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SUMMARY 

This thesis describes the development of a numerical solution procedure which 

is valid for both incompressible flow and compressible flow at any Mach number. 

Most of the available numerical methods are for incompressible flow or compress- 

ible flow only and density is usually chosen as a main dependent variable by 

almost all the methods developed for compressible flow. This practice limits the 

range of the applicability of these methods since density changes can be very 

small when Mach number is low. Even for high Mach number flows the exist- 

ing time-dependent methods may be inefficient and costly when only the finial 

steady-state is of concern. The presently developed numerical solution proce- 

dure, which is based on the SIMPLE algorithm, solves the steady-state form of 

the Navier-stokes equations, and pressure is chosen as a main dependent variable 

since the pressure changes are always relatively larger than the density changes. 

This choice makes it possible that the same set of variables can be used for both 

incompressible and compressible flows. 

It is believed that Reynolds stress models would give better performance in 

some cases such as recirculating flow, highly swirling flow and so on where the 

widely used two equation k-e model performs poorly. Hence, a comparative study 

of a Reynolds stress model and the k-e model has been undertaken to assess their 

performance in the case of highly swirling flows in vortex throttles. At the same 

time the relative performance of different wall treatments is also presented. 

It is generally accepted that no boundary conditions should be specified at 

the outflow boundary when the outflow is supersonic, and all the variables can 

11 



be obtained by extrapolation. However, it has been found that this established 

principle on the outflow boundary conditions is misleading, and at least one 

variable should be specified at the outflow boundary. It is also shown that the 

central differencing scheme should be used for the pressure gradient no matter 

whether it is subsonic or supersonic flow. 
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NOMENCLATURE 

ap, aw, aE, a N, as Coefficients in the discretization equations 

a Local sound velocity 

Ap, Ayi., AE, AN, As Area of cell boundaries 

A Cross section area of nozzles 

A* Throat area of nozzles 

C1, C2, CD , Ca, Ce, 

CT, Cµ, CEI, CE2 Turbulence model constants 

C1 X/Cµ4 

Cp Specific heat at constant pressure 

C. Specific heat at constant Volume 

DU 
p 

Ap/ap 

D; j Diffusion tensor 

e Internal energy 

E, E**, b, s, m Constants and parameters used in wall functions 

f Body force 

g Heat transfer by conduction 

h Enthalpy 

K 1/RT 

k Turbulent kinetic energy 

k Thermal conductivity 

I Mixing length 

M Mach number 

X 



p Fluctuating pressure 

P Mean pressure 

P* Stagnation pressure 

P Production term in the k-equation 

Pe Peclet number 

P; j Production tensor 

Pr Prandtl number 

Prk Prandtl number for turbulent kinetic energy 

Pr, Prandtl number for dissipation rate 

Q Heat generation 

r Radial ,tct ut ýº, t, 

R Gas constant 

Re Reynolds number 

R; j Reynolds stress tensor 

S Source term 

t Time 

T Temperature 

T* Stagnation temperature 

pu; ui Reynolds stress tensor 

u, v, w Fluctuating velocities 

U, V, W Mean velocities 

x, y, z Cartesian coordinates 

Vt characteristic velocity of turbulence 

xi 



GreekSymbols 

a The Reynolds stress model constant 

p Density 

P Stagnation density 

T Shear stress 

Tw Wall shear stress 

T{j Viscous stress tensor 

v Kinematic viscosity 

IZ Viscosity 

fttu,. Turbulent Viscosity 

lief f Effective Viscosity, ptu,. +µ 

rc Von Karman constant 

li* f, 
114 
µ 

Dissipation function 

4) ij Pressure-strain tensor 

y Ratio of specific heats 

r CTk2/E 

r, Ck2/E 
Kronecker delta function 

Turbulent kinetic energy dissipation rate 

w Time-averaged square of the vorticity fluctuation 

Subscripts 

e Denotes edge of inertial sub-layer 

X11 



nb Denotes neighbouring points 

P Central point of control volume 

v Denotes edge of viscous sub-layer 

W, E, N, S Neighbouring points 

w, e, n, s Neighbouring points at control volume boundaries 

Superscripts 

U Related to axial direction 

V Related to radial direction 

- Averaged value 

' Fluctuating value, or correction value 

* Intermediate value, or stagnation value 

X111 



Chapter 1 

INTRODUCTION 

1.1 Numerical Flow Simulations 

In the last decade, advances in computer technology and data communication 

have speeded up numerical flow simulations enormously. The availability of 

modern supercomputers and the ingenuity of computational fluid dynamics re- 

searchers have resulted in new methods for solving historically intractable non- 

linear flow field problems. Advances in data communication have facilitated 

remote access to those computing engines, and advances in computer technology 

incorporated in mini- and midicomputers now provide sophisticated interactive 

graphics and data manipulation capability. All of these have brought about pro- 

found effects on the engineering design process (1). 

It is generally accepted that fluid dynamics can be divided into theoretical, 

experimental and computational branches (2). Analytical methods provide quick, 

closed-form solutions, but they require unduly restrictive assumptions, can handle 
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only very simple configurations, and capture only the idealized fluid dynamics. 

Through experimentation, representative or actual configurations can be tested 

and representative or completely experimental data can be obtained. However, 

experimentation is costly both in terms of model and actual test time. In addi- 

tion, the limited conditions that can be attained by experimental facilities restrict 

the scope of experimental programs. By comparison, computational procedures 

require few restrictive assumptions and can be used to treat complicated configu- 

rations. Moreover, they have few Mach number or Reynolds number limitations, 

they have complete control over fluid properties such as density, viscosity etc., 

they have enormous flexibility in the choice of flow parameters, in particular, 

they can do what neither analytical methods nor experimental methods can do 

- to test the sensitivity of phenomena to independent theoretical approximations 

such as constant viscosity coefficient, neglect of buoyancy forces, unit Prandtl 

number etc., and most important, they are far more cost effective than exper- 

iments. Thus, the desirability of numerical flow simulations is enhanced when 

one considers that the cost of experiments is continually increasing because of 

model, labour, and energy overhead, whereas the cost of computer simulations is 

continually decreasing as a result of improved numerical procedures and advances 

in computer technology (3). 

In spite of the advantages and the rapid development of numerical flow sim- 

ulations, it is not expected that computational methods will completely replace 

experimental testing in the foreseeable future. Their roles instead are comple- 

mentary. The inadequacies in computational simulations are primarily associated 
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with poor resolution of physical phenomena, and this is the direct result of insuf- 

ficient computer power. If one accepts the unsteady Navier-Stokes equations as 

an adequate system to describe fluid flows, then physical phenomena of interest 

could be accurately simulated with sufficient computer power. However, current 

computer power is inadequate to permit numerical solution of these equations 

with suitable resolution of the wide range of length scales active in high Reynolds 

number turbulent flows. As a result of this, the averaged Navier-Stokes equations 

have to be used at present. Computations require an adequate turbulence model 

to correctly simulate viscous dominated flows (4). 

It is such a comparative weighing of all the advantages and disadvantages 

that underlies the growth of computational fluid dynamics and, especially, its 

increasing role in design of new flight vehicles. Many numerical methods have 

been developed but most of these methods are specific for either incompressible or 

compressible flows; for either unsteady or steady flows. In the next two sections, 

some general features of incompressible and compressible flows will be given, 

which result in different numerical methods. 

1.2 Incompressible Flows 

The very obvious point is that density does not vary with the change of pres- 

sure for incompressible flows. In other words, density is totally decoupled from 

pressure and can be assumed constant. As a result, the time derivative term in 

the continuity equation vanishes and density can be dropped from the continuity 
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equation. Therefore, neither density nor pressure can be directly associated with 

the incompressible continuity equation. The continuity equation, in this case, 

assumes only the role of a compatibility condition on the velocity field. This is 

very important to the choice of the main dependent variables in the calculation 

procedures. 

It is apparent from what is mentioned above that density cannot be cho- 

sen as a main dependent variable. Thus, there must be a way of calculating 

pressure in order to solve the momentum equations. For two dimensional flows 

the vorticity-stream function approach has been used very successfully instead 

of solving the `primitive' equations. However, for three dimensional flows the 

stream function as such does not exist, i. e., there is not a function such that its 

isoline is the streamline. Nevertheless, a vorticity -stream function like system 

has been formulated (2) to compute three dimensional incompressible flows in or- 

der to avoid calculating pressure directly. Unfortunately, those methods require 

more computer time and storage, and there may be some difficulties in specifying 

boundary conditions. 

The main obstacle arising from the choice of pressure as a main dependent 

variable is that the original set of equations does not contain an equation for pres- 

sure. Although a Poisson equation can be derived from the momentum equations 

this method has not been widely used. An effective method to solve the `primi- 

tive' equations had not been really developed until a mechanism was developed 

by which the continuity and the momentum equations could be linked together to 

produce a so called pressure correction equation for calculating pressure. It can 
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be said with confidence now that there is usually no difficulty in obtaining a good 

numerical solution for incompressible flows. The current research in this field is 

to refine the solution methods and to make them converge faster and perform 

more effectively. 

1.3 Compressible Flows 

It is customary to calculate density directly from the continuity equation in the 

case of compressible flows, and then pressure is obtained from the equation of 

state. A great number of numerical methods with density as a main dependent 

variable have been developed for unsteady flow problems and quite satisfactory 

results have been obtained. But when only steady-state is concerned it usually 

comes as a surprise to find that most (through not all) of the successful numerical 

studies of steady-state flow problems are based on the time-dependent equations, 

the steady-state solution being obtained, if it exists, as the asymptotic time 

limit of the unsteady equations. The problem with density as a main dependent 

variable is that pressure and density become weakly related and the variation of 

density is almost negligible at low Mach numbers. Thus such an approach with 

density as a main dependent variable is not viable. Even for supersonic flows in 

some complicated configurations there exist some subsonic regimes where Mach 

number can be very low. Furthermore, there are few methods developed for 

solving the steady-state form of the compressible Navier-Stokes equations. It 

is apparent that there is still considerable scope for further development and 
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improvements in this area. 

1.4 Turbulence 

Turbulence is one of the remaining unsolved problems in the area of physical 

science. It is believed that the solution of the time-dependent three dimensional 

Navier-Stokes equations and the conservation equations for mass and energy can 

describe turbulent flows. However, the fastest and largest computers at present 

are neither fast nor large enough to solve the equations directly for the required 

range of length and time scale, even for simple flows. Many industrially im- 

portant flows, such as the flow in a scramjet engine, are quite complex. The 

basic problem in computations arises from the vast disparity in time and space 

scales among the fundamental physical processes. Therefore, it is of practical im- 

portance to describe turbulent flows in terms of time averaged quantities rather 

than instantaneous. This kind of description leads to the well known turbulence 

closure problem. The time-average processing of the Navier-Stokes equations 

brings more unknowns, so called Reynolds stresses, which increase the number 

of unknowns above the number of equations. The problem is then to supply the 

information missing from the time-averaged equations by formulating a model to 

describe some or all of the six independent Reynolds stresses. 

Most turbulence models developed and tested so far are only for incompress- 

ible flows. Some models give good predictions for certain flow configurations but 

fail to give successful results in other cases (4). For flows with strong streamline 
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curvature such as highly swirling flows, it is expected that Reynolds stress models 

which solve six partial differential equations for the six Reynolds stresses would 

perform better. However, they have not been thoroughly tested for recirculat- 

ing and swirling flows. Turbulence modelling is still a great challenge even for 

incompressible flows. 

The literature on turbulence modelling for compressible flows is much more 

scarce. It is not expected that turbulence models developed for incompressible 

flows can be applied successfully to compressible flows without any modifica- 

tions. When the mass density is constant, as it is in all the turbulence models 

for incompressible flows, all of the effects potentially depending on the vorticity 

source term are absent. In chemically reactive flows the expansion due to heat 

release influences turbulent mixing by providing the density gradient which leads 

to vorticity generation (5). Even in non-reactive flows density gradients exist for 

some cases. Furthermore, density fluctuations cannot be neglected when Mach 

number is high. A successful turbulence model for compressible flows should in- 

corporate the factors mentioned above. Unfortunately, such a model would be 

very complicated and one has not been developed so far. Turbulence modelling 

for compressible flows is still at an early stage, and many numerical simulations 

for supersonic and hypersonic flows have been performed with very simple tur- 

bulence models which contain many empirical factors. The big gap between the 

"real world" and the models requires to be narrowed and a great deal of research 

work in this area needs to be done. 
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1.5 The Objectives of The Present Study 

The objectives of the present work are as follows: 

1). Numerical methods for compressible flows have been highly developed 

but they cannot be applied to low Mach number subsonic or incompressible flows 

since density is used as a main dependent variable. Even for high Mach number 

flows the existing time-dependent methods may not be very efficient when only 

the final steady state is required. One of the main objectives of the present study 

is to develop a prediction procedure which is valid for both incompressible and 

compressible flows. The scheme, which is based on the SIMPLE (Semi-Implicit 

Method for Pressure Linked Equations) method (6,7), solves the steady-state 

form of the Navier-Stokes equations. Pressure is selected as a main dependent 

variable since the pressure changes are always larger than the density changes 

which become very small at low Mach numbers. This choice allows the same set 

of variables to be used for both incompressible and compressible flows at any 

Mach number. 

2). Turbulence is still a remaining unsolved problem in the area of physics as 

stated above. A number of turbulence models have been developed for incom- 

pressible flows. Among those, the two equation k-e model (8) is the one most 

widely used, and it provides an efficient way of calculating engineering flows. 

But the performance of the standard k-e model becomes poor for some recircu- 

lating flows, swirling flows and so on. It is believed that Reynolds stresses models 

would give better performance but they have not well tested for some cases such 
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as highly swirling flows, One facet of the present work is to apply a Reynolds 

stress model to the case of strongly swirling flows in vortex throttles and com- 

pare the performance of the Reynolds stress model with that of the two equation 

model. At the same time the relative performance of different wall treatments is 

to be assessed. 

1.6 Outline of The Thesis 

In chapter two, a literature survey on numerical methods for both incompress- 

ible and compressible flows is presented. As computational techniques have pro- 

gressed dramatically and rapidly there are a great number of methods available. 

Therefore, it is impossible to give a detailed survey within the scope of this thesis 

since it is not the intention of the thesis to cover all aspects of numerical sim- 

ulations of fluid flows. Bearing this in mind only the relevant finite-difference 

methods for solving the `primitive' equations will be given in the survey. 

In chapter three, the governing equations which describe the flows of a New- 

tonian fluid are presented. The time-average processing which introduces more 

unknowns is discussed. A general survey on turbulence models and some assump- 

tions used in the process of modelling are presented. 

Chapter four is devoted to the details of the prediction procedure. The cou- 

pling between the continuity and the momentum equations together with the 

discussion on the finite-difference scheme for the pressure gradient term in the 

case of supersonic flows etc. are described. 
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In chapter five, applications of the prediction procedure to the incompressible 

strongly swirling flows in vortex throttles are presented. The main point is to 

test a Reynolds stress model in a case where the widely used two equation k-e 

model gives poor performance. Several wall treatments will be used to assess 

their performance in modelling the near wall regions. 

The prediction procedure is tested in chapter six for some compressible flows. 

Quasi-one dimensional convergent and divergent nozzle flows are selected to check 

the accuracy of the developed prediction procedure since in this case the analytical 

results are available. The prediction procedure is also applied to other cases to 

demonstrate the general validity of the procedure. 

In chapter seven, concluding remarks and suggestions for future work are 

given. 
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Chapter 2 

LITERATURE SURVEY 

As computational techniques have developed very rapidly, numerous numerical 

methods are available now to simulate fluid flows. It is beyond the scope of this 

thesis to cover the whole area and only the relevant numerical methods for solving 

the `primitive' equations directly are presented. 

2.1 Methods for Incompressible Flows 

As pointed out in chapter one, density cannot be chosen as a main dependent 

variable for incompressible flows. The problem with the `primitive' equations is 

then how to calculate pressure since the solution of the momentum equations 

requires knowledge of the pressure gradient term. The solutions available to the 

pressure-velocity coupling problem can be classified into the following groups: 

1). Derive and solve a Poisson equation for pressure. 

2). Use the artificial compressibility method of Chorin (9). 
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3). Pressure correction methods. 

2.1.1 The Poisson Equation Method 

A Poisson equation for the static pressure can be derived from the momentum 

equations by differentiating the momentum equations first and then adding them 

together. Details about the derivation and the final form of the equation are 

given in (2). This equation can be solved with iterative solution methods. 

Harlow and Welch (10) developed a computational method to get pressure 

from a Poisson equation for time-dependent incompressible viscous flow in two 

dimensional Cartesian coordinates. A staggered grid arrangement was used in 

their calculation to avoid an unrealistic solution and "marked particles" were 

introduced to make the flow visible. It was stated that their computational 

method had some advantages over the vorticity-stream function approach in this 

case. 

Donovan (11) used a similar method to compute two dimensional flow in a 

square cavity. The fluid in the cavity was initially at rest. The Poisson equation 

derived from the momentum equations, with a source term as a function of veloc- 

ities, was solved iteratively at each time step using the successive over-relaxation 

(SOR) method. With pressure known, the Navier-Stokes equations were solved 

explicitly for velocities. The terminal position of the calculated vortex center 

was in agreement with the experimentally determined steady vortex center. The 

predicted velocity and pressure distributions at large times agreed with previ- 

ous solutions of the steady Navier-Stokes equations indicating that the unsteady 
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solution could give the correct steady results. 

More recently, Lawal and Mujumdar (12) developed a numerical method to 

handle three dimensional steady laminar flow and heat transfer of non- Newtonian 

fluid in ducts. The Poisson equation for the static pressure was solved by the 

successive over-relaxation method. For the purpose of testing the algorithm and 

their computer code, the well known case of a Newtonian fluid in a square duct 

was computed and very good agreement with available experimental results was 

shown. 

The main disadvantage of such a method is that a great of computer time is 

needed. Another shortcoming of this method lies in its treatment of the boundary 

conditions. However, this method has not been widely used mainly due to the fact 

that a more efficient scheme which combines the continuity and the momentum 

equations to derive a so called pressure correction equation has been developed. 

Connell (13) found that the Poisson equation method took over 70% more CPU 

time than using the popular SIMPLE algorithm. 

2.1.2 Artificial Compressibility Method 

Another technique to handle `primitive' equations was developed by Chorin (9) 

to calculate thermal convection problems in both two and three dimensional 

cases. The basic principle of the method lies in the introduction of an artificial 

compressibility into the equations, in such a way that the final results do not 

depend on the artificial compressibility. This is done by introducing an explicit 

time derivative of artificial density into the continuity equation. In addition, 
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an artificial equation of state is introduced to couple pressure and the artificial 

density. This set of governing equations is then comparable with the governing 

equations of motion for compressible flows, which can be solved using a time- 

marching technique. Connell and Stow (14) presented another so called density 

correction algorithm to solve such a set of equations. The basic idea of their 

algorithm was based on pressure correction methods which will be discussed next. 

The first step consists of solving the momentum equations for the velocity field. 

As the velocity field will, in general, not satisfy the continuity equation, the 

artificial density is then corrected using the continuity equation and pressure is 

obtained through the use of the artificial equation of state. The results for a driven 

cavity test example were published, and it was concluded that this algorithm 

took more CPU time than one of the pressure correction methods such as the 

SIMPLE method (6,7). The artificial compressibility method is only applicable 

to steady flows in order to make the final solution independent of the artificial 

compressibility. In other words, the solution is meaningful only if a steady state 

is attained and the time derivative of the artificial density vanishes. As a result 

the method has not been widely used. 

2.1.3 Pressure Correction Methods 

In 1972, Patankar and Spalding (6) proposed a new approach to calculate pres- 

sure in their calculation procedure for three dimensional parabolic flows. More 

details about this approach were given by Patankar in (7). The basic idea is to 

first guess the pressure field, get an approximation to the velocity field, and then 
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make corrections to the pressure field in such a sense as to bring the velocity field 

into conformity with the continuity equation. This is the fundamental principle 

of pressure correction methods. The central part of these methods is a so called 

pressure correction equation which is generally derived from the finite-difference 

form of the momentum and the continuity equations. Pressure correction meth- 

ods have found wide applications since their original development. 

