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Abstract

To navigate its habitat, an organism must be able to adapt its locomotory gait

to its physical surroundings and behavioral objectives. We analyze the gait

performance of lateral undulatory slender limbless microswimmers immersed in

a Newtonian fluid environment. Our goal is to investigate the optimality of

gait selection and adaptation, considering variables such as speed and energy

efficiency. Specifically, we focus on the 1mm long roundworm Caenorhabditis

elegans (C. elegans), which adapts its swimming gait to the external load im-

posed by its surrounding environment. So far, it has not been understood if this

gait adaptation can be considered optimal.

Here, we hypothesize that C. elegans selects an undulation frequency and wave-

form that optimizes energy efficiency. Using a viscoelastic Cosserat rod model

to describe the worm’s biomechanics, we simulate its undulatory locomotion in

fluid environments spanning four orders of magnitude in viscosity. We demon-

strate that C. elegans’ undulation frequency minimizes its cost of transport and

is significantly slower than the predicted fastest frequency. Furthermore, C.

elegans frequency adaptation can be understood as an attempt to match its ac-

tuation time scale to the response time of its body in a given environment. We

show that this adaption is crucial to facilitate efficient undulatory locomotion in

more viscous environments and can, therefore, be observed in other microswim-

mers such as sperm. In low fluid viscosities, we find that the worm’s energy

cost is dominated by internal friction, favoring long wavelengths and small am-

plitudes, whereas in high viscosities, external friction takes precedence, favoring

shorter wavelengths and larger amplitudes. This trend aligns with experimental

observation, which suggests that C. elegans gait adaptation is driven by en-

ergy efficiency. Through a quantitative comparison between experimental data

and model prediction, we estimate an optimal value for the internal damping

coefficient (viscosity) of C. elegans’ body material.

Our results show how the interplay between the different friction forces within

the model shapes gait optimality. We believe that this interplay could be a

more general driver behind gait adaptation in organisms that need to navigate

environments with varying levels of external load.
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Chapter 1

Introduction

The beauty, efficiency, and diversity of animal locomotion inspire human curiosity and

ingenuity to this day. Animals move for many reasons, such as foraging food, mating,

or escaping predators. The ability to move is essential for the survival of most animals,

and natural selection has, therefore, shaped their locomotion strategies. Yet, the study of

animal locomotion not only offers insight into the mechanics of movement and evolutionary

adaptation of different species but also inspires technological innovations in fields such as

biomechanics and robotics [110].

Organisms live on land, in water, and in the air, and to a large extent, the physical

properties and forces imposed by these media have shaped their locomotion mechanisms. As

a result, distinct locomotion modes such as walking, running, crawling, swimming, and flying

have evolved, each uniquely adapted to the constraints posed by their specific environments.

However, beneath this remarkable diversity lie core principles of biological organization and

key evolutionary objectives that underpin most locomotory systems. The study of animal

locomotion seeks to identify and understand these core principles and objectives [1, 19]. To

examine these principles, microorganisms offer an ideal starting point due to the simplicity

of their anatomy, locomotory patterns, and behavioral objectives [83].

Therefore, this thesis explores the undulatory locomotion of microswimmers. Undula-

tory locomotion, characterized by a wave-like body motion, can be observed in many species

across all length scales of the animal kingdom; prominent examples include sperm, the lar-

vae of insects such as caterpillars, worms, anguilliform fish and snakes [24, 39, 49, 58, 132].

The basis for thrust generation during lateral undulatory locomotion rests on the anisotropy

of the friction force created by the relative movement between the organism’s body surface

and its environment. This anisotropy enables the organism to produce a propulsion force

in the longitudinal body direction through lateral body movement.

1



1. INTRODUCTION

In the context of microswimmers, the local hydrodynamic stresses created by such a

movement were first modeled by the seminal work of Taylor [127], Lighthill [86], and Gray

& Hancock [55, 60] in the 1950s. Gray & Hancock demonstrated how the propagating

flagellar wave of sea urchin sperm produces a propulsive thrust that is balanced by the

drag on the cell head, enabling steady forward motion. Since then, the field has evolved

significantly, allowing for more accurate descriptions of the fluid-body interaction observed

in actively deforming microswimmers, typically based on numerical methods.

However, there are still many unresolved questions. Different species of microswimmers

exhibit unique locomotion patterns under similar environmental conditions. For instance,

the undulation frequency of singular cellular microswimmers and multicellular organisms

such as larvae and worms differs by orders of magnitude [25, 45, 113]. Thus far, it remains

unclear how this discrepancy in undulation frequencies relates to the differences in the

biomechanical properties of the propulsion appendages of singular cellular and the bodies

of multicellular organisms, respectively. Furthermore, it is unclear how the details of the in-

ternal actuation mechanism in these organisms influence the range of undulation frequencies

available to an organism.

Single cellular (eukaryotic) microswimmers such as sperm and euglena generate propul-

sion by actively deforming their slender, flexible propulsion appendages called flagella. The

flagellum’s internal structure is called axoneme and consists of long polymeric filaments

called microtubules doubles. Within the axoneme, ATP-driven molecular motor proteins

called dyan generate forces that slide microtubules past each other. This sliding motion gen-

erates shear forces that induce local bending in the flexible flagellum [92]. Thus, through the

coordinated action of these motor proteins, flagellated microswimmers can induce a bend-

ing wave that travels across the entire length of the flagellum, resulting in the flagellum’s

“sinusoidal” waveform observed during undulatory locomotion [83].

In contrast, multicellular animals such as C. elegans bend their bodies by contracting

their muscles. Muscles comprise many muscle fibers (cells) composed of repeating units

called sarcomeres. The sarcomere forms the basic contractile units of muscle tissues. Within

the sarcomere, contraction is generated by myosin motor proteins that interact with actin

filaments to generate movement. Actin filaments are thin, flexible fibers that form the

structural network of the sarcomere. Myosin proteins are organized into thick filaments

that run parallel to the actin filaments and whose heads provide binding sites for the actin

filaments. Under the provision of ATP, myosin heads bind on adjacent actin filaments,

pulling them towards the center of the sarcomere, a process referred to as a power stroke.

The repeated cycle of power strokes and detachment causes the actin filaments to slide

past the myosin filaments, shortening the sarcomere and, thereby, the muscle fiber. Hence,

muscle contraction is achieved by simultaneously shortening the muscle fibers within it [76].

2



1. INTRODUCTION

In undulating animals such as C. elegans, muscles are tethered to their outer body

shell, enabling them to bend their body locally by contracting their muscles [6]. Thus,

similar to the coordinated action of dyan motor proteins in the flagellum of single cellular

(eukaryotic ) microswimmers, undulating animals such as C. elegans use coordinated muscle

activation to induce a bending wave that travels along their body and gives rise to the

characteristic “sinusoidal” body wave observed during undulatory locomotion. We will

discuss the anatomy and muscular system of C. elegans in more detail in Chapter 2.

Note that regardless of the details underlying the actuation mechanism in different

undulating organisms, the spatiotemporal pattern of the actuation along their propulsion

appendages or body determines the frequency and waveform of the undulation. Many

undulatory organisms modulate their undulation gait, adjusting both undulation frequency

and body waveform in response to changing environmental conditions and external cues

[18, 23, 45, 114, 126, 135, 144]. This prompts the question: what are the evolutionary

and behavioral objectives that drive these selections and adaptations? In this thesis, we

exclusively focus on global objectives such as speed or energy efficiency.

To estimate the swimming energy and speed of a microswimmer, a detailed biomechan-

ical model of the swimmer’s body coupled with a hydrodynamic model of its surrounding

fluid environment is required. The energy injected into such a system, often associated

with the organism’s propulsion mechanism, must equal the total energy lost due to internal

and external friction. The external losses due to friction between the body surface and

surrounding fluid can, in principle, be estimated with high accuracy by solving the fluid-

structure interaction problem. The flow regime of microswimmers is defined by low Reynolds

numbers, where viscous fluid forces are significantly larger than inertia forces [83]. In this

regime, the flow in the vicinity of the swimmer can be approximated by the Stokes equation,

which has a unique solution for specified velocity boundary conditions. [77]. Conversely,

the internal losses depend on the details of the biomechanical model of the swimmer’s body,

which can include arbitrary levels of complexity. Typical sources of internal friction are the

relaxation and contraction processes of body muscles and the viscoelastic properties of the

passive body material.

Early work by Lighthill [87] and others only considered the energy loss due to external

friction. Lighthill maximized the hydrodynamic efficiency for periodic waves traveling down

the length of an infinitely long flagellum, proposing a non-smooth triangle wave as the opti-

mal waveform. More recently, internal losses have been included to estimate the energy cost

associated with undulatory locomotion [45, 58, 122, 141]. Building upon these results, we

employ a viscoelastic Cosserat rod to model the undulatory locomotion of a microswimmer

immersed in a Newtonian fluid. Using this model, we aim to understand the influence of

gait modulation on the performance of undulating microswimmers. Our study explores how

3



1. INTRODUCTION 1.1 Thesis outline

the interplay of the physical model parameters, such as body stiffness, internal damping,

and fluid viscosity, shapes gait optimality.

We apply our model to describe the undulatory locomotion of the one-millimeter-long

nematode Caenorhabditis elegans (C. elegans). This tiny worm has been extensively stud-

ied, dating back to pioneering work by Sydney Brenner [26] in the 1960s, leading to crucial

insights across different research areas, including genetics, developmental biology, and neu-

rology. Within the field of biomechanics, the worm’s rather simple neural system and body

anatomy make it an ideal model organism to study the interplay between neural circuitry,

muscles, surrounding fluid environment, and sensorimotor feedback [23, 40, 42]. In the con-

text of this work, C. elegans serves as an ideal study object as it adapts its undulatory gait

in response to changing environmental conditions [18, 22, 45, 126]. Until now, it remains

unclear if this adaptive behavior can be considered optimal.

1.1 Thesis outline

This thesis aims to provide insights into the underlying reasons that govern gait selection and

modulation in microswimmers. Therefore, we develop a biomechanical model of a limbless

slender microswimmer immersed in a Newtonian fluid environment. Using this model,

we simulate the undulatory locomotion of a generic microswimmer, varying model and

undulation parameters. By comparing the performance for different undulation parameters,

we seek to identify which gait can be considered optimal with respect to speed and energy

efficiency in a given scenario. This analysis enables us to infer whether the undulation gait

of a particular microswimmer prioritizes speed or energy efficiency. Specifically, we focus

on C. elegans, which exhibit a continuous gait transition from low to high-viscosity fluids.

Our aim is to assess whether this gait transition can be considered optimal. With this

overarching goal in mind, the upcoming chapters of this thesis will be organized as follows:

Chapter 2 provides the necessary background for the thesis. It starts with an introduc-

tion to the fluid dynamics relevant for microswimmers and concludes with a brief description

of the model organism C. elegans.

Chapter 3 formulates our microswimmer model. It includes a brief introduction to

Cosserat rod theory, used to represent the biomechanical properties and deformation kine-

matics of the swimmer’s body. We then formulate equations for an active viscoelastic

Cosserat rod immersed in Newtonian Stokes flow to simulate microswimmer locomotion.

The chapter concludes by introducing a numerical scheme for solving the model equations

and validating its numerical accuracy and stability.

4



1. INTRODUCTION 1.2 Contributions

With our model established, Chapter 4 explores its dynamical properties. This involves

analyzing the model’s dynamic response to actuation. The goal is to uncover distinct

dynamical regimes, each characterized by its unique response properties, which determine

the relationship between the desired body wave (encoded in the spatiotemporal pattern of

the actuation) and the emergent body wave. By comparing the performance of the different

regimes in terms of speed and energy efficiency, we gain insight into how the interplay of

physical model parameters affects the performance of undulatory locomotion in different

fluid environments.

Building upon the results from 4, Chapter 5 analyzes the gait selection and modulation

of a generic microswimmer. Our goal is to identify optimal gaits in terms of the swimmer’s

speed and energy efficiency in fixed and varying environmental conditions characterized by

the fluid’s viscosity. Furthermore, it aims to determine how the plausible range of the gait

parameters (undulation frequency and waveform) in a given environment depends on the

biomechanical parameters of the swimmer’s body. To simplify our analysis, Chapter 5 is

divided into two parts: the first part discusses gait modulation in a static environment,

while the second part focuses on gait adaptation in response to varying fluid viscosities.

In Chapter 6, we apply our model to simulate the undulatory locomotion of the model

organism C. elegans. Our aim is to infer whether C. elegans gait selection and transition

can be considered optimal. Therefore, we evaluate gait performance under conditions that

resemble those explored in the experimental literature. Within these conditions, we predict

optimal gaits of C. elegans in relation to both speed and energy efficiency and compare

them to gaits documented through experimental observation.

Finally, Chapter 7 concludes the thesis with a critical discussion of the results, outlining

the limitations of our model and suggesting directions for future research.

1.2 Contributions

The theoretical framework and code base of the microswimmer model are built upon the

model developed by Ranner [111] and Wang et al . [136]. The main contributions of the

presented work are:

1. Formulation, implementation, and numerical validation of slender limbless microswim-

mer model based on Cosserat theory. The model includes a dimensionless formulation

of the rod’s equations of motion and the identification of key dimensionless model

parameters.

2. Exploration of the model’s dynamic response properties with respect to undulatory
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actuation, including:

(a) Identification of distinct dynamical regimes, each characterized by unique re-

sponse properties.

(b) Analysis of the microswimmer’s performance across these regimes, focusing on

speed and energy efficiency.

(c) Discussion on how the microswimmer’s operating point within these regimes is

determined by the physical model parameters and the consequences thereof.

3. Simulating and analyzing the gait modulation of a generic slender microswimmer

across a wide range of scenarios, including:

(a) Establishing the limits for undulation frequency and waveform for optimal effi-

ciency and speed, respectively.

(b) Discussion on how these limits depend on the physical model parameters and the

consequences thereof.

(c) Offering a unique interpretation of microswimmer’s gait adaptation in response

to changing fluid viscosity

4. Simulation of the undulatory locomotion of the model organism C. elegans and com-

parison with experimental data. This includes:

(a) Evaluating the performance of C. elegans’ swimming gait in water. Proposing

the hypothesis that C. elegans swimming gait is optimized for energy efficiency.

(b) Providing a quantitative prediction for the internal damping coefficient (viscos-

ity) of C. elegans’ body material.

(c) Proposing the hypothesis that the C. elegans gait transition from low to high

fluid viscosities demonstrates optimal energy efficiency.

6



Chapter 2

Background

This chapter establishes the necessary context and introduces key concepts for the remainder

of this thesis. We begin with a general description of the swimming problem, defined as the

locomotion of an actively deforming body immersed in a viscous Newtonian fluid. Following

this, we discuss the characteristics of low Reynolds number flow, highlighting its significance

for the locomotion of microswimmers. This discussion leads us to resistive-force theory,

which provides an explanation for the basic principle behind the propulsion mechanism

of slender microswimmers. The chapter concludes with a brief introduction to the model

organism C. elegans, including an overview of its existing biomechanical models and their

relevance for the study of undulatory locomotion.

2.1 Swimming Problem

To set the scene, this section introduces the mathematical framework necessary to describe

the swimming motion of an active swimmer. It closely follows the presentation in the

recently published book on the fluid dynamics of cell motility by Eric Lauga [83].

The canonical swimming problem can be described as follows: An active swimmer im-

mersed in a viscous fluid deforms its body, which sets the surrounding fluid into motion.

The resulting fluid flow imparts hydrodynamic stresses onto the swimmer’s body, propelling

it forward. Consequently, solving the swimming problem requires us to model the deforma-

tion kinematics of the swimmer’s active body and the fluid-structure interaction problem

between the swimmer’s body surface and its fluid environment.

The body’s deformation kinematics and hydrodynamics can both be described using

the framework of continuum mechanics [16, 117]. Consider a deformable body composed

7



2. BACKGROUND 2.1 Swimming Problem

of an infinite number of material points labeled by their position X within a reference

configuration shown in Fig. 2.1. Each material point X represents an infinitesimally small

portion of the body that carries mass, has a position and velocity, and can be acted upon

by forces. Collectively, the infinite set of material points X ∈ V0 forms a continuous

representation of the swimmer’s body, where V0 is the volume occupied by this body in

its reference configuration. Since all material points can be uniquely identified by their

position X in the reference configuration, the current configuration of the swimmer’s body

at time t can be defined in terms of the instantaneous position x(t;X) of these material

points. Together, these points make up the current body volume V (t) of the swimmer, as

illustrated in Fig. 2.1.

L
a
b
 f

ra
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e

Reference con�guration Current con�guration

Body 
fra

m
e

Figure 2.1: Schematic of a continuous deformable body represented by material points. Ref-
erence configuration with volume V0 and surface S0 on the left. Instantaneous configuration
with volume V (t) and surface S(t) on the right. Lab-frame basis vectors (e1, e2) are placed
within and aligned with the reference configuration, while fixed-body frame vectors (d1, d2)
align with the current configuration. Exemplary material points within the interior (blue
dot) and on the surface (red dot) of the reference configuration are marked. The blue vec-
tors X and x(t;X) represent the position of the interior point in the reference and current
configurations, respectively. The red vectors XS, xS(t;XS), and x̄S(t;XS) represent the
position of the surface point in the reference configuration and the current configuration
(lab and body frame), respectively. The green vector ∂tx̄S(t;XS) represents the surface
point’s velocity in the body frame.
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2. BACKGROUND 2.1 Swimming Problem

To describe the interaction of the swimmer’s outer body surface with the surrounding

fluid environment, it is convenient to define the set of material points XS = {X : X ∈ S0},
which constitute the body surface S0 in the reference configuration. The swimmer’s body

surface S(t) in its current configuration can then be defined by the instantaneous position

xS = x(t;XS) of all the surface points. Here, we assume that the swimmer’s body does

not undergo deformations that change the topology of its surface.

In this work, we assume the swimmer’s fluid environment to be incompressible and

Newtonian. As state variables, we consider the fluid’s pressure field p(x, t) and the fluid’s

velocity field u(x, t) commonly referred to as the flow field. In the Eulerian picture, both

p and u are defined with respect to a fixed reference frame and their time evolution is

governed by the incompressible Navier-Stokes equations

ρ
Du

Dt
= ∇ · σ, ∇ · u = 0, (2.1)

where ρ(x, t) is the fluid’s mass density, Du(x, t)/Dt is the material derivative, and σ(x, t)

the fluid stress tensor. For a thorough derivation and discussion of the Navier-Stokes equa-

tion, we refer to the classical textbook by Batchelor [16]. The first of the two equations in

Eq. (2.1) represents the conservation of linear momentum within the fluid, whereas the sec-

ond equation expresses the conservation of mass. The material derivative Du/Dt is defined

as
Du

Dt
=
∂u

∂t
+ u · ∇u. (2.2)

It describes the acceleration of a fluid material, taking into account both local changes

and changes due to the transport of the material within the macroscopic flow field. The

fluid stress tensor σ describes the distribution of stresses within a fluid. The element σij

represents the stress in i-th direction on a surface normal to the j-th direction of the fixed

reference frame. For an incompressible Newtonian fluid, the stress tensor σ is given by

σ = −p1+
µ

2

(
∇⊗ u+∇⊗ uT

)
(2.3)

where 1 is the identity matrix, µ the fluid’s viscosity and ⊗ the outer vector product defined

as

[∇⊗ u]ij =
∂ui
∂xj

. (2.4)

To model the fluid-structure interaction between the swimmer’s body surrounding fluid

environment, we impose a nonslip boundary condition. The nonslip boundary condition

assumes that at the body-fluid interface, the fluid velocity must be zero relative to the

velocity of the body’s surface. In other words, the fluid “sticks” to the swimmer’s outer

body surface. Consequently, the viscous friction between adjacent fluid layers causes the

9



2. BACKGROUND 2.1 Swimming Problem

fluid near the swimmer to be dragged along with its motion.

Using the continuous representation of the swimmer’s body, the nonslip boundary con-

dition implies that the fluid velocity u at the surface point xS must be equal to its velocity

vS = ∂txS . It is common practice to express vS in terms of the surface velocity v̄S = ∂tx̄S

in the body-fixed frame [83]. The body-fixed for a deformable body is typically defined

using a set of reference axes attached to the body itself, illustrated in Fig. 2.1. Hence,

it translates and rotates with linear velocity U(t) and angular velocity Ω(t), respectively.

Consequently, the nonslip boundary condition in the lab frame can be expressed as

u = Q · v̄S +U +Ω× x̄S , (2.5)

where Q(t) is a time-dependent rotation matrix that transforms vectors from the body-fixed

frame to the reference frame and x̄S is the surface points position in the body-fixed frame.

For the remainder, we assume that the origin of the body-fixed frame coincides with the

swimmer’s center of mass.

As v̄S characterizes the active surface deformation of the swimmer’s body within the

body-fixed frame, it is commonly referred to as the swimming gait. To model a cyclic gait

characterized by a repetitive locomotion pattern, v̄S must be a time-periodic function. In

forward modeling, our goal is to determine the linear velocity U and angular velocity Ω

of the swimmer’s center of mass for a given gait v̄S . To achieve this, we must solve the

equations of motion for of a deformable body, expressed as

M
d

dt
U(t) = F (t),

d

dt
[I(t) ·Ω(t)] = L(t). (2.6)

Here, M is the swimmer’s mass, which we assume to be constant, and F and L are the net

force and net torque acting onto the swimmer’s body. The instantaneous inertia tensor I

of the swimmer’s body is defined as

I =

∫
V (t)

ϱ [(x̄ · x̄)1− x̄⊗ x̄] dV, (2.7)

where ϱ(x̄(t;X)) is the body’s mass density associated with the material pointX at position

x̄. In the absence of other external forces and torques, F and L are fully determined by

the hydrodynamic stress the fluid exerts onto the swimmer’s body surface. To obtain F

and L, we integrate the fluid stress tensor over the body surface

F =

∫
S(t)

σ · n dS, L =

∫
S(t)

x̄× (σ · n) dS, (2.8)

where n denotes the unit surface normal of the swimmer’s current surface S(t), oriented

to point into the fluid. Hence, σ · n represents the local stress vector that acts on the
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2. BACKGROUND 2.2 Low Reynolds Numbers Dynamics

swimmer’s body surface that is normal to n.

Note that the swimmer’s equations of motion Eq. (2.6), and the Navier-Stokes equation

Eq. (2.1) are fully coupled, as U and Ω appear in the nonslip boundary condition Eq. (2.5)

of the flow problem, and σ is required to determine the net force and torque in Eq. (2.6).

This coupling makes the swimming problem very difficult to solve. Luckily, for very small

organisms, such as microswimmers, the problem can be greatly simplified by approximating

the Navier-Stokes equations by the Stokes equations, as we will discuss in the following.

2.2 Low Reynolds Numbers Dynamics

Microswimmers generate fluid flows characterized by low Reynolds numbers, which has

significant consequences for their swimming kinematics. The Reynolds number is a dimen-

sionless quantity that compares the relative importance of inertial to viscous forces in a

fluid flow. For illustration, consider a generic swimmer with gait frequency f , characteristic

length L0, and swimming speed U . To determine the swimmer’s flow regime, we choose

f−1 as the characteristic time scale, L0 as the characteristic length scale, and U as the

characteristic velocity scale of the flow field and derive a nondimensional form of the Navier

Stokes equation Eq. (2.8) given by

Ref
∂u∗

∂t∗
+Re (u∗ · ∇∗)u∗ = −∇∗p∗ +∇∗2u∗, (2.9)

where we defined the dimensionless time t∗ = tf , fluid velocity u∗ = u/U , gradient

∇∗ = ∇/L0, and pressure field p∗ = L0 p/µU . The dimensionless parameters Re and Ref

are referred to as the steady and the oscillatory Reynolds number, respectively, and are

defined as [16, 83]

Re =
ρL0U

µ
, Ref =

ρL2
0f

µ
. (2.10)

The steady Reynolds number Re is proportional to U , the velocity scale of the fluid flow

generated by the swimmer’s steady swimming motion, whereas Ref is proportional to L0 f ,

the velocity scale of the fluid flow generated by the oscillatory motion of its body shape.

The swimming speed of microswimmers is typically of the order of one body length

per gait period or smaller [83]. Consequently, we establish the upper bound U ∼ fL0

from which follows that Re ∼ Ref . However, we note that Re and Ref are not always

equivalent. For example, an insect that hovers on the spot would have a small Re but

a large Ref due to the high-frequency flapping of its wings. As an example, we consider

the nematode C. elegans, which has a length of approximately L0 = 1mm, undulation

frequency of the order of f = 1Hz and swimming speed U < L0f . In water which has

11



2. BACKGROUND 2.2 Low Reynolds Numbers Dynamics

a viscosity of µ = 10−3 Pa s and density of ρ = 103 kgm3 under standard temperature

and pressure, this yields a Reynolds number Re < 1.0. This is just below the limit for

which hydrodynamic forces and torques are approximately proportional to velocity [11,

22]. Consequently, in water, C. elegans are at the limit of what would be considered low

Reynolds number locomotion. However, in fluids more viscous than water, Re decreases

and the assumption becomes increasingly accurate.

In low Reynolds flow characterized by (Re, Ref ) ≪ 1, the inertia terms on the left-hand

side of the dimensionless Navier-Stokes equation Eq. (2.9) can be neglected. Under these

conditions, the Navier-Stokes equation can be approximated by the incompressible Stokes

equation, defined as

0 = −∇p+∇2u, ∇ · u = 0. (2.11)

The Stokes equation has many important mathematical properties. Firstly, it is linear,

i.e. solutions to the Stokes equation can be superimposed to create new solutions. However,

this does not guarantee that the new solution fulfills the boundary conditions of the orig-

inal solutions. Nonetheless, solutions that impose linear boundary conditions on a shared

boundary can be superimposed to create a solution that fulfills the linear superposition of

the individual boundary conditions. Moreover, it can be demonstrated that solutions to

the Stokes equation that prescribe velocity boundary conditions are unique [77]. In other

words, if a solution to a specific boundary problem is found through any method, then it is

the only unique solution to that particular problem.

The fact that microswimmers swim at low Reynolds numbers has many implications for

their swimming kinematics. From the swimmer’s linear equation of motion Eq. (2.6), the

following scaling relation can be derived

MU

τ
∼ µUL0, (2.12)

where we defined τ as the swimmer’s characteristic response time to hydrodynamic stresses

(see Appendix A.1.1 for details). To compare τ to relevant locomotion time scales, such as

the gait (deformation) time scale T = 1/f and the swimming time scale τs = U/L0 (the

time required for the swimmer to move a distance equal to its own length), we calculate the

timescale ratios
τ

τs
=
ρs
ρ
Re,

τ

T
=
ρs
ρ
Ref . (2.13)

Here, ρs is the mass density of the swimmer’s body, which is typically of the same order as

the density of water. Consequently, if (Re, Ref ) ≪ 1, then the swimmer’s response time to

hydrodynamic stresses is much faster compared to its deformation rate or swimming time
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scale. As a result, the swimmer’s body responds effectively instantaneously to variations in

hydrodynamic stresses, which means that the swimmer’s equations of motion Eq. (2.6) can

be approximated as quasi-steady

F (t) = 0, L(t) = 0. (2.14)

This implies that the hydrodynamic net force and torque that act on the swimmer’s body

are zero at all times, which is commonly referred to as force and torque-free swimming.

Note this does not mean that the swimmer is not moving; instead, it means that the thrust

that the swimmer generates by actively deforming its body balances the drag created by

the translation and rotation of its body. At large Reynolds numbers, thrust and drag can

not be decoupled because the Navier-Stokes equation is not linear. The Stokes equation,

however, is linear, i.e. each term in the noslip boundary condition defined by Eq. (2.5) may

be tackled separately. Thus, we split the boundary condition into two terms

u = Q · v̄S, u = U +Ω× x̄S (2.15)

describing two distinct scenarios.

In the first scenario, the swimmer is fixed at the spot actively deforming its body,

resulting in the surface velocity v̄S. Since it is not allowed to swim, the surface deformation

generates a flow that will exert a net force and torque on its body, denoted as the thrust

force FTh and the thrust torque LTh. Both can be, in principle, determined by solving

the surface integrals in Eq. (2.8), which requires us to solve the Stokes flow around to

determine the hydrodynamic stress tensor σ at swimmer’s body surface. This can only be

done analytically for very simple body shapes and gaits, i.e. numerical methods are required

in most practical cases.

In the second scenario, the swimmer’s instantaneous shape is frozen. Hence, it can be

described as a rigid body that translates and rotates with U and Ω, respectively. This

rigid body motion creates a flow that exerts the hydrodynamic drag force FD and drag

torque LD on the swimmer’s body. Since the Stokes equation is linear, drag and swimming

kinematics must be related linearly(
FD

LD

)
= −R

(
U

Ω

)
, (2.16)

where R is commonly referred to as the instantaneous resistance matrix. It depends on

the instantaneous body shape of the swimmer and can only be solved analytically for very

simple body shapes [63].
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During swimming, we expect the drag and thrust balance, which implies that

FTH + FD = 0, LTH +LD = 0. (2.17)

It can be shown that the resistance matrix is symmetric and positive definite [63], i.e. it

can be inverted, and Eq. (2.17) can, therefore, be written as(
U

Ω

)
= R−1

(
FTh

LTh

)
(2.18)

Thus, to predict the swimmer’s kinematics U and Ω for a prescribed swimming gait v̄S

involves the following steps: First, determine the resistance matrix R from the swimmer’s

instantaneous body shape. Second, solve the Stokes flow generated by the swimmer’s surface

velocity to determine the thrust FTH and LTh. For nontrivial body shapes and gaits, this

can only be done numerically. However, in the case of slender bodies whose breadth is much

smaller than their length, it is possible to approximate the local fluid drag independently

for each body segment. This approach is referred to as resistive-force theory [17, 38, 55, 60]

and will be discussed in the next section.

2.3 Resistice-Force Theory

Resistive-force theory (RFT) characterizes the fluid drag force on a slender body undergoing

active deformation in Stokes flow. RFT was first employed in the pioneering work by Gray

& Hancock [55, 60] in the 1950s, who explained the basis for the hydrodynamic propulsion

mechanism of sea urchin sperm during undulatory locomotion. Their study demonstrated

that the sperm’s undulating flagellum produces a thrust that balances the drag force onto the

cell body, enabling steady forward motion. The analytic expression derived for the sperm’s

swimming speed showed good agreement with experimental observations, demonstrating

the validity of RFT.

Batchelor [17] and Cox [38] attempted a rigorous derivation of RFT using flow singu-

larities (Stokeslet) to approximate the Stokes flow around a deforming slender body repre-

senting the flagellum of single cellular microswimmers. The approach by Batchelor and Cox

can be used to show that in the limit of slender and weakly bent bodies, RFT serves as a

good approximation for the local hydrodynamic forces acting on the swimmer’s body [83].

Weakly bent implies that the amplitude of the swimmer’s body wave is much smaller than

the length of its body, a justified assumption for the undulatory locomotion of C. elegans

[18, 45, 126].

To motivate the use of RFT in the context of undulating microswimmers, consider a
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slender swimmer whose body is composed of small cylindrical body segments of constant

radius and length ∆l, as shown in Fig. 2.2. Each segment is characterized by its centreline

position r(s) and its linear and angular velocity u(s) and ω(s), where s is the arc-length

parameter. To simplify, we treat each body segment as an isolated rigid cylinder, i.e. the

drag force and torque acting segment can calculated from Eq. (2.16). Due to the rotational

symmetry of the cylinder, it follows that

FD = −µ∆l
[
c∥u∥ + lc⊥u⊥

]
(2.19)

LD = −µ∆l
[
γ∥ω∥ + lγ⊥ω⊥

]
(2.20)

where u∥ and ω∥ is the cylinder’s linear and angular velocity in the longitudinal and u⊥
and ω⊥ in the transversal direction. If we assume that the cylinder’s longitudinal body axis

is aligned with the centreline’s tangent defined as t = ∂sr, then it follows that

u∥ = t⊗ t · u, u⊥ = (1− t⊗ t) · u, (2.21)

ω∥ = t⊗ t · ω, ω⊥ = (1− t⊗ t) · ω. (2.22)

Hence, Eq. (2.19) can be written as

FD = −µ∆l
[
c∥t⊗ t+ c⊥ (1− t⊗ t)

]
· u (2.23)

LD = −µ∆l
[
γ∥t⊗ t+ lγ⊥ (1− t⊗ t)

]
· ω (2.24)

Taking the limit ∆l → 0, we derive the drag force line distribution fD ≈ FD/∆l and

torque line distribution lD ≈ LD/∆l experienced by a infinitesimally short cylindrical body

segment

fD = −µ
[
c∥t⊗ t+ c⊥ (1− t⊗ t)

]
· u, (2.25)

lD = −µ
[
γ∥t⊗ t+ lγ⊥ (1− t⊗ t)

]
· ω. (2.26)

We conclude that the drag force and torque experienced by an infinitesimally cylindrical

body segment are proportional to its linear and angular velocity, respectively. The propor-

tionality factors are referred to as drag coefficients. We distinguish for different coefficients:

1. Linear longitudinal drag coefficient c∥: This coefficient determines the drag force

experienced by the body segment when it moves longitudinally

2. Linear transverse drag coefficient c⊥: This coefficient determines the drag force expe-

rienced by the body segment when it moves transversely (laterally)

3. Angular longitudinal drag coefficient γ∥: This coefficient determines the drag torque

experienced by the body segment when it rotates around its longitudinal axis.
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4. Angular transverse drag coefficient γ⊥: This coefficient determines the drag torque

experienced by the body segment when it rotates around its transverse axis

Figure 2.2: Schematic representation of propulsion mechanism in undulating microswim-
mers. (A): The swimmer’s body is depicted by a series of cylindrical body segments centered
on the centreline (red). Wave propagation to the left induces swimming in the opposite di-
rection. (B): Illustration of the velocity u, resulting drag force fD, and propulsion force
fp (red) for the two exemplary cylindrical body segments (blue and yellow) highlighted in
panel A. Both u and fD can be decomposed into longitudinal ∥ and transversal ⊥ (lateral)
components defined as uD = u∥ + u⊥ and fD = f∥ + f⊥.

Various estimates for the drag coefficients exist. Garg & Kumar [51] employed the

boundary integral method [142] to expand the solution of the Stokes flow around a tapered

Cosserat rod in orders of the rod’s slenderness parameter ε = Rmax/L0, where Rmax is

the rod’s maximum cross-sectional radius, and L0 is its natural length in the stress-free

configuration. A formal definition of a Cosserat will be provided in Chapter 3, where

we discuss our model formulation in detail. Given that we will use a Cosserat rod to

represent the swimmer’s body, we use the results from Garg & Kumar to derive the following
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expressions for the linear and angular drag coefficients:

c∥ =
2π

ln(1/ε)− 1
2

, c⊥ =
4π

ln(1/ε) + 1
2

, γ∥ = πφ2R2
max, γ⊥ = 4πφ2R2

max. (2.27)

Here, φ(s) ≤ 1 is the radius shape function, which determines the cross-sectional radius

R(s) = φ(s)Rmax along the rod’s length. Note that the linear drag coefficients c∥ and c⊥
were derived for the specific case of a Cosserat rod with a prolate spheroidal shape. In the

case of C. elegans, whose body is thickest at the center and tapers towards the ends, a

prolate spheroidal shape serves as a sufficiently accurate representation. This is supported

by the fact that local changes of the cross-sectional radius only contribute logarithmically

to the drag coefficients [51]. Additionally, the expressions for the drag coefficients are

applicable only if the Cosserat rod does not undergo large shear deformations, which is a

valid assumption in the context of the undulatory locomotion of slender microswimmers, as

we will discuss in Chapter 3.

We define the linear and angular drag coefficient ratios Kc and Kγ as

Kc =
c⊥
c∥
, Kγ =

γ⊥
γ∥
. (2.28)

From Eq. (2.27), it follows that in the limit of slender bodies ϵ≪ 1, the linear drag coefficient

ratio is of the orderKc ∼ 2, whereasKγ = 4 independent of ε. Consequently, body segments

exhibit a stronger drag force when moving in the lateral compared to the longitudinal

direction. Microswimmers exploit this drag anisotropy of the propulsion appendages or

bodies to generate propulsion. To illustrate, Fig. 2.2 shows how the waving motion of a

slender swimmer generates propulsion forces opposite to the propagation direction of the

body wave. This shows that microswimmers actuate their body so that the propulsive forces

generated along the body add constructively and align with the swimming direction.

However, while RFT is sufficient to explain the basic mechanism of how microswim-

mers generate propulsion, it neglects the long-range hydrodynamic interactions between

the swimmer’s individual body segments, which results in an inaccurate description in

many scenarios. For example, it has been shown that the RFT by Lighthill [87] and Gray

& Hancock [55, 60] inadequately capture the hydrodynamic forces generated by the rota-

tion of the helical flagella of prokaryotic single cellular microswimmers such as bacteria [73,

115]. Other studies have attempted to address this limitation by calibrating the drag coef-

ficients predicted by RFT to match experimental observations [46] or the solution obtained

by numerically solving the Stokes equation [143]. Nevertheless, the need for calibration

underscores the inaccuracy of RFT outside the calibration range.

For the case of undulating microswimmers, the main focus of this work, Rorai et al .
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[116] compared the accuracy of RFT against benchmark solutions obtained using regular-

ized Stokeslet [36] and solving the Stokes equations with a standard finite element method.

Focusing on the undulatory locomotion of sperm, [116] showed that RFT performs rea-

sonably well for waveforms closely resembling experimental observations, with predicted

swimming speeds exhibiting a 5-15% error compared to the benchmark solutions. However,

RFT becomes unreliable in the case of waveforms with short wavelengths of about 1/4 and

1/2 of the total flagellum length consistent with the results for helical flagella [73, 97, 115].

Furthermore, [116] showed that the hydrodynamic interactions between the sperm’s head

and flagellum are important for an accurate description of the fluid dynamics, as they in-

troduce a front-rear symmetry breaking of the flow around the ellipsoidal head due to the

presence of the flagellum. RFT neglects those interactions as it assumes that the hydrody-

namics of the sperm’s head and flagellum can be treated separately. Additionally, sperm’s

flagella typically exhibit an asymmetric waveform with a larger amplitude in the flagellum’s

tail compared to the anterior part close to the cell body. This asymmetry arises because the

base of the flagellum, which connects to the cell body, acts as a fixed point while the rest of

the flagellum undergoes active bending. The asymmetric waveform of the sperm’s flagellum

results in an asymmetric flow profile along the length of the flagellum. Consequently, the

relationship between the drag force and the velocity of each segment along the flagellum

will depend on its location relative to the cell body. RFT does not capture this asymmetry

as it assumes the relationship between the drag force and velocity to be identical for all

segments along the flagellum.

Unlike sperms, which possess a head and a tail, C. elegans feature a slender body with an

approximate front-back symmetry, as will be illustrated in Section 2.4. Moreover, in contrast

to the asymmetric waveform of sperm, C. elegans waveform during undulatory locomotion

has an approximately constant amplitude only showing a small linear decrease from head to

tail [18, 22, 45, 106]. Due to this symmetry in body shape and waveform, we expect RFT,

which treats all body segments as identical, to provide a more accurate description of the

fluid dynamics of C. elegans compared to sperm. However, we acknowledge that a rigorous

comparison with more sophisticated solution methods, as presented in [116], is required to

quantify the accuracy of RFT in the context of the undulatory locomotion of C. elegans.

However, this task exceeds the scope of the present thesis. Nevertheless, we are confident

that the qualitative results presented in this thesis remain robust with respect to the details

of the fluid dynamics model, as will be discussed in more detail in Chapter 5 and 6.

We emphasize that for now, we have treated the swimmer as a purely geometric object

whose body shape and surface velocity are prescribed and known at all times. However,

we have not addressed the question of how the swimmer actively changes its body shape.

Many biological swimmers use muscles and molecular motors to generate internal contrac-

tile forces to deform their shape in a synchronized manner [1, 19, 83]. Thus, modeling
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the active deformation necessitates a biomechanical model of the swimmer’s body. Since

microswimmers such as bacteria, sperm, and C. elegans are characterized by long, slender,

and round propulsion appendages (flagella) or bodies, it is common practice to model their

bodies as deformable rods [45, 52, 111, 112, 125]. In such a framework, the local hydrody-

namic stresses acting on the swimmer’s body must balance both the local actuation force

and torque generated by its internal actuation mechanism, as well as the internal stresses

that arise due to the elastic and viscous properties of the material constituting the rod [9].

In this thesis, we employ a Cosserat rod to represent a generic limbless slender microswim-

mer. However, before we do so, we provide a brief introduction to the model organism C.

elegans, which will serve as a practical application to test our proposed model in Chapter

6.

2.4 C. elegans as a Model Organism

C. elegans, a microscopic nematode, is one of the most prominent model organisms in

biology. It has been subject to intense study in genetics, cell biology, developmental biology,

neuroscience, biomechanics, behavioral biology, and drug discovery. Originally chosen by

Sydney Brenner as a model for whole-organism study [26] in the 1960s, by now C. elegans

has become one of the most extensively characterized animals on Earth [5].

Despite its simple size and rather simple anatomy, C. elegans displays diverse locomotion

patterns in both 2D and 3D. These include forward and backward undulation [39, 56], a

variety of turn maneuvers that enable steering [27, 106, 134], roll maneuvers to re-orientated

in 3D [20], and coiling behavior whose purpose remains unclear [70, 105].

Contrary to other singular cell microswimmers such as sperm, bacteria, and Euglena, C.

elegans stand apart as a fully-fledged animal with a neuromuscular, digestive, and mating

system [5]. This makes them an ideal model organism for behavioral biology, as they

display a rich repertoire of behaviors, including mating and egg laying [34, 137], avoidance

and escape [74], and exploration strategies that combine locomotion gaits and complex

maneuvers [70]. Furthermore, several studies have shown that C. elegans exhibit a range

of sensitivities to external stimuli, helping them to navigate toward food and away from

danger. Those sensitivities are enabled by olfaction and thermosensation receptors in the

anterior body region [99, 107], which allow the worm to move along thermal gradients [65]

and chemical gradients [15], as well as oxygen gradients [31].

In a biomechanical context, C. elegans provide an ideal model organism to study how the

interplay between neural circuitry, muscles, proprioceptive motor feedback, material body

properties, and the environment collectively generates the various locomotion patterns and
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behaviors detailed earlier [42, 45, 101, 102, 111, 126]. As this thesis exclusively focuses

on planar undulatory locomotion, we discuss C. elegans undulation gait in more detail in

the following after giving a brief introduction of its anatomy. After that, we conclude this

section by providing an overview of the biomechanical models used to study C. elegans.

2.4.1 Anatomy

C. elegans is a species of nematode (roundworm), characterized by its slender, non-segmented

cylindrical body that tapers towards the head and tail. In adulthood, the worm reaches a

length of 1-1.2mm, with a maximum cross-sectional radius of 35 µm [13]. Similar to other

nematodes, its body is divided into an outer and inner tube separated by the pseduocelemic

space, as shown in Fig. 2.3. The outer tube (body wall) consists of a cuticle, hypodermis,

and neuromuscular system, while the inner tube contains the digestive and reproductive

systems [5].

The cuticle, a 0.5 µm thick shell, surrounds the worm on the outside. Mainly composed

of collagen, a protein that forms a strong, fibrous, and flexible structure, the cuticle serves

as a physical barrier that shields the worm from its external environment, preserves its body

shape, and facilitates movement by acting as a deformable viscoelastic exoskeleton. The

inner surface of the cuticle is covered by the hypodermis, a layer of cells responsible for its

secretion and structural integrity. Within the hypodermis lie four major openings to the

exterior, the anus, vulva (genitalia), and pharynx (‘mouth‘) [89].

