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Abstract

Machine learning promises transformative applications in medical image analysis. However,

the black-box nature of Deep Neural Networks and data sensitivity issues hinders their clinical

deployment. Addressing these challenges necessitates the development of lightweight models

suitable for local deployment, accompanied by improved methods for uncertainty estimation

of model predictions. Such uncertainty estimation methods could flag potentially erroneous

predictions for a human-in-the-loop to review. In this thesis, we tackle these challenges,

specifically focusing on the task of landmark localisation, a supervised task that involves

identifying precise coordinates of anatomical structures within medical images.

Our first approach introduces PHD-Net, a lightweight, patch-based landmark localisation

model that estimates prediction uncertainty heuristically. We experimentally show our

approach performs exceptionally given its size and scales well with model capacity, offering an

alternative perspective to landmark localisation with a unique uncertainty estimation property.

Building on this foundational concept of uncertainty, we broaden its applicability to a wider

range of landmark localisation models through the introduction of the Frequentist-inspired

Quantile Binning framework. Our approach is general, applicable to any regression problem.

Recognising the limitations of relying solely on localisation accuracy to holistically evaluate

our models, we introduce evaluation metrics specifically designed for assessing binning-based

uncertainty measures, enabling better model uncertainty estimation benchmarking. In our

final work, we present the first application of Gaussian Processes to anatomical landmark

localisation, achieving genuine Bayesian uncertainty.

Underpinning the impact of our research is a commitment to open-source accessibility. All

our tools and innovations are made publicly available on Github within the low-code/no-code

framework of MediMarker, or the PyKale library.
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Chapter 1

Introduction

1.1 Motivation

Deep Learning has become the status quo in medical image analysis research, promising a

future of high-performing, low-cost solutions for healthcare. However, the transition from

research to real-world applications has been slower than anticipated. The incredible ability for

neural networks to extract complex, informative features that enable their ground-breaking

performance comes at the cost of interpretability. Currently, Deep Neural Networks (DNNs)

are black boxes; a series of simple arithmetic operations representing increasingly abstract

concepts, quickly dissolving into computational static to a human observer.

Stakeholders in the healthcare sector are reluctant to rely on models whose predictions

cannot be interpreted, a natural response considering the potentially life-threatening conse-

quences an incorrect prediction may have. A component of model interpretability is the ability

to recognise and accurately quantify when the model is unsure of its answer. Therefore, a

model that offers a reliable uncertainty score beside its prediction is an attractive proposition,

providing a more nuanced recommendation compared to a binary output. Such properties

that enhance model explainability and transparency have been recommended by the UK

government [Joshi and Morley, 2019] as well as international organisations like the World

Health Organisation [WHO, 2021], which aim to speed up adoption of these machine learning

techniques into healthcare systems.

A common task that is performed by radiologists is landmark localisation, a process which

1
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entails pinpointing the coordinates of specific anatomical structures of interest in images.

These landmarks can be used for downstream tasks such as image registration [Han et al., 2014;

Johnson and Christensen, 2002; Miao et al., 2012; Murphy et al., 2011], image segmentation

[Beichel et al., 2005], and the derivation of surgical or diagnostic measures [Al et al., 2018; Bier

et al., 2019; Kasel et al., 2013; Torosdagli et al., 2018; Vrtovec et al., 2009; Wang et al., 2016].

Given the laborious, repetitive nature of locating landmarks in images, this task is ripe for

automation. To achieve this, we can train a model to extract features from the image, learning

to identify which regions are discriminative to the landmark’s location. However, even for

a trained radiologist, the task of accurately defining anatomical landmarks poses significant

challenges, further compounded by ambiguity when the structure of interest spans beyond a

single pixel - for instance, the “corner” of the jaw. This ambiguity in landmark definition leads

to aleatoric uncertainty in datasets of expertly labelled landmarks, an uncertainty caused from

inherent randomness in the data or the task itself [Kendall and Gal, 2017]. Furthermore, there

will exist uncertainty over the parameters of the model itself, a phenomena called epistemic

uncertainty [Gal, 2016]. Reliably measuring these predictive uncertainties is crucial in the

medical domain, where uncertain predictions can be flagged and manually corrected by a

human-in-the-loop [Holzinger, 2016].

The field of uncertainty estimation for DNNs is still in its formative stages. Contemporary

literature points to substantial miscalibration in DNNs i.e. a large discrepancy in deep models’

perceived uncertainty and their actual error rates [Guo et al., 2017]. In the medical imaging

domain, much research energy has been poured into overcoming this problem for the task of

biomedical image segmentation, a sister task to landmark localisation that aims to identify

large structures of an image, rather than a single point [Jungo et al., 2020]. However, the same

is not true of landmark localisation, presenting an opportunity for a contribution to the field.

