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Abstract

Understanding the effects of defects on the properties of transition metal oxides is of great
importance to the chemical, biological and sustainability industries. Nickel oxide is one
such material that is widely used in various forms, and continues to be studied; most notably
with vacancies and dopants both being introduced into the material through experiment. The
electronic properties of bulk NiO have been calculated using the RSCAN and PBE XC-
functionals, with particular focus on spectral and optical properties.

Additionally, 108-atom supercells have been constructed, with intrinsic and extrinsic defects
being placed in the supercell. The copper-doped supercell has been studied for various copper
atom positions and concentrations. The doping site type altered the electronic properties in
different ways, with clear n-type behaviour being exhibited by substitution on oxygen sites and
interstitial doping. This increased n-type behaviour and narrowing of the band gap suggests that
careful engineering of the chemical environment to favour forming these defects will produce a
material with higher conductivity and charge transfer rates, which is essential for photocathode
applications.

By varying the distance between dopant Cu atoms, it was found that it is energetically
favourable for the Cu atoms to be closer together than further apart, with an energy difference
of approximately 70 meV. Additionally, the preferential alignment of multiple Cu atom dopants
was found to be along the same [111] plane.

An exploratory study into the different stable compounds containing Ni, Cu and O has been
carried out, with a 2D ternary convex hull being plotted to investigate these compounds’ stability.
There is only one predicted stable compound containing all three species, the rhombohedral
structure Ni9CuO10.



Declaration

I declare that all content within this thesis is original work and that I am the sole author. This
work has not been submitted to this university or any other in the past for the award of a
degree or other qualification. All sources used within this piece of work are acknowledged
as references. Additionally, I can confirm that this thesis follows all submission guidelines,
including the minimum 10,000 word count.

Galen David Crumpton
December 2023



Acknowledgements

I would like to acknowledge my supervisors Dr. Vlado Lazarov and Dr. Phil Hasnip for their
crucial help and support throughout my degree. I would also like to acknowledge the help of
my colleagues in the school of physics, engineering and technology and the nanocentre, Julio
Nascimento, Scott Donaldson, Dr. Robert Lawrence, and Dr. Peter Byrne for helping me get
setup with CASTEP. I also give acknowledgement to the teams that run the Viking, Young, and
ARCHER2 computing clusters, without which this study would not have been possible. Finally
I’d like to thank my family for the love and support they have given me throughout my degree.
Especially my grandparents, mum, dad and sister. I dedicate this work to you all.



Table of contents

List of figures viii

List of tables x

1 Introduction 1
1.1 Transition Metal Oxide Applications . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Current TMO Applications . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Nickel Oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivations for Computational Modelling . . . . . . . . . . . . . . . . . . . 3

2 Density Functional Theory 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Time-Independent Schrödinger Equation . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Born-Oppenheimer Approximation . . . . . . . . . . . . . . . . . . 4
2.3 The Hohenburg-Kohn Theorems . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 The Kohn-Sham Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Exchange-Correlation Functionals . . . . . . . . . . . . . . . . . . . . . . . 7

2.5.1 Local Density Approximation (LDA) and Generalised Gradient Ap-
proximation (GGA) Functionals . . . . . . . . . . . . . . . . . . . . 7

2.5.2 Meta-Generalised Gradient Approximation (mGGA) . . . . . . . . . 7
2.6 Calculating the Hubbard U . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6.1 The Necessity of the Hubbard U . . . . . . . . . . . . . . . . . . . . 8
2.6.2 The Linear Response Method . . . . . . . . . . . . . . . . . . . . . 8

2.7 Bloch’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.8 Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.9 Limitations of DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.10 Using CASTEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12



Table of contents vi

2.10.2 Convergence Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.10.3 Geometry Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.10.4 Density of States (DOS) . . . . . . . . . . . . . . . . . . . . . . . . 13
2.10.5 Electron Energy Loss Spectroscopy (EELS) . . . . . . . . . . . . . . 13
2.10.6 Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Bulk NiO Calculations 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Computational Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 The Rhombohedral Primitive Cell . . . . . . . . . . . . . . . . . . . 15
3.2.2 NiO 3×3×3 Supercell . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Convergence Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.4 Hubbard U Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.5 Spectral Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.6 Core-Loss EELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Convergence Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Hubbard U Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Primitive Cell Spectral Calculations . . . . . . . . . . . . . . . . . . 25
3.3.4 Supercell Core-Loss EELS . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 NiO Defect Calculations 30
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Types of Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Computational Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1 Vacancy Cell Creation . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2 Cu-doping Cell Creation . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.3 Spectral Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.4 Optical Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.5 Electron Microscopy Simulations . . . . . . . . . . . . . . . . . . . 34

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.1 VNi and VO Defect Formation Energies . . . . . . . . . . . . . . . . . 35
4.4.2 Spectral Calculations with Vacancies . . . . . . . . . . . . . . . . . 36
4.4.3 1 Cu Atom Defect Formation Energies . . . . . . . . . . . . . . . . . 38
4.4.4 1 Cu Atom Spectral Calculations . . . . . . . . . . . . . . . . . . . . 39
4.4.5 2 Cu Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



Table of contents vii

4.4.6 10% Doped Supercells . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Convex Hull Calculations 48
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Computational Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 2D Convex Hull for Ni-Cu-O . . . . . . . . . . . . . . . . . . . . . 49
5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 2D Ni-Cu-O Random Structure Searching . . . . . . . . . . . . . . . 50
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Conclusion 52
6.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1.1 Bulk NiO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.2 NiO Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Future Avenues of Research . . . . . . . . . . . . . . . . . . . . . . . . . . 54

References 56

Appendix A Miscellaneous Figures 59

Appendix B Computational Microscopy Using abTEM 63
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.2 The Mulitslice Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.3 Computational Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 64
B.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.4.1 6% Cu-doped NiO TEM . . . . . . . . . . . . . . . . . . . . . . . . 65
B.4.2 6% Cu-doped NiO STEM . . . . . . . . . . . . . . . . . . . . . . . 66

B.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



List of figures

1.1 NiO FCC unit cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Ni atom many-body wavefunctions and pseudowavefunctions . . . . . . . . . 11

3.1 NiO rhombohedral primitive cell . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 108 atom NiO supercell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Ni rough convergence test . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Brillouin zone and k-path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 NiO RSCAN energy convergence with log scale . . . . . . . . . . . . . . . . 21
3.6 NiO RSCAN grid scale and tolerance convergence with log scale . . . . . . . 22
3.7 NiO and CuO k-points convergence . . . . . . . . . . . . . . . . . . . . . . 23
3.8 Hubbard U testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.9 NiO rhombohedral unit cell band structure comparison . . . . . . . . . . . . 25
3.10 NiO rhombohedral unit cell band structure and DOS comparing RSCAN and

PBE+U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.11 NiO supercell core-loss EELS . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Ni vacancy in the centre of the cell along the spin down [111] plane of Ni (silver) 31
4.2 Interstitial Cu atom (blue) amongst the spin up and down [111] planes of Ni

(silver) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 2 Cu atom nearest neighbours . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Both neutral vacancy defect formation energies in the oxygen limit . . . . . . 35
4.5 NiO VNi DOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 NiO VO DOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.7 Defect formation energies of Cu atom in NiO in the oxygen limit . . . . . . . 38
4.8 NiO CuNi DOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.9 DOS comparison of all Cu atom defect types . . . . . . . . . . . . . . . . . 40
4.10 NiO Cui DOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.11 2 Cu atom doped NiO PDOS . . . . . . . . . . . . . . . . . . . . . . . . . . 43



List of figures ix

4.12 6 Cu atom NiO supercell PDOS . . . . . . . . . . . . . . . . . . . . . . . . 44
4.13 Bulk NiO vs Cu-doped NiO optics . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 1D Convex hull example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 NiCuO ternary convex hull . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Ni9CuO10 predicted stable structure . . . . . . . . . . . . . . . . . . . . . . 51

A.1 Force convergence for cut-off energy values . . . . . . . . . . . . . . . . . . 59
A.2 Force convergence for k-point grid values . . . . . . . . . . . . . . . . . . . 60
A.3 Tolerance convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.4 2 Cu atom doped NiO DOS, with comparison between small and large separa-

tion distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.5 VO flat band DOS composition . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.6 Coulomb repulsion energy test . . . . . . . . . . . . . . . . . . . . . . . . . 62

B.1 6% Cu-doped NiO TEM image of the 110 surface . . . . . . . . . . . . . . . 65
B.2 6% Cu-doped NiO STEM image of the 110 surface . . . . . . . . . . . . . . 66



List of tables

3.1 NiO DFT and experiment properties comparison . . . . . . . . . . . . . . . 26
3.2 NiO DFT and experiment L2,3 edge comparison . . . . . . . . . . . . . . . 28

4.1 Two copper atom final energies at different separation distances . . . . . . . . 42



Chapter 1

Introduction

1.1 Transition Metal Oxide Applications

1.1.1 Current TMO Applications

Transition metal oxides (TMOs) have started to see widespread use after decades of research
into their properties. They have found use as nanoparticles of different geometries, nanotubes
and thin films in the pharmaceutical, energy production and catalysis industries. More recently,
there has been an interest in the doping of TMOs to alter their bulk properties. For example,
doping manganese or cobalt into zinc oxide nanoparticles to alter the photocatalytic abilities
for use in the destruction of organic waste [1].

A current area of intense research is that of using TMOs in the fight against climate
change. A vast number of TMO structures are being actively studied to investigate their uses as
rechargeable battery cathodes, such as LiCoO2 and LiFePO4 [2][3]. Alongside energy storage,
TMOs are also being used in solar and wind technologies. There is always the possibility of
finding new TMO structures that are lower cost or more efficient than the current generation,
and thus both experiment and theory are coming together to continue this search.

1.1.2 Nickel Oxide

Nickel oxide, (NiO) is a TMO which has been closely studied for use in the previously
mentioned industries. Nickel itself has an electron configuration of [Ar]3d84s2, with the
partially filled 3d orbital leading to an overall magnetic spin moment.