Beneath the hypodermis, 95 rhomboid-shaped, striated body wall muscles are organized

in pairs along the dorsal-ventral sides of the body. These muscles align in rows that run

parallel to the longitudinal body axis alongside the dorsal and ventral nerve cords, respec-

tively, resulting in the following distribution across four quadrants: dorsal left (24), dorsal

right (24), ventral left (24), and ventral right (23). Muscles are tethered to the hypoder-

mis across their entire surface area via specialized structures known as dense bodies and

M-lines (analogs). When activated, the muscles contract along the longitudinal axis, gener-

ating contractile forces that bend the worm’s body in either the dorsal or ventral direction

[6]. The ability to bend locally gives C. elegans body a high degree of freedom, allowing for a

large spectrum of body postures, which can be represented as a superposition of eigenworm

postures in 2D [124] as well as 3D [70].

The muscles are activated by excitatory motor neurons, part of larger neural circuitry.

The composition and connectivity of this circuitry have been extensively described in the

seminar work by White et al . [138, 139]. Using electron micrography, the authors imaged

progressive cross-sections of several hermaphrodite worms and demonstrated that their

neural circuitry consists of 302 neurons interconnected through chemical synapses, gap
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Figure 2.3: Schematic of C. elegans basic anatomy, adapted from Denham [41]. (A): Longi-
tudinal section detailing the nervous and digestive system. (B): Lateral cross-section shows
the body wall components, including the cuticle, hypodermis, muscles, and nerve cords,
separated by the pseudocoelom from the pressurized inner tube containing the intestines.

junctions, and neuromuscular junctions. The neural circuitry can be separated into the

pharyngeal nervous system, which contains 20 almost entirely isolated neurons that regulate

the pumping of the pharynx (“mouth”), and the other 282 neurons of the somatic nervous

system, which occupy the rest of the body [7, 138]. Within the somatic nervous system, a

significant proportion of neurons are located in the nerve ring. They are part of an annulus

structure of densely packed neural processes and soma surrounding the posterior section of

the pharynx. Thus, the nerve ring is the closest thing that C. elegans has to a brain. Of

all the 113 motor neurons, 75 are located within the ventral cord and innervate the body

wall muscles on either side [7, 138, 139]. The ventral chord plays a key role in transmitting

signals from the nerve ring (“brain”) to the muscles.
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2.4.2 Undulatory Locomotion

Nematodes such as C. elegans generate propulsion through transversal undulations. These

undulations are typically defined by a sinusoidal body curvature [106] that propagates from

one end of the worm’s body to the other, which generates propulsion in the opposite direction

to the propagation. The body curvature can be described as a traveling wave characterized

by its amplitude, wavelength, and propagation speed. The latter can be expressed as the

product of undulation frequency and wavelength. Together, these wave parameters are

referred to as the undulation parameters.

To produce the curvature wave observed during forward and backward undulation, mo-

tor neurons along the ventral cord innervate dorsal and ventral body wall muscles alternating

between the dorsal to ventral side along the body and in time [30, 64, 138]. Since the body

wall muscles are arranged on the dorsal-ventral sides of the body, undulation primarily oc-

curs in the dorsal-ventral body plane [32]. This can be confirmed by studying the behavior

of worms on a flat surface, where they lie on their left or right side to undulate to be able

to bend in the dorsal-ventral direction.

It has been shown that the details of C. elegans’ undulatory locomotion are contingent on

their environment. In water, C. elegans undulation gait is characterized by a fast frequency,

long wavelength, and small curvature amplitude, resulting in a C-shape commonly referred

to as the swimming gait. On agar surfaces, the frequency is lower, the wavelength is shorter,

and the amplitude is higher, resulting in a W-shape commonly referred to as the crawling

gait. The clear difference between waveform and frequency in these two media established

the hypothesis that C. elegans employs two distinct gaits. However, more recently, Berri

et al . [18] showed that C. elegans undulation parameters undergo a continuous transition

with the viscosity of the medium. This led to the hypothesis that swimming and crawling

gait are both generated by the modulation of a single undulation gait. This was confirmed

in Newtonian fluids [45, 126] and non-Newtonian media [84], and the single gait hypothesis

is now broadly accepted.

Two questions arise: Firstly, how do C. elegans modulate their undulation gait? This

question has been addressed in multiple studies that used computational models, which

included neurons, mechanosensory and proprioceptive feedback, muscles, body mechanics,

and environmental stresses to reproduce the experimentally observed gait modulation [42].

Secondly, why do C. elegans modulate their undulation gait? This question will be ad-

dressed in Chapter 6, where we investigate whether gait modulation in C. elegans can be

regarded optimal.
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2.4.3 Computational Models

Over the past three decades, many computational biomechanical models of C. elegans have

been developed. This discussion specifically focuses on two model types relevant to our

work: mass-spring models and rod models.

So far, mass-spring models [23, 101, 102] have been limited to a 2D description of the

worm’s longitudinal section. Within this section, the body wall outline is modeled by a

discrete set of mass points coupled with springs. At any time point, the worm’s body

shape is characterized by the positions of these mass points. The springs represent the

forces generated by the viscoelastic properties of the cuticle, internal hydrostatic pressure,

and contractile muscle forces. Drag forces from the surrounding environment have been

modeled by resistive force theory and are assumed to be proportional to the mass-point’s

velocity. Spring models are difficult to generalize to 3D, as this would require the placement

of spring-coupled mass points across the entire body surface, which made researchers explore

alternative approaches.

Rod models [42, 45, 111, 126] represent the worm’s body as a continuum of infinitesimal

rigid cylindrical segments whose radius changes continuously along the body. The configu-

ration of such a rod can be characterized by its centreline and the orientation of its circular

cross-sections, as will be discussed in Chapter 3. Typically, the rod is assumed to be made

of a homogeneous worm material, whose viscoelastic properties are characterized by con-

stitutive laws that detail the rod’s stress-strain relationship. The dorsal-ventral bending

generated by contractile muscle forces is modeled as an effective actuation torque line dis-

tribution applied along the worm’s body. Similar to mass-spring models, drag forces with

the external medium have been modeled by resistive-force theory. However, since rods are

a representation of a 3D body, the flow can be solved around them by, for example, using

regularized Stokeslets [104]. The first computational model of C. elegans that integrated

biomechanics, neuromuscular system, and interaction with the external environment was

pioneered by Niebur and Erdös [101, 102] in the early 90s. Their mechanical representation

featured coupled rectangular units of mass points connected by longitudinal springs on the

dorsal-ventral sides to represent the elastic properties of the cuticle. Contractile muscle

forces are controlled by the excitation status of the motor neurons and applied along the

connection line of neighboring mass points. Internal hydrostatic pressure is calculated from

the body volume, and pressure force acts perpendicular to the body wall. Drag forces to

the external medium were modeled by resistive-force theory. A very large drag coefficient

was chosen to represent an agar surface. The authors established a working example of a

minimal neuron circuit that achieves sustained forward motion. The circuitry incorporated

local proprioceptive feedback, where neurons are stimulated based on the body bend in their

local vicinity. This challenged alternative notations, suggesting that upstream inter-neurons
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exert global control over muscle activation or that the body simply follows the groove that

is carved into the agar surface by the undulatory movement of the head.

Building upon this work, Boyle et al . [23] developed a more detailed mass-spring model,

incorporating 48 units to represent each of the muscle pairs situated at the dorsal-ventral

sides of the body. In each unit, the worm’s cross-sectional radius is fixed by lateral beams of

fixed length, which connect opposite mass points on the dorsal and ventral sides. The length

of these beams decreases towards the ends of the body to create a tapered body shape. The

viscoelastic properties of the cuticle are represented by longitudinal parallel springs-damper

systems connecting neighboring points on either side of the body. Contrary to Niebur and

Erdös, the hydrostatic pressure is modeled by diagonal springs that connect neighboring

mass points on opposite sites and is independent of the body volume. To mimic the tethering

of the muscles to the cuticle, contractile muscle forces act on longitudinal spring-damper

elements that represent the cuticle. Muscles are driven by repeated units of the core circuitry

introduced by Niebur and Erdös [102]. The proprioceptive input to the motor neurons

is modulated by the normalized difference between the rest and instantaneous length of

the longitudinal elements that represent the local cuticle and muscle stretch. The passive

mechanical parameters of the model were fitted by reproducing the relaxation experiments of

Sauvage [118], who performed deformation relaxation experiments with anesthetized worms

measuring timescales systematically varying the environment’s viscosity.

Most relevant for our work, the model by Boyle et al . [23] was able to quantitatively

reproduce the gait transition observed between agar and water without fitting any model

parameters except for the drag coefficients, which account for the changing environmental

conditions. However, it failed to produce coordinated locomotion for intermediate values of

drag coefficients, indicating that further refinement is necessary. In general, the material

properties of the spring models depend upon spring constants and damping coefficients. It

is not a straightforward task to translate these spring parameters to measurable quantities,

such as the bending rigidity and internal viscosity of the worm’s body [13].

Conversely, rod models represent 3D deformable bodies, i.e. their model parameters

can be directly compared to those obtained from experimental measures. Both Fang Yen

[45] and Sznitman et al . [125, 126] used simple viscoelastic rod models to simulate the

planar undulatory locomotion of C. elegans. These models did not include a neuromuscular

system; instead, actuation is achieved by applying an actuation torque distribution along

the body that mimics the torque generated by the contractile muscle forces. Fang Yen et

al . [45] employed their rod model to reproduce the time scales obtained from deformation

relaxation experiments with live worms in different fluid viscosities. This allowed them

to estimate values for the bending rigidity and internal damping coefficient of the worm’s

body material, showing good agreement with direct experimental measures obtained by
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Backholm et al . [13]. Fang Yen et al . then incorporated these measures in their rod model

to simulate C. elegans’ undulatory locomotion in Newtonian fluids with varying viscosity.

Those simulations showed that C. elegans gait transition in more viscous environments

coincides with a transition from a regime where internal friction dominates the worm’s

energy cost to a regime where external (fluid) friction takes precedence. This finding will

become relevant in Chapter 6 when we analyze C. elegans’ gait transition from the viewpoint

of optimality.

Both Sznitman and Fang Yen employed a linearized rod equation assuming small body

wave amplitudes. Yet, studies have shown that C. elegans exhibit significant curvature

amplitudes and short wavelength during undulatory locomotion [106], leading to a consid-

erable body wave amplitude. To address this limitation, Cohen & Ranner [33] developed a

Kirchhoff rod model similar to that introduced by Guo & Mahadevan [58], which allows for

an accurate description across the entire range of observed curvature amplitudes. Denham

et al . [42] combined this Kirchhoff rod model with a model of the worm’s neuromuscular

system. The proprioceptive neuromechanical model was simplified relative to Boyle et al .’s

[22] model, hence allowing more rigorous characterization, leading to two key results: first,

a reinterpretation of C. elegans gait modulation in terms of the sperm number [43, 93],

and second, a prediction that modulation of the control parameters in a fixed environment

results in a distinct gait modulation compared to modulation of the mechanical or fluid

parameters. The sperm number measures the relative strength between the hydrodynamic

forces and the bending torque that is generated by the stiffness of the swimmer’s body ma-

terial. The sperm number appears as an important dimensionless parameter in our model

equations and will be defined and discussed in more detail in Chapter 4.

So far, all discussed models were limited to planar locomotion. Thus, Ranner [111]

extended his previous Kirchhoff rod model to facilitate 3D locomotion, allowing for bending

in the left-right plane as well as twisting. This extension opens the avenue for studying

the extensive dataset curated by Illet [70], which contains six hours of 3D reconstructed

trajectories and body postures.

In this thesis, we employ a purely mechanical rod model, which extends the work by

Ranner [111] and Wang et al . [136]. Contrary to the studies by Denham et al . [42] and Boyle

et al . [22], our thesis does not address how C. elegans modulates its undulation gait, as

this would require the inclusion of a neuromuscular model coupled proprioceptive feedback.

Instead, our aim is to understand why microswimmers modulate their gait, viewing it

through the lens of optimality. This necessitates estimating the worm’s energy expenditure

using our model, as we will discuss in the next chapter.

25



Chapter 3

Model Formulation

In this chapter, we develop a biomechanical model to describe the undulatory locomotion

of a slender limbless microswimmer immersed in a Newtonian fluid environment. Readers

not interested in the technical details of the model formulation are referred to Chapter 4,

where we provide a brief nontechnical model description.

In our model, the swimmer’s body is represented by a viscoelastic Cosserat rod. A

rod is a mathematical model that describes the behavior of a slender flexible structure,

conceptualized as a series of interconnected cross-sections along its length. Rods provide

a one-dimensional spatial representation of a three-dimensional object, which makes them

computationally very efficient. Our goal is to derive and implement the rod’s equations of

motion, integrating all relevant forces and torques acting on the swimmer’s body. These

encompass fluid drag, the internal resistance opposing body deformation, and actuation for

driving undulatory locomotion.

With this goal in mind, the chapter is structured as follows: Section 3.1 provides a brief

introduction to Cosserat rod theory, defining the rod’s state and strain variables and deriving

its equations of motion and introduces alongside all relevant energetic terms for estimating

the swimmer’s energy expenditure. In Section 3.2, we define the actuation torque for driving

undulatory locomotion. Having established the model, Section 3.3 derives a dimensionless

form of the rod’s equations of motion and defines the key dimensionless variables that

govern its dynamical behavior. Section 3.4 formulates the weak form of the dimensionless

equations of motion and introduces a numerical scheme for solving them. We conclude this

chapter by testing its numerical accuracy and stability in Section 3.5.
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3.1 Cosserat Theory

The aim of this section is to formulate the equations of motion for an active Cosserat

rod immersed in a low Reynolds number Newtonian fluid environment. For an excellent

discussion of Cosserat rod theory, we refer to the seminal work by Simo [121], the classic book

by Antman [9] and the more recent review by Chada et al . [29]. A Cosserat rod takes into

account both translational and rotational degrees of freedom of its cross-sections, enabling

local bending, twisting, shearing, and stretching. It is an extension of the inextensible,

unshearable Kirchhoff rod, which only allows for local bending and twisting. To model

planar undulatory locomotion, which primarily involves local bending, a Kirchhoff rod would

be sufficient. However, Kirchhoff rods require the use of Lagrange multipliers to enforce

inextensibility and unshearability [111]. Alternatively, the inextensibility and unshearability

constraint of the Kirchhoff can be relaxed by postulating an energy penalty that maintains

both conditions approximately [104]. Thus, although a Cosserat rod has more degrees of

freedom, it is actually easier to implement from a numerical point of view.

The state of a Cosserat rod at time t is fully determined by its centreline coordinates

r(s, t) ∈ R3 and its Euler angles θ(s, t) = (α(s, t), β(s, t), γ(s, t)) which are referred to as

the rod’s state variables. The reference arc-length parameter s ∈ [0, L0] determines the

position along the rod’s centreline, where s = 0 corresponds to the tip of the swimmer’s

head and s = L0 to the end of its tail. Here, L0 is the swimmer’s length in its stress-free

reference configuration. Derivatives with respect to s and t will be written as ∂s and ∂t,

respectively. The centreline r aligns with the centroid of the rod’s circular cross-sections

along its length as illustrated in Fig. 3.1. Within each cross-section, we assume the mass

to be distributed homogeneously, i.e. the cross-section’s centroid is identical to its centre of

mass. The Euler angles α, β, γ ∈ [0, 2π] determine the orientation of the rod’s cross-sections

with respect to a fixed reference frame, as will be discussed in Section 3.1.1.

We distinguish between two reference frames depicted in Fig. 3.1:

1. The global lab frame with constant basis vectors ei and vector representation v =

v1e1 + v2e2 + v3e3

2. The local body frame with time and reference arc-length dependent basis vectors

di(s, t) and vector representation v = v̄1d1 + v̄2d2 + v̄3d3

The body frame vectors di(s, t), commonly referred to as directors, determine the orientation

of the local cross-sections and can be expressed in terms of the Euler angles θ. Specifically,

d1 and d2 align with the cross-section’s lateral principal basis vectors while d3 is parallel

to its unit normal. For biological swimmers, it is advantageous to align the in-plane body
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frame vectors d1 and d2 with their anatomy. For C. elegans, we choose d1 to be parallel to

the left-right body axis, and d2 to be parallel to the dorsal-ventral axis.

The rod’s equation of motion can be defined within the lab or the body frame. We

opt for a formulation within the lab frame because it leads to more concise expressions.

However, it is important to note that most of the rod’s dynamical variables, such as the

internal force and torque resultants, are defined in the body frame. Consequently, those

variables must be transformed into the lab frame to arrive at a consistent formulation of

the equations of motion. To achieve this transformation, we must establish a relationship

between the lab frame and the local body frame, which will be derived in the next section.

Figure 3.1: Schematic of a Cosserat rod in its current deformed configuration adapted from
Arora et al . [10]. Centreline r(s, t) determines the position of the cross-section’s centroid
at body position s with respect to the reference frame. Rotation matrix Q(s, t) = R3R2R1

rotates the lab frame onto the local body frame of the cross-section.

3.1.1 Defining the Body Frame

For a given time t and body position s, we obtain the body frame from the Euler angles

θ(s) = (α(s, t), β(s, t), γ(s, t)) by performing three subsequent elementary extrinsic rota-

tions. For a comprehensive description of this procedure, we refer to the classical textbook

by Goldstein [54]. Each of the Euler angles α(s, t), β(s, t) and γ(s, t) defines a rotation Ri

around one of the lab frame’s coordinate axes ei, as depicted in Fig. 3.1. To reach any

target frame, there exist twelve equally valid rotation sequences. However, for each of these

sequences, the values of the Euler angles will be different. Here, we opt for a sequence that
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involves rotations around three distinct lab frame axes:

Q(s, t) = R3(α)R2(β)R1(γ). (3.1)

For this specific sequence, the Euler angles α, β and γ are commonly referred to as the roll,

pitch and yaw angles, respectively. The elementary rotations Ri are defined as:

R1(γ) =

1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 ,R2(β) =

 cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 ,R3(α) =

cosα − sinα 0

sinα cosα 0

0 0 1

 .
(3.2)

Substituting Eq. (3.2) into Eq. (3.1), we derive the following expression

Q =

cαcβ cαsβsγ − cγsα sαsγ + cαcγsβ

cβsα cαcγ + sαsβsγ cγsαsβ − cαsγ

−sβ cβsγ cβcγ

 , (3.3)

where we used the shorthand notation cx = cos(x) and sx = sin(x). The rotation matrix Q

transforms the lab frame into the local body frame, which can be expressed as

di = QTei, ei = Qdi, i = 1, 2, 3, (3.4)

where we used that Q is orthogonal, i.e. QTQ = 1. From Eq. (3.4) it follows that the

columns of QT are the body frame vectors, i.e.

QT = (d1, d2, d1). (3.5)

The lab frame representation of any vector v can either be expressed in terms of lab or the

body frame basis vectors, i.e.

v = v1e1 + v2e2 + v3e3 = v̄1d1 + v̄2d2 + v̄3d3. (3.6)

For the remainder, we use the overbar to denote the components v̄i of a vector v in the

body frame. Multiplying Eq. (3.6) with Q from the left yields

Qv = v̄1e1 + v̄2e2 + v̄3e3 = v, (3.7)

where we used Eq. (3.4) to transform the body frame vectors into the lab frame vectors.

Thus, we find that one can transform between the lab frame and body frame representation

of a vector via the equations:

v̄ = Qv, v = QT v̄. (3.8)
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To summarize, the Euler angles θ(s) determine the orientation of the local body frame

along the rod’s centreline. To obtain the body frame at s, we calculate the rotation matrix

Q from Eq. (3.3), which rotates the lab frame onto the local body frame.

3.1.2 Strain and Curvature Measures

This section introduces the rod’s strain and curvature measures, which are crucial to describe

its internal deformation dynamics. To capture the Cosserat rod’s local deformation, we

employ the strain vector σ(s, t) and the generalized curvature vector κ(s, t) [9, 121]. It is

noteworthy that both κ and σ remain invariant with respect to rigid body transformations.

In other words, if a rod undergoes a global translation and rotation, then the rod’s strain

vector σ and curvature vector κ do not change, as illustrated in Fig. 3.2A. Thus, together

σ and κ determine the rod’s shape.

In the lab frame, the strain vector σ is defined as:

σ = ∂sr − d3. (3.9)

Hence, it measures the local misalignment between the centreline’s tangent vector ∂sr and

the cross-section’s normal vector d3, as illustrated in Fig. 3.2B. To transform σ into the

body frame, we multiply Eq. (3.9) with rotation matrix Q from the left, which yields:

σ̄ = Q∂sr − e3. (3.10)

The first two strain vector components σ̄1 and σ̄2 measure shear, i.e. the relative sliding of

adjacent cross-sections with respect to the d1 and the d2 direction. The third component

σ̄3 measures extensional strain, i.e. the stretching and contracting of the rod segments

with respect to the cross-section’s normal direction. Thus, if σ̄3 > 0 then the rod is locally

stretched, whereas if σ̄3 < 0 then it is locally contracted. Notably, we use a slightly different

definition for the extensional strain compared to the one initially proposed by Simo [121];

see Lang et al . [81] for a detailed discussion on the matter.

The generalized curvature vector κ(s, t) and the cross-section’s angular velocity ω(s, t)

are defined in terms of Frenet-Serret type equations [9, 121]

∂sdi = κ× di. (3.11)

∂tdi = ω × di, (3.12)

which govern the dynamics of the body frame. The generalized curvature vector κ specifies

both the direction and the rate of the body frame’s rotation as we move along the centreline

30



3. MODEL FORMULATION 3.1 Cosserat Theory

Figure 3.2: (A): Schematic depiction of a rigid body transformation, strain measures, and
angular velocity of a Cosserat rod. (B): Illustration of the strain vector σ̄, which measures
the misalignment between the cross-section normal d3 and the centreline’s tangent ∂sr.
(C): Illustration of the curvature vector κ̄, describing the rotation of the rod’s cross-sections
while moving along the rod’s centreline. (D): Illustration of the angular velocity vector ω̄,
describing the rotation of a fixed cross-section over time.

at a fixed time t, as depicted in Fig. 3.2C. On the other hand, the angular velocity ω specifies

the direction and rate of the body frame’s rotation with respect to time at a fixed position

s, as illustrated in Fig. 3.2D.

Multiplying Eqs. (3.11) and (3.12) with the rotation matrix Q from the left yields

Q ∂sQ
Tei = κ̄× ei, (3.13)

Q ∂tQ
Tei = ω̄ × ei, (3.14)

where we used Eq. (3.4) to express the body frame vector di in terms of the lab frame vector

ei, and Eq. (3.8) to transform k and ω into the body frame. From Eqs. (3.13) and (3.14),
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we deduce the following relationship:

[κ̄]× = Q∂sQ
T , (3.15)

[ω̄]× = Q∂tQ
T . (3.16)

Here, we introduced the notation [κ̄]× and [ω̄]× to represent the skew-symmetric matrix

associated with the vector cross products κ̄ × ◦ and ω̄ × ◦, respectively. Substituting Eq.

(3.3) forQ on the r.h.s. of Eqs. (3.15) and (3.16), and performing a cumbersome calculation,

we arrive at the following concise expression for κ̄ and ω̄:

κ̄ = A ∂sθ, (3.17)

ω̄ = A ∂tθ. (3.18)

We find that κ̄ and ω̄ are both linearly proportional to the derivative of the Euler angles θ

with respect to s and t, respectively. The matrix A depends on θ and its functional form

depends on the chosen rotation sequence. For the sequence defined by Eq. (3.1), matrix A

takes the following form:

A(θ) =

 0 sinα − cosα · cosβ
0 − cosα − sinα · cosβ
−1 0 sinβ

 . (3.19)

A similar expression has been derived in Wang et al . [136] who used a slightly different

rotation sequence.

In the body frame, the first two components κ̄1 and κ̄2 of the curvature vector determine

the rotation rate around the in-plane body-frame vectors d1 and d2. Thus, they measure

how the rod bends while we move along the centreline. The third component κ̄3 determines

the rotation rate around the cross-section’s normal vector d3, i.e. it measures twist.

To conclude, this section introduced two key vectors: the strain vector σ and the gen-

eralized curvature vector κ. Together, they determine the rod’s shape at any given time t.

Specifically, the strain vector σ measures shear and extensions, while the generalized cur-

vature vector κ measures bend and twist. In the body frame, σ and κ can be determined

from the rod’s state variables via Eqs. (3.10) and (3.15), respectively.

3.1.3 Equations of Motion

This section presents the Cosserat rod’s equations of motion and defines all terms necessary

to describe its dynamic behavior. Under the simplifying assumptions made in Section
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3.1, the equations of motion for an active Cosserat rod immersed in a Newtonian fluid

environment are given by

0 = fF + ∂sN + ∂sFA, (3.20)

0 = lF + ∂sr ×N + ∂sM + ∂sLA, (3.21)

where fF and lF are the fluid drag force and drag torque line densities per unit reference

length, N and M are the internal force and torque resultants, and FA and LA are the

effective actuation force and torque, respectively [9, 121]. The first of the two equations

states that an infinitesimal rod segment’s local change in linear momentum must be equal

to the sum of internal and external forces acting on its center of mass. Likewise, the second

equation states that an infinitesimal rod segment’s local change in angular momentum must

equal the sum of internal and external torques acting on it. Therefore, the equations of

motion are commonly referred to as the linear and the angular balance equations.

We approximate the swimmer’s passive body as a homogeneous linear viscoelastic mate-

rial, a well-established and effective model for C. elegans [13, 42, 45, 125, 126], the primary

study object in this work (see Chapter 2). For a linear viscoelastic material, the internal

force resultant is linearly proportional to the rod’s strains and the temporal strain rates.

Likewise, the internal torque resultant is linearly proportional to the rod’s curvature and

temporal curvature rate. Within the context of Cosserat rods, Lang et al . [80] rigorously

derived the constitutive laws for a Kevin-Voigt-type viscoelastic Cosserat rod based on

a three-dimensional continuum model. In the body frame, the internal stress-strain and

torque-curvature relations can be succinctly written in vector notation as follows [52, 80,

88]:

N̄ = Sσ̄ + S̃∂tσ̄, (3.22)

M̄ = Bκ̄+ B̃∂tκ̄. (3.23)

Here, the elements of the rigidity matrix S are the proportionality coefficients between the

elastic stress resultant and the strain vector σ̄, and the elements of the viscosity matrix S̃ are

the proportionality factors between the viscous stress resultant and strain rate vector ∂tσ̄.

Likewise, the elements of the rigidity matrix B are the proportionality factors between the

elastic torque resultant and the curvature vector κ̄, and the elements of the viscosity matrix

B̃ are the proportionality factors between the viscous torque resultant and the curvature

rate vector ∂tκ̄. For simplicity, we assume that the body material is isotropic, in which case
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the rigidity and viscosity matrices are diagonal and take the following form [80]:

S = φ2

GA 0 0

0 GA 0

0 0 EA

 , S̃ = φ2

νA 0 0

0 νA 0

0 0 ηA

 , (3.24)

B = φ4

EI 0 0

0 EI 0

0 0 GI

 , B̃ = φ4

 ηI 0 0

0 ηI 0

0 0 νI

 . (3.25)

The diagonal elements of the matrices are referred to as

1. S: the (effective) shearing and extensional rigidities

2. S̃: the (effective) shearing and extensional viscosities

3. B: the (effective) bending and twisting rigidities

4. B̃ the effective bending and twisting viscosities.

The geometric model parameters include:

1. The shape function 0 < φ(s) ≤ 1, which defines the profile of the cross-sectional radius

R(s) = Rmaxφ(s) along the centreline, where Rmax denotes maximal cross-sectional

radius

2. The maximal cross-sectional area A = πR2
max

3. The maximal second moment of area I = πR4
max/4.

The material model parameters include:

1. Young’s modulus E > 0 (force per unit area)

2. Shear modulus G > 0 (force per unit area)

3. Extensional viscosity η ≥ 0 (force times time per unit area)

4. Shear viscosity ν ≥ 0 (force times time per unit area )

It is important to note that for circular cross-section, the second moment of areas with

respect to rotations around the in-plane body frame vectors d1 and d2 are equal due to the

cross-section’s rotational symmetry.
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The Rivlin-Ericksen theorem states that a linear elastic, isotropic, and homogeneous

material can only have two independent elasticity parameters [95]. Similarly, a linear vis-

coelastic, isotropic, and homogeneous material has only two independent viscosity param-

eters [88]. In particular, the shear modulus G and shear viscosity ν can alternatively be

expressed in terms of Poisson’s ratio ϱ via the following equations:

G =
E

2(1 + ϱ)
, ν =

η

2(1 + ϱ)
, (3.26)

Using Eq. (3.26), we define the dimensionless material parameter ratio p as follows:

p =
G

E
=
ν

η
=

1

2(1 + ϱ)
. (3.27)

Having established the constitutive equations for the rod, we proceed by specifying

the drag force and drag torque that the surrounding fluid exerts onto the rod. For a

slender microswimmer, whose breadth is much smaller than its length, the interaction of

its body surface with the surrounding fluid environment can be approximated by resistive-

force theory (RFT) [17, 38, 55, 60]. As we discussed in Section 2.3, RFT approximates the

fluid drag force line density fF and torque line density lF to be linearly proportional to the

centreline velocity u and angular velocity ω, i.e.

fF = −µ
[
c∥ (d3 ⊗ d3) + c⊥ (1− d3 ⊗ d3)

]
· u, (3.28)

lF = −µ
[
γ∥ (d3 ⊗ d3) + γ⊥ (1− d3 ⊗ d3)

]
· ω, (3.29)

where µ is the fluid’s viscosity, and ⊗ denotes the outer vector product. Please note that

in Eqs. (3.28) and (3.29), we have substituted the centreline tangent vector t with the

normal vector d3 of the cross-section. This substitution is made because d3 represents the

longitudinal axis of the infinitesimal cylindrical rod segments, which may not necessarily

align with t in a Cosserat rod.

We distinguish four drag coefficients:

1. Linear longitudinal drag coefficient c∥: This coefficient determines the drag force

experienced by the body segment when it moves longitudinally

2. Linear transverse drag coefficient c⊥: This coefficient determines the drag force expe-

rienced by the body segment when it moves transversely (laterally)

3. Angular longitudinal drag coefficient γ∥: This coefficient determines the drag torque

experienced by the body segment when it rotates around its longitudinal axis.

4. Angular transverse drag coefficient γ⊥: This coefficient determines the drag torque
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experienced by the body segment when it rotates around its transverse axis

Numerous analytic approximations for the drag coefficients have been proposed. As outlined

in Section 2.3, we use the drag coefficients derived by Garg & Kumar [51], stated as:

c∥ =
2π

ln(1/ε)− 1
2

, c⊥ =
4π

ln(1/ε) + 1
2

, γ∥ = πφ2R2
max, γ⊥ = 4πφ2R2

max, (3.30)

where ε = 2 ·Rmax/L0 is referred to as the rod’s slenderness parameter.

Now that we have determined the internal and external force and torque resultants, the

next step is to define how to actuate our model in order to achieve active deformation. As we

discussed in Section 2.1, swimmers actively deform their body shape to generate propulsion.

In the animal kingdom, such deformations are typically generated by muscle contractions,

whereas on the microscopic level, molecular motors within cilia and flagella generate shear

forces that result in local bending. In our model, rather than directly simulating those con-

tractile or shear forces, we apply an effective actuation force FA and an effective actuation

torque LA to reproduce the body deformations generated by those forces. The appropriate

spatio-temporal pattern of FA(s, t) and LA(s, t) depends on the particular locomotion gait

under investigation. This work focuses on undulatory locomotion, which we will discuss in

more detail in Section 3.2.

To summarize, in this section, we introduced the equations of motion Eqs. (3.20) and

(3.21), which govern the Cosserat rod’s dynamics and are commonly referred to as the

linear and angular balance equation. Furthermore, we formulated the rod’s constitutive laws

given by Eqs. (3.22) and (3.23) under the assumption that the swimmer’s passive body can

effectively be described as a linear viscoelastic homogeneous isotropic material. Lastly, we

used RFT to approximate the fluid-structure interaction between the swimmer’s deformable

body surface and its surrounding fluid environment by Eqs. (3.28) and (3.29). Thus, for a

given actuation force and actuation torque, our model provides a complete description for

analyzing the dynamic behavior of slender microswimmers, taking into account both the

deformation mechanics and fluid dynamics of the system.

3.1.4 Energy Expenditure

To explore gait optimality, our analysis focuses on two key objectives: swimming speed

and energy efficiency. To estimate the swimmer’s energy expenditure within the framework

of our Cosserat rod model, it is essential to establish definitions for all relevant energetic

terms. Given the model equations introduced in the previous section, the relevant energetic

terms include:
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1. The elastic potential energy V stored in the rod’s shape

2. The internal dissipation rate ḊI associated with the viscosity of the body material

3. The external dissipation rate ḊF associated with the viscous fluid environment

4. The mechanical power Ẇ generated by the actuation force and actuation torque

Note that V has unit energy, whereas the dissipation rates and the mechanical power have

unit energy per time. All energetic terms can be directly derived from the equations of

motion, as we demonstrate in the Appendix A.2.1. The final expressions are identical to

the one derived in Linn et al . [88]:

V (t) =
1

2

∫ L0

0
(κ̄ ·Bκ̄+ σ̄ · Sσ̄) ds, (3.31)

ḊI(t) = −
∫ L0

0

(
∂tκ̄ · B̃ ∂tκ̄+ ∂tσ̄ · S̃ ∂tσ̄

)
ds, (3.32)

ḊF(t) =

∫ L0

0
(fF · u+ lF · ω) ds, (3.33)

Ẇ (t) =

∫ L0

0
(fA · u+ lA · ω) ds, (3.34)

where we defined the actuation force and torque line densities per unit reference arc-length,

fA(s, t) = ∂sFA(s, t) and lA(s, t) = ∂sLA(s, t), respectively.

Eq. (3.32) implies that ḊI ≤ 0, which follows from the positive semi-definiteness of

the viscosity matrices B̃ and S̃. Similarly, from Eq. (3.33), it follows that ḊF ≤ 0 as the

fluid drag force and drag torque line densities fF and lF are negatively proportional to the

centreline velocity u and the angular velocity ω, respectively. Consequently, the system’s

total dissipation rate Ḋ = ḊI + ḊF is also Ḋ ≤ 0.

Energy conservation dictates that the dynamics of the Cosserat rod must fulfill the

instantaneous power balance

Ė = Ḋ + Ẇ , (3.35)

where Ė is the change of the rod’s total energy per unit of time. The rod’s total energy

E = K + V is equivalent to the sum of its kinetic energy K and its elastic potential energy

V . For an inertia-less rod, the contribution of the kinetic energy K to the rod’s total energy

E is approximated to be zero, i.e. Eq. (3.35) simplifies to

V̇ = Ḋ + Ẇ . (3.36)
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Integrating Eq. (3.36) from t1 to t2 results in the energy balance equation

V (t2)− V (t1) = D(t1, t2) +W (t1, t2), (3.37)

where we introduced the short-hands:

D(t1, t2) =

∫ t2

t1

Ḋdt, W (t1, t2) =

∫ t2

t1

Ẇdt. (3.38)

The energies D(t1, t2) and W (t1, t2) represent the dissipated energy and mechanical actua-

tion work over the time interval [t1, t2], respectively.

To model a cyclic locomotion gait characterized by the period T , the actuation force

and actuation torque should follow the same periodicity, i.e.

FA(t) = FA(t+ T ), LA(t) = LA(t+ T ). (3.39)

Assuming time invariant geometric, material, and environmental parameters, Eq. (3.39)

implies that the swimmer’s body undergoes periodic shape changes, from which follows

that V (t) = V (t + T ). Thus, substituting t1 = t and t2 = t + T in Eq. (3.37) yields the

simplified energy balance equation for a cyclic gait:

0 =W +D. (3.40)

Here, W represents the mechanical actuation work performed by the swimmer, and D

represents the total energy dissipated during one gait cycle. Hence, for the special case

of a periodic gait, the energy injected into the system through the mechanical work done

by the actuation force and torque balances the energy lost due to dissipation. For the

remainder, the actuation work W per gait period T will serve as our proxy for the energetic

cost associated with a periodic swimming gait.

3.2 Modelling the Undulation Gait

Undulatory swimmers utilize shear or contractile actuation forces to bend their body, gen-

erating a wave-like curvature profile that propagates along their body or propulsion ap-

pendages [1, 19, 83]. This gives rise to the characteristic wave-like body shape referred

to as undulatory locomotion. In our model, we achieve a propagating curvature wave by
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modeling the effective actuation torque LA as a traveling wave:

FA(s, t) = 0 (3.41)

LA(s, t) = AS(q0s− ω0t)d1. (3.42)

The undulation parameters are the actuation torque amplitude A, the wave number q0 =

2π/λ0, the angular undulation frequency ω0 = 2πf0 and the shape function S, usually taken

to be sinusoidal. Here, we defined the undulation wavelength λ0 and undulation frequency

f0 = 1/T .

The effective actuation force FA is associated with active shearing, stretching, and com-

pression, which we assume to play a negligible role in the context of undulatory locomotion.

Consequently, it is approximated to be zero. Furthermore, we assume that the swimmer’s

initial configuration is planar with the body frame vector d1 being parallel to e1 everywhere

along the body. In this scenario, the swimmer’s motion is confined to the plane spanned by

e1 and e3, which we refer to as the dorsal-ventral plane.

Figure 3.3: Schematic of the relationship between the swimmer’s curvature and body wave.
(A): Illustration of the preferred curvature wave k0, characterized by the preferred curvature
amplitude A0, wavelength λ0, frequency f0 and the wave’s propagation speed v0 . (B):
Sketch of the body waves in the dorsal-ventral plane for different preferred shape factors
c0 = A0/q0. Please note that the body waves in panel B are plotted in dimensionless
coordinates, i.e. they are not scaled to accurate size.
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In order for the actuation torque LA to be strong enough to overcome the resistance of

the passive internal torque resultant M , the actuation torque amplitude A must be in the

order of the maximum dorsal-ventral bending rigidity B. In our model, B corresponds to

the first diagonal element of the rigidity matrix B, defined in Eq. (A.47). To simplify our

notation, we introduce the preferred curvature amplitude A0 = −AM/B so that Eq. (3.42)

can be written as:

LA(s, t) = −Bκ0(s, t), κ0(s, t) = A0 S(q0s− ω0t)d1. (3.43)

The vector κ0 is commonly referred to as the preferred curvature [52, 125]. Hence, the

actuation torque can be understood as a preferred curvature wave propagating along the

swimmer’s body, see Fig. 3.3A. This curvature wave generates a body wave in the dorsal-

ventral plane, as illustrated in Fig. 3.3B. The shape of this body wave is contingent on the

curvature wave’s dimensionless shape factor c0 = A0/q0, where smaller c0 values lead to

shallower body waves while larger values lead to highly curved Ω-shapes [21, 106]. Please

note that the body waves for different c0 in Fig. 3.3B are drawn in dimensionless coordinates

to illustrate the shape of the body wave and are not scaled to the accurate size.

A priori, it is uncertain whether the swimmer’s emergent body curvature κ can track

the preferred curvature κ0 prescribed by the actuation torque LA. This will depend on how

fast the body’s response time is compared to the time scale of actuation torque LA, which is

set by the undulation frequency f0. In the next section, we nondimensionalize the equations

of motion to explore how the system’s response time depends on its model parameters.

However, before we proceed, we conclude this section by deriving an expression for the

average swimming speed during undulatory locomotion. For this purpose, we introduce

the centreline’s centroid R(t), which is defined as the normalized integral of the centreline

coordinates

R(t) =
1

L0

∫ L0

0
r(s, t)ds. (3.44)

Given R(t), we define the instantaneous swimming speed U(t) as

U(t) = eS · ∂tR, (3.45)

where eS is the swimming direction defined as:

eS =
R(t0 + T )−R(t0)

|R(t0 + T )−R(t0)|
. (3.46)

Given U(t), the average swimming U is obtained from the time average integral

U =
1

T

∫ t+T

t
U(t′), dt′, (3.47)
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3.3 Nondimensionalization

The properties of many dynamical systems do not depend on the specific numerical values

of each of its parameters individually but rather on the relative values, proportions, or

combinations of these parameters. Nondimensionalizing the equations of motion provides a

generic method to identify the key dimensionless parameters that characterize the system’s

dynamic behavior. We refer to the classical textbook by Courant & Hilbert [37] for a more

in-depth discussion.

Here, we follow the standard protocol to derive a dimensionless form of the equations

of motion introduced in Section 3.1.3. First, we choose the rod’s reference length L0 and

the gait period T as the system’s characteristic length and time scales, respectively. This

allows us to define the dimensionless coordinates s∗ and t∗ as follows:

s∗ =
s

L0
, t∗ =

t

T
. (3.48)

Next, we define the rod’s dimensionless state variables r∗ and θ∗, along with its dimension-

less strain and curvature measures σ̄∗ and κ̄∗ as follows:

r∗ =
r

L0
, θ∗ = θ, σ̄∗ = σ̄, κ̄∗ = L0κ̄. (3.49)

Given the above definitions, we use the chain rule to derive the following expressions for the

dimensionless centreline velocity u∗, dimensionless angular velocity ω∗, and dimensionless

temporal strain rate ∂t∗σ̄
∗ and curvature rate ∂t∗κ̄

∗:

u∗ =
Tu

L0
, ω∗ =

ω

T
, ∂t∗σ̄

∗ = T∂tσ̄, ∂t∗κ̄
∗ = T0L0∂tκ̄ (3.50)

Lastly, we replace all variables and their derivatives in the linear balance equation Eq. (3.20)

and angular balance equation Eq. (3.21) by their dimensionless counterparts, which yields

the following dimensionless equations of motion (see Section A.2.2 in the Appendix for a

detailed derivation):

0 = f∗
F + ∂s∗N

∗ + ∂s∗F
∗
M , (3.51)

0 = l∗F + ∂s∗r
∗ ×N∗ + ∂s∗M

∗ + ∂s∗L
∗
M. (3.52)

Here, we defined the dimensionless internal force and torque resultants N̄
∗
and M̄

∗
in the

body frame as:

M̄
∗
= S∗σ̄∗ + S̃

∗
∂t∗σ̄

∗, N̄
∗
= B∗κ̄∗ + B̃

∗
∂t∗κ̄

∗. (3.53)
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The dimensionless rigidity and viscosity matrices take the following form:

S∗ =
φ2

ga

αcp 0 0

0 αcp 0

0 0 1

 , S̃
∗
=

φ2b

ga

αcp 0 0

0 αcp 0

0 0 1

 , (3.54)

B∗ =
φ4

a

 1 0 0

0 1 0

0 0 2αTp

 , B̃
∗
=
φ4b

a

 1 0 0

0 1 0

0 0 2αTp

 , (3.55)

where we introduced the system’s intrinsic time scales τ and ξ which are defined in terms

of the physical model parameters

τ =
µ c∥L4

0

EI
, ξ =

η

E
, (3.56)

and the dimensionless time scale ratios a and b, the dimensionless geometric ratio g, and

material parameter ratio p (see Eq. (3.27)) as:

a =
τ

T
, b =

ξ

T
, g =

I

L2
0A
, p =

1

2(1 + ϱ)
, (3.57)

Here, T is the gait period associated with the actuation torque.

The time scale τ quantifies the relative importance of viscous fluid and elastic stresses

and is proportional to the fourth power of the sperm number [43, 93]. The time scale ξ,

on the other hand, quantifies the relative importance of the internal viscous and the elastic

stresses. Recall that actuation is achieved by applying an external actuation force and

torque to our model with period T . Hence, a and b are defined as the time scale ratios

between the system’s response times τ and ξ with the input time scale T , respectively.

Consequently, a and b can be understood as the system’s effective response times. They

predict how quickly or slowly the rod will be able to respond to actuation and thus play a

crucial role in determining the system’s dynamic behavior.