Many State-of-the-Art methods for landmark localisation frame the task as an image-to-image

regression, predicting Gaussian Heatmaps centred around the landmark of interest. Post-hoc

techniques for uncertainty estimation for these methods would be an invaluable contribution

to the field, presenting potential for high impact due to their plug-and-play nature. Since

the task involves the regression of a 2D continuous image, traditional evaluation designed

for uncertainty estimation in classification tasks like image segmentation cannot be directly
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applied [Guo et al., 2017]. Therefore, evaluation metrics for uncertainty measures in landmark

localisation beyond simply measuring their correlation with localisation error are needed to

more effectively benchmark them [Drevickỳ and Kodym, 2020; Thaler et al., 2021].

Furthermore, a particular challenge for Deep Learning techniques in the medical imaging

domain is a distinct lack of training data. The longstanding and well supported maxim of

machine learning is that more data means better models [Sun et al., 2017]. Yet, datasets in

the medical are limited to hundreds of samples, a stark contrast to the billions of data points

utilized in recent Large Language Models [Brown et al., 2020]. Compounding this challenge is

the practicality of on-site deployment, where practitioners are reluctant to send sensitive data

to cloud-based systems capable of handling large models. Addressing these two critical issues

simultaneously necessitates the development of lightweight models that can perform inference

on low-compute devices and learn effectively from limited data. These models provide an

effective solution, capable of making the most out of limited resources while being viable for

on-site implementation in real-world medical scenarios.

An interesting and less obvious alternative to Deep Learning that excels in low-data

regimes are Gaussian Processes (GPs) [Rasmussen and Williams, 2006]. GPs also bestow

the property of truly Bayesian uncertainty estimation in their predictions, presenting a more

mathematically rigorous and therefore trustable uncertainty than Deep Learning approaches.

However, due to the computational demands when using high-dimensional data, GPs are

rarely used in medical imaging applications, and to the best of our knowledge, never in a

multi-task image regression task, regardless of domain. Progress in this area would represent

an exciting milestone in the field for truly Bayesian techniques in medical image analysis.

Looking ahead, let us consider the evolving significance of “open-source” within the

research landscape. Open-source software has become the backbone of machine learning

innovation, fostering a collaborative environment that accelerates the rate of discovery. While

the research community values reproducibility as a cornerstone of good practice, there remains

an undervaluation of reusability. Reproducibility ensures that results can be consistently

achieved across different settings, while reusability focuses on developing research that is

designed to be accessible and easy for third parties to use [Lu et al., 2022b]. Further, software

that is accessible to non-experts, including healthcare professionals and research clinicians, is
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vital to see application outside of the research lab. Hence, for research to truly make an impact,

the transition from code to application must be as seamless as possible. Embracing low-code

or no-code approaches can be pivotal in this context, democratising access and enabling a

broader spectrum of users to leverage the power of machine learning tools. Therefore, research

must not only be robust and reproducible, but also reusable and readily accessible to those

on the frontlines of patient care as well as to users with entry-level software skills.

1.2 Research Questions

The key research questions this thesis aims to address are as follows:

• Q1: How can we develop a lightweight and data-efficient Deep Neural Network for

landmark localisation?

• Q2: Can heuristic uncertainties in landmark localisation be formalised using a data-

driven, Frequentist framework?

• Q3: How can we better benchmark uncertainty measures in landmark localisation

within a Frequentist context?

• Q4: How can we overcome the computational challenges with Gaussian Processes for

rigorous, Bayesian uncertainty estimation for landmark localisation?

1.3 Thesis Outline

In this thesis we journey through the notoriously arduous endeavour of uncertainty estimation

for DNNs, through the lens of landmark localisation. Figure 1.1 shows a typical clinical

workflow involving machine learning in practice, highlighting the various aspects of the

pipeline the contributions of the thesis impacts. We start our journey with Q1, tackling the

challenge of improving landmark localisation with parameter and data-efficient models. We

uncover an exciting thread of uncertainty estimation using a heuristic property of our model,

motivating Q2. We follow this thread and extend the heuristic to general heatmap-based

localisation methods and approximate Bayesian inference, building a Frequentist framework
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Local Model 
(Q1)

Uncertainty Estimation
(Q2 & Q4)

Clinician OutputInput

Clinical Workflow
Low Uncertainty
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Uncertainty 
Measure
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(Q3)

