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ABSTRACT 

 

With increasing concerns arising over the impact of Climate Change, multiple countries, 

including the UK have set ambitious targets to reduce Greenhouse Gas (GHG) emissions, in particular 

CO2 emissions. Electric Vehicles (EVs) have been recognised as a positive contributor towards these 

goals, including various other environmental, social, and governmental policies. For these reasons, we 

are amid a large-scale socio-techno transition; from conventional internal combustion engine (ICE) 

vehicles to EVs. Substantial work has been conducted for this transition in relation to an urban setting, 

however, little has been done for rural communities. This thesis addresses the EV transition for rural 

areas by exploring their feasibility, capabilities, and the impact for both these communities and grid 

operators.  

This thesis presents a novel Travel Demand Model to simulate private passenger vehicle usage 

for rural communities. Based on statistics for a real-world location, the temporal-spatial travel patterns 

for a population of rural vehicles is achieved. Building upon the Travel Demand Model, a novel EV 

Charging Model has been developed to understand the energy consumptions should these travel patterns 

be completed by EVs. Through repeating the results of the Travel Demand Model, energy consumptions 

for the fleet of EVs was calculated for a month long simulation period, longer than many of the past EV 

charging models in literature. The EV Charging Model also scheduled regular charging events, focusing 

on home charging only. Multiple recharging scenarios were investigated, varying parameters such as 

household electricity tariffs and charging behaviour.  

With the energy and power demands for a rural EV population understood, these results were 

combined with real-world grid data from National Grid (formerly known as Western Power 

Distribution). A thorough investigation into the impact on grid supply demand due to EV uptake in rural 

areas is presented, including analysis of potential grid overload events, planned and unplanned power 

cuts and the utilisation of Demand Side Management techniques to mitigate the issues which arise.  

Finally, this thesis presents the findings from an online survey which was developed and 

distributed to rural communities within the Peak District, UK. This work was done firstly to engage 

with the rural community, an often overlooked stakeholder in large-scale socio-techno transitions, as 

well as provide validation to the aforementioned models presented in this thesis.  

The research presented in this thesis seeks to fill multiple gaps found in literature pertaining to 

the EV transition in rural areas, as well as providing a better understanding for the nuances faced by 

these communities. Furthermore, this thesis identifies potential avenues for further work to build upon 

the findings of this thesis, to only improve and ensure that rural communities are not left behind in this 

EV transition.  
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CHAPTER 1:  INTRODUCTION 

 

The Earths average global temperature has been increasing at an unprecedented rate over the 

past 50 years (NRDC, 2016). This global temperature increase can be largely attributed to human 

activities, through the release of Greenhouse Gas (GHG) emissions from burning fossil fuels (Syed and 

Khan, 2008). This warming results in the phenomenon of Climate Change, including rising sea levels, 

changes in weather patterns, increased risk of droughts and floods, and threats to biodiversity (Syed and 

Khan 2008).  

In 2015, 196 state parties (including the UK) signed the Paris Agreement (UNFCCC, 2015), a 

legally binding international treaty aimed at tackling global warming and the corresponding Climate 

Change affects. The Paris Agreements long-term goal is to keep the average global temperature below 

2°C above pre-industrial levels (1850-1900) (UNFCCC, 2015).  

The UK’s latest response to Climate Change, as of 2019, set a net-zero target by 2050 (BEIS, 

2019). This target aims for a 100% decrease in GHG emissions by 2050, compared to 1990 levels. The 

Climate Change Act of 2008 commits the UK Government by law to achieve this goal (CCC, 2023). 

To achieve this goal, all sectors of our society will need to reduce their carbon footprints. One of the 

most crucial sectors, and the wider focus of this thesis, is the Transport Sector.  

As of 2021 the Transport sector was the largest polluting sector, contributing 26% (109.5 

MtC𝑂2e) of UKs total GHG emissions (BEIS, 2023). Figure 1.1 shows each sector and their 

contribution to the UK’s GHG emissions. 

 

 

Figure 1.1: Net territorial UK greenhouse gas emissions by NC sector, 2021 (%). Extracted from 

BEIS (2023), (LULUCF - Land Use, Land Use Change and Forestry) 
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For the years up to 2020, GHG emissions from the transport sector had varied very little over 

the past three decades. In 2019, emissions were only 4% lower than they were in 1990 (BEIS, 2023). 

However, since 2020, transport has been significantly impacted by the COVID-19 pandemic. Vehicle 

usage reduced massively as people were instructed to stay at home as much as possible. This led to an 

estimated reduction of 15% in emissions for the transport sector in 2021 (BEIS, 2023). The 

corresponding reduction seen in kilometres of driving in the UK over this time period can be seen in 

figure 1.2.  

 

 

Figure 1.2: Motor vehicle traffic, Great Britain 1990-2021 (Billion vehicle kilometres). Extracted 

from BEIS (2023). 

 

The last of the COVID-19 restrictions were lifted in the UK during 2022 and the sources of 

emissions most affected by the pandemic saw increases as a result, particularly transport (DESNZ, 

2023). Between 2021 and 2022, carbon emissions rose by 23.2%, largely as a result of this greater use 

of road transport (DESNZ, 2023), which can also be seen in figure 1.2. With life returning to normal, 

even more so in 2023, and the corresponding travel habits doing so too, the decision was made to omit 

COVID-19 and its impacts for the work presented in this thesis. As records are still fluctuating following 

the effects of the pandemic, pre-COVID statistics and behaviours were chosen as the basis for this 

thesis.  

Returning to UK emissions, road transport is the most significant source of emissions within 

the transport sector, in particular passenger vehicles (BEIS, 2023). Figure 1.3 shows the corresponding 

breakdown of GHG emissions for each transport mode, for both 1990 and 2020. 
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Figure 1.3: Greenhouse gas emissions by transport mode, 1990 and 2020. Extracted from (DfT, 

2022c) 

 

All transport modes have reduced their emissions in 2020 compared to 1990 levels. However, 

‘cars and taxis’ remain the largest contributing transport mode, making up 52% of total GHG emissions 

for this sector. Over the last several years the UK Government has slowly increased pressures to reduce 

the number of petrol and diesel vehicles on UK roads, and by extension the GHG emissions associated. 

In 2017, the Air Quality Plan for Nitrogen Dioxide (NO2) was announced which detailed the ending of 

sales of new conventional petrol and diesel cars and vans by 2040 (DEFRA & DfT, 2017). This was 

reiterated by the ‘Road to Zero’ Strategy in 2018, which was also first to focus on Electric Vehicles 

(EVs) as the solution, in part, for the reduction of the UKs transport sector’s GHG emissions (DfT, 

2018a). The ending of sales for new petrol and diesel vehicles was then brought forward to 2030 in the 

UK Governments ‘Ten Point Plan’ for a Green Industrial Revolution in 2020 (Energy Saving Trust, 

2021). Most recently, in 2021, the Transport Decarbonisation Plan was released (DfT, 2023c) with 

targets of achieving a zero emission fleet of cars, vans, motorcycles, and scooters across the UK. 

Electric vehicles are expected to play a major role in achieving this goal.  

EVs have been recognised as a positive contributor to a wide range of transport policy goals 

(Hirst, 2020; Hill et al., 2019; Mathieson et al., 2016), including the improvement of air quality, GHG 

emission reduction and the reduction of noise pollution. The Transport Decarbonisation Plan pledges 

funding to three core aspects required for a successful EV transition; £1 billion to build the necessary 

EV supply chain for the UK, £1.3 billion to accelerate the development of the UKs charging 

infrastructure and £582 million for plug in vehicle grants (DfT, 2021). With these investments in mind, 

the UK Government has illustrated that a transition to EVs has been deemed the most viable approach. 

In turn, pressuring the vehicle industry to develop EVs, reducing its carbon footprint and aiding the 

reduction of GHG emissions for the UKs transport sector. However, when considering a UK wide 

transition from current internal combustion engine (ICE) vehicles to electric, one area in particularly is 

at risk of being neglected – rural areas. 
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1.1 Research Aims & Objectives 
 

This thesis seeks to understand the implications, requirements and logistics of electric vehicles 

replacing conventional ICE vehicles in rural areas. To achieve this, a model based approach is proposed 

to simulate current vehicle usage in these areas, the corresponding energy requirements should these 

vehicles all be swapped to electric, and energy and power demands from recharging events to ensure 

sufficient battery state of charge levels. The models include key factors particular to the rural case, 

which have not been incorporated into previous models before, models which have focused largely on 

the urban environment. Following the understanding of rural EV charging patterns, exploration into the 

rural electrical grid, its capabilities, and possible solutions for mitigating any cause for concerns 

surrounding this EV transition are investigated. To achieve this, real-life grid demand is analysed and 

combined with the results from the proposed models developed in this thesis. To ensure a smoother 

transition for the rural community to electric vehicles, an online survey is used to gather further data, 

as well as validate the findings from the aforementioned models and highlight any further areas in need 

of consideration. Consequently, the research aims and objectives of this thesis are as follows: 

 

(1) Research Aim 1 – To understand recent developments in the field of electric vehicles particular to 

the transition from ICE vehicles in rural areas. In addition, to identify research gaps that need to be 

filled and highlight any pre-existing processes which could be utilised. 

a) Objective 1a – To conduct a literature review on electric vehicles and rural areas, including 

methods for assessing their impact and understanding the requirements for switching to an 

electrified transport system. 

b) Objective 1b – To highlight and address the lack of academic discourse on the EV 

transition for rural areas. 

 

(2) Research Aim 2 – To examine the energy and power requirements of EVs in rural areas to identify 

barriers to the uptake of EVs in these environments. 

a) Objective 2a – To develop a Travel Demand Model with high tempo-spatial capabilities 

and behaviours specific to the rural demographic built in. 

b) Objective 2b – To develop an EV Charging Model, capable of adaptation to any rural 

community and ability to manipulate parameters to simulate a range of scenarios. 

 

(3) Research Aim 3 – To investigate the added grid supply demand due to the EV uptake in rural areas. 

a) Objective 3a – To combined power requirements from the EV charging model to the pre-

existing demand on rural grid infrastructure. 

b) Objective 3b – To review the ability of maintaining EV charging patterns under 

circumstances of reduce grid supply and capacity. 
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c) Objective 3c – To investigate mitigation techniques for reducing the EV power demand on 

local grid infrastructure. 

 

(4) Research Aim 4 – To incorporate the rural community for understanding the implications of the 

EV transition in these areas. 

a) Objective 4a – To develop and distribute a survey for data collection to the rural 

community. 

b) Objective 4b – Utilise the results from the survey to validate the aforementioned Travel 

Demand Model and EV charging model. 

 

1.2 Overview of Thesis 
 

Having provided background context, as well as the aims and objectives this thesis sets out to 

achieve, a brief overview of the following chapters will now be provided.  

Chapter 2 presents a literature review on six key topics surrounding those which will be the 

focus of the work within this thesis. A review of literature not only provides more context to this thesis 

as a whole, but also fulfils ‘Objective 1a’ to achieve ‘Research Aim 1’. The six key topics are as follows:  

 

• Electric vehicles, reviewing aspects on the transition itself, as well as surrounding policy and 

technologies to provide a holistic view for the thesis 

• Aspects of the rural environment which identify key nuances which need to be accounted for, 

creating a large part of the novelty of this thesis’ work 

• Travel Demand Modelling 

• Electric Vehicle Charging 

• The Electrical Grid, including the grid infrastructure itself, worst case scenarios, and potential 

mitigation technology 

• Previous surveys which have been conducted related to the EV transition 

 

Key findings from literature within each topic have been identified to aid and influence the 

decisions for modelling techniques presented in later chapters, as well as provide comparisons with 

other results.  

 In Chapter 3, a novel Travel Demand Model, built specifically to account for the nuances 

associated with rural travel. This model is able to deliver temporal-spatial predictions for the vehicle 

population belonging to a small rural village in the Peak District, Bradbourne. With a high fidelity of 

30 minutes, details on any vehicle simulated, including location, distance travelled that day, and journey 

purpose are predicted. With the fulfilment of ‘Objective 2a’, an understanding of how the current 
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vehicles in a rural area are used has been achieved. Effort then sought to understand how electric 

vehicles might cope with said use.  

Chapter 4 seeks to build upon the travel demand model presented in Chapter 3 with an EV 

Charging Model. This model supposes all the vehicles belonging to the village of Bradbourne have been 

switched to electric and calculates the associated energy consumption, the battery State of Charge over 

time of each vehicle, and recharging events. Multiple recharging scenarios have been simulated to 

anticipate the impact of various behaviours and choices, previously not seen in past literature. With 

each vehicles energy and power demand determined, the impact on the grid for a rural electric vehicle 

population can be analysed. Together with Chapter 3, the material presented in these two chapters works 

towards the fulfilment of ‘Research Aim 2’. 

 Chapter 5 presents the local grid infrastructure to Bradbourne and the surrounding areas, for 

which real-world power demand data has been acquired. This has been combined with the results from 

the EV Charging Model to assess the impact of electric vehicles for this community and others in the 

area. Additional work is also presented to investigate the potential for grid failure due to the influx of 

electric vehicles and also a timeline to predict when this level of market penetration for electric vehicles 

will occur for these rural communities. The results presented in this chapter have multiple implications 

for multiple stakeholders to the EV transition, including grid operators, policy makers, and consumers, 

and represent a significant step forward in achieving ‘Research Aim 3’.  

Chapter 6 follows with further exploration into the impact of electric vehicles on rural grid 

infrastructure. This chapter addresses two key topics, firstly to understand how electric vehicles will 

cope should power outages of various kinds occur, and secondly the implementation of demand side 

management techniques to alleviate the added pressures on the grid following the EV transition.  

Chapter 7 presents the survey data collected to validate and compare against the simulation and 

modelling results. This involved the development and distribution of an online survey to rural 

communities local to the research area of interest, Bradbourne. A full analyses and presentation of the 

results is provided, as well as their comparison with past literature and the results from the models 

developed in this thesis in an effort for validation. The work presented in this chapter seeks to achieve 

‘Research Aim 4’. 

Finally, Chapter 8 concludes the thesis and includes a discussion on the limitations across the 

work presented in this thesis, as well as suggestions for future work and improvements. All models and 

data presented in this thesis are either publicly available or can be found following this link. Having 

introduced this thesis and outlined its contents, a literature review will be presented in the next chapter. 

 

 

 

 

 

https://drive.google.com/drive/folders/1SXCDIsKWqjw1aGE44ngonRt1kZ_D6qy9
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CHAPTER 2:  LITERATURE REVIEW 

 

Having described the issues behind the drive towards EV uptake in the UK, and in particular, 

the need to ensure that rural communities are not left behind in this transition, this chapter presents the 

state of the art with respect to studies carried out in this area. With the core focus of this thesis on 

facilitating the uptake of, not only a new technology (EVs), but one that is so intrinsic to day-to-day 

life, the work presented in this thesis covers a wide range of topics. A literature review has been 

conducted to define the problem more specifically, identify the research gaps which remain, and to 

solidify the novelty of this thesis within these fields of study. 

This chapter will begin with outlining the approach to the literature review, including the 

methodology, search strategy and scope etc. A more in-depth description of EVs than was presented in 

the previous introduction chapter, including a review on EV adoption policy, emission zones and the 

main drivers and barriers for adoption across society is presented in Section 2.2. Section 2.3 presents 

the aspect which sets the uniqueness of the work conducted within this thesis, rural areas. Following an 

understanding of the nuance factors setting the rural environment apart in this EV transition, a summary 

of approaches to Travel Demand Modelling is provided in Section 2.4. This will be followed by a review 

of current literature surrounding EV charging and the impact on the electrical grid in Section 2.5 and 

Section 2.6, respectively. The chapter will then introduce a qualitative aspect for this thesis in Section 

2.7, with a focus on previous surveys and questionnaires related to the EV transition. This will continue 

on with reviewing the theoretical approaches behind this thesis in Section 2.8. Section 2.9 will 

summarise and conclude the chapter.  

To note, some of the material presented in this Chapter has been published or is currently under 

review at the time of writing, in conference and journal papers. References to these papers are as 

follows: McKinney et al., (2023a, b, c, d, e, f), and McKinney et al., (2022). 

 

2.1 Literature Review Approach 
 

This literature adopts a hybrid approach, combing narrative and systematic methodologies to 

explore the complex domain of the EV transition particular to rural areas (Turnball et al., 2023; Rusli 

et al., 2023). This dual approach was necessitated by the multifaceted research questions guiding this 

thesis, which seeks to not only map out the existing evidence base but also to understand the broader 

thematic and conceptual developments within the field of EV uptake, especially within rural UK 

contexts. 

Initially facing the vastness of available literature without clear directions, the review began 

with a narrative approach, guided by a broad understanding and the search for emergent themes, 

keywords, and ideas. This exploratory phase was crucial in uncovering specific terms and concepts 



8 

 

previously unknown, such as “Travel Demand Modelling”, which then became focal points for a more 

targeted inquiry. 

Transitioning to a systematic approach allowed for a structured and comprehensive analysis of 

literature centred on these identified themes, ensuring a thorough exploration of the topic at hand. This 

method enabled the identification and synthesis of empirical evidence on the EV transition, focusing on 

the intricacies of rural electrification, the impact of policy and infrastructure development, and the 

socio-economic considerations unique to rural communities.  

By merging these approaches, this review provides a comprehensive understanding of the 

current state of EV adoption, highlighting both the empirical findings and the evolving narrative 

landscape. This hybrid methodology not only bridges the gap between narrative and systematic 

traditions but also offers a nuanced understanding of a complex and dynamic field, setting the stage for 

the thesis’s contributions to knowledge.  

 

2.1.1 Literature Review Process 

 

DATABASE AND SEARCH STRATEGY 

 

The literature review process primarily utilized Google Scholar as a pivotal resource for 

identifying scholarly articles and research papers pertinent to the field of this thesis. Recognizing the 

importance of saturating the field of literature, a comprehensive approach by not only searching for 

papers directly through Google Scholar but also reviewing the references cited within these papers was 

adopted. This method of tracing references served as a crucial strategy for uncovering additional, 

relevant literature that might not have been directly captured through initial searches. Moreover, the 

scholarly journey was further enriched by incorporating papers recommended by colleagues and 

supervisors, ensuring a diverse and robust collection of research materials. This multifaceted approach 

facilitated a thorough exploration of the available literature, enabling the construction of a solid 

foundation for the review itself. 

 

SCREENING PROCESS 

 

Literature found through the means of the above database and search strategy were first 

screened based upon their title. If deemed relevant, the abstract would then be read and assessed. If this 

was deemed acceptable, the full paper would be taken forward and reviewed in depth for this literature 

review. Unlike a systematic review approach though, the numbers indicating the initial number of 

studies found, studies excluded based on titles and abstracts etc were not recorded.  
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QUALITY ASSESSMENT 

 

The integrity and reliability of the literature incorporated into this review, particularly those 

identified through systematic search strategies focusing on specific fields or keywords, were evaluated 

using the University’s Star Plus database. This platform served as a benchmark for quality, providing 

access to a vast repository of peer-reviewed and academically accredited sources. In instances where a 

paper identified via Google Scholar could not be located within the Star Plus database, it was excluded 

from consideration. This criterion ensured that only literature from reputable and recognised academic 

and scientific channels was included in this review.  

 

SYNTHESIS 

 

A combination of the insights gleaned from the narrative and systematic approaches were used 

to construct a coherent understanding of the existing body of knowledge. This process involved a critical 

analysis of the methodologies, findings, and theoretical contributions of the selected studies. By 

integrating these diverse perspectives, the overarching themes, as well as gaps in the current research 

landscape could be identified.  

Through the comprehensive and nuanced analysis a direction for the subsequent empirical 

research was established. The synthesis thus served as a crucial step in bridging the initial exploratory 

phase of our literature review with the focused, systematic investigation of specific research fields. 

 

2.1.2 Selection Criteria 

 

SCOPE OF LITERATURE 

 

The scope of literature for this review was deliberately expansive, covering a diverse range of 

topics related to EV uptake, with a particular focus on the inclusion of rural communities in the 

transition towards sustainable transportation. This included, but was not limited to, studies from 

transportation engineering, urban planning, environmental science, and computational modelling. 

Recognising the novelty of this field and the initial lack of a clear research direction, no temporal 

boundaries were imposed. This approach facilitated a comprehensive understanding of the field’s 

development and the identification of seminal works and pivotal developments, such as those in travel 

demand modelling (this particular example will be discussed in Section 2.4). 
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SOURCE TYPES 

 

In the construction of this literature review, a diverse array of source types was selected to 

ensure a multifaceted exploration of EV uptake and rural areas. Peer-reviewed journal articles 

constituted the primary foundation of the research corpus. Recognising the importance of current 

industry insights and policy developments, official government reports were also integral, providing 

authoritative information on regulations, incentives, and future directions in EV policy. Conference 

papers and technical reports from leading industry bodies and research institutions were also included 

to capture ongoing innovations and practical challenges in EV infrastructure and technology. Grey 

Literature was found and has been used extensively throughout this thesis, especially in relation to data. 

The main process for identifying grey literature was done so through the primary pieces of literature – 

i.e. extracting data and their sources from journal papers, conferences papers etc found from the 

Narrative-Systematic Hybrid literature review. Upon reflection, a direct search for grey literature should 

have been undertaken, which would have found additional potential sources of data and useful material, 

i.e. The Society of Motor Manufacturers and Traders (SMMT) (SMMT, 2023). This mix of source types 

was essential to producing a comprehensive picture of the current state of EV adoption, allowing for a 

nuanced understanding of the field that is both academically rigorous and grounded in practical realities. 

 

SEARCH KEYWORDS 

 

Table 2.1 below details the keywords used for searches, listed in as accurate representation as 

possible for finding further keywords and areas of interest as the search morphed from a narrative 

approach to a more systematic one in nature. 

 

Keywords 

Electric Vehicle Transition 

Rural Electric Vehicles 

Travel Demand Modelling 

Activity Based Travel Demand Model 

Electric Vehicle Policy 

Rural Transport 

Emission Zones 

EV Charging 

Electric Vehicles Electrical Grid 

Electric Vehicles Natural Disasters 

Demand Side Management 

Electric Vehicle Surveys 

Pragmatism 

Stakeholder Theory 

Case Study 

 

Table 2.1: Literature Search Keywords 
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INCLUSION/EXCLUSION CRITERIA 

 

In developing the inclusion/exclusion criteria for this literature review, studies centred on urban 

contexts were not strictly excluded. Despite the primary focus on rural electrification, it was recognised 

that urban areas, as more traditionally researched contexts for EV uptake, could offer valuable insights. 

This perspective acknowledges the potential applicability or urban methodologies, practices, and 

findings to rural settings. The examination of urban-focused literature was deemed essential for 

providing a well-rounded background and fostering a broader understanding of the challenges and 

opportunities in sustainable transportation. The full methodology for the literature review presented in 

this thesis is illustrated in Figure 2.1 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Literature Review Methodology: Narrative-Systematic Hybrid Approach 

Initial Exploration Phase 

Broad search with undefined terms or 

concepts 

Theme Identification 

This section highlights the transition 

from narrative to systematic by 

identifying specific terms like “Travel 

Demand Modelling” 

(Cyclic) Systematic Search Phase 

This section highlights the transition from narrative to 

systematic after identifying specific terms like “Travel 

Demand Modelling”. The cyclic nature of this phase 

refers to additionally keywords identified (a layer 

down), i.e. “Activity Based Models”. 

Gaps and Conclusions 

Conclude with areas where research 

is lacking, or further research is 

needed (Section 2.9) 

Analysis and Synthesis 

Extraction and assessment of relevant 

methodological approaches (presented across sub-

sections 2.2 to 2.8) 
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A total of 196 pieces of literature have been referenced in this thesis. As a precursor to the to 

the results of the literature review and those used throughout the thesis, Figures 2.2 and 2.3 present a 

breakdown for the found literature. These figures include the age of the pieces, as well as the type of 

source, respectively.  

 

 

Figure 2.2: Age Breakdown for literature in this thesis 

 

 

Figure 2.3: Literature split by Type of Source  
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2.2  Electric Vehicles 
 

UK Government pressures have created a favourable landscape for the development and uptake 

of Electric Vehicles (EVs), which are now seeing increased adoption by consumers. Figure 2.4 depicts 

the change in number of licensed plug-in vehicles on UK roads since 2014, split by fuel type (GOV.UK, 

2022a).  

 

Figure 2.4: Number of licensed Plug-in vehicles across the UK 

 

As shown in figure 2.4, Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles 

(Petrol) (PHEVs) have seen large increases in adoption, in particular the BEVs. Considering the UK 

Governments timeline for the EV transition, this thesis will focus on investigating whether rural areas 

will be ready for when there are solely EVs on the roads, i.e. a future scenario. With the carbon savings 

of PHEVs currently under debate, the Climate Change Committee (CCC) are pushing for prioritising 

BEVs over PHEVs (CCC, 2023). With this in mind, BEVs will be the sole focus of work presented 

throughout this thesis.  

At the end of 2022, there were 29,704,700 private cars registered on UK roads, this is 

predominantly made up of Petrol and Diesel vehicles, 17,531,000 and 10,765,700 respectively. Plug-in 

vehicles make up 1,114,000 vehicles, with 56.5% (629,000) of those being BEVs. Based on these 

numbers, a 3.75% market share, plug-in vehicles have just entered the ‘Early Adopters’ stage (Rogers, 

2003). This will become a critical time for the EV transition, to overcome the ‘chasm’ (Moore, 2014). 

The chasm is a stage between the ‘Early Adopters’ and the ‘Early Majority’, split by the type of people 

who comprise these categories; visionaries and pragmatists, respectively (Moore, 2014). The trajectory 

of market penetration for EVs is determined by the drivers and barriers for this transition, as well as 

transport policy itself. These three themes will now be discussed.  
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2.2.1 Transport Policy 

 

As discussed in Chapter 1, over recent years there have many been examples of new legislation 

and policies brought in by the UK government to influence this EV transition. This section aims to 

review these policies and their impact. 

To provide an overview, Wang et al. (2019) reviewed both incentive (direct subsidies, tax 

breaks, road priorities etc.) and socio-economic factors (household income level, environmentalism, 

fuel and electricity prices etc.) across thirty countries, including the UK, in an effort to understand the 

key factors which promote EV adoption. Wang et al. (2019) focused solely on battery electric vehicles 

(BEVs) and plug-in hybrid electric vehicles (PHEVs), with  Fuel Cell Electric Vehicles (FCEVs) and 

hybrid electric vehicles (HEVs) disregarded. Norway was found to have the highest market share of 

EVs, even though this country does not offer any direct subsidies (Wang et al., 2019). However, Norway 

did offer Value Added Tax (VAT) exemption for EVs, which equates to a significant amount of money 

compared to many other countries which often only exempt EVs from annual circulation taxes, 

amounting to little money. In general, Wang et al. (2019) found countries which offered higher tax 

breaks saw higher market shares of EVs, e.g. Norway and the Netherlands. As of 2015, Norway has an 

EV market share of 17.1% (Figenbaum, 2017). In comparison, the UK offers very little in terms of real 

monetary offsets, exacerbated by the recent revoking of the Plug-In Car Grant (PICG). The PICG 

offered consumers up to 35% off an EV purchase price, up to a maximum of £1500. This as well as the 

general lack of subsidies could explain the considerably lower EV uptake in the UK (3.75% as 

previously discussed). Although it is worth mentioning the difference in population, and thus 

corresponding fleet sizes. Norway’s 17.1% EV market share equates to roughly 70,000 vehicles 

(Figenbaum, 2017), whereas the UKs 3.75% equates to over 1.1 million EVs.  

The US, at one point in 2018, had 438 incentives for EVs, including tax rebates, sales tax or 

registration fee exemptions, reduction of parking fees, subsidies for charging infrastructure, and access 

to high occupancy vehicle (HOV) lanes (Stokes and Breetz, 2018). Stokes and Breetz (2018) looked at 

California’s Zero Emission Vehicle (ZEV) mandate. This defined a certain percentage of vehicles that 

automakers sold had to be ZEVs, first starting in 1990. The mandate aimed for 2% of vehicles sold to 

be ZEVs by 1998, 5% by 2001, and 10% by 2003 onwards. There were various amendments over the 

years to account for the slow development of EVs compared to predictions, and the production of hybrid 

vehicles but decades later, as of 2018, EVs still only accounted for 3% of California’s new vehicle sales. 

Although uptake levels are low, the mandate successfully forced automakers to develop and sell EVs 

(Stokes and Breetz, 2018).  

However, with so many policies currently implemented across the US, there is a potential for 

these policies to fail in their attempts for facilitating the uptake of EVs (Carley et al., 2019). Elsewhere 

in the US, Carley et al. (2019) recognised that with the way current federal and state policies interact, 

the simultaneous goals of increasing EV market share and limiting GHG emissions are actually at odds 
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of one another. The federal regulatory programs themselves, such as the Corporate Average Fuel 

Economy (CAFE) and the Environmental Protection Agency (EPA) GHG emissions standard, do not 

directly push for the development and uptake of EVs. The CAFE, for instance, acts a minimum limit to 

the miles per gallon (MPG) a vehicle needs to achieve, and EPAs GHG emissions standard sets the limit 

for tailpipe emissions of a vehicle. However, to meet these standards, an EV is not the most cost-

effective technology for automakers to pursue, and so hinders the development of such vehicles. 

Compared to recent European GHG standards (part of the EV30@30 campaign), which are more 

stringent than these US standards, are expected to directly lead to almost 30% EV penetration by 2030 

(IEA, 2017). The European GHG standards specify zero emission targets by the year 2030 (IEA, 2017), 

whereas the US standards only have the goal of 52.5 MPG (Carley et al., 2019) and 143 CO2 g/mile by 

2025. Thus enabling the car makers to develop other, more cost effective, technology solutions for their 

vehicles as opposed to EVs. 

Having discussed various policies and their impacts in other countries, focus will now be on 

the UK. In the UK, ultra-low emission vehicles (ULEVs) are characterised by those that emit less than 

75g of CO2 per kilometre (km) (or 88.9 CO2 g/mile) (Chen et al., 2020). Already this is far less than the 

US’s 2025 standards for their vehicles as previously discussed. Furthermore, UK policies such as the 

‘Ten Point Plan’ for a Green Industrial Revolution, as previously discussed in Chapter 1, act as a direct 

drive specifically for the development of EVs and their technology given the ban of sales of new petrol 

and diesel vehicles as of 2030.  

Although the UK has set some of the most ambitious goals to achieve net zero targets re CO2 

emissions, which by extension has accelerated the uptakes of EVs and their development, the CCC 

(2020) highlighted future considerations and policies required to achieve a full EV transition by 2030. 

The alignment of incentives and mandates to targets, whilst also continuously monitoring impacts 

would ensure that funding is focused on the necessary preconditions for the petrol and diesel vehicle 

phase-out. Once targets are met, this would allow for funding to shift to the next priority at the 

appropriate time. Additionally, establishing this long-term clarity on future incentives and mandates 

will allow not just consumers, but also manufactures, automakers, and local authorities to plan for the 

various aspects of the EV transition, including chargepoint installations, EV uptake and infrastructure 

improvements. The CCC (2020) also suggest a Zero-Emission Vehicle Mandate which would require 

increasing shares of sales to be zero-carbon, reaching 100% by 2032 at the latest. 

The CCC (2020) also suggest reinforcement of the distribution network now, ensuring networks 

are ready to meet future demand. Reinforcing today would be more cost-effective than implementing 

network reinforcements once demand outstrips capacity (CCC, 2020). This extends further to 

considering the development of a sufficient charging infrastructure across the UK. Further details of 

EV charging will be discussed in Section 2.4. 
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2.2.2 Emission Zones 

 

Recent years have seen the expansion of Clean Air Zones (CAZ), Low Emission Zones (LEZ) 

and Ultra Low Emission Zones (ULEZ) across cities within the UK, including Birmingham, Bristol, 

Edinburgh, London, Oxford, Sheffield and York (solely for local bus services) (Motorway, 2023). 

These zones are geographical areas where certain vehicles travelling within must comply with emission 

standards, or pay a fine/daily charge (Motorway, 2023). They are designed to tackle air pollution within 

cities through discouraging high emission vehicles from entering, although there is debate on their 

effectiveness towards this goal.  

Ma et al. (2021) studied the ULEZ in London, reporting minimal improvements in air quality 

directly due to the ULEZ in comparison to the overall, long-term, downward trend of London’s air 

pollution levels. Mat et al. (2021) showed the relative changes in air pollution ranged from -9% to 6% 

for NO2, -5% to 4% for O3, and -6% to 4% for particulate matter. London itself has seen multiple air 

pollution mitigation policies in the past several years, which Mat et al. (2021) attribute to the declines 

in air pollution, stating that the ULEZ on its own is unlikely to be the most significant contributor to 

the air pollution reductions seen in recent years.  

Peters et al. (2021) analysed data pertaining to the impact emission zones have on the uptake 

of Alternative Fuel Vehicles (AFVs), as well as CO2 emissions in Madrid, Spain. As is the case in the 

US, low emission zones, as opposed to zero emission zones shift vehicle registrations towards fossil 

fuel powered AFVs and PHEVs, rather than zero emission vehicles (Peters et al., 2021). This in turn 

was found to fail at reducing the CO2 emissions of the vehicle fleet itself due to the limited CO2 

reduction potential of AFVs and PHEVs (Peters et al., 2021). Peters et al., (2021) fail to suggest reasons 

for the vehicle registration shifts to AFVs and PHEVs rather than EVs, however, costs and availability 

of vehicles on the market are likely causes. To conclude, Peters et al. (2021) suggest that a zero emission 

zone would be required to foster the uptake of zero emission vehicles such as EVs. 

The literature presented in this and the previous sections, (Sections 2.1.1 and 2.1.2) suggest that 

there must be other drivers promoting the uptake of EVs as opposed to various policies and vehicle 

mandates. These will now be discussed.  

 

 

2.2.3 Drivers for EV Adoption 

 

Surrounding this EV transition there are multiple positive factors which are driving the rate of 

adoption by consumers. It is important to understand these factors so as to capitalise on them when 

considering the facilitation of the uptake, as does this thesis. These drivers for adoption include 

environmental benefits, financial incentives and energy security. Each will now be discussed in detail. 
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ENVIRONMENTAL BENEFITS 

 

In our increasingly eco-conscious society, individuals value the low carbon emissions of EVs 

(Tiwari et al., 2020), particularly given the growing health concerns that arise from transport emissions 

(DEFRA & DfT 2017). This has only been aided by recent scandals on the part of Internal Combustion 

Engine (ICE) vehicle manufacturers, such as the Volkswagen Scandal (Bailey, 2015). The Volkswagen 

Scandal, also known as Dieselgate or Emissiongate, saw the unearthing of Volkswagen intentional 

programming of their turbocharge direct injection (TDI) diesel engines to only activate their emission 

controls during laboratory emission testing (The Guardian, 2015). 

EVs on the other hand are zero emission vehicles at the tailpipe (Karki et al., 2020). There is 

currently debate in the literature around the publicity of EVs being ‘coined’ as zero emission tailpipe 

or low emission vehicles in general due to the origins of generated electricity required for charge. 

Though, if the electricity used to recharge the EV is from renewable sources, EVs become a true green 

alternative to ICE vehicles (Tiwari et al., 2020). One study sought to calculate the impact on emissions 

if Scotland were able to switch all the current ICE light-duty vehicles to electric (Milev et al., 2021). 

With 2,240,000 light-duty vehicles, corresponding to 4065 GWh of energy required for their travelling 

patterns, Milev et al. (2021) found this would increase CO2 emissions by 8.14% for the grid generated 

electricity alone (based on current generation mix). However, when combining these emissions 

increasing for the grid sector with the reduced tailpipe emissions of the transport sector, total emissions 

for Scotland would decrease by 11.4%, thus highlighting the benefits changing to EVs from ICE alone 

can have on emissions. With electricity generation also becoming greener, these numbers are only likely 

to improve further in the future. If Scottish electricity generation were to eliminate coal, utilising only 

the current other sources (Nuclear, Gas & Oil, Hydroelectric, and Other Renewable), this would further 

decrease the grids sector CO2 emissions by 33.7% alone (Milev et al., 2021). 

EVs also offer additional environmental benefits. EVs are much quieter than petrol and diesel 

vehicles, leading to improvements for noise pollution. In fact, EVs produce such little noise, they are 

now required by law to have an Acoustic Vehicle Alert System (AVAS) to emit a sound when reversing 

or travelling below 12mph (EDF, 2023).  

 

FINANCIAL INCENTIVES 

 

Incentives in the form of reduced sale costs for EVs (in particular cars) have recently been 

scraped by the UK Government. In part due to ongoing growth of EV sales (BBC, 2022), but also to 

release funds to expand the charging network and support other battery-powered vehicles (The 

Guardian, 2022c). However, they are still available for other types of low emission vehicles 

(motorcycles, mopeds, vans, trucks and taxis) (GOV.UK, 2023a). Last year the Office of Zero Emission 

Vehicles (OZEV) also ended the Electric Vehicle Homecharge Scheme (EVHS), a fund providing 
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consumers with up to 75% the cost of installing EV smart charge points at domestic properties across 

the UK (GOV.UK, 2022b), it is now only available to persons living in flats and rented accommodation.  

When considering maintenance and running costs, EVs are currently exempt from road tax 

(GOV.UK, 2023b), although this is scheduled to end after April 2025 (RAC, 2023). They are also 

exempt from chargers for Ultra-Low Emission Zones (ULEZ), including Clean Air Zones (CAZ) which 

multiple cities around the UK have recently introduced. On average, an electric car costs less than £1.30 

to drive 100 miles (based on EDFs GoElectric 35 tariff during off-peak hours) vs. £17.16 for a Petrol 

car (EDF, 2023). However, this should be caveated by the fact that electricity prices are rising year on 

year, adding to the current cost of living crisis (Parliament, 2023). In addition, EVs also have the option 

to use dedicated parking bays, free of charge, at various locations around the country (Sheffield City 

Council, 2023).  

 

ENERGY SECURITY 

 

Energy security is “the uninterrupted availability of energy sources at an affordable price” (IEA, 

2019). Following the emergence of the car, their popularity grew significantly. However, with this 

growth came an increasing dependence on petroleum, a cost-effective transportation fuel (Serra, 2012). 

The UK is not only a net importer of petroleum (Bolton, 2018), but oil reserves are predicted to run out 

by 2052 (MAHB, 2019). These factors stipulate that a petroleum-based ICE vehicle ecosystem is 

unsustainable in the future.   

EVs offer a more secure alternative given the multiple fuel sources used in the generation of 

electricity. Although, the UK still relies heavily on fossil fuels for electricity production (Gridwatch, 

2023), of which it is a large importer. Recent global affairs have exposed the threat of foreign 

dependency for electricity production, with results threatening the implementation of the UKs 

Electricity Supply Emergency Code (ESEC) (The Guardian, 2022a; GOV.UK, 2019). Although, as 

highlighted under the ‘Environmental Benefits’, should electricity be sourced not just from renewable 

sources, but also domestic sources (Serra, 2012), the UK stands to have sovereignty over not just its 

energy supply for the transportation sector, but for all sectors.  

There is an argument to make that the dependence for our transport sector would then move 

from petroleum to batteries. However, as outlined in Chapter 1, the UK Government is committing 

large sums of money into the investment of the EV supply chain, including the development of battery 

and gigafactories in the UK (BBC, 2023; The Guardian, 2021).  

However, given these positive factors for the uptake of EVs, there are still multiple barriers for 

them to become mainstream and reach 100% market share.  
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2.2.4 Barriers to EV Adoption 

 

The discussion of barriers to EV adoption within the literature is extensive. The ICE ecosystem 

is well established which makes this large socio-techno transition ever more difficult to “comprehend 

let alone achieve” (Berkeley et al., 2017). The most commonplace perceived barriers amongst 

consumers are as follows: driving range, charging, technology, financial, and pre-existing perceptions. 

These barriers will now be discussed in detail. 

 

DRIVING RANGE 

 

The leading factor hindering the uptake of EVs is driving range (Tiwari et al., 2020; Office for 

Low Emissions Vehicles, 2013). Carley et al. (2013) conducted surveys across multiple large U.S. cities 

and found over 70% of respondents reported driving range as either a ‘major disadvantage’ or 

‘somewhat of a disadvantage’ of EVs.  

Egbue & Long (2012) conducted an internet-based survey across students, faculty and staff at 

a technological university specialising in science, technology and engineering. Although the specific 

university is not stated, the authors of this paper belong to Missouri University of Science and 

Technology, and so suggests findings are from a US perspective. Egbue & Long (2012) found 33% of 

the 481 respondents to their survey identified battery range as their biggest concern with EVs. Due to 

concerns over range, drivers are less likely to attempt longer journeys with an EV, and that an EV is 

perceived as being more suitable as a second car (Graham-Rowe et al., 2012; Berkeley et al., 2018).  

Although, when considering annual mileages driven, owners of EVs are actually driving more 

than those in petrol and diesel vehicles (RAC, 2021). Early EV models (circa 2009/10) were only 

capable of ranges of up to 100 miles, which in turn exacerbated this barrier for EV adoption. However, 

modern EVs are capable of ranges of 200-300 miles (Octopus, 2023), with cutting edge vehicles, such 

as the Telsa Model S reporting nearly 400 miles (Drive Electric, 2023). Many factors also affect driving 

range, including battery size, weight/design and driving style. In addition, this factor is intrinsically 

linked to another which deters consumers from buying EVs, and that is charging. The driving range 

concern is only exacerbated by not only the lack of public transportation options but also due to the fact 

utilities and amenities are spread further apart. This will be discussed further in Section 2.2. 

 

CHARGING 

 

The refuelling process for an EV is different to that of an ICE vehicle, and one that Berkeley et 

al. (2018) argues may not be understood clearly by consumers. However, existing EV owners indicate 

that the recharging process for an EV is simple and convenient, with the ability to recharge at many 

different types of location (home, work, shops etc) (Bunce et al., 2014). This suggests a lack of 
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knowledge amongst the public and exposure to the technology alone would improve EV uptake (Tiwari 

et al., 2020).  

The long duration of charging is another often cited deterrent against the adoption of EVs. Long 

charging times also deter individuals from long-distance trips, where the long recharge times add to the 

already long trip durations. However, reducing charging time would allow battery EVs to make these 

trips in near enough the same amount of time as with existing ICE vehicles, provided sufficient charging 

infrastructure is in place to accommodate the vehicle demand (Coffman et al., 2017). 

The long charging times are also only exacerbated by an insufficient charging network 

(Berkeley et al., 2018). Egbue and Long (2012) found 17% of respondents identified lack of charging 

infrastructure as their biggest concern with EVs. As of May 2023, there were 43,626 public charge 

points across the UK (Zapmap, 2023b). Although this number is increasing year on year, the location 

of these charge points is already in favour of cities and urban environments, with rural areas receiving 

a lack of attention. This will be discussed further in Section 2.2. 

 

TECHNOLOGY 

 

Steinhilber et al. (2013) conducted interviews with key stakeholders within the automotive 

sectors of the UK and Germany, finding that EVs are often seen to be “inferior” compared to ICE 

vehicles. This is mainly due the limitations discussed previously; battery range and refuelling times 

(Steinhilber et al., 2013). This is also corroborated by Tiwari et al. (2020), hypothesising that these 

perceptions are a result of lack of exposure and knowledge of EVs.  

Additionally, compared to an ICE vehicle, EV battery depletion is significantly affected by 

driving behaviours and environmental factors (i.e. temperature) (Hong et al., 2021; Jones et al., 2020). 

Although, it is worth noting, EVs have more responsive acceleration and regenerative braking when 

easing off the accelerator compared to a typical ICE vehicle. Coupled with their low centre of gravity, 

this improves handling, comfort, and safety (EDF, 2023), suggesting exposure to the technology is 

needed by consumers.  

The technology behind EVs, primarily battery technology, is evolving rapidly. Although the 

current state of the art lithium ion is the basis for today’s market EVs, new technologies such as sodium 

ion or solid state batteries may prove superior and provide EVs with even longer driving ranges, thus 

alleviating previous concerns highlighted. However, it should be noted that new technologies may also 

have their own nuanced issues. For example, solid state technology requires very high power, which 

given rural infrastructure is already an issue with today’s power demands. For the work presented in 

this thesis, the current market technology only will be considered. 
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FINANCIAL 

 

As detailed in the previous subsection (Section 2.2.3), there are financial gains to owning an 

EV, however, the higher initial purchase price is still a major deterrent (Berkeley et al., 2017; Carley et 

al., 2013). This can largely be attributed to the costs of current battery technology (Egbue and Long 

2012). Graham-Rowe et al. (2012) found that people are unwilling to pay the higher upfront cost 

demanded by EVs, citing that the higher cost should reflect a superior vehicle, which most people feel 

EVs are not.  

In addition to the higher upfront costs, there is debate within the literature regarding the lifetime 

costs of EVs compared to ICE vehicles. Dependent very much on location, Prud’homme and Koning 

(2012) found the Total Cost of Ownership (TCO) for BEVs to be €15,000 greater than an ICE vehicles 

in France, whilst Wu et al., (2015) predicted it won’t be until 2025 for PHEVs and BEVs to become 

financially competitive with ICE vehicles. In the US, Tseng et al. (2013) reported EVs still costing 5% 

more than equivalent ICE vehicles with the US federal tax credits included.  

However, Hagman et al. (2016) found that BEVs can have a lower TCO than ICE vehicles in 

Sweden. Depending on US fuel projections and costs for Colorado, Al-Alawi and Bradley (2013) also 

reported that PHEVs can have a lower TCO than ICE vehicles. Focusing on the UK, a recent study from 

Direct Line (2020) showed that an electric vehicle’s average lifetime ownership cost in the UK is 

£52,133, compared to £53,625 for an equivalent ICE vehicle. This indicates that there is little financial 

incentive to switch EVs due to the similar lifetime ownership costs.  

There is also anxiety over the re-sale value (Berkeley et al., 2018), however this is likely to 

change after 2030, following the ban of sales of new petrol and diesels, inflating ICE vehicle prices. 

Coupled with the purchase price of EVs falling more in line with ICE vehicle equivalents, as technology 

progress is made, these financial barriers may become mute in years to come.  

