surrogate signal. Image registration was

used to extract internal motion from dynamic images, which was then used to fit a cor-

respondence model that related these motions to surrogate signals. This model has two

degrees of freedom as the authors fit the model using two surrogate signals, and there-

fore can simulate variable motion including intra- and inter-breath variability. They

evaluated their approach with 4D-CT data using two sets of manually annotated land-

mark points and 2D phantom data using displacement field error. Mean errors of 1.88

mm and 1.72 mm were reported for two landmark sets. Meanwhile, Guo et al. [200]
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presented a Motion-Compensated Simultaneous Algebraic Reconstruction Technique

(MC-SART) which is capable of reconstructing high-quality images and motion mod-

els from CBCT projections and respiratory surrogate data. These techniques [199,

200] can be used to estimate an image volume at any given time point using surrogate

measurements based on a volumetric reference image with an estimated motion model.

For MRI-guided RT, Stemkens et al. [135] and Harris et al. [201] constructed models

that inferred 3D motion from 2D cine-MR images obtained using a 2D image navi-

gator. The former group [135] tested their method on seven healthy volunteers and

a torso-shaped, MRI-compatible motion phantom for pancreas and kidney. Harris et

al. [201] assessed their method using both digital extended-cardiac torso (XCAT) lung

cancer simulations and MRI data from four liver cancer patients. Tran et al. [202] an-

alyzed various MRI-derived surrogate signals to predict internal anatomy respiratory

motion, including breath-to-breath variability and sliding motion. The models were

evaluated on eight lung cancer patients by estimating the 2D motion from coronal and

sagittal slices. Mean errors for coronal and sagittal slices were around 1 mm and 0.8

mm, respectively.

Some very recent efforts have focused on deep learning-based models. Romaguera

et al. [203] developed a conditional-GAN-based probabilistic model which relies on

in-room surrogate data. 3D volumes are estimated using a pre-operative static vol-

ume and 2D surrogate images. They evaluated their approach on 25 healthy volunteers

and 11 cancer patients with free-breathing 4D MRI and ultrasound imaging datasets.

They achieved a mean error of 1.67±1.68 mm for volumetric prediction from surro-

gate images, and 2.17±0.82 mm for unseen patient US and MRI cases. Moreover,

using the MRI dataset, they achieved a mean landmark error of 1.4±1.1 mm. Using
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convolutional auto-encoder and 2D surrogate ultrasound images, recently Mezheritsky

et al. [204] proposed a surrogate-driven deep learning technique for population-based

respiratory motion modelling. To execute inference, two pre-treatment 3D volumes of

the liver at extreme breathing phases are required, as well as live 2D surrogate images

reflecting the organ’s current state. The model was evaluated using 4D ultrasound im-

ages from 20 volunteers with a reported mean tracking error of 3.5±2.4 mm. Liu et

al. [205] proposed a neural-network-based approach to representing lung motion by

predicting 3D CT volume at a given time point using diverse surrogate signals. The

authors used a thorax phantom and seven lung cancer patients implanted with FMs to

conduct their study. The authors achieved an average error of 0.66 mm for marker

localization.

Internal motion estimates based on easily measured external surrogate signals are a

potential means of acquiring requisite information on tumour position. However, these

can be inaccurate depending on the strength of the correlation between tumour mo-

tion and surrogate; ambiguities in the displacement and phase relationships between

the two may also be present. Moreover, such approaches are practically limited to de-

scribing aperiodic motions, since acquiring aperiodic surrogates, with their temporal

irregularity, is extremely challenging. Aperiodic motions, such as changes in anatom-

ical structure, bladder filling status, or bowel motions generally are not considered at

all, though they can result in considerable anatomical deformations. While we too fo-

cus here on respiratory motion, our approach involves no assumption of periodicity or

respiration-specific motion patterns. Given the means of generating requisite training

data, it could be applied to motion of any sort.

56



2.7 Learning-based Techniques

2.7.4 3D Shape reconstruction from single-view projections

This section describes a class of methods that, more closely matched with our pro-

posed approach, aims to reconstruct 3D geometry from 2D images. Several reports

have described techniques for reconstruction from RGB images. For example, Wang

et al. [206] proposed the GNN-based Pixel2Mesh algorithm, which deforms an ellip-

soidal surface mesh using CNN-derived semantic characteristics from an input image,

and applied it to an analysis of natural shapes (aeroplanes, chairs, cars, etc.). The el-

lipsoidal starting mesh limits the approach to genus-0 shapes, though in principle it

could be adapted to other topologies. Smith et al. [207] extended the method to better

capture local surface geometry, though the topological constraints remained. Similar

ideas were used in [208, 209] to reconstruct 3D human body shapes from single RGB

images. In the medical domain, Wu et al. [210] proposed a CNN architecture for

reconstructing 3D lung shapes, in the form of point clouds, from a single-view 2D la-

paroscopic image. The authors focused on reconstructing the 3D point-cloud from 2D

colour images of organ surfaces obtained from laparoscopic video feeds, rather than

2D slices or projections through a volume, which is a completely different problem

than ours.

While clearly sharing elements of our target problem, reconstruction from RGB im-

ages rather than 2D projections is nonetheless a substantially different one. Various

approaches addressing the latter scenario have appeared recently. Ying et al. [211]

proposed X2CT-GAN to reconstruct 3D-CT volumes from bi-planar 2D X-ray im-

ages using GANs. The authors used 1018 chest CT images, to generate paired sets of

simulated X-rays and 3D-CT images. These images varied in capture ranges and reso-

lutions, necessitating initial resampling to a uniform voxel size of 1mm× 1mm× 1mm.
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Subsequently, a cubic area of 320mm × 320mm × 320mm was cropped from each scan

image. For the training dataset, 916 CTs were randomly selected, while 102 CT im-

ages were designated for testing purposes. Each CT image in the training and test

datasets was used to generate two DRR images PA and lateral views (projection angles

0 and 90 degrees, respectively) with full FOV and a size of 128 x 128 pixels. The re-

searchers evaluated the predicted CT images against ground-truth CTs using PSNR and

SSIM metrics, yielding values of 26.19 ± 0.13 and 0.656 ± 0.008, respectively. GANs

may struggle to accurately reproduce fine details and anatomical structures present in

ground-truth CT scans. The synthetic nature of GAN-generated images can result in

reconstructed artefacts or inconsistencies, such as smooth regions, distortions, or un-

realistic textures, which can compromise the clinical accuracy and reliability of the

reconstructed volumes [211]. The variability in anatomical motion during biplanar im-

age acquisition in clinical settings can lead to inaccuracies or inconsistencies in the

reconstructed 3D volumes. By this means, biplanar X-rays often capture the anatomy

in different motion states, particularly during free-breathing scenarios. This variability

can result in discrepancies between the captured images, making it difficult to align

and integrate the information effectively for 3D reconstruction.

Tumour localization with a single-view projection approach was proposed by Wei et

al. [212]. The authors first developed a principal component analysis (PCA)-based

breathing motion model using planning 4D-CT data. Consequently, they generated

1000 3D-CTs with varied tumour positions by randomly sampling the PCA coeffi-

cients. A CNN model was then employed to predict these PCA coefficients based on in-

put DRR images. The authors used an angle-dependent ROI 2D projection mask to re-

move pixels unrelated to respiration and a projection angle-dependent fully-connected
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(FC) layer. This layer was designed only to handle the discrete level of angles rang-

ing from 0 to 360, and only one group of weights and biases were used to generate

the output of this layer for each degree of the projection angle. Due to this limita-

tion, the authors chose a binary projection mask at the nearest integer even though

it is a fractionated gantry acquisition during both training and application/test stages.

The method was evaluated using 15 patient datasets, where data augmentation tech-

niques were applied to address intensity differences between DRR and CBCT images,

resulting in 10 augmented projections per DRR. The mean tumour localization error

was measured under 1.8 ± 0.6mm (SI direction) and 1.0 ± 0.5mm (lateral direction)

for visible tumour cases in projection images. For cases where tumours were not vis-

ible in projections, the mean localization error did not exceed 1.5 ± 0.9mm in both

directions. However, challenges appeared in cases with significant intensity variations

between DRRs and CBCT projections, affecting localization accuracy due to intensity

shift issues. Additionally, reconstruction artefacts in 4D-CT images, such as structural

blurriness or duplications, influenced localization accuracy. The study suggests poten-

tial limitations in handling variations in breathing amplitude and patient setup during

treatment, recommending retraining PCA and CNN models with repeated 4D-CT data

acquisition for validation. Furthermore, tumour localization using binary projection

masks proved challenging for certain cases with specific projection angles, as these

projections contained little information related to breathing motion, making tumour

position deduction difficult [212].

Wang et al. [213] also proposed a CNN-based approach for reconstructing lung sur-

face shapes from single-view 2D projections. The authors utilized 4D-NCAT and 4D-

XCAT digital phantoms to create a lung motion dataset, comprising 542 pairs of left
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and right lung meshes along with corresponding deformed 3D-CTs. Various shape de-

formations and spatial transformations were applied to simulate real lung shape varia-

tions, and resulting deformed 3D-CTs were used to generate full FOV DRR projections

from front views. The training dataset included 446 pairs with corresponding DRR im-

ages, while the test dataset comprised 96 pairs. MobileNet [214] architecture, followed

by a 1×1 convolution layer, was employed to extract image features. Subsequently, an

FC layer was used to learn deformation parameters for mesh template control points,

followed by another FC layer to adjust translation. The evaluation was based on met-

rics including Chamfer distance (CD), Earth mover’s distance (EMD), F-score, and

Intersection over union (IoU), yielding values of approximately 1.7mm for CD and

57− 60mm for EMD, along with F-score and IoU scores ranging from 0.72 to 0.84 for

left and right lungs, respectively.

Furthermore, the authors [213] assessed this approach’s robustness using phase zero

3D-CT volumes from ten 4D-CTs in the DIR-LAB dataset, generating DRR images

and corresponding left and right meshes for qualitative evaluation. Several limitations

were identified in the study. Firstly, the approach was not evaluated under limited FOV

settings, which are essential in clinical DRR/X-ray acquisition scenarios. Addition-

ally, the evaluation lacked real X-ray images, despite utilizing real patient data from

the DIR-LAB dataset. Another limitation was the exclusive use of front-view projec-

tions (i.e., projection angle zero) for evaluation, neglecting the challenges associated

with different projection angles encountered in clinical practice. These limitations un-

derscore the need for comprehensive evaluations under varying clinical conditions to

assess the approach’s practical applicability and performance in real-world scenarios.

Tong et al. [215] proposed X-ray2Shape to reconstruct 3D liver surface meshes by
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combining GNN and CNN networks (the latter to encode image features). A mean

shape derived from 124 patients was used as prior (i.e. initial template) and deformed

by the GNN to match the individual organ shape. The authors employed a method

where each vertex in the initial template mesh corresponding to a fixed angle (i.e. zero)

was projected onto the front-view DRR image plane to derive pixel coordinates. These

pixel coordinates were then utilized to extract relevant features from latent convolu-

tional layers within a trained CNN encoder (VGG-16 [216]), which were associated

with each vertex. The extracted features were concatenated with the corresponding

3D coordinates to generate a feature vector for each vertex. Subsequently, these fea-

ture vectors were incorporated into a GCN comprising eight sequential GCN layers to

compute the deformation from the initial template to individual organ shapes. The dif-

ference between the estimated shape and the ground-truth shape was evaluated using

mean distance metrics, including the mean value of the nearest bidirectional point-to-

surface distance and the mean Euclidean distance, yielding results of approximately

6.71 mm and 16 mm, respectively. Later, the same authors [217, 218] extended the ap-

proach to reconstruct multiple abdominal organ shapes from a single projection image.

These latter approaches [215, 217, 218] are designed to operate on images acquired

at fixed projection angles—front view projections, equivalent to gantry angle 0 in our

case—and therefore cannot directly accommodate images from arbitrary angles, as re-

quired here. Moreover, they predict only the organ surface shapes, rather than their full

volumes.

Lu et al. [219] developed a CNN-based supervised learning approach to estimate the

3D-CT from a single DRR image. A 2D to 3D encoder-decoder architecture was used

to first estimate the low-resolution 3D-CT followed by a super-resolution module based
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on sub-pixel layers to reconstruct the high-quality 3D-CT. The authors used 4D-CT

datasets (with 10 phases) acquired in three different fractions of a lung cancer patient.

They used the first six phases for training, and the remaining four phases were equally

divided into validation and test sets. They obtained a PSNR of 18.621±1.228 dB and

an SSIM similarity score of 0.872±0.041. For reconstructing the 3D-CTs, the authors

used only the front-view (i.e. projection angle zero) DRRs. The utilization of DRR

images, while reasonable for simulation purposes, deviates from the real X-ray images

acquired in clinical settings [219]. This discrepancy could impact the generalizability

and reliability of the proposed approach. Additionally, the evaluation did not account

for limited FOV settings, an essential scenario in clinical practice that could influence

the method’s performance and effectiveness.

A true volumetric approach for estimating liver deformations was proposed very re-

cently by Shao et al [220]. Their method first used a GNN to predict the deformed liver

surface. These deformations were then passed as boundary conditions to a finite ele-

ment model of the liver, which computed the corresponding volumetric deformations.

In this way, some level of biomechanical constraint was also introduced. The approach

was evaluated for several projection angles (specifically: 0◦, 45◦, and 90◦), however,

the model required retraining for each angle; that is, each new angle effectively re-

quired a separate model. The model also required a very high number (3840) of image

features to be encoded on graph nodes; in our approach, we use only 20. Finally,

while biomechanical constraints can in principle be attractive for enforcing physical

plausibility, the finite element solutions were in practice time consuming, which may

be significant for clinical use, especially in-treatment adaption of therapy. Later, the

same authors [221] extended this approach by incorporating an optical surface image
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through a deep learning approach to estimate the motion of the liver boundary. Since

projection images are usually acquired with a small FOV, the authors utilized optical

imaging to incorporate a larger FOV of the body surface and then obtained motion

correlation with the liver anatomy using a deep learning approach. This motion is then

further corrected by using a GNN with a single kV planar x-ray projection, followed

by a U-Net-based biomechanical modelling for intra-liver motion correction.

Our approach requires training only once and is applicable across all projection an-

gles, unlike prior approaches cited in [215, 217, 218, 220, 221] that necessitate sepa-

rate retraining for each angle. This limitation restricts their practical use in scenarios

where the gantry rotates during beam delivery. Although these methods claim to be

end-to-end trainable, they rely on a fixed, non-trainable projection step to extract se-

mantic features, tailored specifically to a predetermined projection angle. Therefore,

if they are to be used with all projection angles, they must be retrained separately for

each unique angle. Additionally, all of these approaches utilized DRR images with a

wide FOV to encompass the entire liver anatomy in their experiments. However, in

clinical settings, projection images are typically acquired with a limited FOV, posing

challenges in feature extraction by projecting vertices onto the DRR plane, as the pro-

jected surface mesh nodes may extend beyond the projection FOV, hindering feature

extraction [220, 221].

