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Abstract

Over the last few years, the use of Model Driven Engineering (MDE) in in-
dustrial applications has been increasing rapidly. For the use of MDE-based
applications at a larger scale, they should scale well in terms of the size of the
model, execution time, and memory consumption. Adapting the use of MDE
for extensive software landscapes, where the underlying models grow large in
size poses various scalability challenges. When model management tools run on
pay-as-you-go cloud-based resources, inefficiency and limited scalability incur
substantial costs. Hence, there is vested interest from vendors of cloud-based
MDE solutions for efficient and scalable model management tools.

There are specific high-level languages to develop model management pro-
grams tailored for the specific tasks they target. This work aims to improve the
performance of certain types of model management programs through static
analysis. An approach is proposed for optimising model management tasks,
particularly model validation, model-to-model transformation and model com-
parison over large-scale models. The proposed approach leverages static analysis
and automated program rewriting techniques to optimise model management
programs over large-scale EMF-based models. This optimisation approach aims
to bring efficiency in terms of execution time and memory footprint so that
developers can still express model management programs in high-level language
and execute these programs efficiently. The program is automatically rewritten
to an optimised version (where possible). The optimised program is semanti-
cally equivalent to the original program but faster and more efficient to execute.
The experiments of this study have shown a significant performance gain in
execution time and memory footprint.
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Chapter 1

Introduction

This chapter discusses the significance of addressing scalability challenges in the
broader Model-Driven Engineering (MDE) context. It states and explains the
problem statement and then it lists contributions of the research.

Section 1.1 provides a general context of this research work. Section 1.2
presents the problem that this research work aims to address. Section 1.3 pro-
vides a brief description of the contributions of this thesis along with putting the
putting the contribution in the wider context of software engineering. Finally,
the structure of this thesis is presented in Section 1.4.

1.1 Context

In today’s world, with the advancement in software systems, the complexity
is also increasing proportionally. Different software methodologies have been
proposed to address this complexity challenge. Over time, these methodolo-
gies, have been aiming to improve software quality and productivity. Over the
past few decades, approaches have been focusing on various features of software
quality, but the main aim is to reduce the complexity and raise the abstraction
level.

MDE [8, 9] is a software engineering methodology that considers models as
first-class artefacts, raising the level of abstraction. Models are the first class
citizens in the software development life cycle. It allows software developers
to focus on the problem domain (e.g. aircraft engines, banking transaction
systems) rather than implementation details (such as programming languages,
backend technology etc.). Over the course of time, the use of MDE is becoming
an increasingly popular trend in both academia and industrial application [10].
The use of MDE provides benefits not in just making complexity manageable
but also it increases productivity [11, 12] by automating processes like code
generation and enhances software product quality. In MDE, some artefacts such
as working source code, documents etc. are automatically generated from one
or more models. Part of the entire code is a result of auto generation but both
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hand-written and generated code often co-exist in model-based development
processes.

Though there is an increased popularity of MDE compared to traditional
software engineering methodologies, there are still certain challenges limiting
the wider use of MDE in industry such as scalability and collaborative devel-
opment [13]. These challenges are discussed in detail in Section 2.3. One of
the main challenges in the context of this research is the poor scalability [14,15]
across various dimensions of MDE tools that do not allow them to scale for large
applications having several collaborating users. Scalability becomes a critical
issue when it comes to very large and complex models such as those involved
in enterprise applications – for example in industries such as automotive and
aerospace. In order to utilise the benefits of MDE in these complex and large
scale industrial applications the tools and technologies need to be scalable. This
can enable developers to develop and manipulate large-scale models in a collab-
orative manner with other developers.

This research aims to tackle the scalability challenge, producing novel tech-
niques and algorithms for the optimisation of certain model management pro-
grams over large-scale models by leveraging static program analysis and auto-
mated program rewriting techniques. The work aims to produce a prototype
that will design and implement algorithms and techniques on top of an existing
model management languages and to demonstrate the performance benefits of
the proposed optimisations using experimental evaluation.

1.2 Problem Statement

A typical MDE workflow includes several tasks, including model validation,
model-to-model transformations, and model-to-text transformations. The pro-
grams to automate these tasks are composed of a common set of queries/ex-
pressions (such as iterating over collections of elements in a model) operating
over model elements. Queries on models can be specified using general-purpose
programming languages such as Java, or using tailored model-management lan-
guages such as the Object Constraint Language (OCL) [16] – and its vari-
ous flavours embedded in model-to-model and model-to-text transformation
languages such as Acceleo [17] and ATL [18] – the Epsilon Object Language
(EOL) [19] and its task-specific languages that build on top of it, and the VI-
ATRA Query Language (VQL) [20]. The main strength of dedicated model
management languages is that they offer built-in abstractions for common tasks
(e.g. rule-based decomposition and element resolution in model-to-model trans-
formations, protected regions for mixing generated and hand-written content
in model-to-text transformations, constraint dependency management in model
validation) which facilitates more concise, maintainable and technology-independent
model management programs.

The main shortcoming of these dedicated model management languages
compared to general-purpose languages such as Java is performance. While
widely-used general-purpose languages are typically compiled and benefit from
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advanced runtimes offering features such as adaptive optimisation and microar-
chitecture specific speed-ups, model management languages are predominately
interpreted, and therefore their execution speed is substantially lower. This can
become a scalability bottleneck as models grow in size and inhibit their applica-
bility to projects that involve large models [14,21]. While executing queries on
models containing a large number of model elements, for example in the order of
millions, a significant performance cost in terms of execution time is commonly
incurred.

In this work, an architecture is proposed for improving the execution speed
of a subset of interpreted model management programs namely querying, valida-
tion, transformation and comparison over large EMF-based models, written in
languages of the Epsilon1(discussed in detail in Chapter 2) platform, by using
static analysis and automated program rewriting techniques. The envisioned
approach aims to provide optimisations for several model management tasks.
The experiments are carried out on large-scale models containing up to several
millions of model elements, to demonstrate the performance benefits compared
to the traditional execution of model management programs.

1.3 Contributions

Scalability is one of the key challenges identified in the field of model-driven
engineering. In this thesis, the following contributions are presented to optimise
the performance of model management programs.

Figure 1.1 places the research area into the wider context of MDE and
software engineering in a tree-structured diagram with the contribution areas
labelled in yellow. The diagram goes top-down from general to specific concepts,
omitting ones not relevant to this work as it becomes more specific. This work
aims at optimising model management programs more specifically model query-
ing, model validation, model-to-model transformations and model comparison
to tackle the scalability challenge in MDE. The main contributions of this thesis
are as follows:

• Optimisation of model querying and model validation programs
over EMF-based models by pre-computing indices to speed up property-
based model element filtering. This is achieved using static analysis and
program rewriting. Additionally, this approach has been used in the con-
text of translating EOL expressions to Viatra for providing incremental
querying (explained in detail in Chapter 5).

• Optimisation of model-to-model(M2M) transformation programs
to reduce the size of the transformation trace by leveraging static analy-
sis to translate from a rule-based M2M program to an imperative M2M
program (explained in detail in Chapter 6).

1https://eclipse.dev/epsilon/
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Figure 1.1: A tree structured representation of thesis contribution to the field
of Software Engineering

• Optimisation of model comparison programs written in the Epsilon
Comparison Language (ECL), by pre-filtering and indexing the elements
to be matched using static analysis and automatically rewriting the fil-
tered indices and hence reducing the search space (explained in detail in
Chapter 7).

1.4 Thesis Structure

Chapter 2 provides an overview of MDE with Section 2.1 introducing models,
metamodels and also presenting basic terminology in the MDE world followed
by an overview of the current state-of-the-art MDE tools in Section 2.2; Sec-
tion 2.3 presents the challenges in terms of scalability particularly discussing
scalable querying in detail in Section 2.4 and also reviews various widely used
optimisations in the field of databases in Section 2.5 .

Chapter 3 states the analysis and hypothesis of this research. It starts
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with the Section 3.1 presenting the analysis of the literature review presented in
Chapter 2 and then the research objectives and questions are presented. Finally
the research hypothesis is stated followed by the research scope.

Chapter 4 provides details about the static analyser which is the underpin-
ning tool used for automatic program rewriting. Section 4.1 presents the overall
architecture of the static analysis. It provides a detailed description of various
components in Section 4.2, 4.4 and 4.5. Section 4.6 discusses the static analysis
for EOL, then EVL static analysis is detailed in Section 4.7. ETL and ECL
static analysis is described in Sections 4.8 and 4.9 respectively, followed by re-
sults of applying the static analysis on Eugenia2 as a case study in Section 4.10.
Finally, the related literature on static analysis is stated in Section 4.11.

Chapter 5 presents the first contribution, discussing the optimisation of
queries operating over EMF models. First it presents the motivating example
in Section 5.1 and then Section 5.2 describes an approach to efficiently query
EMF models by optimising type-level model queries. This is done using static
analysis followed by automated custom indices. This approach is extended to
provide incremental querying using the EOL to Viatra translation in Section 5.3.
Finally it presents a case study used for experiments to evaluate the performance
gain by the proposed approach and finally the results obtained in Section 5.2.4.

Chapter 6 describes a novel approach for selectively tracing model to model
transformation programs. Starting from a motivating example in Section 6.1,
it presents an overall architecture of the proposed approach and then describes
all the components step by step in Section 6.2. Finally, Section 6.3 presents
the evaluation of the selective traceability approach by presenting the results
of experiments evaluating the execution time and memory consumption and
concludes with quantitative comparison to the other state-of-the-art tools.

Chapter 7 presents the final major research contribution of this thesis
i.e., an approach for optimisation of model comparison programs. After present-
ing the motivating example in Section 7.1, Section 7.2 discusses the approach for
an efficient comparison of two models by automatically rewriting expressions to
filter the elements before comparing them. Finally it presents the experimental
setup and results in Section 7.3.

Lastly, Chapter 8 concludes the thesis and provides a summary of all the
knowledge gained through this work in Section 8.1 and concludes with iden-
tifying the contributions to the field of model-driven software engineering in
Section 8.2. Additionally, Section 8.3 pins down possible future directions for
the research and suggests areas for further exploration.

2https://eclipse.dev/epsilon/doc/eugenia/
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Chapter 2

Background

This chapter presents a broader context for this research. It starts with an
overview of the model-driven engineering field and then discusses some core
terminology. It also provides an overview of various popular MDE tools being
used in the industry nowadays, detailing the ones that are used in this research.
Then, some areas of active research in MDE are presented. Finally, state-of-
the-art model querying approaches and their limitations are presented.

2.1 Model Driven Engineering

MDE is a software engineering approach, where models are the first-class arte-
facts of the software engineering process.. In general, an MDE methodology
consists of the following steps:

• Concepts: Concepts build up the methodology and include everything
ranging from language artefacts to actors.

• Notations: Concepts are represented using notations usually through the
introduction of domain languages

• Process and Rules: Processes and rules are the tasks that result in the cre-
ation of the final product, providing guidelines for their coordination and
management, and assurance about the expected quality (such as accuracy,
consistency, etc.) of the process or the product.

• Tools: Tools are the applications that automate or facilitate various activ-
ities of the MDE process and help developers use the concepts represented
through the various notations.

According to [22], the Niklaus Wirth programming equation (“Algorithms
+ Data Structures = Programs”) in MDE software engineering process takes
the following form

Models+ Transformations = Software
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Software in the above equation refers to the code and also the documenta-
tion. Models expressed as notations are also referred to as modelling language.
Considering this equation, the key components of MDE will be discussed : a)
models b) meta-models c) model management tasks. Model management tasks
include tasks such as querying, transformation and validation. There are certain
MDE tools and languages that allow users to create models and then efficiently
manage(query, validate, transform) them. The relevant ones to this work of
these tools and languages for model management programs are discussed in this
chapter.

2.1.1 Models

A model is an abstract representation [22] defined for a real-world system or a
phenomenon for a specific purpose. Models often omit concrete details because
they are not meant to capture the entire system or phenomenon. In terms of
the systems that model represent, they can be either descriptive or prescriptive.

2.1.1.1 Descriptive Models

Descriptive models are the ones used to describe the phenomena that already
exist. It is usually done to explain/understand a natural phenomenon or legacy
system. These models are often extracted by observation, experimentation and
reverse engineering. A few examples of descriptive models are solar system
models, historic stock market analysis models etc., These models are used to
understand how these systems work, to formulate general patterns and some-
times to make predictions.

2.1.1.2 Prescriptive Models as Sketches

Prescriptive models on the contrary are used to present an abstract view of
a the system that does not exist yet. They define the system that yet needs
to be implemented and are used to discuss and verify the system properties
without building the actual system. Prescriptive models in software engineering
were originally started with simple sketches to guide a software engineer about
the properties of software needed to be built. Prescriptive models are usually
the result of informal discussions and do not follow a specific set of rules or
guidelines. One such example is shown in Figure 2.1. It shows components and
different inputs, outputs and dataflow between them which helps developers
understand the required system by the customer.

2.1.1.3 Prescriptive Models as Blueprints

Prescriptive models can also be used as a blueprint and are developed using stan-
dard modelling languages (e.g. UML). These models capture domain knowledge
and design decisions. They require human interpretation and manual implemen-
tation while still following a standard structure the modelling language provides.
One such example is a class or sequence UML diagram to represent the static
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Figure 2.1: An example prescriptive model as a sketch available online

:Student :Course

enrols

Figure 2.2: An example prescriptive model as a blueprint

and the dynamic behaviour of the software to be developed as shown in Fig-
ure 2.2. This diagram presents the sequence diagram showing the enrollment
activity where a Student enrolls in a Course.

2.1.1.4 Prescriptive Models as Programs

Prescriptive models can also be used as programs themselves. They are pre-
cise enough to drive automated system implementation/property verification.
They are captured in unambiguous (typically domain-specific) languages and
machine-processable formats. Also, supported by executors, simulators and
code generators. One example is a Simulink model as shown in Figure 2.3. This
model takes a sine wave as an input, applies a gain of 2.0 passes it through a
saturation block and shows the output on scope. C code can automatically be
generated from a Simulink model.

In MDE models are not just sketches or blueprints, models are the pri-
mary source that automatically generates other artefacts such as documents
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Figure 2.3: An example prescriptive model as a program

and source code. In MDE, domain-specific models are used to automate the
development of certain parts of a software system, while the other parts can
still be handwritten by the developers as necessary.

Models are represented as instances of another abstract model which is
known as a metamodel [22]. Models have a defined abstract representation
(structure), metamodel can be defined as another abstract representation by
defining properties of elements in a model, their attributes and associations
between them. A model is an instance of its metamodel and conforms to its
metamodel in the same way as a computer program conforms to the grammar of
the programming language that it is written in. Metamodels are used to define
DSLs (domain-specific languages-specific languages for a particular domain or
context). DSLs are discussed in detail in Section 2.1.3.1. The whole MDE pro-
cess is described graphically in Figure 2.4, according to which a model conforms
to a DSL or a metamodel and then model management programs can generate
artefacts such as code, documentation, which along with handwritten code (if
required) constitutes the required software.

In MDE, models can be categorised in two categories on the basis of the
dimension of the system they represent:

Static models are models that represents static aspects of the systems in
terms of architecture and the structure of system.

Dynamic models focus on the behaviour of the system by depicting the
sequence of actions and how the different components of the system interact.

Some models can be both static and dynamic, because they model both
the dynamic and static aspects of a system. One such example is collabora-
tion diagram that represents the link and nodes(static structure) and also the
messages(dynamic behaviour) at the same time.

2.1.2 Metamodeling

Models are defined for different systems and these models are described by yet
other models which are known as metamodels. So a model can be considered as
an instance of the metamodel. As models are abstractions of a real-world system,
metamodel is yet another abstraction defining properties of the model itself. A
model needs a set of structural elements and rules that they must follow. These
rules can be described either informally (e.g., with natural language statements)
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Figure 2.4: An overview of MDE process

or by a structured representation that is called a metamodel (also referred to
as modelling language). A simple example of a tree model conforming to tree
metamodel is shown in Figure 2.5. In metamodel, Tree will have a string label,
can have multiple Trees as children and can have a parent Tree. In model, it can
be observed one Tree with label t1 having two children Tree t2 and t3. When a
model conforms to a metamodel what it means is that all elements of the models
are instances of its corresponding metamodel classes. A metamodel can further

conforms to

Figure 2.5: Conforms to relationship between model and metamodel

be defined using another subsequent model called a meta-metamodel. In theory
one can define an arbitrary number of metamodels but in practice metamodels
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can be defined on the base of metamodel themselves so it does not makes sense
to go beyond this level of abstraction.
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Figure 2.6: Relationship between models, metamodels and meta-metamodels

2.1.3 Modeling Languages

Modeling languages are one of the key components in the MDE world, as they
enable modelers specify the models for their respective systems. They can be
described in a graphical or a textual representation. These can be broader
categorised into:

2.1.3.1 Domain-Specific Language (DSLs)

Domain-Specific Languages refer to modelling languages designed with a specific
domain or application in mind. These languages aim to provide specialized
syntax, semantics, and constructs that cater to the unique requirements and
challenges of a particular field [22].

While DSLs have gained prominence in computer science, they have found
extensive usage across diverse domains. In the realm of web development,
HTML (Hypertext Markup Language) serves as a prominent DSL that enables
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the creation of structured web pages and content. By providing a standard-
ized markup syntax, HTML simplifies the process of designing and presenting
information on the World Wide Web.

In the field of databases, SQL (Structured Query Language) has emerged
as the de facto DSL for interacting with relational database management sys-
tems (RDBMS). SQL offers a concise and expressive syntax specifically tailored
for querying, modifying, and managing data stored in structured databases.
Its domain-specific nature allows developers to efficiently work with databases,
retrieve information, and perform complex operations with ease.

2.1.3.2 General Purpose Modeling Languages (GPMLs)

GPMLs on the other hand are the modelling languages that can be used for
modelling in a wider domain. They offer a general purpose frameworks for
modelling systems from various domains. For instance, there are a large number
of off-the-shelf modelling languages. Even though they are broad, they are still
scoped to be largely used within one larger software domain, some of them are:

• UML [23] for object-oriented systems

• Simulink by MATLAB [24] mainly used for control systems

• Archimate [25] for enterprise architecture

• BPMN [26] for business modelling.

2.1.4 Model Management

Software engineers develop metamodels and create models conforming to them.
In MDE, a common goal is to generate other artefacts from models. Another
reason to use MDE is to be able to do analysis and verification of properties
of the system. MDE Equation [27] states transformation as the core process.
Research in [28] has shown that other tasks such as validation, comparison,
merging etc. are of equal importance and are required often for MDE processes.
These, in general, are commonly referred to as “model management tasks” [29].

2.2 MDE Technologies

MDE is extensively used in industries where high integrity and reliability soft-
ware is required [30–33] because software errors can lead to very expensive
product recalls,loss of life etc. It is also heavily used in the automotive and
aerospace sector. Rolls-Royce [10] is using model-driven engineering to support
future generations of control and monitoring system for aerospace applications.
Thales is funding a large open-source model-driven systems engineering toolkit
(Capella) [34]. AUTOSAR [35] initiative in the automotive industry. The EU
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project Lowcomote that this research is funded by [36] itself has nine indus-
try partners in its consortium and which are using MDE for developing their
products.

MDE tools include:

• IBM Rhapsody [37] - A tool used by system engineers to create embedded
systems

• MagicDraw [38] - A software modelling tool with teamwork support

• PTC Integrity Modeller [39]

• ANSYS Scade [40] - A model-driven engineering environment for criti-
cal embedded software, which provides requirements management, model-
based design, verification, code generation, and interoperability with other
development platforms

• JetBrains MPS [41] - A tool by Jetbrains for designing domain-specific
languages

There is plenty of tooling available for performing different tasks of MDE
process. The ones that are used in the context of this research are detailed. The
section below discusses the widely-used modelling framework EMF and then
Epsilon will be discussed which is a family of model management languages.
Finally, it is concluded with the discussion about Viatra which is a model
querying, validation and framework.

2.2.1 The Eclipse Modeling Framework (EMF)

EMF [1] is the most popular metamodelling architecture. It is an Eclipse-
based robust and open-source modelling framework. EMF, being the basis of
Eclipse modelling eco-system is widely used in many open-source projects such
as ATL [42], Viatra [43] , Epsilon, Acceleo [17]. EMF provides a modelling
language Ecore, which is partially based on the MOF 2.0 standard [44].

All EMF models are built using Ecore language. The top-level object in an
Ecore metamodel is an EPackage as shown in Figure 2.7, a metamodel is ex-
pressed as an EPackage. EPackage defines a unique identifier (nsURI) which is
used as a unique key identifier for retrieving metamodel from EPackageRegistry.
EPackageRegistry stores a map of identifiers of metamodels. Each package can
contain EClasses and EDataTypes inherited from EClassifier. EClasses have
EStructuralFeatures which can be either EAttributes or EReferences.

EMF, by default seralises models in XML1-based representation called as
XML Metadata Interchange (XMI2). This seralisation format allows to save a
model in multiple physical files and use lazy references to link them together
and thus allowing several optimisations. There are different editors other than

1https://www.omg.org/spec/XML/
2https://www.omg.org/spec/XMI/
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Figure 2.7: Ecore modelling language [1]

default tree-based (hierarchical structure) for writing Ecore models such as Em-
fatic [45] (textual language) or Sirius diagram based graphical editor for Ecore.
Sirius [46] is an Eclipse project which allows one to easily create their own
graphical modeling workbench by leveraging the Eclipse Modeling technologies,
including EMF and GMF.

2.2.2 Epsilon

The Extensible Platform for Specification of Integrated Languages for mOdel
maNagement (Epsilon) [47] is an Eclipse-based platform for MDE processes. It
includes languages used to facilitate the automation of different model man-
agement operations. Epsilon is divided into two main parts a) Task-Specific
languages and b) Technology specific drivers through Epsilon Model Connec-
tivity Layer(EMC). Epsilon is a model agnostic technology, while a lot of MDE
platforms are often bound to a specific underlying modelling technology. Epsilon
seamlessly accesses and manages several underlying model persistence technolo-
gies (EMF, MySQL, Spreadsheets etc.). These technologies are supported by
Epsilon through several EMC drivers, EMC layer is extensible, any new mod-
els defined/persisted in other technology can be implemented and added to the
EMC layer as a driver. The architecture of Epsilon is shown in Figure 2.8.

Task-specific part of Epsilon contains several languages each for specific
model management tasks. EOL is the base language of Epsilon while other
languages are built on the top of EOL. EOL is quite similar to OCL [16] (is
one of a well-known and frequently-used declarative language for querying and
validation of models) in syntax with additional features such as access to multi-
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Figure 2.8: An overview of Epsilon architecture
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ple models (through EMC). Other languages can be easily added to Epsilon by
reusing and extending EOL to remain consistent. Some common model man-
agement operations and the corresponding languages in Epsilon are mentioned
as follows. A few languages will be discussed in detail later in this section that
have been used in this research.

• Model Querying: Querying is used to extract information of interest
from the model can be done using Epsilon Object Language (EOL) [48].
EOL provides imperative constructs to query models and is inspired by
OCL. EOL is explained in more detail in Section 2.2.2.2.

• Model Validation: Validation is often used to evaluate certain con-
straints on models to identify errors and inconsistencies. Models can be
validated using Epsilon Validation Language (EVL) [49]. EVL is explained
in more detail in Section 2.2.2.3.

• Model to Model Transformation (M2M): Model-to-model trans-
formation is a primary task in an MDE workflow and it transforms one
or more input model(s) to one or more output model(s). Models can
be transformed to other models using Epsilon Transformation Language
(ETL) [50]. ETL is explained in more detail in Section 2.2.2.4.

• Model to Text Generation (M2T): Code generation is one of the
main appeal of MDE. So M2T is used to generate textual artefacts such
as code, documentation etc. Code can be generated from models using
Epsilon Generation Language (EGL). [51]

• Model Merging: Model merging is an activity to combine multiple mod-
els into a single coherent one. Models can be merged using Epsilon Merg-
ing Language (EML) [52]. Models are merged by first establishing corre-
spondences using ECL which is explained below.

• Model Comparison: Model comparison is an activity to identify match-
ing elements in models. Model comparison is usually a prerequisite for
activities like model merging and model transformation testing. Models
can be compared using Epsilon Comparison Language (ECL) [53]. ECL
is explained in more detail in Section 2.2.2.5.

• Pattern Matching: Pattern matching is a model management activity
to match models conforming to same or different metamodels based on the
elements’ characteristics and relations. Epsilon Pattern Language (EPL)
is used to contribute pattern matching capabilities to Epsilon. [54]

• Model Migration: Model migration is the process of updating mod-
els as the corresponding metamodel changes or evolves. Models can be
migrated to newer versions of models conforming to the new metamodel
using Epsilon Flock. [55]
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• Model Generation: There is often a need to generate models of dif-
ferent sizes and structure that exercise specific features of a program for
testing and benchmarking. Models can be generated using Epsilon Model
Generation Language (EMG). [56]

• Unit Testing: Epsilon also provides a tailored testing framework to test
programs written in Epsilon languages, based on EOL and Ant workflow
tasks. [57]

• Dataset Extraction: Epsilon provides a Pinset language that provides
table-like datasets extraction facilities from models. [58]

• Update Transformation: Using update transformations, in place mod-
ifications are done on the source model itself. Update transformations can
be performed using Epsilon Wizard Language(EWL). [59]

Epsilon platform is considered for this research project for a number of rea-
sons:

• Epsilon supports a number of model persistence formats and can
even be extended to work with unsupported technologies using EMC layer.
In this research the only focus is on EMF-based models, but with some
extra effort this work can be extended to various other modelling plat-
forms.

• Second, is that all languages of Epsilon extend a common core language
- EOL. This common core language makes it easier to reuse the optimisa-
tions to be used across other languages because other Epsilon languages
use common EOL expressions.

• Epsilon is easily extensible in various aspects such as adding support
for a new modelling technology by extending the EMC layer with a new
technology driver or implementing a new model management language on
top of EOL.