The dimensionless parameter p quantifies the relative importance of shear and exten-

sional deformations and is defined in terms of Poisson’s ratio ϱ. Since cells can be considered

nearly incompressible, the Poisson’s ratio of biological tissue is typically close to 0.5 [57,

133]. From Eq. (3.57), it follows then that p is of the order O(1). Hence, we infer the

following scaling relations from Eq. (3.54):

B∗

S∗ ∼ g,
B̃

∗

S̃
∗ ∼ g, (3.58)

whereA/B denotes the element-wise division of two matrices. The dimensionless parameter
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g quantifies the rod’s geometric properties. For circular cross-sections, it is proportional to

squared slenderness parameter ε2. From Eq. (3.58), it follows then

B∗

S∗ ∼ ε2,
B̃

∗

S̃
∗ ∼ ε2 (3.59)

Thus, for slender rods with ε≪ 1, the swimmer’s passive body exhibits considerably greater

shear and extension resistance than bend and twist. This property is an exclusive conse-

quence of the swimmer’s slender geometry. It enables the swimmer to maintain a small

strain vector while it actively bends.

The dimensionless fluid drag force and torque line densities f∗
F and l∗F are defined as

f∗
F = − [d∗

3 ⊗ d∗
3 +Kc (1− d∗

3 ⊗ d∗
3)] · u∗, (3.60)

l∗F = −K∥ [d
∗
3 ⊗ d∗

3 +Kγ (1− d∗
3 ⊗ d∗

3)]] · ω∗, (3.61)

where we introduced the dimensionless drag coefficient ratios Kc, Kγ and K∥ as follows:

Kc =
c⊥
c∥
, Kγ =

γ⊥
γ∥
, K∥ =

γ∥
L2
0c∥

. (3.62)

Using the definition of the drag coefficients from Eq. (3.30), we derive the following scaling

with respect to ε:

c∥, c⊥ ∼ 1

ln(1/ε)
, γ∥, γ⊥ ∼ ε2, Kc,Kγ ∼ 1, K∥ ∼ ε2 ln(1/ε). (3.63)

From Eqs. (3.60) and (3.61) it follows than that

l∗F
f∗
F

∼ ε2 ln(1/ε). (3.64)

This implies that for slender rods with ε≪ 1, the fluid drag force density f∗
F dominates over

fluid drag torque density l∗F. It is, therefore, common practice to neglect l∗F in the study

of slender microswimmers [23, 42, 45, 55, 58, 125, 126]. However, we find that including

l∗F improves the numerical stability of our model implementation, especially in the limit of

small internal viscosities.

The dimensionless actuation force F ∗
A and torque L∗

A are defined as:

F ∗
A =

T

µ c∥L2
0

FA, (3.65)

L∗
A =

T

µ c∥L3
0

LA. (3.66)
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For the special case of an undulatory gait as introduced in Section 3.2, the expressions for

F ∗
A and L∗

A are

F ∗
A(s

∗, t∗) = 0, (3.67)

L∗
A(s

∗, t∗) = −B∗κ∗
0(s

∗, t∗), κ0(s
∗, t∗) = A∗

0 S(q
∗
0s

∗ − 2πt∗)d∗
1, (3.68)

where we used Eqs. (3.42), (3.66) and (3.55). The dimensionless undulation parameters

include the preferred dimensionless curvature amplitude A∗
0 = L0A0, wave-number q∗0 =

L0 q0, wavelength λ
∗
0 = 2π/q∗0 and undulation frequency f∗0 = Tf0 = 1.

Having defined all terms for the dimensionless equations of motion, we conclude this

section by deriving dimensionless expressions for the energetic terms introduced in Section

3.1.4, as well as the swimming speed. In their dimensionless form, the elastic potential,

dissipation rates, and actuation power can be expressed as follows:

V ∗(t∗) =
1

2

∫ 1

0
(κ̄∗ ·B∗κ̄∗ + σ̄∗ · S∗σ̄∗) ds∗, (3.69)

Ḋ∗
I (t

∗) = −
∫ 1

0

(
∂t∗κ̄

∗ · B̃∗
∂t∗κ̄

∗ + ∂t∗σ̄
∗ · S̃∗

∂t∗σ̄
∗
)
ds∗, (3.70)

Ḋ∗
F(t

∗) =

∫ 1

0
(f∗

F · u∗ + l∗F · ω∗) ds∗, (3.71)

Ẇ ∗(t∗) =

∫ 1

0
(f∗

A · u∗ + l∗A · ω∗) ds∗. (3.72)

Integrating over one undulation period yields dimensionless energies

D∗
I =

∫ 1

0
Ḋ∗

I dt
∗, D∗

F =

∫ 1

0
Ḋ∗

F dt
∗, W ∗ =

∫ 1

0
Ẇ dt∗, (3.73)

where D∗
I is the dimensionless internal dissipated energy, D∗

F the dimensionless external

(fluid) dissipated energy and W ∗ the dimensionless the actuation work per undulation

period.

The dissipation rates and actuation power in physical units can be obtained from their

dimensionless equivalents by applying the conversion factor

[ḊI, ḊF, Ẇ ] =
µc∥L3

0

T 2
[Ḋ∗

I , Ḋ
∗
F, Ẇ

∗]. (3.74)

Similarly, the dissipative energies and the actuation work in physical units can be recovered

from their dimensionless counterparts by applying the conversion factor

[DI , DF , W ] =
µc∥L3

0

T
[D∗

I , D
∗
F, W

∗] (3.75)
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Lastly, the dimensionless average swimming speed U∗ per undulation period can be

defined as the integral

U∗ =
∫ t∗+1

t∗
∂t∗R

∗ · e∗S dt∗0., (3.76)

where we introduced the dimensionless centreline centroid R∗(t∗) = R(t)/L0, and the

dimensionless swimming direction e∗S = eS. From Eq. (3.47) it follows than that the physical

speed U can be recovered from U∗ through the equation

U =
L0

T
U∗. (3.77)

To conclude, this section derived the dimensionless forms of the linear and angular bal-

ance equation, which have the same functional form as the physical equations of motion

introduced in Section 3.1.3. The system’s dimensionless parameters include the dimension-

less time scale ratios a and b, the material parameters ratio p, the geometric ratio g, and

the drag coefficient ratios Kc, Kγ and K∥. We will provide a detailed exploration of how

these parameters influence the system’s dynamical properties in Chapter 4. However, be-

fore we do so, we derive a numerical implementation of our model and present validation

experiments to demonstrate its accuracy and stability.

3.4 Numerical Implementation

In this section, we employ a finite element scheme to solve the dimensionless equations of

motion, derived in Section 3.3. A general introduction to the application of finite element

methods to differential equations can be found in the textbook by Li et al . [85]. Here, our

approach closely follows the methodology outlined by Ranner [111], who developed a finite

element scheme for the special case of an unshearable, inextensible Kirchhof rod.

As the first step, we derive the weak form of the dimensionless equations of motion for

the appropriate boundary conditions. Subsequently, we proceed by discretizing the weak

form in space and time. This is where the advantage of rod models becomes evident. As a

Cosserat rod only has a single spatial coordinate s, the spatial discretization of the model

is significantly simpler compared to a three-dimensional continuum model. As a last step,

we linearize the discretized representation of the weak form, so that it can be reduced to a

linear matrix problem.
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3.4.1 Weak Formulation

In this section, our objective is to derive the weak form of the dimensionless equations, which

we previously introduced in Section 3.3. For this purpose, we multiply the dimensionless

linear balance equation Eq. (3.51) and the angular balance equation Eq. (3.52) with the

vector-valued test function ϕ(s). We then integrate the balance equations over the domain

of the dimensionless reference arc-length, resulting in the following weak form:

0 =

∫ 1

0
fF · ϕ ds−

∫ 1

0
(N + FA) · ∂sϕ ds+ [(N + FA) · ϕ]|10 , (3.78)

0 =

∫ 1

0
lF · ϕ ds+

∫ 1

0
(∂sr ×N) · ϕ ds−

∫ 1

0
(M +LA) · ∂sϕ ds+ [(M +LA) · ϕ]|10 .

(3.79)

Here, we omitted the star superscript associated with the dimensionless variables for the

sake of brevity. For the last integral on r.h.s. of both equations, we used partial integration

to shift the reference arc-length derivative onto the test function. This step introduces an

additional boundary term in both of the equations.

As boundary conditions, one typically specifies the translational and rotational degrees

of freedom at the rod’s end. For our model, we assume that the rod’s ends are not con-

strained or fixed in any way, commonly referred to as a free-end boundary condition. The

internal force resultant N(s) and the torque resultantM(s) are defined such that they spec-

ify the force and the torque that the material in the interval (s, 1] exerts on the infinitesimal

segment at position s [9]. From Newton’s action-reacgradualtion principle then follows that

the force and torque that the material in the interval [0, s) exerts on the same segment

must be equal in magnitude but opposite in direction to N(s) and M(s), as illustrated in

Fig. 3.4A. This implies that the internal force and torque resultant at the rod’s boundaries

must be zero. This is because there is no material beyond those boundary points that could

exert an internal force or torque on the outer boundary segments. Thus, the appropriate

boundary conditions for N and M are:

M(0, t) = N(0, t) = M(1, t) = N(1, t) = 0. (3.80)

Furthermore, we restrict the actuation force FA and actuation torque LA to functions which

are zero at the boundaries:

FA(0, t) = LA(0, t) = FA(1, t) = FA(1, t) = 0 (3.81)

In the case of an undulatory gait, as defined in Section 3.2, this boundary condition can

be achieved by a gradual spatial onset of the actuation torque at the head and tail of the
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swimmer, as depicted in Fig. 3.4B. Here, we use two sigmoidal functions

sigH(s) =
1

1 + exp
(
− s−sH

∆s

) , sigT(s) =
1

1 + exp
(
s−sT
∆s

) , (3.82)

to mask the actuation torque LA(s) · sigH(s) · sigT(s). The masking parameter are set to

sH = 0.05, sT = 0.95 and ∆s = 0.1. For C. elegans, this choice is justified since the

longitudinal body wall muscles do not extend into the head and tip of the tail.

Figure 3.4: Schematic of the rod’s free end boundary condition and the actuation torque
masking function. (A): Illustration of the free-end boundary conditions. Newton’s action-
reaction principle stipulates that the internal force and torque resultants exerted by the
material [0, s) (red) onto a cross-section at body position s must equate to the torque and
force resultants exerted by the material (s, 1] (blue). From this follows that the internal
force and torque resultants must be zero at the boundaries. (B): The masking function
sigH(s) · sigT(s) ensures that the actuation torque LA is zero at boundaries.

For the boundary conditions as specified in Eqs. (3.80) and (3.81), the boundary term
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in Eqs. (3.78) and (3.79) vanishes, and the weak form simplifies to

0 =

∫ 1

0
fF · ϕ ds−

∫ 1

0
(N + FA) · ∂sϕ ds, (3.83)

0 =

∫ 1

0
lF · ϕ ds+

∫ 1

0
(∂sr ×N) · ϕ ds−

∫ 1

0
(M +LA) · ∂sϕ ds. (3.84)

In summary, this section presented the weak form of the dimensionless equations of motion,

considering free-end boundary conditions and zero actuation force and torque at both the

head and tail of the swimmer’s body.

3.4.2 Discretization

In this section, our goal is to derive a discrete representation of the weak form introduced in

the previous Section 3.4.1. For this purpose, we take an equidistant partition of [0, 1] by N

points s1 = 0 < s2 < ... < sN = 1 which we call the mesh. Because our model’s weak form

only contains first-order derivatives with respect to s, it is sufficient to approximate the

system’s state variables r and θ as continuous piecewise linear functions. More precisely,

we define the scalar function space V as follows:

V = {x(s) ∈ C([0, 1]) : x(s) piecewise linear on [si, si+1] for i = 1, . . . , N − 1} , (3.85)

Given V , we define the three-dimensional vector-valued function space V 3 as

V 3 = {(x1(s), x2(s), x3(s)) : xk ∈ V for k = 1, 2, 3} , (3.86)

whose vector components are functions in V .

To discretize in time, we choose a constant time increment ∆t and label the n-th time

step as tn = n · ∆t. Furthermore, we denote the piecewise linear approximation of an

arbitrary vector-valued function x(t) at time tn as xn ∈ V 3. Thus, discretizing the weak

form merely involves adding a n subscript to all variables in Eqs. (3.83) and (3.84), resulting

in:

0 =

∫ 1

0
fF,n · ϕ ds−

∫ 1

0
(Nn + FA,n) · ∂sϕ ds (3.87)

0 =

∫ 1

0
lF,n · ϕ ds−

∫ 1

0
(∂srn ×Nn) · ϕ ds−

∫ 1

0
(Mn +LA,n) · ∂sϕ ds (3.88)

To approximate the first-order time derivatives implicitly contained in the discrete weak
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form, we employ a finite backwards difference of order k > 0, defined as follows:

∂txn =
1

∆t

k∑
i=0

cn−i xn−i +O(∆tk) (3.89)

Here, the weighting coefficient cn determines the relative contribution of the function value

at the n-th time step to the finite difference calculation. The order k specifies the number

of past time steps included in the calculation. To calculate the finite difference order at the

first time steps n = 1, 2, . . ., we assume the rod’s state variables (rn, θn) to be equal to the

initial values (r0,θ0) for n ≤ 0.

As the order of the finite difference scheme increases, the accuracy of the approximation

improves; however, this requires caching more previous solutions. For example, for k = 1,

Eq. (3.89) simplifies to an simple Euler step

∂txn =
xn − xn−1

∆t
+O(∆t). (3.90)

We introduce the shorthand ∂̃kt to represent the k-th order finite backward difference ap-

proximation of a first-order time derivative. Lastly, we substitute all variables in the discrete

weak form defined by Eqs. (3.87) and (3.88) with the expressions derived in Section 3.3,

and formulate the following problem statement. Problem: Given the actuation force FA

and actuation torque LA, and the rod’s initial configuration r0(s, 0) and θ0(s, 0), find the

unknown variables (rn, θn) ∈ V 3 such that for all tn:

0 = −
∫ 1

0
[d3,n ⊗ d3,n +Kc (1− d3,n ⊗ d3,n)] ∂̃

(k)
t rn · ϕ ds

−
∫ 1

0

[
QT

n

[
S (Qn∂srn − e3) + S̃

(
Qn∂s∂̃

(k)
t rn −

(
An∂̃

(k)
t θn

)
×Qn∂srn

)]
+ FA,n

]
· ∂sϕ ds

(3.91)

0 = −
∫ 1

0
K∥Q

T
n [e3 ⊗ e3 +Kγ (1− e3 ⊗ e3)]An∂

(k)
t θn · ϕ ds

+

∫ 1

0

{
∂srn ×QT

n

[
S (Qn∂srn − e3) + S̃

(
Qn∂s∂̃

(k)
t rn −

(
An∂̃t

(k)
θn

)
×Qn∂srn

)]}
· ϕ ds

−
∫ 1

0

{
Qn

[
BAn∂sθn + B̃

(
An∂s∂̃t

(k)
θn +

(
∂̃
(k)
t An

)
∂sθn

)]
+LA,n

}
· ∂sϕ ds (3.92)

for all ϕ ∈ V 3.

A detailed derivation of the equations is given in Section A.2.3 of the Appendix for

interested readers. However, it is important to note that the variables d3,n, Qn and An

implicitly depend on the Euler angles θn, which renders the problem nonlinear in the

unknowns (rn,θn). To solve this nonlinear problem, we use Picard’s iteration, which can
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be summarized by the following steps [90]:

1. Start with an initial guess to approximate the solution to the PDE at the current time

step

2. Linearize the nonlinear terms in the PDE using the current approximation

3. Solve the linearized PDE to obtain an updated approximation

4. Repeat steps 2 and 3 until the solution converges to a desired accuracy

Following these outlined steps, we denote the solution at time step n after the i-th Picard

iteration step as (ri+1
n , θi+1

n ). As the initial guess for the Picard iteration, we chose the

solution at the previous time step, i.e.

(r0n, θ
0
n) = (rn−1, θn−1). (3.93)

To linearize the equations in the weak form of the problem statement defined by Eqs.

(3.91) and (3.92), we approximate all nonlinear terms by using the solution (rin, θ
i
n) from

the previous Picard iteration step. Please note that there is no unique way of doing this, but

we acknowledge that some linearizations may have better-fixed point convergence properties

than others. Here, we derive the following form of the linearized weak form (see Section

A.2.3 in the Appendix for details):

0 = −
∫ 1

0

[
di
3,n ⊗ di

3,n +Kc

(
1− di

3,n ⊗ di
3,n

)]
∂̃
(k)
t ri+1

n · ϕ ds

−
∫ 1

0

{
Qi,T

n

[
S
(
Qi

n∂sr
i+1
n − e3

)
+ S̃

(
Qi

n∂s∂̃
(k)
t ri+1

n −Ai
n

(
∂̃
(k)
t θi+1

n

)
×Qi

n∂sr
i
n

)]
+ F i+1

A,n

}
· ∂sϕ ds,

(3.94)

0 = −
∫ 1

0
K∥Q

i,T
n [e3 ⊗ e3 +Kγ (1− e3 ⊗ e3)]A

i
n∂̃

(k)
t θi+1

n · ϕ ds

+

∫ 1

0

{
∂sr

i
n ×Qi,T

n

[
S
(
Qi

n∂sr
i+1
n − e3

)
+ S̃

(
Qi

n∂s∂̃
(k)
t ri+1

n −Ai
n

(
∂̃
(k)
t θi+1

n

)
×Qi

n∂sr
i
n

)]}
· ϕ ds

−
∫ 1

0

{
Qi,T

n

[
BAi

n∂sθ
i+1
n + B̃

(
Ai

n∂s∂̃
(k)
t θi+1

n +
(
∂̃
(k)
t Ai+1

n

)
∂sθ

i
n

)]
+Li+1

A,n

}
· ∂sϕ ds,

(3.95)

which converges for most combinations of physical model parameters in the range of interest.

In cases where the fixed point does not converge, the solution of the nonlinear weak form

can be approximated by the solution to the linearized weak form. We show in Section 3.5.2

that the solution of the linearized weak form converges to the nonlinear solution in the limit

of small time steps and large numbers of mesh points.
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The variables di
3,n, Q

i
n andAi

n implicitly depend on the state variables from the previous

iteration step as indicated by the i superscript. To solve the linearized problem for the

unknowns (ri+1
n , θi+1

n ), we use the open-source platform FEniCS, which implements an

automated finite element scheme for solving partial differential equations numerically [4,

90]. At each time step, the linear system yields a band matrix problem since the equations

of motion only involve local interactions.

To decide whether the Picard iteration has converged, we require the normalized mean

absolute error integral between the solutions of two consecutive iteration steps to be smaller

than the desired tolerance tol. This can be expressed as follows:∫ 1
0

∣∣ri+1
n − rin

∣∣ ds∫ 1
0

∣∣ri+1
n − rn−1

∣∣ ds < tol,

∫ 1
0

∣∣θi+1
n − θi

n

∣∣ ds∫ 1
0

∣∣θi+1
n − θn−1

∣∣ ds < tol, (3.96)

where we used the mean absolute error integral between the current iteration’s solution

and the solution from the previous time step as normalization. This ensures that the error

is relatively small compared to the average change of the state variables per time step.

Throughout this study, we will employ a tolerance of tol = 10−3.

To conclude, this chapter derived a fully discretized expression for the linearized weak

form of the dimensionless equations of motion, as formulated in Eqs. (3.94) and (3.95).

Adopting free-end boundary conditions, we constrain the internal force and torque to be

zero at both ends of the rod. Additionally, we require the actuation force and torque to be

zero at these boundaries, a choice motivated by the typical absence of muscles or molecular

motors at the swimmer’s head and tail tips. To obtain a solution for the initial nonlinear

weak form of our model, we employ the Picard iteration as a solution strategy. With the

numerical scheme of our model established, we proceed to test its numerical accuracy.

3.5 Numerical Validation

The main goal of this section is to validate the numerical scheme introduced in the previous

section. For this purpose, we simulate undulation experiments, systemically varying the

time step ∆t, number of mesh points N , and finite difference order k. To compare the

results of these simulations, we define a set of metrics suitable in the context of undulatory

locomotion. Our analysis demonstrates that these metrics converge to a baseline solution as

spatial and temporal resolution increase. Based on this convergence analysis, we establish a

relationship between the scheme’s numerical accuracy and the discretization parameters ∆t,

N , and k. This understanding allows us to make an informed choice for the discretization

parameters, ensuring sufficient numerical accuracy while being computationally efficient.
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The discretization parameters selected through this process will be employed in subsequent

chapters for simulations.

3.5.1 Simulation Showcase

To set the stage, we first showcase an exemplary simulation result of an undulatory loco-

motion experiment; see Fig. 3.5 and Vid. 3.1. In the experiment, the swimmer starts in

a straight, stress-free configuration. To generate undulatory locomotion, we apply a sinu-

soidal actuation torque FA traveling along the swimmer’s body as defined in Eq. (3.42).

During the first undulation cycle, the swimmer transitions from its initial straight configu-

ration to a wave-like body shape. In the subsequent undulation cycles, it deforms its body

in a consistent and periodic manner. For this simulation, the physical model parameters

are chosen to match the available experimental data for C. elegans. As discretization pa-

rameters, we select the time step ∆t = 0.001, the number of mesh points N = 750, and the

finite difference order k = 3; a choice we will motivate in the next section.

Having presented an overview of the experiment setup, we now discuss the specific sim-

ulation results in more detail. Fig. 3.5A shows the trajectory of the centreline’s centroid

R(t) and the centreline’s midpoint r(t, 0.5) in the dorsal-ventral plane. Those trajecto-

ries qualitatively resemble the experimental data presented in Sznitman et al . [126]. The

centroid R(t) exhibits an oscillatory pattern around the constant swimming direction eS,

commonly referred to as wobbling. This characteristic of the centroid’s trajectory can be

observed across a wide range of undulating swimmers [91, 94].

In our model, the wobbling of the centroid’s trajectory can be explained as follows:

First, we define the transverse direction eT as orthogonal to the swimming direction eS.

Next, we consider the projection of the centreline velocity u(s) onto eT, shown in Fig.

3.5C. Here, we only show the centreline velocity profile at the onset and the midpoint of

an undulation period. Integrating these velocity distributions over s yields the transverse

centroid velocity, defined as eT · ∂tR. The velocity eT · ∂tR is not zero, but it changes

periodically with the undulation period, as shown in Fig. 3.5D. This explains the wobbling

of the swimmer’s centroid. However, its magnitude is one order of magnitude smaller

compared to the centroid’s velocity in the swimming direction eS, which is denoted as U(t)

and is shown in Fig. 3.5B. This explains why the swimmer’s centroid’s lateral side-to-side

movement is small compared to its movement in the primary swimming direction. As

eT · ∂tR is centered around zero, see Fig. 3.5D, its time average of over one undulation

period is zero. Consequently, the net movement of the centroid in the transverse direction

eT during one undulation cycle is zero. This explains why the swimming direction remains

constant throughout the simulation.
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Figure 3.5: Centreline trajectory and swimming speed during undulatory locomotion. (A):
Trajectories of the centreline’s centroid R(t) (solid) and the centreline’s midpoint r(0.5, t)
(dashed). (B): Instantaneous swimming speed U(t) (solid) and average swimming speed U
(dashed). (C): Transverse centreline velocity eT ·u along the body at the onset (solid) and
the midpoint of the undulation cycle (dashed). (D): Transverse centroid velocity eT · ∂tR
during one undulation cycle. Physical model parameters: Young’s modulus E = 1.2 ×
105 Pa [13, 45], ratio of the extensional viscosity to Young’s modulus ξ = 1 × 10−2 s [45],
Poisson’s ratio ϱ = 0.5 [48], reference length L0 = 1130 µm [5], maximal cross-sectional
radius Rmax = 32 µm [13], fluid viscosity µ = 1×10−3 Pa s , undulation frequency f = 1Hz.
From the physical model parameters, we derive the following values for the dimensionless
model parameters using Eqs. (3.57), (3.30) and (3.62): a = 0.033, b = 0.01, p = 0.33,
g = 2.0× 10−4. Drag coefficient ratios, Kc = 1.5, Kγ = 4.0 and K∥ = 1.2× 10−3 Preferred
dimensionless undulation parameters are A0 = 2π and λ0 = 1.

After having analyzed the trajectory of the swimmer’s centroid, we now consider its

instantaneous swimming speed U(t) illustrated in Fig. 3.5B. In the first undulation cycle,

the swimmer transitions from its initial straight configuration to periodic undulatory loco-

motion, and U(t) exhibits a sharp increase. Following this initial transient, U(t) undergoes

oscillations at a consistent frequency around a steady baseline value, denoted as the average

swimming speed U . For the specific model parameters, the dimensionless swimming speed

is U = 0.1, i.e. the swimmer covers a distance of 0.1 body length L0 per undulation cycle,
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which follows from Eq. (3.77). This value is comparable to the experimentally measured

swimming speed of C. elegans [50, 126]. However, we acknowledge that the experimentally

observed swimming speeds are slightly larger than 0.1. A possible explanation for this

discrepancy lies in our assumption of an unconfined fluid environment. In the cited experi-

ments, C. elegans swim within a narrow walled chamber filled with liquid, constraining their

motion to a planar trajectory. This narrow confinement alters the fluid dynamics, resulting

in a larger linear drag coefficient ratio Kc and, consequently, faster swimming speeds [21].

Following our discussion of the swimmer’s centroid kinematics, we now shift our focus to

the swimmer’s deformation kinematics. As we discussed in Section 3.1.2, they are character-

ized by the curvature vector κ̄ and the strain vector σ̄ in the body frame. Throughout the

undulation experiment, the swimmer’s configuration remains planar and twist-free. This

implies that only the first component κ̄1 of the curvature vector, which measures the bend-

ing in the dorsal-ventral plane, is nonzero. Henceforth, we will refer to k̄1 as the body

curvature k̄. The first component σ̄1 of the shear vector, which measures shearing perpen-

dicular to the dorsal-ventral plane, is zero. Hence, it is sufficient to only consider the shear

vector’s second component σ̄2 and the third component σ̄3.

Fig. 3.6A presents a color plot of the body curvature κ̄ as a function of time t and body

coordinate s, referred to as a kymogram. The kymogram’s distinct striped patterns are

indicative of the curvature wave, propagating from the swimmer’s head to its tail while

it actively deforms its body. We emphasize that similar curvature kymograms to the one

shown in Fig. 3.6A have been observed in a multitude of experimental studies of undulatory

locomotion [40, 45, 125, 126]. Each stripe is composed of diagonal lines of equal curvature,

except at the body boundaries, where the curvature rapidly decreases to zero. This sharp

decrease in curvature is a consequence of the actuation torque being constrained to zero at

the boundaries, as we discussed in Section 3.4.1. The slope of the stripes is equivalent to

the curvature wave’s propagation speed v. The undulation frequency f can be determined

by dividing the number of undulation cycles visible in the kymogram by the simulation time

Tsim=5. With knowledge of v and f , the undulation wavelength λ can be determined from

the relationship v = λ · f . Here, we assume that the wave’s propagation speed is constant

along the body, which is not necessarily the case, as we will discuss in Chapter 4.

Fig. 3.6B shows a kymogram of the preferred curvature κ0(s, t), which is defined as the

first component of the preferred curvature κ0(s, t), introduced in Section 3.2. The preferred

curvature kymogram closely resembles the kymogram of the emergent body curvature in

Fig. 3.6A. This is because, for the chosen model parameters, the system’s response time

is relatively fast compared to the undulation frequency f0 of the preferred curvature, i.e.

the body curvature κ tracks the preferred curvature κ0 instantaneously. In such a scenario,

the preferred and actual undulation parameters are approximately equivalent, which can be
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expressed as follows:

A ≈ A0, λ ≈ λ0, f ≈ f0 = 1. (3.97)

A detailed analysis of the relationship between κ and κ0 as a function of the model param-

eters will be undertaken in Chapter 4.

Fig. 3.6C and Fig. 3.6D show the kymograms of the swimmer’s body shear strain σ̄2

and extensional strain σ̄3, respectively. Both kymograms display a similar stripy pattern

to the one observed for the body curvature in Fig. 3.6A. This is not surprising because

the shear and extensional deformations are an indirect consequence of the bending defor-

mation initiated by the actuation torque. Note that the stripes are not straight lines, i.e.

the propagation speed of the shear and extension wave changes with the position s along

the swimmer’s body. Importantly, the order of magnitude of σ̄2 and σ̄3 is much smaller

compared to the body curvature κ̄. This is a consequence of the large linear viscoelas-

tic resistance the swimmer’s slender body exhibits with respect to shear and extensional

deformations, as discussed in Section 3.3. Consequently, we hypothesize that shear and

strain deformations only play a marginal role in the context of undulatory locomotion in

the parameter regime of C. elegans.

Having presented exemplary evidence that our model generates centroid trajectories,

swimming speeds, and body posture qualitatively reminiscent of those experimentally ob-

served in C. elegans, we further verify the reliability of our numerical scheme by demonstrat-

ing that it is energy-conserving up to a small relative error. In Fig. 3.6A, we plot the powers

defined in Section 3.1.4 as a function of time. These powers include the actuation power Ẇ

(green), the dissipation rate Ḋ (red), and the temporal rate of change in potential energy

V̇ (black). After the first initial undulation cycle, these powers oscillate around a constant

baseline value with undulation frequency f . This periodic behavior is expected, given that

the powers are defined in terms of the swimmer’s kinematic and shape parameters, which

themselves are periodic functions in f . Specifically, the rate of change in potential energy V̇

oscillates around zero, signifying that there is no net increase or decrease in the swimmer’s

potential energy V within a single undulation cycle. Furthermore, we confirm that the total

dissipation rate Ḋ is strictly negative as predicted by Eq. (3.32).

The instantaneous power balance, given by Eq. (3.36), demands that the signed sum of

all powers must equate to zero for all t. In Fig. 3.6B, we confirm that our numerical scheme

fulfills the instantaneous power balance at each time step up to a relative error in the order

of O(10−2). Here, we normalized the absolute error by the time-averaged actuation power

avg(Ẇ ) such that it is relative to the order of magnitude of the powers depicted in Fig.

3.6A.

Integrating the power balance from the start of the last undulation cycle at t = 4 to the
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Figure 3.6: Strain measures of the swimmer’s body during undulatory locomotion. (A):
Kymogram of the emergent body curvature κ(s, t). (B): Kymogram of the preferred cur-
vature κ0(s, t). (C): Kymogram of the dorsal-ventral shear strain σ2(s, t). (D) Kymogram
of the dorsal-ventral extensional strain σ3(s, t). Model parameters are identical to those in
Fig. 3.5.

time point 4 + t yields the energy balance equation

∆V (4, t) = D(4, 4 + t) +W (4, 4 + t), (3.98)

where ∆V (4, t), D(4, t) andW (4, t) are the change in potential energy, the dissipated energy,

and the actuation work during the time interval [4, 4 + t], respectively. For brevity’s sake,

we will suppress the starting point 4 in the energy function’s argument. Fig. 3.6C shows

∆V (t), D(t) and W (t) as a function of time in t. We confirm that the net change in

potential energy after one undulation cycle is zero. Furthermore, the dissipated energy D

decreases monotonically as expected. The energy balance Eq. (3.37) states that the change

in potential energy ∆V (t) must equal the sum of dissipated energy D(t) and actuation work

W (t) at any time t. Fig. 3.6D confirms that our numerical scheme fulfills this energy balance

up to a small relative error of the order of O(10−3). Here, we used the mechanical actuation

work W =W (T ) per undulation cycle as our normalization. We remind the reader that W
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Figure 3.7: Power and energy balance during undulatory locomotion. (A): Actuation power
Ẇ (green), net dissipation rate Ḋ (red), and change in potential energy per unit time V̇
(black) as a function of time. (B): Instantaneous power balance 0 = Ẇ + Ḋ − V̇ as a
function of time, normalized by the time-averaged actuation power avg(Ẇ ). (C): The
actuation work W (t) (green), dissipated energy Ḋ(t) (red) and change in potential energy
∆V (t) (black) as a function of time during the last undulation period. (D): Energy balance
0 =W (t) +D(t)−∆V (t) as a function time normalized by actuation W =W (T ) required
during one undulation cycle. Model parameters are identical to those in Fig. 3.5.

will serve as our proxy to estimate the energetic cost of swimming, as discussed in Section

3.1.4.

After showcasing the simulation results for an exemplary undulation experiment that

illustrates realistic undulatory locomotion and affirms that our numerical scheme conserves

energy up to a small relative error, we now conduct a thorough convergence analysis of our

scheme. The goal is to determine optimal discretization parameters that achieve the desired

accuracy while being computationally efficient.
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3.5.2 Convergence Analysis

In the preceding section, we showcased the simulation results of an undulation experiment

featuring fixed model and undulation parameters. This section systematically analyses the

convergence properties of our numerical scheme with respect to discretization parameters ∆t

and N and k. For this purpose, we repeat the previously presented undulation experiment

for different ∆t, N and k values. The outcome of these experiments is asset based upon the

following three metrics:

1. The final position of the centreline’s centroid, denoted as R

2. The swimmer’s average swimming speed U

3. The energetic swimming cost W

Here, we choose U and W as performance metrics, as they are the key objectives we will

consider when comparing the performance of different undulation gaits in the upcoming

sections. Furthermore, we consider R to ensure that our scheme produces reliable straight

trajectories and does not introduce a bias.

To establish a benchmark for comparison, we designate the numerical solution for the

smallest time step ∆tmin = 10−4, the maximum number of mesh points Nmax = 1000, and

the highest finite difference order kmax = 5 as our reference solution. Using this reference

solution, we calculate the reference centroid position Rref, the reference swimming speed

Uref and the energetic reference cost Wref. Subsequently, for any given combination of

discretization parameters N , dt and k, we denote the relative error between the metrics and

their corresponding reference values as follows:

εR =
|R−Rref|

|Rref|
, εU =

|U − Uref|
Uref

, εW =
|W −Wref|

Wref
(3.99)

Here, R, Ū , and W are functions of ∆t, N and k. In Fig. 3.8A-C, we plot εR, εU and εW

as functions of the time step ∆t, while maintaining a constant number of mesh points N .

Different markers correspond to distinct values of the finite difference order k, as indicated

by the legend in panel D. For k = 1, all three errors decrease linearly over the full range

of ∆t, suggesting a power-law relationship of the form εR, εU , εW ∝ ∆tα. For k > 1,

the errors initially decrease linearly; however, for sufficiently small ∆t, they plateau and

fluctuate around a constant saturation value, which we represent by the dotted horizontal

yellow lines. The higher the order k, the steeper the slope in the linear regime, and the

faster the error reaches its plateau.

To determine the scaling exponent α, we perform a linear regression for the data points
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within the linear regime in each panel. The result of these linear regressions is shown

by the dashed red lines. Note that we only consider the first and second finite difference

orders, which both exhibit a clearly visible linear behavior for all three errors. The linear

regressions yield an average scaling exponent of α = 1.00 for k = 1 and α = 2.06 for k = 2.

This suggests that the temporal discretization error is determined by the error of the finite

difference approximation, which scales as O(∆tk).

The saturation of the temporal discretization errors hints at additional error sources

inherent in our numerical scheme. These errors, apparently independent of the time step

∆t, must lead to errors in the centroid position, swimming speed, and energy cost, which

are in the same order of magnitude as the saturation values displayed by the horizontal

yellow dotted lines in Fig. 3.8A-C. Possible error sources include the tolerance of the linear

solver used by FEniCS and the tolerance that determines the convergence of the Picard

iteration. In Fig. 3.8A-C, the errors εR and εU and εW saturate at orders of magnitude of

10−4, 10−5 and 10−8, respectively. These orders fall well below our desired level of accuracy,

as we will motivate in a subsequent paragraph. Consequently, further investigation into the

origin of these additional error sources will not be pursued.

Having analyzed the temporal accuracy of our numerical scheme, we now turn our

attention to its spatial discretization errors. In Fig. 3.8D-F, we present the relative errors εR,

εU and εW as a function of the number of mesh points N while maintaining a constant time

step ∆t = 10−4. The errors in Fig. 3.8D-F decrease linearly on a log-log scale, indicating a

power-law relationship of the form εR, εU , εW ∝ N−β. Furthermore, we observe that the

errors in Fig. 3.8D-F are independent of k, which is to be expected since the finite difference

order should only change the scaling of the temporal discretization error. Notably, for

k = 1, the error εW in Fig. 3.8F remains constant while N increases. This behavior can be

explained by the fact that for k = 1, the temporal discretization error dominates over the

spatial discretization error even when the finest time step ∆tmin is employed.

To determine the scaling exponent β, we perform a linear regression on all the data

points in each of the panels in Fig. 3.8D-F, excluding εW for k = 1. The resulting fits

yield an average scaling exponent β = 2.18. Note that each of the metrics R, Ū and W

involves an integral over the body coordinate s. For piecewise linear basis functions, this

body integral introduces an error that scales with order O(N). The larger value of the

scaling exponent β indicates additional factors contributing to the spatial discretization

errors, which will not be investigated.

Based on the convergence analysis presented in Fig. 3.8, our objective is to select a

temporal-spatial resolution that balances accuracy with computational efficiency. It is

essential to underscore that our model functions as a simplified representation of actual

biological microswimmers. Consequently, our primary goal is to attain a qualitative under-
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Figure 3.8: Convergence analysis of the numerical model scheme with respect to its dis-
cretization parameters in undulation experiments. (A, B, C): Relative errors εR, εU and
εW as a function of the time step ∆t for maximum meshsize of Nmax = 1000. (D, E, F):
Relative errors εR, εU and εW as a function of mesh points N with minimum time step
∆tmin = 0.0001. The different markers correspond to different finite difference order k as
indicated by the legend in panel D. Linear fits, depicted by the red dashed lines, yield
average scaling exponents x of x=1.00 for k = 1 and x=2.08 for k = 2. Saturation values,
represented by the yellow dashed lines, are estimated by averaging data points in the non-
linear saturation regime. The saturation values in panel A-C are 2.81 × 10−4, 1.71 × 10−5

and 5.32× 10−8, respectively. The average scaling exponent calculated from the linear fits
in D-F is x=-2.18. Black dashed lines represent the upper bounds of the relative errors εR,
εU and εW which are set to 10−2, 10−3 and 10−3, respectively. For all simulations, the same
model parameters as in Fig. 3.5 have been used.
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standing of their undulatory behavior rather than striving for a highly accurate numerical

scheme tailored to the specific model equations outlined in Section 3.4.1. However, in Chap-

ter 6, we conduct a quantitative comparison between simulated undulation experiments and

the available experimental data for C. elegans. Acknowledging the inherent simplifications

in our model, we do not anticipate a perfect alignment between the simulated and ex-

perimental data. Moreover, the experimental data introduces its own set of uncertainties

stemming from factors such as small sample sizes, variations among individual specimens,

and measurement uncertainties. To account for these uncertainties, we adopt a conservative

estimate, assuming that the relative uncertainty of the experimental measurements is on

the order of percent [45, 50, 126]. Consequently, it is sufficient to select the discretiza-

tion parameters ∆t, N and k such that the relative errors εR, εU and εW remain below

10−2. Here, we opt for an upper error bound of 10−2 for the centroid’s position and an

upper bound of 10−3 for the swimming speed and the energetic cost. These thresholds are

displayed as the black dashed lines in Fig. 3.8.

One should point out that the temporal discretization error and the spatial discretization

error compound, i.e. there is no benefit in refining the temporal resolution if the total error

is dominated by the spatial discretization error and vice versa. From Fig. 3.8A-C, we infer

that for k ≥ 3, the relative errors remain smaller than their respective upper bounds over

the entire range of time steps ∆t. From Fig. 3.8D-F, we infer that for N = 750, the relative

errors are lower than their respective upper bounds.

Among the subset of discretization parameters that yield the desired accuracy, we want

to select a combination that is computationally fastest. As outlined in Section 3.4.2, to

solve the nonlinear equations of motion, we first linearize their discretized weak form. We

then use the Picard iteration to iteratively solve the linearized weak form until the solution

convergence to the solution of the nonlinear problem. In Fig. 3.9A, we plot the simulation

runtime Trun as a function of the time step ∆t, for different number mesh points N and

finite difference orders k with and without Picard iteration.

To clarify, solving the problem without Picard iteration means that we approximate the

solution to the nonlinear weak form by the solution of its linearized form. This effectively

equates to only performing the first iteration step of the Picard iteration at every time

step. It is clear that this linear approximation demands a smaller time step to preserve

the numerical scheme’s accuracy in the absence of the iterative refinement provided by the

Picard iteration, as we will demonstrate later.

With Picard iteration, the simulation runtime Trun increases approximately linearly

with ∆t on a log-log scale, indicating a power-law relationship of the form Trun ∝ c∆tγ .

We observe that the constant c increases with the number of mesh points N . Moreover, we

note that the runtime depends only marginally on the finite difference order k. A higher
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Figure 3.9: Model runtime analysis with respect to the discretization parameters in undu-
lation experiments. (A): Simulation runtime Trun as a function of the time step ∆t. The
different colors represent different mesh sizes N , as depicted in the legend. The solid lines
correspond to simulations with Picard iteration, and the dashed lines correspond to simula-
tions without Picard iteration. Markers correspond to the same finite difference order k as
in Fig. 3.8. For the simulation without Picard iteration, the solution to the nonlinear weak
form is approximated by the solution to its linearized form. (B): The average runtime time
per time step, defined as Trun · ∆t/Tsim, where Tsim = 5 is the dimensionless simulation.
The same model parameters as in Fig. 3.5 have been used for all simulations.

order k increases the assembly complexity of the matrix problem, which represents the

linearized weak form at each iteration step. Consequently, we deduce that the computational

complexity of the numerical scheme is primarily dominated by the solution process of the

matrix problem rather than its assembly.

In Fig. 3.9B, the average runtime Trun∆t/Tsim per time step ∆ is shown for different

values of ∆t, where Tsim is the dimensionless simulation time. Interestingly, there is a

small reduction in the average runtime as ∆t decreases. In simulations employing the

Picard iteration, this trend is explained by the fact that Picard iteration requires fewer

iteration steps to converge as ∆t decreases. This is because for smaller ∆t, the solution

from the previous time step, which we use as the initial guess for Picard iteration, is in

closer proximity to the solution of the subsequent time step. Surprisingly, a similar trend

is observed for the simulations without Picard iteration. One plausible explanation is that

the matrix problem can be solved more efficiently if the time step is smaller.

Not surprisingly, the simulation runtime is significantly reduced if the Picard iteration

is omitted, as shown by the dashed lines in Fig. 3.9AB. To judge if the linear approxima-

tion is computationally more efficient than the Picard iteration, we need to determine the

temporal and spatial resolution, which is required for the linear approximation to undercut
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the previously defined upper error bounds. With this intention, we simulate the undulation

experiment without Picard iteration for different discretization parameters ∆t, N , and k

and compare the results against the reference solution. In Fig. 3.10A-C, we plot the relative

errors εR, εU and εW as a function of the time ∆t.

If we select a time step of ∆t = 10−3, number of mesh points N = 750, and finite

difference order k ≥ 2, the relative errors are comfortably below the respective upper error

bounds. Note that we deliberately made a conservative selection to enhance the chance

that our numerical scheme achieves the desired accuracy across a wide range of model

parameters. With these discretization parameters, the simulation runtime without Picard

iteration stands at Trun =218 s. In contrast, even for the largest time step ∆t = 10−2, the

simulation’s runtime with Picard iteration extends to Trun =250 s, surpassing the runtime

of the simulation conducted without Picard iterations.

We conclude with some overarching remarks: We are surprised by the large number

of mesh points required to achieve the desired accuracy. This may be attributed to the

sharp sigmoidal onset of the actuation torque at the swimmer’s head and tail introduced in

Section 3.4.1. Accurately capturing this sharp sigmoidal onset demands a finer mesh at the

swimmer’s head and tail compared to its central body region. Consequently, implementing

a non-uniform mesh could potentially reduce the total number of required mesh points.

Such a non-uniform mesh should have a finer resolution at the swimmer’s head and tail and

a coarser resolution at its central body region.