2.8 Summary

The primary objective of this chapter was to explore the extensive literature review

on motion modelling in RT conducted over the past few decades. The initial focus

was on methods applicable to conventional RT linacs equipped with kV and MV X-
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rays/CBCTs. The chapter then delved into approaches, including surface-guided meth-

ods, hybrid techniques, electromagnetic markers, and ultrasound-based strategies. An

in-depth analysis was conducted to understand the advantages and disadvantages of

these methods, with a common practice involving the use of FMs surgically implanted

near the treatment target. However, FM-based approaches introduced potential issues

such as organ inflammation, displacement, or migration during treatment delivery. In

contrast, internal anatomical surrogates such as chest walls, diaphragms, or external

markers/surrogates may give a poor correlation of the degree of motion between the

target tumours and the surrogates and hence produce inaccurate real-time motion esti-

mation.

Furthermore, a detailed review of the use of MRI for motion management was pre-

sented, highlighting its cost and time constraints, limiting its availability to a small

cohort of patients in a few international centres. The majority of patients are currently

treated on conventional linacs equipped with kV/CBCT.

The subsequent sections provided a comprehensive review of ML techniques, focusing

on deep learning models, image registration techniques, and surrogate-based motion

models, outlining their respective limitations.

Towards the end of the chapter, a detailed review of shape reconstruction from single-

view projections was conducted. All of these approaches utilized DRR images with a

wide FOV to include the entire liver anatomy for their experiments. However, in clini-

cal settings, projection images are usually acquired with a limited FOV. Consequently,

these approaches underwent training and validation solely on DRR images, without

undergoing testing with real kV planar X-ray images. Moreover, most approaches uti-

lized surface meshes, emphasizing the importance of reconstructing a 3D organ model
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with internal density rather than solely focusing on surface texturing. Current meth-

ods for 3D organ reconstruction from single-view projections were acknowledged to

be validated only for fixed gantry angles, limiting their applicability when the gantry

rotates during beam delivery.

There is therefore a critical need to estimate the true motion of internal anatomy using

single-view kV planar imaging, irrespective of gantry angles. This approach aims

to provide continuous, genuine motion insights for a given organ through snapshots

acquired at various time scales, without relying on invasive FMs.

However, before delving into the experiments, a detailed introduction to the generation

of synthetic motion datasets for the experiments is required. The following chapter

will provide a detailed description of this process, including preprocessing steps and

solutions to problems encountered.
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Chapter 3

Deep-Motion-Net: GNN-based

volumetric organ shape reconstruction

from single-view 2D projections

3.1 Introduction

This chapter describes a method termed Deep-Motion-Net, designed to facilitate the

reconstruction of 3D (volumetric) organ shapes using a single in-treatment kV planar

X-ray image obtained from any arbitrary projection angle. The primary aim of this

chapter is to confront the challenges associated with patient motion in the context of

radiotherapy, as outlined in Chapter 1. This is achieved through the implementation of

an end-to-end deep learning architecture that learns the complex relationship between

3D anatomical motion and the corresponding anatomical appearance in kV images.

The ultimate goal is to predict motion directly from such images, eliminating the need
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for additional post-processing steps or invasive FMs.

The model learns a mapping from kV image-derived features to displacements of nodes

in a patient-specific template organ mesh. Features are extracted by a CNN image

encoder, while regression of the features with node displacements is learned by a GNN

network. Importantly, the complete model is end-to-end trainable by virtue of a series

of feature pooling networks (FPNs) that fuse image features with the 3D graph nodes,

eliminating non-trainable components (i.e. vertex projection onto the 2D image space)

that would otherwise be required. Finally, the model also learns projection angle-

dependent features by encoding the angle in an additional channel to the input image.

By this means, the model can reconstruct the 3D anatomy from kV images acquired

at any projection angle. To the best of our knowledge, this is the first framework

capable of reconstructing 3D anatomy from such inputs. While the method is general,

this work focuses on respiratory motion and evaluates the method using synthetic and

real images from liver cancer patients. A high-level overview of the workflow of our

proposed method is illustrated in Figure 3.1.

The model underwent training using synthetic motion data, as detailed in Section 3.6,

where ground-truth motions were inherently known through the construction of the

data. The findings of this chapter ensure that the model is equipped with a robust

foundation for understanding and predicting anatomical motion, offering a solution to

the challenges posed by patient motion in the field of radiotherapy.

In Section 3.7, we delve into the overall methodology employed in our deep learning

model. The evaluation of the model and the presentation of results are covered in

Section 3.8, while the last section provides an in-depth description of the conducted

ablation study.
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This chapter is derived from my manuscript titled ”Deep-Motion-Net: GNN-based

volumetric organ shape reconstruction from single-view 2D projections,” which has

been submitted to the Medical Image Analysis journal and is presently undergoing the

review process.

Figure 3.1: During the training stage, a synthetic motion dataset was created and a
GNN model was trained to predict volumetric liver mesh deformation from a single
X-ray projection. In the application stage, the trained GNN model was employed
to derive the predicted deformed mesh using a real kV X-ray image captured at any
arbitrary projection angle during the treatment process.
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3.2 Graph Neural Networks

This section provides a concise overview of the background pertaining to GNNs in

the spatial domain, specifically focusing on graph-based convolution. Typically, this

convolution is depicted as a neighbourhood aggregation or message-passing scheme,

aiming to extend the convolution operator’s applicability to irregular domains. The

concept of message passing within a graph proves to be a robust and influential idea,

offering insights into numerous graph algorithms. In essence, it involves nodes within

a graph sending and receiving messages through their connections with neighbours.

This process can be conceptualized in two steps: firstly, nodes transmit a message

describing themselves to neighbouring nodes, and subsequently, the receiving nodes

gather these messages to update themselves, gaining a better understanding of their

environment. Conceptually, the iterative propagation of input features at each graph

node begins with an initial step. This step is then updated by incorporating messages

received from connected nodes in the preceding iteration, forming a repetitive cycle

where each node starts with its updated state, considering information from its neigh-

bours. The message passing GNN can be represented as:

x(k)
i = γ

(k)
(
x(k−1)

i , ξ j∈S(i) ϕ
(k)
(
x(k−1)

i , x(k−1)
j

))
(3.1)

In this equation, the notation k represents the layer index in a GNN, indicating the

specific layer at which node i’s feature vector is being updated. Each layer k involves

updating node features based on their previous layer feature vectors and aggregated

messages from neighbouring nodes.

• x(k)
i represents the updated feature vector of node i at layer k in a GNN.
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• γ(k) is a differentiable function (such as an MLP or a non-linear activation) that

combines the feature vector of the previous layer, i.e. layer k − 1, of the ith node,

represented by x(k−1)
i , with aggregated messages from neighbouring nodes j.

• ξ j∈S(i) denotes a permutation-invariant function (e.g., sum, max, average) ap-

plied to the messages ϕ(k)
(
x(k−1)

i , x(k−1)
j

)
received from neighbouring nodes j in

the node’s neighbourhood S(i).

• ϕ(k) is another differentiable function (such as an MLP or a non-linear activation)

that computes messages from neighbouring nodes’ feature vectors x(k−1)
j at layer

k − 1 to node i at layer k.

For instance, in the Graph Convolutional Network (GCN) [222] layer, the aggregated

vector undergoes processing through a densely connected layer (i.e., a fully connected

layer). This is another way of expressing the multiplication by a weight matrix, fol-

lowed by the application of an activation function. Notably, the weight matrix is shared

among all nodes in the graph for a given layer. The output from this dense layer serves

as the new vector representation of the node. This sequential process is applied to every

node in the graph. Each node gathers messages from its neighbours, aggregates these

messages, and then passes the resulting vector, along with its current state, through a

standard neural network. This yields a new vector or the next state that represents the

node. The node is subsequently characterized by this new vector.

In the second layer, the same process is repeated, with the input being the updated

vector from the first layer. The row inputs are directed to the first layer, and the output

of the first layer serves as the input to the second layer, and so forth. The number of

GCN layers imposes an upper limit on how far the signal can travel. For example, with

two GCN layers, the message passing operation occurs twice, indicating that the signal
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from any particular message can travel a maximum of two hops away from the source

node. If a long-range connection is crucial for a given problem, additional GCN layers

need to be employed. The size of the node vectors emerging from the GCN layer is

determined by the number of units in the dense neural layer.

3.2.1 Graph Attention Networks

In the GCN layer, when features are aggregated, every neighbouring node’s features

are assigned identical weights concerning the current node of interest. Graph attention

networks address this issue differently by incorporating an attention mechanism in each

layer. This mechanism assigns different weights based on how the features interact

with the current node of interest.

Let X(0) = {x1
(0), x2

(0), . . . , xN
(0)} ∈ RF denote the representation of input feature vectors

for nodes in a graph G, where N is the number of nodes, and F is the number of features

per node. The superscript (0) indicates these features are from layer zero, representing

the initial feature vectors of the nodes before processing by any GNN layers. Now,

consider passing these initial features through a single GNN layer that computes a new

set of node features X(1) = {x1
(1), x2

(1), . . . , xN
(1)} ∈ RF′ , where F′ represents the length

of the output feature vectors per node after the transformation. The superscript (1)

denotes the node features at layer 1, indicating the node features after passing through

a single GNN layer.

The initial stage of any GNN layer, including the Graph Attention (GAT) layer, in-

volves message transformation. In this phase, a message is produced from each node

i by applying a learnable linear transformation function parameterized by a weight

matrix W ∈ RF′×F to the corresponding input feature vector xi
(0). This linear transfor-
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mation is shared across all nodes within the layer. The subsequent step is to compute

attention coefficients using a shared attention mechanism A, determining the relative

importance of neighbouring characteristics to the current node of interest [223].

ei j = A(Wxi
(0),Wx j

(0)) (3.2)

This indicates the importance of the features of node j to node i (i.e., the current node

of interest) by computing the pairwise unnormalized attention score between node i

and j. Initially, the authors [224] concatenate the linearly transformed embeddings of

the two nodes i and j. They then pass this concatenated vector through the attention

mechanism A, a single-layer feed-forward neural network parameterized by a learnable

weight vector WA ∈ R
2F′ , along with LeakyReLU as the non-linear activation. Due to

the diverse graph structures, nodes may have a different number of neighbours. Thus,

the attention coefficients undergo normalization using softmax activation, as illustrated

in equation 3.3, ensuring a consistent scale across all neighbourhoods.

αi j =
exp(ei j)∑

q∈S(i)
exp(eiq)

(3.3)

Where S(i) is the neighbourhood of node i. Subsequently, perform the neighbourhood

aggregation step by computing the linear combination of the features corresponding to

the normalised attention coefficients and employ these outputs as the network’s final

features.

xi
(1) = γ(1)(

∑
j∈S(i)

αi jWx j
(0)) (3.4)
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Here γ(1) denotes a non-linear activation function.

Multi-head attention can be used to stabilise the attention process. This allows for the

use of different independent attention mechanisms to perform output feature transfor-

mation. The outputs from these multiple attention heads are then combined through

operations such as averaging or concatenation.

3.3 Group Normalization

The group normalization layer [225] performs normalization on a mini-batch of data

across grouped subsets of channels independently for each observation during model

training. This technique involves dividing the channels within a layer into groups and

computing the mean and standard deviation along the spatial dimensions and across the

grouped channels for each observation independently. After calculating the statistics

for each group, the activations within each group are normalized using these group-

specific statistics. This process ensures that the activations within each group exhibit

consistent scale and distribution. Subsequently, the activations within each group are

adjusted using learnable scale and offset parameters, similar to batch normalization

[226]. These parameters provide the model with the ability to modify the normalized

activations during training.

Compared to batch normalization, which computes statistics across spatial and batch

dimensions within mini-batches, group normalization exhibits more stable behaviour

across different batch sizes. Batch normalization can suffer from inaccurate batch

statistics with smaller batch sizes, potentially leading to higher reported errors [225,

208]. In contrast, group normalization’s calculation is independent of batch size, ensur-
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ing consistent performance and more reliable results regardless of batch size variations.

This stability in group normalization contributes to improved model performance and

error reduction.

3.4 Spectral normalization

Spectral normalization [227] is a technique used in deep learning, primarily to stabilize

the training of neural networks, particularly in the context of GANs. This technique

involves normalizing the spectral norm of weight matrices during training. The spec-

tral norm of a weight matrix is defined as the largest singular value of the matrix,

which represents its maximum stretch factor. This singular value can be obtained, for

example, through singular value decomposition.

During spectral normalization, each weight matrix in the neural network is divided by

its spectral norm. For example, for a weight matrix W, spectral normalization scales W

by a factor such that σmax(W), where σmax(W) is the largest singular value of W. This

normalization technique helps control the Lipschitz constant (a measure of how much

a transformation can stretch space) of the associated transformations performed by the

neural network, leading to more stable training and improved convergence, especially

in scenarios prone to issues like mode collapse or unstable gradients (exploding and

vanishing gradients) in GANs [227].

3.5 Pixel shuffle layer

Pixel Shuffle is an image upscaling technique employed in deep learning methodolo-

gies to boost image resolution. This process involves converting a lower-resolution
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image into a higher-resolution one using sub-pixel convolutional layers. Each sub-

pixel convolution layer is a combination of a convolution and a pixel shuffle operation.

These specialized layers are trained to utilize an array of filters aimed at enhancing the

resolution of the lower-resolution feature maps.

The Pixel Shuffle layer accepts an input tensor of shape (N,C × r2,H,W) where N

represents the batch size, C denotes the number of channels, r signifies the upscaling

factor (e.g., r = 2 for doubling the resolution), and H and W are the height and width of

the input feature maps, respectively. The primary objective of the Pixel Shuffle layer is

to rearrange the elements within each channel of the input tensor to generate an output

tensor of shape (N,C,H × r,W × r). This process involves reshaping each r × r block

of elements from the input feature map into a single pixel in the output feature map.

Through this reordering and aggregation of blocks, the Pixel Shuffle layer effectively

enhances the spatial resolution of the feature map.

3.6 Synthetic dataset generation

Model training requires paired sets of organ motion instances and corresponding kV

images. However, to the best of our knowledge, there are no means of directly mea-

suring such motions while also acquiring the requisite images. Hence, we use syn-

thetically generated data to train and, partially, evaluate the model. Plausible patient-

specific motion patterns are extracted from 4D-CT images, and new synthetic instances

are produced by interpolating and, within reasonable bounds, extrapolating from these.