One of the most frequently used pressure correction method is the SIMPLE 

algorithm (6,7). This algorithm has been used very successfully for a wide va- 

riety of cases (6,13,14,15,16,17,18). There is no doubt about the creditability 

of this algorithm. Various modifications introduced so far have merely served 

the purpose of making the original one perform more efficiently. Among those, 

Patankar (7,19) introduced a modified version called SIMPLER (which stands for 

SIMPLE-Revised). The main difference is that SIMPLER uses a pressure cor- 

rection equation to adjust the velocity field just as the SIMPLE algorithm does 

but employs a separate pressure equation to predict the pressure field. Further- 

more, no approximations are used for the pressure equation in the development 

of the SIMPLER method. The pressure field is a direct consequence of the given 

velocity field. Hence, if the correct velocity field is obtained then the pressure 

equation would produce the correct pressure field. However, both a pressure cor- 

rection equation and a pressure equation must be solved at each iteration so that 

much more CPU time is needed. 

Relevant experiences with the SIMPLE and the SIMPLER methods have been 

reported by Raithby and Schneider (20) who investigated some of the SIMPLE 
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variants. They also introduced CTS SIMPLE (Consistent Time Step SIMPLE). 

Several alternative methods of updating pressure were examined. The PUMPIN ( 

Pressure Update from Multiple Path Integration) method which updates pressure 

without the need to solve a separate Poisson equation was presented. A set of 

methods PLUS- (Pressure Update from Least-Square Residual Minimization) 

were derived. A pressure distribution that agrees with the results in some "best" 

sense can be obtained by each of those methods. Unfortunately, an evaluation of 

the relative performance of each method cannot be made since only the decrease 

in error as a function of the iteration count was determined. 

VanDoormaal and Raithby (21) provided several suggestions for the enhance- 

ment of the SIMPLE method. The enhancements included the application of 

boundary conditions, equation solution techniques, convergence criteria, and a 

new variant SIMPLEC (SIMPLE Consistent). The SIMPLEC method recasts the 

pressure correction equation such that relaxation is not necessary for pressure. 

The relative performance of the SIMPLE, SIMPLER, and SIMPLEC methods 

was compared. 

Latimer and Pollard (22) introduced a new solution algorithm called FIMOSE 

(Fully Implicit Method for Operator-Split Equations). The assumptions in the 

derivation of the pressure correction equation that cause the other methods to 

be Semi-Implicit was removed. The basis of the FIMOSE algorithm is to split 

the operators in the governing equations to decouple the pressure-velocity link so 

that only one variable is dealt with at any time. Moreover, two integral equations 

were introduced to maintain a global conservation balance. The FIMOSE algo- 
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rithm is fully implicit because it uses a true predictor-corrector method in which 

the governing equations are solved again by using updated sources to update 

the velocity field, rather than using velocity-correction formulas. The interaction 

of the governing equations are decoupled by splitting the operations on velocity 

and pressure. Each equation is solved separately but tight coupling is maintained 

between the equations by using the updated velocity and pressure field when re- 

calculating the source terms before each equation is solved. In addition, they 

compared several different versions of pressure correction methods, and the re- 

suits for three laminar, incompressible, steady-state, uniform property fluid flow 

problems were presented using four pressure-velocity coupling solution algorithms 

- SIMPLER, CTS SIMPLE, SIMPLEC, and FIMOSE. All equations were solved 

by the same routine. Their relative performance was estimated by calculating 

the percentage difference in execution times. None of the methods showed gen- 

eral advantages over other methods in three cases. The SIMPLEC algorithm was 

faster than the SIMPLER and FIMOSE methods for a axisymmetrical sudden 

expansion problem. However, the FIMOSE method was much faster in the case 

of a porous wall in a plane duct while the SIMPLER algorithm provided quite 

poor results. 

From the discussions above it can be seen that a class of the SIMPLE meth- 

ods has been developed and used successfully instead of the Poisson equation 

and the artificial compressibility methods. Unfortunately, in spite of many of 

the SIMPLE variants, the relative performance of each method has not been sys- 

tematically tested. There appears to be no consensus of opinion as to which is 
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the best method for general engineering flow problems. The SIMPLE method, 

generally speaking, requires notably more iterations for convergence than the 

other methods evaluated but it is possible that the SIMPLE method may appear 

more competitive when the actual computation time rather than the number of 

iterations is taken as the measure of merit. Therefore, the SIMPLE method is 

still widely used and is employed in the present work for the strongly swirling 

incompressible flows in vortex throttles. 

2.2 Methods for Compressible Flows 

Most of the computational methods developed so far are for unsteady flows as 

density can be calculated from the continuity equation directly, and then pressure 

is evaluated from the equation of state. Even for steady flow problems the un- 

steady governing equations are integrated in time until a steady state is reached. 

For totally supersonic flow regimes, it is believed that space-marching methods 

may be effective for solving steady-state equations of parabolic type with respect 

to a spatial coordinate. Therefore, the numerical methods developed for unsteady 

flows can be adapted to steady overall supersonic flows by eliminating the time 

derivative and integrating the derivative in the flow direction as if it were a time 

derivative. However, many engineering complicated flows contain some subsonic 

regions, recirculating regions etc. instead of purely supersonic flows and they can 

only be fully described by the Navier-Stokes equations. Unfortunately, the meth- 

ods available for solving the steady-state Navier-Stokes equations are very few 
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and involve an extension of the SIMPLE algorithm (6,7) to compressible flows. 

On the other hand, the literature on the solution of the Euler equations is very 

vast and schemes for viscous flows are also applicable to the Euler equations. 

Thus, discussions below will be focused on numerical methods for solving the 

Navier-Stokes equations. 

2.2.1 Unsteady Methods 

The methods for unsteady flows can be classified into explicit and implicit meth- 

ods according to the time differencing method. In an explicit technique the 

unknown variables are expressed at the advanced time level entirely in terms of 

the known values at the current time level hence the finite-difference equations 

can be solved directly. In an implicit procedure the finite-difference equations 

introduce unknown variables at both the current and the advanced time level. 

Generally speaking, a procedure of this type necessitates the solution of a set 

of simultaneous equations, which usually results in a complex and time consum- 

ing procedure on a per grid point per time step basis. However, the explicit 

schemes tend to be conditionally stable and suffer from the limitation of the time 

step while the implicit methods are usually stable for large time steps (although 

not necessarily unconditionally stable). Some methods split the equations and 

use the explicit or implicit differencing schemes depending on the fractional step 

considered. A more detailed survey can be found in (2,23 24,25). 
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Explicit Methods 

The basic algorithm that has been used widely and successfully is the MacCor- 

mack predictor-corrector method (26). It is a second order accurate method and 

can be programmed quickly. In the predictor step, forward difference operators 

are used, while backward difference operators are used in the corrector step. Since 

it is easily applied to complex flow fields and is very robust this method is still 

widely used today. 

Baldwin and MacCormack (27) developed the explicit predictor-corrector 

method further by splitting the set of two dimensional equations into two sets of 

one dimensional equations while retaining second order accuracy, which makes the 

solution more straightforward. The modified method is called the time-splitting 

explicit numerical scheme. This scheme was used by Shang and Hankery (28) to 

calculate supersonic turbulent flows for a series of compression corner configura- 

tions. Good agreement between the experimental and calculated density profiles 

in the viscous- inviscid interaction region was presented. 

Knight (29) used the explicit predictor-corrector algorithm to solve two di- 

mensional Navier-Stokes equations in conservation form. Predictions compared 

favourably with experimental data for two different supersonic inlet designs. The 

qualitative behaviour of shock wave/boundary layer interactions was predicted 

as well. 

Drummond (30) developed a computer program to model the turbulent re- 

acting flowfield in an axisymmetrical ramjet dump combustor. The governing 

equations were integrated using the explicit predictor- corrector method until a 
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steady-state solution was reached. Comparison between the nonreacting exper- 

imental data and the predictions was presented and fair agreement overall was 

observed. 

Some other applications of MacCormack's explicit predictor-corrector method 

can be found in (31,32,33). There are some other explicit schemes which are 

given in (2,25). However, the stability limits of the explicit schemes can be very 

restrictive in certain cases such as reacting flows, high Reynolds number flows 

and so on. As a result of this, most methods currently used for the compressible 

Navier-Stokes equations are of the implicit or hybrid type. 

Implicit Methods 

Implicit schemes are not subject to severe stability restrictions on the size of time 

step and, therefore, may achieve a convergence rate increase of one to two orders 

of magnitude compared to explicit methods. However, the solution procedure 

typically involves inversion of block tridiagonal matrices, and is more difficulty 

to program. The pioneering work on implicit schemes for the finite-difference 

solution of the fluid dynamics equations of motion was performed by Briley and 

McDonald (34); Beam and Warming (35). 

Beam and Warming (35) developed an implicit scheme for the numerical so- 

lution of the compressible Navier-Stokes equations in conservative form. The 

scheme is second-order-time accurate, noniterative and unconditionally stable. 

The ADI method is employed and the unknowns of the block-tridiagonal linear 

system are conserved variables (density, momentum, total energy). Numerical 
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predictions for a two dimensional shock boundary layer interaction problem were 

presented. 

Visbal and Knight (36,37) developed a computer code using Beam and Warming's 

implicit scheme. The developed computer code . was well tested (36) and very 

good results were obtained for several test cases including inviscid shocked flows, 

laminar and turbulent boundary layer flows, and laminar shock/boundary-layer 

interactions. Some other applications of this scheme can be found in (38,39,40). 

The method developed by Briley and McDonald (34) is more or less the 

same as that of Beam and Warming. The major difference is that the primitive 

variables (density, velocity, temperature) appeared as unknowns in the block- 

tridiagonal linear system rather than the conserved variables. The applications 

of this method are mainly to internal flows (41,42). 

MacCormack (43) described a hybrid explicit-implicit scheme which is based 

on his explicit predictor-corrector method (26). The scheme consists of two stages. 

The explicit predictor-corrector method is used in the first stage, which is sub- 

ject to the explicit stability restrictions. The second stage removes those stability 

restrictions by transforming the equations of the first stage into an implicit form. 

The method requires no block or scalar tridiagonal inversions as the matrix equa- 

tions to be solved are block bidiagonal. As a result, the method is simple and 

straightforward to program and should be more efficient than other methods. In 

fact the new method was compared with the original explicit method for a series 

of shock interaction problems, and it was shown that the new method was very 

efficient as it took much less computer time. However, when compared with the 
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hybrid explicit-implicit characteristic method which was also developed by Mac- 

Cormack (44), it was only slightly more efficient (43). Applications of this hybrid 

explicit-implicit method are also given in (45,46,47). 

Knight (48) extended his previously developed technique (49,50,51) for the 

two dimensional Navier-Stokes equations to a three dimensional algorithm. The 

algorithm combines MacCormack's explicit method with an implicit scheme for 

the viscous sublayer and transition wall region of the turbulent boundary layer. 

The algorithm was employed to integrate the Navier-Stokes equations in time 

until a steady-state flowfield was obtained for the interaction of an oblique shock 

wave with a turbulent boundary layer in three dimensions. It was shown that 

the predictions were generally in close agreement with the experimental data. 

All the methods discussed so far for unsteady compressible flows use density 

as one main dependent variable since density can be obtained from the conti- 

nuity equation directly. Pressure is then calculated from the equation of state. 

However, as pointed out before, the methods with density as a main dependent 

variable are not applicable to low Mach number flows since density changes be- 

come very small while the pressure changes are always finite. For incompressible 

flows it is impossible to solve the governing equations anymore with density as a 

main dependent variable. Furthermore, when only the final steady-state solution 

is of concern, it may be not economical to still use unsteady methods. 
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2.2.2 Steady Methods 

When supersonic flows are considered, shock waves appear necessarily in certain 

flow configurations. The conservation equations in integral form are valid for 

all flows, including the ones with finite jumps. By applying Green's formulas, 

the same equations can be recast into partial differential form (known as the 

"divergence form"). However, partial differential equations have a more restricted 

range of validity. In fact, partial differential equations cease to be valid wherever 

the functions can not be differentiated. Therefore, they can describe regions 

of continuous flows but not shock waves. Nevertheless, if the concept of the 

derivative is generalized in the spirit of distribution theory, it has been shown (52) 

that the equations in divergence form admit "weak" solutions (that is, solutions 

containing a jump), and that such jumps appear in the right places. However, 

the same cannot be said if the equations of motion are recast in any other form. 

Two numerical techniques have emerged for the analysis of flows with shocks. 

The first, known as "shock capturing", relies on the proven mathematical legit- 

imacy of weak solutions, which requires no special treatment to deal with dis- 

continuities. All types of flows, including flows with shocks, can be computed by 

using the same discretization of the governing equations in divergence form at all 

nodes. The unsteady methods discussed before can be classified into this category. 

The second, known as "shock fitting", makes provisions for explicitly computing 

the discontinuities. Basically, it locates the discontinuities and treats them as 

boundaries between regions where a regular solution is valid. In this case, there 

is no need for maintaining the equations of motion in divergence form. Although 
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shock capturing methods give a poor interpretation of physical phenomena and 

are an uneconomical way of computing, as concluded by Moretti (53), they are 

far more popular for several reasons. First, it would be very convenient to have 

a computer code that can describe any flows, no matter how complicated, by 

repeating the same set of operations at all nodes without having to set up special 

logic to detect and track down discontinuities. In addition, it is possible to dis- 

cuss the mathematical properties of such a code by a local analysis, and general 

conclusions can be drawn about the order of accuracy, stability, and convergence. 

In the shock fitting methods, the interaction between the discretized codes and 

the original algebraic codes is much harder to analyze formally. Furthermore, for 

problems of three or more independent variables, the partitioning of a flowfield 

into regions where a regular solution is valid can create some difficult topologi- 

cal problems (54). However, Moretti (53) presented a technique called "floating 

shock fitting", which does not necessarily require discontinuities as boundaries 

of flows. This procedure therefore eliminates the problems associated with par- 

titioning the flowfield. Nevertheless, no studies will be made of this procedure 

since shock fitting techniques are not within the scope of this thesis. More details 

about shock fitting can be found in (53,54,55,56,57). 

It is also necessary at this point to mention that instabilities may occur due 

to large pressure gradients when shocks are present. Actually, in real flow com- 

putations, instabilities may occur due not only to shocks but also to some other 

sources such as non-linear effects, presence of walls or other boundaries of the 

computational domain and so on. The computations do not necessarily diverge 
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but often oscillations occur and remain of finite amplitude as a result of instabili- 

ties. The use of central differencing for convective terms can also result in spatial 

oscillations at high Reynolds numbers even for incompressible flows. These oscil- 

lations can be suppressed by adding artificial viscosity, which can be done in two 

ways. The first is to explicitly add an artificial damping term into the equations. 

This has been used widely for supersonic flows. The other is to use certain finite- 

difference schemes such as upwind differencing which will introduce the artificial 

viscosity automatically. 

The literature on the solution of the steady-state form of the compressible 

Navier-Stokes equations is very scarce despite the fact that quite a few meth- 

ods have been developed for solving the steady-state Euler equations (58,59,60). 

Several parabolic Navier-Stokes solvers were reviewed by Drummond et al (61) 

for solving steady supersonic flows, but they are not applicable to complicated 

engineering flows such as flows with recirculating regions, supersonic flows with 

embedded subsonic regions and so on. These flows can only be fully described 

by solving the compressible Navier-Stokes equations with pressure as a main 

dependent variable. It appears that only a few schemes (62,63,64) have been 

developed for solving the steady-state form of the compressible Navier-Stokes 

equations, which are extensions of the SIMPLE or the SIMPLER (6,7) methods 

for compressible flows. 

Issa and Lockwood (62) introduced some modifications in order to properly 

model the hyperbolic nature of supersonic flows. The basic idea is to cut off 

downstream influences as theory tells us that any small disturbances downstream 
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cannot be felt upstream in supersonic flows, and furthermore, the disturbances 

can only propagate downstream within certain regions. This is the hyperbolic 

character which only the supersonic flows have. To put this into practice, the 

pressure gradient term in the momentum equations is upwind differenced so that 

downstream pressure will not influence upstream velocity. Convective terms are 

also automatically upwind differenced due to the use of the hybrid differencing 

scheme which switches to upwind differencing when the control volume Reynolds 

number is above certain value. Furthermore, the supersonic mass fluxes are 

calculated using upstream densities. This modified procedure (62) was applied to 

compute near-wall supersonic flows. It was concluded that the modified procedure 

performed tolerably well and was definitely superior to the existing parabolic 

prediction methods which could not simulate the significant elliptic effects due to 

the existence of the subsonic layer. However, the abrupt switch of the difference 

scheme for the pressure gradient term, as the flow changes from the subsonic to 

supersonic, may cause computational difficulties in the case of supersonic flows 

with recirculating subsonic regions and transonic flow regimes. Also, the switch 

from central differencing to upwind differencing for the pressure gradient term 

may violate the conservation of mass. This will be discussed in more detail in 

chapter four. 

Hah (63) presented a procedure to compute turbulent flows in various tur- 

bomachinery components. The scheme was developed for non-orthogonal grids. 

However, it was pointed out by Karki (64) that this method had several serious 

shortcomings and the general validity was doubtful. 
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Karki (64) developed a calculation procedure for flows at all speeds, and it was 

shown clearly that only when pressure was chosen as a main dependent variable 

could such a calculation procedure be valid for flows at all speeds. The calculation 

procedure is a extension of the SIMPLER algorithm (7,19) to compressible flows. 

In the original version of the SIMPLER method, the pressure field was obtained 

by solving a pressure equation which is derived from the finite-difference form of 

the full momentum equations and the continuity equation. Moreover, a pressure 

correction equation was also employed to update the velocity fields. However, the 

modified procedure uses two pressure correction equations to update the velocity 

fields and the pressure field respectively. The pressure correction equation for 

updating the pressure field is very similar to an alternative pressure correction 

equation apart from the fact that the full momentum equations are used instead 

of their truncated form. Furthermore, the central differencing scheme is used for 

the pressure gradient term no matter whether it is subsonic or supersonic flow in 

the modified procedure. In addition, the artificial viscosity could be introduced by 

using upwind biased density when the Mach number is over one instead of adding 

it explicitly. However, Karki argued that the use of two differencing schemes for 

density might cause computational problems near the switch-over point, there- 

fore, the density was always upwinded, i. e., the density at a control-volume face 

was taken to be the value prevailing at the grid point upstream of it no matter 

what the Mach number was. This practise seems to lack a sound theoretical 

basis although the author stated that it led to a well-behaved pressure equation. 

Nevertheless, the predictions showed that for quasi-one-dimensional inviscid and 
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two dimensional laminar flows the modified prediction procedure performed quite 

well. Unfortunately, the calculation procedure was not put through more severe 

tests such as recirculating flows where both supersonic and subsonic regions may 

coexist. Thus, the general validity of the procedure remains questionable. 

From the forgoing survey of the available numerical schemes, it is obvious 

that there is considerable scope for further developments and improvements. The 

computational techniques for compressible flows are highly developed but they 

cannot be applied to low Mach number subsonic or incompressible flows due to 

the choice of density as a main dependent variable. Even for high Mach number 

flows, however, the existing time-dependent methods may not be very efficient 

when only the final steady state is required. Few calculation procedures have 

been developed to solve the steady- state form of the compressible Navier-Stokes 

equations with pressure as a main dependent variable. These procedures are 

supposed to be valid for flows at all speeds but they have not been well tested, 

especially in some severe situations such as supersonic flow with recirculating 

subsonic regions. Furthermore, turbulence modelling is still a great challenge 

and it is believed that it is almost impossible to develop a universal turbulence 

model (other than the Navier-Stokes equations themselves). 
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Chapter 3 

GOVERNING EQUATIONS 

AND TURBULENCE 

MODELLING 

In this chapter, the governing equations of fluid dynamics are presented, followed 

by a description of the time-averaging procedure as proposed first by Osborne 

Reynolds (65) giving rise to terms which have subsequently become known as the 

Reynolds stresses. A brief introduction to turbulence modelling is also given. 