2.2.2.1 Model Connectivity Layer

Epsilon has its model connectivity layer through which model management pro-
grams can access models from different modelling technologies such as EMF,
Simulink in a uniform way. EMC provides an IModel interface that consists of
a number of methods to query and manipulate the model at a higher abstraction
level than the underlying persistence technology. A graphical view of different
classes of EMC layer is shown in Figure 2.9.

Each driver present in Epsilon implements the IModel interface and to add
language specific support to load models and retrieve model elements based
on the required properties. IModel interface specifies properties such as name
and alias of the model. IModel also provides methods for loading and storing
models, type-related methods such as filtering elements of a specific kind and
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Figure 2.9: Overview of EMC Layer [2]

methods and for creation and modification of model elements. In the context
of any model management activity, ModelRepository class acts as a container
for the models. ModelGroup is a group of same alias models. A model group
is formed when there are two or more models of the same aliases. This is to
perform aggregate operations on the models sharing common alias.

EMC provides a list of drivers to use models of various technologies to
be manipulated using Epsilon languages. The most popular ones are EMF,
MATLAB/Simulink, Cameo/MagicDraw Systems Modeler, XML/CSV/Excel
and Epsilon Hawk.

2.2.2.2 Epsilon Object Language

EOL3 is the core language of Epsilon and all other languages extend EOL, using
the common expressions to access model elements and their properties. EOL
is inspired by OCL and has a very similar syntax. EOL can also be used as a
general-purpose model management language as, unlike OCL that is side-effect
free, it is able to change the underlying models it accesses, if required.

Two example EOL programs is depicted in Listing 2.1. An EOL program
can have a main statement block (Line 13) and user defined operations both in
the same file and imported files (Lines 4-6). An EOL program can also import
other EOL files (Line 12). The Operation in file squareUtil.eol takes an Integer

3https://www.eclipse.org/epsilon/doc/eol/
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argument and returns an Integer. Then in the file example.eol the operation
square() is called with an argument and the resultant Integer is printed on the
console using a built-in println() method.

EOL has a built-in type system which includes Primitive types (String, Inte-
ger, Real and Boolean), model element type, collection types (Bag(non-unique,
unordered collections), Sequence(non-unique, ordered collections), Set(unique,
unordered collections), OrderedSet(unique, ordered collections)) and map type.
All these type extend Any type, which is similar to OclAny type. The types in
Epsilon are discussed in more detail in Section 4.3.

1 /* ---------------------------------------------------

2 file: squareUtil.eol

3 ----------------------------------------------------*/

4 operation square(num: Integer) : Integer {

5 return num*num;

6 }

7

8 /* ---------------------------------------------------

9 file: example.eol

10 ----------------------------------------------------*/

11

12 import "squareUtil.eol";

13 square (4).println("4*4 = "); // main body

14

15 // more user defined operations could be placed here

Listing 2.1: An example EOL program

2.2.2.3 Epsilon Validation Language

EVL4, contributes model validation capabilities to Epsilon. EVL can be used
to validate a single model or also for cross validating a number of models. The
models, as in other Epsilon languages, can be of various backend technologies.
The concrete syntax of EVL is shown in Listing 2.2. It demonstrates the concrete
syntax of the context, constraint and fix abstract syntax constructs discussed
below.

1 (@lazy)?

2 context <name > {

3 (guard (: expression)|({ statementBlock }))?

4 (constraint)*

5 }

6

7 ((@lazy)?

8 (constraint|critique) <name > {

9 (guard (: expression)|({ statementBlock }))?

4https://www.eclipse.org/epsilon/doc/evl/
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10 (check (: expression)|({ statementBlock }))?

11 (message (: expression)|({ statementBlock }))?

12 (fix)*

13 }

14

15 fix {

16 (guard (: expression)|({ statementBlock }))?

17 (title (: expression)|({ statementBlock }))

18 do {

19 statementBlock

20 }

21 }

Listing 2.2: Concrete syntax of EVL

An EVL program depicted in Listing 2.3 for validating a movie model con-
forming to the IMDB metamodel, an excerpt of which is shown in Figure 2.10.
IMDB metamodel is a movie database proposed in the Transformation Tool
Context (TTC) 2014 [60]. An EVL program can contain a number of con-
straints(Line 9, 18, 22) . Constraints can be marked as lazy or non-lazy,
a lazy constraint will only be executed when invoked by satisfies operation
to avoid unnecessary duplication. satisfies(constraint: String) :Boolean, sat-
isfiesAll(constraints: Sequence⟨String⟩) and satisfiesOne(constraints: Sequence
⟨String⟩): Boolean are the built-in operations provided by EVL. These opera-
tions can be used in a constraints guard to specify other constraints which need
to be satisfied. Constraints are grouped by the context (Line 7, 15) they apply
to. An EVL program can also have pre (Line 1-5) and post block (Line 31-35)
to be executed before and after the execution of constraints respectively. A
constraint can have a guard block to filter which model elements of context, the
constraint is applied to. Every constraint has a check block (Line 11) which is
the actual condition to be evaluated. Moreover, a constraint can have a fix block
that specifies a quick repair if the constraint’s check condition is not satisfied.

In the example in Listing 2.3, it validates a model conforming to IMDB
metamodel in Figure 2.10. It has pre block which computes the number of
movies (Line 2), number of actors (Line 3) and the average number of actors
per movie (Line 4). These three values are stored in global variables. The first
constraint (Line 9-12) checks such movies where the number of actors are more
than the average actors have valid actor names. The constraint IsValid (Line 18-
20) checks if the name of the person using the helper function isPlain() returns
true. The last constraint ValidMovieYears (Line 22-24) validates Person (Line
15). This constraint ensures that all movies of an actor are released 3 years after
the actors birth year. Finally, post block will print the global variable values.

1 pre {

2 var numMovies = Movie.all.size();

3 var numActors = Person.all.size();

4 var apm = numActors / numMovies;
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Figure 2.10: An Excerpt of the IMDB metamodel

5 }

6

7 context Movie {

8

9 constraint ValidActors {

10 guard:self.persons.size() > apm

11 check:self.persons.forAll(p|p.satisfies("IsValid"))

12 }

13 }

14

15 context Person {

16

17 @lazy

18 constraint IsValid {

19 check:self.name.isPlain ()

20 }

21

22 constraint ValidMovieYears {

23 check:self.movies.forAll(m| m.year+1>self.birthYear)

24 }

25 }

26

27 operation String isPlain () : Boolean {

28 return self.matches("[A-Za -z\\s]+");

29 }

30

31 post {

32 ("Actors per Movie="+apm).println ();

33 ("# Movies="+numMovies).println ();

34 ("# Actors="+numActors).println ();

35 }

Listing 2.3: An example EVL program
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Figure 2.11: Tree and Graph Metamodel

2.2.2.4 Epsilon Transformation Language

ETL5 is a hybrid rule-based language for model-to-model transformation in Ep-
silon. A hybrid M2M transformation language has both imperative and declar-
ative constructs. The concrete syntax of ETL is shown in Listing 2.4.

An ETL program (module) takes as input a number of source models and
transforms them into a number of target models. An ETL program is depicted in
Listing 2.5 for transforming tree model to graph model for which the metamodel
is shown in Figure 2.11. The models, as in other Epsilon languages, can be of
heterogeneous modelling technologies (e.g., an EMF model can be transformed
to a Simulink model or an XML document can be transformed to an Excel
spreadsheet). An ETL module can contain a number of transformation rules
(Line 5-17), transforming source model elements to one or more target model
elements.

1 (@abstract)?

2 (@lazy)?

3 (@primary)?

4 rule <name >

5 transform <sourceParameterName >:< sourceParameterType

>

6 to <targetParameterName >:< targetParameterType >

7 (,<targetParameterName >:< targetParameterType >)*

8 (extends <ruleName > (, <ruleName >*)? {

9

10 (guard (: expression)|({ statementBlock }))?

11

12 statement+

13 }

14

15 (pre|post) <name > {

16 statement+

5https://www.eclipse.org/epsilon/doc/etl/
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17 }

Listing 2.4: Concrete syntax of ETL

An ETL module can optionally have a pre (Line 1-3) and a post(Line 18-20)
block of statements, to be executed before and after the execution of transfor-
mation rules respectively. A transformation rule can extend one or more other
transformation rules and can be declared as abstract or lazy through relevant
annotations:

• An abstract rulemust be extended by another transformation rule. Such
rules cannot be invoked standalone, they get invoked only when the rule
that extends them is invoked.

• A primary rule will always get executed automatically.

• A lazy rule will get executed only when it is required by another trans-
formation rule.

1 pre {

2 // to be executed before the execution of

constraints

3 }

4

5 rule Tree2Node

6 transform t : Tree!Tree

7 to n : Graph!Node {

8

9 n.label = t.label;

10

11 if (t.parent.isDefined ()) {

12 var edge = new Graph!Edge;

13 edge.source = n;

14 edge.target = t.parent.equivalent ();

15 }

16 }

17

18 post {

19 // to be executed after the execution of constraints

20 }

Listing 2.5: An example ETL program

In a model-to-model transformation, resolving elements created by other trans-
formation rules is quite a common and recurring task. For this resolution ETL
provides the equivalent()/equivalents() operations. The elements returned by
these operations follow the respective order of the rules that have created them.
An exception to this occurs when one of the rules is declared as primary, in
which case its results precede the results of all other rules.
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2.2.2.5 Epsilon Comparison Language

The Epsilon Comparison Language (ECL)6 is a hybrid rule-based dedicated
model comparison language, provided by the Epsilon framework. ECL lets de-
velopers specify custom comparison algorithms in a rule-based script to identify
matching elements between homogeneous and heterogeneous models. The con-
crete syntax of ECL is shown in Listing 2.6.

An example ECL program is depicted in Listing 2.7. An ECL program
contains a number of MatchRules(Line 5-12) and optional pre(Line 1-3) and
post-block(s) (Line 14-16) executing before and after the rules respectively.

1 (@lazy)?

2 (@greedy)?

3 (@abstract)?

4 rule <name >

5 match <leftParameterName >:<leftParameterType >

6 with <rightParameterName >:< rightParameterType >

7 (extends <ruleName >(, <ruleName >)*)? {

8

9 (guard (: expression)|({ statementBlock }))?

10 compare (: expression)|({ statementBlock })

11 (do {statementBlock })?

12 }

13

14

15 (pre|post) <name > {

16 statement+

17 }

Listing 2.6: Concrete syntax of ECL

A MatchRule enables developers to create their comparison logic between
model elements at a high level of abstraction. MatchRules consist of a declared
name along with two parameters (left (Line 6) and right (Line 7)) to specify the
types of elements they can compare. A MatchRule can also optionally extend
a number of match rules and can be labelled as abstract, lazy (Line 12) and/or
greedy using corresponding annotations.

• An abstract match rule cannot be invoked ”individually”, they are
invoked when a rule(s) that extends them is executed.

• A lazy match rule will get executed only when it is required by another
MatchRule, using the matches operation.

• A greedy match rule is executed for all pairs that have a kind-of rela-
tionship with the types specified by the left and the right parameters of
the MatchRule.

6https://www.eclipse.org/epsilon/doc/ecl/
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Match

-left: Object
-right: Object
-matching: Boolean

MatchTraceMatchRule

matches *rule

Figure 2.12: Structure of MatchTrace of ECL

1 pre {

2 // to be executed before the execution of

constraints

3 }

4

5 rule Movie2Movie

6 match l : imdb1!Movie

7 with r : imdb2!Movie {

8 compare : l.title= r.title and

9 l.persons.matches(r.persons)

10 }

11

12 @lazy

13 rule Person2Person

14 match l : imdb1!Person

15 with r : imdb2!Person {

16 compare : l.name = r.name;

17 }

18

19 post {

20 // to be executed after the execution of constraints

21 }

Listing 2.7: An example ECL program

The result of an ECL comparison program is a MatchTrace after comparing two
models. The structure of MatchTrace is illustrated in Figure 2.12. MatchTrace
contains a number of Matches. Each match has a reference to the comparing el-
ements from each model, left and right. It also contains a boolean flag indicating
the result of matching two elements.
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2.2.3 Viatra

A brief introduction to Viatra is presented in this section, as it provides scal-
able querying over EMF-based models. The proposed query optimisation ap-
proach is integrated with Viatra that will be presented in detail in Chapter 5,
that is why Viatra is introduced here in this Section. Viatra is an open-source
model query, validation and transformation framework supporting the efficient
evaluation of model queries on top of EMF models [20]. The core language of
Viatra is the Viatra Query Language (VQL), which allows the definition of
model queries as incremental graph patterns. A graph pattern is a graph-like
structure consisting of conditions (nodes and edges) to be matched against a
large instance model. Viatra provides two engines to evaluate the graph pat-
terns on EMF models, local search and incremental. An example graph pattern
for quering imdb model conforming to the metamodel shown in Figure 2.10 is
depicted in Listing 2.8. Movie is a model class, title is a model feature of the
class Movie. The parameter of the pattern is type of Movie. Line 2 searches for
a movie with title “Spider Man”.

1 pattern find(movies: Movie) {

2 Movie.title(movies , "Spider Man");

3 }

Listing 2.8: An example VQL program

Consider the pattern is executed in Listing 2.8 over an imdb model named
SmallMovieSet containing three movies i.e., Super Man, Spider Man, Titanic.
Matcher provides the API to retrieve the results of the query by the following
API calls.

• hasMatch - returns true if there is one or more matches. hasMatch will
return true when Listing 2.8 is evaluated over SmallMovieSet.

• OneArbitraryMatch - returns one arbitrary matched element. OneArbi-
traryMatch will return Movie, Spider Man when Listing 2.8 is evaluated
over SmallMovieSet.

• allMatch - returns all matches. allMatch will return Super Man, Spider
Man, Titanic when Listing 2.8 is evaluated over SmallMovieSet.

• countMatch - returns the number of matches. countMatch will return 3
when Listing 2.8 is evaluated over SmallMovieSet.

2.2.3.1 Local Search Engine

The first execution engine supported by Viatra is the local search engine that
employs efficient search plans to compute and collect pattern matches [61]. Both
the local search engine and the incremental engine leverage the advantages pro-
vided by a base index. This base index serves as a cache, storing the base
relations (e.g., all Movies in IMDB model) and objects present in the model,
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categorized by their types. By organizing and indexing the data in this manner,
the search engines gain several benefits [62]. Firstly, the base index enhances
the search engines’ performance by providing quick access to the relevant data.
As the engines execute search operations, they can consult the base index to
efficiently navigate through the model and retrieve the required information.
The search engines can save time and computational resources by avoiding the
need to scan the entire dataset repeatedly.

2.2.3.2 Incremental Engine

The second one is the incremental engine implementing the RETE algorithm [63].
The incremental engine’s primary advantage lies in its ability to cache the
computed pattern matches. By storing these matches, the engine avoids re-
evaluating the entire model each time a search or query is performed. Instead,
it can incrementally update the cached matches based on incremental changes in
the data. This incremental re-evaluation significantly improves the engine’s per-
formance and responsiveness, especially in scenarios where the model is subject
to frequent updates or modifications.

2.3 Scalability Challenges in MDE

As MDE is increasingly applied to larger and more complex systems, the effi-
ciency and performance of development, in this case, is now a critical dimension
of research. Research suggests that MDE improves productivity [64], but certain
challenges still need to be addressed in the area. Although in present days MDE
is increasingly used, still there are a lot of significant research challenges [21]
in MDE such as traceability, analysis, maintainability and scalability. In this
section, the various scalability challenges will be discussed. Scalability in soft-
ware engineering has a different dimension such as a large number of software
developers, a large number of engineering tasks compared to MDE. To achieve
scalability in modelling, the goal is to be able to create large models and domain-
specific languages, being able to work on large models in a collaborative manner,
to query those models efficiently and to store and index them effectively. Thus,
scalability challenges in MDE are categorised as follows:

2.3.1 Scalable DSLs

Although MDE tools and technologies have been evolving a lot, still some mod-
els do not scale well, specially when it comes to some large-scale models and in
particular when combining models from different domains. Therefore, having
scalable DSLs means to be able to design and create a domain-specific language
for large models in an efficient way. When big models are anticipated, appro-
priate strategies should be offered to extend the meta-model structure in order
to improve the efficiency for certain model queries as shown in [13,65].
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Figure 2.13: Challenge of Scalability in MDE [3]
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2.3.2 Scalable Persistence

Another goal of scalability in MDE is to be able to store and load large mod-
els in an effective way reducing memory footprint. Connected Data Objects
(CDO) [66] is a framework to persist EMF-based models in relational databases.
CDO implements its own version control system which significantly hinders in-
dustrial adoption. CDO does not scale well when it comes to models larger than
a few hundred MBs. Other related work such as Mongo EMF [67] and Morsa [68]
exercise No SQL database for persisting models. Morsa is able to accomplish
scalable model persistence by using on-demand loading facilities that can col-
lect and update model pieces as needed. The most commonly used persistence
format is XMI. Often XMI files are very large as XMI includes the verbosity of
XML format. To address this issue there are many binary formats which scale
very well, in terms of file size.

Models are often required to be version controlled. It is a challenge to
query the models stored in large files especially when there are frequent fetches
from remote to local repository and back. Storing models in one single file
also results in frequent conflicts. Two approaches [69] for this problem are: 1)
Storing models in dedicated model repositories to enable model-level version
control like CDO [66] and MORSA [68] but this introduces different issues, such
as new technology needing to be adopted and pushback from industry to change
current practices. 2) Splitting models into many small fragments but this poses
issues like global querying for which frameworks like Hawk [5] are used to index
and query large models in a more efficient way.

2.3.3 Scalable Querying and Transformation

The goal of scalable querying and transformation is to be able to execute com-
putationally expensive queries and complex transformations in an efficient way.
The research directions in scalable querying are i)incrementality - to compute
model changes using differencing tools and then propagating those changes in-
crementally. Incrementality has been implemented in Viatra by [70] using
RETE algorithm. RETE engine focuses on incremental pattern matching for
efficient execution of model transformations - ii) Lazy computation - on-demand
computations can result in performance improvements to get rid of extra com-
putations. Viatra [20] does evaluate the matches lazily of connected nodes
to reduce unnecessary computation iii) Performance optimisation - Other op-
timisation [71, 72] such as caching of the results and lazy navigation of the
underlying model has also been used as a means to improve the performance of
transformations.

2.3.4 Scalable Collaboration

As models grow in size and complexity it is necessary to enable collaboration
between multiple users. To enable scalable MDE, it is important to ensure that
the collaboration also scales well. This means to enable different modellers and
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Figure 2.14: Taxonomy of model querying approaches

developers to work on large shared models as a team. In the current era, as
the web-based tools are getting more and more popular, there are tools such as
Eclipse Che7 for provisioning workspaces in a cloud-based environment. Using
Eclipse Che, for cloud-based modelling application makes it easy to collaborate
on models.

2.4 Model Querying

This dissertation deals with tackling the scalable querying challenge. This sec-
tion will focus on how querying large and complex models can be a challenge and
also present state-of-the-art approaches related to model querying. Moreover,
it will present a critical analysis of these approaches. Figure 2.14 presents the
taxonomy of model querying approaches. There are two principal approaches to
query models. i.e. querying models using native query languages of the under-
lying technology the model is persisted in, and the other approach is querying
models using high-level languages. Both will be discussed in detail.

2.4.1 Native Querying

Native querying means querying in the native language of the underlying mod-
eling technology. Native querying being the most straightforward approach, is

7https://eclipse.dev/che/
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also very efficient as it is specially tailored for the back-end persistence technol-
ogy. As already mentioned, models can be stored in multiple backend formats
e.g. Relational databases, Simulink, Document stores etc. Depending on the
model’s persistence format native querying can be done in two ways: 1) Native
API of the model backend is used to query e.g if a model is stored in a relational
database, SQL would be used as a query language and Cypher or Gremlin would
be used if it’s a NoSQL database. 2) Using direct API calls from programming
languages. The most prominent advantage is its efficiency as native query lan-
guages have build-in index-based methods, but it also has some drawbacks [73]
which are equally important to be considered:

• Query Conciseness: Native queries can sometimes be wordy, difficult to
understand

• Query Abstraction Level: Native queries are technology-specific that is if
back-end technology is changed, it requires considerable effort to change
queries.

Pagan et. al [74] propose a specified efficient query language- MorsaQL
(Morsa Query Language) for MORSA repository [75] – a model persistence
format for storing large models based on NoSQL database storing large models
in NoSQL databases. The design of MorsaQL is based on SQL SELECT –
FROM – WHERE schema. SELECT describes the type of resulting element,
FROM specifies search scope and WHERE specifies the constraints or condition.
Experimentation in [45] has shown better performance compared to plain EMF
in terms of efficiency and usability for queries over models stored in Morsa
repository.

2.4.2 Back-end Independent Querying

Another common way to query models is the use of high-level languages that
abstract over model representations and persistence formats. ATL [18], OCL
and EOL (Epsilon Object Language) are some examples of these types of such
high-level languages, they make use of intermediate layers (such as OCL pivot
metamodel [76], Epsilon model connectivity layer) These languages shield devel-
opers from the complexity of underlying technology of model persistence such as
SQL, EMF. The OCL pivot metamodel only supports EMF-based models, while
EMC supports several model persistence formats (such as Relational Databases,
Spreadsheets, Simulink and EMF-based models). It is a driver-based approach,
so new technology can easily be integrated by adding a driver that implements
IModel Java interface of EMC as discussed in Section 2.2.2.1.

2.4.2.1 Native Query Translation

To execute high-level language queries on different back-ends, they can be trans-
lated to their respective native query languages as shown in Figure 2.15. Queries
can be translated at compile-time or runtime. As in [77] and [78] have proposed
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Figure 2.15: Query translation process

approaches for SQL generation from OCL expressions. They both map OCL
expressions to SQL queries in one pass. Authors in [79] have proposed an algo-
rithm to map each OCL expression to a single stored procedure. Against each
OCL expression, it calls a corresponding stored procedure and creates a table
that contains the result of evaluated OCL expression(stored procedure). How-
ever, the problem with native query translation is that both high-level and low-
level languages do not offer identical capabilities(e.g. EOL supports dynamic
dispatch while SQL doesn’t) that makes it difficult to have a full translation.
Another approach [4] suggests runtime SQL query generation and integrates
driver for MySQL database in EMC layer of Epsilon.

1 Flight.allInstances.select(f|f.origin="LAX")

2 .select(f|f.dest = "JFK" and f.dayOfWeek >1)

3 .delay.avg();

Listing 2.9: EOL program for querying MySQL database

Figure 2.16 describes the whole runtime query generation for the above men-
tioned EOL query. It presents how an SQL query shown in Listing 2.9 is gen-
erated from EOL query step by step. First retrieving all the rows of a table
flight. Flight.all instances would be translated to Select * from flight, then select
conditions like origin are Los Angeles and Destination is New York on Sunday
and the for that records collect delay and compute average. This is how a query
written in a high-level language is translated to native persistence level queries,
in this case, EOL to SQL.

2.4.2.2 Using Derived Attributes

Consider a library metamodel and model as shown in Figure 2.17. If one needs to
select authors that have more than “N” number of book , first on would need to
retrieve all authors, then for each author, need to count the corresponding books.
Finally, compare that count against N to get the authors having more than N
number of books. Counting the number of “books” relationship to each author.
This is computationally expensive as it would need to iterate all the instances
of books for each author. Hawk [5] is a model indexing solution that can take
models written with various technologies and turn them into graph databases,
for easier and faster querying. In Hawk, an approach has been introduced to
precompute these expensive attributes and cache them in a model index. This

50



Figure 2.16: Process flow of query translation from EOL to SQL [4]

Figure 2.17: Library metamodel and model [5]
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Figure 2.18: Addition of derived attributes [5]

will significantly increase the execution speed of these extensive queries. In this
case “number of book,” attribute will be precomputed as self.books.size(). It
will be added and attached to each author as shown in Figure 2.18. After adding
a derived attribute, now the new query can be rewritten so that it does not have
to iterate through all “books” references of every author, instead, this derived
attribute numberOfBooks will be used to query authors having more than N
number of books. Results in [5] have shown a decrease in execution time by
using derived attributes but it has certain shortcomings as well. First, it adds
an overhead of computing these derived attributes, which increases the insertion
time of models that contain derived attributes. Another consideration is to use
these derived attributes only if there is enough certainty that these attributes
will be used multiple times in a program so that performance advantage can be
gained at the cost of deriving overhead and increase in insertion time.

2.4.2.3 Program-Aware Query Optimisation

Another approach for query optimisation is regarded as “program aware”. In
program-aware query optimisation, before executing the program, optimisation
approach is aware of both the “metamodel” and “the query” to be executed.
Optimisation approach uses metamodel introspection and compile-time static
analysis of query. One such approach has been proposed in [80] to efficiently
compute allInstances query. allInstances() is an operation which can be invoked
on a type to return a set containing all its instances. First, it checks if a program
makes multiple calls to allInstances() property. Traditionally, allInstances() can
be a very expensive operation when executed over large models because of iterat-
ing through all instances of a model element. If a program makes multiple calls
to retrieve allInstances() then precomputing and cache all those collections in
one go can optimise the program execution. It is based on greedy computation
instead of on-demand computation. Naively, if a program calls allInstances(),
it navigates through an in-memory representation of models. This efficient ap-
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proach in Wei et al. [36] will increase the initial cost of calculating allInstances()
in one go, it will also increase the memory footprint, but it ultimately yields
efficient results for programs with multiple calls. Greedy caching, in this case,
will be inefficient when multiple calls are made to a small number of model
element types.

Another optimisation strategy as proposed in [81] suggests how combin-
ing three optimisation techniques (parallelisation, lazy evaluation and short-
circuiting) can significantly increase the performance of queries over large mod-
els.

Mogwai for efficient scalable querying as proposed in [82] translates OCL and
ATL expressions to Gremlin scripts- a query language for NoSQL databases.
This shifts the computation of queries at the database side and it makes use of
the benefits of optimisation strategies of backend technology for large models.
To address scalability challenges in MDE, one solution is through the use of
distributed systems. In this context, [83] presents an allocation optimisation
approach by a combination of heuristics-based 1) reducing the usage of resources
by minimising remote traffic and 2) reducing cost by minimising resources for
evaluation of queries.