 

PERCEPTIONS 

 

The social barriers may pose as much of a problem as the technical barriers in the uptake of 

EVs, in any setting. Brase (2019) found ICE vehicles were perceived to be better than EVs in terms of 

safety, performance, suitability for long trips and availability of fuel/charging stations. Graham-Rowe 

et al. (2012) saw 40 UK citizens surveyed following a seven-day period of using an EV. Even after 

experience with an EV, many expressed dissatisfaction or lack of confidence with the vehicle, in 

comparison to their past experiences with ICE vehicles. One participant highlighted the lack of power 

compared to their previous 1.8 litre ICE vehicle, and another quoted it not feeling safe when taking the 

vehicle above 50mph (Graham-Rowe et al., 2012).  

Lane and Potter (2007) conducted two research projects within the UK, finding that although 

consumers have economic concerns, their knowledge of actual car costs is rather low. Reiterating the 
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theme highlighted by this literature review of the lack of knowledge on EVs amongst consumers. While 

consumers may know more about fuel costs, taxes, and insurance, issues of depreciation and 

government incentives for cleaner cars are not well understood (Lane and Potter, 2007). 

Furthermore, as a rebuttal to some of the environmental driving points addressed in the previous 

section, some are unconvinced about the sustainability of the fuel source for EVs, i.e. the cleanness of 

the electricity grid (Egbue and Long, 2012). Though, the survey conducted by Egbue and Long (2012) 

is over 10 years old at the time of writing, even during this short time frame the cleanness of the grid 

has improved drastically and shall only continue to do so given the net zero targets of the UK. Others 

though, share concerns surrounding EV battery disposal (National Research Council, 2015). Verma and 

Kumar (2021) highlight this issue thoroughly, reporting EV battery recycling/disposal to be costly and 

detracting from the environmental benefits a zero-emission vehicle offers. Predictions see two million 

metric tons of used Li-ion batteries by 2030 (Verma and Kumar, 2021). A practical method for recycling 

and disposing of EV batteries (and other energy storage components from EVs) is essential for their 

successful implementation.  

The understanding of these perceptions and their validity are crucial to facilitating the uptake 

of EVs, many of which can be overcome through awareness (Esmene and Leyshon, 2019). When 

considering rural areas, as does this thesis, these pre-conceived perceptions are ingrained deeper, and 

require additional resources for change (Stephens, 2016). 

 

2.3 Rurality and Rural Transport 
 

To ensure a smooth transition, numerous aspects need to be considered; grid integration, 

charging infrastructure, consumer requirements etc. These factors vary dramatically between areas, but 

one type of area often forgotten is rural. Rural areas are often left behind following large socio-techno 

transitions. Past examples include Internet and Mobile Phone connectivity (Williams et al., 2016). This 

would be detrimental to rural citizens if the same comes to pass for the EV transition due to the necessity 

of private vehicles in rural areas.  

To provide a comprehensive understanding of the rural landscape in the UK, it is essential to 

delve into the historical evolution of rural classifications. Initially, in 2004, the ‘Rural Definition, was 

introduced by a collaboration between several UK Government departments and the University of 

London (DEFRA, 2005). This definition categorised Local Authority areas as either ‘rural’ or ‘urban’, 

based solely on the predominant population type they housed. However, this binary classification was 

soon recognised as oversimplified, failing to account for the nuanced mix of rural and urban 

characteristics within Local Authority areas. To address this limitation, the methodology was refined to 

delineate areas into six distinct groups: (1) major urban, (2) large urban, (3) other urban, (4) significant 

rural, (5) rural 50, (6) rural 80, offering a more granular understanding of the urban-rural continuum.  
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By 2014, further advancements were made by researchers at the University of Sheffield, who 

undertook new studies to evolve the Rural Definition (Rural Services Network, 2015). This led to a 

more sophisticated classification approach, reflecting the complex realities of rural urban 

intermingling’s. The latest iteration, the Rural Urban Classification introduced by DEFRA in 2016, 

represents a significant leap forward in accurately distinguishing between rural and urban areas 

(DEFRA, 2016). This classification system differentiates rural and urban areas based on several criteria, 

with the primary factor being whether the location is outside of settlements with a population exceeding 

10,000 residents. According to UK Government guidelines, the Rural Urban Classification is intended 

for use in statistical analysis and categorises areas into one of ten possible categories, as illustrated in 

Figure 2.5. 

 

 

 

Figure 2.5: Rural Urban Classification Categories (Bibby & Brindley, 2013) 

 

The Rural Urban Classification is the basis for the determination of rural areas to which to focus 

on for the work presented in this thesis. This is in part due to the crucial role this classification plays in 

the UK Census, the UKs largest data collection survey conducted by the UK Government. Due to the 

UK Census key role in the development of the ideas presented in this thesis, aligning our definition of 

rural with the UK Census also enabled smoother data acquisitions. Further details of the UK Census 

and its role within this thesis will be discussed in Section 3.1.1. 

As per the 2018 mid-year population estimates for England, the population was recorded at 

56.0 million, with 9.5 million people (approximately 17%) residing in rural areas, contrasting with the 

46.6 million (83%) living in urban settings (DEFRA, 2020). Within this rural demography, 489,400 

individuals (representing 0.9% of the total population) were located in rural settlements characterized 

by sparse settings. Despite their modest share of the national population, the focus on these areas is 

critical for two fundamental reasons. Ignoring the needs and challenges of these communities would 
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only exacerbate existing disparities, contradicting the objectives of this thesis which aims to bridge such 

gaps through the application of stakeholder theory, a concept explored in greater depth in Section 2.8.2.  

Moreover, rural areas, especially those with sparse populations, experience significant 

population flux due to tourism. This trend has been notably amplified post COVID-19, with the UK 

countryside witnessing unprecedented levels of visitation. Such variability introduces substantial 

demand on local infrastructure, presenting unique challenges for the EV transition. This thesis posits 

that addressing the fluctuating demand necessitates a robust and flexible infrastructure capable of 

supporting both permanent residents’ transition to EVs and accommodating the surge from tourists, 

who are increasingly adopting EVs. Furthermore, tourism is not merely a contributor to local population 

dynamics; it can be the backbone of the economy in many rural areas. The sustainable integration of 

EVs into these regions is thus not only a matter of environmental or technological concern but also of 

economic survival. Ensuring that rural areas can effectively participate in the EV transition is essential 

to preventing further economic disparity and supporting these communities’ resilience against the 

evolving landscape of mobility. Over the last 10 years, UK Government policies have reduced funding 

to public services. This includes in particular rural bus services and community transport schemes which 

have witnessed major reductions (Better Transport, 2018). Due to a lack of public transport options, car 

ownership has become a necessity in rural areas (Christie and Fone, 2003). Table 2.2 details the car 

ownership levels within various area classifications as set out by the Rural Urban Classification 

Methodology (DfT, 2018c). 

 

Area Category Households with Car (%) 

Rural Village, Hamlet, and Isolated Dwelling 93 

Rural Town and Fringe 86 

Urban City and Town 79 

Urban Conurbation 66 

 

Table 2.2: Household car ownership by rural-urban classification 

 

As shown by Table 2.2, car ownership is much more common in rural areas. Vehicles are crucial 

for rural communities, not just due to lack of public transportation options but also due to the fact 

utilities and amenities are spread further apart. This leads to considerably more car usage (Newman et 

al., 2014). Considering, 9.7 million people live in rural areas (within England alone) (DEFRA, 2021), 

who one day will have to change their vehicles to conform with government legislation (currently the 

only viable option being EVs), it is imperative these areas are considered appropriately for such change. 

Therefore, the focus of this thesis will be on the private passenger vehicle sector.  

As outlined by the UK Governments ‘Road to Zero’ strategy, this transition is expected “to be 

industry and consumer led” (DfT, 2018a). With these forces alone, only locations with a strong business 

case will succeed. These types of locations are highly unlikely to be rural in nature due to the smaller 
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customer base and much higher costs for electricity grid connections (House of Commons, 2018). To 

reinforce this argument, where rural areas are typically left behind in large socio-techno transitions, 

Graeme Cooper, at the time, project Director for EVs at the National Grid, states (Cooper, 2018): 

 

“Wherever you’ve seen a disruptive technology, if you leave it purely to market what generally 

happens is that towns and cities get done, and everybody else becomes a second-class citizen.” 

 

This is already evident with the uneven geographical distribution of the UKs charging network 

currently in place. Begley and Berkley (2012) note the issues of charging infrastructure in rural areas 

of England as they are only sporadically available outside large urban areas. Figure 2.6 illustrates the 

total public charging points per 100,000 population, April 2023.  

 

 

 

Figure 2.6: Public Charing Devices per 100,000 population by UK region (DfT, 2023a) 

 

Looking at this distribution in more detail, the average provision in the UK is 60 devices per 

100,000 population. London and Scotland have the highest levels, with 145 and 72 devices per 100,000 

respectively. However, areas such as the Northwest and Yorkshire and the Humber only have 33 and 

37 devices per 100,000 respectively. At the local authority level, over 100 local authorities have fewer 

than 30 public charging devices per 100,000 population (DfT, 2023b).  
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It is worth noting that the information presented in figure 2.6 relates to population and not 

population density, which in turn would relate to the rural-urban classification of an area. Although 

Scotland is shown to have a high number of devices per population, it is also imperative to remember 

the land size of Scotland in relation to its population size. Scotland has extremes of urban and rural 

areas, for example, Glasgow is a highly populated city whilst an area like Aviemore is very rural. These 

differences cannot be appreciated from figure 2.6. Previous effort has been made to understand the 

correlation between consumers and distances to their nearest public chargepoints. Figure 2.7 details the 

average distance to nearest public electric vehicle chargepoint for the UK, at the time of 2016. Figure 

2.7 below highlights the disparity between population density of an area and the distance required to 

access a public EV charge point. 

 

 

 

Figure 2.7: Average distance to nearest public electric vehicle chargepoint (miles) (Extracted from 

Parliament, 2018) 
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With regards to academic literature, there are far fewer studies pertaining to the EV transition 

in rural areas as opposed to urban locations. Cowie et al. (2020) highlights this lack of consideration 

regarding EVs in rural areas, as most technological developments, studies and considerations are 

centred on the urban scenario. 

Compared to urban areas, rural locations and their communities experience different nuances 

when it comes to their vehicle usage. Rural vehicles are generally required to complete longer journeys 

(see figure 2.8 below), which gives rise to a much greater cause for concern amongst rural residents 

over range anxiety (Jones et al., 2020).  

 

 
 

Figure 2.8: Average trips made, and miles travelled per person per year by rural and urban 

classification of residence: England, 2021 (GOV.UK, 2022c) 

 

Additional nuances when considering the rural environment include the local electrical grid. 

Rural electrical grids typically consist of a less robust grid infrastructure in general (i.e. smaller 

substations, or transformers, possibly attached to wooden poles) (Western Power Distribution, 2022a). 

Coupled with the different travel patterns highlighted, should these then be conducted by an EV, the 

resulting charging profiles and associated grid impact will differ from the urban case.  

The Mull and Iona Sustainable Transport Project (MICT, 2016) is an example of such an 

investigation into the feasibility of EVs in rural environments. Conducted by the local Community 

Trust, this project sought to promote EVs across these rural islands of Scotland. With a population of 

roughly 3000, this small-scale project resulted in an increase from 3 to 11 EVs on the islands, double 

the projects targets. However, such small numbers of EVs are highly unlikely to provide cause for 
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concern for the local grid infrastructure. Therefore, as stated in the objectives (Section 1.1), the work 

presented in this thesis will consider large adoption rates of EVs to simulate potential future scenarios.  

Jones et al. (2020) study of EVs and rural businesses, reports the promising suitability of EVs 

in a rural setting, given that the required support (infrastructure enhancement and technical 

developments) is provided. This study of the Warwickshire Rural Electric Vehicle (WREV) trial by 

Jones et al. (2020) also aimed to highlight the limited research on the impact of EVs on rural travel in 

the UK. Although the focus lay on rural businesses and the vehicles belonging to them, many findings 

are still applicable to the private passenger scenario in rural areas. Jones et al. (2020) for instance, found 

although the majority of trips undertaken by rural businesses were still comparatively short, the 

diversity of travel patterns and lack of available charge points meant range anxiety was a real concern. 

This resulted in users taking greater risks and in general, more dangerous driving styles to compensate. 

These findings only reinforce the nuances of the rural areas that have been previously discussed and by 

extension, highlight the importance of ensuring that pre-existing travel patterns of rural individuals can 

be met by EVs for a successful transition.  

Another largescale EV trial in the UK was the ‘My Electric Avenue’ Project (2015). This was 

an 18 month EV trial project in various parts of Britain. Over 100 people, split across various clusters 

(groups of 8-10 people belonging to the same street) were recruited, with each receiving a Nissan Leaf 

to use for the duration of the trial. The project had three core aims, to understand customer driving and 

EV charging habits, to trial equipment in the hopes of mitigating the impact of EV charging and explore 

the possible opportunities EVs presented for the electrical network. The clusters included a street in 

Marlow, Chineham, Chiswick, Lyndhurst, South Gosforth, Wylam and two ‘workplace-based clusters’: 

Slough and Borough Council and Your Homes Newcastle. These locations provide a varied sample 

from across the country, north to south, and also includes some more rural locations such as Lyndhurst 

and Wylam. Although not solely focused on rural areas, this study still provides much to be considered. 

Broadly speaking, My Electric Avenue focused on how best to manage the network when a large 

number of EVs charge in the same street at the same time. This, in part, is very much the aim of this 

thesis, as set out in Chapter 1. 

 The ‘My Electric Avenue’ project (Ofgem, 2016) found the peak demand for residential EV 

charging did coincide with the traditional evening peak of the pre-existing grid load (Torriti et al., 2017). 

Both thermal and voltage issues were identified as a potential concern for increasing levels of EV 

uptake, with thermal issues arising first at lower penetration levels. The Demand Side Management 

(DSM) aspect of the project, which will be discussed in more detail during Section 2.5.2, was capable 

of mitigating these thermal constraints (Ofgem, 2016). With regards to sparsely populated networks 

(i.e. rural areas), Ofgem (2016) suggested the deployment of additional units for Powerline Carrier 

(PLC) communications is required to ensure reliable communications. PLC units were required for the 

DSM technology to work, indicating this option may not be viable for rural areas where the grid 
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infrastructure is lacking, Ofgem (2016) found an exponential correlation between distance and reduced 

reliability of communications.  

As highlighted by this literature review, and many previous (Jones et al., 2020; Begley and 

Berkley, 2012; Apronti and Ksaibati, 2018) the core gap in literature this thesis aims to fill, is research 

focused on the EV transition in rural areas. With this thesis’ focus in mind, effort has been made to 

review literature specific or applicable to these areas. Though to provide a more holistic approach, it is 

beneficial to understand research which has also focused on urban areas. Thus, the following sections 

include such material.   

To achieve the aims and objectives set out in Chapter 1, an understanding of current vehicle 

usage, corresponding EV usage, and potential recharging patterns for grid impact, are required. These 

form the building blocks for the work presented in this thesis. The following sections will now present 

the main findings and current state of the art in literature pertaining to each of these aspects.   

 

2.4 Travel Demand Modelling 
 

To assess the feasibility of the use of electric vehicles in rural areas, an understanding of how 

vehicles are used is required. With the knowledge of the journeys and distances driven by vehicles 

within rural areas, the corresponding energy requirements, should this activity be completed by EVs, 

can be calculated. This in turn enables the calculation for electricity requirements to support this rural 

EV population via potential EV charging patterns. Two approaches researchers can utilise for 

generating EV charging profiles have been identified (Pareschi et al., 2020; Brady and O’Mahony, 

2016): 

 

Public Trials – Researchers provide participants with actual EVs and Charging Stations. Over 

the course of some time period the researchers track and measure all information regarding 

their use. An example of this is the ‘My Electric Avenue’ project (2015).  

 

Simulation Models – Researchers design a digital transportation system which emulates real 

life; however, the reliability of the results is always disputable.  

 

Due to financial constraints with this project, the simulation pathway has been opted for. These 

models commonly utilise scenario modelling for charging behaviour built on top of a Travel Demand 

Model (TDM) (Pareschi et al., 2020). This is the process adopted by this work.  

Travel demand studies originated in the USA during the period where transportation forecasts 

were developed following the sequential four-step model (McNally, 2007).  This comprised of (1) Trip 

Generation, (2) Trip Distribution, (3) Mode Choice, and (4) Trip Assignment (Ahmed, 2012). Individual 

trips resulting from the Trip Generation step are often categorised by their respective purpose or 
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destination, and hence referred to as trip categories. Apronti and Ksaibati (2018) developed a four-step 

TDM for estimating traffic volume for low-volume roads in Wyoming, with one key modification: the 

consideration of solely private passenger cars during the mode choice step. As mentioned previously, 

private passenger vehicles will also be the sole consideration for the work presented in this thesis.  

Apronti and Ksaibati (2018) only considered three trip categories: Home-Base Work (HBW), 

Home-Base Other (HBO), and Non-Home Base (NHB) trips. This may be sufficient for an investigation 

into traffic volumes, however, for energy usage calculations of EVs a more detailed approach is 

required. Although the four-step model is still used today, as shown by Apronti and Ksaibati (2018), it 

is now considered an oversimplified representation of daily travel patterns, and an overly statistical/ad-

hoc approach to modelling (i.e. not behaviourally oriented) (Goulias, 2021). Presently, five approaches 

to Travel Demand Modelling have been identified (Daina et al., 2017):   

 

(1) Vehicle Ownership and Annual Mileage Models (VOAMM): A high level model 

with low temporal resolutions (i.e. when yearly time scales are of interest) (Brownstone 

et al., 1994). Whilst it is possible to represent individual vehicles in this type of model, 

allowing for easy aggregation, it necessitates the use of substantial datasets. 

Brownstone et al. (1994) developed a forecasting model for annual vehicle demand, 

specifically for new and used vehicles, by fuel type (i.e. type of vehicle). 

 

(2) Summary Travel Statistic Models (STSM): This method relies on data pertaining to 

conventional ICE vehicles, sourced from national, regional, or metropolitan travel 

surveys. From these travel surveys, travel pattern summary statistics can be derived, 

which when used in combination with charging scenarios can generate potential EV 

Charging profiles. Again, this approach involves modelling individual vehicles, but it 

has been noted to yield inconsistent representations of car usage profiles (Diana et al., 

2017). In another study, Wang et al. (2011) employed summary statistics from the US 

National Household Travel Survey to identify appropriate times for which vehicles 

arrive home after their last journey of the day to aid in the modelling of a PHEV 

population in Illinois. 

 

(3) Direct Use of Observed Activity Travel Schedules (DUOATS): Similar to the STSM 

approach, this approach utilises ICE vehicle patterns to simulate EVs. This can be 

accomplished through travel diaries, surveys, or Global Positioning System (GPS) data. 

This approach consistently produces car usage profiles that accurately represent real-

world scenarios. Axsen & Kurani (2010) conducted their own techniques to capture 

driving patterns and identify potential recharging opportunities in California, US. This 
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survey involved participants completing a 24hr day travel diary, segmented into 15-

minute intervals, and successfully collected data from 877 respondents. 

 

(4) Activity Based Models (ABM): Similar to the STSM modelling approach and building 

on the traditional ‘four step model’, these models are based entirely on simulation. In 

this modelling approach, individual vehicles are depicted as ‘agents’, offering a 

comprehensive and precise representation of usage patterns (Delhoum et al. 2020). 

 

(5) Markov Chain Models (MCM): A Markov Chain is a probabilistic model that 

characterizes a sequence of events by considering the likelihood of each event 

happening during each specific time interval. While this modelling technique offers the 

potential for great detail, it can lack realism in representing behaviours and requires 

substantial computational resources. Soares et al. (2011) employed a discrete-state, 

discrete-time Markov chain, with 30 minute intervals, to generate the movements of 

EVs over the course of one year. 

 

While much of the research on EV transportation has primarily concentrated on modelling EV 

adoption and yearly usage patterns, a significantly finer time granularity, involving hourly or sub-hourly 

intervals, is essential for in-depth analysis of power systems, energy considerations, and their 

environmental impacts (Daina et al., 2017). Typical UK electricity meters, especially those used for 

businesses (business meters), are typically configured to record data at a 30-minte temporal resolution 

(British Business Energy, 2021). This temporal resolution was therefore chosen for the travel demand 

model to enable easy cross-analysis with the UK electrical grid when assessing EV impacts of rural grid 

infrastructure.  

With regards to the TDM modelling approach, the VOAMM, STSM and DUOATS modelling 

approaches were disregarded as they do not align with the aforementioned requirements. Whilst both 

the ABM and MCM approaches provide adequate levels of detail and temporal resolutions for the TDM, 

the ABM approach has a lower computational complexity than the MCM approach, and hence was 

selected. A review of literature on Activity Based Modelling will now be presented.   

 

2.4.1 Activity Based Modelling 

 

At the core of Activity Based Models (ABMs) is the concept of representing individual 

processes in a disaggregated manner (Daina et al., 2017). In other words, ABMs function as micro-

simulators or microscopic models where the behaviour for each individual is simulated to replicate that 

of each inhabitant within the studied area (Ridder et al., 2013; Weiss et al., 2017). This approach 
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involves simulating individual components, referred to as agents, allowing for flexible aggregation. 

Further insights into microsimulations will be discussed in the following subsection, section 2.3.2.  

Mattioli et al. (2019) used data from the 2016 UK National Travel Survey (NTS) to categorise 

cars based on their usage patterns throughout a week. This process entailed manipulating the NTS to 

create dataset resembling a ‘vehicle travel diary’, which was then subjected to sequence and cluster 

analysis to discern individual vehicle usage patterns. Mattioli et al. (2019) extracted six types of ‘car 

day’, with fewer than half conforming to the stereotypical, and commonly assumed, travel patterns 

associated with the conventional 9am – 5pm working hours. Mattioli et al. (2019) also showed how 

varied travel habits can depend on the day of the week. Understanding individuals can be grouped as 

per their travelling/driving habits is key to simplifying the computational requirements of an ABM. 

However, Mattioli et al. (2019) did not incorporate characteristics for the individuals comprising each 

of the six types of ‘car day’. Such characteristics would include employment status, working hours, 

number of children etc would have enabled the development of a synthetic population comprised of 

detailed individual characteristics. This will be discussed further shortly. Inclusion of individual 

characteristics would have allowed for a TDM to reflect more accurately the heterogeneity nature of 

populations.  

Although, for the scope of the work presented by Mattioli et al. (2019), it is possible any 

combination of characteristics for an individual is still capable of conducting all six types of ‘car day’, 

due to the dynamic nature of individuals and their mobility. Inclusion of population characteristics, as 

will be the focus for the work presented in this thesis, would yield not just a higher detailed modelled, 

but also more realistic and by extension more accurate results. 

Zhang et al. (2020) modelled travelling patterns and corresponding EV charging load profiles 

with the focus on including these aforementioned characteristics (e.g. gender, age, education level etc.), 

factors which had not been incorporated by previous studies. Zhang et al. (2020) argued that exclusion 

of demographics when modelling travel patterns brings about hidden errors in the resulting charging 

profiles due to these diverse populations sharing identical travelling probabilities. They found that user 

demographics with collective social attributes have distinct travel patterns, which in turn affect the 

magnitude and peak time of the EV charging load profile. 

Based on the 2009 US National Household Travel Survey (NHTS), Zhang et al. (2020) used 

the Monte Carlo method to simulate the travel profiles over the course of one day for 100,000 EVs. 

Coupled to this, a charging load simulator was applied to calculate the SOC over time, as well as energy 

and power demand from charge events scheduled. The assumption Zhang et al. (2020) incorporated into 

the charging simulations included a random assignment for energy consumption rate between 0.1 and 

0.25 kWh/km, each vehicle is randomly assigned a battery capacity between 40 and 50 kWh, and to 

account for battery degradation, hard lower and upper limits, at 20% and 80% for the SOC are set. With 

these assumptions, Zhang et al. (2020) no longer required the development of an EV fleet to serve the 

synthetic population from the TDM, a much simpler methodology. 
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However, the work conducted by Zhang et al. (2020) fails to understand the longer-term 

implications for EV adoption in relation to pre-existing consumer travel profiles, due to the single day 

of investigation undertaken. Zhang et al. (2020) conclude with the need for future work to include long-

term regional predictions, aiming to facilitate planning for a future where a significant proportion of 

vehicles within a system are electric. This gap will aimed to be filled by the work presented in this 

thesis.  

Another example of a data led TDM was developed by Kang and Recker (2009) who analysed 

trip diaries from California’s 2000-2001 Household Travel Survey and evaluated the effects of changing 

vehicle types to various PHEV’s. From this, they were able to construct 1-day trip/activity chains for 

over 15,823 vehicles across 11,385 households. Kang and Recker (2009) investigate multiple charging 

scenarios for two classes of PHEVs (those with all-electric ranges of 20 miles (PHEV20), and those 

with 60 miles (PHEV60)). Simulations only lasted 48 hrs, which may prove disadvantageous when 

considering energy requirements over long periods of time. The average trip distance was 7.16 miles, 

with standard deviations of 14.46 miles, which neglects to account for the impact longer trip journeys 

have, which, as shown previously, are more likely to be conducted in rural areas.  

Concerning the EV charging model by Kang and Recker (2009), which examines two types of 

PHEVs to evaluate their suitability for such travel, it was determined that home charging could sustain 

40-50% of the distance covered by equivalent ICEs using the electric power of the PHEV20, and 70-

80% for the PHEV60. Improving public charging facilities should only improve these findings. 

Although Kang and Recker (2009) provide much to be considered, particularly in terms of the 

development of their TDM, they again, fail to capture longer term travel patterns. This only then extends 

to the impact assessment of EVs. Additionally, their study solely focuses on PHEVs, which although 

were a more popular vehicle choice at the time of this study, more recent statistics indicate the 

prevalence of pure EVs (see figure 2.1). 

What the previous examples of literature detailed above have failed to capture are the 

differences between rural and urbanised areas with relation to travelling patterns. These prominent 

studies (Mattioli et al., 2019; Zhang et al., 2020; Kang and Recker, 2009) have utilised national datasets 

which, although can capture data from both urban and rural areas, are more often than not biased 

towards urban areas. This can be seen by the split of data between rural and urban areas within the 2021 

UK National Travel Survey. To fill this gap, other practices have sought to adapt methodologies that 

have been designed predominantly for urban areas (Apronti and Ksaibati 2018). However, with urban 

areas witnessing higher traffic volumes, smaller distances and different driving habits, EV viability in 

rural areas cannot be based on this approach. Apronti and Ksaibati (2018) highlight the need for rural 

specific model due to the lack of consideration these areas receive, reinforcing the need for a rural 

specific TDM.   
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2.4.2 Spatial Microsimulation 

 

Microsimulations refer to a methodology whereby individual agents (e.g. a vehicle) are 

modelled with their own distinct behaviours (Raney et al., 2003), as opposed to previous methods which 

aggregate behaviours collectively. This approach provides a means for researchers to overcome 

constraints stemming from the lack of available geocoded micro-data in the context of travel research 

(Lovelace et al., 2014).  

The initial phase in spatial microsimulation methods revolves around generating populations 

(Raney et al. 2003). The objective is to disaggregate demographic data to derive individual households 

and their respective members. Typically, this process relies on census data. For example, a model 

assessing CO2 emissions from passenger transport in urban Guangzhou utilised data from the 2010 sixth 

population census of Guangzhou (Ma et al. 2018). Cullinan et al. (2011) used the Simulation Model of 

the Irish Local Economy (SMILE) to create a synthetic population for investigating visitor numbers at 

outdoor recreation sites in Ireland; and Ma et al. (2014) used the year 2000’s population census data at 

a sub-district level to create a synthetic sub-district population for analysing urban travel-related CO2 

emissions in Beijing.  

Disseminating a population into its aggregates, and developing a synthetic population, allows 

for high fidelity and realism when it comes to simulations. With this method, each individual (vehicle 

in the case of a TDM) can be investigated separately or as an entire fleet. With this approach employed, 

the travel patterns of vehicles can be understood and used to overlay EV charging scenarios (Pareschi 

et al., 2020), the next step in anticipating the impact of EVs.  

 

2.5 EV Charging 
 

As discussed in the previous subsection, for determining EV charging profiles the simulation 

approach has been deemed the most feasible of the two methods. This is also reinforced by the lack of 

publicly available EV trial empirical data (Jones et al. 2020). Having reviewed the state of TDMs, and 

highlighting methodologies which can be utilised for this thesis, focus now turns to simulating the 

charging of EVs. 

The initial phase work conducted by Brady and O’Mahony (2016) used simulation to generate 

the daily travel of a population of vehicles, with this they were then able to calculate the State of Charge 

(SOC) of these vehicles (as if they were EVs).  With a blanket energy consumption of 0.265 kWh/km 

for all vehicles within the simulation, Brady and O’Mahony (2016) used a probabilistic charging 

decision model to determine when charging takes place. This decision was based on three core factors: 

(1) the State of Charge (SOC) of an EV at a destination, (2) the duration a vehicle is parked for, and (3) 

the current journey number (i.e. how many trips the car has already undertaken that day, given the 

assumption that a higher probability will be given to charging following the last journey of the day. A 
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noteworthy consideration is Brady and O’Mahony’s (2016) simulation period, only two consecutive 

days are modelled, with all vehicles beginning this simulation period with 100% SOC. With such a 

short timeframe modelled, Brady and O’Mahony (2016) fail to address the impacts on charging 

behaviour, and by extension the impact on the grid, witnessed over longer simulation periods. For 

instance, there is large variation in activity between different days of the week alone; weekend travel 

activity is significantly less than weekday activity (GOV.UK, 2020).  

Brady and O'Mahony's (2016) research provides significant insights into electric vehicle (EV) 

charging behaviour, including considerations related to the availability of charging infrastructure. While 

they do not explicitly address scenarios where an EV is scheduled to charge but cannot due to 

unavailable charging points, their simulation implicitly assumes that each vehicle has access to a 

dedicated charging point whenever needed. This assumption is based on modelling charging events 

determined by three key factors: the current state of charge (SOC), available parking time, and the 

journey number. These criteria indirectly suggest a variable probability of charging point availability, 

a methodological choice influenced by data limitations and the challenges of explicitly simulating every 

potential charging obstacle. The study highlights the complexity of integrating charging point 

availability into EV charging models, opting for a simplified approach where each vehicle is assumed 

to have its own charger for the sake of the model's feasibility and due to constraints on time resources. 

This simplified assumption, although not capturing the intricacies of charging infrastructure constraints, 

emphasizes the crucial importance of accessible charging infrastructure in accurately modelling and 

understanding EV charging behaviours. The initialisation of the SOC on the first day of simulation is a 

common challenge encountered when modelling EVs over multiple days. Pareschi et al. (2020) devised 

a solution by introducing a ‘Day 0’, an additional day at the outset of the simulation period. On Day 0, 

all EVs begin with a full charge, and the ending SOC values were employed as the initial SOC’s for the 

actual first day of simulation. This approach mitigated the impact of initial assumptions and conditions. 

Crozier et al. (2021) investigated various methods for modelling the variability of EV charging 

patterns and classified these methods into three distinct categories: (1) bottom-up charging models 

applied to varied vehicle use, (2) stochastic bottom-up charging models applied to a fixed set of vehicle 

usage, and (3) top down stochastic charging models.  

The first group involves the utilisation of predefined rules that determine when charging occurs, 

the most common rule being to initiate charging after the final journey of the day (Pashajavid and 

Golkar, 2012), typically at the EV owners’ home (Kang and Recker, 2009; Hardman et al., 2018). Some 

extensions to this approach include incorporating charging events whenever the vehicle is at home 

irrespective of its future travel patterns (Grahn et al., 2013; Wu et al., 2011).  

The second group of models operates on given vehicle usage patterns and generates stochastic 

charging estimates. Developing these models requires substantial datasets pertaining to EV usage and 

charging. Monte Carlo simulations can be employed to capture charging variability, although this 
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approach can overestimate the peak aggregated charging demand when considering many agents 

(vehicles) concurrently (Crozier et al. 2021).  

The third group focuses directly on modelling charging itself, rather than the relationship 

between vehicle use and charging. These are known as top-down models for EV charging and are 

particularly suitable for investigations pertaining to public charging, where questions of charge point 

numbers and availabilities are the focus (Crozier et al. 2021). 

However, reviewing literature focused on empirical data collected via Public Trials, the other 

approach to generating EV charging profiles, also offers much to be considered. Kim (2019) analysed 

empirical meter-level data to investigate the energy load profiles of residential customers under the 

Time of Use (TOU) rate with and without EV charging. When considering the TOU tariffs, a high 

correlation was found between charging schedules and the electricity rate tariff structure participants 

were contracted to. Indicating individuals are heavily influenced by the pricing structure of their 

electricity tariffs to dictate when they would charge their vehicles. TOU and smart charging tariffs have 

been recognised as a method to not only shift peak demands to off-peak times and by doing so alleviate 

pressures on grid infrastructure, but also lower the cost of charging an EV (Hardman et al., 2018).  

Turning focus to consumer preferences regarding EV charging and its infrastructure – crucial 

factors in promoting EV adoption – Hardman et al. (2018) sought to understand the interaction of 

existing EV owners with charging infrastructure. Hardman et al. (2018) found home charging to be the 

predominant choice among EV owners, with 50-80% of all charging events taking place at home. 

Following home charging, work and public locations (i.e. supermarkets) were the next most popular 

charging locations (Hardman et al., 2018).  

This strong preference for home charging ties the refuelling process of EVs closely to the 

vehicle's home and, by extension, to the residential energy sector and its demand, as noted by Ofgem 

(2018). Adderly et al. (2018) support this, reporting that 81% of EV charging in the US occurs at home. 

Moreover, Hardman et al. (2018) suggest that home charging could mitigate issues like congestion that 

arise with extensive public charge point usage. 

Building on this understanding of home charging’s prominence, it is important to consider the 

distinct advantages in rural settings, a highlighted by Newman et al. (2014). Rural households, often 

with more available space and features such as designated off-street private parking (driveways, 

garages, carports etc) (Newman et al. 2014), are well positioned to accommodate home charge points. 

This contrasts sharply with urban areas, where the lack of off-street parking for many types of properties 

in these areas (flats, terraced houses etc.) hinders the transition. In rural areas, the dispersed nature of 

amenities, such as shops and utilities, further bolsters the case for home charging, as charging points at 

public locations become more valuable and practical, improving their business case according to 

Newman et al. (2014). This rural context provides a deeper understanding of the varying degrees of 

feasibility and necessity for home charging in different geographic areas, complementing the findings 

of Hardman et al. (2018). 
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2.6 Electrical Grid 
 

It is widely understood and expected that EV uptake will lead to a greater demand for electricity. 

From a grid perspective, large-scale deployment of EVs pose multiple challenges in terms of changes 

to current load profiles (Shahriar et al., 2020; Ridder et al., 2013). Ashfaq et al. (2021) highlighted the 

largest threat comes from uncoordinated charging behaviour, as this would deteriorate the distribution 

system’s functioning (i.e. transformer overloading, voltage instability, power loss, and frequency 

variations), which may collapse the power system (Martinenas et al., 2016). This has also been 

advocated by the works of Clement-Nyns et al. (2010) and Wang et al. (2018). The ‘My Electric 

Avenue’ project predict 32% of local electricity networks (312,000 circuits) will require intervention 

when 40-70% of customers have EVs (My Electric Avenue, 2023). These susceptible networks were 

distinguished by any with an available capacity less than 1.5kW per customer and based on 3.5 kW 

(16amp) charging. 

These challenges are only heightened in rural areas where, as mentioned previously, resides 

typically weaker grid infrastructure (Western Power Distribution, 2022a; Nutley, 2005). However, 

studies have shown that if charging/discharging of EVs was sufficiently utilized, they could be 

employed to actually aid and improve the grid (Pang et al., 2012). 

Hartvigsson et al. (2022) conducted the first national coverage of EV charging impacts in 

residential areas for Sweden. Results showed that the risk of power system violations due to EV 

charging are greatest in cities and smaller in urban areas, while rural areas show significantly fewer 

violations. This only holds true if the infrastructure is built to the same level across urban and rural 

areas, as is the case in Sweden and the areas investigated by Hartvigsson et al. (2022). In this case, the 

number of customers in a low-voltage grid decreases, the designed grid capacity per customer increases 

and so reduces the likelihood of voltage violations to occur when adding EV charging loads. However, 

this is not the case for UK grid infrastructure amongst urban and rural areas. As highlighted previously, 

the grid infrastructure in rural UK areas is much less robust. Hartvigsson et al. (2022) also showed that 

even pricing points from chargepoint operators could cause grid instabilities. If charging rates are 

changed too quickly and the grid does not have the capabilities to respond fast enough to these changes, 

this could also result in potential grid failures (ADE, 2020; Hartvigsson et al., 2022).  

Two large aspects this thesis aims to investigate in relation to the grid are (1) the effects of 

power outages and (2) demand side management, a technique to aid the grid in times of voltage 

violations and prevent power outages. Literature surrounding these two topics will now be discussed in 

more detail.  
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2.6.1 Power Outages 

 

In this electrified vehicle future, a potential major cause for concern is the impact of power cuts, 

due to increasing numbers of motorists becoming dependent on an unfailing electrical grid to keep their 

vehicles operational. Although power cuts are an infrequent occurrence in the UK, natural disasters (i.e. 

storms and extreme weather) can still cause longer term power outages, particularly in more rural and 

remote locations. On the 9th of August 2019, a large scale power outage caused interruptions to over 1 

million UK consumers' electricity supply (Ofgem, 2020). This power blackout was the result of a 

lightning strike in Cambridge, UK, exposing fault lines brought about by the rapid changes due to the 

decarbonisation drive and penetration of smart grid technologies (Bialek, 2020). Although the voltage 

disturbance due to the lightning strike was within expectations, it caused three infeed losses from 

surrounding wind farms and power stations. 

In addition to unplanned power outage scenarios, recent global affairs have exposed the threat 

of energy generation difficulties in the UK. This has led to the UK Government considering invoking 

the Electricity Supply Emergency Code (ESEC) as mitigation, receiving large media attention (The 

Guardian, 2022a). The ESEC details supply plans should prolonged electricity shortage affect a specific 

region, or the whole country. Understanding the impact power outages will have, from not just a grid 

perspective but also consumer requirements of their vehicles is vital for success of the EV transition. 

Research has not yet explored or predicted the performance of EVs during power outages, 

concentrating instead on the possible solutions that’s EVs offer for grid instability. Zheng et al. (2019) 

examined Vehicle-to-Grid (V2G) technology, noting is potential as an effective and economical 

approach to accommodate the increased charging demands EVs will impose on current electrical grids. 

V2G technology facilitates bidirectional energy exchanges between EVs and the grid, enabling the 

storage of surplus power during periods of lower demand and its injection back into the grid during 

peak demand times. In this context, EVs function not only as consumers of electricity but also as a 

distributed energy storage system. However, it is important to note that this technology remains in the 

experimental phase, and numerous technical and regulatory challenges must be addressed before it can 

be widely and effectively implemented (Zheng et al., 2019).  

Tian & Talebizadehsardari (2021) considered shared parking stations (car parks) with V2G 

capabilities to provide energy resilience for local buildings near to the parking station during times of 

power outages. Through their simulations, Tian & Talebizadehsardari (2021) found that the EV V2G 

parking stations could only supply the loads of the buildings for a duration of up to 6hrs depending on 

the time of day of the outage. This is not a long period of time for a power outage to occur, especially 

if said power outages are caused by natural disasters which damage infrastructure leading to long repair 

times, and thus longer power outages. Adderly et al. (2018) sought to highlight this risk for EV owners 

during natural disasters in the US which require evacuations. Looking at a hurricane scenario from 

Florida, US, Adderly et al. (2018) point out the distances for escaping an evacuated zone may exceed 
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the range of an EV on a single charge. With the increase in uptake of EVs, this issue would only become 

exacerbated by charging stations upon evacuation routes becoming saturated or unavailable themselves 

due to power outages. As a note for the EV transition as a whole, Adderly et al. (2018) also highlighted 

that EVs have now become widespread enough to warrant this concern. 

For power outage cases which do not require evacuations, Rahimi & Davoudi (2018) looked at 

the opportunity EVs present for residential customers during periods of unavailability of distribution 

systems. The unavailability of a distribution system could still be due to natural disasters such as 

hurricanes for instance. Through first understanding the electricity requirements of a household, various 

models of EVs and Hybrid vehicles were investigated to calculate how long they would be able to 

provide power and energy to the household. Rahimi & Davoudi (2018) found hybrid vehicles out-

performed the EVs when it came to duration of serving time (the time for which the buildings could 

rely on the vehicles acting as generators), due to the larger amount of energy capacity from both the 

battery and fuel. For example, a Tesla model S could serve between 0.9 and 2.9 days depending on 

available battery capacity and season of the year, whereas a 2017 Prius offered between 2.0 and 6.5 

days.  

Kuchta (2022) suggests that in households equipped with solar panels - a common scenario 

today, with many studies examining situations where EV charging energy is generated on-site (Yang 

and Wang, 2021; Richardson, 2013) – it might be feasible to channel this electricity directly to their 

vehicles. Yang & Wang (2021) investigated just that, a resilient home energy management strategy to 

enable residential houses to implement self-power supply during a planned grid outage period. Their 

proposed strategy incorporated the energy backup capability of PHEVs and residential solar 

photovoltaic (PV) sources. Through also scheduling home energy consumption patterns, they 

significantly reduced the impact of a grid outage. 

However, these studies are all mute considering V2G technology is still in its developmental 

stage. Additionally, for V2G to work, EVs need to remain stationary, rendering the EV as a vehicle 

useless when engaged in V2G. As mentioned in Chapter 1, for rural areas, this approach is less viable 

due to the higher vehicle usage observed in these areas. Although it does present interesting 

opportunities and potential solutions, consideration should be given to the impact of power outages with 

today’s standards (todays infrastructure limitations etc.). As presented in Chapter 1 (section 1.1), one 

of the aims of this thesis is to understand just that. 

 

2.6.2 Demand Side Management 

 

Demand-side Management (DSM) refers to a range of technologies and interventions designed 

to create greater efficiency and flexibility on the demand side of the energy system. With households 

being increasingly equipped with smart metering, this potential is already receiving a lot of attention 

for household use. 
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Mohanty et al. (2022) identified two main classes of DSM strategies, based on the behavioural 

changes of the agents, in this case consumers: incentive-based or price-based strategies. Price-based 

strategies being those which feature reactions to electricity tariff signals (Gottwalt et al., 2011), 

including Time-Of-Use (TOU) pricing, Critical Peak Pricing (CPP) and/or Real-Time Pricing (RTP). 

Whereas in incentive-based programs, the consumers are incentivized independent of electricity tariffs 

(Mohanty et al., 2022). Examples of these strategies include Direct Load Control (DLC); a utility’s 

program to remotely shut down customers electrical equipment in exchange for an incentive payment 

or bill credit, Load Curtailment; the deliberate reduction in power output to balance energy supplies, 

lessening the stresses on the grid,  and Demand Response (DR) bidding; encouraging customers to shift 

electricity demands to times when electricity is more plentiful or other demand is lower, typically 

through price incentives.  

Gottwalt et al. (2011) identified considerable amounts of flexibility in residential demand when 

utilising DSM techniques with smart appliances and variable prices. Through simulation, Gottwalt et 

al. (2011) developed an artificial load profile for individual household appliances (examples include 

but not limited to: dishwasher, washing machine, Information and Communication Technology (ICT), 

Consumer electronics, stove, lights, circulation pump), which in turn are aggregated together to form 

household load profiles. Based upon German national statistics for utilisation of appliances, i.e. number 

of yearly uses and appliance run times, Gottwalt et al. (2011) generated household load profiles for a 

whole year, split into 15 minute intervals. This allowed Gottwalt et al. (2011) to integrate factors such 

as holidays, vacations, and seasonal impacts. With these developed load profiles, congregated from 

individual appliances under a flat electricity tariff (i.e. a flat rate pricing structure), simulations then 

sought to replace the appliances with smart appliances, and incorporate time-based electricity prices. 

Gottwalt et al. (2011) actually found there to be no improvement on peak loads. As the time-based 

electricity price structures simulated were day-ahead TOU tariffs, original demand peaks are eliminated, 

but alternative peaks occur, increasing in size with adoption rate of smart appliances. In terms of the 

consumers monetary gain from investing in smart appliances, to enable DSM techniques, Gottwalt et 

al. (2011) showed that households save very little over the course of a year, with the savings in 

electricity bills hardly exceeding the cost of smart appliances. However, from a grid operators 

perspective, DSM technology increased demand responsiveness and thus a better ability to adjust to 

intermittent supplies. The work presented by Gottwalt et al. (2011) highlights the unintended impact of 

peak shifting technologies if large numbers of households are simulated, i.e. the generation of new 

peaks, replacing the old ones. Effort may be required to limit the grids capacity over time so as to 

eliminate the possibility for other peaks to form when originals are dissolved.  

One model presented in literature uses a global charging power cap, within which selection 

criteria, including State-of-Charge (SOC) and availability, are used to develop a priority ranking system 

from which vehicles are picked to determine charging order (Ciabattoni et al., 2021). The work of 

Ciabattoni et al. (2021) focuses on the development of their cloud-based tool, a fully customisable EV 
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population simulator to fill the lack of large-scale data sets available for EVs, upon which a peak-

shaving (DSM) case study is presented to illustrate the simulators potential. Each driver (EV) is 

randomly assigned a charge point, either 3, 4.5 or 6 kW. Although the output from Ciabattoni et al. 

(2021) simulator provides power and energy requirements from the charge point, SOC and minimum 

SOC (the minimum amount of SOC required during recharge for each EV to successfully complete the 

following travel requirements until the next charge) of the EVs continuously throughout a pre-defined 

simulation period, only commuting trips are considered. Thus, lacking the ability to capture the 

heterogenous nature of vehicle usage, and by extension, accurate reflections of an EV’s SOC over time.  

Nevertheless, Ciabattoni et al. (2021) go on to present a DSM strategy applied to the output of 

the simulator; a cap for the global charging power absorbed from the grid. The commuting distances 

and minimum SOC are still enforced and a population of 100 EVs are simulated. Ciabattoni et al. (2021) 

explored multiple power caps (70, 50, 23, 18, 14 and 10% of the maximum power required should all 

vehicles want to charge at the same time. For this simulation run, this yielded a maximum power 

demand of 450 kW from all 100 various charge point powers. For all scenarios, apart from the 10% 

power cap), all travel requirements for each EV are met. For the DSM simulation conducted by 

Ciabattoni et al. (2021) to determine which EVs can and cannot charge at any one particular time, when 

the total number of EV chargepoints plugged in exceeds the power cap of the current scenario being 

investigated, a priority mechanism has been developed. EVs whose State of Charge (SOC) falls below 

their specific minimum required SOC are given the highest priority. This priority diminishes once the 

EV reaches this minimum SOC threshold. This method, reflecting a lowest SOC has priority approach 

in some ways is an interesting equitable approach to the determination of charging schedule.  

