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Abstract 

Each cell in the human body has the exact same genetic sequence but has diverged 

and specialised to express different proteins and perform different functions. This is 

because, as a cell differentiates, different combinations of genes are switched on and 

off. This process is called gene regulation; it is what drives one cell type to become 

another and allows cells to respond to environmental signals. The study of gene 

regulation is essential to understanding how healthy gene expression programmes are 

maintained, and become dysregulated in disease.  

Gene regulation is controlled, on the level of transcription, by complex and 

combinatorial interactions between transcription factor proteins and non-coding DNA 

sequences, called cis-regulatory elements. These cis-regulatory elements are located in 

non-coding DNA and can regulate genes across long-genomic distances. Furthermore, 

they are highly cell-specific, and often only active in certain cellular contexts. For these 

reasons, characterising gene regulation, and its role in cellular differentiation, is an 

ongoing challenge.  

‘Omics sequencing approaches can be used to measure properties of nucleic acids on a 

genome-wide scale. This thesis explores the integration of multi-omics datasets, using 

statistics and machine learning methods, in order to predict gene regulation. Over four 

results chapters this thesis: 1) compares existing methods to predict gene regulation 

from multi-omics data; 2) develops a new computational method; 3) applies this 

method to identify how gene regulation drives the key immune process of B cell 

differentiation; and 4) benchmarks this method against other approaches.   

Altogether, the work presented in this thesis contributes novel methodology and 

knowledge to the fields of bioinformatics, gene regulation and immunology. 

Specifically, it presents the new cisREAD method which integrates epigenomics and 

transcriptomics datasets, to prioritise transcription-factor bound, gene-specific cis-

regulatory elements important to differentiation. Furthermore, it applies this method 

to B cell differentiation, and identifies novel mechanisms of transcriptional control. 

Importantly, it shows that a shift from regulation by PU.1 and SPIB transcription 

factors, to regulation by AP-1 factor BATF is a key determinant of B cell activation in 

humans. The new computational method has been accompanied by open-source 
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software, and the findings of this thesis have been disseminated through publications. 

Ultimately, this thesis represents a step towards understanding the complex regulatory 

mechanisms which underpin cellular differentiation and disease. 
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Chapter 1. Introduction 

 

Each cell in the human body contains the exact same instruction manual, encoded in 

copies of the same Deoxyribonucleic Acid (DNA) molecules stored in the cell’s nucleus. 

In development, a single cell gives rise to the trillions of cells in the adult human body, 

specialised into 200 distinct cell types. The identity of each of these cells is 

programmed not through the uniform DNA sequence, but though the distinct 

combination of genes which are switched on or off. Strict control of gene expression – 

termed gene regulation – is what drives one cell to differentiate into another cell type, 

and maintain a healthy cellular identity. Therefore, in order to understand what makes 

a cell a cell, we need to understand how its genes are regulated.  

This thesis focuses on the regulation of transcription, in which the DNA genetic 

blueprint is transcribed into messenger ribonucleic acid (mRNA), in the first step 

towards protein production. Specifically, it asks how we can better understand 

transcriptional regulation through the integration of ‘multi-omics’ data using methods 

from statistics and machine learning.  

From the completion of the human genome project in 2003, DNA sequencing 

technologies have progressed at a rapid pace, and have allowed researchers to 

uncover new insights into the genome on an unprecedented scale. This sequencing 

revolution has led to the development of various ‘omics’ fields: genomics (the DNA 

content of the nucleus), transcriptomics (the RNA content), epigenomics 

(modifications which occur to DNA), and 3D genomics (the organisation of DNA in the 

nucleus). Whilst each datatype alone can be hugely informative; integration of multiple 

omics can provide holistic insight into the biochemical processes in a cell. This is 

particularly true for transcriptional regulation. 

DNA sequencing methods produce huge masses of data, confounded by noise and 

technical biases, and yielding extremely high-dimensional datasets. Bioinformaticians 

handling omics data rely on a repertoire of computational tools. These use 

methodology from statistics to find meaningful patterns in these datasets; helping us 

understand how cells develop and diseases arise. The development of computational 

methods to predict transcriptional regulation is an active area of research. There is a 
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need for widely applicable and interpretable methods, which can be used in real 

research situations to uncover how gene regulation shapes differentiation.  

This thesis presents new work concerning the development and evaluation of 

computational methods to predict transcriptional regulation from multi-omics data. 

These methods are applied to ‘omics data sets from blood and immune cells, to 

acquire new knowledge on the molecules, which instruct the differentiation of these 

systems. This thesis starts with an introduction, which will overview the biomolecular 

mechanisms controlling transcription; their measurement through high-throughput 

sequencing; and current computational methods to reconstruct gene regulation from 

multi-omics data.  

 

1.1 Transcriptional regulation is controlled by cis-regulatory elements, transcription 

factors and the chromatin environment 

Gene regulation in eukaryotes is controlled at multiple levels, firstly at the level of 

transcription. In order for a protein-coding gene to be expressed in a cell, its DNA 

template must first be copied into mRNA by the enzyme ribonucleic acid (RNA) 

polymerase II. To co-ordinate transcription, DNA and protein factors interact to fine-

tune the rate of mRNA production. This section will introduce the initiation of 

eukaryotic transcriptional regulation, and the molecules which orchestrate this 

process.  

 

1.1.1 Transcription is initiated by general transcription factors at gene promoters 

In eukaryotes, transcription of the DNA template requires the loading of RNA 

polymerase II (RNA pol) onto the transcription start site (TSS) of a gene. RNA 

polymerase II binds as part of the preinitiation complex (PIC) which, at a minimum, 

comprises 6 general transcription factors (TFs) alongside RNA polymerase II (RNA pol). 

The PIC alone can drive basal levels of transcription (Sikorski and Buratowski, 2009). 

The PIC initiates transcription at the gene promoter, 5’ (5 prime) of the TSS. The classic 

view of transcriptional regulation is that general transcription factors sequentially 

assemble and recruit RNA polymerase, forming the PIC. 
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First the TATA-binding protein (TBP), a subunit of the general TFIID transcription factor 

binds the promoter, creating a sharp bend in its DNA. TFIID then recruits TFIIA and 

TFIIB, which in turn recruits TFIIF and RNA pol II. TFIIE then joins the complex and 

recruits TFIIH (Farnung and Vos, 2022). The TFIIH complex has both helicase and kinase 

activities. It separates the two strands, to help unwind DNA and form the ‘transcription 

bubble’; and it phosphorylates the RNA pol CTD (Carboxyl Terminal Domain), to switch 

the polymerase to initiate mRNA production (Rimel and Taatjes, 2018).  

After transcription has been initiated, elongation begins. Here RNA polymerase II 

begins to move along the gene, from the 5’ end to the 3’ (3 prime) end, transcribing 

DNA to RNA. Following phosphorylation, the polymerase moves onto the DNA and 

TFIIB dissociates in ‘promoter escape’, allowing for RNA pol to extend the mRNA 

molecule (Schier and Taatjes, 2020). In many metazoan genes RNA polymerase II 

pauses transcription 20-60 nucleotides into elongation. RNA polymerase pausing in 

early elongation is controlled by negative elongation factors, and is overcome by 

positive elongation factors (Schier and Taatjes, 2020). Pausing prevents re-initiation 

and ensures that nascent transcripts are 5’ capped (where a methyl ‘cap’ is added 5’ 

end of the transcript to prevent degradation). The polymerase pause release therefore 

represents a second layer of transcriptional control (Adelman and Lis, 2012). 

 

1.1.2 Transcription is fine-tuned by cell-specific transcription factors at distal cis-

regulatory elements 

Whilst the general transcription factors are sufficient to initiate basal levels of 

transcription, the exact level of transcription in a cell is fine-tuned by cell-specific 

transcription factors. These transcription factors recognise short, ~6-12 base-pair (bp), 

recognition sites within larger DNA sequences, hundreds of base-pairs in length, called 

cis-regulatory elements (CREs) (Spitz and Furlong, 2012). TF binding sites occur within 

both proximal regulatory elements – gene promoters – and distal regulatory elements, 

like enhancers and silencers. TFs bound at distal CREs can act across long genomic 

distances, where they are recruited across hundreds to millions of base pairs by DNA 

looping, and can transduce their regulatory signals to RNA polymerase II through the 

mediator complex (Figure 1.1) (Schoenfelder and Fraser, 2019). The mediator 

comprises 30 subunits in humans and acts as a functional bridge between TFs and 
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transcriptional machinery. The mediator additionally promotes transcription by 

recruiting and stabilising the PIC, as well as promoting pol II phosphorylation by TFIIH 

(Soutourina, 2018). 

 

Figure 1.1 Initiation and control of Transcription. Transcription is initiated by formation of the preinitiation 
complex comprising general transcription factors (including TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH) and RNA 
polymerase II at the gene promoter. Transcription factors bound at distal enhancers (which loop around to the site 
of transcription) transduce signals to RNA polymerase through the mediator complex to elevate transcription 
beyond basal levels. RNA polymerase initiates transcription then clears the promoter and moves along the gene, 
transcribing DNA to mRNA in the elongation phase. 

Transcription factor binding is both cooperative and combinatorial, allowing for 

complex spatiotemporal control of expression. TF co-binding can either be direct, 

facilitated by protein-protein interactions at adjacent binding sites, or indirect, where 

TFs bound to DNA form scaffolds for other TFs (Spitz and Furlong, 2012). Most 

transcription factors modulate expression through recruiting cofactors. Cofactors 

include the mediator complex, chromatin re-modellers and histone modifiers 

(discussed in section 1.1.3). The effects of coactivators can either be activating or 

repressive. Many TFs can recruit both activating and repressive cofactors, their 

function can depend on the sequence environment and cofactor availability (Lambert 

et al., 2018) 

Distal cis-regulatory elements can be classed as enhancers or silencers based on their 

propensity to activate or repress transcription. These cis-regulatory elements are the 

effectors of signalling cascades, which enable the cell to respond to changes in the 

environment, or to carry out their innate differentiation programme. Distal cis-
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regulatory elements called insulators act to ensure the right enhancers and silencers 

regulate the right genes, through blocking unwanted cis-regulatory interactions 

(Shlyueva et al., 2014). 

In the four decades since the discovery of the first enhancer in viral genomes (Banerji 

et al., 1981), enhancers have been extensively studied in a multitude of species and 

cell types. Enhancers possess several well-characterised properties such as 

evolutionary conservation and the presence of TF binding sites. When active, 

enhancers gain chromatin accessibility and undergo histone modifications (section 

1.1.3). Enhancers can also be transcribed by RNA polymerase II to produce short-lived 

non-coding enhancer RNAs (eRNAs) (Ray-Jones and Spivakov, 2021).  

The discovery of eRNAs by two landmark studies revealed widespread bidirectional 

transcription of enhancers (de Santa et al., 2010; Kim et al., 2010). Research in single 

cells later discovered eRNA transcription is unidirectional, and only appears 

bidirectional when considering populations of multiple cells (Kouno et al., 2019). The 

functionality of eRNAs is an area of ongoing research. It has been suggested that eRNA 

transcripts function to stabilise enhancer-promoter looping interactions (Li et al., 

2013), and promote the RNA polymerase pause release (Gorbovytska et al., 2022). In 

addition, the act of eRNA transcription may mutually stimulate transcription of the 

promoter (Panigrahi et al., 2018), and some eRNAs can regulate gene expression in 

trans (Tsai et al., 2018). 

Clusters of enhancers, with elevated binding of transcription factors, BRD4 and 

mediator proteins have been coined super-enhancers. Since 2013, super-enhancers 

have been reported to regulate cell identity genes in humans and mice. It has been 

speculated that super-enhancers evolved to enable gene regulation in response to a 

wide array of cues (Hnisz et al., 2015; Lovén et al., 2013; Whyte et al., 2013). 

In contrast to enhancers, silencers have been comparatively understudied, despite 

being first reported in 1985 (Brand et al., 1985). In efforts to close the gap, a wave of 

recent studies has elucidated silencing mechanisms and catalogued silencers in a range 

of species and cells (Cai et al., 2021; Doni Jayavelu et al., 2020; Huang et al., 2019; 

Ngan et al., 2020; Pang and Snyder, 2020). These have found sequential similarities 

with enhancers, such as evolutionary conservation and the presence of TF binding sites 
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(Doni Jayavelu et al., 2020; Huang et al., 2019). However, they have also found crucial 

differences: there is no characteristic silencer chromatin signature, and silencers may 

operate through diverse direct and indirect mechanisms. Known silencing mechanisms 

include anti-looping (in which silencers block enhancer-promoter interactions), 

competitive TF binding (in which repressive TFs block occupancy of activating TFs at 

bifunctional CREs), transcriptional interference (in which transcription of intragenic 

eRNAs interferes with transcription of the host gene), and polycomb-mediated 

repression (section 1.1.3) (Segert et al., 2021). The concept of super-silencers, long 

stretches of PRC2-bound silencers analogous to super-enhancers, has recently been 

suggested (Pang et al., 2023). Importantly, these studies have found widespread 

bifunctionality of silencers, and have shown that many can function as enhancers in 

different cellular contacts or chromatin environments (Gisselbrecht et al., 2020; Huang 

and Ovcharenko, 2022). 

Whilst cis-regulatory elements are typically divided into four distinct classes 

(promoters, enhancers, silencers, and insulators) there is a growing body of evidence 

which suggests regulatory function is shared between classes, and often fluid. This is 

exemplified by the bifunctionality of silencers (Gisselbrecht et al., 2020; Huang and 

Ovcharenko, 2022), alongside the shared sequence, chromatin and architectural 

features which drive transcription at both enhancers and promoters (Kim and 

Shiekhattar, 2015). This means that many promoters can enhance activity of other 

genes (Dao and Spicuglia, 2018).  The above findings have led researchers to speculate 

that enhancers and promoters exist on a continuum (Mikhaylichenko et al., 2018), or 

are context dependent (Andersson, 2015). Despite similarities, the GC (Guanosine and 

Cytosine) content of a cis-regulatory sequence differs between enhancers and 

promoters. Promoters contain more CpG (Cytosine-phosphate-Guanosine) 

dinucleotides than enhancers, and recruit highly active TFs which bind CpG sites 

(Andersson and Sandelin, 2020).  

 

1.1.3 Transcriptional regulation is shaped by chromatin structure 

Regardless of classification, the chromatin structure of regulatory elements is key to 

their activity. DNA is condensed around a core of eight histone proteins called 

nucleosomes, forming a structure termed chromatin. Precisely, 145-147 base pairs (bp) 
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of DNA is wound around the nucleosome octamer comprised of two of each core 

histone (H2A, H2B, H3 and H4). The linker histone H1 is also attached outside the core. 

The structure of compacted chromatin is described as ‘beads on a string’, with linker 

DNA connecting one nucleosome to the next (Cutter and Hayes, 2015).  

Nucleosomal compaction has a repressive effect on transcription, as RNA polymerase 

is unable to access condensed chromatin. Cis-regulatory activity, and transcriptional 

regulation, instead require an accessible chromatin structure. Alterations to the 

chromatin structure can be achieved through post-translational modifications, which 

usually occur at the exposed N-terminal (amino-terminal) tails of histones. These 

modifications can regulate chromatin structure through nucleosome repositioning, 

both directly and through recruitment of chromatin remodelling enzymes (Bannister 

and Kouzarides, 2011). Some histone modifications with relevance to gene regulation 

are listed in Table 1.1 

 

Table 1.1 Histone modifications and their associated chromatin context  

Histone modification Chromatin context 

H3K27Ac Active chromatin 

H3K27me3 Repressed chromatin 

H3K4me1 Enhancer 

H3K4me3 Promoter 

 

Acetylation of lysine (K) residues is dynamically regulated by histone acetyl transferase 

(HAT) and histone deacetylase (HDAC) enzymes. Acetylation neutralises lysine’s 

positive charge and thereby weakens interactions between histones and DNA 

(Bannister and Kouzarides, 2011). Acetylated lysine residues are recognised by 

bromodomain protein domains in histone re-modellers, TFIID subunits, and BRD4 

(which is involved in the transcriptional pause release, and marks distal enhancers) 

(Filippakopoulos and Knapp, 2012). Deposition of an acetyl group of histone 3 lysine 27 

(H3K27Ac) occurs at active promoters and enhancers, through the HATs p300 and CBP 

(Calo and Wysocka, 2013). eRNAs have been found to stimulate deposition of H3K27Ac 

by CBP (Bose et al., 2017). 

H3K27Ac antagonises the repressive histone modification H3K27Me3 (Pasini et al., 

2010). Trimethylation of H3K27 is performed sequentially by the histone methyl 

transferase (HMT) enzyme EZH2. EZH2 is part of the PRC2 polycomb repressive 
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complex, which serves to compact chromatin through maintenance and further 

deposition of H3K27me3. These H3K27Me3 marks tightly compact chromatin into 

‘heterochromatin’, which silences gene expression by blocking access of transcription 

machinery (Hyun et al., 2017). H3K27Me3 enrichment has been observed at a subclass 

of distal silencers, which repress transcription through chromatin looping (Cai et al., 

2021).  

Lysine methylation is not always repressive, methylation of H3 lysine 4 is associated 

with promoter and enhancer activity, respectively. H3K4me3 is preferentially 

deposited at accessible promoters, and H3K4me1 at accessible enhancers (Heintzman 

et al., 2007). This is due to the targeting of HMTs SET1A and SET1B (which deposit 

H3K4me3) to CpG islands. CpG islands are stretches of DNA with a high density of CpG 

sites which are frequently found in promoters but not in enhancers. Instead H3K4 

mono-methylation is performed by other HMTs which do not show preference for CpG 

sites (Calo and Wysocka, 2013). Enhancers can be switched off during cell-state 

transitions by removal of H3K4me1 by the histone demethylase LSD1 (Whyte et al., 

2012).  

 

Lysine 4 methylation recruits transcriptional co-factors and chromatin modellers with 

specific DNA binding domains, dependent on the number of methyl groups deposited. 

H3K4me3 recruits proteins by their PHD finger domains, resulting in recruitment of 

HATs, which deposit activating chromatin marks to neighbouring nucleosomes, and the 

TFIID complex, promoting effective formation of the transcriptional initiation complex 

(Hyun et al., 2017). Deposition of H3K4me1 has been observed to precede enhancer 

activity, and H3K27 acetylation (Calo and Wysocka, 2013). In numerous systems, 

including embryogenesis and haematopoiesis, H3K4me1 alone has been associated 

with enhancer ‘priming’ (Bonifer and Cockerill, 2017). It is hypothesised that H3K4me1 

marks a window of opportunity for enhancer activation, through the binding of 

pioneer TFs (Calo and Wysocka, 2013). Pioneer TFs are uniquely capable of binding 

closed chromatin. The initial weak binding to heterochromatin triggers epigenetic 

remodelling through the recruitment of cofactors, which begin to open chromatin and 

stabilise occupancy of the pioneer. Pioneer binding and chromatin remodelling serves 
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to make way for further transcription factor binding, and ultimately facilitate 

transcriptional activation (Mayran and Drouin, 2018).  

Multiple histone modifications are often found at regulatory elements. It has been 

proposed that combinations of marks form a ‘histone code’, which specifies the 

transcriptional activity of chromatin (Jenuwein and Allis, 2001). Combinations of 

histone marks used to delineate cis-regulatory function are given in Table 1.2. These 

include H3K4me3 and H3K27me3, which are associated with ‘bivalent’ promoters, 

where contradicting modifications allow for signal-responsive regulation in 

development (Vastenhouw and Schier, 2012). Similarly ‘poised’ enhancers for key 

development genes are marked by H3K4me1 and H3K27me3 in embryonic stem cells 

(ESCs) (Rada-Iglesias et al., 2011). These already exist in looping conformations with 

(bivalent) gene promoters, which may be mediated by PRC2 across long distances 

(Cruz-Molina et al., 2017). 

Table 1.2 Combinations of histone modifications associated with cis-regulatory elements in eukaryotes. 
Enhancers are preferentially marked by H3K4Me1, whereas promoters are preferentially marked by H3K4Me3. 
Additional histone modifications accompanying H3K4 methylation are associated with different enhancer and 
promoter activities.  

Histone modification 
combination 

Cis-regulatory element 

H3K4me1 + H3K27Ac Active enhancer 

H3K4me1 alone Primed enhancer  

H3K4me1 + H3K27me3  Poised enhancer 

H3K4me3 + H3K27Ac Active promoter 

H3K4me3 + H3K27me3 Bivalent promoter 

 

Alongside modification of histones, DNA undergoes epigenetic modification by the 

methylation of cytosine bases. 5mC (5 methyl cytosine) marks are applied de novo by 

DNMTs (DNA methyl transferases) DMNT3A and DMNT3B and are reapplied during cell 

division by DNMT1. DNA methylation is a repressive epigenetic modification that 

mostly occurs at CpG sites, although CpG sites within CpG islands are rarely 

methylated (Moore et al., 2013).  

Both promoters and distal regulatory elements are subject to changes in methylation 

during cellular differentiation. Cell-specific enhancers and promoters undergo de novo 

methylation during embryogenesis to repress tissue-specific programmes of gene 

expression (Koh and Rao, 2013). 5mC (5-methyl cytosine) marks recruit repressive 

chromatin modifiers and may inhibit transcription factor binding (Baubec and 
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Schübeler, 2014). Ubiquitously expressed gene promoters, such as those of house-

keeping genes, are spared from methylation by their location within CpG islands (Koh 

and Rao, 2013). 

Cell-specific cis-regulatory elements are demethylated during differentiation by TET 

enzymes, which catalyse the oxidation of 5mc. Demethylation is mediated during 

enhancer and promoter activation by pioneer TFs, which recruit TET enzymes 

(alongside chromatin re-modellers) to repressed chromatin (Cedar et al., 2022).   

 

1.1.4 Chromatin architecture sets the stage for transcriptional regulation 

Long-range regulatory elements are widely accepted to act through chromatin looping, 

and thus the chromatin architecture is essential for controlling the effects of distal cis-

regulatory elements on gene expression. Interacting cis-regulatory interactions are 

encased within topologically associating domains (TADs). These are roughly ~1Mb 

(megabase) in length in humans, and are delineated by insulators (Dixon et al., 2012). 

Evidence supports a model where chromatin loops form through the process of loop 

extrusion. Here DNA is pushed through the ring-like structure of the cohesin protein 

complex until it is anchored at convergent binding sites for the CTCF transcription 

factor (Davidson and Peters, 2021; Sanborn et al., 2015). These CTCF-delineated TADs 

offer enclosed environments where regulatory interactions may take place between 

the right CREs and the right gene promoters.  

TADs often host multiple looping interactions, involving numerous enhancers and 

promoters, anchored together by hubs of transcription factors. These “transcriptional 

hubs” can either represent dynamic and heterogenous pairwise interactions in a cell 

population, or multiplex contacts on the same chromosome (Di Giammartino et al., 

2020; Tsai et al., 2019). Whilst transcriptional hubs are widely accepted, the 

mechanisms by which they form are currently debated (Figure 1.2). 
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Figure 1.2 Control of transcription by distal cis-regulatory elements. Multi-way cis-regulatory interactions between 
enhancers and promoters take place within topologically associated domains, which are anchored at CTCF proteins 
at insulator regions. RNA polymerase, TFs, cofactors and nascent RNAs, associated with interacting enhancers and 
promoters, form ‘transcriptional condensates’ through the process of liquid-liquid phase separation. The 
contributions of CTCF-mediated loop extrusion and LLPS to chromatin architecture and transcription are currently 
debated. 

 

The well-established chromatin looping model exists alongside the recently introduced 

model of chromatin organisation through liquid-liquid phase separation (LLPS) (Hyman 

et al., 2014; Mir et al., 2019; Palacio and Taatjes, 2022). Recent studies have revealed 

that components of transcription can form discrete ‘molecular condensates’ through 

LLPS (Boija et al., 2018; Cho et al., 2018; Sabari et al., 2018).  

LLPS occurs spontaneously through weak, multivalent interactions between molecules, 

and results in the formation of discrete liquid compartments, analogous to 

‘membrane-less organelles’ (Hyman et al., 2014). TFs, cofactors, RNA polymerase, 

epigenetic modifiers, histones and nascent RNAs are reported to form large 

biomolecular condensates through LLPS (Boija et al., 2018; Cho et al., 2018; Sabari et 

al., 2018). According to the LLPS model, these molecular condensates facilitate 
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interactions between multiple gene promoters and distal CREs, complementary to 

regulation by chromatin looping (Ray-Jones and Spivakov, 2021).  

LLPS can explain recent reports which some researchers argue cannot be explained by 

the chromatin looping model alone. These include observations from cell imaging 

studies of ‘contactless’ enhancers, in which proximity with the promoter is not 

necessary for transcription (Alexander et al., 2019), or which enhancers move away 

from the promoter upon activation (Benabdallah et al., 2019).  

Whilst the emerging LLPS model can fill in gaps unanswered by chromatin looping, its 

functionality in chromatin architecture and gene regulation remains controversial due 

to a lack of conclusive evidence (Palacio and Taatjes, 2022). Researchers have 

proposed that the alternative models of LLPS-mediated transcriptional condensates 

and chromatin looping are complementary (Zhu et al., 2021). There is evidence that 

CTCF-mediated chromatin looping is a pre-requisite for transcriptional condensates 

(Lee et al., 2022). 

 

1. 2. Next Generation Sequencing enables multi-omics analysis of transcriptional 

regulation 

For decades, gene regulation has been studied on a low-throughput scale using 

experimental techniques. Since the advent of next generation sequencing (NGS) we 

have entered the era of high-throughput biology, where ‘omics technologies can 

sequence the entire DNA or RNA content of the nucleus, identify epigenetic changes, 

and detect chromatin topology on a genome-wide scale. 

Since the introduction of commercial platforms in 2005, NGS methods have been used 

to sequence DNA by synthesis on a massively parallel scale. The introduction of these 

second-generation NGS methods marked a step-change in DNA sequencing; improving 

on the slow and costly ‘first generation’ methods, where DNA fragments were 

amplified and separated by electrophoresis using Sanger sequencing (Voelkerding et 

al., 2009). 
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1.2.1 Next generation sequencing methods perform massively parallel DNA 

sequencing 

Second generation methods, such as Illumina sequencing platforms, follow the same 

standard workflow of: 1) library preparation, 2) clonal amplification, 3) sequencing by 

synthesis and 4) bioinformatics analysis.  

In library preparation the DNA is fragmented into short sections of double stranded 

DNA, these are typically 50-300 bp long. These fragments are then ligated to 

sequencing ‘adaptors’ to generate sequencing libraries. These libraries may be ‘single-

end’ or ‘paired-end’, depending on whether the adaptor is ligated to one or both ends 

of the fragment (Pervez et al., 2022).  

Following library preparation, the DNA molecules in the library are attached to a bead 

or ‘flow cell’ (a hollow glass slide). In Illumina sequencing, the flow cell contains 

oligonucleotides which anchor the DNA fragments by their adaptors. The DNA 

fragments, and their attached adaptors, are then amplified by the polymerase chain 

reaction (PCR) to make ~1000 identical copies (Voelkerding et al., 2009).  

After amplification, the reverse DNA strands are washed off the flow cell, and a primer 

attaches to the adapter on the forward strand. In Illumina sequencing, a DNA 

polymerase enzyme then adds fluorescently tagged nucleotides to each DNA strand. 

The fluorophores tagged onto each nucleotide block polymerase. This causes the 

enzyme to stop after adding one nucleotide per round. Each of the four nucleotide 

bases (adenine, thymine, guanosine, and cytosine) is labelled with a different 

fluorescent dye. This means the sequencing machine can read the emission of the 

fluorophore to call the base at each position. After calling the base, the fluorophore is 

washed away so that another labelled nucleotide can be added. Repeated rounds of 

synthesis enable the sequencer to read the whole DNA fragment (Slatko et al., 2018). 

In paired end sequencing, this process is then repeated for the reverse strand.  

Alongside second-generation sequencing, ‘third-generation’ technologies have also 

been emerging. In contrast to ‘short read’ sequencers, such as Illumina platforms, 

technologies by PacBio and Oxford Nanopore Technologies employ ‘long read’ 

sequencing using far longer DNA fragments (Slatko et al., 2018). Long read sequencing 

has greater capability to detect large, complex genetic rearrangements and altered 
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gene splicing, however long read data has not yet been used in computational models 

of gene regulation. For this reason, the section will describe bioinformatics analysis of 

short read sequencing data.  

 

1.2.2 Next generation sequencing data undergo bioinformatics analysis 

Sequencing machines store the base calls for each fragment in large text files which 

encode the base calls at each position alongside their quality scores (FASTQ files). 

Bioinformaticians work with these FASTQ files to check the quality of the sequencing 

reads (QC), remove the sequencing adaptors and low-quality reads (trimming), and 

piece them back together by finding their place on a reference genome or 

transcriptome (mapping). After read mapping, the sequence alignments are stored in 

Sequence Alignment Map (SAM) files, and due to their size are often compressed to 

Binary Alignment Map (BAM) files. SAM/BAM files store the aligned reads, alongside 

details of the alignment. SAM/BAM files can then be filtered to remove unwanted 

noise, such as reads which map poorly, or map to more than one place (Pereira et al., 

2020). 

These ‘processing’ steps are performed using specialised computer programmes and 

are necessary before any biological analysis of the sequencing data can begin. The 

exact bioinformatic analysis from this point onwards depends on the aim of the NGS 

experiment. NGS can be employed with various protocols in order to sequence 

different aspects of nucleic acids (Figure 1.3). These include: 

1) Whole Genome Sequencing (WGS), used to sequence the genome;  

2) RiboNucleic Acid sequencing (RNA-seq), used to sequence the transcriptome;  

3) DNase I hypersensitive sites sequencing (DNase-seq), the Assay for Transpose 

Accessible Chromatin with sequencing (ATAC-seq) and Chromatin Immuno-

Precipitation Sequencing (ChIP-seq), used to sequence epigenomic changes; and  

4) High-throughput Chromosome conformation capture (Hi-C), used to sequence the 

3D conformation of chromatin.  
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Figure 1.3 Some NGS-based omics technologies relevant to gene regulation. In WGS all DNA in the nucleus is 
sequenced, reads map to the whole genome. In RNA-seq, the RNA content of the cell is converted to cDNA and 
sequenced. In mRNA-seq reads map to exons of transcribed genes. In ATAC-seq DNA that is cleared of nucleosomes 
is sequenced, reads map to accessible regions of the genome. In ChIP-seq protein-DNA interactions are crosslinked, 
and DNA sequences occupied by a protein of interest are sequenced. When targeting histone modifications, reads 
map to regions with the chromatin modification. When targeting DNA-binding proteins (e.g., CTCF), reads map to 
the regions at which they are bound. In Hi-C DNA-DNA interactions are crosslinked, and interacting fragments are 
sequenced. Read-pairs map to interacting regions. 
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Each of these technologies, their bioinformatics analysis and their relevance to gene 

regulation will be introduced in the following sections. Bioinformatics processing steps 

for each ‘omics datatype are shown in Figure 1.4. 

Figure 1.4 Bioinformatics processing and analysis of NGS-based omics data. NGS data from genomics (WGS), 
transcriptomics (RNA-seq), epigenomics (ATAC-seq, ChIP-seq), and 3D genomics (Hi-C) protocols is supplied as 
FASTQ files. These undergo common steps of QC, trimming, and mapping and filtering to produce BAM files. After 
mapping, genomics data can undergo variant calling, producing VCF files which can then be filtered and annotated. 
Transcriptomics data, in the mapping step, can be aligned to the genome or transcriptome, and the alignment can 
then be quantified, producing a transcript expression matrix. After mapping, epigenomics data can undergo peak 
calling to identify accessible (ATAC-seq) or protein-bound (ChIP-seq) chromatin. These peaks are stored in BED files 
The signal in these reads can then be quantified, Transcription factor binding sites in peaks can be identified by TF 
motif analysis. Both epigenomics and transcriptomic alignments can be converted to signal tracks in bigWig format, 
for visualisation. After mapping, 3D genomics data (Hi-C) is binned to reduce noise and a chromatin interaction 
matrix is generated (.hic is a common format). TADs and loops can then be identified and stored as BEDPE files. 
Differential analysis of transcriptomic, epigenomic or 3D genomic data from different groups can be performed to 
identify differentially expressed genes, differentially accessible/bound regions, or differential interactions. 
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This thesis focuses on the use of the above technologies, with respect to ‘bulk’ cell 

populations. However recent years have seen the development of single cell 

approaches. The introduction of single cell protocols, and methods of bioinformatic 

analysis and multi-omics integration, is an exciting development in the field of gene 

regulation. Details on the use of single cell multi-omics for gene regulation are 

reviewed in Badia-i-Mompel et al., 2023, Hu et al., 2020 and Vandereyken et al., 2023. 

 

1.2.3 Genomics: Whole Genome Sequencing allows for detection of regulatory 

variants 

In whole genome sequencing (WGS), DNA from an individual is sequenced in order to 

identify genetic variants. WGS is increasingly used in clinical research and healthcare 

settings to identify genetic changes (such as single nucleotide variants, genetic 

rearrangements, and copy number variants) associated with disease. Bioinformatics 

analysis of WGS data involves variant calling, in which specialised software identifies 

how a sequence varies in respect to a reference. In cancer patients, DNA sequences 

from a healthy cell can also be provided to identify variants which have occurred 

somatically in the tumour.  

The relevance of WGS to transcriptional regulation comes from the presence of 

‘regulatory variants’, in which mutations in non-coding DNA disrupt gene regulation. 

Regulatory variants can affect expression through the disruption/creation of 

transcription factor binding sites or the alteration of chromatin domains. Such 

regulatory variants can have drastic consequences for human health, driving both 

cancer and underlying heritable disease (Rojano et al., 2019).  

For example, mutations in the promoter of the Telomerase Reverse Transcriptase 

(TERT) gene are widespread in over 50 cancers. These mutations introduce a binding 

site for ETS transcription factors and lead to overexpression of TERT, which helps the 

cancer cell achieve immortality through aberrant telomerase activity (Rachakonda et 

al., 2021). In another example, inherited deletions of CTCF TAD boundaries in the 

EPHA4 locus rewire its enhancers to regulate neighbouring genes (WNT6, PAX3, IHH) 

and cause limb malformations through altered expression of these developmental 

genes (Lupiáñez et al., 2015).  
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Genome Wide Association Studies (GWAS) are able to associate population-level 

variants with disease incidence. Since 90% of GWAS-identified variants are in non-

coding regions, elucidating the functions of regulatory variants is imperative to 

understand disease pathogenesis and treatment (Cano-Gamez and Trynka, 2020). 

 

1.2.4 Transcriptomics: RNA-seq measures gene expression 

RNA-seq measures the RNA content in a sample of cells. The first step in the RNA-seq 

protocol is isolation of RNA, followed by enrichment or depletion for RNAs of interest. 

To preferentially obtain mRNA content, RNAs can be selected for presence of a poly A 

tail (to obtain mature, processed coding RNAs), or ribosomal RNA can be depleted 

(allowing for inclusion of non-coding RNAs). RNA is then converted to complementary 

DNA (cDNA) using a reverse transcriptase, which can then be sequenced using 

methods described above (Stark et al., 2019). Alignment of RNA-seq data to the 

genome is best performed using a splice-aware aligner to map reads to exons. The 

alignment step is then followed by quantification, in which the number of RNA-seq 

reads overlapping a transcript are counted. Recently, ‘pseudoalignment’ algorithms 

offer a faster, light-weight alternative to the alignment and quantification process. 

These work by directly comparing sequencing read to transcripts in order to estimate 

transcript abundance (Srivastava et al., 2020). 

Researchers often employ RNA-seq to measure changes in RNA levels between 

different experimental groups or time-points. When comparing gene expression, RNA-

seq counts must be normalised, to account for differences in library composition and 

sequencing depth. Normalisation is performed within ‘differential expression’ analysis, 

where genes are tested for differences in expression, accountable to biological factors 

(Van Den Berge et al., 2019). Differentially expressed genes can then be tested for 

enrichment of pathways and gene signatures in order to assign biological function to 

differential expression (Maleki et al., 2020). Gene co-expression across conditions can 

also be analysed through the construction of gene correlation networks. These aim of 

these analyses is to identify co-regulated genes across a biological process, which form 

modules enriched in discrete functional pathways (van Dam et al., 2018).  
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Whilst RNA-seq can be used to measure mRNA content, eRNAs are instead measured 

by alternative transcriptomic methods including CAGE (5’ Cap Analysis of Gene 

Expression) and GRO-seq (Global Run-on sequencing) (Andersson et al., 2014; Core et 

al., 2008). These sequence 5’ capped ends of RNA molecules and nascent transcription, 

respectively. CAGE and GRO-seq capture both mRNA and eRNA transcription. 

 

1.2.5. Epigenomics: ATAC-seq and DNase-seq measure chromosome accessibility, 

ChIP-seq can measure histone modification and transcription factor binding 

 

1.2.5.1 ATAC-seq and DNase-seq  

Active cis-regulatory elements are defined by their accessibility; they must be cleared 

of nucleosomes to make way for transcription factor binding. One of the most useful 

tools in cis-regulome reconstruction is therefore high-throughput sequencing of 

chromatin accessibility. Techniques including DNase-seq and ATAC-seq can be used to 

assay genome wide changes in chromatin accessibility and nucleosome positioning.   

DNA digestion with nuclease enzymes has long been used to determine the chromatin 

structure of DNA. DNase I is an endonuclease which preferentially cleaves regions of 

open, accessible chromatin. For over 40 years, molecular biologists have used DNase I 

to identify nucleosome-depleted ‘DNase I Hypersensitive Sites (DHSs) in order to 

determine the chromatin structure of regulatory sequences (Keene et al., 1981; 

McGhee et al., 1981; Wu et al., 1979). In 2008, the assay for DNase I hypersensitivity 

was combined with next generation sequencing to identify open chromatin regions 

throughout the genome (Boyle et al., 2008). The resulting DNase-seq method emerged 

to be a powerful tool for high-throughput identification of accessible cis-regulatory 

elements.  

DNase-seq requires a large number of input cells. In 2013 a new technique was 

developed with lower sample requirements (thousands vs millions), a faster protocol 

and high sensitivity: the Assay for Transpose Accessible Chromatin sequencing (ATAC-

seq) (Buenrostro et al., 2015, 2013). ATAC-seq uses a hyperactive Tn5 transposase, 

which cleaves accessible DNA and inserts sequencing adaptors (‘tagmentation’). The 
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intervening accessible sequences then undergo amplification and sequencing-by-

synthesis.  

Whilst ATAC-seq has clear advantages, there are a number of technical aspects which 

must be addressed in bioinformatic analysis. This include the Tn5 cleavage bias, the 9 

bp duplication following repair of the Tn5 cleavage site, and the high coverage of 

mitochondrial reads. ATAC-seq is also capable of identifying mononucleosome, and 

poly-nucleosomes alongside nucleosome free regions (Yan et al., 2020). Therefore 

many ATAC-seq pipelines include post-alignment steps to shift reads (+4 bp on the 

positive strand and -5 bp on the negative strand), filter out mitochondrial DNA 

(mtDNA), and select for fragments >100 bp in length (identifying nucleosome-depleted 

regions) (Yan et al., 2020).  

Accessible regions of DNA can be identified from both DNase-seq and ATAC-seq by the 

process of ‘peak calling,’ in which algorithms identify regions of the genome with an 

elevated number of mapped reads (Figure 1.5). Accessible transcription factor binding 

sites can then be identified within these peaks by performing TF motif analyses, which 

considers the conserved sequences to which TFs bind. TF motif analyses will be 

described in detail in the introduction of chapter 3. Researchers interested in finding 

accessibility changes between samples can also perform quantification and differential 

accessibility analysis (Yan et al., 2020).  
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Figure 1.5 Identification of cis-regulatory features from ‘omics data. WGS is able to categorise variants in cis-
regulatory elements. RNA-seq is able to quantify the expression of genes. ATAC-seq and DNase-seq can identify cis-
regulatory elements as ‘peaks’ and quantify their accessibility. ChIP-seq, targeted to histone modifications, can 
identify CREs with histone marks that indicate their cis-regulatory function; whilst ChIP-seq targeted to transcription 
factors can identify CREs bound by a TF of interest. Hi-C can identify chromatin interactions between cis-regulatory 
elements as bin-pairs in a contract matrix with elevated contact counts above (distance-dependent) background 
levels. 
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1.2.5.2 ChIP-seq 

Chromatin Immuno-Precipitation sequencing (ChIP-seq) is a versatile tool for 

identifying DNA regions which are bound by a protein. ChIP-seq emerged in the late 

2000s, coupling the popular molecular biology technique of chromatin 

immunoprecipitation with NGS. The protocol involves chemically crosslinking DNA-

protein interactions, shearing the chromatin and using antibodies to select DNA bound 

by proteins of interest by ‘immunoprecipitation’ (Johnson et al., 2007). The extracted 

DNA is then reverse cross-linked, purified, amplified, and sequenced. ChIP-seq 

experiments can employ antibodies to target TFs, co-activators, histone modifications, 

RNA polymerase and CTCF to identify cis-regulatory elements.  