The governing equations in this chapter are written in the Cartesian coordi- 

nate system for the sake of simplicity. The equations in other coordinate systems 

can be found in numerous textbooks, articles etc. 
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3.1 Basic Equations 

The governing equations of fluid dynamics are based on the following universal 

laws of conservation: 

1). Conservation of Mass 

2). Conservation of Momentum 

3). Conservation of Energy 

3.1.1 Continuity Equation 

The continuity equation is obtained by applying the Conservation of Mass Law 

to an infinitesimal, fixed control volume. 

(3.1) ät + äx (Pu) + äy (pv) + äz 
(pw) 

=0 
where p is density, u, v, w represent the x, y, z components of the velocity vector. 

When incompressible flows are considered, i. e., density is constant. The above 

equation reduces to: 

8u öv 8w 
_ 8x+8y +öz (3.2) 

3.1.2 Momentum Equations 

The Conservation of Momentum Law is nothing but Newton's second law. Ap- 

plying this law to a fluid passing through an infinitesimal, fixed control volume 

yields the following momentum equations written in conservation law form (also 

called "divergence" form): 

y Öt 
(pu) + (put +p-r.. ) +-r)+-r)=h (3.3) 

I_(puv 
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wheretf is the body force per unit volume and the most common body force is 

the gravitational force. The components of the viscous stress tensor r11 are given 

by 
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substituting the expressions for the viscous stress tensor into the above momen- 

turn equations the so called Navier-Stokes equations are obtained which can be 

written in tensor form as: 

pk aaaa au 1-2- au 
ät (puj) + axe (pu, uj) =- ox; + äx; µäx; +s-; µ aXk (3.12) 

the body force is neglected in the above equation. The Navier-Stokes equations 

form the basis upon which the entire science of viscous flow theory has been 

developed. 

If the flow is assumed incompressible and steady the above equation will 

reduce to the following simpler form: 

a ap a( au; 1 
äx; (Puýuý) _ -axt + axj , ýxj) (3.13) 
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3.1.3 Energy Equation 

The Conservation of Energy Law is identical to the First Law of Thermodynamics. 

Applying this law to a fluid passing through an infinitesimal, fixed control volume 

yields the following energy equation: 

PDt+P(V"V)= 
OQ-0"q-}-ß (3.14) 

where e is the internal energy per unit masst Q is the heat generation per unit 

volume due to some chemical process such as combustion etc. The heat transfer 

q by conduction can be expressed according to Fourier's Law as: 

q. -kVT (3.15) 

where k is the coefficient of thermal conductivity and T is temperature. I is 

called the dissipation function which represents the rate of mechanical energy 

dissipated into heat in the process of deformation of the fluid due to viscosity. In 

a Cartesian coordinate system it has the following form: 

öu; äu, ß 
2)1 2 äuk 2 

-µ 2(öxýý-öx; 

) 

3(L 
(3.16) 

Oxk 

If the flow is assumed to be incompressible, heat generation is neglected (no 

combustion etc. ) and the coefficient of thermal conductivity is assumed constant, 

Eq. (3.14) reduces to the following form: 

T=LVZT+ (3.17) 
Dt 

and the dissipation function is as follows: 

/1 
=2 tc I 

ax e -f- 
axi 

Ia (3.18) 

33 



3.1.4 Equation of State 

The equations presented above cannot be solved as the number of unknowns 

is greater than the number of equations. In order to close the system of fluid 

dynamics equations it is necessary to establish relationships between the ther- 

modynamic variables (p, p, T, e, h) as well as to relate the transport properties 

(p, k) to the thermodynamic variables. Usually, a perfect gas is assumed and the 

equation of state, in this case, takes the following form: 

p=pRT (3.19) 

where R is the gas constant. Also for a perfect gas, the following relationships 

exist: 

e= C�T (3.20) 

h=CPT (3.21) 

C 
ry = C, v (3.22) 

R=Cp - C� (3.23) 

where C. is the specific heat at constant volume, h is enthap y, Cp is the specific 

heat at constant pressure and y is the ratio of specific heats. For air at standard 

condition, R= 287m2/s2K and ry = 1.4. Furthermore, the Prandtl number 

Pr= 
k 

(3.24) 

is often used to determine the coefficient of thermal conductivity k once p is 

known as the ratio (Cp/Pr) is approximately constant for most gases. For air at 

standard condition Pr = 0.72. 

34 



3.2 Time-Averaging Procedure 

The time-averaging procedure, following Reynolds, involves the decomposition of 

instantaneous dependent variables into a time-averaged component plus a fluc- 

tuating component about the average, i. e. 

=+V (3.25) 

where stands for u, v, w, p, p, T. For convenience, the mean value will be 

denoted with capital letters and the fluctuating component will be denoted with 

small letters hereafter. For example, U is the mean value of the velocity compo- 

nent in the x-coordinate direction while u is the corresponding fluctuating part. 

Substitute the above relation into the continuity and momentum equations and 

then the entire equations are time averaged yields the following averaged equa- 

tions in tensor form as: 

+ 
T(PU: 

+ P'u: =0 (3.26) 

a_ a OP a Y (PUt + P'ut + Oxý (PU, U +U p'ui) äx ý' äx (T, i -Ujip'ui -- Pu. ui - P'usui) 
i 

(3.27) 

where the stress tensor is 

ä2; ax; 3 sij aXk 

where ö; j is the Kronecker delta function (Sj =1 if i=j and 5q =0 if i 54 j). For 

incompressible flows the above equations reduce to: 

i 
(PUS) =0 (3.29) 
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ät (Pui) +ä (PU; U1) _ -äP +ä (3.30) 

where pu; u3 is the so called Reynolds stress and T; ý takes the following simpler 

form: 

Ti'_µIOu; +au; (3.31) 
axi ax; J 

Apart from simple time-averaging, there is another approach to averaging 

the equations which is called mass-weighted averaging. For the treatment of 

compressible flows and mixtures of gases in particular, mass-weighted averag- 

ing is convenient as the averaged equations take a simpler form than the time- 

averaged equations. More details about mass-weighted averaging can be found 

in (25,66,67,68). 

3.3 Turbulence Modelling 

The need for turbulence modelling was pointed out in chapter one. In order to 

predict turbulent flows by solving the time-averaged equations it is necessary to 

make closure assumptions for the unknowns which appear in the equations due to 

the averaging procedure. Most of the turbulence models developed so far are for 

incompressible flows, i. e., density is constant. In this case, the unknowns in the 

averaged momen tumequations are the six Reynolds stresses. The discussions here 

will focus on the modelling of the Reynolds stresses and some other approaches 

to turbulence modelling will be also briefly introduced. 

Boussinesq (69) proposed that the apparent turbulent stresses might be re- 

lated to the rate of mean strain through an apparent scalar turbulent or "eddy" 
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viscosity. Although this concept was proposed more than one hundred years ago 

it is still widely used in turbulence models today. For incompressible flows, the 

Reynolds stresses can be expressed using the Boussinesq assumption as: 

äu; öu; 2 
Pu"u, = Pt 

(ax; 
+ öx; 3a`'Pk 

(3.32) 

where j is the turbulent viscosity and k is the averaged kinetic energy of tur- 

bulence, k=u; u; /2. The problem is how to find lit when the above relation is 

employed. 

There are several ways of classifying turbulence models. One way is to divide 

them into two categories according to whether the Boussinesq assumption is 

used or not. Models using the Boussinesq assumption will be classified into 

category one or called turbulent viscosity models. Most models currently used in 

engineering caculations are of this type and experimental evidence indicates that 

the turbulent viscosity hypothesis is valid in many flow situations. There are 

exceptions, however, and there is no physical basis that it holds. Other models 

which obtain the Reynolds stresses from the transport equations without the 

Boussinesq assumption are referred to as category two, including those known as 

Reynolds stress or, more generally, stress-equation models. 

Another common classification of turbulence models is according to the num- 

ber of partial differential transport equations solved in addition to the mean flow 

equations. It is easier to follow the discussion in this way. According to this 

classification turbulence models can be grouped into the following four classes (4, 

70) 
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1). Zero equation models 

2). One equation models 

3). Two equation models 

4). Stress equation models 

Models in classes 1)-3) also belong to category one according to the previous 

classification which use the Boussinesq assumpton while stress equation models 

in class 4) fall into category two. 

The zero equation model, which does not need any transport equations for 

turbulence quantities, is also called "mean field" closure (71) while classes 2)-4) 

are called "transport equation" closure. 

A brief introduction to turbulence modelling will be given in the following part 

of this chapter although detailed consideration of modelling of turbulent flows is 

beyond the scope of this thesis. A general review of turbulence models and their 

applications can be found in (4,25,71,72,73,74). Bradshaw (75) describes the 

interplay between the development of models and the experiments. Launder and 

Spalding (76) give the mathematical concepts of turbulence models. Bradshaw 

and Cebeci (77) present calculation methods for various classes of turbulent flows. 

Lumley (78,79) and Launder (80) discuss the prospects for high order closure 

models. Turbulence models available for the prediction of three-dimensional flows 

with curvature, rotation and flow separation are reviewed by Lekshminarayana 

(81). An exhaustive review of turbulence models for near-wall and low Reynolds 

number flows is given by Patel et al (82). 
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3.3.1 Zero Equation Models 

Zero equation models (also called algebraic models) utilize the Boussinesq as- 

sumption invariably. The first and most successful turbulence model of this type 

proposed by Prandtl is still among the most widely used models. For thin shear 

layers the Boussinesq assumption is applied to yield: 

- pü = µt 
äy (3.33) 

where pt is the turbulent viscosity which is related to the mean velocity by the 

Prandtl mixing length hypothesis as follows: 

ßt = pc l2 1 
ay 

1 (3.34) 

where CM is a constant and 1 is the so called "mixing length" that can be thought 

of the distance over which particles maintain their original momentum. The 

product I äy I can be interpreted as the characteristic velocity of turbulence vt 

by which the above relation can be rewritten in a more general form as: 

Pt = pC,, vtl (3.35) 

The mixing length has to be known before performing calculations but there 

is no exact method for its prediction, hence it has to be prescribed with the aid of 

empirical information. Nevertheless, the mixing length model has been used for 

free shear and boundary layers very successfully. However, the evaluation of 1 in 

the mixing length model changes according to the type of flows being considered 

and it becomes extremely difficult to evaluate 1 for recirculating flows, three- 

dimensional flows etc. The incorporation of the effects of curvature, buoyancy 
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and rotation in the model is also entirely empirical. In addition, the transport 

and history effects of turbulence are not accounted for. In particular, the mixing 

length model may give totally wrong answer in some cases, for example, when two 

dimensional or axisymmetrical internal channel flows are considered, aý =0 in 

the centre, then pt will become zero by Eq. (3.34) whereas experimental evidence 

indicates that this is not true. 

One major motivation for developing more complex models is the observation 

that the algebraic models evaluate the turbulent viscosity in terms of only local 

flow parameters, yet it is generally accepted that a turbulence model should 

be able to provide a mechanism by which effects upstream can influence the 

turbulence structure (and viscosity) downstream. In addition, with the simplest 

models ad hoc additions and corrections are frequently required to handle specific 

effects, and constants need to be adjusted to deal with different classes of flows. 

If the general form for the turbulent viscosity, pt = pC, 1vtl, is accepted, then a 

logical way to extend the generality of turbulent viscosity models is to construct 

a more complex and general function of the flow for vi and perhaps 1, which can 

account for the transport and history effects of turbulence. Specific modifications 

to the constants are not then required for different classes of flows. 

3.3.2 One Equation Models 

In order to extend the generality of the algebraic models Prandtl and Kolmogoik 

suggested in the 1940s that vt be porportional to the square root of the turbulent 

kinetic energy, k=U; -U; /2. As a result, the turbulent viscosity can be expressed 
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as: 

pt = pColk112 (3.36) 

and pt will not be zero when äy = 0. Turbulent kinetic energy is a measurable 

quantity and its physical meaning is quite clear, but the problem is how to predict 

it. 

A transport partial differential equation for k can be derived from the Navier- 

Stokes equations after some manipul&tions. However, there are some unknowns 

in the exact transport equation which need to be approximated by modelling 

assumptions. For instance, when two dimensional incompressible thin-shear-layer 

flows are considered, the exact transport equation for k takes the following form: 

Dk 
p 15t 

ä2k 
= jt 

y- 

ä 
ay 

(pvk' 
-}- Up) 

äU 
- püv ay - it 

äu Z äv\ 2 
ppyj ý- 

ýy 

J (3.37) 

The first term on the right hand side represents diffusion due to viscous action 

while the second term represents diffusion due to turbulence. The third and 

fourth terms represent the generation and dissipation of turbulent kinetic energy 

respectively. The turbulent diffusion term is usually modelled similarly to the 

Reynolds stresses expressed in Eq. (3.32) 

- pvk' _ 
lit ak (3.38) 

Prk öy 

where Prk is the Prandtl number for turbulent kinetic energy (ý 1.0). The 

correlation of velocity and pressure fluctuation term äy(vp) is usually neglected. 

The dissipation term is modelled using turbulent kinetic energy and a length 

scale in this case. The modelled equation is as follows (25): 

2C32 

p-=9++ µe (3.39) 
Dt y Prk/ 

j (aU) 

äyý 
ýý 
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the physical interpreation of various terms on the right hand side is quite clear, 

i. e., they are the diffusion, generation and dissipation terms respectively. How- 

ever, the length scale 1 needs to be specified algebraically. CD 0.164 if 1 is taken 

as the ordinary mixing length (25). 

In one equation models, the length scale has to be specified algebraically 

as in zero equation models, and hence is also flow dependent. Moreover, it is 

difficult to incorporate the length scale empirically for complicated flows such as 

recirculating flows, flows with separation, streamline curvature etc. Therefore, 

most one equation models do not show much improvement over zero equation 

models and hence they are not very popular. 

3.3.3 Two Equation Models 

In order to eliminate the need for specifying the length scale based on empirical 

information, the two equation models employ another transport partial differen- 

tial equation to predict 1. 

A transport equation for 1 can be derived, in principle, from the Navier-Stokes 

equations but the unknows introduced in the transport equation cannot be easily 

modelled. As a matter of fact, the introduction of several drastic modelling 

approximations produce a rather empirical equation for 1. However, successful 

experience has indicated that it is better to solve a transport partial differential 

equation for a length scale related parameter rather than for the length scale 

itself. Such a parameter is generally a combination of k and 1, Z= k°la. 

Quite a few two equation models have been developed using different com- 
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binations of k and 1. The Imperial Sollege group led by Professor Spalding has 

experimented with three different kinds of two equation models (74): k-kl; k-w; 

k-e. Here 1 is a length representing the macroscale of turbulence which may be 

defined in terms of k, e and a constant as: 

CDk312 
E 

(3.40) 

w can be interpreted physically as the time-averaged square of the vorticity fluc- 

tuations and is related to k, e, and CD through the following relation 

W= (CDk)2 
(3.41) 

where e represents the dissipation rate of turbulent kinetic energy which is defined 

as: 

äu; au; 
vaxkaxk (3.42) 

the following relations can be obtained from the above definitions: 

d(kl) 
_5 

dk de (3.43) 
kl 2T- e 

_ -2 
k 

T+2- (3.44) 

with the aid of these equations it is possible to transform one pair of equations 

into another (74). Therefore, the three models are closely related to one another 

although the form of diffusion and near wall terms are different. Among these two 

equation models, the k-E model is the one most frequently used due to several 

reasons: Firstly, the e-equation does not require any extra terms near walls; 

Secondly, the e-equation requires no secondary source term which appears in some 
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other models. Moreover, e itself appears in the k-equation, which is convenient 

as less modelling work is needed for the k-equation. 

An exact transport equation for e can be derived from the Navier-Stokes 

equations (84,85) and can be modelled by analogy with that of the k-equation. 

The modelled transport equations for k and e with viscous diffusion presumed 

negligible are given below (74): 

Dk 

__ 
a (ý= ak 1 (au; auk) au; J+ µt axk + ax; 

) 
axk - pý (3.45) p Dt axk 

[\Pr_) 
_ axk 

DE 
-a it aE au; auk au; E2 + Cott! +- Cep- (3.46) pDt axk 

ýýPrýý 
axk k axk ax; axk k -() 

and the turbulent (eddy) viscosity is related to k and e as follows: 

2 
Ft=cip 

kf (3.47) 

the constants in these equations take the following values (74) 

C, 4=0.09 C1=1.44 C2 = 1.92 Prk=1.0 PrE=1.3 

These constants are not changed, generally speaking, in any calculations. 

Nevertheless, they need to be adjusted in order to account for effects such as 

streamline curvature, low Reynolds number etc. 

It is necessary to point out at this stage that the above transport equations for 

k and e are not appropriate for the near wall region, i. e., in the viscous sublayer 

where the Reynolds number is very low and molecular transport becomes more 

important. Thus, most applications of the k-e model (and other models) have 

made use of wall functions which will be presented in chapter five. Alternatively, 

additional terms can be put into the k and e equations to extend their applicability 

to the viscous sublayer (86). 
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At present, the two equation k-e model is the most popular one for engineer- 

ing calculations. However, this model (and all other two equation models as well) 

have several limitations. Firstly, all two equation models are turbulent viscosity 

models which assume that the Boussinesq assumption holds. The two equation 

models fail if the Boussinesq assumption fails. Nevertheless, in many flow situa- 

tions the assumption gives results accurate enough for engineering calcualtions. 

Another practical limitation is the assumption of isotropic eddy viscosity, i. e., the 

same values of pt are taken for different u; u7 terms as can be seen from Eq. (3.32) 

while experimental evidence indicates that pt takes different values for different 

u; u7 terms in certain cases such as strongly swirling flows. Moreover, the effects 

of curvature, rotation and buoyancy forces have to be modelled separately. In 

order to eliminate these limitations the so called stress equation models have been 

developed. 

3.3.4 Stress Equation Models 

In the stress equation models, the turbulent viscosity hypothesis is not employed 

and a partial differential transport equation is developed for each component 

of the Reynolds stresses. In addition, the transport equation for turbulent ki- 

netic energy dissiaption rate e is also needed. The stress equation models include 

Reynolds stress models which solve the transport equations for the Reynolds 

stresses directly through modelling assumptions, and algebraic stress models in 

which an algebraic relation is derived from the Reynolds stress transport equa- 

tions through some modelling assumptions. The stress equation models are also 
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referred to as second order closure models in some literature. 

Reynolds Stress Models 

The Reynolds stress transport equations can be derived from the Navier-Stokes 

equations by multiplying the momentum equations using the fluctuating com- 

ponents and then time averaging them. For incompressible flows, the Reynolds 

stress transport equations may be written in the following form: 

aU u; u au; D- 
-uu 

au 
+ uuk ' 2v '+p+ 

auj 
Dt ' kaxk OXk, - aXkaxk p 

(Oxj 

a2; 

a o-uiuj 
äxk 

(uiZLjuk 

-v ax 
+ 

ý(Öjk2li'i Öikuj)I (3.48) 

L 

the first term on the right hand side serves to exchange kinetic energy between 

the mean flow and the turbulence. Normally, the energy exchange involves a loss 

to the mean flow and profit to the turbulence. Therefore, this term represents the 

generation of turbulent kinetic energy. The second term represents the rate at 

which viscous stresses perform deformation work against the fluctuating strain 

rate. This is always a drain of turbulent kinetic energy, hence it is called the 

viscous dissipation rate or turbulent kinetic energy dissipation rate. The third and 

fourth terms are called pressure strain and diffusion terms respectively according 

to Launder et al (87). 

The transport equations for the six independent Reynolds stresses have been 

derived. However, a number of unknowns have also been created in the process. 

In principle, transport equations could be derived for each of the new terms 

introduced in Eq. (3.48) but the number of new unknowns would increase much 
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faster than the number of new transport equations. Therefore, this is not a 

practical way to derive more transport equations. Reynolds stress models stop 

at the Reynolds stress transport equations and model the unknowns as empirical 

functions of the mean velocities, Reynolds stresses and their derivaties. They 

are also called second order (momentum) closure or Reynolds stress closure such 

as those developed by Hanjalic and Launder (88), Daly and Harlow (85) and 

Launder et al (87). 