One core assumption should be noted from the work by Ciabattoni et al. (2021), each vehicle 

has its own charge point. Households are not considered within the simulator presented by Ciabattoni 

et al. (2021) and thus neither are multi-vehicle households, households which may only have one charge 

point between multiple vehicles. However, Ciabattoni et al. (2021) approach does yield lower 

computational requirements and complexity from this simplification.  

Furthermore, as highlighted previously, the ‘My Electric Avenue’ project found 32% of 

Britain’s low voltage (LV) feeders will require intervention once larger EV market shares are achieved. 

Traditionally, these findings would mean the replacement of underground cables, however, another 

aspect of this project saw the trialling of DSM technology; Esprit (My Electric Avenue, 2023). Esprit 

represents a cutting-edge technological solution capable of managing EV charging activities in response 

to elevated demand levels within the local electricity grid. By incorporating Esprit into networks, the 

‘My Electric Avenue’ project is the first real-life trial that has directly controlled domestic EV charging 

to prevent underground cables, overhead lines and substations being potentially overloaded. The project 

found that the adoption of Esprit has the potential to yield significant cost savings, estimated at 

approximately £2.2 billion in infrastructure reinforcement expenses by the year 2050 (My Electric 

Avenue, 2023). The installation of Esprit and idea of curtailment was accepted by participants of the 
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My Electric Avenue project beforehand, with Fisher et al. (2015) reporting participants were 

comfortable because “…they only had short journeys to complete each day, with available charging 

periods of 10-12 hours overnight”, and “…they could always use another vehicle if necessary”. The 

reactions to DSM and the power capping of chargers may be different if the EV was your only option 

for mobility, as would likely be the case for rural households, especially one vehicle household.  

Likewise, to power outages, EVs also present opportunities for aiding DSM measures. With 

V2G technology, an EV could be used as an energy source during times of peak demand on the grid 

(Pang et al., 2012; Mesaric and Krajcar, 2015). However, Cowie et al. (2020) actually highlight the 

“lack of thinking” behind using EVs for DSM in rural areas. Rural vehicles are much less likely to 

spend as much time parked compared to their urban counterparts and thus reduce their feasibility for 

use in DSM projects. In addition, there are also significant issues with utilising EVs for DSM strategies 

in terms of both consumer acceptance (exacerbating range anxiety issues), and battery 

degradation/health from additional charge/discharge cycles (Mohanty et al., 2022). 

 

 

2.7 Real-World EV Studies 
 

The focus of this literature review thus far has been predominantly technical. To ensure both a 

quantitative and qualitative approach to the work presented in this thesis the following section will focus 

on real-world studies which have been conducted on the EVs and the transition. 

The business case for rural areas under current circumstances, including lower population 

densities, longer journey distances, and lower return on investment (ROI) seen by companies and 

investors installing EV and charging infrastructure, leaves rural communities with a high possibility of 

being ‘left behind’ (House of Commons, 2018). This thesis intends to take a stakeholder approach to 

help mitigate this possible scenario. This approach will ensure the implementation of EVs, and its 

necessary support infrastructure yields benefits for all stakeholders in these rural environments, in 

particular the rural community. 

Although there is a general lack of consideration for the EV transition in rural areas from an 

academic aspect, and even less so from a political aspect, there have been some studies conducted which 

focus on it. Newman et al. (2014) challenged the widely held belief that EVs are ideally suited for urban 

setting, suggesting instead that they could be equally, if not more, effective in suburban and rural areas. 

They highlight the typically longer commuting distances in these areas (30-80 km round trips), which 

Newman et al. (2014) argue align better with the discharge-recharge cycle of EV batteries. However, 

this could mean that after a typical day’s travel, an EV might have limited capacity for additional trips 

without recharging, potentially delaying the onset of further travel. In addition, the longer average travel 

distances in rural settings, as opposed to urban ones, could lead to a more significant cost benefit of 

using an EV over an ICE vehicle. 
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Additionally, literature highlights the importance of an inclusive approach (i.e. open 

communication between all stakeholders of the rural EV transition) when tackling the EV transition in 

rural areas (MICT, 2016; Esmene and Leyshon, 2019). To involve the rural community as an active 

stakeholder and participant in the transition to EVs in their area, and to facilitate a smoother shift, data 

collection from these areas will be conducted. In preparation for this, examples of previous EV surveys 

have been reviewed and are presented below. 

One survey, conducted by the Electric Power Research Institute (EPRI), based in the US, 

developed a web-based survey which was active from 2011 till mid-2014. Dunckley and Tal (2016) 

surveyed over 4,000 EV owners across 11 states in America to investigate the attitudes and perceptions 

of EV owners with regards to the roles of electricity companies and grid operators in this transition and 

the market itself. Dunckley and Tal (2016) found most US based EV drivers only charge at home, with 

some charging at home and work. The only criteria for participation was ownership of an EV, with no 

published statistics on their location (i.e. if participants lived in a rural or urban environment). Although 

from the demographics they did collect, 98% reported living in detached houses (Dunckley and Tal 

2016). As highlighted previously, rural households typically have more space and off-street parking 

(see Section 2.5), which usually presents itself as detached houses. Given the high proportion of 

detached households within the Dunckley and Tal (2016) study, findings from this study can be 

applicable to rural areas. For comparison, figure 2.9 presents housing stock statistics for England, 

categorised by building type and location (rural to urban). As shown by figure 2.9, rural areas by far 

have the highest percentage of detached and semi-detached houses, which typically will have off-street 

parking, compared to Flats for instance which are shown to be much more prevalent in urban areas. 

 

 

 

 

Figure 2.9: Percentage of residential properties, by building type (Figure A-1 extracted from DEFRA, 

2023) 
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The survey conducted by Dunckley and Tal (2016) also explored how incentives impact 

consumer decisions to purchase EVs. By categorisation responses according to the make and model of 

the EVs owned by participants, they shed light on the popularity of specific models like the Nissan Leaf 

and Chevrolet Volt. The findings revealed that the federal tax credit, which was applicable to most 

buyers due to its criteria, held significant importance, especially for owners of the Nissan Leaf and 

Chevrolet Volt, as these vehicles qualified for the maximum credit  of $7500 at the time of the survey. 

This insight could account for the Nissan Leaf’s popularity observed in prior surveys discussed and its 

frequent inclusion in simulations and models developed in literature presented previously in this review.  

Conversely, Dunckley and Tal (2016) also reported the minor impact home charging 

installation incentives had for EV uptake, irrespective of the model. Considering the UKs only grant for 

purchasing an EV currently is for chargepoint installation this financial incentive offered by the UK 

Government may not do much for EV uptake levels.  

Dunckley and Tal (2016) also asked participants about charging behaviours and likewise to 

many other examples of literature presented in this review, saw Home charging as the most widespread. 

Responses showed 57% only plugged their EV in at home. Whilst 40% of respondents utilised home 

and public locations (including work) for recharging events. Only 2% charge their EVs solely away 

from home. Finally 1% did not plug their vehicle in during the last 30 days (Dunckley and Tal, 2016).  

When vehicles were actually plugged in, the majority of participants reported that their EVs 

begin charging immediately, however 20% use a timer to shift the load to off-peak hours. Dunckley and 

Tal (2016) found a high correlation between using a timer to shift the EV charging hours and the 

respective household being on a TOU electricity rate. In total 35% of households on a TOU rate use a 

timer, but contrary to intuition, 13% of households on a flat, standard electricity tariff also use a timer. 

Thus, moving their charging hours without any financial incentive. These individuals are most likely 

actively changing their charging behaviour due to their understanding of the electrical grids natural 

demand curves; however, this cannot be proven. Dunckley and Tal (2016) go on to advocate the 

opportunity EVs present to shift electric loads through encouraging customers to adopt TOU electricity 

tariffs. However, as highlighted by Gottwalt et al. (2011), during the discussions of Section 2.5.2, work 

is required to understand the implications of large number of households adopting TOU electricity 

tariffs as new peaks may be formed.  

Graham-Rowe et al. (2012) highlights the need for infrastructure investment to convince 

consumers to adopt EVs. This came following a questionnaire conducted with 40 UK private passenger 

vehicle drivers at the end of a 7-day period using an EV, the first UK EV trial focused on mainstream 

consumers. Participants were recruited from areas including the Berkshire, Hampshire, and Surrey 

regions, with the survey itself including a location question which options for participants to indicate 

the type of area from which they reside (rural, urban, or suburban). Of the 40 participants, 20 lived in a 

suburban environment, 13 in urban and 7 in rural locations (Graham-Rowe et al., 2012). As is the case 

for many individuals still today, the prioritisation of personal mobility outweighs environmental 
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benefits (Graham-Rowe et al., 2012), a finding also corroborated by Bailey and Axsen (2015) and 

Skippon and Garwood (2011).   

The participants of Graham-Rowe et al. (2012) study did note the environmental benefits and 

righteousness of operating an EV, however participants had multiple complaints. Ranging from 

embarrassment of driving EVs, compared to the ICEs on the road, adaptation requirements for operating 

an EV, lack of confidence in the vehicle to financial and range anxiety. However, this study is over 

10yrs old at the time of writing and the date the actual data collected itself was not presented, since 

which EVs have come on considerably in all these departments. It would be beneficial to conduct a 

similar questionnaire today for comparison. 

Carley et al. (2013) also surveyed 2302 consumers from over 21 major US cities on their intent 

on purchasing EVs, with questions focused on driving range. With this study concentrating solely on 

consumers in major urbanised areas only, it inherently carries a bias towards a demographic likely less 

worried about driving range compared to rural inhabitants. Consequently, this may lead to an 

underestimation of the genuine concerns regarding EV driving range. The survey developed by Carley 

et al. (2013) went live during the fall of 2011, before vehicle manufacturers and dealers began marketing 

campaigns, thus Carley et al. (2013) was able to capture true pre-conceived notions regarding EVs. This 

peer-reviewed journal from Carley et al. (2013) reported that the perceived disadvantages of EVs are 

significant deterrents which need to be overcome, however, many can be addressed via public policy 

and investments. For example, range anxiety could be alleviated through the installation of more public 

chargepoints. A course of action which is currently a priority of the UK Government (DfT, 2023c). 

As detailed, there are many examples of conducted surveys which have aided the understanding 

of the EV transition. However, few examples of surveys focus on rural areas alone, attempting to capture 

any nuances these environments pose towards the transition. The work presented in this thesis aims to 

fill this research gap through the development of a survey, specifically for rural data collection, and by 

extension validate the rural focused simulations which shall be presented (Section 1.1).  

 

2.8 Research Approach 
 

To achieve the multi-disciplinary nature of this thesis and the topics within, focus will now be 

placed upon the theoretical underpinning of this research. The transition of rural communities towards 

EVs adoption necessitates a methodological foundation that is not only practical but is also supported 

by a solid theoretical framework. With this in mind, it will explore the principles of pragmatism, 

stakeholder theory, and the case study methodology. These theoretical perspectives have been carefully 

selected for their relevance and potential to provide a comprehensive, multidimensional lens through 

which the complexities of rural EV adoption can be analysed and understood. Through this theoretical 

exploration, this thesis aims to forge a robust foundation that not only informs the empirical 

investigation but also enriches the analytical depth of the research findings.  
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2.8.1 Pragmatism 

 

In response to the complex, multifaceted nature of transitioning rural communities to EVs, the 

research presented in this thesis adopts a pragmatic philosophical foundation. Pragmatism, as a 

philosophical tradition, prioritizes the practical application of ideas and the real-world impact of 

research outcomes over rigid adherence to any one methodological approach (Morgan 2014). It is 

particularly suited to addressing the interdisciplinary nature of the rural EV transition, as it allows for 

flexibility in research design and methodology.  

Pragmatism is grounded in the belief that the truth of an idea or theory lies in its practical effects 

and its ability to solve problems (James and Sheffield 2019; Dewey 1938). This philosophy advocates 

for a pluralistic approach to research, where methods from both the positivist and interpretivist 

paradigms can be employed together to gather a comprehensive understanding on the research problem. 

As such, pragmatism inherently supports the use of mixed methods, enabling researchers to draw upon 

the strengths of both quantitative and qualitative research (; Johnson and Onwuegbuzie, 2004; 

Tashakkori and Creswell 2007; Creswell and Creswell 2018). This aligns with the interdisciplinary 

approach necessary for examining the socio-techno transition to EVs in rural areas, where 

understanding the nuanced interplay between technology, policy, and human behaviour is crucial.  

The pragmatic approach in this thesis is manifested through the development and application 

of a novel Travel Demand Model and an EV Charging Model, which together provide a multifaceted 

view of the potential impacts of EV adoption in rural communities. The quantitative data generated by 

these models will be complemented by qualitative insights from the survey distributed among rural 

individuals. This mixed methods approach, underpinned by pragmatism, allows for a more nuanced 

analysis of the feasibility, capabilities, and impacts of transitioning to EVs on both communities and 

grid operators.  

The decision to adopt a pragmatic approach is justified by the complexity and broadness of the 

research problem, which spans technical, environmental, social, and policy dimensions. Pragmatism 

offers the flexibility to adapt to methods as the research progresses, ensuring that the methods chosen 

are fit for purpose and sensitive to the evolving nature of the research. This adaptability is crucial for 

exploring new and evolving trends, like the shift towards EVs in rural areas, where existing models and 

theories may not adequately reflect the intricacies of the scenario (Feilzer 2010). 

By grounding this research in pragmatism, it contributes not only to the body of knowledge on 

the rural EV transition, but also to the methodological discourse on the application of pragmatic 

principles in interdisciplinary research. This approach demonstrates the value of pragmatism in aligning 

theoretical constructs and practical concerns, thereby offering insights that are both academically robust 

and practically relevant.  
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2.8.2 Stakeholder Theory 

 

As highlighted previously, the business case for the EV transition in rural areas, under current 

circumstances, leaves rural communities with a high possibility of being ‘left behind’ (House of 

Commons, 2018). This disparity uncovers a critical research gap – the need for inclusive strategies that 

ensure rural communities are integral to the EV transition narrative. Addressing this gap necessitates a 

theoretical lens that accommodates diverse interests and facilitates equitable value creation across all 

stakeholder groups.  

Stakeholder theory, as articulated by Freeman (2010), provides a robust framework for this 

endeavour. The stakeholder refers to “any group or individual who can affect or is affected by the 

achievement of an organization’s purpose” (Freeman, 2010). These groups have a stake in a particular 

issue or system and the stake (concern, issue, or claim) may be regarded as the driver of the relationship 

between a stakeholder and an organization. Stakeholder theory argues that an organisation should create 

value for all stakeholders, not just shareholders (Freeman 2010). This inclusive approach aligns with 

the ethical standpoint of utilitarianism, emphasising outcomes that maximize overall well-being (Jones 

et al., 2007). 

The discourse on stakeholder theory reveals its evolution into three primary variants: 

descriptive/empirical, instrumental, and normative (Hörisch et al. 2014). The research presented in this 

thesis is anchored in Normal Stakeholder Theory (also known as Moral Stakeholder Theory), which 

advocates for stakeholder consideration as a moral imperative, irrespective of the direct benefits to the 

organisation (Jones et al., 2007; Gooyert et al., 2017). This is opposed to the Instrumental stakeholder 

theory approach which take stakeholders into account because of perceived benefit for the organisation. 

The implications of this decision come down to the process of identifying stakeholders. A Normative 

(Moral) stakeholder approach will develop a wider set of stakeholders as those without power and 

influence on the organisation are considered to find the optimal solution going forward. The rural 

community, on which this research project is based, is the embodiment of this type of stakeholder – 

without power and influence. This has resulted in the ‘left-behind’ stereotype determined by past socio-

techno transitions. The morally correct approach is to make sure they are accounted for and thus this 

theory resonates with the ethos of this research more so. 

The Normative Stakeholder Theory underpins the methodologies used by this thesis, guiding 

the identification and inclusion of a broad spectrum of stakeholders, particularly emphasising those 

traditionally marginalised – rural residents. This theoretical stance is operationalized through a mixed-

methods approach comprising of a case study and survey. This approach aims to centre the perspectives 

and experiences of rural individuals – customers who are often overlooked in large-scale transitions.  
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2.8.3 Case Study Approach 

 

To ensure the findings of this thesis are routed with real-world applicability, a case study 

research approach was adopted. The case study method is ideally suited for investigating complex 

phenomena within their real-life contexts, particularly when the boundaries between phenomenon and 

context are not clearly evident (Yin, 2014). The decision to adopt a case study approach was driven by 

the need to understand the intricacies of EV adoption in rural settings – a topic that benefits from a 

detailed, contextual examination. Case studies enable a holistic analysis of the socio-technical and 

environmental variables at play, allowing for the exploration of processes, impacts, and experiences 

from multiple stakeholder perspective.  

A case study is defined as an empirical inquiry that investigates a contemporary phenomenon 

in depth and within its real-world context (Crowe et al., 2011). It is a methodological approach that 

stands on the foundational belief that complex issues cannot be fully understood without considering 

the context in which they occur, thus emphasising the importance of situational analysis for generating 

insights. Multiple definitions of case studies exist and can be seen in Table 2.3 below.  

 

Author Definition 

Stake Focuses on the complexity and particular nature of the case in question.  

"A case study is both the process of learning about the case and the 

product of our learning" (p.237) 

Yin Emphasises the contextual analysis of a limited number of events or 

conditions and their relationships.  

Miles and Huberman Considers the case as a phenomenon occurring in a bounded context 

Green and Thorogood Views the case study as an approach to obtain an in-depth understanding 

of a specific issue, entity, or process. 

George and Bennett Defines case studies as detailed examination of an individual case 

within a real-world context. 

 

Table 2.3: Definitions of a case study (Extracted from Crowe et al., 2011) 

 

Ensuring the validity of case study research is paramount to generating credible and reliable 

findings that can inform theory and practice. Robert K. Yin’s (2014) approach to case study 

methodology provides a comprehensive framework for addressing validity concerns, encompassing 

construct validity, internal validity, external validity, and reliability. This section will now elaborate on 

these validity factors are applied in the context of investigating the transition to EVs in rural settings.  

The methodological framework for this thesis draws heavily on the principles outlined by 

Robert K. Yin (2014), which advocates for a systematic approach to case study research. This includes 

the development of a clear research framework, the use of multiple sources of evidence, and the creation 

of a compelling narrative to present the findings. Yin’s approach is particularly well-suited to examining 

the technological and social dimensions of EV adoption in rural communities.  
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The practical application of Yin’s case study methodology in this thesis is demonstrated 

through the examination of EV adoption within the Peak District, UK – an applied example. This 

specific case was chosen due to its representative nature of rural communities facing the challenges of 

transition to EVs – this will be discussed in more detail in the following chapter. The case study involved 

an integrated method of data collection, including surveys, analysis of secondary data and 

infrastructural challenges. 

Adopting a case study approach will enable a detailed exploration of the EV transition in rural 

areas. By grounding the research in real-world applicability, this thesis contributes valuable knowledge 

to the field and will provide a solid foundation for future research and policy development in the context 

of sustainable rural mobility.  

 

CONSTRUCT VALIDITY 

 

Construct validity refers to the accurate identification and operationalisation of the concepts 

under investigation. Yin (2014) emphasises the importance of using multiple sources of evidence and 

establishing a chain of evidence to enhance construct validity. In the applied example of rural EV 

adoption, construct validity was ensured though the triangulation of data collected from multiple 

sources. This multiplicity of viewpoints and data types allowed for a robust operationalisation of the 

concepts or interest, such as “EV Adoption Barriers” and “Rural Mobility”.  

 

INTERNAL VALIDITY 

 

Internal validity, which is primarily a concern in causal (explanatory) case studies, deals with 

establishing a causal relationship between variables. While the focus on rural EV adoption may not 

strictly seek to establish causality, Yin’s framework suggests the use of pattern matching, explanation 

building, and addressing rival explanations as strategies to enhance internal validity. In this research, 

pattern matching can be employed by comparing observed patterns in the data (from the survey) with 

predicted patterns derived from the simulations (Travel Demand Model and EV Charging Model). This 

approach helps to solidify the internal logic of the case study.  

 

EXTERNAL VALIDITY 

 

External validity concerns the extent to which the findings from a case study can be generalised 

to other contexts. Yin (reference) advocates for the use of theory in case study research as a means to 

enhance external validity. Rather than relying on statistical generalisation, case studies aim for 

analytical generalisation, where the researcher generalises findings to theory rather than to populations. 

Therefore, this thesis aims to generate findings for rural EV adoption that are applicable to all rural 
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areas, this focus will be implemented through the adaptability of the novel models presented. In turn, 

these models can be utilised with any other case study area, thus facilitating the transferability of 

insights to a broader range of rural settings than solely the case study presented here.   

 

RELIABILITY 

 

Reliability in case study research ensures that another researcher could follow the same 

procedures and arrive at the same findings. Yin suggests the development of a detailed case study 

protocol and the maintenance of a case study database as key strategies for enhancing reliability. This 

thesis in itself can serve as a protocol outline for the studies procedure, from case selection through to 

data collection, modelling and analysis. A case study database, including raw data, survey responses, 

simulation code was maintained throughout, ensuring that the research process was transparent and 

replicable. 

 

 

2.9 Chapter Summary 
 

Initially, this chapter outlined a somewhat new, hybrid approach to literature analysis, merging 

narrative and systematic review methodologies. This approach was designed to accommodate the broad 

spectrum of research questions, enabling the identification of key themes and empirical evidence within 

the complex domain of rural EV transition. Various source types, including peer-reviewed articles, 

government reports and online materials provided a comprehensive pool of information from which to 

discuss. However, this approach may have neglected to include more grey materials which has been 

discussed previously. Despite this initial oversight in directly searching for grey literature, this 

expansive hybrid approach facilitated a nuanced understanding of rural EV adoption, setting a solid 

foundation for the thesis’ contributions to the field. 

This chapter has illustrated how the uptake of EVs are increasing. Although, there is still a way 

to go in terms of reaching a market penetration level whereby the number of EVs on UK roads will 

achieve UK Government targets. BEVs have been shown to have the highest rate of uptake within the 

UK and therefore shall be the focus for this thesis. However, given this increased rate of uptake, the 

reviewed literature on EV policies has shown the UK lacks incentives to promote the EV transition. 

Building upon this further, Section 2.2.2 reviewed emission zones, which were also shown to not foster 

the uptake of zero emission tailpipe vehicles such as BEVs. In addition, both the drivers and barriers 

EVs have to contend with to reach these goals have been reviewed. Range anxiety, public charging 

infrastructure, upfront costs and preconceived perceptions are all still barriers to the EV transition.  

Section 2.3 reviewed rural areas in general, the crux of this thesis, highlighting how vital 

vehicles are to the inhabitants of these areas, as well as a larger proportion of this population. They have 
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been shown to conduct different trips with their vehicles to their urban counterparts, highlighting the 

need for rurally focused research to aid this transition in these areas. However, given past socio-techno 

transitions and the current trajectory of this one, they are already falling behind their urban counterparts.  

The methodology for investigating the impact of EVs, and therefore predicting the 

changes/work that need to be done was discussed. This involves creating a travel demand model, based 

upon a synthetic population, and then applying various charging scenarios. Following this simulation 

pathway the activity based TDMs were identified to be most suitable given the aims and objectives of 

this thesis. The literature reviewed revealed several gaps and novelties that will be filled by the research 

presented in this thesis. This includes creating a longer term model to capture changes witnessed in car 

usage/travel over a longer period of time, incorporating a combination of social and demographic 

characteristics with these various models, and developing said models dedicated to capturing rural 

nuances; reflecting the differing travel patterns and vehicle requirements of rural areas compared to 

urban.  

This chapter then moved to discuss EV charging in Section 2.5. Noting a key feature, that will 

be employed by the models developed in this thesis, to incorporate a ‘Day 0’ to the simulation for 

initialisation. Additionally, weight needs to be given to understanding the impact of electricity tariffs 

(vis-à-vis pricing structures) and human behaviour itself when it comes to EV charging. To fully 

understand the impact of large-scale deployment of EVs in rural areas, integration with the electrical 

grid needs to be explored. Given the typically weaker infrastructure of the grid in rural areas, two further 

topics were discussed: power outages and demand side management.  

Given the predominantly technical/quantitative discussion thus far through, the Chapter sought 

to incorporate a qualitative aspect to balance the narrative and direction of the forthcoming work 

presented in this thesis. Literature on EV surveys was reviewed so as to ensure the work presented in 

this thesis engaged the stakeholder so often overlooked, the rural community. This thesis aims to 

conduct its own survey focused on this stakeholder and so sought to understand past examples of EV 

surveys.  

Finally, Section 2.8 established a multi-disciplinary framework to explore the transition of rural 

communities towards EV adoption, utilising a robust theoretical foundation that includes pragmatism, 

stakeholder theory, and a case study methodology. Together, these methodologies provide an adaptable 

framework that aims to enrich both the academic and practical understanding of rural EV adoption.  

 

2.9.1 Overview of Key Findings from Literature Review 

 

- The UK Government has now revoked many of the previous grants which were available to 

potential EV consumers, a decision shown by the literature reviewed to hinder the uptake of 

EVs in any country – more financial incentives are needed. 
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- If legislation specifies only low emission targets, as is the case with many Clean Air Zone 

projects across the UK, not zero emission targets, this too also does not lead to promoting EV 

uptake, if anything draws out the transition longer to actual zero emission vehicles such as EVs. 

- From an individual consumer perspective, the transition to EVs offers very little incentive, as a 

whole collective though there are the environmental aspects which will benefit all. The drivers 

for adoption are largely from the state’s perspective – energy security, environmental benefits 

and meeting targets. 

- However, EVs need to overcome very real driving range concerns, charging infrastructure 

issues (public and private), financial and pre-conceived perceptions due to the poor marketing 

and headlines EVs have received over the last 10 years.  

- Vehicles are far more of a necessity to rural dwellers than urban, primarily due to the lack of 

public transportation options and the spread-out nature of utilities and amenities.  

- Rural areas in the UK are classed as such based upon the Rural-Urban Classification 

- Rural areas have been left behind after previous large-scale socio-techno transitions, given the 

importance of mobility for rural dwellers this can’t happen with the EV transition. Current 

progress in the EV transition in the UK is already leaving rural areas behind, based on public 

charge point installation statistics.  

- A particular EV has been the focus of many pre-existing pieces of literature – the Nissan Leaf. 

(My Electric Avenue Project; Jones et al., 2020; Adderly et al., 2018) 

- Highlighted a methodology which could be utilised to facilitate the uptake of Electric Vehicles, 

from a technical infrastructure standpoint – A Travel Demand Model with EV Charging 

scenarios built on top to assess EV integration with local grid infrastructure.  

- Identified the Activity Based Travel Demand Model (a form of Agent Based Modelling) as the 

most suitable approach to achieve the Aims of this thesis. 

- Identified the National Travel Survey (Mattioli et al., 2019) as a potential source of data for this 

thesis. 

- The important of home charging EVs (Kang and Recker, 2009; Hardman et al. 2018; Adderly 

et al., 2018; Dunckley and Tal, 2016). 

- A lack of rural focused Travel Demand Models, i.e. ones that consider the nuances of rural 

vehicle travel compared to urban (Apronti and Ksaibati, 2018).  

- Many current EV Charging models and scenarios fail to consider longer-term durations of 

simulation/investigation. Most are just 1 or 2 days. 

- The Day 0 approach from Pareschi et al. (2020) for initialising the simulation parameters and 

mitigate the impact of transient behaviour in the system.  

- Should EVs reach 40-70% market penetration, an estimated 323% of the UKs distribution 

system will be unable to cope. It is therefore vital to understand what the impact is and develop 

mitigation strategies. 
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- No evidence could be found reviewing the impact of power outages on EVs charging/usability. 

- With such a globalised energy dependency, the UK is at risk of potential planned long-term 

power outages – what are the implications for the EV transition? 

- Ciabattoni et al. (2021) proposed a hierarchy methodology for DSM – lowest SOC has priority. 

- Charging takes place following last trip of the day (Kang and Recker, 2009). 

- Likewise, to previous examples of Travel Demand Models, no evidence of rurally focused data 

collection surveys could be found. 

- Identification of pragmatism as the most appropriate framework to continue the work of this 

thesis with and with this the Case Study approach. This will manifest as an empirical inquiry 

into the EV transition in rural areas. 

 

Having reviewed past research on the topics surrounding the research question and this thesis, 

the following chapters will present the development of novel models, building upon past works 

presented in this review. This includes a travel demand model, EV charging model, the grid impact and 

conduction of a survey on rural communities. This chapter has achieved ‘Objective 1a and 1b’, and by 

extension the first Research Aim, as presented in Chapter 1. In addition, the literature presented in this 

chapter sets the background for the other Research Aims and Objectives of this thesis.  
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CHAPTER 3:  TRAVEL DEMAND MODEL 

 
As highlighted by the previous chapter, understanding EVs and their charging profiles can be 

achieved through the simulation approach (Pareschi et al., 2020). This approach requires a Travel 

Demand Model (TDM) and EV charging scenarios. With the pre-existing travel patterns of vehicles 

simulated by a TDM, effort can then be made to understand the impact should this travel be conducted 

solely by EVs. The focus of this chapter shall be the development of a novel TDM for rural areas. 

The chapter starts with detailing the selection process employed to find a suitable rural 

community on which to base this model, ensuring the rural focused requisite is achieved. For this 

community, key parameters for the model were extracted from public datasets. The literature reviewed 

in Chapter 2 found no prior models available that could be applied to serve the purpose set out for this 

thesis. Section 3.2 details preliminary work which was conducted to develop a smaller, 1-day TDM. 

This will henceforth be referred to as the ‘One Day Model’ and was developed as part of the pathway 

for developing a 7-day TDM. A short evaluation of the One Day Model will also be presented, which 

led to the development of criteria for the 7-Day TDM. Section 3.3 presents the novel 7-day TDM, a 

predictive travel model specific to rural areas for private passenger vehicles. This section includes the 

data driving the model’s methodology, how it works, and the results. This is followed by a discussion 

of results and a short model validation using a previous year’s data from the publicly available, UK 

National Travel Survey (NTS) (GOV.UK, 2021). This chapter concludes with a short summary, Section 

3.5. 

To note, material presented in this chapter has been published, or is currently under review at 

the time of writing, in conference and journal papers (McKinney et al., 2022; McKinney et al., 2023b).  

 

3.1 Case Study Location 
 

This project is, in part, investigating the impact electric vehicles will have on rural areas, which 

includes their impact on the electrical distribution grid of rural areas. To ensure applicability for the 

work presented in this thesis, a real-world rural location was chosen to act as a case study area. This 

section includes an overview for the selection of this rural location, as well as various demographic 

statistics pertaining to the area which will act as the preliminary set up for the TDM. 

 

3.1.1 Bradbourne 

 
The village of Bradbourne was identified due to its small population size (and by extension the 

number of vehicles and households) to allow for a lower computational requirement, supporting an in-

depth analysis of the rural community requirements, as well as being easily accessible from the 

university base. Additionally, Bradbourne has readily available public data on various aspects of the 
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community, which is key to the development of a realistic TDM. Bradbourne is located in Derbyshire 

on the outskirts of the Peak District National Park, as shown in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: The Location of Bradbourne, England, UK (Left: Bing, 2021, Right: City Population, 

2021) 

 

The village of Bradbourne, although rural, can be classed as an affluent area. Taking the local 

house prices as a determination for affluency, the average sold price in Bradbourne over the last 12 

months was £588,333 (Zoopla, 2023). This is almost double the UK average house price of £286,000 

as of May 2023 (GOV.UK, 2023d). Current housing surveys of Bradbourne and the local surrounding 

areas (Parwich, Ballidon, Newton Grange etc.) have highlighted the need for more affordable housing 

in the area (Parwich Parish Council, 2022). Given Bradbourne’s affluent status, there is a higher 

likelihood residents in this village will be able to afford the higher initial price tags currently attached 

to EVs. Therefore, overcoming a large barrier to entry for a 100% EV population in a rural settlement, 

the focus of this thesis. 

This thesis aims to facilitate the uptake of EVs in rural areas, and the approach adopted to do 

this is a focus on local infrastructure and how this will cope with an EV future. The affluency of a rural 

area does play a pivotal part in the EV transition, for instance on the ability for locals to purchase EVs 

themselves and the installation of home charge points. This approach would require extensive financial 

analysis of an area on the local purchasing power of rural inhabitants; however, this is outside the scope 

of this thesis. For the approach of investigating local infrastructure, this will be the same regardless of 

a rural areas inhabitants purchasing power, a factor which also changes over time. Whether it’s a poor 

rural area of a rich rural area will have little impact on the level of the local electrical grid infrastructure. 

Though it is true different rural areas can and will have varying levels of local grid infrastructure (power 
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line ratings, transformer sizes etc), the work presented in this thesis is applicable to all rural areas, as 

the level of the local electrical grid will be considered, this will be discussed more in Chapter 5. 

A final note for the impact of an areas affluency on the EV transition in rural areas, will be the 

local public transport options. This thesis has already shown the high necessity of owning your own 

vehicles in rural areas, due in part to the reduced funding for public transport in rural areas. Therefore 

the use of Bradbourne as the basis for the investigation in this thesis can be seen as a placeholder for 

any rural area across the UK. As long as data is available for the area of interest from the UK Census 

survey, a primary source of data for the work presented in this thesis, the methodologies described in 

this Chapter and the following can be applied.  

The UK Census is a survey, conducted by the Office for National Statistics (ONS), every 10 

years across England and Wales. It provides the most accurate estimate of all the people and households, 

building a detailed snapshot of our society. For UK Census statistics, the area of the UK is split into 

geographical areas, called Outputs Areas (OAs). A typical OA is comprised of between 40-250 

households, or 100-625 persons (ONS, 2023). Bradbourne has the census output area code E00099163 

(ONS, 2021), which has been used to determine the housing stock from the UK Census. The number of 

households (including their occupancy levels) and car availability data for Bradbourne was obtained 

from the 2011 UK Census Survey, Table QS406EW (Nomis, 2013a) and QS416EW (Nomis, 2013b), 

respectively, shown in Table 3.1 and Table 3.2.   

 

Household Occupancy No. of Households 

One Person 15 

Two People 14 

Three People 13 

Four People 3 

Five People 2 

Six People 1 

Seven People 1 

Total 49 

 
Table 3.1: Household Occupancy in Bradbourne (NOMIS, 2013a) 

 
Car or Van Availability No. of Households 

No Cars or Vans 4 

1 Car or Van 17 

2 Cars or Vans 18 

3 Cars or Vans 9 

4 or more Cars or Vans 1 

Total Number of Vehicles 84 

  
Table 3.2: Car Availability for Bradbourne (NOMIS, 2013b) 
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3.1.2 Household & Car Distribution 

 
To approximate how many cars at each household, table 1 and table 2 were combined based on 

the premise that ‘the larger the household, the higher the number of cars that will be available’. Each 

house was then given its own ID number ranging from 1 to 49. This resulted in the following household 

compositions, shown in table 3.3. As per the UK Census definitions, ‘Car or Van’ includes pick-ups, 

camper vans and motorhomes but does not count motorbikes, trikes, quadbikes, and Statutory Off-Road 

Notification (SORN) vehicles (Census, 2021). 

 

Household 

Occupancy 

House ID No. of Cars  Household Occupancy House ID No. of 

Cars 

One Person 

1 0  

Three Person 

30 2 

2 0  31 2 

3 0  32 2 

4 0  33 2 

5 1  34 2 

6 1  35 2 

7 1  36 2 

8 1  37 2 

9 1  38 2 

10 1  39 2 

11 1  40 3 

12 1  41 3 

13 1  42 3 

14 1  

Four Person 

43 3 

15 1  44 3 

Two Person 

16 1  45 3 

17 1  
Five Person 

46 3 

18 1  47 3 

19 1  Six Person 48 3 

20 1  Seven Person 49 4 

21 1     

22 2     

23 2     

24 2     

25 2     

26 2     

27 2     

28 2     

29 2     

 

Table 3.3: Households of Bradbourne composition 

 
 

3.2 Development of the Travel Demand Model 
 

Preliminary work saw the development of a simple 1-day Travel Demand Model, acting as a 

‘stepping-stone’ for the development of the final, 7-day model. This section will describe this initial 

model, henceforth referred to as the ‘One Day Model’, followed by an in-depth evaluation. This 

evaluation reinforced the issues with short term TDMs discussed in the previous chapter, as well as 

highlighting important considerations for the development of the 7-day model.  
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3.2.1 One Day Model 

 
Based upon the composition of each household (number of occupants and number of cars 

available), coupled with consideration of how those factors reflect potential occupant(s) ages, and their 

employment or education status, numerous lifestyle scenarios were developed. These can be seen in 

table 3.4. 

 
Household 

Composition 

Description Lifestyle 

Scenario 

One Person & No Car N/A to this study 1 

One Person & One Car 
Retired Individual – Uses vehicle for ‘Other’ use 2 

Individual living alone - Working Full Time 3 

Two Person & One 

Car 

Retired Couple – Uses vehicle for ‘Other’ use 4 

Two Adults - One Works Full Time, One Does Not 5 

Two Adults - Both Work Full Time (Car Share) 6 

Two Person & Two 

Car 

Two Adults - Both Work Full Time 7 

Two Adults - One Works Full Time, One Works Part Time 8 

Two Adults - One Works Full Time, One ‘Other’ 9 

Three Person &Two 

Car 

Two Adults & 1 Children (<5yrs) - One Works Full Time, One 

‘Other’ 

10 

Two Adults & 1 Children (5-18yrs) - One Works Full Time, One 

School + Other 

11 

Two Adults & 1 Children (5-18yrs) - One Works Full Time, One 

School + Part Time Work 

12 

Two Adults & 1 Children (5-18yrs) - Two Work Full Time 13 

Three Person & Three 

Car 

Two Adults & 1 Children (17-18yrs) - Two Work Full Time, One 

School 

14 

Three Adults - Three Work Full Time 15 

Three Adults - Two Work Full Time, One Car sits idle 16 

Four Person & Three 

Car 

Two Adults & Two Children (5-18yrs) - Two Work Full Time, 

One School 

17 

Two Adults & Two Children (5-18yrs) - Two Work Full Time, 

One Car sits idle 

18 

Five Person & Three 

Car 

Two Adults & Three Children (5-18yrs) - One Works Full Time, 

One ‘Other’, One School 

19 

Three Adults & Two Children (5-18yrs) - Two Work Full Time, 

One Works Part Time 

20 

Six Person & Three 

Car 

Three Adults & Three Children (5-18yrs) - Three Work Full 

Time 

21 

Seven Person & Four 

Car 

Three Adults & Four Children (5-18yrs) - Three Work Full Time, 

One School 

22 

 
Table 3.4: ‘One Day Model’ Lifestyle Scenarios 

 

Households with children have been categorised by three categories based on the age, ‘<5yrs’ 

or ‘5-18yrs’, or ’17-18yrs’. This is to differentiate between households that would likely have children 

in education or not, and if the child themselves is capable of driving. Considering the driving age for 
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the UK, the location of research for this thesis, is 17 (GOV.UK, 2023c), the age category ‘17-18yrs’ 

represents those children who will have their own vehicle and drive themselves to School. 

From these lifestyle scenarios, a combination of trip purposes that each household might 

reasonably undertake in order to fulfil its lifestyle requirements (i.e. full time work – commuting trip 

purpose), was determined. These trip purposes were derived from those defined by the UK National 

Travel Survey (DfT, 2018b). The NTS is an annual survey by the Ministry of Transport, first 

commissioned in 1965 (Cornick et al., 2018) and one of the largest surveys completed in relation to 

travel in England. Approximately 16,000 individuals across 7,000 households are randomly selected to 

participate each year (DfT, 2020a) in the survey that consists of a face-to-face interview and a written 

travel diary. Annually, the Department of Transport published summary statistics tables (GOV.UK, 

2021). For the model’s creation, the most recent data available at the time, from the year 2018, was 

utilized (See Appendix A for NTS Summary Table NTS0403).   

For simplicity, the number of possible trip purposes was reduced (through combination) from 

the 14 categorised by the NTS to 3 for use in this 1-day model. For example, the trip purpose categories 

‘Commuting’ and ‘Business’ were combined into ‘Work Commute’, as it was deemed these to be similar 

in terms of travel pattern and hence charging requirements for the purposes of modelling scenarios.  

When considering the time resolution for this TDM, a 30 minute resolution was chosen to best 

serve the requirements for this thesis. With the EV charging model building upon a TDM, consideration 

was given to aligning the resolution of the TDM to one that would be beneficial for EV and household 

energy calculations, and by extension, grid integration. Although residential electricity meters are not 

monitored, business meters (often found on rural premises) are monitored half-hourly (British Business 

Energy, 2021). Therefore, to reduce computational complexities, a blanket duration of 30 minutes was 

set for all trip purposes. The resulting ‘trip purpose’ categories and their associated duration and 

distance are shown in table 3.5. 

 

 
Trip Purpose Trip Duration 

(mins) 

Trip Distance 

(miles) 

Work Commute 30 14 

Education Commute 30 2.7 

‘Other’ use 30 6.6 

 

Table 3.5: Derived Trip Duration and Distance by Trip Purpose 
 

 

The resulting passenger vehicle usage profiles, required to fulfil the lifestyle scenario of a 

particular household, will henceforth be referred to as ‘Car Days’. These proposed ‘Car Days’ have 

been adopted as the basis for the TDM, attempting to capture the travel patterns of individuals by 

mimicking the results of a travel diary. This methodology was opted for to acquire information similar 
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to that captured by the NTS - travel diaries - which at the time of development of this one day model 

was inaccessible. Additionally, another method to acquire this information would be to conduct primary 

data collection, however, due to time and resource restrictions, this was not practical at this stage. Seven 

different Car Day Scenarios (A - G) have been proposed which are presented in table 3.6. The Vehicle 

Location and Mileage Driven through the day for each devised Car Day Scenario is graphically 

represented in figures 3.2 and 3.3, respectively. 
 

 

Car 

Day 
Premise Description 

Total Miles 

Driven 

A 
Full Time 

Work 

Full Time Work (09:00-17:00) 

Car leaves at 08:30, Returns at 17:30 
28 

B 
Part Time 

Work 

Part Time Work (09:00-13:00) 

Car leaves at 08:30, Returns at 13:30 
28 

C 
Education 

Commute 

Student commutes to School (08:30-15:30) 

Car leaves at 08:00, Returns at 16:00 
5.4 

D 
‘Other’ 

Activity 

‘Other’ Activity (10:30-14:30) 

Car leaves at 10:00, Returns at 15:00 
13.2 

E 

Car Share 

(Full Time 

Work) 

Car share to two different working locations (09:00-17:00)  

Car leaves at 08:00, drop-off at 08:30, arrives at 2nd work 

location for 09:00. 

Car returns at 18:00, after pick-up from work location 1 at 

17:30 

56 

F 

School 

Commute 

+ ‘Other’ 

Car used to commute to school (08:30-15:30), drop-off 

student(s), then continues on to complete an ‘Other’ activity 

before returning home  

Car leaves at 08:00, drop-off student at 08:30 before 

continuing on and arriving at ‘Other’ trip destination at 09:00 

Car returns from ‘Other’ trip at 12:00 

Car leaves at 15:00, Returns at 16:00 

21.3 

G 

School 

Commute 

+ Part 

Time 

Work 

Car used to commute to school (08:30-15:30), drop-off 

student(s), then continues on to Part Time Work (09:00-13:00)  

Car leaves house at 08:00, drop-off student(s) at 08:30 before 

continuing on to Part Time Work destination at 09:00 

Car returns from Part Time Work at 13:30  

Car leaves at 15:00 to pick-up student(s) from school at 15:30 

and returning at 16:00 

36.1 

 

Table 3.6: Car Days Scenarios 
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Figure 3.2: Car Day Scenarios – Vehicle Locations 
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Figure 3.3: Car Day Scenarios – Miles Driven 

 

 

The process employed to determine each households’ Car Days, and thus enabling the 

determination of each households’ cars activity is illustrated in figure 3.4. Temporarily, the numbers 1 

to 7 were assigned to Car Day scenarios A to G, so that a random number generator could be used for 

this distribution. When this process was deployed, the resulting Car Day assignment to each household 

and its vehicles are shown in table 3.7. 
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Figure 3.4: Process of lifestyle scenario and car day assignment flowchart 
 

 

 

 

House ID Lifestyle 

Scenario 

Car ID’s 

for each 

Household 

Car 

Day 

 House ID Lifestyle 

Scenario 

Car ID’s 

for each 

Household 

Car 

Day 

1 1 N/A N/A  34 13 1 A 

2 1 N/A N/A  2 A 

3 1 N/A N/A  35 11 1 A 

4 1 N/A N/A  2 F 

5 2 1 D  36 10 1 A 

6 3 1 A  2 D 

7 3 1 A  37 13 1 A 

8 2 1 D  2 A 

9 3 1 A  38 10 1 A 

10 2 1 D  2 D 

11 3 1 A  39 12 1 A 

12 2 1 D  2 G 

13 3 1 A  40 15 1 A 

14 3 1 A  2 A 

15 3 1 A  3 A 

16 4 1 D  41 16 1 A 

17 6 1 E  2 A 

18 5 1 A  3 N/A 

19 4 1 D  42 14 1 A 

20 5 1 A  2 A 

21 4 1 D  3 C 

Random Number 

Generator 

Random Number 

Generator 
Household 

Composition 

Assign the Lifestyle 

Scenarios tailored to the 

household composition 

category 

Select the Car Days 

required to fulfil the 

Lifestyle Scenarios 

assigned 

Assign the Car Days 

selected to the Car IDs of 

that household 
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22 9 1 A  43 17 1 A 

2 D  2 A 

23 7 1 A  3 C 

2 A  44 18 1 A 

24 9 1 A  2 A 

2 D  3 N/A 

25 7 1 A  45 18 1 A 

2 A  2 A 

26 7 1 A  3 N/A 

2 A  46 19 1 A 

27 8 1 A  2 D 

2 B  3 C 

28 8 1 A  47 20 1 A 

2 B  2 A 

29 7 1 A  3 B 

2 A  48 21 1 A 

30 10 1 A  2 A 

2 D  3 A 

31 13 1 A  49 22 1 A 

2 A  2 A 

32 10 1 A  3 A 

2 D  4 C 

 
Table 3.7: Car Day Scenario Distribution 

 
 

3.2.2 One Day TDM Results and Evaluation 

 

For a population of 84 vehicles, the ‘One-Day' Travel Demand Model (TDM) predicts, 

collectively, a total of 1,993 miles driven per day. This equates to an average of 23.7 miles driven per 

car per day (including 3 vehicles which remain idle at home for the day of simulation). Scaling this to 

a full year (365 days), indicates the average annual mileage for each individual vehicle in Bradbourne, 

is 8,660 miles. The National Travel Survey reports for 2019, the average annual mileage of vehicles is 

7,400 miles (DfT, 2020b). This discrepancy is most likely due to the TDM only representing one day 

of travel, and that one day being weekday travel. Weekday travel patterns are typically the days where 

the highest number of miles will be driven, compared to the amount of travelling undertaken at 

weekends (DfT, 2019) and thus has caused a slight overestimate in the annual miles driven. 