The process is as follows: 1) 4D-CT images are analysed using the SuPReMo toolkit

(Surrogate Parameterized Respiratory Motion Model) [199, 228], which produces, in-

ter alia, a model of the motion present in the images, linked with appropriate surrogate
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signals; 2) new, yet plausible motion instances are generated from this model by ran-

domly perturbing the surrogate signal; 3) the resulting motion fields are used to deform

the reference CT volume; 4) DRRs are generated from these deformed volumes for all

required projection angles, and 5) the DRRs are style transferred to match kV image

intensity and noise distributions. The result is a set of realistic ‘kV’ images of the

deformed anatomy acquired at various projection angles, for which ground-truth 3D

motion states are known. Finally, the target organ is segmented from the reference CT

volume and an organ template mesh is constructed. Full details are presented in the

following sections.

3.6.1 Overview of the clinical dataset

The Deep-Motion models were evaluated using data from four liver cancer patients,

with a focus on liver motion. Each patient dataset comprised: 1) a 4D-CT with 10

phases (i.e. 10 × 3D-CT volumes), spatial resolutions of 0.98 × 0.98 × 2.0 mm3, and

image dimensions of 512×512×105; and 2) two kV scan series, each covering approx.

4-5 mins of free breathing and a full rotation of the treatment gantry, acquired at the

start of treatment sessions on different days. As per clinical practice, the kV scans were

centred on the liver region and used a constrained field-of-view (FOV). As a result, for

some projection angles, the images include only a segment of the liver.

3.6.2 Generation of synthetic motion states from 4D-CT data

SuPReMo is a toolkit for simultaneously estimating a motion model and constructing

motion-compensated images from a 4D-CT dataset. The resulting model describes the

anatomical motion present in the raw data over a single (averaged) breath cycle and is
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linked with corresponding scalar surrogate signals derived, for example, from breath-

ing traces or image features. For formulation reasons (see [199, 228]), two surrogate

signals are required; however, these needn’t be independent, and as a practical mea-

sure in each case we constructed the second signals as temporal derivatives of the first,

computed for example using finite differences. Example surrogate signals are plotted

in Fig. 3.2. Our 4D-CT datasets each decompose the breath cycle into 10 bins (phases).

With the usage of two surrogate signals, the SuPReMo model possesses two degrees

of freedom, enabling it to simulate variable motion, including intra- and inter-breath

variability.

Figure 3.2: Example surrogate signals: original signals associated with the input 4D-
CT data (red) and randomly generated variations from these (grey), used in turn to
synthesise new motion states. The first and second signals are plotted on the left and
right, respectively.

First, we fit SuPreMo’s motion model with input surrogate signal and 4D-CT data for

each patient case. This returns the motion-compensated reconstructed 3D-CT (MCR)

image volume and the fitted motion model, which are then utilised to simulate new

motion states by varying the input surrogate signal. Each point si, i ∈ [0, 9] on the

curve is randomly perturbed by a value in the range ±0.4si. Extrapolating beyond

this range is more likely to cause unrealistic motion and even folding in the resulting

images. A new surrogate signal is then created by fitting a 3rd order polynomial to
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the new points. The latter ensures the new signal remains smooth over the full breath

cycle. Examples of such generated signals are shown in Fig. 3.2. Using this new signal,

and MCR as a reference volume, SuPReMo’s motion model generates corresponding

deformed 3D-CT volumes and their related DVFs.

For each test patient case, we created 11 separate surrogate signals, each comprising

ten deformed configurations, resulting in 110 synthetic deformation states in total. To

introduce more diversity into the synthetic motion instances and substantially devi-

ate from the original 4D-CT data, we incorporated rigid motions by applying random

translations/shifts along the LR, AP, and SI directions and produced a total of 550

deformed states. This is also advantageous during testing on real in-treatment kV im-

ages, as it reflects the variations in onboard patient setup across different scan series or

fractions, which can potentially lead to shifts in the in-treatment kV images.

3.6.3 Generation of synthetic kV X-ray images

For each deformation state, DRRs were obtained from the deformed 3D-CT volumes

using an enhanced version of the Siddon-Jacobs ray tracing technique [185, 186] pre-

sented in RTK toolkit [229]. The latter, given a source position and projection di-

rection, computes the line integral of Hounsfield unit densities along ray lines to a

prescribed 2D plane. In radiotherapy, in-treatment kV images are acquired perpendic-

ularly to the anatomical axial direction.

The source-to-isocenter (SID) distance was set to 1000 mm, while the SDD was set to

1536 mm. The origin, pixel spacing, and image dimensions in the detector plane were

defined based on the Elekta projection configuration, with values of [-204.4, -204.4, 0]

in mm, [0.8, 0.8, 0.8] in mm, and [512, 512, 1], respectively.
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The following procedure was implemented to mitigate anatomical positioning differ-

ences caused by FOV incompatibility during DRR generation. In each patient case,

the phase zero 3D-CT from the planning 4D-CT data, chosen from the available ten

phases, was aligned with a 3D-CBCT volume reconstructed from one of the kV projec-

tion scan series. This alignment utilized rigid registration (translation only). Following

this, the same transformation was applied to the other phases in the 4D-CT, ensuring

their alignment with each other and the CBCT volume. The SlicerANTs Registra-

tion package in the 3D-Slicer toolkit facilitated this alignment process. The SuPReMo

model was then fitted using this transformed 4D-CT data before generating the syn-

thetic dataset. Finally, to ensure the proper alignment of the FOV between synthetic

and real kV images for each patient, synthetic images were created using the FOV ori-

gin header details extracted from the real images in the same kV projection scan series

used for aligning the 4D-CT data.

However, the resulting DRRs lack scatter properties and noise characteristics of gen-

uine kV X-ray images, leading to a sharper and higher contrast appearance. This dis-

crepancy arises from the fundamental ray-tracing method used in DRR algorithms,

which differs from the X-ray beam utilized in conventional CT scanners. While DRR

algorithms model only the attenuation of primary photons, the generation of real kV

projection images is influenced by additional physical phenomena such as beam-hardening

[230].

Hence, it is necessary to perform a style transfer from real kV X-rays to DRRs. How-

ever, it is impossible to acquire paired DRR and real kV X-ray images from the same

patient or scenario. Therefore, the only viable solution is to utilize an unpaired image-

to-image style translation technique to transfer styles from real kV to DRRs. These

79



3.6 Synthetic dataset generation

(a) Before histogram equalization (b) After histogram equalization

Figure 3.3: Visualization of a real kV image before and after applying histogram equal-
ization

techniques enable us to utilize existing datasets of DRRs and real kV X-ray images

without the need for explicitly matched pairs. Consequently, a Cycle-GAN model

[231], conditioned on the projection angle, was trained on an unpaired set of real kV

X-ray images and DRR images. This model allows the transfer of style from real kV

X-rays to the DRRs, enabling them to mimic synthetic kV X-rays. This process is con-

ducted individually for each case since FOV acquisition varies from patient to patient.

The image contrast in the kV projections was enhanced using the Contrast Limited

Adaptive Histogram Equalization (CLAHE) technique [232], with a clipping level of

5 and a tile grid size of 3 × 3 (see Figure 3.3). By preprocessing low-contrast images

with histogram equalization improves model training outcomes by facilitating more

effective learning of relevant patterns and structures, potentially leading to enhanced

accuracy and performance [233]. Subsequently, all DRRs were passed through the

trained conditional CycleGAN to generate the final synthetic kV X-ray images (see an

example in Figure 3.4).
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(a) A DRR image (b) Corresponding synthetic kV

Figure 3.4: Visualization of a DRR image and its corresponding synthetic kV image

Conditional CycleGAN architecture

The architecture consists of two GANs to map between two image distributions. Each

GAN has its own generator and a discriminator. The generator of the first GAN

(GDRR2kV) generates synthetic kV from a given DRR and its discriminator (DkV) distin-

guishes the synthetic kV from the real kV. The generator of the second GAN (GkV2DRR)

generates DRR from a given kV whereas the discriminator (DDRR) distinguishes the

synthetic DRR from real DRR. Each GAN in our architecture is a conditional GAN,

the condition of which is based on the projection angle of the input image for both the

generator and the discriminator. As in the original CycleGAN paper [231], the total

loss to train our conditional CycleGAN is composed of three components: adversarial

loss, cycle consistency loss, and identity loss as described below.

Adversarial loss This loss function serves as a pivotal mechanism for training each

generator to produce data that closely resembles real data, while simultaneously refin-

ing the corresponding discriminator to more effectively distinguish between real and
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generated data. During the training process, a dynamic interplay unfolds between the

generator and discriminator, with each being alternately trained while the other remains

fixed. A detailed breakdown of this interactive process is as follows:

1. When the generator successfully misleads the discriminator (i.e., the discrimi-

nator fails to classify a generated image as fake), it signals a need for the dis-

criminator to enhance its discriminatory capabilities. Consequently, the loss is

back-propagated through the discriminator to facilitate this enhancement.

2. Conversely, if the discriminator accurately distinguishes between fake and real

images, it prompts the generator to improve its performance. Consequently, the

loss is back-propagated through the generator network to encourage this refine-

ment.

The primary goal is for the generator to minimize this adversarial loss against its cor-

responding discriminator, which undertakings to maximize it. Ultimately, this training

regimen aims to enable generators to produce translated images that are virtually in-

distinguishable from real images within the target domain. By leveraging this loss

function, the generator learns to approximate the distribution of training data from the

target domain and subsequently samples from this learned distribution.

Cycle constancy loss This loss function measures the discrepancy between the ini-

tial input image and the image reconstructed after passing through both generators.

For instance, if we translate a DRR to kV by feeding an input DRR image which is

represented as inputDRR through the GDRR2kV generator, and then translate it back from

kV to DRR by passing it through the GkV2DRR generator, ideally, we should return to

the original image, inputDRR. This loss is applied in two ways:
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1. Forward Cycle Consistency Loss:

inputDRR → GDRR2kV(inputDRR)→ GkV2DRR(GDRR2kV(inputDRR)) ≈ inputDRR

2. Backward Cycle Consistency Loss:

inputkV → GkV2DRR(inputkV)→ GDRR2kV(GkV2DRR(inputkV)) ≈ inputkV

These losses encourage the generators to produce outputs that are not only realistic

but also preserve the content of the original input image after undergoing translation

across domains, thus ensuring consistency.

Identity loss This loss function serves a critical role in guiding the generator’s output

to closely match the original input when the input belongs to the target domain. This

loss function works by minimizing the difference between the generated output and the

input image, thereby preventing excessive distortion of images during the transforma-

tion process.

Conditioning with projection angle Both the generator and discriminator in each

GAN take an image and its corresponding projection angle as inputs. The projection

angle was normalized by dividing it by 360 since the gantry rotation varies from 0

to 360 degrees. Since the projection angle is represented by a scalar value, the first

step involves creating a 2D matrix that matches the dimensions of the input image. In

this matrix, each element is assigned the scalar value corresponding to the projection

angle. Subsequently, the resulting matrix is concatenated with the input image as an

additional channel before undergoing forward propagation through either the generator

or discriminator.
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Generator configuration Both generators have the same architecture and take, as

input, images of size 256×256. The encoder part or the downsampling of the generator

consists of four convolutional layers with 64, 128, 256, and 512 filters, respectively.

The kernel size was set to 4×4, stride to 2, and padding to 1 for all convolutional

layers. We then added two more convolution layers with 1024 and 512 filters without

any downsampling operation by initializing them with a kernel size of 3×3, stride, and

padding both set to 1. The decoder part of the generator comprises four upsampling

layers where each layer has a convolutional layer followed by a pixel shuffle layer

which is used to upsample the input image [234] since we encountered checkerboard-

like artifacts in several cases. The convolution layers in decoder have 256 × 22, 128

× 22, 64 × 22 and 1 × 22 filters, respectively. The kernel size was set to 1×1, stride

to 1 without any padding for all convolutional layers. The corresponding pixel shuffle

layer rearranges the output feature map with dimensions H ×W × (C × 22) to a tensor

of shape (H × 2) × (W × 2) × C, where 2 is an upscale factor. Rectified Linear Units

(ReLUs) were applied for non-linearity after every convolutional operation. Hidden

layer outputs were normalized using spectral normalization [227] since this helps to

overcome the instability due to vanishing and exploding gradients during the model

training.

Discriminator configuration The discriminators consist of five convolutional layers

with 64, 128, 256, 512, and 1 filter, respectively. The kernel size was set to 4×4, stride

to 2, and padding to 1 for the first four convolutional layers. For all of these four

layers, we used LeakyReLU with a negative slope of 0.2 as the non-linear activation.

For the last convolutional layer, the kernel size was set to 4×4, stride to 1 with no

padding. Hidden layer outputs were normalized using spectral normalization [227].
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Discriminators take a 256×256 image as input and produce a 30×30 tensor as output.

The classification result for a 70×70 area of the input image is stored in each element

of the output tensor. The discriminator checks whether every 70×70 area (these areas

overlap each other) of the input image appears real or fake by returning a tensor of size

30×30. The overall classification result is then calculated by taking the average on the

30×30 values.

Training details The model underwent training using an unpaired dataset, which in-

cluded 11,000 images of DRRs and 6,700 images of real kV images. Correspondingly,

the test sets comprised 2,000 DRR images and 1,000 real kV images. The adversar-

ial loss was computed using hinge loss, while both identity loss and cycle consistency

loss employed L1 loss. To maintain a balanced weighting among the various loss terms

within the total loss function, the identity loss was multiplied by a factor of 5, whereas

the cycle consistency loss was multiplied by a factor of 10. A Spectral Normalization

layer was applied to all layers in both the Discriminator and Generator. The learning

rate for generators and discriminators was set at 0.0002, and the batch size was fixed

at 1. The learning rate was maintained at the same value for the initial 50 epochs and

subsequently linearly decayed to zero over the following 50 epochs.

3.6.4 Creation of template meshes

Binary masks of the relevant organs were extracted from reference 3D-CT volumes

using 3D Slicer’s Segment Editor. These masks were then used to generate tetrahe-

dral meshes using the Iso2Mesh [235] tool in MATLAB. However, Iso2mesh focuses

exclusively on the voxel coordinates of the image volume and generates mesh coordi-

nates in voxel units, assuming isotropic voxels with dimensions of 1mm× 1mm× 1mm

85



3.6 Synthetic dataset generation

(unit voxel spacing). Additionally, Iso2mesh disregards the image offset (i.e. image

origin) and derives node positions relative to the (0, 0, 0) point in physical coordinates.

Therefore, we first rescaled the resulting mesh coordinates by the true voxel spacing

(i.e., 0.98mm× 0.98mm× 2mm) and then translated the mesh coordinates to accommo-

date the offset present in the CT image volume. This means the meshes are physically

aligned with the relevant anatomical regions in the 3D-CT volumes. The extracted bi-

nary mask (in green colour) and corresponding volumetric mesh overlaid on the axial,

coronal, and sagittal planes within the reference 3D-CT image volume are shown in

Figure 3.5.