Like ATAC-seq and DNase-seq, ChIP-seq data can undergo peak calling to identify 

regions occupied by the protein or marked by the histone modification. Similarly, peak 

calling can be followed by motif analyses or differential binding analyses (Nakato and 

Sakata, 2021).  

 

1.2.5.3 Epigenomics analysis can also measure DNA methylation 

Alongside changes to chromatin, epigenomics technologies can also probe methylation 

of DNA. Methylated cytosines can be distinguished from unmethylated cytosines by 

treatment with sodium bisulfite, which deaminates cytosine when unmethylated. This 

approach is employed in Whole Genome Bisulfite Sequencing (WGBS), in which DNA 

fragments undergo bisulfite conversion prior to amplification and NGS (Cokus et al., 

2008). Alignment and methylation calling of bisulfite sequencing data requires bespoke 

software designed for use with this particular datatype (Rauluseviciute et al., 2019). 

   

1.2.6 3D Genomics: Chromosome Conformation Capture technologies measure 

chromatin topology 

Chromosome Conformation Capture (3C) techniques enable researchers to measure 

the chromatin topology of DNA. High resolution chromatin capture methods have 

quickly become the gold standard approach to identify chromatin interactions 

between cis-regulatory elements. 3C and its variants are based on the crosslinking of 

DNA with formaldehyde to stabilise looping interactions between genomic regions. In 
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the original 3C technique, crosslinking was followed by restriction enzyme digestion, 

ligation and PCR to detect topological interactions (Dekker et al., 2002).  

In the following years, the original 3C protocol was improved to detect all interactions 

for a single specified region (4C – one vs all), or all interactions between restriction 

fragments within a 1Mb region (5C – many vs many). However, it was not until 2009 

that the first all-vs-all approach was developed, employing NGS. The introduction of 

Hi-C marked the first genome-wide chromatin interaction mapping technology. Here 

all interacting loci are crosslinked, subject to restriction enzyme digest and ligated 

before fragments are analysed by paired-end sequencing. Since this is a high-

throughput assay, Hi-C is considerably more expensive than its low-throughput 

predecessors (Lieberman-Aiden et al., 2009; Whitaker et al., 2015).  

However, the genome-wide scale of Hi-C comes at the expense of resolution. The 

highest-resolution protocols (such as in situ Hi-C, capable of detecting interactions 

between 1kb-long segments) require billions of sequencing reads (Rao et al., 2014). Hi-

C data also requires careful filtering at the post-alignment stage to ensure only ‘valid 

read pairs’ for chromatin contacts are retained. Following alignment, a contact matrix 

can be generated, giving the interaction count between two genomic regions (Figure 

1.5). Due to the noise of Hi-C data, interactions are placed in bins, ranging from 

kilobases to megabases in scale (Lajoie et al., 2015).  

Bioinformatics analysis of Hi-C data can identify chromatin structures. Various 

algorithms have been designed to segment Hi-C data into TADs or identify chromatin 

loops as bin-pairs with contact counts elevated above the background level. Whilst Hi-

C data can offer direct support for candidate cis-regulatory interactions, it is important 

to note that many chromatin loops are not regulatory, or even biologically functional. 

When multiple Hi-C experiments are performed across different conditions or time-

points, differential interaction analysis can be performed in order to identify changes 

in chromatin architecture (Pal et al., 2019). 

Chapter 5 of this thesis will also introduce two other 3D genomics technologies: 

promoter-capture (PC) Hi-C and ChIA-PET (Chromatin Interaction Analysis by Paired 

End Tagging). These enable genome-wide, high resolution detection of chromatin 
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interactions involving gene promoters (PC Hi-C), or interactions mediated by a protein 

of interest (ChIA-PET) (Fullwood et al., 2009; Mifsud et al., 2015).  

 

1.2.7 Web resources and databases host a treasure-trove of NGS data 

Both individual research groups and large global consortia have characterised the 

genomes, transcriptomes, epigenomes and 3D genomes of diverse cell types, species, 

and diseases. The NGS explosion has produced a vast reservoir of ‘omics data, which 

can be accessed by researchers through online databases (Table 1.3).   

In a push towards open science, researchers are encouraged to archive their data to 

one of more webservers to facilitate data sharing and reproducibility. These include 

publicly available repositories, such as the Gene Expression Omnibus (GEO) and 

Sequence Read Archive (SRA). Controlled resources such as the European Genome-

phenome Archive (EGA) enable the sharing of personally-identifiable data between 

verified researchers (Barrett et al., 2013; Leinonen et al., 2011). 

Collaborations between scientists, as part of global consortia have played a pivotal role 

in sequence data generation and curation. These include projects such as ENCODE, 

Roadmap, FANTOM5 and 4D Nucleome which focus on collating ‘omics data with 

relevance to gene regulation, epigenomics and chromatin architecture. Each of these 

projects comes with its own web platform, enabling free access to an abundance of 

sequencing data from cell lines, primary cells and tissues (Andersson et al., 2014; 

Dekker et al., 2017; Dunham et al., 2012; Roadmap Epigenomics Consortium et al., 

2015). 

Specialised databases focused on specific diseases or systems provide a valuable 

resource of clinical NGS data. This is exemplified by the landmark The Cancer Genome 

Atlas (TCGA) project, which between 2006-2018 generated and catalogued genomic, 

transcriptomic and epigenomic profiles for 33 tumour types from over 11,000 cancer 

samples (Hutter and Zenklusen, 2018). In haematology, the Blueprint project aimed to 

understand gene regulation in blood cells and haematological tissues. Between 2011-

2016 the Blueprint consortium generated hundreds of healthy and diseased 

epigenomes and transcriptomes to aid the study of haematopoietic differentiation, 
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haematological malignancies and autoimmune disease (Martens and Stunnenberg, 

2013).  

Blueprint, ENCODE, Roadmap, 4D Nucleome and others are united under the banner of 

the International Human Epigenome Consortium (IHEC). The IHEC started as a global 

effort to catalogue 1,000 human reference epigenomes (Pratt and Weng, 2018), and 

the IHEC data portal offers open-access to thousands of epigenomic datasets produced 

by its member consortia (Stunnenberg et al., 2016). 

 

Table 1.3 Projects and databases hosting NGS data relevant to gene regulation 

Project/database Description Data Stored 

ENCODE  
Dunham et al., 

2012 
 

Project aiming to identify functional elements in 
the genome through mapping transcription, TF 

binding, histone modification and chromatin 
structure 

Transcriptomics, Epigenomics, 3D 
Genomics 

Roadmap 
Epigenomics  

Roadmap 
Epigenomics 

Consortium et al., 
2015 

Project aiming to generate epigenomic maps of 
human primary cells 

Epigenomics, Transcriptomics 

FANTOM5 
Andersson et al., 

2014 

Project aiming to catalogue active enhancer and 
promoter elements through CAGE 

Transcriptomics (CAGE) 

4D Nucleome 
Dekker et al., 2017 

Project aiming to understand nuclear organisation 
and its role in gene regulation 

Epigenomics, Transcriptomics, 3D 
Genomics 

Blueprint 
(Martens and 

Stunnenberg, 2013 

Project aiming to generate epigenomic maps of 
haematological cells and diseases 

Epigenomics, Transcriptomics 

The Cancer 
Genome Atlas 

(TCGA) 
Hutter and 

Zenklusen, 2018 

Project aiming to characterise genomic changes in 
cancer 

Genomics, Transcriptomics, 
Epigenomics, 3D Genomics 

Gene Expression 
Omnibus (GEO) 

Barrett et al., 2013 

NCBI public repository of raw and processed NGS 
and microarray data 

Genomics, Transcriptomics, 
Epigenomics, 3D Genomics 

Sequence Read 
Archive (SRA)  

Leinonen et al., 
2011 

NCBI public repository of raw NGS reads Genomics, Transcriptomics, 
Epigenomics, 3D Genomics 

 

1.3 Statistics and machine learning can predict transcriptional regulation from NGS 

data  

This wealth of NGS data has fuelled the development of computational methods, 

which reconstruct transcriptional regulation using statistics and machine learning. This 
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section will provide a high-level introduction to machine learning, and overview 

methods to identify cis-regulatory elements and their target genes. 

Machine learning aims to build automated models capable of learning patterns from 

input data (Li et al., 2015). These models can learn from examples (supervised) or 

recognise patterns without labels (unsupervised). Supervised machine learning makes 

use of labelled ‘training’ data. Here the machine learning algorithm can ‘learn’ the 

features associated with different labels to build a model. This model can then be 

tested, optimised, and used to assign labels to new data (Libbrecht and Noble, 2015). 

Unsupervised machine learning does not require any training data; instead, the model 

looks for patterns in the data to identify different classes. If some, but not all data is 

labelled, machine learning is semi-supervised (Lim et al., 2018).  

Alongside supervision, machine learning methods can be defined as either 

discriminative or generative. Discriminative approaches focus on the differences 

between labelled groups of data to maximise predictive power, these are usually 

supervised. Conversely, generative approaches build profiles of the features most 

associated with each group, these are usually unsupervised (Whitaker et al., 2015). All 

machine learning methods learn their labels from ‘features’ of the data. These 

features, also called variables, can either be categorical or numerical.  

 

1.3.1 Machine learning can predict cell-specific cis-regulatory elements from 

epigenomic and sequence features 

Both supervised and unsupervised methods have been applied to the task of cis-

regulatory element prediction. These methods aim to annotate active cis-regulatory 

elements based on their epigenomic and sequence features. This subsection will 

overview computational methods designed to predict distal cis-regulatory elements 

from NGS features in mammalian systems, using either unsupervised and supervised 

machine learning. These methods will be used to introduce concepts in statistics, 

machine learning and gene regulation which are relevant to work in the thesis. 
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1.3.1.1 Unsupervised probabilistic graphical models can annotate cis-regulatory 

elements by genome segmentation 

Unsupervised machine learning seeks to find patterns in data from unlabelled inputs. 

This class of methods includes clustering, where data-points are placed in groups 

based on measures of similarity, and probabilistic graphical models (PGMs). PGMS 

capture conditional dependencies of interacting random variables using graphs. These 

models are typically unsupervised and generative, building full models for each class of 

data. For this reason, PGMs best lend themselves to the task of genome segmentation, 

to assign functions to chromosome segments using epigenomic features (Kleftogiannis 

et al., 2016). Two landmark PGMs are ChromHMM and Segway, launched respectively 

by the ENCODE and Roadmap consortia to segment and annotate elements of the non-

coding genome (Ernst and Kellis, 2012; Hoffman et al., 2012) (Figure 1.6). 

 

Figure 1.6 Use of probabilistic graphical models for unsupervised genome segmentation. Example shows a 
Dynamic Bayesian Network predicting labels of ‘hidden’ chromatin states from observable epigenomic signals. In 
this example the state of a chromatin segment is a hidden variable, generated by a Markov process where the state 
of each segment depends on the preceding segment. Here we cannot observe the hidden state of each chromatin 
segment, but we can observe the signals emitted in NGS data. For example an active enhancer region would emit 
signals for chromatin accessibility (measured by ATAC-seq/DNase-seq) and H3K4me3 modification (measured by 
ChIP-seq).  Examples of genome segmentation PGMs include ChromHMM and Segway. 
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ENCODE’s ChromHMM model uses multiple histone marks and CTCF binding to 

annotate genomic regions by ‘chromatin state’ – with classifications including active 

TSS, active enhancer, weak enhancer and heterochromatin (Ernst and Kellis, 2012). 

ChromHMM is based on a multivariate, first-order Hidden Markov Model (HMM) 

framework. HMMs model ‘Markov processes’ where the chain of events cannot be 

observed, yet hidden states can be indirectly measured from related visible states (Li 

et al., 2015). In an HMM the progression of hidden states (transmission probability) 

can be inferred from the emission of observed states (emission probability). 

HMMs are the simplest form of Dynamic Bayesian Networks (DBNs), where the state in 

a sequence depends on previous states in the sequence (Li et al., 2015). Segway is a 

DBN developed by the Roadmap consortium to annotate the genome based on 

chromatin accessibility, histone modification and TF binding features. Segway 

performs annotation at every single base (Hoffman et al., 2012), offering a higher-

resolution segmentation than ChromHMM which places bases into 200 base-pair bins 

(Kleftogiannis et al., 2016). Both ChromHMM and Segway have been used to perform 

joint annotation of cis-regulatory elements in ENCODE cell types (Hoffman et al., 

2013). 

 

1.3.1.2 Supervised machine learning models can classify enhancers  

Supervised machine learning aims to ‘learn’ the relationship between input and output 

variables from labelled ‘training’ data to make predictions from new, unlabelled data. 

Most supervised methods are discriminative, and therefore excel at separating classes. 

Supervised methods can be applied to one of two tasks, regression, or classification, 

depending on whether the dependent variable is continuous or discrete (Schrider and 

Kern, 2018). Supervised methods have been widely used for the task of cis-regulatory 

element classification, and are most frequently used to identify cell-specific active 

enhancers from epigenomic and sequence features (Figure 1.7). 
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Figure 1.7 Supervised methods to identify cell-specific active enhancers. Supervised machine learning methods to 
classify cell-specific active enhancers from epigenomic (and sometimes sequence) features. Methods are trained on 
examples of active enhancers, and employ classifiers to predict unlabelled active enhancers. Popular supervised 
methods are explained diagrammatically, showing the use of epigenomic features to classify active enhancers and 
non-enhancers. Decision trees use a flowchart-like model of nodes and branches to split the data based on features. 
Decision trees can be aggregated by bagging (e.g. Random Forest) or boosting to strengthen performance. Support 
vector machines use kernels to transform data to higher dimensions, and then separate datapoints by a 
‘hyperplane’. Artificial neural networks are brain-inspired models which pass data through layers of nodes to make 
predictions. Neural networks with multiple hidden layers of nodes are deep neural networks. 

Decision trees can be used in machine learning to solve classification (or regression) 

problems. Here each ‘leaf’ node represents a class label, whilst each ‘branch’ 

connection is the set of features leading to that decision (Schrider and Kern, 2018). 

Decision trees can be aggregated to bolster the strength of the classification, by either 

bagging (bootstrap aggregation) or boosting.  

In bagging, the training data is randomly divided into subsets with replacement, and 

individual trees perform prediction on each subset. Predictions can then be averaged 

across this ‘ensemble’ of trees to produce a more robust decision. Bagging is often 

performed with the Random Forest method, where each tree is trained using a 

random combination of features (Breiman, 2001). Random forests are a popular choice 

for classifying both enhancers and enhancer-gene pairs. The approach forms the core 

classification mechanism of enhancer-predictors including RFECs and REPTILE (He et 

al., 2017; Rajagopal et al., 2013). 
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In boosting, trees are trained consecutively on the full set of data, with the error of 

one tree passed to the next. By increasing the weight of misclassified datapoints, the 

next tree works harder to reduce the error in the model. Boosted decision trees are 

used in the DELTA model, which predicts enhancers from the shape-features of 

chromatin modification signals (Lu et al., 2015). 

Support Vector Machine (SVMs) are discriminative models which seek to separate 

classes of data by the optimal dividing decision boundary, or ‘hyperplane’ (see Figure 

3f). Here data-points are plotted in high-dimensional space by a ‘kernel’ function, 

where a kernel transforms feature-vectors into higher-dimensional space based on 

measures of similarity (Schrider and Kern, 2018). Models like ChromaGenSVM and 

DEEP have employed SVMs to classify active enhancers (Fernández and Miranda-

Saavedra, 2012; Kleftogiannis et al., 2015). SVMs can also be employed within the 

context of multiple kernel learning, where a combination of kernels is used. Multiple 

kernel learning is applied in the EnhancerFinder approach (Erwin et al., 2014). 

Artificial Neural Networks take inspiration from neural connections in the brain, 

applying this architecture to solve machine learning problems. Neural networks (Figure 

3e) are composed of multiple layers of nodes – or ‘neurons’ – which relay inputs from 

one layer to a series of hidden layers, and finally to the output layer where a 

classification decision is reached based on a combination of features (Schrider and 

Kern, 2018). Artificial neural networks have been employed to predict cell-specific 

active enhancers in methods such as CSI-ANN and DEEP (Firpi et al., 2010; Kleftogiannis 

et al., 2015). Artificial neural networks with three or more hidden layers are 

categorised as deep neural networks and perform deep learning. Deep learning is 

employed by models including PEDLA and DECRES (Y. Li et al., 2018; Liu et al., 2016). 

 

1.3.1.3 Supervised model performance hinges on training data 

Supervised machine learning is defined by its use of labelled training data to make 

predictions from new, unlabelled data. The success of a supervised model therefore 

hinges on the choice of training data. Failure to choose an appropriate training set can 

result in overfitting and poor predictive performance. It is important that training data 

closely represents the full variety and distribution of its data-type (Libbrecht and 
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Noble, 2015). In the case of enhancer prediction, this means labelled enhancers should 

be randomly selected from the entire genome and possess a range of sequence and 

epigenomic properties, representative of their full variation. Curating a set of ‘ground 

truth’ enhancers is itself a difficult task. Despite the efforts of databases like VISTA 

there is no true gold standard of validated, labelled enhancers (Visel et al., 2007).  

At the time of writing, the VISTA database has catalogued 1699 human and murine 

enhancers whose activity has been validated by in vivo transgenic mouse experiments. 

These involved the use of reporter assays, where candidate enhancer sequences were 

integrated upstream of minimal promoters for a gene with a measurable protein (such 

as a fluorescent protein). VISTA also reports the tissue where expression was reported 

in developing mouse embryos (Visel et al., 2007). Enhancers from VISTA have been 

used to train models including EnhancerFinder. Whilst Erwin et al. reported improved 

performance of EnhancerFinder on previous models, it noted bias towards regions 

with high conservation in the VISTA training set (Erwin et al., 2014).  

The development of Massively Parallel Reporter Assays (MPRAs) such as STARR-seq 

(Self-Transcribing Active Regulatory Region sequencing), has enabled researchers to 

screen for cis-regulatory activity on a high-throughput scale (Arnold et al., 2013). 

Whilst MPRAs have enabled functional validation of cis-regulatory elements on an 

unprecedented scale, they also face limitations, chiefly the inability to test CREs in 

their chromatin environment (Inoue and Ahituv, 2015). MPRAs have been used to train 

predictive methods such as DeepSTARR (de Almeida et al., 2022).  

Many supervised methods train their models on enhancers supported by functional 

‘omics data, not experimental validation. These include methods such as CSI-ANN, 

ChromaGenSVM, RFECs, DELTA and REPTILE, which train their predictions on distal 

regions of open chromatin bound by the histone acetyltransferase p300 (Heintzman et 

al., 2007). Similarly, DEEP (when applied to ENCODE data) was trained on enhancer 

labels based on joint ChromHMM and Segway annotations (Hoffman et al., 2013), and 

DECREs was trained on CAGE positive transcribed enhancers from FANTOM5 

(Andersson et al., 2014).  
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1.3.1.4 Model performance can be evaluated by cross-validation or testing 

Alongside positive examples of active enhancers, classifiers must be provided with 

examples of non-enhancers. These negative examples, and the ratio of positives to 

negatives are highly important to model performance.  Negative labels are often 

random genomic regions or shuffled enhancer sequences, but vary by method 

(Kleftogiannis et al., 2016). It is important to ensure that unwanted biases are 

corrected for between positive and negative classes, to prevent model overfitting. 

Differing numbers of positive and negative labels can lead to the problem of class 

imbalance and impair performance. Class imbalance is rife within enhancer prediction 

since there are vastly more non-enhancers than enhancers in the genome. Models 

trained on class imbalanced datasets are resultantly biased towards non-enhancers 

(Libbrecht and Noble, 2015). Ensemble classifiers, like DEEP, DELTA and RFECs, are 

noted to perform better than single classifiers on class-imbalanced training sets.  

(Kleftogiannis et al., 2015; Lu et al., 2015; Rajagopal et al., 2013). 

Once a model has been trained on labelled data its performance can be tested by 

making predictions on independent datasets with known labels. Many models are also 

evaluated through cross-validation, in which a fraction of the training set (n) is 

removed and reserved for training. This is performed n number of times with the 

subsection to be held-back rotating each time, cross-validation when n=5 is known as 

5-fold cross-validation. Whilst models should ideally be tested on independent ‘testing’ 

datasets, cross-validation offers a robust method of testing when labelled datasets are 

limited (Schrider and Kern, 2018). 

 

There are many measures of model performance with no single best metric; these 

include accuracy, precision and recall. Performance metrics are calculated through 

evaluating the numbers of true positives (TPs; correctly labelled as enhancer), true 

negatives (TNs; correctly labelled as non-enhancer), false positives (FPs; incorrectly 

labelled as enhancer), and false negatives (FNs; incorrectly labelled as non-enhancer). 

Accuracy is the percentage of correct predictions, precision (also called positive 

predictive value) is the percentage of true positives of all predicted positives, and recall 

(also called sensitivity) is the percentage of true positives of all actual positives. A 
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balanced measure of performance is the F1-score, which is the harmonic mean of 

precision and recall (Libbrecht and Noble, 2015).  

Binary classifiers often predict labels using a threshold, where the model outputs the 

probability that a prediction belongs to a class label (from 0 to 1) and a decision 

boundary is chosen. Performance, independent of threshold, can be measured on 

precision-recall curves, in which precision and recall are plotted for each threshold of 

the classifier. Threshold-independent performance can then be measured as the Area 

Under the Precision Recall curve (AUPR). Similarly AUROC scores (Area Under the 

Receiver Operating Curve) give threshold independent measures of true positive rate 

(i.e. recall) and false positive rate (the percentage of false positives out of all actual 

negatives) (Libbrecht and Noble, 2015).  

 

1.3.1.5 Active cis-regulatory elements can be predicted from epigenomic, 

transcriptomic and sequence features 

All the methods introduced in this section, regardless of methodology or supervision, 

learn the epigenomic features associated with cell-specific cis-regulatory elements. 

Epigenomic features can be derived from NGS applications and include chromatin 

accessibility, methylation, histone modifications, and occupancy by proteins (including 

TFs, cofactors, RNA polymerase and CTCF). Epigenomic features can also be 

accompanied with sequence features including conservation and transcription factor 

binding sites, as well as GC content and CpG islands. Features considered by NGS-

based predictive models, described in this section, are given in Table 1.4. 
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Table 1.4 Methodological details for models designed to predict cell-specific active cis-regulatory elements from 
NGS data. 

Publication Software Inputs Feature types Methods Training 
Enhancers 

Firpi, Ucar & 
Tan 2010 

CSI-ANN ChIP-seq Histone modification Feature 
Extraction: 
Fisher 
Discriminant 
Analysis 
 
Classification: 
Artificial Neural 
Network 

p300 binding  

Fernandez 
and Saavedra 
2012 

Chroma-
GenSVM 

ChIP-seq Histone modification Classification:  
Support Vector 
Machine 

p300 binding  

Ernst and 
Kellis 2012 

ChromHMM ChIP-seq 
DNase-seq 

Histone modification 
TF binding 
Chromatin accessibility 

Segmentation: 
Hidden Markov 
Model 

- 

Hoffman et 
al. 2012 

Segway ChIP-seq 
DNase-seq  

Histone modification 
TF binding 
Chromatin accessibility 

Segmentation: 
Dynamic 
Bayesian 
Network 

- 

Rajagopal et 
al. 2013 

RFECs ChIP-seq Histone modification Feature 
selection and 
classification: 
Random Forests 

p300 binding  

Erwin et al. 
2014 

Enhancer-
Finder 

DNase-seq, 
ChIP-seq, 
 

Histone modification 
TF binding 
Chromatin accessibility 
Sequence 
 

Classification: 
Support Vector 
Machine 

VISTA validated 

Kleftogiannis, 
Kalnis & Bajic 
2015 

DEEP 
(DEEP-
ENCODE) 

ChIP-seq Histone modifications Classification:  
Support Vector 
Machine 
Ensembl + 
Neural Network 

ChromHMM and 
Segway 
annotations 

Lu et al. 2015 DELTA ChIP-seq Histone modification  Classification: 
Boosted 
decision trees 

p300 binding  

Liu et al. 
2016 

PEDLA ChIP-seq 
DNase-seq 
RNA-seq 
Bisulfite 
sequencing 
 

Histone modification  
TF binding 
Chromatin accessibility 
DNA methylation 
Sequence  

Classification: 
Neural Network 
+ Hidden 
Markov Model 

H3K27Ac  

He et al. 
2017 

REPTILE ChIP-seq 
Bisulfite 
sequencing 
 

Histone Modification 
DNA methylation 

Classification: 
Random Forest 

p300 binding  

Li, Shi & 
Wasserman 
2018 

DECREs ChIP-seq 
DNase-seq 
ChIA-PET 

Histone modification 
TF binding 
Chromatin accessibility 
Sequence 

Feature 
Selection & 
Classification:  
Deep Neural 
Networks 

eRNA 
transcription  

 

The methods in Table 1.4 use NGS data to identify enhancers with cell-specific activity. 

However recent advances in generative artificial intelligence have inspired models 

which can identify cell-specific enhancers (and their effects on expression) from 
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sequence features alone. These methods, including Basenji and DeepMind’s Enformer 

model, work by generating tissue-specific epigenomic and transcriptomic signals from 

DNA sequence (Avsec et al., 2021; Kelley et al., 2018). Recently, machine learning 

models have been developed to predict silencers from sequence (Doni Jayavelu et al., 

2020; Huang and Ovcharenko, 2022; Zeng et al., 2021).  

 

1.3.2 Machine learning models can link cis-regulatory elements to target genes 

through multi-omics integration  

Enhancers and silencers are most likely to regulate proximal genes that are within the 

same topologically associated domain (Zuin et al., 2022). However cis-regulatory 

elements do not always regulate their nearest gene, and may control expression over 

hundreds of thousands of base pairs (Lettice et al., 2003). To accurately identify target 

genes for cis-regulatory elements, computational methods have been designed to 

predict cis-regulatory interactions from NGS data. The work presented in this thesis is 

focused on this task. 

Multi-omics, predictive methods work through integrating genomic, epigenomic, 

transcriptomic and 3D genomics datatypes. This may involve training models on 

‘validated’ enhancer-gene pairs or correlating cis-regulatory features with features of 

promoters or genes. This section overviews supervised and unsupervised methods 

which predict gene-specific cis-regulatory elements in mammals through multi-omics 

integration. 

 

1.3.2.1 Chromatin contacts and eQTLs can link cis-regulatory elements to target 

genes in silico  

Interactions between genes and distal cis-regulatory elements can be identified 

experimentally or detected from ‘omics data. ‘Omics based approaches to assign cis-

regulatory elements to target genes include eQTL (expression Quantitative Trait Loci) 

analysis and the detection of chromatin interactions from 3D genomics data. This 

subsection will introduce multi-omics methods to predict cis-regulatory interactions 

using eQTL and chromatin interaction datasets (Figure 1.8). More detail on eQTLs and 
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chromatin interactions will be provided in chapter 5, in the context of model 

evaluation. 

 

Figure 1.8 Methods to predict cell-specific enhancer-promoter interactions from multi-omics data, using eQTLs or 
chromatin interactions. Unsupervised EPI predictors (such as the Activity-by-Contact model by Fulco et al. 2019) 
can use chromatin interaction data as a feature, and supervised EPI predictors can use chromatin interactions (or 
eQTLs) in model training. Diagrams describe workflows of 5 supervised models, with boxes showing training data, 
input data and classification method. Colours indicate use of omics datatypes (teal – transcriptomics, yellow - 
epigenomics, pink – 3D genomics) within EPI prediction models. 

eQTLs can be identified through integration of population-level genomic and 

transcriptomic datasets, where genetic variants are tested for association with gene 

expression (Nica and Dermitzakis, 2013). Since most eQTLs are found outside of 

promoter regions, this approach can be used to link distal CREs to their target genes. In 

2013 Wang et al. used eQTLs to train a random forest classifier to predict target genes 

for regulatory variants from TF binding, chromatin accessibility, gene expression and 

distance features. This approach achieved good performance in cross-validation and 

cross-cell line prediction, and outperformed predictions made by distance alone (Wang 

et al., 2013).  

Cao et al. 
2019

Whalen et 
al. 2016

Roy et al. 
2015

He et al. 
2015

Fulco et al. 

2019
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3C-based datatypes, such as Hi-C and ChIA-PET, can identify cis-regulatory elements 

involved in chromatin looping interactions. Chromatin interactions, filtered for those 

involving distal CREs and gene promoters, can therefore be used define training sets 

for supervised methods. Alternatively, chromatin contacts can be used as a feature for 

unsupervised prediction. This strategy is used by Fulco et al.’s Activity-by-Contact 

model which combined epigenomic activity (from DNase/ATAC-seq and H3K27Ac ChIP-

seq) with Hi-C-derived chromatin contacts in a rule-based approach. The Activity-by-

Contact model was shown to accurately predict experimentally-validated enhancers-

gene pairs, and outperformed both distance and supervised machine learning 

approaches (Fulco et al., 2019) 

Despite their demonstrable utility, high-throughput 3D genomics techniques, like Hi-C, 

are expensive. Large numbers of cells and high sequencing depths are required to 

achieve resolution capable of detecting interactions between cis-regulatory elements 

(Rao et al., 2014). This has limited their application to a handful of well-studied cell 

types. To address this gap researchers have developed supervised machine learning 

models which aim to learn the features associated with cis-regulatory interactions. 

These models can then be trained on cell-specific chromatin interaction datasets, and 

then applied to detect additional cis-regulatory interactions in the same or different 

cell types.  

Supervised models include IM-PET, RIPPLE, TargetFinder and JEME which all aim to 

identify cell-specific enhancer-promoter interactions (EPIs) using tree-based classifiers 

(Cao et al., 2017; He et al., 2014; Roy et al., 2015; Whalen et al., 2016). All four models 

were trained on chromatin interactions from 3C-based datasets (5C, Hi-C or ChiA-PET), 

which were filtered for interactions involving annotated gene promoters and 

enhancers. Negative pairs were generated through a variety of methods, such as by 

assigning active enhancers to random, non-interacting target genes. Epigenomic, 

sequence and transcriptomic features were then obtained for candidate enhancers, 

promoters and ‘windows’ (defined as DNA segments between enhancers and 

promoters). Prior to classification, RIPPLE and JEME performed an additional step to 

select (RIPPLE) or weight (JEME) the epigenomic features used in the final classifier. All 

four methods reported excellent predictive performance (Cao et al., 2017; He et al., 

2014; Roy et al., 2015; Whalen et al., 2016). 
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In recent years, supervised EPI predictors have been criticised for their overfitting to 

training data. It was shown that random cross-validation schemes, used to test 

TargetFinder and JEME models, failed to account for shared-features between 

enhancer-promoter pairs. (Cao and Fullwood, 2019; Xi and Beer, 2018). Xi and Beer 

retested TargetFinder with chromosomally sorted cross validation folds (ensuring that 

shared promoter and window features were grouped together) and performance 

metrics fell drastically. Cao and Fullwood replicated this finding and reported a loss of 

performance when retesting JEME. They also investigated JEME’s training set and 

found a large distance-bias between positive and negative classes.  

 

1.3.2.2 Correlation and regression techniques can pair cis-regulatory elements to co-

active target genes 

Neither chromatin interactions nor eQTLs truly represent ‘ground truth’ cis-regulatory 

interactions. Whilst useful, both datatypes face several limitations and biases 

(discussed in chapter 5). These biases may be inherited when training supervised 

models, or when used as a predictive feature. Avoiding bias introduced by these 

datatypes, unsupervised methods can link cis-regulatory elements to target genes 

using correlation or regression approaches. These methods aim to find relationships 

between CRE activity and gene regulation over datasets comprising multiple cell-types 

(Figure 1.9). As such their predictions lack cell-specificity, and these methods cannot 

recognise cis-regulatory relationships which do not involve correlation. These include 

interactions involving primed enhancers, accessible prior to expression, or bifunctional 

silencers/enhancers, which remain accessible despite a change in TF-driven activity.  
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Figure 1.9 Methods to predict gene-specific cis-regulatory elements through correlation or regression of 
epigenomic and transcriptomic features. Epigenomic features are shown in gold and transcriptomic features are 
shown in teal. Shen et al., 2012, Thurman et al., 2012 and Sheffield et al., 2013 correlated epigenomic features of 
enhancers with epigenomic/transcriptomic features of gene promoters using Spearman or Pearson correlation. 
Andersson et al. 2014, Hait et al., 2018 (FOCS), Vijayabaskar et al. 2019 and Schmidt et al., 2021 (STITCHIT) used 
penalised regression models (LASSO or Elastic Net) to select enhancers with epigenomic or transcriptomic features 
that predicted gene promoter activity. 

Amongst this class of methods, the simplest approaches look for correlation between 

epigenomic and/or transcriptomic features at distal CREs and promoters. Examples are 

found in Shen et al., 2012, which correlated histone marks at candidate enhancers with 

RNA polymerase binding at gene promoters; Thurman et al., 2012, which correlated 

chromatin accessibility at candidate enhancers with chromatin accessibility at 
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promoters; and Sheffield et al., 2013 which correlated chromatin accessibility at 

candidate enhancers with gene expression at promoters. 

Regression analysis can also be used to test the relationship between a dependent 

variable (i.e., a promoter feature) and one or more independent variables (i.e., distal 

CRE features). In linear regression, the relationship between continuous explanatory 

and response variables is modelled linearly. Regression analysis estimates coefficients 

for each independent variable, giving the strength and direction of the relationship. 

When the dependent variable is binary, logistic regression can be applied by 

performing regression on a logit (logarithm of the odds) instead of linear scale 

(Stoltzfus, 2011). Linear regression can be used to predict new values of the dependent 

variable, and logistic regression can be used to solve binary classification problems. 

Regression models can be prone to overfitting, where the model learns noise and 

outliers in the training data. To avoid overfitting, regularisation techniques can be 

applied. Regularisation methods apply a penalty to predictor variables, which ‘shrinks’ 

the regression coefficients to reduce the complexity and variance of the model. 

Regularisation techniques are particularly useful when handling high-dimensional 

datasets, such as those produced by NGS. 

Regularisation techniques like ridge regression can reduce overfitting by shrinking 

regression coefficients using the L2 penalty (where coefficients are penalised by the 

square of the coefficient) (Hoerl and Kennard, 1970). Alternatively, coefficients can be 

shrunk through the L1 penalty, equal to the absolute magnitude of the coefficient. The 

L1 penalty is applied in LASSO (Least Associated Squares Shrinkage Operator) 

regression (Tibshirani, 1996a).  Unlike ridge regression, LASSO regression can shrink 

less-predictive coefficients down to zero and eliminate them from the model. This is 

called variable selection. LASSO is often employed for the purpose of variable 

selection, as well as prediction.  

LASSO regression has been applied in gene regulation to perform variable selection on 

cis-regulatory elements. This approach involves the construction of gene-specific 

models, where promoter activity, or gene expression, is predicted from the activity of 

cis-regulatory elements. The FANTOM5 consortium used LASSO regression to select 

enhancers whose CAGE signal (from eRNA transcription) predicted the CAGE signal at 
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nearby promoters (from mRNA transcription) (Andersson et al., 2014). LASSO 

regression was employed by the Westhead group to select candidate CREs whose 

chromatin accessibility predicted expression of a nearby gene from ENCODE data (Shar 

et al., 2016). 

Whilst LASSO can select gene-specific cis-regulatory elements by constructing sparse 

models, it is unstable in cases of multicollinearity (in which multiple predictive features 

are highly correlated). Multicollinearity can cause the model to drop variables at 

random, whilst selecting others that are highly correlated. In order to mitigate the 

instability of LASSO regression, the elastic net was proposed. Elastic net regression 

allows for the L1 LASSO penalty to be mixed with the L2 Ridge penalty (Zou and Hastie, 

2005). Elastic net regression was been employed in the FOCS and STITCHIT models to 

predict gene-specific cis-regulatory elements (Hait et al., 2018; Schmidt et al., 2021). 

FOCS and STITCHIT were inclusive of diverse cis-regulatory element types, including 

negatively correlated silencers. 

Whilst elastic net regression alleviates the instability of LASSO, it does so at the cost of 

sparsity. The Westhead group devised an alternative approach to alleviate instability: 

preceding LASSO regression with a community detection step. This community 

detection step, introduced in Vijayabaskar et al., 2019, reduced multicollinearity by 

grouping correlated predictors together, based on co-activity and TF co-binding. The 

community detection step had the conceptual advantage of grouping together cis-

regulatory elements which may coregulate expression together, reflecting regulation 

by transcriptional hubs.  

 

1.4 There is an outstanding need for applicable, implementable, and interpretable 

methods to predict gene regulation 

Computational prediction of gene regulation is a prolific area of research. A wide range 

of features and methodologies have been suggested across dozens of predictive 

models. Whilst these methods have strengthened our understanding of the molecules 

which orchestrate transcription, there is still no consensus on how best to predict cis-

regulatory elements, and to link them to their target genes. Recent advances in 

machine learning and 3D genomics have inspired methods which boast impressive 
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performance on well-studied cell types. However, many of the methods overviewed in 

this chapter are hindered by unachievable input requirements, lack of open-source 

software and inattention to biological interpretation.  

This thesis argues there is an unmet need for methods designed, not just with 

performance in mind, but for use in real research scenarios. Methods should be 

designed in line with the needs of researchers: to characterise the transcription 

factors, cis-regulatory elements and genes which drive systems of differentiation or 

disease – and to do this easily at low cost. 

To address this gap in methods, the overarching aim of the thesis is to develop a 

method which is 1) applicable, 2) implementable and 3) interpretable. The rationale 

for these criteria is as follows: 

1. Methods should be applicable 

Many of the methods overviewed in this section require an abundance of input 

NGS datatypes for each sample. Many researchers, studying gene regulation on 

a budget, will be unable to meet the input requirements to use these methods. 

Amongst the least applicable tools are TargetFinder (which used over 50 NGS 

datasets per sample) and RIPPLE (which used 23 NGS datasets per sample). It 

can be argued these methods have little applicability outside of well-studied 

cell lines. Even the simple Activity-by-Contact model requires cell-specific Hi-C 

data for optimum performance, which is highly expensive. This thesis argues 

that methods should be designed with applicability in mind, and therefore 

should aim to work with minimal data inputs. 

 

2. Methods should be implementable 

Scientific research is experiencing a huge push towards reproducibility, and 

bioinformaticians should be designing tools with reproducibility in mind. Some 

methods to predict gene regulation are difficult to reproduce due to a lack of 

usable software. This is particularly true for many of the most ‘applicable’ 

correlation and regression-based models. Less-implementable approaches 

include methods like Thurman et al. and Andersson et al. (which rely on users 

following descriptions in the paper) or models like FOCS (which require users to 

adapt code made available on a webserver). For methods to be easily 
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implementable, they should be packaged into software, which is easy to install 

and use, and available under an open-source licence. 

 

3. Methods should be interpretable 

Finally, this thesis argues that methods to predict gene regulation should be 

biologically interpretable. Interpretable methods give clear explanations of why 

a cis-regulatory interaction has been predicted and offer a framework for 

researchers to further explore predicted regulation. Whilst supervised models 

can offer interpretability by examining feature importance, unsupervised 

approaches inspired by cis-regulatory mechanisms are most interpretable. 

Examples of highly interpretable models include Activity by Contact (enhancers 

regulate genes if they are highly active and in contact with a promoter) and 

Vijayabaskar et al. (CREs regulate genes together if they are co-bound by TFs 

and co-active with gene expression).  

 

Over the following chapters, this thesis will work towards developing a method which 

is applicable, implementable, and interpretable. This will culminate in the application 

of the method to identify new, biologically important mechanisms of gene regulation 

in the process of B cell differentiation – in which antibodies are produced during 

infection. In four results chapters, this thesis will make contributions to the fields of 

bioinformatics, gene regulation, and immunology as summarised below: 

Chapter 2: The method from Vijayabaskar et al. 2019 is compared to the supervised 

JEME model. The analysis finds the two methods performed comparably and supports 

the co-authored publication of Vijayabaskar et al. 2019.  

Chapter 3: The method from Vijayabaskar et al. 2019 is adapted for streamlined 

epigenomic and transcriptomic inputs. The resultant method, cisREAD, requires just 

two input datatypes and is capable of performing bottom-up discovery of key trans-

regulators. The method is supported by an open-source R package and is presented in 

the first-authored publication of Emmett et al. 2023. 

Chapter 4: The cisREAD method is applied to ATAC-seq and RNA-seq datasets across an 

in vitro system of B cell differentiation. The results are leveraged on a global scale to 
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identify a crucial shift in transcription-factor led regulation. cisREAD is also shown to 

recall known gene-specific cis-regulatory elements, and to generate new hypotheses of 

transcriptional control for master regulators. This chapter also contributes to Emmett 

et al. 2023. 

Chapter 5: cisREAD is benchmarked against JEME, Activity-by-Contact and Pearson 

correlation methods using chromatin interaction datasets. cisREAD is found to best 

identify distal cis-regulatory interactions, which supports Emmett et al. 2023. 