The unknowns which need to be modelled in Eq. (3.48) are as follows: 

1). The triple correlations among various components of velocity fluctuations. 

2). The dissipation rate term. 

3). The correlation of velocity fluctuations with the pressure field. 

The triple correlation term in Eq. (3.48) represents the rate at which the 

Reynolds stress is carried by the turbulence fluctuations. This term may be 

called the turbulent diffusional flux of the Reynolds stresses which can be a large 

or even a dominant term in many situations. Daly and Harlow (85) modelled 

this term employing the simple gradient-diffusion hypothesis by analogy with the 

approximation for the flux of a scalar. Launder et al (87) modelled this term 

through severe simplications of the exact transport equation for u; u,, uk as: 

u uk u; u 
t 
ý] (3.49) - utujuk = Cak 

el 

ru'ut 
äxt + uýut ex t+ 

akut äx 

where C, is a constant assigned the value 0.11 on the basis of computer optimiza- 

tion. 

The dissipation rate term is modelled by almost all research workers assuming 
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that the dissipation motions are isotropic 

öXk/ 3sij. 
(3.50) 2vlOXk/ 

(auj\ 

Although experimental evidence has shown that turbulence does not remain lo- 

cally isotropic in the presence of strong strain fields Eq. (3.50) seemed to be the 

best of the simple hypotheses. 

The pressure-induced diffusion in the diffusion term in Eq. (3.48) was repre- 

sented as a simple diffusion term by Daly and Harlow (85). However, Launder et 

al (87) stated that it was usually neglected following the practice of most other 

workers although there seemed to be no direct evidence to sustain or demolish 

the assumption. 

The only remaining term to be modelled is the pressure-strain correlation 

which is of particualr importance for anistropic turbulence and seems to be the 

most difficult to model. The appropriate starting point is to derive a Poisson 

equation for mean and fluctuating pressure from the momentum equations, which 

represents pressure as a function of the velocity field. This transforms the problem 

to one in which only multiple velocity correlations are involved. For isothermal 

incompressible flow, the Poisson equation for pressure is 

_ 
V2(P p) __ 

av au 02u; u TI, 
_U; p+ 

2ax1 
ax; + ax; ax; 

+ 7x; 
a-KL 

(3.51) 

integrating the above equation by Green's formula yields the following expression 

for pressure: 

1 
P(xo, yo, zo) + p(xo, yo, zo) _- -- 

fffV 2(p + p) 
d Vol 

+S (3.52) 
4r r 
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where S is a surface integral which is negligible away from the solid boundary and 

hence is neglected hereafter. Multiplying both sides of Eq. (3.52) by (ä±e 

and taking the time average, the pressure-strain correlation may be re-expressed 

in the following form: 

p öu' 
+ 

auj 
_ 4ýij, i + ß; i, 2 (3.53) 

p 

(8x, 
8x; 

1% ä2ulum öu, 8uj dVol 
3.54 = 4ir J{ 

(49XIOX 

M/ \axi 
+ axi) 

Ir() 

2% aui '' äu; äu; dVol ) ýýý, z - 4r J 
(äxm) (Lum 

aX -/\ axj + ax: 
) 

r 
(3.55 

where the prime superscript indicates that the quantity involved is evaluated at 

a distance r from the one in question. ß; J, 1 involves only fluctuating quantities 

and ß; j, 2 involves products of turbulence quantities and the mean rates of strain. 

These two parts are modelled separately by almost all the research workers. ß; j, 1 

is referred to as the "return-to-isotropy" term as it serves to interchange turbu- 

lence energy among the various components, i. e., equaling the normal Reynolds 

stresses and diminishing shear stresses. This term has significant influence for 

problems involving anisotropic homogeneous flow where the mean velocity is small 

or zero. A closure approximation for -O; j, 1 as first proposed by Rotta (89) and 

adopted by most workers may take the following form: 

ýti, l = -Cl k (utui -3 S12 k) (3.56) 

This form is consistent with the assumption that the rate of return to isotropy 

is directly proportional to the anisotropy (the term in brackets in the above 

equation). Details about modelling the second part, 1; j, 2, can be found in (78,87, 
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88). Most workers adopt Rotta's proposals for this term and the final expression 

takes the form (87): 

(C2+8)lpi 2p8i] 
-(30C2-2)ku; +a"' 11 '3' 55 axj ax; 

- 
(8C2 2) [Gii -3 PS ] (3.57) 

11 

where P; j 
[u; uk a+ uJuk 

], G;; [U uk + 77 ä]. P represents 

the rate of turbulent kinetic energy production. Launder et al argued that the 

first group on the right hand side in Eq. (3.57) was the dominant one, and as a 

result the equation was expressed in a simplified form as: 

3 
P51) (3.58) 

where -y is a constant whose value is around 0.6, P;, and P are the same production 

terms given before. The above equation is employed in the present study. 

Near wall effects have not been taken into account in the modelling process so 

far. A wall reduces the fluctuating velocity components normal to the wall and 

enhances those parallel to it. The pressure-strain term, as stated before, serves to 

redistribute turbulence energy among the Reynolds stresses. Thus, it would not 

be appropriate to neglect the surface integral in Eq. (3.52) in the region near a 

wall. It has been suggested by various workers that near wall corrections should 

be incorporated into the expression for ß; j, 1 and ß; j, 2. The final form of near wall 

correction to the pressure-strain given by Launder et al (87) is as follows: 

2 k3/2 
<> , j�� = 

[o. 
125(W - 3ö;; k) +0.015(P, 2 - Gii)] 

ex 
(3.59) 

i 

where xl is the normal distance to the surface of a wall. Upon rearranging all the 

modelled terms the final expression for the modelled Reynolds stress transport 
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equations may be written in Cartesian tensor form as: 

D 7i [Ti ay; l e2 
Dt =- ukaxk +uiUkaxk j- 3S, je - Clk(uýui - 3öijk) 

uýuý 
u uý 
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u`uj (3.60) i, axk E 
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ex i' ax, ax, 

where Cj, 2is given by Eq. (3.57) or Eq. (3.58), 4D; j,,,, is the near wall correction 

given by Eq. (3.59). The above equation can be also written in a compact form 

as: 

DDt' 
= Pu - 

3S;; 
e + ý, i + Dij (3.61) 

where 

P; 3 - Production tensor (3.62) 

4)ij = Pressure - strain tensor (3.63) 

D;, -Diffusion tensor (3.64) 

In order to solve the above equation one needs to know the turbulent kinetic 

energy dissipation rate. The exact transport equation fore at high Reynolds 

number is (84,87) 

DE a au; 2V OP auk au; au; auk 2u; 2 
Dt - a-Xk vuk 

(äx, ) +pX, ä7x, -Zväxk äx ax, -2 Loo]x, (3.65) 

This transport equation contains several unknowns which need to be modelled 

to make the equation solvable. The modelled equation given by Hanjalic and 

Launder (88) takes the following form: 

De 
=a 

(kT- a e) U; ez 

Dt Cask e uu' äx, J C`ieu, ukk 
axk 

C2 (3.66) 
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the first term on the right hand side approximates the corresponding term in 

Eq. (3.64) responsible for the diffusion of e. The second and third terms represent 

the generation of e and its destruction by viscous action. 

The values of constants given by Launder et al (87) are as follows: 

C1=1.5 C2= 0.4 C. = 0.11 ry=0.6 CC=0.15 Cc1=1.44 Ce2=1.90 

Algebraic Stress Models 

In Reynolds stress models there are six Reynolds stress transport equations in 

addition to the transport equation for e. Solving such a set of equations needs 

enormous computer time. Rodi (90,91) proposed an algebraic relation from 

Eq. (3.60) for calculating the Reynolds stresses in order to reduce computational 

effort. It can be seen from Eq. (3.60) that there are only two terms involving the 

gradient of the Reynolds stresses, i. e., the term on the left hand side and the 

difliusion term D;,, on the right. The Reynolds stress transport equations would 

become algebraic equations if these two terms could be approximated involving 

only algebraic relations for the Reynolds stresses by modelling assumptions. Rodi 

(90,91) assumed that convective and diffusive transport of u; uI are proportional 

to those of k and the proportionality factor is u; uc/k. Mathematically, these 

assumptions may take the following forms: 

Du; ui 
_ 

u; uj Dk 
Dt k Dt 

(3.67) 

Dsj =u ff D(k) (3.68) 

where D(k) represents the diffusion of k. It is argued by Rodi that the above 

assumptions are appropriate if the rate of variation of u; uj/k along a streamline 
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is much less than that of u; u� and if the spatial gradient of u; uj is large compared 

with that of u; uj/k. Also, the transport equation for k can be written as: 

Dk 
P_+ D(k) (3.69) 

Dt 

substituting Eq. (3.69) into Eq. (3.67), one has: 

DDt 
= 

uk' [P -e+ D(k)] (3.70) 

combining Eq. (3.68) and Eq. (3.70) with Eq. (3.61) yields an algebraic equation 

for u; uJ in tensor form as: 

uk' (P - e) = P;; - 
3öu; 

e +4;; (3.71) 

as k and e appear in the above equation so k and e equations need to be solved 

as well. 

Invariance and Realizability 

The ideal turbulence models should have general applicability and be flow inde- 

pendent. The development of Reynolds stress models is a step towards this ideal 

as more physical processes such as those due to curvature, rotation, buoyancy, 

and so on, can be accounted for automatically. For general applicability it has 

been shown (78,79,92,93) that these models have to satisfy many constraints. 

Tensor invariance requires the replaced terms to have the same tensor form as the 

original terms so that they can be transformed properly in different coordinate 

systems. This type of modelling is called invariant modelling (92). The concept 

of realizability was first introduced by Schumann (93). Ile stated that no matter 
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what equation is used to predict u; ui it must have the property which does not 

allow negative component energies and requires all off diagonal components of the 

Reynolds stress to satisfy Schwartz's inequality. These and the additional con- 

ditions put forth by Schumann can be written in a numerically most convenient 

form as (93): 

Rll>0 (3.72) 

R11R22 - Rig >0 (3.73) 

Ril(R22R33 - Rz3) - Rl2(Rl2R33- R23Rl3) + R13(Rl2R23 - R22R13) >0 (3.74) 

Similar conditions apply for scalar fluxes. Schumann shows that the exact Reynolds 

stress transport equations satisfy the realizability condition. However, it is also 

indicated by him that some of the existing models do not satisfy such a condi- 

tion. Nevertheless, attempts to satisfy the realizability condition lead invariably 

to complicated model expressions. Therefore, at present no special efforts are 

taken to ensure that models satisfy the realizability condition. 

There is no doubt that stress equation models are relatively more general 

than other models discussed previously. They are not restricted by the Boussi- 

nesq assumption relating turbulent stresses to the rate of mean strain. However, 

approximations and assumptions are still used in modelling various terms which 

presently cannot be measured. Moreover, Reynolds stress models have not been 

well tested for many types of complex flows and it may take some time before they 

have been fully tested and refined to the point that they become commonplace 

in engineering calculations. 
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3.3.5 Multiple-Scale Models 

It is recongized that fully developed turbulence (when Reynolds number is well 

above the critical value) consists of fluctuating motion with a wide spectrum 

of eddy size and time scales. For instance, in turbulent pipe flow the largest 

turbulence eddies are of a size comparable with the diameter of the pipe while the 

smaller eddies are so small that viscous action becomes dominant. The large-scale 

eddies contain much of the kinetic energy of turbulence and dissipate little energy 

by viscous effects. These large-scale eddies interact with each other, generating 

smaller eddies in which viscous dissipation becomes important. Since different 

turbulent interactions are associated with different parts of the spectrum it would 

be desirable to have turbulence models accounting for this detailed structure of 

turbulence. Unfortunately, all the turbulence models discussed above are based 

on a single-scale scheme. Hanjalic et al (94) proposed a multiple-scale model 

based on a rational extension of widely used single-scale equations and ideas. An 

outline of their model is briefly described below. 

A typical energy spectrum of turbulence is known to consist of, generally 

speaking, three regions. These are the production region (low wave number 

region); the dissipation region (high wave number region) and between these two 

regions, with an intermediate range of wave number, is the so called transfer 

region (also called the inertial region). Since there is negligible kinetic energy 

of turbulence in the dissipation region the total turbulent kinetic energy k is 

assumed to comprise kp in the production region and kt in the transfer region. 

Turbulent kinetic energy leaves the first region (the production region) at a rate 
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ep, enters the dissipation region at a rate e and across the transfer region at 

an assumed representive spectral energy transfer rate et. This simplified energy 

spectrum is the basis of the model of Hanjalic et al. They argue that the spectral 

division appears to be too coarse but the single-scale models take no cognizance of 

changes in the shape of the energy spectrum, and there is implicit the assumption 

that Ep = Et = E. The transport equations for kp, kt, ep, et are formulated. In a 

homogeneous flow the transport equations for kp and kt are (94): 

Dkp 
_u"u 

-au` (3.75) 
Dt `'5 p 

Dkt_ 
Dt -ep -e (3.76) 

and the transport equations for ep, et given by Hanjalic et al (94) take the following 

forms: 
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eP aU; 

C, 
p 

z 

2 
Ep 

+ DE 
-U, 7u 

'C, p p 
(3.77) 

Dt kp äxß kp 

z DEt 
= Ctl EpEt 

- ct2 Et + Det (3.78) 
Dt kt kp 

where Do (0 stands for kp, kt, ep, et) is the diffusion term and can be uniformly 

represented as: 

D4, = 0.22-Oxk j 
Ep 

(3.79) 
PJ 

This model was used to predict axisymmetrical jets and boundary layers (94). 

Good agreement was obtained between the prediction of the jet spread rate and 

experimental data. For the boundary layers the prediction with this model is in 

closer agreement with experimental data than the single-scale model of Launder 

et al (87). This shows the potential advantages of including some account of the 
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spectral character of turbulence in traditional second-moment closures. However, 

this model has not been tested further. 

3.3.6 Other Approachs to Turbulence Modelling 

Apart from the models discussed above there are some other approachs to turbu- 

lence modelling such as two-point closure and large-eddy-simulation. The stress 

equation models (second-order modelling), including multi-scale models, are only 

one-point closure. This involves merely averaging the Navier-Stokes equations 

and approximating the unknowns introduced in the averaging procedure through 

modelling auusmptions. Usually, the approaches to solve turbulent flows can be 

classified into three categories, i. e., one-point closure (which is the most widely 

used technique so far), two-point closure and large-eddy-simulation. 

Two-point closure considers differential equations for two point correlations or 

the spectrum tensor. This technique is intermediate in complexity between large- 

eddy-simulation (with sub-grid-scale modelling) and one-point closure (second- 

order modelling). The potential advantage of the two-point closure lies in its 

relative simplicity when compared with large-eddy-simulation and its flexibility 

and universality when compared with the common one-point closure. In partic- 

ular, it can be used to identify proper coefficients to be used in the one-point 

closure. 

Large-eddy-simulation has been developed recently. Deardorff (83) first sug- 

gested this approach and used it to predict channel flows and atmospheric bound- 

ary layers. This approach consists of averaging the Navier-Stokes equations over 
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a time T shorter than the time scale of the large turbulent structures of the 

motion. Only the time-dependent fluctuations with a time scale smaller than T 

are smoothed out which are then approximated by the so called sub-grid-scale 

modelling. Such calculations have shown much promise. However, this tech- 

nique is too costly at present to be considered as a practical way for engineering 

calculations. 
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Chapter 4 

SOLUTION PROCEDURE 

The governing equations presented in the previous chapter are non-linear, cou- 

pled, and second-order partial differential equations. The analytical solution is 

formidable due to not only non-linearity but also the complex flow structure of 

turbulence. Hence, a method of numerical solution has to be employed to solve 

the governing nonlinear partial differential equations. 

As numerical schemes and the methods to discretize the governing partial 

differential equations are fairly standard and well documented (2,6,7,16,25, 

64), only a brief introduction will be given in this chapter. However, the proper 

differencing of the pressure gradient and the evaluation of density at the control 

volume boundaries are of great importance in supersonic flow. In addition, the 

treatment of velocity-pressure coupling becomes very crucial to the whole solution 

procedure when pressure is chosen as a main dependent variable. Therefore, the 

discussion will be focussed on these two important issues. 
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4.1 The Finite Difference Equations 

The method employed to derive the finite difference equations is the control 

volume approach due to its clear physical meaning. It entails dividing the com- 

putational domain into a great number of finite volumes (control volumes) called 

`cells'. The finite difference counterparts of the governing partial differential equa- 

tions are derived for each cell by a combination of formal integration and some 

approximations so as to preserve physical realism and computational stability. 

A staggered grid system is employed here to avoid an unrealistic solution. All 

the variables except the axial and radial velocity components are stored at the 

nodes. The U and V velocity components are stored mid-way between the grid 

nodes. This arrangement has the following advantages: 

1). The velocities are between the pressures which drive them. This may 

avoid an unrealistic pressure field. 

2). The velocities are directly available for the evaluation of the convective 

fluxes across the control volume boundaries of the nodes. This is also convenient 

for the solution procedure adopted for the continuity equation. 

The numerical scheme employed to approximate the convective terms is the 

so called `hybrid scheme' which is a combination of the central- and upwind- 

differencing schemes. Whether the central- or upwind- differencing scheme is 

used or not depends on the local convection/diffusion ratio as measured by the 

local Peclet number, defined as follows: 

Pe = uP& (4.1) 
v 
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where v is the kinematic viscosity and Sx is the mesh increment. When the 

local Pe is equal to 2 or less the central differencing scheme is used. When the 

local Pe is over 2 the upwind differencing scheme is used instead of the central 

differencing scheme in order to avoid numerical instability. The hybrid scheme 

has been proved to be stable and superior to both the central- and upwind- 

differencing schemes. Moreover, the QUICK (Quadratic Upstream Interpolation 

for Convective Kinematics) differencing scheme, which is more accurate, has also 

been incorporated into the computer code. 

4.2 Solution of the Difference Equations 

The algebraic finite difference equations obtained from the governing partial dif- 

ferential equations are also non-linear and coupled and cannot be solved directly. 

Hence, an iterative solution method has to be used to solve these equations. The 

non-linearities are usually handled by expressing the quantities at the current 

iteration level in terms of the values available at the previous iteration level. In 

the present work, the non-linear algebraic finite difference equations are linearized 

through the calculation of coefficients based on the currently available flow field 

values. This practise results in the coefficients lagging behind by one iteration. 

However, when the solution converges all the equations are satisfied and this 

effect is eliminated automatically. 

A form of the Gauss-Seidel line by line iteration method is then employed to 

solve the linearized algebraic finite difference equations in such a way that each 
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variable is solved separately instead of a simultaneous solution of all the variables. 

The variables along each grid line are calculated by the use of the Tri-Diagonal 

Matrix Algorithm (TDMA) which is given in more detail in (7). 

4.3 Boundary Conditions 

It is believed that most of the flow patterns of common gases and liquids can be 

described by the same governing partial differential equations, the Navier-Stokes 

equations. The flows (solutions) are distingushed only by boundary and initial 

conditions, and by the flow parameters such as Re, Pr etc. It is therefore under- 

standable that the specification of the computational boundary conditions plays 

a very crucial role in the solution procedure. The proper specification of the 

boundary conditions, apart from affecting numerical stability, greatly affects the 

accuracy of the solution of the finite difference equations. This is of great im- 

portance to compressible flow as the mathematical theory for the computational 

boundary conditions is not so well established for the compressible Navier-Stokes 

equations as it is for the incompressible form of the governing equations. 

For confined flow, the boundaries can be classified, generally speaking, into 

four categories: 

1). Inlet (Inflow) boundary, 

2). Wall boundary, 

3). Symmetry boundary, 

4). Outlet (outflow) boundary. 
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Wall and symmetry boundaries can be also grouped as no-flow boundaries, 

i. e., the fluid cannot cross this kind of boundary. 