Figure 3.5: Liver binary mask extraction from a reference 3D-CT and the correspond-
ing volumetric mesh alignment on axial, coronal and sagittal planes
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3.6.5 Deformed Volumetric Meshes Generation

Ground-truth positions of the mesh nodes for the generated deformation states, which

are the deformed 3D-CT image volumes, are obtained by interpolating the displace-

ment vector field at the node positions. The associated displacement vector field was

extracted from the corresponding DVF. The transformation defined in each displace-

ment field was then applied to every corresponding mesh point in the physical space.

Figure 3.6: A deformed liver mesh alignment with corresponding deformed 3D-CT
volume

3.7 Methodology

Graphs serve as a natural representation for organ geometries due to their adeptness at

effectively capturing shape and topology, including local connectivity variations [236].

Recent advancements in utilizing GNNs for 3D shape reconstruction from single-

view images, as demonstrated in studies such as [215, 217, 218, 220, 221], highlights

the state-of-the-art capabilities of GNNs in processing complex 3D organ geometries.

GNNs are proficient in preserving critical topological features such as node connec-
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tivity, which enables to define higher-order loss functions like Laplacian loss. These

loss functions are useful in regularizing 3D shapes, ensuring geometric fidelity that

is otherwise challenging to achieve without the explicit graph representation provided

by GNNs [237]. The inherent suitability of GNNs for encoding graph-based repre-

sentations of organ geometries forms a foundational rationale for their integration into

our approach. By this means the core of our approach is a GNN that learns mappings

from kV image features to nodal displacements of a patient-specific organ mesh. The

model is trained individually for each patient. This section provides a comprehensive

description of the components of the approach, including the 3D organ representation,

model architecture, and loss functions.

Figure 3.7: Illustration of the Deep-Motion-Net architecture. A 2D-CNN image en-
coder extracts projection angle-dependent semantic features from an input kV X-ray
image. A feature pooling layer comprising four learnable feature pooling networks at-
taches these features to the appropriate vertices in the patient-specific template mesh.
Finally, a graph-attention-based network predicts the corresponding mesh deformation.
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3.7.1 3D organ shape representation

We use a 3D unstructured tetrahedral mesh to describe the volumetric organ shape,

rather than its surface only. The mesh can be described as an undirected graph G =

{V, E, F}, where V is the set of N vertices in the mesh, E represents the set of edges

between connected vertices, and F are feature vectors attached to vertices. Patient-

specific organ template meshes, derived from reference CT volumes, are constructed

for each patient. In our experiments, we used meshes with N = 785, 827, 803, and

756, respectively, for livers in four patients.

3.7.2 Model architecture

The proposed architecture (shown in Figure 3.7) consists of two components: a 2D-

CNN encoder with four learnable feature pooling networks (FPNs), which extract per-

ceptual features from the kV image and attach them to mesh nodes and a GAT-based

mesh deformation network.

Incorporating projection angle

Inputs to the 2D-CNN encoder are a single-view kV image and its corresponding pro-

jection angle. We first normalise the projection angle by dividing it by 360 since the

gantry rotation varies from 0 to 360 degrees. Since the projection angle is represented

by a scalar value, the first step involves creating a 2D matrix that matches the dimen-

sions of the input image. In this matrix, each element is assigned the scalar value cor-

responding to the projection angle. Subsequently, the resulting matrix is concatenated

with the input image as an additional channel before it is sent to the image encoder.
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2D-CNN configuration

The projection angle-dependant perceptual features of the image are then extracted

using four convolutional layers in the image encoder, containing 16, 32, 64, and 128

filters, respectively. For all convolutional layers, the kernel size was set to 3×3, and

stride and padding were both set to 1. Exponential Linear Units (ELUs) were ap-

plied for non-linearity after every convolutional operation. Hidden layer outputs were

normalised using group normalisation [225] since this helps reduce the internal covari-

ate shift, which regularly alters the distribution of the hidden-layer activations during

model training. Output feature maps of each convolutional layer were then down-

sampled using 2×2 max-pooling layers with stride two before passing into the next

layer.

Feature pooling networks

One important challenge encountered during the projection of the template organ ge-

ometry onto the motion-compensated kV image is the potential misalignment of pro-

jected points, leading to inaccurate feature extraction from the intended anatomical

locations due to organ displacement. This discrepancy affects the precision of feature

extraction, where expected anatomical features may not align properly with the pro-

jected points on the image. Additionally, in clinical scenarios, kV X-ray projections of-

ten have a limited FOV, which poses challenges for feature extraction when projecting

vertices onto the DRR plane. This is due to the potential for projected mesh nodes to

extend beyond the FOV of the projection, leading to difficulties in extracting features

accurately. These limitations are challenging as they hinder the CNN encoder from

learning optimal features that would enhance the predictive performance of the down-
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stream graph network. To overcome these limitations, we introduced learnable feature

pooling networks (FPNs) which effectively learn the optimal association of features

with mesh nodes. This solution enables end-to-end training of the network, thereby

enhancing the overall model performance. We use four FPNs, each coupled with its re-

spective CNN convolutional layer (Figure 3.7). Each FPN has two layers: an adaptive

average pooling layer (AAP) and a FC layer. The AAP, with output size 7×7, is ap-

plied over the output of the corresponding convolutional layer to reduce the dimension

so that an input feature map with dimensions Height(H) × Width(W) × Channels(C)

is reduced to 7 × 7 × C. The output is flattened before sending it into the FC layer,

which contains 5N neurons. We reshaped the output feature vector of each FPN into

(N, 5). These outputs were then concatenated with 3D coordinates of the template

mesh before feeding into the graph network. Each mesh vertex thereby acquires a total

of 23 features: five from each of the four FPNs, and three representing the 3D vertex

position.

Mesh deformation network

The objective of this network is to estimate the 3D coordinates for each vertex in the de-

formed mesh configuration. We developed a GNN architecture which relies on a series

of GAT-based blocks with residual connections (i.e. skip/shortcut connections). We

applied residual connections to increase the impact of earlier layers on the final node

embeddings. These connections substantially speed up training and produce better-

quality output shapes. The fundamental building block is identical to the Bottleneck

residual block [238], with 1×1 convolution and 3×3 convolution layers replaced by

per vertex FC layers and GAT layers [223], respectively. Further, group normalization

layers are used instead of batch normalization [226] since small batch sizes result in
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incorrect estimates of batch statistics, which substantially increases model error. We

employed ELUs to impart non-linearity.

This deformation network is similar to the graph-CNN architecture described in [208]

but with two differences: graph convolutional network (GCN) layers are replaced by

GAT layers and ReLU is replaced by ELU activation. GAT layers incorporate attention

mechanisms which allow the assignment of different weights for different neighbour-

ing node feature vectors depending on how they interact. GCNs [222], by contrast,

use isotropic filtering and thereby assign similar weight to all feature vectors around

the current node. ELU activation avoids the dying ReLU problem and may generate

negative non-linear outputs.

3.7.3 Loss functions

The overall objective function L is defined as:

L = LS hape + λLLaplacian, (3.5)

with weighting term λ. LS hape quantifies the difference between the predicted and

ground-truth 3D meshes. The template mesh starting shape is defined by its vertices V

(Sect. 3.7.1). We define Y = {y1, y2, . . . , yN} ∈ R
3 and Ŷ = {ŷ1, ŷ2, . . . , ŷN} ∈ R

3 to be

the ground-truth and predicted deformed positions in 3D space of these vertices. An

intuitive objective is then to minimize the per-vertex L1 loss between Y and Ŷ:

LS hape =

N∑
i=1

∥∥∥ŷi − yi

∥∥∥
1
, (3.6)

where yi and ŷi are the ith vertices in the respective sets.
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Using LS hape alone the vertices were found to move too freely. We introduced a dis-

crete Laplacian [206] loss LLaplacian as a regularization term to limit this freedom by

ensuring vertices do not move too far in relation to their neighbours. This loss pe-

nalizes large variations in vertex positions between neighbours, leading to smoother

meshes when minimized during optimization. By minimizing the Laplacian loss, ver-

tices adjust their positions to align more closely with neighbouring vertices, resulting

in a mesh that exhibits reduced sharp edges or abrupt changes in surface geometry.

This regularization effect, known as the shrinkage effect, contributes to the develop-

ment of smoother and more uniform mesh surfaces. The discrete Laplacian of a vertex

with 3D position ŷi is denoted as:

δŷi =
1
|S(ŷi)|

∑
j∈S(ŷi)

(ŷi − ŷ j), (3.7)

where ŷ j is a neighbouring vertex of ŷi and S(ŷi) denotes the set of all such neighbours.

The discrete Laplacian loss is then given by:

LLaplacian =
1
N

N∑
i=1

∥∥∥δvi − δŷi

∥∥∥2
2
, (3.8)

where δvi and δŷi are the discrete Laplacian before and after the deformation, respec-

tively.

In our experiments, we used λ = 0.1 to balance the weights of the two losses.

3.7.4 Implementation and training details

The complete network was implemented using PyTorch and PyTorch-geometric [239].

The model was trained using the Adam optimizer, with a learning rate of 0.0002 and
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weight decay of 0.001. The batch size for both training and validation datasets was

set to 16. Group normalization was used to normalize the hidden layer outputs of both

2D-CNN and GNN. We used single-headed attention in the GAT layers due to memory

restrictions. Early stopping was employed to monitor the validation loss with patience

of 30 consecutive epochs, and if the loss did not improve, the optimizer itself stopped

the training. However, if there was no progress after eight consecutive epochs, the

learning rate was decreased by a factor of 0.8. All weights were initialized using the

scheme in [240]. The gradient descent converged after 400 epochs to the optimal solu-

tion. As described in Section 3.9, we conducted a series of experiments to determine

the optimal network components. The training lasted approximately 36 hours with

256×256 image resolution on a Nvidia Quadro RTX 4000 GPU using a Precision 7820

Tower XCTO Base workstation.

3.8 Model evaluation and results

The performance of the comprehensive framework was assessed through the analysis

of liver motion, employing clinical data obtained from four liver cancer patients. The

model underwent both quantitative testing on synthetic respiratory motion scenarios

and qualitative evaluation using in-treatment kV images acquired throughout a com-

plete scan series for liver cancer patients, as detailed in Chapter 3.6. The experimental

setup for synthetic motion instances is outlined in Section 3.8.1, while the assessment

of real kV images for each patient case is presented in Section 3.8.2. Additionally, Sec-

tion 3.8.3 provides a thorough comparison with the recently introduced IGCN model

[217, 218], elucidating the distinctions between our approach and theirs. The last sec-

tion (i.e. Section 3.9) presents the ablation experiments we performed.
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3.8.1 Experiments on synthetic data

We first evaluated the framework’s ability to recover motion states synthetically gener-

ated from the clinical data, and for which ground-truth deformations were correspond-

ingly available. For each patient, synthetic motion and image data were generated as

per Section 3.6. Each patient’s 550 deformation states were then split into training,

validation, and test sets in the proportions 350, 100, and 100, respectively. For training

and validation deformation states, 100 uniformly sampled (i.e. at projection angle in-

tervals of 3.6◦) synthetic kV images were generated (giving 35,000 training and 10,000

validation images). For test states, 50 kV images were generated at randomly sampled

projection angles (giving 5,000 test images). To ensure good FOV alignment of the

synthetic and real kV images for each patient, each synthetic image was generated us-

ing FOV origin header information from a corresponding (i.e. acquired at a comparable

projection angle) real image within one of the scan series. To avoid doubt, the real kV

images subsequently played no further role in the experiment. Model-predicted and

ground-truth 3D liver shapes were compared for all synthetic kV images in the test

sets.

Summary results are presented in Table 3.1. The Euclidean distance was used to eval-

uate the distance errors between ground-truth and estimated shapes. Distributions of

mean and peak errors for each test set, and for each projection angle (divided into bins),

are shown in Figure 3.8. Finally, surface renderings of the ground-truth, reference, and

predicted mesh shapes, overlaid on deformed 3D-CT volumes, are presented in Figure

3.9.

For each of the four test sets the overall mean error was low: ≤ 0.22 mm. Within each

test set, the maximum peak errors (i.e. overall max error found in any of the deforma-

95



3.8 Model evaluation and results

Table 3.1: Summary statistics for all test sets with synthetic kV images. Patient case
numbers are indicated in column 1. Epred and UGT refer to prediction errors and un-
derlying ground-truth nodal deformation magnitudes, respectively. Mean (std): means
(and standard deviations) of values across all nodes, all deformation states, and all pro-
jection angles. Mean peak: means of the peak values for each deformation state across
all projection angles. Max peak: overall maximum values from all nodes, deformation
states and angles. 99th Percentile: 99th percentile values from all nodes, deformation
states and angles. All values reported in mm.

Case Mean (std) Mean peak Max peak 99th Percentile

1
EPred 0.16±0.13 1.39 6.75 0.75
UGT 10.18±1.33 14.71 28.12 13.85

2
EPred 0.18±0.19 1.99 7.97 0.97
UGT 11.65±1.76 15.76 34.91 14.38

3
EPred 0.22±0.34 3.29 14.66 1.81
UGT 14.89±2.54 19.36 49.63 17.65

4
EPred 0.12±0.11 1.16 4.36 0.51
UGT 10.07±1.13 12.86 25.64 11.97

tion states and at any node) were rather higher, ranging from 4.36 mm for patient 4 to

14.66 mm for patient 3. These peak values occurred for the deformation states with

the highest ground-truth displacement (namely: 28.12, 34.91, 49.63, and 25.64 mm for

patients 1, 2, 3, and 4, respectively) for each test set. Higher underlying ground-truth

displacements corresponded, in general, with higher peak errors, although mean errors

were consistently low. As indicated by Figure 3.8, the displacement prediction accu-

racy was almost independent of the image projection angle: box-and-whisker plots of

both mean and peak errors are very similar across the range of angles.