Figure 1.1: A representation of a typical clinical workflow involving machine learning with
a human-in-the-loop [Wu et al., 2022], specifying which parts are relevant to our research
questions. In Chapter 4 we address Q1, proposing a high-performing, lightweight model that
can run on local machines. Throughout Chapter 4, 5 & 6 we propose various methods to
estimate model uncertainty based on heuristic, Frequentist (Q2) and Bayesian (Q4) paradigms,
allowing a human-in-the-loop to identify and correct poor predictions. In Chapter 5, we
approach Q3 by proposing Quantile Binning, a framework to evaluate the quality of uncertainty
metrics used to estimate predictive uncertainty.

to benchmark uncertainty estimation methods for any regression task, addressing Q2 and

Q3. The final destination of this work answers Q4: an ambitious application of the fully

Bayesian Gaussian Process framework to our task. We will show that uncertainty estimation

in landmark localisation is an entirely achievable endeavour, with our contributions able to

provide practical benefits to clinicians.To increase the impact of the work in this thesis, the

code is freely available and open-source under the MIT license in the software repositories

MediMarker [Schobs, 2022] and PyKale [Lu et al., 2022b].

Chapter 2 sets the stage by providing a brief overview of machine learning concepts

pertinent to this thesis, with a focus on Deep Neural Networks and Gaussian Processes. We

also introduce the concept of uncertainty estimation in machine learning, framing it in the

Bayesian and Frequentist perspectives. We review and discuss several common methods for

uncertainty estimation in DNNs.

https://github.com/Schobs/MediMarker
https://github.com/pykale/pykale
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Chapter 3 provides a review of the literature in landmark localisation approaches and

uncertainty estimation in landmark localisation, where current gaps in the literature are

pointed out. We outline the datasets used in this thesis: A standard collection of Cardiac

Magnetic Resonance (CMR) images covering two views with accurate annotations (ASPIRE-S),

a larger collection of CMR images from the same source with a single view (ASPIRE-L), and

a public dataset of Cephalometric images (Cephalometric) we use to test the generalisability

of our methods. Finally, we present a short study motivating our use of LannU-Net, a U-Net

based model inspired by nnU-Net [Isensee et al., 2021], as a baseline for large capacity models

representing State-of-the-Art localisation accuracy.

In Chapter 4, we present a lightweight, data-efficient model for landmark localisation

that provides a heuristic-based uncertainty score alongside its prediction. Focusing on Q1,

we are primarily motivated by improving localisation accuracy, which is reflected in our

accuracy-based evaluation metrics. To achieve a lightweight model that localises accurately,

we introduce the multi-task learning network, PHD-Net, which jointly performs Patch-based

Heatmap and Displacement regression for landmark localisation. We propose two methods to

obtain coordinate prediction alongside a heuristic uncertainty score based on “patch votes”,

shown in Figure 1.2.(1). We show how to use these scores to separate predictions effectively into

high and low error categories using Frequentist approaches. Further, we show that PHD-Net

performs comparably to State-of-the-Art models of similar parameter counts in the literature,

while retaining a small memory footprint and a unique uncertainty estimation heuristic.

We will also show that our proposed training regime scales effectively with model capacity,

attaining competitive performance with large State-of-the-Art models. We benchmark our

vanilla PHD-Net on the smaller ASPIRE-S dataset, and its higher capacity extensions on the

larger ASPIRE-L dataset.

In Chapter 5, we extend the heuristic-based approach for uncertainty estimation beyond

our custom architecture proposed in Chapter 4, and ground it in an approximate Bayesian

Inference framework using Deep Ensembles. Our primary contribution of this chapter, shown

in Figure 1.2.(2), is the proposal of a Frequentist approach to uncertainty estimation, Quantile

Binning. This is a data-driven method to bin any set of continuous uncertainty measure and

continuous error pairs, estimating error bounds for each bin. With a focus on Q2 and Q3, our
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evaluation is concerned with the quality of uncertainty estimation rather than localisation

accuracy alone. Therefore, we use the smaller ASPIRE-S dataset and smaller capacity models

to exemplify our methods, testing the generalisability using the Cephalometric dataset. We

develop evaluation metrics for binning-based uncertainty methods and benchmark uncertainty

measures with them. We use Quantile Binning to compare and evaluate three uncertainty

measures across the three datasets, uncovering insights on their relationship to aleatoric

uncertainty. Our thorough investigation of these uncertainty measures gives us practical

recommendations on their use and suggests Quantile Binning’s utility as a framework for

evaluating future uncertainty estimation approaches. Quantile Binning is application agnostic,

and can be used in any regression problem that provides continuous uncertainty measures for

each sample.

In Chapter 6, we take a more rigorous approach to uncertainty estimation using the fully

Bayesian machine learning framework of Gaussian Processes (GPs), as shown in Figure 1.2.(3).