The slip and no-slip wall boundary conditions are usually used for inviscid 

and viscous flows resprectively. More detailes can be found in (2). 

Across a symmetry surface the reflection method is usually adopted, e. g., if a 

line of node points j=s are on the line of symmetry, one has 

V"-i =-V, +i (4.2) 

V, =0 (4.3) 

Fd-i = Fs+1 (4.4) 

where F=p, U, W or T etc. 

The treatment of the inlet and outlet boundary conditions, especially for com- 

pressible flow, is very important but the established treatment of outlet boundary 

conditions for supersonic flow is misleading. This will be discussed in more detail 

in chapter six. 

4.4 Treatment of Velocity-Pressure Coupling 

It was pointed out previously that when pressure is chosen as a main dependent 

variable the difficulty is how to evalute pressure as there is not a governing equa- 

tion for pressure in the original set of equations. However, there are several ways 

of calculating pressure indirectly, such as the Poisson equation method, which 

have been discussed in chapter two. Among these methods, pressure correction 
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methods have gained more favor than the others and found wide application. 

In this section, the pressure correction method for incompressible flow used in 

the present study will be briefly outlined and its extension to compressible flow 

presented. 

4.4.1 The SIMPLE Algorithm 

The obstacle arising from the choice of pressure as a main dependent variable 

can be removed by devising a mechanism by which the continuity and momen- 

tum equations are linked together to evaluate pressure. The basic idea of pressure 

correction methods is to first guess a pressure field, then get an approximate so- 

lution to the velocity field. The velocity field obtained using the guessed pressure 

field does generally not satisfy the continuity equation, and corrections to the 

pressure field are made in such a way so as to bring the velocity field into con- 

formity with the continuity equation. The key point of this is approach to derive 

a so called pressure-correction equation from the finite difference form of the 

continuity and momentum equations. In the present study, the pressure correc- 

tion method employed is the SIMPLE (Semi-Implicit Method for Pressure-Linked 

Equations) algorithm proposed by Pantakar and Spalding (6,7) which is outlined 

for the two dimensional case as follows: 

1). Guess the initial values of the flow field variables, which are usually 

specified as zero. 

2). The following momentum equations are solved using the guessed pressure 
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field P* to get the intermediate velocity field U*, V *: 

apUU = Ea,, bUnb - AP (PP - Pw) + SU (4.5) 

aPVP = Ean6Vri6 
- AP(PP - Ps) + Sv (4.6) 

where `nb' denotes the neighboring points, S is the source term, A is the area of 

cell boundary normal to the velocity in question. 

3). The velocity field obtained will not satisfy the continuity equation unless 

the pressure field has been guessed correctly. Suppose the correct pressure field is 

the present pressure field plus a correction pressure field expressed in the following 

form: 

PP = PP -I- PP (4.7) 

correspondingly, the velocity field will also change due to the pressure field change, 

which may be expressed in the following form: 

up =UP+UP (4.8) 

Vp = Vj + Vj (4.9) 

substituting the above relations into equations (4.5) and (4.6), one has: 

apUp = Ea bU b- AU(PP 
- Pw) + SU (4.10) 

apVp = EanbVnb 
- AV (Pp - Ps) + Sv (4.11) 

from equations (4.5), (4.6) and (4.10), (4.11) the following relations can be ob- 

tained: 

apU, = FQn6Unb 
- AP(ý'P - Pw) (4.12) 
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apVP = FQn6Vnb 
- AP( Pp - Ps) (4.13) 

neglecting EanbU, b and EanbVnb, the relationship between the pressure change 

and the corresponding velocity change can be expressed as follows: 

UP = DP(Ptiy - PP) (4.14) 

Vp = DP (Ps - Pr) (4.15) 

D p, Dp can be evaluated from the relevant momentum equations: 

D° = 4/a4 (4.16) 

DP = AP/av (4.17) 

4). P is calculated from the pressure-correction equation which is derived as 

follows: 

subsituting the following relations 

UP = UP + DP(Pw 
- Pp) (4.18) 

VP = VP + DP GPs - Pp) (4.19) 

into the finite difference form of the continuity equation and after some manipu- 

lation, the resultant pressure-correction equation is: 

apPP = awPPv + aEPE + aNPiv + asPP + So (4.20) 

aw = PwAwDu (4.21) 

aE = PeAEDE (4.22) 

as = P. AsDs (4.23) 
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aN =p ANDN (4.24) 

ap=aw+aE+as+aN (4.25) 

where So is the residue (source term) in mass flow rate due to the imbalance in 

mass-continuity at each node in the flow field and is equal to: 

So = AU (pU*)+o - AU(PU*)e + AS (pV *), - AN(PV *)n (4.26) 

The pressure and velocity fields are then updated using P obtained from the 

above pressure-correction equation. However, in the calculation the relaxation 

method has to be used to ensure convergence. 

5). Some other transport equations are solved if necessary. 

6). A new iteration is started until a fully convergent solution is reached 

(momentum and continuity are both satisfied). 

4.4.2 Modifications for Subsonic Flow 

The only difference between the incompressible and compressible subsonic flows 

is that density changes which creates the effect of `compressibility'. When Mach 

number is low (less than 0.3) density varies little and compressibility is negligible, 

and hence low Mach number subsonic flow can be treated in the same way as 

incompressible flow. However, if the Mach number is higher, density variation has 

to be accounted for. Nevertheless, it is understandable that minor modifications 

to the original SIMPLE algorithm will be enough for subsonic flow. 

Intuitively, density has to be calculated for compressible flow instead of keep- 

ing it constant as in the case of incompressible flow. However, the pressure field 
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obtained using the SIMPLE algorithm is based on an arbitrary pressure at the 

specified reference point, and usually it is set equal to zero. Therefore, the pres- 

sure field cannot be used to calculate density directly unless the correct pressure is 

given at the specified reference point. As a result, one important step is to specify 

a correct pressure for compressible subsonic (the same for supersonic) flow. This 

pressure is given'either experimentally or analytically. Moreover, if temperature 

needs to be calculated then the transport equation of stagnation enthalpy should 

be solved. The calculation of density is switched on using the gas state law after 

a reasonable pressure field is established, i. e., after a certain number of iterations 

so as to avoid an unrealistic pressure field since negative pressure may be present 

at the very begining of calculation. The modified solution procedure is then as 

follows: 

1). - 4). The same as before, 

5). The transport equation of stagnation enthalpy is solved to get the tem- 

perature field. 

6). The calculation of density is switched on after a certain number of itera- 

tions. 

7). Some other transport equations are solved if necessary. 

8). A new iteration is started until a fully convergent solution is reached. 

It has been found that the modified solution procedure performs quite well 

for subsonic flow in several cases. It can be claimed with confidence that the 

modified solution procedure can handle subsonic flow in general if the computa- 

tional boundary conditions are specified properly. This aspect will be discussed 
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in more detail in chapter six. 

4.4.3 Modifications for Supersonic Flow 

For supersonic flow, it was suggested (62) that more modifications should be in- 

troduced to account for the hyperbolic nature which applies only to supersonic 

flow, i. e., when Mach number is over one. The original solution procedure cannot 

handle the hyperbolic nature of such flow as it treats the whole computational 

domain elliptically. Although numerous unsteady numerical methods have been 

developed for calculating supersonic flow they are only applicable to high Mach 

number flow and may not be efficient when only the steady solution is of con- 

cern. To the best of the author's knowledge, the iterative numerical solution 

procedures available for all Mach number flows and solving the steady compress- 

ible Navier-Stokes equations are the extension of the SIMPLE algorithm by Issa 

and Lockwood (62) and SIMPLER by Karki (64). 

According to Issa and Lockwood (62), the SIMPLE algorithm has three 

sources of `ellipticity' which are as follows: 

1). The variables at each node are linked to the variables at neighboring 

nodes. This means that downstream influences could have effects upstream. 

2). The `staggered grid' arrangement ensures that each velocity is driven by 

the pressure difference across the two grid nodes lying on both sides of the velocity 

cell. This implies that downstream pressure influences upstream velocity. 

3). The calculation of the mass fluxes at control volume boundaries is based 

on the linearly interpolated values of densities between nodes, which also means 
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that the downstream pertubations can be transmitted upstream. 

Issa and Lockwood argued that modifications should be introduced to elim- 

inate these downstream influences so as to make the solution procedure able to 

handle the hyperbolic nature of supersonic flow. 

The first elliptical numerical influence is automatically eliminated due to 

the use of a hybrid differencing scheme which employs an upwind differencing 

scheme for the convective terms and ingores diffusional effects when the con- 

vection/diffusion ratio is large. This is definitely satisfied for supersonic flow. 

Therefore there is no need to introduce any modification for the first elliptical 

source. 

With respect to the second elliptical influence, this was done (62) in such a 

simple way that the pressure difference across the adjacent two upstream nodes 

was taken instead of the two nodes lying on both sides of the velocity. For 

example, the unmodified pressure gradient (P(I, J) - P(I - 1, J))/Sx for the 

velocity U(I, J) will be (P(I - 1, J) - P(I - 2, J))/8x after modification. This 

treatment of the pressure gradient is doubtful and will be discussed later. 

The third elliptical effect was removed by using only upstream densities when 

the supersonic fluxes were calculated, i. e., density was upwinded when supersonic 

mass fluxes were calculated. 

Karki (64) also argued that the evaluation of density at the control volume 

boundaries and the differencing of the pressure gradient were two very critical 

issues, which determined the validity of a solution procedure in the transonic 

and supersonic flow regions. These two very important issues are actually the 
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second and third elliptical sources as defined by Issa and Lockwood (64). Their 

argurements, not surprisingly, are exactly the same bearing in mind that the 

first elliptical source can be eliminated automatically by the use of the hybrid 

differencing scheme. The difference is how they modified the solution procedure 

to account for these effects. 

For the third elliptical source, i. e., how to evaluate density at the control 

volume boundaries, upstream densities were used for the supersonic mass flux 

calculations in Issa and Lockwood's modified solution procedure as mentioned 

above. It was shown by Karki (64) that using an upwind biased density was 

equivalent to the effect of adding the artificial viscosity. Bearing this in mind, it 

is understandable why upstream densities are used for the supersonic mass flux 

calculations. However, Karki (64) also argued that the use of two different meth- 

ods to evaluate density for subsonic and supersonic flow respectively might cause 

some numerical problems near the switch-over point, and the switch-over point 

itself might be problem dependent. Therefore, density was always upwinded no 

matter what the Mach number was in Karki's modified solution procedure. This 

treatment seems to provide enough numerical diffusion but also adds damping 

even in subsonic flow regions where it is not required. In the present study, den- 

sity is therefore upwinded only when local Mach number is over one, and it has 

been found that this treatment does not cause any problem near the switch-over 

point. 

The second elliptical source, i. e., the treatment of the pressure gradient, seems 

to be quite confusing. The hyperbolic nature of supersonic flow tells us that small 
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disturbanes at a point downstream cannot be felt upstream, and transmit to only 

a certain zone downstream bounded by the characteristics passing through that 

point. Issa and Lockwood (62), therefore, argued that the downstream pressure 

influence should be eliminated so as to simulate this hyperbolic nature of super- 

sonic flow. Karki (64) also argued that the treatment of the pressure gradient 

should exhibit an elliptical behavior in the subsonic flow region and hyperbolic 

behavior in the supersonic flow region. However, it should be noticed that the 

`disturbances' must be `small' whereas pressure changes, in most cases, are al- 

ways relatively large, and hence it may be physically unrealistic to follow the 

above arguements that the downstream pressure influences or changes should be 

eliminated. In fact, take the quasi-one dimensional convergent-divergent nozzle 

flow as an example, if the downstream pressure changes could never be felt up- 

stream, and hence a shock could not propagate upstream, it would be, therefore, 

not possible to turn off an induced indraft wind tunnel!. In addition, Issa and 

Lockwood's treatment of the pressure gradient, i. e., take the pressure difference 

across the adjacent two upstream nodes, may violate the conservation of momen- 

turn and mass due to the abrupt switch to a different scheme as experienced by 

the present author. Karki (64) finally decided to use central differencing for the 

pressure gradient by considering the methods developed for potential flows for 

discretizing the pressure gradient despite his arguement that it should exhibit the 

hyperbolic behavior. 

Kurzrock (110) experimented with forward, backward, and central differenc- 

ing schemes for the pressure gradient. His experiments and his stability calcula- 
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tions show that the central differencing scheme is perferable. Moreover, almost 

all the unsteady methods developed for compressible flow (26,27,33,37,53) em- 

ploy the same differencing scheme for the pressure gradient no matter whether 

supersonic or subsonic flow is calculated. 

Due to all the reasons and facts presented above the present modified solution 

procedure uses the central differencing scheme for the pressure gradient in both 

supersonic and subsonic flow regions. It has been found that this practise has 

given good performance for several supersonic flow cases. It is worth pointing out 

that the specification of the computational boundary conditions is more crucial 

in compressible flow calculations, especially in supersonic flow calculations as the 

established principle is misleading as pointed out above, this will be discussed in 

more detail in chapter six. 

4.4.4 The Pressure-Correction Equation 

The pressure-correction equation is derived from the momentum and continuity 

equations by assuming that the current velocities calculated using the guessed 

pressure field will not satisfy the continuity equation, and hence there must be 

an adjustment or a change to the pressure field. As a result of this, velocities 

will change correspondingly as expressed in Eq. (4.8) and Eq. (4.9). However, 

when compressible flow is under consideration density will also change due to the 

pressure change which can be expressed as follows: 

p= p* + p' (4.27) 
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the density change p' is related to the pressure change through the equation of 

state, and can be expressed in the following form: 

P, = KP' (4.28) 

where K can be evaluated from the equation of state as follows: 

P (4.29) P RT 

K= 
äP RT 

(4.30) 

where R is the gas constant and T is temperature. 

The finite difference form of the continuity equation in the two dimensional 

case is: 

(pU)e - (pU)w + (PV). - (pV)a =0 (4.31) 

When the pressure field changes the velocity and density fields will also change. 

The mass flux, e. g., (pU), can be evaluated as follows: 

(PU)e = (P* + P)e(U* + U')e (4.32) 

expanding the above equation, one has: 

ýPU)e = (P*U*)e + (P*U, )e + (P, U*)e + Wu I )e (4.33) 

The fourth term on the right hand side of the above equation is one order smaller 

and hence can be neglected. The above equation then reduces to the following 

form: 

(pU)e = (p*U*)e + (p*U')e + (p'U*) (4.34) 
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As the central differencing scheme is still used for the pressure gradient, Eq. (4.14) 

and Eq. (4.28) are then substituted into the above equation to yield the following 

equation: 

(pU). = (p*U*)e + (p*D°)e(P' - PP) + (U*KP')e (4.35) 

(pU),,,, (pV),,, (pV), can be also obtained in the same way and expressed as 

follows: 

(pU)w 
= (p*U*) 

w+ 
(p*DU)w(P1', 

- Pp) + (U*KP')w (4.36) 

(pV )n = (p*V *)n, + (p*DV)n(PP 
- Pk) + (V*KP')n (4.37) 

(pV)3 = (p*V*) + (p`DT')3(PP - Pp) + (V*KP)i (4.38) 

When the upwind differencing scheme is used the values of density correction 

at the control volume boundaries, taking e as an example, can be evaluated as 

follows: 

p'Pmax[U, *, 0.0] + p'' max[-Uß, 0.0] (4.39) 

substituting these relations into Eq. (4.32) and after some manipulation, the mod- 

ified pressure-correction equation is: 

aPPP = awPW + aEPE + aNPN + asPP + So (4.40) 

aw = Avy(pwDw + Kwmax[U,, 0.0]) (4.41) 

aE = Au 
E(p, DE + KEmax[-Uß, 0.0]) (4.42) 

aN = AN(p*Dvi + KNmax[-U, 
, 0.0]) (4.43) 

as = AS(p; Ds +Ifsmax[U,, 0.0]) (4.44) 
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ap =A y(pwD°y + Kpmax[-Uu , 0.0]) + AE(p: DE + Ifpmax[UU, 0.0]) 

+AN(pnDN + Ifpmax[U, , 0.0]) + AS (p, 'DS + KPmax[-U;, O. 0]) (4.45) 

So = Aw(P`U'),,, - AE(P"U`)e + As (P`V *)" - AN(P*V*)n (4.46) 

Karki (64), however, employed the above modified pressure-correction equation 

to update only the velocity field whereas the pressure field was corrected by an- 

other pressure-correction equation which he termed the `first' pressure-correction 

equation. This so called `first' was also derived from the momentum and conti- 

nuity equations in more or less the same way as the derivation in SIMPLER (7, 

19). It differs from the above pressure-correction equation in that the full mo- 

mentum equations were used, i. e., the two terms Ea�bU, 6, EanbVfb in Eq(4.12) 

and Eq. (4.13) were not neglected in the derivation. Details can be found in (64). 

However, it has been experienced by the present author that the above modi- 

fied pressure-correction equation (4.42) does not show any superiority to the un- 

modified one. In principle, density changes should be accounted for in deriving 

the pressure-correction equation in the case of compressible flow. Nevertheless, 

the density field is renewed once a new pressure field is obtained, which means 

that density changes will be accounted for after one iteration. In other words, 

density changes lag behind one iteration in the case of compressible flow when 

the unmodified pressure-correction equation is used. It is worth pointing out that 

this treatment of density is exactly the same way in which the non-linearities of 

the momentum equations are treated. Therefore, the original pressure-correction 

equation is employed in the present study, and the results obtained confirm that 
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it did lead to a convergent solution for compressible flow provided the calculation 

of density was switched on after a reasonable pressure field had been established 

and the computational boundary conditions were specified properly. 

4.4.5 Summary of the Solution Procedure 

In this chapter, a brief introduction was given to the derivation of the finite dif- 

ference equations from the corresponding governing partial differential equations, 

the solution of these equations and so on. Detailed discussion was presented about 

the evaluation of density at the control volume boundaries and the differencing 

scheme for the pressure gradient in the case of supersonic flow. It was clearly 

stated that the idea to completely eliminate downstream pressure influence to 

simulate the hyperbolic nature of supersonic flow sounded correct superficially 

but actually was misleading. The pressure-correction equation was also discussed 

in more detail with the conclusion that the pressure-correction equation did not 

need to be modified necessarily for compressible flow. The overall solution pro- 

cedure is as follows: 

1). The initial values of the flow field variables are specified or simply set 

equal to zero. 

2). The momentum equations are solved using the currently available pressure 

field. 

3). The pressure-correction equation is solved and the pressure and velocity 

fields are updated. 

4). The transport equation of the stagnation enthalpy is solved to get tem- 
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perature. 

5). The calculation of density is switched on after a reasonable pressure field 

is established, that is after a certain number of iterations if compressible flow is 

under study. 

6). Other transport equations are solved if necessary. 

7). A new iteration is then started until a fully convergent solution is reached. 

78 



Chapter 5 

APPLICATIONS TO 

STRONGLY SWIRLING 

FLOWS 

In this chapter, the prediction procedure is applied to strongly swirling con- 

fined incompressible turbulent flows in vortex throttles. As stated in previous 

chapters there is usually no difficulty in obtaining a good numerical solution for 

incompressible flows, and the SIMPLE algorithm incorporated in the prediction 

procedure has been well tested for incompressible flows (13,14,15,16,17,18). 

However, turbulence modelling is still a challenge in the case of strongly swirling 

turbulent flows. It is expected that for strongly swirling flows, the anistropy 

becomes more and more important, resulting in the components of turbulent vis- 

cosity, µ,. x, µe etc. adopting different values (95,96). The conventional two 

equation k-c model uses the same value for all the components of turbulent vis- 
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cosity according to the Boussinesq assumption, which is appropriate for isotropic 

turbulent flows. It is generally accepted that Reynolds stress models, predict- 

ing each component of the Reynolds stresses separately, offer more universality 

but they have not been thoroughly tested for recirculating, swirling flows etc. 

An attempt is made in the present study to employ a Reynolds stress model 

and compare the performance of such a Reynolds stress model with that of the 

two equation k-e model in the case of strongly swirling confined turbulent flows. 