NiO is also known to be a Fm-3m space group face-centred cubic (FCC) crystal Mott
insulator and a type-II anti-ferromagnetic material with a high Néel temperature of 524K [4][5].
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These useful magnetic properties, natural abundance and low cost have lead to the particular
interest in its use in the spintronics field of study [6].

In order to alter the properties of NiO, much like that of other TMO nanoparticles, the
material can be doped with another metal. There has been extensive work doping NiO with
the group one alkali metals such as lithium and potassium [7][8]. Group one metals have
been found to improve the p-type conductivity and thus hole transport capabilities for their use
with perovskite materials. The main drawbacks of using group one metals in this way is their
expense, environmental impact from being mined and also their chemical instability.

As an alternative to group one metal dopants, there has also been a lot of research investi-
gating the TM doping of nickel oxide. Copper for example is particularly suitable due to its
electronic similarity to nickel. Furthermore, copper is a non-magnetic element and incorporat-
ing it into NiO has been shown to affect the magnetic properties of NiO nanoparticles, changing
them from anti-ferromagnetic systems to weakly ferromagnetic at room temperature [9]. The
doping concentration also has a large impact on the properties of the material. Incorporating
copper atoms into the structure in the place of nickel is expected to push the material to being
either more of a p-type or n-type donor depending on the system [10]. This is of particular
importance in the use of Cu-doped NiO as a hole layer for perovskite materials, as doping is
critical for hole transportation layers in solar cells [11].

Fig. 1.1 The FCC unit cell of NiO, with nickel atoms in silver and oxygen atoms in red.
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1.2 Motivations for Computational Modelling

In the last few decades, computer simulations of materials have improved considerably, along-
side the efficiency and power of computer hardware. Capitalising on this increase in power,
quantum scale simulations have been getting more and more advanced, with the ab initio method
of density functional theory (DFT) seeing an increase in its effectiveness and widespread use in
almost every field of science that requires atomistic or molecular modelling.

The ability to model a material computationally and perform virtual experiments upon it
is integral to understanding results produced from experiments. New materials that have not
yet been synthesised can be analysed through first principle methods, eventually leading to the
synthesis and testing of brand new materials with interesting properties. Indeed, DFT has been
instrumental as an exploratory technique in finding effective new dopants for NiO to improve
its properties [12].



Chapter 2

Density Functional Theory

2.1 Introduction

In order to investigate the electronic properties of new or theoretical materials, many of which
cannot be investigated in a lab, a computational method to simulate these materials is necessary.
The discovery of quantum mechanics enabled scientists to accurately probe the properties of
materials at microscopic levels, such as solving the wavefunction for a hydrogen atom [13]. All
equations within this chapter use Hartree atomic units, with ℏ= 1, e = 1, me = 1, and 1

4πε0
= 1.

2.2 Time-Independent Schrödinger Equation

The time-independent Schrödinger equation (TISE) is one of the most important formulations
in quantum theory, being able to solve all of the energy states of chemical systems, such as
a single hydrogen atom. As powerful as this equation is however, it is unfeasible to be used
for systems that contain multiple electrons and larger nuclei. The more complex interactions
between multiple electrons and multiple nuclei need to be taken into account, leading to a
dramatic increase in the computational expense of solving the wavefunction. The general form
of the TISE is given by Ĥψ = Eψ [14]. The Hamiltonian, Ĥ in this case encapsulates all
nuclei-nuclei, electron-nuclei and electron-electron interaction energies.

2.2.1 Born-Oppenheimer Approximation

One of the key issues with the many-body problem is that describing the wavefunction of an
atom involves the consideration of the wavefunctions of both the electrons and the nucleus. To
simplify this problem, it was proposed by Born and Oppenheimer in 1927 to separate out the
energetics of the nucleus and that of the electrons and treat them as separate problems to solve
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[15]. This is possible due to the velocity of nuclei being much lower than that of the electrons
as nuclei are much heavier than the electron. It has been observed that in the frame of reference
of nuclei, any electrons will instantaneously respond to any changes in distance between it and
the nuclei. This assumption allows for the kinetic energy term in the many-body Hamiltonian
for the nucleus to be ignored. After considering the Born-Oppenheimer approximation, the
ground state energy equation of the system becomes

[
−1

2 ∑
i=1

∇
2
i +Tn +Vn−n +∑

i=1
V (ri)+

1
2 ∑

i ̸= j

1
|ri − rj|

]
ψ = Eψ (2.1)

with the first term describing the electron kinetic energy, the second and third terms the nuclear
kinetic energy and nuclei-nuclei interaction potential energy respectively, which are both
constants due to the Born-Oppenheimer approximation, the fourth term being the electron-
nuclei interaction potential energy, and the final term the electron-electron interaction potential
energy [16].

2.3 The Hohenburg-Kohn Theorems

The work by Hohenburg and Kohn in 1964, the Hohenburg-Kohn theorems, form the foundation
upon which the principles of DFT have been built [17].

Hohenburg-Kohn Theorem I

The first theorem states that the external potential that the system of ground state particles
are in, V (r), is used to determine the ground-state particle density, ρ(r). The fact that the
electron density is able to give the ground state energy of the system leads to a reduction in the
dimensions involved in the many-body problem, with a 3D system of N electrons, each with
3N coordinates in space being reduced to just 3 coordinates. The key to this implementation is
the use of functionals of the electron density.

Ê [ρ (r)] = F̂ [ρ (r)]+
∫

V (r)ρ (r) ·dr (2.2)

Hohenburg-Kohn Theorem II

The second theorem states that a universal functional for the energy, E[n] can be defined in
terms of the particle density, ρ(r). This functional is said to be valid for any local potential,
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V (r). The exact ground state energy of the system is the global minimum value of the functional.
Additionally, the particle density, ρ(r) that minimizes this functional is the ground-state particle
density, ρ0(r).

2.4 The Kohn-Sham Equations

The Kohn-Sham approach outlined by Kohn and Sham in 1965 builds upon the approach of
the Hohenburg-Kohn theorems [18]. Instead of seeing the system as a many-body particle
problem, the Kohn-Sham approach defines an auxiliary system based on an independent particle
problem. The auxiliary system in question contains all of the information for tackling the
problem, including the nuclear potentials, Coulomb interactions, and kinetic energies. The
complex interactions between electrons are incorporated into a new functional, ÊXC[ρ (r)].

The ground-state energy, Ê [ρ (r)] in the Kohn-Sham formulation is defined as

Ê [ρ (r)] = T̂ [ρ (r)]+V (r)+VH (r)+VXC (r) (2.3)

with T̂ [ρ (r)] being the kinetic energy of a non-interacting gas, and V (r) being the external
potential [19].

The Hartree potential, VH and the exchange-correlation potential, VXC is defined as

VH(r) =
∫

ρ(r′)
|r− r′|

d3r′ (2.4)

VXC(r) =
δ ÊXC[ρ (r)]

δρ(r)
(2.5)

This new universal exchange-correlation functional can theoretically be used to determine
the exact ground-state properties of any material. However, in practice this functional is used in
approximate forms, usually with great success. In fact, the search for better forms of ÊXC[ρ (r)]
is still a very much active area of research to this day.
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2.5 Exchange-Correlation Functionals

The key element of DFT is the fact that the exact exchange-correlation functional is unknown.
Thus, there are numerous different exchange-correlation functionals available for use in different
materials, depending on the level of theory required for the properties being calculated.

2.5.1 Local Density Approximation (LDA) and Generalised Gradient
Approximation (GGA) Functionals

The original, simplest XC-functional, the Local Density Approximation (LDA) was theorised
in 1965 by Kohn and Sham. LDA treats the atom as a homogeneous electron gas, which was
reported to calculate electronic properties of certain materials, such as silicon, remarkably well
[20]. However, for the vast majority of materials LDA is not sufficient for rigorous calculations.
It has often been found that LDA overbinds the atoms, leading to inaccurate bond-lengths. A
major advantage however of LDA is that it is the fastest XC-functional to use for computation
time.

As there are many materials for which LDA is not sufficient, a new type of XC-functional
was needed; Generalised Gradient Approximation functionals (GGAs) are the next step up in
complexity. One of the most established of these being the PBE, formulated by Perdew et al
[21]. GGAs not only consider the charge density, but also its gradient. This correction can
help prevent over-binding of atoms, but has been shown to under-bind slightly in some cases
instead.

2.5.2 Meta-Generalised Gradient Approximation (mGGA)

Meta-Generalised Gradient Approximation (mGGAs) push the concepts invoked in the GGAs
one step further. These XC-functionals take into account the orbital kinetic energy density
alongside the electron density and its gradients.

SCAN

One of the most prominent mGGA functionals is the Strongly Constrained and Appropriately
Normed (SCAN) functional developed by J. Sun et al [22]. SCAN is widely accepted to
produce agreeable results in the case of semiconductors and metal oxides. The key difference
with SCAN functionals is the use of the isorbital indicator function, calculated with α = τ−τw

τU
,

which aids in the detection of local bond types, namely metallic, covalent, and weak.
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RSCAN

The regularised SCAN functional (RSCAN) was later developed, which fixed a major issue
with SCAN, namely that derivatives of α with respect to electron density show divergent
behaviour with rapidly decreasing electron densities [23]. It was proposed that there should
be an additional regularising function, α ′ = α3

α2+αr
, where αr = 1×10−3 and is a regularising

constant. This version of the isorbital indicator function differs from the original at small
values.

2.6 Calculating the Hubbard U

2.6.1 The Necessity of the Hubbard U

The Hubbard U value is often needed to correct the energy levels that the electrons can occupy.
For large band gap metal oxides such as NiO, LDA and GGA based XC-functionals on their
own are unable to correctly calculate that metal oxides generally have large band gaps, with
NiO having an estimated experimental band gap of 3.6-4.0 eV [24][25]. This wide range arises
from the variation in purity of lab-grown NiO crystals, with defects and surface morphology
contributing to the variation of the experimental band gap measurement [26]. This discrepancy
is known to cause inaccuracies in calculated electronic properties as a result, with insulators
and semiconductors often being miscalculated to be metallic. In order to correctly show
computationally that there is a band gap in materials such as these, a factor known as the
Hubbard U is often used alongside the DFT calculation, known as DFT+U [27]. The cause
of this issue is from the self-interaction error, which is also often referred to as the electron
delocalisation error [28]. The Hubbard U value attempts to resolve this issue by increasing the
localisation of these troublesome states. The Hubbard-like interaction is introduced to only
these specified orbitals, with the rest of the DFT calculation being left unaffected. Most DFT
codes by default apply both the U and J parameters, allowing the application of an effective
Hubbard U value given by Ue f f =U − J [29].