2.5 Query Optimisation in Databases

Query optimisation has been a well-known research area for so long in the field
of database and a well researched area in the field of databases. Including a
discussion on query optimisation in traditional databases within this research
thesis is crucial as it establishes a comprehensive and holistic perspective on the
overarching optimisation approaches. This Section presents a summary of how
queries are optimised for different kinds of databases. Section 2.5.1 discusses
query optimisation in relational databases where the data is stored in the form
of tables in rows and columns. Section 2.5.2 will discuss about Document stores,
where each record and its associated data is stored within a single document.
MongoDB is one of the widely used document store databases.

2.5.1 Relational Databases

Roy et. al. [84] proposed an approach for efficiently querying of databases using
multiquery optimisation. It exploits common sub-expressions in multiple queries
or even a single query. The main concept used is to make a globally optimal
plan, rather than considering local optimisation. For instance, if one considers
two queries Q1 and Q2, Q1’s locally optimal plans are (R X S) X P and (R
X T) X S respectively. Now, consider both the plans there are no common
sub-expressions. The key idea is not to use the best local plans but plans that
can be globally best. So, one plan (may not be the best plan locally) for Q2 can
be (R X S) X T. Now clearly, there is a common subexpression (R X S) which
can be evaluated once to optimise the whole query batch. Another optimisation
strategy in [7] is that if there is a view in place of a relation in a query. For
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example, consider Figure 2.19 there is a query Q = Join (R, V) where V is a
View, V=Join (S, T). Query Q can be unfolded to Q = Join (R, join (S, T)) and
then it can be reordered to optimise accordingly. It is graphically illustrated in
Figure 2.19. One optimisation proposed in [7] is to use group by before joins
to reduce data. Merging nested subqueries [7] is an alternative approach which

Join (R,V)

V= Join (S,T)

Join (R, Join (S, T))

Figure 2.19: Merge nested queries

is described by an example. Considering the query in Listing 2.10 where an
employee name is extracted from the employee table whose location is Denver
and is a manager.

1 SELECT Emp.Name

2 FROM Emp

3 WHERE Emp.Dept# IN

4 SELECT Dept.Dept# FROM Dept

5 WHERE Dept.Loc =’Denver ’

6 AND Emp.Emp# = Dept.Mgr

Listing 2.10: Nested SQL query [7]

In the above query, all records are traversed from the department before eval-
uating the condition. It is proposed that these types of nested queries can be
merged where before traversing all the records, the condition is evaluated first
as shown in Listing 2.11.

1 SELECT E.Name

2 FROM Emp E, Dept D

3 WHERE E.Dept# = D.Dept#

4 AND D.Loc = ’Denver ’ AND E.Emp#=D.Mgr

Listing 2.11: Merged SQL query [7]

2.5.2 Document Stores

NoSQL are non-relational databases and Mongo DB is one of a NoSQL database
example. It is a document-oriented database and is increasingly used in the in-
dustry [85]. In [6] some optimisation strategies are presented. First is the use
of index because a full document scan is much slower. Creating an index at
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specific columns of a large document makes queries fast. Moreover, creating an
index at a field which needs sorting can enhance query execution time where
filtration is based on that field. Cases where 80% of the document is retrieved as
a result of a query, it is better to use natural sort than using an index. Another
optimisation strategy proposed in [6] is the rational use of “and” and “or” in
queries. Consider Figure 2.20, suppose three conditions A, B and C. Condition
A retrieves 50,000 documents, condition B retrieves 3000 documents while con-
dition C gets 100 documents. According to this, condition A is loose (because it
retrieves larger sets of documents) and C becomes the severe condition(because
it retrieves smaller sets of documents). If in a query, there is “and” operation se-
vere condition should be evaluated first, because it greatly reduces search space.
If there is an “or” in the query, the loose condition should be evaluated first.

Figure 2.20: Example of Mongo DB query optimisation [6]

2.6 Chapter Summary

This chapter presented a brief overview of the MDE field and how it sits in the
wider software engineering context followed by the use of different acronyms in
the MDE literature. In Section 2.1, it then discusses the basic terminologies
such as models, metamodels and model management tasks that will be exten-
sively used in the following chapters of this thesis. It also provides the context
to the research topic and then in Section 2.2, discusses current state-of-the-art
tools and technologies used for different model management activities. Fur-
ther, in Section 2.3, the challenges in MDE are discussed and then in Section
2.4,detail discussion of scalable model querying, discussing their different fea-
tures and capabilities. In Section 2.5, it also discusses popular query optimisa-
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tion in the context of databases field. The next chapter will present the analysis
of the literature presented in this chapter and will also state the hypothesis of
this research.
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Chapter 3

Analysis and Hypothesis

This chapter presents the analysis of the literature review and states the ob-
jectives of this research followed by the research questions that needs to be
answered to acheive the objectives. It also states the research hypothesis which
is then followed by the research scope.

3.1 Analysis

Model-driven engineering (MDE) has been shown to deliver several benefits over
traditional software development methodologies such as quality, maintainability
and productivity. To continue the broader use of MDE in industrial projects,
it is crucial that MDE technologies scale well with larger and more complex
applications. A typical MDE workflow includes several tasks, including model
validation, model-to-model transformations, and model-to-text transformations.
All these tasks have a common set of queries/expressions operating over model
elements. As queries grow complex, they can significantly impact performance
both in terms of execution time and memory footprint.

Several tailored high-level model management languages such as OCL and
EOL enable developers to work on different backend technologies in a uniform
way by shielding them from the complexities of different backends. On the
contrary, performance with respect to execution time in tailored model man-
agement languages programs become one of the major scalability bottlenecks
because these languages are typically interpreted.

Considering the analysis of the problem presented above, an approach is
proposed for optimising model management programs operating over large-scale
EMF-based models. The architecture of the envisioned approach is depicted as
a block diagram in Figure 3.1. The primary purpose of this framework is to
be able to automatically rewrite expensive queries in an input model manage-
ment program written in a technology agnostic language i.e., Epsilon to a more
efficient form. The rewritten program would be efficient in terms of execution
time. The rewriting process will be taking memory footprint into considera-
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tion to make a trade-off. Program rewriting is based on information extracted
through static analysis. The rewriting and optimisation will vary based on the
type of input model management program. After a model management pro-
gram is parsed, an Abstract Syntax Tree (AST) is generated. This AST may
not include any type information attached to its nodes. Before execution, a
static analyser component will analyse the program and populate type-related
information into the AST, this type-resolved AST is also referred to as an Ab-
stract Syntax Graph. The Abstract Syntax Graph would then be used by the
rewriters involved in a program, to rewrite this into an optimised form.

Input
Metamodel

Input
Model

Model
Management

Program

Abstract

Syntax
Tree

Type-
resolved

AST
Program RewritingStatic Analyser

1
2

conforms to

Optimised Validation
Program

Figure 3.1: Proposed architecture of model management program optimisation

3.2 Research Objectives

The overall research goal for this project is to investigate the applicability of
compile-time query optimisation techniques to a wide range of model manage-
ment programs, and to identify reusable optimisation approaches and patterns.
To achieve this goal, an open-source prototype has been developed implementing
algorithms that sit on top of existing model management languages to improve
performance over EMF-based models. These algorithms are expected to reduce
the execution time of complex queries. There are other factors that greatly
affect the performance gain such as underlying persistence formats which are
not in the scope of this research. A breakdown of the overall research goal into
more fine-grained objectives is as follows:

• RO-1: Identify the performance challenges involved in executing complex
model management programs over large EMF-based models.

• RO-2: Identify reusable optimisation approaches and patterns across dif-
ferent model management programs using static analysis of high-level lan-
guage programs.

• RO-3: Propose algorithms for the optimisation of model management
programs operating on large-scale EMF-based models.
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• RO-4: Ensure to preserve the semantics of the original program while
producing the optimised version.

• RO-5: Evaluate the results of the proposed algorithms in terms of exe-
cution time and memory footprint.

3.3 Research Questions

The following research questions have been set out to achieve the above-mentioned
research objectives in Section 3.2.

• RQ-1: What are the performance challenges in terms of execution time
for complex model management programs over large EMF-based models?
Answering this research question will help achieve RO-1 i.e. performance
challenges for expensive queries and also to help propose a solution for the
identified limitations.

• RQ-2: What information can be extracted before the execution of a
model-management program to facilitate automated rewriting of such pro-
grams? Answering RQ-2 will help to achieve RO-2 by implementing static
analysis for model management programs and to extract information be-
fore execution for optimisation of expensive queries.

• RQ-3: Can the information extracted from static analysis help to identify
potential rewriting opportunities for model management programs? RO-3
will be achieved by answering this research question and implementing
optimisation algorithms and techniques for existing model management
languages.

• RQ-4: Does the optimised program generated by the rewriting approach
produce the same output as the original program? RO-4 i.e., ensuring
the preservation of semantics will be achieved by answering this research
question.

• RQ-5: Does static analysis and automatic program rewriting help in re-
ducing memory footprint and execution time when complex model man-
agement programs are executed over large models? RO-5 will be achieved
by addressing this research question. This is evaluated over both pub-
licly available and syntethic programs over large models. The proposed
approach will be compared to other state-of-the-art tools and engines.

3.4 Research Hypothesis

The hypothesis of this research is stated as follows:

“The execution time of computing expensive queries in model validation,
model-to-model transformation and model comparison tasks over large
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EMF-based models can be significantly reduced using automated program
rewriting techniques based on the in-advance information extracted through

static analysis.”

3.5 Scope

This section establishes the scope and boundaries of this research work. As
discussed in the chapter above, this work aims at optimisation of model man-
agement programs using automated program rewriting. This subsection will
narrow this down. Epsilon is used for implementing the techniques developed
in this research. The following optimisations are addressed

• Optimisation of type-level model queries (EVL)

• Translating first-order EOL expressions to Viatra patterns (EVL)

• Selective traceability of model-to-model transformations (ETL) operating
over large-scale EMF-based models.

• Efficient model comparison (ECL) programs operating over large-scale
EMF-based models

3.6 Chapter Summary

This chapter summarised the research challenges and stated the research hy-
pothesis and scope. In Section 3.1, the analysis of the problem domain was
presented after discussing the background and literature review in Chapter 2.
Then Section 3.2, described the aim of this research, and then listed the break-
down of objectives and then some research questions to address the above men-
tioned research objectives in Section 3.3. Section 3.4 states the research
hypothesis followed by the proposed architecture for program optimisation. Fi-
nally the chapter is concluded by presenting the research scope in Section 3.5.
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Chapter 4

Static Analysis of Epsilon
programs

The role of a static analyser is to analyse source code without executing it.
Static analysis will provide in-advance knowledge about any model management
program it operates on that can then be used for several purposes such as auto-
code completion, detecting compile time errors and improving the quality of
the program. In model management context, static analysis can be used for
providing capabilities like intelligent model partitioning [?], on-demand model
loading [?] and query optimisation [86].

In the context of this research, the information extracted from static anal-
ysis is used for optimising the execution of some classes of model management
programs. Static analysis work was done in collaboration with Sorour Jahanbin,
another PhD student at the University of York. This is a foundational work
that could be used in further optimisations. To optimise model management
programs, the static analyser will analyse the program written in Epsilon lan-
guages and will generate a type-resolved abstract syntax graph. Static analyser
will enable identifying accessed model elements and their patterns in the model
management program for the purpose of query optimisation. The Static anal-
yser needs to know the structure of the metamodel in order to resolve types of
various constructs of the program which implies that in order to perform static
analysis on model management programs, the underlying metamodel needs to
be accessed. For metamodel introspection, metamodel is accessed using Mod-
elDeclarationStatement. ModelDeclarationStatement is a statement that can
be specified in the Epsilon programs to declare the underlying model and its
metamodel. This is discussed in detail in Section 4.2 as shown in Figure 4.1.

4.1 Architecture of Static Analysis

The core language of Epsilon is EOL, which is a general model management
language containing imperative constructs. It provides common facilities that
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Figure 4.1: Static analysis architecture

are useful for developing task-specific model management languages.
Static analysis of Epsilon started in [87] where the Abstract Syntax Tree

(AST) of an EOL program is computed, then resolution algorithms includ-
ing variable resolution (e.g., resolving identifiers to their definitions) and type
resolution (e.g., primitive types and collection types) are applied to derive an
Abstract Syntax Graph. Thus, using the Abstract Syntax Graph, the static
analyser can extract relevant information (i.e., types and properties accessed by
the program).

This work contributes a static analysis facility for EOL, EVL, ETL and
ECL, where compile-time errors are produced as a by-product. In first step, a
type resolver sets the resolved type of expressions then there is a type checker
in order to check type compatibility between types of context, parameter and
return types both for user-defined and built-in operations. These core facilities
are developed for the core Epsilon language and then language specific support
is added for other languages.

4.2 Metamodel Connectivity

When a model management program is to be executed, the model and the meta-
model to be loaded are specified in an execution configuration settings. How-
ever, structure of the metamodel is required for static analysis which means
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the metamodel needs to be loaded in order to perform static analysis before
the program execution. ModelDeclarationStatement is responsible for specify-
ing metamodel configuration in the Epsilon source code. The structure of the
ModelDeclarationStatement is illustrated below in Figure 4.2.

ModelDeclarationStatementModelDeclarationParameter

ValueExpression NameExpression

NameExpression

driver1

name

1

parameters

0..*

Figure 4.2: ModelDeclarationStatement Structure

A ModelDeclarationStatement has the following features:

• A NameExpression specifying the name of the model to be loaded.

• A NameExpression specifying the driver; which means the type of the
model that has to be loaded such as EMF and Simulink

• A list of ModelDeclarationParameters specified by the key-value pairs.
The key represents the name of the parameter while the value represents
its corresponding value as shown below

1 nsuri = "http ://www.eclipse.org/emf /2002/ Ecore"

Listing 4.1: Example ModelParameter

An example of the usage of ModelDeclarationStatement is shown below.

1 model flowchat driver EMF{

2 nsuri = "flowchart"

3 };

Listing 4.2: Usage of ModelDeclarationStatement

This model is named as flowchart and then the driver is specified as EMF,
which means the metamodel is loaded in the EPackageRegistry using the nsuri
parameter specified in Line 2 above. An EPackageRegistry stores a map of
identifiers of metamodels.

To access model elements from the above declared model, one needs to use
the ModelName!Type notation. For instance, to use the Transition model ele-
ment from the model declared in Listing 4.2, it will be used as flowchart!Transition.

4.3 Type Heirarchy in Epsilon

The entire type system of Epsilon containing all types along with their subtypes
is illustrated in Figure 4.3. These are the built-in types provided by Epsilon.
Some additional types are added for the purpose of static analysis and are
discussed in Section 4.4.3.

63



AnyType

CollectionType

Bag Set OrderedSet Sequence

MapType

PrimitiveType

Integer StringBoolean Real

ModelElementType

-model: String
-type: String

NativeType

-implementation : String

Figure 4.3: Epsilon built-in types heirarchy

4.3.1 AnyType

AnyType is the base of all types of Epsilon and is inspired by Object Constraint
Language’s (OCL) OclAny. AnyType can hold any type in EOL. Variables in
EOL can be declared without a type. If the type of a variable is not explicitly
declared, the type is automatically assumed to be Any. As in listing below, foo
would be of type Any.

1 var foo;

4.3.2 CollectionType

Epsilon supports four types of collections:

• Bag - holds non-unique, unordered collection. EolBag implements the
java.util.Collection interface.

• Sequence - holds non-unique, ordered collection. EolSequence implements
the java.util.List interface.

• Set - holds unique and unordered collection. EolSet implements the
java.util.Set interface.

• OrderedSet - holds unique and ordered collection. EolOrderedSet imple-
ments the java.util.Set interface.

Below is an example of a declaration of a Sequence of Strings named as student-
Names.

1 var studentNames: Sequence(String);
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Epsilon also supports two concurrent collection types ConcurrentBag and Con-
currentSet since version 2.0. These types are thread-safe variants of the Bag
and Set respectively.

The abstract Collection type is the parent type of all collection types. EOL
enables logical operations on collections in addition to simple operations. There
are additional operations supported by all types of collections, together with
any operations declared on the java.util.Collection interface.

4.3.3 MapType

Epsilon supports the Map type that holds a Set of key-value pairs in which the
keys are unique. The Map type implements the java.util.Map interface.

1 var students = Map {001 = "Alice", 002 = "Bob"};

A Map students is defined in line 1, with its keys 001, 002 and values “Alice”,
“Bob”.

4.3.4 PrimitiveType

There are four primitive types supported in Epsilon. All the primitive types
provide certain built-in operations specific to each of them1.

• Boolean - hold true/false states

• Real - hold read numbers

• Integer - hold natural numbers, negatives and extends the Real primitive
type

• String - hold finite number of characters

The following listing shows a variable bar declared as an Integer.

1 var bar: Integer;

4.3.5 NativeType

EOL allows users to create objects from the underlying programming environ-
ment using native types. These native types specify implementation properties
that identify unique identifiers for corresponding platform types. For example,
in listing below written in EOL, users can instantiate and use Java classes using
their class identifiers. This approach enables users to overcome EOL’s limita-
tions by leveraging functionalities from the underlying programming language,
such as creating a Java window (Swing JFrame) and manipulating its properties.

1https://eclipse.dev/epsilon/doc/eol/
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1 var frame = new Native("javax.swing.JFrame");

2 frame.title = "Opened with EOL";

3 frame.setBounds (100 ,100 ,300 ,200);

4 frame.visible = true;

Listing 4.3: Use of Native Types in Epsilon

4.3.6 ModelElementType

ModelElementType is used to represent types defined in the underlying meta-
models. EOL uses the ! notation to access model element types. For example:

1 var movie = new imdb!Movie;

A model element type is specified by imdb!Movie where imdb is the name of
the model under consideration and Movie is the type of the element in the
metamodel. ModelElementType contains the modelName and elementName,
which is used to identify the model element type.

4.4 Type Resolution

Type resolution is the process of resolving the types of various nodes of the AST
of the source code. To resolve types, one option is to make use of either the
explicit declared type by the user or an inferred type from the expression or a
value, or using a pseudo type (explained later in the section). Type resolution
is the primary block in static analysis and is used further in features like type
checking.

4.4.1 Type Resolution by Declaration

One way to resolve types of variables is to directly get it from declaration, if
the variable is explicitly declared by the developer. For instance, Listing 4.4
specifies a ModelDeclarationStatement accessing a model named as imdb which
is an EMF-based model and is accessed using the specified nsuri parameter. It
then declares a variable movie of explicit type imdb!Movie and assigns it the
first “Movie” instance from the imdb model. The imdb!Movie type resolution
explicitly specifies that the Movie class is part of the imdb model.

1 model imdb driver EMF {

2 nsuri="https :// movies /1.0"

3 };

4 var movie : imdb!Movie = imdb!Movie.all.first();

Listing 4.4: An example of type resolution by explicit declaration
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4.4.2 Type Resolution by Inference

Another way to resolve types of variables is to infer them by analysing the
expressions they are used in. For instance Listing 4.5 specifies a ModelDeclara-
tionStatement accessing a model by the keyword model, named as imdb which
is an EMF-based model as explained above. It then declares a variable highes-
tRated of explicit type imdb!Movie and assigns it the one of the Movie instance
from the imdb model with the ratings attribute equal to 10. The iterator vari-
able m has no explicitly declared type so using the type inference the static
analyser sets the type of m as imdb!Movie. This is because selectOne iterates
over allInstances of imdb!Movie.

1 model imdb driver EMF {

2 nsuri="https :// movies /1.0"

3 };

4 var highestRated : imdb!Movie = imdb!Movie.all.

selectOne(m|m.ratings ==10);

Listing 4.5: An example of type resolution by inference

4.4.3 Type Resolution by PseudoTypes

To enable static analysis of Epsilon programs, it was necessary to introduce a
number of pseudo-types to the language. Pseudo types help resolve types of vari-
ous expressions where the types are changed based on their usage. Pseudo-types
are added by taking an inspiration from Object Constraint Language (OCL) [16]
for the purpose of static analysis. They are called pseudo-types as they can-
not be instantiated. They are just used to determine type of self (i.e., context,
the object on which the operation is called) in operation signatures. The exact
type of these will be determined at the end of static analysis. Pseudo types
(EolSelf, EolSelfCollectionType, EolSelfExpressionType, EolContentType) were
added in EOL to help in static analysis, in order to propagate the inferred types
of variables across complex expressions, which would have otherwise been lost.

4.4.3.1 EolSelfType

EolSelfType is a pseudo type used in signature (as shown in Listing 4.6) of
operation to propagate the context type as return type. One such example is
println(). For example, if “abc”.println() is called, return type would then be
EolPrimitiveType.String , as self, in this case “abc”, is a String.

1 operation Any println () : EolSelf {

2 return self;

3 }

Listing 4.6: EolSelf Pseduo Type
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4.4.3.2 EolSelfCollectionType

EolSelfCollectionType is a pseudo type specially for EolCollectionTypes. It is
used in operations signature as shown in Listing 4.7.

1 operation Collection <Any > test():

EolSelfCollectionType {

2 return self;

3 }

Listing 4.7: EolSelfCollectionType Pseduo Type

If test() operation is called on Sequence⟨Integer⟩, the return type would also
be Sequence⟨Integer⟩.

4.4.3.3 EolSelfContentType

Whenever this operation is called with any collection type (Collection, Sequence,
Bag, OrderedSet, Set) as context type the return type would be the same type
of collection. For example, if this operation is called on Sequence〈String〉, return
type would also be Sequence〈String〉.

EolSelfContentType is also a pseudotype just for EolCollectionTypes. It is
used in operation signature as shown in Listing 4.8.

1 operation Collection <Any > test():EolSelfContentType {

2 }

Listing 4.8: EolSelfContentType Pseduo Type

4.4.3.4 EolSelfExpressionType

Whenever this operation is called with any collection type (Collection, Sequence,
Bag, OrderedSet, Set) as context type the return type would be the type of
content type of the collection. For example, if this operation is called on Se-
quence〈String〉, return type would also be EolPrimitiveType.String.

For Bag〈Integer〉as context type, return type would be an integer EolSelf-
ExpressionType is also a pseudotype just for EolCollectionTypes. It is used in
operation signature as shown in Listing 4.9

1 operation Collection <Any > collect(a: Any) :

2 Collection <EolSelfExpressionType >{

3 }

Listing 4.9: EolSelfExpressionType Pseduo Type

Whenever this operation is called with any collection type (Collection,Sequence,
Bag, OrderedSet, Set) as context type the return type would be the type of con-
tent type of the iterator expression. For example, if this operation is called as
following, the return type would also be EolPrimitiveType.Boolean as shown in
Listing 4.10.
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1 var b: Sequence = Sequence {1,2,3};

2 var c = b.collect(f|f<3);

Listing 4.10: Use of EolSelfExpressionType Pseduo Type

4.5 Type Checking

Type resolution can further help in checking type compatibility which is helpful
in producing warnings/errors to provide better programming experience to de-
velopers. Type checking features are explained as follows: Consider the movies
metamodel. In Figure 4.5 operation printName() specifies return type as String
but it does not have any return statement in the body of the operation. So,
a compile-time error would be produced prompting user to add a missing Re-
turnStatement. In second operation printName() specifies String as return type
but in the return statement, it returns an integer value which is incompatible
with the return type provided in the operation signature. Figure 4.4 specifies
the relation between type compatibility and the corresponding errors or warn-
ings produced. Table 4.1 shows an example of different types and the error or
warning produced.

In Figure 4.5, an operation greetUser() is called on Integer as context. An
error is produced in this scenario because the signature of operation the required
context type to be String.

A simple example is presented in Figure 4.5, greetUser() operation requires
a String context type, but the provided type is Any which is the parent type
of String. So, a warning is produced saying greetUser() may not be invoked on
Any, as it requires String.

Provided Type Required Type Result

String String No error/warning

Sequence Collection No error/warning

Collection Sequence Warning

String Integer Error

Table 4.1: Examples of various types and corresponding errors/warnings

4.5.1 Type Checking in built-in operations

Type checking for user-defined operations is straightforward because the sig-
nature and definitions of operations are available to compare them with the
provided types in the operation calls. To check the types of built-in operations,
a separate EOL file is created containing the signatures of built-in operations.
An excerpt of that built-in operations file is shown in Appendix A.

69



No

RT = PT

No

YesPT ⊆ RT        No Error/Warning

Required Type
(RT)

Provided Type
(PT)

RT ⊆ PT     Warning

Error

Yes

No

       No Error/Warning
Yes

Figure 4.4: Type compatibility and corresonding errors/warnings

Figure 4.5: Type compatibility errors - Example
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This separate EOL file contains the signatures of all built-in operations pro-
vided by Epsilon. This serves as a template to provide type checking facilities for
the built-in operations and is just used for static analysis before the execution
of the program. When the static analysis is triggered for an Epsilon program,
these built-in operation signatures file is loaded so that these operations are
added to operations of EolModule.

If a user calls a built-in operation, first the operation call is traversed to
find the potential matched operations with the same name. Then it looks for an
exact match by matching the context type, the number and types of parameters
and the return type. The types in the operation call are referred as “provided
types” and the ones in the method signature as “required types”. Suppose
there are two operations with the same name but different parameter types as
shown in Listing 4.11. Now, depending on the type of parameter passed in the
operation call, the static analyser will match the corresponding operation. For
example, in Line 5, the parameter passed is a type of Movie model element so
the matched operation here will be operation printName (m : Movie) : String.
While in Line 7, where the parameter is of type Person, the matched operation
will be operation printName (p : Person) : String. Some examples of errors
and warnings with respect to type compatibility are shown in Figure 4.4.