These chapters will be followed by a discussion in chapter 6, which brings together 

each of these contributions, and discusses their impact. This chapter will evaluate 

whether the development of cisREAD achieved the aim of an interpretable, 

implementable, applicable method. It will also discuss limitations faced in the thesis 

and suggest avenues for future work. Importantly it will highlight the potential for this 

work to uncover mechanisms underpinning gene dysregulation in disease. 
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Chapter 2. Vijayabaskar et al. and JEME methods comparatively predict gene 

regulation in murine haematopoiesis 

 

2. 1 Introduction 

Chapter 1 introduced supervised and unsupervised methods to predict gene-regulation from 

multi-omics data. This chapter focuses on comparing the performance of two of these 

methods: the supervised JEME model from Cao et al., 2017, and Vijayabaskar et al.’s 

unsupervised regression approach. Work presented in this chapter was published in 

Vijayabaskar et al., 2019. 

In their 2019 paper, Vijayabaskar et al. described a novel approach to identify 

communities of Cis-Regulatory Elements (coCREs) which co-regulate the expression of 

differentiation-associated genes. Their method combined RNA-seq, DNase-seq and 

ChIP-seq data to identify gene-specific cis-regulatory elements in two separate murine 

lineages, branching from embryonic stem cells to cardiomyocytes, or macrophages.  

This chapter describes the application of the JEME model to the macrophage lineage 

dataset, to compare performance with the Vijayabaskar et al. approach. This was 

achieved through evaluation of predicted gene-specific cis-regulatory elements against 

a set of experimentally validated enhancers. 

The following introduction will briefly describe blood cell development, with focus on 

transcriptional control, as well as the Vijayabaskar et al. and JEME methods of 

enhancer prediction. 
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2.1.1 Blood cells differentiate from embryonic stem cells by haematopoiesis 

Haematopoiesis is the process of blood cell development and differentiation (Figure 

2.1). Starting from early embryonic development, haematopoiesis takes place in waves 

of primitive and definitive haematopoiesis: firstly, to supply the developing embryo, 

and finally to seed adult blood cell populations. In vitro models of haematopoiesis, are 

able to recapitulate blood cell differentiation; generating blood cell precursors and 

terminally-differentiated endpoints (e.g. macrophages) from embryonic stem cells 

(Figure 2.1). These tractable model systems allow researchers to study the regulatory 

dynamics which control blood cell development in early embryogenesis. 

Figure 2.1 Haematopoetic differentiation from embryonic stem cells to macrophages. During gastrulation, 
embryonic stem cells (ESCs) give rise to the mesoderm (MES). Haemangioblasts (HB), with both endothelial and 
haematopoietic potential, arise from the mesoderm and differentiate into haematopoietic endothelial cells (HE). 
Haematopoietic progenitors (HP), also known as haematopoietic stem cells, emerge from this haemogenic 
endothelium, in an endothelial-to-haematopoietic transition. Haematopoietic progenitors (HP) have potential to 
produce terminally differentiated blood cell populations. Macrophages (MAC) differentiate from HPs along the 
myeloid lineage, through myeloid progenitor and monocyte cell states. 
 

The first wave of primitive blood cell development takes place around embryonic day 

7.25 (E7.25), shortly after gastrulation, in mouse embryonic development. Here the 

extra-embryonic mesoderm of the yolk sac brings forth erythroid precursors, 

macrophages and megakaryocyte progenitors to meet the needs of the developing 

embryo (Lacaud and Kouskoff, 2017). 

This is followed by another wave of haematopoietic differentiation, also in the yolk 

sac, a day later at E8.25. From this process emerge erythro-myeloid progenitors, 

capable of giving rise to most erythroid and myeloid lineages. These progenitors 

expand into the foetal liver where they differentiate into mature blood cells (Mcgrath 

et al., 2015). The yolk sac also begins to generate lymphoid precursors at around E9.0 

(Lacaud and Kouskoff, 2017). 
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Progenitors capable of giving rise to the full range of adult haematopoietic lineages 

begin to appear at E10.5, this time in major arteries – notably the dorsal aorta. 

Haematopoietic progenitors produced here (also referred to as haematopoietic stem 

cells) seed the foetal liver around E11.5 and expand in population (Medvinsky et al., 

2011). This is succeeded by colonisation of the bone marrow by E16.5 (Lacaud and 

Kouskoff, 2017). 

Whilst these processes take place in different structures, and branch to different 

endpoints, the initial process of transition is broadly similar. 

Haemangioblasts are mesoderm-derived clonal precursors with both endothelial and 

haematopoietic potential (Lacaud and Kouskoff, 2017). Haemangioblasts have been 

shown to generate populations of haematopoietic endothelial cells in a process 

regulated by the TAL1 TF (Lancrin et al., 2009). 

Definitive haematopoiesis in the yolk sac at E8.25 (erythro-myeloid progenitors) and 

E9.0 (B and T lymphoid precursors), as well as in the dorsal aorta at E10.5, has been 

evidenced to arise from the haematopoietic endothelium. Although the first primitive 

precursors emerge at E7.25 from a cell type with endothelial markers, there is debate 

over whether this constitutes a haematopoietic endothelium as vasculature has yet to 

be formed – instead the term ‘haemogenic angioblast’ has been proposed (Lacaud and 

Kouskoff, 2017). 

Regardless of terminology, all these processes are unified by a common endothelial to 

haematopoietic transition, marked by changes in cell morphology and motility. The 

RUNX1 TF drives this transition in all waves of definitive haematopoiesis, but not the 

primitive E7.25 wave (Chen et al., 2009; Lancrin et al., 2009; Long and Joanna, 2018). 

Macrophages are produced during all waves of embryonic haematopoiesis and, like 

other blood cells, are continuously replenished by HSCs throughout adulthood. This 

process consists of the progressive differentiation of haematopoietic progenitors to 

bipotential granulocyte-macrophage progenitors, to monocyte-progenitors, to mature 

monocytes and finally to terminally differentiated macrophages (Mcgrath et al., 2015). 

The PU.1 TF plays an important role in macrophage differentiation (Goode et al., 

2016). 
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Regulation of gene expression is essential for establishing and maintaining cell fate 

specification and cell identity. Networks of core TFs, and their regulatory elements, 

control these complex transcriptional programs. Experimental studies in blood cells 

have helped elucidate key players in haematopoietic regulatory circuits (Goode et al., 

2016; Schütte et al., 2016). 

In 2016, Goode et al. isolated 6 cellular stages on the journey from embryonic stem cell 

to macrophage. RNA-seq, DNase-seq and ChIP-seq experiments were performed on 

embryonic stem cells (ESCs), mesodermal cells (MES), haemangioblasts (HB), 

haematopoietic endothelial cells (HE), haematopoietic progenitors (HP) and 

macrophages (MAC) to explore how TF dynamics shape blood cell specification. This 

dataset was used by Vijayabaskar et al. to identify CREs important to haematopoietic 

differentiation (Vijayabaskar et al., 2019). 

 

2.1.2 The Vijayabaskar et al. method predicts gene-specific cis-regulatory elements 

by community detection and LASSO regression 

Vijayabaskar et al.’s penalised regression approach predicted regulatory elements in a 

gene-specific manner, based on chromatin features and TF occupancy. The approach 

was unique in that it considered groups of enhancers, with correlated epigenetic and 

TF-binding patterns, to co-regulate expression as communities of cis-regulatory 

elements (coCREs) (Vijayabaskar et al., 2019).  

The method first identified overlapping DHS/H3K27Ac peaks within 100kb of a TSS as 

‘candidate CRE’s. Chromatin activity profiles were calculated from DNase-seq and 

H3K27Ac ChIP-seq signals for each candidate CRE across the dataset. Binary TF binding 

profiles, where 1 is a binding event and 0 is an absence, were obtained by overlapping 

CREs with TF ChIP-Seq peaks in cells with TF data. Candidate CREs with correlated with 

chromatin activity profiles and transcription factor binding profiles were grouped 

together to form coCREs in a community detection step, using the fastgreedy 

algorithm (Clauset et al., 2004). Candidates not assigned to a community were termed 

‘singleton CREs’, only singleton CREs within 20kb of a TSS were considered further. 

Gene-specific LASSO models were then constructed to identify singleton and coCREs 

whose chromatin activity profiles (for coCREs the average of individual member 
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profiles) were most predictive of gene expression (Tibshirani, 1996b). The significance 

of selected predictors, as they enter the LASSO model, was tested using the covariance 

test (Lockhart et al., 2014). 

The Vijayabaskar et al. model selected cis-regulatory elements for 6,715 differentially 

expressed genes. These selected CREs were found to be enriched for chromatin 

activity, TF binding and conservation, compared to all candidate regulators. 

Vijayabaskar et al. also reported significant overlaps with murine super-enhancers, 

characterised by TF binding and chromatin modification (Wei et al., 2016; Whyte et al., 

2013), and experimentally validated enhancers, active in mouse haematopoiesis 

(Schütte et al., 2016).  

The enrichment of enhancer features, and significant overlap with enhancer sets, 

indicated that the Vijayabaskar et al. method correctly prioritised gene-specific 

enhancers, important to murine haematopoiesis. However, the method’s 

performance, relative to other models, had not yet been tested.  

 

2.1.3 The JEME method predicts enhancer-promoter interactions using LASSO 

regression and a random forests classifier 

Cao et al.’s Joint Effects of Multiple Enhancers (JEME) method employed a two-step 

machine learning framework to predict cell type-specific enhancer-TSS interactions. 

Firstly, LASSO linear regression models were constructed to estimate the ability of 

DNase, H3K27Ac, H3K27Me3 and H3K4Me1 signals to predict the expression of a TSS 

within 1Mb of an enhancer (Tibshirani, 1996b). Secondly, LASSO error terms were 

input along with DNase and histone enhancer, promoter and window (the chromatin 

segment between a promoters and enhancer) features into a Random Forest classifier 

trained on chromosome conformation data (Breiman, 2001).    

JEME was originally trained on ChIA-PET data, targeting RNA polymerase II, from 

human chronic myeloid leukaemia cell line K562 and applied to 127 human samples 

analysed by the integrated Roadmap and ENCODE Epigenomics project (Dunham et al., 

2012; Roadmap Epigenomics Consortium et al., 2015).  JEME also made predictions for 

808 human samples from the FANTOM5 consortium using an altered feature set where 

eRNA expression was substituted for epigenetic signals (Andersson et al., 2014).  
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Cao et al. evaluated the performance of their model by cross-validation, alongside 

validation against chromatin interactions and eQTLs in same-sample and cross-sample 

tests. They found their model was better able to link enhancers to target genes than 

alternative methods. These included assigning enhancers to random genes, assigning 

enhancers to their nearest gene, or assigning enhancers to genes using a random 

forests model with distance as the only feature. 

 

2.1.4 Rationale for comparison 

To evaluate the performance of predictive methods, it is important to understand how 

a method performs relative to other methods. Whilst both methods were validated 

against indicators of enhancer activity, or enhancer-promoter interactions, neither had 

been compared to alternative published models at the time of writing.  

JEME was chosen for comparison to the Vijayabaskar et al. method, due to its status as 

a recent state-of-the-art method and its similar use of LASSO regression. The decision 

was also influenced by the availability of most input requirements (JEME was 

applicable) and the provision of open-source software (JEME was implementable).  

Despite some similarities, the two methods were designed for different purposes. 

JEME is a supervised enhancer-promoter interaction (EPI) predictor. It aims to identify 

target gene promoters for all active enhancers in a sample. Contrastingly, the 

Vijayabaskar et al. method is an unsupervised approach to identify cis-regulatory 

elements (including enhancers and promoters) whose co-activity drives expression of 

genes important to differentiation. Importantly this means it does not predict all cell-

specific EPIs (like JEME) but predicts the interactions most important to a system. This 

crucial difference must be considered when interpreting any comparisons.  

 

2.2 Aims and Objectives 

This chapter aimed to evaluate the ability of the Vijayabaskar et al. method to link 

enhancers to their correct target genes, in comparison with the JEME model. To 

achieve this aim the following objectives were set out: 
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1) to apply the JEME model to predict enhancer-promoter interactions in murine 

haematopoietic cell stages; 

2) to evaluate the performance of JEME on the murine haematopoietic system; 

and 

3) to compare the performance of JEME with the performance of the Vijayabaskar 

et al. method. 

 

2.3 Methods 

2.3.1 Datasets 

To meet objective 1, JEME was reapplied to the haematopoietic dataset from Goode et 

al. 2016, which was used in Vijayabaskar et al. 2019. This required unavoidable 

alterations to the original method. Since JEME was originally applied to predict EPIs in 

human cells and tissues, the random forest classifier was retrained for application to 

murine cells. The feature set input to JEME was altered due to the lack of H3K4me1 

ChIP-seq in the haematopoietic dataset. This mark was instead substituted with 

H3K4me3, which was available. Whilst both these features should be useful for 

prediction, they are not equivalent. H3K4me1 preferentially localises to enhancers and 

H3K4me3 to promoters (Calo and Wysocka, 2013). The altered training and input 

datasets used for application of JEME are shown in Figure 2.2. 
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Figure 2.2 Training and input datasets used during reapplication of JEME to the murine haematopoietic system. 
JEME was retrained on one Hi-C dataset from embryonic stem cells (ESCs). For each cell stage – ESC, mesoderm 
(MES), haemangioblast (HB), haematopoietic endothelium (HE), haematopoietic progenitor (HP) and macrophage 
(MAC) – five datasets (RNA-seq, DNase-seq and ChIP-seq for H3K27Ac, H3K27me3 and H3K4me3) were input to 
JEME.  
 

JEME source code was downloaded from https://github.com/yiplabcuhk/JEME and 

adapted to the haematopoietic dataset. JEME’s Random Forest classifier was also 

downloaded and retrained on class labels derived from ESC Hi-C data using the WEKA 

software (Mark et al., 2009).  Enhancer-TSS interactions were predicted in MES, HB, 

HE, HP, and MAC cells using the default threshold of 0.35, used in the original Cao et 

al., 2017 paper. Input file processing, model training and evaluation of results are 

described below. 
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2.3.2 Processing of input datasets 

To reapply JEME to the murine haematopoietic system DNase, H3K27Ac, H3K27me3 

and H3K4Me3 signals were extracted from .bigWig DNase-seq and ChIP-seq files which 

were generated by Vijayabaskar et el. 2019. These signals were extracted for ‘active 

enhancer’ ‘promoter’ and ‘window’ regions as described below. 

JEME step 1 involves the construction of pairwise LASSO linear regression models 

where enhancer features are correlated with the expression of a nearby (<1Mb) gene. 

To achieve this, JEME requires a set of potential enhancer-TSS pairs alongside DNase 

and histone enhancer features and TSS expression. 

In their original paper, Cao et al. used 15-state ChromHMM predictions to define active 

enhancers in each sample. ChromHMM  made predictions using ChIP-seq signal data 

imputed for 16 histone marks in the 127 ENCODE + Roadmap cells (Ernst and Kellis, 

2015). As equivalent feature data was unavailable, active enhancer predictions were 

taken from the modified 4-state ChromHMM analysis performed by Goode et al. 2016. 

A set of 124,004 enhancers was curated by taking the union of all enhancers predicted 

active by the custom ChromHMM model in at least one cell. 23,697 protein-coding 

TSSs were obtained from the mm10 RefSeq Curated annotation using the UCSC table 

browser (Karolchik, 2003; O’Leary et al., 2016). Enhancers were paired to all protein-

coding TSSs within 1Mb, generating a total of 3,658,772 potential pairs. 

Enhancers were resized to a uniform length of 2,500bp, centred on the middle co-

ordinate, as originally performed by Cao et al., 2017.. DNase and histone ChIP-seq 

signals were averaged across the 2,500bp regions to generate enhancer features for 

each cell type. Expression counts in RPKM (Reads Per Kilobase of transcript per Million 

mapped reads) were calculated for each ‘gene’ – defined as the 1,000bp window 

centred on each TSS – and log2 transformed with a pseudocount of 1. 

Code was run for JEME step 1 and LASSO error terms were calculated for potential 

enhancer-TSS pairs in each cell type. Enhancer-TSS pairs were modelled according to 

Equation 2.1. 

Equation 2.1 Linear models constructed in step 1 of JEME 

y = ai0 + ∑ aijxij,

j
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Here y represents the expression of a TSS, j is a nearby enhancer and i each predictive 

feature – summated over all enhancers within 1Mb of the TSS. The term xij denotes 

the value of feature i in enhancer j and aij represents the coefficients learned by 

LASSO. 

Error terms eijk were computed according to the Equation 2.2 to describe how well TSS 

expression y can be explained by each feature i of enhancer j independently in sample 

k. 

Equation 2.2 Calculation of LASSO error terms for predictive features in step 1 of JEME 

eijk = |yk − (ai0 + aijxijk)|
,
 

 

During step 2, promoter, window, and active enhancer features are input into the final 

Random Forest classifier alongside their LASSO error terms and genomic distance. For 

each sample, only enhancers predicted to be active in that cell type were considered. 

DNase-seq and ChIP-seq signals were averaged across uniform 2,000bp wide promoter 

regions, taken from 1,500bp upstream of a TSS to 500bp downstream (as performed 

by Cao et al., 2017). Epigenetic signals were also averaged across ‘window’ regions – 

the segment of DNA between an active enhancer and its paired TSS. Genomic 

distances were calculated for potential enhancer-TSS pairs. 

Altogether this yielded a total of 17 features for consideration by the final model: 4 

epigenetic features (DNase, H3K27Ac, H3K27Me3 and H3K4me3) were considered for 

active enhancers, promoters and windows, accounting for a total of 12 features. 4 

LASSO enhancer-TSS pair error terms (one per epigenetic feature) and genomic 

distance made up the final five features.  

 

2.3.3 Retraining the JEME Model  

Hi-C contacts from murine ESCs, published in Krijger et al. 2016 (uploaded to GEO 

under the accession GSM2026260) was used to assemble the new set of training pairs. 

An enhancer-TSS pair was placed in the positive set if a co-ordinate within an enhancer 

region interacted with a co-ordinate within a gene promoter. The ratio I/N of 
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interacting pairs I (positive class) to non-interacting pairs N (negative class) was 

determined by Equation 2.3. 

Equation 2.3 Calculation of ratio of positive to negative class labels in the retraining of JEME’s random forest model 

I

N
=

ER

P − ER
 

Here E is the number of active enhancers, P is the number of enhancer-TSS pairs 

within 1Mb and R is the average number of TSSs per active enhancer (Cao et al., 2017). 

Aiming for a ratio of 0.15 (the value selected by Cao et al. for their training set) a total 

of 18,353 positive and 122,353 background pairs were calculated (Table 2.1). 

Background, non-interacting, pairs were assembled using the ‘random targets’ method 

described by Cao et al., in which enhancers from the positive pair set were randomly 

assigned to non-interacting TSSs within 1Mb (Cao et al., 2017).  

 

Table 2.1 Positive and negative enhancer-TSS pairs in ESC cells used to retrain JEME 

 Number 

Active Enhancers E 29,743 

Enhancer-TSS Pairs P 901,479 

Average Number TSSs per Active Enhancer R 3.95 

Ratio of Positive to Negative Pairs x 0.15 

Interacting Pairs I 18,353 

Non-Interacting Pairs N 122,353 

 

 

2.3.4 Evaluation of JEME through cross-validation 

To meet objective 2, the performance of the retrained JEME model was evaluated 

through cross-validation and validation with external data.  

Five-fold cross-validation was performed in WEKA to evaluate the performance of the 

retrained JEME model (Mark et al., 2009). Cross validation was performed with both 

random and chromosomally-sorted folds, as recommended in Xi and Beer, 2018 and 

Cao and Fullwood, 2019. Performance metrics were calculated using definitions 

defined in section 1.3.1.4 of the introduction. 
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2.3.5 Evaluation of JEME performance with validated enhancers 

The performance of JEME was also compared to haematopoietic enhancers for 9 

transcription factor genes, which were validated by reporter assays by (Schütte et al., 

2016). To match the HPC-7 cell type used in the study, enhancers predicted for these 

genes in HP cells were selected for comparison. JEME-predicted enhancers were 

considered validated as true positives (TPs) if they intersected a Schutte et al. 

enhancer by at least one base pair, and false positives (FPs) if they overlapped a region 

found to lack enhancer activity by Schutte et al. True negatives (TNs) were predicted 

non-interacting enhancers (for the TF genes) which overlapped an inactive region from 

Schutte et al. Conversely false negatives (FNs) were predicted non-interacting 

enhancers which overlapped a Schutte et al. enhancer. Precision, recall and F1 scores 

were calculated from these definitions. WEKA was also used to obtain threshold 

independent AUPR and AUROC scores. Predictions by Vijayabaskar et al. were also 

intersected with JEME-predicted and Schutte et al. validated enhancers. 

 

2.3.6 TF binding, DNase I hypersensitivity and H3K27Ac Analysis 

Due to the small size of the Schutte et al. dataset, and the large number of predictions 

made by JEME, additional criteria were defined to suggest the haematopoietic activity 

of a predicted enhancer. These were DNase I hypersensitivity or H3K27 acetylation, 

and occupancy by two or more TFs. These regions were identified by intersecting 

DNase-seq and ChIP-seq peaks in HP (peak calling and cut-off p-values described in 

Vijayabaskar et al. 2019) with co-ordinates for HP JEME predictions to select novel 

enhancer candidates for the nine loci from Schütte et al. 2016. 

To visualise predicted and validated gene-specific enhancers, .bigWig tracks for 10 TFs 

(CEBPβ, FLI1, GATA1, GATA2, GFI1, GFI1B, LMO2, PU.1, RUNX1 and TAL1), DNase 

hypersensitivity and H3K27Ac in HP cells were uploaded to the Integrative Genomics 

Viewer along with co-ordinates for validated and predicted enhancers (Robinson, 

2012).  For Runx1, enhancers from Marsman et al., 2017 were also compared. 
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2.3.7 Comparison with Vijayabaskar et al. predictions 

To meet objective 3, predictions made by JEME were compared to predictions made 

by Vijayabaskar et al. 2019. Genomic coordinates were overlapped for JEME predicted 

enhancer-TSS pairs (from any cell type) and selected CREs-gene pairs from 

Vijayabaskar et al. 2019. JEME predictions were limited to active enhancers paired to 

genes within 100kb of a TSS considered by Vijayabaskar et al., predicted in one or 

more samples using bedtools (Quinlan and Hall, 2010). A hypergeometric test was 

performed in R to calculate the significance of overlap for JEME and Vijayabaskar et al. 

predictions.  

 

2.3.8 Evaluation of JEME and Vijayabaskar et al. predictions using experimentally 

validated enhancers 

Finally, the set of experimentally validated enhancers from Schutte et al. was used to 

compare the performance of JEME and Vijayabaskar et al. methods. The two sets of 

predictions were compared to the validated enhancers, and inactive regions, to true 

and false positive predictions and calculate performance metrics. 

 

2.4 Results 

2.4.1 JEME predicted enhancer-promoter interactions in haematopoietic cell stages 

JEME predicted interactions between 106,538 enhancers and 18,056 TSSs, constituting 

551,456 unique enhancer-TSS pairs, in at least one of the five cell types (MES, HB, HE, 

HP and MAC). Predicted EPIs in individual samples ranged from 86,494 in MES to 

250,293 in HB cells (Table 2.2). The retrained JEME model predicted more interactions 

per sample than other predictive methods (FANTOM5 JEME: average 2,392, IM-PET: 

17,483-71,536, RIPPLE: 11,696-32,308) (Cao et al., 2017; He et al., 2014; Roy et al., 

2015). 

The median distance between an enhancer and its paired TSS was under 100kb in all 

cell lines (Table 2.2), yet JEME predicted pairs were separated by a maximum distance 

approaching the upper limit of 1Mb. Figure 2.3 shows that distances were similarly 

distributed across all prediction samples and the ESC training set. Median distances 
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reported here were similar to those reported for FANTOM5 JEME (33-77kb) and IM-

PET (58-123kb) (Cao et al., 2017; He et al., 2014). 

Each enhancer was predicted to interact with a mean of 5–14.2 TSSs depending on cell 

type (Table 2.2, Figure 2.4A). These values were higher than the average number of 

enhancers per gene in the ESC training set (mean = 2), and the range of means 

predicted by FANTOM5 JEME (range = 1.3-2) (Cao et al., 2017). Current estimates place 

the average number of enhancers per gene slightly higher, between 4 and 5, in human 

cell lines; however the re-applied JEME model still exceeded these values in most 

samples (Jin et al., 2013; Lam et al., 2015; Mora et al., 2015).  

The mean number of TSSs per enhancer was higher in all JEME predicted cells than in 

the ESC training set (Table 2..2, Figure 2.4B). However FANTOM5 JEME predicted 

similar numbers of TSSs per enhancer (mean 2.3 to 5.5) (Cao et al., 2017). 

The majority (64.6%) of enhancers intersected with an H3K27Ac peak in one or more 

of the samples in which it was predicted active. A slightly lower number of enhancers 

(40%) intersected with a DHS, and a total of 35.2% of predictions were both H3K27Ac 

enriched and DNase I hypersensitive (Table 2.2). Whilst these values varied between 

cell-lines, H3K27Ac enrichment and DNase I hypersensitivity levels in the ESC training 

enhancers fell within this range (Figure 2.5). 
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Table 2.2 Details of genome-wide JEME predictions (threshold=0.35) and positive ESC training pairs 

 

 

 

 

 JEME Predictions ESC 

(Train-

ing) 
 MES HB HE HP MAC Any 

Interacting 

Enhancers 
22,283 50,144 45,802 38,511 35,058 106,538 11,349 

Enhancer-TSS 

Interactions 
86,494 250,293 197,664 177,283 143,807 551,456 18,353 

Interacting TSSs 17,262 17,598 17,929 17,617 17,651 18,056 9,216 

Median Distance 

to TSS (bp) 
54,094 85,047 80,308 69,397 64,482 92,943 62,341 

Mean Enhancers 

per TSS 
5.01 14.22 11.02 10.06 8.15 30.54 2.0 

Mean TSSs per 

Enhancer 
3.88 4.99 4.32 4.6 4.1 5.2 1.6 

H3K27Ac Marked 

Interacting  

Enhancers 

68.5% 61.4% 76.3% 60.6% 71.5% 64.6% 62.3% 

DNase I 

Hypersensitive 

Interacting 

Enhancers 

49.9% 31.1% 56.5% 30.9% 60.6% 40.0% 58.8% 

H3K27Ac Marked 

& DNase I 

Hypersensitive 

Interacting 

Enhancers 

44.5% 26.5% 50.6% 26.9% 51.5% 35.2% 41.5% 

Candidate 

Enhancer-TSS 

Interactions 

809,147 
1,742, 

019 

1,437, 

406 

1,288, 

875 

1,134, 

995 

3,658, 

772 

1,587, 

423 

Candidate Active 

Enhancers 

(ChromHMM 

Active 

Predictions) 

25,826 58,492 53,379 42,268 39,477 124,004 32,389 
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Figure 2.3 Enhancer-TSS distance distributions for JEME prediction and training datasets. Boxplots (coloured by 
cell-stage) show distributions of distances between TSS and midpoint of enhancer region for MES, HB, HE, HP and 
MAC predictions and positive ESC training enhancer-TSS pairs. 
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Figure 2.4 Enhancers per TSS, and TSSs per enhancer for JEME prediction and training  datasets. A) Enhancers per 
TSS for MES, HB, HE, HP and MAC predictions and ESC training pairs B) TSSs per enhancer for MES, HB, HE, HP and 
MAC predictions and positive ESC training pairs. Histograms (bin size = 1, coloured by cell stage) show that JEME 
predicted more enhancers per TSS, and more TSSs per enhancer, than were assigned by Hi-C in model training on 
ESCs.  
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Figure 2.5 Percentage of H3K27Ac enriched and DNase I Hypersensitive enhancers for JEME prediction and 
training datasets. Bar charts show percentage of interacting enhancers (predicted by JEME in MES, HB, HE, HP and 
MAC, or identified during training on ESCs) that intersected with H3K27Ac ChIP-seq and/or DNase-seq peaks, which 
indicate chromatin activity and accessibility respectively. Similar proportions of H3K27Ac-marked and/or DNAse I 
hypersensitive predictions are observed in training (ESC) and prediction enhancer sets. 

 

2.4.2 JEME showed underwhelming performance in cross-validation 

Five-fold cross-validation was performed on ESC training pairs with both random and 

chromosomally sorted folds. Random five-fold cross-validation reported an F1-score of 

0.51, AUROC of 0.834 and AUPR of 0.53, whilst chromosomally sorted cross-validation 

yielded slightly lower performance metrics (Table 2.3). This is in line with the 

performance drop observed upon chromosomal sorting by Cao and Fullwood, 2019. 

The reported F1 and AUPR values combine performance measured by precision and 

recall, which account for false positives and false negatives, respectively. The metrics 

reported for the untrained JEME model were lower than those reported in the original 

JEME paper when using ‘random targets’ background pairs during random five-fold 

cross-validation (F1: ~0.66, AUROC: ~0.92, AUPR: ~0.67).  
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Table 2.3 JEME performance, measured during five-fold cross-validation on ESC training data, using both random 
and chromosomally sorted cross-validation folds. For each cross-validation strategy, a confusion matrix gives the 
number of true positives (TP), false positives (FN), true negatives (TN) and false negatives (FN). Performance metrics 
include the AUROC (area under the receiver operating curve) and AUPR (area under precision recall) scores, which 
are independent of threshold. Other metrics give performance at the default threshold of 0.35. 

Enhancer-TSS Predictions 
during Cross-Validation 

Random Folds Chromosomally-Sorted Folds 

EPI (n=14,280) 
Non-EPI 

(n=125,886) 
EPI (n=14,245) 

Non-EPI 
(n=126,461) 

ESC 
Training 

Pairs 

EPI 8,476 

TP 

9,877 

FN 

7,828 

TP 

10,525 

FN (n=18,353) 

Non-EPI 6,344 

FP 

116,009 

TN 

6,417 

FP 

115,936 

TN (n=122,353) 

Accuracy 0.89 0.88 

Precision 0.57 0.55 

Recall 0.46 0.43 

F1-Score 0.51 0.48 

AUROC 0.84 0.82 

AUPR 0.53 0.5 

 

2.4.3 JEME accurately predicted experimentally validated enhancers, but most 

predictions were untested 

In 2016, Schütte et al. identified enhancers which regulate a network of key 

transcription factors involved in haematopoietic development. Candidate enhancers 

were validated by transgenic mouse experiments, reporter assays and ChIP-seq 

analysis (Schütte et al., 2016).  

Here candidate regulatory regions were cloned downstream of the LacZ gene, and the 

reporter vector was delivered to mouse embryos, which were evaluated for 

haematopoietic LacZ staining. Tested enhancers were defined as active if the enhancer 

drove reporter gene expression in the dorsal aorta or foetal liver of E10-11.5 LacZ-

reporter transgenic mice. TF binding to each element was studied using ChIP-seq data 

from haematopoietic progenitor line HPC-7, from Wilson et al., 2010, and 416B 

myeloid progenitors. Lastly, the effects of TF binding site mutagenesis on enhancer 

activity were quantified using luciferase reporter assays in 416B cells. 

Schütte et al. confirmed a total of 23 enhancers across nine TF genes: Erg, Fli1, Gata2, 

Gfi1b, Lyl1, Meis1, Spi1, Runx1 and Tal1 (Table 2.4).  
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Table 2.4 Experimentally validated enhancers from Schütte et al. alongside HP-specific JEME predictions, 
Vijayabaskar et al. predictions and TF binding events in HPC-7 and HP cells 

Gene Enhancer 
Predicted 
by JEME 

Predicted by 
Vijayabaskar 
et al. 

HPC-7 TF binding HP TF binding 

Erg +65 No Yes ERG, FLI1, TAL1 CEBPβ, FLI1 

Erg +75 Yes Yes FLI1, PU.1 None 

Erg +85 No Yes 
FLI1, GATA2, GFI1B, 
RUNX1, TAL1 

FLI1, GATA2, GFI1, GFI1B, LMO2 

Fli1 -15 Yes No 
FLI1, GATA2, GFI1B, 
RUNX1, TAL1 

FLI1, GATA2, GFI1 

Fli1 +12 Yes No FLI1 GATA1, PU.1 

Gata2 -93 Yes No FLI1, RUNX1 FLI1, LMO2, RUNX1 

Gata2 -92 Yes No FLI1, PU.1 PU.1 

Gata2 -3 No Yes None None 

Gata2 +3 No Yes FLI1, TAL1 FLI1, GATA2, LMO2, TAL1 

Gfi1b +13 Yes No 
GATA2, GFI1B, 
RUNX1, TAL1 

FLI1, GATA1, GATA2, GFI1, 
GFI1B, LMO2, TAL1 

Gfi1b +16 Yes No 
FLI1, GATA2, GFI1B, 
RUNX1, TAL1 

FLI1, GATA1, GATA2, GFI1, 
GFI1B, LMO2, RUNX1, TAL1 

Gfi1b +17 Yes No 
FLI1, GATA2, GFI1B, 
RUNX1, TAL1 

FLI1, GATA1, GATA2, GFI1, 
GFI1B, LMO2, PU.1, RUNX1, 
TAL1 

Lyl1 Promoter Yes Yes 
FLI1, GATA2, GFI1B, 
PU.1, RUNX1, TAL1 

FLI1, GATA1, GATA2, GFI1, 
GFI1B, LMO2, PU.1, RUNX1, 
TAL1 

Meis1 +48 Yes Yes 
FLI1, GATA2, GFI1B, 
PU.1, RUNX1, TAL1 

GATA1, GATA2, GFI1, GFI1B, 
LMO2, PU.1, RUNX1, TAL1 

Spi1 -14 No Yes 
FLI1, GATA2, GFI1B, 
PU.1, RUNX1, TAL1 

CEBPβ, FLI1, GFI1, GFI1B, 
LMO2, PU.1, RUNX1 

Runx1 -59 Yes No 
FLI1, GATA2, GFI1B, 
RUNX1, TAL1 

CEBPβ, FLI1, GATA1, GFI1, 
LMO2, TAL1 

Runx1 +3 Yes Yes 
FLI1, GATA2, GFI1B, 
PU.1, RUNX1, TAL1 

FLI1, GATA1, GATA2, GFI1, 
GFI1B, LMO2, PU.1, RUNX1, 
TAL1 

Runx1 +23 Yes Yes 
FLI1, GATA2, GFI1B, 
PU.1, RUNX1, TAL1 

CEBPβ, FLI1, GATA1, GATA2, 
GFI1, GFI1B, LMO2, PU.1, 
RUNX1, TAL1 

Runx1 +110 Yes Yes 
FLI1, GATA2,  GFI1B, 
RUNX1, TAL1 

CEBPβ,FLI1, GATA1, GFI1, 
GFI1B, LMO2, PU.1, TAL1 

Runx1 +204 No 
No (exceeds 
distance 
threshold) 

PU.1,RUNX1  None 

Tal1 -4 No Yes None FLI1 
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Tal1 +19 Yes Yes FLI1, GATA2, PU.1  CEBPβ, FLI1, LMO2, PU.1 

Tal1 +40 Yes Yes 
FLI1, GATA2, GFI1B, 

RUNX1, TAL1 

FLI1, GATA1, GATA2, GFI1, 
GFI1B, LMO2, PU.1, RUNX1, 
TAL1 

 

A further 24 tested regions were found to have no haematopoietic-specific regulatory 

activity (Table 2.5). Using these elements as examples of validated positive and 

validated negative enhancers, the Schütte et al. dataset was compared with JEME 

predictions to indicate performance. Predictions for the nine loci in HP cells were 

selected for comparison. The HP sample was selected due to its developmental 

equivalence with HPC-7 and the presence of HP populations in E10-11.5 dorsal aorta 

and foetal liver – the sites used for in vivo validation. 

 

Table 2.5 Schütte et al. tested regions which failed to show enhancer activity in HPC-7 alongside HP-specific JEME 
predictions and Vijayabaskar et al. predictions. 

Gene Enhancer 
Predicted 
by JEME 

Predicted by 
Vijayabaskar 
et al.   

HPC-7 TF binding HP TF binding 

Erg +65 No Yes ERG, FLI1, TAL1 CEBPβ, FLI1 

Erg +75 Yes Yes FLI1, PU.1 None 

Erg +85 No Yes 
FLI1, GATA2, GFI1B, 
RUNX1, TAL1 

FLI1, GATA2, GFI1, GFI1B, 
LMO2 

Fli1 -15 Yes No 
FLI1, GATA2, GFI1B, 
RUNX1, TAL1 

FLI1, GATA2, GFI1 

Fli1 +12 Yes No FLI1 GATA1, PU.1 

Gata2 -93 Yes No FLI1, RUNX1 FLI1, LMO2, RUNX1 

Gata2 -92 Yes No FLI1, PU.1 PU.1 

Gata2 -3 No Yes None None 

Gata2 +3 No Yes FLI1, TAL1 FLI1, GATA2, LMO2, TAL1 

Gfi1b +13 Yes No 
GATA2, GFI1B, 
RUNX1, TAL1 

FLI1, GATA1, GATA2, GFI1, 
GFI1B, LMO2, TAL1 

Gfi1b +16 Yes No 
FLI1, GATA2, GFI1B, 
RUNX1, TAL1 

FLI1, GATA1, GATA2, GFI1, 
GFI1B, LMO2, RUNX1, TAL1 

Gfi1b +17 Yes No 
FLI1, GATA2, GFI1B, 
RUNX1, TAL1 

FLI1, GATA1, GATA2, GFI1, 
GFI1B, LMO2, PU.1, RUNX1, 
TAL1 

Lyl1 Promoter Yes Yes 
FLI1, GATA2, GFI1B, 
PU.1, RUNX1, TAL1 

FLI1, GATA1, GATA2, GFI1, 
GFI1B, LMO2, PU.1, RUNX1, 
TAL1 

Meis1 +48 Yes Yes 
FLI1, GATA2, GFI1B, 
PU.1, RUNX1, TAL1 

GATA1, GATA2, GFI1, GFI1B, 
LMO2, PU.1, RUNX1, TAL1 
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Spi1 -14 No Yes 
FLI1, GATA2, GFI1B, 
PU.1, RUNX1, TAL1 

CEBPβ, FLI1, GFI1, GFI1B, 
LMO2, PU.1, RUNX1 

Runx1 -59 Yes No 
FLI1, GATA2, GFI1B, 
RUNX1, TAL1 

CEBPβ, FLI1, GATA1, GFI1, 
LMO2, TAL1 

Runx1 +3 Yes Yes 
FLI1, GATA2, GFI1B, 
PU.1, RUNX1, TAL1 

FLI1, GATA1, GATA2, GFI1, 
GFI1B, LMO2, PU.1, RUNX1, 
TAL1 

Runx1 +23 Yes Yes 
FLI1, GATA2, GFI1B, 
PU.1, RUNX1, TAL1 

CEBPβ, FLI1, GATA1, GATA2, 
GFI1, GFI1B, LMO2, PU.1, 
RUNX1, TAL1 

Runx1 +110 Yes Yes 
FLI1, GATA2, GFI1B, 
RUNX1, TAL1 

CEBPβ, FLI1, GATA1, GFI1, 
GFI1B, LMO2, PU.1, TAL1 

Runx1 +204 No 
Not 
Considered 

PU.1, RUNX1 None 

Tal1 -4 No Yes None FLI1 

Tal1 +19 Yes Yes FLI1, GATA2, PU.1 CEBPβ, FLI1, LMO2, PU.1 

Tal1 +40 Yes Yes 
FLI1, GATA2, GFI1B, 
RUNX1, TAL1 

FLI1, GATA1, GATA2, GFI1, 
GFI1B, LMO2, PU.1, RUNX1, 
TAL1 

 

70% of Schütte et al. experimentally verified enhancers and 25% of inactive regions 

were predicted active by JEME, respectively accounting for 9.9% and 3.7% of JEME 

predictions across the nine loci. Raising or lowering the 0.35 threshold did not improve 

overall performance (Table 2.6). 

 

Table 2.6 Evaluation of HP JEME predictions, at different thresholds, against Schütte et al. validated enhancers for 
Erg, Fli1, Gfi1b, Lyl1, Meis1, Spi1, Runx1 and Tal1 genes 

HP JEME Prediction Threshold 

Schütte et al. 2016 

Accuracy Precision Recall F1-Score Active 

(n=23) 

Inactive 

(n=24) 

0.29 
Predicted (n=226) 17 TP 8 FP 

0.702 0.680 0.739 0.708 
Not Predicted 6 FN 16 TN 

0.32 
Predicted (n=187) 17 TP 8 FP 

0.702 0.680 0.739 0.708 
Not Predicted 6 FN 16 TN 

0.35 
Predicted (n=167) 16 TP 6 FP 

0.723 0.727 0.696 0.711 
Not Predicted 7 FN 18 TN 

0.38 
Predicted (n=133) 16 TP 6 FP 

0.723 0.727 0.696 0.711 
Not Predicted 7 FN 18 TN 

0.41 
Predicted (n=101) 15 TP 5 FP 

0.723 0.750 0.652 0.698 
Not Predicted 8 FN 19 TN 
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2.4.5 Few untested JEME predictions showed chromatin and TF features of enhancer 

activity 

The comparison between JEME predictions and Schutte et al. validated enhancers 

indicated good performance against regions tested for enhancer activity. However, it 

also revealed large numbers of untested JEME predictions which may represent true 

positives or false positives. To explore the potential of these untested enhancers to 

regulate gene expression in haematopoiesis their chromatin and TF binding features 

were examined.  