In addition, a conventional wall treatment (97) and a modified wall treatment, 

based on Chieng-Launder (98) and Johnson-Launder -wall treatment (97), are 

employed in order to model the near wall region more carefully, and their relative 

performance compared. In all cases the results are compared with experimental 

data. 

5.1 Introduction 

Swirling flows are very important phenomena found in nature and they have 

become of interest in association with a wide range of applications. In nonreac- 

tive cases applications include, for example: vortex amplifiers, cyclone separators, 

agricultural spraying machines, heat exchangers etc. In combustion systems, such 

as in gasoline engines, gas turbines, industrial furnaces, the dramatic effects of 

swirl to stabilize flames and to improve combustion efficiency have been known 

and appreciated for many years. Better understanding of swirling flows will un- 

doubtedly help the improved design of the various devices and bring about more 
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new applications. However, the strongly coupled, nonlinear governing partial 

differential equations and the complex nature of turbulence impose formidable 

difficulty to solution by analytical methods. An alternative approach is the nu- 

merical solution procedure. 

For the strongly swirling incompressible turbulent flow computations, the 

most difficult problem to deal with is the turbulence modelling. The conventional 

two equation k-e model has been well tested and successfully applied to numerous 

engineering calculations but its performance becomes poor for certain situations 

such as recirculating and swirling flows, especially for strongly swirling flows (4, 

17,96,99,100). This may be attributed to the assumption of isotropic turbulence 

which is not appropriate for swirling flows as anisotropy becomes more and more 

important. Experimental study of swirling flow (101), free swirling jets (102) and 

the flow field near the recirculation zone at the exit of a swirl generator (103) 

have shown that the axial and radial components of turbulent viscosity change 

significantly, yielding a considerable degree of anisotropy. Modifications could be 

made to account for the anisotropy by specifying the r9-viscosity number etc., 

a,. 8 = 1, which is in general larger than 1 (96). However, since this is too 

empirical and flow dependent it can be hardly accepted in terms of universality. 

Boysan and Swithenbank (17) applied an algebraic stress model to the prediction 

of strongly swirling confined turbulent flow in a cyclone chamber and showed that 

some important flow features could be captured using the algebraic stress model 

whereas the two equation k-e model failed to reproduce them. An evaluation of 

the performance of the two equation k-e model and algebraic stress models was 

81 



presented by Nallasamy (4), concluding that the performance of the conventional 

two equation k-e model becomes poor for attached flow, recirculating flow, swirl 

flow etc. and algebraic stress models perform better. It is also pointed out by 

him that Reynolds stress models have not been thoroughly tested for recirculating 

and swirling flows. 

In this chapter, calculations have been performed for strongly swirling con- 

fined turbulent incompressible flows in 76mm and 102mm chamber diameter vor- 

tex throttles. Both the widely tested conventional k-e model and a Reynolds stress 

model are employed in the study for the sake of comparison. Wall functions are 

used to simplify the calculations in the near wall region, and both a conventional 

wall treatment (97) and a modified wall treatment, based on Ching-Launder (98) 

and Johnson-Launder wall treatment (97), are adopted. The predicted pressure 

drops through the vortex throttles over a certain range of flow rate are compared 

with experimental data. The predicted streamlines, velocity profiles etc. are 

presented and the flow field structure is analyzed. Moreover, numerical exper- 

iments have been made to assess the effect of inlet swirl intensity (the ratio of 

inlet tangential velocity to inlet radial velocity), the inlet Reynolds number, and 

inlet turbulent intensity on the flow fields. Finally, further exploration of pressure 

drop in such vortex throttles is given and some other possible applications are 

discussed. 
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5.2 Governing Equations 

It is assumed that flows in the vortex throttles are axisymmetrical, hence, the 

governing transport equations in a cylind rcal coordinate system are as follows: 

5.2.1 The Reynolds stress model 

The continuity and momentum equations are time-averaged as described in chap- 

ter three to yield the following averaged equations: 
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where U, V, W represent the mean velocity components, and u, v, w represent 

the corresponding fluctuating parts in axial, radial and tangential directions re- 

spectively. However, the above equations cannot be solved as more unknowns, 

called the Reynolds stresses, appear in the equations due to the averaging pro- 

cedure. Therefore, a turbulence model has to be employed to predict the six 
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Reynolds stresses directly or indirectly. In the Reynolds stress model employed 

in this study, the modelled transport equations for k, v2- - u2-, v2 - w2, üv, üw, 

vw and c are as follows: 
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where the scalar turbulent diffusivity, I' = CT7, r= CE E'. 

5.2.2 The k-c Model 

The continuity equation is the same as above, 
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In the k-e model, the six Reynolds stresses are not solved directly but indirectly 

using the following equations according to the Boussinesq assumption: 
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Substituting the above relations into the averaged momentum equations and 

after some manipulations the momentum equations have the following forms: 
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where U, V, W represent the mean velocity components in axial, radial and tan- 

gential directions respectively. µeff is the effective viscosity expressed as follows: 

ILeff =P+ Pour (5.23) 

where pt, is the turbulent viscosity which is obtained from the following equation 
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and the transport equations for k and e are as follows: 
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The numerical constants used in the above equations take the following values 

in both models: 

Cµ Cl CT a Prk Pr, CE Cpl CE2 

0.09 1.5 0.1 0.4 1.0 1.3 0.07 1.44 1.92 

5.3 Wall Treatment 

For wall-bounded flows, a special treatment should be employed to handle a region 

near the wall where viscous effects become important and the turbulence levels 

decrease. There are usually two ways by which one can achieve this, i. e., either 

using low Reynolds number turbulence models or using wall functions. The latter 

approach is adopted in this study and more details about the wall treatment is 

given elsewhere (97). Here an outline is presented. 

5.3.1 The Conventional Wall Treatment 

The expression for the wall shear stress given in (97) is as follows: 

0 , 
UP C, i 141c 2 

Tw = (5.28) 

In Ey+ 
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where subscript P refers to values at a point P in the inertial sub-layer and E 

is a constant, x is the von Karman constant. The values of these two constants 

are determined from the experimental logarithmic law as, rc = 0.4187, E=9.793. 

yk1/2 C, 1/4 

Y=P &I ,y is the distance from the wall and v is the kinematic viscosity. 

Cµ is a constant whose value is 0.09. It is assumed that the shear stress in the 

viscous sub-layer is constant and equal to that of the inertial sub-layer. Therefore, 

the shear stress in both the viscous and inertial sub-layer is the same as that of 

the wall shear stress which is then used in the momentum equations in the wall- 

adjacent grid cells. 

The same needs to be done in the wall-adjacent grid cells for k and e. For 

k, the generation and dissipation rates must be specified. The generation rate is 

assumed to be 

T +dW/ -Tw 
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The dissipation rate for both k and c is assumed to be 

k3/2 

e= CtyP 
(5.30) 

where Cl is a constant defined as 

Cl =C /4 
(5.31) 

This conventional wall treatment has been used traditionally by the Imperial 

college group and hence is denoted as the IC wall treatment in (97). 
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5.3.2 The Modified Wall Treatment 

The assumption that shear stress is constant in the near wall region could lead to 

the result that the turbulent kinetic energy k is also constant in the same region. 

This is not physically realistic. Therefore, it is assumed that r is a linear function 

of distance from the wall and k is also a linear function in the inertial sub-layer. 

They are expressed mathematically as follows: 

T= Sy + Tw 0SY: 5 Ye (5.32) 

k=my+b y�<y<ye (5.33) 

/ 
k=k�i y)z 0< y_ y� (5.34) 

yv 

where Tw is the wall shear stress, s and m are the slopes of r and k, b is a 

constant, the subscripts v and e denote the edge of viscous and inertial sub-layer 

respectively, k� is the turbulent kinetic energy at the edge of viscous sub-layer. 

Upon integrating the following equation, 

dU 
sy + Tw = it (5.35) 

using laminar viscosity for the viscous sub-layer and the expression, µt = C1Cµkll2y, 

for the inertial sub-layer, and after considerable manipulations the following ex- 

pression for Tw can be obtained (97) 
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For k, the mean generation rate is obtained by 
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upon integrating and simplifying, the final expression (97) is 
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and the mean dissiaption rate is given (97) as follows: 
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For c, the same expression as before is employed 

k3/2 
ep Cjyp (5.43) 

There are several unknowns which need to be evaluated in the above equa- 

tions. It is important that some measures be taken to make sure that they adopt 

appropriate values. It is assumed that turbulent kinetic energy, k= my+b, and 

the shear stress, T= sy +, r,,,,, increase away from the wall in both the viscous 

and inertial sub-layers so that the slopes m and s should be positive. Moreover, 

at the edge of the viscous sub-layer one has, k,, = my,, +b -º b= k� - my,,, so 

that b should be smaller than k� which should be smaller than kp. 
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5.4 Boundary Conditions 

The treatment of the boundary conditions for incompressible flows is well docu- 

mented in (2). The boundary conditions used in this study are given briefly as 

follows: 

5.4.1 Inlet Boundary 

The values of the variables are usually known or can be calculated from the given 

conditions at the inlet boundary. The values are used in the boundary control 

volumes in the discretization equations and nothing special requires to be done. 

One point which should be noted is that a boundary condition for pressure is not 

required due to the use of staggered grids. Therefore, in the present work only 

the velocities were specified at the inlet boundary. 

5.4.2 Outlet Boundary 

The fluid leaves the computational domain at the outlet boundary and usually 

there is no information about the variables. This boundary is often an artificial 

boundary used to limit the computational domain to a finite region. Hence, the 

outlet boundary should placed and treated such that it minimizes the influences 

on the results in the region of interest. In this study, the tangential and radial 

velocity component gradients were assumed to be zero and the axial velocity 

component was adjusted to satisfy overall mass conservation. 
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5.4.3 Wall Boundary and Symmetry Line 

At the solid wall, the no-slip condition is usually applied for viscous flows. Ac- 

cording to this condition the velocity of the fluid at the wall should be the same 

as that of the wall. In the study, all the walls are fixed and hence the velocities 

at the wall were zero. At a symmetry line, the normal component of velocity and 

the normal gradient of the parallel component of velocity are zero. In this case at 

the axis of the symmetry, the tangential and radial velocities, W and V, vanish 

under the assumption of axi-symmetric flow. 

5.5 Geometry of Vortex Throttles 

Figure 5.1 shows the geometry of vortex throttles used in this study. They are of 

the square-edged type with symmetrical structure. Flow enters at the tangential 

port, forms a vortex in the chamber and leaves through the axial port. The 

following table gives details of the value of the various dimensions in millimeters, 

as defined in Figure 5.1. 

D h w da 1s Dp D; 

102 13.12 10.05 12.75 12.95 14 38 19 

76 13.12 10.20 12.85 13.05 13 38 19 

The inlet tangential and radial velocities are calculated from the given flow 

rate and Reynolds number. 
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5.6 Results and Comparisons 

Fig. 5.2 and Fig. 5.3 compare measured and predicted pressure drops with the 

two equation k-c model for various water flowrates through both the 76mm and 

102mm chamber diameter vortex throttles respectively. It can be seen that bet- 

ter agreement has been achieved between the experimental data and the results 

predicted using the modified wall treatment, compared with the relatively poor 

predictions obtained using the conventional wall treatment. This confirms that it 

is important to handle the near wall region carefully since the conventional two 

equation k-e model and some of the other turbulence models are appropriate to 

high Reynolds number flows only. This also indicates that the wall shear stresses 

play a important role in determining the pressure drop in the vortex throttles 

as will be discussed below. All predictions presented hereafter are obtained with 

the modified wall treatment. 

Fig. 5.4 shows experimental data and the two equation predictions of pressure 

drop versus the flowrates through both the 76mm and 102mm chamber diameter 

vortex throttles. It can be seen that measured pressure drops across the 76mm 

diameter vortex throttle are slightly larger than those of the 102mm diameter 

one. This again indicates the importance of internal wall friction (wall shear 

stresses) in determining the pressure drop as mentioned before. In the absence of 

internal wall friction, the strength of the potential vortex in the vortex chamber 

would increase with increasing chamber diameter. In practice, however, internal 

wall friction forces limit this effect. It can also be seen from this figure that the 
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two equation k-e model fails to predict the higher pressure drop as measured in 

the 76mm chamber diameter vortex throttle. 

Fig. 5.5 compares the Reynolds stress model predictions of pressure drops 

with experimental data in both the 76mm and 102mm chamber diameter vortex 

throttles. It can be seen that the Reynolds stress model predictions give not 

only closer agreement with the experimental data but also slightly higher pres- 

sure drops in the 76mm chamber diameter vortex throttle. This verifies that 

the Reynolds stress model offers more universality and gives better predictions 

than the two equation k-e model in the case of highly swirling flows despite its 

complication and requiring more CPU time. 

Fig. 5.6 shows the ideal free vortex tangential velocity profile and the pre- 

dicted profiles for Re=11078 in the 102mm chamber diameter vortex throttle at 

x/R=0.065. For a free vortex the tangential velocity can be expressed as Wr=C, 

where C is a constant and r is the distance from the axis. Hence the tangential 

velocity goes to infinity at the axis in the case of a free vortex. In reality, how- 

ever, the tangential velocity is zero at the axis of symmetry and has the Rankine 

free-forced vortex form in the vortex chamber as shown. It can also be seen that 

the peak value of the tangential velocity predicted by the Reynolds stress model 

is larger than that predicted by the k-e model, which agrees with the higher 

pressure drop predicted by the Reynolds stress model as will be discussed later. 

Fig. 5.7 shows the experimental and predicted data plotted as Euler number 

versus Reynolds number for the 102mm throttle, based on the the flow condition 

at the inlet tangential port. The Reynolds stress model predictions are again 
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closer to the experimental data than the k-e model predictions. It can be also 

seen that the performance of the throttle is a strong function of Reynolds number 

below about Re=10,000, with Euler number rising from a minimum value of 

about 10 to a maximun value of about 60. However, when Reynolds number is 

over 10,000 Euler number is seen to be fairly constant at the maximum value. 

Fig. 5.9 and Fig. 5.10 compare the Reynolds stress model and k-e model 

predictions of tangential and axial velocity profiles for the 102mm throttle at 

Re=11078. Fig. 5.9 shows that the Reynolds stress model predicts a sharper 

tangential velocity profile in the vortex chamber, as can also be seen from Fig. 

5.6. By comparison, the two equation k-e model predicts a flatter and smoother 

tangential velocity profile. This may be attributed to the overprediction of the 

turbulent kinetic energy by the k-e model, as can be seen in Fig. 5.8 which 

shows turbulent kinetic energy predicted by the Reynolds stress model and the 

k-e model resprectively for Re=11078 in the 102mm diameter vortex chamber at 

x/R=0.065. Near the axis the Reynolds stress model predicts a lower tangential 

velocity compared with the k-e model. This may be because the Reynolds stress 

model predicts a stronger recirculation region along the axis, bringing more fluid 

with very low tangential velocity back, which can be seen from the axial profiles 

as shown. 

Fig. 5.11 shows streamlines in the 102mm chamber diameter vortex throttle 

obtained by the Reynolds stress model and the k-e model at Re=11078. Some 

differences can be observed between the Reynolds stress model predictions and 

the k-c model predictions, especially in the vortex chamber where slightly differ- 
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ent flow patterns have been predictied. This is probably due to the difference 

of tangential velocity predicted by the two models. Higher tangential velocity is 

predicted by the Reynolds stress model in the chamber near the axial port, re- 

sulting in higher centrifugal force which causes more outward radial flows, hence 

a strong recirculation zone is predicted in the vortex chamber. The recirculation 

zone is also predicted, though to a lesser extent, by the two equation k-e model. 

At the axial port exit the flow patterns predicted by both the Reynolds stress 

model and the k-e model are very similar and a recirculation zone which is usually 

referred to as CTRZ (Central Toroidal Recirculation Zone) is predicted by both 

models. Details of the flow structure will be discussed in the next section. 

The results for the 76mm diameter vortex throttle are almost the same as 

those for the 102mm diameter one so that it is not necessary to present them 

again. They are not presented in the following discussion for the same reason. 

5.7 Discussions of the Results 

It has been well established that swirl flows can be classified into two groups 

according to the degree of swirl strength. They are the low swirl and high swirl 

flows respectively, and the flow characteristics are quite different in the two cases. 

The degree of swirl is usually characterized by the so called swirl number S, 

which stands for the ratio of axial flux of swirl momentum to axial flux of axial 

momentum (96). At higher degrees of swirl (S is larger than 0.6), strong radial 

and axial pressure gradients are set up, resulting in axial recirculation in the 
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form of a CTRZ (Central Toroidal Recirculation Zone) as metioned above. The 

study undertaken belongs to the high swirl flows, and one point which needs to 

be noted is that the inlet swirl intensity (the ratio of inlet tangential velocity to 

inlet radial velocity) is used to characterize the flow field for convenience instead 

of swirl number S in the present study. 

5.7.1 Pressure Field 

Fig. 5.12 shows the pressure profiles and the pressure contours predicted by the 

Reynolds stress model in the 102mm diameter throttle at Re=11078. The radial 

pressure gradient in the vortex chamber near the axis is apparent (as can be seen 

from both the profile and contours) and the axial pressure gradient can be seen 

clearly along the axis. From the pressure profile in the vortex chamber one can 

see that a low pressure zone occurs around the axis in the vortex chamber as a 

result of the centrifugal force. This is the cause of the axial pressure gradient 

which results in the axial recirculation. Out of the axial port, pressure is almost 

constant due to the decay of tangential velocity. In the vortex chamber the total 

pressure, PO WW =P+ 2ý (radial and axial velocities are negligible), is almost 

constant. However, out of the axial port both tangential velocity and pressure 

are very low, as shown in Fig. 5.9 and Fig. 5.12, which means that a large amount 

of total pressure (energy) is lost through the axial port due to wall friction and 

the sudden expansion at the exit of the axial port. This indicates the importance 

of the design of the axial port and the expansion part in determining throttle 

performance. 
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5.7.2 Flow Field 

Fig. 5.13 shows the k-c prediction of streamlines and velocity vectors in the 

102mm diameter throttle at Re=5565. The salient features of the flow field pre- 

dicted are the two recirculation zones, one is in the vortex chamber and another 

is along the axis and is referred to as the CTRZ mentioned above, which occurs in 

swirl flows when the swirl number is over 0.6. In the particular case under study 

it is due to the inlet high swirl intensity (the ratio of inlet tangential velocity 

to radial velocity), which creates a large centrifugal force in the vortex chamber, 

causing a low pressure zone around the axis as explained above. With respect to 

the recirculation zone in the vortex chamber it may be explained as follows: 

Because of the viscous action, there is a tangential boundary layer on the walls 

in the vortex chamber. In the boundary layer the reduced tangential velocity leads 

to a reduced centrifugal force and thus the fluid tends to move inwards as shown in 

Fig. 5.13 due to the radial pressure gradient force and the inertial force. Outside 

the boundary layer, however, the centrifugal force on a particle of fluid tends to 

be balanced by the radial pressure gradient force and the inertial force. When 

the inlet swirl intensity increases the tangential velocity rises as well, and so does 

the centrifugal force. Eventually a point is reached where the tangential velocity 

in the main body of the vortex chamber produces a centrifugal force which just 

balances the radial pressure gradient force plus the radial inertial force, this can 

be defined as a critical point beyond which the larger centrifugal force will cause 

outward radial flow and hence the recirculation zone occurs in the vortex chamber. 

However, the chamber recirculation zone is not only dependent on the inlet swirl 

98 



intensity but also on the inlet Reynold number as well, which will be discussed 

later. Moreover, one may notice at the corner region in the vortex chamber near 

the axial port where the boundary layer ends, a flow separation can be observed 

which is similar to the usual separation in boundary layers. In this particular 

case it is because the radial pressure gradient force and the inertial force are not 

large enough to maintain inward flow due to an increase of the centrifugal force 

just outside the boundary layer. These phenomena are not predicted when the 

inlet swirl intensity is small enough as will be discussed later. In addition, when 

Reynolds number is changed the flow field also changes which will be discussed 

next. 