2.6.2 The Linear Response Method

As many materials have already had the U computed, it’s relatively easy to find a sensible range
of U values for a given material and system. While this method can give good enough results,
there exists a few other methods to correctly find the U value for the system being modelled
without resorting to fitting the result to experiment.The use of these improved methods thus
saves time and computational expense from having to run many calculations with varying U
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values. Additionally, there is the added advantage of obtaining accurate U values for the system
of atoms for which the U is applied to in your system that reproduces the known properties.

One of the more rigorous methods to calculate the Hubbard U parameter is by performing
a linear response calculation. It was decided to use the plane-wave code Quantum Espresso
(QE) to perform this calculation [30]. This approach unfortunately has the downside of the
calculated U parameter technically not being transferable to CASTEP due to the fact that QE
uses a different pseudopotential format. This being the case however, using the QE-calculated
Hubbard U parameter in CASTEP, should it give a realistic band gap, is still more rigorous
than just fitting U to experimental data. The linear response method implemented by QE is
based upon the works of Cococcioni and Gironcoli

U =
∂αKS

I
∂qI

− ∂αI

∂qI
= χ

−1
0 −χ

−1 (2.6)

with αI being the alpha value, qI the Hubbard occupancy, χ0 being the full linear response
function and χ being the linear response function to the perturbation in the system due to the
applied Hubbard α [31].

2.7 Bloch’s Theorem

An idea integral to plane-wave DFT codes, including CASTEP, is that of periodic cells. By
assuming periodic boundary conditions of a unit cell, one can calculate electronic properties of
bulk materials. Bloch’s theorem states that for a periodic potential, the electron density is also
periodic [32]. This allows for the creation of wavefunctions that are also periodic, like thus

φk = eik·ruk (r) (2.7)

where eik·r is a plane-wave, and uk (r) is also periodic in space, with the same periodicity as
the cell. Satisfying this theorem allows for each k-point, a grid of which is used to sample
the Brillouin zone, to be solved independently, which is one of the keys to speeding up
computational calculations. The fact that uk is periodic in 3D space means that it can be written
as a Fourier series

uk (r) = ∑
G

cGkeiG·r (2.8)
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Ecut = |G|2 (2.9)

where for equation 2.8 cGK are the complex Fourier coefficients, and G is a reciprocal lattice
vector. The eiG·r is also known as a plane-wave, and is a key component in determining the
cut-off energy of DFT calculations, which will be explored in detail in the convergence testing
section of this thesis. The equation 2.9 shows the relationship between the cut-off energy i.e.
the maximum plane-wave energy allowed, and G.

The KKR Green’s Function Method

There exists many alternatives to plane-wave DFT methods which use different basis sets
or investigate other quantities such as the Green’s function as opposed to the Bloch wave
function. One such method is the multiple-scattering theory based Korringa–Kohn–Rostoker
(KKR) method [33]. This method differs from plane-wave DFT by dividing the system into
non-overlapping spheres to represent the potential surrounding each atom instead of using
pseudopotentials and plane waves in the interstitial regions. Additionally, the coherent potential
approximation (CPA) can be used alongside the KKR method for alloys, which implements an
approximation to the full Green’s function utilising an ensemble average of the alloyed atoms
[34]. Both plane-wave and Green’s function methods have been shown to have comparable
accuracy in computing the band structure of semiconductors, and thus the plane-wave method
has only been considered for this study.

2.8 Pseudopotentials

As detailed by Bloch’s theorem, the computed wavefunction can be described by a sum of
plane-waves. The wavefunctions of electrons close to the core of the atom tends to oscillate
more due to the ionic potential. The fact that this creates potentially many nodes and anti-nodes
means that a vast number of plane-waves are needed to accurately model these oscillations,
often reaching energies in the order of hundreds of keV’s. This would make the computational
cost of calculations unviable.

To solve this, plane-wave DFT codes use pseudopotentials to encapsulate the main proper-
ties of the wavefunction. As it is the valence electrons that mostly contribute to the chemical
properties of a material, the approximation can be made to largely ignore the tightly-bound
core states.
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Fig. 2.1 The nickel s, p, and d radial Kohn-Sham orbitals are shown by the dashed line, and the
pseudowavefunctions are shown with a solid line. The f local plot describes the computed local
potential.

The many-body wavefunctions and pseudopotentials for nickel clearly show the oscilla-
tion of the wavefunction in both the s and p orbitals, and how the pseudopotential largely
ignores these oscillations. The fact that the pseudopotentials contain fewer nodes means that
considerably fewer plane-waves are required to capture the required shape.

2.9 Limitations of DFT

As powerful as DFT is as a tool, there are numerous limitations with DFT. Generally, DFT
calculations assume a non-physical system temperature of 0K. Indeed, it is very difficult to
capture temperature information of materials in DFT due to one of the foundational approxima-
tions, the Born-Oppenheimer approximation. It is impossible to describe temperature without
assuming motion of atomic nuclei.

Another key problem when performing calculations that require electronic excitation is that
time dependence must be brought back into calculations. To this end, there is the relatively new
field of time-dependent DFT (TDDFT). TDDFT is considerably more expensive than regular
DFT, and currently has poor support for metallic systems on most DFT codes.
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Furthermore, care must be taken when investigating charged defects within supercells. By
introducing a charged defect into a supercell, the periodicity of the system means that each
charged defect will interact with its neighbouring cells in every dimension. Therefore, any
supercells that are long and thin are generally unsuited to these kinds of calculations from
Coulomb repulsion forces having a strong effect along one or two axes.

2.10 Using CASTEP

2.10.1 Introduction

CASTEP is an ab initio DFT calculation software package [35]. The main purpose of all DFT
software is to solve the Kohn-Sham equations previously discussed and calculate the ground
state energy at 0K. CASTEP is also able to calculate spectral properties such as band structures
and the density of states (DOS) for example. Thermo-electric properties can also be calculated
by carrying out phonon calculations.

2.10.2 Convergence Testing

It’s important to ensure that any values of interest obtained from a DFT calculation are
sufficiently converged under a certain self-consistent field (SCF) tolerance. This is performed
by varying one parameter and keeping the other parameters fixed, and then changing the
parameter under investigation and repeating until a suitable range of values of what is being
converged has been tested for each parameter.

In this study the main values of interest are the ground state energy and the internal
forces. The main parameters which are varied include those responsible for the plane-wave
basis, namely the cut-off energy, the Monkhorst-Pack grid value and the fine grid. The plane-
wave cut-off and the k-point grid values are orthogonal to each other and so can be varied
independently while the other value is fixed. However the fine grid depends on the cut-off
energy and so the fine grid needs to be tested once a well-converged cut-off energy is known.

2.10.3 Geometry Optimisation

Before any data can be collected on material, it is paramount that the cell is ‘relaxed’. In other
words, the ground state energy of the system must be minimised alongside the ionic positions
being optimised for the structure in order for the calculations to represent reality. CASTEP
has functionality like all DFT codes to relax the cell using a variety of algorithms for doing so.
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The default method and the most widely used one is the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) algorithm. This method is a low-memory variant of the original
sophisticated BFGS algorithm, and is comparable in terms of performance for most systems.

2.10.4 Density of States (DOS)

The electronic density of states (DOS) is frequently used in the study of the electronic structure
of a material. DOS can give information about the chemical bonding and the number of energy
states available per unit cell for certain energies. Most DFT codes, including CASTEP, allow
for spin-polarised calculations and thus spin-polarised DOS can be calculated for magnetic
materials such as NiO. Additionally, the DOS and band structure can show the differences
between insulators, semiconductors and metals from the calculation of theFermi level, EF ,
conduction band minimum (CBM), and valence band maximum (VBM). The projected DOS
(PDOS) can also be calculated by CASTEP, showing the orbitals responsible for the various
energy states.

The DOS is simply calculated by integrating the calculated electron density in reciprocal
space, which is possible due to the plane-wave nature of the electron density in plane-wave
DFT.

CASTEP comes bundled with the post-processing tool OptaDOS which can separate and
plot the total DOS (TDOS) and PDOS[36]. Additionally, OptaDOS has the capability to
calculate a more accurate Fermi energy by applying adaptive broadening to the CASTEP
generated value.

2.10.5 Electron Energy Loss Spectroscopy (EELS)

A key experimental technique for studying the electronic structure of materials aside from the
DOS is electron energy loss spectroscopy (EELS). Data for this is often collected via a detector
attached to an electron microscope.

CASTEP is able to calculate both low-loss spectra and core-loss, with the latter requiring
some modification to the .cell file to specify which ion and orbital is to have the electron
removed. Unfortunately, without the use of the more advanced technique of time-dependent
DFT (TDDFT), certain core edges are not sufficiently accurate when compared with experiment.
The main edge investigated in this study is the nickel L2,3 edge for NiO.
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2.10.6 Optics

Alongside spectral calculations, CASTEP has functionality to compute optical properties of
a material. The incident photon energy over a wide range is used, giving insight into how a
material interacts with low energy photons such as infra-red, through to visible and all the way
up to typical ultra-violet (UV) energies.



Chapter 3

Bulk NiO Calculations

3.1 Introduction

To understand the basic electronic properties of bulk NiO, calculations must be performed on
the primitive cell. Additionally, before any calculation is carried out, the best basis set must
be determined through convergence testing. This chapter details the convergence testing of
NiO and CuO, and finally details the theoretical spectral properties of bulk NiO. Furthermore,
details of the method used to calculate the optimal Hubbard U value for nickel is elaborated
upon, alongside a comparison of the spectral results using PBE+U vs RSCAN. All calculations
were carried out on the Viking, Young, and ARCHER2 computer clusters.