Our analysis reveals that the simulation runtime is approximately independent of the

finite difference order k. Additionally, the memory cost associated with storing the state

variables from the k preceding time steps required for the finite difference calculation is

marginal. This is because the rod’s mesh is one-dimensional. Therefore, when employing

the Picard iteration to solve the problem, we recommend selecting a large k, which allows

for a larger time step ∆t to achieve the desired accuracy. However, it is important to

acknowledge that a maximum value for k will exist above which the scheme’s accuracy

plateaus. This saturation is caused by other error sources inherent within the scheme.

Specifically, for the centroid position, swimming speed, and energy cost, opting for values

larger than k = 4 yields minimal benefits in accuracy.

Opting to bypass the Picard iteration and approximating the solution to the nonlinear

problem with the solution of the linearized problem necessitates a smaller time step to

achieve comparable accuracy. However, omitting the Picard iteration reduces the runtime

of the simulation, i.e. it is not a priori clear which scheme is preferable. For the specific

model parameters and desired accuracy chosen in this section, skipping the Picard iteration

yields at least a 10% gain in runtime. Thus, we opt to solve the problem without Picard

iteration. However, according to our results, neither of the two methods demonstrates a
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Figure 3.10: Convergence analysis of the numerical model scheme with respect to its dis-
cretization parameters in undulation experiments without Picard iteration. (A, B, C):
Relative errors εR, εU and εW as a function of the time step ∆t for maximum meshsize
Nmax = 1000. (D, E, F): Relative errors εR, εU and εW as a function of the mesh points N
with minimum time step ∆tmin = 0.0001. Markers correspond to distinct finite difference
orders k, as displayed by the legend in panel D. Black dashed lines represent the upper
bounds of the relative errors εR, εU and εW which are set to 10−2, 10−3 and 10−3, respec-
tively. For all simulations, the same model parameters as in Fig. 3.5 have been used.
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significant advantage. For the remainder, we adopt ∆t = 10−3, N = 750, and k = 3 as our

default parameters unless otherwise stated.

To give the reader a better sense of the run times required to perform extensive param-

eter sweeps with our model, we report the run times of two sweeps performed to obtain the

results presented in the upcoming chapters. In Chapter 4, we perform a parameter sweep

over the dimensionless response times a and b while keeping all other model parameters

fixed. This sweep includes 61 points within the range a ∈ [10−2, 104] and 31 points within

the range b ∈ [10−3, 100], using uniform logarithmic spacing. Thus, a total of 1891 simu-

lations are required, each taking on average Trun = 9.77min to complete five undulation

cycles. Therefore, the overall runtime for the parameter sweep approximates 308 h. How-

ever, individual simulations can be executed in parallel to reduce the effective run time.

Thus, employing ten cores in parallel reduces the run time to approximately 30.8 h, and

with a hundred cores, it diminishes further to 3.08 h.

To give another example, in Chapter 6, we sweep over the preferred shape factor c0 =

A0/q0, preferred wavelength λ0, and the fluid viscosity µ to compare the performance of C.

elegans undulation gait as a function of its waveforms in fluids with different viscosities. For

the undulation parameters, we select a uniform grid spacing ∆λ0 = 0.1 within the range

λ0 ∈ [0.5, 2.0] (16 points) and ∆c0 = 0.1 within the range c0 ∈ [0.4, 2.0] (17 points). For

the fluid viscosity, we use a uniform logarithmic spacing with 21 points within the range

µ ∈ [10−3, 101]Pa s. Hence, the sweep includes 5712 simulations, each taking on average

Trun = 10.03min to complete five undulation cycles, resulting in an overall runtime of

approximately 955 h. This runtime is the longest among all parameter sweeps conducted in

this thesis.

With the numerical scheme established, we proceed to analyze our model’s dynamical

properties in the context of undulatory locomotion. Specifically. we aim to understand how

these properties are determined by the dimensionless and, consequently, physical model

parameters.
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Chapter 4

Model Exploration

Effortless undulation or persistent struggle

4.1 Overview

In the previous chapter, we provided a detailed description of our model formulation. Our

model aims to describe the undulatory locomotion of a slender limbless microswimmer

immersed in a Newtonian fluid environment. This chapter explores how our model responds

to actuation. The swimmer’s response properties are determined by its geometry, material

parameters, and the viscosity of its surrounding fluid environment. Hence, we consider the

swimmer’s body and the surrounding fluid as an integrated system. For readers who prefer

to start with the results, we provide a brief and non-technical model overview.

The swimmer’s passive body is modeled as a linear viscoelastic Cosserat rod. Elastic

behavior refers to a material’s ability to return to its original shape post-deformation. In

the context of a Cosserat rod, a linear elastic material is characterized by a linear rela-

tionship between the rod’s strain and curvature (deformation) and its internal elastic stress

and torque resultants. Conversely, a linear viscous material is characterized by a linear

relationship between the rod’s strain and curvature rates (deformation speed) and the in-

ternal viscous stress and torque resultants. A linear viscoelastic material combines both

behaviors, simultaneously resisting and damping deformation. The proportionality factors

between stress and strain, as well as strain rates, are determined by the rod’s geometry and

the material parameters. Tab. 4.1 provides an overview of all physical model parameters.

The swimmer’s body geometry is approximated as a tapered rod with a circular cross-

section. Consequently, its geometry is determined by its natural length L0 in its stress-free
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configuration, the maximal cross-sectional radius Rmax, and the radius shape-function φ.

The shape function φ governs how the cross-sectional radius varies along the swimmer’s

length. To generate actuation, we apply an effective actuation force and torque distribution

along the centreline of the swimmer’s body. The spatio-temporal pattern of the actuation

force and torque distribution determines the swimmer’s locomotion pattern. In the case of

undulatory locomotion, the actuation torque is modeled as a traveling wave propagating

along the swimmer’s body opposite to the direction of motion.

The fluid drag force and torque distribution along the swimmer’s body is approximated

by resistive-force theory. In resistive force theory, the drag force and the drag torque that

acts on a local rod segment are assumed to be linearly proportional to the fluid viscosity

and to the segment’s linear and angular velocities, respectively. The proportionality factors

are called drag coefficients (see Tab. 4.1).

To simplify our model formulation, we derived a dimensionless form of the rod’s equa-

tions of motion. This involved introducing a set of dimensionless model parameters, which

determine the dynamic properties of our system. An overview of all dimensionless model

parameters is provided in Tab. 4.2.

In this chapter, our objective is to characterize the system’s dynamical behavior and

to identify the dimensionless model parameters that have the most impact on its response

properties. To this end, it is helpful to conceptualize the system as a dynamical filter, which

takes the actuation torque as an input and generates a body curvature as an output, as

illustrated in Fig. 4.1.

Following this conceptual approach, Section 4.2 explores how the system’s response

properties depend on its effective response times a and b. To characterize the system’s

response properties, Section 4.2 demonstrates that the parameter space of a and b can be

divided into distinct dynamical regimes. In each of these regimes, our system exhibits dis-

tinct filter characteristics, determining the input-output relationship between the actuation

torque and the emergent body curvature. The effective response time a and b are defined as

ratios of the physical model parameter (see Tab. 4.2). Consequently, variations in a and b

can be interpreted as changes in the swimmer’s body geometry, material model parameters,

fluid viscosity, or undulation frequency, as illustrated by Fig. 4.1B. Conversely, depending

on how the physical model parameters influence a and b, we can discern which parameters

exhibit similar or opposing dynamical roles. This underscores the key advantage of our

dimensionless formulation, providing a unified description across a wide range of scenarios.

Naturally, the question arises: If there are distinct dynamical regimes, in which regimes

do microswimmers operate, and what motivates this evolutionary ”choice”? To explore

this question, Section 4.3 analyses the swimmer’s performance across the different regimes.
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Figure 4.1: Conceptualizing the rod model as a dynamical filter. (A): Together, the swim-
mer and the fluid environment form a system that behaves akin to a dynamic filter, which
takes the preferred curvature κ0(s, t) as an input and generates the emergent body curva-
ture κ(s, t) as an output. The input is characterized by the preferred curvature amplitude
A0, preferred wavelength λ0, and preferred undulation frequency f0. The output is char-
acterized by the emergent curvature amplitude A, wavelength λ, undulation frequency f ,
and phase lag ϕ. The characteristics of the filter depend on the system’s effective response
times a and b. (B): Schematic of how the system’s operating point, characterized by the
effective response times a and b, changes when the undulation frequency f , relative internal
damping coefficient ξ, bending rigidity B and fluid viscosity µ are varied, respectively.

Drawing from this analysis, we hypothesize that gait modulation can be understood as

the swimmer’s effort to maintain an optimal operating point while adapting to changing

behavioral objectives or environmental conditions. We will explore this hypothesis in more

detail in Chapter 5.
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Physical Parameters

Parameter Definition SI Unit Description

L0 - m Natural body ength

Rmax - m Maximum cross-sectional radius

ε
2Rmax

L0
- Slenderness parameter

φ - - Radius shape-function

I
πR4

max

4
m4 Second moment of area

E - Pa Young’s modulus

ϱ - - Poisson’s ratio

G
E

2(1 + ρ)
Pa Shear modulus

η - Pa s Extensional viscosity

ν
η

2(1 + ρ)
Pa s Shear viscosity

µ - Pa s Fluid viscosity

c∥
2π

ln(1/ε)− 1
2

- Linear longitudinal drag coefficient

c⊥
2π

ln(1/ε) + 1
2

- Linear transverse drag coefficient

γ∥ πφ2R2
max - Angular longitudinal drag coefficient

γ⊥ 4πφ2R2
max - Angular transverse drag coefficient

τ
µc∥L4

0

EI
s Fluid-structure response time

ξ
η

E
s Internal viscous-elastic response time

A0 - m−1 Preferred curvature amplitude

λ0 - m Preferred undulation wavelength

T0 - s Undulation period

f0
1

T0
Hz Undulation frequency

Table 4.1: Physical model parameter: The internal viscoelastic response time ξ is also called
the relative damping coefficient.
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Dimensionless Parameters

Parameter Definition Description

a
τ

T0
Effective fluid-structure response time

b
ξ

T0
Effective internal viscous-elastic response time

p
1

2(1 + ϱ)
Viscoelastic shear to extension ratio

g
I

AL2
0

Geometric ratio

Kc
c⊥
c∥

Linear drag coefficient ratio

Kγ
γ⊥
γ∥

Angular drag coefficient ratio

K∥
γ∥
L2
0c∥

Longitudinal drag coefficient ratio

A∗
0

A0

L0
Normalized preferred curvature amplitude

λ∗0
λ0
L0

Normalized preferred undulation wavelength

T ∗
0 1 Dimensionless undulation period

f∗0 1 Dimensionless undulation frequency

Table 4.2: Dimensionless model parameters. All dimensionless model parameters are defined
in terms of the physical parameters summarized in Tab. 4.1.

4.2 Dynamical Regimes

This section analyses how the swimmer’s actuation response depends on the dimensionless

model parameters. Specifically, we focus on the system’s effective response times a and b,

which prove to have the most significant impact on how the system responds to actuation.

As we discussed in Chapter 3, swimmers achieve propulsion by actively deforming their

bodies in a synchronized manner. In our model, this active deformation is generated by an

actuation torque, whose spatio-temporal pattern can be expressed in terms of the preferred

curvature κ0(s, t). Hence, we conceptualize the system as a dynamic filter that takes the pre-

ferred curvature κ0(s, t) as an input and generates the body curvature κ(s, t) as an output,

as illustrated in Fig. 4.1A. To study undulatory locomotion, we model the dimensionless
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4. MODEL EXPLORATION 4.2 Dynamical Regimes

preferred curvature κ∗0(s, t) as a sinusoidal traveling wave, i.e. κ∗0(s, t) = A0 sin(q
∗
0s − 2πt).

Here, the dimensionless undulation parameters are the preferred curvature amplitude A∗
0,

the preferred wavenumber q∗0 = 2π/λ∗0, and the preferred wavelength λ∗0. Be aware that the

preferred undulation frequency is f∗0 = 1 in dimensionless coordinates. In what follows, we

will omit the star superscript that denotes dimensionless variables for the sake of brevity

unless otherwise stated.

It is important to stress that the functional form of the emergent body curvature k(s, t)

is unknown at this stage. However, we will demonstrate in the following that in the case of

a sinusoidal preferred curvature κ0, the emergent body curvature κ can also be described

as a sinusoidal traveling wave, taking the form κ(s, t) = A sin(qs − 2πft + ϕ). Here, the

dimensionless undulation parameters are the emergent curvature amplitude A, wavenumber

q = 2π/λ, wavelength λ, undulation frequency f and the phase lag ϕ often dubbed the

neuromechanical phase lag [42]. Contingent on the choice of a and b, we will demonstrate

that the emergent undulation parameters are not necessarily equivalent to their preferred

counterparts. Furthermore, we show that the emergent undulation parameters are not

necessarily uniform but can vary continuously along the swimmer’s body.

To characterize the filter properties of our system, our goal is to establish a relationship

between input (preferred) undulation parameters A0, λ0 and output undulation parameters

A, λ, f , ϕ. To this end, we conduct undulation experiments with constant input parameters

A0 = 2π and λ0 = 1, while systematically varying the parameters a and b. For every exper-

iment, we determine the undulation amplitude A, wavelength λ, undulation frequency f ,

and phase lag ϕ. All other model parameters are held constant throughout the experiments.

As we discussed in Section 3.4, we constrain the actuation torque to be zero at both

ends of the swimmer’s body. As a result, the body curvature κ(s, t) converges to zero in the

head and tail region. Hence, we restrict our analysis to the midsection of the swimmer’s

body, which we define as the interval from s1=0.1 to s2=0.9. Before presenting the results

of our experiments, we underscore that our initial discussion will be primarily descriptive.

A unified interpretation of results will be given at the end section when we identify distinct

dynamical regimes of the system.

Initially, we focus our discussion on the swimmer’s undulation frequency f and the

phase lag ϕ. To illustrate our methodology, Fig. 4.2A-D showcases the simulation result

for a specific value of a and b represented by the green cross in panels E and F. Panel A

compares the preferred curvature to the body curvature at the swimmer’s midpoint (s = 0.5)

as a function of time. The following observations can be made: Similar to the preferred

curvature, the body curvature κ(0.5, t) exhibits a sinusoidal profile. However, the body

curvature lags behind the preferred curvature, and its amplitude is smaller than that of the

preferred curvature.
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To determine the undulation frequency f , we perform a fast Fourier transform of the

body curvature κ(s, t) at all body positions s ∈ [s1, s2]. In Panel C, the power spectrum

of the Fourier transform is shown as a function of s. Irrespective of the value of s, the

power spectrum remains zero except for the frequency f = 1.0, which we identify as the

undulation frequency. This confirms that κ(s, t) can be represented as a sinusoidal function,

characterized by a single frequency component. This observation holds true over the entire

parameter range of a and b. Hence, we conclude that our system preserves the frequency of

the input signal, i.e. f = f0 = 1.0.

To determine the phase lag ϕ between the preferred and the body curvature, we calculate

their cross-correlation function defined as

CC(s,∆tlag) =

∫ t+1
t κ0(s, t)κ(s, t+∆tlag) dt

σκ0(s)σk(s)
. (4.1)

Here, we normalized the cross-correlation function by the standard deviations σκ0 and σk

defined as

σ2κ0
(s) =

∫ t+1

t
κ20(s, t)dt−

(∫ t+1

t
κ0(s, t)dt

)2

, (4.2)

σ2κ(s) =

∫ t+1

t
κ2(s, t)dt−

(∫ t+1

t
κ(s, t)dt

)2

. (4.3)

Panel B displays the cross-correlation between the preferred and body curvature at the

swimmer’s midpoint, shown in panel A. The phase lag ϕ is proportional to the time lag of

maximum correlation ∆tmax
lag , represented by the vertical red dashed line. In dimensionless

coordinates, the phase lag is given by ϕ = 2π∆tmax
lag , as f = 1. Panel D displays the cross-

correlation spectrum as a function of the body position s. For the sake of illustration, we

selected values of a and b where the maximum correlation band is not a perfectly vertical

straight line. This indicates that ϕ is non-uniform across the length of the swimmer’s body.

Hence, to quantify the variability of ϕ, we introduce the average phase lag ϕ̄ and phase lag’s

standard deviation σϕ as follows:

ϕ̄ =

∫ s1

s0

ϕ(s) ds, σϕ =

√∫ s1

s0

(
ϕ(s)− ϕ̄

)2
ds. (4.4)

To examine how ϕ̄ and σϕ depend on the model parameters, their contour plots as a

function of a and b are shown in Fig. 4.2E and F. Most notably, the contour bands in Fig.

4.2E display rotational ”symmetry”, suggesting that a and b play similar dynamical roles.

This is not surprising, considering that both a and b represent one of the two intrinsic

time scales of the system. We observe, that for small values of a and b, both ϕ̄ and σϕ
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Figure 4.2: The phase lag ϕ between preferred and actual body curvature as a function of
the system’s effective response times a and b. Panel A-D showcases the simulation results
for effective response times a = 300 and b = 0.01, represented by the green cross in panels
E and F. (A): Preferred curvature κ0(0.5, t) (red dashed line) and body curvature κ(0.5, t)
(blue line) both evaluated at the swimmer’s body midpoint s = 0.5 within the time interval
t = [1, 4]. (B): Cross-correlation (black line) between κ0(0.5, t) and κ(0.5, t) for varying
time lags ∆tlag. The red dashed line denotes the cross-correlation’s maximum. (C): Body
curvature power spectrum calculated from its fast Fourier transform for different body
coordinates s. (D): Cross-correlation spectrum between κ0(s, t) and κ(s, t) for varying time
lags ∆tlag for different body coordinates s. (E): Contour plot of the average phase lag ϕ̄
as a function of a and b. (F): Contour plot of the phase lag’s standard deviation σϕ as
a function of a and b. Other dimensionless model parameters include g = 2.00 × 10−4,
p = 0.33, Kc = 1.51, Kγ = 4.0 and K∥ = 1.22× 10−3 (see Tab. 4.2).
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converge to zero. Consequently, in this parameter region, the body curvature κ(s, t) follows

the preferred curvature κ0(s, t) instantaneously at every point along the swimmer’s body.

As a or b become larger, the average phase lag ϕ̄ increases gradually, indicating that the

body curvature lags behind the preferred curvature.

For very large values of a, at the bottom right corner of Fig. 4.2E, the rotational symme-

try is broken, evident by a decrease in ϕ̄. As we will show in the following, in this parameter

region, the undulation parameters display the most variability along the swimmer’s body.

As a result, the spatio-temporal pattern of κ exhibits a greater dissimilarity compared to

that of κ0, whose undulation parameters are constant. This enhanced dissimilarity typi-

cally leads to smaller cross-correlations and shorter lag of maximum correlation ∆tmax
lag [96],

explaining the decrease in ϕ̄.

Notably, the contour plot of σϕ in Fig. 4.2F lacks the rotation ”symmetry” of the

plot in panel E. Roughly speaking, the contour plot in panel F can be divided into two

parameter regions. For a values smaller than a certain threshold value, σϕ converges to zero

irrespective of the value of b, signifying a uniform phase lag ϕ along the entire length of the

swimmer’s body. As a exceeds this threshold, σϕ starts to increase gradually. Within this

parameter range, as b increases, σϕ becomes smaller, implying that internal damping has a

homogenizing effect on ϕ. In the following, we show that the same holds true for the other

undulation parameters.

After having analyzed the phase lag ϕ, we now focus on the body curvature amplitude

A. In our presentation, we will follow a similar outline to that previously used for ϕ. First,

to illustrate our methodology, we showcase the simulation results for two specific value pairs

of a and b in Fig. 4.3A-D. Those value pairs are represented by the green cross and green

star in panels E and F. To determine A as a function of the body position s, we calculate

the Fourier transform of the body curvature κ(s, t). Panels A and C display the power

spectrum of κ(s, t) for each of the two value pairs, respectively. Taking the square root of

the power spectrum at frequency f = 1 yields the curvature amplitude A as a function s,

displayed in Fig. 4.3B and D.

Panel D, we choose a value of a and b for which the curvature amplitude A is not

uniform across the swimmer’s body. Thus, we introduce the average amplitude Ā and the

amplitude’s standard deviation σA as follows:

Ā =

∫ s2

s1

A(s) ds, σA =

√∫ s2

s1

(
A(s)− Ā

)2
ds (4.5)

In panel B, the average curvature amplitude Ā is approximately equal to the preferred

curvature amplitude A0, and the normalized standard deviation σA/Ā is approximately
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Figure 4.3: The mapping from the preferred A0 to actual A curvature amplitude as a
function of the system’s effective response times a and b. Panels A and B showcase the
simulation results for the effective response times a = 1 and b = 0.01, represented by
the green cross in panels E and F, whereas panels C and D correspond to a = 300 and
b = 0.01, represented by the green star. (A, C): Power spectrum calculated from the
fast Fourier transform of the body curvature κ(s, t) as a function of the body coordinate
s. (B, D): Curvature amplitude A(s) as a function of the body position s (black line),
average amplitude A (black dashed line), amplitude’s standard deviation σA (red band)
and preferred amplitude A0 (blue dashed line). (E): Contour plot of the relative curvature
amplitude A/A0 for varying a and b. (F): Contour plot of the standard deviation σA
normalized preferred curvature amplitude A0 for varying a and b. Other dimensionless
model parameters are identical to those in Fig. 4.2.
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zero. Conversely, in panel D, Ā is significantly smaller than A0, i.e. the system damps the

input amplitude. Furthermore, A displays significant variations along the swimmer’s body

length, resulting in a large standard deviation σA, represented by the red band. Notably,

A is largest in the head and tail region and smallest at the body centre.

To analyze the dependence of Ā and σA on the parameters a and b, their contour plots

are shown in panels E and F, respectively. Here, we normalized the average amplitude Ā

by the preferred amplitude A0, and the standard deviation σA by Ā. Notably, the contour

plot of Ā displays the same rotational ”symmetry” as the plot of the average phase lag ϕ̄,

shown in Fig. 4.2E. As a or b decreases, the average amplitude Ā converges to A0, and the

normalized standard deviation σA converges to zero. Hence, in this parameter region, the

system acts as a pass-through filter, preserving the amplitude of the input signal across the

entire length of the swimmer’s body. As a or b increase, the average amplitude Ā decreases

gradually and eventually converges to zero. This damping behavior is reminiscent of a

low-pass filter. As the damping becomes stronger for larger values of a and b, it suggests

that the system’s filter time constant increases with these parameters. This makes intuitive

sense, as a and b can be interpreted as the effective response time of the system.

Notably, the contour plot of σA coarsely resembles the plot of the phase lag’s standard

deviation σϕ in Fig. 4.2F. Particularly, the contour plot of σA can also be divided roughly

into two regions. For a smaller than a certain threshold, σA is zero irrespective of the value

of b. Beyond this threshold, σA increases gradually with a. Within this region, σA exhibits

a minor dependency on b, diminishing as b increases. This supports our previous hypothesis

that internal damping enhances the uniformity of the swimmer’s undulation parameters but

results in stronger damping of the curvature amplitude.

Having analyzed the system’s filter properties with respect to the curvature amplitude

A, we now focus on the wavelength λ. Our presentation of the results will follow the same

outline previously used for ϕ and A. First, we illustrate our methodology in Fig. 4.4A-C by

showcasing the simulation results for the same value pairs of a and b featured in Fig. 4.3.

Those value pairs are represented by the green cross and the green star in Fig. 4.4E and

F. In panels A and B, we display the kymograms of the body curvature κ during the last

undulation cycle for each value pair, respectively.

To determine the undulation wavelength λ from these kymograms, we follow the method

presented in Fang Yen et al . [45]. The black dots in the kymograms represent the time and

body point coordinates where κ is zero, highlighting distinct curves of zero curvature. By

aligning the points of the individual curves, a unified B-spline can be fitted to all the data

points, as depicted in the upper graphs of panels C and D. Note we exchanged the body

and the time axis in these graphs compared to the kymograms. Hence, the curvature wave’s

propagation speed v is equal to the inverse of the B-spline’s derivative. From the relationship
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Figure 4.4: The mapping from the preferred λ0 to actual λ wavelength as a function of the
system’s effective response times a and b. (A): Kymogram of the body curvature κ(s, t) for
the effective response times a = 1 and b = 0.01, represented by the green cross in panels E
and F. (B): Kymogram for effective response times a = 300 and b = 0.01, represented by the
green star. The black dots in both kymograms denote isolines of zero curvature, κ(s, t) = 0.
(C): Aligned isolines (black dots) extracted from panel A. We perform a B-spline fit (red
dashed line) to the data points that make up the aligned isolines. The inverse derivative
of this fit yields the undulation wavelength λ(s) as a function of the body coordinate s,
shown in the lower C panel (black line). (D): Aligned isolines (black dots) extracted from
panel B and corresponding B-spline fit (red dashed line). The lower panel D displays the
wavelength λ(s) (black line), average wavelength λ̄ (dashed black line), standard deviation
σλ (red band), preferred wavelength λ0 (blue dashed line) and the cut off scut = 0.7 (red
dotted line). (E): Contour plot of the normalized undulation wavelength λ/λ0 for varying
a and b. (F): Contour plot of the normalized standard deviation σλ for varying a and b.
Other dimensionless model parameters remain consistent with those in Fig. 4.2.
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v = λ · f , it then follows that λ = v because f = 1 in dimensionless coordinates. Hence, we

can estimate λ at position s as the inverse of B-spline’s derivative.

In panel C, the data points are well described by a straight line, i.e. the wavelength λ is

constant along the length of the swimmer’s body. Furthermore, the bottom graph of panel

C shows that λ matches the preferred wavelength λ0. Therefore, for the specific values of a

and b in panel C, our system preserves the wavelength of the input signal.

Conversely, in panel D, the data points do not conform to a straight line. As a result,

the wavelength λ varies significantly along the length of the swimmer’s body, which can be

seen in the bottom graph of panel D. Hence, following the same approach taken for ϕ and

A, we introduce the average wavelength λ̄ and the wavelength’s standard deviation σλ as

follows:

λ =

∫ s2

s1

λ ds, σλ =

√∫ s2

s1

(
λ− λ

)2
ds (4.6)

Notably, in the upper graph in panel D, the curve’s derivative approaches zero within the

posterior part of the swimmer’s body s > 0.7. Consequently, the propagation speed v and

wavelength λ diverge to infinity. This can be seen in the kymogram in panel B, where the

curves of zero curvature align vertically in the posterior part of the swimmer’s body.

For very large values of a, we find that the curvature wave’s propagation speed v first

diverges and then changes sign in the posterior part of the swimmer’s body. This could

be interpreted as two curvature waves propagating simultaneously along the length of the

swimmer’s body. One propagates from head to tail and the other from tail to head, both

clashing in the posterior part of the body. Within this parameter range, no meaningful

average wavelength λ̄ or standard deviation σλ can be calculated across the full length of

the swimmer’s body. To address this problem, we introduce a cutoff sθ = 0.7, illustrated by

the red dashed line in panel D. Substituting sθ as the upper integral boundary in Eq. (4.6)

yields the anterior average wavelength and standard deviation, which will refer to λ̄ and σλ

for the rest of thesis. Both are represented by the black dashed line and the red band in the

bottom graph of panel D, respectively. Notably, the anterior average wavelength is smaller

than the preferred wavelength λ0.

To analyse how λ̄ and σλ depend on the parameters a and b, their contour plots are

shown in Fig. 4.4E and F. Note that we normalized λ̄ by the preferred wavelength λ0 and σλ

by λ̄. Again, we find that both contour plots in panels E and F can be roughly divided into

two parameter regions. For a values smaller than a certain threshold, irrespective of the

value of b, the average wavelength λ̄ converges to λ0, and σλ converges zero. Consequently,

within this parameter region, the kymogram of the body curvature resembles the one in

panel A, with straight diagonal stripes whose slope is equivalent to λ0. Hence, within this

region, the system preserves the preferred wavelength of the actuation signal.
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As a becomes larger than the threshold, λ̄ gradually decreases. Yet, it converges to λ0

with increasing b, indicating that internal damping helps to preserve the input wavelength.

Within this parameter region, the curvature wave’s propagation speed diverges to infinity in

the posterior part of the body. Consequently, it must become slower in the anterior part to

preserve the undulation frequency. This explains why the anterior wavelength λ̄ is reduced,

as it is equivalent to the propagation speed.

Notably, the contour plot of σϕ does not display a similar clean and continuous trend

if compared to the plot in panel E. This is most likely a consequence of our numerical

method, which depends on the arbitrary value of the cutoff sθ = 0.7, as well the parameters

of the clustering and fitting routines. In the region where a is very large, hydrodynamic

viscous forces dominate over the internal elastic stresses generated by the swimmer’s passive

body. Thus, perhaps a more accurate model than RFT must be used to describe the fluid

dynamics in this parameter range. Nonetheless, despite the less clean contour plot in panel

F, we can clearly identify the parameter region where σϕ is nonzero.

By comparing to the contour plots of Fig. 4.2F, Fig. 4.3F, and Fig. 4.4F, we find that the

parameter regions where the standard deviations σϕ, σA and σλ are nonzero approximately

overlap. This demonstrates that there exists a distinct parameter region, characterized

by large a and small b values, where undulation parameters exhibit significant variability

along the swimmer’s body. These variations are accompanied by a non-uniform curvature

wave propagation speed, diverging to infinity in the posterior part of the swimmer’s body.

Naturally, this symmetry breaking proves disadvantageous for the generation of propul-

sion. Hence, microswimmers are incentivized to avoid this parameter region through gait

modulation, as we will discuss in more detail in Chapters 5 and 6.

Building upon our preceding analysis, we are now able to identify distinct dynamical

regimes within the a and b parameter space based on the system’s characteristic response

properties. In Fig. 4.5A and B, we present the contour plots of the average phase lag ϕ̄

and the average curvature amplitude Ā. Additionally, the contour plot of the normalized

swimming speed U/Umax is shown in panel C, where Umax is the maximum swimming speed

Umax within the specified parameter range of a and b. Notably, all three contour plots

look remarkably similar. This motivates us to introduce three dynamical regimes, whose

boundaries are displayed by the blue dashed lines in Fig. 4.5D. These regimes are defined

as follows:

I: Pass-through regime U/Umax ≥ 0.95: Characterized by an undamped curvature

amplitude Ā ≈ A0, approximately zero phase lag ϕ̄ ≈ 0, and fast swimming speeds.

II: Low-pass regime 0.95 > U/Umax > 0.05: Characterized by a damped curvature

amplitude Ā < A0, non-zero phase lag ϕ̄ > 0, and reduced swimming speed.
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III: Struggle regime U/Umax ≤ 0.05: Characterized by a strongly damped curvature

amplitude Ā≪ A0, large phase lag ϕ̄, and approximately zero swimming speed.

As regime boundaries, we selected the contour lines U/Umax = 0.95 and U/Umax = 0.05

since the swimming speed will be one of the primary focuses of our analysis. Recognizing

the arbitrariness of these cutoff values, we consider them a practical choice to distinguish

the different dynamical behaviors of the system.
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Figure 4.5: The dynamical regimes of the system (representation 1). (A): Contour plot of
the averaged time lag ϕ̄ between the preferred curvature κ0(s, t) and the emergent curvature
κ(s, t) adopted from Fig. 4.2E. Blue dashed lines show contour lines U/Umax = [0.1, 0.9],
respectively. (B): Contour plot of the normalized curvature amplitude A/A0 adopted from
Fig. 4.3E. (C): Contour plot of the normalized average swimming speed U/Umax, where Umax

is the maximum swimming in the specified range of a and b. (D): Depiction of the Pass-
through (I), low-pass (II), and struggle (III) regimes, which are defined as: U/Umax ≥ 0.95,
0.05 > U/Umax > 0.95, and U/Umax ≤ 0.05, respectively. Other dimensionless model
parameters are identical to those in Fig. 4.2.

In the pass-through regime, a and b are small, i.e. the system’s effective response time

is much shorter than the actuation time scale. As a result, the system effectively behaves

as a pass-through filter, i.e. it generates a body curvature κ(s, t) that tracks the preferred
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curvature κ0(s, t) instantaneously. Consequently, the phase lag ϕ̄ between preferred and

body curvature converges to zero, and the curvature amplitude Ā converges to preferred

amplitude A0. The latter explains why the swimming speed U is maximal in the pass-

through regime.

As a or b become larger, the system’s response time becomes slower, and it is not

able to instantaneously track the preferred curvature κ0(s, t) anymore. Hence, we refer to

this parameter region as the low-pass regime. It is characterized by non-zero phase lag,

dampened curvature amplitude and a reduced swimming speed. In this regime, the system

behaves akin to a low-pass filter. The filter’s time constant increases with a or b, resulting

in a stronger damping effect and a larger phase lag.

For very large values of a, the system’s response time becomes so slow that the curvature

amplitude is almost completely damped out. As a result, the swimmer can no longer

generate a meaningful body wave. Hence, we refer to this parameter region as the struggling

regime, as the swimmer remains almost stationary. This explains why the swimming U

converges to zero in the struggling regime.

Together, the pass-through, low-pass, and struggle regimes provide a concise characteri-

zation of the swimmer’s dynamic response to actuation. However, they do not quantify how

uniform the undulation parameters are across the length of the swimmer’s body. Hence, in

Fig. 4.6 A-C, we revisit the contour plots of standard deviations σϕ, σA, and σλ. In addition,

the contour plot of the average wavelength λ̄ is shown again in panel D, as it displays a

similar dependency on a and b. Upon comparing panel A-C, we distinguish two parameter

regions, as discussed previously. One is characterized by zero standard deviations, while

the other exhibits nonzero values. Hence, we introduce two additional dynamical regimes,

which are defined as follows:

(a) Homogeneous regime σA/Ā ≤ 0.15: In this regime, the undulation parameters

remain constant along the length of the swimmer’s body, as σϕ, σA and σλ are ap-

proximately zero. Here, the system preserves the preferred wavelength, as λ̄ ≈ λ0.

(b) Heterogeneous regime σA/Ā > 0.15: In this regime, the undulation parameters

vary across the length of the swimmer’s body, as σϕ, σA and σλ are nonzero. Here,

the system shortens the preferred wavelength, as λ̄ < λ0.

Here, we choose the contour line σA/Ā = 0.15 as the regime boundary, as σA displays

the smoothest contour plot among the three standard deviations presented in panels A-C.

Again, the specific value of the cutoff is arbitrary, i.e. it should be understood as a practical

choice to distinguish between both regimes.
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Figure 4.6: The dynamical regimes of the system (representation 2). (A): Contour plot of
the phase lag standard deviation σϕ as function of effective response times a and b adopted
from Fig. 4.2F. (B): Contour plot of the normalized curvature amplitude standard deviation
σA/Ā adopted from Fig. 4.3F. (C): Contour plot of the normalized wavelength standard
deviation σλ/λ̄ adopted from Fig. 4.4F. For a > 103, the curvature wave’s propagation
speed becomes negative in the posterior part of the body, and no meaningful undulation
wavelength can be determined (white area). (D): Contour plot of the average wavelength
λ̄/λ0 adopted from Fig. 4.4E. The Green dashed curve represents the boundary between the
homogeneous and heterogeneous undulation regime, defined as σA/Ā = 0.15. (E): Depiction
of the homogeneous pass-through and low-pass regime (Ia) and (IIa), and the heterogeneous
low-pass and the struggling regime (IIb) and (III). Homogeneous and heterogeneous regimes
are defined as: σA/Ā ≤ 0.15 and σA/Ā ≥ 0.15, respectively. Other dimensionless model
parameters are identical to those in Fig. 4.2.
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To summarize, we established two distinct classes of regimes that govern the dynamic be-

havior of the swimmer. The first class encompasses the pass-through, low-pass, and struggle

regime, characterizing the system’s filter properties. They determine the swimmer’s speed,

curvature amplitude, and phase lag compared to actuation. The second class, comprised of

the homogeneous and heterogeneous regime, characterizes the variability of the undulation

parameters along the length of the swimmer’s body. The boundaries between the regimes

within each class are displayed in Fig. 4.6E. Together, those boundaries give rise to four

distinct dynamical regimes, each characterized by the combined response properties of each

class. Those regimes concisely characterize the system’s dynamical response properties to

actuation.

To illustrate how the swimmer looks in the different dynamical regimes, Fig. 4.7 displays

snapshots of the swimmer’s waveform in each regime for different time points during the

last undulation cycle of the simulation. As discussed, the preferred curvature amplitude is

damped in the low-pass regime (II) and the struggling regime (III). This damping results in

the damping of the amplitude of the swimmer’s body waveform in the position space, as can

be seen in panels C-E. Notably, in the struggling regime, the amplitude is approximately

zero, and the swimmer makes almost no progress when compared to its initial configuration

r(s, 0) = se3 at the beginning of the simulation. By comparing panels B and D, we notice

that in the heterogeneous low-pass regime (IIb), the swimmer’s waveform has a higher

curvature in the head and tail when compared to the homogeneous regime (IIa). This

variability in curvature amplitude along the swimmer’s body in the heterogeneous low-pass

regime is consistent with our findings in Fig. 4.3.

Notably, the swimmer’s operating regime is determined by the values of the parameters

a and b, which are defined in terms of the physical model parameters; see Tab. 4.2. Thus,

the swimmer’s operating point is determined by its material parameters, such as Young’s

modulus E, relative internal damping coefficient ξ, body geometry, fluid viscosity µ and

undulation frequency f . This implies that a swimmer can maintain an advantageous op-

erating point by modulating its undulation frequency. This is specifically relevant if the

swimmer is exposed to environments with different viscosities, as we will discuss in more

detail in Chapter 5. Naturally, the question arises: Which operating regime is optimal in

what context? For a fixed undulation frequency, we demonstrated that the pass-through

regime enables maximum swimming speed, homogeneous undulation parameters, and a one-

to-one instantaneous mapping between actuation (preferred curvature) and body curvature

without lag. The latter should be advantageous for maneuverability and quick behavioral

adaptations. However, despite these benefits, it is unclear whether the pass-through regime

is favorable from an energetic point of view - a question we will address in Section 4.3.
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Figure 4.7: Snapshots of the swimmer’s body waveforms in different dynamical regimes
with preferred curvature waveform (λ0 = 1, A0 = 2π) and initial configuration r(s, 0) = se3
where s ∈ [0, 1]. (A): Depiction of the different dynamical regimes introduced in Fig. 4.6.
We select an exemplary operating point (a, b) for each regime represented by the black
dots. The swimmer’s waveforms at those operating points are illustrated by plotting the
swimmer’s centreline coordinate r3(s, t) and r2(s, t) in the dorsal-ventral (undulation) plane.
Colors represent six different time points (see legend bottom right) in the last undulation
cycle of the simulation. (B): Emergent waveform in the pass-through regime (I). (C):
Emergent waveform in the homogeneous low-pass regime (IIa). (D): Emergent waveform in
the heterogeneous low-pass regime (IIb). (E): Emergent waveform in the struggling regime
(III). We use the same y-axis range in each panel to illustrate the damping of the waveform’s
amplitude. Other dimensionless model parameters are identical to those in Fig. 4.2.
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4.3 Performance Analysis of Dynamic Regimes

In the previous section, we defined four distinct dynamical regimes, each characterized by

their unique response properties to actuation. The swimmer’s operating point in relation-

ship to those regimes is contingent upon the values of the system’s effective response times

a and b. From the definitions provided in Tab. 4.1, it follows that a ∝ fµ/B and b ∝ fξ,

with f being the undulation frequency, µ the fluid viscosity, B the bending rigidity and ξ

the relative internal damping coefficient. Hence, if we assume that f and µ are constant,

then an increase in a can be understood as a decrease in the swimmer’s bending rigidity

B. Similarly, an increase b can be understood as an increase in the relative damping co-

efficient ξ. Conversely, decreasing the rigidity B of the swimmer’s passive body shifts its

operating point (a, b) in the horizontal direction while increasing its viscous damping ξ

induces a shift in the vertical direction, as illustrated in Fig. 4.8A. The blue dashed lines

represent the regime boundaries between the pass-through, low-pass, and struggle regimes.

Hence, we conclude that the swimmer’s operating regime is contingent on the geometric and

material properties of its body. For the remainder, we make the simplifying assumption

that the material parameters of the swimmer’s body are time-invariant and homogeneous

across the swimmer’s body. However, the material properties of the body are known to be

dependent on the state of the muscles or molecular motors [66], implicitly represented by

the spatio-temporal pattern of the actuation torque.

Naturally, the following questions arise: Can we identify values of B and ξ that en-

able our model to reproduce the undulatory behavior observed in biological microswimmers

across different fluid environments? Do different species of microswimmers exhibit similar

values for B and ξ? If indeed, what evolutionary advantages might drive the selection of

these specific values? Addressing the latter question, it is well established that evolution-

ary pressures shape body anatomies that optimize movement speed, energy efficiency, and

adaptability to environmental conditions [2, 19]. Hence, to compare the performance of the

different dynamical regimes, we consider two objectives: The swimming speed U and the

mechanical actuation work W during one undulation period.

To illustrate how W depends on the swimmer’s operating point, Fig. 4.8B displays the

contour plot of the normalized actuation work W/Wmax as a function of a and b. Here,

Wmax refers to the maximum value of W within the specified range of a and b. Remarkably,

we find that the actuation work varies by seven orders of magnitude across this range.

To understand this considerable variation, it is instructive to consider the energy balance

equationW = DI+DF, derived in Section 3.1.4. Here, DI and DF represent the energy lost

to internal dissipation and to fluid dissipation, respectively. In Section 3.3, we showed that

dimensionless internal dissipation rate, scales proportional to ḊI ∝ bκ̇2/a. Consequently,

as a and b span a combined range of nine orders of magnitude, we expect DI to exhibit
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variation over a comparable range. To verify, we plot DI as a function of the swimmer’s

operating point a and b in Fig. 4.8C, which shows that DI varies by ten orders of magnitudes

within the specified range a and b.

To gain physical insight from our observations, we recall that a ∝ E−1 and b ∝ ξ.

From a ∝ E−1, it follows that the swimmer’s Young’s modulus E changes by six orders of

magnitude across the given range of a. Similarly, from b ∝ ξ, it follows that the swimmer’s

relative damping coefficient ξ changes by three orders of magnitude across the given range

of b. Consequently, the internal viscosity η, defined as η = ξE, changes by nine orders

of magnitudes across the combined range of a and b. Hence, the physical explanation for

why DI varies by ten orders of magnitude is simply that we are comparing swimmers with

vastly different body stiffness and internal viscosity. Notably, a six-order magnitude change

in Young’s modulus equates to comparing the elastic properties of rubber and diamond

[67, 123]. Clearly, the range of biologically plausible values for Young’s modulus must be

constrained to a narrower range. However, the effective bending rigidity of microswimmers

is not only determined by the combined material properties of their structural elements but

also their size [13]. Hence, as a ∝ ε−4, it is conceivable that a large range of a values has

been evolutionarily accessible. Here, ε = 2Rmax/L0 is the slenderness parameter.

For a more comprehensive understanding, we showcase the contour plot of DF as a

function of the swimmer’s operating point (a, b) in Fig. 4.8D. Remarkably, DF closely

resembles the contour plot of the curvature amplitude, shown in Fig. 4.5. In restive-force

theory, the fluid dissipation rate is proportional to ḊF ∝ u2, where u denotes the magnitude

of the centreline velocity averaged across the length of the swimmer’s body. To infer the

scaling of u, note that the swimmer generates its centreline velocity by actively bending

its body. The speed of its deformation is, therefore, characterized by the curvature rate κ̇,

which is proportional to the curvature amplitude κ̇ ∝ A. Hence, we conclude that u ∝ A,

from which follows that DF ∝ A2, which explains why the contour plot of DF resembles that

of the curvature amplitude. As A varies by 1.5 orders of magnitude over the specified range

of a and b; we expect DF to exhibit variations of approximately three orders of magnitude,

which is confirmed by Fig. 4.8D.