H3K27Ac enrichment, DNase I hypersensitivity and binding profiles for 10 TFs involved 

in haematopoietic development (CEBPβ, FLI1, GATA1, GATA2, GFI1, GFI1B, LMO2, 

PU.1, RUNX1 and TAL1) were aligned across these nine loci. JEME predictions were 

considered alongside Schütte et al. enhancers as well as selected CREs for the same 

genes from the Vijayabaskar et al. manuscript. Enhancers from Marsman et al. 2017, 

experimentally validated by transgenic zebrafish experiments and 4C contact data in 

HPC-7, were also reviewed for the Runx1 locus (Marsman et al., 2017) 

TF binding patterns for Schütte et al. enhancers were reflective of those reported in 

HPC-7 cells (Table 2.8). TF occupancy by haematopoietic factors, a reliable indicator of 

haematopoietic activity, was observed in less than half of gene-specific enhancers 

predicted by JEME for the set of TF genes. Out of the 161 predicted enhancer-TSS 

interactions, 61 enhancers were bound by at least one of the 10 haematopoietic TFs, 

39 by two or more, and 30 by three or more. Furthermore, 39 predicted enhancers 

were Dnase I hypersensitive and 77 marked by H3K27Ac. 

Intersecting Dnase I hypersensitivity, H3K27Ac enrichment and 10 TF binding profiles 

with JEME-predicted enhancer coordinates resulted in the identification of 19 

‘potential enhancers’ for the haematopoietic TF genes. These regions were defined by 

reliable indicators of haematopoietic enhancer activity: Dnase I hypersensitivity or 

H3K27 acetylation, along with the binding of two or more haematopoietic TFs in HP 

cells. Potential enhancers, meeting these criteria, are listed in Table 2.7, and 

highlighted in yellow on Figure 2.6. The small proportion of JEME predictions 

displaying enhancer features indicates that many predictions made by this model may 

not be regulatory. 
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Figure 2.6 JEME and Vijayabaskar predictions compared to validated enhancers and inactive regions for nine 
haematopoetic TF genes. DNase-seq , H3K27Ac ChIP-seq and haematopoietic TF ChIP-seq signals (for relevant 
haematopoetic transcription factors) for nine gene loci: A) Erg (chr16), B) Fli1 (chr9), C) Gata2 (chr6), D) Gfi1b (chr2), 
E) Lyl1 (chr8), F) Meis1 (chr11), G) Spi1 (chr2), H) Runx1 (chr16), I) Tal1 (chr4). Schütte et al. active 
enhancers/inactive regions and selected coCREs/singleton CREs are shown alongside JEME predictions in HP cells. 
Schütte et al. active enhancers are highlighted in green, regions absent of enhancer activity are highlighted in red 
and novel candidates (JEME predictions bound to 2 or more TFs that are Dnase I hypersensitive, H3K27Ac enriched, 
or both) are highlighted in yellow. In H) JEME predictions coloured grey are for the Runx1 P1 promoter only, dark 
blue for P2 only, and light blue for both. Marsman et al. active enhancers are also shown for this locus. 
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Table 2.7 JEME predicted enhancers, untested by Schütte et al., with Dnase I Hypersensitivity (DHS), H3K27Ac and 
TF binding features (for 2 or more haematopoietic TFs)  suggesting enhancer potential.  

Gene 
Candidate 

Enhancer 
TF binding in HP cells DHS H3K27Ac Notes 

Erg +180 GFI1, GFI1B, LMO2, PU.1 Yes Yes 

coCRE member  

80kb downstream of Erg TSS 

chr16: 95530365 

Fli1 +141 GFI1, GFI1B Yes Yes 
141kb downstream of Fli1 TSS 

(chr9:32541452) 

Fli1 -41 GATA2, GFI1, LMO2, PU.1 Yes No 
41kb upstream of Fli1 TSS 

(chr9:32541452) 

Fli1 -66 GFI1, GFI1B, LMO2, TAL1 Yes No 
66kb upstream of Fli1 TSS 

(chr9:32541452) 

Gata2 -123 GFI1B, LMO2, PU.1 Yes Yes 
123kb upstream of Gata2 TSS 

(chr6: 88198663) 

Gata2 -8 GATA2, GFI1 Yes No 
8kb upstream of Gata2 TSS 

(chr6: 88198663) 

Gata2 +56 CEBPβ, GATA1, LMO2 No Yes 
56kb downstream of Gata2 

TSS (chr6: 88198663) 

Gfi1b +40 FLI1, RUNX1 Yes Yes 
40kb downstream of Gfi1b 

TSS (chr2: 28621982) 

Gfi1b -19 FLI1, LMO2 Yes Yes 
19kb upstream of Gfi1b TSS 

(chr2: 28621982) 

Lyl1 -40 
CEBPβ, FLI1, GFI1B, LMO2, 

PU.1 
Yes Yes 

40kb upstream of Lyl1 TSS 

(chr8:84701468) 

Lyl1 +30 GFI1, GFI1B, LMO2, TAL1 Yes Yes 
30kb downstream of Lyl1 TSS 

(chr8: 84701468) 

Spi1 -43 FLI1, GFI1, GFI1B Yes Yes 
43kb upstream of Spi1 TSS 

(chr2: 91096677) 

Spi1 -26 FLI1, GFI1B, PU.1, RUNX1 Yes Yes 
26kb upstream of Spi1 TSS 

(chr2: 91096677) 

Spi1 +86 GFI1B, PU.1 Yes Yes 
86kb downstream of Spi1 TSS 

(chr2: 91096677) 

Spi1 +149 GFI1, LMO2 No Yes 
149kb downstream of Spi1 

TSS (chr2: 91096677) 

Runx1 -31 GFI1, LMO2, TAL1 No Yes 
31kb upstream of Runx1 P1 

TSS (chr16:92826074) 

Tal1 -56 FLI1, GFI1, GFI1B, RUNX1 Yes Yes 
56kb upstream of Tal1 TSS 

chr4: 115056425 

Tal1 -67 FLI1, GFI1, LMO2 No Yes 
67kb upstream of Tal1 TSS 

chr4: 115056425 

Tal1 -77 LMO2, TAL1 Yes Yes 
77kb upstream of Tal1 TSS 

chr4: 115056425 
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JEME predicted 14 enhancers interacting with the Erg TSS at 95530365 (Figure 2.6A). 

One of these predictions overlapped the +75 enhancer, and another the +149 inactive 

element. Of the 12 remaining untested predictions, one region (180kb downstream of 

the TSS) was identified as a potential candidate enhancer due to Dnase I 

hypersensitivity, H3K27Ac enrichment and GFI1, GFI1B, LMO2 and PU.1 TF binding. In 

comparison, Vijayabaskar et al. identified a four-member coCRE overlapping all three 

Schütte et al. enhancers and no inactive regions. One co-CRE member overlapped the 

JEME-identified novel candidate at +180. 

26 enhancers were paired with the Fli1 promoter, overlapping both +12 and -15 

enhancers and no inactive regions (Figure 2.2B). Three of the 25 untested predictions 

were identified as having regulatory potential: +141 (DHS, H3K27Ac, GFI1 and GFI1B 

binding), -41 (DHS, GATA2, GFI1, LMO2 and PU.1 binding) and -66 (DHS, GFI1, GFI1B, 

LMO2 and TAL1 binding). Vijayabaskar et al.’s singleton CRE overlapped two regions 

with no enhancer activity (+2 and the gene promoter) but no enhancers. 

For Gata2, 9 enhancers were predicted (Figure 2.6C). One prediction overlapped two 

enhancers at +92 and +93, and another three predictions were identified as novel 

candidates (-123: DHS, H3K27Ac, GFI1B LMO2 and PU.1 binding; -8: DHS, GATA2 and 

GFI1 binding; +56:H3K27Ac, CEBPβ, GATA1 and LMO2 binding). Two other validated 

enhancers (-3 and +3) overlapped a singleton CRE. Neither method predicted any 

Schütte et al. inactive regions.  

JEME paired the Gfi1b TSS with 18 predicted enhancers, 4 of which overlapped +13, 

+17 and +18 validated enhancers (Figure 2.6D). One non-enhancer element (the Gfi1b 

promoter) was predicted, and two untested predictions were selected as candidates 

(+40: DHS, H3K27Ac, FLI1 and RUNX1 binding and -19: DHS, H3K27Ac, FLI1 and LMO2 

binding). coCRE predicted two singleton CREs, both untested by Schütte et al. 

16 enhancers were predicted for the Lyl1 locus. These included the Lyl1 promoter, 

tested positive by Schütte et al., and the +1 region which tested negative (Figure 2.6E) 

Two untested candidate enhancers were identified from epigenetic and TF binding 

profiles: -40 (DHS, H3K27Ac, CEBPβ, FLI1, GFI1B, LMO2 and PU.1 binding) and +30 

(DHS, H3K27Ac, GFI1, GFI1B, LMO2 and TAL1 binding). Vijayabaskar et al. predicted 
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one coCRE and two singleton CREs. One singleton CRE overlapped three Schutte et al. 

regions: one enhancer (Lyl1 promoter) and two inactive elements (-3 and +1). 

JEME made 11 predictions for Meis1, including the +48 enhancer and the +93 and +69 

inactive regions (Figure 2.6F). No novel candidates were identified from DHS, H3K27Ac 

and TF binding data. coCRE made one prediction which overlapped the +48 enhancer. 

For Spi1, encoding the PU.1 TF, JEME predicted 23 enhancers including the -14 

validated enhancer and the gene promoter – for which Schütte et al. found no 

enhancer activity (Figure 2.6G). Of the remaining 21 untested predictions, four were 

selected as candidates (-43: DHS, H3K27Ac, FLI1, GFI1 and GFI1B binding; -26: DHS, 

H3K27Ac, FLI1, GFI1B, PU.1 and RUNX1binding; +86: DHS, H3K27Ac, GFI1B and PU.1 

binding; +149 (H3K27Ac, GFI1 and LMO2 binding). Vijayabaskar et al. predicted two 

two-member coCREs; one coCRE overlapped both the gene promoter and -14 

enhancer. 

The Runx1 gene has two alternate promoters, P1 and P2, JEME made predictions for 

both TSS’s. JEME predicted 19 unique enhancers for the two TSSs: 11 interacting with 

P1 only, three interacting with P2 only and five interacting with both (Figure 2.6H).  

JEME predicted Schütte et al. +110 and +23 enhancers to interact with both 

promoters, and +3 and -59 enhancers to interact with P1 only. The +24 non-regulatory 

region was also predicted for both TSSs. Runx1 predictions were also compared with 

enhancers, identified by genomic alignment to be conserved across mammals, which 

were  validated by Marsman et al. using transgenic zebrafish embryos and 4C in HPC-7 

cells. JEME P1 predictions also overlapped with -303 and -354 Marsman et al. 

enhancers. One untested Runx1 P1 prediction, -31, was selected for regulatory 

potential due to H3K27Ac enrichment and GFI1, LMO2 and TAL1 binding. Vijayabaskar 

et al. predicted one singleton CRE and one four-member coCRE. The co-CRE 

overlapped Schütte et al.’s +110, +23 and +3 enhancers, as well as the +24 non-

regulatory region and the P1 promoter (tested negative for enhancer activity). 

JEME also considered two TSS’s for the Tal1 locus (Figure 2.6I; ten enhancers were 

predicted for both. These predictions overlapped +19 and +40 validated enhancers. 

Three of the 8 untested predictions were chosen as novel candidates: -56 (DHS, 

H3K27Ac, FLI1, GFI1, GFI1B and RUNX1 binding), -67 (H3K27Ac, FLI1, GFI1 and LMO2 



74 
 

binding) and -77 (LMO2 and TAL1 binding). Vijayabaskar et al.’s three-member coCRE 

overlapped all Schütte et al. active enhancers (-4, +19 and 40) and regions found 

absent of enhancer activity (-9, promoter and +6). 

 

2.4.6 64% of Vijayabaskar et al. gene-specific CREs were predicted by JEME 

Table 2.4, Table 2.5, and Figure 2.6 show that many gene-specific enhancers were 

predicted by both Vijayabaskar et al. and JEME in HP cells. However, JEME predicted 

far more enhancers per gene. To test how well JEME predictions (in any cell type) 

overlapped Vijayabaskar et al. predictions, the two prediction sets were intersected 

and a hypergeometric test was performed.  Overlaps were performed for unique JEME 

predictions within 100kb of a TSS considered by the Vijayabaskar et al. method in at 

least one cell type. 

Most selected CRE-gene pairs from Vijayabaskar et al. (64.2%) overlapped a JEME 

prediction in one or more of the prediction cell types. However due to the higher 

number of predictions made by JEME, overlaps with Vijayabaskar et al. selected CRE-

gene pairs accounted for only 8% of predicted EPIs. Hypergeometric showed the 

overlap was statistically significant (p = 1.4x10-5). 

 

2.4.6 Vijayabaskar et al. identified fewer validated enhancers, but made fewer 

untested predictions 

Finally, to quantitatively evaluate the performance of JEME and Vijayabaskar et al. 

methods, performance metrics for were calculated using Schutte et al. enhancers and 

inactive regions. In this analysis only elements within 100kb of one of the nine TF TSSs 

– or in the gene body itself – were considered. This reduced the number of Schütte et 

al. active enhancers from 23 to 22 (Runx1 +204 excluded), inactive regions from 24 to 

22 (Erg +149 and Runx1 +181 excluded) and JEME predictions (in HP cells) from 161 to 

106. JEME and Vijayabaskar et al. predictions for these elements were listed in Tables 

2.4 and 2.5. 

As shown in Table 2.12 and Figure 2.7, JEME predicted more active enhancers (72.7% 

vs 63.6%) and fewer non-regulatory regions (27.3% vs 45.5%) than the Vijayabaskar et 

al. method – resulting in greater overall performance (F1: 0.727 vs F1:0.61). However, 
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it is important to note that these metrics do not account for the larger number of 

untested JEME predictions. Without further validation data it cannot be certain 

whether these represent true or false positives.  

Table 2.8 Comparative performance of JEME and Vijayabaskar et al. methods across Schütte et al. active enhancers 
and non-regulatory regions 

Schütte 

et al. 2016 

Vijayabaskar et al. HP JEME Predictions 

Predicted 
(n=27) 

Not-Predicted 
Predicted 
(n=106) 

Not-Predicted 

 

Active (n=23) 14 TP 8 FN 16 TP 6 FN 

Enhancer activity 

Inactive (n=24) 10 FP 12 TN 6 FP 16 TN 

 

Accuracy 0.59 0.73 

Precision 0.58 0.73 

Recall 0.64 0.73 

F1-Score 0.61 0.73 

 

 

Figure 2.7 Overlaps between predicted and validated gene-specific enhancers. Three-way Euler diagram showing 
overlap between HP JEME predictions, Vijayabaskar et al. selected CREs and Schütte et al. validated active  
enhancers. 
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2.5 Discussion 

The aim of this chapter, to compare the predictive ability of JEME and Vijayabaskar et 

al., proved difficult to achieve. Direct comparison was complicated by the different 

designs of the two methods and hindered by a lack of gold-standard validation data. It 

is important to note that any comments on JEME’s performance do not necessarily 

relate to JEME as described by Cao et al., but to JEME as adapted and applied to the 

haematopoietic dataset.  

 

 

 

 

2.5.1 The Schutte et al. dataset limited validation of model performance 

Validation using the Schütte et al. dataset offered a snapshot of comparative 

performance across a limited number of validated enhancers. At face value, the 

evaluation of JEME and Vijayabaskar et al. predictions against Schütte et al. active and 

inactive datasets suggested that JEME performed slightly better; with greater precision 

and recall (Table 2.8). However, JEME also predicted far more untested regions (Figure 

2.7). Without knowing the functionality of these untested regions, model performance 

could not fairly be evaluated. However, the fraction of JEME predictions which showed 

both chromatin and TF features of enhancer activity (Table 2.7 and Figure 2.6), and 

JEME’s poorer performance in cross-validation (Table 2.3), suggested that validation 

on the Schutte et al. dataset (not accounting for untested predictions) overestimated 

JEME’s performance. 

Aside from its size, the Schutte et al. dataset was biased by the selection of candidate 

enhancers for validation, and limited by its use of reporter assays. Firstly, Schütte et al. 

selected candidate enhancers by their annotation with H3K27Ac, DNase I and TF 

binding data (Schütte et al., 2016). This means both active enhancers and inactive 

regions were defined by chromatin features suggestive of enhancer activity. 

Secondly, reporter assays involve removing enhancers from their native chromatin 

environment, which is essential to specifying enhancer activity in vivo. This means 

Schutte et al. ‘inactive’ regions could still act as enhancers in their correct 
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chromosomal context, or that validated enhancers could be blocked from gene 

regulation by chromatin conformation. 

Furthermore, the comparison between JEME and Vijayabaskar et al. predictions was 

complicated by the fact that JEME makes cell-specific predictions, and Vijayabaskar et 

al. makes predictions across a dataset. Since Schütte et al.’s validation strategy 

involved the use of HP cell-line HPC-7, and embryonic sites associated with HP 

populations, it naturally followed to compare with JEME predictions in HP cells. Unlike 

JEME, Vijayabaskar et al. combined feature data across all cell types – including the 

terminally differentiated macrophage stage – to make more general predictions 

relevant to haematopoietic differentiation. It is possible that the ‘false positive’ 

enhancers predicted by Vijayabaskar et al. were active in other stages of the murine 

system. Specifically, the Vijayabaskar et al. method is capable of predicting cis 

interactions specific to embryonic stem cells or macrophages, which have distinct 

regulatory networks from other haematopoietic cell types (Goode et al., 2016). 

 

2.5.2 JEME predicted many enhancer-promoter interactions 

The retrained JEME model predicted many more enhancer-promoter interactions than 

the Vijayabaskar et al. method, and other cell-specific EPI predictors like IM-PET, 

RIPPLE and JEME applied to FANTOM5 data (Cao et al., 2017; He et al., 2014; Roy et al., 

2015). Chromatin and TF data shown in Figure 2.6 suggested that many JEME 

predictions could be false positives, however this could not be established without 

additional validation data. The retrained JEME model may have predicted many non-

functional enhancer-promoter interactions. This could have been influenced by several 

factors.  

Firstly, JEME could have predicted more EPIs because it considered more candidate 

enhancers. Cell types with more candidate enhancer-promoter interactions 

(ChromHMM predictions matched to genes within 1Mb) had more predicted EPIs, 

more predicted enhancers per TSS and a greater median distance between pairs (Table 

2.2). It is possible that JEME predicted more EPIs since it considered more active 

enhancers, which could be influenced to the coarse-grained 4-state ChromHMM 

model employed by Goode et al. 
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Secondly, it is possible that JEME’s default threshold of 0.35, optimised to Cao et al.’s 

data, should be higher. Increasing the threshold would reduce the number of overall 

predictions yet would also affect JEME’s predictive ability. Threshold optimisation 

would require evaluation against genome-wide data such as a Hi-C dataset from 

another cell type, or ESC data during cross-validation. However, as shown in Table 2.6, 

raising the threshold did not improve performance across Schütte et al. enhancers and 

inactive regions, suggesting that the 0.35 threshold was appropriate. 

Finally, the ratio of positive to negative pairs used in model training would have 

influenced the ratio of positive and negative predictions. Cao et al. determined that 

the ratio of interacting to non-interacting pairs should be ~0.15, using Equation 2.3. 

The rationale behind this ratio is not clear; it is neither a class-balanced training set nor 

reflective of the ratio of interacting to non-interacting pairs detected by chromatin 

interaction data. The ratio of interacting Hi-C pairs to non-interacting potential pairs in 

the training dataset was much lower at 0.01 (Table 2.2). Retraining JEME using other 

class ratios could further investigate the model’s performance.   

 

2.5.3 Low resolution Hi-C data may have hindered the performance of the retrained 

JEME model  

The performance metrics measured during cross-validation of the retrained JEME 

model were lower than those reported for the original JEME model applied to 

Roadmap data (Cao et al., 2017). This suggests that alterations to the JEME model 

(necessary for its application to the murine haematopoietic dataset) could have 

impaired performance. One factor may have been the substitution of H3K4me1 (more 

predictive of enhancers) with H3K4me3 (more predictive of promoters). In addition, 

the poorer quality of training data likely hindered performance. 

In their paper, Cao et al. trained JEME on RNA pol II ChIA-PET interactions in K562 

human cells. ChIA-PET identifies long range interactions, mediated by a protein of 

interest, on the same scale of ChIP-seq peaks (hundreds of bases). In contrast, this 

chapter saw JEME trained on low-resolution Hi-C data from murine ESCs, due to a lack 

of high-resolution datasets appropriate for use with the haematopoietic system. These 

Hi-C contacts would be far less likely to reflect cis-regulatory interactions than ChIA-
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PET loops. Since the Hi-C contacts used in training were not binned (as to identify 

regulatory interactions on the scale of enhancers and promoters) it is likely that the 

training dataset contained considerable noise. This would have made it harder for 

JEME to learn the features associated with enhancer-promoter interactions. Whilst this 

is a major flaw in the analysis, it highlights the inapplicability of methods like JEME to 

non-human systems where high-resolution 3D genomics data is unavailable. 

 

2.5 Conclusion 

In conclusion, limitations of the validation dataset made it hard to fully compare the 

performance of Vijayabaskar et al. to JEME. Whilst JEME predicted far more enhancer-

promoter interactions, there was still significant overlap with gene-specific cis-

regulatory elements from the Vijayabaskar et al. method. The reported performance 

advantage for JEME was not conclusive, due to limitations of the small validation 

dataset. Without further validation, using high-throughput datasets such as eQTLs and 

high-resolution chromatin interactions, it was difficult to fairly assess performance. 

In the next chapter of this thesis, a new method, cisREAD, is designed. cisREAD builds 

on the community detection and LASSO regression mechanism from Vijayabaskar et al. 

and is applied to human B lymphocytes. Chapter 5 will revisit the comparison with 

JEME, through benchmarking cisREAD against other predictive methods using high-

throughput validation datasets. 
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Chapter 3. Integrating chromatin accessibility and gene expression with cisREAD 

identifies transcription factor led gene regulation in B cell differentiation 

 

3.1 Introduction 

Chapter 2 described a comparison between the Vijayabaskar et al. method to predict 

gene-specific cis-regulatory elements, and the JEME method to predict enhancer-

promoter interactions. The Vijayabaskar et al. method used community detection and 

LASSO regression to integrate chromatin accessibility (DNase-seq), histone 

modification (ChIP-seq), transcription factor binding (ChIP-seq) and gene expression 

(RNA-seq) datasets across murine haematopoietic differentiation. This approach was 

designed to prioritise cis-regulatory elements important for transcriptional control of 

differentiation associated genes, however it required an abundance of input datasets, 

which would limit its application.  

In the work described in chapter 3, we were presented with chromatin accessibility 

(ATAC-seq) and gene expression (RNA-seq) datasets across an in vitro system of human 

B cell differentiation. This raised the challenge of inferring transcription factor binding 

in the absence of direct protein-DNA interactions from ChIP-seq. This chapter 

describes the exploration of computational methods to detect transcription factor 

binding from chromatin accessibility data, for integration into a workflow to predict 

gene-specific cis-Regulatory Elements Across Differentiation: cisREAD.  

 

3.1.1 B Cell Differentiation 

cisREAD was developed to predict transcription factor-led gene regulation throughout 

the system of B cell differentiation. The maturation of B cells to plasma cells is a critical 

process in the adaptive immune response, defending the host against pathogens 

through the production of antigen-specific antibodies (Figure 3.1). Defects in the 

differentiation process can lead to immunodeficiency, autoimmune disease, or B cell 

cancers (Lebien and Tedder, 2008). Therefore, it is important to understand how 

transcriptional control of gene expression coordinates the differentiation of mature B 

cells.  
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Figure 3.1 B cell activation, germinal centre reaction and plasma cell differentiation. The activation of naïve B cells 
is initiated when a B cell recognises an antigen on its B cell receptor. Follicular helper T cells can interact with the B 
cell to further stimulate activation. Activated B cells undergo class switch recombination, to switch their antibody 
type, and form germinal centres. In the dark zone of germinal centre B cells proliferate and further mutate their 
antibody genes through somatic hypermutation, before entering the light zone. In the light zone, B cells compete 
with resources. This functions to select for B cells with high-affinity antibody mutations. In the light zone follicular 
dendritic cells present antigens to high-affinity B cells, which interact with T cells and receive survival signals. Low-
affinity B cells do not receive this T cell ‘help’ and undergo apoptosis. Surviving B cells either re-enter the dark zone 
for further mutation, or commit to memory B or plasma cell fate and exit the germinal centre. 

 

3.1.1.1 Activation 

The differentiation of mature B cells to plasma cells is initiated by B cell activation, in 

which an antigen is recognised by the B Cell Receptor (BCR) on the B cell surface 

(Figure 3.1). Upon BCR engagement by a protein antigen, the B cell receives ‘activation’ 

signals and the cognate antigen is internalised, digested, and presented as peptides on 

the major histocompatibility II (MHC II) complex. T follicular helper cells, stimulated by 

the same antigen, can recognise these peptides and engage the B cell’s MHC II through 

its T Cell Receptor (TCR). T:B interactions provide further activation signals. Stimulation 

of the CD40 receptor, bound to the B cell membrane, by the CD40 ligand (CD40L), 

bound to the T cell membrane, triggers a signalling cascade promoting resting B cells to 
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enter the cell cycle. Secretion of additional cytokines, including interleukins (ILs) and 

interferons (IFNs), by the T cell provides the B cell with further stimuli promoting 

proliferation and differentiation (Cyster and Allen, 2019). This process of T-cell 

dependent activation can be stimulated in vitro through provision of 

antigens/antibodies, CD40L and cytokines (Cocco et al., 2012).  

 

3.1.1.2. Proliferation, mutation, and germinal centre reaction 

Following activation, B cells proliferate and mutate their immunoglobulin (Ig) genes, in 

preparation to secrete large quantities of antigen-specific antibodies. During the 

process of Class Switch Recombination (CSR) B cells switch their antibody ‘constant’ 

region from one isotype to another (e.g. IgM to IgG), allowing the antibody to interact 

with different effectors (Roco et al., 2019).  

 

B cells activated in secondary lymphoid organs (lymph node, spleen, or tonsils) then 

congregate to form transient structures called germinal centres (GCs); which become 

the primary site of proliferation and mutation (Figure 3.1). Outside of the germinal 

centre, a small number of B cells proliferate and mutate to produce an initial wave of 

short-lived antibodies to control the infection (Akkaya et al., 2020).  

 

Germinal centres are divided into a ‘dark zone’ of rapidly dividing B cells (centroblasts) 

which undergo ‘somatic hypermutation’ (SHM) of ‘variable’ regions of antibody genes, 

and a light zone of non-dividing centrocytes. Somatic hypermutation is performed by 

the Activation Induced Deaminase (AID) enzyme, which deaminates cytosine into 

uracil. Substitutions are then induced during error-prone DNA repair of the uracil 

lesions. Somatic hypermutation of a proliferating centroblasts population produces a 

diverse range of high-affinity and low-affinity antibodies, presented on B cells 

(Pilzecker and Jacobs, 2019). As B cells move to the light zone, they face intense 

competition for resources. In the light zone follicular dendritic cells (FDCs) present 

antigens to B cells. Centrocytes with high affinity for the antigen are favoured for 

‘positive selection’ by T cells. Only high affinity B cells are able to conjugate fully with T 

cells and receive survival signals; low-affinity B cells fail to compete and undergo 

apoptosis. B cells cycle through germinal centre light and dark zones, undergoing 
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successive rounds of hypermutation and selection to increase antibody affinity (Young 

and Brink, 2021).  

 

3.1.1.3 Commitment to plasma cell fate 

B cells continue to cycle through the germinal centre, before receiving signals to exit 

either as memory B cells, capable of reactivation by the same antigen (followed by 

rapid plasma cell differentiation), or long-lived plasma cells, capable of secreting large 

quantities of antigen-specific antibodies (Figure 3.1). There is evidence that B cells with 

higher-affinity BCRs are more likely to undergo plasma cell differentiation, whereas 

lower-affinity cells are steered towards memory B cell differentiation (Akkaya et al., 

2020).  

Plasma cell vs memory B identity is programmed through the differential induction of 

key transcription factors contingent on the strength of CD40 and BCR engagement (in 

turn determined by antigen-affinity) (Akkaya et al., 2020).  

 

Along the plasma cell trajectory, B cells pass through a transitory plasmablast (PB) 

stage, characterised by proliferation, antibody production and migration to the bone 

marrow survival niche, which is necessary to sustain long-lived plasma cells. Long-lived 

plasma cell generation can be driven in vitro through provision of niche signals like 

APRIL (Stephenson et al., 2022). 

 

3.1.1.4 Transcriptional regulation 

This process of B cell differentiation is controlled through a dynamic gene regulatory 

network, shaped by epigenomic remodelling and transcriptomic reprogramming. 

These changes are stimulated both intrinsically and extrinsically, through lineage-

specifying and signal-inducible transcription factors. As B cells transition through 

proliferative activated B cell (ABC) and plasmablast states, regulatory control shifts 

from a transcriptional circuit upholding B cell identity (including BACH2 and PAX5) to a 

mutually antagonistic network promoting plasma cell fate (including IRF4, PRDM1 and 

XBP1) (Tellier and Nutt, 2019; Trezise and Nutt, 2021). Changes in gene expression are 

also driven through induction of transcription factors by external signals, including NF-

kB downstream of BCR, CD40 and APRIL, as well as STAT3 downstream of  IL-21 

(Berglund et al., 2013; Cornelis et al., 2020; Luo et al., 2018). Whilst many B lineage 
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transcriptional regulators are well characterised, there is an incomplete understanding 

of how transcription factors reprogram downstream regulatory networks in response 

to activation and differentiation stimuli.  

 

3.1.1.5 Studying transcriptional regulation of in vitro B cell differentiation 

Integration of epigenomic and transcriptomic data has allowed researchers to study 

the genetic regulation of B cell maturation across a number of organisms, primary cells 

and differentiation systems (Joyner et al., 2022; Moroney et al., 2020; Price et al., 

2021; Scharer et al., 2018). This chapter describes the development of a method to 

integrate ATAC-seq and RNA-seq, and its application to samples taken across human in 

vitro B cell differentiation, where activation is stimulated through CD40L and 

antibodies, and long-lived plasma cell differentiation is driven through APRIL (Cocco et 

al., 2012; Stephenson et al., 2022). 

 

A challenge in adapting the method to the in vitro B cell dataset is the lack of 

transcription factor binding data. In the absence of ChIP-seq, transcription factor 

occupancy can be inferred on a high-throughput scale using methods which identify 

transcription factor binding sites in accessible chromatin.  

 

3.1.2 Identifying transcription factor binding from ATAC-seq data 

3.1.2.1 Transcription factor binding motifs 

Cis-regulatory element activity is contingent on both its chromatin environment and 

the temporal, combinatorial recruitment of sequence-specific transcription factors. 

Transcription factors bind conserved, degenerate, consensus sequences, specified by 

structural protein motifs in the TF’s DNA binding domain (Spitz and Furlong, 2012). TF 

sequence specificity is determined by protein motifs which recognise the chemical 

signature of DNA bases or the sequence-dependent shape of DNA. For example, many 

mammalian TFs feature tandem arrays of C2H2 zinc finger protein structures in their 

DNA binding domain. Each zinc finger binds the major groove of DNA at close intervals, 

making sequence-specific contacts (Lambert et al. 2018). 

 

The short (~6-12bp) DNA sequences to which TFs bind are termed transcription factor 
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binding motifs. TF motifs are obtained by aligning the experimentally determined 

binding sites of TFs and summarizing the frequencies at which each nucleotide occurs. 

These motifs can be represented numerically by position weight matrices (PWMs), 

where the frequency of each nucleotide is scored at each position. Motifs can also be 

represented visually by sequence logos, where the size of each nucleotide corresponds 

with its frequency (Schneider and Stephens, 1990; Stormo, 2000). Multiple adjacent 

copies of the same or different motifs, can occur in homotypic or heterotypic clusters 

for robust, combinatorial gene regulation (Erceg et al., 2014).  

 

Transcription factor consensus sequences occur millions of times throughout the 

genome. Of all the genomic sequences matching a PWM, only a small fraction will be 

biologically functional in a given cell. This problem has been termed the ‘futility 

theorem’, and exists because inaccessible chromatin structures or binding partner 

requirements often prohibit motif occupancy (Lambert et al., 2018; Wasserman and 

Sandelin, 2004).  

 

The chromatin state of a motif determines its availability to transcription factor 

recognition. Most transcription factors are incapable of binding nucleosomal DNA, and 

require that the motif be cleared of nucleosomes. In exception, a small number of 

‘pioneer transcription factors’ (e.g., FOXA and GATA TFs) have the unique capacity to 

bind nucleosomal chromatin and open the regulatory element. This allows for 

recruitment of other transcription factors, co-factors and chromatin remodelling 

complexes; establishing cell-specific regulatory programmes during differentiation 

(Zaret, 2020).  

In order to identify motifs capable of transcription factor recognition, PWM scans can 

be limited to sequences with cell-specific accessibility (determined by DNase-seq or 

ATAC-seq), activating histone modifications (e.g., H3K27Ac ChIP-seq) or transcription 

factor occupancy (also with ChIP-seq). Given a set of ATAC/DNase/ChIP-seq peaks, 

potential regulatory sequences can be scanned for PWMs obtained through one or 

more databases. JASPAR, TRANSFAC and HOCOMOCO all host a wealth of curated 

PWMs determined experimentally using techniques including protein binding 

microarrays, ChIP-seq and SELEX (Fornes et al., 2020; Kulakovskiy et al., 2018; 
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Wingender, 2008). Whilst valuable resources, known motif databases are incomplete 

and include large numbers of redundant motifs. Motif redundancy results from related 

transcription factors, with structurally similar DNA-binding domains, which occupy 

near-identical consensus sequences. This can make it difficult to determine which 

transcription factor(s) occupy a given motif. 

 

3.1.2.2 De novo motif discovery 

The technique of de novo motif discovery circumvents the caveats of PWM scanning by 

using pattern discovery methods to identify motifs without prior knowledge of 

transcription factor binding sites. This class of methods includes programmes which 

use probabilistic (e.g., MEME), or word-based (e.g., STREME, HOMER) algorithms to 

find over-represented DNA k-mers in a set of primary sequences compared to a 

background distribution (Bailey and Elkan, 1994; Bailey, 2021; Heinz et al., 2010). De 

novo motif discovery methods typically perform clustering of ‘discovered’ motifs to 

avoid redundancy.  

Both MEME and STREME have been optimised for use with high-throughput datasets, 

like ATAC-seq or ChIP-seq peaks, through the MEME-ChIP wrapper (Machanick and 

Bailey, 2011). Here de novo discovery is performed using both MEME and STREME, and 

resultant de novo motifs are matched to known PWMs using the TOMTOM 

programme. Another popular software choice is HOMER which, similar to STREME, 

counts the number times a ‘word’ of length k occurs in both primary and background 

sequences, before calculating its over-representation with a statistical or binomial test. 

HOMER performs both de novo discovery and known PWM matching in one step 

(Heinz et al., 2010) 

The careful selection of appropriate background sequences is imperative to successful 

de novo motif discovery: it must be similar in nucleotide composition and sequence 

length to the primary set (Simcha et al., 2012). Both MEME-ChIP and HOMER can 

generate their own set of bias-corrected background sequences, or the user can supply 

their own sequences, which also undergo bias-correction. This option facilitates 

differential enrichment analyses, to discover motifs are over-represented in one set of 
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chromatin regions compared to another. This is useful for identifying cell or condition 

specific differences in transcription factor binding. 

MEME and STREME construct artificial random sequences using an nth-order Markov 

model. Here DNA sequences are modelled as Markov chains of order n, where the 

probability of a nucleotide occurring in the sequence depends on the preceding n 

nucleotides. Users can select the order of the model to adjust for bias. When n=1 each 

nucleotide is dependent on one preceding nucleotide, which adjusts for dimer biases 

like CpG sites. Background sequences are constructed by the Markov model either by 

shuffling the primary sequences (default) or a user-supplied set of control sequences 

(Bailey and Elkan, 1994). HOMER generates its default background set by randomly 

selecting DNA sequences from the genome (not included in the primary set) and 

matching the background GC content distribution to the primary GC-content 

distribution. HOMER also performs auto-normalisation to remove imbalances in DNA 

k-mers where k=1,2 and 3. User-specified background sequences also undergo bias 

correction and normalisation with HOMER (Heinz et al., 2010) 

 

3.1.2.3 Predicting binding site occupancy 

Whilst de novo motif discovery can identify enriched transcription factor binding sites 

in a set of regions, it provides no indication that each motif instance is bound. A 

number of methods have been designed to identify bound motifs from DNA sequence 

and chromatin accessibility data. One popular choice of method is computational 

‘footprinting’; where accessible chromatin regions identified by DNase-seq or ATAC-

seq is probed for dips in read coverage where enzymatic cleavage is blocked by TF 

occupancy. Computational tools like HINT and Wellington have been developed to 

detect these footprints in DNase-seq peaks, prior to matching the footprint sequence 

to known TF binding-sites (Gusmao et al., 2014; Piper et al., 2013). The HINT 

framework was later adapted to account for Tn5 cutting-site bias in ATAC-seq and 

packaged as the tool HINT-ATAC (Li et al., 2019). HINT-ATAC works by generating 

cleavage signals from sequencing libraries following fragment size filtering, 

normalisation, and correction of cleavage bias. Then a hidden Markov model (HMM), 

trained on transcription factor ChIP-seq in a semi-supervised manner, segments the 

signal to locate footprints. HINT-ATAC outperforms footprinting methods developed 
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for DNase-seq and achieves good results with a moderate number of reads per sample 

(~50 million). 

Whilst many studies successfully employ ATAC-seq footprinting to interrogate TF 

binding dynamics (R. Li et al., 2018; Scharer et al., 2018; Vierstra et al., 2020) it has 

been noted that many transcription factors do not leave strong footprints, particularly 

those with short DNA residency times (Baek et al., 2017; D’Oliveira Albanus et al., 

2021; Sung et al., 2014). This is particularly a concern for transiently binding TFs such 

as STAT3 and NF-kB. To address the limitations of footprinting, alternative methods 

have been developed. One such method is BMO, the “bee model of occupancy” which 

predicts TF binding through negative binomial models of chromatin accessibility and 

motif co-occurrence. BMO likens TFs to “Brownian bees”, which are more likely to visit 

flowers (motifs) which are accessible and plentiful (D’Oliveira Albanus et al., 2021). 

 

3.2 Aims and Objectives 

In this chapter, we aimed to develop a method capable of identifying gene-specific cis-

regulatory elements, from ATAC-seq and RNA-seq data, with the ultimate goal of 

identifying transcription-factor led regulation throughout B cell differentiation. To 

meet this aim the following objectives were set out: 

1) to expand the LASSO-based method in chapter 2 to predict transcriptional 

regulation from chromatin accessibility and gene expression; 

2) to investigate tools to identify transcription factor binding site enrichment and 

occupancy from ATAC-seq data; and  

3) to apply the resultant method to ATAC-seq and RNA-seq datasets to predict 

gene regulation during B cell differentiation. 

These aims will be evaluated in the context of method performance, prior to biological 

interpretation of predicted regulation in chapter 4. 

 

3.3 Methods 

This section will explain the rationale, development, and application of cisREAD: an 

integrative ‘omics approach to identify gene-specific cis-Regulatory Elements Across 

Differentiation. It begins with an introduction to the B cell differentiation dataset, 
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followed by an outline of the cisREAD method, highlighting adaptations made to the 

LASSO-based method in chapter 2. Finally, the application of cisREAD to B cell 

differentiation will be described, alongside evaluation of included TF binding analysis 

tools. 