3.2 Computational Methodology

3.2.1 The Rhombohedral Primitive Cell

The convergence testing was carried out on the smallest unit cell that included the type-II
antiferromagetic (AFM) nature of NiO. Antiferromagnets are defined as having a zero net
magnetic moment which arises due to symmetry. Type-II AFM structures have atoms arranged
such that each [111] plane throughout the crystal, the atoms are all spin up or spin down [37].
In order to achieve this desired structure, a rhombohedral unit cell of NiO was constructed from
the FCC unit cell obtained from MaterialsProject.org, with the Ni atom at the origin being set
to spin up, and the other Ni atom set to spin down [38].

The lattice parameter for the rhombohedral cell was obtained by the equation arhom =

a f cc

√
3
2 . The angle of the unit cell was determined by generating 2×2×2 supercell of the FCC

structure and using trivial trigonometry to find the unit cell angle. Rhombohedral systems
have a crystal lattice defined by: a = b = c and θ1 = θ2 = θ3. For NiO, a lattice parameter
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of a = 5.16 Å and θ = 33.6◦ was used. For CuO, the lattice parameter was worked out to be
a = 5.18 Å, with θ being the same as for NiO.

Fig. 3.1 The rhombohedral primitive cell used to perform initial spectral calculations. There
are 2 Ni and 2 O atoms, with nickel atoms being shown in silver and oxygen atoms in red. The
spin up states are shown in red and spin down shown in blue.

The calculated spins on the Ni atoms were initialised in the .cell file as +/-2µB. The expected
local magnetic spin moment of individual Ni atoms is expected to be approximately 1.9µB

[39][40]. To obtain as accurate a spin as possible with DFT, it’s necessary to set the spin to be
higher than the experimental value due to the fact that the correct spin moment is more easily
found when the larger initial value is overestimated.

3.2.2 NiO 3×3×3 Supercell

In order to investigate the effects of defects, a much larger supercell was also required. The
4 atom rhombohedral cell was repeated in all three dimensions, three times to create the
3×3×3 NiO supercell. This supercell has much more clear spin up and spin down [111] plane
arrangements. The bonds have been hidden in figure 3.2 to make the atomic/spin arrangement
more clear. This supercell consists of 108 atoms in total, 54 Ni and 54 O. The lattice parameter
is three times that of the unit cell, 15.5 Å with the cell angles being the same. This is the base
supercell into which Cu atoms and vacancies were introduced.
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Fig. 3.2 The 108 atom NiO supercell, with added spin states to demonstrate the type-II AFM
nature. Spin up states are represented in red and spin down in blue.

3.2.3 Convergence Testing

Before testing was carried out on the NiO and CuO primitive cells, a rough cut-off energy
convergence graph was obtained from running a test geometry optimisation calculation and
turning on output printing mode from the pseudopotential declaration string in the .cell file.
The reasoning behind this step is to figure out a decent range of cut-off energies to test, starting
from a minimum value that gives good enough results. A minimum of 500 eV for convergence
testing was ascertained from the plot shown in figure 3.3.

Once the NiO and CuO primitive cells were constructed, the optimal basis set could be
found. The convergence testing was carried out using the Python-based convergence testing
script bundled with CASTEP, called ‘castepconv’. It was decided that a cut-off energy range
of 500-2000 eV would be sufficient to investigate the cut-off convergence. Castepconv also
allows for the convergence of the k-points grid to be tested. A range of 4×4×4 to 20×20×20
was decided to be a large enough range for this.

Separate to cut-off and k-points convergence, the grid scale and fine grid scale parameters
were also tested. These parameters are especially important when using ultra-soft pseudopo-
tentials like in this study as ultra-soft pseudopotentials often require larger grid and fine grid
scales than the default values of 1.75 and 1.0 respectively. This was tested by repeating the
convergence tests with different grid scales and fine grid scales and comparing them all. Finally,
an important part of this study is the comparison of the regular GGA results to that of mG-
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Fig. 3.3 The rough cut-off energy convergence test for nickel.

GAs. This means that all convergence tests must be carried out using both PBE and RSCAN
XC-functionals.

3.2.4 Hubbard U Calculation

Often for DFT+U calculations, a well-tested literature value for U is used. The issue with this
is that U strongly depends on the system it’s being applied to, so U is not transferable to every
system it is used in.

The best value of U was calculated in this project using the rigorous linear response method.
The DFT program QuantumEspresso (QE) was used to compute these values as it contains the
linear response calculation script, ‘hp.x’, implemented by I. Timrov et al [41].

The unfortunate downside of using QE over CASTEP is that both programs use slightly
different PBE pseudopotentials for nickel and oxygen. This means that the U value calculated
in QE is technically not transferable to CASTEP. This aside, the assumption was made that
the computed value of U using the QE PBE pseudopotentials will be close enough to the
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CASTEP PBE pseudopotentials. Furthermore, so long as the U value produces a band gap that
is comparable to experiment then the U value is still adequate for the calculations.

In order to test the linear response calculated U, the U value was varied between 1.0-10 eV
in 0.5 eV steps. The electronic band gap and broadened Fermi energy from the DOS is then
calculated using OptaDOS. The linear response U results are then plotted on this curve.

3.2.5 Spectral Calculations

Once the crystal has been relaxed, the optimised structure would then be used to calculate the
band structure and density of states of the primitive cell. The shape of the Brillouin zone (BZ)
shown in figure 3.4 is FCC-based due to the fact that the rhombohedral primitive cell is derived
from the FCC supercell. The BZ k-path is the sampling path taken between the points of high
symmetry, and is used to display band structures. The BZ diagram was produced using the
SeeK-Path website, which in turn generates the BZ model with the aid of the crystal symmetry
software library, Spglib [42][43].

Fig. 3.4 The BZ and k-path for the primitive cell.

The suggested BZ path from SeeK-path was added to the .cell file for the band structure
calculation. The same basis set as the DOS calculations was used, with the addition of the
‘bs_kpoint_path_spacing’ keyword in the .cell file to control the number of calculated points
on the band structure. The value of the k-point path spacing chosen for all band structure
calculations was 0.05.
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The band structure output files were data-scraped using the Python-based Sumo DFT
plotting module [44]. By visualising the band structure, the electron energy states for GGA,
GGA+U and mGGA calculations can all be compared. Furthermore, the band structure can be
plotted alongside the density of states to discover which orbitals contribute the most to each
band.

For the density of states, both the total DOS and projected DOS (PDOS) were calculated
using the ‘spectral_task: dos’ keyword in the .param file. The output files were passed through
OptaDOS to re-calculate Fermi energy with applied smearing, which leads to more accurate
results. Additionally, OptaDOS can apply adaptive smearing to raw DOS data, which results in
smoother, more realistic DOS data, but with more retained features of the curve unlike using
the standard Gaussian smearing. All DOS calculations analysed in this manner used a smearing
width of 1.0. All DOS calculations use a denser spectral k-points grid than the main k-points
grid to properly encapsulate all important features of the DOS.

3.2.6 Core-Loss EELS

When gathering EELS data from experiment, the energy loss of the electrons corresponds to
certain types of EELS spectra. Low loss EELS experimentally studies that spectrum caused by
electrons that have lost energies within the range of less than 50 eV. This region is a powerful
tool to study the effects of surface plasmons and excitons to name a few phenomena [45].
Core-loss EELS studies the high energy region greater than 50 eV. This spectrum is caused by
the excitation of inner core electrons to the CBM [46]. This is of particular use in revealing the
bonding structure and electronic properties of a material.

Low loss EELS can be simulated in CASTEP by using the ‘core loss’ spectral task, and
using the default generated pseudopotentials. This was carried out on the primitive cell of NiO
to save time as a supercell is not required for this calculation. Furthermore, core-loss EELS
can be simulated in NiO by modifying the pseudopotential generation string for one or more
atoms in the cell, either by removing an electron from one of the orbitals or by exciting an
electron from one orbital to another. Of focus in this study is the nickel L2,3 edge, caused by
the excitation of a 2p electron to the 3d orbital. The edge generated from the atom with the
modified pseudopotential can be compared to the spectra of the other atoms in the material that
are unmodified, and to that of experiment.

The OptaDOS post-processing tool is capable of applying adaptive broadening in the
same manner as DOS calculations, however for EELS data OptaDOS can also apply Gaussian
broadening and life-time effects to better reflect experimental data. All EELS and core-loss
calculations used a broadening value of 1.0 eV, with no applied Gaussian broadening and
life-time effects applied, with a Lorentzian width of 0.5 eV and Lorentzian scale of 0.1. After
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post-processing, the calculated EELS edges were compared with an experiment dataset obtained
from the EELSdb website, collected by P. L. Potapov et al [47][48].

3.3 Results and Discussion

3.3.1 Convergence Tests

Cut-off Energy Convergence Testing

The RSCAN and PBE cut-off energy results obtained similar values for the ground state energy,
even though they used different pseudopotentials. Additionally and more importantly they both
showed a similar trend in terms of convergence error. The fact that they are both similar enough
means that the chosen cut-off energy for all calculations will be transferable for both RSCAN
and PBE calculations.

This trend was also true for CuO, with a convergence error that showed some transferrability
between RSCAN and PBE results. In addition to this, the convergence error appears to level
out at the same points compared to NiO. This is somewhat to be expected due to the atomic
similarity between Ni and Cu.
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Fig. 3.5 Energy convergence error plotted on a logarithmic scale with increasing cut-off energies.
SCF convergence tolerances of 10−8 eV and 10−3 eVÅ−1 for the energy and forces were used
respectively.
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The convergence results for Fmax also showed little difference in error between RSCAN
and PBE, with RSCAN containing a few anomalous peaks. These results are shown in more
detail in figure A.1 within the appendix.

400 600 800 1000 1200 1400 1600 1800 2000
Ecut [eV]

10 4

10 3

10 2

10 1

100

lo
g 1

0 E
ne

rg
y 

Er
ro

r [
eV

]

gs=1.75, fgs=1.0, energy tol=1e-5 eV
gs=1.75, fgs=2.0, energy tol=1e-5 eV
gs=2.0, fgs=3.0, energy tol=1e-8 eV, force tol=1e-3 eVÅ 1

gs=2.0, fgs=3.0, energy tol=1e-5 eV
gs=2.0, fgs=4.0, energy tol=1e-5 eV

Fig. 3.6 Energy convergence error plotted on a logarithmic scale with increasing cut-off energies,
grid scales, and varying energy and force tolerances.