1 model imdb driver EMF {

2 nsuri = "http :// movies /1.0"

3 };

4

5 printName(Movie.all.first ());

6

7 printName(Person.all.first ());

8

9 operation printName (m : Movie) : String {

10 m.title.println("Movie Title: ");

11 }

12

13 operation printName (p : Person) : String {

14 p.name.println("Actor Name: ");

15 }

Listing 4.11: Example of polymorphism in EOL

4.6 EOL Static Analysis

EolStaticAnalyser is the core static analysis facility for all the imperative con-
structs provided by the core Epsilon language EOL. The static analysis is imple-
mented using the visitor design pattern. An excerpt of EOL Visitor is shown in
Listing 4.12. EOLVisitor implements the interface IEolVisitor. The IEolVisitor
is extended by the other Epsilon language visitors as shown in Figure 4.6. EOL
visitor an excerpt of which is shown in Listing 4.12, traverses each node of the
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Abstract Syntax Tree (AST) of EOL program. In each traversal, the types are
calculated and added as a resolved type to the AST nodes.

1 public interface IEolVisitor {

2 ...

3 public void visit(AndOperatorExpression

andOperatorExpression);

4 ...

5

6 public void visit(AssignmentStatement

assignmentStatement);

7 ...

8

9 public void visit(FirstOrderOperationCallExpression

firstOrderOperationCallExpression);

10

11 public void visit(ForStatement forStatement);

12

13 ...

14

15 public void visit(OperationCallExpression

operationCallExpression);

16

17 public void visit(VariableDeclaration

variableDeclaration);

18

19 public void visit(WhileStatement whileStatement);

20

21 ...

22 }

Listing 4.12: An excerpt of the IEolVisitor

The first step is to traverse all the model declarations to load the respective
metamodels to resolve and check the types of corresponding model elements.
Then, built-in operation signatures (explained in detail in Section 4.5.1) are
loaded and added to operations of the EOL program.

1 var firstOperand : Integer = 5;

2 var secondOperand : Integer = 4;

3

4 addResult = firstOperand + secondOperand;

Listing 4.13: An example to demonstrate Type Resolution

1 model imdb driver EMF {

2 nsuri = "http :// movies /1.0"

3 };
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4 imdb!Movie.all.select(m|m.ratings == 10);

Listing 4.14: An example to demonstrate Type Inference

Table 4.2 shows the resolved types of the various constructs in Listings 4.13 and
4.14.

Expression Resolved Type

firstOperand Integer

secondOperand Integer

addResult Integer

imdb!Movie.all Collection⟨imdb!Movie⟩
m imdb!Movie

m.ratings Real

imdb!Movie.all.select(m|m.ratings == 10) imdb!Movie

Table 4.2: Resolved Types of various constructs of Listing 4.14 & 4.13

The type resolution either works by checking the type declaration or by the
type inference e.g., Line 1 and 2 in the Listing 4.13, the type of firstOperand
and secondOperand is resolved to Integer using the declared types. In Line 4,
the addResult ’s type is inferred as Integer.

1 public interface IErlVisitor extends IEolVisitor {

2

3 public void visit(Post post);

4

5 public void visit(Pre pre);

6

7 }

Listing 4.15: IErlVisitor structure

Then EolStaticAnalyser is extended to add language specific support. The
structure of the various visitors and their hierarchy is shown in Figure 4.6.
IEolVisitor is the core interface containing visit method signatures to EOL con-
structs and then there is an IErlVisitor (shown in Listing 4.15) containing visit
methods to pre and post blocks. This is because all other languages have these
constructs. Further language specific visitors are explained in their respective
sections.

4.7 EVL Static Analysis

EvlStaticAnalyser is the static analysis facility provided for validating programs
written in EVL. It extends EolStaticAnalyser and adds additional support for
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IEolVisitor

IErlVisitor

IEclVisitor IEtlVisitor IEvlVisitor

Figure 4.6: Hierarchy of Various Visitors in Epsilon

EVL specific constructs such as Constraint. The structure of IEvlVisitor is
shown in Listing 4.16. Additionally the sequence in which EVL static analyser
works is depicted in Figure 4.7.

AST (EVL Program)

Visit Pre Block Visit Post Block

Visit ConstraintContext

Visit all constraints

Visit guard block
Visit check block

Visit message block
Visit fix block

Type Resolved
AST (EVL Program)

Figure 4.7: Flow of EvlStaticAnalysis

1 public interface IEvlVisitor extends IErlVisitor {

2

3 public void visit(ConstraintContext

constraintContext);

4

5 public void visit(Constraint constraint);

6

7 public void visit(Fix fix);

8

9 }

Listing 4.16: IEvlVisitor structure
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Consider an example EVL program as shown in Listing 4.17 where a con-
straint NameNotNull is checking if a movie name is not null.

1 model imdb driver EMF {

2 nsuri= "http :// movies /1.0"

3 };

4

5 pre {

6 //to be executed before the execution of constraints

7 }

8

9 context Movie {

10 constraint NameNotNull {

11 check : self.title !=null

12 }

13 }

14

15 post {

16 // to be executed after the execution of constraints

17 }

Listing 4.17: An example EVL program

Expression Resolved Type

self imdb!Movie

self.title String

self.title!=null Boolean

Table 4.3: Resolved Types of various constructs of Listing 4.17

Type resolution of elements in the Listing 4.17 is shown in Table 4.3.

4.8 ETL Static Analysis

EtlStaticAnalyser is the static analysis facility provided for model to model
transformation programs written in ETL. It extends EolStaticAnalyser and adds
additional supports for ETL specific construct i.e., TransformationRule. The
structure of IEtlVisitor is shown in Listing 4.18. Additionally the sequence in
which ETL static analyser works is depicted in Figure 4.8.

1 public interface IEtlVisitor extends IErlVisitor{

2 public void visit(TransformationRule

transformationRule);

3 }

Listing 4.18: IEtlVisitor structure
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AST (ETL Program)

Visit Pre Block Visit Post Block

Visit Transformation Rule
(TR)

Visit Source Parameter
Visit Target Parameter

Visit guard block
Visit TR body

Type Resolved
AST (ETL Program)

Figure 4.8: Flow of EtlStaticAnalysis

Consider an ETL transformation as shown in the Listing 4.19. It transforms
a Tree to Graph conforming to metamodels as shown in Figure 2.11.

1 model Tree driver EMF {

2 nsuri= "Tree"

3 };

4

5 model Graph driver EMF {

6 nsuri= "Graph"

7 };

8

9 rule Tree2Node

10 transform t : Tree!Tree

11 to n : Graph!Node {

12

13 n.label = t.label;

14

15 if (t.parent.isDefined ()) {

16 var edge = new Graph!Edge;

17 edge.source = n;

18 edge.target = t.parent.equivalent ();

19 }

20 }

Listing 4.19: An example ETL program

4.9 ECL Static Analysis

EclStaticAnalyser is the static analysis facility provided for comparison pro-
grams written in ECL. It extends EolStaticAnalyser and adds additional sup-
ports for ECL specific construct i.e., MatchRule. The structure of IEclVisitor is
shown in Listing 4.20. Additionally the sequence in which ECL static analyser
works is depicted in Figure 4.9.
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Line number Expression Resolved Type

10 t Tree!Tree

11 n Graph!Node

13 n.label String

13 t.label String

15 t.parent.isDefined() Boolean

16 edge Graph!Edge

17 edge.source Graph!Node

18 edge.target Graph!Node

Table 4.4: Resolved Types of various constructs of Listing 4.19

1 public interface IEclVisitor extends IErlVisitor {

2 public void visit(MatchRule matcRule);

3 }

Listing 4.20: IEclVisitor structure

AST (ECL Program)

Visit Pre Block Visit Post Block

Visit Match Rule (MR)

Visit Left Parameter
Visit Right Parameter

Visit guard block
Visit Do block

Visit compare block

Type Resolved
AST (ECL Program)

Figure 4.9: Flow of EclStaticAnalysis

Consider an example ECL program as shown in Listing 4.21, where two
models conforming to Tree metamodel (shown in Figure 2.11) are compared.
Two Trees are matched checking if their labels are the same and the parent and
the children of the Trees are the same.

1 model T1 driver EMF {

2 nsuri= "Tree"

3 };

4

5 model T2 driver EMF {

6 nsuri= "Tree"

7 };
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8

9 rule Tree2Tree

10 match l : T1!Tree

11 with r : T2!Tree {

12

13 compare : l.label = r.label and

14 l.parent.matches(r.parent) and

15 l.children.matches(r.children)

16 }

Listing 4.21: An example ECL program

Type-resolved in the above listing is shown in Table 4.5.

Line number Expression Resolved Type

10 l T1!Tree

11 r T2!Tree

13 l.label String

13 r.label String

14 l.parent T1!Tree

14 r.parent T2!Tree

15 l.children T1!Tree

15 r.children T2!Tree

Table 4.5: Resolved Types of various constructs of Listing 4.21

4.10 Eugenia - Test case

As static analysis is a foundational tool that this research is based on, it is cru-
cial to check the correctness of the static analyser. JUnit test cases are used to
test the correctness of various constructs of the Epsilon programs using static
analysis. The features of the static analyser are evaluated on Eugenia [88].
Eugenia is a well-known tool built using the Epsilon platform implemented in
EOL to generate GMF files from an annotated Ecore metamodel. Eugenia con-
sists of an extensive EOL program, having 1212 lines of code, which transforms
annotated metamodels to 4 different models required by the GMF framework
in order to generate a graphical editor. Eugenia automatically generates .gmf-
graph, .gmfmap and .gmftool required by GMF from a single annotated Ecore2

metamodel.
The following features were evaluated:

2https://wiki.eclipse.org/Ecore

78



• An error to be produced if the required type in a method or assignment
is not the same as the provided type.

• A warning to be produced if the provided type is a super type of the
required type.

• No error or warning if the provided type is a subtype of the required type
or same as the required type.

In Eugenia, warnings were observed where parent type of required type is
provided. A screenshot of static analysis on Ecore2GMF.eol (a transformation
from Eugenia) is shown in Appendix A in Figure A.1 and Figure A.2. This case
study helps to evaluate the correctness of components of static analyser such as
type resolution and type checking.

4.11 Related Work

AnATLyzer [89] is a tool for static analysis of ATL model transformations.
Basically, it is an IDE that provides type checking, quick fixes and problem
explanations. AnATLyzer focuses on three main points: 1) It checks that the
source metamodel is correctly typed with respect to the transformation. 2) It
ensures that the model generated through transformation conforms to the target
metamodel. 3) It identifies any conflicting or missing rules. This static analyser
is limited to ATL model transformations only.

In [90], Born et al. extended Henshin, a rule-based model transformation lan-
guage adapting graph transformation concepts and being based on the Eclipse
Modeling Framework (EMF). This extension computes all potential conflicts
and dependencies of a set of rules and reports them in form of critical pairs.
Each critical pair consists of the respective pair of rules, the kind of potential
conflict or dependency found, and a minimal instance model illustrating the
conflict or dependency.

Another tool in [91], provides a static analysis facility for graph transfor-
mations. This work is based on Constraint Satisfaction Programming (CSP).
It also presents a type checker for Viatra2 framework. As this type checker is
based on CSP, it is not possible to find all the errors in a single run using static
analysis.

The static analysis of OCL is presented in [92], a pseudo-type OCLSelf, is
introduced to infer the type of context for few operations such as:

• OclAny::oclAsSet() – returns Set〈Self〉

• OclAny::oclType() : Class〈OclSelf〉

Willink [93] introduced safe navigation operators in OCL. This operator solves
the problem of declaring non-null objects and null-free collections. It enables
OCL navigation to be fully checked for null safety.

These static analysers tools mentioned in this section have motivated the
development of static analysis facility for Epsilon languages. The purpose of
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static analysis for this research was to use it as a foundation tool for enabling
query optimisation but static analysis can be used to provide features like auto-
code completion.

4.12 Chapter Summary

This chapter started with defining the static analysis and what its role in MDE
followed by its usage in the context of this research. In Section 4.1, the archi-
tecture of static analysis of Epsilon languages is presented giving a brief overview
of the whole process going from AST to type-resolved AST. The first step
metamodel connectivity is explained by detailing the ModelDeclarationState-
ment with an example to show how an underlying model is accessed without
executing the program in Section 4.2,. Then, in Section 4.3, the hierarchy of
built-in types in Epsilon are illustrated by giving a brief overview of AnyType,
CollectionType, MapType, PrimitiveType, NativeType and ModelElementType.
Then the next step type resolution is described and also how types are resolved
by explicit declaration, inference and pseudo types. EolSelfType, EolSelfCol-
lectionType, EolSelfExpressionType, EolSelfContentType are explained in detail
with examples.

Section 4.5 explains how the resolved types as explained in Section 4.4 are
used in the type checking process. This section also explains different scenarios
where an error or warning would be produced. Additionally, how types are
checked in builitin operations is also explained.

Finally, Epsilon languages static analysis are presented as a whole along
with the corresponding examples starting with EOL static analyser in Section
4.6, EVL static analyser in Section 4.7, ETL static analyser in Section 4.8
followed by ECL static analyser in Section 4.9. This is followed by a test case -
Eugenia and the results of static analyser on Eugenia in Section 4.10. Finally
state-of-the-art static analysis tools are presented in Section 4.11.

This chapter provides the foundation of the static analyser, which will be
heavily used in other chapters as a pre-processing step before the optimisation.
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Chapter 5

Optimistation of Queries
over EMF Models

Model querying is an essential part of automated model management activi-
ties, such as model-to-model, model-to-text transformation and model valida-
tion. Queries on models can be specified using general-purpose programming
languages such as Java or using tailored model-management languages such
as Object Constraint Language (OCL) – and its various flavours embedded in
model-to-model and model-to-text transformation languages such as Acceleo
and ATL – the Epsilon Object Language (EOL) and the task-specific languages
that build on top of it, and the VIATRA Query Language (VQL). The main
strength of dedicated model management languages is that they offer built-
in abstractions for common tasks (e.g. rule-based decomposition and element
resolution in model-to-model transformation, protected regions for mixing gen-
erated and hand-written content in model-to-text transformation, constraint
dependency management in model validation) which facilitate more concise,
maintainable and technology-independent model management programs.

The work presented in this chapter has been published titled as “Identifi-
cation and Optimisation of Type-Level Model Queries” and “Towards Scalable
Validation of Low-Code System Models: Mapping EVL to VIATRA Patterns” in
2021 ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems Companion (MODELS-C)

In this chapter, an architecture is introduced for improving the execution
speed of interpreted model management programs written in languages of the
Epsilon platform, using static analysis and program rewriting techniques. Then
an application of this architecture is demonstrated for detecting repeated queries
on all instances of types in EMF-based models and for speeding-up their exe-
cution through the construction of relevant indices. The proposed optimisation
technique is evaluated on large models that have been reverse-engineered from
Java code and a set of existing constraints, and performance improvements of
up to 99.56% have been observed.
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Secondly, an approach is presented for automatically mapping expressions in
Epsilon validation programs to VIATRA graph patterns to make the validation
of large-scale low-code system models scalable by leveraging the incremental
execution engine of VIATRA. Finally, the performance of the proposed approach
is evaluated on large Java models of the Eclipse source code. The results show
performance speed-up up to 1481x compared to the sequential execution in
Epsilon. This work has been presented as workshop paper [94].

5.1 Motivating Example

Consider a scenario where one queries a model for validating a UML model
conforming to the UML2 [95] EMF-based metamodel. Suppose one wishes to
check that:

• The names of all classes in the model are unique

• All class methods are called in at least one sequence diagram

The relevant subset of the UML2 metamodel and implementations of the
two constraints (using the Epsilon Validation Language) are illustrated in Fig-
ure 5.1 and in Listing 5.1 respectively. These constraints can be written in any
similarly expressive model management language. In Listing 5.1, the Unique-
Name constraint checks that for every Class in the model, its name attribute
is unique (lines 9-14). Similarly, IsCalledInSequenceDiagram constraint checks
that every Operation is called in a sequence diagram at least once (lines 16-21).

NamedElement

name : String

Message

messageSort : MessageSort

Namespace

ClassifierBehavioredClassifier 

Class

Operation

BehavioralFeature

sig
na

tu
re

<<enum>>
MessageSort

- synchCall
- asynchCall
- asynchSignal
- createMessage
- deleteMessage
- reply

Figure 5.1: An excerpt of the UML2 metamodel

1 model UML driver EMF {

2 nsuri = "http ://www.eclipse.org

3 /uml2 /5.0.0/ UML"

4 };
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5

6 pre {

7 }

8

9 context Class {

10 constraint UniqueName {

11 check: not Class.all.exists

12 (c|c.name = self.name and self != c)

13 }

14 }

15

16 context Operation {

17 constraint IsCalledInSequenceDiagram {

18 check: Message.all.exists

19 (m | m.signature = self)

20 }

21 }

Listing 5.1: Example EVL validation constraints before optimisation

Epsilon languages use all as an alias for allInstances(). allInstances() is an
operation which can be invoked on a type to return a set containing all its in-
stances. In Listing 5.1, Class.all in line 10 and Message.all in line 17 retrieve all
instances of Class and Message anywhere in the model respectively. Evaluating
these constraints over a UML model containing a large number of classes and
operations would be computationally expensive. More specifically, the complex-
ity of UniqueName constraint is O(N*N) if the number of Classes is considered
to be N, and the complexity of evaluating IsCalledInSequenceDiagram over M
operations and P messages would be O(M*P). Reverse reference navigation is
a recurring issue in model management programs [96] when working with EMF
models. For example in UML model, navigating from Operation to Message. A
common workaround to reduce complexity in such occasions is to define opposite
references (e.g one could define an opposite reference from NamedElement to
Message) however this pollutes the metamodel and in the case of standardized
(immutable) meta models (e.g. such as the UML2 metamodel used in this ex-
ample) adding opposite references is not an option. Moreover, one has to either
anticipate the needs of future model management programs when constructing
the metamodel or to naively add opposites for all references in the metamodel.

1 model UML driver EMF {

2 nsuri = "http ://www.eclipse.org

3 /uml2 /5.0.0/ UML"

4 };

5

6 pre {

7 UML.createIndex("Class", "name");

8 UML.createIndex("Message", "signature");

83



9 }

10

11 context Class {

12 constraint UniqueName {

13 check: not UML.findByIndex

14 ("Class", "name", self.name)

15 .select(c|c.self != c).size() > 0

16 }

17 }

18

19 context Operation {

20 constraint IsCalledInSequenceDiagram {

21 check: UML.findByIndex("Message",

22 "signature", self).size() > 0

23 }

24 }

Listing 5.2: Example EVL validation constraints after optimisation

To speed up this type of model validation, one optimisation strategy is to
programmatically create in-memory indices and then use them for look-ups.
Existing languages such as Acceleo offer different facilities for this e.g., search for
eInverse [97]. Another approach for OCL is shown in [96]. This can significantly
reduce the complexity compared to the naive iteration through all instances
of the relevant model element types. Such an optimised validation program is
depicted in Listing 5.2. These constraints are semantically equivalent to the ones
in Listing 5.1 but are much faster to execute. In Line 7 of Listing 5.2, an index
is constructed which maps names to lists of classes with their name attribute,
rather than naively iterating through all the instances of Class. Similarly, in
Line 8, an index is constructed which maps names to lists of messages with their
signature attribute, rather than naively iterating through all the instances of
Message. Then in constraints, these constructed in-memory indices (Lines 13-15,
21-22) are searched instead. As in-memory indices can be stored as hashmaps,
finding UML classes by names and similarly finding messages by signature, the
computation cost would be that of a hash function. Considering the complexity
of hash functions being O(1), the overall complexity of both the constraints
would be reduced to O(N) and O(M), respectively.

This chapter provides an approach for detecting optimisation opportunities
such as the ones shown in the above example and then automatically rewriting
relevant model management programs accordingly. This research focuses on
investigating how such optimisations can be performed behind the scenes, using
static analysis and automated program rewriting so that developers can express
model management programs in a naive form (as in Listing 5.1) and benefit
from index-based optimisation (as in Listing 5.2) as seamlessly as possible.
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5.2 Optimisation of Type Level Model Queries

This section discusses the proposed query optimisation architecture in detail, an
overview of which is illustrated in Figure 5.2. This approach takes a model man-
agement program as input and passes it through a static analyser component to
compute an abstract syntax graph. The abstract syntax graph (type-resolved
abstract syntax tree) is input to the query optimiser block, which outputs the
rewritten optimised program to be executed.

Input
Metamodel

Input
Model

EVL
Validation

Script

Abstract

Syntax
Tree

Type-
resolved

AST

Inject createIndex
statements

Finding Optimisable
ExpressionsStatic Analyser

1 2

3

conforms to

Optimised Validation
Program

Rewrite
Optimised

Expressions

4

Figure 5.2: Architecture of the Query Optimisation Approach

5.2.1 Static Analysis

Static analysis is the first step of the proposed query optimisation approach. An
overview of the process of static analysis is detailed in Chapter 4. Beyond the
typical activity of checking the program for type-related errors and warnings,
static analysis is useful for extracting information useful for program optimisa-
tion. This information mainly includes type information of elements and control
flow of the program.

Consider Listing 5.1 to see how type resolution works. Class in line 8 would
be resolved to the respective model element type of the UML model. In line
11, c and self are variables and are inferred to be of type Class, as Class.all
is a collection of Classes. Hence, c.name and self.name would be resolved to
be of String type. Overall the resolved type of the expression in the check
part of the constraint UniqueName in Line 9-12 is boolean. Similarly for the
second constraint IsCalledInSequenceDiagram, UML!Operation in line 15 would
be resolved to the Operation model element type. Message.all in line 17 returns
a collection of Messages and therefore the type of m is inferred as Message.
Similarly, in line 18, the types of self and m.signature are resolved to Operation.
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5.2.2 Finding Optimisable Queries

The second step of the approach is to find potential opportunities for speeding
up queries using indices. The query optimiser operates over programs that
consume EMF models. It is worth noting that the indexing approach is currently
only for EMF models but can be extended to cover other types of models (e.g.
Simulink) as well as it is possible to look up elements by feature values using
built-in indices maintained by the modelling tool. The first step of the process
is to find potential indices by visiting the entire program. The static analyser
detects where the user is retrieving all instances of a type, filtered by a specific
property or attribute, then only for such properties will indices be created. This
approach works by detecting expressions in the form of Class.all.operation(...)
to optimise. It currently supports filtering operations like select, selectOne and
exists, while it can be extended to support other first-order operations as well, as
discussed in the Further Work section in Chapter 8. As all Epsilon languages are
built on top of EOL, certain expressions in an Epsilon program may be executed
just once such as Line 9 in Listing 5.6. For such expressions the overhead of the
computation of indices would not pay off if that index is to only be used once. To
tackle this issue, one needs to find the expressions that are likely to be executed
multiple times in a script. Algorithm 1 is used to carry out call graph analysis
and identify such expressions. optimiseBlock method is a recursive method and
calls optimiseStatement for every atomic statement. Finally optimiseStatement
method checks if the statement is optimisable or not and then added to a list
of potential indices.

The condition expression in the detected first-order expressions, which can
be executed multiple times, can have logical operators. The condition expression
abstract syntax graph is decomposed into each logical operand and then indexed
separately based on the type of logical operator. Indexing for “and” and “or”
logical operator conditions for expression in Listing 5.3 is shown in Listing 5.4.

1 UML!Class.all.select(c|c.name = "ClassA" or c.

visibility = "public");

2

3 UML!Class.all.select(c|c.name = "ClassA" and c.

visibility = "public");

4

5 UML!Class.all.select(c|c.name = "ClassA" and c.name =

"ClassB");

6

7 UML!Class.all.select(c|isPublic(c) and c.name = "

ClassA");

8

9 UML!Class.all.select(c|c.visibility = "Public" and not

c.returnType = null);

Listing 5.3: Example logical operator expressions
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1 UML.findByIndex("Class","name","ClassA").includingAll(

UML.findByIndex("Class","visibility","public"));

2

3 UML.findByIndex("Class", "name","ClassA").select(c|c.

visibility ="public");

4

5 UML.findByIndex("Class", "name","ClassA").includingAll

(UML.findByIndex("Class","name","ClassB");

6

7 UML!Class.all.select(c|isPublic(c) and c.name = "

ClassA");

8

9 UML.findByIndex("Class", "visibility","Public").select

(c|not c.returnType = null)

Listing 5.4: Rewritten logical operator expressions

A call graph is a control flow graph representing the operation calls from the
program’s entry point(s) and within each operation. The call graph’s vertices
(nodes) represent the operations, starting from the program’s entry point(s) and
then the hierarchy of how other operations are called. Each edge (x,y) indicates
that operation x calls operation y. The edge labels capture if an operation is
called from a loop or not. If an operation is called from a for or a while loop
or from a first-order operation call (e.g. select, collect, reject, exists). Since in
Epsilon programs context type and parameter type polymorphism is supported,
it can be challenging to understand which operation would be called at runtime.
This is handled through type resolution and inference achieved through static
analysis, which has been explained in detail in Section 5.2.1. The type-resolved
AST is then used to identify the most exact match operation for every operation
call. Consider the following example:

1 var a : Class = Class.all.first();

2 a.printName ();

3

4 operation Message printName () {

5 return self.name.println("Message Name:");;

6 }

7

8 operation Class printName () {

9 return self.name.println("Class Name:");

10 }

11

12 operation Any printName (){

13 return self.name.println("Name:");

14 }

Listing 5.5: Context type polymorphism example
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There are three operations with same name printName() but the context type
is different for each operation. In line 2, the second printName() operation will
be called.

The type-resolved AST is passed to a call graph generator component, which
generates the input program’s call graph. An example of a call graph generated
from Listing 5.6 is shown in Figure 5.3. Call graphs for EOL programs can be
visualised on the fly using Graphviz1 through Picto [98].

1 model UML driver EMF {

2 nsuri = "http ://www.eclipse.org/uml2 /5.0.0/ UML"

3 };

4

5 printMessagesofReplySort ();

6 getClassByName("A").println("Class A:");

7

8 operation getClassByName(name: String) {

9 Class.all.select(a|a.name = name);

10 }

11

12 operation printMessagesofReplySort () {

13 for(n in Message.all.select(m|m.messageSort =

MessageSort#reply)) {

14 getMessageByName(n.name).println ();

15 }

16 }

17

18 operation getMessageByName(name: String) {

19 Message.all.select(a|a.name = name);

20 }

Listing 5.6: Example of call graph program input

For EVL programs, the call graph generator considers the expressions in the
check, guard and message block of constraints as being called from a loop. This
is because in EVL constraints are often evaluated over a Context (instances of
a model element) and hence such expressions are to be considered as candi-
dates for potential indices. Also, the operation calls from within constraints are
considered as being made from a loop.