5.7.3 The Effects of Reynolds Number 

Fig. 5.14 shows the k-e model predictions of streamlines in the 102mm diameter 

throttle at different Reynolds numbers. For all the cases the Central Toroidal Re- 

circulation Zone can be clearly seen, and so can the separation zone at the corner 

near the axial port in the vortex chamber. In Fig 5.14(a) at Re=3385 and Fig. 

5.14(b) at Re=5565 a strong recirculation zone is observed in the vortex chamber. 

This is also apparent, though to a lesser extent, in Fig. 5.14(c) at Re=11078. 

However, when the inlet Reynolds number is raised to 14600 the reverse flow in 

the vortex chamber disappears as shown in Fig. 5.14(d). According to what is 

stated above, this means the centrifugal force is no longer larger than the pressure 

gradient force plus the radial inertial force. This is probably because the inertial 

radial force increases proportionally with the increase of inlet Reynolds number. 
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The centrifugal force rises as well but not so rapidly as the radial inertial force. 

In conclusion, the inlet Reynolds number has great effects on the flow pattern in 

the vortex chamber but out of the chamber the flow field does not change too 

much. 

5.7.4 Effect of Inlet Swirl Intensity 

It is well known that one of the most important factors influencing a swirling 

flow field is the swirl number. In this study, however, the inlet swirl intensity 

(denoted hereafter as SI) is adopted for convenience as mentioned before. One 

would imagine that the inlet SI will also have great effect on the flow field. All 

the results presented above have been obtained when the inlet SI is about 32, 

which is the value for the vortex throttles used. For a certain vortex throttle 

design the inlet SI is determined solely by the inlet geometry of the throttle. The 

results shown below do not refer to any practical vortex throttle and they are 

just numerical experiments to assess the effects of the inlet SI on the flow field. 

Fig. 5.15 gives the k-e predictions of streamlines in the 102mm throttle at 

the same inlet Reynolds number but when the inlet SI is changed. When the 

inlet SI is reduced to 15 the flow field does not change too much as can be seen 

in Fig. 5.15 (b). By comparison, in the case of low inlet SI, as shown in Fig. 

5.15 (c) and Fig. 5.15 (d), dramatic changes occur. The recirculation zone in the 

vortex chamber disappears completely and the size of the CTRZ reduces as well. 

When the inlet SI is reduced to 1 both the CT1IZ and the separation region at 

the corner disappear entirely. This shows that the inlet SI has a great effect on 
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the flow field as does the swirl number, confirming that it is equivalent to use the 

inlet SI instead of swirl number to characterize the flow field. 

5.7.5 Effect of Inlet Turbulent Intensity 

Solving the transport equation for turbulent kinetic energy needs the specification 

of the inlet condition, but unfortunately no experimental data is available. In 

most cases the inlet turbulent intensity is assumed around 10 to 20 percent. For 

the case undertaken 10 percent has been assumed. However, in order to assess 

the effect of inlet turbulent intensity several values from 1 percent to 30 percent 

have been adopted. It has been found that the change of inlet turbulent intensity 

has hardly any influence on pressure drop and mean velocities nor even on the 

turbulent kinetic energy and its dissipation rate. This indicates that turbulent 

kinetic energy is mainly produced inside the flow field in this case. 

5.7.6 Pressure Drop 

It would be too broad to discuss pressure drop in general flow fields and it is also 

beyond the scope of this thesis. In the following part of the discussion the pressure 

drop in the vortex throttles will be discussed, in particular, the important factors 

influencing the pressure drop in such a device will be given. Moreover, some 

difference between the mechanism causing pressure drop in the swirling flows in 

vortex throttles and in pipe flows will be presented. 

Pressure drop or pressure loss is actually an energy loss from the point of view 

of energy conservation. In the case of swirling flows in vortex throttles, pressure 
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drop (energy loss) occurs mainly through the axial port by dissipating the high 

tangential velocity and depends on several factors. This will be discussed as 

follows: 

In the vortex chamber there is a small amount energy loss due to wall fric- 

tion and viscous dissipation although a large pressure gradient exists because of 

centrifugal force. The total pressure, Ptotai =P+ 2' (radial and axial velocities 

are negligible), is almost constant. However, outside of the axial port both tan- 

gential velocity and pressure are very low, as shown in Fig. 5.9 and Fig. 5.12, 

which means that a large amount of total pressure (energy) is lost through the 

axial port and at the exit of the axial port due to the sudden expansion. This 

indicates that higher tangential velocity near the axial port would lead to higher 

energy loss as tangential velocity decays very quickly. Therefore, any means to 

create a stronger vortex, resulting in higher tangential velocity, would increase 

the pressure drop. The ideal case is the free vortex as shown in Fig. 5.6, but 

this is impossible in reality due to the viscosity of fluids and wall friction. In nor- 

mal pipe flows, increasing wall friction results in higher pressure drop but in the 

case under study increasing wall friction in the vortex chamber would reduce the 

vortex strength, resulting in lower tangential velocity and hence lower pressure 

drop. 

Energy is mainly lost through the axial port due to wall friction of the port 

and due to the viscous interaction in the fluid because of the sudden expansion at 

the outlet of the axial port as well as interaction with the recirculation flow along 

the axis. This may be verified by Fig. 5.16 which shows contours of turbulent 
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kinetic energy disspation rate. It can be seen from the contours that turbulent 

kinetic energy is mainly dissipated through the axial port. One may infer that 

the mean kinetic energy is also largely dissipated through the axial port due to 

wall friction of the port and the sudden expansion. This means that pressure 

drop across vortex throttles mainly occurs through the axial port. Therefore the 

design of the axial port is very crucial, and the wall of the axial port should be 

made as rough as possible so as to get higher wall friction. However, the wall 

of the vortex chamber should be made as smooth as possible in order to reduce 

energy loss in the vortex chamber and hence increase the vortex strength. 

The mechanism of turbulence tells us that turbulence extracts energy from the 

mean motion by various means such as shear stress, buoyancy and other ways. 

Larger eddies formed initially decay into smaller ones until the viscous action 

becomes very important and turbulent kinetic energy is then dissipated. This is 

essentially irreversible process. Applying this mechanism to the swirling flows in 

vortex throttles, it can be concluded that turbulence influences pressure drop by 

way of extracting energy from mean motion in the vortex chamber, which reduces 

the vortex strength and hence lowers the tangential velocity near the axis. This 

is illustrated further by Fig. 5.9 which shows turbulent kinetic energy predicted 

by the Reynolds stress model and the k-e model respectively. It can be seen that 

much higher turbulent kinetic energy in the chamber has been predicted by the 

k-e model, which agrees with a slightly lower pressure drop predicted by the k-e 

model as compared with the Reynolds stress model. 

In conclusion, increasing any energy loss in the vortex chamber would lead to 
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the reduction of the vortex strength and hence lower tangential velocity, conse- 

quently, lower pressure drop. Whereas increasing energy loss through the axial 

port and out of it would result in higher pressure drop. 

In some applications it would be useful to exploit the high centrifugal force 

and tangential velocity created within a vortex, without the penalty of the high 

overall pressure loss. This would require recovery of the vortex energy, as opposed 

its dissipation in the throttle. Turbulence usually extracts energy from the mean 

flow and dissipates it by viscous action, which is against this objective. However, 

turbulent kinetic energy is, in most situations, very small compared with the total 

kinetic energy and in our case, the Reynolds stress model predictd the turbulent 

kinetic energy in the chamber to be only about 3.5%. of the total kinetic energy. 

Therefore, Significant energy recovery would be possible if viscous losses due to 

the axial recirculation, the sudden expansion of the axial port, and friction losses 

within the port, could be minimised. 

5.8 Conclusions 

Both the widely used two equation k-e model and a more complicated Reynolds 

stress model have been employed to simulate numerically the strongly swirling 

confined turbulent flows in vortex throttles. The influence of the inlet swirl 

intensity, inlet Reynolds number, and inlet turbulence intensity on the flow field 

have been analyzed. Several conclusions may be reached. 

The wall shear stresses greatly influence the performence of vortex throttles, 
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and careful modelling in the near wall region leads to better results. 

The conventional k-E model gives relatively poor predictions compared with 

measured pressure drop and fails to predict higher measured pressure drops in a 

76mm diameter vortex throttle as compared with a 102mm one. 

The Reynolds stress model gives better predictions than the conventional two 

equation k-e model for the highly swirling flows, producing good agreement with 

measured pressure drop data and successfully predicting the better performance 

of the 76mm throttle. 

The turbulent kinetic energy predicted by the conventional k-e model in the 

vortex chamber is much higher than that predicted by the Reynolds stress model. 

This explains why the Reynolds stress model predicts higher pressure drops since 

the vortex is stronger if turbulent kinetic energy is lower as discussed before. 

The swirl intensity can be equally used as the swirl number to characterize 

the flow field in vortex throttles. Numerical experiments showed that the flow 

field changed enormously when the inlet swirl intensity reduced, and all the re- 

circulating flow in the high inlet swirl intensity disappeared when the inlet swirl 

intensity reduced to one. 

The inlet Reynolds number influences mainly the flow field in the vortex 

chamber. The recirculation zone reduces when the inlet Reynolds number in- 

creases and it disappears completely when the inlet Reynolds number is above 

approximately 14600 according to the predictions. 

The inlet turbulence intensity has little influence on the overall predictions. 

This was shown when the inlet turbulence intensity was changed from 1% to 30% 
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since the mean variables hardly changed. 

The pressure drop through vortex throttles differs from that in pipe flows due 

to the mechanism of swirl conservation. It depends on mainly dissipating the 

high tangential velocity created in the vortex chamber through the axial port. 

Therefore, any means to produce higher tangential velocity can result in higher 

possible pressure drop. 

Design of the axial port of throttles is very important as energy is mainly 

dissipated through the axial port. In addition, the walls of the vortex chamber 

should be made as smooth as possible so as to get higher tangential velocity, 

and the walls of the axial port should be made as rough as possible in order to 

dissipate energy as much as possible. 
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Two mesh sizes were used for one imcompressible flow 

case (30*30,45*45), and it was found that the 

difference between the results was negligible 

(discrepancy within 3%). This means that the predicted 

results are grid independent and therefore, all the 

predicted results were obtained using a 30*30 grid. 

In all the predictions, step grids were used to 

simulate different geometries. 
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Chapter 6 

APPLICATIONS TO 

COMPRESSIBLE FLOWS 

In this chapter, the prediction procedure is applied to steady compressible sub- 

sonic, transonic and supersonic flows. The prediction procedure is tested for 

accuracy against known analytical solutions for inviscid subsonic, transonic and 

supersonic flows in convergent and divergent nozzles. The accuracy of this nu- 

merical scheme is further assessed by comparing the results with those obtained 

using Godunov first and second-order methods (104) for two dimensional sub- 

sonic, transonic and supersonic flows in a channel with a circular arc bump. This 

problem was selected as a test case for a workshop (105) and since then has be- 

come a standard test problem. The prediction procedure has also been applied 

to a more severe case, i. e., supersonic flow behind a rearward-facing step where 

a recirculating subsonic flow region is embedded. 

The results obtained clearly indicate that the prediction procedure is able to 
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handle laminar subsonic, transonic and supersonic flows. However, when com- 

pressible turbulent flows are considered additional problems related to the mod- 

elling of turbulence may arise so that turbulent flows are not considered as test 

problems in the present study. 

6.1 Governing Equations 

The governing equations employed are the two dimensional Navier-Stokes equa- 

tions which, in the case of inviscid flows, are actually the Euler equations. In 

addition, the energy equation and the state equation are also needed. The gov- 

erning equations have already been presented in chapter three, and they can be 

found in many textbooks and articles (2,25,58,59,60,106). 

6.2 Convergent and Divergent Nozzle Flows 

The convergent and divergent nozzle flows were selected as the first test problem 

mainly because the analytical results are available for comparison with the numer- 

ical solutions. Moreover, the flow fields are relatively simple so that the accuracy 

of the numerical scheme can be assessed more correctly from the comparison 

between the analytical results and the numerical solutions, and confidence can 

be gained from this about the capability of the prediction procedure to handle 

subsonic, transonic and supersonic flows. 
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6.2.1 Analytical Solution 

It is assumed that the flow in nozzles is one dimensional, steady and isentropic 

when the analytical method is used. Therefore, the following relations can be 

obtained (106) 

T` (ry - 1) Z T, +2M (6.1) 

P` 
=1+ 

(-1 1)M2 (6.2) 
PI2 

P` 
= 

r1 
+ 

(ry 1) 
M2 

l'_1 
(6.3) 

P2 lJ 
where M is the Mach number, y is the specific heat ratio which is usually taken 

to be 1.4, T*, P*, p* are the local reservoir values or stagnation values. Mach 

number is defined as follows: 

M_U 
a 

(6.4) 

where U is the velocity, and a is the local sound velocity which can be obtained 

by the following relation 

a= yRT (6.5) 

where R is the gas constant which is 287äK for air. Moreover, if the throat of 

a nozzle becomes sonic then the area-Mach number relation is found to be (106) 

a_I AJ 
Mz 

[7+i (i+ 721 M2)] 7-1 (6.6) CA* 

where A* is the throat area. Therefore, once a nozzle geometry is specified, all 

the variables along the nozzle can be obtained from the above relations. 
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6.2.2 Numerical Solution 

Calculations of the inviscid subsonic, transonic and supersonic nozzle flows were 

performed assuming two dimensional axisymmetrical flows with the tangential 

velocity equal to zero. In addition, the stagnation enthalpy was constant as 

inviscid and adiabatic flows were assumed so that there was no need to solve the 

energy equation. 

The stagnation values were taken to be 

T* = 303 K (6.7) 

P' = 100000 N/n2 (6.8) 

The inlet conditions could be worked out by the relations presented in the section 

on the analytical solution. They are given as follows: 

For the subsonic and transonic flows 

M1 = 0.24 (6.9) 

Pin = 96070 N/m2 (6.10) 

Tin = 300 K (6.11) 

Uin = 83.3 m/s (6.12) 

For the supersonic flow 

Min = 1.17 (6.13) 

Pin = 42870 N/rn2 (6.14) 

Tin = 238 K (6.15) 

U; n = 361.8 m/s (6.16) 
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Geometry of Nozzles 

Fig. 6.1 shows the geometry of the nozzles used in this study. The subsonic flow is 

obtained in the convergent nozzle, the supersonic flow is produced in the divergent 

nozzle and the transonic flow is created in the convergent and divergent nozzle 

by specifying appropriate inlet and outlet boundary conditions. The details of 

dimensions are given in millmeters as follows: 

The convergent nozzle 

D1 = 31.6 D2 = 20 L= 35 

The convergent-divergent nozzle 

D1=31.6 D2=20 L=70 

The divergent nozzle 

Dl = 20.22 D2 = 31.6 L= 35 

Boundary Conditions 

Proper specification of the boundary conditions is a crucial aspect in computing 

compressible flows. There are, unfortunately, only a few cases where mathemati- 

cal theory can tell us what boundary conditions should be imposed so as to ensure 

the uniqueness of the solution. Hence, boundary conditions for compressible flows 

are usually treated in a heuristic way. Nevertheless, an FDE solution with math- 

ematically inconsistent boundary conditions may still give an approximation to 

the PDE. 

The wall and symmetry boundary conditions for compressible and incom- 

pressible flows are more or less the same, and they are fully discussed in reference 
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(2). Therefore, the discussion here will focus on the inlet and outlet boundary 

conditions for not only the nozzle flows but also for compressible flows in general. 

Inlet Boundary 

It is generally accepted that if the inflow is supersonic, all the variables must 

be specified at the inlet boundary. However, when the inflow is subsonic, there 

are different choices as to which variables are specifi ed. For a two dimensional 

subsonic flow, the system of partial differential equations requires three bound- 

ary conditions (107). In addition, the numerical methods need a fourth boundary 

condition. There are, therefore, basically two ways of specifying the inlet bound- 

ary conditions. One is to specify three boundary conditions which are usually 

the velocity components along with either density or temperature, and the fourth 

boundary condition is extrapolated (107). Another is to specify the inlet bound- 

ary conditions completely (2,107). This is a stable boundary condition and 

stated as overspecification of the inlet boundary in (107). Nevertheless, most of 

the published two dimensional compressible flow computations have adopted this 

method. More detailed discussion is given in (107). 

In the present study of subsonic nozzle flow, the stagnation pressure, the 

stagnation temperature, the inlet Mach number and the inlet flow angle were 

given so that the inlet velocity components, inlet density and inlet temperature 

could be worked out using the relations presented in the section on the analytical 

solution. The inlet boundary conditions were specified completely in the present 

calculations. 

Outlet Boundary 
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For a two dimensional subsonic outflow boundary, the partial differential equa- 

tions require one boundary condition and the numerical solution requires three 

additional boundary conditions. Usually, the static pressure is specified and other 

variables are extrapolated. However, in some cases, when nothing is available at 

the outlet boundary, all variables have to be extrapolated. This is not correct 

mathematically and it was pointed out in (107) that the steady-state solution de- 

pended strongly on the initial flow field. Detailed discussion about the subsonic 

outflow boundary conditions is given in (107). 

In the present study of the subsonic nozzle flow, density was specified at the 

outlet boundary. The axial velocity was adjusted until the overall mass flowrate 

was satisfied. Other variables were extrapolated. 

For supersonic flow, there is a general point that outlet boundary conditions 

are not important if the outflow is supersonic since supersonic flow limits the 

upstream effect. However, this is incorrect as argued by Roache (2), and the 

present author, having some experience in supersonic computations, agrees with 

Roache's arguments. As stated by Roache (2); if the boundaries had no effect 

at all, it would be impossible to "turn off "an indraft supersonic wind tunnel. 

It is also stated in (2) that the downstream outflow problem is more important 

in supersonic flow than in subsonic flow. The above statements are not diffi- 

cult to understand when one considers quasi-one-dimensional inviscid flow in the 

convergent-divergent nozzle as shown in Fig. 6.1, where the inlet boundary con- 

ditions are fixed. The back pressure can have great influence on the flow pattern 

in the nozzle. When the outflow is already supersonic, a reduction in the back 
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pressure will not be felt upstream. However, if the back pressure is raised, a 

shock wave will move into the nozzle, its final position depending on the back 

pressure. If the back psressure is further raised above a critical value, the flow 

will become subsonic through the whole nozzle. Therefore, in Crocco's (108) 

calculation of quasi-one-dimensional flow in a duct, two downstream variables, 

pressure and temperature, had to be specified to approach a steady solution. 

Benison and Rubin (109) also had to fix density at the outflow boundary in their 

quasi-one-dimensional calculations. More detailed discussion is given in (2). 

In the present study, it has been found that at least one variable, either 

static pressure or density, has to be specified at the outlet boundary, and in 

the calculation, density was fixed at the supersonic outflow boundary. Other 

variables were extrapolated and the axial velocity was adjusted to satisfy overall 

mass conservation. 

6.2.3 Results and Comparison 

When the numerical solutions are compared with the one dimensional analytical 

results, the average value of the numerical solutions at each x location is taken. 

This is because the numerical solutions are two dimensional. 

Subsonic Flow 

Fig. 6.2 shows the predicted Mach number profile and the analytical result for 

the subsonic flow in the convergent nozzle. Two grid sizes were used to make sure 

that the solution is grid independent. It can be seen that very good agreement 
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between the predictions and the analytical solutions has been achieved, and the 

results obtained by different grids are almost the same. This means that the 

numerical solutions are independent of the grid size and the results are reliable 

in this respect. 

Fig. 6.3 compares the predicted pressure profile with the pressure profile 

obtained by the analytical method for subsonic flow in the convergent nozzle. 

It can be seen from the figure that the agreement between the predictions and 

the analytical solutions is again very good. This indicates that the prediction 

procedure performs quite well for subsonic steady inviscid nozzle flow. 

Transonic Flow 

For the transonic and supersonic flows, only one grid size was used since the 

numerical solutions for the subsonic flow, as shown above, changed very little 

when different grid sizes were used. 