Specifically, we use Convolutional Gaussian Processes (CGPs): a variant of GPs which use a

covariance function inspired by the convolutional structure of the kernels used in Convolutional

Neural Networks (CNNs). To overcome the issues with computational complexity, we propose

a two-stage approach. At Stage 1 we use a CNN to make a coarse prediction and refine it

in Stage 2 with the CGP. The final prediction is Bayesian, giving the distribution of likely

landmark locations, quantifying model uncertainty. We focus on a subset of the Cephalometric

dataset, due to limited availability of ground-truth information on aleatoric uncertainty. Given

the nature of Gaussian Processes, we introduce another evaluation method to reflect the

Gaussian nature of the outputs. Despite a somewhat anticipated decrease in localisation

accuracy, we demonstrate promising results in the area of uncertainty estimation.

Finally, in Chapter 7 we summarise the contributions of the thesis to the research and

open-source community, and discuss potential for future work.

1.4 Contributions

All research presented in this thesis is publicly available under a unified, fully-documented,

open-source framework, called MediMarker [Schobs, 2022]. The framework is built with a

low-code/no-code usability in mind, meaning that training and inference can be customised
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Approximately
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Calibration

Calibration

Bayesian

Frequentist
Patch Based

Patch Based

Encoder- Decoder

Gaussian Process

Frequentist

Figure 1.2: Illustrative diagram outlining the approaches to uncertainty covered in
this thesis. 1) A patch-based approach to landmark localisation with a Frequentist approach
to uncertainty, PHD-Net (Chapter 4). 2) A general framework applied to landmark localisation
that is model-agnostic, utilising approximate Bayesian uncertainty with a Frequentist approach,
Quantile Binning (Chapter 5). 3) A purely Bayesian approach to landmark localisation using
Gaussian Processes (Chapter 6).

and performed without writing a line of code. We hope such an accessible approach to the

research in this thesis can be a contribution in itself, facilitating straightforward use and

improvement of the work in this thesis. Since the methods proposed in Chapter 5 are agnostic

of application, the method is fully integrated into PyKale, an open-source framework that is

officially a member of the PyTorch ecosystem [Lu et al., 2022b]. The two software repositories

are summarised as follows:

1. MediMarker [Schobs, 2022]: A low-code/no-code standardised framework that provides

DNN and GP models for landmark localisation. It contains the work from Chapters 3,

4 & 6: https://github.com/Schobs/MediMarker.

2. PyKale [Lu et al., 2022b]: A framework for accessible machine learning from multiple

sources: containing a fully standardised, documented and tested implementation of

Quantile Binning: https://github.com/pykale/pykale. A working, reproducible

https://github.com/Schobs/MediMarker
https://github.com/pykale/pykale
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example of the work from Chapter 5 can be found: https://github.com/pykale/

pykale/tree/main/examples/landmark_uncertainty.

The contributions of this thesis summarised in Figure 1.1 and Figure 1.2, are as follows:

1. Landmark Localisation Models. We propose and validate improvements for patch-

based landmark localisation models, offering a lightweight, computationally inexpensive

solution: PHD-Net. We show our contributions scale favourably with model capacity

for single landmark localisation. We also propose the first fully Bayesian approach to

anatomical landmark localisation using Convolutional Gaussian Processes, introducing a

two-stage approach and a novel inducing point initialisation to overcome computational

issues. To the best of our knowledge, this is the first application of Gaussian Processes

to multi-output regression on images, thus represents a significant contribution to the

field. All models are available to train, deploy and augment in a low-code/no-code

capacity in a single repository, MediMarker.

2. Uncertainty Estimation Methods. We study Frequentist and Bayesian approaches to

uncertainty estimation in landmark localisation, summarised in Figure 1.2. Specifically,

we propose uncertainty measures heuristically derived from heatmap-based landmark

localisation methods. We use Frequentist approaches with calibration sets to improve

such heuristics, namely Candidate Smoothing and Adaptive Prediction for patch-based

methods, and the Quantile Binning framework for general heatmap-based methods.

We demonstrate practical clinical utility of our methods by showing how to filter out

poor predictions for manual correction based on learned thresholds. Under our Quantile

Binning framework we provide learned error bound estimations for predictions based on

their uncertainty value. The framework is application agnostic, relevant to any regression

problem with per-sample uncertainty estimates. Further, using our Gaussian Process

method for landmark localisation, we offer mathematically rigorous, fully Bayesian

uncertainty estimation.