5.2.3 Query Rewriting

After collecting potential indices i.e., class-feature pairs, by analysing the in-
put program in the first phase, the final phase is to rewrite the program. The
program is traversed again to find expressions which can leverage the created
in-memory indices. This rewriting is performed behind the scenes: it does not
alter the behaviour of the original program nor is it visible to the user (unless

1https://www.graphviz.org
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Algorithm 1 Algorithm for Finding Potential Indices

1: let model = current model rewriter (separate rewriters for every model)
2: let inLoop = false
3: let allOperations = all, allInstances
4: let optimisableOperations = select, exists
5: let callGraph = call graph of the input program

optimiseBlock(main statement block)
6: procedure optimiseBlock(StatementBlock)
7: for all statement s in StatementBlock do
8: if s is a ForStatement or WhileStatement then
9: inLoop = true optimiseBlock(body of s)

10: else if
then

11: visit every DOM element recursively
12: else

optimiseStatement(s)
13: end if
14: end for
15: end procedure
16: procedure optimiseStatement(Statement)
17: if s is an OperationCallExpression then
18: repeat

optimiseStatement(target of s)
19: until targetExpression is instance of NameExpression
20: for all Parameters of s do
21: repeat

optimiseStatement(parameterExpression)
22: until parameterExpression is instance of NameExpression
23: end for
24: end if
25: if s is an FirstOrderOperationCallExpression then
26: if target of s is a PropertyCallExpression or OperationCallExpression

then
27: if allOperations contains name of target then
28: if optimisableOperations contains operationName of s then
29: if target of propertyCallExpression is owned by model

then
30: if inLoop then
31: add to Potential Indices
32: end if
33: end if
34: end if
35: end if
36: end if
37: end if
38: end procedure
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getMessageByName(name: String)

printMessagesOfReplySort() getClassByName(name: String)

main

loop

Figure 5.3: Generated Call Graph (from Listing 5.6)

39: for all op in getDeclaredOperations do
40: if path p from main to op exists then
41: if p contains an edge labelled as loop then
42: inLoop= true
43: end if

optimiseBlock(body of op)
44: end if
45: end for

they wish to see it in which case there is a dedicated Eclipse view for this, de-
tailed below). Rewriting includes two main tasks: i) Injecting createIndex state-
ments for creating in-memory indices, ii) Rewriting the relevant expressions to
findByIndex statements, where these indices are used. The respective syntax of
createIndex() and findByIndex() statements is showcased in Listings 5.7 and 5.8.

1 ModelName.createIndex("ModelElement", "property");

Listing 5.7: Syntax of createIndex() Statement

1 ModelName.findByIndex("ModelElement", "property",

2 "value");

Listing 5.8: Syntax of findByIndex() Statement

Calls to createIndex statements are injected at the beginning of an EOL
program, for creating in-memory indices. The target expression ModelName is
the name of the model for which an index is to be created. ModelElement is the
metaclass, while property is the name of the feature based on which allInstances
are filtered. For an EVL program, these statements are injected into a pre block,
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which contains EOL statements to be executed before evaluating the constraints
themselves.

Next, findByIndex statements are injected in the AST of the EOL/EVL
program, for searching model element instances through their respective indices,
replacing the naive iteration code that would have otherwise been executed. The
target expression ModelName is the name of the model in which ModelElement
belongs. Property is the index that should be traversed, and the value represents
the value of the property that needs to be searched. When rewriting the AST
to findByIndex statements, any expressions that can make use of the available
indices are rewritten, even if those expressions are not detected to be executed
multiple times by call graph analysis. This is done to reuse the established
in-memory indices in the entire program, for reducing the program execution
time. Consider an example scenario for such a case as shown below:

1 var c2= Class.all.select(c|c.name = "c2"

2 and c.visibility = "private");

3 while (condition) {

4 var c2= Class.all.selectOne(c|c.name = "c2"); }

Since an index class.name will be created due to line 4, it will be used to rewrite
the statement in line 1 to take avdantage of the re-writing.

Rewriting is performed behind-the-scenes, before the execution of the pro-
gram. The original lines and column coordinates of ASTs are maintained, so
that if exceptions occur at runtime, they are reported at the correct location
in the original program. If the user wishes to visualise this automated program
rewriting, a query rewriting view is implemented as shown in Figure 5.4, which
displays the rewritten program of the EOL or EVL file in the currently active
editor.

Figure 5.4: Screenshot of the Query Rewriting View
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5.2.4 Evaluation

This section presents the experimental setup used for evaluating the static anal-
ysis based query optimisation approach, explains the methodology employed
and discusses the results obtained. It concludes by presenting the limitations
and threats to the validity of the obtained results.

Table 5.1: Specifications of java models used for benchmarking

ID Model Name No of Model Elements Size in MBs

1 eclipseModel-0.1 100,126 24.5

2 eclipseModel-0.2 200,224 50.8

3 eclipseModel-0.5 500,510 131.8

4 eclipseModel-1.0 1,000,658 258.3

5 eclipseModel-1.5 1,500,304 410.3

6 eclipseModel-2.0 2,000,329 555.7

7 eclipseModel-2.5 2,500,194 698.2

8 eclipseModel-3.0 3,000,159 948.5

9 eclipseModel-3.5 3,500,107 1080.0

10 eclipseModel-4.0 4,000,426 1110.0

11 eclipseModel-all 4,357,774 1210.0

The execution-time performance of the proposed approach to optimise EVL
programs over large-scale EMF models has been evaluated. Since Epsilon sup-
ports parallel execution [99] for EVL, the proposed approach is compared with
the parallel mode of EVL execution. The first experiment evaluates the con-
straints using EVL without optimisation with parallel mode enabled. The sec-
ond evaluates the use of the proposed rewriting strategy (with an extension
of EMF EMC driver with two additional createIndex and findByIndex meth-
ods discussed in Section 5.2.3) also in the parallel mode of EVL. In the rest
of the section, the first approach is referred to as EVL– since it executes the
EVL programs in a naive parallel mode, while the second one is referred to as
EVL-QR – since it makes use of the query rewriting strategy, on the top of the
EVL engine in parallel mode. Then comparison of the results are presented as
speedups compared to OCL. For OCL evaluation, the same Java findBugs in
OCL is rewritten and the execution time is reported.

Constraints and Models: For evaluating the query optimisation ap-
proach, the validation constraints that were used were introduced in [99] and
are based on the Findbugs [100] project, a static analysis tool that reports a
large number of “code smells” in Java code. The EVL script (Java findBugs)
consists of 31 constraints over 17 contexts, and 11 operations. Java findBugs
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Figure 5.5: Comparison of OCL, EVL and EVL QR
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Figure 5.6: Comparison of OCL, EVL and EVL QR without eOpposites
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script is executed over a set of large models reverse-engineered from the Java
source code of Eclipse projects [101] using MoDisco [102]. The Modisco Java
metamodel was opted, as it is both complex enough and relatively familiar to
Java programmers. Also, such reverse engineered models are commonly used to
evaluate the scalability of MDE tools [103,104]. The models that were used vary
from approximately 100k to over 4 million elements, as illustrated in Table 5.1.

Correctness: The program is rewritten by the query rewriter, so it is es-
sential to check that this rewritten program is semantically equivalent to the
original input program. Correctness of the results has been verified through
automated JUnit tests, ensuring that query results are the same in EVL and in
EVL-QR. For that, several test EOL and EVL scripts were executed which were
mined from GitHub and compared the outputs of both programs. No differences
were found in outputs given by the input (original) and the rewritten programs.
For the main test case Java findBugs, the number of unsatisfied constraints
were matched for OCL,EVL and EVL-QR. After running the correctness tests,
the semantic equivalence of the rewritten programs is ensured and hence of the
query rewriter logic used in this approach.

Machine Specification: The evaluation experiments were performed on a
machine with the following specifications: MacBookPro @ 2.8 GHz Quad-Core
Intel Core i7, 16 GBs of RAM, Mac operating system BigSur version 11.1, and
Java 15 on JDK 15.0.2 with JVM MaxHeapSize 4GBs.

5.2.4.1 Results

The computation time taken for the static analysis and query rewriting processes
has been measured to assess the overhead they incur. Then, the execution time
of the program itself is recorded, as this approach does not interact with model
loading and thus has no effect on model loading times. The script is executed
using Epsilon in a standalone manner and the execution time is measured us-
ing Epsilon’s profiling capabilities. The measured program execution times are
reported in milliseconds in Table 5.2 and Table 5.3.

Static analysis and query rewriting work at the metamodel level and do not
require any information from models themselves. Static analysis and program
rewriting took less than 50ms for all the experiments, and therefore the overhead
incurred can be seen as negligible, with respect to the overall execution times
observed for these experiments. Also, this computation time is independent of
model size, due to the fact that the whole process of query optimisation only
uses metamodel introspection. Time for static analysis and query rewriting de-
pends on two major factors: the size of the program under consideration and
the size of the underlying model’s metamodel. To investigate the most compu-
tationally expensive constraints, the distribution of overall execution times of
the validation program will be measured. This program will be divided into two
parts and reported execution times for the first constraint as FindBugs First
and then execution times of the remainder of the constraints as FindBugs Rest
in Table 5.4. Out of 31 constraints in the Java FindBugs script, the first con-
straint named allImportsAreUsed is the most expensive one, as illustrated in

94



Table 5.2: Execution time in seconds

Model ID OCL EVL EVL-QR vs EVL vs OCL

1 126.9 7.29 1.3 5.6 97.61

2 538.7 28.6 2.8 10.21 192.39

3 3649.5 178.3 6.3 28.46 579.28

4 TO 583.5 9.1 64.1 -

5 TO 1206.7 14.5 83.22 -

6 TO 2322.6 17.9 129.75 -

7 TO 3797.4 21.3 178.28 -

8 TO 3934.9 23.2 169.60 -

9 TO 5003.6 27.8 179.98 -

10 TO 5987.3 28.9 207.17 -

11 TO 7826.9 34.3 228.18 -

Table 5.3: Execution time in seconds (without eOpposites)

Model ID OCL EVL EVL-QR vs EVL vs OCL

1 5256 24579 3.44 7145 1527.9

2 23263 777997 9.22 84564 2522.9

3 TO TO 6.3 - -

4 TO TO 9.1 - -

5 TO TO 14.5 - -

6 TO TO 17.9 - -

7 TO TO 21.3 - -

8 TO TO 23.2 - -

9 TO TO 27.8 - -

10 TO TO 28.9 - -

11 TO TO 34.3 - -

95



Table 5.4. allImportsAreUsed being very demanding, takes 99% of the execu-
tion time and it contains an expression that is optimisable using the proposed
approach. Due to this, in the case of EVL Query rewriting significant improve-
ment in performance can be seen, by just creating one index.

Table 5.4: Distribution of Execution Time in FindBugs script

Model ID FindBugs First FindBugs Rest FindBugs All

1 5,94 1,351 7,29

2 26,40 2,243 28,64

3 175,11 4,265 179,38

4 576,13 7,451 583,59

5 1 196,81 9,930 1 206,74

6 2 310,47 12,181 2 322,65

7 3 780,41 17,020 3 797,44

8 3 916,61 18,370 3 934,98

9 4 985,02 18,665 5 003,69

10 5 966,36 21,003 5 987,37

11 7 798,84 28,066 7 826,90

Average % 99.54 0.46 100

Observing the comparison graph shown in Figure 5.5, it can be seen that
EVL with query rewriting is substantially more performant than EVL. In a
naive EVL execution, as the model size grows, the execution time increases non-
linearly, in this case from about 7 seconds to 130 minutes for models with 100k
elements to 4.35M elements, respectively (a three order of magnitude increase,
for models of around one order of magnitude in variance). In comparison with
EVL, EVL-QR speeds up the validation by 5.6x for the smallest model and
228.18x for the largest model. While in comparison with OCL, EVL-QR speeds
up the validation by 97.6x for the smallest model and upto 579.2x and even more
for larger models where OCL timed out. This gives confidence that the proposed
query rewriting approach is scalable and efficient for very large models. Overall,
these results illustrate that automated query rewriting can have performance
benefits both for small and large models. The results also suggest that the
larger the model size, the more the performance gain is in terms of execution
time. This can be explained by the fact that in smaller models, the overhead of
creating indices is proportionally larger, than for larger models.

Experiments were performed on the same validation constraints after remov-
ing the opposite references from the Java metamodel. The reason for removing
opposites is to create more room for optimisations as sometimes adding opposite
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references is not an option, such as for standardised metamodels. The original
Java metamodel has 173 references in total out of which 48 have opposite ref-
erences. The opposites were removed on the following criteria: if a reference is
containment, remove its opposite reference. if a reference is non-containment,
then remove one of the pairs of opposites based on alphabetical order. In total,
23 opposite references were removed, which leaves 150 references in the modified
metamodel. Model migration was then carried out to update the original mod-
els to conform to the new metamodel without opposites using Flock [55]. EVL
validation constraints and OCL constraints were also updated to not make use
of the removed opposite references. For example, VariableDeclaration class had
an opposite reference to SingleVariableAccess. The variableIsUsed constraint is
written originally as:

1 context VariableDeclaration {

2 constraint variableIsUsed {

3 check: self.usageInVariableAccess.notEmpty ()

4 }

5 }

After removing the opposite reference the constraint is changed and rewritten
as:

1 context Java!VariableDeclaration {

2 constraint variableIsUsed {

3 check: Java!SingleVariableAccess.all

4 .select(sva|sva.variable=self).notEmpty ()

5 }

6 }

This experiment has a goal to measure the performance of query optimisation
when having opposites (to speed up certain classes of queries) is not possible.
The graph shown in Figure 5.6 illustrates the comparison between EVL and
EVL-QR with no opposite references in the model. Validation with EVL is so
computationally expensive in this case, that it timed out(TO) even for models
with around 500K elements. Utilising EVL-QR, shows a performance gain of
over 84564x in comparison with EVL for the experiments that were completed.
EVL-QR provides a performance gain of over 2522x while comparing with OCL.
When there are opposite references, there is still more room for creating in-
memory indices and thus reducing the execution time overall, as some queries
may have to keep navigating through the entire model to find matching elements
(that could have otherwise been navigable through an opposite reference).

5.2.4.2 Threats to validity

This experiment uses one metamodel and one set of increasingly large models
conforming to it. While both the models and metamodel were not specifically
targeted for any other reasons other than availability and ease of understanding
(as well as offering model sizes that are both large enough and not synthesized),
it is possible that they play a large role in determining the results obtained. The
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proposed query optimisation approach can benefit from experiments performed
on more diverse models with a broader range of sizes and more complex con-
straints, both for investigating semantic equivalence and performance. Creating
in-memory indices naturally has an added overhead in the execution time, which
is handled by call graph analysis at the program and metamodel level. Another
possible threat to the validity of these experiments, is the addition of possibly
substantial overheads when evaluating large enough programs or metamodels.
For example, if a constraint is evaluated over a context with one or very few
elements then indexing attributes from the respective check block can incur ad-
ditional overhead. It is observed that for large enough models, whereby this
approach offers the most benefits, this is very unlikely to be the case. Also, to
ensure more accurate static analysis and thus enable efficient program rewrit-
ing, it is recommended to use a more strict coding style and explicitly declare
types, and avoiding Any type as much as possible for accurate type resolution.
Finally, it is worth noting that the model management program used for this
benchmarking is limited to read-only operations. Since EOL offers model ma-
nipulation it would be worth investigating programs that change the model, to
ensure there are no unforeseen consequences of the proposed approach there.

5.3 Incremental Querying using Viatra

In this section, a method is proposed to improve the performance (primarily by
reducing the execution time) of model validations by mapping OCL-like expres-
sions embedded in Epsilon validation constraints to graph patterns. A prototype
is implemented demonstrating the proposed solution by mapping Epsilon Val-
idation Language (EVL) to Viatra graph patterns. The implementation of
the aforementioned tool is open-source and available on GitHub [105]. More-
over, the performance of the solution is measured on validation rules from the
Findbugs validation suite [106]. The main goal of the proposed approach is
to reuse the static analysis by exploring the query translation optimisation to
improve performance reducing the execution time. This approach is illustrated
in Figure 5.7.
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Program
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Figure 5.7: EVL to Viatra mapping architecture
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5.3.1 EVL to VIATRA Mapping

1 model Java driver ViatraEMF {

2 nsuri = "http ://www.eclipse.org/MoDisco/

3 Java /0.2. incubation/java"

4 };

5

6 context Java!ImportDeclaration {

7 constraint allImportsAreUsed {

8 check: Java!NamedElement.all.exists(

9 ne|ne.originalCompilationUnit =

10 self.originalCompilationUnit and

11 ne.usagesInImports = self)

12 }

13 }

14

15 context Java!VariableDeclaration {

16 constraint variableIsUsed {

17 check: Java!SingleVariableAccess.all

18 .exists(sva|sva.variable = self)

19 }

20 }

21

22 context Java!CatchClause {

23 constraint exceptionIsUsed {

24 check: Java!SingleVariableAccess.all

25 .exists(sva|sva.variable =

26 self.exception)

27 }

28 }

Listing 5.9: Example EVL script before optimisation

The first step is the static analysis which is explained in Chapter 4. After
the static analysis, a type-resolved AST is extracted. In the second step, the
type-resolved AST is traversed sequentially and identify expressions that can be
optimised. These expressions are in the form of first-order operations operating
over allInstances of a type. In a check block of a constraint, each expression
is evaluated over all elements of the context, thus first-order operations can
be computationally expensive for large models. Therefore, these operations
translate to Viatra patterns as follows.

First, the namespace URI (NsUri) of an EPackage as specified in the program
is extracted from the model declaration statement (lines 2-3 in Listing 5.9) and
mapped to import statement in VQL (lines 1-2 in Listing 5.10). After that, the
body of the first-order operations are translated to graph patterns. Names of
the patterns should be unique, due to VQL naming conventions. Therefore, they
are generated based on the model name concatenated with a sequence number,
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see line 4 in Listing 5.10.

1 import "http :// www.eclipse.org/MoDisco/

2 Java /0.2. incubation/java"

3

4 pattern Java2(sva: SingleVariableAccess ,

5 self0: VariableDeclaration){

6 SingleVariableAccess.variable(

7 sva , self0);

8 }

Listing 5.10: variableIsUsed’s check block translated to a VQL pattern

In the operation body, operator expressions are translated consisting of prop-
erty call expressions to graph patterns in Viatra. Property call expressions
define navigations in EOL, e.g., sva.variable in line 18 of Listing 5.9 reads the
variable field of the sva object. In operator expressions, the name of the first
operand is the name of the property on which the navigation should happen.
The operator defines the comparison basis, and the value of the second operand
is the value to be compared against. It can be either a literal value or a reference
to the single-valued result of another EOL expression. In the latter case, the
value is received as an additional pattern parameter. Model navigations are rep-
resented by declarative graph patterns in VQL, where the starting node is the
type of the model element, and the edge is the property used in the property call
expression. If the operator is an inequality operator, then an additional check
constraint is generated in VQL whose body contains the inequality comparison.
As an example, let’s consider the EOL expression sva.variable = self in line
18 of Listing 5.9, that is translated to SingleVariableAccess.variable(sva, self0)
in lines 6-7 of Listing 5.10 with self0 being an additional pattern parameter in
VQL (line 5 of Listing 5.10). In the proposed prototype implementation [105],
only conjunctions of operator expressions are supported.

1 Java!NamedElement.all.select(u|u.name="main")

2 Java!NamedElement.all.selectOne(u|u.name="main")

3 Java!NamedElement.all.exists(u|u.name="main")

4 Java!NamedElement.all.one(u|u.name="main")

5 Java!NamedElement.all.none(u|u.name="main")

6 Java!NamedElement.all.count(u|u.name="main")

7 Java!NamedElement.all.nMatch(u|u.name="main" ,2)

8 Java!NamedElement.all.atLeastNMatch(u|u.name="main" ,1)

9 Java!NamedElement.all.atMostNMatch(u|u.name="main" ,1)

Listing 5.11: EOL first-order expressions-I

1 pattern Java1(namedElement: NamedElement){

2 NamedElement.name(namedElement , "main");

3 }

Listing 5.12: Rewritten Viatra first-order expressions-I
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Table 5.5: Memory use of the engines (in MB)

Line number Matcher API call

1 allMatches

2 oneArbitraryMatch

3 hasMatch

4 countMatches == 1

5 countMatches == 0

6 countMatches

7 countMatches == 2

8 countMatches ⟩= 1

9 countMatches ⟨= 1

1 Java!NamedElement.all.reject(u|u.name="main")

2 Java!NamedElement.all.forAll(u|u.name="main")

Listing 5.13: EOL first-order expressions-II

1 pattern Java1(namedElement: NamedElement) {

2 neg find Java1internal(namedElement);

3 }

4

5 pattern Java1internal(namedElement: NamedElement) {

6 NamedElement.name(namedElement , "main");

7 }

Listing 5.14: Rewritten Viatra first-order expressions-II

Table 5.6: Memory use of the engines (in MB)

Line number Matcher API call

1 allMatches

2 hasMatch == false

The operator expression in lines 17-18 of Listing 5.9 checks if the variable
field of the Single Variable Access object is the Variable Declaration object (self )
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that is received as parameter. The property call expression is the navigation
from sva.variable

As shown in Listing 5.12, most first-order operations (Listing 5.11) are
translated to only one VQL pattern. However, in some cases, such as in the reject
and forAll operations (Listing 5.13), there is a need to generate an additional
pattern (Listing 5.14). In those cases, the matches of the negated expression
are found, therefore the main pattern contains a negative invocation of the
second pattern (neg find). Besides, the type of the first-order operation defines
the method to be called on the Matcher API of Viatra with some additional
parameters used for comparing the result, e.g., countMatches == 0.

Finally, the body of the first-order operation is replaced by an operation call
expression, encapsulating a Run Viatra Call Parameters object that contains:
(i) the generated VQL patterns, (i) the name of the main VQL pattern that is
used to collect the pattern matches, (iii) the name and the (iv) parameter of
the method to be called on Viatra’s Matcher API, and (v) the EOL expres-
sions representing the extra parameters of the patterns. The values of these
expressions will be bound at runtime to the corresponding parameters of the
patterns.

5.3.1.1 Collecting Validation Results

After the translation of optimizable EOL expressions to VQL patterns, the
EVL engine iterates through the EVL program and evaluates the expressions.
If it finds a translated EOL expression, then the runViatra method of the Vi-
atraEMF driver is called, which calls the Viatra Engine Bridge that prepares
query specifications from the textual VQL patterns, obtains a matcher for the
main specification and invokes the corresponding method with the appropri-
ate parameters on the matcher. Finally, the found matches are returned to
the EVL engine, which combines them with the matches from the unoptimized
expressions and returns the validation results.

5.3.2 Evaluation

In order to measure the query execution time and memory use of the proposed
approach three validation constraints were adopted (Listing 5.9) from the Find-
bugs validation suite [106] and evaluated them on the Java MoDisco EMF model
of the Eclipse source code [106]. The incremental (RETE) and local search (LS)
engines of Viatra were compared with the sequential EVL engine. In the query
evaluation phase, the models are already loaded in memory, and the EOL ex-
pressions are already translated to VQL. The query rewriting took 9 ms for all
queries. The measurements were conducted on a machine with Windows 10,
Intel i7-9750H CPU @ 2.60GHz, 32 GB RAM, Java HotSpotTM 64-Bit Server
VM 13.0.1+9 (with 16 GB max heap size).
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Table 5.7: Execution time of the engines (in min:sec.milliseconds)

Model size

Query engine

RETE
LS with

base index
LS without
base index

Sequential EVL

100K 0.937 1.346 03:25.720 03:25.985

200K 1.766 2.488 14:43.912 15:55.617

500K 4.315 6.056 93:00.186 106:30.364

Table 5.8: Memory use of the engines (in MB)

Model size

Query engine

RETE
LS with

base index
LS without
base index

Sequential EVL

100K 94 92 88 49

200K 141 133 126 80

500K 284 268 243 183
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5.3.2.1 Analysis of the Results

As Table 5.7 shows, the RETE engine provides the shortest execution time,
due to the incremental caching of pattern matches which speeds-up the pattern
evaluation process on large models. The local search engine with base index
gives similar results, due to the caching of the base relations and objects in the
model. The LS engine without base index and the sequential EVL engine were
several magnitudes slower compared to the previous engines. The largest speed-
up is 1481x between the RETE and the sequential EVL engine, in the case of
models with 500k elements. The evaluation of the validation constraints varies
with the model sizes. Due to the caching backend of the RETE engine, the
repeated evaluation of the validation constraints on each model element results
in a faster execution time. Similar to RETE, the local search (LS) engine with
base index finishes second, due to caching of the base relations and model types.
LS engine without base index and sequential EVL have to perform complete
model traversals each time, therefore they complete slower.

Comparing the memory use of the engines in Table 5.8, it can be observed
that the RETE engine consumes the most memory, while sequential EVL the
least. Interestingly, the local search engine without base index consumes almost
the same amount of memory as the engine with base index. This is because the
base index is initialized in both cases, but in the first case the engine does not
retrieve any object from the index.

5.3.2.2 Threats to Validity

Internal validity: The results reported in this chapter are computed on pro-
grams containing first-order operation calls on all instances of model elements.
If there are no such optimisable operations and queries in the program, then
the execution time is the same as in sequential EVL.

External validity: Opposed to the local search engine of Viatra, the
sequential Epsilon engine does not consider opposite edges in the metamodel
when creating the search plan. Therefore, to have comparable results, the Java
metamodel without these edges is used. Otherwise the local search engine would
have performed similar to the RETE engine in both cases, due to the simplicity
of the patterns.