Fig. 6.4 compares the predicted Mach number profile with the Mach number 

profile obtained by the analytical method for transonic flow in the convergent- 

divergent nozzle. Good agreement can be seen from this figure, however, near 

the throat where a transonic flow region exists, the predicted Mach number is a 

little bit lower than the analytical result. This may be partly due to the fact that 

the geometry is not simulated exactly since step grids were used instead of using 

body fitted coordinates, and partly due to the switch of the different numerical 

schemes for density evaluation. 

Fig. 6.5 shows the predicted pressure profile and the pressure profile obtained 
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by the analytical method along the convergent-divergent nozzle. The agreement 

is, as can be seen from the figure, quite good overall apart from the near throat 

region where the predicted pressure is higher than that obtained by the analytical 

method. This corresponds to the prediction of the Mach number in this region 

discussed above. 

Supersonic Flow 

Fig. 6.6 compares the predicted Mach number profile with the analytical Mach 

number profile for supersonic flow in the divergent nozzle. As can be seen from 

the figure, generally good agreement has been reached but not as good as that 

for the subsonic flow. This may be attributed partly to the use of the step grids 

and partly to the reason that the prediction procedure cannot fully simulate the 

nature of supersonic flow as stated before. 

Fig. 6.7 shows the predicted pressure profile together with the pressure profile 

obtained using the analytical method. Once again only a general good agreement 

has been achieved, which corresponds to the prediction of the Mach number as 

shown in Fig. 6.6. 

Fig. 6.8 and Fig. 6.9 show the predicted velocity vectors in the convergent 

and the divergent nozzles respectively. It can be seen from the figures that the 

flows are almost one dimensional in both cases since the radial velocity is quite 

small compared with the axial velocity. This indicates that the assumption of 

one dimensional flow in the nozzles is very close to reality. 

From the above results it can be said that the prediction procedure performs 

128 



quite well for the subsonic, transonic and supersonic steady inviscid nozzle flows. 

However, further tests in different flow situations should be made to assess the 

general validity of the prediction procedure. 

6.3 Channel Flow 

The second test problem chosen in this study is the two dimensional subsonic, 

transonic and supersonic flow in a channel with a circular arc bump on the lower 

wall. This problem was selected to assess the accuracy of the prediction procedure 

since it is a standard test problem as stated before, and it is well suited for 

computer code development and testing. In addition, there are results obtained 

by Godunov first- and second-order methods available for comparison with the 

present numerical solution. 

6.3.1 Geometry of the Channel 

Fig. 6.10 shows the channel used in the present study. It has a circular arc bump 

on the lower wall. The distance between the upper and the lower walls is equal to 

the chord length. The total length of the channel is three times the chord length. 

Two circular arc bump thickness-to-chord ratios were used in the study: 10% for 

the subsonic and transonic flow modelling, 4% for the supersonic flow modelling. 

Step grids were used to simulate the geometry of the circular arc bump. 
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6.3.2 Boundary Conditions 

A detailed discussion on the boundary conditions for compressible flow has been 

presented in the previous section. It is argued that one variable should be specified 

at the outlet boundary for not only subsonic flow but also for supersonic flow if 

possible. For the flow considered here in the channel, at the inlet, the total 

temperature, the total pressure and the Mach number were specified. Density 

was specified at the outlet boundary. The axial velocity was adjusted until the 

overall mass flowrate was satisfied. 

6.3.3 Results and Comparison 

Fig. 6.11 compares the predicted Mach number profile with the results obtained 

by the first- and second-order Godunov methods (104) at the lower wall of the 

channel for subsonic flow. It can be seen from the figure that good overall agree- 

ment has been achieved. However, at around the mid-chord the prediction pro- 

cedure overpredicted the Mach number by about 3%. This may be attributed 

to the use of the step grid to simulate the circular arc bump. Near the outlet, 

the present prediction is much closer to the results obtained by the second-order 

Godunov method compared with the first-order Godunov method. 

The comparison between the present prediction and the results given by the 

first- and second-order Godunov methods at the upper wall of the channel is 

shown in Fig. 6.12. Very good agreement has been achieved as can be seen from 

the figure. 

From Fig. 6.11, it could be said that the prediction procedure performed 
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better than the first-order Godunov method as the overall prediction is closer to 

the results by the second-order Godunov method. Nevertheless, at around the 

mid-chord the result given by the first-order Godunov method is closer to the 

result obtained from the second-order Godunov method. In addition, one can 

hardly distinguish the difference between the present prediction and the result of 

the first-order Godunov method from Fig. 6.12. Therefore, it is fair to say that 

the prediction procedure is onl? first-order accuracy in the case of subsonic flow. 

For transonic flow, the comparison between the present prediction and the 

results obtained by the first- and second-order Godunov methods at the lower 

wall and the upper wall of the channel are presented respectively in Fig. 6.13 

and Fig. 6.14. 

Fig. 6.13 shows the results at the lower wall of the channel. In this case, a 

supersonic flow region appears around mid-chord and is terminated by a shock 

at about two-thirds length of the chord. It is seen that the prediction procedure 

underpredicted the shock strength by about 8% compared with the second-order 

Godunov method. However, the results obtained by the first-order method agree 

very well with the present prediction. This indicates that in the case of transonic 

o 
flow the prediction procedure is also-'first-order accuracy. 

Fig. 6.14 compares the present prediction with the results by the Godunov 

methods at the upper wall. As can be seen from the figure, the overall agree- 

ment between the prediction and the results obtained by the first-order Godunov 

ce 
method is better which confirms that the prediction procedure is first-order ac- 

curacy. 
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Fig. 6.15 compares the prediction of Mach number with the results by the 

first- and second-order Godunov methods at the lower wall for the case of su- 

personic flow. In this case, there is an oblique shock wave at the leading edge 

of the circular are bump. It can be seen from Fig. 6.15 that Mach number 

dropped suddenly at the leading edge which indicates that the oblique shock 

wave is predicted. However, the present prediction is rather poor compared with 

the results obtained by the second-order Godunov method but comparable with 

the results by the first-order Godunov method. At the end of the circular arc 

bump, i. e., at the trailing edge, a shock wave also exists. This can be also seen 

from the figure since there is another sudden drop of Mach number. The present 

prediction is again rather poor compared with the results by the second-order Go- 

dunov method and can only be comparable with those by the first-order Godunov 

method. 

Fig. 6.16 presents the comparison at the upper wall of the channel for the same 

case. The results by the second-order Godunov method show a very sharp drop 

of Mach number at about two-thirds of the channel length where the oblique 

shock wave formed at the leading edge intersects the top wall. However, the 

present prediction is rather poor even compared with the results by the first-order 

Godunov method. The shock wave is too oversmeared by the present prediction 

procedure as can be seen from Fig. 6.16. This indicates that in order to get good 

resolution of shock waves alternative numerical techniques have to be employed. 

It can be seen from the above comparative study that the present prediction 

procedure is only comparable with the first-order method. The overall predictions 
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are, generally speaking, quite good but some other special numerical technique 

has to be employed in order to get a better prediction of supersonic flow with 

strong shock waves. 

6.4 Flow Behind a Rearward-Facing Step 

The previous test cases have clearly demonstrated that the prediction procedure 

can handle the quasi-one dimensional subsonic, transonic and supersonic nozzle 

flows. For two dimensional subsonic, transonic and supersonic flows in the channel 

with a circular arc bump, overall good agreement has been achieved between 

the present predictions and the results obtained by the Godunov methods. In 

this section, in order to check the general validity of the prediction procedure 

a more complicated flow case is chosen as a more severe test for the prediction 

procedure. This is supersonic laminar flow behind a rearward-facing step with a 

subsonic recirculating flow region. This kind of flow can be found in important 

engineering applications such as the flow in a supersonic combustor. 

6.4.1 Flow Geometry 

Fig. 6.17 shows the flow geometry under investigation. The Reynolds number of 

the laminar approach flow at the step is 1.2 x 106 which corresponds to a static 

pressure of 2900 Pa and a static temperature of 80 K (32). The air inflow Mach 

number is 3.5 which corresponds to a inlet velocity of 627.5 m/s at the step. 
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6.4.2 Boundary Conditions 

The specification of computational boundary conditions for compressible flow has 

been fully discussed above. For this particular case, the velocity, static pressure 

and temperature were specified at the inlet boundary and density was specified at 

the outlet boundary. The no-slip boundary condition was applied at the wall and 

reflection boundary conditions as presented before were employed for the upper 

boundary. 

6.4.3 Results and Comparison 

Fig. 6.18 presents the comparison between the predicted wall pressure distribu- 

tion and the experimental data (32) behind the step. The pressure was normal- 

ized by the inflow static pressure. It can be seen from the figure that quite good 

agreement has been achieved. 

Fig. 6.19 compares the predicted static pressure profile with the experimental 

data at a location downstream of a step at x/h = 0.0537. The pressure was 

normalized by the inflow static pressure. An overall good agreement has been 

obtained as shown in the figure. 

Fig. 6.20 and Fig. 6.21 presents the comparisons between the predicted 

normalized static pressure profiles and the experimental data at locations down- 

stream of steps at x/h = 2.137,4.279. It can be seen again that general overall 

good agreement has been achieved. However, there are some discrepances be- 

tween the predictions and the experimental data near the wall. This may be at- 

tributed to the fact that the flow attaches to the lower wall between two locations 
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and hence more complicated phenomena such as a shock wave, flow separation 

and transition may occur which the prediction procedure cannot simulate exactly. 

Fig. 6.22 presents the predicted velocity vectors. It can be seen that the 

flow field near the upper boundary does not change much. This verifies that it is 

appropriate to employ the reflection boundary conditions for the upper boundary. 

6.5 Closure 

The prediction procedure has been applied to several compressible flow cases 

which include subsonic, transonic and supersonic flows. The one crucial issue in 

computing compressible flow is the specification of the computational boundary 

conditions. These are, in particular, of great importance for supersonic flow as 

the established principle is misleading. The results shown above confirm that the 

prediction procedure can not only handle simple quasi-one dimensional subsonic, 

transonic and supersonic flows but also can predict quite well two-dimensional 

subsonic, transonic and supersonic channel flows and the even more complicated 

supersonic flow behind a rearward-facing step with a subsonic recirculating flow 

region. However, the present prediction procedure cannot give good resolution of 

shock waves. This indicates that other numerical techniques have to be employed 

in order to get a better prediction of supersonic flow with shock waves. 
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Chapter 7 

CLOSURE 

In this chapter, the concluding remarks are presented. The discussion will be 

divided into two parts. In the first part, a brief review of the whole thesis will 

be presented. This is followed by suggestions for further work in regard to the 

present study. 

7.1 A Review of The Thesis 

The main objectives of the present work are stated in chapter one. 

1). The first objective is to develop a general elliptical prediction procedure 

which is valid for both incompressible flow and compressible flow at any Mach 

number. The prediction procedure is based on the SIMPLE algorithm and solves 

the steady-state form of the Navier-Stokes equations. In order to make the predic- 

tion procedure valid for both incompressible and compressible flows, pressure has 

to be chosen as a main dependent variable instead of density. This is in contrast 
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with the time-dependent (unsteady) methods which usually employ density as a 

main dependent variable and integrate the unsteady form of the Navier-Stokes 

equations to reach a steady state. 

2). The second objective is to undertake a comparative study of the two- 

equation k-e turbulence model and a Reynolds stress model in the case of strongly 

swirling flows in vortex throttles. It was anticipated that Reynolds stress models 

would give better performance than the two equation k-E model in such a case. 

The work reported in this thesis is summarized as follows to the extent to 

which these objectives have been attained. 

7.1.1 Turbulence Models 

In order to solve the time averaged Navier-Stokes equations, it is necessary to 

approximate the correlation terms representing the turbulent shear stresses by 

modelling assumptions. Several approaches have been discussed in the previous 

chapters. Among these the one-point closure approach has been widely used, 

and hence almost all the one-point closure turbulence models have been reviewed 

with particular emphases on the two-equation k-e model and the Reynolds stress 

model. 

The two-equation k-c model, using the Boussinesq assumption, relates the 

turbulent shear stresses or the Reynolds stresses to the mean strain through the 

turbulent viscosity or eddy viscosity. This turbulence model has been widely used 

in engineering calculations. However, the two-equation k-e model (and other two- 

equation turbulence models) have several limitations as pointed out in chapter 
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three. One of the practical limitations is the assumption of isotropic eddy vis- 

cosity. This affects its performance in the case of strongly swirling flows under 

consideration as anistropy then becomes important. In addition, some physi- 

cal processes such as those due to streamline curvature, rotation, and buoyancy 

forces have to be modelled separately. 

Reynolds stress models, however, do not have these limitations as the Boussi- 

nesq assumption is not employed and a transport equation is developed for each 

Reynolds stress. Moreover, the effects of streamline curvature, rotation, and 

buoyancy forces are believed to be accounted for automatically in Reynolds stress 

models. They are, therefore, in principle superior to the two-equation k-e model. 

However, they have not been thoroughly tested for some complicated flows such 

as the very strongly swirling flows under study. In addition, they are more com- 

plicated and need enormous computer power. 

Both the k-c model and a Reynolds stress model have been applied to the 

strongly swirling flows in vortex throttles. The results obtained have confirmed 

that the Reynolds stress model gives overall better performance compared with 

the two-equation k-E model. The k-c model overpredicted the turbulent kinetic 

energy greatly compared with the Reynolds stress model. This could be the 

major reason (although there are some other reasons) why the k-e model gives 

poor performance in such a case. 
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7.1.2 Numerical Aspects 

The control volume method was used to discretize the governing non-linear partial 

differential equations. In order to avoid an unrealistic solution the staggered grid 

system was employed. The resultant finite difference equations were solved by 

a line-by-line iteration method and the variables along each line were obtained 

using the TDMA (Tri-Diagonal Matrix Algorithm). The pressure-velocity link 

was handled by employing the SIMPLE algorithm. 

For compressible subsonic flow, some modifications have been made to the 

SIMPLE algorithm to calculate density. It has been found that one variable 

(usually static pressure or density) should be specified at the outlet boundary to 

ensure a realistic accurate solution. 

When supersonic flow is of concern more modifications must be made to ac- 

count for the hyperbolic nature of such flow. It has been stated that the eval- 

uation of density at the control volume boundaries and the differencing of the 

pressure gradient are two important issues. It seems contradictory on one hand 

that downstream influences should be eliminated in the case of supersonic flow 

and on the other hand a central differencing scheme was still used for the pres- 

sure gradient. However, it should be pointed out that the so called downstream 

influences refer to some `small disturbances', and it has been stated clearly that 

eliminating the downstream pressure influence is misleading, since it would result 

in some unrealistic conclusions. As a result of this, it may be fair to say that 

the prediction procedure simulates the hyperbolic nature of supersonic flow only 

partially as the downstream small disturbances cannot be eliminated completely. 
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Moreover, shocks were oversmeared by the prediction procedure as no special 

technique has been employed to handle them. 

It has been argued that the pressure-correction equation should be modified 

for compressible flow as density changes in such a case. Nevertheless, the ex- 

periences gained by the present author has indicated that this is not necessary 

provided the density calculation is switched on after a reasonable pressure field 

has been established and proper under-relaxation factors are given. In fact, this 

means that density change lags one iteration behind which is equivalent to the 

treatment of the non-linearities of the momentum equations in the prediction 

procedure. 

The established principle that no boundary conditions should be specified at 

the supersonic flow outlet is questionable. The treatment that all variables at the 

outlet boundary are interpolated may be valid in some cases. However, in some 

other cases such as the convergent and divergent nozzle flow under study at least 

one variable should be specified at the outlet boundary. 

7.1.3 Validation of the Prediction Procedure 

The prediction procedure was validiated by comparing the predictions with the 

known analytical and numerical results in two cases. The first study is the 

quasi-one dimensional inviscid subsonic, transonic and supersonic flows in the 

convergent, convergent and divergent, and divergent nozzles respectively. The 

comparison has been made between the known analytical results and the pre- 

dictions. Good agreement has been achieved, especially for subsonic flow in the 
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convergent nozzle where the agreement is very good. The second validation test 

is the two dimensional subsonic, transonic and supersonic flow in a channel with a 

circular arc bump. This is a standard test problem. On the whole, the prediction 

procedure performed well but the shock was oversmeared as pointed out before. 

In addition, one factor that would affect the accuracy of the prediction procedure 

is that step grids were used to simulate different geometries, and it is believed 

that the use of body-fitted coordinates would improve the accuracy. 

7.1.4 Applications to Other Cases 

The prediction procedure has been also applied to other flow cases; the more 

severe and complicated supersonic laminar flow behind a backward-facing step 

which has embedded subsonic flow regions was calculated. The predicted pressure 

profiles were compared with the experimental data and good overall agreement 

was achieved. However, it is difficult to assess the performance of the prediction 

procedure in the turbulent case as additional problems related to the turbulence 

modelling may arise. 

On the basis of the results reported in this thesis, the prediction procedure 

is, generally speaking, able to handle subsonic, transonic and supersonic flows. 

However, when flow with shocks is of concern the shock resolution is very poor 

as no special technique has been employed to handle shocks. Moreover, the 

hyperbolic nature of supersonic flow cannot be simulated exactly. 
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7.2 Suggestions for Future Work 

The present study has not covered some areas both in depth and breadth. Further 

research could be usefully performed to improve the effectiveness of the prediction 

procedure and to deepen our understanding of some physical phenomena. Some 

examples are as follows: 

The present numerical scheme simulates the hyperbolic nature of supersonic 

flow only partially. The linkage between each node and the neighboring nodes in 

the lateral direction have not been modified. In reality the variables at a certain 

location should be affected by the small disturbances only within certain `influ- 

ence zones' bounded by the characteristic curves. However, the characteristic 

angles vary throughout the flow field and are not known in advance. It is, there- 

fore, very difficult but not impossible to construct the required grid to simulate 

this feature exactly. 

The prediction procedure has not employed any special techniques to handle 

shocks, and hence shocks are oversmeared and the shock resolution is very poor. 

In order to solve supersonic shock flow successfully it is necessary to employ 

a more accurate shock-capturing numerical scheme to evaluate the steady-state 

Navier-Stokes equations. 

Turbulence modelling is still a great challenge for incompressible flow, let 

alone compressible flow. Most turbulence models developed so far are only for 

incompressible flow and the literature on turbulence modell ing for the compress- 

ible case is much more scarce. There is considerable scope since a great deal of 
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research work in this area needs to be done so as to improve our understanding 

of the physical phenomena. 

Systematic study should be undertaken to investigate the effects of computa- 

tional boundary conditions on the whole solution procedure for compressible flow, 

in particular for supersonic flow. It has been stated that the established princi- 

ple on the supersonic flow outlet boundary treatment is, in some cases, rather 

misleading. However, when there are no variables given at the outlet then what 

kind of boundary treatment should be used. The interpolation method may be 

valid in some cases but not always. Further study should be done on this aspect. 

The flow field in scramjet combustor is very complicated due to highly turbu- 

lent reacting mixed supersonic/subsonic flow. It is of great value both for better 

understanding of mixed supersonic/subsonic reactive flow and engineering appli- 

cations to be able to predict such complicated flow accurately. Further research 

work on reacting mixed supersonic/subsonic flow is of great importance to future 

long-range commerical aviation and outer-space exploration. 

The vortex throttles used in the present study are very effective in producing 

a high pressure drop as a result of dissipating the high tangential velocity. How- 

ever, in some applications it would be useful to exploit the centrifugal force and 

tangential velocity created within a vortex, without the penalty of the high over- 

all pressure loss. This would require recovery of the vortex energy, as opposed 

to its dissipation as in the throttle. Turbulence usually extracts energy from the 

mean flow and dissipates it by viscous action, which is contrary to this objective. 

Nevertheless, turbulent kinetic energy is, in most cases, much less than the total 
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kinetic energy. For example, in our case, the turbulent kinetic energy predicted 

by the Reynolds stress model in the chamber is only about 3% of the total kinetic 

energy. Therefore, Significant energy recovery would be possible if losses due to 

the axial recirculation, the sudden expansion at the axial port , and friction losses 

within the port, could be minimised. 
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