Finally, it is important to note that the higher peak errors in all cases were extremely

localised within the meshes. This is indicated firstly by the low overall mean values

and more so by the 99th percentile errors (Table 3.1), which were below 1 mm for

3/4 test sets and below 2 mm for the fourth. That is, the errors were low, even sub-

millimetres, for the vast majority of the mesh nodes. The point is further illustrated by
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Figure 3.8: Effect of projection angle on prediction accuracy: box and whisker plots
of the mean (top) and peak (bottom) prediction errors grouped according to image
projection angle (degrees). Each box and whisker shows the distribution of errors for
the indicated projection angle using all deformation states in the test set. For clarity of
visualisation, angles are further grouped into 10 equal bins covering a full revolution.
Results for patients 1 (blue), 2 (yellow), 3 (green), and 4 (red) are shown for each bin.

the renderings of predicted mesh shapes colour-mapped by displacement error in the

right columns of Figure 3.9. For liver meshes, the error was close to zero over most of

the surface and had only very localised regions of higher values.
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Figure 3.9: Visualisations of ground-truth deformed (left column), template (middle
column), and estimated deformed (right column) 3D liver shapes. Meshes are over-
laid on the deformed 3D-CT volume. Rows 1-3 show, respectively, axial, coronal,
and sagittal views. Results are shown for the worst performing test case for patient
1: image projection angle 80.849◦, and deformation state producing highest errors.
Contours in the right column indicate the spatial distribution of errors on the surface.
Similar results for patients, 2-4 are presented in Appendix A.
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3.8.2 Evaluation on real kV images

Our second set of experiments used real in-treatment kV images from each patient’s

second scan series (i.e. the series not used during training data creation). These series

contained 1378, 1310, 1320, and 1292 images for patients 1, 2, 3, and 4, respectively.

In the absence of ground-truth deformations, direct assessment of prediction errors

is impossible. Therefore, two approaches were adopted: 1) semi-quantitative assess-

ment based on an image similarity metric between input real kV images and model-

generated DRRs; and 2) qualitative assessment based on overlaying model-predicted

liver boundaries on input kV images. For the qualitative assessment, all images in

the scan series were used. To reduce computation time (associated, in particular, with

spline deformation of the image volumes), only 100 images, uniformly sampled, were

used from each patient’s series in the similarity-based assessment.

Mutual Information-based assessment

3D organ deformations predicted for a given input kV image can be used to deform

the patient’s reference CT volume. The correspondence between the input image and

a DRR generated from this deformed CT volume should then improve with the accu-

racy of the model prediction. With this in mind, we used kV-to-DRR image similarity,

quantified using mutual information (MI), as a surrogate measure of the model’s de-

formation prediction accuracy. In particular, we assessed the improvement in MI when

using the model-deformed CT volume compared with using the undeformed volume.

The kV and DRR images arise from different modalities and exhibit varying intensity

levels for the same underlying structure. MI can capture statistical dependencies and

information shared between images, even when they originate from different modal-
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ities[241, 242]. It is sensitive to underlying intensity patterns and structural differ-

ences across multi-modalities, making it well-suited for evaluating image similarity

in scenarios where images exhibit disparate appearances owing to varying acquisition

methods or inherent characteristics [243].

The process is summarised in Figure 3.10. The input kV image is passed to the model,

which predicts the corresponding 3D organ mesh deformation. A thin-plate-spline

(TPS) transformation is initialised using the reference and deformed mesh and used to

deform the reference 3D-CT volume. A DRR is then generated using the input kV im-

age’s projection angle. Separately, the deformed mesh is used to generate a 3D binary

mask, covering the liver-predicted shape, from which a 2D ‘mask DRR’ is produced.

The latter is used to create ROIs in both the DRR described above and the input kV

image. MI is then computed between these two ROIs. The ROI masking process en-

sures the similarity computation is restricted to the image regions to which the model

predictions apply; deformations in the remainder of the 3D-CT volume, derived from

the TPS transformation, are merely extrapolated rather than directly predicted. Finally,

a comparable process is followed to produce a reference DRR (i.e. without accounting

for the motion) for comparison: the DRR is generated from the undeformed (refer-

ence) 3D-CT volume, an ROI mask is created from the reference organ mesh, and MI

is computed between the masked DRR and input kV image.

Table 3.2 summarizes the results of these experiments. The similarity score values us-

ing the reference 3D-CTs are lower than for the motion-corrected (deformed) volumes,

suggesting our model is making sensible predictions of the liver motion. Moreover, the

marginal disparities in average MI values led us to conduct a one-way ANOVA test for

each patient case. The resulting p-values for MI differences between the reference
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Figure 3.10: Illustration of the process of MI-based assessment of model prediction
accuracy.

and deformed versions were 0.0449, 0.0283, 0.0453, and 0.0423 for patients 1, 2, 3,

and 4, respectively, suggesting statistically significant (assuming alpha value of 0.05)

differences.

Qualitative assessment by boundary overlay

Histogram-equalised kV images from the mentioned scan series were fed into the

trained models to obtain 3D mesh shape predictions. As mentioned, all images in

the scan series were used. From each predicted mesh, a corresponding binary image

volume was generated. Finally, the projected liver surface boundaries were obtained

through ray-tracing on these binary image volumes, and superimposed on the respec-

tive input kV images. Samples from each patient are shown in Figure 3.11. Supple-
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Table 3.2: MI similarity scores (mean ± standard deviation, computed from the 100
images sampled from each scan series) between real kV images and DRRs generated
at the same projection angles for each patient case. Column 2 presents values when
the reference (i.e. undeformed) CT volume is used. Column 3 presents values when
the CT volume is deformed using the model-predicted deformation fields. All values
were computed on the liver region.

Case Reference Deformed
1 1.16±0.31 1.33±0.23
2 1.14±0.21 1.39±0.14
3 1.13±0.27 1.28±0.23
4 1.31±0.25 1.47±0.15

mentary materials, moreover, include animated versions based on the full scan series

of each patient case for further reference. These latter most effectively show (qualita-

tively) the consistent alignment of the model predictions with the input images across

many breathing cycles and the full rotation of the treatment gantry.

3.8.3 Comparison model

We compared the performance of our approach with that of the recently presented

IGCN model [217, 218]. As described, like our approach, IGCN predicts 3D organ

shapes from single-view X-ray images. It is, however, limited to images with a con-

stant projection angle (e.g. 0◦, corresponding to anterior-posterior projection), and

predicts only 3D surface geometries rather than 3D volumetric configuration. To en-

sure fairness, we therefore conducted the comparison on this basis.

We trained our model as previously described, and using the data described in section

3.8.1. To train the IGCN model, we first extracted surface meshes from the ground-

truth volumetric meshes in the training, validation, and test sets. We then trained the

model using the deformed surface meshes and associated synthetic kV images for the
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Figure 3.11: Samples of overlaid predicted liver boundary projections on correspond-
ing real kV images for the four patients. Rows 1-4 show, respectively, results for
patients 1-4. Results for images acquired at four projection angles (degrees, indicated
below the images) are shown.

projection angle zero. Image dimensions were 256×256. Initial batch size, learning

rate, and total number of epochs were as specified in [217]: 1, 0.0001 and 1000, re-
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spectively.

Table 3.3: Summary statistics from performance comparison between our model and
IGCN. All errors are computed with respect to predicted organ surface meshes. Patient
case numbers are indicated in column 1. EOurs

Pred and EIGCN
Pred refer to prediction errors for

our method and IGCN, respectively. UGT refer to underlying ground-truth deformation
magnitudes. Mean (std): means (and standard deviations) of values across all nodes,
all deformation states, and all projection angles. Mean peak: means of the peak values
for each deformation state across all projection angles. Max peak: overall maximum
values from all nodes, deformation states and angles. 99th Percentile: 99th percentile
values from all nodes, deformation states and angles. All values reported in mm.

Case Mean (std) Mean peak Max peak 99th Percentile

1
EOurs

Pred 0.17±0.11 0.89 4.91 0.47
EIGCN

Pred 0.18±0.25 1.13 6.37 0.93
UGT 10.11±1.24 13.94 28.12 13.53

2
EOurs

Pred 0.14±0.15 1.53 7.13 0.67
EIGCN

Pred 0.17±0.21 2.81 8.79 1.18
UGT 11.37±1.55 15.41 34.91 14.09

3
EOurs

Pred 0.15±0.13 1.46 13.83 0.77
EIGCN

Pred 0.19±0.23 2.05 14.31 1.23
UGT 14.52±2.39 18.71 49.63 16.74

4
EOurs

Pred 0.12±0.09 0.78 3.98 0.44
EIGCN

Pred 0.14±0.17 0.97 5.31 0.77
UGT 10.01±1.05 12.17 25.64 11.33

Images with projection angle zero from the test set were passed to the IGCN model,

which predicted corresponding deformed surface meshes. To facilitate a meaningful

comparison with our model, therefore, we derived corresponding surface meshes from

the latter’s predicted volumetric meshes for the same images. The outcomes presented

in Table 3.3 for the test set show that our method achieved overall higher accuracy

in liver surface deformation across all patient cases. Further, we conducted one-way

ANOVA tests for each test set to check for statistically significant differences in mean

errors between our approach and IGCN. The resulting p-values of 0.0419, 0.0088,

0.0074, and 0.0485 for patients 1, 2, 3, and 4, respectively, confirmed this significance
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(assuming 0.05 alpha value).

3.9 Ablation study

Table 3.4: Impact of reducing the number of image encoder MLPs. All values reported
in mm.

Experiment Mean (std) Mean peak Max peak 99th Percentile
1 0.21±0.18 1.92 7.53 1.19
2 0.23±0.22 2.88 8.47 1.45

This section describes the experiments we performed to determine the impact of each

model component on the overall model performance. All experiments were conducted

by training the model for 400 epochs. The synthetic data generated for patient 1 were

used; hence all results should be compared with patient 1 values in Table 3.1).

We first assessed the impact of the four MLPs in the image encoder. As described, we

incorporated an MLP for each convolutional layer, with each MLP responsible for five

features per vertex, for a total of 20 features. Two experiments were conducted: 1) we

removed MLPs associated with the first two convolutional layers, resulting in only ten

image features per vertex; 2) we removed all MLPs except the final one, associated

with the final convolutional layer, resulting in five features per vertex. In each of these

cases, projection angle information was integrated into the input layer. Results are

shown in Table 3.4, which demonstrates the importance of all four MLPs.

Table 3.5: Impact of removing gantry (projection angle) information from the image
encoder. All values reported in mm.

Mean (std) Mean peak Max peak 99th Percentile
0.23±0.21 2.81 9.33 1.27

We next explored the impact of projection angle information in the image encoder by
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omitting this information from the input layer. For this experiment, the number (i.e.

four) of MLPs remained constant. The results in Table 3.5 show that feeding angle

information to the input layer is more successful.

Table 3.6: Impact of removing skip connections from the mesh deformation network.
All values reported in mm.

Mean (std) Mean peak Max peak error 99th Percentile
0.20±0.19 2.04 7.69 1.31

In the next experiment, we focused on the effect of residual connections used in the

mesh deformation network by simply removing them. Results in Table 3.6 indicate our

approach with residual connections was superior.

Table 3.7: Impact of replacing graph-attention layers with graph convolutional network
layers. All values reported in mm.

Mean (std) Mean peak Max peak 99th Percentile
0.18±0.16 1.51 7.05 0.83

Finally, we explored the impact of the graph attention layers in the mesh deforma-

tion network by replacing them with GCN layers. The architecture was otherwise

unchanged. Results in Table 3.7 demonstrate that utilizing GAT layers is more effec-

tive.

3.10 Summary

In this chapter, a novel patient-specific end-to-end deep learning approach is intro-

duced. This method combines a CNN image encoder with a graph-attention network,

incorporating learnable FPNs. The goal is to reconstruct 3D volumetric organ models

from a single-view kV planar X-ray image with arbitrary gantry angles. To incorporate
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information about arbitrary projection angles, an additional channel is added to the in-

put image, facilitating the extraction of angle-dependent features. This design allows

the model to reconstruct 3D anatomy from kV images acquired at any projection angle.

The fusion of image features into the 3D mesh space is achieved through four learn-

able FPNs. Each FPN is associated with its corresponding convolutional layer in the

encoder, extracting hierarchical features for each vertex. This approach eliminates

non-trainable components, such as the vertex projection operation, from the model

architecture. Consequently, the model becomes end-to-end trainable, enhancing its

overall effectiveness in reconstructing 3D volumetric organ models from single-view

kV planar X-ray images with arbitrary gantry angles.

This approach possesses several appealing characteristics: it relies solely on readily

available in-treatment imaging capabilities, avoiding the need for expensive and scarce

systems like MRI; it eliminates the necessity for additional sensing to provide surro-

gate signals; and it does not require the implantation of invasive FMs. Furthermore,

the model is end-to-end trainable, ensuring optimization of all components, particu-

larly the image feature encoder, in terms of overall prediction accuracy. To the best of

our knowledge, this represents the first example of a deep learning framework capa-

ble of accurately reconstructing volumetric 3D organ models from single-view images

at arbitrary angles, thus enabling such reconstructions across the entire in-treatment

scan series. We demonstrated the feasibility and accuracy of the technique through

experimentation with data obtained from four liver cancer patients.
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Chapter 4

An attention-based CNN framework

for volumetric organ shape

reconstruction from single-view 2D

projections

4.1 Introduction

This chapter presents an efficient and accurate method that relies on a self-attention-

based CNN framework for estimating 3D organ deformations from single in-treatment

kV planar X-ray images. The motivation behind this work stems from the necessity

to overcome the limitations of the Deep-Motion-Net, which was introduced in the pre-

ceding chapter. The main drawback of the approach is that organ mesh vertex dis-

placements are predicted directly and independently of each other. That is, the model
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outputs a 3N vector of vertex displacements, where N is the number of vertices. This

impacts the requisite sizes of both the GNN itself (number of trainable parameters)

and the training dataset (number of examples). It also ignores the obvious fact that,

rather than being independent, the respiration-driven motions of points within the liver

(or any other organ) are highly correlated. That is, the liver deforms not arbitrarily

but according to identifiable patterns that may be well-described by an appropriately

designed low-dimensional representation.

With this in mind, our present approach aims to solve the motion estimation problem

by using image-derived features to predict latent parameters (with length D ≪ 3N)

from such a low-dimensional representation. The latter takes the form of a deep au-

toencoder (AE), pre-trained using synthetically generated organ motions. This signifi-

cantly reduces the complexity of the estimation problem and enables a corresponding

reduction in the number of learnable parameters. Training data and time are similarly

reduced, while prediction accuracy is improved and remains negligibly dependent on

image projection angle. The schematic diagram in Figure 4.1 provides a comprehen-

sive overview of the workflow employed in our second approach.

In section4.2, we discuss the overview of the methodology. Section 4.3 illustrates

model evaluation and results and the last section demonstrates the detailed description

of the ablation study that has been conducted.

4.2 Methodology

In this section we present our deep learning approach, which is based on a two-step

learning process: first, to estimate a low-dimensional representation of organ deforma-

109



4.2 Methodology

Figure 4.1: In the training stage, a synthetic motion dataset was created and a CNN
model was trained to predict volumetric liver mesh deformation from a single X-ray
projection. In the application stage, the trained CNN model was employed to derive
the predicted deformed mesh using a real kV X-ray image captured at any arbitrary
projection angle during the treatment process.

tions via a deep AE; and second, to learn a mapping between X-ray image features and

the AE latent space parameters. The overall architecture is illustrated in Figure 4.2.
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Figure 4.2: Illustration of the model architecture. A pre-trained deep autoencoder ex-
tracts latent vector representation of the vertex displacements for the deformed shape
as ground-truth. A self-attention-based CNN predicts the low-dimensional represen-
tation by extracting projection angle-dependent semantic features from an input kV
X-ray image.