5.4 Related Work

This section summarises existing work within the scope of this chapter, it dis-
cusses model query optimisation strategies. In Hawk [107], a derived attributes
approach includes pre-computing certain expensive features and caching them
in the model index. Results have shown a decrease in execution time by using
derived attributes, but it has certain shortcomings as well. Firstly, it adds an
overhead of computing these derived attributes, which increases the model in-
sertion time containing derived attributes, as well as the overhead of updating
the values of these features when the model changes. However, these attributes
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are defined by the user and to the best of our knowledge, there is no automatic
detection of optimisation opportunities through static analysis such as the one
proposed in this chapter. Another approach presented in [108] is to execute calls
to allInstances() queries efficiently. This approach is based on greedy computa-
tion instead of on-demand computation. It checks if the program makes multiple
calls to allInstances(), then precomputed all collections and caches them in one
pass. The approach just works on allInstances() calls.

In [109], the authors present how combining three optimisation techniques
(parallelisation, lazy evaluation, and short-circuiting) can significantly increase
the performance of queries over large models. It requires the use of the parallel
variant of EOL, which can be automated through static analysis, as is the case in
the proposed approach. Parallelisation proposed in [109] is used as a comparison
baseline for the proposed approach. In [110], a tool called Mogwai is proposed
for efficient and scalable querying. Mogwai maps OCL and ATL expressions to
Gremlin scripts – a query language for NoSQL databases. This leverages the
optimisations implemented by the underlying database technology.

Now the use of query translation approaches will be discussed for optimiza-
tion purposes. A solution for efficient querying large-scale databases is pre-
sented in [111], where OCL queries are translated to SQL at runtime. Heidenre-
ich et al. proposed an approach for translating from OCL to multiple query lan-
guages like SQL and XQuery using model-to-text transformations [112]. These
solutions work on relational database backends. Sanchez et al. proposed an
approach for translating OCL queries to MATLAB commands for efficiently
querying large Simulink models [113]. Bergmann et al. presented a mapping
strategy from OCL to graph-based patterns [114]. In their approach, they map
a subset of OCL expressions to EMF-IncQuery graph patterns.

The novelty of the EVL to Viatra approach proposed in this chapter is
adding partial incrementality by just translating a part of EVL program de-
tected through static analysis. Only the expensive expressions are translated
to corresponding VIATRA patterns. This is achieved as a trade-off between
execution time and memory consumption.

5.5 Chapter Summary

This chapter presented the first two contributions of this research. First, it
presented the optimisation of type level model queries by precomputing the
custom indices that are used multiple times in the program. A motivation
example was presented in Section 5.1, and then in Section 5.2, the proposed
approach was explained step by step followed by the results and the analysis.
Secondly, the second contribution which was optimisation of EOL expressions to
Viatra to leverage the incrementality features provided by Viatra. The proposed
approach was explained step by step followed by the results and the analysis in
Section 5.3. This is followed by the internal and external threats to validity.
Finally in Section 5.4, the state of the art in program rewriting is presented
and also state of the art related to query translation.
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Chapter 6

Selective Traceability of
Model-to-Model
Transformation Programs

This work has been published as a conference paper titled “Selective Traceability
for Rule-Based Model-to-Model Transformations” 15th ACM SIGPLAN Inter-
national Conference on Software Language Engineering (SLE ’22). In this chap-
ter, a novel approach is proposed that leverages the benefits of static analysis
and automated program rewriting to speed up and reduce the memory foot-
print of model-to-model transformation programs. In this study the Epsilon
Transformation Language (ETL) is targeted, however, the proposed approach
applies to any rule-based interpreted M2M language that supports imperative
constructs. A map-like data structure is used to cache the results of imperative
operations generated by rules as a transformation trace.

Model-to-model (M2M) transformation is one of the key activities used in a
typical MDE workflow. It is essentially used to map one or more input model(s)
to one or more output model(s). Various M2M languages like ETL [115] and
ATL [42] provide tailored support for automating this task, but they can face
scalability issues when it comes to transforming larger models [116]. The pro-
posed approach involves statically analysing the M2M transformation, extract-
ing type information of its various constructs and also extracting dependency
information between the transformation rules as a dependency graph. Using
the information extracted from the static analyser, a rule-based M2M program
is then rewritten into an imperative M2M program, where the transformation
rules are converted to operations. Moreover, exploiting the dependency graph
allows reducing the global transformation trace into a selective trace, lowering
its memory footprint. A key novelty of the proposed optimisation approach
is that it does not sacrifice any of the expressiveness of the M2M lan-
guage in contrast to e.g. [117], which only supports a subset of ATL. This is
because the proposed approach performs in-place rewriting of rules and calls
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to equivalent/equivalents(), effectively desugaring a rule-based ETL transfor-
mation into an imperative form (still in ETL due to the potential presence of
pre/post blocks). All other constructs of the transformation (e.g. method calls,
property call expressions, user-defined operations, instantiation of native types)
remain untouched and are executed using the standard ETL interpreter.

Using the proposed approach, performance gains up to 39% in terms of
execution time and up to 59% in terms of memory consumption have been
achieved in the evaluation experiments.

6.1 Motivating Example

Consider the example of a partial (for conciseness) OO2DB transformation. It
describes the transformation of a model conforming to an object-oriented schema
metamodel, as shown in Figure 6.1, into a model conforming to a relational
database metamodel as shown in Figure 6.2. This transformation has been
adapted from [118] and an excerpt is shown in Listing 6.1. The transformation
contains four transformation rules:

• Class2Table to transform all the Classes in the object-oriented model to
Tables in the database model;

• SingleValuedAttribute2Column to transform single-valued Attributes to
Columns in the database model;

• MultiValuedAttribute2Table to transform multi-valued Attributes to Ta-
bles and foreign key Columns in the database model;

• Reference2ForeignKey to transform References in the object-oriented model
to foreign key Columns in the database model.

ETL transformation keeps a transformation trace which contains tracelinks
between source to target element. The size of the trace of the transformation
(as shown in Listing 6.1), which relates source to target elements in the current
implementation of the ETL execution engine will be O+M+N, if its is evalu-
ated it over a source model containing O classes, M number attributes and N
references.

1 model Source driver EMF {

2 nsuri="oo"

3 };

4

5 model Target driver EMF {

6 nsuri="db"

7 };

8

9 pre {

10 var db : new Target!Database;
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Model

contents: Classifier [*]

Class

extends : Class

extendedBy : Class [*]

features: Feature [*]

isAbstract : Eboolean

Classifier

NamedElement

name : String

StructuralFeature

Datatype

Attribute

isMany : EBoolean

type : Datatype

Reference

type : Class

Feature

owner : Class

visibility : VisibilityEnum

Figure 6.1: Object-oriented Metamodel

Table
columns : Column [*]
primaryKeys : Column [*]

DatabaseElement
name : EString

database : Database

Database

contents : DatabaseElement [*]

Column
table : Table

type : EString

ForeignKey
parent : Column
child : Column

Figure 6.2: Database Schema Metamodel
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11 }

12 rule Class2Table

13 transform c : Source!Class

14 to t : Target!Table{

15 if (c.‘extends ‘. isDefined ()){

16 var parentTable : Target!Table;

17 parentTable =c.‘extends ‘. equivalent ();

18 }

19 }

20

21 rule SingleValuedAttribute2Column

22 transform a : Source!Attribute

23 to c : Target!Column {

24 guard : not a.isMany

25 c.table = a.owner.equivalent ();

26 }

27

28 rule MultiValuedAttribute2Table

29 transform a : Source!Attribute

30 to t : Target!Table ,

31 fkCol : Target!Column {

32

33 guard : a.isMany

34 fkCol.table = a.owner.equivalent ();

35 }

36

37 rule Reference2ForeignKey

38 transform r : Source!Reference

39 to fkCol : Target!Column {

40

41 fkCol.table = r.type.equivalent ();

42

43 }

Listing 6.1: Object-oriented 2 Database Transformation

However, at a closer look, in this OO2DB transformation, only trace links
created by the rule Class2Table are needed by the other rules. The remaining
trace links, created by the three other rules (SingleValuedAttribute2Column,
MultiValuedAttribute2Table & Reference2ForeignKey) are not used anywhere
in the transformation and therefore establishing and keeping them in memory
is wasteful. This would reduce the size of the transformation trace to O.

The first contribution is an approach for reducing the memory footprint
of the transformation trace by selectively tracing only pairs of source-target
elements that may be needed elsewhere in the transformation.

This is achieved by computing a dependency graph between rules through
static analysis and storing only the traces of a rule that are later needed by
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another rule. To resolve equivalent() operations (as in Lines 17, 25, 34 & 41 in
Listing 6.1), the ETL engine normally triggers a lookup on a global transfor-
mation trace, ignoring the fact that the resulting target objects can only have
been produced by specific rule(s), in this case the Class2Table rule. Hence,
one possible optimisation is to benefit from static analysis, discovering which
specific rule would provide the resulting target object instead.

The second contribution of this work is an approach for rewriting (desug-
aring) transformation programs in an imperative form, where rules are turned
into operations, and calls to equivalent/s() are replaced with calls to appropriate
transformation operations determined through static analysis.

6.2 Proposed Approach

In this section, the proposed approach is discussed for the efficient execution of
rule-based model transformation programs using static analysis and automatic
program rewriting. This approach is illustrated in Figure 6.3.

1 model Source driver EMF {

2 nsuri="oo"

3 };

4

5 model Target driver EMF {

6 nsuri="db"

7 };

8

9 pre {

10 var db : new Target!Database;

11 var cache_rule_Class2Table : Map;

12

13 for (c : Source!Class in Source!Class.all) {

14 c.rule_Class2Table ();

15 }

16

17 for (a : Source!Attribute in Source!Attribute.all) {

18 a.rule_SingleValuedAttribute2Column ();

19 }

20 }

21

22 operation Source!Class rule_Class2Table ():Target!Table

{

23 if(cache_rule_Class2Table.containsKey(self))

24 return cache_rule_Class2Table.get(self);

25 var t : Target!Table = new Target!Table;

26 t.name = self.name;

27 t.database = db;

28 if (c.‘extends ‘. isDefined ()){
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29 var parentTable : Target!Table;

30 parentTable =c.‘extends ‘. rule_Class2Table ();

31 }

32 cache_rule_Class2Table.put(self , t);

33 return t;

34 }

35

36 operation guardSingleValuedAttribute2Column(a : Source

!Attribute) : Boolean {

37 return not a.isMany;

38 }

39

40 operation Source!Attribute

rule_SingleValuedAttribute2Column () : Collection {

41 if (guardSingleValuedAttribute2Column(a)) {

42 var c : Target!Column = new Target!Column;

43 c.name = self.name;

44 c.table = self.owner.rule_Class2Table ();

45 return Collection{c};

46 }

47 }

Listing 6.2: Rewritten excerpt of the OO2DB Transformation

The proposed approach contains four main components, with a source meta-
model, a source model, a target metamodel and a transformation being its
inputs. The Static Analyser 1○ component is given the model-to-model trans-
formation and the source and the target metamodel(s), extracting the type in-
formation and yielding a type-resolved abstract syntax tree (AST). Then, using
the Dependency Graph Generator 2○, the dependencies are extracted between
the different transformation rules in the transformation: the dependency graph
uses the type-resolved AST to populate these dependencies. Following this,
there is a Selective Tracer to selectively create hash map caches to store the
result of source target key-value pairs generated by corresponding operations
and use them as a minimal transformation trace. In the next step, this depen-
dency graph is passed to the Rewriter 3○, where the transformation is rewritten,
i.e., the transformation rules are converted to the corresponding operations to
optimise the resolution of elements by other rules. Finally, the rewritten op-
timised transformation is passed to the ETL Engine 4○ for execution. ETL
Engine is the default engine already provided by Epsilon. The default engine
is extended to provide the resolution of operation calls to their corresponding
user-defined methods mapping provided by the static analyser.

6.2.1 Static Analysis

In the first step of this approach, the ETL transformation program is parsed
into an Abstract Syntax Tree (AST). The static analyser yields a type-resolved
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Figure 6.3: An overview of the proposed approach
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AST (an AST augmented with the computed types of expressions), using meta-
model introspection and type inference, as shown in Table 6.1 for the example
of Listing 6.1. Epsilon programs define configuration details of the models they
access using model declaration statements (Lines 1-3 & Lines 5-7 in Listing 6.1)
which are then used by the static analyser to retrieve the available types and
typed properties in each model. This static analyser extends the EOL one by
including support for analysing expressions inside transformation rules, their
source and target parameters, and for pre and post blocks.

Table 6.1: Resolved types of various constructs in Listing 6.1

Line# Expression Resolved Type

10 db Target!Database

13 c Source!Class

14 t Target!Table

22 a Source!Attribute

23 c Target!Column

24 not a.isMany Boolean

25 c.table Target!Table

25 a.owner Source!Class

29 a Source!Attribute

30 t Target!Table

31 fkCol Target!Column

33 a.isMany Boolean

34 fkCol.table Target!Table

34 a.owner Source!Class

38 r Source!Reference

39 fkCol Target!Column

41 fkCol.table Target!Table

41 r.type Source!Class

6.2.2 Dependency Graph

In an ETL transformation, resolving target elements that have been (or can be)
transformed from source elements by other rules is a frequent task in the body of
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Class2Table

SingleValuedAttribute2Column MultiValuedAttribute2ColumnReference2ForeignKey
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Figure 6.4: Dependency Graph of Listing 6.1

a transformation rule. This creates dependencies between these rules, which can
be extracted from a type-resolved AST. In the body of a transformation rule say
TRx, if there is an equivalent(s) statement that uses the elements transformed
by another transformation rule say TRy as depicted in Line 9 of Algorithm 2,
i.e., TRx is dependent on TRy. So, such dependencies are extracted as shown
in Figure 6.4, using static analysis, describing which transformation rule is de-
pendent on which other transformation rules for its execution (Line 10). The
process of extracting such a dependency graph as shown in Algorithm 2. For
example, in Line 18 of Listing 6.1, there is an equivalent() operation. The target
expression of equivalent is a.owner, the type of which is resolved to Source!Class
as shown in Table 6.1. Then a rule whose source parameter is of the same type
or a compatible type (super type) will be searched, which in this case is rule
Class2Table. Hence an edge is created between SingleValuedAttribute2Column
and Class2Table.

6.2.3 Selective Traceability

While the resolution of elements using ETL’s equivalent/equivalents operations
is explained in Section 2.2.2.4, how these equivalent statements are actually
executed is defined by the Epsilon execution engine. The proposed approach was
to completely replace calls to equivalent/s() with calls to operations produced
by the corresponding transformation rules. In the running example, the original
transformation in Line 17 of Listing 6.1, calls an equivalent operation, while the
optimised rewritten program in Listing 6.2 calls the corresponding operation
rule Class2Table. Using the dependency graph, in-memory caches were created
(HashMaps) as shown in Lines 10 & 11 of Listing 6.2, which marks them as
traceable. Hence, the operation cache also serves as a selective trace for the
resolution elements(as anything not in these caches is simply not traced). The
cache is populated with the corresponding target element along with source
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Algorithm 2 Algorithm for Extracting Dependency Graph from Transforma-
tion Program

1: procedure extractDependencyGraph(a)
2: Let DG = Dependency graph
3: Let a = Transformation program
4: for each rule in a do
5: add rule as a vertex in DG
6: end for
7: for all rule in a.rules do
8: for all element =elements in body of rule do
9: if element is an OperationCallExpression then

10: if element.name = ”equivalent” or ”equivalents” then
11: type = resolvedType of element.target
12: for all r in a.rules do
13: if r is not abstract & (source parameter of r’s type =

type or is supertype of type) then
14: add r to rules
15: end if
16: end for
17: create an edge(s) in DG from rule to rules
18: replace element with corresponding operation call of rule.
19: end if
20: end if
21: end for
22: end for
23: end procedure
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elements as a key as shown in Line 33 of Listing 6.2. If the cache contains a
source element as key then the target elements are retrieved from the cache in
the body of the operation as shown in Lines 28-30 of Listing 6.2.

6.2.4 Transformation Rewriting

After extracting the rule dependency graph, the rule-based transformation pro-
gram is rewritten into an imperative form, as shown in Listing 6.2, where all rules
are mapped to operations. The detailed process is presented in Algorithm 3.
All rules are mapped to operations with the body of the rule mapped to the
body of the operation, as in Lines 17-20 for rule Class2Table and in Lines 32-39
for rule SingleValuedAttribute2Column (depicted in Lines 3-26 of Algorithm 3).
If a rule extends other transformation rules, those rules are called in the body
of the operation, by setting the source parameter of the rule as a context to
the operation (Line 17). The target parameters of a rule are instantiated in
the body of the corresponding operation (Line 15), and then returned from the
operation (Line 18). If the target parameter is multi-valued, then the resulting
values are returned in a Collection. If a transformation rule has a guard block
(Line 13), the guard block is also mapped to a corresponding operation (Line 4),
with the same body (Line 6). The source parameter of the rule is also passed as
a parameter (Line 7) of the corresponding operation of the guard block. Table
6.2 illustrates how the expressions are executed in regular ETL and how they
are rewritten using the proposed approach. single represents a single source
model element while collection represents a collection of model elements. If
there exists more than one matched rule the results of all the matched rules are
combined and executed depending on the equivalent/equivalents call. During
the rewriting process, the behaviour of these calls is preserved using operation
calls as shown in Table 6.3.

Table 6.2: equivalent/equivalents() operations in ETL

Original input expression Resolution in ETL

single.equivalent()
Return only the first element of the
target elements of matched rules

single.equivalents() Return targets of all the matched rules

collection.equivalent()
Return a flattened collection of
targets of all the matched rules

collection.equivalents()
Return targets of all the matched
rules for all collection elements

Secondly, all these converted operations are added to the rewritten ETL
transformation (Line 24). Then, the dependency graph (detailed in Section 6.2.2)
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Algorithm 3 Algorithm for ETL Program Rewriting

1: procedure rewrite(a)
Require: DG = Dependency graph
2: Let a= Transformation program
3: for all rule in a rules do
4: Map guard block of rule to an operation op gd
5: op gd.name = operation guard ruleName
6: Body of op gd ← body of guard block
7: Param of op gd ← Source parameter of rule
8: Add op gd to the ETL module
9: Map rule to an operation op rule

10: op rule.name = operation rule ruleName
11: Body of op rule ← body of rule
12: context of op rule ← Source parameter of rule
13: if guardBlock exists then
14: Call op gd as an if statement
15: end if
16: Instantiate target element(s)
17: Add above as statement(s) to the body of op rule
18: Call super rules of rule
19: Return target element(s) as a Collection
20: Add above as a return statement in op rule
21: Set the type of target element of rule as a return type of op rule
22: If multiple targets set return type as Collection
23: if rule is traceable according to DG then
24: declare a HashMap (cache ruleName) variable in the pre block
25: add target elements for the corresponding source element in the

cache ruleName
26: add an if statement to search in cache ruleName if a key with

source element exists
27: end if
28: Add op rule to the ETL module
29: end for
30: for all rule in transformation rules do
31: if rule is not lazy or abstract then
32: Iterate through all instances of the rule’s source parameter type
33: Call the corresponding operations of rule in for loop
34: Set the iterating variable as a context of operation
35: Add the for statements in the pre block
36: end if
37: end for
38: Clear all transformation rules from the ETL module
39: end procedure
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Table 6.3: Rewriting of equivalent/equivalents() operations

Original input expression Corresponding rewritten expression

single.equivalent() single.matched rule().first()

single.equivalents() single.matched rule()

collection.equivalent() collection.collect(x—x.matched rule()).flatten()

collection.equivalents() collection.collect(x—x.matched rule())

is analysed, to see if a rule needs to be traced, in which case a cache is created
for the respective operation (Line 11).

Finally, mapped operations are called in the pre block of the ETL transfor-
mation (Line 30). All the operations corresponding to non-lazy, non-abstract
rules are called in for loops by iterating through all instances of the source pa-
rameter of the rule (Line 27-28), setting it as a context to the operation (Line
29). Lazy rules are called by the other rules. At the end of this process, all the
original transformation rules are removed from the ETL transformation (Line
31), as equivalent constructs are already being called as operations in the pre
block.

6.2.5 ETL Engine

The rewritten transformation program is executed using a modified version of
the ETL engine. This program is semantically equivalent to the original trans-
formation but converted to imperative code, converting rules to operation calls,
as discussed above. The ETL engine is the same engine used by the naive ETL,
with just one modification in resolving operation calls. Usually operation calls
are resolved using Java’s reflection API, which can be computationally expen-
sive. Static analysis, as described in Section 6.2.1, other than resolving types,
also exposes which operation call expressions in the program are mapped to
which corresponding user defined operations. Hence, this information can be
used for providing the exact matched operation, to avoid having to search for it
as the program is being executed. This optimisation is not specific to ETL trans-
formations so it can be leveraged by any Epsilon language using user-defined
operations.
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6.3 Evaluation

This section presents the experimental setup used for evaluating the optimisa-
tion of model-to-model transformation programs based on static analysis, ex-
plains the methodology used and analyses the results. Finally, it discusses the
limitations and possible threats to the validity of the obtained results.

6.3.1 Experimental Setup

The proposed approach is evaluated against the default ETL execution engine
to measure its benefits in terms of execution time and memory footprint. The
first contribution, selective traceability, is expected to substantially improve
the memory consumption, by reducing the trace size, while the second one
i.e., rewriting, is similarly expected to reduce execution time. The evaluation
is divided into two parts. First, a comparison is performed of the proposed
approach with the default ETL engine. Second, the proposed optimisation
approach is compared with other state-of-the-art languages for M2M transfor-
mation.

The experiment referred to as “ETL” evaluates running the transformation
using standard ETL without any optimisations. The “Optimised ETL” one
uses the proposed optimisation/rewriting strategy described in Section 6.2. The
results of the proposed approach is compared with two other widely-used model-
to-model transformation languages, ATL and YAMTL [119], to position this
work in the broader context of M2M languages. For the ATL and YAMTL
evaluation, the same transformation is rewritten in ATL and YAMTL and then
the execution time and memory footprint are reported.

6.3.2 Case Study and Models

OO2DB transformation is used as presented in Section 6.1 for evaluating the
proposed approach. The OO2DB transformation is executed over a set of OO
models of increasing sizes, as shown in Table 6.4. These synthetic models con-
forming to the OO metamodel are created using an EOL program which can be
found online1.

6.3.3 Correctness

The transformation is rewritten to an efficient form behind the scenes, so it is
crucial to ensure that the rewritten transformation is semantically equivalent to
the original input program. To gain confidence that the rewritten program is
correct, the generated output model(s) should be the same as the ones generated
by the original transformation. Using EMFCompare [120], the output models
for ETL and Optimised ETL are checked to assess if they are the same. For
ensuring broad coverage of the tests, seven test ETL scripts mined from GitHub
were executed and for all cases no differences were found in the outputs given by

1https://github.com/quratulain-ali/runtime-eclipse.git
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Table 6.4: Sizes of the Object Oriented models used for benchmarking

ID Model Name # of model elements

1 OO 10K 140,006

2 OO 15K 210,006

3 OO 20K 280,006

4 OO 25K 350,006

the original and the rewritten programs. For this test case, the object-oriented
to relational database transformation, the generated output models are matched
for ATL, ETL, Optimised ETL and YAMTL. After executing these equivalence
tests, the semantic equivalence of the rewritten transformation is ensured and
hence of the optimised and selective traceability used in this approach.

6.3.4 Machine Specification

The experiments were conducted on a machine with the following specifications:
MacBookPro @ 2.8 GHz Quad-Core Intel Core i7, 16 GBs of RAM, macOS Big
Sur version 11.1 with JVM 11 MaxHeapSize 4GBs.

6.3.5 Internal Evaluation

Table 6.5: Execution time of naive and optimised ETL, in ms

Model size

Execution engine

ETL
Optimised

ETL

10K 5,899 3,519

15K 9,623 6,423

20K 16,040 10,171

25K 21,836 14,641

The results of the execution time of the naive ETL vs Optimised ETL are
reported in Table 6.5 and visualised in Figure 6.5.

It can be observed that overall ETL’s execution time is significantly improved
in ‘Optimised ETL’ version. This is because of the optimisations provided
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Figure 6.5: Execution time comparison of Optimised ETL with ETL

by static analysis and program rewriting to avoid operation call resolutions
at runtime and also because of efficient resolution of equivalents before the
execution.

As the proposed optimisation approach relies on extracting information (such
as static analysis, extracting of dependency graph), it is necessary to compute
the incurred overhead of these processes. Static analysis took an average of
50ms, extracting the dependency graph took an average of 35ms, while opti-
misation and rewriting took 2ms on average for all the experiments. It is worth
noting that the size of the models does not affect the time needed to extract
this information, as all these steps are performed at the metamodel level, before
executing the program itself.

The memory used for the naive ETL and optimised ETL can be seen in Ta-
ble 6.6, where it can be observed that the Optimised ETL consumes less memory
compared to ETL as shown in Figure 6.6 due to the reduced (selective) transfor-
mation trace provided by the selective traceability mechanism that is discussed
in this chapter.

6.3.6 External Evaluation

In the MDE ecosystem task specific languages are typically interpreted but
compiled languages can also be used to perform the same tasks and can be faster
compared to the interpreted ones. They are more verbose and less amenable to
static analysis. This section discusses other M2M languages used in the MDE
community: ATL, YAMTL and the A2L compiler. The proposed approach is
compared with ATL and YAMTL because ATL is a widely used interpreted
language, YAMTL is a compiled language that builds on top of Xtend and
is a state-of-the-art language for large-scale model transformations. A2L is a
compiler developed for the ATL language that compiles ATL transformations
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Table 6.6: Memory consumption of naive and optimised ETL, in MBs

Model size

Execution engine

ETL
Optimised

ETL

10K 83 30

15K 128 51

20K 175 69

25K 216 85
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Figure 6.6: Memory consumption comparison of Optimised ETL with ETL
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into Java code.
In Tables 6.7 and 6.8, the results of execution time and memory consumption

of the proposed approach are presented in comparison with ATL & YAMTL,
respectively (depicted in Figure 6.7 and 6.8). It can be clearly seen that YAMTL
executes faster than the others, because YAMTL is compiled to Java, while ETL
and ATL are interpreted.