A cut-off energy of 800 eV corresponds to a convergence error of 10−3 eV per atom.
After this cut-off energy, the change in convergence error drastically reduces up until 1800 eV.
The value of 800 eV was chosen based on the fact that it is just at the start of the region of
diminishing returns with regards to reducing convergence error vs computational cost.

Using the default grid scale of 1.75 resulted in discontinuities in the log of the convergence
error. This alludes to a problem with the sampling grid not being fine enough to accurately
calculate the electron densities. Through further testing, this was confirmed by analysing the
calculated internal forces in the cell, which showed a drastic increase at certain cut-off energy
ranges. This problem is clearly resolved by increasing the grid scale and fine grid scale slightly
to better resolve the electron density. It was decided that a grid scale of 2.0 and fine grid scale
of 3.0 was enough when paired with the chosen cut-off energy of 800 eV.

In addition to the grid scale, an energy tolerance of 10−8 eV and force tolerance of
10−3 eVÅ−1 was introduced to ensure that the SCF convergence was very finely converged. This
had little effect on the energy convergence error, but greatly impacted the force convergence
error as shown by figure A.3.
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K-point Grid Convergence
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Fig. 3.7 The energy convergence error plotted with increasing k-point grid density.

The energy convergence error exhibits oscillatory behaviour. This is due to the fact that
even Monkhorst-Pack grid values sample the centre of the BZ, unlike odd values. This leads
to a discrepancy between even and odd grid values which in turn causes oscillatory behaviour
when both are plotted on the same axes.

The force error data values are negligible within the applied SCF convergence tolerances.
The PBE force error data seems to oscillate with increasing amplitude at higher grid sizes as
shown by figure A.2. The fact that this behaviour is not shown when RSCAN is used shows
that this problem is inherent to the PBE calculation, and not mGGAs overall.

It was decided that a k-points grid of 12×12×12 would be sufficient for the properties that
are being studied going forwards. If phonon calculations were to be carried out, a much denser
grid would be needed, with a maximum grid density greater than 20×20×20.
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3.3.2 Hubbard U Calculation

The linear response calculation produced an output file that contained the χ0 and χ−1 matrices
and the Hubbard U values of 5.62 and 5.58 eV for Ni1 and Ni2 respectively.
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Fig. 3.8 Investigation into how the Hubbard U value defines the Fermi energy, EF and band
gap, Eg. The red highlighted region covers the experimental NiO band gap range of 3.6-4 eV.

The U=5.62 and 5.58 eV obtained from the use of the linear response method for Ni1 and
Ni2 respectively was chosen for all PBE+U calculations, resulting in an electronic band gap of
3.58 eV after comparison with the experimental band gap range as a confidence check.

Other studies have found that U=5.5 eV for the Ni 3d orbital is sufficient for calculating the
correct band gap [49]. U=5.5 eV corresponded to EF=6.09 eV and Eg=3.7 eV. The EF values
levelled out after U=6.0 eV and in fact decreased slightly after U=9.5 eV. This trend is noted to
be caused by drastically increased localisation due to a sizeable Hubbard U value. This fact is
why U values matching that of the lower-end of the band gap range are better at reproducing
more accurate band structures.
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3.3.3 Primitive Cell Spectral Calculations

Band Structure

The BZ path sampling for the band structure was selected to be the FCC path. This reason for
this is that the rhombohedral cell is derived from the FCC structure, and so retains the Fm-3m
path spacing. Most experiments and other computational studies also use the FCC path for
NiO, and so defaulting to this is also useful for comparison with other data. The CASTEP
calculated PBE, PBE+U and RSCAN band gaps were found to be 1.35 eV, 3.58 eV, and 1.68
eV respectively, with the PBE calculation expectedly giving the smaller band gap. Both the
PBE and RSCAN band gaps are well below that of the experimental values of 3.6-4 eV, with
RSCAN performing slightly better between the two.
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Fig. 3.9 Band structure comparison for NiO with different XC-functionals. EF is 3.99, 4.99,
and 5.44 eV from left to right respectively.

The PBE+U band structure is noticeably different compared to both RSCAN and PBE,
which are both very similar to each other. The difference in the band structure by applying a
Hubbard U value is a result of the increased localisation of the Ni 3d orbital, which seemingly
has reduced the number of VBM states, alongside reducing the flatness of the bands. This
indicates that the 3d orbitals are overlapping less with other orbitals as a result of the increased
localisation.
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Table 3.1 Comparison of CASTEP/OptaDOS calculated values and experiment. For the PBE+U
calculations, U=5.604 eV. The experimental Fermi energy of 5.0 eV is a widely accepted value
[50].

Method Fermi Energy (eV) Band Gap (eV) Magnetic Moment (µB)

PBE 4.87 1.35 1.30
PBE+U 5.55 3.58 1.61
RSCAN 3.21 1.68 1.45
Experiment 5.00 3.70 1.90

Density of States

The RSCAN calculations showed that the majority of the energy states both within the VBM
and CBM was formed from Ni 3d states, with O 2p and Ni 2p forming the majority of states at
energy values below -3.0 eV with respect to the Fermi level. In contrast, figure 3.10 shows that
by applying a U value to the Ni 3d orbitals, all states below the VBM are dominated by the
oxygen 2p orbital.

Of particular note is how much lower the DOS energy states are when comparing the two
XC-functionals. The cause of this disparity is the increased localisation of the Ni 3d orbitals
leading to an alteration of the occupancies.

The local magnetic moment of the Ni atoms is underestimated by between 11-37.5%
compared to the experimental value for all XC-functionals tested. This is due to correlation
effects, the lack of a discontinuity in the derivative of the XC-functional potential term and the
self-interaction error, in the same reason why band gaps are underestimated [51][52].
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results.
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3.3.4 Supercell Core-Loss EELS

Fig. 3.11 Normalised DFT calculated data sets with and without a core-hole compared with
an experimental dataset of the EELS Ni L2,3 transition edge. Experimental data is shifted by
847.40 eV and the DFT data is shifted by the Fermi energy of 3.8555 eV to align the first peak.

The general features of the DFT calculation for both with and without core-holes aligns
with that of experiment somewhat. The L3 edge for the core-hole result more closely matches
that of experiment, with the graduate levelling off of the second part of the main peak more
closely resembling that of experiment. The L2 edge, corresponding to Ni 3d states, is more
prominent for the core-loss example.

Table 3.2 Each spectrum type with the ratio of the maximum intensities of the L3 and L2 edges
respectively.

Type I(L3):I(L2)

No core-hole (DFT) 0.073
Core-hole (DFT) 0.157
Experiment 0.327

There’s evidently less of a gap between the L2 and L3 edges in the DFT spectra. It is well
documented that in standard DFT, any L2,3 transition calculations for TMOs often fall short of
accurately fitting the experimental data. This is known to be caused by the lack of multiplet
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effects being accounted for, primarily arising from the lack of spin-orbit coupling effects for
the TM core 2p elecrons [53].

3.4 Conclusion

The 4 atom NiO rhombohedral cell with its rigorously tested basis set is enough for the creation
of supercells which can be used to test the effects of doping. The band structure and DOS with
different functionals showed some differences arising from increased localisation, particularly
RSCAN/PBE vs PBE+U. The band gap was underestimated as expected and was corrected
using the DFT+U method of the use of linear response theory to find the suitable U for the
system. The band structure and DOS data showed that the bands at the VBM and CBM are
mostly composed of Ni 3d states, alongside O 2p to a smaller degree.

The core-loss EELS simulation of NiO yielded results with RSCAN that still showed the
effects of the less-localised d orbitals. The Ni 2p core-hole Ni atom more closely resembled
that of experiment, which is expected given the L2,3 edge is a result of the 2p to 3d electron
transition.



Chapter 4

NiO Defect Calculations

4.1 Introduction

Defects in materials must be considered to obtain the whole picture of a material’s properties.
Extrinsic and intrinsic defects all can result in big changes to a materials electronic landscape,
and thus its properties. In this chapter, NiO cells containing defects are scrutinised to ascertain as
to how its properties will change with added defects. Both vacancies, copper atom substitutional
and interstitial defects are all considered and compared with one another. Furthermore, the 10%
Cu-doped cell spectral and optical properties are studied.

4.2 Types of Defects

Intrinsic defects are a subclass of substitutional defects, with an atom being removed leaving a
vacancy. In NiO, nickel vacancies, VNi are responsible for making NiO a p-type semiconductor
[54]. Without these defects, bulk NiO would remain an insulator and thus be more undesirable
in its current applications. In order to understand the most favourable defect type to form given
the chemical environment, it’s necessary to calculate the defect formation energy, ∆HD,q [55].

∆HD,q =
[
ED,q −EH

]
+q(EV +∆EF)+∑nQ

(
µ

0
Q +∆µQ

)
(4.1)

nQ = +1 if an atom is being removed, and = −1 if an atom is being added. µQ is the
chemical potential of the species being added or removed. ED,q is the total energy of the defect
cell, EH is the total energy of the pure cell with no defects, EV is the VBM energy of the defect
cell, and ∆EF is the change in Fermi energy between the defect and pure cells.
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4.3 Computational Methodology

4.3.1 Vacancy Cell Creation

The pure NiO supercell was taken and the centre Ni atom was removed to create a vacancy.
This cell was then relaxed and the final energy was noted. As Ni was removed from the cell, it
was necessary to compute the chemical potential of pure Ni metal. As the unit cell of FCC Ni
metal contained 4 atoms, the final energy was divided by four to obtain the chemical potential
of 1 Ni atom. The charged vacancies V+1

Ni , V+2
Ni , V−1

O , and V−2
O were not considered. This is

due to the fact that the rhombohedral supercell is rather long and thin, and thus the coulomb
repulsion energy between the periodic vacancies would be too large to claim accurate results,
especially for the doubly charged defects. The Coulomb repulsion energies were calculated
and are shown in figure A.6 within the appendix.