3. Uncertainty Estimation Metrics: We introduce novel evaluation metrics based on

Quantile Binning, establishing a Frequentist framework that serves as a benchmark for

uncertainty estimation techniques for general regression problems. Our contribution fills

https://github.com/pykale/pykale/tree/main/examples/landmark_uncertainty
https://github.com/pykale/pykale/tree/main/examples/landmark_uncertainty
https://github.com/Schobs/MediMarker
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a critical gap by extending the evaluation of models beyond accuracy metrics towards

a more holistic perspective. In the application to landmark localisation, our proposed

metrics address the existing limitations by enabling a comprehensive assessment of

uncertainty estimation techniques beyond correlation with error.

1.5 Relationship to Published Work

The content of the thesis is primarily based on the following publications produced during my

PhD journey.

1. Schöbs, L., Zhou, S., Cogliano, M., Swift, A., & Lu, H. (2019). A Biased Sampling

Network to Localise Landmarks for Automated Disease Diagnosis. In Medical Imaging

Meets NeurIPS Workshop, NeurIPS 2019.

2. Schöbs, L., Zhou, S., Cogliano, M., Swift, A., & Lu, H. (2021). Confidence-Quantifying

Landmark Localisation for Cardiac MRI. In 2021 IEEE 18th International Symposium

on Biomedical Imaging (ISBI) (pp. 985–988).

3. Schöbs, L., Swift, A., & Lu, H. (2022). Uncertainty Estimation for Heatmap-Based

Landmark Localisation. IEEE Transactions on Medical Imaging, 42(4), (pp. 1021–1034).

4. Schöbs, L., McDonald, T., & Lu, H. (2023). Bayesian Uncertainty Estimation in

Landmark Localization using Convolutional Gaussian Processes. In Uncertainty for Safe

Utilization of Machine Learning in Medical Imaging at MICCAI 2023, Spotlight Talk,

MICCAI 2023.

Other Work and Publications

Throughout my PhD I was involved in other collaborative projects, which involved work

related to this thesis:
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1. Alabed, S., Uthoff, J., Zhou, S., Garg, P., Dwivedi, K., Alandejani, F., Gosling, R.,

Schöbs, L., Brook, M., Shahin, Y. and Capener, D. (2022). Machine learning cardiac-

MRI features predict mortality in newly diagnosed pulmonary arterial hypertension.

European Heart Journal-Digital Health, 3(2), (pp. 265-275).

2. Lu, H., Liu, X., Zhou, S., Turner, R., Bai, P., Koot, R., Chasmai, M., Schobs, L., and

Xu, H. (2022). PyKale: Knowledge-Aware Machine Learning from Multiple Sources

in Python. In 2022 ACM 31st International Conference on Information & Knowledge

Management (CIKM) (pp. 4274–4278).

3. Tripathi, P.C., Suvon, M.N., Schobs, L., Zhou, S., Alabed, S., Swift, A.J. and Lu, H.

(2023). Tensor-based Multimodal Learning for Prediction of Pulmonary Arterial Wedge

Pressure from Cardiac MRI. In 2023 26th International Conference on Medical Image

Computing and Computer Assisted Intervention (MICCAI). Forthcoming.

I also co-supervised three Bachelor of Computer Science Students for their final year disserta-

tions:

1. Jones, E (2023). Improving Epistemic and Aleatoric Uncertainty Estimation in Cephalo-

metric Landmark Localisation Tasks. BSc. Thesis. University of Sheffield.

2. Smith, T (2023). Introducing Multi-Task Training to Vision Transformers for Landmark

Localisation. BSc. Thesis. University of Sheffield. - Some of this work is included in

Section 4.5.

3. Gavin, O (2023). Advancing Landmark Localisation with UNETR and Novel Heatmap

Augmentation. BSc. Thesis. University of Sheffield.



Chapter 2

Basics of Deep Learning,

Uncertainty, and Gaussian Processes

The chapter aims to equip the reader with the background knowledge relevant to my PhD

research on landmark localisation using machine learning, with a focus on deep learning and

uncertainty estimation. The chapter begins by introducing the fundamental building blocks

of deep learning, particularly the techniques used for image processing. This paves the way

for an exploration of common blueprints of network architectures used in medical image

analysis. The chapter then changes focus to the topic of uncertainty estimation for machine

learning models. We define uncertainty, differentiating between the data-derived aleatoric and

model-based epistemic uncertainty. We present the two perspectives we will view uncertainty

through: Bayesian and Frequentist; accompanying the discussion with common uncertainty

estimation methods. Finally, we briefly outline the basics of Gaussian Processes, a Bayesian

approach to machine learning.