On the other hand, YAMTL consumes the most memory, while ATL con-
sumes the least. The excessive memory consumption of YAMTL is explained by
the fact it supports incremental execution and hence consumes more memory
due to the caching required. The results of the experiments compared to A2L
are not presented as it was attempted to compile the OO2DB case study that
was used in the experiments above, but due to certain limitations of A2L (which
are discussed below), compilation failed.

Table 6.7: Execution time of various transformation languages, in ms

Model size

Transformation Language

Optimised
ETL

YAMTL ATL

10K 3,519 1,318 10,355

15K 6,423 1,806 15,202

20K 10,171 2,631 84,726

25K 14,641 3,200 103,596

While A2L provides a considerable speed up by generating efficient Java
code from ATL transformations, still there are certain limitations such as 1)
Rule Inheritance 2) Global variables 3) Reflective operations. The proposed
approach does not limit or change any of the language semantics of an ETL
transformation, thus supporting the above-mentioned features. Moreover, the
OO2DB case study could not be compiled using A2L due to use of a global
variable (Line 2 of Listing 6.1). So, in cases like this, using the approach achieves
a significant speedup, without having to alter the original transformation.

6.3.7 Threats to Validity

This experiment uses two metamodels: OO and DB and a set of increasingly
large synthetic models conforming to the source OO metamodel. Both the meta-
models and the transformation were not specifically targeted but were chosen
for two reasons. The first was using a well-known transformation, predating
this work, as well as the metamodels exercising all core features of Ecore like
inheritance, attributes, containment and non-containment references. The sec-
ond was the generality and ease of understanding of both, as they are generic
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Table 6.8: Memory consumption of various transformation languages, in MBs

Model size

Transformation Language

Optimised
ETL

YAMTL ATL

10K 30 131 23

15K 51 200 32

20K 69 267 44

25K 85 337 54
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enough to understand and hence demonstrate the novel work presented in this
chapter. Nevertheless, they may play a significant role in determining the results
obtained. Hence, it cannot be claimed that the results obtained are generalis-
able for every type of transformation and model. The proposed transformation
optimisation approach can benefit from experiments performed on more diverse
models with a broader range of sizes and more complex transformations, both
for investigating semantic equivalence and performance gains.

Another possible threat to the validity of these results is the addition of
possibly substantial overheads of this approach when evaluating large enough
programs or meta-models: for example, if the selective trace ends up being
almost equal in size to the entire transformation trace (e.g. due to a fully
connected dependency graph).

Finally, as the optimisation approach leverages the benefit of information
extracted through static analysis, it is crucial to have an accurate static analysis
of the transformation. To ensure more complete static analysis information and
thus enable efficient program rewriting, it is recommended to use a more strict
coding style, explicitly declaring types where possible, and avoiding Any type
unless necessary, for more accurate type resolution.

6.4 Related Work

This section summarises the state-of-the-art within the scope of this chapter; it
discusses model transformation optimisation strategies used for improving the
performance of the engines executing such transformations.

In [90], Born et al. extend Henshin, a rule-based model transformation lan-
guage, adapting graph transformation concepts based on EMF. This extension
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computes all potential conflicts and dependencies for a set of rules and reports
them in the form of critical pairs. Each critical pair consists of the respective
pair of rules, the kind of potential conflict or dependency found, and a minimal
instance model illustrating the conflict or dependency.

In [91], Ujhelyi introduces a static analysis facility for graph transforma-
tions. This work uses Constraint Satisfaction Programming (CSP) to provide
a type checker for the Viatra2 framework. This type checker is based on CSP,
and is not guaranteed to find all the errors in a single run using static analysis.

In [121], the A2L compiler is introduced for parallel execution of ATL
transformations. It uses static analysis through ATLyzer (discussed above in
Chapter 4), to generate efficient code at the transformation level. A2L was
discussed earlier in Section 6.3.6.

Gremlin-ATL is another approach presented in [122]. It is a model-to-model
transformation framework that translates ATL transformations into Gremlin, a
query language supported by several NoSQL databases.

Another model-to-model transformation language, YAMTL, was introduced
in [119]. YAMTL provides an efficient engine to transform EMF-based mod-
els with transformations defined in the internal DSL of Xtend. Support for
incremental transformations was also added in [123] using the forward change
propagation mechanism. Several approaches and languages are available for in-
cremental model-to-model transformations, such as the Tefkat tool, by Hearnden
et al. in [124]. Here, changes to the source models are directly mapped to their
effects on transformation execution, allowing modifications to target models to
be computed efficiently.

To summarise, the novelty of the approach presented in this chapter is that
it takes the benefit of static analysis to reduce the transformation trace while
not sacrificing the language (ETL) expressiveness by compiling it down to a
general-purpose programming language such as Java.

6.5 Chapter Summary

This chapter presented the second contribution of this research, which is to opti-
mise model-to-model transformations written in ETL by introducing a selective
traceability facility. ETL keeps a transformation trace of all the source-target
pairs. An approach is presented that is used to optimise programs written
in ETL. The proposed approach resolves the types of various constructs using
static analysis and then creates a dependency graph between the transformation
rules. Based on this dependency graph, the rule-based transformation program
is rewritten to an imperative program that only maintains a selective trace.
The evaluation experiments have demonstrated that the proposed approach can
deliver significant performance benefits both in terms of execution time and
memory footprint compared to the default ETL execution engine, particularly
where larger models are involved.
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Chapter 7

Optimisation of Model
Comparison Programs

This work has been published as a conference paper titled “Towards Efficient
Model Comparison using Automated Program Rewriting” 16th ACM SIGPLAN
International Conference on Software Language Engineering (SLE ’23).

Model comparison is usually a prerequisite to various other key model man-
agement activities such as model differencing, model versioning, etc. It involves
establishing matches/correspondences between elements of two models. There
are different ways to compare models, such as traditional text-based comparison,
comparison based on unique identifiers, model-to-model (M2M) transformation
to compare models as in [125], or to use a dedicated comparison language, such
as the Epsilon Comparison Language (ECL), which supports specifying match-
ing criteria. Such model comparison can be computationally very expensive
because element of the first model needs to be traversed and compared to a cor-
responding element of the second model as specified in the comparison program,
which does not scale well.

In this chapter, an efficient model comparison approach is introduced based
on static program analysis and automated program rewriting. A prototype im-
plementation of the proposed approach has been developed that can rewrite ECL
programs, which operate on models with Ecore-based metamodels. According
to the current ECL engine, all elements of one type are compared against the
elements of their matching type based on the provided comparison logic by the
developer. Using program analysis, elements to be compared are pre-filtered,
indexed them and then compared the pre-filtered instances rather than all in-
stances. These pre-filtered elements are automatically embedded into the origi-
nal ECL program, using program rewriting, and executed using the traditional
ECL engine. Also, it is ensured that all the rules that are needed for the exe-
cution of a particular rule have already been executed, by reordering the rules,
to avoid the extra overhead of searching the appropriate rule to invoke. The
output of an ECL program is a match trace that contains all the established
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results of matches between elements of two models. The proposed approach
yields a reduced match trace, by omitting any unsuccessful matches, whenever
it was possible to identify these beforehand through program analysis. The
match trace contains a number of matches, each match contains the two objects
that were matched and a boolean to indicate if the match was successful or not.

The proposed approach has shown performance gains up to 95% in terms of
execution time in the experiments that have been conducted.

The rest of the chapter is structured as follows: Section 7.1 presents a run-
ning example. Section 7.2 presents the overview of the proposed comparison
optimisation approach and then discusses each component step-by-step. Ex-
periments, case studies and the obtained results are presented and analysed in
Section 7.3. Section 7.4 discusses the relevant state-of-the-art in the field of
model comparison optimisation and static analysis.

7.1 Motivating Example

Type

+ name: EString

Model

+ name: EString

Class

+ isAbstract: EBoolean
+ name: String

Parameter

+ name: EString

Operation

+ name: EString

DataType

returnType

type

parent

parameters

operations

classes

Figure 7.1: An excerpt of the Class Diagram metamodel

In this section, as a running example, class diagrams are compared with
sequence diagrams. Figure 7.1 is a class diagram that illustrates the metamodel
of a class diagram-like language. The class diagram shows a structural view of
the system containing the classes, their attributes and their operations.

Then a metamodel of a sequence diagram is considered, an excerpt of which
is shown in Figure 7.2. Sequence diagrams show the interaction between objects
of a system - its intended behaviour.

Now, as the sequence diagram depicts the interaction between objects and
the class diagram represents the classes and their features, correspondences can
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Lifeline

+ name: EString

+ type: EString
Message

+ operation: EString

SequenceDiagram

+ name: EString

lifelines

from

to

Parameter

+ name: EString

+ type: EString
parameters

messages

1..*
1

1..*

1

0..*

1

Figure 7.2: An excerpt of the Sequence Diagram metamodel

:User

enterPin

:ATM

verifyPin

Figure 7.3: Sequence Diagram of ATM
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be established between the two, which can be used for downstream activities
such as validation, model merging, etc.

User

enterPin()

depositCash()

withdrawCash()

ATM

verifyPin()

dispenseCash()

operates

Card

activate()

owns

Figure 7.4: Class Diagram of ATM

A custom comparison algorithm written in ECL is shown in Listing 7.1. For
this comparison, there is following basic criteria:

• A lifeline matches a class when the type of the lifeline is the same as the
name of the class in class diagram.

• A message matches an operation when the operation of the message is the
same as the name of the operation. Also, the class corresponding to the
“to” lifeline of the message or one of its supertypes should contain the
operation.

• The parameters of the message need to be matched with the parameters
of the operation.

1 model Left driver EMF{

2 nsuri = "sd"

3 };

4

5 model Right driver EMF{

6 nsuri = "cd"

7 };

8

9 rule Lifeline2Class

10 match l : Left!Lifeline

11 with r : Right!Class {

12 compare : l.type = r.name

13 }

14

15 rule Message2Operation

16 match l : Left!Message

17 with r : Right!Operation {

18
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19 compare : l.‘operation ‘ = r.name

20 and (l.‘to‘.matches(r.class) or l.‘to‘.matches(r.

class.superTypes)) and l.parameters.matches(r.

parameters)

21 }

22

23 rule Param2Param

24 match l: Left!Parameter

25 with r: Right!Parameter {

26

27 compare : l.name = r.name and l.type = r.type.name

28 }

29

30 operation String matchOperation(others : Collection <

Right!Operation >) : Boolean {

31 return others.exists(o|o.name = self);

32 }

Listing 7.1: Example ECL script before optimisation

In this ECL program, there are three match rules: Lifeline2Class (Line
9-13), which compares the type of lifeline to the class name (Line 12), Mes-
sage2Operation, which compares the operation of Message with Operation name
(Line 20). Message2Operation also compares whether the operation’s owner
class is the same as the to (Lifeline) of the Message. Finally, Param2Param
compares the name and type of the parameters of both models (Line 27).

As an example, consider matching a class diagram of an ATM system as
shown in Figure 7.4 with its corresponding sequence diagram as shown in Fig-
ure 7.3. If the ECL program is executed (Listing 7.1 over these two models
it would produce the match trace shown in Table 7.1. As it can be seen, it
returns all matches of each element with its corresponding type and a boolean
indicating if the element was matched or not.

1 model Left driver EMF {

2 nsuri = "sd"

3 };

4

5 model Right driver EMF {

6 nsuri = "cd"

7 };

8

9 pre {

10 var Lifeline2ClassMap = Right!Class.all.mapBy(param|

param.name);

11 var Message2OperationMap = Right!Operation.all.mapBy

(param|param.name);

12 var Param2ParamMap = Right!Parameter.all.mapBy(param

|param.name);
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Table 7.1: Match trace produced from the execution of Listing 7.1 on the models
in Figure 7.3 and Figure 7.4

S # Left Right Matching

1 Lifeline (qa: User) Class (User) True

2 Lifeline (qa: User) Class (ATM) False

3 Lifeline (qa: User) Class (Card) False

4 Lifeline (hsbc: ATM) Class (User) False

5 Lifeline (hsbc: ATM) Class (ATM) True

6 Lifeline (hsbc: ATM) Class (Card) False

7 Message (enterPin) Operation (verifyPin) False

8 Message (enterPin) Operation (dispenseCash) False

9 Message (enterPin) Operation (enterPin) True

10 Message (enterPin) Operation (depositCash) False

11 Message (enterPin) Operation (withdrawCash) False

12 Message (enterPin) Operation (activate) False

13 Message (verifyPin) Operation (verifyPin) True

14 Message (verifyPin) Operation (dispenseCash) False

15 Message (verifyPin) Operation (enterPin) False

16 Message (verifyPin) Operation (depositCash) False

17 Message (verifyPin) Operation (withdrawCash) False

18 Message (verifyPin) Operation (activate) False
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Table 7.2: Match trace produced from the execution of Listing 7.2 on the models
in Figure 7.3 and Figure 7.4

S # Left Right Matching

1 Lifeline (qa: User) Class (User) True

2 Lifeline (hsbc: ATM) Class (ATM) True

3 Message (enterPin) Operation (enterPin) True

4 Message (verifyPin) Operation (verifyPin) True

13 }

14

15 rule Lifeline2Class

16 match l : Left!Lifeline

17 with r : Right!Class

18 from : Lifeline2ClassMap.get(l.type) ?: Sequence {}{

19 compare : true

20 }

21

22 rule Param2Param

23 match l : Left!Parameter

24 with r : Right!Parameter

25 from : Param2ParamMap.get(l.name) ?: Sequence {}{

26 compare : true and l.type = r.type.name

27 }

28

29 rule Message2Operation

30 match l : Left!Message

31 with r : Right!Operation

32 from : Message2OperationMap.get(l.‘operation ‘) ?:

Sequence {} {

33 compare : true and (l.‘to‘.matches(r.class) or l.‘to

‘.matches(r.class.superTypes)) and l.parameters.

matches(r.parameters)

34 }

35

36 operation String matchOperation(others : Collection(

Right!Operation)) : Boolean {

37 return others.exists(o : Right!Operation|o.name =

self);

38 }

Listing 7.2: Example ECL script after optimisation

The default execution engine of ECL will compare each instance of the left
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parameter (i.e., Lifeline) to all the instances of the right parameter (i.e., Class).
The complexity of this rule here would be O(M×N), if there are M number of
Lifelines and N number of Classes. Using program analysis, it is a possibility to
index the instances by analysing these compare blocks as shown in Listing 7.2.
Considering example sequence and class diagrams in Figure 7.3 and Figure 7.4,
as there are 2 Lifelines and 3 Classes so there will be 6 matches for the rule
Lifeline2Class. In the rule Lifeline2Class, the Class instances can be filtered
only keeping ones where the name of the class is equal to the type of the Lifeline.
These indices can be pre-computed once, and then used as required. This could
reduce the complexity to O(M), considering the complexity of the hash function
to be O(1). Again considering the example models, if Listing 7.2 is executed,
the resultant match trace would be the same as shown in Table 7.2. There
are only two matches for the same Lifeline2Class rule. Hence, the idea of this
work is to analyse the ECL matching program and to automatically replace it
with an efficiently rewritten program, to reduce the complexity of (some of)
the comparisons. This is done by getting rid of the false matches as much as
possible. This way, the program would not waste time nor memory in computing
them.

7.2 Proposed Approach

In this section, the proposed approach is presented in detail, the overview of
which is illustrated in Figure 7.5. The idea is to optimise ECL matching pro-
grams automatically using program analysis. The developer writes the compar-
ison algorithm in ECL to compare two models, say left and right. The expected
outcome is a match trace resulting from computing the compare block of each
match rule. The match trace contains a number of matches, each match con-
tains the two objects that were matched and a boolean to indicate if the match
was successful or not. So using the proposed optimisation approach, a match
trace is generated, which is a reduced or pre-filtered version, containing a sig-
nificantly smaller number of unsuccessful matches. The search space is hence
reduced, making the comparison faster. This is because all instances of left
parameter are not compared to all instances of right parameter (which is done
in existing ECL execution), rather instances of the left parameter are compared
to pre-filtered/pre-indexed instances of the right parameter.

The first step in the proposed approach is the static analyser, a block used
to populate the Abstract Syntax Tree (AST) of the ECL matching program,
with the respective type information. This type-resolved AST is then used for
two purposes: i) For the dependency graph extractor, a block that extracts the
dependencies between different match rules of an ECL program by analysing
compare blocks and matches() operations. Dependency here means that if a
rule MRx invokes another rule MRy then the rule MRx would be dependent on
MRy. The dependency graph is then used by the rule scheduler to efficiently
reorder the execution of rules. This is to ensure that if a rule invokes another
rule like in Line 20 of Listing 7.1, rule Message2Operation is dependent on rule
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Figure 7.5: An overview of the proposed approach

135



Lifeline2Class and Param2Param. Both the rules on which Message2Operation
is dependent should be executed before Message2Operation. ii) For the opti-
misable rule detector, a block for program analysis to identify the match rules
which can be optimised based on the expressions in compare block. Here, op-
timisable rules mean the rules which are matching two elements on the basis
of a specific property and can be indexed. So, this step identifies optimisable
match rules along with the specific property name. Finally, the rewriter block
will replace the original program with a rewritten optimised program along with
the new order of the match rules. This optimised comparison program will then
be executed by the existing ECL engine. The resultant match trace would be a
subset of the trace that would have been produced by the original comparison
program. This subset trace would exclude the matches which would not satisfy
the domain (an EOL expression to narrow the search space), while including all
positive matches.

7.2.1 Static Analysis

Static analysis is the first step of the proposed approach workflow. It analyses
the ECL program’s abstract syntax tree (AST) and computes the types of all
expressions in it. This type information is extracted using metamodel introspec-
tion, type resolution and type inference. ModelDeclarationStatements in Lines
(1-3 and 5-7) in Listing 7.1 actually access the metamodel structure and help
retrieve the types and their hierarchy available in the metamodel. To statically
analyse ECL programs, the already available EOL static analyser 1 is extended
by adding language specific support (e.g. analysingMatchRules, compare blocks
etc.). The resolved types of various constructs in Listing 7.1 are shown in Table
7.3. The outcome of the static analyser block is a type-resolved AST, which is
just the input AST with its nodes populated with their respective types.

7.2.2 Dependency Graph

Message2Operation

Lifeline2Class Param2Param

Figure 7.6: Dependency graph of Listing 7.1

1https://github.com/epsilonlabs/static-analysis
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Table 7.3: Resolved types of various constructs in Listing 7.1

Line# Expression Resolved Type

13 l Left!Lifeline

14 r Right!Class

15 l.type String

15 r.name String

19 l Left!Message

20 r Right!Operation

21 l.operation String

21 r.operations Collection<Right!Operation>

21 r.superTypes.operations Collection<Right!Operation>

29 l.parameters Collection<Left!Paramter>

29 r.parameters Collection<Right!Paramter>

33 l Left!Parameter

34 r Right!Parameter

36 l.name String

36 r.type.name String
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ECL provides a built-in operation matches(right :Any) for model elements
and collections. When invoked, the matches() operation returns the cached
result, if the elements have already been matched. Otherwise, it finds the rules
comparing the same two elements and then returns its results. Due to these rule
invocations, rules can be dependent on one another. These dependencies can be
extracted with the help of the type-resolved AST, as done for model-to-model
transformations in [126]. To construct a dependency graph, a vertex is created
for eachMatchRule declared in the ECL program. If a ruleMRx has a statement
in its compare block that calls a matches() operation which invokes another rule,
say MRy. The resolution of which rule is invoked by the matches() operation is
done by finding the rule where the type of the left and right parameters of rule
is the same as the type of the target and parameter expressions of the matches()
operation. Then, an edge is created from the vertex corresponding to MRx, to
the vertex corresponding to MRy. If there are multiple rules invoked by the
matches() operation, multiple edges were created from MRx. For example, as
in rule Message2Operation Line 19 of Listing 7.1 there is a call to the matches()
operation with l.to (resolved type: Lifeline) as the target expression and r.class
(resolved type: Class). This means that this matches operation call will invoke
a rule which is matching Lifeline with Class i.e., rule Lifeline2Class. So, an edge
is created from Message2Operation to Lifeline2Class as shown in Figure 7.6.
The reason for extracting the dependency graph is to reorder the rules in a
way that if MRx is invoked by a rule MRy then MRy is scheduled before MRx.
This rescheduling helps achieve a performance gain, because it can reduce the
number of attempts needed to find the appropriate rules to invoke. Any rule
invocation using a matches() operation can use the cached results in the match
trace, if the rules have been reordered properly. An edge is not created when a
rule invokes itself, as it does not affect the reordering for which a dependency
graph is extracted. However, ECL provides a mechanism to avoid an infinite
loop, in case of a cyclic invocation of a rule i.e., two rules implicitly invoking
each other. ECL maintains a temporary trace along with the primary trace.
In a primary trace the matching value is added after the execution of compare
block, while the matching value is set to true in the temporary trace before the
execution of the compare block. In case of another attempt to match elements
from already invoked rules, these rules would not be re-invoked. Finally, the
temporary trace is reset when a top-level rule returns.

7.2.3 Identifying Optimisable MatchRules

This is the third step of the approach that takes in a type-resolved AST as an
input with the aim to identify the rules which can be optimised. Optimisable
rules are the rules which are comparing the elements of the two models based
on a specific property. This is done by traversing the compare block of each
MatchRule and finding expressions where two elements are compared on the
basis of a specific property or attribute. In this case, the elements can be indexed
based on that property. The process for identifying such optimisable rules is
specified in Algorithm 4. The algorithm traverses a set of Match rules (Line 2)
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and their compare block (Line 3). Then, in a compare block all DOM elements
are traversed to identify cases where a PropertyCallExpression(Line 4) is used
within an EqualsOperatorExpression (Line 6) and it records the relevant Match
rules and properties in a HashMap for later use in indexing (Line 13). With one
exception, if there is a logical operator between equals expression, just the index
is recorded if it is an and operator (Line 10). For instance, in Listing 7.1 Line
12 the rule Lifeline2Class is comparing the Lifeline from Sequence diagram to
Class from Class diagram on the basis of the property name, in this class. So
the Algorithm 4, would return the Hashmap containing rule Lifeline2Class with
the respective property “name”.

Algorithm 4 Algorithm for Identifying Optimisable Rules

1: Let op = HashMap<rule, NameExpression>
2: for all Matchrules rule do
3: Visit all DOM elements (elem) of compare block of rule
4: if elem instanceof PropertyCallExpression and !(op.contain(rule)) then
5: parent ← elem.parent
6: if parent instanceof EqualsOperatorExpression then
7: parent ← parent.parent
8: if parent instanceof OperatorExpression then
9: if parent instanceof AndOperatorExpression then

10: op ← rule and elem.NameExpression
11: end if
12: else
13: op ← rule and elem.NameExpression
14: end if
15: end if
16: end if
17: end for

7.2.4 Program Rewriting

The final step is the rewriting phase illustrated in Algorithm 5, now that all the
program analysis is in place. As discussed in the previous step, the optimisable
rules are identified say MR1, MR2.., MRn along with the specific properties say
p1, p2.., pn on the basis of which the elements are compared in the compare
block. All instances of the right parameter of the identified ruleMRn are indexed
on the basis of the respective property pn. This is done using a built-in method
called mapBy (Line 10 in Listing 7.2), which returns a map containing the
results of the parameter expression as keys and the respective items of the
target collection as values. The mapBy operation is called with all instances of
the identified rule’s right parameter and assigned to a newly declared variable
(Line 4-10 of Algorithm 5). The naming convention of these variables is the rule
name concatenated with the string “Map”. So, a Map for the rule Lifeline2Class
will be called as Lifeline2ClassMap (Line 11 of Algorithm 5). These variable
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statements are then added to the pre block of the ECL program (Line 13 of
Algorithm 5). The Pre block is a set of EOL statements that are executed
before the execution of match rules in ECL. This can be seen in Listing 7.2
(Line 10-12).

The next step is to utilise these pre-computed hashmaps (indices). For
this, the facility of specifying domains was added to ECL. Each parameter
in an ECL rule can define a domain, which is an EOL expression that yields
a set of model elements, allowing the developers to narrow down the search
space. Two types of domains are supported in ECL. Static domains which
are computed once for one match rule and are independent of bindings of the
other parameter of the MatchRule. Static domains are denoted by the “in”
keyword) and dynamic domains which are recomputed every time the other
parameter value is changed. Dynamic domains are dependent on the other
parameter values and are denoted by the “from” keyword. So these hashmap
variables that are added in the pre block were used, as a dynamic domain for
the right parameter of the corresponding MatchRule. For instance in Line 18 of
Listing 7.2, the value from the corresponding hashmap i.e., Lifeline2ClassMap
was retrieved using the left parameter’s compared property (identified in the
previous step) as a key.

Hashmaps return null values if they do not contain the mapping for a par-
ticular key, so to cater for possible null pointer exceptions, a safe navigation
operator was used. EOL already supports a safe navigation operator ?., for
making the null checks more concise without crashing the program. The use of
the safe navigation operator is shown in Line 18 of Listing 7.2, where an empty
Sequence is returned if the get() operation returns a null value. var result =

a?.someProperty?.anotherProperty;

If a is not null, someProperty would be assigned to result, otherwise, anoth-
erProperty would be assigned.

The last bit in the rewriting phase is to rewrite the order of the rules as
described in the Rule Scheduler step. The reordering is done on the basis of
the dependency graph as in Figure 7.6, so that the independent rules can
be executed first and then the ones dependent on them. Now, instead of the
ECL engine executing the original program written by the developer, as listed
in Listing 7.1, the automatically rewritten program as in Listing 7.2 will be
executed.