 This inability to capture the variability between weekday and weekend travel patterns, also 

highlights another lack of consideration, which is the variability between individuals conducting the 

same ‘Car Days’, i.e. starting work at different times. This heterogeneity is due to the inherent 

unpredictability in human behaviour over long periods of time. Without capturing this inconsistency, 

the results of this TDM and any further work (i.e. EV charging impacts) would also lack this real-life 

variability.  

 Upon deeper analysis of the lifestyle scenarios, multiple, valid scenarios have not been 

considered (i.e. Two Person Households consisting of One Adult and One Child, or Seven Person 
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Households consisting of Four Adults (Parents and Grandparents) and Three Children). These other 

lifestyle scenarios would impact the number of each Car Day witnessed in the village of Bradbourne 

and thus the overall mileage and times of activities. Although this model shows significant progress 

was achieved without the need of large external travel datasets, it does also highlight the added benefit 

this would bring, in particular using statistics to add much needed variability to the model.  

 The overarching reason for the development of the TDM, as highlighted by the literature 

review, is to use it as a basis for investigating EV charging requirements and by extension the impact 

they will have on local grid infrastructure. Briefly considering these next steps, if we assume a 100% 

homogenous EV car population (using the 40kWh Nissan Leaf, with a consumption rate of 26.5 

kWh/100mile (Electric Vehicle Database, 2018)), the estimated total of 1993 miles being driven daily 

by the residents of the village of Bradbourne would correspond to a total of 528 kWh being consumed 

daily. Considering a simple, plausible, charging scenario whereby only one EV per household will be 

charged each day, for households with multiple EVs, a random number generator was used to determine 

which EV would be charged during the given 24hr period under investigation. It was assumed that all 

EVs will begin the day simulation with 100% state of charge and are only ever plugged in following the 

last trip of the day when the vehicle will not be leaving the household again (Kang and Recker, 2009). 

Based on these parameters, the recharging scenario saw only 287 kWh recharged into the vehicles. 

Compared to the 528 kWh required by the EV car population to maintain current travel habits, this 

showed a loss in the system over this simulation period, which if extrapolated to longer periods of time 

would become problematic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 

 

3.3 Overview of 7-Day Travel Demand Model 
 

Following the analysis of the One Day Model (Section 3.2), an improved extended version of the 

model was deemed necessary. Additionally, the RAW data for the National Travel Survey became 

available to the authors and thus, this dataset, as well as the data from the UK Census feature heavily 

in this novel 7-Day Model.  

 

3.3.1 Lifestyle Scenarios 

 
Following the same procedure as before, the lifestyle scenarios developed for the ‘One Day 

Model’ were used again, along with those not previously considered now being included. This resulted 

in a total of 27 different lifestyle scenarios for the range of Bradbourne’s household compositions, 

compared to the previous 22 scenarios included for the ‘One Day Model’ (table 3.4). The new lifestyle 

scenarios include: 7, 8, 12, 25, 27. These 27 scenarios are detailed in Table 3.8.  

  

Household 

Composition 

Description Lifestyle 

Scenario 

One Person & No 

Car 
One Adult - N/A to this study 

1 

One Person & One 

Car 

One Adult - Retired Individual 2 

One Adult - Working Full Time 3 

Two Person & One 

Car 

Two Adults - Retired 4 

Two Adults - One Works Full Time, One Does Not 5 

Two Adults - Both Work Full Time (Car Share) 6 

One Adult, One Children (<5yrs) - One Works Full Time 7 

Two Adults - One Works Part Time, One Doesn’t 8 

Two Person &Two 

Car 

Two Adults - Both Work Full Time 9 

Two Adults - One Works Full Time, One Works Part Time 10 

Two Adults - One Works Full Time, One ‘Other’ 11 

Two Adults – Both Retired 12 

Three Person &Two 

Car 

Two Adults & One Children (<5yrs) - One Works Full 

Time, One ‘Other’ 

13 

Two Adults & One Children (5-18yrs) - One Works Full 

Time, One School + Other 

14 

Two Adults & One Children (5-18yrs) - One Works Full 

Time, One School + Part Time Work 

15 

Two Adults & One Children (5-18yrs) - Two Work Full 

Time 

16 

Three Person & 

Three Car 

Two Adults & One Children (17-18yrs) - Two Work Full 

Time, One School 

17 

Three Adults - Three Work Full Time 18 

Three Adults - Two Work Full Time, One Car sits idle 19 

Four Person & 

Three Car 

Two Adults & Two Children (5-18yrs) - Two Work Full 

Time, One School 

20 

Two Adults & Two Children (5-18yrs) - Two Work Full 

Time, One Car sits idle 

21 

Five Person & Three 

Car 

Two Adults & Three Children (5-18yrs) - One Works Full 

Time, One ‘Other’, One School 

22 



67 

 

Three Adults & Two Children (5-18yrs) - Two Work Full 

Time, One Works Part Time 

23 

Six Person & Three 

Car 

Three Adults & Three Children (5-18yrs) - Three Work 

Full Time 

24 

Four Adults & Two Children (5-18yrs) – Two Work Full 

Time, Two Don’t 

25 

Seven Person & 

Four Car 

Three Adults & Four Children (5-18yrs) - Two Work Full 

Time, One Doesn’t, One School 

26 

Four Adults & Three Children (5-18 yrs & <5yrs) – Two 

Work Full Time, One Doesn’t 

27 

 

Table 3.8: Lifestyle scenarios for 7-Day TDM 

 

These 27 lifestyle scenarios were then assigned to each of the 49 households which matched 

the household composition, using a random number generator. This method did result in some lifestyle 

scenarios not being assigned to a household and thus not incorporated into the TDM. For example, there 

are two possible scenarios drawn up for the Household Composition category ‘Seven Person & Four 

Car’, however, based upon the dwelling statistics of Bradbourne, there is only one household of seven 

occupants in the village. Thus scenarios 26 and 27 cannot both be investigated. The lifestyle scenarios 

not incorporated into the TDM are as follows: 25 and 27. The results of the lifestyle scenario assignment 

to the households of Bradbourne can be seen in Table 3.9 below.  

 
House 

ID 

Lifestyle 

Scenario 

No. of 

Occupants 

No. of 

Vehicles 

 House 

ID 

Lifestyle 

Scenario 

No. of 

Occupants 

No. of 

Vehicles 

House 

1 

1 1 0  House 

26 

12 2 2 

House 

2 

1 1 0  House 

27 

10 2 2 

House 

3 

1 1 0  House 

28 

10 2 2 

House 

4 

1 1 0  House 

29 

9 2 2 

House 

5 

2 1 1  House 

30 

13 3 2 

House 

6 

3 1 1  House 

31 

16 3 2 

House 

7 

3 1 1  House 

32 

13 3 2 

House 

8 

2 1 1  House 

33 

14 3 2 

House 

9  

3 1 1  House 

34 

13 3 2 

House 

10 

2 1 1  House 

35 

14 3 2 

House 

11 

3 1 1  House 

36 

13 3 2 

House 

12 

2 1 1  House 

37 

16 3 2 
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House 

13 

3 1 1  House 

38 

13 3 2 

House 

14 

3 1 1  House 

39 

15 3 2 

House 

15 

3 1 1  House 

40 

18 3 3 

House 

16 

4 2 1  House 

41 

19 3 3 

House 

17 

6 2 1  House 

42 

17 3 3 

House 

18 

5 2 1  House 

43 

20 4 3 

House 

19 

7 2 1  House 

44 

21 4 3 

House 

20 

8 2 1  House 

45 

21 4 3 

House 

21 

4 2 1  House 

46 

22 5 3 

House 

22 

11 2 2  House 

47 

23 5 3 

House 

23 

9 2 2  House 

48 

24 6 3 

House 

24 

11 2 2  House 

49 

26 7 4 

House 

25 

9 2 2      

 

Table 3.9: Household Compositions 

 

From these lifestyle scenarios, a combination of trip purposes that each household might 

reasonably undertake in order to fulfil the scenario (i.e. full time work – commuting trip purpose), was 

determined. However, to incorporate more variability in the travel patterns, a requirement highlighted 

from the previous ‘One Day Model’, additional trip purpose categories were devised. This will now be 

discussed in detail in the following section (3.3.2). 

 

3.3.2 The National Travel Survey 

 

With the development of this 7-day Travel Demand Model, access to the RAW data of the 2019 

NTS, the latest year available at the time of writing, was achieved. The 2019 NTS dataset is available 

from the UK Data Service (DfT, 2020c), and with the RAW data, responses from rural households only 

could be extracted in order to further orient this work to support the rural focus of this project. This 

extensive data pre-processing stage required custom written python scripts in order to manipulate the 

RAW NTS data (DfT, 2022b). Considering this is a 7-day travel demand model, additional information 

is required, specifically, four key factors: 
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• The time the activity occurs 

• The day the activity occurs 

• The duration of the activity 

• The number of times this activity occurs (across the 7 day period) 

 

Table 3.10 details each of the NTS’s defined trip purposes, and the average trip durations and 

distances, specifically for only rural household respondents to the survey.  

 
Trip Purpose Avg. Trip Duration 

(mins) 

Avg. Trip Distance 

(miles) 

Commuting 27 11.8 

Business 38 20.7 

Education 17 5.6 

Escort Education 14 4.6 

Shopping 19 7.4 

Other Escort 19 8.2 

Personal Business 20 8.6 

Visiting friends at private home 29 15.1 

Visiting friends elsewhere 20 8.3 

Entertainment / public activity 23 9.8 

Sport: participate 22 10 

Holiday: base 97 59.7 

Day Trip 28 13.2 

Other including just walk 39 17.3 

 
Table 3.10: Rural Only Households – NTS Trip Data 

 

For simplicity, the number of trip purpose categories used for this model was reduced from 14, 

as set out by the NTS, to 5, two more than incorporated into the One Day Model. The following trip 

purposes: ‘Business’, ‘Escort Education’, ‘Other Escort’, ‘Holiday: base’, ‘Other including just walk’, 

were all discarded. The trip purposes: ‘Personal Business’, ‘Visiting friends at private home’, ‘Visiting 

friends elsewhere’, ‘Entertainment / Public Activity’, ‘Sport: participate’, were combined, via averaging 

their values, into a trip purpose henceforth referred to as ‘Other’. This process and the resulting trip 

purpose categories, as well as their associated duration and distance are shown in Table 3.11.  
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Trip Purpose  Trip Purpose Trip Duration Trip Distance 

Commuting 
 

Commuting 27 11.8 

Business  Discarded 

Education 
 

Education 17 5.6 

Escort Education  Discarded 

Shopping 
 

Shopping 19 7.4 

Other Escort  Discarded 

Personal Business  

Other 23 10.4 

Visiting friends at private home  

Visiting friends elsewhere 
 

Entertainment / Public Activity  

Sport: Participate  

Holiday: Base  Discarded 

Day Trip 
 

Day Trip 28 13.2 

Other including just walk  Discarded 

 

Table 3.11: Derived Trip Purposes for 7-Day TDM 

 
Given the temporal resolution of the model output was set to 30 minutes, the decision was made 

to use a blanket duration of 30 minutes for all trip purposes, as opposed to the averaged values presented 

in table 3.11 above. No trip purpose presented in table 3.11 averaged over 30 minutes in duration, and 

thus using this blanket approach allowed for easier computation as each trip generated occupies a single 

30 minute slot in the final output. The final trip purpose categories and their corresponding durations 

and distances can be seen below in table 3.12. 

 

Trip Purpose Avg. Trip Duration 

(mins) 

Avg. Trip Distance 

(miles) 

Commuting 30 11.8 

Education 30 5.6 

Shopping 30 7.4 

Other 30 10.4 

Day Trip 30 13.2 

 

Table 3.12: Trip Purpose Inputs for 7-Day Travel Demand Model 

 

 

 

3.3.3 Trip Purpose (TDM Inputs) 

 

This RAW NTS dataset was then used to derive probabilities for the trip start times, for when 

the various trip purposes can occur, throughout the day. Additionally, the probability of which days 

each type of trip is most likely to occur on across the week can also be assigned a probability. Due to 

the large pre-processing requirements, the data for the duration and frequency of trips was not directly 

derived from the NTS data; instead, reasonable assumptions were made. The individual trip purposes 

and their input details will now be described in detail.  
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1. COMMUTING 

 
Two types of employment have been considered in this model: full time and part time. Working 

days have been limited to Monday to Friday. Full time employment status work five days a week, 

Monday to Friday with the activity lasting 8hrs upon arrival at the work destination. Part time 

employment status on the other hand has two options; (1) works five days a week, 4 hrs per day, or (2) 

works three days a week (randomly selected) for 8hrs. For the households, and vis-à-vis the vehicles, 

which have been designated for part time working trips, a random number generator was used to 

determine which option would be attributed to the household, and for which days of the week. The 

model’s determination of trip start time for commuting to work is based on the probability distribution 

shown in figure 3.5.   
 

 
 

Figure 3.5: Trip start time probability distribution for ‘Commuting’ 

 
 

2. EDUCATION 

 
Education trip purposes are modelled in a similar way to Commuting; the occurrence is 

constricted to Monday to Friday and only for households for which there is an occupant of the 

appropriate age to be in education. An important consideration for the Education trip is if the vehicle 

used for an education purpose trip remains at the school for the duration of the school day or is only 

used for ‘drop-offs’ and ‘pick-ups’, and thus can be used for other trip purposes in the meantime. This 

decision process will be covered in more detail in Section 3.3.4. 

Regarding the start and finish hours of the school day, and thus the trip times, the trip start time 

for education trips is determined by the probability distribution shown in figure 3.6.  The School day is 

assumed to end at 15:30, and thus any return trips home or ‘pick-up’ trips will occur at this time. Again, 

the trip start time is only determined once and is repeated for each day of the activity.  
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Figure 3.6: Trip start time probability distribution for ‘Education’ 
 
 

3. DAY TRIP 

 

The Day Trip activity has a set duration of 4hrs, which can be initiated at any start time as per 

the probability distribution shown in figure 3.7.  

 

 
 

Figure 3.7: Trip start time probability distribution for ‘Day Trip’ 

 

 

The frequency of the ‘Day Trip’ activity occurrence varies depending on the household’s 

employment status. In the case of retired households, they are allocated two day trips per week, one to 

occur on a weekday, the other at the weekend. For employed households, only one trip is planned per 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0
0
:0

0
 -

 0
0
:2

9

0
1
:0

0
 -

 0
1
:2

9

0
2
:0

0
 -

 0
2
:2

9

0
3
:0

0
 -

 0
3
:2

9

0
4
:0

0
 -

 0
4
:2

9

0
5
:0

0
 -

 0
5
:2

9

0
6
:0

0
 -

 0
6
:2

9

0
7
:0

0
 -

 0
7
:2

9

0
8
:0

0
 -

 0
8
:2

9

0
9
:0

0
 -

 0
9
:2

9

1
0
:0

0
 -

 1
0
:2

9

1
1
:0

0
 -

 1
1
:2

9

1
2
:0

0
 -

 1
2
:2

9

1
3
:0

0
 -

 1
3
:2

9

1
4
:0

0
 -

 1
4
:2

9

1
5
:0

0
 -

 1
5
:2

9

1
6
:0

0
 -

 1
6
:2

9

1
7
:0

0
 -

 1
7
:2

9

1
8
:0

0
 -

 1
8
:2

9

1
9
:0

0
 -

 1
9
:2

9

2
0
:0

0
 -

 2
0
:2

9

2
1
:0

0
 -

 2
1
:2

9

2
2
:0

0
 -

 2
2
:2

9

2
3
:0

0
 -

 2
3
:2

9

P
er

ce
n
ta

g
e 

o
f 

T
ri

p
s 

(%
)

Time

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0
0
:0

0
 -

 0
0
:2

9

0
1
:0

0
 -

 0
1
:2

9

0
2
:0

0
 -

 0
2
:2

9

0
3
:0

0
 -

 0
3
:2

9

0
4
:0

0
 -

 0
4
:2

9

0
5
:0

0
 -

 0
5
:2

9

0
6
:0

0
 -

 0
6
:2

9

0
7
:0

0
 -

 0
7
:2

9

0
8
:0

0
 -

 0
8
:2

9

0
9
:0

0
 -

 0
9
:2

9

1
0
:0

0
 -

 1
0
:2

9

1
1
:0

0
 -

 1
1
:2

9

1
2
:0

0
 -

 1
2
:2

9

1
3
:0

0
 -

 1
3
:2

9

1
4
:0

0
 -

 1
4
:2

9

1
5
:0

0
 -

 1
5
:2

9

1
6
:0

0
 -

 1
6
:2

9

1
7
:0

0
 -

 1
7
:2

9

1
8
:0

0
 -

 1
8
:2

9

1
9
:0

0
 -

 1
9
:2

9

2
0
:0

0
 -

 2
0
:2

9

2
1
:0

0
 -

 2
1
:2

9

2
2
:0

0
 -

 2
2
:2

9

2
3
:0

0
 -

 2
3
:2

9

P
er

ce
n
ta

g
e 

o
f 

T
ri

p
s 

(%
)

Time



73 

 

week, either on a Saturday or Sunday. The decision regarding which day or days the ‘Day Trip’ activity 

takes place is determined by the probability distributions shown in figure 3.8. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8: Day of the Week probability distribution for ‘Day Trip’, (a) Weekday, (b) Weekend 

 
 

4. SHOPPING 

 
The process of trip generation for ‘Shopping’ for each household was dependent on multiple 

variables. Firstly, based on NTS questionnaire responses regarding how participants carried out their 

shopping, only 88% of the 49 households of Bradbourne are set to conduct shopping trips across the 

week, the full extract data is shown in table 3.13 below. A random number generator was used to 

determine which households would and would not be conducting shopping trips across the simulated 

period. 

 

How do you usually carry out the main 

food shopping? 

No. of Responses 

(%) 

Go to shops/market in person 86.1 

Someone else goes to shops for me (e.g. 

friend, relative, carer) 

2.1 

Order online for home delivery 11.8 

Order by phone for home delivery 0 

Order by post for home delivery 0 

 

Table 3.13: NTS Participant responses to ‘How do you usually carry out the main food shopping?’ 

 

 

Following the determination of which households would be conducting shopping trips in the 

simulation, the number of trips across the 7-day period was still required. Again, the NTS dataset 

provided information regarding shopping activities in the form of responses to the question of how often 

participants travel to the shops, this data can be seen in table 3.14.  
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How often do you travel to the shops to buy food or drink 

for the home? 

No. of Responses 

(%) 

3 or more times a week 24.7 

Once or twice a week 68.3 

Less than once per week, but more than twice a month 3.9 

Once or twice a month 2.4 

Less than once a month, but more than twice a year 0.3 

Once or twice a year 0.1 

Less than that or never 0.4 

 
Table 3.14: NTS Participant responses to ‘How often do you travel to the shops to buy food or drink 

for the home?’ 

 
 

Following the results shown in Table 3.14, 25% of the households which conduct shopping 

trips will shop ‘3 or more times a week’. Of these it was decided that 50% will shop three times, and 

the other half will shop four times per week. Another 68% of the households which conduct shopping 

trips will shop ‘Once or twice a week’. Again, 50% of these households will conduct one shopping trip 

over the 7 – day simulation period, and the other 50% will shop twice. The remaining 7% of shopping 

households, which equates to just over three households in Bradbourne, shop less than once per week. 

One of these households was randomly selected to conduct a shopping trip during the simulation period. 

 

 
 

Figure 3.9: Trip start time probability distribution for ‘Shopping’ 

 

The start time probability distribution for shopping trips is shown in figure 3.9. The duration of 

a shopping trip was set to 2hrs and the determination of which day of the week shopping trips would 

occur for an individual household was controlled by the probability distribution presented in figure 3.10 

below.   
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Figure 3.10: Probability distribution for ‘Shopping’ by day of the week 

 
 

5. OTHER 

 

The final trip purpose category, ‘Other’, has an activity duration of 2hrs, with a start time 

controlled by the probability distribution shown in figure 3.11.  

 
 

Figure 3.11: Trip start time probability distribution for ‘Other’ 
 

 

The NTS dataset, again, provided the probability distribution used to choose days of the week 

for these trips to occur, this is shown in figure 3.12. Unlike the other trip purposes, multiple ‘Other’ 

trips can be scheduled for the same day.  
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Figure 3.12: Probability distribution for ‘Other’ activities by day of the week 
 

 

Regarding the number of times this activity occurs over the week of simulation, this was 

determined by the number of vehicles available to the household, referring back to table 3.9. Where N 

is the number of vehicles available to the household, the number of ‘Other’ trips that household would 

conduct was governed by the formula 2*N. The one exception was for the household composition 

category of ‘2 Person & 1 Car’ which followed the formula 3*N. This was to allow consideration for 

the impact of multiple adults using 1 vehicle in a household, instead of solely relating to number of 

vehicles. The resulting number of ‘Other’ trips for each household composition can be seen in table 

3.15.  

 
Household Composition No. of Other Trips 

1 Person/1 Car 2 

2 Person/1 Car 3 

2 Person/2 Cars 4 

3 Person/2 Cars 4 

3 Person/3 Cars 6 

4 Person/3 Cars 6 

5 Person/3 Cars 6 

6 Person/3 Cars 6 

7 Person/4 Cars 8 
 

Table 3.15: Number of other trips for households based on their composition 

 

3.3.4 Model Methodology 

 
The model presented in this chapter utilises a logic flowchart, set by rules and decisions for 

generating and scheduling the various trips, detailed in the previous subsection, required by each 

household. The overall model process will first be presented in figure 3.13, followed by the decision 

flowcharts for each individual trip purpose generation, shown in figures 3.14 – 3.18. Additional 

parameters such as trip hierarchy and trip chaining will also be described. 
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Figure 3.13: 7-Day Travel Demand Model Flowchart 
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Figure 3.14: Flowchart for ‘Commuting’ Trip Generation 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.15: Flowchart for ‘Education’ Trip Generation 
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Figure 3.16: Flowchart for ‘Day Trip’ Trip Generation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.17: Flowchart for ‘Shopping’ Trip Generation 
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Figure 3.18: Flowchart for ‘Other’ Trip Generation 

 

 

 

TRIP HIERARCHY  

 

To overcome a common scheduling error occurring within the model, where two trips could be 

scheduled for the same time on the same day, a hierarchy order for the trip purposes was devised, shown 

below in figure 3.19. 

 

 

 

 

 

 

Figure 3.19: Trip Purpose Hierarchy 

 

This hierarchy order, which can also be seen as a priority system, was devised to determined 

which activity takes precedent during this scheduling and generating stage of the model. Based on the 

research by Bowman & Ben-Akvia (2001), work is given the highest priority; thus the hierarchy order 

will always set this type of activity to be scheduled first. Should another trip purpose lower on the priority 

scale be scheduled for the same time, or during a time in which the car could not be used due to said 

higher priority activity, the lower priority activities start time would be recalculated until a viable solution 

is found.  

For example, if an individual and their vehicle is scheduled to leave for work at 08:00 and the 

car is positioned at work from 08:30 – 16:30, but on the same day a shopping trip is scheduled for 13:00, 
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this would not be possible. The priority system provides the solution in which the shopping trip 

generation process is conducted again to find a viable start time on that day. 

This hierarchy order was devised based upon reasonable assumptions and the idea of ‘pre-

planned’ activities compared to more spontaneous activities. Work, School, and Day Trips have been 

viewed as trip purposes whose scheduling would be known by individuals, particularly in terms of day 

of the week it will occur, prior to the start of the week (the simulation period). Whereas Shopping and 

Other trips are regarded as more flexible or random in occurrence, and thus adjustable in their start times 

(Bowman & Ben-Akvia, 2001).  

It is worth noting, the age of the study conducted by Bowman & Ben-Akvia (2001) – published 

over 20 years ago. This brings into question the validity of such as source for the trip hierarchy 

methodology, however, this simplistic approach was deemed suitable for the purpose of the TDM. The 

TDM itself is not the main aspect of this thesis, albeit a large factor, but rather an avenue of choice to 

determine vehicle movement which would enable inquiry into EV energy and power requirements. New 

methods have been developed, such as Analytic Hierarchy Process (AHP) (Zhou et al., 2015) and a 

Random Forest Method (Cheng et al., 2019). However, these approaches require a lot of work for 

implementation, resources not available and outside the scope of this thesis.  

 

TRIP CHAINING 

 

Early definitions of trip chaining followed the form <home-activity-home> (Holzapfel, 1986; 

Bowman & Ben-Akvia, 2001), which can be found still in models today (Armas et al., 2022) albeit its 

simpler nature and lack of ability to capture true modern travelling habits. To align with more modern 

travel patterns, this definition has been since modified to follow the general rule of <home-activity1-…-

activityN-home> (Primerano et al., 2008). A rule still applicable with today’s travel patterns (Mourtakos 

et al., 2024) and thus the definition for trip chaining as presented in this thesis.  

In relation to the scheduling of trip chains, should the trip generation process schedule 0.5hrs or 

less between two activities (either before or after the end of the currently ongoing activity), these two 

trips will be chained together. The second trip will be pulled forward or backward to the time the previous 

activity ended. Trip chaining has implications for trip mileage and duration, as we are no longer using 

the vehicle to or from the ‘home’, but rather directly from one activity to another. However, the mileage 

and durations presented in table 3.10 (Section 3.3.2) are derived values for not just trips oriented around 

‘home’, but every trip recorded for that purpose, i.e. including from one activity to another activity. Thus 

the values in table 3.11 & 3.12 have been used for all trips relating to that purpose without the need for 

any further data manipulation/processing.  
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MULTIPLE VEHICLES 

 

For the households with multiple vehicles, attempts were made to reasonably distribute the trips 

between the vehicles available. Given the future uses of this model to investigate electric vehicles, the 

knowledge of mileages attributed to individual vehicles becomes paramount to determine the amount of 

energy that vehicle would use day-to-day and by extension its charging requirements. Each households’ 

vehicles were assigned a number 1 – n, n being the total number of vehicles belonging to that household. 

The rules devised for trip distribution to individual vehicles were based on the different trip purposes 

presented earlier. 

 

1. Commuting – Each employed occupant of a household conduct their commuting trips in 

separate vehicles (unless in the case of car-sharing - House 17). Starting with employed 

individual 1’s commuting trips assigned to Car 1, then employed individual 2’s commuting 

trips assigned to Car 2 and so forth.  

 

2. Education – Education trips are assigned to the next available vehicle which has not been 

used for commuting trips. If all cars are used for commuting trips, then the last car to be 

assigned to an employed individual is assigned the Education trips.  

 

3. Day Trip – Car 1 conducts all ‘day trip’ trips scheduled.  

 

4. Shopping – Car 2 conducts all shopping trips  regardless of the number of vehicles required 

for commuting or education trips.  

 

5. Other – The total number of ‘Other’ trips for the household, as determined by Table 3.15, 

are split equally between the total number of vehicles available to that household. 

 

3.3.5 Governing Equations and Parameter List 
 

A summary of the Travel Demand Models parameters is presented in Table 3.16 below.  

Model Parameter Value 

Number of Vehicles Location specific – per census 

Number of Households Location specific – per census 

Household Occupancies Location specific – per census 

Household Composition the larger the household, the higher the number of cars that will be available 

Lifestyle Scenario 1 - 27 

Trip Purpose Commuting, Education, Shopping, Other, Day Trip 

Trip Duration 30 minutes 

Trip Distance See Section 3.3.3 

Trip Start Time 

See Section 3.3.3 
Day(s) of Week for Trip 

Number of Trips (by Trip Purpose) 

Duration of Activity (Trip Purpose) 
 

Table 3.16: Travel Demand Model Parameter List
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3.4 Results and Discussion 
 

An example of the 7-day TDM’s output can be seen in table 3.17, which shows the simulations results of 7 days vehicle usage for House 11.  
 

 
Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Location Miles Location Miles Location Miles Location Miles Location Miles Location Miles Location Miles 

Time 

00:00 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 

00:30 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 

01:00 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 

01:30 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 

02:00 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 

02:30 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 

03:00 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 

03:30 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 

04:00 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 

04:30 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 

05:00 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 

05:30 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 

06:00 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 

06:30 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 

07:00 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 

07:30 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 Home  0 

08:00 Travel 0 Travel 0 Travel 0 Travel 0 Travel 0 Home  0 Travel  0 

08:30 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Home  0 Other 10.4 

09:00 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Travel 0 Other 10.4 

09:30 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Day Trip 13.2 Other 10.4 

10:00 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Day Trip 13.2 Other 10.4 

10:30 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Day Trip 13.2 Travel 10.4 

11:00 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Day Trip 13.2 Home  20.8 

11:30 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Day Trip 13.2 Home  20.8 

12:00 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Day Trip 13.2 Home  20.8 

12:30 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Day Trip 13.2 Home  20.8 

13:00 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Day Trip 13.2 Home  20.8 

13:30 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Travel  13.2 Home  20.8 

14:00 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Shopping 20.6 Home  20.8 

14:30 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Shopping 20.6 Home  20.8 

15:00 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Shopping 20.6 Travel 20.8 

15:30 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Shopping 20.6 Shopping 28.2 

16:00 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Work 11.8 Travel 20.6 Shopping 28.2 

16:30 Travel 11.8 Travel 11.8 Travel 11.8 Travel  11.8 Travel 11.8 Home  28 Shopping 28.2 

17:00 Home  23.6 Home  23.6 Home  23.6 Other 22.2 Home  23.6 Home  28 Shopping 28.2 

17:30 Home  23.6 Home  23.6 Home  23.6 Other 22.2 Home  23.6 Home  28 Travel 28.2 

18:00 Home  23.6 Home  23.6 Home  23.6 Other 22.2 Travel 23.6 Home  28 Home  35.6 

18:30 Home  23.6 Home  23.6 Home  23.6 Other 22.2 Shopping 31 Home  28 Home  35.6 

19:00 Home  23.6 Home  23.6 Home  23.6 Travel 22.2 Shopping 31 Home  28 Home  35.6 

19:30 Home  23.6 Travel 23.6 Home  23.6 Home  32.6 Shopping 31 Home  28 Home  35.6 

20:00 Home  23.6 Shopping 31 Home  23.6 Home  32.6 Shopping 31 Home  28 Home  35.6 

20:30 Home  23.6 Shopping 31 Home  23.6 Home  32.6 Travel 31 Home  28 Home  35.6 

21:00 Home  23.6 Shopping 31 Home  23.6 Home  32.6 Home  38.4 Home  28 Home  35.6 

21:30 Home  23.6 Shopping 31 Home  23.6 Home  32.6 Home  38.4 Home  28 Home  35.6 

22:00 Home  23.6 Travel 31 Home  23.6 Home  32.6 Home  38.4 Home  28 Home  35.6 

22:30 Home  23.6 Home  38.4 Home  23.6 Home  32.6 Home  38.4 Home  28 Home  35.6 

23:00 Home  23.6 Home  38.4 Home  23.6 Home  32.6 Home  38.4 Home  28 Home  35.6 

23:30 Home  23.6 Home  38.4 Home  23.6 Home  32.6 Home  38.4 Home  28 Home  35.6 

Table 3.17: Simulation results for House 11 
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To provide context to Table 3.17, House 11 is a ‘One person & One car’ household with one 

adult working full time. Consequently, this household’s vehicle was designated for ‘Commuting’ 

journeys from Monday to Friday, one ‘Day Trip’ on the weekend, four ‘Shopping’ trips throughout the 

week, and two ‘Other’ trips to occur at any available remaining points during the seven day simulation 

period.  

In total, the TDM simulated 13,520 miles during the week, distributed among the 84 vehicles of 

Bradbourne. This resulted from modelling 1288 trips, averaging to just under 29 trips per household per 

week. The probability distributions outlined in Section 3.3.3 led to substantial variations in predicted 

travel patterns for each individual vehicle. Vehicle travel ranged from as few as 2 trips per week to over 

10, with a weekly mileage spanning from 41.6 miles to 324.8 miles. Figures 3.20 and 3.21 illustrate the 

vehicles that recorded the lowest and highest mileage, respectively, over the seven-day period. 

House 45 – Car 3, travelled the least miles, accumulating a total of 41.6 miles during the 

simulated week. This vehicle was designated for only two ‘Other’ trips on the Thursday and Sunday. In 

contrast, the vehicle belonging to House 17 experienced the highest miles driven across the simulation 

period. House 17 has two adults both working full time and owning one car, with that car being shared 

by both household members for their respective commuting journeys. The vehicle also conducted a 

number of ‘Other’ trips and one ‘Day Trip’ over the weekend. 

 

 

Figure 3.20: Vehicle with minimum cumulative mileage driven over the week (House 45 – Car 3) 

 

 

0

5

10

15

20

25

30

35

40

45

Mon Tue Wed Thu Fri Sat Sun Mon

M
il

es
 D

ri
v
en

Day of the Week



85 

 

 

Figure 3.21: Vehicle with maximum cumulative mileage driven over the week (House 17 – Car 1) 

 

The average vehicle travelled just under 161 miles per week, scaling up to a year, on the basis 

of 52 weeks, combines to a total of 8369 miles per vehicle. Table 3.18 below shows the yearly mileage 

by person from the 2019 NTS dataset for comparison with results from the TDM.   

 

Rural-Urban Classification 2019 NTS  

Urban Conurbation 5037 

Urban City and Town 6772 

Rural Town and Fringe 8596 

Rural Village, Hamlet, and Isolated Dwelling 9756 

All Areas 6515 

 

Table 3.18: Miles per person per year from the 2019 NTS dataset categorised by rural-urban 

classification (NTS9907) (GOV.UK, 2022d) 

 

As per Table 3.18, individuals residing in rural areas typically cover an annual average of 8596 

to 9756 miles per year. When compared to the TDM forecast for the year, 8369 miles, this represents a 

2.7% difference, leaning towards the lower end of the range. It is important to note that this variance 

could be attributed to the differing definitions of the values being compared. The NTS values, presented 

in table 3.18, are ‘Miles per Person per year’, whereas the mileages forecasted by the TDM relate to the 

‘Miles per Vehicle per year’.  

The distinction arises from the nature of the NTS, where participants record their travel diaries 

from their own point of view (POV). This approach can result in higher mileages, especially in scenarios 

where two individuals are in the same vehicle conducting the same journey. For example, if an adult was 

taking their child to school, from the perspective of the TDM presented in this thesis, a single car is used, 
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and the mileage associated with that journey is recorded. However, when examining the NTS data, this 

would present itself as two individuals with their own trips, essentially doubling the mileage.  

 

3.4.1 Trips Simulated 

 

A trip is defined as any car journey undertaken from one destination to another, for instance the 

commute to and from work is classed as two separate trips. A total of 1288 trips were simulated by this 

travel demand model, with the distribution of each trip purpose presented below in table 3.19. 

 

Trip Purpose Number of trips conducted 

Commuting  579 

Education 93 

Day Trip 101 

Shopping 174 

Other 341 

 

Table 3.19: Total Number of Trips by Trip Purpose 

 

This corresponded to the following mileage totals conducted by the 84 vehicle population of 

Bradbourne, see table 3.20. 

 

Trip Purpose Miles Driven 

Commuting  6832 

Education 521 

Day Trip 1333 

Shopping 1288 

Other 3546 

 

Table 3.20: Total Mileage of Trips by Trip Purpose 

 

The added benefit of the high temporal resolution incorporated into the travel demand model 

enables the accurate determination of when vehicles are in use or not, or more importantly, when vehicles 

are at home or not. Understanding when vehicles are at home or not is imperative to designing recharging 

scenarios for the vehicles, should they be electric, when considering a solely ‘at home’ charging scenario, 

as does this thesis. This will be discussed further in the following chapter, Chapter 4. Figure 3.22 shows 

the percentage of vehicles away from home through each day of the week. 
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Figure 3.22: Percentage of Bradbourne vehicles not at home throughout the day for each day of the 

week 
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Two distinct overarching profiles can be seen in figure 3.22 across the seven days simulated by 

the TDM. These two profiles correspond to the weekdays and weekends. With regards to weekdays, 

there are significantly greater number of vehicles not at home throughout the day, particularly around 

the typical working hours of 9am to 5pm. This is followed by a second wave of increased activity in 

the evening as individuals conduct various post-work/school trips. The weekend however sees far fewer 

cars in use in general, with the majority of vehicles at home for larger periods of the day.  

 Figure 3.23 illustrates the six types of ‘car day’, referred to as Vehicle-Day Clusters (VDC), 

(VDC0 - VDC5) identified by Mattioli et al. (2019) through cluster analysis of the 2016 UK NTS. 

Although Mattioli et al. (2019) presents their results from a slightly different perspective (Mattioli et 

al. (2019) presents the variable “cars in use”, whilst the TDM utilises a “cars not at home” perspective) 

to that of figure 3.22 previously, comparisons and insights can be drawn. For instance, multiple car days 

(VDC1, VDC2 and VDC4) illustrate two periods of high car use centred around the times of working 

hours (9am-5pm). Whereas Mattioli et al. (2019) report a dip between these high car use periods where 

the cars are no longer in use, it is highly like that the cars are still away from home during those hours. 

Thus, the profiles would align with the results reported in figure 3.22. 

Likewise, VDC3 and VDC5 show small increases in vehicle usage later in the evening, activity 

that has been captured also by the TDM presented in this chapter, as discussed previously. The ‘car 

day’ VDC0, where a vehicle is not in use all day, is likely to be found for many of the vehicles over the 

weekend days in the TDM. Thus, resulting in the much lower vehicles away from home levels shown 

in figure 3.22. However, Mattioli et al. (2019) fail to sort the data by weekday/weekend to identify 

further car days particular to a day of the week.  
 

 
 

Figure 3.23: Density plots for the vehicle-day clusters identified – (Figure 1 of Mattioli et al. (2019)) 
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 The behaviours illustrated in figure 3.22 offer much to be considered. Literature suggests EV 

charging poses a potential issue for grid infrastructure, by the way of exacerbating peak power demand 

following the return from work in the evening (Mattioli et al., 2019). With research examples already 

now focused on mitigating this aggregated load from EV charging, through technologies such as Demand 

Side Management (this will be discussed further in Chapter 6) (Gottwalt et al., 2011; Mohanty et al., 

2022), the results from this TDM suggest this peak power demand timing issue may be misplaced. 

Although many vehicles do return home from 5pm onwards, there are a considerable number of vehicles 

(<20%) away from home till hours much later. This may aid peak shifting efforts and minimise concern 

regarding grid infrastructure capabilities from a grid operators perspective. The following chapters will 

continue this analysis further. 

 

3.4.2 Validation of the Travel Demand Model 

 

As part of the NTS, each participant household completes a 7-day travel diary. As this model 

was built upon the 2019 dataset, the 2018 NTS dataset was used as an attempt to validate the model. The 

decision to use the same source for data does provide a meaningful comparator as different individuals 

complete the NTS survey each year - addresses for participating households are chosen at random from 

a public list of addresses in England (NATCEN, 2023). 

A similar methodology was employed for extracting the rural households from the 2018 dataset, 

as was used for the 2019 dataset, where the rural households were grouped together according to number 

of occupants and number of vehicles. Via random selection from each group, 49 households were 

selected to reflect the same household and vehicle composition of the houses of Bradbourne. Whilst the 

2018 NTS dataset lacked data for the ‘Six Person & Three Car’ category, an alternative ‘Seven Person 

& Three Car’ category household was selected to ensure the correct number of vehicles over number of 

occupants. Further, the NTS dataset had some missing trip data, which is most likely a result of 

incomplete participant travel diaries. For example, for some trips, start and end times were left blank. To 

overcome this, trips of a similar nature (same trip purpose and distance conducted by that household on 

other days of the week) were used to fill this void, i.e. their start and finish times were copied across.  

Whilst the NTS dataset provides detailed travel data, it does not indicate the specific vehicle that 

undertakes the trips recorded at each household, but rather the data is captured from the occupant’s point 

of view (POV). This hinders the determination of which precise vehicle is conducting each of the 

recorded journeys for households with multiple vehicles. To overcome this and extract vehicle focused 

trip data which could be compared with the vehicle focused model developed, it was assumed that trips 

recorded by individuals at the same time, belonging to the same household, would logically be conducted 

using the same vehicle. 

Additionally, due to the participant POV of the NTS data, as opposed to the vehicular POV of 

the TDM, there are examples in this secondary data of recorded trips by car which are not done so by the 
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vehicles of their household. For example, when visiting a friend’s household and then a trip is conducted 

in the friend’s vehicle. Effort was made to identify this behaviour based on the activity of the other people 

in the household and their car trips to ensure that only trips and the mileages associated with the cars of 

that participants household were extracted.  

 

Mileage Driven over Time 

 

Figure 3.24 is a comparison of the predicted cumulative mileage driven by the 84 vehicles of 

Bradbourne over the seven day simulation period (blue) and the cumulative mileage driven extracted 

from the 2018 NTS dataset (orange). Datapoints are plotted at 3hr intervals.  

 

 

Figure 3.24: Cumulative mileage driven over the course of the simulation week 

 

One method used for validating travel models is by determining the R-square value (Apronti 

and Ksaibati, 2018). Figure 3.25 plots the cumulative miles driven, as extracted from the 2018 NTS 

dataset against the results of the model, to which a linear trendline was overlayed which indicated an 

R-square value of 99.5%.  
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Figure 3.25: R-squared value plot 

 

This high R-square value may be due to the relatively large 3hr interval of the above graph and 

would be reduced if applied to the 30 minute resolution of the models output. In comparison, Apronti 

and Ksaibati (2018) achieved a 74.0% R-square value for their four-step travel demand model which 

estimated traffic volumes for low-volume roads in Wyoming, USA. 

For this act of validation, the cumulative miles driven as per my TDM act as the dependent 

variable, because it is the outcome measure that the model, in part, aims to predict. As detailed in Table 

3.16, the list of parameters within the TDM, ‘Household Occupancies’, ‘Household Composition’, 

‘Lifestyle Scenario’, ‘Trip Purpose’, ‘Number of Trips’ all serve as the independent variables to this 

analysis. Although ‘Number of Vehicles’ is a parameter which will influence the models output, with 

regards to this analysis, it is compared with the data relating to the same number of vehicles from the 

2018 NTS data, as stated previously.  

Additional to this, the Percent Root Mean Square Error (%RMSE) was calculated and found to 

be 11.8%, a large reduction compared to the 50.3% achieved by Apronti and Ksaibati (2018). Figure 

3.26 shows a higher level analysis, the number of miles driven each day of the week, at the community 

level, and superimposed onto this is the percentage difference between the two values.  
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Figure 3.26: Daily mileage comparison between simulation and validation 

 

The largest discrepancy is just over 28%, with the smallest only 1.2%. These differences will 

be due to the probability distribution across the days of the week for activities. An investigation into 

the trip purposes and their number of occurrences at the community level of Bradbourne would provide 

insight into what is causing the larger discrepancies.  

 

Total Mileage over the Week 

 

The 2018 NTS Dataset used for validation indicated a total of 12,733 miles over the course of  

7 days. This is a 6% difference (787 miles) from the total mileage predicted by 7-Day TDM presented 

in this thesis. Considering the longer term use of this model is for assessing the impact of the EV 

transition in rural areas, this is an acceptable level of error for future energy calculations. This 

discrepancy is most likely due to the random selection process of the 49 households from the NTS 

dataset and would change depending on which 49 households are used. A sensitivity analysis for 

differing the number of other trips and/or day trips would be one possible avenue to achieving a higher 

level of accuracy and reducing this difference.  

 

Household & Car Distribution 

 

A key premise in the foundation of the travel demand model presented is the distribution of the 

vehicles to the households of Bradbourne. A premise of ‘The larger the number of occupants, the higher 

the number of vehicles’ that household will have, was applied. This relationship was found to be the 
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case within the 2019 NTS data when reviewing households up to 6 occupants and can be seen in figure 

3.27 below. An arrow has been superimposed onto the figure to indicate this upwards trend between 

the two variables, however, bears no relation to extrapolating the data outside that plotted.  

 

 

Figure 3.27: Relationship between No. of Occupants of a household and the No. of vehicles belonging 

to that household 

 

3.5 Chapter Summary 
 

This chapter has described the design and results of a 7-day travel demand model to predict the 

travelling patterns for a small rural village, Bradbourne, in the Peak District, UK. The process for 

selecting this village was initially described, which includes a detailed discussion on the implications 

of Bradbourne being chosen as the centre of focus for this TDM and the larger thesis. Although an 

applied example, case study approach has been chosen, the methodology employed to develop the 

Travel Demand Model is applicable to any area given the availability and fidelity of information for the 

models parameters. This TDM is therefore of interest to a wide range of parties, including local councils, 

town planners, the transportation sector in general, as well as other researchers who may benefit from 

utilising and adapting this model to suit other avenues of interest.  

A preliminary exercise to develop a simpler ‘One Day Model’ was first presented, which 

provided important considerations and improvements which were then incorporated into the 7-Day 

TDM (Section 3.3). The key benefit highlighted by the ‘One Day Model’, or rather the energy 

calculations building upon it presented in section 3.3.2, is the necessity for a longer term TDM. From 

past literature reviewed in Chapter 2, there were little examples found for longer duration Travel 

Demand Models and EV Charging Models and a certain gap for this field. The development of the 7-

Day model following this ‘One Day Model’ fills this research gap.  

This chapter then provided a detailed overview of a novel 7-Day TDM, including the governing 

equations, parameters and secondary data sources used for its development. A sample output of the 
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Travel Demand Model was then presented, along with a validation and further discussion on the model 

itself. With further time resources, the methodology for the Travel Demand Model could, very easily, 

be expanded to even longer duration of simulations, accounting for changes which only ever occur over 

even longer periods of time (i.e. seasons). Validation and comparison efforts with previous models of a 

similar nature found and presented from the literature review also showed the high accuracy and 

reliability of this novel TDM.  