To assess whether the energetic cost of swimming is dominated by losses due to internal

or fluid dissipation, we plot the ratio DI/D as a function of the swimmer’s operating point

(a, b) in Fig. 4.8E. If the ratio is close to one, internal dissipation dominates and W ≈ DI.

Conversely, if it is close to zero, fluid dissipation dominates and W ≈ DF. Hence, we can

identify three parameter regions: In the upper-left corner of Fig. 4.8E, characterized by

small a and large b, internal dissipation dominates the energetic cost of swimming. As

η ∝ b/a, this region corresponds to swimmers with large internal viscosity η. Consequently,

in the bottom-right corner, characterized by small a and large b, fluid dissipation dominates.
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Figure 4.8: Dependency of different energy components on the swimmer’s operating point
characterized the by effective response times a and b. (A): The blue and green dashed lines
represent the dynamical regime boundaries introduced in Section 4.2. If the fluid viscosity µ,
undulation frequency f , and slenderness parameter ε are assumed constant, then increasing
a and b lead to a decrease in the bending rigidity B (horizontal black arrow) and an increase
in the relative damping coefficient ξ (vertical black arrow), respectively. (B): Contour plot
of the actuation work W per undulation cycle normalized by the minimum actuation work
Wmin within the specified range of a and b. (C): Contour plot of the internally dissipated
energy log(DI) per undulation cycle. (D): Contour plot of the energy log(DF) dissipated
into the fluid per undulation cycle. (E): Ratio between the internally dissipated energy DI

and total dissipated energy D = DI +DF. (F): Contour plot of Cost of Transport (COT)
(Eq. (4.7)), normalized by the minimum COTmin within the specified range of a and b.
Other dimensionless model parameters are identical to those chosen in Fig. 4.2.
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Between both corners, there is a transition region where both internal and fluid dissipation

contribute meaningfully to the energy cost of swimming.

Notably, for b > 10−3, internal dissipation makes a significant contribution to the total

energy cost within the entire pass-through regime. Therefore, even if the internal viscosity

η is considerably smaller than Young’s modulus E, our model demonstrates that internal

dissipation can contribute meaningfully to the swimmer’s energy cost. In such a scenario,

the swimmer’s body should not be approximated as purely elastic, even if its internal

viscosity η is up to a thousand times smaller than its Young’s modulus E. This is because

the value of η needs to be compared to the value of the fluid viscosity µ to judge whether

its contribution to the energy cost is negligible or not.

To estimate the swimmer’s energy efficiency, we define the Cost of Transport (COT) as

the required actuation work per unit distance

COT =
W

S
, (4.7)

where S = U T is the distance the swimmer travels per undulation cycle T . The r.h.s. of

Eq. (4.7) can be expressed in terms of dimensionless variables, which yields the expression

COT = µc∥L
2
0f · COT∗, (4.8)

where we defined the dimensionless Cost of Transport COT∗ as follows:

COT∗ =
W ∗

U∗ . (4.9)

To derive Eq. (4.8), we converted W to W ∗ using the conversion factor defined in Eq.

(3.75) and used Eq. (3.77) to express the distance S in terms of the dimensionless swimming

speed U∗. Note that U∗ is equivalent to the dimensionless distance S∗ = U∗ T ∗, as T ∗ = 1.

For the remainder, we will omit the star superscript for brevity unless otherwise stated.

The COT is commonly used as an efficiency measure in the study of biological and

engineered systems [14, 19, 75, 140]. Only recently, Anastasiadis et al . [8] designed a

bio-inspired anguilliform robot and showed that live anguilliforms optimize their waveform

to minimize their COT. To get a more intuitive understanding of the COT, we draw the

following analogy: Envision a car trip from Leeds to London. The COT of our trip is given

by the amount of fuel expended divided by the road distance traveled. Clearly, the COT

depends on the speed at which the car is driven. Generally, cars have an optimal speed at

which they achieve the best fuel efficiency. At higher speeds, the air resistance increases

significantly. At low speeds, the car’s engine performs less efficiently. Hence, for a typical

car, the optimum velocity range is between 55 - 80 km/h. Similar to our car analogy, we
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seek to identify the operating regime that minimizes the swimmer’s COT during undulatory

locomotion.

The dimensionless COT as a function of the swimmer’s operating point (a, b) is displayed

in Fig. 4.8F. The contour lines are straight and parallel, indicating a uniform gradient

direction, represented by the green arrow. Notably, the width of the contour bands expands

as a becomes larger, implying a decrease in the gradient’s magnitude. Surprisingly, our

model predicts that the swimmer’s COT is minimal at the bottom right corner of the contour

plot. This implies that the swimmer operates most cost-effectively in the struggle regime.

This may appear counterintuitive since the struggling regime is characterized by very slow

swimming speeds. However, as we discussed previously, the parameter region at the bottom

right corner corresponds to small values of the internal viscosity η. Consequently, in this

region, the swimmer loses significantly less energy to internal dissipation compared to the

pass-through regime. This reduction in energy loss makes up for the slower swimming speed,

explaining why the COT is minimized in the struggle regime. In our car analogy, this would

mean that to minimize fuel expenditure on our journey from Leeds to London, the optimal

strategy would be to drive at a walking pace with a chugging engine. This counterintuitive

result reveals a shortcoming of our model, as it only accounts for the energy cost required

by the swimmer to actively deform its body.

However, it is clear that biological organisms also expend energy to maintain essential

physiological functions such as metabolic processes, neural activity, digestion and so forth [2,

19]. Analogously, running a car idle will consume fuel without generating any productive

movement. Therefore, assuming that it would take us ten days to drive from Leeds to

London at a walking pace, this idle baseline consumption would accumulate over time,

significantly contributing to the total fuel cost. In the same vein, if a microswimmer swims

at a lower speed, the travel time to cover a unit distance increases, i.e. it requires more

energy to maintain its physiological functions over the course of its journey.

To incorporate this idea into our model, we introduce the Basal Metabolic Rate (BMR),

which represents an organism’s energy expenditure per unit of time at rest, necessary to

uphold its essential physiological functions [68]. For the sake of simplicity, we assume the

swimmer’s BMR to be constant. Hence, in physical units, the refined COT takes the form:

COT =
W +BMR · T

S
. (4.10)

The dimensionless COT is then given by

COT∗ =
W ∗ +BMR∗

U∗ , (4.11)
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where we defined dimensionless BMR, denoted as BMR∗, as follows:

BMR = µc∥L
3
0f

2BMR∗. (4.12)

We note that the conversion factor is identical to the one we derived for the internal and

the fluid dissipation rate as well as the actuation power in Eq. (3.74). From Eq. (4.12),

it follows that BMR∗ is not a constant, but it depends on the fluid’s viscosity µ, drag

coefficient c∥, the swimmer’s body length L0 and its undulation frequency f . Note that

this dependency must be taken into account when comparing the swimmer’s COT across

different environments and for varying undulation frequencies.

Naturally, the following question arises: What constitutes a plausible range of values

for an organism’s BMR, and how does this range compare to its actuation work W? Or,

drawing on our analogy, how does the fuel consumption of an idle car compare to that of a

driving car? To investigate this question, the Vid. 4.1A shows how the contour plot of the

COT changes as we continuously increase the BMR. Here, we limit BMR to values within

the range BMR ∈ [Wmin, Wmax], where Wmin is the minimum and Wmax the maximum

value of W within the specified range of a and b. The video demonstrates that irrespective

of the value of the BMR, the minimum COT is always located at the bottom boundary

of the contour plot, corresponding to b = 10−3. This is not surprising as b ∝ ξ. Conse-

quently, decreasing b reduces the relative internal friction within the swimmer’s body and

is, therefore, always energetically advantageous.

Clearly, the relative internal damping coefficient ξ cannot be arbitrarily small, given

that the deformation of biological material invariably generates internal friction. In the

case of microswimmers, only a few experimental studies have attempted to estimate ξ [13,

45, 125, 126]. For C. elegans, Fang Yen et al . [45] estimated an upper bound of ξ = 5×10−3

and observed undulation frequencies in the range f ∈ [0.3, 1.76] Hz, which corresponds to b

values within the range b ∈ [1.5, 9]× 10−3. Thus, for illustrative purposes, we assume that

b = 5× 10−3, as represented by the horizontal dashed red line in Vid. 4.1A.

On this horizontal line, the red cross represents the a value that minimizes the COT,

which will be referred to as the swimmer’s most cost-effective operating point. We make the

following observations: For small BMR values, the swimmer operates most cost-effectively in

the struggling regime, characterized by very slow swimming speeds. As the BMR increases,

the most cost-effective operating point moves gradually to the left, passing from the struggle

through the low-pass to the pass-through regime, where the swimmer achieves its maximum

swimming speed. This makes intuitive sense, as a larger BMR incentivises the swimmer to

reach its destination faster. Hence, we conclude that the relative cost-effectiveness of the

different operating regimes varies based on the value of the BMR.
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To quantify the relationship between the BMR and actuation work W , we introduce

the Metabolic Equivalent of Task (MET). In general, the MET is defined as the ratio

between the organism’s energy expenditure during a specific physical task and its energy

expenditure during rest [3]. Thus, in the context of our model, we define the MET for

undulatory locomotion as

MET = 1 +
W

BMR · T = 1 +
W ∗

BMR∗ . (4.13)

To clarify, an MET value ofX means that the swimmer expendsX times more energy during

undulatory locomotion compared to its resting state. Consequently, if BMR · T ≫W , then

MET ≈ 1, i.e. the actuation work is negligible and undulatory locomotion requires as much

energy as resting. Conversely, if BMR ·T ≪W , then MET ≫ 1, i.e. undulatory locomotion

requires significantly more energy than resting.

Vid. 4.1B illustrates the changes in the contour plot of the MET as the BMR gradually

increases. Similar to panel A, the red cross represents the swimmer’s most cost-effective

operating point if we assume that b = 5 × 10−3. As the BMR increases, the MET at the

most cost-effective operating point operating point gradually decreases by three orders of

magnitude. For BRM values close to Wmin, the swimmer operates most cost-effectively in

the struggling regime, where MET = O(102), i.e. undulatory locomotion requires at least

a hundred times more energy than resting. As the BMR increases, the most cost-effective

operating point moves towards the pass-through regime, and the MET converges to one.

To summarize the results presented in Vid. 4.1, we showcase the contour plots of the

swimmer’s COT for a relatively small and large BMR value in Fig. 4.9A and B, respectively.

In Fig. 4.9C and D, we plot the normalized COT and the normalized swimming speed as a

function of the swimmer’s operating point a assuming that b = 5×10−3. The vertical black

dashed line denotes the most cost-effective operating point, where the COT is minimal.

Hence, the intersection of this vertical dashed line and red curve yields the most cost-

effective swimming speed. In panel C, the swimmer operates most efficiently in the low-pass

regime, i.e. the most cost-effective swimming speed is lower than the maximum swimming

speed. In this scenario, shifting the operating point to the left, as indicated by the black

arrow, enhances the swimming speed at the expense of increasing the COT. Therefore, in

the region to the left of the vertical dashed line, there exists a trade-off between swimming

speed and COT. Conversely, in Panel D, the swimmer operates most cost-effectively in

the pass-through regime. In this scenario, the maximum swimming speed is also the most

cost-effective. Hence, the swimmer has no incentive to change its operating point because

it optimizes both objectives, speed and efficiency.

To provide a comprehensive analysis covering the entire range of BMR values, we plot the

most cost-effective swimming speed (red), operating point aopt (yellow), and the associated
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MET value (green) against the BMR in Fig. 4.9E. As the BMR increases, the a value of the

most cost-effective operating point increases and the swimmer transitions from the struggle

through the low-pass to the pass-through regime. Simultaneously, the most cost-effective

normalized swimming speed gradually increases from approximately zero in the struggling

regime until it eventually converges to one in the pass-through regime. In the struggling

regime, the MET is of the order of 102, i.e. undulatory locomotion requires at least a hundred

times more energy than resting. As the BMR increases, the MET decreases gradually until

it eventually converges to one in the pass-through regime. At this point, the BMR is so

large that the actuation work is negligible, and the swimmer is incentivized to swim as fast

as possible to reduce its COT.

Naturally, the question arises: What is a plausible range for the MET value of undulating

biological microswimmers? To address this question, it is important to acknowledge that the

MET has been primarily developed to study human fitness and health. For example, during

light, moderate, and intensive physical activities like walking, jogging and running, the MET

of humans is typically between 2 and 12 [3]. However, microswimmers such as C. elegans

and humans have vastly different physiological and biomechanical characteristics; therefore,

no direct comparison should be drawn. Obviously, it would be desirable to constrain the

MET of microswimmers through experimental measurements. To study the metabolism of

microorganisms, researchers typically use indirect measures such as oxygen consumption or

carbon dioxide production to estimate the organism’s metabolic rate [98]. Regardless of the

chosen metric, if it can be measured at rest and during locomotion, then by comparison,

the microswimmer’s MET could be estimated. Hence, to test the hypothesis that the

bending rigidity of slender microswimmers has evolved to enable cost-effective undulatory

locomotion in their natural habitat, experimental estimates of the bending rigidity, relative

internal damping, and MET are required. For C. elegans, Laranjeiro et al . [82] measured

the MET by using a highly sensitive microcalorimeter chamber. They compared the energy

expenditure of anesthetized worms to worms in an active state in both buffer solution (akin

to water) and a solid medium (agar). In water and on agar, they estimated a general MET

of the order of 3 and 1.7, respectively, which is comparable to the MET of humans during

mild physical activity. Similar values have been confirmed by Hur et al . [69]. According

to Fig. 4.9E, this would translate to an optimal operating point in the low-pass regime

(II) close to the boundary of the pass-through regime (I). In this regime, there does not

exist an optimal solution that maximizes the swimming speed and minimizes the COT

simultaneously. Thus, our model predicts a parameter region where a trade-off between

swimming speed and COT exists. This finding has interesting consequences as a swimmer

can actively shift its operating point by modulating its undulation parameters, as will be

discussed in more detail in the following chapter.
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Figure 4.9: Dependency of the swimmer’s optimal operating regime on its Basal Metabolic
Rate (BMR). (A, B): Contour plots depicting the refined normalized Cost of Transport
(COT) (Eq. (4.10)) as a function of the swimmer’s operating point a and b. For normal-
ization, we use the minimum COTmin within the specified range of a and b. BMR in both
panels is set to 0.1 and 10, respectively. The blue dashed lines display the boundaries of
the dynamical regimes introduced in Section 4.2. The horizontal red line in panels A and
B corresponds to the value b = 10−2.5. The red cross represents the most cost-effective op-
erating point on this line. (C, D): Normalized COT (blue) and the normalized swimming
speed (red) as a function of the swimmer’s operating point a for fixed b = 10−2.5. The
vertical dashed line represents the minimum COT. (E): The most cost-effective normalized
swimming speed U/Umax (red), optimal operating point a (yellow) that minimizes COT,
Metabolic Equivalent of Task (MET) (Eq. (4.13)) (green). The dotted lines illustrate the
most cost-effective operating regime as the BMR increases. Other dimensionless model pa-
rameters are identical to those chosen in Fig. 4.2.
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4.4 Discussion

To characterize the response properties of our model, we conceptualized the microswimmer

and its surrounding fluid environment as a dynamical filter, which takes the actuation

torque as an input and generates the swimmer’s body curvature as an output. We defined

the spatio-temporal pattern of the actuation torque in terms of the preferred curvature [52,

111, 125, 126]. To achieve undulatory locomotion, we modeled the preferred curvature as a

sinusoidal traveling wave [45, 52, 58, 125], characterized by a constant curvature amplitude,

wavelength, and undulation frequency. Employing this simple model, we demonstrated

that the swimmer’s response to actuation is primarily governed by the system’s effective

(dimensionless) response times a and b. Note that a is proportional to the fourth power of

the sperm number, a dimensionless parameter first introduced to describe the biomechanical

properties of sperm flagella [43, 93]. However, we adopt the definition of a because it can

be interpreted as a ratio of timescales. In studies of active and passive filament fibers, a

is also commonly referred to as the effective viscosity [129], bending relaxation time scale

[44, 47], effective flow forcing [100]. It determines the time scale of fast a bend filament

relaxes back into its natural stress free configuration in a given fluid environment. The

effective response time b has been referred to as the swimmer’s mechanical timescale [71].

Within the parameter space of a and b, we identified four different dynamical regimes, each

characterized by their distinct filter properties.

To the best of our knowledge, these regimes have not been previously identified and

characterized. Importantly, we showed that the specific regime a microswimmer operates

in is contingent on its body geometry, material parameters, undulation parameters, and the

viscosity of the surrounding fluid. Furthermore, we demonstrated that the operating regimes

are characterized by different swimming speeds and energy efficiency. Hence, they provide

a pathway to understanding the evolutionary selection of a swimmer’s body parameters and

gait parameters within a given habitat. In particular, our model predicts that if evolution

has prioritized swimming speed, the swimmer’s body stiffness should have evolved to be

sufficiently rigid for it to operate in the pass-through regime, which is characterized by

maximum swimming speed and instantaneous response to actuation. However, once the

swimmer operates in the pass-through regime, any further increase in stiffness offers no

speed advantage, as the swimmer already operates at maximum speed. On the contrary,

increasing the body stiffness would be energetically disadvantageous, as it increases the

internal viscosity and, thereby, the energy loss due to internal dissipation. Our assumption

here is that the internal viscosity scales with body stiffness. Furthermore, a larger stiffness

also requires stronger muscles, as the actuation torque’s amplitude must scale with the

body’s bending rigidity to overcome elastic resistance to deformation.

Hence, if a swimmer is geared towards swimming at maximum speed in a fixed en-
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vironment, our model predicts that its body stiffness should have evolved to position its

operating point in the pass-through regime, precisely at the right part of the boundary to

the low-pass regime. The spermatozoa of sea urchins would be an ideal model organism

to test this hypothesis, as both sperm and eggs are directly released into the surrounding

water. If an organism has evolved to navigate a spectrum of fluid viscosities, its stiffness

would need to be adapted to the most viscous environment to enable fast swimming across

the entire range. Alternatively, a swimmer can also reduce its undulation frequency to sus-

tain an optimal operating point in more viscous surroundings. This adaptive behavior has

been observed in C. elegans and sperm [18, 45, 79, 114, 126] and will be further explored

in Chapter 5.

To quantify the swimmer’s energy efficiency, we defined the Cost of Transport (COT)

as the energy cost per undulation cycle divided by the distance traveled [8, 19]. Previous

studies by Korta et al . [79] and Berri et al . [18] only used the fluid dissipation rate to

estimate the swimming power of C. elegans. However, our model reveals that internal

dissipation can significantly contribute to the swimmer’s energy cost even if the swimmer’s

internal viscosity is much smaller than its Young’s modulus. This is because it is not

the ratio between the internal viscosity and Young’s modulus that determines the relative

contribution of internal friction to the swimmer’s energy cost, but rather the ratio of internal

viscosity to fluid viscosity. This observation aligns with the findings by Fang Yen et al . [45],

who measured and modelled the undulatory locomotion of C. elegans across a wide range

of fluid viscosities. Their model showed that in low fluid viscosities, the energy cost of C.

elegans is dominated by internal friction, whereas in high viscosity fluids, it is dominated

by external friction with the fluid environment. We will revisit this point in Chapter 5 and

6 when we explore gait adaptation in response to variations in fluid viscosity.

Other studies that considered the contribution of internal friction to the organism’s

energy cost include the work by Guo et al . [58] and Yaqoob et al . [141], both of whom

modeled the undulatory locomotion of limbless organisms on land. Guo et al . utilized a

continuous rod model, whereas Yaqoob et al . employed a model featuring a small number of

discrete coupled joints. Specifically, Guo et al . defined the organism’s mechanical efficiency

as the power required to move an inactive limbless organism in the direction of motion to

the power lost due to internal and external friction forces. The definition by Guo et al . is

similar to the standard definition by Lighthill [87], who defined the hydrodynamic efficiency

of a swimming organism as the ratio between the power required to drag the organism with

constant velocity through a fluid and the power this organism dissipates into the fluid when

it actively swims at the same velocity.

However, when evaluating the energy efficiency of locomotion, it is essential to not only

account for how much energy an organism expends per unit of time but also for the distance
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it covers within the same time period. This is especially important when considering the

gait modulation of undulatory microswimmers, as changes in waveform and undulation

frequency impact both the swimming power and the swimming speed. This is why we

opt for the Cost of Transport (COT) as an efficiency measure. Furthermore, by including

the organism’s Basal Metabolic Rate (BMR) as an additional energy cost, we account for

the energy expended by the organism to sustain its essential physiological functions. The

energy cost associated with the BMR during one undulation cycle is inversely proportional

to the swimming speed. i.e. it penalizes slow swimming speeds. This penalty introduces a

lower bound for the undulation frequency and swimming speed, as we will show in the next

chapter.

So far, our analysis has been based on the assumption that the swimmer maintains

a constant frequency and waveform. To understand how the swimmer’s undulation fre-

quency and waveform affect its swimming speed and energy efficiency, we will explore gait

modulation in the next chapter.
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Chapter 5

Gait modulation

How to be fast and how to go far

5.1 Overview

This chapter explores gait modulation in undulatory microswimmers, characterized by

changes in the swimmer’s undulation frequency and waveform. Our exploration focuses

on two distinct waveforms: the fastest and most cost-effective. The former is the waveform

that maximizes the swimmer’s swimming speed, whereas the latter minimizes the swim-

mer’s Cost of Transport (COT). A comprehensive analysis is presented of how these two

waveforms change as a function of the undulation frequency and the fluid viscosity. This

analysis will be instrumental in Chapter 6, where we compare our model to available exper-

imental data for C. elegans to infer whether its gait prioritizes swimming speed or energy

efficiency.

This chapter is organized into two parts: The first part focuses on gait modulation in a

static environment characterized by a constant fluid viscosity. The second part explores gait

modulation in response to changing environmental conditions represented by different fluid

viscosities. To simplify our analysis, we start our exploration by focusing exclusively on

frequency modulation, assuming a fixed waveform. The goal is to provide a comprehensive

understanding of how the undulation frequency influences the swimming speed and the COT

of the swimmer in a static environment. Subsequently, we extend our analysis by allowing

the swimmer to modulate its undulation frequency and waveform. First, we conduct a

comprehensive sweep across the swimmer’s shape space to identify its fastest and most

cost-effective waveform. This exploration includes a detailed discussion of the relationship

between the swimmer’s waveform, angle of attack, and deformation speed.
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Finally, we discuss how swimmers can modulate their undulation frequency to achieve

efficient swimming across a wide range of fluid viscosities. Building upon these results, we

explore how the swimmer’s fastest and most cost-effective waveform changes as a function

of the fluid viscosity. We find that the most cost-effective waveform undergoes a continu-

ous transition from the low viscosity to the high viscosity regime. This transition can be

understood by comparing the relative strength of internal and external friction, as we will

discuss in detail.

5.2 Static Environment

This section explores the gait modulation of an undulatory microswimmer in a static en-

vironment characterized by a constant fluid viscosity µ. In our model, gait modulation is

achieved by adjusting the spatio-temporal pattern of the actuation torque. To simulate

undulatory locomotion, we model the actuation torque as a sinusoidal traveling wave, char-

acterized by the preferred curvature amplitude A0, wavelength λ0, and undulation frequency

f .

In Section 4.2, we demonstrated that the swimmer’s response to actuation is primarily

determined by the effective dimensionless response times a and b. By our definition, a and

b are both proportional to the undulation frequency. Consequently, changes in the undu-

lation frequency f shift the swimmer’s operating point (a, b) as illustrated in Fig. 4.1. On

the other hand, variations in preferred curvature amplitude A0 and wavelength λ0 result in

changes in the swimmer’s waveform, characterized by the body curvature amplitude A and

wavelength λ. As discussed in Section 4.2, the preferred waveform and the swimmer’s emer-

gent waveform are not necessarily equivalent, a distinction we will emphasize throughout

this chapter.

To simplify our analysis, Section 5.2.1 focuses exclusively on frequency modulation while

maintaining a constant preferred curvature amplitude A0 and wavelength λ0 constant. Sub-

sequently, Section 5.2.2 explores frequency and waveform modulation.

5.2.1 Frequency Modulation

Throughout this chapter, we assume that the swimmer’s body geometry, material parame-

ters, and fluid viscosity are known and constant. Consequently, for a generalized microswim-

mer that undulates with the characteristic frequency fc, we can calculate its characteristic

operating point (ac, bc); refer to Tab. 4.2. For illustrative purposes, we assume that the

swimmer’s characteristic operating point sits at the boundary between the pass-through
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and the low-pass regime, represented by the more prominent dotted marker in Fig. 5.1A.

As discussed in the last chapter, such a scenario corresponds to a microswimmer whose

rigidity has evolved to enable fast swimming while minimizing energy losses due to internal

friction. As a and b are both proportional to f , frequency modulation shifts the swimmer’s

operating point in a diagonal direction as indicated by the black arrow in Fig. 5.1A. Thus,

the smaller dotted markers represent the swimmer’s operating point for different values of

the normalized frequency f/fc ∈ [10−1, 101]. In this analysis, undulation frequencies span

a range of two orders of magnitude. We note that microswimmers such as sperm and C.

elegans typically only display frequency modulations across one order of magnitude [45,

113, 114]. However, we choose a broader range to capture extreme cases.

To investigate how the swimmer’s speed scales with its undulation frequency, we plot

the dimensionless normalized swimming speed U∗/U∗
max against the normalized undulation

frequency f/fc in Fig. 5.1B. The dotted markers correspond to the operating points shown

in panel A. Notably, as the swimmer increases its undulation frequency, the normalized

dimensionless swimming speed decreases from one to zero, indicating a transition from the

pass-through to the struggling regime. To clarify, with a constant body geometry, material

parameters and fluid viscosity, the system’s characteristic response times τ and ξ remain

constant; see Tab. 4.1. Consequently, as the undulation frequency increases, it becomes

increasingly difficult for the swimmer’s body to keep up the time scale set by the actuation

torque, explaining why the system transitions to the struggling regime.

According to Eq. (3.77), multiplying the dimensionless swimming speed U∗ with the

undulation frequency f yields the physical swimming speed per unit body length, which

we will refer to as U . The characteristic physical swimming speed per unit body length is,

therefore, defined as Uc = U∗
c · fc, where U∗

c is dimensionless swimming speed associated

with the swimmer’s characteristic operating point (ac, bc). To illustrate how the physical

swimming scales with the undulation frequency, Fig. 5.1B plots the normalized physical

swimming speed U/Uc (dashed line) as a function of f/fc on the secondary y-axis. The

dotted markers represent the operating points in panel A. In the pass-through regime,

the physical swimming speed scales linearly with f , as the dimensionless swimming speed

remains constant. This linear relationship was first shown by Taylor, who considered an

infinite waving swimming sheet [127] and a finite tube [128] immersed in a Newtonian fluid.

His work on the locomotion of such simplified geometries laid important foundations for

understanding fluid dynamics and propulsion mechanisms in biological systems.

As the swimmer’s undulation frequency surpasses its characteristic frequency fc, the

swimmer transitions from the pass-through to the low-pass regime, characterized by a

damped curvature amplitude and shallower body wave. Consequently, the dimensionless

swimming speed decreases in the low-pass regime, resulting in a sublinear scaling of the
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Figure 5.1: Frequency modulation in a static environment with constant fluid viscosity. (A):
Contour plot of the normalized dimensionless swimming speed U∗/U∗

max as a function of the
swimmer’s operating point (a, b). The blue dashed lines represent the regime boundaries
between the pass-through, low-pass, and struggle regimes introduced in Section 4.2. Large
dotted marker represents the characteristic operating point (ac, bc) associated with the
swimmer’s characteristic undulation frequency fc. Frequency modulation shifts the swim-
mer operating point along the diagonal represented by the smaller dotted markers color-
coded for the operating regime. (B): Normalized dimensionless swimming speed U∗/U∗

max

(solid) and normalized physical swimming speed U/Uc (dashed) at the operating points in
panel A, plotted against the normalized undulation frequency f/fc. The red dashed line
represents the frequency fmax at which the swimmer achieves maximum speed Umax. (C,
D): Contour plot of the normalized dimensionless Cost of Transport COT∗/COT∗

min without
and with Basal Metabolic Rate (BMR). (E): Physical Cost of Transport COT/COTmin as-
sociated with the markers in C and D. The yellow dashed line in the bottom graph represents
the most cost-effective undulation frequency fmin associated with speed Umin. (F): Most
cost-effective undulation frequency (yellow), normalized physical swimming speed U/Umax

(red), and Metabolic Equivalent of Task (MET) (green) as a function of the normalized
Basal Metabolic rate BRM/Wc.
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physical swimming with f .

The physical swimming speed peaks at a distinct frequency fmax > fc, represented by

the red dashed line in Fig. 5.1B. In this example, fmax is approximately five times larger than

the swimmer’s characteristic frequency fc, whereas the maximum swimming Umax is only

2.4 larger than Uc, underscoring the sublinear scaling in the low-pass regime. Beyond fmax,

the swimming speed diminishes despite the swimmer undulating at a higher frequency. This

results in the peculiar situation that any swimming speed lower than Umax can be achieved

by two undulation frequencies, one below and one above fmax. In the following, we will

demonstrate that the lower undulation frequency is the more energy-efficient one, as one

would intuitively expect.

To assess the swimmer’s energy efficiency, we calculate the swimmer’s Cost of Transport

(COT) as a function of the swimmer’s undulation frequency f . The contour plot of the

normalized dimensionless COT, denoted as COT∗/COT∗
min, is presented as a function of the

swimmer’s operating point (a, b) in Fig. 5.1C and D, with and without Basal Metabolic Rate

(BMR), respectively. Here, COT∗
min is the minimum dimensionless COT in the specified

range of a and b. In panel D, we select an exemplary value of BMR∗ = W ∗
c for the

dimensionless BMR, where W ∗
c is the dimensionless actuation work required to swim at the

characteristic frequency fc. To calculate the physical COT, we multiply COT∗ with the

conversion factor provided in Eq. (4.8). First, we define the characteristic Cost of Transport

COTc as

COTc = µc∥L0fcCOT∗
c , (5.1)

where COT∗
c refers to the dimensionless COT associated with the swimmer’s characteristic

operating point (ac, bc). From the above equation, it follows that the ratio between physical

COT and COTc is given by
COT

COTc
=

f

fc

COT∗

COT∗
c

, (5.2)

where we used that µ, c∥ and L0 are constant. Eq. (5.2) will be referred to as the normal-

ized COT. To investigate how the swimmer’s COT changes as it modulates its undulation

frequency, we plot the normalized COT as a function of f/fc in Fig. 5.1E with and without

BMR, respectively. Without BMR, we find that the COT scales linearly with the undula-

tion frequency. This can be understood from Fig. 5.1C, which shows that COT∗ remains

approximately constant across the entire range of frequencies, represented by the dotted

markers. Consequently, from Eq. (5.2), it follows then that COT/COTc ∝ f . Therefore,

our model predicts that undulating with a lower frequency is more cost-effective. This

makes intuitive sense, as decreasing the undulation frequency reduces the speed at which

the swimmer deforms its body. Consequently, less energy is lost due to internal friction and

external friction with the surrounding fluid environment. Thus, to minimize the COT, our

model predicts that the swimmer should undulate with zero frequency, essentially taking
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an infinite time to travel a unit distance.

Beyond energy efficiency, it is evident that biological organisms, including microswim-

mers, are driven by many objectives, such as foraging, mating and escaping predators. These

other objectives require the organism to maintain a reasonable swimming speed and are,

therefore, in conflict with undulating at a zero frequency. However, even if we assume that

energy efficiency is the swimmer’s only objective, our model prediction is counterintuitive.

Clearly, a lower limit for the undulation frequency must exist, below which swimming be-

comes energetically inefficient. Indeed, the bottom panel in Fig. 5.1E shows that when the

swimmer’s BMR is included as an additional cost, the normalized COT displays a minimum

at a distinct frequency fmin, represented by the yellow vertical dashed line. Consequently,

the swimmer has no incentive to adopt a lower frequency than fmin since this would lead

to an increase in COT and a decrease in physical swimming speed. On the other hand,

undulating at a faster frequency than fmin allows the swimmer to enhance its swimming

speed at the cost of increasing its COT. Hence, including the BMR in our model constrains

the plausible value of undulation frequency f to the range [fmin, fmax]. The swimmer can

modulate its frequency within this range to prioritize speed or cost-effectiveness. This im-

plies that the range of plausible swimming speeds U is given by [Umin, Umax], where Umin is

the swimming speed associated with the most cost-effective frequency fmin.

To understand how fmin depends on the value of the BMR, the yellow curve in Fig. 5.1F

plots the ratio fmin/fmax as a function of the normalized BMR, denoted as BMR/Wc. Here,

Wc represents the actuation work required to swim at the characteristic frequency fc. Re-

ducing the BMR leads to a smaller energy penalty for slow swimming speeds. Consequently,

the BMR becomes smaller, the ratio fmin/fmax decreases, i.e. the range of plausible undu-

lation frequencies becomes larger. As the normalized BMR increases, fmin continuously

converges to fmax as the swimmer is incentivized to adopt a faster swimming speed. For

exceedingly large BMR values, fmin becomes equivalent to fmax. In such a case, the range

of plausible frequencies narrows down to the single value fmax, optimizing both speed and

energy efficiency.

To compare the swimmer’s energy expenditure at rest to undulatory locomotion, the

green curve in Fig. 5.1F displays the swimmer’s Metabolic Task Equivalent (MET) as a

function of the normalized BMR. Here, we consider the MET associated with the most

cost-effective undulation frequency fmin. For small BMR values, the swimmer’s MET has

a value of approximately two, signifying that the energy expenditure during undulation

is twice as large compared to resting. This value is comparable to the MET of humans

during walking. It is slightly smaller than the reported estimate of 3 Laranjeiro et al . [82]

for C. elegans swimming activity. As the BMR increases, the MET converges to one from

above, indicating that the energy cost of actuation becomes negligible compared to the one
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associated with the swimmer’s BMR.

To conclude, our model predicts that, within a static environment, the undulation fre-

quency of the microswimmer should be confined to the range [fmin, fmax]. At the lower

limit fmin, the swimmer’s COT is minimal, while at the upper limit fmax, the swimmer’s

speed is maximal. Consequently, within this range, the swimmer can increase its undulation

frequency to enhance its swimming speed at the expense of increased COT and vice versa.

Moreover, we demonstrated that the value of fmin increases with the organism’s BMR,

whereas fmax is only determined by the swimmer’s characteristic operating point. The lat-

ter depends on physical model parameters including the material and geometric properties

of the swimmer’s body. Consequently, those properties play a crucial role in determining the

maximum swimming speed and frequency of a microswimmer within a given environment.

This will be discussed in more detail in the discussion section at the end of the chapter.

5.2.2 Waveform Modulation

In the preceding section, we discussed how the swimmer’s operating point (a, b) changes

as it modulates its undulation frequency. Specifically, we considered normalized undulation

frequencies within the range f/fc ∈ [10−1, 101], where fc denotes the swimmer’s charac-

teristic frequency. In this section, we consider the same range of undulation frequencies.

However, we broaden the scope of our analysis by allowing the swimmer to not only mod-

ulate its undulation frequency but also its waveform. To explore how the swimming speed

and COT depend on the swimmer’s waveform, we simulate undulation experiments encom-

passing the full range of plausible wavelengths and curvature amplitudes A0 (or shape-factor

c0). By analyzing these experiments, we aim to identify the swimmer’s fastest and most

cost-effective waveform. Furthermore, we aim to understand how these distinct waveforms

change as the swimmer modulates its undulation frequency.

To better understand how the swimmer’s waveform affects its swimming speed, we

initially focus on the simulation result for the characteristic undulation frequency fc. For

this specific frequency, the contour plot of the normalized swimming speed U/Umax as a

function of the preferred wavelength λ0 and shape factor c0 = A0λ0/2π is shown in Fig.

5.2A. Here, Umax denotes the swimmer’s maximum swimming speed within the specified

range of λ0 and c0. Notably, the contour plot reveals a unique maximum at a distinct

preferred waveform, represented by the black cross. This waveform, denoted as (λ0,max,

c0,max), will be referred to as the fastest preferred waveform. Note that the swimmer’s

emergent waveform is not necessarily equivalent to the preferred waveform, as we showed

in Chapter 4. Thus, we denote the swimmer’s emergent fastest waveform as (λmax, cmax).

Naturally, we want to understand why the waveform (λmax, cmax) achieves maximum
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Figure 5.2: Waveform modulation in a static environment with constant fluid viscosity.
We adopt the characteristic operating point (ac, bc) and frequency fc introduced in Fig.
5.1A. (A): Contour plot of the normalized swimming speed U/Umax as a function of the
preferred undulation wavelength λ0 and shape factor c0. Here, Umax denotes the maximum
swimming speed within the specified range of λ0 and c0. The black cross represents the
preferred waveform (λ0,max, c0,max) at which the swimmer achieves maximum speed. (B):
Contour plot of the average angle of attack ψ̄. (C): Contour plot of maximum transversal
centreline velocity uT,max. (D): Contour plot of normalized Cost of transport COT/COTmax

for BMR = 0, where COTmax is the Cost of Transport associated with the fastest preferred
waveform (λ0,max, c0,max). Red dashed lines represent contour lines of constant swimming
speed displayed in panel A. Red dots and rectangles display the most cost-effective waveform
on each of the contour lines. (E): Contour plot of normalized COT/COTmax for BMR =
0.1 ·Wmax, where Wmax is the actuation work required to swim with the fastest waveform.
Red cross denotes waveform (λ0,min, c0,min) that minimizes the COT. (F): Normalized
Cost of Transport COT/COTmax without BMR (dots) and with BMR (rectangles) plotted
against normalized swimming speed U/Umax. The vertical red dash line represents the speed
Umin that minimizes the COT with BMR.
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swimming speed. To address this question, we employ a simple geometric model, discussed

in detail in Appendix A.3.1. This model reproduces the well-known approximation by RFT

that the propulsive force fp(s, t), generated by the body segment at position s and time t

is proportional to

fp(s, t) ∝ sin(2ψ) · uT, (5.3)

where ψ(s, t) and uT (s, t) are the angle of attack and the body segment’s transversal velocity

at body position s and time t. Analog to Chapter 3, we define the transversal direction

eT perpendicular to the swimming direction eS. From Eq. (5.3), it follows that ψ = 45◦

maximizes the propulsive force generated by the body segment independent of its velocity

uT. We refer to the book by Lauga [83] for an alternative derivation of Eq. (5.3).

The local angle of attack ψ of a body segment is typically defined as the angle between

its centreline tangent t = ∂sr and the swimming direction eS. Hence, it can be expressed

as follows:

cos(ψ) =
t · es
|t| . (5.4)

Note that t does not necessarily have unit length, as a Cosserat rod is extensible. To

calculate the swimmer’s average angle of attack ψ̄, we integrate ψ across the length of the

swimmer’s body and one undulation period:

ψ̄ =

∫ t+1

t

∫ 1

0
ψ(s, t) ds dt. (5.5)

Naturally, We want to understand how ψ̄ depends on the swimmer’s waveform. Our simple

geometric model predicts that ψ̄ is primarily proportional to the wave’s shape factor c while

exhibiting a less pronounced and nontrivial dependency on the undulation wavelength λ.

This prediction is confirmed by the contour plot in Fig. 5.2C, which displays ψ̄ as a function

of λ0 and c0. It closely resembles the contour plot generated from the analytic derivation

of our geometric model in Fig. A.1C.

In Fig. 5.2C, the fastest preferred waveform (λ0,max, c0,max) is represented by the black

cross. We observe that the swimmer’s fastest waveform has an average angle of attack of

approximately 50◦, close to the theoretically predicted optimum of 45◦. Notably, the contour

band for angles between 40◦ and 50◦ extends over the entire range of λ0. Hence, considering

the average angle of attack ψ̄ alone is insufficient to explain why the swimming speed is

maximal at a preferred wavelength of λ0,max ≈ 1.1. To understand why this wavelength

achieves maximum speed, it is helpful to consider the transversal centreline velocity uT,

which is proportional to the propulsion force (see Eq. (5.3)). It is defined as the projection

of the centreline velocity u(s, t) onto the transversal body direction eT. To estimate the

magnitude of uT, we determine its maximum across the length of the swimmer’s body
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during one undulation period

uT,max = max
t∈[t0, t0+1]

[
max
s∈[0, 1]

(uT(s, t))

]
. (5.6)

Our geometric model predicts that uT,max ∝ cλ, which can be explained as follows: In-

creasing the emergent shape factor c = Aλ/2π of the curvature wave translates to a body

wave with larger amplitude, as illustrated in Fig. A.1A. For a given shape factor c, increas-

ing the wavelength λ reduces the number of waves n = 1/λ along the swimmer’s body.

Thus, as n decreases, the overall size of the swimmer’s body wave must increase to ensure

that the length of the swimmer’s body is conserved.To conclude, both the shape factor c

and the wavelength λ enhance the amplitude of the swimmer’s body wave, explaining why

uT,max ∝ cλ.

The contour plot of uT,max as a function of λ0 and c0 is presented in Fig. 5.2E. Inter-

estingly, the maximum of uT,max is not located in the top right corner as predicted by our

geometric model; see Fig. A.1D for a comparison. Instead, uT,max is maximal at the centre

of the contour plot’s top boundary, with λ0 ≈ 1.3 and c0 = 1.6. Our geometric model fails

to predict the correct wavelength because it assumes that the swimmer’s head is fixed at

the origin. This assumption ensures that the body wave always propagates in the opposite

swimming direction. It is comparable to the experiment setup used in Backholm et al . [12],

where the tail position of C. elegans was secured with a pipette. In contrast, in our Cosserat

model, both ends of the swimmer can move freely, allowing its body to undergo global ro-

tations. This implies that the swimmer’s longitudinal body axis is not always aligned with

the swimming direction. However, the angle between the swimmer’s longitudinal body axis

and the swimming direction is typically periodic, constrained to small values and centred

around zero. This is a result of the body wave’s symmetry. This symmetry ensures that

the transversal propulsion force integrates to approximately zero across the length of the

swimmer’s body. However, when λ becomes larger than one, the swimmer’s body expresses

only a fraction of a curvature wave at any given time. This leads to a more asymmetric

body shape, resulting in a more pronounced global rotation of the swimmer’s longitudinal

body axis. On average, this periodic rotation results in a larger misalignment between the

propagation direction of the curvature wave and the swimming direction. This explains why

uT,max gradually decreases as λ0 exceeds one. We conclude that to achieve maximum swim-

ming speed, the swimmer must select a waveform that maximizes its transversal centreline

velocity while maintaining an optimal average angle of attack.

Having identified the swimmer’s fastest waveform, we now focus on the most cost-

effective waveform that minimizes the COT. Fig. 5.2D presents the contour plot of the

swimmer’s normalized COT as a function of λ0 and c0. As normalization we use COTmax,

the COT associated with the fastest preferred waveform (λ0,max, c0,max). Consequently, in
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the shape-space region where COT/COTmax > 1, the swimmer’s COT is larger compared to

the COT required to swim at maximum speed Umax (black cross). Thus, the swimmer has

no incentive to occupy this region of the shape-space, as its slower and less energy efficiency

than the fastest waveform. Conversely, in the shape-space region where COT/COTmax < 1,

the swimmer is slower than Umax but more energy-efficient. Thus, within this region, the

swimmer can modulate its waveform depending on whether it prioritizes swimming speed or

energy efficiency. We observe that the COT is minimal at the right half of the shape-space’s

bottom boundary, characterized by a large preferred wavelength λ0 > 1 and small preferred

shape factor c0 = 0.4. This implies that a swimmer can optimize energy efficiency by opting

for a waveform with a small shape factor c0. However, doing so leads to a shallow body

wave and slow swimming speed, as shown in Fig. 5.2A. Hence, our model predicts that

undulating with zero amplitude and taking infinite time minimizes the COT. This result

is counterintuitive, as a minimum curvature amplitude should exist below which swimming

becomes energetically inefficient.