Using equation 4.1, the defect formation energy depending on the chemical potential limit
(defined by the µ0

Q +∆µQ term) can be calculated. To investigate this, the chemical potential
of Ni, Cu, and O was calculated using CASTEP, using the same cutoff energy of 800 eV, but
with a 20×20×20 k-point grid for the metallic ions and 1×1×1 gamma point sampling for
the O2 molecule. In the oxygen-rich limit, the computed µO was used to determine µNi, and
conversely in the oxygen-poor limit the computed µNi is used to calculate the µO.

Fig. 4.1 Ni vacancy in the centre of the cell along the spin down [111] plane of Ni (silver)

4.3.2 Cu-doping Cell Creation

1 Cu Atom Systems

Alongside intrinsic defects are extrinsic defects. These defects involve the incorporation of
atom(s) from another species into a crystal structure on established atomic sites. This occurs by
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the dopants displacing an atom from the original crystal. This differs from intrinsic defects by
dopant atoms being interstitially incorporated in the space in between atoms, or there being an
atom removed from the structure, forming a vacancy.

The act of doping a material extrinsically or interstitially can drastically change a material’s
properties. The majority of calculations involving Cu-doping of NiO in this project involved
replacing Ni and O atoms in the structure with Cu, with the Cu atoms acting as extrinsic point
defects. Extrinsic defect formation energy can also be calculated in the same manner as intrinsic
defects, with the chemical potential of Cu now coming into play.

The 3x3x3 NiO supercell was altered to include a Cu atom at the centre of the cell, replacing
the Ni atom to form a neutral CuNi defect. This corresponded to a doping concentration of
approximately 2%. Similarly, an oxygen atom adjacent to the Ni atom at the centre of the cell
was removed to form neutral CuO, and finally a neutral interstitial Cu atom was added into the
structure in the 0.483̄, 0.483̄, 0.483̄ fractional coordinate positions to form Cui. This defect
was also placed close to the centre of the cell.

Fig. 4.2 Interstitial Cu atom (blue) amongst the spin up and down [111] planes of Ni (silver)

2+ Cu Atom Systems

To investigate how the energetics and electronic properties may vary for increasing numbers of
Cu atoms, it was decided that a quick test would be to investigate the 2 Cu atom system. This
involved the creation of 3 supercells, each with 1 Cu atom in the centre. The first cell had an
additional Cu atom placed at the (0, 0, 0) coordinates, the second one with the two Cu atoms
being nearest neighbours, and then the final one with a Cu atom approximately in between these
two extremes. These cells corresponded to a doping concentration of approximately 4%. These
cells would then be relaxed using the same basis set as the other calculations, with further DOS
calculations also being carried out using these cells.
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An investigation was also carried out to determine whether the Cu atoms prefer to align
themselves along the [111] plane or on the next along, oppositely spin-polarised [111] plane.

Fig. 4.3 Two different close proximity configurations of the 2 CuNi defect cell. The red [111]
plane represents the spin up plane, with the blue [111] plane representing the spin down.

To really push the limits of doping, the 10% doped case was also investigated. This involved
substitutionally placing 6 Cu atoms randomly on Ni sites. A cutoff energy of 800 eV was used,
with a k-points grid of 2×2×2 being used to save computational expense and thus aid the SCF
convergence. A 1600 eV density mixing cutoff energy was also applied to this end.

4.3.3 Spectral Calculations

Of particular interest is how the incorporation of Cu into NiO affects the electronic properties of
the material. To study this, the band structure and DOS was calculated for each of the different
1 Cu atom defects and compared. A cut-off energy of 800 eV and k-points/spectral k-points
grid of 4x4x4 and 8x8x8 4×4×4 and 8×8×8 respectively was used for all DOS calculations.
Additionally, the spin behaviour and energetics of multiple doping percentages of Cu atoms
was analysed by performing band structure and DOS calculations, with a focus on how the
positioning of the Cu atoms changes the electronic properties.

4.3.4 Optical Calculations

The optical calculations were largely carried out using the same method as the NiO 3×3×3
supercell calculations. The main difference was that the cell being used for the defect cell
contained 10% Cu atoms replacing the Ni atoms. 25% of the optical band gap of the bulk NiO
was used as the scissor operator in both cases to allow for the comparison between the two
materials. To align the theoretical results with that of experiment, OptaDOS allows the use
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of an arbitrary spectral-shift value called the scissor operator. The scissor operator value is
determined by taking the difference between the true experimental band gap and that calculated
by a DOS calculation. As numerous studies have shown a band gap value between 3.6-4.0 eV,
a value of 3.6 eV was chosen as the true value. Previous DOS calculations of bulk NiO using
PBE produced a band gap value of approximately 1.3 eV, which resulted in a scissor operator
value of 2.25 eV. The same scissor operator was applied for both the undoped and doped cases,
for the sake of comparison.

4.3.5 Electron Microscopy Simulations

Additional calculations were carried out involving the relaxation of Cu-doped NiO cells and
the simulation of electron microscopy images of materials constructed from these cells. As
these results were of little impact to the main body of work in this study, they are discussed in
more detail within appendix B.
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4.4 Results and Discussion

4.4.1 VNi and VO Defect Formation Energies
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Fig. 4.4 Both neutral vacancy defect formation energies in the oxygen limit. The computed µNi
and the µNi given by the computed µO are used in the oxygen-poor and rich limits respectively.

Given oxygen-rich conditions, nickel vacancies are the most favourable to form with a
considerable margin compared to oxygen vacancies. This is expected from experimental studies
of NiO, showing that VNi is the dominant form of vacancy, and in fact contributes to making bulk
NiO a p-type semiconductor [56]. Oxygen-poor conditions show that it’s equally favourable
for both types of vacancy to form.
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4.4.2 Spectral Calculations with Vacancies

VNi DOS
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Fig. 4.5 VNi PDOS centred at the Fermi energy, with EF=3.12 eV.

The PDOS calculation revealed that the highest energy orbital angular momentum states
formed spin-polarised energy states above the Fermi level, therefore the band gap of the material
narrows as a consequence. Additionally, this state above the Fermi level suggests that the
material is a p-type semiconductor, which is a key property of bulk NiO.
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VO DOS
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Fig. 4.6 VO PDOS centred at the Fermi energy with EF=3.89 eV.

The VO case showed the greatest disparity compared with the other two, with states forming
above and below the VBM and CBM respectively. This very much narrows the band gap and
thus has important consequences for the electronic properties of the material. This is reasonable
considering experiment has shown that NiO with abundant oxygen vacancies has improved
conductivity and increased charge transfer rates [57]. Additionally, there is a large peak at
around 0.75 eV in both the spin up and down channels. This peak largely consists of Ni 3d
energy states. Sharp peaks such as this have been reported to be caused by flat bands, thus
implying that there is a low amount of orbital overlapping for the Ni 3d energy states [58].
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4.4.3 1 Cu Atom Defect Formation Energies
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Fig. 4.7 Defect formation energies of Cu atom in NiO in the oxygen limit. The computed µCu
is kept constant, with the computed µNi and the µNi given by the computed µO being used in
the oxygen-poor and rich limits respectively.

A similar trend was observed for the Cu doping defect formation energies, with CuNi being
by far the most favourable to form. Logically this is to be expected, as Cu and Ni are both
similar in atomic structure. Both elements differ from one another by a proton and an electron
and thus Cu atoms should tend to fill in any Ni vacancies that form. Following this logic, this
would explain why CuO was a lot less favourable to form, as Cu and O atoms are in a completely
different group in the periodic table, and so have vastly different chemical properties. This fact
explains the large difference in defect formation energy for CuNi and CuO compared to VNi and
VO, regardless of the oxygen limit.
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4.4.4 1 Cu Atom Spectral Calculations
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Fig. 4.8 CuNi PDOS centred at the Fermi level, with EF=3.68 eV.

The addition of the copper atom clearly introduces energy states at the Fermi level. The
peak at the Fermi level shown by figure 4.8 is composed of the highest energy level orbitals
for each species, Ni 3d, Cu 3d, and O 2p. This phenomena has been documented with other
dopants for NiO, such as with the group one metals.
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Comparison of Cu Atom defect types
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Fig. 4.9 TDOS comparison of all copper defect types. EF for CuNi, CuO, and Cui is 3.68, 4.51,
and 4.58 eV respectively.

It is visible from figure 4.9 that many more states appear in the band gap in the CuO case
compared to CuNi. This is simply because the dopant Cu atom contains more electrons than the
replaced O atom, and thus the Cu donates more electron energy states to the supercell, leading
to increased n-type behaviour. This trend is extended even more when looking at the Cui case,
as in this system only electrons are added, with no atoms being removed from the system. A
result of this is that there are many more states forming within the band gap, all of which are
spin-polarised.

In the CuO case, the creation of spin-symmetric energy states is the same as in the VO

case, however there is a reduction in the number of states and also a lack of any flat bands.
This would suggest that the addition of the copper atom on the oxygen site has reduced the
localisation of the Ni 3d orbitals. Additionally, the position of the Fermi level being so close to
the CBM has eliminated the band gap, and thus implies metallic behaviour.
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Cui DOS
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Fig. 4.10 Cui PDOS centred at the Fermi level, with EF=4.58 eV.

Analysis of the composition of the states within the band gap show a mix of dominant
projected states. The states are composed of a majority of Ni 3d states, followed by an even
amount of Cu 3d and O 2p states. The fact that the Ni 3d states seem to dominate the DOS
suggests that the inclusion of the Cu atom has a profound effect on the neighbouring Ni atoms.
The states introduced by the Cu atom are a smaller factor in the actual composition of the
DOS. There are multiple sharp peaks on and below EF , which is a typical sign of flat bands.
The PDOS decomposition in figure 4.10 shows that these flat bands are dominated by Ni 3d
orbitals, with Cu 3d states forming well below the Fermi level. This result would suggest that
the interstitial defect is pushing other atoms away, distorting the crystal lattice and resulting in
increased overlapping of Ni 3d orbitals. Furthermore, EF is located very close to the CBM,
and thus only a small amount of energy would be required to promote an electron at EF to the
CBM. Therefore, this material has mostly lost its semiconducting properties and has become
more metallic.
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4.4.5 2 Cu Atoms

The two Cu atom cell setup was created from the one Cu atom supercell, with additional Cu
atoms being placed next to the original Cu atom separated by an oxygen atom. This arrangement
effectively created a small cluster of CuO within the NiO crystal.