4.2.1 3D organ shape representation

We use a sampled sparse point-cloud representation to describe the volumetric organ

shape, rather than its surface only. The point-cloud can be described as a set of N ver-

tices. Patient-specific organ template point-cloud, derived from reference CT volumes,

are constructed for each patient.

4.2.2 Deep autoencoder for representing vertex deformations

As depicted in Figure 4.2, the AE operates on the 3N-vectors of organ point-cloud

vertex displacements. The encoder consists of two linear layers, with a non-linear acti-

vation (i.e. ELUs) for the first layer. Layers one and two comprise 20 and five neurons,

respectively. The optimal latent space size was determined by analysing cumulative

explained variance recovered from the training vertex displacement fields and utilizing

a threshold of 0.995. The decoder also comprises two linear layers (with ELU activa-
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tion following the first), with 20 and 3N neurons, respectively. As described in Section

3.6, the AE was trained on synthetically generated vertex displacement examples. The

resulting latent representations for these examples were then used as ground-truth data

for training the CNN model.

4.2.3 CNN for mapping image features to deformation parameters

Incorporating projection angle

The inputs to the attention-based 2D-CNN encoder are a single-view kV X-ray image

and its corresponding projection angle, which varies from 0 to 360 degrees. We first

normalize the projection angle by dividing it by 360. Since the projection angle is

represented by a scalar value, the first step involves creating a 2D matrix that matches

the dimensions of the input image. In this matrix, each element is assigned the scalar

value corresponding to the projection angle. Subsequently, the resulting matrix is con-

catenated with the input image as an additional channel before it is sent to the image

encoder.

Convolutional image encoder

Angle-dependant perceptual features of the input image are first extracted using four

convolutional layers in the image encoder. These layers comprise 16, 32, 64, and 128

filters, respectively. Kernel size for all layers is set to 3×3, and stride and padding

are each set to 1. ELU activations are applied for non-linearity after every convo-

lutional operation. Output feature maps of each layer are down-sampled using 2×2

max-pooling layers with stride 2 before passing into the next layer.
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Self-attention layer

We use a self-attention layer [244] after the last convolutional layer of the image en-

coder. It enables effective modelling of interactions between widely distant spatial

regions, i.e. long-range, multi-level dependencies across image regions. We first per-

form 1×1 convolutions on the output feature map x of the last convolutional layer to

produce new feature maps f (x), g(x) and h(x) as shown in Figure 3.7. The rationale

for using 1×1 convolution was to improve memory efficiency by lowering the number

of channels: from C to C/k, where k = 8 [244]. We then perform matrix multiplica-

tion between f (x) and g(x) to acquire pairing covariances between all pixels and use a

softmax layer to generate the attention map. Next, we generate the output feature map

by multiplying the attention map with h(x). Thereafter, we apply another 1×1 convo-

lutional layer to render the depth/channels of the output feature map consistent with

the number of channels in the input feature map. Subsequently, we scale the output

feature map with a learnable parameter and add it to x as a residual connection. The

scaling parameter is initialized to zero. This parameter allows the network to depend

on local information first and progressively learn to allocate more weight to non-local

evidence.

Regression head

The output from the self-attention layer is flattened and input to the first FC layer of

the regression head. The regression head consists of five FC layers, with the first four

consisting of 128, 64, 32, and 16 output channels respectively. For non-linearity, ELUs

are used after each linear layer except the output layer. For the output linear layer, we

set the number of output channels to five to obtain the predicted transformation vector.
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In the image encoder and regression head, the output of all convolutional and FC layers,

except the output layer, are normalised using Group Normalisation [225]. This helps to

reduce the internal covariate shift, which regularly alters the distribution of the hidden-

layer activations during model training.

4.2.4 Implementation and training

Both the AE and CNN framework were constructed using PyTorch. The Adam op-

timiser was employed to train both models, incorporating a weight decay of 0.001.

Learning rates of 0.0001 and 0.0002 were used for the AE and CNN model, respec-

tively. Batch size was consistently set at 16 for both training and validation datasets.

To regulate the training process, early stopping was implemented, monitoring the val-

idation loss for 30 consecutive epochs: if there was no improvement in the loss, the

optimiser terminated the training. Additionally, if no progress was observed after eight

consecutive epochs, the learning rate was decreased by a factor of 0.8. The gradient

descent algorithm reached the optimal solution after 600 epochs. The entire training

process took approximately eight hours using an Nvidia Quadro RTX 4000 GPU, and

operating at a resolution of 256×256 pixels.

4.3 Model evaluation and results

The assessment of the model closely followed the evaluation methodology applied to

the GNN model discussed in the preceding chapter, specifically concerning liver mo-

tion and utilizing clinical data from four liver cancer patients. Sections 4.3.1 and 4.3.2

outline the experimental setup and model evaluation based on synthetic respiratory

motion scenarios. Furthermore, these sections conduct a comparative analysis of this
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model with our previous model architecture described in Chapter 3. Subsequently,

in Section 4.3.3, the qualitative evaluation of the model on in-treatment kV images

for each patient case is presented. Furthermore, Section 4.3.4 conducts a comparative

analysis of this model with the recently introduced IGCN model [217, 218], which

predicts only 3D surface geometries using single kV X-ray images at projection angle

zero. Section 4.4 showcases the ablation experiments that were conducted as part of

the evaluation process.

4.3.1 Experiments on synthetic data derived from SuPReMo

Due to the absence of state-of-the-art methods for recovering volumetric mesh defor-

mation using a single kV image with any projection angle, a comparison was made

between our novel self-attention-based CNN approach and our prior graph-attention-

based network method. Moreover, we explored an additional comparison by replac-

ing the self-attention layer in the CNN model with a vision transformer [245] while

keeping the image encoder and regression head unchanged. These three models were

trained and validated under similar conditions, employing 256x256 image dimensions,

with the only exception being the number of epochs. The two CNN-based networks

required 600 epochs to reach the optimal solution, while the GNN network achieved

this in 400 epochs.

Vision transformer configuration

The output feature maps of the final convolutional layer (32 × 32 × 128) from the

image encoder were divided into 8 × 8 patches and each patch was embedded into a

128-dimensional vector. This process resulted in obtaining 16 patches for each image,
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Table 4.1: Summary statistics for all test sets with synthetic kV images. Patient case
numbers are indicated in column 1. Epred and UGT refer to prediction errors and un-
derlying ground-truth deformation magnitudes, respectively. Mean (std): means (and
standard deviations) of values across all nodes, all deformation states, and all projec-
tion angles. Mean peak: means of the peak values for each deformation state across
all projection angles. Max peak: overall maximum values from all nodes, deformation
states and angles. 99th Percentile: 99th percentile values from all nodes, deformation
states and angles. All values reported in mm.

Case Mean (std) Mean peak Max peak 99th Percentile

1
EOurs−CNN

Pred 0.065±0.04 0.29 2.69 0.24
EOurs−GNN

Pred 0.16±0.13 1.39 6.75 0.75
ECNN−ViT

Pred 0.12±0.11 0.77 5.46 0.62
UGT 10.18±1.33 14.71 28.12 13.85

2
EOurs−CNN

Pred 0.088±0.06 0.39 1.76 0.31
EOurs−GNN

Pred 0.18±0.19 1.99 7.97 0.97
ECNN−ViT

Pred 0.15±0.13 1.17 6.74 0.69
UGT 11.65±1.76 15.76 34.91 14.38

3
EOurs−CNN

Pred 0.084±0.04 0.30 2.96 0.23
EOurs−GNN

Pred 0.22±0.34 3.29 14.66 1.81
ECNN−ViT

Pred 0.19±0.18 1.13 6.88 0.99
UGT 14.89±2.54 19.36 49.63 17.65

4
EOurs−CNN

Pred 0.059±0.04 0.25 1.36 0.19
EOurs−GNN

Pred 0.12±0.11 1.16 4.36 0.51
ECNN−ViT

Pred 0.093±0.10 0.65 4.00 0.55
UGT 10.07±1.13 12.86 25.64 11.97

with each patch represented as a [1×128] vector. Next, the regression token embedding

vector was prepended to these learnable embedding vectors, followed by incorporating

positional embeddings into all of these vectors. The positional encoding enables the

model to understand the spatial positioning of each patch within the input image. The

regression token was positioned as the first token in each sequence, serving as input to

the regression head (final MLP network).

Subsequently, we passed the patch embeddings along with the regression token through

two transformer blocks, each consisting of a Multi-Head Self-Attention (MSA) Block
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and an MLP Block. Within the MSA layer, each input patch embedding was linearly

transformed into three distinct vectors: query, key, and value. The MSA layer then

computed the dot product between the query vector of each patch and all key vectors,

scaling the result by the square root of the vector dimensionality. The resulting scores,

known as attention weights, were normalized using the softmax function to obtain

attention coefficients. These attention coefficients were used to weight and combine the

corresponding value vectors associated with the key vectors, yielding the final output

of the attention mechanism.

For the MLP block, we employed three linear layers with output channels of 256, 256,

and 128, respectively. Each linear layer was followed by the Exponential Linear Unit

(ELU) activation function, except for the output layer.

Finally, we extracted the regression token from the output vector of the Transformer

blocks and passed it through the regression head to obtain the predicted transformation

vector. Due to memory constraints, we limited the number of self-attention layers to

two. Additionally, a dropout rate of 0.3 was applied during model training to mitigate

overfitting.

Comparison with test dataset

The results for the test datasets of all four patients are presented in Table 3.1, with

Euclidean distance used as the metric to evaluate distance errors between ground-truth

and estimated shapes. Across patients, the CNN with self-attention model consis-

tently outperformed both the GNN model and CNN with vision transformer model

(CNN-ViT) in terms of mean errors, achieving values ranging from 0.059±0.04 mm to

0.088±0.06 mm. In contrast, the GNN’s mean errors ranged from 0.12±0.11 mm to
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Figure 4.3: Effect of projection angle on prediction accuracy: box and whisker plots
of the mean (top) and peak (bottom) prediction errors grouped according to image
projection angle (degrees). Each box and whisker shows the distribution of errors for
the indicated projection angle using all deformation states in the test set. For clarity of
visualisation, angles are further grouped into 10 equal bins covering a full revolution.
Results for patients 1 (blue), 2 (yellow), 3 (green), and 4 (red) are shown for each bin.

0.22±0.34 mm, and CNN-ViT’s mean errors ranged from 0.093±0.10 mm to 0.19±0.18

mm.

Analyzing mean peak errors, the CNN with self-attention model consistently displayed

lower values (0.25 mm to 0.39 mm) compared to the GNN model, which exhibited

higher mean peak errors ranging from 1.16 mm to 3.29 mm, and the CNN-ViT model,
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which demonstrated mean peak errors ranging from 0.65 mm to 1.17 mm. Similarly,

for max peak errors, the CNN with self-attention model consistently showcased smaller

values (1.36 mm to 2.69 mm) compared to the GNN model (4.36 mm to 14.66 mm)

and CNN-ViT model (4 mm to 6.88 mm).

Regarding the 99th percentile, the CNN with self-attention model yielded smaller val-

ues (0.19 mm to 0.31 mm) compared to the GNN model with higher 99th percentile

values (0.51 mm to 1.81 mm) and CNN-ViT model with higher 99th percentile values

(0.55 mm to 0.99 mm). These findings collectively indicate that the CNN with self-

attention model consistently outperforms the GNN model and CNN-ViT model across

all error metrics for liver deformation estimation in the specified patient datasets.

Patient 3 exhibits the highest errors among all four cases for both models. The pre-

dominant factor contributing to the elevated errors in this patient case is the substantial

presence of reconstruction artefacts within the 4D-CT data. More specifically, it is

observed that in this patient’s scenario, the deformed 3D-CT image volumes and the

corresponding DVFs, particularly at the initial and final time points, comprise signif-

icant errors. This circumstance renders it considerably challenging for the model to

generate accurate predictions.

To further validate these findings, one-way ANOVA tests were conducted on each test

dataset to assess potential statistically significant differences in mean error values. To

this end, we compared the mean error values of our self-attention-based CNN approach

with our GNN-based method, as well as those of our self-attention-based CNN model

with the CNN-ViT model. The corresponding P-values were calculated, and they are

all extremely small, with nearly all of them approximating zero for all patients. These

results consistently demonstrate that all P-values were less than the 0.05 significance
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4.3 Model evaluation and results

level, providing strong evidence that the mean errors of the self-attention-based CNN

approach are significantly smaller than those obtained with the GNN-based approach

and the CNN-ViT model.

Figure 4.3 depicts the visualization of the variability of the mean and peak error against

the projection angle for the test datasets with box and whisker plots for all four liver

patient cases. By looking at this figure, we can see the estimated deformations are in-

dependent of the projection angle because there is no considerable difference between

the distribution of the bars and they are almost lined. Finally, it is crucial to highlight

that the elevated peak errors observed in all instances were highly localized within the

point-clouds. This is evidenced initially by the consistently low mean values and the

99th percentile errors (refer to Table 4.1), which remained below 1 mm for all test sets.

This is further demonstrated through the visual representations of predicted shapes,

where displacement errors are colour-mapped, presented in the right columns of Fig-

ure 4.4. The errors are minimal (≤ 2 mm) across most of the surface, with only isolated

regions exhibiting higher values.

4.3.2 Experiments on synthetic data derived from 4D-Precise

We have conducted a comparative analysis to assess the accuracy of our trained model

against an alternative synthetic dataset, which was generated through a distinct method-

ology from SuPReMo-based synthetic data. This new synthetic dataset comprised mo-

tion scenarios derived from 4D-Precise [246], a self-supervised deep-leaning model

that generates deformation fields by leveraging real kV X-ray images as input. The

4D-Precise model exhibits the capability to estimate voxel-wise motion fields while

concurrently reconstructing a 3D-CT volume for any arbitrary time point within the
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4.3 Model evaluation and results

Figure 4.4: Visualisations of ground-truth deformed (left column), template (middle
column), and estimated deformed (right column) 3D liver shapes. Point-clouds as
mesh representations are overlaid on the deformed 3D-CT volume. Rows 1-3 show,
respectively, axial, coronal, and sagittal views. Results are shown for the worst per-
forming test case for patient 1: image projection angle 23.679◦, and deformation state
producing highest errors. Contours in the right column indicate the spatial distribution
of errors on the surface. Similar results for patients, 2-4 are presented in Appendix B.
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input kV X-ray projections.