The material discussed in this chapter accomplishes ‘Objective 2a’ and will be taken forward to 

investigate the effects of electric vehicles completing these predicted travelling patterns, working 

towards the fulfilment of Research Aim 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



95 

 

CHAPTER 4:  EV CHARGING MODEL 

 
Having developed a suitable Travel Demand Model in Chapter 3, whereby the activities of a 

population of vehicles for a rural community can be predicted with a high fidelity across a 7-day period, 

an investigation into the feasibility of Electric Vehicles (EVs) for this community can now be examined.  

This chapter will present a model which takes these travel patterns and calculates the energy 

consumed should the existing car population be replaced entirely by EVs. Further to this, potential 

charging scenarios are then simulated via a custom written python script. These processes are all 

encapsulated into a single novel model which will henceforth be referred to as the EV Charging Model. 

The parameters of the model, as well as all the input data will be discussed in Section 4.1, including the 

simulation process itself. A total of 8 scenarios have been developed to examine the potential impact 

electric vehicles will have on rural communities, the results of which will be presented and discussed 

in Section 4.2. The results of this model will then be compared with those from the large-scale EV trial, 

conducted by Western Power Distribution, in Section 4.3 as a form of validation. This chapter will 

conclude with a short summary, Section 4.4. Material presented in this chapter has been published 

previously in the following papers: McKinney et al., (2022); McKinney et al., (2023a). 

 

4.1 Overview of the EV Charging Model 
 

This section presents the EV Charging Model, which takes the previously calculated travel 

patterns for Bradbourne, and calculates not only the energy consumed should the car population be 

replaced by solely EVs, but also the energy demand placed on local grid infrastructure due to the 

recharging habits of the residents. For the purposes of continuity, the small rural village of Bradbourne 

remains the focus of the research for considering the various parameters and input data used for 

developing the EV Charging Model.  

 

4.1.1 Model Parameters 

 

To determine the resulting charging profiles from this travel activity, certain information is required. 

This includes the model and specifications of the electric vehicles themselves which shall be used to 

replace the current conventional petrol and diesel vehicles, the type of charge points and the battery 

capacities of the chosen electric vehicles. The governing equations and model parameters are also 

presented at the end of this subsection. 
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1. VEHICLE SPECIFICATION 

 

From understanding how the vehicles of Bradbourne are used, i.e. their travelling patterns, via 

the Travel Demand Model presented in Chapter 3, the EV Charging Model calculates the anticipated 

energy impact should this travel be conducted purely with electric vehicles. As discussed in Chapter 2, 

BEVs are the sole focus of this thesis and thus will be the only type of EV considered in this 

investigation. Additionally, to ease simulation computation a 100% homogenous EV car population has 

been assumed.  

The 40kWh Nissan Leaf was chosen as the authors have access to this car, thus enabling the 

possibility of future real-world data collection and analysis should that prove beneficial. It also proved 

to be most popular amongst researchers, as highlighted by the literature review in Chapter 2, for use in 

simulations and understanding an EV fleet (For example, Jones et al., 2020; Adderly et al., 2018; My 

Electric Avenue, 2015). The consumption rate of the car is therefore set to 26.5 kWh/100mile (Electric 

Vehicle Database, 2018). Although for the benefit of this thesis, the EV has been assumed to be a Nissan 

Leaf, as the EV Charging Models only input which reflects this is the consumption rate, the EV in 

question could in fact be any electric vehicle. This method improves the adaptability of the model, as 

any consumption rate could be used as an input to reflect a population of any vehicle, or a non-

homogenous vehicle population with an average consumption rate. Additionally, with further work, the 

model could be adapted more so to enable multiple consumption rates and specific numbers of vehicles 

associated with those rates to be incorporated.  

With this in mind, attention must be drawn here to multi-vehicle households. For the purposes 

of this thesis, each vehicle at a households will be assumed and presented to be a Nissan Leaf. However, 

as discussed previously, this could be any EV make and model, or even an average consumption for the 

vehicles at a household. In this regards, the findings presented in this thesis will have a much wider 

scope of relevance than if the model was to be strictly locked in to solely the Nissan Leaf via additional 

parameters.  

 

2. CHARGE POINTS 

 

The Nissan leaf comes standard with a 6.6 kW AC port, with options for a fast 46 kW DC port 

should the buyer wish. Only home charging has been considered by this thesis, i.e. no charging will 

occur at public places, so all energy lost due to EV usage will have to be recharged at home. The 

importance of home charging and its expected high frequency of usage was highlighted by Hardmen et 

al. (2018) and discussed in detail in Section 2.4 of Chapter 2. Therefore, given the constraints of home 

charging only and household electrical wiring, as well as efforts to reduce the computational complexity 

of the model, all Nissan Leaf’s within the simulations of the EV Charging model will only have the 

standard 6.6 kW onboard charge port. 
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Given the selection of the Nissan Leaf vehicle and the 6.6 kW charging port, Pod Point’s 7 kW 

Chargers, a preferred charge point brand by Nissan (Nissan, 2021), will be incorporated into the model. 

Thus 7 kW Pod Point charge points will be used to support the standard 6.6 kW AC charging port on 

the Nissan Leaf. The efficiency of the charger and the battery input have been assumed to be 100%, and 

at this stage of investigation, the efficiency of this factor is negligible. However, future adaptations of 

this model, discussed in Chapter 8, would incorporate more realistic charging efficiencies.  

Each vehicle is assumed to have its own independent charge point, i.e. the number of vehicles 

belonging to a household dictates the number of chargepoints at that household. For example, a 3 

vehicle household will have 3 chargers. In addition, only home charging will be considered. Hardman 

et al. (2018) indicated the meaningfulness of investigating a 100% home charging scenario during their 

study on EV charging behaviour, and as previously discussed will be the sole focus the work presented 

in this thesis. 

 

3. BATTERY CAPACITY 

 

As stated above, the EV chosen for this simulation is the 40 kWh Nissan Leaf, so named for its 

40 kWh maximum battery capacity. For battery life improvement measures, vehicle manufacturers 

restrict the accessible range of a consumer in relation to their EVs battery capacity. This is so as to not 

fully deplete or overcharge the battery, acting like a buffer. In the case of the Nissan Leaf, this limitation 

amounts to 37 kWh (Electric Vehicle Database, 2018). In the simulation model, it was assumed that 

this 3 kWh difference would be evenly distributed between empty and fully charged states, resulting in 

the battery fluctuating between a state of charge of 3.75% and 96.25%.  

Additionally, as part of an effort to further enhance the EVs battery life and adopt a more 

realistic battery use scenario, the model has been configured to maintain any EVs battery SOC within 

the range of 20-80% (from the consumers perspective, i.e. 20-80% of 37 kWh). These various battery 

capacity limits are illustrated in Figure 4.1. This gives an accessible battery capacity of 22.2kWh of 

energy for the vehicle operation in the travel demand model scenarios, and therefore gives the vehicle 

an 84 mile range with the energy consumption figures quoted previously. Imposed on the model is a 

0% limit, whereby an EVs battery will remain at 0% until the next charging event is scheduled. Any 

travel conducted in this period will still be allowed to continue so for the vehicle to return home for the 

charging event to occur. This is to ensure, most importantly, that total charging times remain accurate.  
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Figure 4.1: Battery Capacity (*Not to Scale) 

 

4.1.2 Electricity Tariffs 

 

Electricity tariffs are how energy providers charge their customers for the electricity they 

consume. There are two main types, fixed rate (Standard) and variable (Economy), representing 

different pricing structures for which consumers can opt for. High correlations have been found between 

charging schedules and the electricity price rate structure households are contracted to (Kim, 2019). 

Thus electricity tariffs are an important factor which largely influence charging behaviour, specifically 

the time of charging.  

The type of electricity meter installed in a household determines the electricity tariff that 

applies. While various electricity meter types exist in the UK, the EV Charging model only focuses on 

standard and economy meters due to their prevalence in UK households. Each of these meter types 

corresponds to a specific electricity meter tariff presumed for each household.  

Households equipped with a standard meter will be assumed to be on a Standard electricity 

tariff, while those with an economy meter are assumed to be on an Economy 7 tariff. In the case of 

households on a standard electricity tariff, the EV charging process commences immediately upon the 

vehicle plugging into a charge point, as there is no financial timing consideration (electricity costs 

remain constant throughout the day).  

In contrast, households on an Economy 7 tariff initiate EV charging only at midnight (00:00), 

coinciding with the commencement of the cheaper, off-peak hours of the tariff. These off-peak hours 

for the Economy 7 tariff are presumed to fall between 00:00 and 07:00. It is important to note that for 

households served by an Economy 7 tariff, if a recharging event does not fully recharge (80% capacity) 

within this time period then no more charging will occur until the next day regardless of the SOC of the 

vehicle. Within these limitations, four scenarios for electricity tariff popularity have been analysed:  
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1. 100% Economy tariffs 

 

In this scenario, all households will be set to have Economy 7 meters and electricity tariffs in 

the EV Charging Model. These Time-Of-Use (TOU) tariff plans are predicted to become ever more 

common place through the transition to EVs, with EV specific tariff plans already taking advantage of 

the cheaper night-time (off-peak) price rates they can offer (Hardman et al., 2018).  

 

2. 100% Standard tariffs 

 

In contrast to the 100% Economy tariffs scenario, in this one, now every household will be 

assumed to have a Standard electricity meter and tariff plan. As opposed to the 100% Economy tariff 

scenario, which causes the electricity tariff to determine charging start times, with the Standard 

electricity tariff it is the time of day the vehicle returns home which governs when vehicle charging 

begins. Thus the charging events for each household in this scenario modelling will be largely 

determined by the travelling patterns.  

 

3. A 50:50 split of the two tariff types 

 

In this scenario, a random number generator was used to assign half of the Bradbourne 

households with Economy 7 tariffs and half with Standard tariffs. The distribution of electricity tariffs 

to households can be seen in Table 4.1 below. This mixture scenario is aimed at understanding the 

possible demand-side management solutions that tariff options could provide from a grid impact 

perspective.  

 

House ID Electricity Tariff 
 

House ID Electricity Tariff 

House 1 Standard 
 

House 26 Economy 

House 2 Standard 
 

House 27 Economy 

House 3 Economy 
 

House 28 Standard 

House 4 Economy 
 

House 29 Standard 

House 5 Economy 
 

House 30 Standard 

House 6 Standard 
 

House 31 Economy 

House 7 Economy 
 

House 32 Standard 

House 8 Economy 
 

House 33 Economy 

House 9 Standard 
 

House 34 Economy 

House 10 Economy 
 

House 35 Standard 

House 11 Standard 
 

House 36 Economy 

House 12 Economy 
 

House 37 Economy 

House 13 Economy 
 

House 38 Standard 

House 14 Standard 
 

House 39 Standard 

House 15 Standard 
 

House 40 Economy 

House 16 Economy 
 

House 41 Standard 

House 17 Standard 
 

House 42 Economy 

House 18 Standard 
 

House 43 Economy 

House 19 Standard 
 

House 44 Economy 

House 20 Economy 
 

House 45 Economy 
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House 21 Standard 
 

House 46 Economy 

House 22 Standard 
 

House 47 Standard 

House 23 Standard 
 

House 48 Economy 

House 24 Standard 
 

House 49 Standard 

House 25 Standard 
   

 

Table 4.1: Electricity Tariff Distribution for 50:50 split scenarios 

 

4. 37.5% Standard, 62.5% Economy split of the two tariff types 

 

This scenario split was determined using real-world data (BEIS, 2022) for the village of 

Bradbourne, with the aim of providing the most realistic representation for the village in its current 

state. The ‘split’ was determined by postcode level electricity data released by the UK Government 

every year which includes the number of meters and type of meters (BEIS, 2022). Bradbourne is 

comprised of 6 postcodes (ONS, 2021) and the number of electric meters, and their types for each 

postcode is shown in Table 4.2. 

 

Postcode 2013 2015 2016 2017 2018 

Standard Standard Standard Economy Standard Economy Standard Economy 

DE6 1NP - - - - - - - - 

DE6 1PA 19 19 6 10 6 10 - 10 

DE6 1PB 20 15 - 14 - 13 - 13 

DE6 1PD - - - - - - - - 

DE6 1QY - - - - - - - - 

DE6 1RG - - - - - - - - 

 

Table 4.2: Postcode Level Electricity Meter Data for the postcodes of Bradbourne 

 

As shown in Table 4.2, this postcode level electricity meter data lacks continuity across the 

years and completeness. Due to the sampling methodology, any postcodes which serve a small number 

of households (<10), which is a common occurrence for rural areas, does not get recorded and has 

resulted in a lot of missing data. Taking all of this into account, only data from 2016 & 2017 (BEIS, 

2022) for the postcode DE6 1PA was used to derive a ‘real-life’ ratio for the two electricity meter types, 

as these years and postcode provide the most continuity in readings. The results are shown in Table 4.3, 

as well as the percentage split which this scenario will use. 

 

Standard Electricity Meters Economy 7 Meters 

6 10 

37.5% 62.5% 

 
Table 4.3: Electricity Tariff Split for realistic scenario 
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This percentage split was then extrapolated to all 49 households of Bradbourne, and a random 

number generator was used to assign each house one of the two electricity meter types. Table 4.4 shows 

each household and its assigned Electricity Tariff for this scenario.  

 

House ID Electricity Tariff  House ID Electricity Tariff 

1 Economy 7  26 Standard 

2 Standard  27 Standard 

3 Economy 7  28 Economy 7 

4 Standard  29 Economy 7 

5 Economy 7  30 Standard 

6 Economy 7  31 Economy 7 

7 Economy 7  32 Economy 7 

8 Standard  33 Economy 7 

9 Standard  34 Economy 7 

10 Economy 7  35 Standard 

11 Economy 7  36 Economy 7 

12 Economy 7  37 Standard 

13 Standard  38 Economy 7 

14 Economy 7  39 Economy 7 

15 Standard  40 Economy 7 

16 Standard  41 Economy 7 

17 Economy 7  42 Economy 7 

18 Economy 7  43 Economy 7 

19 Standard  44 Economy 7 

20 Standard  45 Standard 

21 Standard  46 Economy 7 

22 Standard  47 Economy 7 

23 Economy 7  48 Economy 7 

24 Economy 7  49 Economy 7 

25 Standard    

 

 

Table 4.4: Electricity Tariff Distribution for 37.5:62.5 split scenarios 

 

4.1.3 Charging Scenarios 

 

The EV Charging model was employed to simulate a total of 8 scenarios, which are detailed in 

Table 4.5 below. These scenarios represent two distinct charging behaviours, encompassing the range 

of electricity tariff combinations mentioned in section 4.1.2. 

The first charging behaviour emulates a practice where individuals allow their EVs battery to 

deplete to the 20% capacity limit before initiating a recharging event. This behaviour closely resembles 

the refuelling process observed in the current ICE regime (Berkeley et al., 2018). 

In contrast, the second charging behaviour involves plugging the EV in for charging every 

night, irrespective of the travelling undertaken that day, provided the battery capacity is below 80%. 

This approach draws inspiration by the charging behaviour consumers commonly employ for other 

household electronic devices, such as mobile phones and laptops. To implement this behaviour in the 

model, the lower threshold for initiating charging was set to 80%, meaning that any usage of the EV 

that day will trigger a charging event when the vehicle returns following its last journey of the day.  
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These two charging behaviours are designed to capture the extreme ends of the spectrum, 

reflecting the highly variable nature of EV charging, a phenomenon driven by the inherently variable 

nature of human behaviour (Fotouhi et al., 2019). 

 

No. of Chargers Electricity tariff Scenario Charging initiates once EV 

falls to below 20% SOC 1 per car 0% Standard : 100% Economy 1 

37.5% Standard : 62.5% Economy 2 

50% Standard : 50% Economy 3 

100% Standard : 0% Economy 4 

 
No. of Chargers Electricity tariff Scenario Charging initiates every night 

1 per car 0% Standard : 100% Economy 5 

37.5% Standard : 62.5% Economy 6 

50% Standard : 50% Economy 7 

100% Standard : 0% Economy 8 

 
Table 4.5: Details of the 8 charging scenarios to be investigated 

 

4.1.4 The Simulation Process 

 

The simulation is executed by a custom written Python script. This script adheres to a structured 

design reminiscent of a flowchart, comprising a series of rules and decision points, similar to the 

methodology presented for the TDM in Chapter 3. These rules and decisions generate the energy 

consumption profiles for each individual vehicle and dictate when charging events occur within the 

simulation time period. Extensive pre-processing was required to manipulate the resulting output table 

from the Travel Demand Model, this was also carried out by a custom written python script. The overall 

model process is presented below in Figure 4.2.  
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Figure 4.2: Flowchart representing the Simulation Process 

 

As illustrated in figure 4.2, the predicted 7-day travel patterns for all 84 vehicles located in 

Bradbourne serve as the initial input for the EV Charging model. The simulation can be configured to 

run for any desired number of weeks, with the TDM results replicated to match the specified duration. 

Furthermore, as discussed in the Chapter 2 (Section 2.4) the travel patterns for the first Monday are 

duplicated and added to the start of the simulation, to act as a ‘Day 0’ (Pareschi et al., 2020).  

On Day 0, all vehicles start with 100% battery capacity before conducting the forecasted days 

travel. This results in a range of State of Charges (SOCs) for each individual vehicle to begin with on 

the first Monday of the simulation, i.e. Day 1. Using the Nissan Leaf’s consumption rate of 26.5 
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kWh/100mile and the mileages driven forecasted by the predicted travel patterns, the battery depletion 

through the day can be calculated.  

Figure 4.2 details the simulation process specifically for scenarios 1, 2, 3 & 4, where charging 

is initiated when an EVs battery capacity falls below the 20% threshold. If, after the vehicle’s last 

journey of the day, the battery capacity reaches this lower threshold, it triggers a charging event for that 

specific vehicle (Kang and Recker, 2009). The timing of this charging event is contingent upon the 

household to which the vehicle belongs, specifically the electricity tariff serving that household. As 

described in Section 4.1.3, in cases where the household is served by a standard tariff, charging begins 

immediately upon the vehicle’s return home following the last journey of the day. Conversely, if the 

household is on an Economy 7 tariff, the vehicle commences charging at midnight (when the cheaper 

electricity rates begin).  

The vehicle is then charged until it reaches a predefined upper threshold limit (as depicted in 

Figure 4.2, set at 80%) or until the vehicle is scheduled to depart from the household. , whichever comes 

first. This entire process repeats for each day of the week and continues for the specified number of 

weeks for which the simulation has been configured. 

For scenarios 5, 6, 7, & 8, whereby the charging behaviour occurs every night regardless of 

battery capacity levels, so long as it is below 80%, the simulation process is exactly the same as 

described above except for this change in initiation, which begins as soon as the vehicle returns home. 

This was achieved through changing the lower 20% threshold in the model (highlighted in the bold red 

box) to 80% (i.e. any SOC less than the 80% capacity limit would initiate a charging event). 

 

GOVERNING EQUATIONS AND PARAMETER LIST 

 

As a summation of the above simulation process, all parameters and the governing equations 

of the EV Charging Model will now be presented (see Table 4.6).  

 

Model Parameter Value 

Consumption Rate 26.5 kWh/100mile 

Fleet Composition 100% homogenous 

Charge Points 100% homogenous: 7kW PodPoint (6.6kW onboard)  

Total Battery Capacity 40 kWh 

Accessible Battery Capacity 37 kWh 

Consumer Battery Capacity 22.2 kWh (20-80%) 

Electricity Tariffs Standard/Economy 

Charging Behaviour Every night/20% threshold 

Number of Charge Points One charge point per vehicle 

 

Table 4.6: EV Charging Model Parameter List 

 

 Governing this simulation process, as described previously are numerous calculations for each 

half-hour time interval of each day. Each of these time intervals are denoted a number, 𝑖, ranging from 
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0 – 47. This is to represent each half-hour of a day. The governing equations for these calculations are 

then as follows: 

 

EV Energy Consumption: 

  

𝐸𝑛𝑒𝑟𝑔𝑦, 𝐸𝑖 = 𝑚𝑖𝑙𝑒𝑠𝑖 ∗ 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒       (1) 

  

The energy consumed by the EVs, as the simulation progresses through the output of the TDM 

(see Table 3.16 of the previous chapter), is calculated by the cumulative miles driven each day, at every 

half-hour interval (𝑡𝑖), multiplied by the consumption rate (see Equation 1). The consumption rate is 

converted to 0.265 kWh/mile for simplification.  

 

EV Battery Capacity: 

 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦0 − 𝐸𝑛𝑒𝑟𝑔𝑦, 𝐸𝑖        (2) 

 

 For each day, at any one time interval (t), the battery capacity from the end of the previous is 

taken and the cumulative energy requirement (as per Equation 1) is subtracted from this initial battery 

capacity – see Equation 2.   

 

Charging Power: 

 

 If a charging event is triggered, as per the simulation process described previously, for each 

time interval, 𝑖, power is drawn by the PodPoint charger (3.3 kW) – limited by the 6.6kW Nissan Leaf 

onboard charger.  

 

Charging Energy: 

 

𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦, 𝐶𝐸𝑖 = 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑃𝑜𝑤𝑒𝑟𝑖 ∗ 𝑇       (3) 

 

 Following the inserting of the Charging Power, the Charging Energy is calculated as per 

Equation 3 above, where 𝑇 is equal to the length of time of the interval, 𝑖, 0.5 hour (30 minutes).  
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EV State of Charge: 

 

 The State of Charge (SOC) for the vehicle at each time interval, 𝑖, is calculated via Equation 4 

below.  

 

𝑆𝑂𝐶 =  (
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖

𝑇𝑜𝑡𝑎𝑙 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
) ∗ 100       (4) 

 

4.2 Results and Discussion 
 

Simulations ran for a duration of 4 weeks. This was to ensure the resulting system governed by 

the EV Charging Model reached a steady state and no divergences occurred in the longer term, i.e. the 

scenario would not end up losing energy over time – as seen from the 1-Day TDM results (see Section 

3.2.2). To ensure this energy balance, from the resulting 4 weeks, a time period was selected from which 

to investigate deeper. The criteria for this time period selection was as follows:  

 

• The sum of all EV battery capacities must be the same at both the start and end points of the 

time period selected, or as close as possible given the half-hour resolution of the model. This is 

to ensure the 1st law of thermodynamics is adhered to and thus upholding the sustainability of 

the system for future projections. 

• In conjunction with the first criteria, for both the start and end points selected, the total charge 

across all EV batteries for each of the four different electricity tariff scenarios must also be the 

same, or as close to. This ensured that the electricity tariff options for each of the two behaviour 

scenarios could be compared.  

 

Given that the simulations spanned a total of 4 weeks, a system utilising weekdays and week 

numbers was adopted to distinguish between the weeks. Across these four weeks, the days were labelled 

from ‘Mon1’ to ‘Sun4’, where each day of the week is followed by its respective week number. First 

looking at Scenarios 1, 2, 3 and 4, the results of running the EV charging model over a 4 week period 

are presented in Figure 4.3, with the selected time period superimposed. 
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Figure 4.3: Total charge across all EV batteries of the vehicle population of Bradbourne (Scenarios 1, 

2, 3 and 4) 

For scenarios 1, 2, 3 and 4, the time period from ‘Week 2 Tuesday’ to ‘Week 4 Monday’ was 

selected, 03:30 and 10:00 respectively. This 13 day period was chosen to ensure an energy equilibrium 

within the system when investigating charging energy and power, as well as to facilitate comparisons 

across the four electricity tariff options.  

From Figure 4.3, the first scheduled charging events do not occur until Tuesday of Week 1. 

Considering a population of 84 Nissan Leaf vehicles, each with a 40kWh capacity, of which only 37 

kWh is available to the consumers, the maximum collective capacity within the system at any given 

time is 3108 kWh. The simulation starts on Monday, Week 1, with an initial capacity of approximately 

2600 kWh. This variation is attributed to the ‘Day 0’ SOC initialisation, meaning the 84 vehicles do not 

all start with fully charged batteries but rather a range of pre-depleted batteries. The start and end SOC’s 

for each vehicle will be presented later in this chapter, in section 4.2.1, for only the selected time period 

of the scenarios.  

To reiterate, scenarios 1, 2, 3 and 4 follow the charging behaviour of vehicles not commencing 

charging until their battery level reaches the lower threshold of 20%. With this behaviour in mind, its 

notable that Bradbourne’s EV population maintains an average of roughly 1500 kWh of charge 

collectively across its 84 vehicles, that equates to an average battery charge of 18kWh (48%) at any 

given moment.  

Turning the focus to the selected time period of Scenarios 5, 6, 7 and 8, the results of these 

simulations can be seen in Figure 4.4 below.  
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Figure 4.4: Total charge across all EV batteries of the vehicle population of Bradbourne (Scenarios 5, 

6, 7 and 8) 

 

Scenarios 5, 6, 7 and 8 focused on the charging behaviour centred around charging nightly 

irrespective of a vehicles SOC. Compared to the previous set of scenarios (scenarios 1, 2, 3 & 4), this 

behaviour yields a much higher amount of energy stored in the vehicles at any one time. The average 

energy within the system increased to 2250 kWh due to the significantly higher frequency of charging 

events.  

With the higher charge threshold set at 80%, the maximum energy capacity in the system at 

any one time, i.e. all 84 EVs holding 80% battery capacity, is 2486.4 kWh. This threshold is consistently 

achieved by the population of EVs in scenarios 5, 6, 7 & 8. Furthermore, in contrast to the other 

modelled charging behaviour (of scenarios 1, 2, 3 & 4), this charging pattern exhibits a higher degree 

of day-to-day predictability, which proves advantageous for grid demand management solutions. The 

time period selected for scenarios 5, 6, 7 & 8 is from ‘Monday Week 2’ to ‘Friday Week 3’, following 

the criteria previously discussed. The specifics of these selected time periods can be found in the Table 

4.7 below.  

 
No. of 

Chargers 

Electricity tariff Scenario 

Charging initiates 

once EV falls to 

below 20% SOC 

Time Period (Tue2 

03:30 – Mon4 10:00) 

(kWh) 

Delta 

(kWh) 

1 per car 0% Standard : 100% Economy 1 1872.16 – 1896.987 +24.827 

37.5% Standard : 62.5% 

Economy 

2 1875.787 – 1877.915 +2.128 

50% Standard : 50% Economy 3 1898.89 – 1896.987 -1.903 

100% Standard : 0% Economy 4 1884.796 – 1790.598 -94.198 
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No. of 

Chargers 

Electricity tariff Scenario 

Charging initiates 

every night 

Time Period (Mon2 05:00 

– Fri3 05:30) (kWh) 

Delta 

(kWh) 

1 per car 0% Standard : 100% Economy 5 

2486.4 – 2484.534 -1.866 

37.5% Standard : 62.5% 

Economy 

6 

50% Standard : 50% Economy 7 

100% Standard : 0% Economy 8 
 

Table 4.7: Selected Time Periods for the 8 scenarios investigated 

 

When evaluating the two selected time periods, most notably was the increased difficulty in 

selecting a suitable time period for Scenarios 1, 2, 3 & 4 compared those of Scenarios 5, 6, 7 & 8. This 

is solely due to the charging behaviour implemented, or rather the difference in charging frequency and 

routineness the two behaviours invoke. For scenarios 1, 2, 3 & 4, as charging is much less frequent but 

also more sporadic, identifying a period of time where start and end energies are the same was not 

possible and so large deltas can be seen compared to that of scenarios 5, 6, 7 & 8. However, across the 

four scenarios (Scenarios 1, 2, 3 & 4), combined, there is only a delta of -70 kWh. Smaller deltas may 

be possible, but at the cost of reducing the duration of the selected time period.  

In contrast, for Scenarios 5, 6, 7 & 8, due to the higher frequency of charging events (almost 

nightly for all vehicles in use), a very small delta was achieved (<2 kWh). Thus, the time period selected 

for further investigation enables any conclusions drawn to withstand tests over larger time scales as no 

energy is lost from the system. Nevertheless, Figure 4.3 also shows any conclusions drawn from 

scenarios 1, 2, 3 & 4 can also withstand extrapolations over larger time scales, regardless of the larger 

delta for the selected time period, as the energy in the system is still replenished.  

The time periods detailed in Table 4.7 will be the period of time for which the in-depth analysis 

of the EV charging model results will be focused on. These results will be presented and discussed in 

the following two subsections (4.2.1 & 4.2.2).  

 

4.2.1 Scenarios 1, 2, 3 and 4 
 

Figure 4.5 below shows the predicted energy consumption profile during the selected time 

periods for scenarios 1, 2, 3 and 4 given the population of 84 electric vehicles in Bradbourne. The 

consistently highest peak energy demands are observed in the 100% Economy tariff scenario due to the 

amalgamation of multiple charging events occurring simultaneously during the few hours charging 

events can be scheduled (00:00 – 07:00). As the number of households served by a standard electricity 

tariff increases (scenarios 2, 3, & 4), the energy consumption (or rather demand from the grid) is spread 

out over a longer period of time. This is expected as the charging events for standard tariff households 

can begin at any time and are thus only dictated by the travel patterns of the vehicle itself.  

When considering the higher proportion of Economy tariff scenarios, the charging events are 

predominantly initiated at midnight, resulting in the higher peaks at that specific hour. The difference 
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between peak energy demands of the opposing tariff scenarios (100% Economy vs. 100% Standard) is 

substantial, exceeding 100kWh in comparison to roughly 50kWh, respectively. This indicates that the 

choice of electricity tariffs within this community can result in an 100% increase in peak energy 

demands.  

  
 

 
 

Figure 4.5: Charging Energy for scenarios 1, 2, 3 and 4 

 

The power demand due to the 84 chargers is presented in Figure 4.6.  As expected, the power 

profile is roughly twice the values of the energy demand, due to the half-hour resolution of the models. 

Likewise with the energy demand, the power perspective also shows that the most regular scenario is 

the 100% standard tariff (scenario 4). This scenario provides the largest balance of delivering the 

required power and energy over the longest period of time, thus not creating large demand spikes which 

could be cause for concern for grid infrastructure/operators. Directly opposing current trends and 

pressures which push for electric vehicle owners to adopt the more economy style tariffs via EV specific 

tariffs available on the market.  
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Figure 4.6: Charging Power for scenarios 1, 2, 3 and 4 

 

Looking at the SOC of the vehicles in the model, in particular the start and finish SOC’s, Figure 

4.7 and Figure 4.8 show that great variability in these parameters was achieved through this model. 

Figure 4.7 presents just the 100% Economy tariff, with the start and end SOC for each vehicle, as well 

as the direction of the SOC change over the course of the selected time period for scenario 1 (Tue2 

03:30 – Mon4 10:00). Whereas, to show this same variability across the other tariff scenarios, a subplot 

has been created for all three, see Figure 4.8.   
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Figure 4.7: Start and End SOC’s for scenario 1 (100% Economy tariffs) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Start and End SOC’s for scenarios 2, 3 and 4 
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It should be noted that in Scenario 1, 2, 3 and 4, as a consequence of the simulation 

methodology, a total of 9 vehicles experienced circumstances where the vehicles battery depleted to 0% 

capacity. Due to the nature of charging events only occurring once the 20% threshold has been reached, 

if a vehicle reaches a low state of charge, for example 22% after the last journey of the day, a charging 

event for this vehicle will not be triggered that night and thus this vehicle is required to complete the 

travel activities of the following day with only 22% capacity. Should this day’s activity require more 

than 22% capacity of the battery, this results in the vehicle modelled to reach 0%. A more realistic 

approach could be to add a ‘foresight’ aspect to the custom written python algorithm which considers 

the next day’s travel activity in its decision to initiate a charging event, a behaviour likely to be shown 

by a real-life EV consumer. This can also be averted by raising the lower charging threshold, as will be 

shown by scenarios 5, 6, 7 and 8, in Section 4.2.2. 

Figures 4.9, 4.10, 4.11 and 4.12 below show SOC profiles over the course of the selected time 

period, Tue2 03:30AM till Mon4 10:00AM, for the average and both max and min vehicles, from each 

of the four scenarios, scenario 1, 2, 3 and 4 respectively. The ‘Min Profile’ is defined as the SOC profile 

which reaches the lowest SOC during the course of the simulation, out of all 84 vehicles. The ‘Max 

Profile’ on the other hand represents the SOC profile which decreases the least and finally the ‘Average 

SOC Profile’, the average of all 84 vehicles SOC profiles.  

 

 

Figure 4.9: The maximum, minimum and average SOC profiles for Scenario 1 (100% Economy) 
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Figure 4.10: The maximum, minimum and average SOC profiles for Scenario 2 (37.5% Stand, 62.5% 

Econ) 

 

 

 

Figure 4.11: The maximum, minimum and average SOC profiles for Scenario 3 (50% Stand, 50% 

Econ) 
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Figure 4.12: The maximum, minimum and average SOC profiles for Scenario 4 (100% Standard) 

 

 

As highlighted by Figures 4.9 – 4.12, the model set up for these scenarios (Scenarios 1, 2, 3 & 

4) did result in some vehicles reaching 0% battery capacities. A result indicating that should EVs be 

recharged in a manner similar to the refuelling schedule of ICE vehicles, EVs will not be able to 

complete the same travel requirements from drivers. The largest offending vehicle was ‘House 39 – Car 

2’, which saw the vehicle sit at 0% battery charge for over 9hrs. In order for the vehicle to have 

completed the journeys that day, a further 8 kWh (over 21% battery capacity) would have been needed.  

This is inherently due to the limitations imposed on the EV Charging Model, namely that 

charging cannot begin until less than 20% battery capacity has been achieved. Without the foresight of 

the following trips, the simulated vehicles can enter a day’s travelling patterns with anything more than 

21% charge. Such cases arrive whereby this is not sufficient charge to complete the planned travel 

activity before the next charging opportunity, which will follow the last trip of the day. This pattern can 

be seen in Figure 4.13 which illustrates the details for the vehicle in question, House 39 – Car 2, around 

this particular phenomenon.  
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Figure 4.13: Travel Pattern and State of Charge for House 39 – Car 2 (Thurs2 till Sun3) (Scenario 1) 

  

‘House 39 – Car 2’ begins Thurs2 at Home (indicated by the area highlighted in red), before 

taking children to school and then onto a work (Part-time). Any travelling period is defined by the white 

area of the graph. The vehicle then returns home shortly from work (shown by the area highlighted in 

yellow) before picking up said children from school and remaining at home for the rest of the night. 

This travel reduces the vehicles SOC to 22% by the end of Thurs2, and thus the charging of this vehicle 

is not yet triggered. This travel pattern repeats on Fri2; however, an additional ‘Other’ trip is planned 

on the Friday evening (highlighted in green) which results in the further decline of the EVs battery to 

0%. As House 39 in this scenario, Scenario 1, is on an Economy tariff, the recharge of this vehicle does 

not begin until the start of Sat2. Through the early hours of Saturday, during the reduced price hours of 

the Economy tariff, the vehicles is recharged back to 80%. No travel occurs on the Sat2 and so this SOC 

continues through to the Sun2.  

 Figures 4.09 – 4.12 do show that the ‘Min Profile’ is affected by electricity tariff. As discussed, 

whilst House 39 – Car 2 is the worst performing when all households are placed on an Economy tariff, 

House 21 – Car 1 supersedes this for the case of Standard tariffs. The analysis of results shown in 

Figures 4.10 and 4.11, particularly focusing on the Min profiles for the split tariff option scenarios 

(Scenarios 2 and 3), allow us to ascertain the appropriate electricity tariffs for these Min Profile 

households, which would be Economy and Standard, respectively.  
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4.2.2 Scenarios 5, 6, 7 and 8 

 

Scenarios 5, 6, 7 and 8 focused on the charging behaviour whereby each vehicle charged 

nightly, irrespective of its daily travel activities. These scenarios encompassed a range of electricity 

tariff combinations for the various households of Bradbourne, as detailed in section 4.1.2. Figure 4.14 

below shows the energy demand for each of these four scenarios during the selected time period.  

A noteworthy observation when comparing these four scenarios (scenarios 5, 6, 7 and 8) to the 

initial four (scenario 1, 2, 3 and 4) is the significantly higher magnitude of both energy and power 

demand for the high Economy tariff scenarios, which has almost doubled. This phenomenon is a 

consequence of the higher number of chargers in simultaneous use, stemming from the more frequent 

charging events seen in these scenarios. This also results in higher peak demand but existing for a much 

shorter amount of time, as seen in scenario 1. Conversely, when comparing the higher standard tariff 

scenarios of both charging behaviours (scenarios 3 and 4 against scenarios 7 and 8), the energy demand 

at any given moment decreases for the latter charging behaviour (charging every night). This reduction 

can be attributed to the higher frequency of charging events in these latter scenarios. If this is coupled 

with the high standard tariff distributions (such as scenario 7 and 8) which allows charging events to 

occur over an extended period of time, due to the less restrictions on timings of charge events, and thus 

reducing the larger instantaneous demands observed in scenarios 3 and 4. 

Overall, scenarios 5, 6, 7 and 8 exhibit reduced charging times compared to scenarios 1, 2, 3, 

and 4. These trends are also evident in the power demand profiles for scenarios 5, 6, 7 and 8, shown in 

Figure 4.15. When considering the impact on the grid, the significantly higher power demand, not only 

compared to the previous four scenarios (scenarios 1, 2, 3 and 4), but particularly in the context of the 

higher Economy split tariff options (scenarios 5 and 6), raises concerns. This will be discussed further 

in the following chapter, chapter 5. 
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Figure 4.14: Charging Energy for scenarios 5, 6, 7 and 8 

 

 

Figure 4.15: Charging Power for scenarios 5, 6, 7 and 8 

 

Examining the vehicles’ SOC in scenarios 5, 6, 7 and 8, we observe that the 100% Standard 

(Scenario 8) is depicted independently in Figure 4.16. The other 3 tariff split options are displayed 

together in Figure 4.17. As indicated initially by Figure 4.4, during the course of these scenarios the 

majority of EVs are recharged every night. Thus, the start and end SOC’s for the selected time period 

(Mon2 5:00 – Fri3 05:30), especially given that the start and end time are the early hours of the day, for 

the majority of vehicles will be 80%. This causes a lot of the points in Figure 4.16 to overlay one 

another, resulting in primarily the End SOC’s being in view. 

0

50

100

150

200

250

300

06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18

T
o

ta
l 

C
h

ar
g
in

g
 E

n
er

g
y
 f

o
r 

B
ra

d
b

o
u

rn
e 

(k
W

h
)

100% Economy 37.5% Standard, 62.5% Economy 50% Standard, 50% Economy 100% Standard

0

100

200

300

400

500

00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00

T
o

ta
l 

C
h

ar
g
in

g
 P

o
w

er
 f

o
r 

B
ra

d
b

o
u

rn
e 

(k
W

)

100% Economy 37.5% Standard, 62.5% Economy 50% Standard, 50% Economy 100% Standard

Mon Fri Tues Wed Thurs Sat Sun Mon Fri Tues Wed Thurs 

Mon Fri Tues Wed Thurs Sat Sun Mon Fri Tues Wed Thurs 



119 

 

 

Figure 4.16: Start and End SOC’s for scenario 8 (100% Standard tariffs) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: Start and End SOC’s for scenarios 5, 6 and 7 
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As shown by Figure 4.16 and Figure 4.17, only a few vehicles end up with less than 80% SOC 

at the end of the selected time period. For these four scenarios where every car is recharged back to 

80% every night, this would seem to highlight an error at first glance. However, some vehicle’s travel 

patterns can belong to individuals simulated to have overnight work patterns, i.e. they don’t return till 

the morning of the following day and given the end time of the selected time period being 05:30AM, 

these few vehicles have either not yet returned home to charge, or the days travel pattern begins before 

05:30AM.  

When focusing solely on the EV chargers themselves, without considering their impact on the 

current grid demand, these findings suggest that a shift towards standard electricity tariffs becoming the 

predominant option for household electricity pricing would be the more favourable approach for grid 

stability. This challenges the common belief that EV charging should be pushed to the early hours for 

demand management purposes – a principle upon which many energy companies base their EV specific 

tariffs (offering cheaper rates overnight). However, investigations into the integration of these energy 

and power demands with existing grid readings is necessary to arrive at a definitive conclusion. This 

will be explored in the following chapter, Chapter 5.  

A crucial aspect of this model that warrants further attention is the assumption of one charger 

per vehicle. In reality this may not practical, particularly for households with multiple vehicles, where 

household electrical wiring constraints could limit the simultaneous use of numerous chargers. Whilst 

the possibility of 84 chargers in use simultaneously from a grids perspective is grounded, scenarios 

exploring various numbers of charge points per household should be investigated.  

Figures 4.18, 4.19, 4.20 and 4.21 below show SOC profiles over the course of the selected time 

period for scenarios 5, 6, 7 and 8 (Mon2 05:00AM till Fri3 05:30AM), respectively. Again, each figure 

plots the ‘Min Profile’, ‘Max Profile’, and ‘Average SOC Profile’.  

 

 

Figure 4.18: The maximum, minimum and average SOC profiles for Scenario 5 (100% Economy) 
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Figure 4.19: The maximum, minimum and average SOC profiles for Scenario 6 (37.5% Stand, 62.5% 

Econ) 

 

 

Figure 4.20: The maximum, minimum and average SOC profiles for Scenario 7 (50% Stand, 50% 

Econ) 
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Figure 4.21: The maximum, minimum and average SOC profiles for Scenario 8 (100% Standard) 

 

 

4.3 Validation of the EV Charging Model 
 

Effort was made to perform some validation on the results of the EV Charging Model against the 

data collected by Western Power Distributions as part of their Electric Nation Project (Western Power 

Distribution, 2019). Between April 2016 and October 2019, the electricity distribution network for the 

Midlands, Southwest, and Wales; Western Power Distribution, conducted a large scale project to 

investigate EVs and their impact on grid infrastructure – The Electric Nation Project (Western Power 

Distribution, 2019). For 18 months, nearly 700 EV owners and their charge points were monitored and 

so offers a comprehensive source for comparison and validation.  

 

4.3.1 Time When Charging Began 

 

As highlighted previously, the electric vehicle transition is expected to change current load 

profiles witnessed by the electricity grid. The most likely scenario being increased local peaks in 

consumption (Ridder et al., 2014). Particular to this are the timings and understanding of EV charging 

events and thus these have been selected as the focus for the validation of the EV Charging Model. 

Figure 4.22 has been extracted from the ‘Customer Trial Final Report’ of the Electric Nation Project, 

available from Electric Nation (2019). 
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Figure 4.22: Distribution of Start Charge Time – Weekday and Weekend (Figure 8-3, p.141, Electric 

Nation, 2019) 

 

The comparable information from all 8 charging scenarios has been extracted and presented in 

Figure 4.23 below. The timing of charge events across the various scenarios simulated via the EV 

Charging Model are the largest impacted factor, given the two core variables manipulated: Electricity 

Tariffs, and Charging Behaviour. Figure 4.23 is presented as follows to ease comparison: each column 

represents the scenarios adopting the two different charging behaviours. Scenarios 1-4 (LHS) being that 

of EV owners waiting for their vehicle to reach the lower 20% battery capacity threshold, whereas 

Scenarios 5-8 (RHS) seeing EV owners charge their vehicle every night. Each row of graphs in Figure 

4.14 represents a different electricity tariff split, starting from 100% Economy (Scenarios 1 and 5) at 

the top, ranging to 100% Standard (Scenarios 4 and 8) at the bottom. 

There is much variation between Figure 4.22 and Figure 4.23, most apparent is the lack of 

captured charging events occurring in the early hours. This will be due to the combination of constraints 

placed in the electricity tariff pricing hours and the lack of consideration for night-time journeys. Also 

very apparent is the accordance of Scenarios 4 and 8 with the real-life charging events captured by the 

Western Power trial compared to the other scenarios (shown in Figure 4.24). However, to confirm such 

similarities, information regarding the electricity tariffs of the Electric Nation participants would need 

to be known.  
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Figure 4.23: Distribution of Start Charge Time – Weekday and Weekend 

Charging Every Night Charging Initiates once EV falls 

below 20% SoC 
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Although the spread of charge start times in scenarios 4 and 8 most closely reflect the real life 

recordings as seen by Western Powers’ Electric Nation study (Figure 4.22), there is still some 

considerable difference. A comparison of these two scenarios and the results from Western Powers’ 

study is presented. The weekday distribution can be seen in Figure 4.24 and the distribution for 

Weekend charging start times shown in Figure 4.25. 

 

 

Figure 4.24: Comparing Distributions of Start Charge Times between Western Powers’ and Scenario 4 

& 8 – Weekday Only 

 

 

Figure 4.25: Comparing Distributions of Start Charge Times between Western Powers’ and Scenario 4 

& 8 – Weekend Only 

 

This is most likely due to multiple reasons; however, most prevalent would be the amount of data 

captured. The Electric Nation study ran for 18 months, whereas the results presented for the EV 

Charging Model are only for a period of 4 weeks. The larger duration of the Electric Nation Study also 

captures the variability experienced by individuals themselves, i.e. the variability due to holidays, 
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school terms and weather impacts. For instance, the travel patterns over 4 weeks may look different 

should those 4 weeks be captured during school term time or not for households with school children. 

This heterogeneity is not captured by the TDM used in this work and thus may lead to the higher 

concentration of results in these scenarios occurring over a shorter time period of the day. Additionally, 

the EV Charging model simulates a total of 84 vehicles only, compared to the larger sample size of the 

Electric Nation study, nearly 700 individuals. The smaller sample size simulated fails to capture this 

larger variance in the results. 

This effect can be seen more so when comparing the results of Weekday profiles to Weekend 

profiles. During the weekend, car usage occurs in a shorter period of the day, with journeys beginning 

later and final journeys ending sooner (as shown in Figure 3.20 in Chapter 3). This exhibited behaviour 

manifests itself in charging events again by occurring during a shorter window of the day. As shown by 

Figure 4.25, the results from the EV Charging Model for Scenarios 4 & 8 on weekends exhibit smaller 

differences to the Western Power Electric Nation Data compared to the weekdays, Figure 4.24. 

 

4.4 Chapter Summary 
 

This chapter presented a novel EV Charging Model, developed to capture the energy and power 

requirements to sustain the travel patterns of the 84 vehicles belonging to Bradbourne, as simulated by 

the Travel Demand Model discussed in Chapter 3. A total of 8 scenarios were simulated, varying two 

main parameters of the model – Electricity Tariffs and Charging Behaviours. The simulations ran for a 

period of 4 weeks, from which a specified time period was selected to ensure all results presented are 

in accordance with the 1st Law of Thermodynamics. This necessity being highlighted by the 

preliminary work conducted in Chapter 3.  