7.3 Evaluation

In this section, first the experimental setup is presented, including the case
study and the models used for the benchmarks, and the results of the conducted
experiments were presented. Finally the section is concluded by analysing and
then stating any threats to the validity of the presented results.
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Algorithm 5 Algorithm for ECL Program Rewriting

1: Let op = HashMap of rules with the corresponding properties as in Algo-
rithm 4

2: DG = Dependency Graph
3: for all rule in op do
4: Construct property call expression (pce)
5: target ← type of right parmeter of rule
6: property ← all
7: Construct operation call expression (oce
8: target ← pce
9: operation ← mapBy

10: expression ← op.get(rule)
11: declare variable (v) with name rule.getName()+”Map”
12: v ← oce
13: add v to pre block
14: add domain block with expression v.get(leftParameter.property)
15: end for
16: reorder rules according to topological order of DG

7.3.1 Experimental Setup

To evaluate the efficient comparison approach proposed, the execution time of
the original ECL programs were measured using the existing ECL engine with
the rewritten ECL programs (also using the existing ECL engine). Since Epsilon
already supports parallel execution of ECL programs, all these experiments
were conducted with the parallel execution mode. First, the execution time was
measured for running the comparison program with the existing ECL engine
(without any optimisations) in parallel mode and this is referred to as ECL
in all the results tables and graphs. Second, the proposed approach was used
to automatically rewrite the ECL program (as described in Section 7.2) and
execute the rewritten program using the existing ECL engine in parallel mode.
This is referred to as Optimised ECL in the results tables and graphs.
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7.3.1.1 Case Study & Models

Table 7.4: Sizes of the models used for benchmarking

ID
No of model elements

OO DB OO+DB Seq Class Class+Seq

1 287 184 471 305 356 661

2 357 229 586 417 356 773

3 427 274 701 417 469 886

4 497 319 816 342 356 698

5 567 364 931 342 356 698

6 637 409 1046 305 469 774

7 707 454 1161 342 469 811

For evaluating the proposed approach, two case studies were used: one is the
class and sequence diagram comparison as shown in Listing 7.1, the second is
the comparison of object oriented (OO) models with database (DB) models.
The class and sequence diagram models of different sizes conforming to these
metamodels were used which are publicly available on GitHub [127]. OO & DB
are the synthetic models generated in [126]. The number of elements of different
models are mentioned in Table 7.4. The point to note is that the sizes of the
models that were used were not very large but the comparison of these models
still becomes computationally very expensive. Hence, a notable performance
gain can be observed in these models.

1 rule Class2Table

2 match l : OO!Class

3 with r : DB!Table{

4

5 compare : l.name = r.name

6 }

7

8 rule Attribute2Column

9 match l : OO!Attribute

10 with r : DB!Column

11 {

12 compare : l.name = r.name and l.owner.matches(r.

table)

13 }

Listing 7.3: ECL comparison program for OO-DB models

To compare OO models with DB ones, a simple comparison algorithm (de-
picted in Listing 7.3) was used to establish matches between tables and classes,
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when their names are equal. In the second rule, attributes with columns are
compared on the basis of the property name, and also on whether they belong
to same class and table respectively. This example is quite simple but this is
used as a case study to show the substantial performance benefits observed even
for simpler matching programs, with increasing model sizes. The comparison
program in Listing 7.3 would be optimised and rewritten as represented in List-
ing 7.4. Line 5 in Listing 7.3 informs that the caching has to be done by name
attribute as shown in Line 2 of Listing 7.4.

1 pre {

2 var Class2TableMap = DB!Table.all.mapBy(param|param.

name);

3 var Attribute2ColumnMap = DB!Column.all.mapBy(param|

param.name);

4 }

5

6 rule Class2Table

7 match l : OO!Class

8 with r : DB!Table

9 from : Class2TableMap.get(l.name) ?: Sequence {} {

10 compare : true

11 }

12

13 rule Attribute2Column

14 match l : OO!Attribute

15 with r : DB!Column

16 from : Attribute2ColumnMap.get(l.name) ?: Sequence {} {

17 compare : true and l.owner.matches(r.table)

18 }

Listing 7.4: ECL rewritten program for OO-DB models

7.3.1.2 Correctness

As the approach is based on automatic rewriting of the program, it is crucial
that the rewritten program preserves the semantics of the original program. To
ensure this, equivalence testing is used to compare the match trace for both
the original and the rewritten programs. Several comparison programs are used
mined from GitHub to compare models both conforming to same and different
metamodels and then compared their output match traces. Mostly, comparison
programs available on GitHub were comparing models from the same modelling
language. It was verified that the number of successful matches in both the op-
timised and the unoptimised version remained the same, as shown in Table 7.5
and 7.6. While the number of successful matches is the same, one can observe
the difference in number of unsuccessful matches in Table 7.5 and 7.6. This is
because of the successful pre-filtering/pre-indexing in the proposed approach.
Some of the instances are filtered which, using the static program analysis, can
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be categorised as unsuccessful, before actually running the comparison algo-
rithms.

Table 7.5: Match Trace of Class and Sequence Diagram Comparison

ID ECL (All) Optimised (All) ECL (S) Optimised(S)

1 29400 92 38 38

2 29400 92 38 38

3 33700 78 0 0

4 33284 54 0 0

5 33284 54 0 0

6 33700 78 0 0

7 38100 208 72 72

Table 7.6: Match Trace of OO and DB Comparison

ID ECL (All) Optimised (All) ECL (S) Optimised(S)

1 18060 4120 60 60

2 28200 6400 75 75

3 40590 9180 90 90

4 55230 12460 105 105

5 72120 16240 120 120

6 91260 20520 135 135

7 112650 25300 150 150

7.3.1.3 Machine Specification

The set of evaluation experiments presented in this chapter were performed on
a MacBookPro @ M2 Core i7, 24 GBs of RAM, Mac operating system Ventura
version 13.0, and Java 17 on JDK 17.0.6 with JVM MaxHeapSize 6GBs.

7.3.2 Results

In this section, the results from the conducted experiments are presented. Ta-
ble 7.7 presents the execution time in milliseconds for the OO and the DB
model comparison, and the Class and Sequence Diagram model comparison re-
spectively. The results can also be visualised for the OO & DB comparison in
Figure 7.7 and the Class and Sequence diagram in Figure 7.8.
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Table 7.7: Execution time of existing ECL and optimised ECL, in ms

ID
OO - DB CL - SEQ

ECL Optimised ECL Optimised

1 1962 535 3287 196

2 3488 781 3109 194

3 6745 1238 3894 205

4 14051 1735 4046 188

5 22044 1924 4286 287

6 31611 3705 4342 199

7 52159 4520 5050 250
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Figure 7.7: Comparison of Execution time in OO DB Comparison

As seen in Table 7.4, the OO and the DB models are of increasing sizes, while
this is not the case with the Class and Sequence Diagram models. Keeping
these sizes of models in mind, a continuous rise in performance gain can be
seen as the model size increases (Figure 7.7). While in Figure 7.8, almost a
constant performance gain compared to the existing ECL engine can be seen.
This suggests that the performance benefits are proportional to model size.

This performance gain is achieved by reducing the search space needed for
matching. It can be observed in the match traces produced for both case studies
in the Table 7.5 and Table 7.6 that the number of unsuccessful matches were
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Figure 7.8: Comparison of Execution time in Class Sequence Diagram Compar-
ison

significantly reduced in the proposed approach.
Another important factor to note here is that this approach might not

bring performance benefits when comparing very small models, because pre-
computing the indices (as mentioned in the program rewriting section) has an
overhead, which pays off for larger models, a much clearer improvement is ex-
pected to be seen in performance when it comes to larger models.

7.3.3 Threats to Validity

A primary threat to the validity of the results presented here, is that the mea-
sured performance may be particular to the models that were created for the
tests, to the kind of model, or to the comparison programs that were proposed.
A key challenge identified in MDE research is a lack of publicly accessible real-
world models [128]. Although both synthetic and publicly available models are
used, this can still affect the measured performance benefits. To further gen-
eralise the results, it is required to perform experiments with different models
and comparison programs as well as with different modeling technologies such
as Simulink and CDO to demonstrate the scalability of the proposed approach,
especially for larger models.

As the rewriting is based on static analysis, it is recommended to explic-
itly state the types of the constructs wherever possible, to allow accurate type
resolution and enable automated rule optimisation (as described in Section 7.2).
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7.4 Related Work

Model comparison deals with finding similarities and differences between ele-
ments of different models. This comparison can be done on the basis of structure,
semantics and metrics [129]. In the context of this chapter the state-of-the-art
work that involves structural model comparison has been discussed.

It has been demonstrated in [130] that conventional text-based comparison
and differencing techniques are insufficient for model comparison due to the
structured nature of models.

Model-to-model transformations have been shown to be used for comparing
models as in [125]. M2M languages are not tailored for model comparison task
and hence generally are very verbose if used in the context of model comparison.
M2M languages do not have tailored constructs for model comparison activities.

Change-based model comparison was presented in [131] where the com-
parison is done only for the model elements that have been changed since the
previous version which is quite efficient compared to state-based comparison.

EMF Compare [132] & EMF Diff Merge [133] are two tools available to
compare and then merge two models. EMF Compare uses built-in heuristics
for model element references and attribute values while a tailored language like
ECL lets one write custom matching rules for different model elements.

There are other comparison approaches as shown in [134] that compares
different UML models but the approach is only limited to models conforming
to a single metamodel. Additionally as mentioned in [53], most similarity
based approaches such as SiDiff [130] and DSMDiff [135], have limited support
when it comes to heterogeneous models which are supported by ECL, where
one can specify complex matching algorithms for models conforming to multiple
metamodels.

7.5 Chapter Summary

In this chapter, an approach is presented in Section 7.2 for efficiently compar-
ing models using programs written in a rule-based model comparison language
followed by an example in Section 7.1. This efficient comparison approach in-
corporates an automatic rewriting facility to speed up model comparison (both
homogeneous and heterogeneous) based on static analysis. The rewriting auto-
matically extracts dynamic domains to provide pre-filtering of model elements
before actually comparing them. Decreasing the cost of switching between com-
parison rules, allows to execute independent rules before those dependent on
them, optimising the comparison process. In Section 7.3, it is shown through
experiments that the proposed approach significantly reduces execution time
when compared to the default ECL execution engine, resulting in performance
gains. Finally related work is presented in Section 7.4.
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Chapter 8

Conclusion

This chapter lists the contributions of this thesis to the field of model driven
engineering, summarises its findings, and states potential directions for future
work for this research work. The hypothesis of this research was as follows:

“The execution time of computing expensive queries in model validation,
model-to-model transformation and model comparison tasks over large
EMF-based models can be significantly reduced using automated program

rewriting techniques based on the in-advance information extracted through
static analysis.”

A breakdown of the overall research goal into more fine-grained objectives
is as follows:

• RO-1: Identify the performance challenges involved in executing
complex model management programs over large EMF-based
models.

This research objective was achieved by reviewing the existing literature
and the state-of-the-art tools. The challenges identified are detailed in
Chapter 2.

• RO-2: Identify reusable optimisation approaches and patterns
across different model management programs using static anal-
ysis of high-level language programs.

This research objective was achieved by contributing static analysis facili-
ties to Epsilon languages. Static analysis helps extract things such as type
information, call graph and dependency graph and is described in detail
in Chapter 4.

• RO-3: Propose algorithms for the optimisation of model man-
agement programs operating on large scale EMF-based models.

This was achieved by contributing approaches for optimising model val-
idation (Section 5.2), model-to-model transformation (Section 6.2) and
model comparison programs (Section 7.2).
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• RO-4: Ensure to preserve the semantics of the original program
while producing the optimised version.

This was achieved by performing equivalence testing for all the rewritten
optimised programs. Automated JUnit tests were developed to check the
semantic equivalence of the rewritten program with the original input
program.

• RO-5: Evaluate the results of the proposed algorithms in terms
of execution time and memory footprint.

To achieve this research objective, experiments were conducted to evaluate
the proposed approaches and are explained in detail in Sections 5.2.4, 6.3
and 7.3.

The following research questions have been set out to achieve the above-
mentioned research objectives in Section 3.2.

• RQ-1: What are the performance challenges in terms of execu-
tion time for complex model management programs over large
EMF-based models.

The challenges identified are listed in Chapter 2.

• RQ-2: What information can be extracted before the execution
of a model-management program to facilitate automated rewrit-
ing of such programs?

Static analysis helps extract information such as type resolution, depen-
dency graph and call graph.

• RQ-3: Can the information extracted from static analysis help to
identify potential rewriting opportunities for model management
programs?

Yes, it can be seen in proposed approaches how type information has
helped to rewrite the optimised program. In Chapter 5 call graph gener-
ated using static analysis helped in optimising the program also in Chap-
ters 6 and 7 dependency graph have been used to optimise the programs.

• RQ-4: Does the optimised program generated by the rewriting
approach produce the same output as the original program?

Yes, this has been confirmed using the automated JUnit testing to ensure
the semantic equivalence of the rewritten programs.

• RQ-5: Do static analysis and automatic program rewriting help
in reducing memory footprint and execution time when complex
model management programs are executed over large models?

Yes, it can be clearly observed in the experiments that the proposed opti-
misation approaches produce significant performance gains.
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The proposed approaches and the results of the experiments conducted have
confirmed the research hypothesis “The execution time of computing expensive
queries in model validation, model-to-model transformation and model
comparison tasks over large EMF-based models can be significantly reduced
using automated program rewriting techniques based on the in-advance in-
formation extracted through static analysis.”

8.1 Summary

Model querying and model validation programs: First, an approach and a
prototype was presented for optimisation of type-level model queries (i.e. queries
on allInstances()) built on top of Epsilon’s EOL and EVL languages. The pro-
posed approach detects expressions of interest using static call graph analysis
and then augments the input program with index-building statements and re-
places calls to said expressions with equivalent expressions that make use of
the pre-computed indices. Experimental evaluation has demonstrated that the
proposed approach can deliver significant performance benefits compared to the
default EOL and EVL engine, particularly where larger models are involved.

Secondly, an architecture for automatically mapping certain expensive ex-
pressions from an EVL validation program to VQL patterns has been presented.
This mapping of EVL expressions to VQL patterns leverages static type infor-
mation extracted by the static analyser from the EMF models. The translated
VQL patterns executed by the RETE engine outperform the sequential execu-
tion of EVL validation. It is discussed that this partial translation can help
model validation scale well for large-scale models.

Selective traceability: Thirdly, an approach has been presented that is
used to optimise programs written in rule-based M2M transformation languages.
The proposed approach resolves the types of various constructs using static anal-
ysis and then creates a dependency graph between the transformation rules.
Based on this dependency graph, the rule-based transformation program is
rewritten into an imperative program that only maintains a selective trace.
The evaluation experiments have demonstrated that the proposed approach can
deliver significant performance benefits both in terms of execution time and
memory footprint compared to the default ETL execution engine, mainly where
larger models are involved.

Model comparison programs:Finally, an approach has been presented
for efficiently comparing models using programs written in a rule-based model
comparison language (ECL). This efficient comparison approach incorporates
an automatic rewriting facility to speed up model comparison (both homoge-
neous and heterogeneous) based on static analysis. The rewriting automatically
extracts dynamic domains to provide pre-filtering of model elements before ac-
tually comparing them. Additionally, static analysis helps reorder the rules
based on the dependencies identified between these match rules by creating a
dependency graph. This enables to execute dependency-free rules before those
dependent on them, optimising the comparison process by reducing the cost of
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jumping between comparison rules. Through experiments, it is demonstrated
that the proposed approach significantly improves execution time compared to
the default ECL execution engine, providing substantial performance benefits.

8.2 Thesis Contributions

The contributions of this thesis are as follows:

• Optimisation of model querying and model validation programs
over EMF-based models by creating automated custom indices. This is
achieved using static analysis and program rewriting. Additionally, an
approach has been contributed for translating EOL expressions to Viatra
to support incremental querying.

• Optimisation of model-to-model (M2M) transformation programs
to reduce the size of the transformation trace by leveraging static analy-
sis to translate from a rule-based M2M program to an imperative M2M
program.

• Optimisation of model comparison programs written in Epsilon
Comparison Language (ECL), by pre-filtering and indexing the elements
to be matched using static analysis and automatically rewriting the dy-
namic domains (reducing the search space). ECLs grammar is extended
to provide support for both static and dynamic domains. Static domain is
computed once for eachMatchRule while the dynamic domain is computed
each time when the left model element is updated/

8.3 Future Work

One potential future work direction is to use the program optimisation strategies
proposed in this work is to execute on top of partial loading. Partial loading
helps reduce the loading time of the model and only load the necessary parts
of the model while program optimisation on the top would further reduce the
execution time. This would result in an overall decrease in end to end time
for a model management operation. Other specific future work for different
contributions are detailed below:

Model querying and model validation programs: Directions for fu-
ture work include extending the proposed approach and prototype to support
additional model management languages (e.g. for M2M/M2T transformation),
additional modelling technologies (e.g. Simulink models i.e. translating from
EOL to native MATLAB commands) and for detecting further language and
modelling technology-specific optimisation opportunities.

The EVL to Viatra work can be extended in further iterations to cover the
mapping of more complex expressions, e.g., navigating multi-valued references.
Besides rewriting queries to a different language, another way to improve the
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performance is to use the parallel EVL engine [106] or to cache all instances of
every type in the model. Comparing the performance of these approaches with
the RETE engine is also an interesting future direction.

Selective traceability: Directions for future work on selective traceability
include conducting experiments to evaluate the proposed approach with other
modelling technologies (e.g. Simulink models, repository-based models). Also,
providing a disposal facility for the transformation trace can offer further mem-
ory footprint reductions. Moreover, using program analysis to deduct additional
optimisation opportunities at the expression level is an interesting direction for
potentially further improving the performance of such model-to-model transfor-
mations.

Model comparison programs: In future iterations, the proposed model
comparison optimisation approach can be potentially used to provide correspon-
dence between models from heterogeneous modelling technologies. For instance,
it can facilitate the comparison between Simulink models and EMF models.
Moreover, this automatic domain rewriting facility can be integrated with other
rule-based languages such as Epsilon’s pattern matching language (EPL).
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Appendix A

1 @builtin

2 operation String firstToLowerCase () : String {

3 }

4

5 @firstorder @builtin

6 operation Collection <Any > sortBy(a : Any) : Collection

<Any > {

7 }

8

9 @firstorder @builtin

10 operation Collection <Any > collect(a: Any) : Collection

<EolSelfExpressionType > {

11 }

12

13 @firstorder @builtin

14 operation Collection <Any > exists(a: Any) : Collection <

EolSelfExpressionType > {

15 }

16

17 @builtin

18 operation String toCharSequence () : List <String > {

19 }

20

21 @builtin

22 operation String pad(a: Integer , b: String , c: Boolean

) : String {

23 }

24

25 @builtin

26 operation String isSubstringOf (a: String) : Boolean {

27 }

28

29 @builtin
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30 operation String startsWith (a: String) : Boolean {

31 }

32

33 @builtin

34 operation String store(where: String) {

35 }

36

37 @builtin

38 operation String firstToUpperCase () :String {

39 }

40

41 @builtin

42 operation String ftuc() : String {

43 }

44

45 @builtin

46 operation String trim() : String {

47 }

48

49 @builtin

50 operation String ftlc () : String {

51 }

52

53 @builtin

54 operation String characterAt(index: Integer): String {

55 }

56

57 @builtin

58 operation String escapeXml () : String {

59 }

60

61 @builtin

62 operation String setTarget(target: Any) {

63 }

64

65 @builtin

66 operation String toEnum () : Any {

67 }

68

69 @builtin

70 operation String contributesTo(target : Any) : Boolean

{

71 }

72

73 @builtin

74 operation Integer mod(other: Integer) : Integer {
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75 }

76

77 @builtin

78 operation Integer toHex () : String {

79 }

80

81 @builtin

82 operation Integer toBinary () : String {

83 }

84

85 @builtin

86 operation Integer iota (i: Integer , step: Integer) :

Sequence <Integer > {

87 }

88

89 @builtin

90 operation Integer to (end: Integer) : Sequence <Integer

> {

91 }

92

93 @builtin

94 operation Any asDate (format: String) : Date {

95 }

96

97 @builtin

98 operation Any asUnicode () : String {

99 }

100

101 @builtin

102 operation Any asBoolean () : Boolean{

103 }

104

105 @builtin

106 operation Any asLong () : Integer {

107 }

108

109 @builtin

110 operation Any asFloat () : Real {

111 }

112

113 @builtin

114 operation Any asDouble () : Real {

115 }

116

117 @builtin

118 operation Any asReal () : Real {
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119 }

120

121 @builtin

122 operation Any isReal () : Boolean {

123 }

124

125 @builtin

126 operation Any isInteger () : Boolean {

127 }

128

129 @builtin

130 operation Any asInteger () : Integer {

131 }

132

133 @builtin

134 operation Any format () : String {

135 }

136

137 @builtin

138 operation Any errln (prefix: Any , suffix: Any) :

EolSelf {

139 }

140

141 @builtin

142 operation Any errln (prefix: Any) : EolSelf {

143 }

144

145 @builtin

146 operation Any errln () : EolSelf {

147 }

148

149 @builtin

150 operation Any err (prefix: Any , suffix: Any) : EolSelf

{

151 }

152

153 @builtin

154 operation Any err (prefix: Any) : EolSelf {

155 }

156

157 @builtin

158 operation Any err () : EolSelf {

159 }

160 @builtin

161 operation Any print (prefix: Any , suffix: Any) :

EolSelf {
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162 }

163 @builtin

164 operation Any print (prefix: Any) : EolSelf {

165 }

166

167 @builtin

168 operation Any print () : EolSelf {

169 }

170

171 @builtin

172 operation Any println (prefix: Any , suffix: Any) :

EolSelf {

173 }

174

175 @builtin

176 operation Any println (prefix: Any) : EolSelf {

177 }

178

179 @builtin

180 operation Any println () : EolSelf {

181 }

182

183 @builtin

184 operation Any ifUndefined (alternative: Any) : Any {

185 }

186

187 @builtin

188 operation Any isUndefined () : Boolean {

189 }

190

191 @firstorder

192 operation String split(ab: String) : Collection <String

> {

193 }

194

195 @builtin

196 operation Collection <Any > testCol () : EolSelf {

197 }

198

199 @builtin

200 operation Collection <Any > testContent () :

EolSelfContentType {

201 }

202

203 @builtin

204 operation Collection <Any > first () : EolSelfContentType
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{

205 }

206

207 @builtin

208 operation Collection <Any > isEmpty () : Boolean {

209 }

210 @builtin

211 operation Collection <Any > notEmpty () : Boolean {

212 }

213

214 @builtin

215 operation Any isDefined () : Boolean {

216 }

217

218 @builtin

219 operation Any add(item : Any) : Boolean {

220 }

221

222 @builtin

223 operation Collection <Any > addAll(col : Collection) :

Boolean {

224 }

225

226 @builtin

227 operation Collection <Any > clone () : Collection <Any > {

228 }

229

230 @builtin

231 operation Collection <Any > size() : Integer {

232 }

233

234 @builtin

235 operation Any asSequence () : Sequence {

236 }

237

238 @builtin

239 operation Collection <Any > asSequence () : Sequence {

240 }

241

242 @builtin

243 operation Collection <Any > at(index : Integer) : Any {

244 }

245

246 @builtin

247 operation Any isKindOf(type : Any) : Boolean {

248 }
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249

250 @builtin

251 operation Any allOfKind () : Collection <Any > {

252 }

253

254 @builtin

255 operation Any allInstances () : Collection <EolSelf > {

256 }

257

258 @builtin

259 operation Any allOfType () : Collection <EolSelf > {

260 }

261

262 @builtin

263 operation Collection <Any > includes(item : Any) :

Boolean {

264 }

265

266 @builtin

267 operation Collection <Any > excludes(item : Any) :

Boolean {

268 }

269

270 @builtin

271 operation Any isTypeOf(type : Any) : Boolean {

272 }

273

274 @builtin

275 operation Collection <Any > get(key : Any) :

EolSelfContentType {

276 }

277

278 @builtin

279 operation Collection <Any > testSelfCollection () :

EolSelfCollectionType{

280 }

281

282 @builtin

283 operation Any asSet (): Set {

284 }

285

286 @builtin

287 operation Any satisfies(invariant :String) : Boolean {

288 }

289

290 @builtin
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291 operation String substring(startIndex : Integer ,

endIndex : Integer) : String {

292 }

293

294 @builtin

295 operation String substring(startIndex : Integer) :

String {

296 }

297

298 @builtin

299 operation String toLowerCase ():String {

300 }

301

302 @builtin

303 operation String toUpperCase ():String {

304 }

305

306 @builtin

307 operation Collection <Any > excludesAll(col : Collection

<Any >) :Boolean {

308 }

309

310 @builtin

311 operation Collection <Any > flatten () :Collection <Any > {

312 }

313

314 @builtin

315 operation Any contains(param : Any) :Boolean {

316 }

317

318 @builtin

319 operation Any equivalent () :Any {

320 }

321

322 @builtin

323 operation Any matches(param: Any) :Boolean {

324 }

325

326 @builtin

327 operation String compareTo(str : String) :Integer{

328 }

329

330 @builtin

331 operation Collection <Any > excludingAll(a: Collection <

Any >) :Collection <EolSelfContentType > {

332 }
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333

334 @builtin

335 operation Any asString () :String {

336 }

337

338 @builtin

339 operation Any toString () :String {

340 }

341

342 @builtin

343 operation String indexOf(a: String) :Integer {

344 }

345

346 @builtin

347 operation Object type() :Object {

348 }

Listing A.1: An excerpt of builtin operation file
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Figure A.1: Static analysis on Ecore2GMF.eol

163



Figure A.2: Static analysis on EcoreUtil.eol
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roadmap towards achieving scalability in model driven engineering,” in
Proceedings of the Workshop on Scalability in Model Driven Engineering,
2013, pp. 1–10.

[4] D. S. Kolovos, R. Wei, and K. Barmpis, “An approach for efficient query-
ing of large relational datasets with ocl-based languages,” in XM 2013-
Extreme Modeling Workshop, vol. 48, 2013.

[5] K. Barmpis and D. S. Kolovos, “Towards scalable querying of large-scale
models,” in European Conference on Modelling Foundations and Applica-
tions. Springer, 2014, pp. 35–50.

[6] Y. Zhao, “Research on mongodb design and query optimization in vehicle
management information system,” in Applied Mechanics and Materials,
vol. 246. Trans Tech Publ, 2013, pp. 418–422.

[7] S. Chaudhuri, “An overview of query optimization in relational systems,”
Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems - PODS 98, 1998.
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