2.1 Fundamentals of Deep Learning

Inspired by neuroscience, Deep Learning is a subset of machine learning that uses deep neural

networks. In the following section, we will review the building blocks of these networks,

and how to arrange them to create some of the neural network architectures that are used

in State-of-the-Art medical imaging techniques. We will subsequently discuss the relevant

12
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technical details on training these networks, which will be relied on later in the thesis.

2.1.1 Deep Neural Networks (DNNs)

A Neural Network is a computational model that is inspired by neurons in the brain [McCulloch

and Pitts, 1943]. In a supervised setting, we are given an input matrix X and a label matrix

Y, where the matrices consist of of N input-output vector pairs {(x(1),y(1)), . . . , (x(N),y(N))}.

We aim to approximate the function that maps the input vectors to the output vectors, i.e.

the function f : X → Y, where X is the input space and Y is the output space.

To achieve this, we design a flexible system of learnable weights, with the aim to learn

the ideal weights to transform each input vector x(i) to its paired label y(i). This system is

called a neural network, and the artificial neuron is its basic building block. The neuron takes

some input vector x(i) and computes a weighted sum of this vector using its weights w and

an added bias b:

z = wTx(i) + b, (2.1)

where w and b are learned. This is followed by some non-linear activation function φ to obtain

the output a:

a = φ(z). (2.2)

A neural network with a single layer of neurons (nodes) between its input and output, is only

capable of learning a linear function. To learn non-linear functions, multiple layers of neurons

are needed. The simplest instantiation of this concept is the FeedForward Neural Network

(FFNN), shown in Figure 2.1. It consists of multiple layers of nodes (neurons) between the

input and output layer. These layers are called hidden layers, with each node having unique,

trainable weights followed by some non-linear function that transforms the neuron outputs.

In classification tasks like image classification, the output layer is transformed into a vector of

probabilities with a sigmoid function, and in regression tasks such as landmark localisation,

the values in the output layer are simply returned. The identifier FeedForward refers to

the fact that there are no cycles between the nodes i.e. information is only moving forward

through the network.

The key to training a FFNN is through back-propagation, which involves calculating the
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Input Fully Connected Output

Figure 2.1: An example of a FeedForward Neural Network.

derivative of a given loss function (a measure of the FFNN’s error) and using this to tune the

weights back through the network. This is an iterative process, continually sending training

data through the network and performing back propagation until the loss function converges

to a small value.

Deep Learning simply refers to a Neural Network with multiple layers of interconnecting

nodes (hidden layers) between the input and output layers [Goodfellow et al., 2016].

2.1.2 Convolutional Neural Networks (CNNs)

A Convolutional Neural Network (CNN) is a Deep FeedForward Neural Network founded on

the architecture of the visual cortex system in mammals. It drew inspiration from specific

subsets of neurons in the brain that fire when perceiving different shapes (e.g., horizontal lines

vs. vertical lines [Hubel and Wiesel, 1962]). CNNs remain the most popular choice of method

in medical image analysis, alongside the increasingly popular Vision Transformer [Dosovitskiy

et al., 2020].

A basic CNN consists of a series of layers, with each layer sequentially applying four core

functions: Convolution, Pooling, Activation Function and Normalisation. To determine the

final prediction, the last layer is either a Fully Connected Layer or a Fully Convolutional

Layer.

At a high-level overview of the process, each layer of a CNN employs a set of kernels

(filters) to convolve over the input image or the output of the previous layer, transforming

the information from a previous layer into a new feature representation. A kernel is an
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Figure 2.2: An example of a convolution operation using a kernel of size 3 × 3

n-dimsensional array (a tensor) made up of weights, that are tuned over time by the network.

For example, a kernel on the first layer of the network may have its weights tuned to detect

edges of the images, while the deeper kernels will learn relevant features that are progressively

more abstract. As with Feedforward Neural Networks, the derivative of the error is back-

propagated through the network with each pass, tuning these filters, until finally, the network

outputs a classification or regression values(s).

Convolutional Layers

The convolutional layers of a CNN take an input image and a set of kernels with learnable

weights and biases to produce an activation map. The kernel input is an n-dimensional tensor

where n is the dimensionality of the input image (e.g 2D for an image), and the kernel is a

tensor of weights and biases of the same dimensionality. The kernel slides across the input

in fixed steps known as strides (typically set to 1) and computes the dot product between

the patch of input it is over and the weights of the kernel. This produces an activation map

which is the approximately the same size of the input, often padded with zeros to match the

input size. A smaller stride is generally preferable, as it allows the network to retain more

information from the input [Coates et al., 2011]. A larger stride can be used if there is a

desire for the activation map to be significantly smaller than the input size, without the use

of pooling.