The results presented were for 4 variations of household electricity tariff options (combinations 

of Economy and Standard tariffs) and 2 behavioural options (charging upon the battery reaching a lower 

threshold and charging every night regardless of SOC) to create the 8 scenarios investigated. Key 

findings from the results of the EV Charging Model saw an expected pattern emerge between energy 

and power demand for the EV population. Power was essentially double that of energy, due to the half 

hour nature of the EV Charging Model and the underlying TDM. Interestingly, for scenarios 1-4, results 

indicated no discernible relationship between the day of the week and energy/power demand, whereas 

with relation to scenarios 5-8, higher demand was seen generally over the weekdays, with less at 

weekends. This pattern is expected when considering current travel patterns, and the underlying TDM. 

Scenarios 5-8 also saw vehicles have a generally higher SOC at any one time which will provide some 

comfort to rural residents with one of the primary concerns for EVs in rural areas being range anxiety 

(Tiwari et al., 2020; Carley et al., 2013). 

Following further discussions of the results, a comparison, to act as a sort of validation for the 

EV Charging Model, with Western Power Distribution’s Electric Nation study was conducted.  



127 

 

The adaptability and scalability of this novel EV Charging Model should not be overlooked. 

Although not investigated in the scenarios presented in this thesis; due to resource constraints, this EV 

Charging Model is capable of handling a variety of scenarios, including differing fleet compositions, 

fleet sizes and charge point availabilities. These features will prove to be useful to policy makers and 

electrical grid planners who will be fully able to understand the requirements of an EV population and 

how consumers of an area may attempt to recharge them. For consumers themselves, specifically rural 

communities, the work presented in this Chapter should serve as antidote for any concerns regarding 

range and usability of EVs in rural settings.  This will be further discussed in Chapter 8. With the work 

presented in this chapter and the previous, Research Aim 2 has been achieved. 

The findings from this chapter will be used to investigate the impact these energy and power 

simulations have on the local grid infrastructure as well as providing a basis for financial analysis to 

further aid the facilitation of electric vehicles in rural areas. 
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CHAPTER 5:  IMPACT ON GRID SUPPLY DEMAND 

DUE TO EV UPTAKE IN RURAL AREAS 

 
The previous chapter concluded with the presentation of energy and power requirements due 

to the charging of 84 electric vehicles which could be located in the village of Bradbourne. Multiple 

scenarios were discussed that highlight the large variability in the population’s energy and charging 

requirements, and most importantly, the potential for sudden spikes in power demand due to multiple 

simultaneous charging events. The effects of which will be the main focus of this chapter. 

 This chapter begins by examining the local grid infrastructure surrounding Bradbourne (Section 

5.1), including a largescale dataset acquired from Western Power Distribution (WPD). At the time of 

writing, WPD is now known as National Grid (National Grid, 2023), however hereafter, this network 

operator shall still be referred to as Western Power Distribution (WPD). This is followed by Section 

5.2, which looks at the combination of this dataset with the results of the EV Charging Model presented 

in Chapter 4. Here examples are given to show the unreliable nature of instantaneous power readings 

depending on the resolution of time used and the standard which will be taken forward for further 

analysis. A look into grid failures is presented in Section 5.3, and the cause for concern that integrating 

this large EV fleet on local grid infrastructure will have. Lastly, a forecast model for determining when 

these levels of EV integration are likely to occur has been developed and presented in Section 5.4. The 

chapter concludes with Section 5.5. Material presented in this chapter has been published previously in 

the following papers: McKinney et al., (2023a, f). 

 

5.1 Local Grid Infrastructure 
 

As highlighted in the previous chapter, arguably the more concerning aspect of the EV transition 

is the power demand, compared to the energy demand. This chapter’s focus will be to take the results 

and conclusions drawn from Chapter 4 and investigate their real-world impact.  

Energy demand can always be met through increasing production capabilities (i.e. building more 

sources of generation). However, the power drawn is limited by the physical infrastructure that 

comprises the grid (i.e. the size and ratings of the transformers). This constraint is only exacerbated in 

rural areas which typically consist of less robust grid infrastructure in general (i.e. smaller substations, 

or transformers, attached to wooden poles) (Western Power Distribution, 2022a). 

As described in Chapter 3, the area of interest and focus of the simulation is the rural village of 

Bradbourne, located in the Peak District. To keep this work in line with previous, the work in this 

chapter continues to focus on this same area. Bradbourne is served by the network operator Western 

Power Distribution (WPD). Typical grid infrastructure pathways are illustrated in Figure 5.1 below. 
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Figure 5.1: Electricity Network Diagram (Parliamentary Office of Science and Technology, 2001) 

 

Within Bradbourne itself, there is only one local road-side transformer, transformer 890416 

(IVY COTTAGES BRADBOURNE). This is the lowest level of grid infrastructure within Bradbourne 

that is publicly listed via WPDs Electric Vehicle Map (Electric Vehicle Map, 2023). However, as this 

information is sourced from the EV Capacity Map Application, no details regarding the specifications 

of this transformer are provided. To assess the grid impact of the results from the EV Charging model 

presented in the Chapter 4, aspects such as demand headroom need to be determined. To acquire this 

information, the choice was made to move upstream, in terms of the electricity network, to a higher 

substation level (diagrammatically highlighted in the blue box in Figure 5.1).  

Figure 5.2, taken from WPD’s Network Capacity Map, shows the area of coverage of primary 

substation 890067 (Longcliffe 33 11kv S Stn) which serves Bradbourne and the surrounding areas.  
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Figure 5.2: Network Capacity Map – Primary Substation 890067 (Network Capacity Map, 2023) 

 

 

5.1.1 Western Power Distribution Dataset 

 

Western Power Distribution (WPD), the network operator responsible for supply to this area, 

was approached to support this research project via the supply of data on the local grid infrastructure to 

Bradbourne, vis-à-vis energy or power measurements. WPD was able to provide recordings of power 

drawn every half-hour for Transformers 1 & 2 at the Longcliffe Primary Substation 890067. Following 

some pre-processing steps to clean the dataset, as some datapoints were either missing or mis-reads, 

this was replaced with their nearest other half-hour values, the values for T1 & T2 were combined. 

Assuming a Power Factor Correction (PFC) value of 0.95 (Network Capacity Map, 2023), this allowed 

for the conversion of this transformer data from Apparent Power (VA) into True Power (W), which 

enabled greater synergy between this dataset and the results from the EV Charging Model. The dataset 

provided by WPD, following these pre-processing steps, can be seen below in Figure 5.3.  

 

 

 

Substation 890067 

Bradbourne 
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Figure 5.3: WPD Dataset – Power readings for Substation 890067 

 

Over a year (376 days) of power data was supplied by WPD, with a date range of 01/11/2020 

till 12/11/2021. Noting this timeframe was largely disrupted by COVID-19 and thus there will be a 

large impact on the power demand compared to ‘normal’ use. From speaking with WPD during the 

stages of acquiring this dataset, continual monitoring of substations and the recording of their usage is 

not common practice for substations where there are no concerns. Only when it is required for analysis 

of various kinds is data collection carried out on their part. This resulted in an inability to filter for an 

‘ideal’ dataset (ideal being a pre or post-COVID date range when usage would reflect regular 

behaviours), however fortunately the substation in question which serves Bradbourne, and the larger 

area (Figure 5.2) had been monitored recently.   

An in-depth analysis of this substation dataset has not been carried out, as the requirement here 

is to use the data in combination with the results of the EV Charging Model to investigate the impacts 

of EV integration in this area. Nevertheless, Figure 5.3 shows the expected cyclical nature of power 

demand at a substation across days, where we see reduced demand during the early hours and across 

weeks, with reduced demand on Saturday and Sundays easily seen as compared to weekdays. 

Additionally, there is a large drop in power demand for a few weeks during the Christmas and New 

Years period, which is most likely due to the closing of businesses and thus the remaining demand is 

due solely to the residential sector. 
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5.2 Impact on Grid Supply Demand 
 

WPD was only able to provide power readings from the substation, most likely due to power 

being the main concern for a grid operator, as opposed to energy. Similarly, with the integration of EVs, 

power requirements are of greater concern than the energy requirements these vehicles demand. 

Therefore, the focus of the grid impact study on Bradbourne’s local grid infrastructure will be 

concentrated on the   increased power demand from EVs.  

Due to the size differences between the area covered by the dataset provided by WPD, and the 

area of Bradbourne, the decision was made to extrapolate the results of the EV Charging Model to a 

comparable area as covered by the WPD data, the results of which were validated.  This validation 

comprised of comparing ‘household occupancy’ and ‘cars per household’ for the two respective areas: 

Bradbourne and the larger total area covered by the WPD data. This required the composition of the 

land area covered by primary substation 890067, which was determined via the combination of the 

various census output areas which make up this area, see figure 5.4. Unfortunately, as can be seen from 

the figure, it is never possible to get a clear and complete overlap of data from more than one source. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Primary Substation 890067 coverage area with census output areas (COA’s) overlaid 

 

For each of these seven census output areas, the household composition and vehicle availability 

of each household was retrieved from the UK Census (Nomis, 2013a; Nomis, 2013b) – following the 

same process described in Chapter 3, Section 3.1. The results of this can be seen below in Figures 5.5 

& 5.6, which compare the occupancy and vehicle distributions of Bradbourne to the other areas, 

respectively.  

Carsington 

E00099166 

Newton Grange 

E00099205 

Tissington (and 

Lea Hall) 

E00099212 

Brassington 

E00099164 

E00099165 

Ballidon (and 

Aldwark) 

E00099162 

Parwich 

E00099209 

E00099210 

Bradbourne 

E00099163 



133 

 

 

Figure 5.5: Occupancy 

 

 

Figure 5.6: Vehicle availability 

 

Figures 5.5 & 5.6 show that the composition(s) of Bradbourne (used to develop parameters for 

the TDM in Chapter 3, and the EV Charging Model in Chapter 4), are representative of the larger area 

within which Bradbourne lies. Therefore, the results of the EV charging model have been scaled to 

assume a more accurate grid demand against the larger area constituting the WPD dataset.  

Scaling was achieved through determining the factor between the 84 vehicles of Bradbourne 

and the total number of registered vehicles across the seven census output areas covered by primary 

substation 890067. Across all these census output areas (Figure 5.4), a total of 1380 vehicles belonging 

to 780 households exist (a breakdown of these numbers is in Appendix B) and have been scaled by a 

factor of 16.43. This scaling factor was applied to the results of the EV charging model and the results 

0

10

20

30

40

50

1 2 3 4 5 6 7 8

P
er

ce
n
ta

g
e 

(%
)

People per Household

Bradbourne (E00099163) Parwich (E00099209) Parwich (E00099210)

Ballidon (E00099162) Brassington (E00099164) Brassington (E00099165)

Tissington (E00099212) Newton Grange (E00099205) Carsington (E00099166)

0

10

20

30

40

50

60

1 2 3 4 5

P
er

ce
n
ta

g
e 

(%
)

Cars Per Household

Bradbourne (E00099163) Parwich (E00099209) Parwich (E00099210)

Ballidon (E00099162) Brassington (E00099164) Brassington (E00099165)

Tissington (E00099212) Newton Grange (E00099205) Carsington (E00099166)



134 

 

can be seen in Figures 5.7 and 5.8 for each electricity tariff scenario 1-8. As mentioned previously, only 

power data was supplied for the grid demand by WPD and so only the power results from the EV 

Charging Model will be taken forward for further analysis.  

 

 

Figure 5.7: Power demand from EV Charging Model scaled - Scenarios 1, 2, 3 and 4 

 

 

Figure 5.8: Power demand from EV Charging Model scaled - Scenarios 5, 6, 7 and 8 
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Combining these extrapolated EV Charging results with the WPD dataset can be done in 

various ways, each yielding differing results. Three methods have been explored with the aim of 

selecting the best to take forward for further analysis. The three methods are: 

 

▪ Daily Average 

▪ Highest Peak 

▪ Average Week 

 

After having examined selected time periods discussed in Chapter 4 (Table 4.6), the simulation 

was found to not diverge over a longer time duration. Thus, to allow for easier visualisations of the data, 

a period of one week was chosen to showcase the combination of EV Charging and pre-existing grid 

loads. The three different approaches presented illustrate the importance of temporal resolution and 

averaging, particularly when it comes to power, and how these can manipulate results and the 

conclusions drawn.  

With regards to the three approaches, this required the averaging for all half-hours of the day 

across each of the 376 days of data provided by the WPD, separated by the days of the week. For 

example, each half-hour timestep for 00:00-00:30 for every Monday within the dataset was averaged to 

provide a ‘typical’ Monday 00:00-00:30 value. This was repeated half-hourly for every day of the week 

to generate the data for the ‘Average Week’ method. These were then averaged again to obtain the 

‘Daily Average’ data across all 48 half-hour values of each day. For the ‘Highest Peak’ method, the 

largest half-hour instantaneous power demand value recorded across the years’ worth of data was 

identified, and the week surrounding this value taken forward. To generate the same values for the EV 

fleet, the same processes were undertaken on the scaled results from the EV Charging Model (Table 

4.6). 

 

5.2.1 Daily Average 

 

This method took the WPD dataset and reduced it down to an average single value for each day 

of the week. The same was applied to the results of the scaled EV Charging Model results. This 

combination, for scenarios 1-4 and 5-8 are presented in Figure 5.9 and 5.10 respectively. 
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Figure 5.9: Scenarios 1, 2, 3 & 4 

 

 

Figure 5.10: Scenarios 5, 6, 7 & 8 

 

Figures 5.9 and 5.10 show the increase in power demand from integration of EVs is minimal, 

resulting in roughly an 8% increase each day. This is misleading in its presentation due solely to the 

instantaneous nature of power. Although the average power demand due to the EV fleet charging across 

the whole day is low, as shown by Figures 5.7 and 5.8, there are very large spikes lasting for short 

periods of time. From a grid operators’ perspective, these spikes are a significant cause for concern for 
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grid stability and efficiency. The contrast cases which highlight these spikes, and their impact, are 

visible in the following two approaches.  

 

5.2.2 Highest Peak 

 

Looking at a more conservative approach to this impact investigation on the grid, here the 

results for each charging scenario are used in combination with the highest peak demand seen in the 

WPD dataset. The highest pre-existing power demand occurred on the 08/12/202 at 20:00 with a reading 

of 9405 kW. The Monday to Sunday week surrounding this date (07/12/2020 – 13/12/2020) is shown 

in Figure 5.11. 

 

 

Figure 5.11: The week with the highest pre-existing power demand on the grid 

 

Again, this section of grid data was combined with the scaled results of the EV Charging Model 

which can be seen in Figures 5.12 and 5.13 for scenarios 1-4 and 5-8 respectively.  
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Figure 5.12: Scenarios 1, 2, 3 & 4 – Scaled EV Charging Model results combined with the largest pre-

existing power demand on the grid 

 

 

Figure 5.13: Scenarios 5, 6, 7 & 8 - Scaled EV Charging Model results combined with the largest pre-

existing power demand on the grid 
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very differently. For scenarios 1, 2, 3 and 4, there looks to be minimal increases in the peak power 

demand value. As mentioned previously, the largest pre-existing power demand on the grid was 9405 

kW, with the addition of EVs, this has only increased to new maximum of 9853 kW as seen in the 100% 

Economy scenario (scenario 1), representing a 4.8% increase.  

In contrast, for scenarios 5, 6, 7 & 8, although the 100% Standard scenario follows a similar 

negligible impact as the previous four scenarios, as the ratio of Economy tariffs increases, the peak 

power demand rises drastically and becomes a significant impact and cause for concern. Scenario 5 (the 

100% Economy tariff combined with charging every night) now increases the peak power demand to 

15,084 kW, an increase of over 60% at the substation. 

From a grid operators’ perspective, these rapid changes in demand are of the most concern, and 

having shown the different ways the same dataset can be manipulated to indicate different grid impacts 

highlights the importance for accurate representation of power and its measurements as these can only 

ever be instantaneous in nature.  

 

 

5.2.3 Weekly Average 

 

For the purpose of this work, the decision was made to take an average week of the pre-existing 

grid load, as opposed to the worst-case scenario as detailed in the previous subsection. With this method 

in mind, the combination with the charging power requirements for the EV fleet are shown in Figures 

5.14 & 5.15. 

 

 

Figure 5.14: Scenarios 1, 2, 3 & 4 - Scaled EV Charging Model results combined with the average 

weekly pre-existing power demand on the grid 
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Figure 5.15: Scenarios 5, 6, 7 & 8 - Scaled EV Charging Model results combined with the average 

weekly pre-existing power demand on the grid 

 

The combination of the scaled EV Charging Model results with the average weekly pre-existing 

grid loads follow a similar pattern to the combination with the highest peak week (Figures 5.12 and 

5.13) with the major difference being the highest peak demand. With the average weekly method, the 

highest power demands are 7793 kW and 13,594 kW for scenarios 1-4 and scenarios 5-8, respectively. 

However, this method does present a more regular pattern for grid demand, having averaged across 52 

weeks, as opposed to taking the solely largest week. Going forward, this method and the resulting pre-

existing grid values it produces will be taken forward for further analysis into the grid impact of 

Bradbourne and the surrounding areas. It is important to note that infrastructure is sized to cope with 

the highest demand to avoid it becoming dangerously overloaded. 

 

5.3 Investigation into Grid Overload Events 
 

The work presented in this chapter thus far is based on the continued premise of one charge 

point per vehicle, which currently yields 1380 charge points connected to substation 890067. This 

scenario, whereby every vehicle has its own home charge point, is unrealistic due to the constraints of, 

firstly the type of wiring/fuses in households of the UK. A typical UK household will be fitted with a 

mains 100 A fuse, considering that the 7 kW Pod Point chargers presented in Chapter 4 required around 

30 amps, this would limit any household to a maximum of 2 charge points under reasonable calculations 

given pre-existing household energy demands. Even with three chargepoints, this would leave very little 

current for the pre-existing household use. Secondly, the actual upfront costs for having multiple charge 

points installed for households with multiple vehicles may well be prohibitive.  
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However, investigating the case for 1380 charge points connected to this substation is still 

beneficial, especially as a worst case scenario.  From the grid’s perspective, 1380 charge points may 

not be unrealistic when also considering public charge points. A sensible case for 1380 charge points 

to be connected to the grid from within this area of interest can be made when considering not just the 

local population, but also tourists. Especially at weekends and on holidays where others may travel to 

rural areas for outdoor activities (hiking, climbing etc). In conjunction with public charge points 

installed at supermarkets and workplaces , a case can be made for the scenario where it is highly possible 

1380 charge points could be in use simultaneously, within this larger area around Bradbourne (see figure 

5.4). It should be noted that this saturated charging scenario (whereby 1380 charge points, i.e. all charge 

points within the simulation, are in use simultaneously) is a worst case scenario. Therefore, 

understanding the impact of this number of charge points on the current grid infrastructure is essential 

for future proofing the grid, especially understanding the impacts of grid failures. As part of the Network 

Capacity Map discussed in Section 5.1, specifications for each substation are detailed. Those for 

substation 890067 are presented below in Table 5.1.  

 

Substation Name Longcliffe 33 11kv S Stn 

Substation Type Primary 

Substation Number 890067 

Substation Firm Capacity 23.00 MVA 

Substation Peak Demand 9.75 MVA 

Substation Demand Headroom 13.25 MVA 

Upstream Demand Headroom 4.50 MVA 

 

Table 5.1: Demand specifications for Substation 890067 (Network Capacity Map, 2023) 

 

 As detailed by table 5.1, substation 890067 still has a demand headroom of 13.25 MVA 

available, however, this is limited by the upstream demand headroom, 4.50 MVA. Considering the 

current substation peak demand is 9.75 MVA, this indicates a grid capacity of only 14.25 MVA at this 

point.  Applying a Power Factor Correction of 0.95 again, this is equivalent to a true power, grid 

capacity, of 13,538 kW. With 1380 charge points, each rated at 7 kW, if all were to be in use 

simultaneously, this would generate a power demand of 9,660 kW. For context purposes, the power 

demand forecasted for the scaled EV charging model scenarios (scenarios 1-8) saw a maximum of 3,470 

kW across the ‘Charging initiates once EV falls below 20% SOC’ behavioural scenarios (this was seen 

in Scenario 1 – 100% Economy) and a maximum of 8,241 kW for the ‘Charging every night’ 

behavioural scenarios (specifically Scenario 5 – 100% Economy). This can be seen in figures 5.7 and 

5.8. This indicates that the existing grid infrastructure is more than capable of meeting this increase in 

demand due to EV charging, however, the upstream infrastructure is a cause for concern.  
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With an existing grid capacity of 13,538 kW and taking the EV Charging demand to be a 

maximum of 9,660 kW, this would leave only 3,878 kW for the pre-existing grid load. Which as shown 

in Table 5.1, would not be enough for the already peak demand of 9,750 MVA (9,263 kW). These 

calculations are illustrated below in figure 5.16.  

 

 

 

 

 

 

 

 

 

 

Figure 5.16: Substation 890067 headroom calculations  

 

Given the upstream constraint on the grid system is 4.50 MVA (4,275 kW), it was calculated 

how many times, throughout the WPD’s year of data, the grid infrastructure would not be able to cope 

with demand. This would be anytime the pre-existing grid power exceeds 3,878 kW. The WPD data for 

substation 890067 contains 18,040 data points of power measurements, comprising of meter readings 

every 30 minutes. Considering the 3,878 kW threshold, the grid would have exceeded this threshold 

12,064 times (i.e. 12,064 half-hour segments during the year). The distribution of these grid threshold 

breakthroughs by the total consecutive half hour segments at any one time are shown in figure 5.17.  

 

 

Figure 5.17: Grid Overload Points over the course of the Western Power Distribution dataset 
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The work presented in this section reserves the grids capacity for the 1380 charge points first 

and then calculates the breaches caused from any other load. In reality, this is the other way around, the 

demand from the EV chargepoints would cause the breaches and consequential potential overloads. 

This ‘order’ was chosen in order to conduct the calculations of threshold breaches quicker and directly 

using the WPD dataset.  

Figure 5.17 highlights not just the large number of times this threshold is exceeded during the 

course of the year, but also, more concerningly the duration of some of these potential grid overloads. 

The longest non-stop period whereby this threshold is broken lasts for 267 half-hour segments, 

equivalent to 133.5 hrs (5 days 13.5 hrs). If the breakthrough of this grid threshold was to result in a 

power outage, due to overload of a transmission transformer for example, these long durations of power 

outages would be a major concern for EV owners. These breakthrough points have been grouped today 

into five categories; 12hr, 24hr, 36hr, 48hr, and 48hr+ and presented in table 5.2. 

 

Half-Hour Groupings Number of Occurrences 

0-24 (12hr) 117 

25-48 (24hr) 13 

49-72 (36hr) 4 

73-96 (48hr) 6 

97+ (48hr+) 52 
 

Table 5.2: Grid Threshold Breakthrough 

 

The largest category of threshold breakthrough are those under a 12hr duration, which 

constitute 117 of the 192 breakthrough events highlighted. As the duration of breakthrough increases, 

the numbers of such cases continue to fall, with the final category (48hr+) combining many more 

instances into one and thus resulting in a larger number. Considering the figures used in the calculation 

of this grid threshold were taken from the upstream source of substation 890067, as per Table 5.1, the 

resulting impact should a threshold breakthrough occur would be much greater than just the sole area 

served by substation 890067. Rather, a much larger area would be impacted if this upstream transformer 

was to exceed its rating. This upstream transformer feeds, alongside 890067, a further 6 substations; 

covering a much larger area. This poses more cause for concern given the small headroom available for 

such a large area of coverage, should this area adopt solely EVs at some point in the future. 

 

5.4 Timeline for Chargers 
 

Having conducted a comprehensive assessment into the impact of this rural EV fleet within 

Bradbourne and the surrounding area on the local grid infrastructure, this section will provide a forecast 

for the timeline for when these impacts are likely to become a realisation. The focus thus far has been 

on 1380 vehicles, and by extension charge points, connected to substation 890067 which has been 



144 

 

shown to be a cause for concern, however this is not an immediate concern. It will take time for this 

level of adoption to be reached, should it ever be reached.  

Effort was therefore made to forecast when this level of adoption may become reality. However, 

determining a forecast for home charge point installation is difficult, due to the lack of publicly available 

data. Zapmap are the UK’s leading digital platform for EV drivers to search for available public charge 

points, having 95%+ of public charge points mapped (Zapmap, 2023a). They offer the most accurate 

estimate for the number of charge points in the UK year on year. Between 2016 and 2021, the charge 

point network grew four-fold from 6,500 to more than 28,000 devices (Zapmap, 2022).  

 

 

Figure 5.18: Number of chargepoints in the UK (Extracted from Zapmap, 2023b) 

 

Whilst Figure 5.18 provides insight into how the availability of public charge points is changing 

over time, this does not necessarily correlate with private, ‘home’ or workplace, chargepoints. As per 

figure 5.18, there are 33,000 public UK charge points mapped as of 2022, however, in terms of private 

charge points there is estimated to be more than 400,000 (Zapmap, 2022). This indicates that the number 

of private charge points in the UK is likely much closer to the actual number of EVs registered in the 

UK (see Table 5.3). Which, during this early adoption phase of EVs is unsurprising, due to most UK 

households only having one vehicle and having not replaced all their current ICE vehicles with an EV. 

Therefore, the rate of increase for EVs themselves in the UK was chosen to be used as the basis for this 

forecast model. Table 5.3 presents the cumulative number of battery electric vehicles in the UK from 

2016 till 2021 according to Zapmap statistics, which has been plotted and extrapolated using excels 

inbuilt functions enabling the determination of a trendline to use for forecasting in figure 5.19. 
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Year Cumulative no. of battery-electric cars in the UK 

2016 30,669 

2017 44,266 

2018 59,740 

2019 97,565 

2020 205,770 

2021 396,497 

 

Table 5.3: Cumulative number of battery-electric cars in the UK (Zapmap, 2022) 

 

 

Figure 5.19: Extrapolated cumulative number of EVs in the UK with trendline 
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this. As well as receiving power related data from WPD, details on the devices connected to substation 

890067 was also included (Western Power Distribution, 2022b). These devices included Biofuels, 

Waste Generation, Solar, Wind and the number of EV Chargers. Per this dataset, at the time of writing, 

there are 9 EV chargers connected to substation 890067. However, it is unsure if these are private home 

chargers or public charge points. To overcome this, effort was made to determine a more conservative 

approach and so provide a range for the time until 1380 chargepoints are connected to the larger area 

substation. Treating these 9 chargepoints, as per the WPD data, as the public charge points, using a ratio 

of 1:12 (calculated from the ratio of public to private chargepoint estimates per Zapmap), indicates a 
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possible 109 private chargepoints currently connected to substation 890067. With these two start points, 

9 and 109, along with the trendline illustrated in figure 5.19, a forecast for future chargepoint numbers 

in the area has been conducted. The results of these two start points are presented below in Table 5.4 

and 5.5. 

 

Year No. of Chargers 

2022 9 

2023 16 

2024 27 

2025 41 

2026 61 

2027 86 

2028 117 

2029 155 

2030 201 

2031 255 

2032 390 

2033 473 

2034 567 

2035 673 

2036 791 

2037 922 

2038 1067 

2039 1226 

2040 1401 
 

Table 5.4: Forecast for the number of home chargepoints connected to substation 890067 based on a 

starting point of 9 

 

Year No. of Chargers (Cumulative) 

2022 109 

2023 196 

2024 324 

2025 502 

2026 738 

2027 1041 

2028 1419 

2029 1880 

2030 2433 
 

Table 5.5: Forecast for the number of home chargepoints connected to substation 890067 based on a 

starting point of 109 
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Table 5.4 and 5.5 suggest that it will take between 6 and 17 years for 1380 chargepoints to be 

connected to substation 890067 and by extension convert the predictions for their grid impact into 

reality. This is of some concern as 6 years is a relatively short period of time for major infrastructure 

upgrades to occur. However, it should be worth mentioning that although in the early stages of EV 

adoption, the rate of home charge point uptake is likely to follow a similar pattern to the sale of EVs 

themselves, during higher market penetration levels, EV owners may not choose to install multiple 

charge points at their properties when having multiple EVs and so this correlation will change. 

Therefore, resulting in a longer period of time for charge point numbers to reach a concerning number 

from a grid operators’ perspective. 

With current grid infrastructure and its present specifications, as detailed in Table 5.1, the 

available headroom on substation 890067 serving this area of investigation is 13.25 MVA. This is 

limited by an upstream demand headroom of 4.5 MVA. Accounting for Power Factor Correction, using 

0.95 again, this would indicate an available headroom of 12,587 kW at the local infrastructure level and 

4,275 kW upstream. Considering solely 7 kW charge points, substation 890067 could withstand a total 

of 1798 charge points before potential issues arise. Considering the limiting factor of the upstream 

demand headroom, this is reduced to only 610 charge points. Referring to the charge point installation 

timelines presented in tables 5.4 & 5.5, they indicate that local infrastructure, due to the upstream 

demand constraint, would face issues by 2026 under aggressive assumptions and 2035 under 

conservative assumptions.  

 

 

5.5 Chapter Summary 
 

This chapter has presented a comprehensive investigation into the impact EV Charging will 

have on local grid infrastructure, typical to rural environments. Having acquired substation meter 

reading data from WPD, this enabled a direct examination for the results of the EV Charging Model 

(presented in Chapter 4) which focused on the village of Bradbourne and the current grid load of 

Bradbourne and the surrounding areas. 

As highlighted by the results presented in Chapter 4, the power requirements for a rural EV 

fleet in Bradbourne was shown to be of higher concern over energy. With this in mind, the work in this 

Chapter focused solely on the power perspective, a decision reinforced by the data from WPD only 

containing power readings. Due to the instantaneous nature of power, its actual impact can be masked 

depending on how you present the data, as detailed in Section 5.2. This chapter presented multiple 

methods for which to present the power data from WPD to highlight this aspect in detail and should be 

noted for any further work.   

After determining a suitable method for which to combine the acquired data from a local 

substation to Bradbourne and the results of the EV Charging Model, which had to be scaled to coincide 
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with the power meter readings from substation 890067. Although the case study of this thesis has been 

focused on the village of Bradbourne, it is important to highlight the applicability of these methods for 

any rural area. Given its use of publicly available data (UK Census) on rural locations, any location can 

be used as an input for this methodology to assess the impact of EVs. This can be extended to the WPD 

dataset also if similarities between ‘Vehicle Availability’ and ‘People per Household’ can be made with 

a location of interest, as per the scaling methodology developed in this Chapter. 

Section 5.2’s analysis showed scenarios 1-4 integrated well with the pre-existing grid load, 

whereas scenarios 5-8, which are arguably the most realistic set, showed serious cause for concern with 

large power demand spikes at various points. Given roughly the same amount of energy is being 

‘refuelled’ over the simulation period in question, the results of this chapter pose many considerations 

for policy makers, EV charge point operators and grid operators. Arguably, the main contributing factor 

for the refuelling behaviour to change from that simulated in scenarios 1-4 to scenarios 5-8 is the long 

charge times of EVs. If charging speeds continue to improve, this could mitigate some of the issues 

highlighted in this chapter. Nevertheless, it is vital to assess the impact of today’s technology. Given 

these large spikes forecasted, the worst case scenario (whereby all 1380 chargepoints are in use at the 

same time, a scenario closely reflected by scenario 5 – 100% Economy) was investigated further. 

Results indicated multiple voltage violations throughout the WPD year-long dataset, when considering 

this threshold imposed upon substation 890067 by the upstream demand headroom. This is a substantial 

cause for concern for not just grid operators but EV drivers, and thus the public also. Voltage violations 

may lead to power cuts, which has serious implications for a transport sector so dependent on electricity. 

Mitigations of such events and also exploration for feasibilities of EVs in these events is required, this 

will be investigated in the following chapter. 

This chapter’s content concluded with a simple forecast model to indicate when this level of 

EV adoption is likely to occur and by extension when the potential issues highlighted during this chapter 

may become a reality. Depending on how conservative certain parameters were made, the high level of 

adoption discussed in this chapter is between 6 and 17 years away. These timescales do provide time 

for grid operators and other institutions to ensure rural areas, such as Bradbourne, are prepared for the 

EV future.  

With the combination of power requirements from a rural EV fleet and local grid pre-existing 

demand, the work presented in this chapter fulfils ‘Objective 3a’, as detailed in Chapter 1. The following 

chapter seeks to further examine particular nuances of grid behaviour when considering the addition of 

charging loads from EV uptake in rural areas. This includes the impact of power outages and mitigation 

strategies for the increased load, in an effort to achieve ‘Research Aim 3’. 
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CHAPTER 6:  FURTHER EXPLORATION OF EV 

CHARGING RESILIENCE IN RURAL AREAS 

 
The previous chapter saw the combination of results from the EV Charging Model and the pre-

existing loads on the grid local to Bradbourne and the surrounding areas. Results showed a wide range 

of changes to the grid supply demand due to EV uptake in rural areas, dependent on factors such as 

electricity tariffs and charging behaviours. Most notable from the previous chapter was the 

identification of large spikes in power demand which may be a result from large EV uptake.  

This chapter aims to continue the investigation into the impact on power demand of the grid 

due to EVs and how EVs may cope if pre-existing grid infrastructure fails to meet requirements. This 

chapter will begin with a comprehensive investigation in Section 6.1 into the impacts of power cuts, 

unplanned and planned, on EV Charging ability. Section 6.2 examines possibilities for mitigating these 

and other consequences of largescale EV adoption in rural areas through the utilisation of Demand Side 

Management techniques. The chapter concludes with Section 6.3. 

Material presented in this chapter has been published previously, or currently under review, in 

the following papers: McKinney et al., (2023c, d). 

 

 

6.1 Power Outages 
 

The material presented thus far in this chapter focuses on the capabilities of the current grid 

infrastructure surrounding Bradbourne and how a rural EV fleet may integrate with this. Having seen 

that the simple addition of this EV fleet could cause major problems in terms of potential grid overload, 

this is a worrying outcome for an electrified vehicle future.  

Therefore, it is imperative to investigate what impacts power outages would have on rural 

communities, such as Bradbourne, dependent on their EVs for daily transport. Power outages are still 

witnessed today, albeit a less than common occurrence in the UK, however more prevalent in rural areas 

due to the weaker grid infrastructure (Western Power Distribution, 2022a). The additional nuance for a 

rural area without power is the typically longer duration of power outages, due to the more remote 

nature of the infrastructure when considering accessibility for repair, etc. Power outages for this 

research have been categorised into two groups: (1) Unplanned, and (2) Planned. Both of these 

categories have been investigated.  

Additionally, this analysis will also consider the direct impact power outages will have on EV 

owners themselves, via their vehicles SOC. Only the 84 vehicles of Bradbourne will be considered as 

it is at this level that the data for each, and every vehicle has been generated via the TDM (Chapter 3) 

and the EV Charging Model (Chapter 4). This section will initially outline the methodologies used to 
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examine both unplanned and planned power outages. Subsequently, the results and discussions for 

unplanned power outages will be covered in section 6.1.2, followed by those for planned power outages 

in section 6.1.3. 

 

6.1.1 Methodologies for Unplanned and Planned Power Outages 

 

This section will first begin with presenting the methodology employed for investigating 

unplanned power outages on the village of Bradbourne. A range of suitable length power outages has 

been investigated. This will then be followed by the methodology for investigating planned power 

outages, which involved the incorporation of the Electricity Supply Emergency Code (ESEC) 

(GOV.UK, 2019). 

As shown in Chapter 4, the scenarios based on ‘Charging initiates once EV falls below 20% 

SOC’ behaviour (scenarios 1, 2, 3 & 4), which aimed to align with more traditional ICE refuelling 

regimes, did not prove optimal. The battery charge of many vehicles was unable to keep up with the 

required travel demand. Consumers are likely to realise these issues, and others highlighted by the 

results of Chapter 4, and therefore adapt their charging behaviour accordingly. Thus, the decision was 

made to focus on the ‘Charging every night’ scenarios (Scenarios 5, 6, 7 & 8) from here-on-out. 

 

Unplanned Power Outages 

 

Unplanned power cuts can be caused by all manner of incidents damaging grid infrastructure, 

i.e. poor weather, sabotage, and accidents. These unplanned power cuts can vary in their durations, 

dependent upon how much damage is caused.  

To understand the impact of unplanned outages on EV charging and by extension the usability 

of individual vehicles, a range of power outage durations have been simulated: 12hr, 24hr, 36hr and 

48h, the duration categories as devised in Table 5.2 of Chapter 5. 

For each of the power outage scenarios (12hr, 24hr, 36hr & 48hr), custom python scripts were 

written which enabled the manipulation of the EV Charging model results from scenarios 5, 6, 7 & 8. 

A random number generator was used to select the timing (a specific timestep within the 4 week 

simulation period) for when the power outages would begin, which would remain the same across each 

scenario for comparative reasons. The power outages were all scheduled to begin at 7:30pm on ‘Fri1’ 

of the 4 week simulation period. The python scripts inserted the power outages at this moment of the 

simulation period, not allowing for any more charging events to occur during this period, followed by 

recalculations for the remainder of the simulation period of the charging events based upon the 

parameters detailed in Chapter 4 as before. 
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Planned Power Outages 

 

To contrast the work undertaken on unplanned power outages, the decision was made to also 

investigate planned power outages, prompted by recent global events and threats to domestic energy 

supply. Geopolitical statuses are a probable threat to domestic power and energy availability in the UK. 

At the time of writing, the current war in Ukraine with Russia has led to a gas shortage worldwide, not 

only affecting prices and thus the running costs of an EV but have resulted in renewed media attentions 

for the UK Governments planned blackouts protocols (The ESEC) (The Guardian, 2022a). 

The ESEC details plans should a prolonged electricity shortage affect a specific region, or the 

whole country (GOV.UK, 2019). This code outlines the process to ensure fair distribution nationally of 

what electricity supply is available using a process known as “rota disconnections”. This has brought 

about a significant amount of concern for UK citizens (The Guardian, 2022b), and most notable will 

have an impact on electric vehicle owners when recharging. Therefore, it was decided to investigate the 

effects these proposed planned blackouts would have on the results from the EV charging model.  

The “rota disconnections” propose to split the days into 3hr segments and depending on your 

postcode location and house, the electricity supply will be cut during different segments. This is to 

ensure reduced energy use during these times of limited supply. Multiple disconnection levels have 

been planned, ranging from 1 to 18, which depict varying degrees of energy rationing, see Appendix C. 

Furthermore, for the area undergoing electricity rationing should the ESEC be invoked, the households 

of such a region are split amongst 18 groups (A-U) to ensure fair distribution of what electricity supply 

there is to different households at different times. There groups will henceforth be referred to as ‘area 

groups’. 

These proposed disconnection level blackouts range from loss of electricity for a few 3hr slots 

per week (Level 1), to complete, continuous, blackout (Level 18). The disconnection levels proposed 

by the ESEC can be seen in Appendix C, of which Levels 1, 5, 10, 12 & 15 have been chosen to be 

simulated. These levels were selected to offer a comprehensive investigation into various degrees of 

disconnection that a community might experience. Levels beyond 15 were not considered due to the 

extremely low probability of such worst-case scenarios occurring. Additionally, from an impact analysis 

standpoint, blackouts nearing a week in duration would effectively result in no EV charging while they 

persist.   

To minimize the computational and time requirements of conducting this investigation of the 

multiple disconnection levels, only previously described Scenario 6 (37.5% Standard, 62.5% Economy) 

was selected upon which to base this work. This was the most realistic electricity tariff distribution 

scenario, as presented in Chapter 4. The 45 households of Bradbourne which have vehicles, and thus 

an EV within these simulations, were randomly assigned an area group, ranging from A to U. The result 

of this process can be seen below in Table 6.1. 
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ESEC Block House ID  ESEC Block House ID 

A 17, 23, 29, 45  L 25 

B 14  M 26, 41 

C 6, 7, 11, 37  N 15, 31, 43 

D 9, 12, 34  P 13 

E 10, 28, 33, 38, 47  Q 8, 48 

G 32, 46  R 24, 36, 39, 44 

H 19  S 27 

J 5, 21  T 35 

K 16, 18, 22  U 20, 30, 40, 42 

 

Table 6.1: Area group assignment for each Household of Bradbourne – only households with vehicles 

(House ID 5-49) 

 

Custom written python scripts were used to simulate these planned power outages detailed by 

the ESEC. This involved the input of the EV Charging Model results (as per Chapter 4), combined with 

the ESEC disconnection levels (Appendix C). The algorithm would initially check all pre-existing 

charging events, dictated by the EV Charging Model to determine if these events would still be possible 

under the current ESEC scenario being simulated. If a planned charging event was scheduled to occur 

during a power outage period, the vehicles variables for the timesteps of that power outage would be 

recalculated. Following periods of power outage, when the power returns, should vehicles require 

charging, and should its position (i.e. at home) allow for a charging event also, then recalculations will 

also take place to account for this.  

Two charging regimes were developed and chosen to again investigate differing behavioural 

types; electricity tariff dictated and opportunistic. Electricity tariff dictated follows the same protocols 

set out in Chapter 4, where the charging events of a household depend on the electricity tariff. As 

scenario 6 was chosen as the basis for this work, this means 62.5% of household on economy tariffs 

would only charge between 00:00-07:00, regardless of the disruption caused by the planned power 

outages. However, as an attempt to mimic more human behaviour, another behavioural pattern was 

chosen to simulate; opportunistically charging. This behavioural pattern assumed that, should these 

planned blackouts go ahead, individuals would cease to follow their EV tariff pricing structure and opt 

for a more opportunistic approach whereby they would elect to charge at any time in order to maximise 

the available state of charge of their vehicle at any one time, therefore ensuring their continued use of 

their vehicles was possible. To simulate these two charging regimes, it was assumed that all household’s 

EV chargers would have a time delay function (smart functionality). Allowing vehicles to be plugged 

in but wait till the next available charging opportunity arose.  

Having presented the various parameters and methodologies for simulating both unplanned and 

planned power outages, the results, pertaining to the EV fleet of Bradbourne itself, will now be 

presented for both in Sections 6.1.2 and 6.1.3 respectively. As this work builds directly upon the output 
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of the EV Charging model results from the previous chapter, the results for both unplanned and planned 

power outages have been presented for the selected time periods for each scenario that was detailed by 

Table 4.6 of Chapter 4. 

 

6.1.2 Results and Discussion for Unplanned Power Outages 

 

This section will present and discuss the results from simulating 12, 24, 36 & 48hr unplanned 

power outages durations, building upon the EV Charging Model of Chapter 4. 

 

12hr Outage 

 

Figure 6.1 below shows the impact a 12hr power outage, beginning at 7:30pm on Friday, has 

on the overall charge across all 84 EVs of Bradbourne. All four electricity tariff distribution scenarios 

were modelled and the comparison between the original (solid lines) and 12hr outages (dashed lines) 

are displayed. It should also be noted that for the rest of Section 6.1.2, with regards to figure legends, 

‘E’ and ‘S’ indicate Economy and Standard electricity tariffs respectively.  

 

 

Figure 6.1: Total Charge across of all EV Batteries of Bradbourne’s vehicle population over time for 

scenarios 5-8 with and without a 12hr power outage 

 

As one would expect, all scenarios have been impacted by the power outage, with the 100% 

Economy scenario witnessing the largest effect. This scenario has seen a drop of almost 500 kWh across 

the fleet of 84 vehicles. This is due to this scenario having essentially ‘missed’ its daily charging 
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opportunity once midnight passes, and the Economy tariff charging events are initiated. In contrast, as 

the ratio of households with a Standard electricity tariff increases, the impact of the outage becomes 

decreased, with negligible affect for the fleet deployed on the 100% Standard scenario. With regards to 

the 100% standard scenario, we can see a straight flat line during the period of the power outage before 

vehicles are then able to recharge once again, indicating a period of zero vehicles in use. Although, the 

data presented in Figure 6.1 is reassuring from a grid’s perspective, and at first glance may indicate that 

this impact of this power outage is less severe than it actually is, as the fleet only loses roughly 500 

kWh in total. Investigating the impact to individual vehicles and by extension the EV owners themselves 

shows a different story.  

To review the impact on a more individual level, Figure 6.2 shows the minimum, maximum 

and average SOC profiles for each scenario with and without the power outage. The minimum and 

maximum profiles were determined through selecting the EV whose SOC dropped to either the 

minimum value, or the maximum value, respectively, during the selected time period. If an EV reaches 

0%, for the continuation of the simulation, the vehicle does not go below 0%, but is able to ‘continue’ 

the journey and return home to begin charging (electricity tariff dependent for the timing of the charging 

event itself) from 0%. In reality, it is recognised this would be extremely problematic for the vehicle 

owner as they would be unable to drive home, and the vehicle may have to be recovered. The average 

SOC profile is an average of all 84 vehicle’s SOC at each half-hour timestep during the simulation 

period.  

Figure 6.2 demonstrates that the vehicle’s SOC never drops to 0% during the selected time 

period, even in the face of a 12-hour power outage. This duration is identified as the most common 

length of power outage, as indicated by the findings in Table 5.2 of Section 5.3, thus enabling EV 

owners to maintain their usual travel patterns despite the outage. Most notably from figure 6.2, is the 

impact of the electricity tariff on the SOC profile during the simulated power outage. During the power 

outage runs of the simulation, the minimum SOC profile belongs to House 48 – Car 1, which, by chance, 

is served by an Economy electricity tariff for all the scenarios whereby there is a ratio including both 

Economy and Standard tariffs. However, this is not the case for the 100% Standard scenario which 

allows the households to begin recharging as soon as the power outage is over. In this scenario, the 

minimum SOC profile now belongs to House17 – Car 1, the same as the original case without a power 

outage. The lowest SOC reached is just under 7% which causes concern for any longer duration power 

outages which will be presented next.  
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Figure 6.2: Min, Max, and Average Individual Vehicle SOC plot for (a) 100% Economy, (b) 37.5% Standard, 62.5% Economy, (c) 50% Standard, 50% 

Economy, (d) 100% Standard 
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24hr Outage 

 

The next duration of power outage simulated was 24hr, the results for the whole EV fleet can 

be seen in figure 6.3 below. This duration produced results very similar to the 12hr power outage, 

especially the 100% Economy scenario, with more of an impact seen for the other three electricity tariff 

distribution ratios. The is due to the inclusion of standard electricity tariffs in these scenarios which 

now with a 24hr power outage results in a large decline in fleet total charge.  