 

3.3.1 Dataset 

   

Figure 3.2 In vitro system of human B cell activation plasma cell differentiation. A) B cells are first extracted from 
the peripheral blood of donors and are cultured and activated in the presence of the CD40 ligand, anti-Ig and IL-2 
and IL-21 cytokines. Activated B cells then undergo plasma cell differentiation, driven through removal of CD40L and 
anti-IgG/M/A and are pushed towards a mature plasma cell phenotype through removal of IL-2 and provision of 
APRIL, γ-Secretase inhibitor (GSI) and IL-6. B) Donor (A, B, C) matched ATAC-seq and RNA-seq datasets taken at nine 
time-points across in vitro plasma cell differentiation, from 1-3 biological replicates, yielding a total of 19 samples. 
BC, B cell; ABC, activated B cell; PB, plasmablast, PC; plasma cell. Samples with matched ATAC-seq and RNA-seq data 
are shown in green. Due to issues with population expansion, day0-3 samples were derived from total B cells, and 
day6-13 samples were derived from isolated memory B cells. 
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The in vitro B cell differentiation dataset derives from a system of human B cell 

activation and plasma cell differentiation produced by the Tooze group. The dataset 

was generated by Dr Amel Saadi, as part of a project led by Professor Reuben Tooze 

and Dr Gina Doody. B cell populations were isolated from the peripheral blood of 3 

donors using MACS (Magnetic activated cell sorting) separation (total B-cells for time-

points to day 3, and memory B cell-enriched for time points after day 6 and 13) and 

long-lived plasma cells were generated in vitro following published protocols (Figure 

3.2A) as previously described (Cocco et al., 2012; Stephenson et al., 2022). Briefly, B 

cells were exposed to activating conditions including F(ab’)2 anti-IgG/A/M, IL-2, IL-21 

and irradiated CD40L L-cells at day 0 to stimulate B cell activation. Cells were sampled 

by careful removal from the stromal cell layer at indicated time points. Cells were 

transferred at day 3 to conditions with cytokines IL-2 and IL-21 alone, and plasmablasts 

at day 6 were driven towards a long-lived plasma cell phenotype through further 

cytokine signalling (IL-21, IL-6, and APRIL) and the addition of γ-Secretase Inhibitor 

(GSI). ATAC-seq and RNA-seq experiments, measuring chromatin accessibility and RNA 

levels, were performed at 9 time-points across the in vitro differentiation process, 

yielding a dataset of 19 samples (Figure 3.2B). 

 

3.3.2 cisREAD methodology 

cisREAD takes the core mechanisms of community detection and LASSO regression, 

which were validated in chapter 2, whilst adapting the method to derive transcription 

factor binding from accessibility data. This forms a four-step workflow (outlined 

schematically in Figure 3.3) of differential accessibility/expression, transcription factor 

analysis, community detection and LASSO regression. cisREAD is designed to work on 

sample-matched chromatin accessibility and gene expression datasets, taken across a 

system of cellular differentiation. The first two steps use common bioinformatics tools 

to extract accessibility, TF binding and expression features from sequencing files. The 

last two steps, which construct gene-specific models to predict regulation, are 

implementable in the cisREAD R package at 

https://www.github.com/AmberEmmett/cisREAD . 

https://www.biorxiv.org/content/10.1101/2023.01.09.522862v1.full#F2
https://www.biorxiv.org/content/10.1101/2023.01.09.522862v1.full#F2
https://www.biorxiv.org/content/10.1101/2023.01.09.522862v1.full#F2
https://www.github.com/AmberEmmett/cisREAD
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Figure 3.3 Overview of cisREAD methodology. cisREAD is designed to identify gene-specific cis-regulatory element 
communities across cellular differentiation from ATAC-seq and RNA-seq datasets. Step 1: candidate CREs are first 
identified as differentially accessible ATAC-seq peaks and differentially expressed genes are identified for gene-
specific modelling. Step 2: enriched transcription factor motifs are curated through de novo motif discovery across 
all genome-wide candidate CREs and matched to transcription factor footprints called in the candidate CREs which 
are accessible in each differentiation-stage. Step 3: The sample-specific chromatin accessibility of each candidate 
CRE is characterised, alongside its differentiation-stage specific transcription factor occupancy events and all 
candidate CREs within 100kb of a target genes TSS, with 3 or more occupancy events, are considered gene-specific 
candidates. The chromatin correlation and transcription factor similarity of each possible candidate CRE pair is 
calculated and multiplied to produce integrated similarity scores, used to construct a candidate CRE network. 
Candidate CREs with similar chromatin accessibilities and transcription factor occupancy events are then grouped 
together through infomap community detection. Step 4: the chromatin accessibility of each candidate CRE (or mean 
accessibility of each coCRE) is considered to predict gene expression across all samples in gene-specific LASSO 
models. LASSO models select candidate (co)CREs whose chromatin accessibility best predicts gene expression and 
rejects any others. LASSO models are constructed for all differentially expressed genes, and significant predictors of 
gene expression are considered high-confidence gene-specific predicted CREs. 

 

3.3.2.1 Step 1. Differential Accessibility and Expression 

To predict gene-specific cis-Regulatory Elements Across Differentiation, we first 

identify the genes and regulatory elements which differ across the lineage. To do this 

genes and accessible chromatin region are tested for differential expression and 

differential accessibility.  Likelihood ratio tests (comparing model fit with and without 

the cell-stage variable) are used to identify differentially accessible regions (DARs) and 

differentially expressed genes (DEGs) whose activity varies by differentiation-stage. 
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3.3.2.2 Step 2. Transcription factor binding site analysis 

In the absence of differentiation stage-specific transcription factor binding data (e.g., 

from ChIP-seq) binding sites are derived from chromatin accessibility data. In order to 

define a set of linage-specific transcription factors to take forward, a de novo motif 

analysis is first performed using tools like HOMER and MEME-ChIP. This approach 

identifies binding sites enriched in DARs compared to constitutively-accessible 

chromatin, indicating that the occupying transcription factor exhibits dynamic binding 

during differentiation. Importantly, de novo motif discovery requires no prior 

knowledge relevant transcription factors, allowing for the data-driven selection of TFs 

important to the lineage.  

Transcription factor binding sites are then identified through scanning DARs with de 

novo PWMs, and predicting motif occupancy from chromatin accessibility data using 

either footprint-based or footprint-independent methods. 

 

3.3.2.3 Step 3. Community detection 

After characterising the chromatin accessibility and transcription factor occupancy of 

all differentially accessible regions, candidate CREs are linked to target genes. Prior to 

selecting or rejecting candidate CREs to regulate transcription, through gene-specific 

LASSO regression models, a community detection step is performed. Community 

detection groups together gene-specific candidate CREs with similar patterns of 

chromatin accessibility and transcription factor occupancy.  This step serves a dual 

purpose: to identify TF-bound regions which may co-operatively regulate gene 

expression, and to alleviate multicollinearity in LASSO regression models (by grouping 

together correlated predictors for singular input into the model). The community 

detection step is performed as described below. 

All DARs are described by a log2 normalised ATAC-seq count matrix and a binary 

transcription factor occupancy matrix – indicating the presence (1) or absence (0) of de 

novo motif occupancy in each differentiation-stage. DARs with fewer than 3 TF 

occupancy events are discarded, and remaining DARs are assigned to nearby DEGs to 

identify gene-specific candidate CREs. DARs are matched to DEGs if their transcription 

start site (TSS) is within 100kb of the DAR’s midpoint. This distance is chosen as most 
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mammalian regulatory elements have been shown to operate within 100kb of their 

target gene (Fulco et al., 2019). Whilst the distance threshold can be increased in the 

cisREAD R package, this would also increase the number of predictors (and thus 

multicollinearity) in LASSO regression.  

For all gene-specific candidate CREs, a chromatin accessibility correlation matrix and TF 

footprint similarity matrix are produced. The chromatin accessibility correlation matrix 

gives the Pearson correlation coefficient between each pair of gene-specific candidate 

CREs, and the transcription factor occupancy matrix gives the Dice similarity coefficient 

between each pair. The dice coefficient is calculated as twice the number of binding 

events common to both CREs divided by the sum of the number of binding events for 

each CRE (Dice, 1945). These two matrices are then multiplied to give pairwise 

integrated similarity scores. These similarity scores range from 0 to 1 and indicate the 

extent to which candidate CREs are accessible in similar differentiation-stages, and 

similarly occupied by transcription factors. 

To group together similar candidate CREs, a weighted undirected graph is produced 

from the integrated similarity matrix where nodes are gene-specific candidate CREs 

and edges are their similarity scores. Integrated similarity scores are used for edge 

weighting due to a theoretical assumption that co-accessibility and TF co-binding are 

equally important for co-regulation. Edges were only drawn between nodes if the 

integrated similarity score exceeded 0.3. The threshold of 0.3 was chosen empirically, 

by varying the threshold for 10 test genes, as it produced communities with few 

intercommunity connections. This edge threshold can be adjusted in the R package: 

smaller values will result in larger, looser communities and larger values in smaller, 

tighter connections. Communities of highly-connected nodes, representing similarly 

accessible and occupied candidate CREs, are detected from this network using the 

infomap algorithm, implemented in the igraph R package. Infomap community 

detection is an optimal, information theory approach using random walks, which 

performs well on small networks with few inter-community connections (Rosvall and 

Bergstrom, 2008; Yang et al., 2016). After community detection, the chromatin 

accessibility of each coCRE is then given as the mean of its constituent members. 
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3.3.2.4 Step 4. LASSO Regression 

To select which candidate coCREs or individual CREs regulate each DEG, gene-specific 

LASSO regression models are constructed. Here LASSO models are used for variable 

selection; to select candidate (co)CREs whose chromatin accessibility is predictive of 

gene expression. This step identified regulatory elements which are active in the same 

differentiation-stages that the gene is expressed. LASSO regression and its 

implementation in cisREAD is explained below: 

LASSO (Least Absolute Squares Shrinkage Operator) regression is a form of penalised 

(L1-regularised) regression which applies a penalty term (|β|), equal to the absolute 

magnitude of their coefficient (β), is applied to the regression coefficients (Tibshirani, 

1996a). This enables non-predictive variables to be shrunk to zero and eliminated from 

the model. Within cisREAD, LASSO regression models are fit to predict expression of a 

DEG from the chromatin accessibility of candidate (co)CREs according to Equation 3.1. 

Equation 3.1 Linear model to predict transcription from cis-regulatory element accessibility 

yi =  β0 +  ∑ βjxij,  

p

j=1

 

Here yi (the dependent variable) gave the expression of gene y in sample i and xij (the 

independent variable) gave the chromatin accessibility in in sample i, in candidate CRE 

j. A response vector, giving the expression of a gene in each sample, and predictor 

matrix, giving the chromatin accessibility in each sample for all predictors (p), were 

input to gene-specific models. Both chromatin accessibility and gene expression were 

log2 transformed (adding a pseudocount of 1) and standardised as z-scores prior to 

LASSO regression. 

Equation 3.2 Coefficient estimation in LASSO regression 

minβ  ∑(yi −

n

i=1

y̅
i
)2 −  λ ∑ |βj| 

p

j=1

 

LASSO assigns coefficients (Equation 3.2) by minimising the error term yi − y̅
i
 (the 

difference between actual and predicted gene expression), whilst applying the penalty 

(|β|) to perform regularisation. The extent of regularisation is determined by the 

tuning parameter λ, where greater values of λ result in sparser models where more 
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coefficients are shrunk to zero. The optimum λ can be determined by cross-validation, 

finding the value which minimises mean cross-validated error (λmin) (Tibshirani, 1996).  

cisREAD employs the glmnet package in R to perform model selection through random 

5-fold cross-validation, before fitting the final regression model at λmin. Candidate 

(co)CREs with β = 0 are rejected to regulate the gene, whilst those with β ≠ 0 are 

selected as gene-specific CREs. Selected variables, with β ≠ 0, are subject to 

significance testing through the method of ‘selective inference’, implemented in the 

selectiveInference R package. Selective inference performs significance testing of 

predictors whilst accounting for how variables are cherry-picked from a larger pool of 

candidates (Taylor and Tibshirani, 2018).To account for multiple testing, gene-specific 

p-values are assigned to each model, equal to that of its most significant predictor, and 

subject to Benjamini Hochberg (BH) adjustment (Benjamini and Hochberg, 1995). 

Selected (co)CREs with p < 0.05 and gene-specific False Discovery Rate (FDR) < 0.05 are 

considered statistically significant predictors of gene expression. These significant 

predictors should be interpreted as high-confidence gene-specific CREs.  

The application of cisREAD to predict gene-specific regulation is exemplified in Figure 

3.4. Here 23 TF-bound DARs are located within 100kb of the TSS for the BATF gene, 

community detection identifies two coCREs, bound by similar transcription factors and 

accessible in similar time points (Figure 3.4A). LASSO regression models are 

constructed, where gene expression is predicted by 16 coCREs or lone CREs. The 

optimum LASSO model (at λmin) selected 5 predictors to control BATF (Figure 3.4B), 

including both coCREs. Expression predicted by the model is highly correlated with 

BATF expression (Figure 3.4C), and the accessibility of significant predictors mirrors 

expression of the gene (Figures 3.3D and 3.3E).
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Figure 3.4 Example cisREAD model for BATF gene. A) Community detection reduced 23 gene-specific candidate CREs (DARs within 100kb of the gene’s TSS) into two 
co-accessible and TF co-bound communities and 14 lone CREs. B) A LASSO model was constructed where BATF expression was predicted from the chromatin 
accessibility of the 16 (co)CRE predictors. Cross-validation found an optimum 𝜆 which minimised cross-validated error, a total of 5 predictors were selected at 𝜆min. C) 
BATF expression predicted by this LASSO model was highly correlated with observed gene expression (Pearson r = 0.95). D) BATF gene was mirrored by the 
chromatin accessibility of significant predictors in Figure 3.4E. E) Significant predictors included a lone CRE and coCRE 1 from Figure 3.4A. These were bound by 
common TFs and were co-accessible when the gene was expressed. 



97 
 

3.3.3 Data processing and cisREAD implementation  

In order to predict gene-specific cis-regulatory elements across B cell differentiation, 

the cisREAD was applied to the in vitro B cell differentiation dataset. This involved 

processing and preliminary analysis of the data, followed by differential analysis (step 

1) and an exploration of transcription factor motif and binding site tools for 

incorporation into step 2. Once de novo motifs and binding sites had been derived, the 

cisREAD R package was used to perform community detection (step 3) and LASSO 

regression (step 4) to predict gene-specific CREs. Finally, the influence of the TF 

binding site prediction method on cis-regulatory element prediction was evaluated 

using experimentally determined binding sites and TF-target genes. 

 

3.3.3.1 RNA-seq processing  

RNA-seq FASTQ files were first quality checked with FastQC (Andrews, 2010). Trim 

Galore was then used with default settings to remove Illumina sequencing adaptors 

and low-quality reads (Q < 20) (Kreuger, 2012). Trimmed RNA-seq reads were mapped 

against the GRCh38 decoy-aware human transcriptome and quantified with Salmon, 

correcting for GC bias and sequence bias (Patro et al., 2017). Transcript counts were 

aggregated to gene level with the tximport R package and normalised using DESeq2’s 

median of ratios method (Love et al., 2014). 

 

3.3.3.2 ATAC-seq processing 

Trimmed, paired ATAC-seq reads were aligned to the human genome (NCBI GRCh38 

decoy version) using bowtie2 (--very-sensitive) (Langmead and Salzberg, 2012). Post-

alignment, low-quality mappings (MAPQ < 20) were filtered out with Samtools and 

duplicates were removed with Picard tools (Broad Institute, 2019; Li et al., 2009). 

Bedtools was also used to filter out ENCODE and mitochondrial blacklists (Amemiya et 

al., 2019), and select fragments <100bp to isolate nucleosome-free regions (Quinlan 

and Hall, 2010). Coordinates were shifted with deepTools +4 bp on the positive strand 

and −5 bp on the negative to centre on the Tn5 cutting site (Ramírez et al., 2016). 

Narrow peaks were called with Macs2 in paired-end mode with q < 0.05 (Zhang et al., 

2008). Consensus peak sets were constructed using the DiffBind R package to retain 

peaks present in at least half of donors for each time-point (Stark and Brown, 2011). A 
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count matrix was then produced from the union of all consensus peaks, across all 

samples, and accessibility signal was normalised using DESeq2s median of ratio’s 

method (Love et al., 2014). 

 

3.3.3.3 Differential Analysis 

Raw ATAC-seq and RNA-seq count matrices were VST (Variance Stabilising 

Transformation) transformed within DESeq2 and subject to preliminary analysis in R. 

Principal components were computed and a PCA biplot was produced with the ggplot2 

package. Euclidean sample distances were hierarchically clustered and visualised with 

the pheatmap package.  

Differential accessibility and expression analyses were performed on raw ATAC-seq 

and RNA-seq count matrices (cisREAD step 1) using likelihood ratio tests (LRTs) in 

DESeq2. Each LRT compared a model design of Differentiation-Stage + Donor, to a 

model with Donor only.  

 

3.3.4 Comparative de novo motif discovery and TF occupancy prediction 

To identify transcription factor binding sites important to B cell differentiation 

(cisREAD step 2), de novo motifs were discovered in DARs using HOMER and MEME-

ChIP, and occupancy was predicted using HINT-ATAC and BMO. The purpose of this 

comparison was to curate a final set of motifs for use with cisREAD, and to explore the 

impact of binding site prediction on cisREAD-predicted gene regulation. 

De novo motifs were discovered using HOMER and MEME-ChIP in differentially 

accessible regions, compared to chromatin regions whose accessibility did not differ 

across the time-course (LRT BH-adjusted p > 0.01). Motif discovery was also performed 

against control sequences generated using the software’s default settings. De novo 

motifs were considered enriched based on the criteria of statistical enrichment (p < 

0.05), frequency (present in >2.5% of DARs) and non-redundancy (enriched motifs 

should represent distinct TFs).  

HOMER findMotifsGenome.pl was used to discover enriched de novo motifs and match 

k-mers to known PWMs from JASPAR Vertebrate Core 2020 (Fornes et al., 2020), 

HOCOMOCO v11 (Kulakovskiy et al., 2018), and HOMER itself (Heinz et al., 2010). 
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Default parameters were used aside from -size given, to discover motifs in the whole 

ATAC-seq peak instead of those in the centre of the peak.  

MEME-ChIP was used to discover de novo motifs (through MEME and STREME 

programs), calculate enrichment (through CENTRIMO) and match k-mers to known 

PWMs from JASPAR Vertebrate Core 2020 and HOCOMOCO v11 (through TOMTOM) 

(Machanick and Bailey, 2011). MEME-ChIP was run using ‘-meme-mod anr’ (to assume 

that each sequence may contain any number of motif repetitions), -meme-searchsize 0 

(to discover motifs in all ATAC-seq peaks) and -centrimo-local (to calculate enrichment 

of motifs in the whole of each peak).  

Following selection of the final motif set, TF occupancy was predicted in each 

differentiation-stage using HINT-ATAC and BMO with default parameters. ATAC-seq 

footprints were called by HINT-ATAC using the ‘rgt-hint footprinting command’ (Li et 

al., 2019). HINT-ATAC was supplied with differentiation-stage specific BAM files – 

produced by merging BAMs of biological replicates (Samtools) – and differentiation-

stage specific peak files – produced by intersecting DARs with stage-specific consensus 

ATAC-seq (bedTools). The resultant footprints were then scanned with PWMs of 

enriched de novo motifs, using HOMER findMotifsGenome.pl in -find mode, to predict 

TF occupancy at each stage.  

 

Motif occupancy was also predicted using BMO with default settings (D’Oliveira 

Albanus et al., 2021). BMO was supplied with genome-wide motif scans for each de 

novo motif (obtained using HOMER scanMotifGenomeWide.pl), differentiation-stage 

specific BAM files and differentiation-stage specific peak files. 

 

3.3.5 Predicting gene-specific cis-regulatory elements with cisREAD 

Following binding site prediction with HINT-ATAC and BMO, differentiation-stage 

specific binding sites were summarised into TF occupancy matrices using custom 

python scripts.  TF occupancy, differentially accessible peak and differentially 

expressed gene matrices were input into the cisREAD R package to perform 

community detection (cisREAD step 3) and LASSO regression (cisREAD step 4). cisREAD 

was run separately with HINT-ATAC-predicted TF occupancy and then with BMO-

predicted TF occupancy.  
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HINT-ATAC + cisREAD successfully modelled regulation for 8,215 DEGs. Each gene was 

assigned a mean of 8.4 candidate CREs (range 2-34) and, following community 

detection, each model had a mean of 6.9 predictors (range 2-26). Of these a mean of 

4.7 were selected by the LASSO model (range 1-22), and 2.1 were statistically 

significant (range 1-16). Application of cisREAD resulted in the prediction of 38,554 

CRE-gene relationships in total, of which 9,440 were statistically significant. 24,186 

relationships were characterised by upregulation at enhancers or promoters (of which 

6,609 were significant) and 14,368 were characterised by downregulation (3,626 

significant). Similar, slightly higher, numbers of predictions were reported for BMO + 

cisREAD (Table 3.1). 

 

Table 3.1 Summary of gene-specific regulatory elements predicted by cisREAD, using either HINT-ATAC or BMO to 
predict transcription factor occupancy. Values in last four rows give mean and range. 

 

  cisREAD + HINT-ATAC cisREAD + BMO 

  Modelled Selected Significant Modelled Selected Significant 

Genes 8,215 8,215 4,959 8,539 8,539 5,025 

CREs 35,064 24,648 8,600 40,506 29,064 10,702 

CRE-gene relationships 

All 69,643 38,554 10,235 82,557 46,594 12,758 

Positive - 24,186 6,609 - 29,339 8,542 

Negative - 14,368 3,626 - 17,255 4,213 

CREs per gene 8.4 (2-34) 4.7 (1-22) 2.1 (1-16) 9.7 (2-46) 5.7 (1-37) 2.5 (1-22) 

predictors/(co)CREs per gene 6.9 (1-26) 3.9 (1-16) 1.7 (1-14) 6.8 (1-23) 3.9 (1-17) 1.7 (1-11) 

coCRE membership 2.7 (2-12) 2.7 (2-12) 2.7 (2-11) 3.1 (2-17) 3.1 (2-16) 3.1 (2-16) 

Genes per CRE 2.0 (1-16) 1.6 (1-12) 1.2 (1-8) 2.0 (1-16) 1.6 (1-13) 1.2 (1-7) 

 

 

3.3.6 Evaluation of predicted TF binding and gene regulation 

To evaluate motif occupancy predicted by HINT-ATAC and HOMER, binding sites 

predicted by HINT-ATAC and BMO in day 3 activated B cells were compared to 

experimentally determined ChIP-seq binding sites in GM12878 lymphoblastoid cell 

lines – which resemble the day 3 differentiation state. ChIP-seq peaks for transcription 

factors recognised to bind each motif were downloaded from ENCODE (IDR threshold 

peaks aligned to hg38) and intersected with HINT-ATAC and BMO-determined binding 

site predictions using bedtools. ChIP-seq-determined binding site enrichment was 
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calculated for motifs predicted occupied, compared to motifs predicted unoccupied 

using a two-sided Fisher test. 

Whilst the above exercise indicated whether predicted binding reflects measured 

binding, it did not reflect whether predicted transcription factor binding sites could be 

linked to gene expression. To test this HINT-ATAC-derived and BMO-derived cisREAD 

predictions were compared to known transcription factor target genes, curated from 

MSigDB and Lymphochip (Staudt lab) datasets (Liberzon et al., 2015; Shaffer et al., 

2006). The dataset used for this analysis was curated by filtering the Lymphochip gene 

signatures for the ‘Transcription factor target’ category, and then filtering again by 

subcategory for the TF of interest (NF-kB or IRF4). The 

‘HALLMARK_TNFA_SIGNALING_VIA_NFKB’ signature from MSigDB was also included 

for NF-kB. 

Gene set enrichment was calculated for genes whose selected CREs were predicted 

occupied by the TF, compared to genes whose selected CREs were predicted occupied 

by the TF using a two-sided fisher test.  

 

3.4 Results and Discussion 

3.4.1 Chromatin accessibility and gene expression are reprogrammed during in vitro 

B cell differentiation 

To assess the suitability of the B cell differentiation dataset for the planned analysis, 

unsupervised exploratory analyses were performed. Hierarchical clustering (Figure 

3.5A) and principal components analysis (Figure 3.5B) of ATAC-seq and RNA-seq 

samples showed that B cell epigenomes and transcriptomes undergo global 

reprogramming upon B cell activation and plasma cell differentiation. Samples from 

each differentiation stage were observed to cluster together, showing no evidence of 

batch effects or outliers. Therefore all 19 ATAC and RNA-seq sample pairs were 

retained for further analysis.  

To identify regulatory elements and genes whose activity changed across the 

differentiation time-course, differential accessibility and expression analyses were 

performed. 97,707 ATAC-seq peaks (LRT FDR < 0.01) and 9,082 protein coding genes 
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(LRT FDR < 0.001) were defined as significantly differentially accessible or expressed. 

 

 

 

Figure 3.5 Hierarchical clustering of ATAC-seq and RNA-seq datasets. Hierarchical clustering was performed on 
Euclidean sample distances calculated from VST normalised counts for all consensus ATAC-seq peaks and genes. B) 
Principal components analysis biplot for ATAC-seq and RNA-seq datasets, showing PC1 and PC2 calculated from VST 
normalised counts. BC, B cell; ABC, activated B cell; PB, plasmablast, PC; plasma cell. 

 

3.4.2 Key transcription factor motifs are enriched in differentially accessible regions 

Following the identification of differentially accessible regions, de novo motif discovery 

was performed to identify enriched, frequent, and non-redundant transcription factor 

binding sites. Analysis with both HOMER and MEME-ChIP found enrichment of de novo 

motifs matching known PWMs for AP-1, PU.1/SPIB, IRF4, RUNX, OCT2, NF-kB, SP/KLF, 

E-Box, MADS-Box and CTCF factors in DARs (Figure 3.6). These motifs were repeatedly 

discovered when using different discovery algorithms and control sequences, and their 
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involvement in mature B cell differentiation is supported by the literature (Brescia et 

al., 2018; Cao et al., 2010; Gerondakis and Siebenlist, 2010; Klein et al., 2006; Pérez-

García et al., 2017; Watanabe et al., 2010; Willis et al., 2017; Wöhner et al., 2016). 

In addition to the above motifs, HOMER reported enrichment of PAX5 and CREB/ATF 

motifs when using both default (Figure 3.6A) and non-differentially accessible (non-DA) 

background sequences (Figure 3.6B). Motif discovery and clustering identified separate 

motifs for and CREB/ATF factors when using default background sequences. However, 

a single broad k-mer which weakly matched both PAX5 and CREB/ATF PWMs, was 

discovered when using a non-differentially accessible background set. 

HOMER + nonDA also discovered motifs matching PWMs for STAT3 and ZBTB33. STAT3 

is induced downstream of IL-21 (Berglund et al., 2013), and therefore is induced at 

every time point and ZBTB33 has previously been implicated in germinal centre 

formation (Koh et al., 2013). The STAT3 motif however includes a GA dimer preceding 

the CTCCGGAA consensus and so would only match a subset of STAT3 sites.   

MEME-ChIP + nonDA showed the lowest sensitivity of all analyses, identifying the 

fewest number of enriched motifs, including 3 low-complexity motifs which poorly 

matched known PWMs (Figure 3.6D). This may indicate that HOMER better corrected 

biases between primary and user-specified control sequences. A greater number of 

higher-quality motifs were identified when using default control sequences (Figure 

3.6C). MEME-ChIP + default identified 10 motifs also discovered by HOMER and an 

additional motif matching the PWM for IKAROS, known to be important for B cell 

development and activation (Sellars et al., 2011). 

The 13 de novo motifs from HOMER + nonDA were taken forward for use within 

cisREAD (Figure 3.6B). These were selected since this analysis identified the most de 

novo motifs, all of which had relevance to the system. Whilst the quality of 

PAX5/CREB/ATF (too broad) and STAT3 motifs (too specific) may hinder downstream 

application, these additional motifs were still included due to the importance of the 

factors in B cell differentiation.  
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Figure 3.6 Motifs discovered through de novo discovery in differentially accessible regions using HOMER or 
MEME-ChIP. De novo motif discovery was performed using HOMER (A and B) and MEME-ChIP (C and D), using a 

background of software-generated sequences (A and C) or non-differentially accessible chromatin regions (B and 
D). 
 

3.4.3 Motif occupancy can be predicted from ATAC-seq data 

To identify binding sites for the 13 TF families represented in Figure 3.6B, motif 

occupancy was predicted within DARs using the footprint-based HINT-ATAC method 

and the footprint-independent BMO model. To assess the performance of each model, 

predicted binding in day 3 was compared with ChIP-seq measured binding in GM12878 

– used as a surrogate for the day 3 activated B cell state. For each de novo motif, a 
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relevant factor (expressed in B cells and capable of recognising the motif), was 

selected for validation of predicted occupancy. 

Figure 3.7A shows the predicted occupancy of differentially accessible motifs in day 3 

activated B cells, and Figure 3.7B shows statistically significant overlaps (p < 0.1) 

between predicted occupancy and measured occupancy for the 13 TF-motif pairs. 

For all factors, bar CTCF, BMO predicted a greater proportion of occupied motifs than 

HINT-ATAC (Figure 3.7A), with a mean predicted occupancy rate of 60% (BMO – 

excluding CTCF) compared to 30% (HINT-ATAC – all motifs). CTCF was the only motif 

for which BMO predicted fewer occupied sites, where only 63/3,516 (2%) differentially 

accessible motifs were predicted occupied. In contrast HINT-ATAC predicted 40% 

occupancy of CTCF motifs,   

Both BMO and HINT-ATAC predicted binding sites significantly overlapped ChIP-seq 

binding sites for most factors, compared to motifs predicted to be unbound. A notable 

exception was for BMO and CTCF, where CTCF ChIP-seq peaks were significantly 

depleted from predicted binding sites. Aside from CTCF, BMO predictions showed 

greater enrichment for ChIP-seq binding sites than HINT-ATAC predictions, with 

increased odds ratios and smaller p-values (Figure 3.7B). This supported conclusions 

from the authors of BMO that their model better predicts ChIP-seq-measured 

transcription factor occupancy than footprint-based methods including HINT-ATAC 

(D’Oliveira Albanus et al., 2021). In contrast to the analysis here, the BMO authors 

found that BMO and HINT-ATAC showed similar performance in identifying CTCF 

bound motifs from GM12878 ATAC-seq. It is unclear why BMO performs poorly for 

CTCF on our in vitro B cell data. 

Whist this analysis offered a useful indication of relative performance, there were 

several considerations. GM12878 B lymphoblastoid cells are transformed with the 

Epstein Barr Virus, and therefore differ from day 3 cells. Motifs may also be occupied 

by factors not considered in the comparison (e.g., Fos1 and Fra1 at AP-1 motifs), or be 

poorly recognised by their assigned factors due to PWM quality (e.g., PAX5/CREB/ATF). 

The quality of ChIP-seq datasets (e.g., sequencing depth, antibody quality) may also 

bias the motifs designated as transcription factor binding sites. Most importantly, this 
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exercise offered no indication of whether predicted binding sites were driving 

transcription. 

 

Figure 3.7 Predicted TF occupancy (using HINT-ATAC or BMO) compared to TF occupancy detected by ChIP-seq. A) 
Number of de novo motifs in DARs (grey) predicted to be occupied by BMO (teal) or HINT-ATAC (red). B) Enrichment 
of ChIP-seq binding sites in GM12878 for transcription factors at differentially accessible de novo motifs, predicted 
occupied by BMO (red) or HINT-ATAC (teal). The position of dots indicates the effect of enrichment (odds ratio), and 
their size indicates the statistical significance (BH-adjusted p value). Bars give the 95% confidence interval. Statistics 
(calculated by a two-sided Fisher test) describe the enrichment of ChIP-seq-detected binding sites for specific 
transcription factors (orange text) at de novo motifs with predicted occupancy (blue text) 
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3.4.4 cisREAD correctly predicts transcription factor target genes 

Transcription factor binding at a cis-regulatory element alone is often insufficient to 

drive gene expression, which frequently requires combinatorial binding at promoters 

and enhancers. With this in mind, we next asked whether the binding sites predicted 

by BMO and HINT-ATAC can be linked to active transcription by the cisREAD method. 

To evaluate this, we tested the ability of cisREAD to identify confirmed transcription 

factor target genes, when using either BMO or HINT-ATAC in step 2. Here we focused 

on two transcription factors, NF-kB and IRF4, whose target genes have been 

extensively studied in a variety of B lineage cell types and stimulatory systems using 

chromatin immunoprecipitation and gene knockouts. Whilst these systems will all 

differ from the in vitro differentiation model, collectively this should indicate whether 

our method is able to identify transcription factor target genes from predicted binding 

sites. 

In this exercise, predicted NF-kB/IRF4 targets were defined as genes with one or more 

cisREAD-selected CREs that were predicted bound by IRF4/NF-kB by BMO or HINT-

ATAC. Gene set enrichment in predicted targets was compared to a background of 

predicted non-target genes. Predicted non-targets were defined as genes where no 

cisREAD-selected CREs were predicted bound by IRF4/NF-kB. 

Figure 3.8 shows the enrichment of experimentally validated NF-kB(Figure 3.8A) and 

IRF4 targets (Figure 3.8B) in cisREAD-predicted target genes, using either BMO or 

HINT-ATAC, for 11 NF-kB gene sets and 16 IRF4 gene sets. In nearly all cases, cisREAD-

predicted target genes were significantly enriched for IRF4 and NF-kB target gene sets 

(p < 0.1). This indicates that cisREAD paired IRF4 and NF-kB bound cis-regulatory 

elements to their correct target genes. 

Altogether, Figure 3.8 shows no consistent advantage of BMO or HINT-ATAC for use 

within cisREAD. This could indicate that the additional binding sites detected by BMO 

(Figure 3.7) may be bound by transcription factors which do not drive expression. 

Importantly it suggests that the cisREAD method is robust to the choice of binding site 

prediction method. 
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Figure 3.8 Enrichment of NF-kB and IRF4 target gene signatures in cisREAD-predicted target genes (using HINT-ATAC or BMO predicted binging sites). Enrichment was calculated 
(two-sided Fisher test) for experimentally determined TF target genes, in cisREAD-predicted TF-target genes, using either HINT-ATAC or BMO to predict TF occupancy at CREs. A) shows 
enrichment calculated for 11 NF-kB target gene sets, and B) for 16 IRF4 target gene sets from the Lymphochip and MSigDB databases. Each bar indicates enrichment results using 
HINT-ATAC (red text) or BMO (blue text). The position of each dot gives the effect size of enrichment (odds ratio), and the size gives the number of predicted target genes. Statistical 
significance (-log10 BH-adjusted p value) is given by colour, from yellow to red (greatest significance). Non-significant enrichment (p > 0.1) is shown in grey. 

E
n

ri
c
h
m

e
n
t 
o

f 
T

a
rg

e
t 

G
e

n
e

 S
ig

n
a

tu
re

E
n
ri

c
h

m
e
n

t 
o
f 

T
a

rg
e
t 

G
e

n
e
 S

ig
n

a
tu

re



109 
 

 

3.5 Conclusion 

In this chapter we have introduced cisREAD as a method to identify gene-specific cis-

regulatory elements across differentiation. The method is designed to prioritise 

regulatory elements downstream of core transcription factors, whose differential 

accessibility is linked to differential expression. cisREAD requires only ATAC-seq and 

RNA-seq data and makes use of commonly used bioinformatic tools and a bespoke R 

package. We have shown here how motif discovery and binding site prediction tools 

can be used in lieu of ChIP-seq to identify transcription factor binding sites. 

Importantly we found that cisREAD is robust to binding site prediction method and 

correctly identifies genes targeted by key transcription factors. Application of cisREAD 

for biological insight will be exemplified in chapter 4, which will focus on its use to 

predict gene-specific and global modes of regulation in B cell differentiation. 
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Chapter 4. Data integration with cisREAD identifies global and gene-specific 

mechanisms of transcriptional control in B cell differentiation 

 

4.1. Introduction  

Chapter 3 introduced the cisREAD method for predicting gene-specific cis-regulatory 

elements across differentiation, and it discussed cisREAD’s development and 

application to the in vitro B cell time-course. This chapter leverages predictions from 

the cisREAD method, to identify global changes in gene regulation during B cell 

differentiation, and to generate hypotheses of gene-specific regulation. The results of 

both genome-wide and gene-specific analyses will be evaluated in the context of 

known regulatory mechanisms, to highlight the potential for cisREAD to predict new 

mechanisms of transcriptional control. 

 

4.1.1 Gene regulatory networks during mature B cell differentiation 

B cell differentiation (introduced in chapter 3)is driven through changes in gene 

regulation. Studies in mice and humans have uncovered how shifts in epigenetic 

remodelling and transcription factor activity rewire gene expression. This chapter will 

explore the dynamic networks of signal-inducible and lineage-specifying transcription 

factors, which coordinate activation upon immunisation, and guide B cells towards 

plasma cell fate. Particularly it will focus on the binding patterns and downstream 

transcriptional networks of key transcription factors, which occupy the de novo motifs 

presented in Figure 3.6.B of the previous chapter. To place these factors into context, 

this section will provide an overview of the established regulatory mechanisms which 

steer mature B cells through activation, germinal centre processes, and plasma cell 

differentiation.  
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4.1.1.1 Regulation of B cell activation 

Intrinsic B cell transcription factors and signal-inducible germinal centre factors 

facilitate the transcriptional response to B cell activation (Figure 4.1). Mature B cell 

identity is upheld by a network of highly expressed transcription factors including 

PAX5, PU.1, SPIB, IRF8,and BACH2 (Nutt et al., 2015). These TFs, shown in blue in 

Figure 4.1, function to maintain B cell identity through upregulating B cell signalling 

machinery (PU.1, SPIB, PAX5 - Cobaleda et al., 2007; Willis et al., 2017). They also 

supress plasma cell (PC) differentiation, achieved through repression of plasma cell 

master regulator PRDM1 (PAX5, SPIB, PU.1-IRF8, and BACH2 - Delogu et al., 2006; 

Schmidlin et al., 2008; Carotta et al., 2014; Ochiai and Igarashi, 2022).  

 

 

Figure 4.1 Transcriptional regulatory networks in B cell activation and germinal centre formation, induced by T 
cell dependent stimuli. Prior to activation, a network of B cell-specific transcription factors (in blue) maintains B cell 
identity through mutual activation (black arrows), and transcriptional repression (red arrows) of plasma cell 
regulators (in red). T cell-dependent activation induces signalling through CD40, BCR, and IL-21R which activate 
transcription factors (in yellow) responsible for co-ordinating B cell activation, proliferation, and germinal centre 
formation, as well as class switch recombination (CSR) and somatic hypermutation (SHM). Crucially NF-κB induces 
low levels of IRF4 which can co-regulate (blue arrows) with PU.1 or BATF. Low IRF4 upregulates GC master 
regulators OBF1-OCT2 and BCL6, which also blocks PC differentiation through PRDM1 repression. Figure created 
with BioRender. 
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Upon B cell activation under T cell dependent conditions, CD40 and BCR co-

engagement stimulates signalling pathways, which lead to changes in gene regulation. 

These changes are coordinated by TFs shown in yellow in Figure 4.1. Crucially, NF-κB is 

induced through both canonical and non-canonical pathways to drive germinal centre 

development and proliferation, including through activation of MYC (De Silva et al., 

2016; Heise et al., 2014; Luo et al., 2018). MYC expression is also induced through PI3K 

(Phosphoinositide 3-kinase) signalling downstream of BCR stimulation (Luo et al., 

2018).  

In vivo, BCR and CD40 signalling induce formation of germinal centres (GCs) through 

upregulation of BCL6. BCL6 coordinates germinal centre formation through its activity 

as a transcriptional repressor, and controls a wide processes including cell positioning, 

apoptosis, cellular signalling and T:B interactions (Basso and Dalla-Favera, 2012). 

Germinal centre commitment is also regulated by a range of other TFs including IRF4, 

OCT2 (co-binding with OBF1) and MADS-Box factors MEF2C and MEF2B (Laidlaw and 

Cyster, 2021).  

In the initial activation, BCR and CD40 signalling transiently upregulate low levels of 

IRF4, through NF-κB. Low IRF4 leads to upregulation of BCL6 and OBF1 (Ochiai et al., 

2013)o. IR4F alone has weak DNA binding affinity and forms heterodimers with either 

ETS-family TF PU.1, or AP-1 family TF BATF, when binding DNA. IRF4 co-binds with PU.1 

at ETS-IRF composite elements (EICEs) and with BATF at AP1-IRF composite elements 

(AICEs) (Ochiai et al., 2013).  

Alongside activation by IRF4, BCL6 is further upregulated by STAT3 downstream of IL-

21 signalling, and also by PU.1-IRF8 and MEF2B (Brescia et al., 2018; Carotta et al., 

2014; Diehl et al., 2008). MEF2B is a MADS-Box factor which is activated through E-Box 

transcription factors (Wöhner et al., 2016). The binding of E-Box factors, including the 

dominant E-protein E2A, is enhanced downstream of activation stimuli, through 

repression of their antagonist ID3 (Gloury et al., 2016). MEF2B can dimerise with fellow 

MADS-Box factor MEF2C, which is induced downstream of BCR engagement through 

MAPK (mitogen-activated protein kinase) signalling (Brescia et al., 2018; Khiem et al., 
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2008). MEF2B and MEF2C act partially redundantly to promote germinal centre 

formation, proliferation and B cell survival (Brescia et al., 2018; Wilker et al., 2008). 

One study suggests that ZBTB33 may function to limit germinal centre proliferation 

through transcriptional repression of BCL6 and MYC (Koh et al., 2013). 