The convolution process is depicted in Figure 2.2. The sliding window approach gives
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CNN a form of global translational invariance, since the kernel will pick up the same feature

regardless of its position in the image.

Pooling

Pooling layers are typically applied after convolutions, with the aim to reduce the spatial

dimensions of the input for the next layer. This not only reduces the computational cost of the

operations but also gives the system a local translational and deformation invariance. Pooling

aims to retain the most informative features from the previous layer. The most common

types of pooling operations are max pooling and average pooling. Max pooling returns the

maximum value from the section of the image covered by the filter, while average pooling

returns the average of all the values from that section. Figure 2.3 shows the max pooling

operation.

32 24
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1 6 13
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29 27 5 9

22

11

1

22

29 13
Maxpool

2 x 2

Figure 2.3: An example of max pooling with a pooling window of size 2× 2.

Activation Functions

Activation Functions are typically implemented after pooling, and introduce non-linearity into

the model, allowing us to approximate more complex functions.

The most common activation function in CNNs is the Rectified Linear Unit (ReLU), given

by:

ReLU(x) = max(0, x) (2.3)
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where x is the input to the ReLU function. This function retains any positive value and sets

all negative values to zero, introducing non-linearity without affecting the receptive fields of

the convolutional layer. Other activation functions such as the Sigmoid function are commonly

used, but more relevant to classification problems.

Normalisation

Normalisation layers are typically nested between the convolution and activation function

layers. The aim is to standardize the input distribution to the next layer, reducing internal

covariate shift [Ioffe and Szegedy, 2015]. This standardisation reduces the effects of the

vanishing and exploding gradient problem, improving the stability and speed of training.

Batch Normalisation achieves this by scaling the batch of input data to have a mean of

zero and standard deviation of 1 [Szegedy et al., 2015]. Instance Normalisation standardizes

the input data a single training sample at a time, which is preferable when computational

resources demand the use of smaller batch sizes, which would make batch normalisation less

reliable [Ulyanov et al., 2016].

Fully Connected Layer/ Fully Convolutional Layer

Typically, the final layers in a CNN are fully connected, where each neuron is connected

to all neurons in the previous layer. Although more computationally intensive than the

convolution, these layers consolidate all information to calculate scores for the output, be it

class predictions or regression values.

However, since the number of neurons in the fully connected layer is fixed, the size of the

input image is forced to be a particular resolution to match the architecture. In methods

relevant to these studies, the fully connected layer is often replaced by a Fully Convolutional

Layer. This is a set of 1× 1 convolutional kernels which slide across all the activations of the

previous layer, akin to a single node in a fully-connected layer. This operation comes with

the advantage of allowing an input of any size to be used.
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Input Convolution Pooling Fully Connected Output

Feature Extraction Classification 

Figure 2.4: An example of a Convolutional Network Architecture. It involves a convolution
operation with 4 filters, a maxpooling operation reducing the dimensionality, and a fully
connected layer.

Designing a CNN

Using these simple building blocks as a foundation, we can create a CNN, as shown in Figure

2.4. Extensive research has been conducted to uncover architectures that can solve many

tasks in computer vision. The model that thrust CNNs into the limelight by winning the

ImageNet Large Scale Visual Recognition Competition (ILSVRC) in 2012 was largely based

on an architecture from the 1990s. This early model was LeNet, a CNN used to classify

handwriting [LeCun et al., 1998]. The 2012 ILSVRC task was significantly more challenging,

asking participants to classify hundreds of thousands of higher resolution photos, spanning

1000 categories. Surprisingly, the core building blocks of CNNs demonstrated decades prior

in LeNet had to only be scaled up to win this task. AlexNet increased the network depth

and size, and stacked convolutional layers on top of each other and won the competition by a

significant margin [Krizhevsky et al., 2017].

The proceeding years saw fervent research to improve this style of model, demonstrating

the importance of network depth [Simonyan and Zisserman, 2014; Szegedy et al., 2015] and

the power data-driven models have on computer-vision tasks. However, with every increase of

depth in these models, the silhouette of a new problem loomed closer: the vanishing gradient

problem [Hochreiter, 1998]. As back-propagation is applied from the final layer to the first
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one, the derivatives of each layer are multiplied down the network. If the derivatives are small,

then the gradient will exponentially decrease as we move down the layers until it vanishes.