 

 

Figure 6.3: Total Charge across of all EV Batteries of Bradbourne’s vehicle population over time for 

scenarios 5-8 with and without a 24hr power outage 

 

Comparing figures 6.3 with 6.1 (the total charge of the EV fleet when witnessing a 12hr power 

outage), what is interesting is the fact that the impact due to a 24hr power outage is the same as the 12hr 

power outage for the 100% Economy scenario. This is due to the hours of charging that are dictated by 

the economy tariff. Given the start of the power outage is 7:30pm, for economy 7 tariff households, the 

charging events which would be affected are those beginning at midnight Friday/early Saturday 

morning. When considering the 12hr outage, the households would regain power at 7:30am, but wait 

until midnight on the Saturday for their next charging event. Now a 24hr power outage scenario has 

been simulated, this continues the power outage until 7:30pm on the Saturday, where still the next 

available charging event for the economy 7 tariff households would be at midnight. Therefore, as 

economy 7 tariff households base case is recharging every 24hrs at midnight, the impact of either a 12hr 

or 24hr power outage would be the same. This is predicted to be the same, for the 100% economy 
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scenario, for the 36hr and 48hr power outage cases with those two scenarios resulting in the same 

impact.   

Again, figure 6.3 would suggest the vehicles are minimally impacted and so little concern for 

EV owners, however when highlighting individual vehicles, this shows, again, larger impacts and 

concerns. Figure 6.4 shows the minimum, maximum and average SOC profiles for a 24hr power outage 

across all electricity tariff distribution scenarios with comparisons to their respective originals (no 

power outages). The most significant difference between the figure 6.4 representing the 24hr power 

outage and the graphs presented in figure 6.2 for the 12hr power outage is the 100% Standard scenario. 

The 24hr causes a much larger reduction in SOC, in both the average profile and, more interestingly, 

the maximum profile than was the case with the 12hr outage.  
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Figure 6.4: Min, Max, and Average Individual Vehicle SOC plot for (a) 100% Economy, (b) 37.5% Standard, 62.5% Economy, (c) 50% Standard, 50% 

Economy, (d) 100% Standard 
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36hr Outage 

 

The results for the 36hr power outage simulation are shown below in figure 6.5. With the power 

outage now lasting longer than a day, the impact has become much more significant. As the underlying 

charging behaviour for these scenarios is ‘Charging Every Night’, all 84 vehicles studied will have lost 

a day’s opportunity for a charging event. This has led to a significant reduction in the charge of each 

vehicle, and by extension the total charge across all batteries.  

 

 

Figure 6.5: Total Charge across of all EV Batteries of Bradbourne’s vehicle population over time for 

scenarios 5-8 with and without a 36hr power outage 

 

Given the large push for EV owners to have EV specific tariffs, which largely follow an 

Economy tariff structure, figure 6.5 highlights, contrastingly, the benefits of standard tariffs and 

charging at any time during periods of atypical circumstances, such as a power outage. For the scenarios 

with larger Standard tariff distribution ratios, we see the impact of the power outage reduced drastically. 

This is particularly relevant to the scenario where the power outage starts at 7:30pm. In the case of a 

36hr power outage under the Economy tariff, similar to the 12hr and 24hr scenarios, vehicles are 

subjected to an additional 12hr outage. This results in an increased inability to recharge before 

continuing further journeys according to the established travel patterns. The impact of this becomes 

evident in figure 6.6, where the minimum vehicles now reach 0% for all electricity tariff distribution 

scenarios.  
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Figure 6.6: Min, Max, and Average Individual Vehicle SOC plot for (a) 100% Economy, (b) 37.5% Standard, 62.5% Economy, (c) 50% Standard, 50% 

Economy, (d) 100% Standard
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48hr Outage 

 

The last and longest duration of unplanned power outage simulated was 48hrs, the results of 

which can be seen in figure 6.7. 

 

 

Figure 6.7: Total Charge across of all EV Batteries of Bradbourne’s vehicle population over time for 

scenarios 5-8 with and without a 48hr power outage 

 

As pointed out in the 24hr power outage scenario and for the same reasons, the 100% Economy 

scenario with a 48hr power outage is the same as for the 36hr power outage. However, as per figure 6.7, 

the other three electricity tariff distribution scenarios (100% Standard, 50% Standard, 50% Economy 

and 37.5% Standard, 62.5% Economy) all see the total charge of the EV population drop considerably 

during the course of the power outage. Contrary to the previous durations, the 100% standard is now 

severely affected also. This is also highlighted by figure 6.8 which details the SOC profiles for 

individual vehicles during this simulation. 

The work presented in this section reflects the kind of power cuts we are familiar with in the 

UK, i.e. those caused by damage to infrastructure, whether that be due to weather or accident. However, 

current geopolitical affairs have brought about the UK Governments need to draw up plans for planned 

black-out periods.  
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Figure 6.8: Min, Max, and Average Individual Vehicle SOC plot for (a) 100% Economy, (b) 37.5% Standard, 62.5% Economy, (c) 50% Standard, 50% 

Economy, (d) 100% Standard
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6.1.3 Results and Discussion for Planned Power Outages 

 

The presentation and discussion of results from simulating planned power outages are 

structured as follows: Initially, two charging regimes, as previously mentioned, have been simulated. 

To demonstrate the effect of these regimes, a brief presentation of results for an individual vehicle is 

provided. This is followed by an analysis of various factors over the simulation period, including battery 

capacities, charging energy, required energy demand and consequent electricity generation needs, 

power demand and its impact on grid supply, and finally, the implications for individual consumers and 

their EV capabilities. A 4 week simulation period was chosen to allow initial transients to stabilise, and 

the data for slightly over a week is presented.  

For each avenue of investigation, two sets of results are shown. The first set focused on the 

battery capacity of the EV fleet, and the second set examines the energy demand from the 84 charge 

points in Bradbourne within the simulation. For both sets, a combined presentation of all results is 

provided for comparison, followed by two separate plots that distinguish the outcomes of the two 

charging regimes.  

 

 Electricity Tariff Dictated and Opportunistic Charging Regimes 

 

To understand the impact of these two charging regimes and highlight the difference in results 

they produce, one of the more severely affected vehicles of the population, House 17 – Car 1, and the 

impact of each of the chosen levels of disconnection for both the ‘electricity tariff dictated’ and 

‘opportunistic regimes’ over one week of the simulation have been presented in Figures 6.9 and 6.10, 

respectively.  
 

 

Figure 6.9: State of Charge for House 17 – Car 1 EV over time under ‘Electricity Tariff Dictated’ 
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Figure 6.10: State of Charge for House 17 – Car 1 EV over time under ‘Opportunistic’ charging 

regime 

 

House 17 is served by an Economy tariff, as presented during the EV Charging Model in 

Chapter 4, and therefore charging events can only occur between 00:00 and 07:00, however, for the 

purposes of these planned power outage simulations, if the charging for tariffed households was not to 

reach 80% by 07:00, the charging would continue if possible. This would be until either another 

blackout occurred, or the vehicle left home. This primarily results in a few half-hour timesteps following 

on from the 07:00 timestep where charging at an Economy household would still continue. This decision 

was made to again reflect the need an EV owner under an Economy tariff household would have for 

charging their vehicle, although not fully transitioning into the opportunistic charging regime.  

As House 17 is served by an Economy tariff, the major impacts come from disconnection levels 

which switch off power during these crucial charging, economy, hours i.e. the early hours of each day. 

For reference, as per Table 6.1, this household is under ESEC block A. As highlighted by Figures 6.9 

& 6.10, the impacts of these two charging regimes is significant. For the electricity tariff dictated 

charging regime, this vehicle reaches 0% multiple times at Level 10 disconnection, with even Level 5 

reducing the SOC down to levels just above 30%. In contrast, utilising an EV owners more realistic 

behaviour through the opportunistic charging regime, enables more charging events to occur, and the 

disconnection levels now become an issue with this EV in question reaching 0% SOC at only Level 12 

and 15.  

 Additionally, when considering these two charging regimes, and the underlying electricity 

tariffs serving each household, as the ESEC is a public document and if enacted, individuals themselves 

would know the times and durations of their power cuts. Therefore, it is unlikely that individuals would 

try to correlate their original EV charging patterns (forecasted by the EV Charging Model), with the 

reduced periods of time when power is on. Instead, EV owners would choose to charge or conduct their 

journeys at different times and thus alleviate this impact of such power outages furthermore. Therefore, 

it is reasonable to take this work as a worst case scenario.  
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Battery Capacity 

 

Figure 6.11 shows the EV fleets total level of charge over time for the original scenario as well 

as both the charging regimes. From the weekly trend, although there are recharging events occurring in 

available periods where the power is on during the week, due to the underlying travelling patterns 

having more mileage travelled during the weekdays, as opposed to the weekends (see Chapter 3), this 

has resulted in a weekly undulating profile. Whereby the total battery charge capacity over the course 

of the week slowly declines, to be replenished to the highest levels at the weekend.  

 

 

Figure 6.11: Total Battery Capacity of entire EV population of Bradbourne for both ‘Electricity Tariff 

Dictated’ and ‘Opportunistic’ charging regimes 

 

As expected, disconnection level 15 under the ‘Electricity Tariff Dictated’ charging regime had 

the largest impact with a considerable reduction of almost 40% in the total battery charge capacity of 

the fleet. Figures 6.12 and 6.13 present these results but separated by charging regime.  
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Figure 6.12: Total Battery Charged Capacity of entire EV population of Bradbourne for the 

‘Electricity Tariff Dictated’ charging regime 

 

 

Figure 6.13: Total Battery Capacity of entire EV population of Bradbourne for the ‘Opportunistic’ 

charging regime 

 

Compared to the original scenario, all but the highest disconnection level simulation, 

disconnection level 15, for the opportunistic charging regime method actually improved the overall 

battery capacity of the fleet. This highlights why this charging behaviour was first developed, to 

simulate how charging behaviours may change during periods of planned power outage. EV owners 

could act more conservatively and thus charge more in the hours that allow them to do so, and so the 

battery capacity of every vehicle remains at a higher average SOC.  
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However, these graphs are deceptive, as they suggest that there is no real concern to even the 

higher level disconnection levels. As per figure 6.13, this shows roughly a 10% decrease in the total 

battery charge capacity across all EVs when averaged across the whole 8 days presented (Sun-Mon), 

which is true. However, the individual vehicles that constitute this total capacity are all impacted in 

different ways depending on their travelling habits and charging capabilities.  This will be discussed in 

further detail shortly.  

 

Charging Energy 

 

In contrast to figure 6.11 suggesting that the total battery charge capacities are minimally 

impacted by the various disconnection levels and therefore the batteries must be recharged significantly 

even with the planned power outages, figures 6.14, 6.15 and 6.16 show the total charging energy at each 

timestep (every half-hour) due to all the recharging events occurring during the simulation. These 

figures show large decreases in the energy demand spikes compared to the original scenario, especially 

for the opportunistic charging regime based scenarios.  

 

 

Figure 6.14: Charging Energy for both ‘Electricity Tariff Dictated’ and ‘Opportunistic’ charging 

regimes 
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Figure 6.15: Charging Energy for Electricity Tariff Dictated regime 

 

 

Figure 6.16: Charging Energy for Opportunistic Charging regime 

 

When considering the impact of power outages, the impact of such will differ depending on if 

the perspective is from the electricity generation capability to the capabilities of the physical grid 

infrastructure, to how the end user, the EV owners themselves, will be affected. The impacts of these 

planned power outages for each group will now be discussed.  
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Generation 

 

From a generation perspective the total energy charged during the 4 week simulation period for 

each scenario is detailed in table 6.2 below. 

 

Charging Regime Disconnection Level Total Energy Charged (kWh) 

Original - 14,007.87 

Electricity Tariff Imposed Level 1 14,007.87 

Level 5 13,607.24 

Level 10 13,662.64 

Level 12 13,458.49 

Level 15 11,729.52 

Opportunistic charging Level 1 13,994.39 

Level 5 13,998.54 

Level 10 13,917.35 

Level 12 13,857.40 

Level 15 13,513.59 
 

Table 6.2: Total Energy Charge during the total time of simulation for each scenario 

 

The difference in total energy being charge between each scenario is not significant, with the 

worst scenario, disconnection level 15, under the electricity tariff imposed charging regime only 

charged 2278 kWh below the original level, representing a loss of only 17.7% in energy to the system 

over 4 weeks. Considering the ESEC is a technique for electricity rationing during periods of reduced 

output, these disconnection levels have not reduced the total energy consumed by very much. Therefore, 

it could be argued that the purpose of the ESEC has been thwarted, from the EV perspective, by the 

need to claim energy for travel, albeit at a higher expense than charging off-peak.  

As expected, the opportunistic charging regime scenarios have maintained the total energy put 

into the system far better than the electricity tariff imposed regime. This is due purely to the behaviour, 

and EV owners taking any opportunity they can to recharge their vehicles. Although, by extension this 

has caused the energy rationing to be in-effective. 

 

Grid Infrastructure  

 

As shown earlier, when determining the impact on grid infrastructure, power is the more 

significant factor, when compared with energy. This can be seen in the following figures, figures 6.17, 

6.18 and 6.19 below.  
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Figure 6.17: Charging Power demand for both ‘Electricity Tariff Dictated’ and ‘Opportunistic’ 

charging regimes 

 

Figure 6.18: Charging Power demand for the ‘Electricity Tariff Dictated’ charging regime 

 

Figure 6.19: Charging Power demand for the ‘Opportunistic’ charging regime 
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As per figures 6.17, 6.18 and 6.19, the charging demand profiles for the charge points during 

these simulations follow the same patterns as the energy profiles. This is expected due to the relationship 

between energy and power. In all cases the peak power demand has been reduced, which from a grid’s 

infrastructure, and by extension a grids operator’s, perspective is very beneficial. The following section, 

Section 6.2, will examine other methods and techniques which can be used to reduce the peak demand 

spikes causes by EV uptake in rural areas.  

Building upon this work, to further investigate the impact on the local grid infrastructure around 

Bradbourne, these charging power profiles have been combined with dataset received from WPD, 

previously detailed in Section 5.1.1. Again, the results from these simulations have been scaled by a 

factor of 16.43 to reflect the vehicle population size of the area covered by the substation to which the 

WPD dataset pertains, see figures 6.20, 6.21 and 6.22. 

 

 

Figure 6.20: Charging power demand combined with the pre-existing grid power demand for both 

‘Electricity Tariff Dictated’ and ‘Opportunistic’ charging regimes 

 

Figure 6.21: Charging power demand combined with the pre-existing grid power demand for the 

‘Electricity Tariff Dictated’ charging regime 
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Figure 6.22: Charging power demand combined with the pre-existing grid power demand for the 

‘Opportunistic’ charging regime 

 

Consumer 

 

As mentioned previously, the total battery charge capacity plots shown in figures 6.11 initially 

suggest little cause for concern for the impact these ESEC planned power outages will have on EV 

usability in rural areas. However, when considering the individual vehicles which constitute this total 

battery capacity of the fleet, some vehicles fare better than others. Table 6.3 shows the number of EVs 

which reach 0% SOC during some point within the 4 week simulation period.  

 

Charging Regime Disconnection Level No. of Cars reaching 0% SOC 

Electricity Tariff Dictated Level 1 0 

Level 5 0 

Level 10 1 

Level 12 3 

Level 15 25 

Opportunistically Level 1 0 

Level 5 0 

Level 10 1 

Level 12 1 

Level 15 6 

 

Table 6.3: The number of EVs that hit 0% SOC at some point during the 4 week simulation of each 

scenario 

 

From table 6.3, multiple EVs do in fact reach 0% SOC, which is hidden through the total battery 

charge capacity presentation approach. From a consumer perspective, only when high level 

disconnection scenarios were simulated does this occur. Scenarios which are unlikely to occur in real 
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life should planned power outages ever be invoked per the ESEC. Table 6.3 also highlights the impact 

the opportunistic charging regime has, when compared to the base scenario of the electricity tariff 

dictated charging regime. When considering disconnection level 15 for both charging regimes, there is 

a huge reduction from 25 to 6 vehicles that ever reach 0% SOC during the 4 weeks of simulation. 

Figures 6.23, 6.24 and 6.25 present the average SOC of all 84 vehicles over the entire simulation 

period, again, reinforcing the findings previously. Highlighting the concealment of individual vehicles 

reaching 0% SOC during the simulation period, but also how the ‘Opportunistic Charging’ regime 

improves the average SOC throughout. 

 

 

Figure 6.23: Full 4 week simulation period for the average battery SOC of the simulated EVs of 

Bradbourne during the ESEC planned power outages for both the ‘Electricity Tariff Dictated’ and 

‘Opportunistic’ Charging regime 

 

 

Figure 6.24: Full 4 week simulation period for the average battery SOC of the simulated EVs of 

Bradbourne during the ESEC planned power outages for the ‘Electricity Tariff Dictated’ Charging 

regime 
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Figure 6.25: Full 4 week simulation period for the average battery SOC of the simulated EVs of 

Bradbourne during the ESEC planned power outages for the ‘Opportunistic’ Charging regime 

 

There are some limitations to this methodology, as it would be reasonable to assume that the 

travel patterns would also change to accommodate the planned power outages as they would be known 

(planned) occurrences. Individuals therefore would be able to plan to always be at home, where 

possible, when they had power on in order to charge, for example. However, these scenarios are 

currently beyond the scope of this work and could be addressed under further work, this will be 

discussed in Chapter 8. 

 

6.2 Demand Side Management 
 

As shown in this chapter, the impact of EVs on the grid is considerable, including greater 

demand for electricity, both from an energy and power point of view, and the repercussions this could 

bring. Currently, grid operators have developed two mechanisms designed to maintain the balance of 

power supply and demand in a cost-effective way. The first mechanism is based on the integration of 

energy storage systems into the grid, and the second mechanism is focusing on minimising the peak 

load by encouraging end-users to change their power usage behaviours with incentivised benefits (Aoun 

et al., 2019). This process is called Demand Side Management (DSM) (Aoun et al., 2019).  

DSM seeks to alleviate this issue, through strategies and technologies which encourage 

consumers to shift their demand and optimize their energy use. Thus reducing the peak demands and 

smoothing out demand over a longer period of time in general. With rural areas threatened by power 

outages more so than their urban counterparts, especially in terms of the impact a power outage will 

have, creating a more reliable and flexible grid is not just in the grid operators’ interest but EV owners 

themselves.   
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Referring back to figure 5.15 in Section 5.2, the ‘charging every night’ scenarios (scenarios 5, 

6, 7 & 8) have the largest peak demands due to the integration of EV charging, with Scenario 5 (100% 

Economy) indicating the worst impact. The results of this scenario have been repeated below in Figure 

6.26 for reference. Therefore, DSM Strategies will only be investigated around this scenario as this 

represents the worst case.  

 

Figure 6.26: Combination of Pre-existing Grid Load and EV Charging results for the 100% Economy 

scenario 

 

6.2.1 Development of Strategies for DSM 

 

As this work directly involves the grid, this body of work is based on the larger area including 

and surrounding Bradbourne – the area presented in figure 5.4 of Chapter 5. However, as the DSM 

strategies developed will directly impact charging events of individual vehicles, the methodology 

employed in the previous sections of scaling the results would not work. Therefore, each of the original 

84 vehicles simulated for Bradbourne were duplicated 16.43 times (with the 0.43 constituting a random 

selection of 36 vehicles from the population of 84). This provided 1380 vehicles with individual travel 

patterns and charging profiles, upon which the DSM strategies could be applied. Three DSM Strategies 

have been proposed for this body of work: 

 

Strategy 1 - A first come, first serve approach: Whereby the first individual charge points to 

be utilised for a charging event see no power reduction, but once the grid supply power threshold value 

has been reached, any additional vehicles that are plugged in will not be able to start charging until 

others finish.  
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Strategy 2 - Lowest Battery charge has priority: A smart system whereby all SOCs of each 

vehicle are reviewed at 30 minute intervals, with only the lowest SOC vehicles being able to charge up 

to the grid constraint, again, no power reduction at the chargers. 

 

Strategy 3 - Equal Distribution: All vehicles are recharged when plugged in, but the power 

at individual charge points is reduced (shared) to align with the total threshold limit/constraint imposed 

(Ciabattoni et al., 2021).  

 

Across each scenario, multiple threshold limits are applied to the local substation, i.e. to 

simulate potential limits grid operators may impose on their energy distribution network. These 

thresholds are 8000 kW, 10,000 kW and 12,000 kW and signify the total power that can be drawn from 

the local substation at any one time, which in this instance would be a combination of the pre-existing 

grid load and the power requirements from EV charging. Applying DSM strategies requires a global 

approach, i.e. from perspective of the transformer. For this reason, at each 30 minute interval timestep 

the headroom between the pre-existing grid load and the current threshold limit being simulated was 

calculated. This headroom is then compared to the total power demand from all 1380 vehicles in this 

instant to see if there is enough power for the pre-determined charging events of that timestep. If not, 

and the imposed grid thresholds have reduced the capacity of the transformer to such a level whereby 

the number of desired charging events cannot occur then the implementation of one of the DSM 

strategies currently being simulated can begin. The process for this simulation is illustrated in figure 

6.27 below. 
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6.2.2 DSM Simulation Process 

 

 

Figure 6.27: Flowchart representing the Simulation Process for DSM Strategy 1 
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As detailed in figure 6.27, every vehicle, and their individual results from the EV Charging 

Model, act as an input to the DSM system. During each 30 minute interval over a 4 week period, the 

simulation compiles the total power required by each vehicle/charge point (𝑃𝐸𝑉,𝑇𝑜𝑡𝑎𝑙). This is then 

added to the pre-existing load on the local grid infrastructure (𝑃𝐺𝑟𝑖𝑑) to calculate the total power 

demand, 𝑃𝑇𝑜𝑡𝑎𝑙. This is then compared with the imposed threshold limit. If 𝑃𝑇𝑜𝑡𝑎𝑙 is larger than the 

imposed grid threshold, then the DSM strategy currently being investigated is implemented in order to 

decrease this total load to below the limit. 

In building the Demand-Side Management (DSM) methodology upon the EV Charging Model, 

it is important to clarify that the charging framework remains consistent. Specifically, the model 

presupposes that each vehicle is paired with its own charging station. Thus, the scheduling of charging 

sessions adheres to the timelines established by the EV Charging Model. This arrangement implies that 

in households with multiple vehicles, each one is equipped with a separate charger. As a result, the 

DSM model treats vehicles in multi-vehicle households no differently than those in single-vehicle 

households, ensuring that the number of vehicles does not influence the charging strategy or its impact 

within the DSM framework. 

Figure 6.27 illustrates the process for Strategy 1 specifically, whereby ‘N’ number of vehicles 

are selected from the total list of vehicles attempting to charging during this timestep. These vehicles 

are then given priority should they wish to continue charging in the next timestep. Strategy 2’s process 

would involve a review of all the vehicles trying to charge at each timestep and selecting ‘N’ number 

of vehicles with the lowest State of Charges. Strategy 3 would continue to allow all vehicles wishing to 

charge to continue doing so, however the power drawn from each of those vehicles would be equally 

reduced in order to decrease 𝑃𝑇𝑜𝑡𝑎𝑙 below the imposed grid threshold currently being run. Custom 

written python scripts were used to compute the above processes for each strategy. To align with the 

results of the EV Charging model, these simulations ran for a period of 4 weeks to allow for the 

assessment of the feasibility for these DSM strategies over a longer time period.  

 

6.2.3 Results of DSM Strategy 1 

 

This strategy utilized a first come first serve approach, whereby at each timestep, out of the 

vehicles wishing to charge, only the first ‘N’ vehicles are allowed to charge, with further priority given 

to those already charging from the previous timestep. The overall impact from the grid’s perspective 

can be seen in figure 6.28 below.  
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Figure 6.28: Total power drawn from grid for Strategy 1 across the three threshold limits 

 

As per figure 6.28, the duration of charging events across the population of vehicles  increases 

as the imposed threshold is lowered. However, regardless of the threshold, all vehicles received enough 

charge to fulfil the following days scheduled travel activities. This is largely due to the impact the 

Economy 7 tariff has on EV charging, which acts as a form of DSM in the first instance. Due to this 

electricity tariff, most charging events were scheduled during a period of low demand in terms of the 

pre-existing load on the grid. This allowed for the use of pre-existing headroom to the threshold limits, 

when comparing the highest grid demand. Although from the grid operators’ perspective this achieves 

the required outcome of reducing those peak demands and curtailing any voltage violations, for the EV 

owners themselves, there may be issues with acceptance. Although many home charge points come 

with delay-start charge time functionality to align with EV specific electricity tariffs, using this function 

is an EV owner’s choice. Strategy 1 supposes grid operators’ responsibilities for the delay in charging 

caused to some owners, however the focus of this work was the investigation of the end results from 

DSM implementations and not the methods by which this would be achieved. The duration of time that 

charging took place across the different threshold scenarios saw the most significant impact, see Table 

6.4. 

 

 Original 8000 kW 
Limit 

10000 kW 
Limit 

12000 kW 
Limit 

Time (hrs) 2.5 4.5 3 3 

 

Table 6.4: Average charging durations for Strategy 1 
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All imposed threshold scenarios saw an increase in the duration whereby charging events took 

place, with the most severe being that caused by the 8000 kW threshold, as expected. Given the start 

time for charging events, as dictated by the Economy 7 tariff was midnight, even at the lowest threshold, 

this still allowed for all vehicles to finish their charging events by the early morning.  

 

6.2.4 Results of DSM Strategy 2 

 

Instead of a first come, first served approach, this strategy prioritized those EVs with the lowest 

state of charge. As shown by figure 6.29, the results are similar to those seen in Strategy 1. However, 

when considering the time over which charging events occur during strategy 2, Table 6.5 shows that 

this duration has decreased with comparison to the results from strategy 1. Again, all vehicles gained 

the necessary charge to sustain their scheduled travel and so from an EV owner’s perspective, 

satisfaction from this standpoint alone has been achieved.  

 

 

Figure 6.29: Total power drawn from grid for Strategy 2 across the three threshold limits 

 

 Original 8000 kW 
Limit 

10000 kW 
Limit 

12000 kW 
Limit 

Time (hrs) 2.5 3.5 2.5 2.5 
 

Table 6.5: Average charging durations for Strategy 2 

 

By focusing on the lowest charged vehicles first, this has allowed for maximum capacity of 

charge to be deployed to the vehicles. This is due to the relationship between power and energy and the 

fidelity of the results – readings every 30 minutes. With the use of 6.6 kW chargers, this yields a 
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maximum of 3.3 kWh charge every half hour for the vehicles. However, if a vehicle requires less than 

3.3 kWh to reach the upper 80% SOC limit (i.e. fully charged), this simulation timestep would still 

require 6.6 kW of power from the grid. By prioritizing the lowest SOC vehicles initially, these vehicles 

will more likely require a full 3.3 kWh of charge each half hour, and so maximum charging efficiency 

of the system is achieved. This will then be followed by the last few half-hour timesteps of charging 

events occupied with lower efficiency (<3.3 kWh charge) charging events, when compared to strategy 

1 which would have these timesteps scattered across the whole duration. This results in savings of an 

hour of overall charge event duration when comparing strategy 2 and strategy 1. There is also a social 

aspect to strategy 2 which needs to be considered with regards to understanding its acceptance amongst 

the user community. Strategy 2 provides an opportunity to understand how consumers may react to 

scenarios whereby charging does not initiate directly after plugging in, but with an understanding that 

this is due to someone with a lower charge on their EV which may hinder their next day’s requirements.  

 

6.2.5 Results of DSM Strategy 3 
 

This strategy employed what is possibly a more equitable strategy – to equally distribute the 

available headroom below the imposed thresholds, between all vehicles requiring charging. This would 

be employed via considering the power requirements of the whole EV population, and if this was above 

the threshold value all chargers would remain operational albeit at a lower output power compared to 

their rating. Each EV charger’s power output would be reduced equally in order to reduce the total load 

on the grid. Again, the threshold limits of 8000 kW, 10000 kW and 12000 kW were imposed upon the 

system. The results of strategy 3 can be seen in figure 6.30. 

 

 

Figure 6.30: Total power drawn from grid for strategy 3 across the three threshold limits 
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Strategy 3 is assumed to be the most socially accepted form of DSM investigated, as again for 

grid operators the power demand spikes have been reduced significantly to that more in-line with pre-

existing loads, however, in addition this strategy holds the fairest approach for EV owners themselves, 

should their communities power supply be limited or controlled.  

 

 Original 8000 kW 
Limit 

10000 kW 
Limit 

12000 kW 
Limit 

Time (hrs) 2.5 4 3 2.5 

 

Table 6.6: Average charging duration for Strategy 3 

 

The duration over which charging events occur, as concurrent with the other two strategies has 

increased, see table 6.6. However, there is more of a linear relationship between each imposed threshold 

limit on the grid, compared to strategies 1 & 2. Overall, all DSM strategies have proven their feasibility 

in reducing the peak load due to EV charging, whilst still allowing EV owners to maintain their current 

travel patterns. 

 

6.2.6 Discussion and Comparison of all DSM Strategies 

 

To provide an insight into how each DSM strategy impacted individual vehicles, the results 

from Vehicle 33 within the simulation have been presented, see figure 6.31. For reference, Vehicle 33 

belongs to House ID 29, a ‘Two Person, Two Vehicle’ household. The TDM simulated this vehicle to 

travel for ‘Work’ full time, 5 days per week, conduct two ‘Other’ trips, as well as completing four 

‘Shopping’ trips during the week. As recalled in Section 6.2, all households within the DSM simulations 

were served by an Economy electricity tariff, and thus aimed to complete charging events in the early 

hours.  
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Figure 6.31: State of Charge over one week across each DSM strategy for Vehicle 33 

 

As shown by Figure 6.31, the largest impact the different strategies have is on recharging time. 

In this case (vehicle 33), and all the other vehicles, sufficient charge was provided to meet the travel 

demands of EV owners. However, the various strategies implemented had differing effects on different 

days of the week. Strategy 3 illustrates the different rate of recharge compared to strategies 1 and 2, due 

to the relationship of power and energy as discussed earlier, which is expected to change not just daily, 

but at each half-hour timestep. This is due to the ‘Headroom’ changing for each timestep with respect 

to what the pre-existing load on the grid is, which allows for differing reductions in power of each 

charge point. Although for strategy 3, we are now reducing the power output of each charge point itself, 

and thus reducing the maximum amount of energy that can be recharged within each timestep, which 

has not resulted in the slowest DSM strategy when compared with the original. All DSM strategies did 

extend the duration of charging events, as expected (shown by tables 6.4 – 6.6), however, figure 6.31 

shows that depending on the day of the week, strategy 3 is not the slowest overall, as one might expect. 

Strategy 2 results in the slowest DSM on some days for vehicle 33 in this example. This is due to the 

‘step-changes’ as dictated by strategy 2 which can be seen in figure 6.31. These are timesteps during 

this vehicles timeline when it no longer had one of the lowest SOC’s, when compared to the rest of the 

fleet (1379 other vehicles with chargepoints connected to substation 890067). In this instance, charging 

would have ceased on vehicle 33 and another vehicle begins. This alludes towards the fairness of this 

strategy, which attempts to give everyone within the community of Bradbourne a minimum level of 

charge. The biggest limitation extends from the EV charging model underpinning this work, specifically 

the number of charge points parameter. If the number of charge points was restricted this would, in of 

itself, act as a ‘natural’/real-life form of DSM. However, having focused on a total number of charge 

points of 1380, derived from the number of vehicles in the area (Section 5.2), this figure does represent 
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a realistic value. Although 1380 home charge points, as assumed in this work, is less likely, for a future 

scenario with 100% EV market share with numerous home chargers installed, with the addition of 

public charge points (located at workplaces, shops etc.) this figure would become more likely. 

 

 

6.3 Chapter Summary 
 

This chapter explored the impacts of power outages, both unplanned and planned. Firstly, with 

regards to unplanned power outages, multiple durations, ranging from 12hrs to 48hrs, were simulated. 

These showed interesting links between electricity tariffs and the impact of power outages, with the 

households served by a Standard electricity tariff fairing the best in terms of the vehicles SOC and 

maintaining travelling patterns. However, for power outages longer than 36hrs, vehicles within the 

simulation of Bradbourne’s population began reaching 0% SOC at various times. Planned power 

outages highlighted the UK Governments ESEC, which given recent global affairs at the time of writing, 

are receiving a lot of attention. A selection of the ESEC proposed disconnection levels were simulated 

for a period of 4 weeks and their impacts investigated, from a generational, grid operators and EV 

owners perspectives.  

Given the concern that large scale EV adoption has shown to implicate rural grid infrastructure 

in the UK, mitigation of such issues was investigated. Utilising demand side management techniques 

to stabilise the grid, three strategies were developed; a first come, first served approach, lowest battery 

has priority, and an equal distribution. Each strategy enabled the reduction of peak demands drastically 

down to sufficient levels that would leave grid operators satisfied and alleviate any of the issues 

presented during this chapter. However, investigations into the fairness and satisfaction of each strategy 

from EV owners and consumers perspective would be needed to make any further recommendations on 

approaches.  

A large part of what the findings presented in this Chapter and Chapter 5 previous, is the 

mitigation of concern that rural residents and transition to EVs should take from this. The findings 

presented in the last two chapters directly assess how consumers, rural residents, shall experience EVs 

and the over-arching takeaway will hopefully be that of less concern. As detailed in Chapter 2, literature 

exposed multiple barriers towards the adoption of EVs, as well as nuance aspects for rural communities, 

which only exacerbate these. With these nuances taken into consideration, this thesis has shown rural 

residents may own and operate EVs with confidence. EVs have been shown to be more than capable at 

carrying out the average daily travel requirements of rural residents, even considering power outages. 

However, to ensure a smooth transition, infrastructure upgrades are paramount and should not be taken 

less seriously following the findings of these last few chapters. This thesis argues that with the timeline 

predictions, this should only spur on policy makers and infrastructure operators to ensure the rural areas 

are equipped for the future. The material presented in this chapter, and the previous, offer a 
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comprehensive review and technical analyses for EV uptake in a rural area. Thus aiding in the 

understanding of the impact this transition will have for rural communities. Alongside the previous 

chapter, ‘Research Aim 3’ has now been achieved with the material in this chapter fulfilling ‘Objectives 

3b and 3c’.  

Although, an imperative part of this EV transition, as with all large-scale socio-techno 

transitions, is stakeholder engagement. When it comes to the EV transition in rural areas, this 

specifically involves the rural demographic themselves. Stakeholder engagement cannot simply justify 

assumptions and predictions from models and the theoretical approach, it also highlights any unforeseen 

issues, all of which coalesces for a smoother transition. This will be the focus of the next chapter.  
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CHAPTER 7:  UNDERSTANDING THE RURAL 

DEMOGRAPHIC AND ELECTRIC VEHICLES 

 
Thus far, the work presented in this thesis has been from a largely theoretical standpoint, i.e. 

simulations and modelling. To fulfil the objectives of this thesis as outlined in Chapter 1, a data 

collection phase was included to underscore the real-world relevance of this research. This phase also 

considers rural communities, a frequently neglected stakeholder group, in the understanding and 

development of strategies for the EV transition in these areas. This data collection stage took the form 

of a survey which was distributed to rural communities, seeking to gather information on their current 

vehicle usage, the use of EVs and associated technologies such as charge points and electricity meters, 

as well as the demographic themselves. 

This chapter will be presented in a different manner to the previous ones, due to its nature of 

incorporating primary empirical data. It will begin with an introduction to the survey itself in Section 

7.1, this will include its makeup, the decisions surrounding the choice of questions that went into it, as 

well as discussing the methodology, including the ethical approval stage and distribution methods. A 

short cross-reference to Stakeholder theory and its influence on this work will also be discussed.  Section 

7.2 will present the results of the survey for each question, with the discussion on its relation to the 

previous work within the thesis, including validations of the models previously presented and publicly 

available datasets. Section 7.3 will follow; this section will discuss the wider implications of the 

findings from the survey in relation to other similar studies which have been conducted. The chapter 

will conclude with Section 7.4.  

Material presented in this chapter has been published and presented previously at the 2023 

Logistic Research Network (LRN) conference (McKinney et al., 2023e). 

 

7.1 Development of Survey 
 

The survey was developed in Google Forms software. This was chosen, over for instance other 

survey specific software such as Qualtrics and Survey Monkey, due to its accessibility through the 

university and the requirements of this data collection stage. These requirements exclude the advanced 

statistical analysis of the responses, which survey specific software offers. Questions were designed in 

such a way to easily allow for validation of the models presented previously in this thesis, enabling easy 

comparison. Google Forms offered a user-friendly approach, from both its design and participant 

perspectives and allowed for the easy export of responses to Microsoft Excel, in which all sufficient 

data manipulation could be conducted. The additional time and resources that would have been required 

to undertake this exercise in a survey specific software was not justified by any additional statistical 



187 

 

abilities it may have provided. The contents of the survey itself, the ethical approval process it 

underwent, and its distribution will now be discussed.  

 

7.1.1 Contents 

 

This survey consisted of 18 questions, split across 5 sections related to the EV transition and 

rural areas. These sections were as follows: (1) Demographic, (2) Your Cars and Travel, (3) Electric 

Vehicles, (4) Charging and (5) Electricity Tariffs. A full copy of the survey can be found in Appendix 

D. 

The first section, ‘Demographic’, recorded information pertaining to the area of the respondent, 

as well as the number of people and their respective ages living at the household. It is important to note 

that a distinctive aspect of the survey was its design to be completed from a household perspective, 

rather than that of an individual, when capturing this data. 

The second section, ‘Your Cars and Travel’, was incorporated to discern car availability and 

usage for each household. These questions enabled direct comparisons with the results of the Travel 

Demand Model presented in Chapter 3. The aim is to validate not only the inputs used by this model, 

but also its outputs, and by extension those from the EV Charging Model (presented in Chapter 4). 

The ‘Electric Vehicles’ section was used to understand not just awareness of EVs and the 

transition to EVs within the rural community, but also ascertain their acceptance of this transition. 

Additionally, questions related to local public transport were also included to identify alternative means 

of transport and accessibility. 

The following section, ‘Charging’, provided an opportunity to investigate charge point 

allocation and capabilities for rural households in terms of parking, anticipated number of chargers 

individuals would desire, and where they envisage charging their EVs. These questions were framed to 

be answered regardless of current EV ownership status, and so instead invited participants to 

contemplate a future scenario whereby they did have an EV.  

The final section, ‘Electricity Tariff’ was included to understand associated EV technologies, 

such as EV specific electricity tariffs and meters. This section also enabled insight into their adaptability 

for change, change that could maximise EV potential and reduce running costs.  

The survey concluded with an option for participants to receive a ‘results report’ upon the 

surveys completion. This report not only included various results from the survey, but also information 

pertaining to the EV transition itself and the various technologies raised in the survey. Thus, informing 

the rural community so that they themselves may become a more prominent stakeholder. A copy of the 

results report which was emailed to participants (upon request) can be seen in Appendix G.  
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7.1.2 Ethical Approval 

 

Research ethics applies to all aspects of data collection and analysis, which only becomes more 

stringent when research involves human subjects or research participants (Bell et al., 2022). To ensure 

ethical integrity is adhered to, this body of qualitative work underwent review from the University of 

Sheffield’s ethics committee (Ethics Application ID: 044759).  

The ethical review process was also beneficial for improving the survey, in particular the 

phrasing of questions. To ensure high completion levels, questions required layman’s language, 

however this did detract from the level of detail questions could delve into. For instance, first attempts 

for understanding when vehicles are in use and for what trip purposes they complete, in order to validate 

the TDM, saw multiple questions requiring participants to complete essentially a full week travel diary 

at 30-minute intervals, as per the TDM. Through the ethical review process it became clear that in order 

for this question to be successful, and by extension the survey itself, the complexity would have to be 

reduced. This resulted in minimal questions to understand total weekly mileages undertaken by 

participants. Although the high level validation is not possible, this ensured survey completion and an 

ability to validate the low level findings from the TDM.  

With regards to integrity of the survey itself, the ethical review process also highlighted the 

need to consider data protection and personal information. Although no personal information was 

collected by this survey, protocols were still set in place for participants to be informed, through a 

participant information sheet (Appendix E) and understand how the data collected would be managed 

and utilised.  

 

7.1.3 Distribution 

 

The focus of this thesis is on rural communities and ensuring that the EV transition does not 

result in life becoming more difficult for them. Therefore, potential participants were required to meet 

a single criterion – they live in a rural area. To align with the work presented thus far in this thesis, areas 

of the Peak District again were chosen from which this data collection would take place. A flyer was 

developed to advertise the survey in this area – purposive sampling. 

Purposive sampling is a technique used in qualitative research to select a specific group of 

individuals or units for analysis. A key advantage with this technique is the quality of the resulting data 

collected. As data is collected from participants who are particularly interested in and experienced with 

the topic (i.e. living in a rural area), this results in the collection of rich, detailed and meaningful data. 

This does however mean, that since the sample is not randomly selected, the findings from purposive 

sampling cannot be statistically generalised to the broader population. Though given the focus of this 

thesis is specifically rural areas, deeper insights into this focus is preferential over broader 

generalisation, which would be to include other population areas. Additionally, this does present a 
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challenge for replicability. The purposive sampling technique also enables greater flexibility, allowing 

the collection, particularly from an areas POV, to adapt and focus on emerging patterns should they 

appear. However, with the participation criteria also subjects the data collected to bias and subjectivity. 

Attempts were made to minimise any bias through the use multiple avenues of distribution, which will 

be discussed in more detail shortly, to ensure everyone within the rural area(s) of interest, were 

contacted about the survey. This contact was done so through a flyer.  

The flyer had a QR code and website address, with which individuals who wished to participate 

would be able to access the Google Form survey. For an already harder to reach community, this may 

have incurred some limitations due to accessibility and technology. Individuals who may lack 

technological knowledge, or Internet access altogether (more likely in rural areas), may result in a lower 

response rate than in person survey conducting methods. However, the wide geographic coverage for 

the flyer distribution helped to address this limitation.  

Multiple distribution methods were employed over a period of 9 months, with the total data 

collection stage lasting 11 months. Utilising services such as Royal Mails Door-to-Door Campaign 

service, local parish councils, hand delivery and contacting local schools in the area, were used to 

distribute flyers to households in the area of interest. A full breakdown of the contacts used for this 

distribution can be found in Appendix F.  

Distribution methods were also staggered throughout the total time of data collection. This was 

as a result of periodically increasing the area of interest to capture more data. Initially, efforts were 

focused on solely the village of Bradbourne and some additional surrounding villages; the areas 

highlighted in red in figure 7.1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Initial distribution area (Area includes that highlighted in red) 

 

Bradbourne 
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For the area highlighted in Figure 7.1, distribution methods included local parish councils and 

schools as well as some hand delivery of flyers through household letterboxes. Following low uptake 

levels, the decision was made to increase this area of distribution. Based on local census output areas 

(ONS, 2023), additional parish councils and school districts were contacted. The distribution area 

increase can be seen in figure 7.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Increased flyer distribution area (new area in bold red) 

 

Hand delivery of flyers through household letter boxes proved to translate into the highest 

response rate. Therefore, Royal Mails Door-to-Door service was utilised to deliver almost 12,000 flyers, 

split between two batches, covering various postcode areas of the Peak District (see Appendix F). These 

areas are highlighted in figure 7.3. 
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Figure 7.3: Royal Mail Batches (area highlighted in blue) 

 

To note, the inclusion of the Royal Mails Door-to-Door service, in particular the post code area 

which serves Bradbourne (DE6 1) also extended far past the boundaries of the Peak District and into a 

much more populated area – the large town of Ashbourne. This led to two factors which will need to be 

considered going forward.  

Firstly, the flyer is titled “Sheffield University Research on Car Usage in Rural Areas”. 

Individuals from these now more populated areas may not feel this applies to them and so believe the 

survey is not applicable to them. Changing of the flyer however would have required resubmission of 

an ethics application and reapproval. This requires a large lead time and would have delayed data 

collection and so was deemed not beneficial.  

 Secondly, the work of this thesis and the data collection stage itself is to focus on rural areas, 

having widened the distribution area to now include a more populated area may undermine this aim. 

However, as discussed previously, the ‘Demographic’ section of the survey includes indicating the 

participants local area. This allows for the segregation of the responses into areas and having now 

included more populated area will in fact provide useful comparisons. 
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7.2 Results and Discussion of Survey 
 

Over the course of 11 months, over 12,000 flyers were distributed to households across the 

Peak District. From which 192 responses, corresponding to 192 households were received. This 

captured data pertained to over 500 individuals and 376 vehicles, the results of which will now be 

presented and discussed. Data from the survey will henceforth be referred to as ‘Data Collection’ in 

figure legends. Alongside the presentation of the results from this survey, comparisons and validations 

against the previous simulation findings presented in this thesis will be made. The timeline for responses 

can be seen in figure 7.4, including indications for when large advertising and distribution efforts 

occurred.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Timeline for Responses 

 

With data collection taking place over the span of 11 months, responses have captured data at 

multiple times throughout the year. This includes bank holidays, school holidays, months of the year, 

and by extension, weather conditions. These are all factors which will impact responses on various 

questions, such as vehicle usage, which is very different during summer compared to winter for 

example. Although attempts were made to instruct participants to provide an average estimate when 

answering questions, it is important to note there may be an underlying bias.  

As previously discussed, to ease the ethical review process, no identifiable information was 

collected as part of this data collection stage. The highest level of detail requested from participants was 

the area you lived, so as to allow for geographical analysis of results. This required participants to select 

their closest settlement from a list provided. Figure 7.5 plots the location of all 192 household responses 
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as a heat map. It is important to note, as highlighted in figure 7.5, the data collected from this survey 

included responses from the town of Ashbourne. Ashbourne is a far more heavily populated area, 

concurrent of a more urban environment which may skew the results presented from this survey.  

 

 

Figure 7.5: Heat Map 

 

7.2.1 Demographic 

 

As described in Chapter 7.1.1, the first section of the survey gathered data on the demographics. 

Figure 7.6 presents the distribution of household occupancy for each household, compared with the 

2011 UK census. Figure 7.7 then presents the age profile of respondents, again compared with the 2011 

UK Census. Both datasets that serve as inputs for the TDM presented in Chapter 3.  

 

 

Figure 7.6: Household Occupancy 
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Figure 7.7: Age of individuals captured by participants 

 

The 2011 UK Census data presented in figures 7.6 & 7.7 pertain solely to the village of 

Bradbourne, the centre of focus for the TDM. As shown, the data collected is in line with that collected 

by the Census, indicating the survey has reached a representative nature in terms of the households that 

responded for the wider area. The disparate nature of the age ranges, presented in figure 7.7, are those 

used by the UK Census. The results from this data collection were categorised into similar groups so as 

to allow for easy comparison. Given the high level of similarity for the age profile of the area, shown 

in figure 7.7, indicates that there has been little change in this communities age profile over the last 12 

years. This highlights the possibility to consider other aspects of the UK census which would still be 

applicable for use today, even though the data is 12 years old.  