The training phase of the 4D-Precise model involved in-treatment kV images specific

to each patient case, utilizing the same reference 3D-CT image volume employed in

SuPReMo for generating synthetic motion instances. Once the 4D-Precise model was

adequately trained, we proceeded to extract the displacement field for each real kV

image from the second scan series (see Section 4.3.3) of each patient case. The sub-

sequent interpolation of the displacement vector field at the positions of the reference

point-cloud representation allowed us to produce deformed point-cloud configurations.

These synthetically generated point clouds were subjected to a comparison with the

corresponding predicted point cloud representations generated by our model. In this

experimental setup, we utilized uniformly sampled 135, 132, 132, and 131 input kV

images for patients 1, 2, 3, and 4, respectively.

Table 4.2 illustrates the summary statistics for the discrepancies between 4D-Precise

and our model predictions for all four patient cases. The mean differences for the CNN

model span from 0.87 mm to 1.30 mm, with patient 4 exhibiting the lowest and patient

3 the highest values, whereas for the GNN model, the mean differences range from

1.13 mm to 2.08 mm, with patient 4 having the minimum and patient 3 the maximum.

In mean peak evaluation, patient 1 has the lowest mean peak discrepancy for both

CNN (2.09 mm) and GNN (3.27 mm) models, whereas patient 3 demonstrates the

highest mean peak difference for both models, with 3.01 mm for CNN and 4.55 mm

for GNN. Regarding max peak, patient 1 consistently displays the lowest values for

both CNN (3.44 mm) and GNN (5.01 mm), whereas patient 3 consistently exhibits the

highest max peak differences, reaching 5.61 mm for CNN and 8.47 mm for GNN. For

the 99th percentile values, patient 1 shows the lowest (1.87 mm) for CNN and (2.85
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Table 4.2: Summary statistics for all test sets with real kV images produced from 4D-
Precise. Patient case numbers are indicated in column 1. Epred refer to prediction
discrepancies between our model and 4D-Precise whereas US D−4DPrecise refer to the
underlying synthetic deformation magnitudes of the point-clouds generated using 4D-
Precise. Mean (std): means (and standard deviations) of values across all nodes, and
all deformation states. Mean peak: means of the peak values for each deformation
state. Max peak: overall maximum values from all nodes and deformation states. 99th

Percentile: 99th percentile values from all nodes and deformation states. All values
reported in mm.

Case Mean (std) Mean peak Max peak 99th Percentile

1
EOurs−CNN

Pred 1.10±0.26 2.09 3.44 1.87
EOurs−GNN

Pred 1.62±0.41 3.27 5.01 2.85
US D−4DPrecise 1.98±1.84 10.41 18.83 8.94

2
EOurs−CNN

Pred 0.89±0.52 2.82 4.86 2.34
EOurs−GNN

Pred 1.32±0.71 4.55 6.81 3.73
US D−4DPrecise 3.89±2.75 18.10 25.44 13.71

3
EOurs−CNN

Pred 1.30±0.40 3.01 5.61 2.54
EOurs−GNN

Pred 2.08±0.67 4.43 8.47 4.06
US D−4DPrecise 4.71±2.20 13.82 24.78 12.01

4
EOurs−CNN

Pred 0.87±0.44 2.75 4.76 2.33
EOurs−GNN

Pred 1.13±0.59 3.66 6.49 3.09
US D−4DPrecise 3.83±2.79 14.24 24.96 12.77

mm) for GNN, while patient 3 exhibits the highest values, with 2.54 mm for CNN

and 4.06 mm for GNN. Overall, patient 3 consistently exhibits higher metrics for both

CNN and GNN models, while patient 4 tends to have lower values for both models.

The CNN model consistently outperforms the GNN model across all patients based on

the discrepancies calculated relative to the liver deformation derived from 4D-Precise

motion fields.

To validate these findings, one-way ANOVA tests were performed on each test dataset,

assessing any statistically significant differences in mean values between our GNN-

based and CNN-based approaches. The calculated P-values, which consistently came

towards zero for all patients, were discovered to be extremely small. These results
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(a) Patient 1 (b) Patient 2

(c) Patient 3 (d) Patient 4

Figure 4.5: The spatial distribution of displacement discrepancies on the surfaces of
the worst-performing test cases is depicted, illustrating the differences between 4D-
Precise and our CNN model predictions using the same input real kV images.

consistently show that all P-values are less than the 0.05 significance level, implying

that the mean differences of the self-attention-based CNN approach are significantly

smaller than those obtained with the GNN-based method.

Figure 4.5 presents a visualization of the displacement discrepancies (only for the

worst performing synthetic test cases) between 4D-Precise and our CNN model pre-

dictions using the same input real kV images. However, determining the more ac-

curate prediction is challenging due to the absence of true ground-truth information

associated with each real kV image. The disparities are clearly higher compared to

SuPReMo-generated deformations. In the case of liver shapes, the peak displacement

differences are spatially concentrated over the surface, resulting in a lack of highly
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localized regions.

4.3.3 Evaluation on real kV images

In our second set of experiments, we utilized real in-treatment kV images from the

second scan series of each patient as described in the previous Chapter. Since ground-

truth deformations were unavailable, we employed two evaluation approaches: 1) a

semi-quantitative assessment based on an image similarity metric between input real

kV images and model-generated DRRs; and 2) a qualitative assessment relying on

overlaying model-predicted liver boundaries on input kV images. For the qualitative

assessment, we considered all images in the scan series. To expedite computation time,

especially during spline deformation of the image volumes, we sampled 100 images

uniformly from each patient’s series for the similarity-based assessment.

Mutual Information-based assessment

In this section, we used the same systematic approach outlined in Figure 3.10, which

we employed to assess real kV images in the absence of ground-truth data.

Table 4.3: MI similarity scores (mean ± standard deviation, computed from the 100
images sampled from each scan series) between real kV images and DRRs generated
at the same projection angles for each patient case. Column 2 presents values when
the reference (i.e. undeformed) CT volume is used. Column 3 presents values when
the CT volume is deformed using the model-predicted deformation fields. All values
were computed on the liver region.

Case Reference Deformed
1 1.16±0.31 1.33±0.21
2 1.14±0.21 1.40±0.12
3 1.13±0.27 1.30±0.21
4 1.31±0.25 1.45±0.13
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Table 4.3 summarizes the results of these experiments. The similarity score of the ref-

erence configuration is lower than the motion-corrected configuration indicating that

our model improves the motion of the liver. Since we assessed 100 projection angles,

the values in Table 4.3 were calculated by averaging each similarity metric value across

all 100 kV images per scan series. Moreover, the marginal disparities in average MI

values led us to conduct a one-way ANOVA test for each patient case. The resulting

P-values for MI differences between the reference and deformed versions were 0.0365,

0.0259, 0.0438, and 0.0427 for patients 1, 2, 3, and 4, respectively, suggesting statisti-

cally significant (assuming alpha value of 0.05) differences.

Qualitative assessment by boundary overlay

As the initial step, the trained models were utilized to estimate deformed 3D shapes

by inputting all histogram-equalized real kV images from the second scan series. Sub-

sequently, each predicted shape generated a corresponding binary image volume. The

liver surface boundaries projected onto the images were derived through ray-tracing on

these binary volumes. These projected binary masks were then superimposed onto the

corresponding input kV images. Figure 4.6 presents examples from each patient, and

additional animated versions covering the entire scan series for each patient case are

provided in the supplementary materials for a more comprehensive examination. These

animated versions effectively demonstrate the qualitative consistency of the model pre-

dictions with the input images across multiple breathing cycles and the complete treat-

ment gantry rotation.
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4.3 Model evaluation and results

Figure 4.6: Samples of overlaid predicted liver boundary projections on corresponding
real kV images for the four patients. Rows 1-4 show, respectively, results for patients
1-4. Results for images acquired at four projection angles (degrees, indicated below
the images) are shown.
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4.3.4 Comparison model with liver surfaces

Since there are no state-of-the-art techniques available for reconstructing volumetric

point-clouds from arbitrary projection angles, methods do exist for reconstructing sur-

face meshes from particular projection angles [210, 212, 215, 217, 218, 220]. In this

section, we provide a comparison between our CNN-based approach and the IGCN

[217, 218] model, which focuses on reconstructing liver surface mesh deformation

from front-view kV projections, specifically at projection angle zero. This evaluation

was conducted utilizing test datasets derived from SuPReMo. To ensure a comprehen-

sive evaluation, we used the exact same approach as mentioned in Section 3.8.3 in the

previous Chapter.

The results, as presented in Table 4.4, indicate that our latest CNN-based method con-

sistently achieved higher accuracy in modelling liver surface deformation across all

patient cases in the test set. Furthermore, we performed one-way ANOVA tests on

each test dataset to assess whether statistically significant differences in mean errors

between our CNN approach and IGCN. The computed P-values are extremely small

values for all patients (assuming an alpha value of 0.05). This further indicates that the

mean errors of our CNN-based approach are significantly smaller than IGCN.

4.4 Ablation study

This section exemplifies the ablation experiments we performed to determine the im-

pact of self-attention and projection angle components on the overall model perfor-

mance. All these experiments were performed utilizing test datasets derived from

SuPReMo, and the model was trained for 600 epochs. The results should be compared
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Table 4.4: Summary statistics from performance comparison between our CNN-
model, GNN-model, and IGCN. All errors are computed with respect to predicted
organ surface shapes. Patient case numbers are indicated in column 1. EOurs

Pred and EIGCN
Pred

refer to prediction errors for our self-attention-based CNN method and IGCN, respec-
tively. UGT refer to underlying ground-truth deformation magnitudes. Mean (std):
means (and standard deviations) of values across all nodes, all deformation states, and
all projection angles. Mean peak: means of the peak values for each deformation state
across all projection angles. Max peak: overall maximum values from all nodes, de-
formation states and angles. 99th Percentile: 99th percentile values from all nodes,
deformation states and angles. All values reported in mm.

Case Mean (std) Mean peak Max peak 99th Percentile

1
EOurs

Pred 0.066±0.03 0.20 2.20 0.18
EIGCN

Pred 0.18±0.25 1.13 6.37 0.93
UGT 10.11±1.24 13.94 28.12 13.53

2
EOurs

Pred 0.067±0.05 0.31 1.18 0.25
EIGCN

Pred 0.17±0.21 2.81 8.79 1.18
UGT 11.37±1.55 15.41 34.91 14.09

3
EOurs

Pred 0.092±0.05 0.32 2.47 0.26
EIGCN

Pred 0.19±0.23 2.05 14.31 1.23
UGT 14.52±2.39 18.71 49.63 16.74

4
EOurs

Pred 0.073±0.04 0.26 1.19 0.22
EIGCN

Pred 0.14±0.17 0.97 5.31 0.77
UGT 10.01±1.05 12.17 25.64 11.33

with the values for patient 1 in Table 4.1) since we utilized synthetic data generated for

this specific patient.

Table 4.5: Impact of removing self-attention layer. All values reported in mm.

Mean (std) Mean peak Max peak 99th Percentile
0.081±0.13 0.61 4.64 0.55

We first compared the impact of the self-attention layer on model performance by

removing this module. The architecture was otherwise unchanged. Results in Table

4.5 demonstrate that utilizing the self-attention layer is more effective.

In the subsequent experiment, we investigate the influence of excluding projection an-
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Table 4.6: Impact of removing gantry (projection angle) information from the input
layer. All values reported in mm.

Mean (std) Mean peak Max peak 99th Percentile
0.076±0.09 0.48 5.97 0.43

gle information from the CNN model’s input layer while keeping the other components

constant. The outcomes presented in Table 4.6 demonstrate that including angle infor-

mation in the input layer is more effective.

Table 4.7: Impact of FC layers in the regression head. All values reported in mm.

Experiment Mean (std) Mean peak Max peak 99th Percentile
1 0.079±0.08 0.54 3.82 0.41
2 0.14±0.12 0.72 5.19 0.67

Two experiments were conducted to assess the impact of FC layers in the regression

head for the first patient case. In the first experiment, the last FC layer was removed,

resulting in a new regression head with four FC layers. The first three layers had 128,

64, and 32 output channels, respectively, and the output linear layer consisted of five

neurons to obtain the predicted transform vector.

In the second experiment, the last two FC layers were removed, leading to a regres-

sion head with three FC layers. The first two layers had 128 and 64 output channels,

respectively, and the output layer consisted of five neurons for predicting the trans-

form vector. The results of these experiments, as displayed in Table 4.7, emphasize the

importance of utilizing all five FC layers in the regression head for this task.

Throughout these two experiments, all other components were held constant and un-

changed.
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4.5 Summary

In this chapter, a novel predictive framework, leveraging self-attention within a CNN,

has been introduced. This framework facilitates for estimating 3D organ deforma-

tions from single in-treatment kV planar X-ray images captured at any arbitrary projec-

tion angle. The work is motivated by the need for accurate characterisation of patient

anatomical motion during radiotherapy, to enable treatment adaptation. The proposed

approach combines: 1) a deep AE that first learns low-dimensional representations of

patient organ deformations; and 2) a self-attention-based CNN that learns mappings

between deep semantic X-ray image features and corresponding encoded deformation

latent representations. Learnt image features, moreover, are angle-dependent, meaning

input X-ray images may be acquired at arbitrary projection angles. Full organ defor-

mation fields are subsequently reconstructed by passing the predicted latent vectors to

the AE decoder network. Since only low-dimensional latent vectors, rather than full

displacement fields, are directly predicted, the network size and training data require-

ments are relatively small.

The motivation for introducing this new model architecture stems from the computa-

tional efficiency considerations, particularly in comparison to the more time-consuming

GNN model, which is described in Chapter 3, employed in the training process. This

approach exhibits enhanced robustness during inference for each input image, requir-

ing only approximately 4 milliseconds per input image, whereas the GNN method

demands around 27 milliseconds.

This framework not only addresses the efficiency concerns associated with the GNN

model but also presents a promising advancement in accurately recovering 3D anatom-

ical deformations from single kV planar X-ray images. Utilizing self-attention within
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the CNN contributes to the model’s ability to capture complex relationships in the data,

resulting in improved efficiency and reduced inference time.
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Chapter 5

Discussion & Conclusion

5.1 Contribution and summary

The thesis presented two novel patient-specific deep motion models for recovering 3D

volumetric organ shape deformation from a single in-treatment kV planar X-ray image

acquired at arbitrary projection angles. These two approaches have several attractive

features: they use only readily accessible in-treatment imaging capabilities, rather than

expensive and rare systems like MRI; they require no extra sensing to provide surrogate

signals; and no invasive FM implantation. To the best of our knowledge, this is the

first example of deep learning frameworks able to reconstruct volumetric 3D organ

models accurately from arbitrary-angled single-view images, and thereby enable such

reconstructions across complete in-treatment scan series. The predictive performance

and the feasibility of the proposed networks were evaluated by using data from four

liver cancer patients, with a focus on liver motion.