The induction of OBF1 by low levels of IRF4 promotes GC B cell development through 

the activity its binding partner OCT2, which is expressed constitutively throughout the 

B lineage (Corcoran et al., 2014; Emslie et al., 2008; Ochiai et al., 2013). CD40/BCR 

signalling also induces the transcription factor BATF which is needed for germinal 

centre maintenance, alongside the mutagenic processes of somatic hypermutation 

(SHM) and class switch recombination (CSR) through regulation of AICDA (also 

controlled by NF-κB and PAX5) (Inoue et al., 2017; Ise et al., 2011; Zan and Casali, 

2013). There is evidence that CD40 and BCR signalling also triggers a switch from 

RUNX1 to RUNX3 regulation, leading to upregulation of RUNX1-repressed cell cycle 

genes (Thomsen et al., 2021). 

 

4.1.1.2 Regulation of germinal centre cycling and cell fate choice  

As described in chapter 3, germinal centres (GCs) are divided into dark zones of 

proliferation and somatic hypermutation, and non-dividing light zones. Transcriptional 

regulation in the dark zone is controlled by FOXO1, which augments BATF expression 

through upregulation of CD40 and BCR signalling components (Inoue et al., 2017). 

After repeated rounds of SHM and proliferation, dark zone GC B cells enter the light 

zone. B cells with high affinity antibodies receive T cell help. This leads to induction of 

MYC, through CD40 and BCR, promoting entry to the cell cycle, and repression of 

FOXO1 by PI3K (Luo et al., 2018). This T cell help also refuels selected B cells through 

induction of MTORC1 (mammalian target of rapamycin complex 1), which promotes 

anabolic growth to sustain cell division and may contribute to PC differentiation 

through repression of BACH2 (Ersching et al., 2017; Kometani et al., 2013).  

Evidence suggests a model where the extent of T cell help, determined by antibody 

affinity, affects the strength of BCR and CD40 signalling, and thereby determines 

memory B cell or plasma cell fate (Akkaya et al., 2020; Laidlaw and Cyster, 2021). B 

cells receiving weak T cell help maintain high BACH2 (possibly through insufficient 
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MTORC1), which sustains repression of plasma cell regulator PRDM1 and promotes 

differentiation into memory B cells (Shinnakasu et al., 2016).  

 

 

 

4.1.1.3 Regulation of plasma cell differentiation and survival 

  

 

Figure 4.2 Transcriptional regulatory networks during plasma cell differentiation following T cell help. High affinity B 
cells receive strong T cell help and repress BCL6 and BACH2 to relieve repression of PRDM1 and induce expression 
by IRF4. Upregulation of PRDM1 leads to repression of germinal centre and B cell repression genes, including PAX5 
which relieves repression on XBP1 and activates the unfolded protein response. Figure created with BioRender. 
 

High affinity GC B cells, receiving strong T cell help, differentiate into plasma cells (Ise 

and Kurosaki, 2019; Laidlaw and Cyster, 2021). As shown in Figure 4.2, strong CD40 

and BCR co-stimulation relieves repression of plasma cell genes (shown in red). Strong 

NF-κB signalling induces high levels of IRF4, which repress BCL6 and relieve PRDM1 

from its repression (Sciammas et al., 2006). PRDM1 is also relieved of BACH2-mediated 
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repression, through repression by MTORC1 downstream of strong activation stimuli 

and T cell cytokine IL-2 (Hipp et al., 2017).  

Following alleviation of repression, PRDM1 is upregulated by IRF4, E2A/E2-2, and 

STAT3 downstream of IL-21 (Kwon et al., 2009; Sciammas et al., 2006; Wöhner et al., 

2016). At high levels, IRF4 shifts away from EICE and AICE sites towards ISRE 

(interferon specific response element) motifs, to which it binds as a homodimer (Ochiai 

et al., 2013). PRDM1 is also capable of binding ISREs in a mutually exclusive manner 

(Doody et al., 2010). IRF4 has also been noted to associate with architectural protein 

CTCF in plasmablasts and plasma cells (Cocco et al., 2020). 

Following upregulation, PRDM1 acts to repress B cell (PAX5, SPIB) and germinal centre 

(AICDA and MYC) factors (Minnich et al., 2016). Repression of PAX5 leads to de-

repression of XBP1, which co-ordinates antibody synthesis and secretion through 

regulation of the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress 

(Shaffer et al., 2004).  

Plasma cell longevity is supported by homing towards the bone marrow niche (Nutt et 

al., 2015; Tellier and Nutt, 2019). Plasmablasts are recruited to the bone marrow 

through the chemokine CXL12 (Hargreaves et al., 2001). Their retention and 

maturation is promoted through engagement of receptors and transcription factors 

including KLF2, which promotes quiescence (Winkelmann et al., 2011). The bone 

marrow stromal niche is home to eosinophils which secrete the B cell survival factor 

APRIL, alongside the cytokine IL-6. (Chu et al., 2011). APRIL signals through the BMCA 

(B cell maturation antigen) receptor to promote expression of the anti-apoptotic MCL1 

protein, essential for PC survival (Peperzak et al., 2013), and induces NF-κB to prevent 

ER stress-associated cell death (Cornelis et al., 2020). 

Whilst the modes of regulation in Figures 1 and 2 are well characterised, our 

understanding of B cell transcriptional regulation is still incomplete. Application of 

cisREAD to the in vitro B cell dataset (Figure 3.2) has identified transcription factors, 

chromatin regions and genes whose activity changes during human B cell 

differentiation; in a system driven by CD40 and BCR signalling, alongside IL-2, IL-21, IL-

6 and APRIL. This first section of this chapter will harness these linkages to explore how 

these core TFs co-ordinate a dynamic transcriptional response to B cell differentiation 
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stimuli. This will fill in in gaps for the cis and trans acting factors which fine-tune 

transcription to orchestrate B cell maturation. 

 

4.1.2 Control of master regulators AICDA and PRDM1 

After determining transcriptional regulation on a genome-wide scale, this chapter will 

evaluate two gene-specific models to demonstrate recall of known regulatory 

elements and generate hypotheses of gene-specific transcriptional control. Models will 

be evaluated for two master-regulators, AICDA and PRDM1, which are essential to the 

generation of antibody diversity and the differentiation of plasma cells.  

4.1.2.1 Induction of AICDA drives antibody diversity downstream of activation signals 

AICDA encodes the Activation-Induced Cytosine Deaminase (AID) enzyme, responsible 

for ensuring antibody diversity through somatic hypermutation and class-switch 

recombination of immunoglobulin genes (Muramatsu et al., 2000). AICDA is induced 

48-60 hours following antigen encounter, through transcription factor binding at the 

gene promoter, and nearby regulatory elements downstream of activation stimuli 

(Pone et al., 2012; Zan and Casali, 2013). The TF-bound regulatory elements which 

control AICDA are well conserved between mice and humans and have been 

characterised in mice. CD40-ligation alongside TLR (Toll-like receptor) and BCR 

stimulation induces canonical and non-canonical NF-κB to upregulate AICDA, through 

direct binding at the gene promoter and a 5’ enhancer (Tran et al., 2010). AICDA is also 

induced by BATF, acting at both at a 3’ enhancer and the super-enhancer which spans 

AICDA and 5’ gene MFAP5 (Crouch et al., 2007; Ise et al., 2011; Lio et al., 2019). BATF 

has been shown to recruit TET, leading to demethylation of the super-enhancer and 

upregulation of AICDA (Lio et al., 2019). AICDA is also controlled in the B lineage by 

PAX5 and E2F at an intronic enhancer (Tran et al., 2010). 

 

4.1.2.2 PRDM1 determines plasma cell differentiation downstream of activation 

induced IRF4 upregulation 

PRDM1 encodes BLIMP1, the master regulatory of plasma cell differentiation. BLIMP1 

promotes plasma cell fate primarily through transcriptional repression of B cell identity 

genes such as BCL6, PAX5 and SPIB (Minnich et al., 2016; Shaffer et al., 2002; Turner et 
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al., 1994; Yu et al., 2000). PRDM1 is repressed in B lymphocytes by B cell and GC 

transcription factors PAX5, SPIB, BACH2 and BCL6 (Calame, 2008; Nutt et al., 2011; 

Tellier and Nutt, 2019). BCL6 represses PRDM1 directly, through binding intronic 

regulatory elements, and indirectly, through inhibiting the AP-1 activator which binds 

the promoter (Parekh et al., 2007; Shaffer et al., 2000; Tunyaplin et al., 2004; 

Vasanwala et al., 2002). The PRDM1 promoter is also the site of direct transcriptional 

repression through PAX5 (Bullerwell et al., 2021; Mora-López et al., 2007); whereas 

SPIB and BACH2 supress transcription via proximal regulatory elements 5’ of the gene 

(Ochiai et al., 2006; Schmidlin et al., 2008). Repression may also occur through the 

IRF8-PU.1 complex which binds the promoter and a 3’ cis-regulatory element (Carotta 

et al., 2014). 

 

As activated B cells differentiate to plasma cells, the PRDM1 promoter and its 

regulatory elements are released from repression. The induction of IRF4, through 

CD40-dependent NF-κB activation and IL-21 dependent STAT3 activation, is a key event 

in the switch from PRDM1 repression to activation (Kwon et al., 2009; Saito et al., 

2007). Transcription of PRDM1 is driven through IRF4 activation at a proximal 3’ 

enhancer, an enhancer in intron 5, and the PRDM1 promoter (Klein et al., 2006; Kwon 

et al., 2009; Sciammas et al., 2006). SP1/SP3 and AP-1 also upregulate PRDM1 at its 

promoter (Mora-López et al., 2008; Ohkubo et al., 2005). 

 

Following IRF4-dependent induction, PRDM1 elevation is sustained in plasmablasts and 

plasma cells, where it functions in antigen presentation, antibody secretion and 

cellular stress responses including the unfolded protein response (Doody et al., 2007, 

2006; Tellier et al., 2016).  It has been shown that PRDM1 maintenance occurs 

independent of IRF4 (Low et al., 2019); the transcription factors and cis-regulatory 

elements responsible for sustained expression remain unknown (Nutt et al., 2015). 

PRDM1 is also considered a tumour suppressor gene in several B cell cancers including 

multiple myeloma and diffuse large B cell lymphoma (DLBCL). PRDM1 has been 

associated with regulation by a downstream super-enhancer in a myeloma cell line 

(Lovén et al., 2013). 
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4.2 Aims and Objectives 

This chapter aims to: 1, leverage cisREAD predictions to identify global changes in gene 

regulation which drive B cell differentiation; and 2, evaluate the utility of cisREAD to 

generate hypotheses of gene-specific transcriptional control. To achieve these aims, 

the following objectives will be met: 

1.A  to identify changes in transcription factor occupancy during B cell  

differentiation; 

1.B  to link dynamic transcription factor occupancy to changes in gene expression; 

2.A  to support predicted models of regulation for individual genes (AICDA and 

PRDM1) using transcription factor binding (ChIP-seq) and chromatin interaction 

(Hi-C) datasets; and 

2.B  to evaluate predictions in context with the literature. 

 

4.3 Methods 

4.3.1 Genome-wide analyses of transcriptional regulation 

To meet aim 1, predictions from the cisREAD + HINT-ATAC run were subject to multiple 

global analyses, performed using command line tools and R.  

 

4.3.1.1 Differential transcription factor footprinting 

To identify changes in transcription factor binding site accessibility throughout the 

lineage, differential footprinting was performed with HINT-ATAC (Li et al., 2019). HINT-

ATAC was supplied with PWMs for the 13 de novo transcription factors identified in 

chapter 3 (Figure 3.7.B), alongside differentiation stage specific BAM files for the 9 

time-points. BED files were also supplied, giving the coordinates of differentially 

accessible regions (DARs). Differential footprinting was performed with the ‘rgt-hint 

differential’ command with the --bc option to perform bias correction relating to Tn5 

cleavage.  HINT-ATAC normalises ATAC-seq signal using DESeq2’s median of the ratios 

methods, to control for differences in sequencing depth across samples (Love et al., 

2014).  
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Following differential footprinting, TF activity scores were calculated by combining the 

‘protection scores’ (differences in cleavage events between the footprints and flanking 

region) and ‘openness-scores’ (numbers of cleavage events around binding sites) from 

HINT-ATAC as described in Li et al., 2019. Line-plots were also produced with HINT-

ATAC, showing the mean ATAC-seq signal across all detected footprints in day 0, day3, 

day 6 and day 13 cell states. 

To identify candidate regulators at de novo motifs which are common to multiple 

transcription factors, TF activity scores were tested for Pearson correlation with the 

log2 normalised expression of relevant genes, selected from the literature. 

 

4.3.1.2 Transcription factor footprint enrichment in cis-regulatory element clusters 

To investigate differentiation-stage specific transcription factor binding, k-means 

clustering of standardised log2 normalised chromatin accessibilities was performed for 

all cis-regulatory elements selected by LASSO regression to regulate a differentially 

expressed gene, with k = 8. k was chosen by incrementing the number of clusters until 

early and late ABC-expressed genes were separated. Following the identification of 

cell-stage specific regulatory clusters, TF occupancy enrichment was calculated for the 

13 de novo motifs from Figure 3.6B (chapter 3). A cis-regulatory element was 

considered occupied if a transcription factor footprint was detected at any cell stage. 

Enrichment was calculated using a two-sided Fisher test for each TF-cluster 

combination, comparing whether the TF occupancy rate of a cluster is significantly 

greater than (enriched) or lesser than (depleted) the TF occupancy rate of all other 

clusters. To ensure robustness to TF-binding site prediction method, this analysis was 

repeated with gene-specific cis-regulatory elements from the cisREAD + BMO run. 

De novo motifs enriched in each cluster were discovered using HOMER 

findMotifsGenome.pl, compared to a background of non-differentially accessible 

regions (Heinz et al., 2010). This was performed to identify motifs that are over-

represented in each temporal cluster, in addition to those discovered across the whole 

process in chapter 3. 
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CREs in each cluster were annotated with HOMER annotatePeaks.pl to derive 

annotations and distance to nearest gene. GC content was calculated using the 

bedtools nuc command (Quinlan and Hall, 2010).  

 

4.3.1.3 Transcription factor footprint enrichment in cis-regulatory elements, linked to 

gene co-expression modules 

To explore gene expression dynamics across differentiation, a gene co-expression 

network was constructed by Dr Matthew Care using the Parsimonious Gene 

Correlation Network Analysis (PGCNA) method (Care et al., 2019) . PGCNA constructs 

gene co-expression networks, where genes (represented as nodes) are connected by 

edges (weighted by correlation) to the three most correlated genes. After network 

construction, correlated genes were grouped into ‘Modules’. Modules are assumed to 

represent genes which are co-regulated by the same TF, functionally similar, or 

involved the same biological processes (van Dam et al., 2018). 

PGCNA was applied to the gene expression data shown in Figure 3.2, alongside 3 

additional samples (6h x 2, day 6 x1) without matching ATAC-seq. This dataset was 

analysed by Dr Matthew Care using DESeq2, identifying 16,296 differentially expressed 

genes (LRT; BH-FDR 0.01) (Love et al., 2014).  The VST normalised expression data for 

the DEG were analysed with PGCNA2 [settings -n 1000, -f1, -b 100] (https://github. 

com/medmaca/PGCNA/tree/master/PGCNA2) selecting the best clustering using 

scaled cluster enrichment score.  This gave a network with 16,296 nodes and 57,175 

edges. A total of 23 modules were identified. 

Module names were derived by Dr Matthew Care from gene-set over-representation 

analysis (FDR < 0.1), performed using 41,811 gene signatures curated from the Staudt 

lab, CORUM, MSigDB, UniProt, Gene Ontology and in-house databases (Ashburner et 

al., 2000; Liberzon et al., 2015; Shaffer et al., 2006). Enrichment of modules for 

signatures was assessed using a hypergeometric test, where the draw is the module 

genes, the successes were the signature genes, and the population were the genes in 

the mRNA count matrix.  

Upon receipt of PGCNA module membership and names, transcription factors were 

linked to PGCNA modules by identifying TF footprints in cis-regulatory elements 
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selected to regulate expression of genes in each module. TF enrichment was then 

calculated using a two-sided Fisher test, comparing TF occupancy in CREs linked to that 

module to the occupancy of CREs not linked to that module. This analysis was also 

repeated with gene-specific cis-regulatory elements from the cisREAD + BMO dataset. 

 

4.3.1.4 Exploration of PU.1/SPIB and AP-1 occupied cis-regulatory elements and 

target genes 

To explore predicted regulation by PU.1 and AP-1 factors, occupancy at predicted 

binding sites was first confirmed using ChIP-seq. ChIP-seq peaks targeting PU.1 and 

BATF in GM12878 (Epstein-Barr Virus transformed B lymphoblastoid cells)were 

downloaded from ENCODE, under accessions ENCFF492ZRZ and ENCFF728KFD 

(ENCODE Project Consortium et al., 2020). SPIB binding sites were obtained from the 

union of ChIP-seq peaks called in diffuse large B cell lymphoma cell lines OCILy3 and 

OCILy10 (macs2 q value < 0.01) using data from Care et al. 2014. The SPIB datasets 

were realigned to hg38 and processed as described in (Care et al., 2014) by Dr 

Matthew Care. Binding sites for each factor were then intersected with DARs using 

bedtools intersect (Quinlan and Hall, 2010). Both GM12878 and OCILy cell lines are 

developmentally equivalent to day 3 activated B cells. 

PU.1/SPIB and AP-1 targets were defined as genes with selected regulatory elements, 

with PU.1/SPIB and/or AP-1 footprints, whose accessibility was positively correlated 

with expression. These genes were k-means clustered by expression (k=5, incremented 

until early and late ABC clusters were separated). Enrichment of ChIP-seq PU.1, SPIB 

and BATF binding sites was calculated for cis-regulatory elements with PU.1/SPIB 

and/or AP-1 footprints, linked to each of the 5 expression clusters with a one-sided 

Fisher test. For each cluster, TF occupancy was compared at CREs with footprints for 

either PU.1/SPIB, PU.1/SPIB + AP-1 or AP-1, to all other DARs without the footprint(s).  

Genes in each expression cluster, linked to either PU.1/SPIB, PU.1/SPIB + AP-1, or AP-1 

footprints, were tested for enrichment of Gene Ontology (GO) biological processes 

(Ashburner et al., 2000; Carbon et al., 2021), Kyoto Encyclopaedia of Genes and 

Genomes (KEGG) pathways (Kanehisa and Goto, 2000), Hallmark Molecular Signature 

DataBase (MSigDB) gene signatures (Liberzon et al., 2015) and Staudt lab gene 

signatures (Shaffer et al., 2006). Enrichment was first calculated using a one-sided 
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Fisher test, to test gene-set over-representation in TF targets in a cluster, compared to 

all other clusters (targeted by any of the 3 TFs.) Gene sets enriched with BH-adjusted p 

< 0.1 were considered significantly enriched. This was used to define potential 

‘temporally regulated’ gene sets. Enrichment was also performed against genes with a 

similar expression profile without the given TF footprint(s) to identify gene sets 

preferentially regulated by a TF at a given differentiation stage (‘TF-specific regulated’).  

To obtain background sets for gene set over-representation, similarly expressed genes 

were identified by training an XGBoost classifier (using the ‘XGBoost’ R package) on the 

five expression clusters (Chen and Guestrin, 2016). This was used to predict the cluster 

label for all other differentially expressed genes linked to CREs without the TF 

footprint(s). An XGBoost model, using the ‘multi:softprob’ objective function, was 

trained by five-fold cross validation (stratified folds), to identify the number of decision 

trees resulting in the lowest mean multi-classification error (‘nrounds’ = 47.) Genes 

were assigned a cluster label if the XGBoost-predicted probability of belonging to a 

class exceeded 0.9. 

 

4.3.2 Evaluation of gene-specific models 

To meet aim 2, gene-specific models from the cisREAD + HINT-ATAC set were 

evaluated for AICDA and PRDM1 genes. To aid validation , ATAC-seq, ChIP-seq and Hi-C 

datasets were visualised using the WashU Epigenome browser (Li et al., 2022). ATAC-

seq signal tracks were generated for the 9 in vitro B cell time points. BAMs were 

pooled across all replicates using samtools merge (Li et al., 2009), and bias-corrected, 

normalised bigwig signal tracks were produced using the ‘rgt-hint tracks’ command 

from HINT-ATAC (Li et al., 2019).  

To evaluate AICDA chromatin contacts Knight-Ruiz (KR) normalised Hi-C data for 

GM12878 cells, aligned to hg19, was selected for visualised within the WashU 

epigenome browser (Knight and Ruiz, 2013; Rao et al., 2014). To evaluate PRDM1 

chromatin contacts, primary human plasma cell Hi-C data from Vilarrasa-Blasi et al., 

2021 was obtained from the European Genome Archive (EGA). Filtered, valid read 

pairs, aligned to hg38 as described in Vilarrasa-Blasi et al., 2021 were converted to .hic 
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files using HOMER (Heinz et al., 2010), and subject to Knight-Ruiz matrix balancing 

normalisation (Knight and Ruiz, 2013) within the WashU epigenome browser.  

Additional ATAC-seq and ChIP-seq datasets for GM12878 cells were downloaded from 

the ENCODE consortium for evaluation of transcription factor occupancy (ENCODE 

Project Consortium et al., 2020). Details of all additional datasets used are shown in 

Table 4.1. 

Table 4.1 Additional datasets used to evaluate gene-specific models. GM12878 B lymphoblastoid cells are used as 

surrogate for in vitro activated B cells. 

Datatype Sample Target  

 

Genome 

build 

Source Accession Model evaluation 

ATAC-seq GM12878 - hg38 ENCODE ENCFF667MDI AICDA, PRDM1 

ChIP-seq GM12878 RELA 

(NF-κB)  

hg38 ENCODE ENCFF149XND AICDA 

ChIP-seq GM12878 RELB 

(NF-κB) 

hg38 ENCODE ENCFF936FAN AICDA 

ChIP-seq GM12878 BATF hg38 ENCODE ENCFF716MIY AICDA 

ChIP-seq GM12878 IRF4 hg38 ENCODE ENCFF167KPF AICDA, PRDM1 

ChIP-seq GM12878 PAX5 hg38 ENCODE ENCFF886UGF AICDA, PRDM1 

ChIP-seq GM12878 RUNX3 hg38 ENCODE ENCFF857YLX AICDA, PRDM1 

ChIP-seq GM12878 OCT2 hg38 ENCODE ENCFF803HIP PRDM1 

Hi-C GM12878 - hg37 WashU (data from 

Rao et al. 2014) 

GM12878_1 

in_situ_1combined 

AICDA 

Hi-C Primary 

plasma cells 

- hg38 EGA (data from 

Vilarrasa-Blasi et 

al., 2021) 

EGAD00001006486 PRDM1 

 

4.4 Results and Discussion 

 

4.4.1 Data integration with cisREAD reveals global changes in B cell gene regulation 

during differentiation 

To identify global changes in gene regulation, genome-wide analyses were performed. 

These identified temporal patterns of transcription factor binding, and linked TF 

occupancy to differential accessibility, modular gene expression and functional 

pathways.  
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4.4.1.1 Dynamic occupancy of core transcription factors 

During step 2 of cisREAD (described in chapter 3), transcription factor footprints were 

used to infer occupancy at 13 de novo motifs, which were enriched in differential 

chromatin regions (Figure 3.7.B). To assess global changes in TF occupancy at each 

motif through differentiation, differential footprinting was performed. This compared 

normalised footprint depth and accessibility between cell states. Differential footprints 

were visualised as line-plots, showing the chromatin accessibility of each binding site, 

averaged across all footprints in B cell (BC), activated B cell (ABC), plasmablast (PB) and 

plasma cell (PC) stages (Figure 4.3.A). Here transcription factor footprints were visible 

as dips in accessibility surrounding the motif where Tn5 cleavage was blocked by 

occupancy.  

Stably binding factors with high DNA residency times (e.g., CTCF) exhibited strong 

footprints, with a marked difference in cleavages between the binding site itself, and 

flanking regions. Transiently binding factors (e.g., STAT3 and NF-κB) left much 

shallower footprints, where cleavage was only slightly depleted at the binding site. 

For each motif, transcription factor activity scores, combining chromatin accessibility 

and transcription factor footprint strength, showed changes in occupancy across the 

time-course (Figure 4.3.B). Since many motifs are capable of occupancy by related 

transcription factors, TF activity was correlated with TF gene expression to identify 

candidate TFs which bind shared motifs (Figure 4.3.C).
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Figure 4.3 Differential transcription factor footprinting. A) TF footprint line-plots showing the mean normalised chromatin accessibility across all footprints in the 200bp window surrounding each de 
novo motif in day 0, day 3, day 6 and day 13 samples. n gives the total number of footprints called across the 4 time-points. Line-plots show changes in binding site accessibility and occupancy 
strength during transition from B cells, to activated B cells, then to plasmablasts and plasma cells. B) TF activity scores (z-score) at nine timepoints for each de novo motif, combining footprint 
accessibility and strength. C) Significant Pearson correlations (p < 0.1) between TF activity and gene expression of the TF, plots show mean accessibility and expression for each TF/gene across the 
time-course.
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4.4.1.1.1 Changes in occupancy with B cell activation 

Upon activation by CD40 and BCR stimulation at day 0, PU.1/SPIB footprints lost 

accessibility and strength (Figures 4.3.A and 4.3.B). The gradual loss of PU.1/SPIB 

activity between day 0 and day 3 was strongly correlated with the loss in SPIB 

expression (Figure 4.3.C). PU.1/SPIB loss coincided with gains in ZBTB33, NF-κB and AP-

1 activity in the hours immediately following activation. ZBTB33 induction was 

transient, and declined after day 1, whilst NF-κB and AP-1 activity dropped upon 

withdrawal of CD40L at day 3. NF-κB accessibility increased slightly in plasma cells, 

following the addition of APRIL at day 6. The elevation of AP-1 activity in activated B 

cells was strongly correlated with the expression of AP-1 family member BATF. 

MADs-Box, IRF4 and RUNX factors showed a delayed increase in response to activation 

stimuli, but all peaked sharply in day 3. The induction of RUNX activity was 

anticorrelated with RUNX1 expression. 

 

4.4.1.1.2 Changes in occupancy with plasma cell differentiation 

Whilst the derivation of days 0-3 from total B cells, and days 6-13 from memory B cells, 

hindered direct comparison of regulation in the plasmablast transition, IRF4, E-Box, 

OCT2 and CTCF activities all increased with plasma cell differentiation. E-Box footprints 

showed no net change in accessibility, yet their TF activity score increased from day 3 

due to increased footprint depth (Figure 4.3.B). The increase in E-Box activity was 

correlated with expression of E2A, noted to be the dominant E-protein associated with 

plasma cell regulation (Gloury et al., 2016). Elevated OCT2 activity in plasmablasts and 

plasma cells was strongly correlated with expression of the gene encoding the OBF1 

binding partner.  

4.4.1.1.3 Occupancy linked to both B cells and plasma cells 

SP/KLF, PAX5/CREB/ATF and STAT3 footprints lost accessibility upon activation and 

proliferation and gained accessibility upon the plasmablast transition and cell cycle 

exit. of SP/KLF activity was correlated with expression of the B cell quiescence factor 

KLF2 (Winkelmann et al., 2011).  
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4.4.1.2 Cluster analysis of gene-specific cis-regulatory elements reveals TF binding 

dynamics across differentiation 

To interrogate regulatory dynamics on a genome-wide scale, selected gene-specific 

CREs were divided into 8 regulatory clusters, based on differentiation-stage specific 

chromatin accessibility, using k-means clustering (Figure 4.4.A). k was incremented 

from 3 onwards until early-stage and late-stage ABC-specific clusters were separated. 

For each cluster, enrichment of core TF footprints (Figure 4.4.B) and de novo motifs 

(Figure 4.4.C) characterised transcriptional regulators which drove gene regulation at 

each stage. 

 

4.4.1.2.1 Changes in accessibility and motif occupancy with B cell activation  

Cluster 1 CREs were accessible prior to B cell activation, and lost accessibility at 2h30-

24 hours post activation (Figure 4.4B). PU.1/SPIB footprints were uniquely enriched in 

this cluster (occupying 51% of CREs, Figure 4.4A)), alongside and a de novo motif 

matching the PAX5 half site (Cobaleda et al., 2007), discovered in 14% of CREs (Figure 

4.4C). Cluster 2 CREs were also accessible in B cells, yet gained further accessibility 

immediately after stimulation, and remained accessible until the plasmablast 

transition at day 6 (Figure 4.4B). These B cell specific CREs were also enriched in 

PU.1/SPIB footprints, present in 39% of elements, but were additionally enriched in 

footprints for NF-κB (14%), ZBTB33 (4%) and AP-1 factors (32%) (Figure 4.4A), which 

were previously associated with activation in Figure 4.3   

PU.1/SPIB occupancy was lost in Cluster 3 CREs, which were lowly accessible in B cells, 

and gained accessibility 2h30 post activation (Figure 4.4B). Instead, occupancy was 

dominated by AP-1 (65%), alongside regulation by ZBTB33 and NF-κB (Figure 4.4A). AP-

1 occupancy (53%) continued into late-ABC cluster 4, which gained accessibility at 12h 

post activation (Figure 4.4B). De novo motif discovery found enrichment of a BATF-IRF4 

composite in 17% of CREs, and RUNX footprints (33%) were also enriched (Figure 4.4C).
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Figure 4.4 Enrichment of footprints and de novo motifs in cis-regulatory clusters. A) Bubbleplot showing enrichment of TF occupancy in each cluster. Size of bubbles gives the proportion of each 
cluster harbouring a TF footprint, colour shows significant (p < 0.05, two-sided Fisher test) enrichment (fold-change between cluster and other clusters > 1, red) or depletion (fold-change between 
cluster and other clusters < 1, blue), grey represents no significant enrichment.  N gives the number of CREs in each cluster. B) Heatmap showing mean log2 normalised chromatin accessibility (z-
score) of cis-regulatory elements significantly linked to gene expression, k-means clustered (k = 8). C) De novo motifs enriched in each cluster from HOMER (p < 0.05, occupancy > 10%). D) Boxplot 
showing distance of CREs to their nearest gene in each cluster. E) Genomic annotation of each CRE by HOMER. F) Boxplot showing GC content of CREs in each cluster.
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4.4.1.2.2 Changes in accessibility and motif occupancy with plasma cell 

differentiation 

Cluster 5 CREs gained accessibility around 1-3 days after activation, and sustained 

accessibility throughout plasma cell differentiation (Figure 4.4B). CREs in this cluster 

were enriched in occupancy by RUNX (41%), IRF4 (28%), E-Box (20%) and OCT2 (12%) 

footprints (Figure 4.4A). De novo motif analysis also reported significant enrichment of 

these factors and discovered an ISRE site for IRF4. RUNX (36%), IRF4 (25%), E-Box 

(24%) and OCT2 (20%) were also enriched in PB/PC specific cluster 6, alongside CTCF 

(6%) and MADS-Box factors (5%) (Figure 4.4C).  

 

4.4.1.2.3 Accessibility and motif occupancy linked to both B cells and plasma cells 

Cluster 7 CREs were accessible in plasmablasts and plasma cells yet exhibited 

moderate accessibility prior to activation (Figure 4.4B). Notably CREs in this cluster 

were close to their target gene (Figure 4.4.D), highly GC rich (Figure 4.4.E), enriched for 

gene promoters (Figure 4.4.F). This cluster exhibited strong enrichment for SP/KLF 

factors, which occupied 67% of CREs in this cluster, accompanied by occupancy by 

CTCF (8%) and PAX5/CREB/ATF (37%) (Figure 4.4A). De novo motif analysis revealed 

enrichment of additional promoter-associated motifs including NF-Y and CREB which 

conform to elements of previously defined XBP1 binding motifs (Figure 4.4C) (Acosta-

alvear et al., 2007; Cocco et al., 2020).  

The accessibility of cluster 8 CRE similarly declined in ABCs, however accessibility was 

greater in BCs and PCs (Figure 4.4B). Like cluster 7, this class was overrepresented for 

promoters and GC-rich elements, although to a lesser extent (Figures 4.4E and 4.4F),. 

SP/KLF (34%) and PAX5/CREB/ATF (40%) footprints were also enriched in this cluster 

(Figure 4.4A), and de novo motif enrichment showed enrichment of a PAX5/CREB 

binding site and an ETS motif, different to the PU.1/SPIB motif in earlier clusters 

(Figure 4.4C).  

In order to alleviate concerns over the reliability of footprinting for transient binding 

factors, the clustering analysis was repeated with TF binding events predicted by a 

footprint independent method BMO (described in chapter 3) (D’Oliveira Albanus et al., 
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2021). Replication with BMO binding sites showed highly concordant results (Appendix 

4.1).  

 

4.4.1.3 Parsimonious Gene Co-expression Network Analysis shows differential 

transcriptional regulation of temporally distinct biological pathways 

To investigate how differential transcription factor occupancy controlled gene 

expression dynamics, gene-specific CREs were linked to co-expression modules 

identified using the Parsimonious Gene Co-Expression Network Analysis (PGCNA) 

method (Care et al., 2019). A total of 23 gene co-expression modules were identified, 

each enriched in differential biological processes, signalling pathways and transcription 

factor targets.
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Figure 4.5 Enrichment of footprints in cis-regulatory elements linked to PGCNA co-expression modules M1-16. A) Bubbleplot showing enrichment of TF occupancy in cis-regulatory elements 
assigned to genes in PGCNA expression modules. Size of bubbles gives the proportion of each cluster harbouring a TF footprint, colour shows significant (p < 0.05, two-sided Fisher test) enrichment 
(fold-change between genes in module and genes not in module > 1, red) or depletion (fold-change < 1, blue), grey represents no significant enrichment.  N gives the number of genes with significant 
CREs in each module. B) Heatmap showing mean log2 normalised gene expression (z-score) of genes with significantly linked CREs, module names reflect enriched gene sets in each module. Gene set 
names summarise enriched gene signatures determined by hypergeometric test (FDR < 0.1) C) Boxplot showing distance of CREs to their nearest gene in each cluster. D) Genomic annotation of each 
CRE by HOMER.  E) Boxplot showing GC content of CREs in each cluster. 
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To identify regulatory inputs into temporal gene expression programs, TF footprint 

enrichment was calculated within cis-regulatory elements (Figure 4.5.A) that were 

linked to upregulation of gene co-expression modules (Figure 4.5.B). Only modules 

with significant TF enrichment are shown. TF enrichment was not observed in the 

remaining 8 modules due to the small number of DEGs in these modules. 

 

4.4.1.3.1 Changes in RNA levels with B cell activation 

Genes with B cell-specific expression, whose accessibility declined in the hours after 

activation, were placed in module 15 (M15). This module was enriched for ribosomal 

protein gene sets and was linked to CREs with unique, strong enrichment for PU.1/SPIB 

occupancy (35%). PU.1/SPIB was further enriched in CREs linked to module 3 (40%), 

which were highly expressed in B cells, and moderately expressed on activation. NF- κB 

(10%) and MADS-Box (4%) factors also contributed regulation to this module, which 

was enriched for gene signatures relating to naïve B cells, BCR signalling, repression by 

BLIMP1 and the major histocompatibility (MHC) Class II complex.   

Genes in modules 9 and 11 were moderately expressed in B cells, but highly expressed 

immediately after activation. This module was enriched for gene sets relating to NF- κB 

signalling and linked to CREs with strong enrichment for NF- κB enrichment (11% and 

13%) alongside PU.1/SPIB (25% and 27%) and AP-1 (33% and 38%).  

AP-1 was the dominant regulator of activated B cell modules and was solely linked to 

matrisome and AP-1 motif modules 16 (52%) and 12 (40%), which were sharply 

upregulated 2h30-24 hours post activation.  AP-1 was also enriched with 38% 

occupancy for the similarly expressed stromal module 7, alongside NF-κB at 13% and 

ZBTB33 at 4% of CREs. Enrichment of AP-1 (43%), NF-κB (10%) and ZBTB33 (33%) was 

also observed for the BCR activation/MYC target module 2, which was upregulated 

until day3, and enriched for RUNX occupancy (29%).  
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4.4.1.3.2 Changes in RNA levels with plasma cell differentiation 

Modules 8 and 10 were upregulated in late-ABCs and plasmablasts and were enriched 

for cell cycle/MTORC1/glycolysis and cell cycle/DNA repair functions, respectively. 

These were linked to regulation by AP-1 (33% at module 8), RUNX (33% at modules 8 

and 10) and IRF4 (20% module 10). IRF4, OCT2, E-Box CTCF and SP/KLF were associated 

with regulation of plasma cell genes in modules 4, 5 and 11. Specifically, IRF4 was 

linked to oxidative phosphorylation module 4 (18%), and E-Box was linked to 

immunoglobulin module 11 (21%). 

 

4.4.1.3.3 RNA levels linked to both B cells and plasma cells 

Modules 6 and 1 were downregulated with activation and proliferation and 

upregulated in both B cells and plasma cells. Both modules were enriched in gene sets 

linked to quiescence, and had more GC-rich, proximal and promoter elements than 

other modules (Figures 4.5.C, D and E). These genes were preferentially upregulated 

by SP/KLF (35% and 40%) and CTCF (6% for both), module 6 was also linked to STAT3 

(2%). A repeat of the analysis with BMO-derived occupancy predictions yielded 

concordant results (Appendix 4.2). 

 

4.4.1.4 Discussion of dynamic gene regulatory networks during B cell differentiation 

Integration of epigenomic and transcriptomic datasets have been instrumental in 

uncovering how the chromatin environment shapes B cell populations, and responds 

to stimuli to determine cell fate on a genome wide scale (Barwick et al., 2018; Bunting 

et al., 2016; Chaudhri et al., 2020; Cocco et al., 2020; Scharer et al., 2018; Vilarrasa-

Blasi et al., 2021). Studies into murine T cell-independent dynamics, have previously 

found increased accessibility and/or hypomethylation of NF-κB, AP-1, IRF4, OCT2, E-

box and MADS-Box motifs upon activation with lipopolysaccharide (LPS), coinciding 

with downregulation of PU.1/SPIB sites (Barwick et al., 2018, 2016). The analyses of in 

vitro B cell regulation recapitulated many of the same observations under T cell 

dependent stimuli in human cells, whilst also characterising additional regulators 

including RUNX(3) and ZBTB33. Taken together, Figures 4.3, 4.4 and 4.5 suggest the 
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following regulatory dynamics (Figure 4.6). 

 

Figure 4.6 Regulatory dynamics for core transcription factors suggested by analysis of in vitro B cell 
differentiation ATAC-seq and RNA-seq. Diagram indicates temporal occupancy of key transcription factors in 
relation to differentiation stimuli. Figure created with BioRender. 

The analysis supports a model where gene regulation shifts from PU.1/SPIB towards 

AP-1 upon B cell activation. Results suggest that AP-1 augments the initial regulatory 

response, propagated through NF-κB, by upregulation of NF-κB signalling, and ZBTB33 

may also contribute regulation at early response elements (Figures 4.3 and 4.4), 

independent of NF-κB (Figure 4.5).  

Whilst interpretation of the plasmablast transition is complicated by the differing start 

points of day 0-3 and day 6-13 samples, the data suggest that control shifts from AP-1 

(alone and at AICE motifs) to RUNX and IRF4; co-ordinating sequential expression of 

MTORC1, cell cycle, and oxidative phosphorylation genes (Figure 4.5). There is 

evidence from the motifs in Figure 4.4.C that IRF4 occupancy shifts from AICE to ISRE 

sites during this transition. Regulation in plasmablasts and plasma cells is also 

contributed by OCT2, E-Box and CTCF factors.  

The analysis supports the roles of KLF factors in B cell quiescence (Cao et al., 2010; 

Winkelmann et al., 2011), shown by the downregulation of SP/KLF motifs in cycling 

ABCs (Figures 4.3 and 4.4) and association with quiescence gene modules (Figure 4.5). 

However enrichment of the ubiquitous SP1 activator at highly accessible and GC rich 

promoter regions (such as those in SP/KLF enriched clusters/modules in Figures 4.4 

and 4.5) might also contribute to this pattern (Hasegawa and Struhl, 2021).  
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4.4.1.5 Gene regulation shifts from PU.1/SPIB to AP-1 during B cell activation 

The results in Figures 4.3, 4.4 and 4.5 revealed an overwhelming association between 

PU.1/SPIB with the B cell state, and AP-1 with the activated B cell state. To further 

investigate how the shift in regulatory inputs shapes B lineage expression programmes, 

gene-specific models were used to predict PU.1/SPIB and AP-1 target genes. ChIP-seq 

data was then indicated to implicate individual PU.1/SPIB and AP-1 family members 

with occupancy and gene regulation at distinct stages of differentiation. 

 

4.4.1.5.1 A PU.1/SPIB-BATF gradient co-ordinates B cell activation 

PU.1/SPIB and AP-1 targets were defined as genes with selected CREs, which were 

footprinted by PU.1/SPIB and/or AP-1, and with accessibility which positively 

correlated with gene expression. Predicted PU.1/SPIB and AP-1 target genes were 

collectively clustered by their expression using k-means clustering (k=5, incremented 

until early-stage and late-stage ABC expression clusters were separated) (Figure 4.7.A). 