Notably, if we incorporate the organism’s BMR as an additional energy cost, the contour

plot of the normalized COT reveals a distinct minimum within the interior of the shape

space, as shown in Fig. 5.2E. The position of this minimum is displayed by the red cross,

representing the most cost-effective waveform, denoted as (λ0,min, c0,min). The most cost-

effective swimming speed and associated COT will be referred to as Umin and COTmin,

respectively. This implies that there is no incentive for the swimmer to adopt a waveform

with a slower swimming speed than Umin, as this would increase its COT relative to COTmin.

Thus, for a given undulation frequency and fluid viscosity, our model constrains the plausible

range of swimming speeds to the interval [Umin, Umax]. Within this range, the swimmer can

increase its swimming speed at the cost of increasing its COT.

To quantify the trade-off between swimming speed and energy efficiency, we plot the

constant swimming speed contour lines from panel A as red dashed lines in Fig. 5.2D and

F. On each of these contour lines, the red marker represents the optimal waveform that

minimizes the swimmer’s COT, denoted as (λ0,opt, c0,opt). The COT associated with this

optimal waveform, COTopt, is plotted as a function of the normalized swimming speed in

Fig. 5.2F. The rectangular and dotted markers represent COTopt with and without BMR,

respectively.

In the absence of BMR, it is apparent that the trade-off between speed and COT is

not linear; instead, the gain in energy efficiency diminishes as the swimmer decreases its

swimming speed. To illustrate, reducing the swimming speed from Umax by 10% reduces

the COT by approximately 35%. However, reducing the swimming speed by another 10%

only yields an approximately 10% gain in efficiency. This observation suggests that mi-

croswimmers are incentivized to operate within a specific range of swimming speeds. Below
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this optimal range, the diminishing returns indicate that additional reductions in speed do

not result in meaningful gains in efficiency (reduction of the COT).

When the BMR is included, COTopt displays a distinct minimum, illustrated by the

vertical red dashed line in Fig. 5.2E. This minimum corresponds to the most cost-effective

swimming speed Umin. This confirms that swimming at a speed slower than Umin increases

the COT, i.e. it is energy inefficient. It is important to note that the value of Umin is

contingent on the organism’s BMR. As the BMR increases, the swimmer is incentivized

to swim faster, i.e. Umin converges to Umax, which results in a narrower range of plausible

swimming speeds.

We remark that the BMR’s contribution to the swimmer’s COT is given by the term

BMR/U . Consequently, since U is constant along each of the red dashed contour lines in Fig.

5.2E, the term BMR/U is also. Thus, including the BMR does not change the position of

the optimal waveform (λ0,opt, c0,opt) on the respective contour lines. This can be confirmed

by the identical positions of the dotted and rectangular markers in panels D and E. There-

fore, by determining the optimal waveform (λ0,opt, c0,opt) for different swimming speeds

U < Umax, we implicitly determine the most cost-effective waveform (λ0,min, c0,min) without

explicitly incorporating the swimmer’s BMR. Lastly, we notice that λ0,opt is consistently

larger compared to the fastest wavelength λ0,max. Hence, we can clearly distinguish between

the optimal and the fastest waveform. Hence, by comparing our model with existing exper-

imental data, we can try to infer whether a microswimmer maximizes its swimming speed

or compromises between speed and energy efficiency, as we will demonstrate in Chapter 6.

Having presented the simulation results for a specific undulation frequency, we now

consider the entire range of normalized frequencies f/fc ∈ [10−1, 101]. For this purpose, it

is more convenient to consider the curvature amplitude than the shape factor, as we will

explain shortly. Thus, we introduce the fastest preferred curvature and actual curvature

amplitude Amax,0 and Amax, alongside the optimal curvature amplitudes Aopt,0 and Aopt.

To examine whether the fastest waveform undergoes changes as the swimmer modulates

its undulation frequency, Fig. 5.3A and B display Amax and λmax as a function of f/fc,

respectively. Observing the trends, both plots can be divided into two regions, indicated

by the green and the red shaded areas. The green area corresponds to the frequency range

where the swimmer is not power-limited. In this region, the fastest waveform remains

approximately constant with respect to f , exhibiting only a slight increase in Amax along

with a minor decrease in λmax. On the other hand, the red area corresponds to the frequency

range where the swimmer is power-limited. Power-limited means we cannot specify an

arbitrarily large preferred curvature amplitude A0 because the actuation torque biological

swimmers can generate is limited, as we will explain in more detail in the next paragraph.

In power-limited region, Amax decreases rapidly with f , mirrored by a rapid increase in
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λmax.

This can be understood as follows: In the pass-through regime, the swimmer’s body

curvature instantaneously tracks the preferred curvature. Consequently, preferred curvature

amplitude A0,max and the body curvature amplitude Amax are approximately equal for

frequencies f/fc < 1. However, for frequencies f/fc > 1, the swimmer transitions into the

low-pass regime, which leads to a damping of the curvature amplitude, i.e. Amax/A0,max <

1. This damping intensifies as the frequency increases. Hence, to maintain its optimal

waveform, the swimmer must gradually increase the preferred curvature amplitude A0,max

to counterbalance the growing damping effect, as can be seen by the dashed blue line in

Fig. 5.3A. However, since A0,max is proportional to the actuation torque amplitude, it must

have an upper limit because the swimmer’s molecular motors or muscles can not generate

arbitrarily strong bending torques. Here, we choose an upper limit of A0,max = 12 for

illustrative purposes. This choice is motivated by experimental findings where normalized

curvature amplitudes are consistently measured to be below ten [45, 106, 113].

To analyze how the physical swimming speed scales with the undulation frequency, we

plot the normalized maximum swimming speed Umax/Umax,c (red line) as a function of f/fc

in Fig. 5.3C, where Umax,c is the maximum swimming speed associated with the character-

istic undulation frequency fc. Not surprisingly, the physical swimming speed exhibits the

same trend as in Fig. 5.1B, where we imposed a fixed waveform. If the swimmer is not

power-limited, the swimming speed scales linearly with undulation frequency f . This is

because the swimmer can sustain its fastest waveform, characterized by an optimal average

angle of attack (blue line) of approximately 50◦. In the power-limited regime, the swimming

speed scales sublinearly with f , eventually peaking at the frequency fmax, represented by

the vertical red dashed line.

To summarise, assuming the swimmer is not power-limited, our model shows that the

fastest waveform (λmax, Amax) remains largely unaffected by variations of the undulation

frequency. This result is unsurprising, as the fastest waveform is characterized by an optimal

angle of attack and a high degree of body symmetry, and these geometric properties are

expected to be independent of the undulation frequency. Furthermore, for a power-limited

swimmer, our model predicts that there must exist an upper limit fmax for the undulation

frequency beyond which the swimming speed starts to decrease. The value of fmax is

contingent on the upper limit of the actuation torque amplitude.

Having analyzed the effect of the swimmer’s undulation frequency on the fastest wave-

form, we now explore how the undulation frequency affects the optimal waveform (λopt,

Aopt). To simplify our analysis, we assume that the swimmer undulates within a frequency

range where it is not power-limited, i.e. f/fc < 4. Fig. (5.3)D and E display λopt and Aopt as

a function of f/fc, respectively. The colored lines represent different values of the normal-
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Figure 5.3: Fastest and optimal waveform as a function of the normalized undulation fre-
quency. (A): Fastest preferred curvature amplitude A0,max (blue dashed), actual curvature
amplitude Amax (blue solid), preferred shape factor c0,max (red dashed), and actual shape
factor cmax (red solid) as a function of the normalized undulation frequency f/fc. Two
distinct regions are highlighted: in the green area, the swimmer is not power-limited, while
in the red area, it is. (B): Fastest preferred wavelength λ0,max (black dashed) and actual
wavelength λ0,max (black solid). (C): Normalized physical swimming speed Umax/Umax,c

(red) and average angle of attack ψ̄max (blue). The vertical red dashed line represents the
frequency fmax, which achieves maximum speed. (D): Optimal curvature amplitude Aopt

(solid) as function of f/fc. Colored lines correspond to different values of the normalized
swimming speed U/Umax, presented by the colorbar in panel F. (E): Optimal wavelength
wavelength λopt. (F): Normalized Cost of Transport COTopt/COTmax associated with op-
timal waveforms.
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ized swimming speed U/Umax, represented by the color bar in panel F. For a given speed,

Fig. (5.3)D shows that Aopt remains approximately constant across the entire frequency

range. Furthermore, the height of the vertical gaps between the colored lines remains con-

stant, which implies that swimming speed is proportional to the curvature amplitude. In

contrast, Fig. (5.3)E shows that λopt decreases with f , exhibiting a convex trend. Notably,

λopt only displays a minor dependency on the swimming speed, with all colored lines falling

into a narrow band. Consequently, at a given frequency, our model predicts that the swim-

ming speed can be modulated most efficiently by adjusting the curvature amplitude while

maintaining a constant wavelength close to λopt.

To illustrate the trade-off between swimming speed and energy efficiency, we compare

COTopt to COTmax in Fig. 5.3F. Consistent with our earlier observation in Fig. 5.2F, reduc-

tions of the swimming speed have diminishing returns. Across the entire frequency range,

reducing the maximum swimming speed by 20% decreases the COT by approximately 40%,

whereas lowering it by another 20% only yields an additional 10% decrease. Consequently,

the vertical gaps between the colored lines become smaller as U decreases. Notably, the gain

in energy efficiency is negligible for normalized swimming speed lower than U/Umax < 0.3.

Consequently, the swimmer has no incentive to swim at a lower speed, providing us with a

lower bound for Umin, irrespective of the swimmer’s BMR.

To conclude, our model predicts that a swimmer should modulate its waveform (wave-

length) together with its frequency to optimize efficiency. However, if it prioritizes speed,

we expect a more or less constant waveform. Having addressed the scenario of a static envi-

ronment, we now explore gait adaptation in response to changing environmental conditions

characterized by the fluid’s viscosity.

5.3 Changing Environments

This section explores the gait modulation of an undulatory microswimmer in response to

changing environmental conditions. Remarkably, undulatory microswimmers are capable

of navigating a wide range of environmental conditions. While human sperm navigate the

diverse fluid environments of the female reproductive system during fertilization, nematodes

like C. elegans can thrive in aquatic environments, soil, and transitional zones [5, 49]. Pre-

vious studies by Rikmenspoel [114] and Fang Yen et al . [45] have examined the undulatory

locomotion of sea urchin sperm and C. elegans in Newtonian fluid environments, respec-

tively. Their experiments revealed that sperm and C. elegans are both capable of swimming

in fluids across a broad range of viscosities. Interestingly, both exhibit a continuous gait

transition, dynamically adjusting their undulation frequency and waveform to variations in

fluid viscosity. Understanding this gait adaptation from the viewpoint of optimality will be
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the goal of this section.

It will follow a structure similar to the previous section, which discussed the static en-

vironment case. In the first Subsection 5.3.1, we focus exclusively on frequency modulation

assuming a constant waveform. We discuss how frequency modulation enables the swim-

mer to maintain an efficient operating point in more viscous fluids. Building upon these

results, Subsection 5.3.2 explores waveform modulation, again distinguishing between the

swimmer’s fastest and most efficient (optimal) waveform. We will explore how both of these

waveforms depend on the viscosity of the surrounding fluid environment.

5.3.1 Frequency Adaptation

In this section, we use our model to simulate undulatory locomotion within fluids with

different viscosities. To simplify our initial analysis, we assume a constant waveform (λ0 = 1,

A0 = 2π) throughout this section. Mimicking the experimental study by Fang Yen et al .

[45], we consider fluid viscosities µ spanning four orders of magnitude µ/µ0 ∈ ·[1, 104].
Here, µ0 represents the viscosity of the least viscous fluid that the swimmer is exposed to,

e.g. water. In this reference viscosity, we assume that the swimmer undulates with the

characteristic frequency f0. Furthermore, consistent with Section 5.2.1, we assume that the

swimmer’s body geometry and material parameters remain constant throughout. Hence,

given the values of µ0 and f0, we can determine the swimmer’s characteristic operating

point (a0, b0) at the lower limit of the viscosity spectrum (see Tab. 4.1). We make the

assumption that (a0, b0) lies within the interior of the pass-through regime, represented

by the large dotted marker in Fig. 5.4B. As we discussed in Chapter 4, this choice implies

that the swimmer’s body stiffness has evolved to facilitate swimming in environments with

higher viscosities than µ0, thereby enhancing the swimmer’s adaptability.

Notably, as the fluid becomes more viscous, the friction force due to the relative motion

between the fluid and the body surface becomes stronger, making it more difficult for the

swimmer to actively deform its body. Consequently, the system’s response time τ , which

is proportional to µ, becomes slower. To adapt to this slowed response, microswimmer

decreases their undulation frequency in more viscous fluids. This adaptation allows them

to maintain a functional ratio between response time and actuation time scale, thereby

sustaining an efficient operating point. This leads to higher energy efficiency, as we will

demonstrate in the following.

We compare two scenarios: In the first scenario, the swimmer does not modulate its

characteristic undulation frequency, i.e. f0 remains constant across the entire range of fluid

viscosities, as illustrated by the dotted markers in Fig. 5.4A. In the second scenario, the

swimmer decreases its undulation frequency as the fluid viscosity increases. Here, we choose
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Figure 5.4: Frequency adaptation enhances energy efficiency in more viscous fluids. (A):
Normalized undulation frequency f/f0 as a function of the normalized fluid viscosity µ/µ0
with (rectangles) and without adaptation (dots). Here, µ0 is the lowest viscosity associated
with frequency f0 and swimming speed U0. (B): Swimming speed as a function of the
effective response times a and b. Dashed blue lines represent regime boundaries introduced
in Section 4.2. Here, we choose a characteristic operating point (a0 = 0.5, b0 = 0.02) (large
dotted marker) so that the swimmer operates in the pass-through regime at the lowest
viscosity µ0. Without frequency adaptation, increasing µ shifts the operating point in the
positive horizontal direction (dotted markers). With frequency adaptation, operating points
shift in horizontal and in negative diagonal directions (triangular markers). (C): Normalized
physical swimming speed U/U0 with (triangles) and without (dots) frequency modulation
as a function of the normalized fluid viscosity µ/µ0. (D): Contour plot of the dimensionless
Cost of Transport COT∗ as a function of a and b without BMR. (E): Normalized physical
COT with (dots) and without (triangles) frequency adaptation as a function of µ/µ0. Top
panel without BMR bottom panel with BMR/W0 = 0.1 (F): Relative difference between
the physical Cost of Transport with (COTadap) and without frequency (COT) modulation
plotted against µ/µ0.
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a simple sigmoidal relationship between undulation frequency f and the logarithm of the

fluid viscosity µ, illustrated by the triangular markers in Fig. 5.4A. The parameters of the

sigmoid are chosen such that its inflection point is located at the midpoint of the viscosity

range at µ/µ0 ≈ 102. Furthermore, the sigmoid’s slope parameter is chosen such that f

gradually decreases from the maximum value f0 to the minimum value fmin across the

entire range of µ/µ0. Here, we opt for a ratio of f0/fmin = 0.1, i.e. the swimmer decreases

its undulation frequency by one order of magnitude. This choices are motivated by the

experimental study of Fang Yen et al . [45], who reported a similar range for C. elegans.

Recall that the swimmer’s effective response time a is proportional to µ. Hence, in the

first scenario where the swimmer does not adapt its undulation frequency, the swimmer’s

operating point (a0, b0) shifts in a positive horizontal direction as µ increases. Conse-

quently, the swimmer transitions from the pass-through through the low-pass to the strug-

gling regime, as depicted by the dotted markers in Fig. 5.4A. In the second scenario, where

the swimmer adapts its undulation frequency, two opposing factors superimpose. Similar to

the first scenario, increasing µ shifts the swimmer’s operating point in a positive horizontal

direction. In contrast, a decrease in f results in a shift in a negative diagonal direction, as

illustrated earlier in Fig. 5.1A. Combining both of these factors, the swimmer’s operating

point follows a ”sigmoidal” curve illustrated by the triangular markers in Fig. 5.4B. Thus,

by lowering its undulation frequency in more viscous environments, the swimmer effectively

delays its transition into the struggling regime.

To compare the performance of both scenarios, we consider the swimming speed and

the COT. The normalized physical swimming speed U/U0 is plotted against µ/µ0 in Fig.

5.4C with (triangles) and without (dots) frequency adaptation. Here, U0 refers to the

swimming speed in the least viscous fluid. For low viscosities, the swimmer maintains a

constant undulation frequency in both scenarios and operates in the pass-through regime. In

this regime, the physical swimming is constant, i.e. it is independent of the fluid viscosity

µ. This finding is consistent with the classical result by Taylor [127], who considered a

flexible two-dimensional sheet deforming as a traveling wave of transverse displacements.

Taylor demonstrated that the swimming speed of the sheet is independent of µ. A detailed

derivation of this result can be found in Chapter 3 of Eric Lauga’s book [83]. In the case

of C. elegans, our result aligns with the experimental data, which shows that C. elegans

swimming speed is approximately constant in the low viscosity regime where it undulates

with constant frequency [50, 126]. See Section A.4.2 of the appendix for a more detailed

discussion.

As the fluid viscosity µ increases, Fig. 5.4C shows that swimming speed decreases in

both scenarios following a sigmoidal trend. In the first scenario, this decrease is caused

by the swimmer’s transition to the struggling regime, which is characterized by a strongly
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damped curvature amplitude and a slow swimming speed. In the second scenario, the

swimmer’s prevents the transition to the struggling regime. However, this comes at the

cost of a lowering its undulation frequency f , resulting in a gradual decrease in physical

swimming. Thus, judging from the swimming speed alone, neither of the two scenarios can

be considered superior.

To compare the energy efficiency of both scenarios, Fig. 5.4D displays the contour plot

of the normalized dimensionless COT as a function of the swimmer’s operating point (a, b).

Here, COT∗
min denotes the minimal dimensionless COT in the specified range of a and b.

To calculate the physical COT, we first consider the swimmer’s characteristic COT in the

least viscous fluid µ0, denoted as COT0. According to Eq. (4.8), it is defined as

COT0 = µ0c∥L
2
0f0COT∗

0, (5.7)

where COT∗
0 denotes the dimensionless COT in the least viscous fluid µ0, represented by

the large dotted marker in Fig. 5.4D. Using COT0 as our normalization, we define the

normalized physical COT as
COT

COT0
=

µ

µ0

f

f0

COT∗

COT∗
0

, (5.8)

where we used that c∥ and L0 are constant. Fig. 5.4E, shows COT/COT0 as a function of

µ/µ0 for both scenarios. Without frequency adaptation (dotted markers), the swimmer’s

COT increases by approximately two orders of magnitude over the entire range of µ. Hence,

in the most viscous fluid, the swimmer requires a hundred times more energy to travel a

unit distance compared to the least viscous environment µ0. With frequency adaptation

(triangular markers), the COT only increases by one order of magnitude over the entire

range of µ. Hence, the swimmer only requires ten times more energy in the most viscous

fluid. Thus, the swimmer significantly reduces its COT in higher viscosities by adapting its

undulating frequency. To quantify the efficiency gain, we plot the ratio between the COT

with and without frequency adaptation against µ/µ0 in Fig. 5.4F. At low viscosities, the

ratio converges to one, indicating that both scenarios are equally efficient. As µ increases,

the ratio gradually decreases to a value of approximately 0.1, which shows that frequency

adaption is up to ten times more energy efficient in more viscous fluids.

Additional considerations: The efficiency gain achieved by the swimmer through fre-

quency modulation is contingent on its BMR. If the organism’s energy cost is dominated by

the BMR, its COT simplifies to the expression COT ≈ BMR/U . In such a case, the COT

with and without frequency adaptation would be approximately equivalent. This follows

from the fact that the swimming speed is approximately equivalent in both scenarios. This

suggests that the energy cost of microswimmers is not dominated by their BMR, as they

are observed to adapt their undulation frequency in more viscous environments.
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5.3.2 Waveform Adaptation

In the preceding section, we showed that microswimmers can improve their efficiency in

more viscous environments by lowering their undulation frequency. We used a simple sig-

moidal function to modulate the frequency such that it decreases gradually from the upper

limit f0 to the lower limit fmin over a generic range of fluid viscosities µ/µ0 ∈ [1, 104]. To

simplify our analysis, we assumed that the swimmer’s waveform (λ0 = 1, A0 = 2π) remains

constant across the entire viscosity range. However, experimental studies have shown that

microswimmers do not only modulate their undulation frequency but also adapt their wave-

form when exposed to fluids with different viscosities [18, 45, 79, 114, 126]. Therefore, we

extend our analysis by considering both its frequency and waveform adaptation. In partic-

ular, our goal is to determine the swimmer’s fastest and optimal waveform as a function of

µ/µ0. To accomplish this, we simulate a series of undulation experiments, spanning viscosi-

ties in the range µ/µ0 ∈ ·[1, 104]. To determine the undulation frequency f as a function

of µ, we use the sigmoidal function defined in the previous section. For each value of µ, we

systematically vary the preferred undulation wavelength λ0 and the preferred shape factor

c0.

We begin our initial analysis by focusing on two simulation results: the first corresponds

to the lower limit of the viscosity range µ = µ0, and the second corresponds to its upper

limit µ/µ0 = 104. In both cases, the contour plot of the normalized swimming speed U/Umax

is shown as a function of λ0 and c0 in Fig. 5.5A and B, respectively. Here, Umax is defined

as the maximum swimming speed within the specified range of λ0 and c0. In each plot,

the black cross represents the fastest preferred waveform (λ0,max, c0,max). Notably, λ0,max is

nearly identical in both limits, measuring 1.13 in the low and 1.04 in the high viscosity limit,

respectively. In contrast, c0,max is noticeably larger in the high viscosity limit, with respec-

tive values of 1.40 and 1.75. As the fluid becomes more viscous, the swimmer transitions

into the low-pass regime, characterized by a damped curvature amplitude. To counterbal-

ance this damping, the value of c0,max must increase in more viscous fluids. However, the

value of the swimmer’s actual shape factor cmax is approximately 1.40 in both limits. This

suggests that the swimmer’s fastest waveform (λmax, cmax) is more or less independent of

µ.

To determine the swimmer’s most cost-effective waveform, the contour plot of the nor-

malized COT as a function of λ0 and c0 is displayed in the low and high viscosity limit

in Fig. 5.5C and D, respectively. As normalization, we use COTmax, the COT associated

with the fastest preferred waveform (λ0,max, c0,max) displayed by the black cross. In panels

E and F, we included the organism’s BMR as an additional energy cost, which is set to

zero in panels C and D. Consistent with our discussion in Section 5.2.2, without including

the BMR, the swimmer’s COT has no minimum within the shape space interior. Instead,
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Figure 5.5: Waveform modulation in the low µ0 (left column) and high µ/µ0 = 104 (right
column) fluid viscosity limit. (A, B): Normalized swimming speed U/Umax as a function of
the preferred undulation wavelength λ0 and shape factor c0. Here, Umax is the maximum
swimming speed within the specified range of λ0 and c0. The fastest preferred waveform
(λ0,max, c0,max) is represented by the black cross. (C, D): Normalized Cost of Transport
COT/COTmax, where COTmax is the COT required to swim at the fastest speed Umax.
Red dashed lines represent contour lines of constant swimming speed shown in panels A
and B, respectively. Red dotted markers represent the optimal preferred waveform (λ0,opt,
c0,opt) that minimizes the COT on each contour line. (E, F): Contour plot of the normalized
dimensionless COT as a function of λ0 and c0 for an exemplary value of BMR∗/W ∗

max = 0.1,
where W ∗

max is the actuation work required to swim with maximum speed Umax. The
red cross corresponds to the most cost-effective preferred waveform (λ0,min, c0,min) that
minimizes the swimmer’s COT. 117
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the COT is minimal at the bottom boundary of the shape space, where the preferred shape

factor c0 is small. This boundary region is associated with shallow body waves and slow

swimming speeds. In contrast, for BMR > 0 in panels E and F, the contour plot of the

COT displays a distinct minimum within the interior of the shape space, represented by the

red cross in panels E and F. We refer to this waveform as the most cost-effective preferred

(λ0,min, c0,min) and emergent (λmin, cmin) waveform, respectively.

The red dashed lines in panels C-F represent the contour lines of constant swimming

speed, as shown in black in panels A and B. Thus, each red dashed contour line represents

a constant swimming speed value. The red dotted marker on the contour line represents

the most cost-effective preferred waveform, minimizing the swimmer’s COT for this specific

speed. This preferred and emergent waveform will be referred to as optimal and denoted

(λ0,opt, c0,opt) and (λopt, copt), respectively. Thus, by modulating its waveform, the swim-

mer can transition from the most cost-effective (λ0,min, c0,min) (red cross) to the fastest

(λ0,max, c0,max) (black cross) waveform to prioritize between swimming speed and energy

efficiency. To achieve the most efficient trade-off between speed and efficiency, our model

predicts that the swimmer should modulate its waveform such that it minimizes the COT

for a given speed, i.e. follow the curve that connects the optimal waveforms (red markers)

in Fig. 5.5C-F. In low viscosity, we find that the optimal wavelength λ0,opt is consistently

larger than λ0,max, converging to a value of approximately 1.6 as the swimmer decreases its

swimming speed. Conversely, in high viscosity, λ0,opt is consistently smaller than λ0,max,

converging to a value of 0.6. Therefore, our model predicts that shorter wavelengths are

more energy-efficient in low viscosities, whereas in higher viscosities, longer wavelengths

are. In contrast, the optimal shape factor c0, opt decreases gradually with slower swimming

speeds, corresponding to a shallower body wave.

To illustrate how the swimmer looks if it is actuated with the fastest (black cross) or the

most cost-effective (red cross) preferred curvature waveform from Fig. 5.5E and F, Fig. 5.6

shows snapshots of the swimmer’s centreline at different time points in the last undulation

cycle of the simulation. As predicted, the fastest body waveform looks similar for low

(panel A) and high (panel B) fluid viscosities. However, in high viscosity, we find that the

curvature of the centreline in the swimmer’s tail appears larger compared to low viscosity.

This discrepancy is because, in high viscosity, the swimmer operates in the heterogeneous

low-pass regime, which is associated with higher curvature amplitudes in the head and tail

region compared to the body’s midsection, as we discussed in Section 4.2. In contrast,

the most cost-effective emergent body waveform looks very different in low (panel C) and

high (panel D) viscosities. In low viscosity, the most cost-effective waveform has a larger

amplitude and significantly longer wavelength than in high viscosity. The waveforms in

panels C and D are reminiscent of the swimming and crawling gait of C. elegans, respectively

[45]. This similarity suggests that C. elegans gait adaptation in different fluid viscosities
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aims to optimize energy efficiency, as will be discussed in more detail in Chapter C. elegans.

To conclude, our findings indicate that the swimmer’s fastest waveform remains mainly

unaffected by changes in fluid viscosity, while the optimal waveform changes significantly.

This prediction is independent of the swimmer’s BMR, as can be seen in Fig. 5.5E and F.

When the BMR is included as an additional energy cost, the contour plot of the COT dis-

plays a distinct minimum within the interior of the shape space (red cross). This minimum

sets a lower bound Umin for the swimming speed. However, as we discussed previously, it

does not change the optimal waveform at a given speed. The fact that the fastest waveform

changes very little with fluid viscosity, whereas the most energy-efficient does, suggests that

energy efficiency is the primary drive behind gait adaptation.

To test this hypothesis, we determine the fastest and the optimal waveform for different

swimming speeds across the entire viscosity spectrum. In Fig. 5.7A and B, Amax (red line)

and λmax (black line) are plotted against µ/µ0, respectively. We confirm that Amax and

λmax exhibit minor to moderate relative changes of approximately 10% and 20% across

the entire viscosity range, respectively. The fastest waveform (λmax, Amax) is characterized

by an average angle of attack of approximately ψ̄ ≈ 50◦ as shown by the blue line in

Fig. 5.7C. Nonetheless, the normalized maximum swimming speed Umax/U0,max (red line)

significantly decreases as the fluid becomes more viscous. This is because the swimmer

lowers its frequency in more viscous environments.

For comparison, the optimal curvature amplitude Aopt and wavelength λopt are plotted

against µ/µ0 in Fig. 5.7D and E, respectively. Each colored line corresponds to a constant

value of the normalized swimming speed U/Umax represented by the colorbar at the bottom

of panel F. All colored lines exhibit the same general trend as µ increases. Consequently,

our model predicts that the swimmer should increase its curvature amplitude and decrease

its wavelength in higher viscosities to achieve optimal energy efficiency.

To quantify the trade-off between swimming speed and energy efficiency, the ratio

COTopt/COTmax is plotted against µ/µ0 in Fig. 5.7F. The colored lines are approximately

horizontal, which implies that the trade-off between swimming speed and energy efficiency

is largely independent of µ. Consistent with our results from the previous section, our model

predicts that the gain in efficiency diminishes as the swimmer reduces its swimming speed.

For example, reducing the maximum swimming speed Umax by 10% yields an approximately

35% reduction in COT. However, reducing it by another 10% only yields another approxi-

mately 10% reduction. For swimming speeds slower than U/Umax < 0.3, the efficiency gain

is negligible, which sets a lower bound Umin/Umax ≈ 0.3 for the swimming speed.

So far, we have not provided an explanation for why longer wavelengths are more energy-

efficient in low viscosities, whereas shorter wavelengths are more efficient in high viscosities.
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Figure 5.6: Snapshots of the fastest and the most efficient body waveform predicted by
our model for low (µ/µ0 = 1) and high (µ/µ0 = 104) fluid viscosities. For each viscos-
ity, the fastest body waveform corresponds to the fastest preferred curvature waveform
(λ0,max, c0,max) depicted by the black cross in Fig. 5.5E, while the most efficient body wave-
form aligns with the most efficient preferred curvature waveform (λ0,min, c0,min) indicated by
the red cross. The swimmer’s waveforms are illustrated by plotting the swimmer’s centreline
coordinate r3(s, t) and r2(s, t) in the dorsal-ventral (undulation) plane. Colors represent six
different time points (see bottom legend) in the last undulation cycle of the simulation. (A):
Fastest waveform for low fluid viscosity. (B): The fastest waveform for high fluid viscosity.
(C): The most efficient waveform that minimizes the swimmer’s COT in low viscosity. (D):
Most efficient waveform in high viscosities. We use the same y-axis range in each panel to
illustrate the difference in amplitude between the fastest and most efficient waveform.
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Figure 5.7: Influence of the fluid viscosity on the fastest and optimal waveform. (A):
Fastest preferred curvature amplitude Amax,0 (red dashed), preferred shape factor cmax,0

(blue dashed), curvature amplitude Amax (red solid) and shape factor cmax (blue solid)
as a function of the normalized fluid viscosity µ/µ0. (B): Fastest preferred wavelength
λmax,0 (black dashed) and fastest wavelength λmax (solid black). (C): Normalized maximum
swimming speed Umax/U0,max (red) and average angle of attack ψ̄ (blue). (D): Optimal
curvature amplitude Aopt as a function of µ/µ0. Colored lines correspond to different
values of the normalized swimming speed U/Umax represented by the colorbar below panel
F. (E): Optimal undulation wavelength λopt. (F): Ratio COTopt/COTmax between the Cost
of Transport associated with optimal and the fastest waveform.
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To address this question, it is helpful to compare the energy losses due to internal and

external friction during undulatory locomotion. To do so, we consider the ratio DI/D,

where DI and D are the internal and total dissipated energy during one undulation cycle,

respectively. The ratio is plotted against the normalized fluid viscosity µ/µ0 in Fig. 5.8.

Each colored line corresponds to one of the optimal waveforms (Aopt, λopt) shown in Fig.

5.7D. Notably, all these lines display a sigmoidal trend similar to that of the optimal wave-

form λopt shown in Fig. 5.7E. In the low viscosity regime, the ratio DI/D converges to one,

i.e. the swimmer’s energy cost is dominated by the internal friction. As the fluid viscosity

increases, D/D gradually decreases and eventually converges to zero in the high viscosity

limit. Unsurprisingly, in this regime, the swimmer’s energy cost is dominated by external

(fluid) friction.

This implies the following: The waveform that minimizes internal dissipation is charac-

terized by a long wavelength and small curvature amplitude. In contrast, the waveform that

minimizes external dissipation is characterized by a short wavelength and large curvature

amplitude. Consequently, the optimal waveform (Aopt, λopt) exhibits a continuous tran-

sition from the internal dissipation-optimal waveform to the external dissipation-optimal

waveform as µ increases. The transition region between both optima is characterized by

the inflection point and the slope factor of the sigmoid in Fig. 5.8. As we will discuss in

Chapter 6, the position of the inflection point depends on the ratio between the internal

and fluid viscosity.

To conclude, our model shows that frequency and waveform modulation are crucial to

enable efficient undulatory across changing environmental conditions. We conclude this

Chapter with a summary and discussion of all the relevant results.

5.4 Discussion

This section provides a critical discussion of the key findings presented in this chapter. We

started this chapter by exploring the gait modulation of an undulatory microswimmer in a

static environment characterized by a constant fluid viscosity. This exploration had three

main objectives: Firstly, to determine the range of plausible undulation frequencies for our

physical model. Secondly, to derive the scaling behavior between the swimming speed and

undulation frequency. Lastly, to establish a relationship between the swimmer’s undulation

frequency, waveform, swimming speed, and COT.

Concerning the first objective, our model constraints the swimmer’s undulation fre-

quency to the range f ∈ [fmin, fmax], where fmin minimizes the swimmer’s Cost of Transport

(COT) and fmax maximizes its swimming speed. Within this range, lower frequencies are
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Figure 5.8: Comparison between the internal and external dissipation loss during undula-
tory locomotion in varying fluid viscosities. Ratio DI/D between internal DI and total D
dissipation loss as a function of normalized fluid viscosity µ/µ0. Colored lines correspond to
the optimal waveforms (see Fig. 5.7) associated with different normalized swimming speeds
U/Umax, as depicted in the colorbar.

found to be more energy efficient, whereas higher frequencies lead to a faster swimming

speed. The specific values of fmin and fmax are contingent on the swimmer’s operating

point and Basal Metabolic Rate (BMR). As the swimmer increases its frequency, it transi-

tions from the pass-through to the low-pass regime, characterized by a damped curvature

amplitude and shallow body wave. The precise frequency at which this transition occurs is

determined by the system’s intrinsic response times τ and ξ, which, in turn, are defined in

terms of the physical model parameters, as detailed in Tab. 4.1. Generally speaking, the

quicker the swimmer’s response time, the larger the value of fmax and, consequently, the

maximum achievable swimming speed.

This hypothesis can be tested by comparing microswimmers with different undulation

frequencies. For instance, sea urchin sperm exhibit undulation frequencies in the range

of 25-52 Hz [55, 113] when swimming in water, whereas the undulation frequencies of C.

elegans are one order of magnitude smaller 0.2-2.0 Hz [18, 45, 120]. The body length and

bending rigidity of the flagella of different sea urchin sperm have been estimated to be of

the order 30 µm and 5 × 10−22Nm2 [103, 109, 112, 113], resulting in a response time of

τ = 1.62 s. To make a fair comparison, we consider the most viscous environment C. elegans

typically inhabit, which is comparable to that of agar. The drag coefficients of agar have

been estimated by Niebur et al . [101] and Boyle et al . [23]. Using these estimates together

with values for the body length and bending rigidity given in Tab. 6.1 yields a response

time of τ = 48.60 s — an order of magnitude slower than the time scale of sea urchin sperm.

To the best of our knowledge, the viscoelastic response time (relative damping coefficient)
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ξ of sea urchin sperm has not been estimated, but we expect it to be faster than that of C.

elegans due to sea urchin sperm’s faster undulation frequencies.

Regarding the lower frequency limit fmin, our model predicts that its value is contingent

on the swimmer’s BMR. Larger BMR values impose a greater penalty for slow swimming,

resulting in a larger fmin. Therefore, comparing our model to experimental observations of

a microswimmer’s minimum undulation frequency enables us to estimate an upper bound

for the swimmer’s BMR. This process will be demonstrated for C. elegans in Chapter 6.

Concerning the scaling relationship between swimming speed and undulation frequency,

we demonstrated that the frequency range [fmin, fmax] can be divided into intervals. In

the lower interval, the swimming speed scales linearly with the undulation frequency. In

the upper interval, where values are close to fmax, the swimming speed scales sublinear

with the undulation frequency due to power limitations. In this context, power-limited

means that the swimmer’s effective response times a and b are too slow for the actuation

torque to generate a meaningful curvature amplitude. Consequently, the scaling behavior

between swimming speed and undulation frequency allows us to infer whether a swimmer

undulates with a frequency close to fmax or not. For example, Deng et al . [40] measured the

undulation frequency and swimming speed of C. elegans swimming in the water and crawling

in agar. In both media, their data reveals a linear scaling between between swimming

speed and undulation frequency. This suggests that the undulation frequency of C. elegans

is significantly smaller than fmax, i.e. it is not optimized for achieving maximum speed,

a claim we will substantiate in Chapter 6. Interestingly, Deng et al . reported a bimodal

frequency distribution in agar, but a uni-modal distribution was observed in water. A

bimodal distribution suggests a slow and fast gait, whereas a uni-modal distribution suggests

a single gait with a distinct preferred frequency. According to our model, slower frequencies

are more energy-efficient, as they exhibit a smaller COT, making them beneficial for long-

distance travel.

Importantly, microswimmers not only modulate their undulation frequency but also

their waveform. Our model predicts the fastest waveform that maximizes the swimming

speed and the most energy-efficient waveform that minimizes the COT. By continuously

transitioning between these two waveforms a swimmer can either prioritize swimming speed

or energy efficiency. Consequently, these waveforms constrain the plausible values for the

swimmer’s wavelength and curvature amplitudes in a given environment. Thus, we can

test the validity of our model by verifying whether the experimentally observed waveforms

of a swimmer fall within the predicted range. Furthermore, based on whether the mea-

sured waveform aligns more with the fastest or energy-efficient waveform, we can infer the

swimmer’s prioritization, as will be demonstrated for C. elegans in Chapter 6.

To summarize, our model suggests that a swimmer can prioritize swimming speed or
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energy efficiency by modulating either its undulation frequency or its waveform. Thus, we

are faced with a two-dimensional performance space defined by the swimming speed and

the COT and a three-dimensional parameter space encompassing undulation frequency,

wavelength, and curvature amplitude. Consequently, determining which combination of

undulation parameters yields the optimal performance requires multivariate optimization,

which is beyond the scope of this thesis. However, it would be very interesting to investigate

whether frequency or waveform modulation enables a more efficient trade-off between speed

and energy efficiency. Such an investigation could provide insight into whether and why

swimmers choose one modulation strategy over the other.

To compare our model to the established literature, we reference an extensive body of

work that combines flow simulations with evolutionary optimization [61, 62]. This body

of research has explored the locomotion of various organisms from the viewpoint of opti-

mality, including determining the optimal C-start escape of larval fish [53], optimizing the

morphology of anguilliform swimmers [132], and optimizing the actuation torque of slither-

ing snakes and undulating sea urchin sperm [52]. In the latter study, the authors developed

an explicit numerical scheme for a purely elastic Cosserat rod. Consistent with our model,

active deformation is achieved by applying an actuation torque across the length of the rod.

Actuation torque optimization involves five parameters, with four determining the actuation

torque profile across the rod’s length, while the fifth represents the undulation wavelength.

The authors optimized for maximum crawling and swimming speed, respectively, without

taking the organism’s energy expenditure into consideration. In the study of undulating

aquatic animals, such as lamprey, ells, and trouts, the COT is commonly used to estimate

energy efficiency [14, 119, 130]. In these studies, energy expenditure is estimated based

on the power exerted by the animal’s body against the fluid, with internal body friction

not being accounted for. In a recent study, Anastasiadis et al . [8] developed an anguilli-

form bio-inspired robot comprising eight actuator modules to investigate the relationship

between the kinematics of its body and the resulting swimming speed and efficiency. Their

findings indicate that to achieve maximum swimming speed, the robot should use higher

tail amplitude and larger wavelengths. For efficiency, it should use a lower wavelength mod-

erate amplitude, resulting in a slower swimming speed. Thus, consistent with our Cosserat

model, the robot can modulate its waveform to prioritize between speed and efficiency. To

the best of our knowledge, the COT and BMR have so far not been considered for the study

of microswimmers such as sperm or C. elegans. Notably, all of the previously mentioned

studies focused on a static environment. The impact of environmental conditions on the

undulatory locomotion of terrestrial organisms, such as snakes, has been explored by Guo

et al . [58] and Yaqoob et al . [141]. The latter study used a model of coupled discrete vis-

coelastic joints passively driven by the head. In their model, waveform and crawling speed

are contingent on the fine-tuning of physical parameters like stiffness, moment of inertia,

external frictional anisotropy, and internal damping.
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In our model, we demonstrated that the swimmer’s fastest and most efficient waveform is

contingent on the swimmer’s undulation frequency and the fluid’s viscosity. In a static envi-

ronment, the swimmer’s fastest waveform (λmax, Amax) remains relatively unaffected by the

undulation frequency, assuming that the swimmer is not constrained by power limitations.

On the other hand, the most energy-efficient wavelength λopt decreases significantly with

the frequency, exhibiting a concave trend. Meanwhile, the most energy-efficient curvature

amplitude Aopt remains constant. A similar trend for the relationship between wavelength

and frequency has been observed for sea urchin sperm [28, 113]. However, it is important to

acknowledge that our model is not directly applicable to sperm, given that sperm consists

of two distinct parts: the cell body and the flagellum, both connected by a mid-piece often

referred to as the sperm’s neck [49]. In the base region close to the neck, the flagellum

typically has a very large curvature, giving rise to a body wave whose amplitude increases

from head to tail [113]. Thus, a more accurate representation of sperm would require a

model of its cell body that is connected to our Cosserat rod model using the appropriate

boundary conditions, which is beyond the scope of this thesis. Since the primary goal of

sperm is to reach the egg first, we anticipate its undulation frequency and waveform to be

geared toward maximum speed. For C. elegans, there is currently insufficient experimental

data available to conclusively determine whether undulatory gait modulation occurs in a

static environment.

However, there is ample evidence that the frequency and waveform of sperm and C.

elegans are modulated by their physical environment [18, 45, 114, 120, 126]. Most notably,

both sea urchin sperm and C. elegans gradually decrease their undulation frequency in

more viscous fluids. To understand the reason behind this behavior, we compared two

scenarios: one where the swimmer maintains a constant frequency and another where it

continuously adapts its frequency to the fluid viscosity. Notably, both scenarios achieve a

similar swimming speed, while frequency adaptation proves to be significantly more energy-

efficient, making it the superior strategy. Thus, we anticipate undulatory microswimmers to

adapt their frequency in response to changes in fluid viscosity, irrespective of whether they

prioritize speed or energy efficiency. Mammalian sperm would be an ideal model organism

to test this hypothesis, as they must migrate through the numerous environments of the

female reproductive tract, characterized by complex rheologies with varying viscosity [49].