Cu Atom Positional Differences

Table 4.1 Final ground state energy of three cells with the two copper atoms separated by
varying distances. ∆E is the difference in the final energy between the most stable configuration
and all others.

Distance Apart (Å) Final Energy per Atom (eV) ∆E (meV) Int. Spin Density
(ℏ

2

)
2.98 -920.768302 0.00 2.00
2.97 -920.767656 69.8 1.29×10−4

7.30 -920.767857 48.1 2.00
21.9 -920.767641 71.4 2.18×10−4

The energy difference between the Cu atom being placed as close and as far away as
possible came to 71.4 meV. This suggests that the closer the Cu atoms are together, the lower
the ground state energy. Therefore, there appears to be some merit to the claim that TMO
dopant atoms tend to ‘stick together’ and eventually precipitate out in metallic form [59]. Of
further note is that the intermediate configuration leads to differences that are approximately
half that of the close-far example. This would suggest an almost linear scaling as to the energy
difference depending on the proximity of the two Cu atoms to one another.

Additionally, it was found that when the Cu atoms were moved from being nearest neigh-
bours to nearest neighbours +1, the energy difference between the two systems was 69.8 meV
This shows that it’s more favourable for the two Cu atoms to fill Ni sites on the same [111]
plane. Further to this, the Cu atoms seem to gain spin to match that of their Ni neighbours in
terms of polarity on the [111] plane. The integrated spin density of the most stable cell was
2.00ℏ

2 , compared to the alternate configuration giving a value of 1.29×10−4 ℏ
2 .

The distance between the Cu atoms in the most stable configuration is 2.98 Å, whereas the
less stable configuration has them slightly closer together at 2.97 Å.
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Fig. 4.11 The first plot is that of the two Cu atoms being aligned on the same [111] plane, with
the lower plot being the case of the two Cu atoms being on opposite [111] planes. EF =3.68
and 3.69 eV for the first and second plot respectively.

The DOS results for the two Cu atoms being aligned along the same [111] plane show
that there is a widening of the band gap states compared to that of the one Cu atom shown in
figure 4.8. On the other hand, the case where they are aligned in opposite [111] planes results
in a smaller spin-symmetric gap state forming. The fact that the first configuration is more
stable suggests that in doping, the Cu atoms have a clear preference for clustering together and
annihilating the band gap with widened energy states over retaining the cell spin symmetry.
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4.4.6 10% Doped Supercells
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Fig. 4.12 The bands and corresponding DOS states aligned show which orbitals contribute the
most to the bands within the band gap. 10% Cu-doped NiO band structure and corresponding
PDOS using only CuNi sites.

EF=4.60 eV.

The O 2p orbital states seem to form the most bands in the VBM, with similar amounts
of Ni 3d and Cu 3d orbital states. At the Fermi-level of 4.60 eV, the only available states
are all spin up. Above and below the Fermi-level there exists a greater amount of spin down
states. The significance of this is that all electrons that move to the Fermi-level within the
gap state must all be spin up in order to do so. This spin-polarisation is supported by the fact
that the integrated spin density is 0.104ℏ

2 , which would suggest that the material is slightly
ferromagnetic, with more spin up electrons than down.

Investigating the .castep file reveals that three of the Cu atoms have an overall positive
magnetic moment, with the other three having a negative magnetic moment. The magnitude
of this magnetic moment varies between 0.37-0.39µB. The Ni atoms all have a smaller range
of magnitudes, going from 1.58-1.60µB. This would suggest that the Cu atoms are having
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the greatest impact on the increased spin-polarisation of the material instead of the Ni atoms
contributing the most from being disrupted by the Cu atoms gaining a net magnetic moment.

Optical Calculations

Comparing the dielectric constant calculation for the bulk NiO cell and that of the 10% doped
cell in figure 4.13, when no scissor operator is applied, for the Cu-doped case there is an
increase in absorption between 0-1.2 eV, which places this firmly within the visible light
spectrum. There appears to be a decrease in the absorbance of blue light to UV however, with
the Cu-doped peak showing more broadening.

When a scissor operator of 2.25 eV is applied, the data shifts to much more realistic values.
The peaks are blue-shifted by approximately 2 eV and the amplitude of all of the peaks are
reduced.

The real component of the dielectric constant of the Cu-doped NiO remains approximately
at 3.59 up until 3 eV, which leads to very gradual increase in both the real and imaginary
component, which is negligible up until this point. This trend is similar for bulk NiO, however
there is less noise and the imaginary component remains negligible up until 3.5 eV. The
significance of this is that the imaginary component of the dielectric function determines the
loss in the material, which when looking at the loss function plot in figure 4.13 specifically,
it is clear that there is an increase in loss in the Cu-doped material, which gets slightly worse
towards the violet and low energy UV part of the electromagnetic spectrum. Furthermore,
photons of energy in the middle UV range of 4-6 eV shows a decrease in their absorbance
into the material. Figure 4.13 also shows that there is a clear decrease in loss and additional
narrowing of the definitive peak in the loss function in the Cu-doped case within the middle UV
range. This suggests that doping the material with Cu has improved the potential efficiency of
the material, with more photons being absorbed by the material and able to excite the electrons
and produce electron-hole pairs.
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Fig. 4.13 Optics data for the pure NiO and Cu-doped NiO supercells. Bulk NiO data is shown
in grey, with the 10% Cu-doped NiO data being shown in blue. The darker colours show the
data with the applied scissor operator of 2.25 eV. The real component of the data is shown with
a solid line, and the imaginary component with a dashed line.
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4.5 Conclusion

The introduction of Cu atoms into NiO showed preferences in terms of their defect type, with
CuNi being the most likely to form and CuO being the least likely defect. This behaviour is in
line with the previous results of the vacancy formation energies, showing that Cu atoms are
more inclined to fill Ni vacancies and displace Ni atoms where possible.

The CuNi defect showed more p-type behaviour when compared to CuO and Cui showing
strong n-type behaviour. Therefore, when doping NiO with Cu, one needs to ensure that
the conditions of the chemical environment are as favourable as possible for what electronic
behaviour is needed.

The analysis of different cells containing two CuNi defects showed that the system of the
lowest ground state energy is that of the Cu atoms arranging themselves along the same [111]
plane. The implications of this are that the dopants prefer to be as close together as possible,
even should the AFM nature of the host cell be disrupted.

The band structure and DOS of the different defects all exhibited the creation of extra energy
states from the Cu 3d orbitals hybridising with that of the O 2p. Furthermore, by introducing a
large number of Cu atoms into the supercell the AFM nature of NiO is largely disrupted, with
large amounts of spin-polarised energy states forming within the band gap.

Optically, the doped cell showed a minor but discernible increase in the absorption of visible
light photons compared to that of pure NiO. This is of great importance if Cu-doped NiO is to
be used in any applications that depends upon its interaction with visible and UV radiation.



Chapter 5

Convex Hull Calculations

5.1 Introduction

As shown by figure 4.7, Cu atoms prefer to replace Ni atoms in the crystal lattice. To further
understand why this occurs and also if there are any more exotic structures that are possible
when incorporating Cu into NiO, a ternary convex hull calculation can be performed.

Convex hulls are often used in condensed matter theory for random structure searching,
with hundreds, if not thousands of randomly generated cells being relaxed and compared to well
known, experimentally observed, stable compounds which form the ‘hull’. Multiple species can
be added to a convex hull, with 3 species being used in this study. By visualising the formation
energies of compounds above and on the hull, it’s possible to gain insight into the stability of
the generated compounds, alongside structural properties such as symmetries, space groups
and lattice constant values to name a few [60].
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5.2 Computational Methodology

Fig. 5.1 Formation energy of two stable, different species, A and B with all predicted stable
compounds of A and B in blue. All unstable compounds are included above the hull in grey.

5.2.1 2D Convex Hull for Ni-Cu-O

To investigate the phases within Ni-Cu-O, a number of structures obtained from the creation of
a rough 2D ternary hull from MaterialsProject.org was obtained. All .cif files obtained in this
way were converted to .cell files using the ‘cif2cell’ tool bundled with CASTEP. Suitable cells
containing just one species were obtained for use as chemical potential files for the extremities.
Additionally, the ab initio random structure searching program (AIRSS) was employed to
randomly generate structures with varying ratios of Ni, Cu and O [61].

A high-throughput geometry optimisation calculation was carried out using the ‘fine’ basis
set, 0.05 k-point grid spacing and the ‘QC5’ ultra-soft pseudopotential library. Furthermore, spin
effects were not considered for this study. Any .castep files of successfully relaxed structures
was data-scraped and plotted using the Matador-db chemical analysis Python program [62].
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5.3 Results and Discussion

5.3.1 2D Ni-Cu-O Random Structure Searching

Fig. 5.2 Stable structures on the hull with added phase lines forming the hull surface. The
formation energy distribution is plotted in the background as a visual aid for analysing meta-
stable/stable structures. Only structures less than 0.1 eV above the hull are shown.

Most stable phases of the copper and nickel oxides were found, with the exception of FCC
NiO. One possible explanation for this is the lack of spin states on the Ni atoms for these
calculations. One predicted stable state containing all three species was found, being Ni9CuO10.
From inspection, it is visible that the crystal lattice is arranged in an FCC-like configuration.
No other structures containing all three species were predicted stable. This implies that, subject
to further testing, any structures that contain all three species are most stable when arranged in
an FCC crystal lattice, similar to that of the ground state configuration of NiO.

There is also a trend of structures being closer to the hull the nearer they are to the Ni9CuO10

structure. This is expected from the formation energies being lowest within this region. This
would also suggest that structures with a ratio of TM to oxygen of 1:1 is more stable. This is in
agreement with current knowledge of doping NiO, with dopants tending to fill the Ni sites over
the O sites.
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Fig. 5.3 The Ni9CuO10 structure, with added bonds to showcase the crystal lattice. The nickel
atoms are coloured in silver, copper in blue, and oxygen in red.