Each cluster was then divided by predicted regulation; by linkage to CREs with 

PU.1/SPIB footprints, AP-1 footprints or both PU.1/SPIB and AP-1 footprints (either in 

the same CRE or in separate CREs). The chromatin accessibility of cisREAD-predicted 

CREs at each cluster was then visualised (Figure 4.7.B). Similarly, cis-elements were 

divided by the presence of footprints for PU.1/SPIB only, AP-1 only, and both 

PU.1/SPIB and AP-1 (at the same CRE).  
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Figure 4.7 PU.1/SPIB and AP-1 target genes, linked to cis-regulatory elements, PU.1/SPIB and BATF occupancy and functional pathways. A) Heatmap showing mean log2 normalised expression of 
genes linked by cisREAD to CREs with PU.1/SPIB and/or AP-1 footprints, k-means clustered by expression (k=5). Each cluster is separated by a line. Within each cluster genes are divided based on 
predicted regulation by PU.1/SPIB only, PU.1/SPIB and AP-1 (either in the same CRE or at different CREs) or AP-1 only. B) Heatmap showing the mean log2 normalised chromatin accessibility of CREs 
linked to gene expression clusters (divided by lines), annotated by the presence of footprints for PU.1/SPIB only, PU.1/SPIB and AP-1 at the same CRE, or AP-1 only. C) Enrichment of ChIP-seq binding 
sites for SPIB (from OCILy-3/OCILy-10, blue), PU.1 (from GM12878, green), and BATF (an AP-1 factor, from GM12878, red) at CREs with footprints for PU.1/SPIB and/or AP-1, linked to each expression 
cluster, compared to all DARs without the given footprint. D) Gene sets enriched (FDR < 0.1) in genes in each cluster, linked to regulatory elements with PU.1/SPIB and/or AP-1 footprints, compared to 
genes in other clusters. E) Gene sets enriched (FDR < 0.1) in genes in each cluster, linked to regulatory elements with PU.1/SPIB and/or AP-1 footprints, compared to genes with similar expression 
patterns, not linked to given footprints F) log2 normalised PU.1, SPIB and BATF expression.
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Each cluster in Figure 4.7.A was assessed by the proportion of genes predicted to be 

upregulated by PU.1/SPIB or AP-1 uniquely or in combination. It was observed that 

most B cell upregulated genes were linked to PU.1/SPIB footprints, which were most 

accessible in B cell time-points (cluster 1).  Conversely, most ABC upregulated genes 

were linked to AP-1 footprints which were accessible at ABC time-points (clusters 2,3 

and 4). Almost half of genes upregulated in the hours following CD40 and BCR 

stimulation were predicted targets for both PU.1/SPIB and AP-1 cluster 2. PU.1/SPIB 

and AP-1 were predicted to regulate expression of these genes at different sets of 

regulatory elements, as indicated by the comparatively small set of cis-elements with 

both PU.1/SPIB and AP-1 footprints. 

To confirm transcription factor occupancy at PU.1/SPIB footprints, existing ChIP-seq 

data was integrated (Figure 4.C). PU.1 ChIP-seq data came from lymphoblastoid cell 

line GM12878 (ENCODE Project Consortium et al., 2020), and SPIB ChIP-seq from 

DLBCL cell lines OCILy-3 and OCILy-10, which are surrogates for different activated B 

cell states (Care et al., 2014).  

Both PU.1 and SPIB ChIP-seq binding sites significantly overlapped CREs with PU.1/SPIB 

footprints, but not CREs with only AP-1 footprints (Figure 4.7.D). Furthermore, the 

effect size of PU.1 and SPIB enrichment varied by cluster; PU.1 binding sites were most 

enriched at CREs with plasmablast/plasma cell accessibility (linked to clusters 3, 4 and 

5) and SPIB binding sites were most enriched at CREs with activated B cell accessibility 

(linked to clusters 1 and 2). This may reflect increased SPIB in activated B cells and 

increased PU.1 mRNA in PBs/PCs (Figure 4.7.F). 

Amongst potential AP-1 binding transcription factors BATF has been previously 

identified as a regulator of germinal centre gene expression and a key driver of 

neoplastic B-cells related to the activated B-cell state, equivalent to day 3 of in vitro 

differentiation (Care et al., 2014). To test BATF enrichment at AP-1 footprints we 

employed existing BATF ChIP-seq data from GM12878 (ENCODE Project Consortium et 

al., 2020) and found significant enrichment of BATF binding sites at CREs with AP-1 

footprints, but not at CREs with only PU.1/SPIB footprints. Mirroring transcription of 

BATF (Figure 4.7.F), BATF binding sites showed the greatest enrichment at CREs most 

accessible 12 hours to 3 days after activation (linked to cluster 4). 
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To suggest functions for PU.1, SPIB and AP-1 (BATF) in the B cell to activated B cell 

transition, gene set over-representation analyses was performed. This identified gene 

sets enriched in transcription factor target genes (PU.1/SPIB only, PU.1/SPIB and AP-1, 

and AP-1 only) in each cluster.  

Firstly, to identify pathways enriched by differentiation stage, over-representation was 

performed against a background set of genes, which were targeted by any of the three 

factors in any other cluster. The resulting ‘Temporally enriched’ gene sets (FDR < 0.1) 

are summarised on Figure 4.7.D. Secondly, to identify pathways preferentially 

regulated by PU.1/SPIB and/or AP-1 at each stage a background set of similarly 

expressed genes, not linked to the given footprint(s) was used (Appendix 4.3). These 

‘TF-specific enriched’ gene sets are summarised on Figure 4.7.E. 

For cluster 1, PU.1/SPIB, but not AP-1, targets were enriched for B cell specific gene 

sets (Figure 4.7.D), showing TF-specific enrichment of genes involved in intracellular 

signal transduction (Figure 4.7.E). Both PU.1/SPIB and AP-1 were enriched for germinal 

centre expressed and RNA processing gene sets and AP-1 targets were enriched for 

RNA metabolism genes, compared to similar genes not linked to AP-1. 

A variety of gene sets relating to RNA processing and MYC targets (PU.1/SPIB and AP-

1), NF-κB and BCR activation (PU.1/SPIB in conjunction with AP-1) and OCT2 targets 

(AP-1 only) were enriched in cluster 2, over all over clusters. RNA-processing genes 

showed preferential regulation by PU.1/SPIB, and OCT2 targets showed preferential 

regulation by AP-1 (Figure 4.7.E). Several gene sets showed preferential co-regulation 

by PU.1/SPIB and AP-1, including NF-κB pathway, cell cycle and BCL6 target genes (also 

observed for cluster 1, Figure 4.7.F).  

Genes expressed later in the activation process (cluster 4) were enriched for gene sets 

relating to cell cycle and DNA repair, alongside OCT2 and E2F targets, regardless of 

regulator. No transcription factor specific pathways were enriched for this cluster. 

Overall, this combined view of PU.1/SPIB and AP-1 target genes suggests that gene 

regulation shifts from PU.1/SPIB to AP-1 during B cell activation, contingent on each 

factors’ induction, with potential coregulation of activation pathways during the 

immediate response to CD40 and BCR engagement. Altogether the shift from 

PU.1/SPIB to AP-1 induces proliferation of B cells upon activation (cell cycle genes), 
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prepares ABCs for antibody-secretion through expansion of the endoplasmic reticulum 

(RNA processing genes); and promotes immunoglobulin gene mutation (DNA repair 

genes). 

 

4.4.1.5.2 The shift from PU.1/SPIB to AP- 1 is a key determinant of B cell activation 

The above analyses have highlighted how the activated B cell transition is defined by a 

shift from PU.1/SPIB-driven to AP-1-driven gene regulation. Whilst PU.1/SPIB and AP-1 

factors have previously been linked to B cell differentiation and the activated B-cell 

state in mice and humans (Care et al., 2014; Ochiai et al., 2013; Scharer et al., 2018), 

this is the first detailed analysis of their temporal dynamics and downstream 

regulatory networks in human B cells. Crucially, the analysis revealed how B cell 

activation stimuli coordinate a shift in PU.1, SPIB and BATF mRNA, which induces the 

sequential co-expression of RNA processing, proliferation, and DNA repair genes to 

stimulate division and prepare for plasma cell identity. The analysis offers new insight 

on the transcriptional mechanisms driving differentiation, finding that the PU.1/SPIB – 

AP-1 axis is central to B cell activation and antibody secreting cell fate (Figure 4.8). 

 

Figure 4.8 Diagram showing the shift from regulation at PU.1/SPIB to AP-1 motifs upon B cell activation by CD40 
and BCR stimulation. In B cells PU.1 and SPIB upregulate BCR signalling, upon activation PU.1 is lost rapidly but SPIB 
is sustained, where it upregulates genes involved in B cell activation. This coincides with BATF upregulation, which 
first co-ordinates B cell activation with SPIB. BATF activity continues to increase with B cell activation, but SPIB 
expression is lost. BATF now upregulates cell cycle and DNA repair genes in activated B cells. Figure created with 
BioRender. 

PU.1 and SPIB are two partially redundant transcription factors, shown to upregulate 

BCR signal transduction and receptors for CD40L, BAFF and TLR ligands and are 

required for B cell activation (Willis et al., 2017). PU.1 and SPIB are both 

downregulated in plasma cells, and SPIB over-expression and structural deregulation is 

associated with the ABC subtype of DLBCL (Care et al., 2014; Lenz et al., 2008). 
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Deregulation of SPIB in ABC-DLBCL may contribute to the differentiation block that 

characterises this tumour type.  

PU.1/SPIB footprints were uniquely enriched in B cell specific cis-regulatory clusters 

(Figure 4.4) and linked to the expression of B cell specific gene modules expressed at 

these time-points (Figure 4.5). PU.1/SPIB enriched modules and PU.1/SPIB target 

genes (Figure 4.7) were enriched in pathways relating to B cell expression, BCR 

signalling and signal transduction. This is consistent with PU.1 and SPIB’s 

complementary roles in environment sensing to facilitate B cell activation (Willis et al., 

2017), and the importance of BCR signalling in the pathogenesis of ABC-DLBCL (Davis 

et al., 2010; Phelan et al., 2018). 

Our data suggest that some PU.1/SPIB footprints sustain accessibility after activation 

and may contribute regulation to genes immediately induced by activation stimuli 

(Figure 4.7). Unlike PU.1, SPIB expression was maintained immediately post-activation 

(Figure 4.7.F) and was preferentially repressed after day 3. Thus, immediately after 

activation SPIB may preferentially occupy PU.1/SPIB motifs to modulate transcription. 

This is consistent with the established model of SPIB repression by PRDM1, which 

accumulates after day 3 as ABCs transition to the plasmablast and then PC states.  

AP-1 occupied cis-regulatory elements open following CD40 and BCR engagement. AP-

1 provides regulatory input from the onset of activation until the plasmablast 

transition, and gene set enrichment results suggest diverse functions controlling B cell 

activation, RNA processing and the cell cycle (Figures 4.5 and 4.7). 

AP-1 subunits (including FOS, FRA1 or BATF partnered with JUN, JUNB or JUND) 

regulate temporally diverse processes in B cell maturation (Grötsch et al., 2014; Inada 

et al., 1998; Ise et al., 2011; Long et al., 2022; Ochiai et al., 2013; Ohkubo et al., 2005; 

Vasanwala et al., 2002). BATF is induced in a CD40, and MHC-II dependent manner 

(Inoue et al., 2017; Long et al., 2022), and is essential for co-ordinating class-switch 

recombination and germinal centre establishment (Ise et al., 2011; Morman et al., 

2018). In germinal centres, BATF is induced as B cells transition from the light zone to 

dark zone upon selection by T cells and its expression is associated with cell cycle re-

entry (Long et al., 2022). BATF over-expression is associated with ABC-subtype DLBCL 

(Care et al., 2014). 
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Our data show that BATF is induced following CD40 engagement, and BATF ChIP-seq 

binding sites for GM12878 overlap AP-1 footprints accessible in activated B cells 

(Figure 4.7). AP-1 functions suggested by gene set over-representation (Figures 4.5 and 

4.7) support known roles for BATF in class switch recombination (DNA repair) and cell 

cycle entry, and indicate additional involvement in RNA processing, crosstalk with the 

NF-κB pathway and regulation of MYC, E2F and OCT2 target genes. 

Figure 4.7 revealed that the transition from PU.1/SPIB-driven to AP-1 driven regulation 

is graded by expression of PU.1, SPIB and BATF. Our data suggest that the two 

alternate transcriptional programs intersect in the hours following activation, when 

NF-κB, MYC and BCL6 are induced (Calado et al., 2012; Dominguez-Sola et al., 2012; 

Gerondakis and Siebenlist, 2010; Robinson et al., 2020). Significant over-

representation of NF- κB, MYC and BCL6 targets was observed in both cisREAD-

predicted PU.1/SPIB and AP-1 targets. This suggests that, at this transitory stage, 

PU.1/SPIB and AP-1 regulatory networks are intertwined with those of other critical 

germinal centre factors. Overall, our data support a model where gene regulation 

gradually shifts from PU.1/SPIB towards AP-1 upon B cell activation, passing through 

an intermediate stage where SPIB and BATF may co-ordinate the expression of genes 

induced immediately upon activation. This gradient would also affect IRF4 binding 

partner choice and shift IRF4 occupancy from ETS-IRF4 composite elements (EICEs) and 

towards AP1-IRF4 composite elements (AICEs). 

 

4.4.1.6 Limitations of the in vitro B cell system and genome-wide analyses of 

regulation 

Altogether the work in this chapter demonstrated that cisREAD successfully prioritises 

differential transcription factor occupancy and chromatin accessibility with dynamic 

gene expression across B cell maturation. Applying this method to our in vitro system 

we were able to reveal new insight into transcriptional reprogramming during B cell 

activation. However, both the dataset and methods have their limitations.  

Firstly, due to preferential differentiation of memory B cells into long-lived plasma 

cells, whilst day 0-3 time-points originate from total peripheral blood B cells, day 6-13 

time-points originate from isolated memory B cell subpopulations (Cocco et al., 2012). 

Differences between total B cell derived and memory B cell derived gene regulation 
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between day 3 and day 6 do not affect the conclusion that gene regulation shifts from 

PU.1/SPIB to AP-1 upon B cell activation. Whilst this discrepancy may affect the types 

of regulation observed during the ABC-plasmablast transition, previous work in our in 

vitro B cell system found highly similar patterns of gene expression between total and 

memory B cell derived fractions in this transition (Cocco et al., 2020). 

Secondly, in the absence of measured transcription factor binding, we use 

transcription factor footprinting, corrected for Tn5 cutting bias, as a proxy for TF 

occupancy at accessible regions (Li et al., 2019). Whilst many studies successfully 

employ ATAC-seq footprinting to interrogate TF binding dynamics (Barwick et al., 2018; 

R. Li et al., 2018; Vierstra et al., 2020), it has been noted that many transcription 

factors do not leave strong footprints, particularly those with short DNA residency 

times (Baek et al., 2017; D’Oliveira Albanus et al., 2021; Sung et al., 2014). This is 

particularly a concern for transiently binding signal-inducible TFs like STAT3 and NF-κB, 

for which we observe detectible yet ‘shallow’ footprints (Figure 4.3.A). The replication 

of our analysis with binding site predictions derived from the BMO model, based on 

motif accessibility and co-occurrence (D’Oliveira Albanus et al., 2021), suggests 

however that the cisREAD method and downstream analysis is robust to the use of 

footprints (Appendices 4.1 and 4.2). 

 

Finally, the analysis has not been able to differentiate specific motifs or footprints for 

two key transcriptional regulators of terminal PC differentiation PRDM1 and XBP1. 

Both of these factors are expressed and occupy target sites in differentiating plasma 

cells (Cocco et al., 2020). PRDM1 motifs overlap with a subset of ISREs and may 

therefore be subsumed amongst a subset of accessible regions with an ISRE match. 

Additional binding motifs consistent with the XBP1 and associated NF-Y consensus 

sequences were identified in CRE clusters 7 and 8 (5-ACGTG-3/5-CACGT-3 and 5-

CCAAT-3), which are associated specifically with genes induced at the plasma cell state 

(Acosta-alvear et al., 2007; Cocco et al., 2020). However, no sequence associated 

specifically with XBP1 appeared in the final set of de novo motifs and so XBP1-

associated motif enrichment was not tested amongst PGCNA modules derived from 

the expression time course. 
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4.4.2 Gene-specific models recall known regulation and suggest new hypotheses of 

transcriptional control 

The global analysis of gene regulation revealed how transcription factors orchestrate B 

cell differentiation on a genome-wide scale. These inferences were made through 

combined analyses of thousands of gene-specific predictions. In this next section, two 

gene-specific models are evaluated in depth: for AICDA and PRDM1. These two case 

studies exemplify how cisREAD can be used to generate hypotheses of gene-specific 

regulation, in line with aim 2. They demonstrate how cisREAD can identify both known 

regulatory relationships and suggest new mechanisms of transcriptional control. 

 

4.4.2.1 AICDA model recalls validated regulatory elements, acting through NF-κB and 

AP-1 (BATF) 

AICDA encodes the essential AID enzyme responsible for the mutagenic processes of 

CSR and SHM which underpin antibody diversity. Regulation of the AICDA gene has 

been extensively studied in murine systems and human cell lines by several groups. For 

these two reasons, the AICDA model was chosen for in depth evaluation. 

13 Candidate CREs, within 100kb of the TSS, were considered to regulate AICDA (Table 

4.2). After community detection, a LASSO model was constructed with 11 coCRE 

predictors. 8 of these predictors were selected by the model at the optimal λ, which 

minimised cross-validated error (Figure 4.9.A), Gene expression predicted by the 

AICDA model was highly correlated with actual expression (r=0.98), which increased 

from 2h30 post activation and peaked in day 3 activated B cells (Figure 4.9.B). 10 

selected cis-regulatory elements, forming the 8 coCRE predictors, were selected by the 

AICDA model, however none were statistically significant (Table 4.2 and Figure 4.9.C).  



144 
 

Table 4.2 Detals of the 11 predictors in AICDA LASSO regression model. Each row represents one of 13 cis-regulatory elements, entered into the model alone or as part of a coCRE. TF footprints indicate de 

novo motif occupancy, predicted by HINT-ATAC, at any time-point. Four cis-regulatory elements (conserved between mice and humans) have been experimentally validated in mice. 

coCRE / 

Predictor 

CRE (hg38) Transcription Factor 

Footprints 

Distance to 

TSS (bp) 

Pearson 

Correlation  

Coefficient p value Annotation in 

Figure 4.9 

Experimental Validation 

1 chr12:8537820-8538220 PAX5/CREB/ATF 74,839 0.58 0.126 0.301 I  

2 chr12:8542248-8542648 AP-1, PAX5/CREB/ATF 70,411 0.36 -0.0803 0.43 II  

1 chr12:8578990-8579756 PAX5/CREB/ATF, RUNX 33,486 0.54 0.126 0.301 III Crouch et al., 2007  

3 chr12:8591082-8591482 NF-κB, RUNX 21,577 0.51 0 NA 
 

 

4 chr12:8611137-8611537 E-Box, RUNX 1,522 0.90 0.428 0.0595 IV Sayegh et al., 2003; region 2 from Tran et al., 2010 

5 chr12:8613819-8614219 NF-κB, SP/KLF, ZBTB33 -1,160 0.09 -0.127 0.394 V  

6 chr12:8619101-8619501 E-Box, PU.1/SPIB -6,442 0.52 0 NA 
 

 

7 chr12:8629441-8629841 NF-κB -16,782 0.79 0.0864 0.708 VI Tran et al., 2010; TETE1 from Lio et al., 2019 

8 chr12:8644895-8645295 AP-1, E-Box -32,236 0.82 0.388 0.2 VII  

8 chr12:8648613-8649013 AP-1, RUNX -35,954 0.84 0.388 0.2 VIII TETE2 from Lio et al., 2019 

9 chr12:8697669-8698069 SP/KLF -85,010 -0.71 0 NA 
 

 

10 chr12:8698137-8698764 RUNX -85,591 -0.77 -0.0885 0.603 IX  

11 chr12:8709466-8709866 IRF4, RUNX -96,807 0.05 0.3 0.119 X  
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Figure 4.9 cisREAD predicted regulation for AICDA. A) The LASSO regression model selected 8 predictors at 𝜆min. This model predicted AICDA expression, which was highly correlated with actual 
AICDA expression, shown in B) where points give mean across donors and bars give range. C) 10 selected cis-regulatory elements contributed to the AICDA regression model, thus were predicted to 
regulate the gene. These CREs, highlighted in yellow, were accessible in activated B cell states (as indicated by in vitro B cell ATAC-seq signal tracks) and occupied by relevant transcription factors (as 
indicated by GM12878 ChIP-seq tracks). Five of these overlapped a super-enhancer, defined by Lio et al. 2019, shown in red. GM12878 Hi-C (KR normalised, binned at 10kb) showed that the majority 
of selected CREs were observed to interact with the AICDA promoter, as evidenced by deep red squares, when tracing from the CRE to the promoter, indicating elevated numbers of chromatin 
contacts.
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4 of these selected CREs overlapped conserved regulatory elements, which have been 

functionally validated in mice. These include CRE II, a distal 3’ enhancer required for in 

vivo AICDA expression in mice (Crouch et al., 2007); CRE IV, a B cell-specific intronic 

CRE bound by PAX5 and E-Box proteins which is required for efficient AICDA induction 

in mice (Sayegh et al., 2003; Tran et al., 2010); and CRE VI, a 5’ enhancer found to drive 

basal and signal-inducible activity in mouse B lymphoma cells through factors including 

NF-κB (Tran et al., 2010). CRE VI, alongside CRE VII, also overlapped two TET-

responsive elements which have been shown to upregulate AICDA upon LPS-

stimulation through demethylation of a super-enhancer by TET, which is recruited by 

BATF (Lio et al., 2019). Murine elements within this super-enhancer (spanning IV to 

VIII) have been shown to produce eRNAs (Meng et al., 2014) and upregulate AICDA 

through RNA polymerase mediated interactions (Kieffer-Kwon et al., 2013).  

Integration with Hi-C data from GM12878, similar in differentiation-state to day 3 

ABCs, showed evidence of chromatin interactions between AICDA and its super-

enhancer (Figure 4.9.C). These were visible as the deep red triangle on the contact 

matrix, showing elevated chromatin contacts within this region. Chromatin looping 

interactions were also evident between the AICDA promoter and CRE III.  

4 additional elements were selected by the AICDA model (I and II near CLEC4E and IX 

and X near RIMKLB) but Hi-C data only showed evidence of chromatin looping between 

II and the AICDA promoter. However, since these four regions differ in chromatin 

accessibility between in vitro ABCs and EBV-transformed GM12878 cells, a different 

chromatin topology could be present in vitro.  

Overall, the AICDA model shows the cisREAD methodology can recall known regulatory 

elements and suggest additional, plausible candidate regulators. 

 

4.4.2.2 PRDM1 model suggests upregulation through OCT2 and RUNX at distal 

plasma cell specific enhancers 

PRDM1 encodes BLIMP1, a transcription factor described as the master regulatory of plasma 

cell differentiation. Whilst the transcription factor network governing its repression and 

induction have been well characterised (Figures 4.1 and 4.2), it has not been established how 

PRFM1 expression remains elevated in plasma cells independent of IRF4 (Low et al., 2019).  
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The PRDM1 model at λmin (the value of λ which minimises the mean squared error of the 

model) selected a community of three distal co-acting enhancers located 3’ of the gene and a 

lone intronic enhancer from a total of 21 predictors (Figure 4.10.A). The distal 3’ community of 

cis-regulatory elements was a statistically significant predictor of PRDM1 transcription, and 

expression predicted by the PRDM1 model was strongly correlated with actual gene expression 

(Figure 4.10.B).  

PRDM1 is induced upon the plasmablast transition (Figure 4.10.C), and the accessibility of the 

4 selected CREs mirrored this expression pattern (Figure 4.10.D). The selected intronic CRE (I) 

was occupied by known PRDM1 regulators PU.1/SPIB (repressively in B cells) and IRF4 (in 

plasma cells). The significant downstream coCRE was co-occupied by OCT2 and RUNX in 

plasmablasts and plasma cells, as well as PAX5/CREB/ATF in B cells (Figure 4.10.D.) 

Whilst none of the selected CREs have undergone experimental validation, 2/3 members of 

the significant coCRE overlapped two distal super-enhancers, assigned to PRDM1 in multiple 

myeloma cells (Lovén et al., 2013). Hi-C in primary plasma cells showed a domain of elevated 

chromatin contacts spanning from the PRDM1 promoter to 150kb downstream of the TSS, 

encompassing both super-enhancers (Figure 4.10.D). 

Taken together, in vitro B cell ATAC-seq, the PRDM1 model, GM12878 ChIP-seq and primary 

GC and PC Hi-C data suggest that a range of distal TF-bound regulatory elements downstream 

of the gene control PRDM1 transcription. In B cells proximal and distal regulatory elements are 

occupied by repressive transcription factors including SPIB (possibly at CRE I) and PAX5 (at CRE 

III). PRDM1 is elevated in the plasmablast transition by relief of repression and induction of 

IRF4 (including at CRE I). Following the plasmablast transition, several additional elements gain 

accessibility, including those selected by the LASSO regression model. 
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Figure 4.10 cisREAD predicted regulation for PRDM1. A) The LASSO regression model selected 2 predictors at 𝜆min. B) This model predicted PRDM1 expression that was highly correlated with actual 
PRDM1 expression, shown in C) where points give mean across donors and bars give range. D) The four selected CREs, one lone CRE and one coCRE, were similarly accessible in terminal 
differentiation. The coCRE was predicted co-bound by OCT2, RUNX and PAX5/CREB/ATF and the lone CRE was footprinted by IRF4 and PU.1/SPIB. E) These CREs, highlighted in yellow, were accessible 
in plasmablast and plasma cell states (as indicated by in vitro B cell ATAC-seq signal tracks) and occupied by relevant transcription factors (as indicated by GM12878 ChIP-seq tracks). Two of these 
overlapped super-enhancers, defined by Loven et al. 2013, shown in red. Primary plasma cell Hi-C (KR normalised, binned at 25kb) showed the distal 3’ coCRE exists within a subdomain characterised 
by elevated chromatin contacts with the PRDM1 promoter. 
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Footprints within these selected elements suggest that OCT2 and RUNX may be the factors 

which sustain PRDM1 elevation in plasma cells, independent of IRF4 (Low et al., 2019). Whilst 

many other plausible regulators were rejected by the model, this example demonstrates that 

cisREAD can generate hypotheses of gene regulation to suggest new mechanisms of 

transcriptional control. The rejection of similarly accessible candidate regulators likely stems 

from issues associated with multicollinearity (observed in Figure 4.10.F). This limitation is 

discussed in the following section.  

 

4.4.2.3 Gene-specific models highlight limitations the cisREAD method  

The cisREAD methodology employs a correlation-based approach to link regulatory 

elements to target genes, with LASSO regression models selecting CREs whose 

accessibility positively or negatively predicts expression of a gene. This assumption 

enabled the successful prediction of validated AICDA enhancers, which were accessible 

only when AICDA was expressed. 

Whilst correlation based methods have been shown to assign enhancers and silencers 

to genes to provide biological insight (Beekman et al., 2018; Huang et al., 2019; 

Vijayabaskar et al., 2019), they may overlook regulatory relationships where 

accessibility is not correlated with expression, such as priming (Moore et al., 2020), in 

which regulatory elements are accessible prior to expression. An example of this may 

be seen in the PRDM1 model, where its intronic CREs, conserved and validated in mice, 

were not selected due to their prior accessibility in BC and ABC states. 

In the PRDM1 example, there are also cases where CREs whose accessibility is strongly 

correlated with expression (such as other elements within the super-enhancer regions) 

fail to be selected by the LASSO regression model. This is likely a result of 

multicollinearity (Figure 4.10.F), which LASSO handles by selecting one of the 

correlated variables, and rejecting the others since their inclusion would not improve 

model fit (Zou and Hastie, 2005). The community detection step aimed to alleviate 

multicollinearity, by entering correlated variables into the model as one predictor. 

However, the use of ‘integrated similarity scores’ to draw edges in the cis-regulatory 

networks (described in chapter 3) meant that correlated CREs were only grouped 

together if they shared TF footprints. The PRDM1 example (Figure 4.10) showed that 

multiple similarly accessible CREs, components of the same super-enhancer, were 
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entered to the model as separate predictors due to disparate TF footprint profiles. 

Only one of these predictors was selected, and the others were eliminated from the 

model. To better capture super-enhancers, at the expense of TF-co-bound units, the 

community detection step could have been performed using only chromatin 

accessibility.  

It should also be noted that in a minority of instances, selected regression coefficients 

reverse sign, with the model coefficient opposite between the correlation between 

accessibility and expression. This is due to the statistical paradox of suppression, which 

can arise upon addition of another correlated variable into the model (Tu et al., 2008). 

For this reason, the direction of regulation is best derived from correlation not 

coefficient.   

 

4.5 Conclusion 

Downstream analysis of the fine-grained map of chromatin accessibility and gene 

expression profiles across B cell differentiation, following application of the cisREAD 

method, has enabled the identification of stimuli-responsive shifts in transcription 

factor binding associated with distinct epigenetic programmes.  

Application of our method to a model system of human B cell differentiation revealed 

how a core network of transcription factors exercise regulatory control over B cell 

differentiation, explicitly coupled to the CD40 and BCR activation stimuli administered 

to the in vitro cell system. This work has both identified established modes of 

transcriptional control, and uncovered new wires in the transcriptional circuitry which 

shapes mature B cell differentiation.  

Crucially the analysis revealed unprecedented detail into the shift from PU.1/SPIB to 

AP-1 led regulation which co-ordinates T-cell dependent activation in humans.  This 

finding may act as a springboard for future studies, which could validate the roles of 

PU.1, SPIB and BATF through experimentation. For example, the association with 

BATF/AP-1 with the ABC state suggested that BATF itself may be responsible for 

licencing ABC-specific regulatory elements. Observations here, and elsewhere, support 

a role for BATF as a pioneer factor in B cells (Morman et al., 2018). Recent 
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experimental work establishing BATFs pioneering function in T cells also supports 

investigation into BATF pioneering in the B lineage (Pham et al., 2019).  

Key to these findings was the new cisREAD method; a data-driven approach which 

prioritises dynamically accessible regulatory elements, targeted by lineage-specific 

transcription factors and associated with the expression of differentiation associated 

genes. The global analyses presented in this chapter leveraged predictions made by 

gene-specific models, to make inferences on gene regulation on a genome-wide scale. 

In depth examination of two individual models showed that cisREAD was able to recall 

known modes of regulation and generate plausible new hypotheses, which could be 

experimentally validated with future work.  

These case studies revealed both limitations and advantages of the method, however 

performance of cisREAD on the full dataset is still untested. This will be explored in the 

next chapter, where the performance of cisREAD will be evaluated at scale and 

benchmarked against alternative models. 
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Chapter 5. cisREAD identifies more regulatory chromatin interactions than 

alternative methods 

 

5.1 Introduction 

Chapter 3 described the development of cisREAD: a method to identify gene-specific 

cis-regulatory elements across differentiation from ATAC-seq and RNA-seq datasets. 

cisREAD was applied to datasets from an in vitro system of B cell differentiation, to 

identify regulatory elements which control differentiation-associated genes through 

the activity of lineage-specific transcription factors. Comparing predictions to 

experimentally derived gene sets, cisREAD correctly identified target genes for IRF4 

and NF-kB transcription factors. Altogether this indicated that cisREAD assigned 

transcription factor-bound regulatory elements to their correct targets. In chapter 4 

these CRE-gene linkages were used to gain insight into the transcription factor-led 

regulatory programmes which drive differentiation, and also predict hypotheses of 

gene-specific regulation. 

Chapter 5 focuses on the validation of cisREAD-predicted gene regulation with publicly 

available datasets, benchmarking the method against alternative approaches. Since 

large-scale validation of cis-regulatory elements and their target genes is an ongoing 

area of research and debate, the chapter starts by outlining validation strategies 

common in the field. 

 

5.1.1 Validating predicted regulatory interactions 

Benchmarking methods to match regulatory elements to target genes is both difficult 

and contentious, as there is no agreed-upon set of ‘ground truth’ regulatory 

interactions (Moore et al., 2020). This owes to the difficulty of detecting regulatory 

interactions at scale using current techniques. Whilst low-throughput methods such as 

reporter assays provide functional validation for small numbers of gene-specific 

regulatory elements, evaluation of predictive models requires large, high-throughput 

datasets. Frequently used validation strategies include comparisons with chromatin 

interactions from Chromatin Conformation Capture (3C) based techniques, expression 

Quantitative Trait Loci (eQTLs), and CRISPR (Clustered Regularly Interspaced Short 

Palindromic Repeats) perturbation screens (Gasperini et al., 2020). This section will 
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highlight the advantages, limitations, and uses of each datatype. 

 

5.1.2 Detecting regulatory chromatin interactions with chromosome conformation 

capture 

Chromosome conformation capture (3C) techniques probe the topology of 

chromosomes, and can be used to identify topologically associated domains (TADs) 

and, at sufficient resolution, detect chromatin looping interactions between regulatory 

elements (McCord et al., 2020). A general introduction to this family of methods is 

provided in chapter 1.  

Genome-wide 3C technologies can detect interactions between all chromosomal 

regions (Hi-C), or those mediated by a protein of interest (ChIA-PET) (Fullwood et al., 

2009; Lieberman-Aiden et al., 2009). Hi-C offers an all-vs-all approach to capturing 

chromatin contacts between all regions of the genome, however large numbers of cells 

and high sequencing depths are required for resolution sufficient to identify individual 

chromatin loops (Rao et al., 2014). To increase resolution at the cost of scale, Hi-C 

libraries can be enriched for regions of interest. Through enriching for gene promoters, 

Promoter Capture Hi-C (PC Hi-C) can identify long-range interactions between distal 

chromatin regions and gene promoters at high-resolution (Mifsud et al., 2015). In a 

similar trade-off, ChIA-PET combines Chromatin Immunoprecipitation (ChIP) with Hi-

C’s proximity ligation step to identify chromatin interactions tethered by a protein. 

Through targeting proteins with known roles in cis-regulation or chromatin structure 

(e.g. RNA pol II or CTCF), ChIA-PET enables identification of chromatin interactions that 

delineate regulatory chromatin domains or enhance transcriptional activation (Tang et 

al., 2015).  

Whilst Hi-C, ChIA-PET and PC Hi-C are powerful tools to study the spatial organisation 

of chromatin, data derived from 3C-based methods can suffer from technical artefacts 

and data-dependencies which result in noise and bias (Lajoie et al., 2015). The 

detection of chromatin looping interactions is complicated by the distance-dependent 

distribution of chromatin contacts, where the probability of contact decreases with 

genomic distance following a power-law relationship. This is accepted to arise from 

random collisions between chromatin regions due to the Brownian motion of 

chromosome polymers, which increase in frequency with proximity (McCord et al., 
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2020). Alongside distance-dependent collisions, random ligations which occur in 

solution, and sequencing-based artefacts add to background levels of 3C contacts. 

Numerous methods have been developed to identify chromatin interactions by 

accounting for ‘background’ contact levels obtained by Hi-C, PC Hi-C or ChIA-PET 

(Cairns et al., 2016; He et al., 2015; Roayaei Ardakany et al., 2020). 

Despite these technical limitations, 3C-based methods offer unparalleled insight into 

chromatin interactions between distal elements and gene promoters, and are a 

popular choice for both validating and training predictive methods (Cao et al., 2017; He 

et al., 2014; Roy et al., 2015). However, whilst chromatin interactions are widely 

accepted to necessitate regulation, not all interactions are regulatory. This must be 

considered when using interactions as surrogate for regulation. 

 

5.1.3 Associating regulatory variants with gene expression through eQTLs  

Expression Quantitative Trait Loci (eQTLs) are genetic variants associated with 

variation in expression across a population. As such, the presence of an eQTL within a 

cis-regulatory element provides evidence of gene-specific regulation in vivo. eQTL 

mapping requires genotype and expression data over large numbers of cells or tissues, 

and is performed by association testing similar in approach to GWAS studies (Nica and 

Dermitzakis, 2013). As such, these studies face limitations including causality and 

linkage disequilibrium. 

 eQTLs do not always have direct or independent roles. eQTLs may affect expression of 

a gene in cis – i.e., in a cis-regulatory element – or trans. Trans-regulatory effects on 

gene-expression can arise when a variant alters the expression of gene encoding a 

protein (e.g., a transcription factor, signalling molecule or receptor), which in turn 

alters expression of other genes. To disentangle the two mechanisms, eQTLs are 

divided into cis-eQTLs and trans-eQTLs based on proximity to the gene’s TSS (Umans et 

al., 2021). Linkage disequilibrium (LD - where variants in a chromosomal region are co-

inherited) means that multiple eQTLs may be associated with gene expression due to 

correlation with the true regulatory variant (Umans et al., 2021). In an attempt to 

separate ‘causal’ eQTLs from those in LD, a number of statistical fine-mapping 
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approaches have been developed and applied to eQTL analysis (The GTEx Consortium, 

2021).  

Due to the use of genotype data, only common variants are tested for association with 

expression. Many cis-elements do not harbour common variants, and thus would be 

undetectable by eQTL mapping. Furthermore, most cis-elements are highly cell-specific 

and the vast majority of eQTL analyses – such as those performed by the GTEx 

consortium – have been performed in tissues or whole blood. These samples are easily 

obtainable across large cohorts but comprise multiple, diverse cell types (Umans et al., 

2021). In recent years, single-cell approaches to eQTL mapping using single-cell RNA-

seq data, or deconvoluted bulk transcriptomes, are emerging to disentangle the cell-

specific effects of eQTLs (Yazar et al., 2022). 

Altogether, these limitations mean that eQTL mapping is a powerful but limited 

approach to in vivo validation of cis-regulatory effects on gene expression. Despite 

limitations, eQTLs have been used to validate and benchmark predicted CRE-gene 

relationships in a number of studies (Cao et al., 2017; Huang et al., 2019; Salviato et al., 

2021; Wang et al., 2021). 

 

5.1.4 Perturbing regulatory elements using CRISPR screens 

Recently, experimental enhancer perturbation via CRISPR screens has enabled 

functional validation of enhancers and target genes endogenously. These experiments 

target guide RNAs to candidate enhancers and induce perturbations through CRISPR 

interference (CRISPRi) (Gasperini et al., 2020). Gene expression is then measured in 

cells with and without gRNAs using single cell RNA sequencing (Gasperini et al., 2019; 

Xie et al., 2017) or FlowFish (Fulco et al., 2019; Reilly et al., 2021). Whilst these assays 

can functionally validate gene-specific enhancers in their native chromatin context, 

widespread validation with these emerging techniques is hindered by a number of 

factors.  

CRISPRi induced perturbation of non-coding DNA is expensive and difficult, and even 

when CRISPR screens are multiplexed, current techniques identify relatively few cis-

regulatory relationships (Gasperini et al., 2020). The largest screen to date identified 

just 664 enhancer-gene pairs, with 90% of perturbed candidate enhancers yielding no 
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detectable change in expression (Gasperini et al., 2019). Whilst the technical 

challenges of CRISPRi may result in a high false negative rate, the true sensitivity of 

CRISPR screens is still unknown (Gasperini et al., 2020). Additionally, all large-scale 

CRISPR perturbation screens have so far been limited to the K562 myelogenous 

leukaemia cell line. Whilst this barrier has prevented validation in other cell types, 

predicted regulatory interactions in K562 have been evaluated using data from CRISPR 

screens (Fulco et al., 2019; Salviato et al., 2021).  

 

5.2. Aims and Objectives 

This chapter aimed to validate and benchmark the cisREAD method to identify gene-

specific cis-regulatory elements. In order to achieve this aim the following objectives 

were set out: 

1) to validate gene-specific cis-regulatory elements across B cell differentiation 

using publicly available datasets; and 

2) to assess the relative performance of cisREAD through benchmarking against 

alternative methods. 

 

5.3 Methods 

This section describes the validation and benchmarking of cisREAD, using publicly 

available sets of ‘gold standard’ regulatory interactions to evaluate the performance of 

cisREAD, relative to alternative methods. 

 

5.3.1 Validation Datasets 

Due to the need to match validation data to the in vitro B cell system, predicted CRE-

gene relationships were compared to chromatin interaction datasets from relevant 

related B cells. 4 chromatin interactions datasets, obtained by promoter capture Hi-C 

and RNA pol II ChIA-PET, were used for validation (Table 5.1). 
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Table 5.1 B cell specific chromatin interaction datasets used for validation. 