Lastly, imposing a sigmoidal relationship between frequency and fluid viscosity, we ex-

amined how the fluid viscosity influences the swimmer’s fastest and most energy-efficient

waveform. Our model predicts that both waveforms undergo a continuous transition from

low to high viscosity. In the low viscosity regime, internal friction dominates the energy

expenditure, favoring large wavelengths and small curvature amplitudes. Conversely, in the

high viscosity regime, external dissipation dominates, favoring small wavelengths and large

curvature amplitudes. These distinct preferences must be a consequence of the fact that
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internal friction is proportional to the rate of body curvature, while external friction is pro-

portional to the centreline velocity. However, further investigation is needed to understand

why these proportionalities result in the observed optimal waveforms. As the viscosity in-

creases, the waveform transitions from one optimum to the other. Hence, at each viscosity

limit, we expect the fastest and optimal waveform to converge. For the simulations pre-

sented in this chapter, we did not explore high enough fluid viscosities to properly capture

the convergent behavior associated with the external friction-dominated regime. As we

demonstrated, the transition region from internal and external friction dominated can be

determined by comparing the swimmer’s internal to its total dissipation loss. In the next

chapter, we will discuss in more detail how the transition region’s location on the fluid

viscosity scale depends on the physical model parameters.
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Chapter 6

Model Application to C. elegans

Not a sprinter but a casual swimmer

6.1 Overview

In the previous chapter, we discussed the gait modulation and selection of a generalized

undulating microswimmer. Building upon these results, this chapter focuses on the 1mm

long slender nematode C. elegans. As discussed in Section 2.4, multiple studies have demon-

strated that C. elegans adapts its undulation gait in response to changing environmental

conditions, making it an ideal model organism to study gait modulation. Throughout this

chapter, we will colloquially refer to C. elegans as the worm.

To model C. elegans, we must select appropriate physical model parameters, which

are summarized in Tab. 6.1. Backholm et al . [13] estimated the bending rigidity B of C.

elegans by measuring the force-deflection response of anesthetized animals using a three-

point measuring device. By comparing the bending rigidity B and cross-sectional radius

Rmax of worms at different life stages, growing in size, the authors demonstrated that B

is proportional to R4
max. This suggests that the stiffness of the worm’s body is isotropic

and self-similar; that is, it is rotationally symmetric and scales with the worm’s size. This

observation is consistent with the worm’s anatomy described in Section 2.4. Consequently,

the bending rigidity can be expressed as B ∼ EI, where E is the effective Young’s modulus

of the worm’s body material and I ∝ R4
max represents the cross-section’s second moment

of area. We refer to Chapter 3 for a detailed discussion of the material model parameters.

At any life stage, Backholm et al . found that Rmax and B vary across specimens. In adult

worms, which will be the exclusive focus of this study, the bending rigidity B between

specimens can vary by up to one order magnitude, illustrated by the range given in Tab.
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6.1. Thicker worms with larger Rmax are typically found to be more rigid, as B ∝ R4
max.

In an independent study, Fang Yen et al . [45] estimated the bending rigidity B and the

internal damping coefficient B̃ by measuring the relaxation time scale of awake worms

following bending deformation in Newtonian fluids with different viscosities. From these

experiments, the authors calculated an average bending rigidity of B = 9.5 × 10−14 Pam4

for adult worms, which is consistent with the range reported by Backholm. For the internal

damping coefficient, Fang Yen et al . estimated an upper bound of B̃ = 5 × 10−16 Pam4s,

which yields a relative damping coefficient of ξ = 0.005 s. As this chapter will focus on

the experimental data presented by Fang Yen et al ., we adopt their values as our defaults.

For the worm’s cross-sectional radius, we use the average value Rmax = 32 µm of all adult

specimens measured by Backholm et al . [13]. For the body length, we adopt the midpoint

L0 = 1130 µm of the range for adult worms provided by the Wormatlas [5].

Given these values and assuming that the “worm material” is disturbed homogeneous

and uniformly across the worm’s cross-section, we calculate Young’s modulus of E =

0.12MPa. In reality, C. elegans is of cause not made up of a homogeneous material. On

the contrary, it has a complex anatomy, which consists of multiple body parts such as the

cuticle (outer body wall), pseudocolumn, muscles, and organs, all made up of different tissue

types (see Section 2.4). However, the bending rigidity B is independent of these complex-

ities, as it characterizes the response of the worm’s body as a whole. Thus, to simplify

matters, we model the worm as a uniform rod with a circular cross-section. Additionally,

we assume that the internal viscosity η is directly proportional to Young’s modulus E, i.e.

the stiffer the worm, the stronger the damping. Under these assumptions, given the worm’s

cross-sectional radius, we determine can E and η from B and ξ.

The Poisson’s ratio ϱ of C. elegans has been measured by Park et al . [108] by using

piezoresistive cantilevers as force-displacement sensors. The authors estimated a value 0.5,

which we adopt for our model. Note that the majority of materials have a Poisson ratio

between 0 and 0.5, with 0.5 being characteristic of a perfectly incompressible isotropic mate-

rial. As cells and extracellular matrix components are commonly considered incompressible,

the Poisson ratio of most soft biological tissues is very close to 0.5 [57, 133] in line with the

measure by [108] for C. elegans.

Having established values for the worm’s body length L0, cross-sectional radius Rmax,

bending rigidity B, relative damping coefficient ξ and Poisson ratio ϱ, all other model pa-

rameters such as the shear modulus G, shear viscosity ν and drag coefficient ratios can be

determined using the formulas detailed in Tab. 4.1. All relevant physical model parameters

for C. elegans are detailed in Tab. 6.1. The dimensionless model parameters can be deter-

mined from the physical model parameters using the equations detailed in Tab. 4.2. The

values of the dimensionless model parameter for C. elegans are presented in Tab. 6.2. Note
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that Tab. 6.2 does not provide specific values for the system’s effective response times a

and b. This is because their values are contingent on the swimmer’s undulation frequency

and the viscosity of the surrounding fluid environment. Consequently, they need to be

recalculated for different environments and undulation frequencies.

Having determined the values for all relevant dimensionless model parameters, we are

now prepared to model the undulatory locomotion of C. elegans. As we discussed in Section

2.4.2, C. elegans adapts its undulation gait in response to its environment [18, 45, 50, 79,

126]. Until recently, swimming and crawling were considered to be distinct biomechanical

gaits, although Niebur & Erdös already hypothesized that a single underlying circuit gen-

erates both swimming and crawling [102]. Berri et al . [18] and a large body of work that

followed [22, 45, 126] now give a strong indication that the two behaviors are extremes of a

continuous spectrum. Among the experimental studies, Fang Yen et al . [45] conducted the

most comprehensive investigations on C. elegans undulation gait in Newtonian fluids, cov-

ering four orders of magnitude in viscosity. The authors demonstrated that the undulation

frequency and waveform of C. elegans undergo a continuous transition from low to high

fluid viscosity regime. This transition shows similar trends as the transition of the most

energy-efficient gait, predicted for a generic microswimmer in Section 5.3. Therefore, to

assess whether C. elegans gait transition can be deemed optimal, we conduct a quantitative

comparison between our model predictions and Fang-Yen’s experimental data.

Following a similar outline as in Chapter 5, we first explore frequency modulation within

a static, low-viscosity, water-like environment. Subsequently, we analyze the gait transition

of C. elegans in response to varying fluid viscosities. As a preliminary step, we fit our model

parameters to match the experimental data recorded by Fang Yen et al . [45]. Finally, we

compare the experimentally measured waveform of C. elegans against the fastest and most

energy-efficient waveform predicted by our model across the full viscosity range.

6.2 Optimal Gait Transition

This chapter aims to provide an explanation for why C. elegans modulate their undulatory

gait by assessing its performance. It builds upon our findings from Chapter 5, where we

explored gait modulation of a generalized undulating microswimmer within our dimension-

less framework. To set the scene, we start this chapter by presenting the experimental data

from Fang Yen et al . [45], depicted in Fig. 6.1. In their experiments, the authors placed

worms within a narrow wall chamber filled (effectively 2D) with Newtonian viscous fluid.

They systematically increased the fluid’s viscosity from 10−3 to 104.45 Pa s, capturing the

movement of the specimens with a microscope from a top-down perspective. From the re-

sulting image sequences, they reconstructed the worms’ centreline trajectories and showed
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Physical Parameters

Name Range Value SI Unit Source Description

L0 [1110 - 1150] 1130 µm [5] Natural length

Rmax [28 - 35] 32 µm [13] Max. cross-sectional radius

ε - 0.057 - Slenderness parameter

B [3.26 - 30.3]×10−14 9.5× 10−14 Nm2 [13, 45] Bending rigidity

E - 0.12 MPa - Young’s modulus

ϱ - 0.5 - [108] Poisson’s ratio

G - 0.04 MPa - Shear modulus

η - 607 Pa s [45] Extensional viscosity

ξ - 0.005 Pa s [45] Rel. damping coeff.

ν 202 Pa s - Shear viscosity

µ [10−3 - 101] - Pa s - Fluid viscosity

c∥ - 2.05 - - Linear longi. drag coeff.

c⊥ - 3.09 - - Linear transv. drag coeff.

γ∥ - 3.21× 10−9 m2 - Angular longi. drag coeff.

γ⊥ - 12.84× 10−9 m2 - Angular transv. drag coeff.

Table 6.1: Physical model parameters for C. elegans sourced from literature. For a definition
and description of the parameters, please refer to Tab. 4.1. Experimental measurements are
available for the length L0, maximal radius Rmax, bending rigidity B, extensional viscosity
(internal damping coefficient) η, and the Poisson ratio ϱ. All other model parameters can
be calculated from the expression in Tab. 4.1.

Name Definition

Definition

Value Description

p
1

2(1 + ϱ)
1/3 Viscoelastic shear to extension ratio

g
I

AL2
0

0.00020 Geometric ratio

Kc c⊥/c∥ 1.51 Linear drag coefficient ratio

Kγ γ⊥/γ∥ 4 Angular drag coefficient ratio

K∥ γ∥/L2
0c∥ 0.0038 Longitudinal drag coefficient ratio

Table 6.2: Dimensionless model parameters for C. elegans. The dimensionless parameters
are calculated from the physical model parameters in Tab. 6.1 using the equations in Tab.
4.2. The values of the dimensionless effective response times a and b are contingent on the
fluid viscosity µ and undulation frequency f .
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(consistent with Berri et al . [18]) that their body curvature could be accurately described

as a traveling wave across the entire viscosity range. From the body curvature kymograms,

they determined the curvature wave’s amplitude, wavelength, and undulation frequency as a

function of the fluid viscosity, shown in Fig. 6.1A. Notably, the amplitude, wavelength, and

frequency all undergo a continuous transition from the low to the high viscosity regime. To

describe this transition, we fit three sigmoidal functions to the experimental data — one for

the curvature wave amplitude, another for the wavelength, and a third for the undulation

frequency. Each of the sigmoidal functions is defined as follows:

Y (µ) =
Amplitude

1 + eα[log(µ)−log(µip)]
+ Offset (6.1)

Relevant parameters include the sigmoid’s amplitude, slope factor α, inflection point µip,

and offset. All three fits yield similar values for the slope factor α and the inflection point

µip. Thus, we calculate the average inflection point µ̄ip to characterize the transition region

of the undulation parameters. See the vertical dashed black line in Fig. 6.1A. The fit of the

curvature amplitude and wavelength are plotted against the undulation frequency in Fig.

6.1B. Both amplitude and wavelength change linearly with the frequency consistent with

the experimental observation by Berri et al . [18]. The vertical dashed back line represents

the worm’s undulation frequency at the average inflection point in panel A. Notably, this

vertical line coincides with the intersection point of the red and blue curve, suggesting

that amplitude, wavelength, and frequency undergo a simultaneous transition. Lastly, the

worm’s maximum angle of attack is plotted as a function of the fluid viscosity in Fig. 6.1C.

Having presented the experimental data, we start our discussion by focusing on C.

elegans swimming gait in water. In Section 5.2.1, we demonstrated that in a fixed en-

vironment, microswimmers can modulate their undulation frequency to prioritize either

swimming speed or energy efficiency. Moreover, we predicted that the swimmer’s undu-

lation frequency should lie within the range f ∈ [fmin, fmax], where fmin is the frequency

that minimizes its Cost of Transport (COT) (see Eq. 4.10) and fmax is the frequency that

maximizes its swimming speed. Naturally, we want to know where C. elegans undulation

frequency falls within this interval to infer how it balances between energy efficiency and

swimming speed. Water has a viscosity of µ0 = 10−3 Pa s, which corresponds to the lower

viscosity limit in the experimental dataset. Thus, from fits (colored lines) in Fig. 6.1A, we

obtain C. elegans’ characteristic undulation frequency fc = 1.71Hz, wavelength λc = 1.46

and curvature amplitude Ac = 2.94 in water µ0 = 10−3 Pa s. This characteristic frequency

coincides with the peak of the frequency distribution measured by [40] et al . for wild-type

C. elegans swimming in water. Given the fluid’s viscosity µ0, characteristic frequency fc,

and physical model parameters in Tab. 6.1, we determine the worm’s characteristic op-

erating point (ac, bc) in water. To explore why C. elegans undulate at a frequency of

approximately fc = 1.71Hz in water, we simulate undulation experiments within the range
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Figure 6.1: C. elegans gait modulation in Newtonian fluids with varying viscosity sourced
from Fang Yen [45]. (A): Rectangular markers display the measured undulation frequency
f (green), wavelength λ (blue), and curvature amplitude A (red) of C. elegans as a function
of the fluid’s viscosity µ. Both λ and A are normalized by the worm’s body length L0. We fit
a sigmoidal function to the experimental data of each undulation parameter, represented by
the colored lines, characterized by its inflection point and slope factor. The black vertical
dashed line represents the average inflection point µ̄ip of all three sigmoidal fits. (B):
Fitted normalized curvature amplitude A and wavelength λ as a function of the undulation
frequency f . (C): Measured peak angle of attack ψmax as a function of fluid viscosity µ.

f/fc ∈ [10−1, 101]. Independent of the frequency, we assume that the worm maintains its

characteristic waveform (λc, Ac) in water.

The contour plot of the dimensionless normalized swimming speed U∗/U∗
max is depicted

as a function of the worm’s operating point (a, b) in Fig. 6.2A, where U∗
max is the maximum

speed within the given range of a and b. The characteristic operating (ac, bc) of C. elegans

in water is represented by the big dotted marker. This marker demonstrates that C. elegans
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operates in the pass-through regime close to the upper boundary of the low-pass regime,

which is characterized by fast swimming speeds and instantaneous response time to actua-

tion. As explained in Section 5.2.1, when the worm modulates its undulation frequency, its

operating point shifts in a diagonal direction as illustrated by the small dotted markers in

Fig. 6.2A.

For each operating point (frequency), the dimensionless (solid) and the physical swim-

ming speed (dashed) are plotted against the worm’s undulation frequency f in Fig. 6.2B.

For frequencies lower than C. elegans’ characteristic frequency, f ≤ fc = 1.71Hz, C. ele-

gans operates in the pass-through regime, i.e. the dimensionless normalized swimming speed

U∗/U∗
max is approximately one. Consequently, the physical swimming U increases linearly,

as can be seen from Eq. (3.77). For f > fc, C. elegans transitions through the low-pass

regime towards the struggle regime, which results in a damping of the curvature amplitude

and a decrease of U∗. Initially, U∗ decreases at a slower rate than 1/f , i.e. the physical

swimming speed still increases sublinearly because U ∼ fU∗. However, as f increases fur-

ther, C. elegans approaches the struggle regime, and U∗ decreases at a faster rate than 1/f ,

which results in a decrease of U . This explains why the physical swimming speed U peaks

at the frequency fmax = 11Hz represented by the vertical red dashed line.

Notably, for the given model parameters, fmax is significantly larger than the experimen-

tally observed frequency range of C. elegans, which is highlighted by the blue shaded area

in panel B. This discrepancy suggests that the undulation frequency of C. elegans is not

optimized for achieving maximum swimming speed. This hypothesis is supported by the

fact that C. elegans characteristic waveform (λc = 1.46, Ac = 2.94) deviates significantly

from the fastest waveform (λmax ≈ 1.14, Amax ≈ 7.78) predicted by our model (see Fig.

A.2).

As discussed in Section 5.2.1, our model predicts that within the range [fmin, fmax], a

swimmer can increase its undulation frequency to enhance its swimming speed at the cost

of being less energy efficiency and vice versa. Consistent with our previous discussion, we

use the swimmer’s Cost of Transport (COT) as an efficiency metric, referring to Section 4.3

for more details. The normalized Cost of Transport COT/COTc for C. elegans swimming

in water is plotted against f in Fig. 6.2C. Here, COTc is the model worm’s characteristic

COT at frequency fc = 1.71Hz. The frequency fmin that minimizes the worm’s COT is

represented by the vertical yellow dashed line. As discussed in Section 4.3, the value of fmin

is contingent on the organism’s Basal Metabolic Rate (BMR), with a larger BMR resulting

in a higher minimum frequency. The value of fmin as a function of the normalized Basal

Metabolic Rate BMR/Wc is depicted in Fig. 6.2D, where Wc denotes the characteristic ac-

tuation work required during one undulation cycle at frequency fc in water. The BMR acts

as an energy penalty that is inversely proportional to the swimming speed. Consequently,
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Figure 6.2: Frequency modulation of C. elegans in water-like fluid with viscosity µ =
1× 10−3 Pa. (A): Contour plot of the dimensionless normalized swimming speed U∗/U∗

max,
where is the maximum speed U∗

max in specified range of a and b. Big dotted marker rep-
resents the characteristic operating point (ac, bc) of C. elegans, associated with its char-
acteristic undulation frequency fc = 1.71Hz. Small dotted markers illustrate the shift
in C. elegans’ operating point when it modulates its undulation frequency within the
range f/fc ∈ [10−1, 101]. The markers’ color codes for the dimensionless swimming speed
U∗/U∗

max. Regime boundaries are illustrated by blue dashed lines, introduced in Section
4.2. (B): Dimensionless normalized swimming speed U/Umax (solid) and physical swimming
speed U (dashed) per unit body length plotted against f . The red dashed line represents
undulation frequency fmax ≈ 11Hz that achieves the maximum physical swimming speed
Umax. The blue shaded area depicts the range of experimentally observed undulation fre-
quencies of C. elegans [45]. (C): Normalized Cost of Transport, COT/COTc plotted against
f for an exemplary value of the normalized Basal Metabolic Rate of BMR/Wc = 0.5 [82],
where COTc and Wc are the COT and actuation work associated with characteristic oper-
ating point (ac, bc) and frequency fc. The undulation frequency fmin that minimizes the
COT is represented by the yellow dashed line. (D): Optimal frequency fmin plotted against
BMR/Wc = 0.5. The Red dashed line represents the upper bound for C. elegans BMR.
Other dimensionless model parameters are taken from Tab. 4.2.

increasing the BMR incentivizes the worm to swim faster, resulting in a larger fmin value.
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Conversely, if we know a swimmer’s slowest characteristic undulation frequency fmin
c

within a specific environment, we can estimate an upper bound for the BMR from the

inequality fmin
c ≤ fc. Deng et al . [40] reported a unimodal frequency distribution for C.

elegans swimming in water, with its peak value approximately equal to the characteristic

frequency fc = 1.71Hz obtained from the experimental fit presented in Fig. 6.1A. Thus,

we make the simplifying assumption that fmin
c = 1.71Hz, which yields an upper bound of

BMR/Wc = 1.44. This corresponds to a lower bound for the Metabolic Task Equivalent

(MET) of MET = 1.70. This lower bound is below the experimental measure of 3.0 reported

by Laranjeiro et al . [82], who estimated C. elegans’ energy expenditure during rest and

locomotion using a microcalorimeter. Based on Laranjeiro et al .’s estimate BMR/Wc ≈ 0.5,

we infer fmin ≈ 1.20Hz from Fig. 6.2. This value is much closer to C. elegans actual

frequency fc = 1.71Hz than fmax, which suggests that C. elegans undulation frequency

optimizes energy efficiency. However, the experimental measures by [82] need to be taken

with caution, as they do not specifically represent C. elegans’ energy expenditure during

undulatory locomotion but instead capture a general active state comprising a variety of

locomotion patterns.

Having examined C. elegans’ swimming gait in water in more detail, we now focus

on its gait transition across different fluid viscosities. In Section 5.3.1, we hypothesized

that microswimmers lower their undulation frequency in more viscous environments to

accommodate a slower actuation response time. Additionally, we showed that in fluids with

low viscosity, the swimmer’s energetic cost is dominated by internal friction, whereas in

high viscosities, external friction takes over. To test whether this holds true for C. elegans,

we simulate undulation experiments in fluids with varying viscosity µ, spanning the same

range accessed experimentally by Fang et al . [45]. At each µ value, we derive the worm’s

undulation frequency and waveform from the experimental fits presented in Fig. 6.1.

To determine whether internal or external friction is dominant, Fig. 6.3A displays the

ratio DI/D between the internally dissipated energy DI and the total dissipated energy

D during one undulation cycle as a function of µ. Each colored curve corresponds to

a worm with different body stiffness (Young’s modulus) E. All of these curves follow a

sigmoidal trend, consistent with our presentation in Section 5.3. For low µ, the ratio DI/D

converges to one, which implies that the swimmer’s energy loss is dominated by internal

friction. Conversely, as µ increases, external friction becomes more dominant, and DI/D

gradually converges to zero. At intermediate viscosities, both internal and external friction

make a significant contribution to the worm’s energy loss. This intermediate transition

region is characterized by the sigmoid’s inflection point µip, defined as DI/D = 0.5. On

each sigmoid in Fig. 6.3A, µip is represented by a black dot. Notably, as E increases and

the worm becomes stiffer, µip shifts to the right. This is because we choose the internal

viscosity η to be proportional to Young’s modulus E. Consequently, as the worm stiffens,
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internal damping becomes stronger, leading to a greater energy loss due to internal friction.

Thus, higher fluid viscosities are required for fluid dissipation to surpass internal dissipation,

explaining why µip becomes larger.

As mentioned before, the undulation frequency, wavelength, and curvature amplitude

of C. elegans also undergo a continuous “sigmoidal” transition from low to high fluid vis-

cosities, mirroring the behavior of the ratio DI/D. The transition region of the worm’s

undulation parameters is characterized by the average inflection point µ̄ip, calculated from

the sigmoidal fits presented in Fig. 6.1A. For comparison, µ̄ip is depicted by the vertical

black dashed line in Fig. 6.3A. This comparison allows us to fit the model’s Young’s modulus

by aligning inflection point µip (black dot) with the experimental prediction µ̄ip (vertical

dashed line). This fit is based on the premise that the transition from the internal to the

external friction-dominated regime is what triggers the worm’s gait transition. Choosing

an exemplary value of the relative damping coefficient of ξ = 10−2.0 s, we determine the

optimal Young’s modulus to be E = 105.42 Pa, as illustrated in Fig. 6.1C. This value yields a

bending rigidity of B = 2.15×10−13Nm2, which is close to the upper range of the rigidities

reported by Backholm et al . [13] (see Tab. 6.1).

It is important to note that the model’s inflection point µip is influenced not only by

the worm’s stiffness E but also by its relative damping coefficient ξ. Again, this can be

understood from the fact that the internal viscosity η is proportional to ξ. Consequently,

when ξ becomes larger, more energy is lost due to internal dissipation. Therefore, higher

fluid viscosities are required for fluid dissipation to surpass internal dissipation. This is

illustrated in Fig. 6.1B, where the colored curves display the ratio DI/D for different values

of ξ. As predicted, the inflection point µip (black dot) shifts to the right as ξ increases.

Thus, similar to panel A, we can fit the model’s optimal relative damping coefficient ξ by

aligning µip (black dot) with µ̄ip (vertical dashed line). Assuming that E = 105 Pa s, we

determine the optimal relative damping coefficient to be ξ = 10−1.7s, as illustrated in Fig.

6.1D.

To conclude, our results show that the model’s transition point µip is contingent on

Young’s modules E and the relative damping coefficient ξ. To illustrate this, we plot the

logarithmic error between µip and the experimental prediction µ̄ip as a function of E and ξ

in Fig. 6.3E. There exists no single optimal solution for E and ξ that minimizes the error.

Instead, a manifold of equally optimal solutions exists, represented by the red dashed line.

This line has a slope of negative one, i.e. it corresponds to a constant value of the internal

viscosity η. This value can be calculated from the line’s y-intercept, which yields η =

103.35 Pa s. This corresponds to an internal damping coefficient of B̃ = 1.84× 10−15Nm2 s,

which is an order of magnitude larger compared to the experimental value reported by Fang

Yen et al . [45]. Possible reasons for this disparity will be discussed in the discussion section
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Figure 6.3: Simulation of C. elegans’ gait transition across fluid viscosities ranging from
µ ∈ [10−3, 101] Pa s. Physical model parameters are extracted from Tab. 6.1. For each
µ, the undulation frequency f and waveform parameters (λ, A) are determined from the
fits to the experimental data presented in Fig. 6.1. (A): Ratio between internal and total
dissipated energy per undulation cycle, DI/D plotted against µ with fixed relative damping
coefficient ξ = 0.01. The colored curves represent simulations for different values of Young’s
modulus E. The black dots mark each curve’s inflection point µip, defined as DI/D = 0.5.
The black dashed line represents the inflection point µ̄ip predicted from the experimental
data showcased in Fig. 6.1. (B): Ratio DI/D plotted against µ for fixed Young’s modulus
E = 1 × 105 Pa. Each colored curve represents the simulation results for different values
of the relative damping coefficients ξ. (C): Young’s modulus E of each sigmoidal curve in
panel A plotted against its inflection point µip. Again, the black dashed line represents
the experimental prediction µ̄ip. (D): Relative damping coefficient ξ of each sigmoidal
curve in panel B plotted against its inflection point µip. (E): Logarithmic error between
experimentally predicted and simulated inflection point log(µip)− log(µ̄ip) as a function of
E and ξ. (F): Ratio DI/D plotted against µ for an specific choice of material parameters
E = 105.2 Pa and ξ = 10−1.8 s that minimize logarithmic error shown in panel E.
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at the end of this chapter. To validate our method, Fig. 6.3F showcases the ratio DI/D as

a function of µ for an exemplary optimal solution of E and ξ represented by the red star

in panel E. We confirm that the model’s inflection point µip (black dot) closely aligns with

the experimental prediction (vertical dashed line), as desired.

Naturally, the question arises: Which of the optimal solutions for E and ξ should we

choose? Typically, measuring the bending rigidity of a material is easier than determining its

damping coefficient. The former only requires force-deflection experiments, while the latter

requires a dynamical mechanical analysis, e.g. by varying deflection speeds [13]. Therefore,

we select the experimental estimate B = 9.5 × 10−14N2m by Fang Yen et al . [45] as our

default value which yields a Young’s modulus of E = 105.08 Pa. Based on our analysis in

Fig. 6.3E, we assume that η = 103.35 Pa s , which yields a relative damping coefficient of

ξ = 10−1.73 s.

Given those values, we examine how the fluid viscosity influences the fastest and the most

energy-efficient waveform of C. elegans. Following the same approach outlined in Section

5.3, we simulate undulation experiments covering the same viscosity range experimentally

probed by Fang Yen et al . [45]. For each µ value within this range, we systematically vary

the preferred undulation wavelength λ0 and curvature amplitude A0, covering the entire

spectrum of plausible waveforms. Within this spectrum, we identify the worm’s fastest

waveform (λmax, Amax) and its optimal waveform (λopt, Aopt) following the same approach

as in Fig. 5.5. The optimal waveform is defined as the waveform that minimizes the worm’s

COT while maintaining a constant normalized swimming speed U/Umax. Here, Umax denotes

the worm’s maximum swimming speed in a given fluid environment. To analyse the trade-off

between energy efficiency and swimming speed, we determine the worm’s optimal waveform

for normalized swimming speeds within the range U/Umax ∈ [0.3, 0.9].

To compare our model to experimental data by Fang Yen et al . [45], Fig. 6.4A displays

the fastest wavelength λmax (solid black), the optimal wavelength λopt (red band), and

the experimental fit (dashed black). The colored curves within the red band represent

different values of the normalized swimming U/Umax, illustrated by the colorbar at the

bottom right. Notably, the band of optimal wavelengths is fairly narrow, which implies that

λopt is approximately independent of the worm’s swimming speed. The λopt band closely

matches the fit of the experimental data, exhibiting a sigmoidal transition as µ increases. In

contrast, the fastest wavelength λmax does not align well with the experimental data, being

significantly smaller in the low viscosity regime and showing only a slight decrease in more

viscous fluids. This suggests that C. elegans’ waveform is optimized for energy efficiency

and not maximum speed.

This hypothesis is supported by Fig. 6.4B, which shows the fastest curvature amplitude

Amax (solid black), optimal amplitude Aopt (red band), and the experimental fit (dashed
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black). Notably, the band of Aopt is significantly wider compared to that of λopt. Hence,

across the entire µ range, our model predicts that C. elegans can modulate its swimming

speed most efficiently by altering its curvature amplitude while maintaining a relatively

constant wavelength. Comparing the experimental fit to Aopt, we find that C. elegans

swims at a speed well below Umax, ranging from U/Umax ∈ [0.3, 0.6] across the entire µ

range. The increase in normalized swimming speed for high µ might be an attempt by C.

elegans to compensate for the decrease in physical swimming speed caused by the lower

undulation frequencies in more viscous fluids.

In Fig. 6.4C, we compare the worm’s maximum angle attack ψmax for both the fastest

(solid black) and the optimal waveform (red band) with the experimental data (black

rectangles). Consistent with panel B, the experimental measures fall within the band

of optimal waveforms, corresponding to normalized swimming speed within the range of

U/Umax ∈ [0.3.0.65]. Furthermore, their values range from 45◦ to 55◦ which is significantly

smaller than ψmax of the fastest waveform, which is larger than 90◦ across the entire µ

range. We stress that the maximum angle of attack ψmax is not a good measure, and the

average angle of attack ψ̄ across the worm’s body should be used instead. This is because

the worm’s net propulsion force is equivalent to the sum of propulsion forces generated by

each individual body segment. Thus, to achieve maximum swimming speed, the average

angle of attack must be close to the predicted optimum of 45◦ and not the maximum angle

of attack. This can be seen in Fig. 6.4D, which shows the model worm’s average angle

of attack ψ̄ for both the fastest (solid black) and the optimal waveform (red band). The

average angle of attack ψ̄ of the fastest waveform is approximately 50◦, close to the theoret-

ically predicted optimum. For slower swimming speeds within range U/Umax ∈ [0.3, 0.65],

ψ̄ falls within the range of 20◦ to 35◦. This implies that C. elegans do not modulate their

waveform to maintain an optimal angle of attack. Instead, they opt for a shallower body

wave, characterized by smaller curvature amplitude and average angle of attack, to be more

energy-efficient.

To illustrate the trade-off between swimming speed and energy efficiency, Fig. 6.4E

displays the worm’s normalized Cost of Transport COTopt/COTmax as a function of µ. Here,

COTopt and COTmax represent the COT of the optimal and fastest waveform, respectively.

Consistent with our discussion in Section 5.3.2, we find that the worm can opt for a waveform

with a lower speed to reduce its COT. Note that the vertical gaps between the colored lines

in Fig. 6.4E become smaller as the swimming speed decreases, which implies that efficiency

gain diminishes. For speeds smaller than U/Umax = 0.3 (yellow curve), our model predicts

the efficiency gain to become negligible. Thus, there is no incentive for C. elegans to swim

at a lower speed, which is consistent with the experimental observation.

Unfortunately, Fang-Yen et al . [45] did not measure the swimming speed of C. elegans.
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However, there are two independent studies that measured the swimming speed of C. ele-

gans in the low and intermediate viscosity regime [50, 126] under comparable experimental

conditions. We refer to Appendix A.4.2 for a more detailed discussion. We conclude this

chapter with a summary and critical discussion of the presented results.

6.3 Discussion

In this chapter, we assessed the performance of planar undulation gait C. elegans by com-

paring available experimental data against our model prediction. First, we focused on C.

elegans swimming gait in water. Our specific objectives were twofold: firstly, to determine

the operating regime of C. elegans, and secondly, to discern whether the undulation fre-

quency of C. elegans is geared towards achieving maximum speed or being energy efficient.

Using the available experimental data of the biomechanical properties of C. elegans, such as

body length, cross-sectional radius, bending rigidity, internal damping coefficient, Poisson’s

ratio, and characteristic undulation frequency, we demonstrated that C. elegans operates in

the pass-through regime close to the upper boundary to the low-pass regime. Moreover, its

operating point is far to the left of the vertical part of the boundary pass-through regime.

This implies that C. elegans body stiffness has evolved to facilitate undulatory locomotion

in a more viscous environment than water. This is not surprising as C. elegans can be

commonly found in moist soil, which is typically more viscous than water.

Using our model, we modulated C. elegans’s undulation frequency in water establishing a

lower bound fmin ≈ 1.2Hz and upper bound fmax ≈ 11.0Hz. To determine the lower bound,

we used the estimate for the normalized Basal Metabolic Rate (BMR) BMR/Wc ≈ 0.5 from

Laranjeiro et al . [82]. By comparing C. elegans characteristic frequency fc = 1.71Hz to

the values of the lower and upper bound, we conclude that C. elegans prioritizes energy

efficiency rather than speed. We seek to understand the robustness of these results with

respect to variations in the physical model parameters. The upper bound fmax is expected

to be insensitive to changes in the worm’s bending rigidity, cross-sectional radius, and body

length. This is because changes in these parameters result in a horizontal shift of the worm’s

operating point, which is far to the left of the vertical boundary between the pass-through

and low-pass regime. However, fmax will be sensitive to changes in the worm’s relative

damping coefficient ξ, with larger ξ values causing an upward shift of the worm’s operating

point toward the low-pass regime. Nevertheless, given that fmax only exhibits a logarithmic

dependence on ξ, we are confident that fc ≪ fmax.

As we discussed in Section 5.2.1, the lower bound fmin is contingent on the BMR, which

is assumed to be a constant in our model. However, Laranjeiro et al . [82] showed that

the BMR of demobilized worms is significantly smaller in a liquid environment (M9 buffer
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Figure 6.4: Comparison of C. elegans’ gait transition with model predictions, assessing
optimality. Physical model parameters are taken from Tab. 6.1. In all panels, the fastest
waveform (λmax, Amax) is depicted by the solid black line, while the red band denotes the
range of the most energy-efficient waveform (λopt, Aopt), referred to as optimal. Colored
curves within the red band represent the optimal waveform for different values of the normal-
ized swimming speed U/Umax, as indicated by the bottom colorbar. Here, Umax corresponds
to the maximum swimming speed associated with the fastest waveform (λmax, Amax). (A):
Comparison of the fastest wavelength λmax (black solid) and optimal wavelength λopt (red
band) to the experimentally measured waveform (black dashed). (B): Comparison of fastest
curvature amplitude λmax (black solid) and the optimal curvature amplitude λopt (red band)
to the experimentally measured curvature amplitude (black dashed). (C): Comparison of
the maximum angle of attack ψmax of the fastest (black solid) and optimal waveform (red
band) to the experimentally measured maximum of angle attack (black dashed). (D): Av-
erage angle of attack of the fastest (black solid) and optimal waveform (red band) plotted
against µ. (E): Ratio COT/COTmax between Cost of Transport associated with optimal
waveform and fastest waveform (red band), plotted against µ.
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solution) than on a solid substrate (agar). The authors argued that this discrepancy could

be due to the differences in oxygen availability in liquid versus agar. To integrate the

experimental estimate for the BMR into our model, we need to know the ratio between

energy cost during undulatory locomotion and at rest, quantified by the MET. Given the

MET, we can infer the worm’s normalized dimensionless Basal Metabolic Rate, denoted as

BMR/Wc, whereWc is the actuation work required during one undulation cycle. Laranjeiro

et al . measured the energy cost of C. elegans in a generalized active state, encompassing

a variety of locomotion patterns, including undulatory locomotion. Consequently, their

measure is not directly applicable to our model but serves as a valuable reference point.

Hur et al . [69] developed a highly sensitive, bio-compatible calorimetric platform en-

abling time-resolved metabolic measurements and simultaneous optical imaging of indi-

vidual worms. Hence, we envision the following experiment: measure the time-resolved

metabolic activity of single worms in fluids with varying viscosities, covering the same

range explored by Fang Yen et al . [45]. Conduct experiments with immobilized animals

to test whether the BMR remains constant irrespective of the fluid’s viscosity. Conduct

experiments with free-moving animals and identify time epochs in which the worm dis-

plays planar undulatory locomotion. Using these epochs, estimate the MET for undulatory

locomotion as a function of the fluid’s viscosity. Those measures would allow us to de-

rive a lower bound for the swimming speed, undulation frequency, and waveforms within a

specified environment, which can be compared to available experimental data.

This brings us to the second part of our discussion, where we discuss our analysis of

the continuous gait transition exhibited by C. elegans when exposed to more viscous fluid

environments. As we increase the fluid viscosity, our model displays a transition from a

regime where the worm’s energy cost is dominated by internal friction to a regime where

external friction takes precedence, consistent with the observation by Fang Yen et al . [45].

As we outlined in Section 5.3.2 of the previous chapter, this transition is characterized by

the ratio between energy loss due to internal and external (fluid) dissipation, which exhibits

a sigmoidal trend. This sigmoidal trend is defined by its inflection point and slope factor,

which are mainly determined by the internal viscosity η. This stems from the fact that

internal dissipation is directly proportional to η, while external dissipation is proportional

to µ. Consequently, it is the ratio between η and µ that determines whether internal

or external dissipation dominates in a given fluid environment. Therefore, we expect our

results to be robust irrespective of the type of model that is used to describe the viscoelastic

properties of the worm’s passive body material and the fluid-structure interaction.

However, the model details will influence the shape of the most efficient waveform that

minimizes the worm’s COT. Particularly in low-viscosity fluids where internal friction domi-

nates, we expect the shape of the most efficient waveform to be influenced by the viscoelastic
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properties of the worm material. Conversely, in high-viscosity fluids, where external fric-

tion dominates, we expect it to depend on the details of the fluid-structure interaction

model. Therefore, our model details will likely influence the transition range of the most

efficient wavelength and curvature amplitude from low to high fluid viscosities. However,

a systematic exploration of alternative models, extending beyond the simplicity of a sim-

ple homogeneous Kelvin-Voigt material combined with resistive-force theory, is beyond the

scope of this thesis. In Chapter 7, we discuss potential improvements over resistive-force

theory, including considerations such as slender body theory and regularized Stokes flow

[36, 72].

Nonetheless, despite our model’s simplicity, it predicts an optimal waveform that dis-

plays a sigmoidal transition, showing good agreement with experimental observations. By

fitting the physical model parameters to the experimental data, we obtain an optimal value

for the worm’s internal viscosity η = 2.24 × 103 Pa s. Assuming a circular cross-section

with radius Rmax = 32 µm made of homogeneous worm material, this value translates to an

internal damping coefficient of B̃ = 2.00 × 10−15Nm2 s. This value for B̃ is a factor four

larger compared to the upper bound 5× 10−16Nm2 s predicted by Fang Yen et al . [45].

In [45], the authors used a simplified one-dimensional inextensible rod equation to de-

scribe the worm’s body, which could explain why they predicted a different value for B̃.

Their equation can be considered as the leading-order approximation in the limit of small

body wave amplitudes. Specifically, it neglects the internal tension generated by the worm’s

passive body material and assumes the centreline tangent to be equivalent to the swimming

direction [83]. However, in general, C. elegans body wave amplitude cannot be assumed to

be small relative to its body length [18]. To test this assumption, we could fit our model to

the experimental data from Fang Yen et al .’s deflection relaxation time scale experiments

and check whether this procedure yields an internal damping coefficient consistent with our

model prediction. This would necessitate simulating deflection release experiments clamp-

ing the worm at one end while applying an external force on the other, which is beyond the

scope of this thesis.

To conclude, our study suggests that undulatory gait modulation of C. elegans in re-

sponse to varying environmental conditions is primarily driven by energy considerations

rather than swimming speed. We propose two key mechanisms to support this hypothe-

sis. Firstly, we propose that C. elegans lower their undulation frequency in more viscous

environments to align their actuation time scale (undulation frequency) with their body’s

response time, facilitating more energy-efficient swimming. Secondly, we propose that it

modulates its waveform to maximize energy efficiency, depending on whether its energy

cost is dominated by internal or external friction. However, these results are based on sim-

plifying assumptions. We assume that internal losses can be effectively described in terms
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of a viscoelastic material. Yet, it is evident that there are additional sources of internal

friction within the worm’s body. For example, the worm’s body wall muscles, commonly

modeled as a spring-damper system [23, 42, 71], contribute to internal friction during con-

traction and relaxation processes. Furthermore, the movement of fluids within the worm’s

body, such as circulation or flow within the pseudocolumn, will generate internal friction.

The impact of these additional energy losses on our results depends on their relative magni-

tude and whether their contribution is affected by the gait transition. Therefore, while our

findings appear promising, it is necessary to quantify and incorporate these complexities, if

necessary, to rigorously test the validity of our hypothesis.
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Chapter 7

Conclusion and Outlook

This chapter summarizes the findings of this thesis (Section 7.1) and subsequently provides

a critical discussion with an indication of future research perspective (Section 7.2)

7.1 Conclusion

This research aimed to provide insight into the underlying reasons that govern gait selec-

tion and modulation in slender limbless undulating microswimmers. To achieve this, we

developed a biomechanical microswimmer model based on Cosserat rod theory. Through

numerical simulations of our model, we predict that gait modulation enables a microswim-

mer to prioritize between speed and energy efficiency. Based on the model swimmer’s

biomechanical properties and Basal Metabolic Rate, we derive a plausible range of undu-

lation frequencies, swimming speed, and waveforms. Within this range, the lower limit

represents the most efficient undulation gait, whereas the upper limit achieves maximum

swimming speed, highlighting a continuous trade-off between speed and efficiency. Conse-

quently, by comparing the model and experiment, we can infer whether a microswimmer

selects an undulation gait that favors efficiency, speed, or a balance between the two. Lever-

aging this insight, we conducted a quantitative comparison between our model and available

experimental data on C. elegans, leading to the following hypotheses:

1. C. elegans swimming gait optimizes for energy efficiency and not for swimming speed.

2. C. elegans continuous gait transition from low to high fluid viscosities optimizes for

energy efficiency.

(a) In low viscosities, internal friction dominates the worm’s energy cost, which

makes a long wavelength and small curvature amplitude more efficient.

146



7. CONCLUSION AND OUTLOOK 7.1 Conclusion

(b) In high viscosities, external friction dominates the worm’s energy cost, which

makes a short wavelength and larger curvature amplitude more efficient.

From a modeling perspective, two notable observations can be made: Firstly, to bound

the undulation parameters from below, the Basal Metabolic Rate must be included as

an additional energy cost to the model, as it punishes excessively slow swimming speeds.

Secondly, the ratio between internal viscosity and fluid viscosity determines whether the

swimmer’s energy cost is dominated by internal friction or external friction. Consequently,

the value of the internal viscosity determines the transition region of the gait parameters.

Using this insight, we predict a value of B̃ = 2.00 × 10−15N2ms for the internal damping

coefficient of C. elegans’ body material.

While this study primarily focused on the undulatory locomotion of slender microswim-

mers, the concepts discussed could apply more broadly to other swimming organisms. Re-

gardless of the organism of interest, the study of gait optimality requires the definition

of objectives and performance metrics. In this thesis, we defined performance based on

two primary objectives: speed and energy efficiency. In many instances, determining an

organism’s locomotion speed is easier than its energy expenditure. In the special case of

swimming gaits, the locomotion speed can be determined without explicitly modeling the

biomechanics of the swimmer’s body, as we outlined in Section 2.1. Moreover, if the swim-

mer’s shape sequence is known, then its swimming speed can, in principle, be predicted

with very high accuracy by solving the Navier-Stokes equation. In contrast, estimating the

swimmer’s energy expenditure requires a biomechanical representation of its body, which

can include arbitrary levels of complexity, ranging from basic to highly detailed models.

Hence, modeling the microswimmer biomechanics and estimating its energy expenditure

during locomotion emerged as one of the primary challenges in this work. It was not only

challenging from a modeling standpoint but also conceptually. Thus, to convey the concep-

tual insights gained from this research, we revisit our car analogy one last time.

Imagine Jon and Jen who are driving from Leeds to the Yorkshire Dales to go for a long

walk in the countryside. They make a short stop on top of the Buttertubs Pass, offering a

breathtaking view of the surrounding dales and valleys. Jen breaks the silence, turning to

Jon, who is at the wheel. ”Jon, can you tell me how much energy we spent driving this far”?