5.4 Conclusion

The doping convex hull for Ni-Cu-O was produced using the structures generated by Materials
Project. There was only one compound discovered containing all three species that is on the
hull itself, namely Ni9CuO10. This compound also had the lowest formation energy, producing
an ‘island of stability’ within the ternary convex hull. This region would suggest that a 1:1 ratio
of TM atoms to oxygen is the most stable configuration, with structures containing Cu in a 1:9
ratio to Ni being the most stable.



Chapter 6

Conclusion

6.1 Summary of Results

6.1.1 Bulk NiO

From simulating bulk NiO using the primitive cell, the comparison of RSCAN, PBE and
PBE+U showed that while the electronic structure of RSCAN and PBE was similar, in order to
obtain a realistic band gap, a Hubbard U value is needed. Additionally, the promising results
for the electronic and optic band gap confirms the effectiveness of the linear response method
of calculating the U value. Applying the Hubbard U value resulted in large changes to the band
structure when compared to that of PBE and RSCAN. This effect demonstrates the increased
localisation of the Ni 3d orbitals.

6.1.2 NiO Defects

NiO Vacancies

Studying the effect of vacancies showed the changes to the electronic structure of the supercell
varied significantly around the band gap depending on which atom was removed. VNi showed
a clear p-type semiconductor behaviour, which was expected from experimental results. By
growing the sample in favourable conditions for oxygen vacancies, it is possible to narrow the
band gap of NiO, push the material to a more n-type behaviour and cause increased localisation
of Ni 3d orbitals.
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1 and 2 Cu-Doped NiO Cells

The substitutional inclusion of Cu atoms into the structure again showed significant electronic
variations within the band gap depending on the substituted atom. As expected, CuO and Cui

exhibited more n-type behaviour than CuNi. The comparatively more p-type behaviour of CuNi

would suggest that if Cu-doped NiO is to be used as a hole transport layer in photocathodes,
the material would need to be synthesised in conditions that are favourable for the production
of CuNi defects.

The Cui defect caused significant disruption to neighbouring Ni atoms, resulting in highly
spin-polarised states forming within the band gap. Furthermore, the numerous flat bands indi-
cating increased Ni 3d orbital localisation would make this material more suited to investigation
of exotic electronic states as a result of the increased electron-electron interaction.

By varying the positions of two Cu atoms within the supercell, the most favourable configu-
ration would be the two Cu atoms being next to one another along the same [111] plane. This
behaviour would hint at the possibility of clustering and phase-separation of Cu atoms with
NiO. Further to this, the AFM nature of the cell is likely to be significantly disrupted.

10% Cu-Doped NiO Cell

The 10% Cu-doped cell confirmed the idea that with increasing Cu atoms incorporated into
the structure, the Cu 3d orbitals increasingly hybridise with the O 2p, leading to more states
forming within the band gap. The crystal displays almost half-metal like behaviour, with spin-
polarised states forming at the Fermi level on only one spin channel, with opposite spin values
both above and below the Fermi level. The near complete breakdown of the semiconducting
properties in this case suggest that in the 10% case, there will be a remarkable increase in the
conductivity and charge transfer capabilities of the material. This would further suggest that
the 10% Cu-doped cell would be more suitable for use as a hole transport layer than the 2%
and 4% Cu-doped cells.

Optically, it is also apparent that the addition of the Cu atoms causes the optical properties
to change enough that the absorption of photons of a smaller wavelength increases compared to
pure NiO. This is a key finding if this material is to be used in photocathodes due to the fact
that by doping NiO with Cu the photocathodes will potentially see an increase in efficiency
from more photons being absorbed in the visible spectrum of light.
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Ni-Cu-O Convex Hull

The Ni-Cu-O convex hull revealed how copper prefers to be incorporated into a crystal lattice
containing Ni and O. The most stable compound being Ni9CuO10 showed a preference for both
Ni and Cu to be in a 1:1 ratio with O, thus agreeing with previous experimental work on doping
NiO. The Ni9CuO10 compound is almost FCC in structure, with the three species forming bond
angles at approximately 90◦.

6.2 Future Avenues of Research

Extreme Doping Concentrations

There is a clear path of progression for future research, with systems of doping concentrations
>10% being of great interest. Extreme doping concentrations with both CuNi and CuO sites
could be used to study the energetics of how the copper atoms preferentially place themselves
given such a high doping concentration.

Phonon Calculations

Another possibility is the study of thermo-electric properties of Cu-doped NiO. Phonon calcu-
lations are orders of magnitude more expensive than spectral calculations however, and thus a
much smaller supercell than studied in this thesis would have to be considered. CASTEP cur-
rently only supports the use of the finite displacement phonon calculation method for ultrasoft
pseudopotentials and spin-polarised calculations for primitive and supercell calculations.

Convex Hull

All structures plotted in figure 5.2 were carried out without spin. As nickel atoms have spin,
there is the possibility that magnetic structure searching could be carried out. Furthermore, the
convex hull calculation in this study was carried out using the high-throughput pseudopotential
library ‘QC5’, which is effective for its purpose, however a repeat of this study using a less-soft
ultrasoft pseudopotential library will give a more accurate representation of the formation
energies of the generated structures.

The dependence of the XC-functional used is worthwhile investigating. A comparison of
the mGGA results with that of GGA/GGA+U could result in different stable phase predictions.
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Other Dopant Species

Another possibility would be investigating how other transmission metals will affect the
electronic properties of NiO. There have been a number of experimental studies in cobalt
doping, studying electronic and optical properties [63]. Cobalt is magnetic, and thus will have a
large effect on the Ni atoms around it. This could be particularly interesting when Co is added
substitutionally in an O site, or even intrinsically as this will presumably cause a large amount
of disruption to the magnetic spin structure of the material. Other metals could also be studied,
such as the group one metals like potassium and sodium.

TDDFT

Another possible study would be to more accurately simulate the optical properties of the
material. The more sophisticated method of TDDFT could be used here. These calculations
would be extremely computationally expensive, however the use of a smaller supercell would
possibly enable the use of this method.
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Miscellaneous Figures
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Fig. A.1 Force convergence error with increasing cut-off energies. The energy convergence
tolerance of 10−8 eV and force convergence of 10−3 eVÅ−1 was applied.
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Fig. A.2 The force convergence error with increasing k-point grid density. The energy conver-
gence tolerance of 10−8 eV and force convergence of 10−3 eVÅ−1 was applied.
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Fig. A.3 Magnitude of internal forces from NiO primitive cell using RSCAN.
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Fig. A.4 A comparison of the TDOS for small and large separation distances of two CuNi
defects.
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Appendix B

Computational Microscopy Using abTEM

B.1 Introduction

There has been great interest in collecting TEM and STEM data for doped TMOs to investigate
phenomena such as phase separation and defect formation. These systems can be quickly and
easily modelled, with some limitations, as periodic supercells. These cells can be relaxed,
as has been carried out many times during this study in previous chapters. TEM and STEM
images can then be simulated from these structures using one of various programs that can
solve the multislice equation, providing the plane-wave exit wavefunction.

The program used in this study is the Python module ab initio Transmission Electron
Microscopy (abTEM) [64]. This is a powerful tool that can not only solve for the plane-wave
exit wavefunction of an electron beam, but can also compute diffraction patterns and apply
contrast transfer function (CTF) effects, such as phase aberrations, defocus and aperture effects.
The program is able to simulate both TEM and STEM images, with cells being loaded in using
the Atomic Simulation Environment (ASE) package [65]. The cells can then be tiled in all
three dimensions to better model a thin film on a substrate.

B.2 The Mulitslice Equation

The wavefunction for n slices of a crystal surface is given by

ψn+1(x,y) = pn(x,y,∆zn)⊗ [tn(x,y)ψn(x,y)]+ϑ(∆z2) (B.1)

where ψn+1(x,y) is the exit slice wavefunction, pn(x,y,∆zn) is the propagator function, tn(x,y)
is the slice thickness, ψn(x,y) is the slice wavefunction, and the final term contains the error
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introduced by the various approximations involved with the construction of the equation [66].
This error term is not included in the implementation of the multislice algorithm in computer
codes.

B.3 Computational Methodology

The most important initial stage was the relaxation of a cell suitable for multislice calculation.
To this end, the 2×2×2 FCC supercell of NiO was chosen. This cell was also doped with two
Cu atoms and relaxed using the same basis set. The basis set used was 800 eV, with a 6×6×6
k-point grid density. The relaxed structures were then imported into the python script using the
ASE structure importer.

These cells were then modified to create a surface. It was decided to investigate the [110]
surface, as this is often imaged in actual experiments on NiO [67]. Each of these surfaces were
tiled in the z direction, producing 4 layers, equalling a thickness of approximately 50 Å. A
plane-wave energy of 300 keV was chosen to simulate the TEM electron beam.

The exit plane-wave additionally had contrast-transfer function (CTF) effects applied to the
image to simulate aberrations.
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B.4 Results and Discussion

B.4.1 6% Cu-doped NiO TEM

Fig. B.1 The Cu-doped NiO [110] surface simulated TEM image. Nickel atoms are shown in
green, copper in brown, and oxygen in red. A beam energy of 300 keV was used, with CTF
effects also being applied.

The TEM image with applied CTF effects and simplified atomic potential for the CuNi case
showed that the copper atoms are so similar to the nickel atoms that being able to differentiate
them is impossible.
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B.4.2 6% Cu-doped NiO STEM

Fig. B.2 The Cu-doped NiO [110] surface simulated STEM image. A beam energy of 80 keV
was used, with CTF effects applied.

The STEM image of the surface shows copper/nickel positions with much higher contrast
compared to TEM. Unfortunately, there is still very little difference between the copper and
nickel atoms and thus there is very little in the way of crystal structure distortion and visual
difference between the two metals.

B.5 Conclusion

The TEM simulation studies of CuNi doping cases showed that differentiating the copper from
the nickel atoms in both TEM and STEM images will be of great difficulty. Future studies
could be conducted into other defect types with more disrupted structures, such as CuO or Cui.
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