Datatype Cell type Citation Source Genome 
Build 

Promoter 
Capture Hi-C  

GM12878 Cairns et al. 
2016 

 https://osf.io/nemc6/  hg19 

Total Peripheral 
Blood B cells 
(CD19+) 

Javierre et al. 
2016  

Javierre et al. 2016 Data S1  hg19 

Naïve Peripheral 
Blood B cells 
(CD19+, CD27-) 

Javierre et al. 
2016 

Javierre et al. 2016 Data S1  hg19 

ChIA-PET (RNA 
pol II) 

GM12878 Dekker et al., 
2017 

 https://encodeproject.org – 
accession ENCFF913VWM 

hg38 

 

Significant PC Hi-C interactions in naïve (CD19+, CD27-) and total (CD19+) peripheral 

blood B cells were obtained from the supplementary material of Javierre et al., 2016, 

and significant interactions in B cell lymphoblastoid cell line GM12878 were 

downloaded from the supplementary website associated with Cairns et al., 2016. In all 

three cases, significant interactions were determined by the CHICAGO method from 

Cairns et al. 2016 and interactions with CHICAGO score > 5 were considered significant. 

RNA polymerase II ChIA-PET loops for GM12878, called following the ChIA-PIPE 

pipeline (Lee et al., 2020), were downloaded from the ENCODE portal (ENCODE Project 

Consortium et al., 2020).  

 

5.3.2 Prediction Datasets 

To perform benchmarking, a set of 6 prediction sets from 4 alternative methods were 

selected for validation alongside cisREAD (Table 5.2). These encompassed simpler 

approaches (the naïve nearest gene assumption and Pearson correlation between 

accessibility and expression) and published state-of-the-art models designed to predict 

enhancer-promoter interactions (JEME and Activity-by-Contact). 

 

 

 

 

 

 

https://osf.io/nemc6/
https://encodeproject.org/
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Table 5.2 B cell specific predicted regulatory interactions. 

Model Sample(s) Citation Source Genome 
Build 

cisREAD In vitro B cells - - hg38 

Pearson 
correlation 

In vitro B cells - - hg38 

Nearest Gene In vitro B cells - - hg38 

JEME GM12878 Cao et al. 2017 https://yiplab.cse.cuhk.edu.hk/jeme/ –  
ID 114 

hg19 

Primary B Cells Cao et al. 2017 https://yiplab.cse.cuhk.edu.hk/jeme/  – 
ID 032 

hg19 

Activity-by-
Contact 

GM12878 Fulco et al. 2019 https://osf.io/uhnb4/  hg19 

Primary B cells Nasser et al. 2021 ftp://ftp.broadinstitute.org/outgoing/l
incRNA/ABC/Nasser2021-Full-ABC-
Output/ 

hg19 

 

cisREAD predictions for the in vitro B cell dataset were taken from the cisREAD + 

Footprints set described in chapter 3. CREs were predicted to interact with the gene 

promoter if the CRE (either alone or as a coCRE constituent) was selected by a gene’s 

LASSO regression model. Pearson correlation and nearest gene methods were also 

implemented on the in vitro B cell dataset. For Pearson correlation, DARs were 

assigned to DEGs if the Pearson correlation between chromatin accessibility and gene 

expression > 0.7. For nearest gene, DARs were assigned to DEGs if the TSS of the DEG 

was the closest TSS (annotated by HOMER annotatePeaks.pl) to the DAR’s midpoint.  

JEME and Activity-by-Contact were chosen for comparison due to their popularity and 

disparate methodologies. Cao et al.’s JEME model, described in detail in chapter 2, 

takes a supervised machine learning approach to predict enhancer-promoter 

interactions from gene expression, chromatin accessibility and histone-mark features. 

The model is trained on ChIA-PET chromatin interactions (Cao et al., 2017). In contrast, 

Fulco et al.’s Activity-By-Contact model predicts whether an enhancer 𝐸 regulates a 

gene 𝐺 through calculating its ‘Activity-by-Contact’ score. This is calculated from the 

product of the enhancer’s ‘Activity’ 𝐴 (geometric mean of H3K27 acetylation and 

chromatin accessibility signal) and ‘Contact’ 𝐶 with the promoter (normalised Hi-C 

signal), divided by the ‘Activity’ and ‘Contact’ of all neighbouring enhancers within 

5Mb (Equation 5.1). Fulco et al. found that their simple rule-based approach 

outperformed chromatin interaction-trained machine learning classifiers, including 

JEME, when benchmarking on a CRISPR perturbations (Fulco et al., 2019). 

 

https://yiplab.cse.cuhk.edu.hk/jeme/
https://yiplab.cse.cuhk.edu.hk/jeme/
https://osf.io/uhnb4/
ftp://ftp.broadinstitute.org/outgoing/lincRNA/ABC/Nasser2021-Full-ABC-Output/
ftp://ftp.broadinstitute.org/outgoing/lincRNA/ABC/Nasser2021-Full-ABC-Output/
ftp://ftp.broadinstitute.org/outgoing/lincRNA/ABC/Nasser2021-Full-ABC-Output/
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Equation 5.1 Activity-by-Contact model from Fulco et al. 2019 

 Activity by Contact ScoreE,G =  
AE CE,G

∑ AE X CE,Ge within 5Mb of G
 

Owing to input requirements (i.e., histone modification ChIP-seq, Hi-C), JEME and 

Activity-By-Contact models could not be implemented on the in vitro B cell dataset. 

Instead, predicted interactions from primary B cells and the GM12878 cell line were 

downloaded from supplementary websites associated with Cao et al., 2017, Fulco et 

al., 2019 and Nasser et al., 2021. 

 

5.3.3 Benchmarking strategy 

Prediction datasets from the 5 models were compared to the 4 validation sets 

following the strategy outlined in Figure 5.1. Since JEME and Activity-by-Contact 

models predicted cell type-specific cis-regulatory interactions, the cell-types used for 

prediction were directly matched to the cell-types in the validation sets. Since cisREAD, 

Pearson correlation and nearest gene methods predicted cis-regulatory interactions 

across the whole in vitro B cell dataset (encompassing both naïve and activated B cell 

states) validation sets from both B cells and GM12878 (developmentally equivalent to 

ABCs) were used. 

 

Figure 5.1 Benchmarking strategy. cisREAD, Pearson correlation and nearest gene methods made predictions for 
the in vitro B cell differentiation dataset. These predictions were compared to four chromatin interaction datasets: 
RNA polymerase II ChIA-PET in GM12878 cells, and promoter capture (PC) Hi-C in GM12878, total B cells and naïve 
Bs. JEME and Activity-By-Contact models made predictions for GM12878 and total B cells.  For JEME and Activity-By-
Contact, predictions in GM12878 were compared to GM12878 chromatin interaction datasets, and total B cell 
predictions were compared to total and naïve B cell chromatin interactions. 
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To facilitate comparisons, CRE and TSS coordinates for datasets aligned to hg38 

(cisREAD, Pearson correlation, nearest gene, and RNA polymerase II ChIA-PET) were 

converted to hg19 using UCSC liftOver to match JEME, Activity-by-Contact and PC Hi-C 

datasets. For all 5 prediction datasets, CREs were resized to 1kb surrounding the 

region’s midpoint. Interactions in both prediction and chromatin interaction datasets 

were limited to those spanning 2.5kb - 100kb from the CREs midpoint to the gene’s 

TSS. In line with cisREAD, Pearson Correlation and Nearest Gene, JEME and Activity-By-

Contact predictions were limited to those involving in vitro B cell DEGs. 

Predicted-CRE gene linkages were intersected with chromatin interactions from 

validation datasets. A predicted interaction was considered validated if the gene’s TSS 

overlapped (>= 1bp) a Hi-C/ChIA-PET fragment, and the CRE overlapped the interacting 

fragment. If multiple predicted and validated interactions overlapped (e.g., due to 

resolution), all were retained. True positive (TP) predictions were defined as 

interactions present in both prediction and validation datasets; false positives (FPs) 

were interactions in prediction but not validation datasets; and false negatives (FNs) 

were interactions in validation but not prediction datasets. To measure performance, 

Positive Predictive Value (PPV)/Precision, Recall/Sensitivity and F1 Score (balancing 

precision and recall) were calculated from these definitions.  

Overlaps were also calculated between interaction sets for predictive methods. Dice 

co-efficients (Dice, 1945) – equivalent to F1 scores – were calculated to give the 

similarity between prediction sets, prior to hierarchical clustering.  

Distance distribution plots were generated for prediction and validation datasets by 

kernel density estimation using the dist function in R.  

 

5.4 Results  

5.4.1 cisREAD better identified regulatory chromatin interactions than other 

methods  

The performance of the 5 predictive methods when validated against chromatin 

interactions within 100kb is shown in Figure 5.2. Altogether, cisREAD outperformed 

alternative methods with the greatest mean F1 score (0.16) across the four tasks, 

indicating a good balance of PPV and recall (Figure 5.2.A). 
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On average, 12% of cisREAD-predicted regulatory interactions overlapped a chromatin 

contact (mean PPV). This was similar to the mean PPV of Pearson correlation, and 

JEME methods but lower than that of Fulco et al.’s Activity-By-Contact model (Figure 

5.2.B).  

 

Figure 5.2 Performance of cisREAD benchmarked against other predictive methods using chromatin interaction 
datasets. A) F1-scores for each set of predictions compared to each chromatin interaction dataset (point) and on 
average (bar shows mean). B) Shows the positive predictive value and C) shows the recall of each method. D) Total 
number of predictions made by each method on the in vitro B cell dataset (cisREAD, Pearson correlation and 
nearest gene), or on GM12878 lymphoblastoids (JEME and Activity-By-Contact) or primary peripheral blood total B 
cells (JEME and Activity-By-Contact). E) Number of ‘true positive’ predictions made by each method validated in 
each chromatin interaction dataset (points) and on average (bar shows mean).  
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cisREAD recalled a mean of 23% of validated chromatin interactions involving a DEG 

and distal regulatory element (Figure 5.2.C). This exceeded the mean recall of all other 

methods and reflected how cisREAD predicted the most regulatory interactions (Figure 

5.2.D) and identified the most validated ‘true positive’ interactions (Figure 5.2.E). 

Pearson correlation had the lowest recall of all methods, which may reflect the 

stringent threshold of r > 0.7. 

 

5.4.2 Performance on PC Hi-C and ChIA-PET datatypes reflects distance distributions 

of regulatory interactions 

Activity-By-Contact and nearest gene approaches better predicted RNA polymerase II 

ChIA-PET loops than promoter capture Hi-C interactions (Figure 5.2). This may reflect 

how Activity-By-Contact and nearest gene identified more proximal interactions, with 

a similar distance distribution to the ChIA-PET interaction dataset. In contrast, cisREAD, 

Pearson correlation and JEME predicted a wider range of proximal and distal 

interactions, with a similar distance distribution to promoter-capture Hi-C datasets 

(Figure 5.3). In conjunction with the reported performance metrics, these distance 

distributions indicated that cisREAD was more capable of detecting distal interactions 

than other models, including the state-of-the-art Activity-By-Contact model, or by 

simply assigning CREs to the nearest gene.  
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Figure 5.3 Density plots showing the CRE-gene distance distributions of predictive methods and chromatin 
interaction datasets. Interactions were limited to those spanning 2.5-100kb and involving the TSS for a differentially 
expressed gene during B cell differentiation. n gives the total number of interactions in the dataset.  A) shows 
distance distributions for the five predictive methods, in either in vitro B cells or GM12878. B) shows distance 
distributions for significant promoter capture Hi-C and RNA pol II ChIA-PET interactions in GM12878. 

 

5.4.3 Methods predict different sets of regulatory interactions 

Additionally, prediction datasets were overlapped with each other to assess similarity 

between methods. Hierarchical clustering of Dice similarity coefficients (Figure 5.4) 

showed that JEME and Activity-by-Contact prediction sets in GM12878 and total B cells 

clustered by model not sample, and the three methods implemented on in vitro B cells 

clustered together. Interestingly, cisREAD predictions were more similar to nearest 

gene predictions than Pearson correlation predictions, with 34% of cisREAD-assigned 

gene targets overlapping the nearest gene. Activity-by-Contact predictions were also 

most similar to nearest gene predictions, whilst JEME-predicted interactions showed 

little overlap with predictions made by other methods (0.03-0.09).  
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Figure 5.4 Hierarchical clustering heatmap of Dice similarity coefficients between prediction datasets. 

 

5.5 Discussion 

5.5.1 The best of a bad bunch? cisREAD outperformed alternative methods, but 

identified few validated interactions 

Altogether the benchmarking results indicate that overall cisREAD best predicted 

regulatory interactions, driven by high recall of distal regulatory elements. The 

improved performance on the more distal Hi-C datatype may offer an advantage in 

assigning target genes to distally-binding factors, such as the AP-1 complex (Bejjani et 

al., 2019). The data showed that cisREAD better assigned CREs to genes than either of 

the simpler methods which could have been implemented on the in vitro B cell dataset 

(Pearson correlation at r > 0.7 and nearest gene) and may outperform the state-of-the-

art Activity-by-Contact method. These results highlight the advantage of cisREAD and 

support its use in chapter 4 to infer regulatory mechanisms which drive B cell 

differentiation. 
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In contrast to results reported in chapter 2, cisREAD outperformed the JEME model 

with similar PPV but greater recall. In chapter 2, JEME was retrained on murine Hi-C 

data and shown to perform slightly, but not conclusively, better than the related 

Vijayabaskar et al. method (also using community detection and LASSO regression). 

The difference in performance may relate to the limitations of the small reporter assay 

validation dataset used in chapter 2, or alterations to the JEME model through 

retraining. In the results presented here, cisREAD showed a clear advantage over JEME 

despite closer sample matching between prediction and validation samples (which was 

also the case for Activity-by-Contact). 

Despite showing relative superior performance, the overlap between cisREAD 

predictions and validated chromatin interactions was low. The performance metrics 

reported here were similar in value to those reported by other groups when following 

similar benchmarking strategies (Hait and Elkon, 2022; Salviato et al., 2021). Some 

researchers claim these low across-the-board performance metrics indicate the 

inadequacy of current methods to predict cis-regulation (Moore et al., 2020). Others 

suggest that it is methods of validation, not prediction, which require improvement 

(Hoellinger et al., 2023). 

The degree to which chromatin interactions validate regulatory interactions is 

debated, with potential for false positives and false negatives. Support from other 

datatypes comes from cell-imaging studies which have found that sustained proximity 

between enhancers and promoters is necessary for transcriptional activation (Chen et 

al., 2018). However other groups have evidence of cis-regulation occurring in the 

absence of contact (Alexander et al., 2019; Benabdallah et al., 2019), possibly through 

the proposed model of liquid-liquid phase separation (Hnisz et al., 2017). In addition 

chromatin interactions do not necessary reflect regulation, as stable loops can be 

maintained even when genes and enhancers are inactive (Ghavi-Helm et al., 2014). 

Chromatin interaction datasets are also dependent on the methodology used to 

identify looping interactions. For example, a benchmarking study found the functional 

relevance of ChIA-PET loops (determined through overlaps with eQTLs and CRISPR 

perturbations) varies widely depending on loop calling method (Tang et al., 2022). 

Since the limitations of chromatin interaction datasets complicate benchmarking, 
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future work validating against additional datatypes could better evaluate model 

performance.  

 

5.5.2 cisREAD and Activity-by-Contact methods differentially predicted PC Hi-C and 

ChIA-PET interactions 

Whilst cisREAD performed better than the Activity-by-Contact model, when averaged 

across the four datasets, it was less clear whether cisREAD or Activity-by-Contact was 

the best performing model overall. This was shown by the disparity of performance on 

PC Hi-C and ChIA-PET validation datatypes (Figure 5.2). These results, and the distance 

distributions in Figure 5.3, suggest that Activity-by-Contact may better predict 

proximal interactions (such as those identified by ChIA-PET) and cisREAD may better 

predict distal interactions (such as those identified by PC Hi-C).  

The distance distributions of PC Hi-C and ChIA-PET datasets may relate to the methods 

used to obtain each set of chromatin interactions. All three PC Hi-C datasets use the 

CHiCAGO method to identify statistically significant interactions, where contact counts 

are elevated above background levels, which are dependent on genomic distance and 

technical noise. This method aimed to separate robust chromatin loops, presumed to 

be regulatory interactions stabilised by transcription factor binding, from those 

occurring by random collisions, between proximal elements, or technical artefacts 

(Cairns et al., 2016). Whilst interaction-calling methods which adjust for the same 

biases have been developed for ChIA-PET, ENCODE called ChIA-PET loops using the 

ChIA-PIPE method which does not account for genomic distance (Lee et al., 2020). 

It is unclear to what extent the association between genomic distance and chromatin 

contacts stems from random non-functional collisions or proximal regulatory 

interactions. Statistical methods designed to overcome the distance-dependence bias 

of 3C data may be too stringent and remove true regulatory interactions between 

proximal elements. However, failure to account for distance-bias may inflate the true 

number of short-range interactions. Activity-by-Contact employs Hi-C data in its 

‘Contact’ feature, and due to its distance-dependence, the model is implicitly biased 

towards proximal predictions. This may explain its poorer performance on the distal PC 

Hi-C interaction datatype. Future validation with eQTL or CRISPR perturbations, whilst 
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not currently available for B cells, may better evaluate performance in the absence of 

distance bias. 

 

5.6 Conclusion 

Despite limitations, the benchmarking exercise showed that cisREAD better identified 

regulatory chromatin interactions than alternative methods, including both simpler 

approaches and the published JEME model. The data also indicated that cisREAD best 

identified distal interactions, such as those captured by PC Hi-C, over all other tested 

models. These results defended the use of cisREAD to assign CREs to genes, in order to 

understand genet regulation in B cells. In future, cisREAD’s performance could be 

explored further through extensive benchmarking against other predictive methods 

using additional validation datatypes. 

Additional support for predictive methods could also come from the presence of 

disease-associated regulatory variants, matched to relevant target genes. The 

potential for cisREAD to characterise regulatory variants will be explored in the final 

discussion chapter.



168 
 

Chapter 6. Discussion  

 

Understanding gene regulation is essential to understanding the development and 

maintenance of healthy cellular identity. The next generation sequencing revolution 

has produced masses of genomics, epigenomics, transcriptomics and 3D genomics 

data. There is an outstanding need for applicable, implementable, and interpretable 

methods which integrate multi-omics data to yield insight into the biological role of 

gene regulation. This final chapter will discuss the contributions of this thesis to the 

fields of bioinformatics, gene regulation and immunology. This will be done by 

reviewing the findings and discussion points of each chapter, reflecting on the work 

performed, and looking ahead to future avenues of research. In addition, it will 

evaluate to what extent the aims of the thesis, set out in the introductory chapter, 

were met. Finally, it will recommend future avenues of research into cutting-edge 

single cell methods, and clinically translatable work on variant annotation.  

  

The work presented in this thesis has contributed new computational methodology 

and knowledge of regulatory mechanisms during the essential immune process of B 

cell differentiation.  

  

6.1 Discussion of comparative evaluation of Vijayabaskar et al. and JEME methods 

Chapter 1 introduced the unsupervised Vijayabaskar et al. method, developed within 

the Westhead group (Vijayabaskar et al., 2019). This approach identified ‘communities’ 

of co-regulating cis-elements (which are co-accessible and bound by common TFs) 

nearby differentiation-specific genes. These cis-regulatory communities were then 

assigned to genes, by performing variable-selection using gene-specific LASSO 

regression models. This approach worked to select cis-regulatory elements which were 

active when the gene was expressed. The Vijayabaskar et al. method held several 

advantages over alternative approaches. These included the ability to operate without 

expensive 3D genomics data, highly interpretable methodology, the avoidance of 

pitfalls associated with supervised learning in this field, and the ability to prioritise TF-

CRE-gene relationships central to a given system.   
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Chapter 2 set out to evaluate the Vijayabaskar et al. method, in comparison to the 

supervised JEME model (Cao et al., 2017). This involved reapplying JEME to the murine 

haematopoietic dataset, used by Vijayabaskar et al, then validating performance using 

a reporter-assay dataset. This task was challenging due to numerous reasons. These 

included design differences between the two methods; Vijayabaskar et al. predicts 

gene-specific CREs across a system and JEME predicts enhancer-promoter interactions 

in a sample. Furthermore, the JEME model was unavoidably altered in its retraining 

and reapplication, and the validation dataset was limited by its small size, biased 

selection of regions, and inability to detect chromatin-dependent regulatory 

mechanisms.   

  

Evaluated against this dataset, JEME identified slightly more true positive interactions, 

and slightly fewer false positive interactions than the Vijayabaskar et al. method. 

However, JEME also made far more untested predictions, many of which lacked 

chromatin or TF features suggestive of regulation. Whilst it was difficult to determine 

the ‘best’ performing method, the analysis found a large, statistically significant, 

overlap between Vijayabaskar et al. and JEME methods. These findings served to 

support the publication of Vijayabaskar et al. 2019. 

  

6.2 Discussion of the development of cisREAD  

Despite the advantages of the Vijayabaskar et al. approach, the method required an 

abundance of histone and TF ChIP-seq datasets for each sample, in addition to 

chromatin accessibility and gene expression datasets. These requirements limit the 

application of the Vijayabaskar et al. method to other datasets. In chapter 3, we were 

presented with a dataset spanning human in vitro B cell differentiation. This dataset 

comprised sample-matched chromatin accessibility and gene expression datasets but 

lacked the ChIP-seq data required by the Vijayabaskar et al. method.  

 

Using this dataset, we developed the cisREAD method: integrating ATAC-seq and RNA-

seq datasets to identify cis-Regulatory Elements Across Differentiation. cisREAD built 

on the core community detection and LASSO regression mechanism, from Vijayabaskar 

et al., to generalise to minimal data inputs. This involved: 1) differential analysis to 

identify candidate CREs and genes important to differentiation; 2) identification of 
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transcription factor binding sites through de novo motif discovery and binding site 

prediction; 3) for each gene, detection of co-accessible and co-bound cis-regulatory 

element communities; and 4) for each gene, selection of cis-regulatory elements 

(which are active when a gene is expressed) using LASSO regression. 

 

Different methods to predict TF binding sites were explored during the development of 

cisREAD. This involved exploring different motif discovery tools and methods of 

binding site prediction. The footprint-dependent HINT-ATAC tool was compared to the 

footprint-independent BMO method, over concerns that some transiently binding 

transcription factors do not leave detectable footprints (Baek et al., 2017; Sung et al., 

2016). When evaluating methods of binding site prediction, BMO was found to best 

predict binding sites detected by ChIP-seq. However, both BMO and HINT-ATAC were 

found to similarly predict TF-target genes when used within cisREAD. This suggested 

the cisREAD method was robust to choice of binding site predictions. 

 

Whilst considerable adaptations were made to the Vijayabaskar et al. method, some 

elements were retained. This included the core community detection and LASSO 

regression mechanism, and the 100kb distance threshold used to assign candidate cis-

regulatory elements to genes. Whilst cis-regulatory elements can operate from over a 

megabase away (Lettice et al., 2003), there were concerns that raising the threshold 

would lead to ‘p >> n’ situations, which could increase the instability of LASSO beyond 

alleviation by community detection (Zou and Hastie, 2005).  However CRISPR studies 

had since confirmed that most cis-regulatory elements regulate genes within 100kb. 

Fulco et al., 2019 reported that 84% of CREs which altered gene expression when 

peturbed operated within 100kb of their target gene, and Gasperini et al., 2019 

reported a median distance of 24kb between a perturbed CRE and its altered target 

gene. These findings suggest that the 100kb threshold is appropriate, and would only 

miss a minority of cis-regulatory interactions. 

 

Validation datasets (such as those used in chapter 5) could have been used to optimise 

genomic distance and other parameters, although with the risk of overfitting. 

Parameters which could have been optimised include the ‘similarity score’ threshold 

for community detection (default 0.3), and the use of 𝜆min or 𝜆SE in LASSO regression. 
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These are all provided as tunable parameters within the cisREAD R package. 

Furthermore, alternative methods of variable selection could have been explored. 

These could have included selection by elastic-net regression, or through feature 

importance scores from other machine learning models. 

 

6.3 Discussion of biological interpretation of cisREAD results 

Following its development and application to the B lineage dataset, chapter 4 saw the 

results of cisREAD interpreted in the context of B cell biology. This involved performing 

global analyses of predicted regulation (i.e., clustering, network analysis, ChIP-seq 

integration) and evaluating gene-specific models against the literature. The chapter 

started with a succession of analyses centered around the roles of key transcription 

factors. These were identified by the de novo motif analysis of the in vitro B cell ATAC-

seq dataset, which was described in chapter 3.  

 

Firstly, key transcription factor motifs were analyzed at the binding sites level: TF 

footprints were found to exhibit differential activity, increasing in strength and 

accessibility at temporally distinct stages. Secondly, transcription factor motifs were 

analyzed at the cis-regulatory element level: TF footprints were found to be 

differentially enriched in cis-regulatory elements, clustered by temporal accessibility. 

Finally, transcription factor motifs were analyzed at the gene level: mirroring the prior 

analysis, TF footprints were found to be differentially enriched in cis-regulatory 

elements linked to gene co-expression modules, each associated with functional 

pathways and processes. Together, these analyses identified shifts TF-led regulation 

which drive transitions between cell states. Crucially it revealed that a shift from 

PU.1/SPIB led regulation to AP-1 (BATF) led regulation was a key determinant of B cell 

activation, which was explored in the subsequent analysis. This involved integrating 

relevant ChIP-seq datasets to attribute cis-regulatory elements, genes, and pathways 

to specific transcription factors at PU.1/SPIB and AP-1 binding sites. These results 

corroborated similar findings for PU.1 and SPIB in murine B cells stimulated with T-

independent stimuli (Willis et al. 2017), and assigned novel roles to the AP-1 

transcription factor BATF. Altogether the work provided new detail into the timings 

and transcriptional effects of the shift from ETS to AP-1 factors, which has been 

previously reported in B cell differentiation (Ochiai et al., 2013, Scharer et al., 2018). In 
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addition, it highlighted importance of understudied factors RUNX3 (Thomsen et al., 

2021) and ZBTB33 (Koh et al., 2013) in B cell activation. 

 

The global analyses in chapter 4 formed a core section of the Emmett et al. 

publication. They demonstrated that cisREAD can be used to identify known and novel 

regulatory mechanisms. Furthermore, they contributed the first detailed description of 

the shift between PU.1, SPIB and BATF (AP-1) transcription factors in human B cell 

activation. This finding provided mechanistic insight into the dysregulation of SPIB and 

BATF in activated B cell subtype diffuse large B cell lymphoma; where higher SPIB 

expression is associated with an earlier cell of origin and increased survival, and higher 

BATF expression is associated with a later cell of origin and decreased survival (Care et 

al., 2014). 

 

The global analyses in this chapter were performed on cisREAD-predicted ‘enhancer’ 

relationships. These were defined as regulatory elements with non-zero β coefficients, 

where accessibility was positively correlated with expression. The analyses were 

limited to positive regulatory elements for ease of interpretation. However many of 

the ‘key’ transcription factors (e.g. SPIB) also operate as transcriptional repressors 

(Schmidlin et al., 2008).  

 

The extent that cisREAD-predicted, negatively correlated elements represent 

transcriptional silencers has yet to be investigated. These putative silencers could be 

characterised by future analysis of histone modifications, transcription factor motifs, 

and chromatin interactions. Whilst negative correlation has previously been used for 

computational prediction of silencers (Doni Jayavelu et al., 2020), most silencer 

elements are understood to be bifunctional (Segert et al., 2021). This means that 

cisREAD’s correlation approach may not be identify silencers which act as enhancers in 

different cell stages. Similarly, cisREAD may miss enhancer relationships which do not 

exhibit correlation, such as priming elements. 

 

Alongside the global analyses in chapter 4, two models for well-studied genes were 

evaluated with additional ChIP-seq and Hi-C data in context with the literature. Whilst 

not capable of evaluating performance at scale, these examples demonstrated that 
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cisREAD could recall both experimentally validated regions and suggest new modes of 

transcriptional control. These models also revealed limitations of cisREAD, such as the 

potential for sparse LASSO models to overlook super-enhancers, where multiple 

closely spaced, yet separate, regulatory elements control transcription of cell identity 

genes (Whyte et al., 2013). This happens when cisREAD places co-accessible super-

enhancer constituents into different communities (due to binding site differences) and 

drops true predictors due to multicollinearity. This could be combatted by decreasing 

the similarity score threshold for community detection, or by detecting communities 

using only co-accessibility. Both the community detection threshold and score-type are 

provided as adjustable parameters in the cisREAD R package. 

 

6.4 Discussion of benchmarking  

Finally, chapter 5 saw cisREAD benchmarked against two published models (JEME and 

Activity-by-Contact) and two easily implementable methods (Pearson correlation and 

nearest gene). Benchmarking was performed by validation of B cell-specific predictions 

against B cell-specific chromatin interactions. These were obtained from promoter 

capture Hi-C and RNA polymerase II ChIA-PET datasets. The exercise revealed that, on 

average, cisREAD best predicted regulatory chromatin interactions, with the greatest 

F1-score averaged across four datasets. Considering each datatype separately, it was 

observed that cisREAD best predicted promoter capture Hi-C datasets (occurring over 

longer genomic distances) but performed second to Activity-by-Contact when 

validating against the ChIA-PET interaction set (occurring over shorter genomic 

distances). These differences could be explained by the distance bias of 3C based data, 

which is used within the Activity-by-Contact model, and not corrected for in the ChIA-

PET dataset. Alternatively, distance may have been ‘over-corrected’ in the PC Hi-C 

dataset. Evaluation against additional validation datatypes like eQTLs, not biased by 

distance, would better evaluate the comparative performance of predictive models.  

 

Alongside relative performance, the benchmarking exercise reported low performance 

metrics for all tested methods. This could represent the inadequacy of 3C-derived 

chromatin interactions to act as surrogate for cis-regulatory relationships. Again, more 

extensive validation using additional datatypes would offer a more comprehensive 

view of performance.  
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Finally, the benchmarking exercise in this chapter only evaluated pairwise interactions 

between promoter regions and distal CREs. A compelling feature of cisREAD is the 

detection of cis-regulatory element communities, designed to reflect co-regulation 

through multi-way interactions. In this thesis, interactions between members of cis-

regulatory communities (coCREs) were not evaluated. Additional work looking at 

chromatin contacts within coCREs could provide evidence for or against the existence 

of predicted cis-regulatory communities.  

  

6.5 Evaluation of Aims  

This thesis addressed the problem of predicting gene regulation from multi-omics data. 

As introduced in chapter 1, dozens of researchers have addressed this challenge with a 

range of bioinformatics methods. Whilst there are many existing methods to predict 

gene regulation, this thesis argues there is still an unmet need for methods which are 

1) applicable, 2) implementable and 3) interpretable. Therefore, the overarching aim 

of this thesis was to develop a method which: 1) required minimal data inputs, and 

thus could be applied to a range of datasets; 2) could be implemented through open-

source software; and 3) was easy to interpret by biologists. By development of 

cisREAD, all three criteria were met. These are discussed as follows: 

 

  

1. cisREAD is applicable to systems without ChIP-seq or 3D genomics data 

 

Firstly, the significant adaptation of the Vijayabaskar et al. method to chromatin 

accessibility and gene expression inputs reduced the datasets required per sample. The 

original method required H3K27Ac and ChIP-seq for multiple TFs, in addition to these 

two datatypes, which were not available in the B cell differentiation dataset. Due to its 

streamlined input requirements, cisREAD is widely applicable to other systems without 

an abundance of high-throughput datatypes. This is a considerable advantage, as it 

means cisREAD can be applied to a wide range biological datasets with only one 

epigenomic and transcriptomic datatype. The benchmarking exercise in chapter 5 

suggested that cisREAD performed favourably to published models (JEME and Activity-

by-Contact) which used additional ChIP-seq or 3D genomics features.  
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2. cisREAD can be implemented through its R package  

 

Secondly, to promote reproducibility, an R package was developed to detect cis-

regulatory communities near a gene and predict those which control its transcription. 

This R package is freely available (and documented) at 

www.github.com/AmberEmmett/cisREAD. The cisREAD R package requires users to 

supply a chromatin accessibility matrix, gene expression matrix and TF binding matrix 

across multiple samples. It is recommended that the accessibility and expression 

matrices are subsetted for DARs/DEGs following step 1 of the cisREAD framework. The 

TF binding matrix should be generated following cisREAD step 2. This involves 1) 

selecting TF motifs through de novo motif discovery, 2) detecting binding sites through 

footprinting (or a footprint independent method), and 3) summarising predicted 

binding sites in a binary matrix.   

  

Whilst these steps can be easily reproduced using popular bioinformatics tools, this 

part of the workflow was not implemented in the cisREAD R package. To improve 

reproducibility, these first two steps, could have been integrated by writing a wrapper 

for these tools, or integrating them into a reproducible pipeline with workflow 

managers like Nextflow or Snakemake. Other improvements could have included 

containerisation with Docker or Singularity, where software and dependencies are 

deployed together in a virtual environment; or development of a graphical user 

interface with RShiny to remove the barrier of programming skills.   

 

3. The cisREAD method is interpretable to biologists studying gene regulation 

Finally, cisREAD, like the previous Vijayabaskar et al. method, is informed by 

established mechanisms of transcriptional regulation. The concept of gene-specific 

coCREs reflects regulation within transcriptional hubs, where multiple co-accessible 

regulatory elements (including both promoters and enhancers) interact in 3D space to 

control transcription through transcription factor binding. The cisREAD method is 

therefore highly interpretable to biologists studying gene regulation, and the 

http://www.github.com/AmberEmmett/cisREAD
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framework facilitates further analysis of transcription factor-led regulation, as 

demonstrated in chapter 4.  

Importantly, the cisREAD method (like Vijayabaskar et al.) prioritises the importance of 

regulatory interactions to systems of differentiation. The system-centric approach 

separates our cisREAD method from alternative models which predict cell-specific 

interactions (e.g., Activity-by-Contact and JEME), or interactions across large sets of 

unrelated samples (e.g., Thurman et al. or FOCS). Particularly, the method is better 

suited to small biological systems than other correlation approaches (like FOCs) as the 

community detection step of cisREAD avoids removing correlated features from the 

predictive set. This is important when the variety of conditions in the data is not high. 

This unique focus on systems biology enables users to identify the cis and trans 

regulators which drive progression through a set of cell-states or conditions. 

Altogether, this means cisREAD is highly useful to researchers studying gene regulation 

across systems of differentiation or disease.  

Overall, the new cisREAD method fulfils the goal of the thesis. Its application to B cell 

differentiation has uncovered new regulatory mechanisms, and the method can be 

applied by other researchers to uncover further insights into gene regulation. 

 

6.6 Directions for future research 

The work in this thesis has contributed new methodology and knowledge of B cell 

differentiation. Future work could further develop the cisREAD methodology or 

explore gene-dysregulation in diseases of B cells. This section will recommend three 

avenues for future research: experimental testing of cis-regulatory mechanisms, 

adapting cisREAD for single cell datasets and using cisREAD-derived regulatory 

annotations for variant annotation. 

 

6.6.1 Experimental validation of predicted gene regulation 

In chapter 4, cisREAD was used to assign TFs and CREs to genes to identify 

transcription factor led regulation of B cell differentiation. Experimental validation of 

these global regulatory mechanisms (exemplified by the shift from PU.1/SPIB to AP-1 
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in B cell activation) could include: ChIP-seq to confirm binding of relevant transcription 

factors in different stages of B cell differentiation; and gene knockdown/knockout 

followed by RNA-seq to validate effects of transcription factor expression on target 

gene expression. 

 

These techniques could be employed for experimental validation of the PU.1/SPIB-AP-

1 shift. ChIP-seq for PU.1, SPIB and AP-1 factors (e.g. FOS, FRA1, BATF) spanning the B 

cell time-course would confirm temporal occupancy of transcription factor motifs, 

evaluating whether the same binding site (or cis-regulatory element) may be utilised 

by different factors at different time-points. ChIP-seq detected TF occupancy at 

promoters could also validate the predicted cis-regulatory interactions used to assign 

TFs to target genes.  The effect of TFs on target gene expression could be investigated 

by RNAi (RNA interference, silencing transcription of the TF gene) or CRISPRi (CRISPR 

interference, repressing the transcription of the gene) followed by RNA-seq to detect 

transcriptomic changes in the absence /reduction of TF expression (Martinez et al. 

2002, Qi et al. 2013). 

 

cisREAD could aid future research by suggesting hypotheses of gene-specific 

regulation, enabling researchers to prioritise gene-specific candidate CREs for 

experimental testing. This application is exemplified by the AICDA and PRDM1 models 

in chapter 4, which evaluated cisREAD as a method for hypothesis generation. 

Experimentation could test the functionality of predicted gene-specific CREs using 

techniques including: 

 

1. CRISPR-Cas9 perturbation of the candidate CRE (or a constituent motif) 

followed by RT-qPCR (quantitative polymerase chain reaction) of the target 

gene, to test the effect of the candidate CRE (or binding site) on RNA levels of 

the gene; 

2.  chromatin immunoprecipitation of candidate binding TFs, to test occupancy of 

predicted binding sites;  

3. reporter assays, where the candidate CRE is placed upstream of a reporter gene 

with a measurable product, to test the ability of a CRE to enhance transcription; 

and  
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4. Chromosome Conformation Capture (3C) to test for chromatin contacts 

between distal CREs and the target gene promoter. 

 

Applied to a large set of genes, cisREAD could suggest candidates for Massively Parallel 

Reporter Assays (MPRAs) or CRISPR screens (Arnold et al. 2013, Gasperini et al. 2019). 

 

6.6.2 Adaptation to single cell multi-omics data 

Over the period this research was conducted (2018-2023), biological research has 

shifted away from bulk sequencing towards single cell sequencing. The development of 

single cell ‘omics techniques means that researchers can now probe the DNA, RNA, 

epigenome, and chromatin conformation of individual cells. The move towards single 

cell sequencing has revolutionised many fields, including the study of gene regulation. 

Importantly, this has led to the development of new tools, designed to account for the 

unique biases and statistical challenges of single cell data. Popular tools for studying 

gene regulation include Cicero and ArchR (Granja et al., 2021; Pliner et al., 2018). 

Future work could involve the adaptation of cisREAD to single cell multi-omics data, 

developing methodology capable of handling the sparsity of single cell datasets whilst 

retaining the core predictive workflow developed in this thesis.  

 

6.6.3 Annotation of regulatory variants associated with B cell-specific diseases 

Future research could also focus on applying B cell regulatory datasets, including ATAC-

seq peaks and cisREAD-linked target genes, to the annotation of non-coding variants. 

This task is vital for the interpretation of clinical genomes and statistical genetics 

studies, where it can be difficult to prioritise non-coding variants and their target 

genes. As such, the work in this thesis could inform the characterisation of disease-

associated variants, which exert their effects through gene regulation.  

 

The regulatory datasets produced in this thesis could be used to annotate regulatory 

variants associated with diseases of B cells. These include somatic variants, found in 

cancer genomes, and germline variants, associated with disease phenotypes through 

genome-wide association studies. Characterising regulatory variants with B lineage 

annotations, could help elucidate the genetic underpinnings of B cell neoplasms (such 

as chronic lymphocytic leukaemia, B cell lymphomas and multiple myeloma) and B cell-
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mediated autoimmune diseases. Previous studies have successfully utilised B cell-

specific epigenomics, and 3D genomics, datasets to characterise regulatory drivers of B 

cell cancers (Arthur et al., 2018; Puente et al., 2015), and causal variants in 

autoimmune diseases (Farh et al., 2015; Javierre et al., 2016).  Ultimately, the work 

presented in this thesis could lay the foundation for clinically translatable research into 

the genetic mechanisms underlying cancer and heritable disease. 
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Appendices 

 

 

Appendix 4.1 Figure showing replication of TF enrichment in cis-regulatory clusters, using predictions from cisREAD 
+ BMO. A) Bubbleplot showing enrichment of TF occupancy in each cluster. Size of bubbles gives the proportion of 
each cluster harbouring a TF footprint, colour shows significant (p < 0.05, two-sided Fisher test) enrichment (fold-
change between cluster and other clusters > 1, red) or depletion (fold-change between cluster and other clusters < 
1, blue), grey represents no significant enrichment. B) Heatmap showing mean log2 normalised chromatin 
accessibility (z-score) of cis-regulatory elements significantly linked to gene expression, k-means clustered (k = 8). 

 

Appendix 4.2 A) Bubbleplot showing enrichment of TF occupancy in each cluster. Size of bubbles 
gives the proportion of each cluster harbouring a TF footprint, colour shows significant (p < 
0.05, two-sided Fisher test) enrichment (fold-change between genes in module and genes not 
in module > 1, red) or depletion (fold-change < 1, blue), grey represents no significant 
enrichment.B) Heatmap showing mean log2 normalised gene expression (z-score) of genes 
with significantly linked CREs, module names reflect enriched gene sets in each module.
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Appendix 4.3 Figure showing background genes for gene set over-representation analysis of PU.1/SPIB and/or AP-1 target gene clusters, against similarly expressed genes not linked to the factor(s). 
For each analysis, similarly, expressed genes were obtained by training a machine learning classifier on five expression clusters, and predicting the cluster label for all other differentially expressed 
genes not linked to CREs with given footprint(s). N gives number of genes, not linked to the factor(s) predicted to belong to each cluster. Heatmaps show z-score log2 normalized gene expression for: 
A) Similar expressed genes not linked to AP-1, B) similarly expressed genes not linked AP-1 or PU.1/SPIB, C) similarly expressed genes not linked to PU.1/SPIB 