The first model, which employs a GNN framework as described in Chapter 3, requires
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more training time. Therefore, an alternative approach was introduced, as described

in Chapter 4, which focuses on predicting transformation parameters using a simple

CNN network for vertex displacement prediction. This approach allows for a sub-

stantial reduction in the number of trainable model parameters, leading to fewer trans-

formation parameters in the final prediction. Consequently, the CNN-based method

demonstrates a faster processing time per input image during inference compared to

the GNN method.

As mentioned, our two approaches have been developed specifically to accommodate

input kV images acquired at arbitrary projection angles. We demonstrated this by

training and evaluating the models with images generated at different projection angles.

As shown in Figure 3.8 and Figure 4.3, the prediction accuracy was indeed virtually

independent of projection angle.

The models were trained with synthetic respiratory motion data constructed using the

SuPReMo toolkit. Training in this way is essential in the absence of ground-truth

deformations corresponding to real kV images; that is, there appears to be no other

way of acquiring paired deformation/image sets for this scenario. For similar reasons,

direct quantitative evaluation of the model performance was also carried out using

synthetic data. Naturally, the performance of the model will depend on the fidelity

with which real patient motions are reproduced in the synthetic data. The evaluation

process has been conducted in two directions where in the first case, the models were

tested quantitatively on synthetic respiratory motion scenarios and qualitatively on in-

treatment images acquired over a full scan series for liver cancer patients.

A key part of the synthetic data creation was the development of a method for gen-

erating realistic synthetic kV X-ray images. While DRRs produced from ray tracing
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through CT volumes ultimately are also X-ray-based images, they do not suffer from

the same scatter and noise phenomena of in-treatment kV X-ray images. Their appear-

ance, consequently, is noticeably different. Therefore we first trained a CycleGAN

[231] for each patient by conditioning on projection angle to learn the genuine kV X-

ray style that can be transferred to the DRRs. CycleGANs are particularly well-suited

to this task since they require only unpaired sets of DRRs and kV images. Initially,

we utilized transposed convolution layers for the decoder portion of the generators;

however, we encountered checkerboard-like artefacts in several instances. To address

this issue, we transitioned to using convolution layers followed by pixel shuffle lay-

ers [234]. Pixel Shuffle effectively mitigates checkerboard artefacts by reorganizing

and rearranging feature map elements to enhance spatial resolution without introduc-

ing interpolation-related blurriness. By reshuffling and aggregating elements within

each channel of the feature map, Pixel Shuffle ensures that neighbouring pixels in the

output correspond to adjacent regions in the input, thus maintaining spatial coherence

and alignment. This structured reordering of elements helps alleviate irregular pixel

arrangements that can lead to checkerboard patterns, ultimately contributing to the

production of high-quality, artefact-free images in GANs.

We observed that the model prediction accuracy can be influenced by the quality and

characteristics of the CT volumes from which training data are constructed. The higher

peak errors were found for patient 3. The CT volumes of this patient case exhibited

certain reconstruction artefacts related to motion. For this patient, in large amplitude

deformed cases, these resulted in some mesh-image misalignment problems even in the

ground-truth data (specifically, with the deformed states at initial and final time points)

produced from SuPReMo. The deformed images for Patients 1 and 4, by contrast,
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contained no obvious artefacts or ambiguous anatomy, and peak errors were corre-

spondingly smaller (Table 3.1 and Table 4.1). As emphasised, however, the regions of

higher peak errors, even in patient 3, were nonetheless very localised, and mean errors

remained low.

The displacement discrepancies show clearly a quite higher value between 4D-Precise

and our model when compared to the results obtained with SuReMo-based synthetic

test datasets. In our analysis, we employed 4D-Precise as an independent approach to

predict the output for uniformly sampled real kV images in the second scan series, aim-

ing to compare these results with the predictions from our model. More importantly,

the predictions from 4D-Precise may contain errors, as it relies on a self-supervised

deep learning technique capable of extracting DVFs as the output to create DRRs sim-

ilar to real kV X-rays. Although we utilized the motions estimated by 4D-Precise from

real kVs, they do not represent the ground-truth concerning the true motions observed

in the kV X-ray images.

In summary, the self-attention-based CNN model demonstrated superior performance

over the GNN model in predicting 3D organ deformations from single in-treatment kV

planar X-ray images. This was evidenced by lower overall error values and a higher

precision in predicting vertex displacements.

5.2 Limitations and future directions

This thesis focuses on respiratory motion estimation, however, our techniques can in

principle be used to predict any motion patterns, e.g. the peristaltic motion of the

gut or longer-term structural changes, given appropriate training data. These models
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involve no assumptions of periodicity or other specific motion characteristics. Clearly,

the generation of training data is more challenging in some scenarios than in others,

but this presents a practical difficulty rather than a theoretical one.

While SuPReMo appears to do a reasonable job of characterising the motion present

in the input 4D-CT data, these data represent only averaged breathing cycles and do

not by themselves provide information about the variability of this motion. Pragmat-

ically, therefore, in this work, we assumed some bounds on the variations from this

average and randomly generated motion states within these (Sect. 3.6.2). We will ex-

plore more rigorous approaches to characterising the patient motion variability (and

incorporating this in model training data) based on kV image sequences acquired over

several minutes during treatment.

Another shortcoming of our methods, as currently implemented, is that we only esti-

mate the deformation of the target organ; nearby OARs and other anatomy are ignored.

However, the model itself imposes no restrictions in this respect. If suitable training

data covering the relevant anatomy, and meshes of the relevant anatomical structures

can be generated, the model can in principle estimate motions for these in the same

way. SuPReMo, for example, provides DVFs for the whole image volume, which

could be used for this purpose. OAR and other meshes can normally be created sim-

ilarly to the liver meshes used here. Potentially, the prediction of deformations for

multiple disconnected meshes could result in anomalous overlapping regions. How-

ever, such instances would hopefully be rare when the training data include no such

behaviour. If needed, separate non-overlap constraints in the formulation could also be

conceived, which penalise mesh interpenetration in a way analogous to some contact

formulations in computational mechanics. Albeit, this would increase the complexity

137



5.2 Limitations and future directions

of the approach. A simpler alternative could be deploying a single mesh covering all

relevant anatomy. In all scenarios, it is possible that both model and training data size

requirements would increase, though the overall approach would remain the same.

As mentioned, two general approaches to adapting RT treatments could be considered

using motion estimates generated by our technique: inter- and intra-fraction adaption.

Inter-fraction plan adaption could be achieved by retrospectively estimating the motion

that occurred during a treatment fraction and computing motion-compensated spatial

distributions of delivered dose (dose accumulation); the treatment plan could then be

adapted accordingly for subsequent fractions. No new technology seems to be needed

for this, beyond the requirement to image throughout the fraction, rather than during

initial patient positioning only. This would enable re-planning of subsequent fractions

to mitigate the effects of unexpected motion, lowering toxicity and improving patient

outcomes. To this end, a Clinical Scientist, Marcus Tyyger, at Leeds NHS Trust, is cur-

rently working on estimating motion-compensated dose accumulation by utilizing the

predicted liver geometries for a full kV scan series generated from our self-attention-

based CNN technique. The predicted deformed volumetric shape for each real kV

image in the acquired scan series provides a snapshot of the patient’s 3D anatomy at

the specific time point. The process is as follows: 1.) Converting the CNN model out-

put, in mesh format, into a format suitable for RayStation. This necessitates generating

the predicted (deformed) CT for each kV X-ray projection using an image registration

technique (e.g. Thin-plate-spline transformation); 2.) the positions of the gantry/MLCs

at the start and end of the time period are determined, with interpolation between them;

3.) dose for the predicted 3D-CT anatomy is computed; 4.) deformable image regis-

tration is conducted between the reference 3D-CT and the predicted 3D-CT, and 5.)
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the dose corresponding to the predicted anatomy is deformed onto the reference CT.

This entire cycle is reiterated throughout the whole treatment time period, roughly 2-4

minutes, with the deformed predicted doses being accumulated on the reference 3D-

CT. The total cumulative dose is then applied to the reference 3D-CT, facilitating the

observation of differences compared to the planning CT.

Intra-fraction adaption requires prediction of target motion, and adjustment of radia-

tion delivery in response, in real-time during the treatment. While our models compute

motions quickly (inference time for each input image is ∼27 msec and ∼4 msec for

GNN and CNN model, respectively), the inevitable response lag of the treatment sys-

tem, due both to data processing following a motion input and the physical inertia of

the delivery apparatus, means motion predictions must in practice be computed some-

what ahead of time. In principle, our approach could be extended to enable this using

ideas from sequence-to-sequence learning, e.g. by incorporating RNN or LSTM com-

ponents in the model to capture sequences of organ motions, given dynamic sequences

of input kV images. A recent work has been done by our research group on generative

modelling of cardiac MR image sequences [247] can provide further inspiration here.
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Appendix A

Worst performing test cases (derived

from SuPReMo) visualization for liver

patients 2, 3 and 4 with GNN-based

approach

Patient 2

140



Figure A.1: Visualisations of ground-truth deformed (left column), template (middle
column), and estimated deformed (right column) 3D liver shapes. Meshes are over-
laid on the deformed 3D-CT volume. Rows 1-3 show, respectively, axial, coronal,
and sagittal views. Results are shown for the worst performing test case for patient
2: image projection angle 23.195◦, and deformation state producing highest errors.
Contours in the right column indicate the spatial distribution of errors on the surface.
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Patient 3

Figure A.2: Visualisations of ground-truth deformed (left column), template (middle
column), and estimated deformed (right column) 3D liver shapes. Meshes are over-
laid on the deformed 3D-CT volume. Rows 1-3 show, respectively, axial, coronal,
and sagittal views. Results are shown for the worst performing test case for patient
3: image projection angle 202.009◦, and deformation state producing highest errors.
Contours in the right column indicate the spatial distribution of errors on the surface.
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Patient 4

Figure A.3: Visualisations of ground-truth deformed (left column), template (middle
column), and estimated deformed (right column) 3D liver shapes. Meshes are over-
laid on the deformed 3D-CT volume. Rows 1-3 show, respectively, axial, coronal,
and sagittal views. Results are shown for the worst performing test case for patient
4: image projection angle 256.387◦, and deformation state producing highest errors.
Contours in the right column indicate the spatial distribution of errors on the surface.
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Appendix B

Worst performing test cases (derived

from SuPReMo) visualization for liver

patients 2, 3 and 4 with self-attention

based CNN approach

Patient 2
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Figure B.1: Visualisations of ground-truth deformed (left column), template (middle
column), and estimated deformed (right column) 3D liver shapes. Meshes are over-
laid on the deformed 3D-CT volume. Rows 1-3 show, respectively, axial, coronal,
and sagittal views. Results are shown for the worst performing test case for patient
2: image projection angle 214.586◦, and deformation state producing highest errors.
Contours in the right column indicate the spatial distribution of errors on the surface.
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Patient 3

Figure B.2: Visualisations of ground-truth deformed (left column), template (middle
column), and estimated deformed (right column) 3D liver shapes. Meshes are over-
laid on the deformed 3D-CT volume. Rows 1-3 show, respectively, axial, coronal,
and sagittal views. Results are shown for the worst performing test case for patient
3: image projection angle 358.246◦, and deformation state producing highest errors.
Contours in the right column indicate the spatial distribution of errors on the surface.
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Patient 4

Figure B.3: Visualisations of ground-truth deformed (left column), template (middle
column), and estimated deformed (right column) 3D liver shapes. Meshes are over-
laid on the deformed 3D-CT volume. Rows 1-3 show, respectively, axial, coronal,
and sagittal views. Results are shown for the worst performing test case for patient
4: image projection angle 106.955◦, and deformation state producing highest errors.
Contours in the right column indicate the spatial distribution of errors on the surface.
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of hyperelastic materials in real-time using deep learning”. In: Medical image

analysis 59 (2020), p. 101569.

[172] Lijuan Shi et al. “Respiratory Prediction Based on Multi-Scale Temporal Con-

volutional Network for Tracking Thoracic Tumor Movement”. In: Frontiers in

Oncology 12 (2022). issn: 2234-943X. doi: 10.3389/fonc.2022.884523.

url: https://www.frontiersin.org/articles/10.3389/fonc.2022.

884523.

[173] Guangjun Li et al. “Machine learning for predicting accuracy of lung and liver

tumor motion tracking using radiomic features”. In: Quantitative Imaging in

Medicine and Surgery 12 (2023). doi: 10.21037/qims-22-621.

[174] Jun Lv et al. “Respiratory motion correction for free-breathing 3D abdominal

MRI using CNN-based image registration: a feasibility study”. In: The British

journal of radiology 91.xxxx (2018), p. 20170788.

170

https://doi.org/10.3389/fonc.2022.884523
https://www.frontiersin.org/articles/10.3389/fonc.2022.884523
https://www.frontiersin.org/articles/10.3389/fonc.2022.884523
https://doi.org/10.21037/qims-22-621


REFERENCES

[175] Hessam Sokooti et al. “Nonrigid image registration using multi-scale 3D con-

volutional neural networks”. In: International Conference on Medical Image

Computing and Computer-Assisted Intervention. Springer. 2017, pp. 232–239.

[176] Koen AJ Eppenhof and Josien PW Pluim. “Pulmonary CT registration through

supervised learning with convolutional neural networks”. In: IEEE transac-

tions on medical imaging 38.5 (2018), pp. 1097–1105.

[177] Hristina Uzunova et al. “Training CNNs for image registration from few sam-

ples with model-based data augmentation”. In: International Conference on

Medical Image Computing and Computer-Assisted Intervention. Springer. 2017,

pp. 223–231.

[178] Alina Giger et al. “Respiratory motion modelling using cGANs”. In: Medical

Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st

International Conference, Granada, Spain, September 16-20, 2018, Proceed-

ings, Part IV 11. Springer. 2018, pp. 81–88.

[179] Yabo Fu et al. “LungRegNet: an unsupervised deformable image registration

method for 4D-CT lung”. In: Medical Physics 47.4 (2020), pp. 1763–1774.

[180] Richard Castillo et al. “A reference dataset for deformable image registration

spatial accuracy evaluation using the COPDgene study archive”. In: Physics in

Medicine & Biology 58.9 (2013), p. 2861.

[181] Hessam Sokooti et al. “3D Convolutional Neural Networks Image Registra-

tion Based on Efficient Supervised Learning from Artificial Deformations”.

In: arXiv preprint arXiv:1908.10235 (2019).

[182] Thilo Sentker, Frederic Madesta, and René Werner. “GDL-FIRE 4D: Deep
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