After thinking for a while, Jon responds, ”Certainly. I can check the fuel gauge. We filled

the tank before leaving, and now it’s half empty; this means we’ve used 25 liters so far. The

energy we spend must be equal to the chemical energy stored in this amount of fuel,” and he

starts his calculation. Jen, who is an expert on animal locomotion, replies. ”That’s a great

idea, Jon, but I think there is another way, which involves the friction forces at play here.

Let’s say I account for the friction between the car’s exterior and the air, the friction at the

contact between wheels and road, the internal friction between all the moving parts in the
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engine, and the friction created by the brakes — what if I add up all the energy the car

lost due to these friction forces since we left the petrol station in Leeds?” After a moment

of contemplation, Jon says: ”Aha, then you must get the same figure as me because energy

must be conserved. ”Exactly!” affirms Jen, and she starts her own calculation.

Now, do Jon and Jen’s calculations genuinely yield the same figure for the car’s energy

expenditure? Unfortunately, the answer is no. This is because friction is everywhere,

and in most practical cases, it is impossible to account for all sources of friction within a

system. This is especially true for biological systems due to the inherent complexity of their

structural components. So, a better question to ask is: How close will Jen’s figure be to

that of Jon? The answer to this question depends on two factors. Firstly, has Jen identified

all relevant sources of friction within the system? Relevant sources are those responsible

for the bulk of the energy loss. Secondly, how accurate is her model to estimate the energy

loss associated with these sources?

Unfortunately, biological organisms do not have a fuel gauge, making it more challenging

to assess their energy budget. In this thesis, we adopted Jen’s approach to estimate the

energy expenditure of a slender undulating microswimmer immersed in a Newtonian fluid

during undulatory locomotion, specifically focusing on the model organism C. elegans. Like

Jen, we should ask ourselves two questions. Did we identify the most relevant sources of

friction contributing to the swimmer’s energy cost, and how accurately does our model

describe them? In our model, we included two sources of friction that contribute to the

swimmer’s energy expenditure: external friction with the surrounding fluid and internal

friction caused by the deformations of the swimmer’s passive body. To estimate the external

friction, we used resistive-force theory (RFT) to describe the fluid-body interaction. To

estimate the internal friction, we modeled the swimmer’s body as a homogeneous linear

viscoelastic rod. These are, of course, both simplifying assumptions.

Nevertheless, despite its simplicity, our model was able to produce realistic undulatory

swimming across a wide range of scenarios, providing insights into the underlying reasons for

gait selection and modulation of undulating microswimmers. Importantly, it demonstrates

how the balance between internal body friction and external friction with the surrounding

fluid shapes gait optimality. However, there is still a need for refinements and extensions

to our model, which will be discussed in the next section.

7.2 Outlook

There are many possible directions to apply and refine the microswimmer model presented

and characterized in this thesis. First, we are going to discuss possible applications that do
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not require modifications to the current version of the model. Subsequently, we motivate

and detail possible model refinements and extensions.

During our exploration of gait modulation in Chapter 5, we showed that a swimmer can

prioritize between speed and energy efficiency by modulating its frequency and waveform.

However, we did not explore which modulation, either frequency or waveform, enables

a more efficient trade-off. To explore this question, we can determine the paths in the

three-dimensional parameter space spanned by the undulation frequency, wavelength, and

curvature amplitude that yield the most efficient trade-off between speed and energy effi-

ciency. Subsequently, we can examine whether microswimmers modulate their undulation

gait along this optimal path in static environments. Unfortunately, the experimental data

on C. elegans gait modulation in a given context is very limited [40, 70]. It would be worth-

while to investigate whether C. elegans have distinct undulation gears that either prioritize

speed or efficiency.

So far, we have assumed that curvature body waves can be described as sinusoidal waves

traveling with constant amplitude and wavelength. However, multiple studies have shown

that a swimmer’s body curvature during undulatory locomotion cannot always be accurately

described by a sinusoidal wave [70, 106, 124]. For instance, studies have demonstrated that

the amplitude of C. elegans’ curvature wave decreases from head to tail [18, 22, 45, 126].

It is unclear whether this asymmetry solely results from its body anatomy, considering

that C. elegans has stronger head-neck muscles [6] compared to the posterior part of their

body, or if it has a functional purpose. Using our model, we compare the performance

between gaits with and without decreasing curvature amplitude. Alternatively, a more

general approach involves parameterizing the spatial profile of the actuation torque using

a finite set of parameters, allowing for a diversity of waveforms [52, 53]. Optimizing those

parameters with respect to a loss function that is defined in terms of the swimmer’s speed,

energy efficiency, and other objectives would allow for a more rigorous exploration of gait

optimality, moving beyond the constraints of a specific waveform model. Such an approach

would allow us to predict whether the optimal waveform demonstrates a smooth transition

when the weights of the competing objectives in the loss function are varied.

Furthermore, in this thesis, we exclusively focused on planar undulatory locomotion.

However, as we discussed in Section 2.4, C. elegans display a broad range of locomotion

patterns such as reversals [39, 56], turning for steering [27, 106, 134], rolling maneuvers to

3D reorientation, [20], coiling behavior [70, 105]. Given that our model formulation allows

for deformation in a three-dimensional, it is well suited to explore these locomotion patterns

from the viewpoint of optimality. A promising starting point would be the turn maneu-

vers, as their objective can be clearly defined in terms of turning angle. We have already

demonstrated that our model is capable of generating turns when actuated according to the
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piecewise sinusoidal linear curvature model proposed by Padmanabhan et al . [106]. How-

ever, more work is required to compare the performance of different turn maneuvers based

on their energy efficiency. For a more comprehensive approach, we could drive our model

with an actuation torque that represents body curvatures constructed through superposi-

tions of eigenworms. Eigenworms refer to the principle components of the worm’s shape

space, typically calculated from large datasets. The eigenworms hold particular significance

as different locomotion maneuvers can be associated with changes in the principle eigen-

worms, which make up the worm’s current posture [70, 124]. Such an approach could enable

us to infer the actuation patterns associated with distinct locomotion patterns, providing

insights that could be valuable for neuromuscular modeling.

Having outlined potential future applications of our model, we conclude by discussing

some of its limitations and propose possible refinements and extensions. One such limitation

lies in our use of resistive-force theory (RFT) to describe the fluid-body interaction. While

RFT provides a useful framework for approximating hydrodynamic forces and torques that

act on the swimmer’s body, it assumes that each body segment can be treated independently.

However, whenever a body segment moves or rotates, then it sets off a fluid flow that imparts

hydrodynamic stresses on all other segments and vice versa. This non-local coupling leads

to corrections in the fluid drag force experienced by each segment and can be accounted for

by more sophisticated theories such as slender-body theory (SBT) and regularized Stokes

flow (RSF) [35, 36, 104].

SBT was initially developed by Lighthill [86] and Johnson [72] in the 1970s to describe

the Stokes flow around an active, curved, slender body. Almost four decades later, Koens

& Lauga [78] revisited this problem. They expanded the exact but implicit flow solution

provided by the boundary integral method [142] in orders of the rod’s slenderness param-

eter ε and showed that it contains Johnson’s SBT. Following the same approach, Garg &

Kumar [51] extended Koens & Lauga’s results to the more general case of a Cosserat rod.

In SBT, the fluid drag force that acts on a particular body segment is defined in terms

of a convolution integral of the body’s centreline velocity along its length. For each body

segment, the convolution kernel is contingent on the swimmer’s relative body shape. Con-

sequently, the kernel must be recalculated for each segment anew. Nonetheless, because

the relationship between fluid drag line distribution and centreline velocity is linear, it can

be expressed as a matrix-vector multiplication in discretized space. Thus, in principle, it

can be directly incorporated into the discretized weak form of our model equations, yield-

ing a monolithic scheme that includes SBT. We have already demonstrated the viability of

this approach. However, as the SBT matrix is contingent on the swimmer’s body shape,

it needs to be recalculated at every time step, which is computationally very demanding.

This makes large parameter sweeps unfeasible, necessitating further refinement. However,

for precise quantitative predictions of swimming speed and energy expenditure, an accurate
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fluid dynamics model is essential. This is especially true in the regime where the swimmer’s

energy cost is dominated by external friction.

Beyond the fluid dynamics model, there is a lot of opportunity for improving the biome-

chanical model used to describe the swimmer’s body. So far, our model only considers

the internal losses due to the viscoelastic properties of the swimmer’s passive body mate-

rial. However, in microswimmers, local bending is achieved through the contractile forces

generated by molecular motors or muscles, respectively. These continuous contraction-

relaxation processes generate friction, which contributes to the organism’s internal energy

loss. Muscles are often represented as spring-damper systems [23, 42, 59, 131], which exhibit

dissipative behavior. Hence, the dissipative energy within the muscles can be calculated

from the muscle model’s equations and subsequently incorporated into our model. This

requires combining our Cosserat rod model with muscle units responsible for the generation

of the actuation torque along the worm’s body. A model of this nature has already been

introduced in Denham et al . [41, 42], providing a solid foundation for further research.

However, for a consistent description, it is crucial to understand the relationship between

the contractile muscle forces and resulting effective actuation. This relationship must be

grounded in the mechanical properties of the worm’s body to ensure accurate scaling of the

contractile muscle and friction forces. This highlights a disadvantage of rod models as they

do not allow for the direct integration of contractile muscle forces. This is because rods are

composed of rigid cross-sections, which can not be locally deformed by muscle forces. A

direct integration of muscle forces would require a 3D continuum model of the swimmer’s

body, which would be computationally very expensive, as it does not take advantage of

the worm’s slender body geometry. However, it would allow us to explore how contractile

muscles achieve local bending.

To conclude, we note that this thesis involved simulating tens of thousands of undulation

experiments, made possible by the computational efficiency of our model. This efficiency

is attributed to the simplicity (locality) of our hydrodynamic model (RFT) and the one-

dimensional parameterization of the swimmer’s body in terms of a Cosserat rod. Hence, we

believe that rod models have their merit by being computationally efficient while captur-

ing essential features of undulatory locomotion. Nonetheless, exploring the impact of the

outlined refinements and extensions to our model presents an exciting outlook for future

research.
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Appendix A

Appendix

A.1 Background

A.1.1 Response Time to Hydrodynamic Stress

From the swimmer’s linear equation of motion Eq. (2.8), we derive the scaling relation

MU

τ
∼ µUL0, (A.1)

where M is the swimmer’s mass, U its swimming speed, tau is characteristic response time

to actuation, µ the fluid viscosity and L0 the swimmer’s body length. The magnitude of the

hydrodynamic force on the right-hand side of Eq. (A.1) can be estimated as F ∼ σL2
0. Here,

σ represents the fluid stress tensor, which is of the magnitude of σ ∼ µU/L0 since U/L0 is

the relevant shear rate in the fluid. Solving Eq. (A.1) for τ yields τ ∼ MµL0. Thus, the

time scale ratios between the swimmer’s response τ and swimming time scale τS ∼ L0/U is

given by
τ

τS
∼ MU

µL2
0

=
ρS
ρ
Re, (A.2)

where we used that M ∼ ρSL
3
0 and Re = ρL0U/µ. The scale ratio between τ and the gait

(deformation) time scale T = 1/f is given by

τ

T
∼ M

µL0T
=
ρS
ρ
Ref , (A.3)

where we again used that M ∼ ρSL
3
0 and that Ref = ρL2

0f/µ. Similar equations for

the swimmer’s response time to hydrodynamic torques can be derived from the swimmer’s

angular momentum equation.
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A.2 Model formulation

A.2.1 Derivation of Energetic Terms

Here, we present a derivation of the relevant energetic terms in our model directly from the

equations of motion introduced in Chapter 3 given by

0 = fF + ∂sN + ∂sFA, (A.4)

0 = lF + ∂sr ×N + ∂sM + ∂sLA. (A.5)

Multiplying the linear balance equation (A.4) by the centreline velocity u and integrating

over domain of the body coordinate s yields∫ L0

0
fF · u ds+

∫ L0

0
(∂sN) · u ds+

∫ L0

0
fA · u ds = 0, (A.6)

where we used that fA = ∂sFA. For the remainder, we will suppress the integral boundaries

0 and L0 for brevity. The first and last integrals contribute to the fluid dissipation rate and

the mechanical work done by the actuation force, respectively. Using partial integration on

the second integral, the above equation can be written as∫
fF · u ds−

∫
N · ∂su ds+

∫
fM · u = 0 ds, (A.7)

where we used that the internal force resultant N is zero at the boundaries as discussed in

Section 3.4.1.

The arc-length derivative of the centreline velocity u can be expressed in terms of the

shear vector σ̄ as follows

∂su = ∂s∂tr (A.8)

= ∂tQ
TQ∂sr (A.9)

=
(
∂tQ

T
)
Q∂sr +QT∂tQ∂sr (A.10)

= ω × ∂sr +QT∂tσ̄ (A.11)

where we used that QTQ = 1, [ω]× =
(
∂tQ

T
)
Q and that ∂tσ̄ = ∂tQ∂sr. Substituting into
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the second term in Eq. (A.7) yields∫
N · ∂su =

∫
N ·

(
ω × ∂sr +QT∂tσ̄

)
ds,

=

∫
N · (ω × ∂sr) ds+

∫
N ·QT∂tσ̄ ds,

=

∫
N · (ω × ∂sr) ds+

∫
N̄ · ∂tσ̄ ds,

=

∫
N · (ω × ∂sr) ds+

∫
∂tσ̄ · S σ̄ ds+

∫
∂tσ̄ · S̃ ∂tσ̄ ds.

Substituting back into Eq. (A.7) yields∫
fF ·u ds−

∫
N ·(ω × ∂sr) ds−

∫
∂tσ̄ ·S σ̄ ds−

∫
∂tσ̄ ·S̃ ∂tσ̄ ds+

∫
fA ·u ds = 0. (A.12)

Taking the scalar product of the angular balance equation (A.5) with the angular velocity

w and integrating over the domain of s yields∫
lF · ω ds+

∫
(∂sr ×N) · ω ds−

∫
M · ∂sω ds+

∫
lA · ω ds = 0, (A.13)

we used that lA = ∂sLA and that the internal torque resultant M is zero at the boundaries

to move the derivative onto the angular velocity in the third integral. Using that ∂sω =

(∂tκ+ κ× ω), the third integral in the above equation can be written as∫
M · ∂sω ds =

∫
M · (∂tκ+ κ× ω) ds,

=

∫
M · ∂tκ ds+

∫
M · (κ× ω) ds,

=

∫
M · ∂tQT κ̄ ds+

∫
M · (κ× ω) ds,

=

∫
M ·

(
∂tQ

T
)
κ̄ ds+

∫
M ·QT∂tκ̄ ds+

∫
M · (κ× ω) ds

=

∫
M · (ω × κ) ds+

∫
M̄ · ∂tκ̄ ds+

∫
M · (κ× ω) ds,

=

∫
M̄ · ∂tκ̄ ds,

=

∫
∂tκ̄ ·B κ̄ ds+

∫
∂tκ̄ · B̃ ∂tκ̄ ds.

Substituting back into Eq. (A.13) yields∫
lF ·ω ds+

∫
(∂sr ×N) ·ω ds−

∫
∂tκ̄ ·B κ̄ ds−

∫
∂tκ̄ ·B̃ ∂tκ̄ ds+

∫
lA ·ω ds = 0 (A.14)
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Finally, adding the linear and angular equations A.12 and A.14 yields∫
{∂tσ̄ · S σ̄ + ∂tκ̄ ·Bκ} ds =

∫
{fF · u+ lF · ω} ds

−
∫ {

∂tσ̄ · S̃ ∂tσ̄ + ∂tκ̄ · B̃ ∂tκ̄
}
ds

+

∫
{fA · u+ lA · ω} ds. (A.15)

Substituting the definitions for the elastic potential energy V , fluid dissipation rate ḊF, the

internal dissipation rate ḊI and the actuation power Ẇ given by

V (t) =
1

2

∫ L0

0
(κ̄ ·Bκ̄+ σ̄ · Sσ̄) ds, (A.16)

ḊI(t) = −
∫ L0

0

(
∂tκ̄ · B̃ ∂tκ̄+ ∂tσ̄ · S̃ ∂tσ̄

)
ds, (A.17)

ḊF(t) =

∫ L0

0
(fF · u+ lF · ω) ds, (A.18)

Ẇ (t) =

∫ L0

0
(fA · u+ lA · ω) ds, (A.19)

into Eq. (A.15), we derive the instantaneous power balance

V̇ = ḊF + ḊI + Ẇ . (A.20)

A.2.2 Derivation of Dimensionless Equations of Motion

In Chapter 3, we introduced the following linear and angular balance equations for an

inertia-less viscoelastic Cosserat rod immersed in a Newtonian fluid

0 = fF + ∂sN + ∂sFA, (A.21)

0 = lF + ∂sr ×N + ∂sM + ∂sLA. (A.22)

Internal force and torque resultants are defined as

N̄ = Sσ̄ + S∂tσ̄, (A.23)

M̄ = Bκ̄+ B̃∂tκ̄. (A.24)

The fluid drag force and torque are defined as

fF = −µ
[
c∥ (d3 ⊗ d3) + c⊥ (1− d3 ⊗ d3)

]
u, (A.25)

lF = −µ
[
γ∥ (d3 ⊗ d3) + γ⊥ (1− d3 ⊗ d3)

]
ω. (A.26)
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We choose the gait period T as the characteristic time scale of the system and L0 as the

characteristic length scale. Thus, the dimensionless t∗ and reference arc-length parameter

s∗ as

s∗ =
s

L0
, t∗ =

t

T
.. (A.27)

Similarly, we define the dimensionless centreline r∗, Euler angle θ∗, strain vector σ̄∗, cur-

vature vector, and longitudinal body frame vector d∗
3 κ̄∗ as

r∗ =
r

L0
, θ∗ = θ, σ∗ = σ, κ∗ = L0κ, d∗

3 = d3. (A.28)

Relevant derivatives are the dimensionless centreline velocity u∗, the angular velocity ω∗,

the unit tangent t∗, and the two strain rates κ̇∗ and σ̇∗ which are given by the equations

u∗ =
∂r∗

∂t∗
=

T

L0

∂r

∂t
=

T

L0
u,

ω∗ = A∗∂θ
∗

∂t∗
= TA

∂θ

∂t
= Tω,

t∗ =
∂r∗

∂s∗
=
∂r

∂s
= t,

κ̇∗ =
∂κ∗

∂t∗
= L0T

∂κ

∂t
= L0T κ̇,

σ̇∗ =
∂σ∗

∂t∗
= T

∂σ

∂t
= T σ̇. (A.29)

Substituting Eqs. (A.25) and (A.23) into the linear balance equation Eq. (A.21), and Eqs.

(3.28) and (3.23) into the angular balance equation Eq. (A.22) yields

−µ
[
c∥d3 ⊗ d3 + c⊥ (1− d3 ⊗ d3)

]
u+ ∂sQ

(
Sσ̄ + S̃ ˙̄σ

)
= 0, (A.30)

−µ
[
γ∥d3 ⊗ d3 + γ⊥ (1− d3 ⊗ d3)

]
ω + t×N + ∂sQ

(
Bκ̄+ B̃ ˙̄κ

)
+ ∂sLA = 0. (A.31)

In the linear balance equation Eq. (A.30), we substitute all equation variables and deriva-

tives by their dimensionless in and multiply with T/µc∥L0 which yields

− [d∗
3 ⊗ d∗

3 +Kc (1− d∗
3 ⊗ d∗

3)]u
∗ + ∂s∗Q

(
S∗σ̄∗ + S̃

∗ ˙̄σ∗
)
+

T

µc∥L2
0

∂s∗FA = 0, (A.32)

where we defined the dimensionless drag coefficient ratios Kc = c⊥/c∥ and the dimensionless

shear-stretch rigidity matrix S∗ and viscosity matrix S̃
∗
as

S∗ =
T

µc∥L2
0

S, S̃
∗
=

1

µc∥L2
0

S̃. (A.33)

Eq. (A.32) can be written as

f∗
F + ∂s∗N

∗ + ∂s∗F
∗
A = 0, (A.34)
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where we defined the dimensionless fluid drag line density f∗
F as

f∗
F = − [d∗

3 ⊗ d∗
3 +Kc (1− d∗

3 ⊗ d∗
3)]u

∗, (A.35)

the dimensionless internal force resultant N∗ as

N∗ = ∂s∗Q
∗N̄∗

, N̄
∗
= S∗σ̄∗ + S̃

∗ ˙̄σ∗ (A.36)

and the dimensionless actuation force F ∗
A as

F ∗
A =

T

µc∥L2
0

FA. (A.37)

Next, in the angular balance equation Eq. (A.31), we substitute all variables and derivatives

by their dimensionless counterparts and multiply with T/µc∥L2
0 which yields

0 =−K∥ [d
∗
3 ⊗ d∗

3 +Kγ (1− d∗
3 ⊗ d∗

3)]ω
∗

+ ∂s∗r
∗ ×N∗ + ∂s∗Q

∗
(
B∗κ̄∗ + B̃

∗ ˙̄κ∗
)
+ ∂s∗

T

µc∥L3
0

LA, (A.38)

where we defined the drag coefficient ratios K∥ = γ∥/c∥L2
0 and Kγ = γ⊥/γ∥ and the dimen-

sionless bend-twist rigidity matrix B∗ and viscosity matrix B̃
∗
as

B∗ =
T

µc∥L4
0

B, B̃
∗
=

1

µc∥L4
0

B̃. (A.39)

Eq. (A.38) can be written as

0 = l∗F + ∂s∗r
∗ ×N∗ + ∂s∗M

∗ + ∂s∗L
∗
A, (A.40)

where we defined the dimensionless fluid drag torque density l∗F as

l∗F = −K∥ [d
∗
3 ⊗ d∗

3 +Kγ (1− d∗
3 ⊗ d∗

3)]ω
∗, (A.41)

the dimensionless internal torque resultant M∗ as

M∗ = ∂s∗Q
∗M̄∗

, M̄
∗
=
(
B∗κ̄∗ + B̃

∗ ˙̄κ∗,
)

(A.42)

and the dimensionless actuation torque L∗
A as

L∗
A =

T

µc∥L3
0

LA. (A.43)
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To conclude, the dimensionless form of the equations of motion takes the following form

0 = f∗
F + ∂s∗N

∗ + ∂s∗F
∗
A (A.44)

, 0 = l∗F + ∂s∗r
∗ ×N∗ + ∂s∗M

∗ + ∂s∗L
∗
A (A.45)

In physical units, the rigidity and viscosity matrices are given by

S = EAφ2

p 0 0

0 p 0

0 0 1

 , S̃ = φ2ηA

p 0 0

0 p 0

0 0 1

 , (A.46)

B = EIφ4

1 0 0

0 1 0

0 0 p

 , B̃ = ηIφ4

1 0 0

0 1 0

0 0 p

 , (A.47)

where we defined the dimensionless material parameter p = G/E = ν/η (see Section 3.1.3).

Thus, according to Eq. (A.39), the dimensionless bend-twist rigidity matrix B∗ is given by

B∗ = φ4 TEI

µc∥L4
0

p 0 0

0 p 0

0 0 1

 = φ4T

τ

p 0 0

0 p 0

0 0 1

 =
φ4

a

p 0 0

0 p 0

0 0 1

 , (A.48)

where we define the time scale τ = µc∥L4
0/EI and the time scale ratio a = τ/T . Further-

more, according to Eq. (A.39), the dimensionless bend-twist viscosity matrix B̃
∗
can be

expressed as

B̃ = φ4 ηI

µc∥L4
0

p 0 0

0 p 0

0 0 1

 = φ4 ξ

T

T

τ

p 0 0

0 p 0

0 0 1

 = φ4 b

a

p 0 0

0 p 0

0 0 1

 (A.49)

where we define the time scale ξ = η/E and the time scale ratio b = ξ/T . According to Eq.

(A.46), the dimensionless shear-stretch rigidity matrix S is given by

S∗ =
TEA

µc∥L2
0

φ2

p 0 0

0 p 0

0 0 1

 =
TAL2

0

τI
φ2

p 0 0

0 p 0

0 0 1

 =
1

ag
φ2

p 0 0

0 p 0

0 0 1

 , (A.50)

where we defined the dimensionless geometric ratio g = I/AL2
0 which is proportional to

squared slenderness parameter ε = 2Rmax/L0. Lastly, according to Eq. (A.46), the dimen-
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sionless shear-stretch viscosity matrix S̃
∗
can be expressed as

S̃
∗
=

ηA

µc∥L2
0

φ2

p 0 0

0 p 0

0 0 1

 =
ξAL2

0

τEI
φ2

p 0 0

0 p 0

0 0 1

 =
b

ag
φ2

p 0 0

0 p 0

0 0 1

 (A.51)

To conclude, the key parameters are

τ =
µc∥L4

0

EI
, ξ =

η

E
, a =

τ

T
, b =

ξ

/
T, g =

I

AL2
0

, p =
G

E
=
ν

η
, (A.52)

They can be understood as:

1. τ : intrinsic time scale that measures the relative importance between viscous and

elastic stresses

2. ξ: intrinsic time scale which measures the relative importance between internal viscous

elastic stresses

3. a: time scale ratio between τ and gait timescale T

4. b: time scale ratio between ξ and the gait timescale T

5. g: geometric ratio that measures the slenderness of the body

6. p: Ratio between shear and Young’s modulus

A.2.3 Derivation of Discretized Weak Form

The discretized weak form of the rod’s dimensionless equations of motions is given by (see

Section 3.4.2)

0 =

∫ 1

0
fF,n · ϕ ds−

∫ 1

0
(Nn + FA,n) · ∂sϕ ds, (A.53)

0 =

∫ 1

0
lF,n · ϕ ds+

∫ 1

0
(∂srn ×Nn) · ϕ ds−

∫ 1

0
(Mn +LA,n) · ∂sϕ ds, (A.54)

According to Section A.2.2, the discrete fluid drag force line density fF,n, fluid drag torque

line density lF,n, internal force resultant Nn and internal torque resultant Mn are given
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by:

fF,n = − [d3,n ⊗ d3,n +Kc (1− d3,n ⊗ d3,n)]un

lF,n = −K∥Q
T
n [e3 ⊗ e3 +Kγ (1− e3 ⊗ e3)] ω̄n

Nn = QT
n

(
Sσ̄n + S̃∂tσ̄n

)
Mn = QT

n

(
Bκ̄n + B̃∂tκ̄n

)
(A.55)

Here, we used Eq. (3.8) to transform the drag torque line density, internal force, and torque

resultants from the body to the lab frame. The discrete body frame vectors dk,n, centreline

velocity un and angular velocity ω̄n are defined as:

di,n = Qnei, un = ∂trn, ω̄n = An∂tθn. (A.56)

The discrete strain vector σ̄n and curvature vector κ̄n are defined as:

σ̄n = Qn∂srn − e3, κ̄n = An∂sθn (A.57)

Taking the time derivative of the above equations yields the following discrete strain and

curvature rates:

∂tσ̄ = Qn∂s∂trn −An∂tθn ×Qn∂s∂trn, ∂tκ̄n = An∂s∂tθn + (∂tAn) ∂sθn (A.58)

The first-order time derivatives in the weak form are approximated by finite backward

differences of order k, as follows:

∂̃
(k)
t xn ≈ 1

∆t

k∑
i=0

cn−ixn−i +O(∆tk), (A.59)

Substituting Eqs. (A.56) and Eqs. (A.58) into Eq. (A.55) yields

fF,n = − [d3,n ⊗ d3,n +Kc (1− d3,n ⊗ d3,n)] ∂̃
(k)
t rn

lF,n = −K∥Q
T
n [e3 ⊗ e3 +Kγ (1− e3 ⊗ e3)]An∂̃

(k)
t θn

Nn = QT
n

[
S (Qn∂srn − e3) + S̃

(
Qn∂s∂̃

(k)
t rn −QnAn∂̃

(k)
t θn ×Qn∂srn

)]
Mn = QT

n

[
BAn∂sθn + B̃

(
An∂s∂̃

(k)
t θn +

(
∂̃
(k)
t An

)
∂sθn

)]
(A.60)
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To solve the weak form, we use the Picard iteration. The solution at the i-th Picard iteration

step is denoted by a i+ 1 superscript. Annotating all variables in Eq. (A.60) yields

f i+1
F,n = −

[
di+1
3,n ⊗ d3,n +Kc

(
1− di+1

3,n ⊗ di+1
3,n

)]
∂̃
(k)
t ri+1

n

li+1
F,n = −K∥Q

i+1,T
n [e3 ⊗ e3 +Kγ (1− e3 ⊗ e3)]A

i+1
n ∂̃

(k)
t θi+1

n

N i+1
n = Qi+1,T

n

[
S
(
Qi+1

n ∂sr
i+1
n − e3

)
+ S̃

(
Qi+1

n ∂s∂̃
(k)
t ri+1

n −Ai+1
n

(
∂̃
(k)
t θi+1

n

)
×Qi+1

n ∂sr
i+1
n

)]
M i

n = Qi+1,T
n

[
BAi+1

n ∂sθ
i+1
n + B̃

(
Ai+1

n ∂s∂̃
(k)
t θi+1

n +
(
∂̃
(k)
t Ai+1

n

)
∂sθ

i+1
n

)]
(A.61)

To linearize the nonlinear terms in the above expressions, we approximate the current

solution i+ 1 by the solution from the previous Picard iteration step i which yields

f i+1
F,n ≈ −

[
di
3,n ⊗ di

3,n +Kc

(
1− di

3,n ⊗ di
3,n

)]
∂̃
(k)
t ri+1

n

li+1
F,n ≈ −K∥Q

i,T
n [e3 ⊗ e3 +Kγ (1− e3 ⊗ e3)]A

i
n∂̃

(k)
t θi+1

n

N i+1
n ≈ Qi,T

n

[
S
(
Qi

n∂sr
i+1
n − e3

)
+ S̃

(
Qi

n∂s∂̃
(k)
t ri+1

n −Ai
n

(
∂̃
(k)
t θi+1

n

)
×Qi

n∂sr
i
n

)]
M i+1

n ≈ Qi,T
n

[
BAi

n∂sθ
i+1
n + B̃

(
Ai

n∂s∂̃
(k)
t θi+1

n +
(
∂̃
(k)
t Ai+1

n

)
∂sθ

i
n

)]
(A.62)

Substituting Eq. (A.62) into Eqs. (A.53) and (A.54) yields the linearized weak form of the

equations of motion at i-th Picard iteration step:

0 = −
∫ 1

0

[
di
3,n ⊗ di

3,n +Kc

(
1− di

3,n ⊗ di
3,n

)]
∂̃
(k)
t ri+1

n · ϕ ds

−
∫ 1

0

{
Qi,T

n

[
S
(
Qi

n∂sr
i+1
n − e3

)
+ S̃

(
Qi

n∂s∂̃
(k)
t ri+1

n −Ai
n

(
∂̃
(k)
t θi+1

n

)
×Qi

n∂sr
i
n

)]
+ F i+1

A,n

}
· ∂sϕ ds,

0 = −
∫ 1

0
K∥Q

i,T
n [e3 ⊗ e3 +Kγ (1− e3 ⊗ e3)]A

i
n∂̃

(k)
t θi+1

n · ϕ ds

+

∫ 1

0

{
∂sr

i
n ×Qi,T

n

[
S
(
Qi

n∂sr
i+1
n − e3

)
+ S̃

(
Qi

n∂s∂̃
(k)
t ri+1

n −Ai
n

(
∂̃
(k)
t θi+1

n

)
×Qi

n∂sr
i
n

)]}
· ϕ ds

−
∫ 1

0

{
Qi,T

n

[
BAi

n∂sθ
i+1
n + B̃

(
Ai

n∂s∂̃
(k)
t θi+1

n +
(
∂̃
(k)
t Ai+1

n

)
∂sθ

i
n

)]
+Li+1

A,n

}
· ∂sϕ ds,

(A.63)

where we omitted the integral boundaries and ds.
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A.3 Gait Modulation

A.3.1 Geometric model

This section formulates a purely geometric model of a slender microswimmer. This model

with help us the swimmer’s swimming speed modulates with its undulation parameters,

namely the curvature amplitude A and the wavelength λ. Consider a slender microswim-

mer whose centreline is represented by the curve r(s, t), where s is the curve’s arc-length

parameter s = [0, 1] in dimensionless coordinates. Using the Frenet-Serret frame, the curve

r can alternatively be described in terms of its curvature κ(s, t) and torsion τ(s, t). Using

standard notation, the Frenet-Serret frame is defined in terms of a local orthonormal co-

ordinate system given by the curve’s tangent, T (s, t), normal N(s, t) and binormal B(s, t)

frame vectors.

Given a curve’s curvature κ(s, t) and torsion τ(s, t), the Frenet-Serret frame can be

obtained by solving the famous Frenet-Serret equations:

d

ds

T

N

B

 =

 0 κ 0

−κ 0 τ

0 −τ 0


T

N

B

 , (A.64)

which are a coupled set of ordinary differential equations. To solve the Frenet-Serret equa-

tions at a given time t, we need to specify the initial frame orientation at the swimmer’s

head s = 0,

T 0(t) = T (0, t), N0(t) = N(0, t), B0(t) = B(0, t), (A.65)

If the curve’s tangent vector T (s, t) is known then its centreline r(s, t) can be calculated

via the equation:

r(s, t) = r0(t) +

∫ s

0
T (s′)ds′, (A.66)

where r0(t) is the swimmer’s head position at time t. For the remainder, we make the

simplifying assumption that the swimmer’s head is fixed at the origin r0(t) = 0 reminiscent

of the experiments in [12]. It follows than that the centreline velocity u = ∂tr can be

expressed as:

u(s, t) = +∂t

∫ s

0
T (s′, t)ds′. (A.67)

For the special case of a planar curve, the torsion τ(s, t) = 0, i.e. the Frenet-Serret Eqs.

(A.64) simplify to

d

ds

(
T

N

)
= κ

[
0 1

−1 0

](
T

N

)
,

dB

ds
= 0. (A.68)

Here, we choose B(0) = (0, 0, 1) so that r(s) is located in the e1e2-plane. Writing Eq.
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(A.69) component-wise yields two decoupled equations for the e1 and e2 component of T

and N
d

ds

(
Ti

Ni

)
= κ

[
0 1

−1 0

](
Ti

Ni

)
, i = [1, 2] (A.69)

The solution to Eq. (A.69) can be expressed in terms of the matrix exponential(
Ti

Ni

)
= exp

(∫ s

0
κ(s′)ds′A

)(
Ti,0

Ni,0,

)
(A.70)

where and defined the matrix A as

A =

[
0 1

−1 0

]
, (A.71)

and suppressed the time argument for brevity. Note that matrix A does not depend on the

arc-length parameter s, i.e. the matrix exponential in Eq. (A.70) can be written as:

exp

(∫ s

0
κ(s)ds′A

)
= exp (αA) =

[
cos(α) sin(α)

− sin(α) cos(α)

]
, (A.72)

where we defined

α(s, t) =

∫ s

0
κ(s′, t)ds′. (A.73)

Substituting into Eq. (A.70) yields.(
Ti

Ni

)
=

[
cos(α) sin(α)

− sin(α) cos(α)

](
Ti,0

Ni,0

)
, (A.74)

If we choose the initial orientation T 0 = (1, 0) and N0 = (0, 1) for the frame vectors at the

swimmer’s head, then Eq. (A.74) simplifies to

T =

(
cos(α)

sin(α)

)
, N =

(
− sin(α)

cos(α)

)
. (A.75)

Substituting the above expression for T into Eq. (A.64) yields the following equation for

the centreline velocity

u(s, t) =

∫ s

0
∂t(α(s

′, t))N(s′, t)ds′. (A.76)

The curve’s tangent vector T can be defined in terms of its tangent angle ψ as follows:

T = cosψe1 + sinψe2 (A.77)

In the context of undulatory locomotion, ψ is commonly referred to as the angle of attack.
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By comparing the above equation to Eq. (A.75), it follows ψ = α. Note that this relationship

results from our specific choice for the initial frame orientation T 0 and N0.

To approximate the fluid drag-force line density fF, we use resistive-force theory:

fF = − [T ⊗ T +Kc (1− T ⊗ T )]u = (Kc − 1)T ⊗ Tu−Kcu, (A.78)

where Kc is linear drag coefficient ratio. The outer vector-product T ⊗ T is given by

T ⊗ T =

[
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ.

]
(A.79)

Substituting into Eq. (A.78) yields

fF = (Kc − 1)

(
cos2 ψu1 + sinψ cosψu2

sinψ cosψu1 + sin2 ψ u2

)
−Kc

(
u1

u2

)
(A.80)

To calculate the propulsion fp, we need to know the swimming direction eS . For the chosen

initial values r0 = 0 and T 0 and N0, the swimmer’s body is orientated such that the

swimming direction coincides with the negative e1-axis. Hence, projecting the fluid-drag

force onto eS yields the propulsion force

fp = −1

2
(Kc − 1) sin(2ψ)u2 +

[
Kc sin

2 ψ + cos2 ψ
]
u1 (A.81)

Hence, the transversal movement u2 of the swimmer’s body segments generates the propul-

sive force

fp = −1

2
(Kc − 1) sin(2ψ)u2, (A.82)

which implies that:

1. If Kc > 1, then the swimmer moves in the opposite direction to the curvature wave’s

propagation. If Kc = 1, there is no propulsion. If Kc < 1, the swimmer moves in the

same direction as the curvature wave’s propagation.

2. To maximize fp, the optimal angle of attack is ψ = 45◦

3. The propulsive force fp scales linearly with u2

To model undulatory locomotion, we choose the curvature κ(s, t) to be a sinusoidal travelling

wave

κ(s, t) = A sin(qs− 2πt), (A.83)

where A is the dimensionless curvature amplitude and q the undulation wavenumber. Note
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that we used that f = 1 in dimensionless coordinates. Substituting into Eq. (A.73) yields

α(s, t) = ψ(s, t) = −c cos(qs− 2πt), (A.84)

where we defined the wave’s shape factor c = A/q. The above equation tells us that the

maximum absolute angle of attack scales with c. To obtain the average angle of attack ψ̄

across the swimmer’s body, we calculate the integral of the absolute angle of attack

ψ̄(t) = c

∫ 1

0
|cos(qs− 2πt)| ds, (A.85)

which can only be solved numerically for arbitrary values of q. The centreline coordinates

r(s) and angle of attack ψ, calculated from Eqs. (A.66) and (A.84) for some exemplary

values for c and λ and displayed in Fig. A.1A,B. The contour plot of the average angle of

attack ψ̄ as a function of the c and λ are displayed in Fig. A.1C. The parallel horizontal

contour bands are explained by the scaling of ψ̄ with the shape factor c. Interestingly, the

bands are modulated by the wavelength λ due to the q dependence of the integral in Eq.

(A.85).

To compute the centreline velocity u across the swimmer’s body, we substitute the time

derivative of α(s, t) into Eq. (A.76), which yields:

u = −2πc

∫ s

0
cos(qs′ − 2πt)

(
cos(α)

− sin(α)

)
ds′, (A.86)

which needs to be solved numerically. However, we can infer from the above equation

that u ∝ cλ, as q = 2π/λ. As the discussed earlier, the propulsion force fp generated by

the body segments transversal motion, perpendicular to the swimming direction eS, scales

linearly with u2. The maximum velocity u2,max across the length of the swimmer’s body

is displayed in Fig. A.1D. The bow-like pattern of the contour bands is explained by the

scaling u2,max ∝ cλ.

From the first term in Eq. (A.81) it follows that fp ∝ sin(2θ)u2. Consequently, to

maximize the propulsion force generated by body segments transversal motion, an average

angle of attack of θ̄ = 45◦ and large maximum speed u2,max are favorable.
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Figure A.1: Geometric prediction of swimmer’s angle of attack and transversal centreline
velocity during undulatory locomotion. (A): Centre line coordinates for different shape
factors c and fixed wavelength λ = 1. (B): Angle of attack ψ as a function of the body
coordinate s for the values of shape factors c presented in A. Dashed lines represent the
average ψ̄ of the absolute angle of attack across the length of the swimmer’s body. (C):
Average angle of attack ψ̄ (degrees) as a function of λ and c. (D): Maximum transversal
centreline velocity u2,max across the length of the swimmer’s body. e2. The velocity is
normalized by its maximum value within the specified range of λ and c.
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A.4 Application

A.4.1 C. elegans Optimal Waveform in Water
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Figure A.2: C. elegans’ optimal waveform in water. (A): Normalized swimming speed
U/Umax as a function of preferred wavelength λ0 and shape factor c0, where Umax is the
maximum swimming speed over the specified range. (B): Normalized Cost of Transport
COT/COTmax, where COTmax is the COT associated with the fastest waveform (black
cross) shown in panel A. The normalized Basal Metabolic Rate is set to BMR/Wc = 0.5
[82]. Markers include: Fastest waveform (λ0,max=1.13, A0,max = 7.84) (black cross), most
efficient waveform (λ0,min = 1.61, A0,min = 3.8) (red cross) and C. elegans characteristic
waveform (λ = 1.46, A = 2.94) (rectangle) obtained from experimental fits in Fig. 6.1. Here,
we used the expression A = 2πc/λ to convert the shape factor c into curvature amplitude
A. Effective response times are set at a = 0.057 and b = 0.017. All other dimensionless
parameters are taken from Tab. 6.2.

A.4.2 Swimming Speed of C. elegans

Sznitman et al . [126] and Gagnon et al . [50] measured the swimming speed in the low

and intermediate viscosities under comparable experimental conditions used by Fang Yen

et al . [45]. To compare our model to these studies, Fig. A.3E plots the worm’s swimming

speed as a function of viscosity µ. For each value of µ, the undulation frequency f , preferred

wavelength λ0, and preferred curvature amplitude A0 are determined from the experimental

fits presented in Fig. 6.1A. The colored curves represent the swimming speed for different
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values of the linear drag coefficient ratio Kc. The black dots and rectangles represent the

experimental data from both studies. Comparing our model to these data points, we predict

a drag coefficient ratio within the range Kc ∈ [3.25, 4.0]. Note that this range is significantly

larger than the theoretically predicted value of Kc = 1.40 derived from resistive-force theory

for an unconfined fluid.
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Figure A.3: C. elegans’ swimming speed across varying fluid viscosities. Physical swimming
speed U plotted against fluid viscosity µ. Colored lines correspond to different values of
linear drag coefficient ratio Kc. For each value of µ, the undulation frequency f , preferred
wavelength λ0, and preferred curvature amplitude A0 are determined from the experimental
fits to the data reported by Fang Yen et al . [45] (see Fig. 6.1A). As model parameters, choose
the optimal values. Other dimensionless parameter are taken from Tab. 6.2.

As previously mentioned, during the experiments, the worms are placed in a wall cham-

ber, constituting a confined fluid environment. The presence of the boundary walls makes

it more difficult for the fluid to flow past the worm’s actively deforming body. To illustrate

this, imagine that the gap between both chamber walls is as wide as the diameter of the

worm’s cross-section. In this extreme scenario, no fluid can flow above or below the worm’s

body. Hence, it needs to flow either along the in-plane transversal body axis or the longi-

tudinal body axis. This significantly increases the resistance to transversal motion. This

larger resistance stems from the pressure distribution needed to drive the fluid passed the

longitudinal body axis, which is much longer compared to the cross-sectional diameter of

the worm [21]. Consequently, the ratio Kc between the transversal and longitudinal linear

drag coefficient is expected to be larger in a confined fluid environment. In fact, Bilbao et

al . [21] showed that the drag coefficient increases with the length of the swimmer’s body

and decreases with the relative height of the wall chamber. A thorough comparison between
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the fluid dynamics of an unconfined vs an unconfined environment would require a Stokes

equation with appropriate boundary conditions that are beyond the scope of this thesis.

We conclude this chapter with a summary and interpretation of the obtained results.
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