When considering a comparison of the age profile makeup that was incorporated with the TDM 

developed in Chapter 3, this model utilised lifestyle scenarios which were randomly assigned to 

households with particular occupancy levels. Within these lifestyle scenarios, only three categories of 

age were specified: (1) <5yrs, (2) 5-18yrs, and (3) Adults (18yrs+). Table 7.1 presents a comparison for 

the total number of individuals within each age group for all three data sets: (1) 2011 UK Census, (2) 

Data Collection, (3) Travel Demand Model.   
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Age 2011 UK Census Data Collection Travel Demand Model 

0-4 7 8 6 

5-7 3 12 

24 

8-9 3 9 

10-14 10 30 

15 2 8 

16-17 1 9 

18-19 2 6 

87 

20-24 6 22 

25-29 3 18 

30-44 22 49 

45-59 24 125 

60-64 7 57 

65-74 18 81 

75-84 7 31 

85-89 1 4 

90+ 1 0 

 
Total 117 469 117 

 

Table 7.1: Age profile comparison 

 

Figure 7.8 considers solely the TDM and the results from the data collection combined into the 

same age categories.  

 

 

Figure 7.8: Age Category comparison between the Travel Demand Model and the Data Collection 
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7.2.2 Your Cars and Travel 

 

Across the 192 households that responded, 376 vehicles were owned. This averages out to 1.99 

vehicles per household, slightly higher than the 1.2 vehicles per household average across the UK (NTS, 

2022). This is expected due to the higher car dependency in rural areas of the UK (Newman et al., 

2014). However, it should be noted, it could be likely that those without a vehicle, i.e. 0 vehicles at the 

household, may have been likely not to complete the survey due to it being tailored to understand car 

usage in general in rural areas. This may explain the very few households which participated in the 

survey with 0 vehicles, and the discrepancy between the UK census results. The full distribution is 

shown in figure 7.9. 

 

 

Figure 7.9: Number of Vehicles per Household 

 

Of these 192 households, 33 had EVs already, corresponding to a total of 38 individual EVs 

out of the 376 vehicles captured. When considering solely households which owned an EV, the average 

number of vehicles per household increased to 2.12. This is not surprising as EV households are much 

more likely to be multi-vehicle households (DfT, 2022a). Only 7 households (3.6% of total respondent 

households) had an EV as their only vehicle. Due to the phrasing of this EV related question, there was 

no way to determine what type of EV participants had, i.e. battery, hybrid etc. This could have led to 

individuals questioning if their vehicle warranted selecting an option to indicate they owned an EV or 

not.  

With regards to vehicle usage, each household travelled an average of 214 miles per week. 

When considering only the 33 households with EVs, this increased to an average of 280 miles per week. 

Again, indicative, and likely due to the higher number of vehicles typically associated with EV 

households; more vehicles typically results in more miles driven by that household. From an individual 

vehicle perspective, each of the 376 vehicles average 110 miles per week. The 84 vehicles as part of 

the simulation conducted by the Travel Demand Model, to represent Bradbourne, average 161 miles 
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per week. This may be due to long-lasting effects from COVID-19 which reduced vehicle usage and by 

extension miles driven since the pandemic (GOV.UK, 2022c). The TDM was built upon statistics from 

the 2019 National Travel Survey, which would have captured data and behaviour pre-pandemic. 

Additionally, the lower average mileage per week could be due to participants underestimating their 

weekly driving in general. 

As highlighted by this thesis, a crucial part of assessing the feasibility of EVs in rural areas is 

understanding the impact they will have on local grid infrastructure. The TDM (Chapter 3) and 

consequent EV Charging Model (Chapter 4), sought to predict when vehicles would be in use and by 

extension when they would charge. This survey sought to validate these predictions through 

understanding when vehicles are available throughout the day. This was done via asking participants 

when their vehicles would not be at home.  

Some pre-processing stages were conducted in order to clean the gathered dataset, for instance, 

all responses with blanks or N/A were removed. Additionally, one respondent household had 0 vehicles 

and were disregarded from this analysis. This decision was made to align the comparisons with the 

previous work of this thesis which focused solely on households with vehicles. The TDM has a time 

resolution of 30 minutes, and so required some post-processing to align with the time resolution within 

these survey questions. This also required reducing the number of time slots from the TDM results.  

When undertaking this data manipulation, the highest percentage seen within the combination 

of hours was taken as the value for the whole of the duration. For example, if combining one hour 

(10:00 - 11:00) with another (11:00 - 12:00), and hour 1 reported 10% whilst hour 2 reported 20%, the 

combined time slot (10:00 - 12:00) would take a value of 20%.  

During phases of the distribution, some distribution bodies, such as potential schools and 

individuals themselves expressed discomfort with this question. Schools who declined to be a part of 

this study, which shall rename anonymous, highlighted the discomfort they envisaged some of their 

attending children’s parents would have with regards to the location and vehicle usage questions. This 

did also become evident with some private individuals who completed the survey, in particular, one 

vehicle households. One example of discomfort for someone else knowing when their vehicle would 

be at home or not was expressed, nevertheless they still did complete the survey.  

To ease these discomforts, as touched upon in Section 7.1.2, it would be impossible to 

personally identify a person/address/vehicle for two reasons; (1) this type of information was not 

collected, and (2) results were aggregated. This information was also made clear in the participant 

information sheet that was attached to the Google Form Survey and submitted as part of the ethical 

review application. However, the distrust of individuals for surveys and personal information is 

highlighted here by the continued unease to participate following this information. 

Additionally, failure to complete these questions pertaining to vehicles at home could also be 

due to very little vehicle activity, and so a vehicle belonging to a respondent may sit idle at their 

household for most of the time. This is indicated by the higher level of ‘N/A’ responses for the question 
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pertaining to the weekend days than the weekday days. Another consideration, as previously discussed 

in Section 7.1.2, is due to the low level detail of this question following ethical review, i.e. the 

simplification of the question and how it was asked to achieve higher response rates at the expense of a 

more detailed and thorough understanding/result. Vehicle travel patterns represent dynamic behaviour 

which is hard to predict. This can make reporting an average day’s travel patterns difficult, leading to 

participants failure in completing the question due to difficulty.  

The results for when vehicles are not at home for an average weekday day and an average 

weekend day are presented in figures 7.10 & 7.11, respectively. These have been combined with the 

aggregated results of the TDM, presented in Chapter 3 (Figure 3.21). Results are presented as 

percentages of the total number of vehicles reported, respective of either the 84 vehicles of the TDM or 

the 376 vehicles captured by the survey.  

 

 

Figure 7.10: Cars not at Home – Weekday (Mon-Fri) 

 

0

10

20

30

40

50

60

70

80

90

6am 7am 8am 9am 10am 12pm 3pm 4pm 5pm 6pm 8pm 10pm 12am

C
ar

s 
n
o
t 

at
 H

o
m

e 
(%

) 
-

W
ee

k
d
ay

Time of Day

Travel Demand Model Data Collection



199 

 

 

Figure 7.11: Cars not at Home – Weekend (Sat-Sun) 

 

As shown by figure 7.10, the TDM slightly overestimated the early hour intervals. In contrast, 

with regards to the weekend, the TDM has instead underestimated vehicle usage, especially during peak 

hours of the day. This may be due to the hardcoded number of trips designated to occur at weekends 

and that number is slightly lower than what real life reflects. For instance, I’ve only assigned for one 

day trip per weekend per household, i.e. family day out. When in reality more may be going on. 

However, the general profile for both weekdays and weekends has been captured accurately by the 

TDM when compared to the results from the data collection.  
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Figure 7.12: Awareness of the UK Governments push for Electric Vehicles to replace Diesel and 

Petrol cars 

 

Although awareness of the transition is very high within the rural community (Figure 7.12), 

which is no surprise given the large media coverage EVs receive, this did not translate into much 

anticipation to own an EV in the future (Figure 7.13). With valid points on either side of the EV 

transition, as discussed in Chapter 2, this survey then sought to understand firstly the perception of EVs 

by this community, and then the opportunities for EVs in rural areas (discussed in the following section, 

Section 7.2.4). With this in mind, all participants were asked on the likelihood of their next vehicle 

being an EV, the answers for which are shown in figure 7.13. 

 

 

 

 

 

 

 

 

 

 

Figure 7.13: Likelihood of next vehicle being electric 
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highly as barriers for EV adoption (Tiwari et al., 2020; Steinhilber et al., 2013; Berkeley et al., 2017); 

however it is also prudent to note that the rural population is an aging population. Even more so than 

their urban counterparts (DEFRA, 2021). For this reason, and also due to simply lacking the need for a 

new vehicle in the future, respondents may not anticipate purchasing another vehicle, regardless of its 

propulsion system. Distrust of the technology also covers distrust of its capabilities, multiple individuals 

from the survey voiced concerns regarding towing capacities and its impact on battery life, as well as 

weather and temperature conditions. Both of which can be more severe in rural areas due to lack of 

infrastructure, for example, clearing roads during heavy snowfall. This is then no surprise given 37% 

reported that it would be ‘Very Unlikely’ that their next vehicle would be an EV. Although, when it 

came to replacing current vehicles with EVs, 56% reported that they do intend to, with a further 27% 

indicating that they will attempt to get by with fewer vehicles (see figure 7.14). This may be due to 

distrust of the technology, or a conscious attempt to reduce their environmental impact through 

reduction in the number of vehicles they own. However, it is very much apparent that everyone in rural 

areas requires their own private vehicle as 96% report a lack of local public transport, concurrent with 

the report from Better Transport (2018). This is in keeping with UK statistics which show much higher 

levels of household car ownership (Better Transport, 2018) and number of drivers licenses (Newman et 

al., 2014) in rural areas. 

 

 

Figure 7.14: Intentions to replace current vehicles with EVs 
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7.2.4 Charging 

 

With the understanding of the perception towards EVs in the rural community, this next section 

of the survey sought to unearth the opportunities for EVs in this environment. A large benefit for 

integrating EVs in rural areas is the larger space available, particularly when it comes to home charging 

(Newman et al., 2014). To confirm, respondents were asked what parking facilities were available at 

their homes, the results can be seen in figure 7.15 below.  

 

Figure 7.15: Parking facilities at home 

 

As shown by figure 7.15, very few households have on-road parking, or private car parks away 

from their homes. These types of parking may prove difficult for EV ownership due to the inability to 

install a home charge point. Private parking solutions on the other hand, such as a garage or driveway 

are much more common in rural areas and are ideal for EV charging (Newman et al., 2014). When 

asked if individuals saw themselves charging EVs at home, 67% of respondents said that they likely 

would. This is in keeping with statistics published in previous literature, Hardman et al. (2018) showed 

that 50-80% of all charging events occur at home. The complete data collected on charging their 

potential future EVs at home is shown in figure 7.16 below.  
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It should be noted that 30 households (15.6% of households/participants) failed to complete the 

above question (figure 7.16). This is likely due to their anticipation of never owning an EV in the future 

and thus this question did not relate to them, as well as including households who anticipate never 

switching to EVs. However, as shown by figure 7.13, the number of households anticipating not 

switching to EVs was significantly higher than 30.  

The survey then proceeded to ask how many charge points respondents envisaged having. 

Typical UK households would be limited to two home charge points, assuming both are 7 kW, due to 

the 100A fused incomer. This raises concerns for if a household with a large number of vehicles expects 

to install multiple chargers. Figure 7.17 shows the number of home chargers respondents envisaged 

installing (orange), with the number of vehicles owned by each household for comparison (blue).  The 

data presented here is for solely the households who expect to replace all their vehicles with EVs in the 

future, reported in the previous section (see figure 7.14).  

 

 

Figure 7.17: Number of home charge points (orange), number of vehicles owned (blue) 
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the number of vehicles they own. There is some indication of lack of knowledge with regards to home 

charge points with 11% responding with “I’m not sure”, but more importantly this question was used 

to uncover the individual consumer expectations. Only one household, out of the 192 which responded, 
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per vehicle. Further discussion of this point and its implications for future work will be discussed in the 

following chapter, Chapter 8. 

To investigate public charging opinions, the survey asked which public areas would be likely 

EV charging locations participants would utilise. The results of this question are shown below in figure 

7.18. 
 

 

Figure 7.18: Public areas likely to charge at 
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Electricity Meter Number of Responses (%) 

Smart 38 

Standard 28 

Variable-rate (Economy 7 or Economy 10) 19 

Digital 10 

Dial 2 

Prepayment 2 

Other 1 

 

Table 7.2: Responses for what type of electricity meter households have installed 

 

EV tailored electricity tariffs are a new product offer by many electricity companies, which 

follow, more often than not, a similar pricing structure to economy electricity tariffs. They provide 

cheaper electricity rates during the early hours to encourage EV charging to occur during these times 

of lower electricity demand. When asked about the awareness of these tariffs 64% of respondents were 

unaware of their existence. The full results can be seen below in figure 7.19.  

 

 

 

Figure 7.19: Awareness of EV tailored household electricity tariffs 
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7.3 Further Discussion of Survey Results 
 

This survey presents a novel consideration to solely rural areas for surveying, to not just gather 

information relating to perceptions and attitudes towards EVs, as Graham-Rowe et al. (2012) focuses 

on, but also quantifiable information to aid the technical investigation of the EV transition in rural areas.  

To further compare the results of this data collection with the models presented in this thesis 

previously, figure 7.20 combines the household occupancy and the number of vehicles, to compare 

directly with that of the NTS, first presented in figure 3.26 of Section 3.4.2. 

 

Figure 7.20: Comparison of household occupancies against number of vehicles available 
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Vehicles, who found that most private EV owners are currently middle-aged, male, well educated, 

affluent individuals (OLEV, 2015). However, conclusions on gender, education cannot be drawn as 

these factors were not asked during the survey. Though, given these findings by the OLEV (2015) are 

8 years old at the time or writing, and present day data collection suggests no change, efforts should be 

made to improve uptake of EVs for the wider community. Data gathered by from the latest UK Census, 

2021, suggests more than half of motorists aged 16-49 years say they are likely to switch to all-electric 

vehicles within the next decade (ONS, 2021). This is also indicated by the results from this data 

collection. As shown by figure 7.13, 52.1% of participating households indicated between 1 and 3, with 

1 being very likely, and 5 being very unlikely, that they’re next vehicle would be electric.  

  

7.4 Chapter Summary 
 

This chapter presented a survey conducted across households in the Peak District, UK. This 

was done to provide real-life applicability, validation and further context to the work presented in this 

thesis previously. Over a period of 11 months, over 12,000 flyers were distributed amongst rural areas 

advertising and inviting households to complete the survey. A total of 192 households responded, 

capturing data from over 500 people and 376 vehicles.  

Rural communities are aware of the EV transition, however much reluctance towards its 

implementation has been identified. Although responses have indicated their openness to new 

technology/change in general, this reluctance for EVs is warranted. This only further highlights the need 

for engagement of this crucial stakeholder to ensure a positive transition for all. Much of the 

assumptions and pre-existing knowledge, illustrated by past literature, has been reinforced with similar 

results found. In addition, evidence of EV uptake has been found with multiple households reporting 

that they already own such vehicles, and although awareness of EVs in general is high, it appears there 

is a lack of awareness for associated technologies, e.g. charge points, EV specific electricity tariffs etc. 

This may be inadvertently aiding the barriers to EV adoption.  

Multiple validations of the Travel Demand Model (see Chapter 3) were presented, including 

comparisons between statistics from the 2011 UK Census. Statistics from this Census acted as inputs 

for many of the previous models discussed in this thesis, and so heavily influence the validity of their 

results. The material presented in this chapter fulfilled ‘Objectives 4a and 4b’, and by extension 

achieved ‘Research Aim 4’. 

The survey also provided insights into aspects of the EV Charging Model, presented in Chapter 

4. Highlighting limitations, such as the number of chargers per household, whilst also highlighting the 

rural nuances in favour for the EV transition. Nuances such as available space and particular favoured 

charging locations, identifying multiple opportunities for EVs in rural areas. 

With the findings from this survey, not only have multiple aspects of the work presented in this 

thesis been validated, providing integrity for the previous chapters findings and conclusions, but also 
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potential improvements and considerations have been identified. Further discussion on these points will 

be the focus of the next chapter, the final chapter of this thesis.  
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CHAPTER 8:  CONCLUSIONS AND FUTURE WORK 

 
This thesis has presented the development of multiple novel models required to better 

understand the impact of EVs in rural areas. This has been supplemented further by the collection of 

real world data, enabling a comprehensive investigation into the feasibility of the EV transition for rural 

communities. This chapter will conclude the thesis, presenting summaries and final discussions for each 

chapter presented prior to. These discussions will also include the limitations which should sought to 

be overcome by future work, as well as other potential improvements and bodies of work which would 

complement this thesis.  

Chapter 1 highlighted the justification for the work presented in this thesis; due to the ongoing 

climate change threat, the UK Government are implementing plans and strategies to reduce greenhouse 

gas emissions, especially carbon dioxide. The most viable option, currently available, is to electrify the 

current passenger vehicle transport mode. However, one aspect of the transition thus far neglected, is 

how this transition will be realised in rural areas.  

 Chapter 2 provided a comprehensive literature review covering topics such as the ongoing 

transition of electric vehicles replacing ICE vehicles, along with the factors facilitating and hindering 

this process. It also offered an in-depth examination of the rural environment, underscoring the existing 

gaps not only in academic research but also in political and industry perspectives. Chapter 2 also 

identified the methodology for which was utilised in this thesis for understanding the impact electric 

vehicles have, vis-à-vis their energy and power requirements, the simulation pathway. This highlighted 

the requirement for a travel demand model, to simulate the driving habits of vehicles, coupled with 

charging scenarios. The activity based travel demand model was identified through this literature review 

process to be most applicable for achieving the research aims set out. Additional topics such as EV 

charging in general, the electrical grid, with focuses on two key areas that were explored in depth in 

Chapter 6 (power outages and demand side management), and social theory, in particular examples of 

previous engagement of stakeholders and consumers in the EV transition, were also reviewed and 

presented. The literature review presented in Chapter 2 accomplished both ‘Objectives 1a and 1b’, and 

by extension satisfied ‘Research Aim 1’ as the review identified multiple important developments 

within the topic areas this thesis is situated. This not only provided an extensive background to the topic 

but highlighted shortcomings of previous examples in literature, shortcomings and gaps of 

consideration that this thesis has addressed. These key gaps, as well as important factors that were 

utilised in the development of the various models presented in this thesis, were extracted and listed in 

Section 2.9.1 as a summation for going into Chapter 3. 

Chapter 3 presented the development of an activity based travel demand model for the small 

rural village of Bradbourne, located in the Peak District, UK. With a novel approach utilising readily 

available statistics for the rural area of Bradbourne, the TDM was developed with solely rural factors 
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and inputs, previously not seen in other activity based TDMs. Utilising lifestyle scenarios also enabled 

the novel incorporation of rural demographics and their variance within the community. This TDM was 

shown to be capable of producing high fidelity results, including the ‘location’ and ‘miles driven that 

day’ every 30 minutes for each car over the course of a week (Mon – Sun). However, due to the dynamic 

nature of human behaviour and by extension vehicle usage, assumptions and simplifications were 

required. The limitations for the TDM will now be discussed. 

Limitations within the TDM include the initial method for distributing vehicles to each 

household. This was done so following the ‘the larger the household, the higher the number of vehicles 

that will be available’ premise. In reality this may not be the case, although there is correlation between 

the number of people in a house and the number of vehicles a house has, car ownership levels for a 

household are determined more so by the travel necessities of the household. In addition, only 5 trip 

purposes were used, derived from the 14 categorised by the NTS (see section 3.3.2). This was done as 

a simplification step to reduce computational intensity of the model with effort to maintain and 

incorporate the most utilised and wide covering trip purposes. Adding additional trip purposes would 

have increased the variability of the model to reflect real-life situations more so. This is compounded 

by the blanket figure of 30 minutes utilised for all trip durations, and the single value utilised for the 

various trip purposes. To improve the models accuracy and real-life applicability, these factors would 

also vary. However, even with this in mind, the work presented in Chapter 3 achieves ‘Objective 2a’, 

for partial fulfilment of ‘Research Aim 2’. 

Continuing the simulation pathway, Chapter 4 built upon the results from the travel demand 

model of chapter 3 through simulating multiple charging scenarios. Assuming the vehicles of 

Bradbourne all to be electric, their energy requirements were first calculated. Then scenarios with 

varying parameters (including charging behaviour and electricity tariffs, influential factors highlighted 

by the literature review) for the recharging events were simulated. Additionally, key factors highlighted 

by the literature review were built into the EV charging model, for example, the simulations 

initialisation stage which involved the ‘Day 0’ approach. Through repeating the results from the TDM, 

a simulation period of 4 weeks for the EV charging model was achieved. With many previous studies 

into charging demands for EVs only lasting a day or two, the novel EV Charging Model presented in 

this thesis enables the monitoring of EV impact over a much longer duration.  

There are several improvements which could be made to the EV Charging model, most notably 

overcoming the limitations of one charge point per vehicle. As highlighted during Chapter 4, this is a 

large overestimation for the number of private charge points which would ever be installed. Due to 

limiting factors in infrastructure, a household would only allow one of two charge points installed. 

Investigating how fewer charge points would impact the transition could bring about notable differences 

to the results presented in this thesis.  

The EV Charging model also lacks consideration into the effect a non-homogenous EV fleet. 

To reflect reality more so, multiple brands and models of EV would be present in a community, each 
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with varying energy consumption rates. These energy consumption rates would also vary not just 

between vehicles, but also continuously along a journey depending on factors such as driving style, 

weather, and temperature. Although, as discussed in Chapter 4, this design of the EV Charging Model 

and parameter setting does actually reflect solely a consumption rate, not the Nissan Leaf specifically. 

I.e. the fleet of EVs simulated could all be different makes and models but each with an average 

consumption rate of 26.5 kWh/100mile. This key aspect of the EV Charging Model increases its utility 

and applicability drastically. Although, to build upon this further, it would be beneficial to modify the 

model to account for multiple consumption rates, so a true non-homogenous EV fleet could be simulated 

which would be a truer reflection of real life. 

In addition, this model solely focused on 7 kW chargers, whereas a more accurate avenue of 

investigation would have simulated a wide range of different power levels for charge points. 

Furthermore, as stated during the model parameters of the EV Charging Model (Section 4.1.1), both the 

charger and EV batteries simulated have been assumed to operate at 100% efficiency. To further 

increase the accuracy of this model, consideration of efficiencies and their variation over time should 

be included.  

Finally, it would be beneficial to understand the impact when varying the SOC limits for 

discharging and recharging (i.e. the 20% and 80% SOC limits that were in place for various scenarios). 

As previously discussed, human behaviour is dynamic in nature which should also be reflected in 

discharge/recharge cycles. Incorporating this into the EV charging model would improve accuracy. 

Chapter 4, along with Chapter 3, achieve ‘Objectives 2a and 2b’ and complete ‘Research Aim 2’; to 

examine the energy and power requirements of EVs in rural areas. This novel EV Charging Model 

presented in this thesis addressed the main gap identified within previous examples, which was the 

duration for which the previous models would simulate. Focusing on obtaining a longer period of time 

for the simulation, only further improves the applicability of the results presented in this thesis when 

compared to others. This duration factor will prove vital to a wide range of parties, including grid 

planners, EV manufacturers and consumers for multiple reasons. Namely to remove uncertainty when 

it comes to the EV transition and what impact it will have from a grid perspective to a usability of 

consumers POV. 

Chapter 5 presented the multiple sets of results from the EV Charging Model combined with 

real-world data from a substation local to Bradbourne. It was shown that the impact of EVs on rural 

grid infrastructure is largely determined by the local communities recharging schedule and behaviour. 

These two factors presented themselves through the electricity tariff and charging behaviour variables. 

The combination of the results from the EV Charging Model and the pre-existing grid load required 

scaling of the results. A simplified method for this scaling step was chosen to meet time and resource 

constraints of the thesis. However, the scalability of the models which have been developed and 

presented in this thesis should be noted: given the required inputs for the TDM (number of houses, 
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occupancy etc…), these models have the possibility to capture and simulate any sized population. 

Although, computational requirements would increase and become the hindering factor.  

Chapter 5 also conducted further investigation into the worst performing EV charging scenario 

from Chapter 4, assessing its impact individually, which revealed large causes for concern. Grid 

operators are currently pushing EV tailored electricity tariffs which follow pricing structures similar to 

Economy tariffs. These tariffs encourage individuals to charge in the early hours of the day during the 

grids pre-existing demands natural trough. For the small number of EVs currently in circulation, 

findings showed this does not pose any threat. However, this thesis has shown should larger market 

penetrations of EVs occur in the future, this behaviour becomes unstable. A significant number of 

voltage violations throughout the year were witnessed in this examination. Chapter 5 also presented a 

simple timeline model that was developed to forecast when this high number of EV charge points is 

likely to be reached. The work presented in Chapter 5 achieved ‘Objective 3a’ of ‘Research Aim 3’.  

In an effort to expand the focus of this thesis and understand the wider picture for electric 

vehicles in rural areas, Chapter 6 examined the impact of both unplanned and planned power outages, 

as well as demand side management techniques to alleviate the added pressures on grid infrastructure 

due to the EV transition. Unplanned power outages for durations ranging from 12 to 48hrs and planned 

power outages following the protocols laid out in the ESEC were simulated following the development 

of additional novel models. Regarding demand side management, three strategies were investigated, 

including two that have not been found in past literature (First come, first serve and lowest battery 

charge has priority). Chapter 6 demonstrates that the existing electrical grid offers considerable 

flexibility without requiring significant investment. Additionally, building on the key findings from the 

literature review (Section 2.9.1), which highlighted specific considerations for rural communities during 

the transition to EVs, the findings in this thesis indicate that rural residents can confidently own and 

operate EVs. It has been established that EVs in rural areas are fully capable of meeting the daily travel 

needs of their inhabitants, even in the face of challenges such as power outages. By adopting EVs, rural 

communities may reduce their reliance on traditional power grids, potentially shifting local power 

dynamics towards more communities-centred energy management practices. The work presented in this 

chapter achieved ‘Objective 3b & 3c’ and by extension with Chapter 5, ‘Research Aim 3’ has been 

fulfilled. 

In Chapter 7, the development and results of an online survey, distributed to households within 

the Peak District, was presented. This chapter provided a social approach to enrich the technical findings 

previous. Engaging the rural community in relation to the EV transition, not only gave this previously 

neglected stakeholder a voice for their concerns, but also identify and highlight any other nuances not 

found during the literature review presented in Chapter 2. In addition, the results from this survey were 

utilised to validate the findings from the TDM and the EV charging model. The models presented in 

this thesis were shown to have been accurate compared to the real-world data collected via this survey. 

Conducting this survey and the results obtained from such fulfilled ‘Objectives 4a and 4b’, achieving 



213 

 

‘Research Aim 4’. By incorporating stakeholder and consumer engagement findings into this EV 

transition analysis, the thesis broadens its considerations to explore wider concepts such as how these 

communities reliance on external energy resources shape their transition to EVs. Examining how these 

communities can alter their resource dependencies can enhance local energy autonomy and reduce 

environmental impact.  

Upon reflection, the survey conducted as part of the work presented in this thesis did lack some 

considerations. For instance, as highlighted in Section 7.2.2, one question regarding the respondents 

vehicles lacked the ability to differentiate the types of EVs reported. This may have led to inaccuracies 

with regards to the true number of EVs, in particular BEVs, in rural areas. The over-arching themes of 

the survey itself were also very high level in nature, which presented a slight disconnect in the attempts 

for validating the aforementioned models. As previously discussed, this decision was made to offset the 

potential drop-off rate of responses should more detailed questions be asked, however, in order to 

thoroughly validate the models presented in this thesis, a deeper level of questioning would be required. 

In addition, as discussed in section 7.2.3, the responses from this survey included the nearby 

town of Ashbourne. This area is classed as an urban area, especially in comparison to the areas of 

interested presented throughout this thesis and so will have some impact on the results presented. Work 

should be conducted to remove these urbanised results so as to understand any impact or bias these 

results are inflicting.   

As discussed, all objectives set out in Chapter 1 have been fulfilled, and so, by extension, the 

research aims of the thesis have been achieved. Broadly speaking, this thesis provides a thorough 

understanding of the EV transition in rural areas of the UK. However, there are multiple opportunities 

to build upon the work presented in this thesis further. Suggested future work on this topic will now be 

discussed.  

 

 

8.1 Future Work 
 

As well as addressing the limitations highlighted previously, there are also other bodies of work 

which if conducted would provide beneficial findings to further support the transition to EVs in rural 

areas. One such body of work would be to incorporate vehicle-to-grid (V2G) technology.  

V2G offers multiple opportunities building upon two key areas investigated within this thesis. 

Firstly, building upon the DSM, presented in Chapter 6, V2G would allow vehicles to reduce the pre-

existing voltage spikes and demand on the grid already, including those created by a large influx of EVs 

on the grid. This could instil more flexibility and stability into the system, a huge benefit for rural 

infrastructure. Secondly, as highlighted in the literature review, V2G technology could also alleviate 

the pressures created by power outages. With V2G technology, EVs could provide power to the 

household during grid power outages. Vehicles would be unable to move during this transfer process 
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however, rendering the vehicles useless for transport purposes. Although it is highly likely, for the 

periods that they are parked at home when the power is out, consumers would choose to use some of 

their vehicles to power their homes basic necessities. Investigation into how this would impact the 

vehicles SOC profile over time, and by extension its impact on the vehicles usability travel wise would 

be useful insights from consumer perspectives.  

 Additionally, research into public charging should be considered. The maintenance of an EVs 

battery SOC will be a result of both private, at home, and public charging. The latter of which has not 

been considered by this thesis. Research into public charging for rural areas should also include 

optimising locations for installations, which may yield different results to those conducted in urban 

areas if rural community nuances are incorporated. In addition, a business case for public charge point 

installation should be investigated. As highlighted by this thesis, the transition is largely industry led, 

which is determined by good business cases. Work to not only understand the business case for rural 

areas but identify potential opportunities to improve the business case would aid the transition of EVs 

in these areas. Public charge points would not only impact the findings from this thesis, but also the 

finances of owning and operating an EV in rural areas, which in turn will impact uptake for rural 

consumers.  

 Building upon this, work into the impact of including solar panels and an Energy Storage 

System would be beneficial as these technologies are proving to be more and more popular with 

consumers and so a likely future scenario. This in turn would also impact any emission or financial 

analysis conducted. With this in mind, future work should also seek to analyse the impact on emissions 

generated by this transition for the work conducted in this thesis. Understanding the fundamental change 

to emissions is imperative for validating the transitions necessity in the first place. Thus, validating the 

effort which is currently being placed in pushing this transition. From a consumer perspective to couple 

with the emission analysis, a financial analysis would also contribute to the facilitation of EVs in rural 

areas. This would be especially important considering the findings regarding the DSM strategies and 

power outages and understanding the financial impact of choosing when to charge your vehicle would, 

as previous literature has suggested, largely influence this behaviour.  

 

8.2 Final Thoughts 
 

 The work presented in this thesis offers key insights into the EV transition for rural areas. Under 

current legislations, EVs are an inevitability for everyone in the UK. For rural areas whereby private 

vehicles are a necessity, it is imperative work, like that conducted in this thesis, is continued, to ensure 

these areas are not left behind. This transition requires a multi-faceted approach that considers the 

unique characteristics and needs of rural communities. To conclude this thesis, the findings presented 
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expose multiple recommendations for implementing rural EV infrastructure which have been presented 

below in Table 8.1 below. 

 

Recommendations Details 

 

Existing Infrastructure 

 

Determine the state of existing infrastructure and timelines – 

understanding how long current infrastructure will last during this 

transition is imperative to understanding the level of need for a 

rural location. This extends into improving and on-going 

monitoring at locations to understand the usage profiles and 

changing demand profiles that have been shown in the results 

presented in this thesis due to the EV transition 

 

Leveraging Existing 

Infrastructure 

Explore the opportunities for mitigating the increase in demand 

(power and energy) that EVs pose for local infrastructure, as 

highlighted by the work presented on Demand Side Management 

 

Education and Awareness Implement education and outreach programs to raise awareness 

about the benefits of EVs. Including trials to test EVs and impart 

knowledge on how this new transport system operates 

(requirements and understanding for installing home charge points 

etc.). This can then be extended further down the line to awareness 

and instructions on using and operating local public charging 

infrastructure 

 

Offer training programs for local technicians on the installation and 

maintenance of EV charging stations to build local expertise 

 

Pilot Projects Launch pilot projects for rural residents to be able to easily test 

drive EVs and interact with EV charging solutions in rural settings 

(fast chargers, solar-powered chargers etc.) 

 

Incentives Implemented targeted incentives for developing EV infrastructure 

in rural areas, such as tax credits, low-interest loans, and grants. 

Additionally, partner with local businesses and community 

gatekeepers (parish councils etc.) to install charging stations. 

 

Stakeholder Engagement Engage with a range of stakeholders, including local governments, 

utility companies, EV manufacturers, and most importantly rural 

residents. This will ensure the infrastructure meets rural community 

needs and preferences 

 

Table 8.1: Future Recommendations for the EV transition in rural areas 

 

 In summary, this thesis bridges significant gaps in our understanding of rural EV adoption, 

providing robust empirical data, innovative methodologies and a solid theoretical framework. These 

themes, by extension, touch upon resource dependency theory; by examining the potential shifts in 

resource dependencies through strategic EV adoption, the thesis not only contributes to academic theory 

but also provides a blueprint for enhancing local energy autonomy and reducing environmental impacts. 
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This is complemented by an exploration of social dynamics, where stakeholder and consumer 

engagements are integrated into the analysis, thereby providing a holistic view of the transition process 

and its implications for rural communities. These contributions are pivotal not only for academics 

circles but also for informing policy and practical implementations, paving the way for more sustainable 

and inclusive transportation solutions in rural areas. Henceforth, may the findings and insights derived 

from this thesis inspire further exploration and meaningful action. 
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APPENDICES 

Appendix A - NTS Summary Table NTS0403 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Commuting 144.4485 132.913515 1276.80724 1271.372896 8.839184 30.125167

Business 29.550397 27.543372 566.974062 566.163911 19.186669 40.990979

Education 66.124574 44.753795 212.820724 203.181811 3.218481 21.069655

Escort education 59.902447 37.293656 128.293703 118.591074 2.141709 13.329609

Shopping 187.794619 145.188888 743.518694 726.831756 3.959211 17.012627

Other escort 88.967577 79.419648 457.711772 453.594068 5.1447 17.474692

Personal business 92.137063 74.90495 449.869708 443.306012 4.882612 19.005025

Visiting friends at private home 84.084301 71.750063 893.015128 888.006351 10.620472 26.867765

Visiting friends elsewhere 52.605975 41.147063 317.949668 312.938492 6.043982 21.872258

Entertainment / public activity 59.816468 52.7418 430.664199 427.480479 7.199757 23.048694

Sport: participate 14.155749 13.089903 95.806989 95.340023 6.76804 20.377694

Holiday: base 11.971709 10.585306 520.989762 520.45246 43.518274 77.018415

Day trip 32.676972 32.676972 378.269235 378.269235 11.576015 31.694572

Other including just walk 62.02491 23.419776 57.405827 39.208863 0.925528 21.313999

All purposes 986.261261 787.428707 6530.096711 6444.737431 6.621059351 22.92679369

Unweighted sample size:

   individuals 14150 14150 14150 14150 14150 14150

   trips ('000s) 256.262 202.712 256.262 202.712 256.262 256.262

Purpose

Trips Per Person Per Year 

(Including short walks)

Trips Per Person Per Year 

(Excluding short walks)

Miles Per Person Per Year 

(including Short Walks)

Miles Per Person Per Year 

(Excluding Short Walks)

Average Trip Length 

(Miles)

Average Trip Duration 

(minutes)



244 

 

Appendix B – Vehicle and Household Compositions 
Vehicle and household composition statistics for census output areas served by the primary 
substation 890067. 
 

Village (Area) 
Census 
Output Area 

Household Data Vehicle Data 

No. of 
Occupants 

No. of 
Households 

No. of Vehicles 
No. of 
Households 

Bradbourne E00099163 

1 Person 15 No Cars 4 

2 People 14 1 Car 17 

3 People 13 2 Car 18 

4 People 3 3 Car 9 

5 People 2 4 Car 1 

6 People 1    

7 People 1    

8 People 0    

TOTAL 49 TOTAL 84 

Parwich 

E00099209 

1 Person 37 No Cars 0 

2 People 64 1 Car 53 

3 People 18 2 Car 58 

4 People 25 3 Car 22 

5 People 7 4 Car 10 

6 People 1    

7 People 0    

8 People 0    

TOTAL 152 TOTAL 275 

E00099210 

1 Person 14 No Cars 6 

2 People 17 1 Car 18 

3 People 6 2 Car 16 

4 People 5 3 Car 5 

5 People 4 4 Car 2 

6 People 1    

7 People 0    

8 People 0    

TOTAL 47 TOTAL 73 

Ballidon (& 
Aldwark) 

E00099162 

1 Person 21 No Cars 2 

2 People 22 1 Car 19 

3 People 8 2 Car 25 

4 People 11 3 Car 9 

5 People 7 4 Car 6 

6 People 2    

7 People 0    

8 People 0    

TOTAL 71 TOTAL 120 
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Brassington 

E00099164 

1 Person 32 No Cars 9 

2 People 53 1 Car 46 

3 People 16 2 Car 46 

4 People 21 3 Car 17 

5 People 6 4 Car 11 

6 People 0    

7 People 1    

8 People 0    

TOTAL 129 TOTAL 233 

E00099165 

1 Person 27 No Cars 9 

2 People 43 1 Car 49 

3 People 15 2 Car 39 

4 People 19 3 Car 12 

5 People 4 4 Car 1 

6 People 2    

7 People 0    

8 People 0    

TOTAL 110 TOTAL 167 

Tissington 
(and Lea Hall) 

E00099212 

1 Person 17 No Cars 6 

2 People 25 1 Car 18 

3 People 9 2 Car 28 

4 People 11 3 Car 8 

5 People 3 4 Car 6 

6 People 1    

7 People 0    

8 People 0    

TOTAL 66 TOTAL 122 

Newton 
Grange 

E00099205 

1 Person 7 No Cars 1 

2 People 13 1 Car 16 

3 People 7 2 Car 16 

4 People 12 3 Car 7 

5 People 8 4 Car 9 

6 People 1    

7 People 1    

8 People 0    

TOTAL 49 TOTAL 105 

Carsington E00099166 

1 Person 23 No Cars 2 

2 People 49 1 Car 31 

3 People 17 2 Car 59 

4 People 14 3 Car 8 

5 People 3 4 Car 7 

6 People 1    

7 People 0    

8 People 0    

TOTAL 107 TOTAL 201 
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Appendix C – ESEC Disconnection Levels 
Government Planned Blackouts schedule 
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Appendix D – Copy of Survey 
 
Copy of Survey 
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Appendix E – Participant Information Sheet 

Participant Information Sheet 

Research Project Title 

Facilitating the Uptake of Electric Vehicles in Rural Communities 

 
Invitation Paragraph 

You are being invited to take part in a research project. Before you decide whether or not to 

participate, it is important for you to understand why the research is being done and what it will 

involve. Please take time to read the following information carefully and discuss it with others if you 

wish. If there is anything that is not clear or if you would like more information, please contact us via 

any of the emails below. Take time to decide whether or not you wish to take part and thank you for 

reading this. 

 
What is the project’s purpose? 

You might have already noticed the increased push for electric vehicles in recent years, with many 

major car manufacturers bringing out electric versions of their cars, government incentives and new 

legislation phasing out petrol and diesel vehicles. Electric vehicle charge points have also already 

started appearing at public car parks, supermarkets, and places of work but the majority of investment 

and research so far has been based on urban areas. This project aims to facilitate the electric vehicle 

transition for the more rural areas, and this survey hopes to collect real-world data to help achieve 

this. Through collecting information on travel patterns, car usage requirements, electricity tariffs and 

charging behaviours we hope to understand what effect electric vehicles will have in rural areas and as 

a result help aid a smooth transition to electric vehicles for your community. 

 
Why have I been chosen? 

You have been chosen for the simple reason that you currently live in a rural area of the UK. More 

specifically, this research project has been focused on the Peak District. So as to align with this, 

Parish/Town Councillors of the Peak District area were contacted to inform them of the project and 

bring them onboard so that they may distribute this survey to their respective communities, of which 

you are a part of.  

 
Do I have to take part? 

It is up to you to decide whether or not to take part. If you do decide to take part, you will be given 

this information sheet to keep (and be asked to provide consent at the start of the survey) and you can 

still withdraw at any time without any negative consequences. You do not have to give a reason. If 

you wish to withdraw from the research, please contact us using any of the emails provided at the end 

of this document. If you wish to withdraw mid-way through the survey, all you have to do is exit the 

browser, no information is saved or processed until you submit your responses on the very last page of 

the survey. Please not that by choosing to participate in this research, this will not create a legally 

binding agreement, nor is it intended to create an employment relationship between you and the 

University of Sheffield. 
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What will happen to me if I take part? What do I have to do? 

Taking part in this research project involves two surveys. A link to the first has been emailed to you 

from your Parish/Town Councillor. In this first survey, you will be asked questions regarding the 

current cars you own, your travelling habits electricity tariffs, as well as potential electric cars that 

might interest you and charging behaviour. Once you have completed and submitted the first survey, 

these answers will be used to model how electric vehicles would fair compared to your current cars, 

as well as providing insights into the possible financial impact of the transition. These results will be 

emailed back to you, so that you may review them yourselves. This second email will also include a 

link to a second survey which will ask similar questions again,  to look at possible attitude and answer 

changes from you, having now learnt the results from the first survey.  

 
What are the possible disadvantages and risks of taking part? 

No identifiable information is collected, apart from your email address, name, and the local area 

where you live. There are questions which relate to when your car is in use and not in use, but this is 

of no concern as no information relating to your address is collected. The results report may be cause 

for concern if, for some reason, an electric vehicle is found to not be practical for your driving habits, 

but there is absolutely no rush to switch as of yet. Electric vehicle technology and infrastructure is 

constantly improving, so will only become less of a concern as time goes on, but all of this will be 

fully explained during the survey and results report. 

 
What are the possible benefits of taking part? 

You may or may not be aware of the electric vehicle transition, but by taking part in this research, you 

will be sure to afterwards as the surveys contain a lot of information regarding new legislations, 

timelines, electric vehicle specific electricity tariffs and more. Furthermore, for those wondering if 

electric vehicles will have a long enough range for their driving needs, or are worried about the costs 

associated with them, the results that will be emailed back to you after the completion of the first 

survey will help provide insight into these questions and more.  

 
Will my taking part in this project be kept confidential? 

All the information that we collect about you during the course of the research will be kept strictly 

confidential and will only be accessible to members of the research team. You will not be able to be 

identified in any reports of publications, if you agree to us sharing the information you provide with 

other researchers (e.g. by making it available in a data archive) then your personal details will not be 

included unless you explicitly request this.  

 
What is the legal basis for processing my personal data? 

According to data protection legislation, we are required to inform you that the legal basis we are 

applying in order to process your personal data is that ‘processing is necessary for the performance of 

a task carried out in the public interest’ (Article 6(1)(e)). Further information can be found in the 

University’s Privacy Notice https://www.sheffield.ac.uk/govern/data-protection/privacy/general 

 
 
 
 
 

https://www.sheffield.ac.uk/govern/data-protection/privacy/general
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What will happen to the data collected, and the results of the research project? 

As well as the response above to the question ‘What will happen to me if I take part? What do I have 

to do?’ which talked about the results report you will be emailed with following the completion of the 

first survey, once the data collection has finished and the surveys taken off-line following a few 

months being available for participants, the data will be collated and used to develop some more 

general findings, rather than the personalised, individual nature of the results reports. These results are 

likely to be published in an academic journal and within the thesis submission for the PhD that is this 

research project. No personal information of any kind will be published.  

An anonymised version of the data will be stored on the University of Sheffield Server following the 

completion of the project. There is no planned future use for the data and should it be deemed no 

required following completion of the project, will be deleted entirely. However, due to the nature of 

this research it is likely that other researchers may find the data collected to be useful in answering 

their research questions, in which case, only the anonymised versions will be available for their use, 

which can in no way be traced back to you.  

 
Who is organising and funding the research? 

The University of Sheffield 

 
Who is the Data Controller? 

No Personal data is collected in this research project. The University of Sheffield will act as the data 

controlled for the data that will be collected, which means that the University is responsible for 

looking after your information and using it properly. 

 
Who has ethically reviewed the project? 

This project has been ethically approved via the University of Sheffield’s Ethics Review Procedure, as 

administered by the Sheffield Management School Department.  

 
What if something goes wrong and I wish to complain about the research or report a concern or 

incident? 

If you are dissatisfied with any aspect of the research and wish to make a complaint or report a 

concern of incident, please contact any of the individuals listed at the end of this document.  

 
Contact for further information 

Thomas McKinney (PhD Research Student) – trmckinney1@sheffield.ac.uk 

Dr. Erica Ballantyne - e.e.ballantyne@sheffield.ac.uk 

Prof. David Stone - d.a.stone@sheffield.ac.uk 

 

 

 

 

mailto:Trmckinney1@sheffield.ac.uk
mailto:e.e.ballantyne@sheffield.ac.uk
mailto:d.a.stone@sheffield.ac.uk
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Appendix F – Contacts for Survey Distribution 
Contacts for Survey Distribution 

Parish Councils 

Wetton 

Hartington 

Brassington  

Tissington & Lea Hall  

Tissington and Lea Hall  

Ballidon and Bradbourne  

Kniveton  

Carsington & Hopton  

Hartington (Nether & Town) 

Elton  

Alstonefield  

Ible Parish Council 

Parwich  

Eaton & Alsop & Newton Grange 

 

 

 

Schools 

Parwich Primary 

Brassington Primary 

Carsington and Hopton Church Primary 

Tissington Kindergarden 

Hartington Primary 

 

 

 

Hand Delivery 

Bradbourne 

Brassington 

Parwich 

 

 

 

Royal Mail Door-to-Door Service (Postcode Areas) 

DE6 1 

SK17 0 

DE4 2 
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Appendix G – Survey Results Report 
Results Report 
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