Conversely, if the derivatives are large, the gradient will exponentially increase (an exploding

gradient). Both problems significantly impact the ability of the network to learn, as the

error cannot be propagated to the early layers effectively. We can see that this problem

is compounded by more layers added to the network. To solve this problem, ResNet was

introduced [He et al., 2016]. The authors introduced the deceptively simple residual block

- a module that splits the path flow in two: (1) the regular convolutional path and (2) A

skip connection that acts as an identity mapping, adding the block’s input to the output of

path (1). This is depicted in Figure 2.5. The skip connection ensures the derivative does not

vanish due to the activation function in the convolutional path. As discussed, normalisation

throughout the network also alleviates this problem.

layer

layer

𝑥

identityF(𝑥)

F(𝑥) + 𝑥 

Figure 2.5: The Residual Block [He et al., 2016]. Note the identity mapping concatenating
the input of the block to the output of the block.

2.1.3 Fully Convolutional Networks (FCNs)

The models discussed so far generally fit well to problems like classification or regression

tasks, where the aim is to predict a class label or regression value from an image. However,

CNNs can also be used for more holistic tasks, like image segmentation, or its sister problem

that is the focus of this thesis - landmark localisation. Image segmentation is the process

of partitioning an image into multiple segments e.g. identifying all pixels that relate to the

left ventricle in a CMR image. Given an input, the model is asked to produce a mapping

where only the pixels in the target structure are activated. Landmark localisation can also
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be approached through a similar lens: producing a mapping where the highest activation is

on the landmark of interest. Segmentation was tackled first using FCNs, when Long et al.

[2015] proposed a Fully Convolutional Network (FCN), that removed fully connected layers in

favour of many convolutions of size 1× 1, allowing the input and corresponding output size of

the network to be arbitrary. Therefore, using FCNs we can make pixel-wise predictions or

predictions relating to patches of the image. This approach was key to image-to-image tasks

like image segmentation and landmark localisation.

2.1.4 Encoder-Decoder Networks

Encoder-Decoder Networks are a special case of FCN that employ a mirrored downsample-

upsample structure. The convolutional and pooling layers constitute the encoder, which

compresses the input into a compact, lower-dimensional form. This encoded representation

is then expanded back to its original size by the decoder, using transposed convolutions,

unpooling layers, or upsampling layers. Central to the design of these networks is the concept

of analyzing an image at multiple resolutions and subsequently reconstructing it to its full

detail.

Ronneberger et al. [2015] introduced U-Net, concatenating the outputs of the decoder

steps with the features from the encoder steps at the same level, exemplified in Figure 2.6.

These “skip” connections allow information from the image features from the encoder side

of the network to feed information that may be pertinent when building the image back up

in the decoder side. This improved flow of information facilitated by the “skip” connections

leads to higher performance in image-to-image regression task. This style of architecture has

become the default for many computer vision tasks including image segmentation [Alom et al.,

2019], pose estimation [Newell et al., 2016] and many anatomical landmark localisation tasks

[Davison et al., 2018; Tiulpin et al., 2019], which will be discussed in more detail in Section

3.1.1.

2.1.5 Vision Transformers (ViTs)

Vision Transformers (ViTs) represent the next evolution in network architecture for vision

problems, challenging the dominance of CNNs. First introduced by Dosovitskiy et al. [2020],
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Figure 2.6: A representative diagram of the architecture of U-Net [Ronneberger et al., 2015].

the ViT applies the transformer architecture, originally developed for natural language

processing [Vaswani et al., 2017] to image analysis tasks. The ViT abandons the translational

invariant window-based inductive bias encoded into the CNN, in favour of an architecture

representing more of a blank canvas.

At a high level, the ViT operates by dividing the input image into a sequence of fixed-size

patches, each linearly embedded into a vector with a positional encoding. Then, the model

applies self-attention mechanisms, modeling the dependencies between any pair of positions

in the input sequence. The ViT forgoes the visual-system inspired inductive biases of the

CNN, arguing that an architecture with fewer inbuilt biases is more expressive. Another key

strength of the transformer model is its ability to model long-range interactions between the

patches from opposite corners of the image, which traditional CNNs struggle with.

2.1.6 Training Neural Networks

Training Loop

We have covered the fundamental concepts of how to build a Deep Neural Network, highlighting

a plethora of architectural choices. The next step is to train the network, in which we provide

some signal to the network to tune the weights from random to successfully approximating

some objective function. In this thesis, we are interested in Supervised Learning, in which we
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generate the signal using known {Data, Label} pairs from a training dataset.

In a typical in landmark landmark localisation training loop where we wish to regress the

coordinates of a single landmark contained in each image, our input data is a tensor of 2D

images, X, where X(i) is the ith 2D image matrix. Our label data is a matrix of coordinates,

Y, where y(i) is the coordinate vector of the landmark we want to localise, present in X(i).

We create a set of N training examples
{(

X(1),y(1)
)
, . . . ,

(
X(N),y(N)

)}
. In some cases, we

may represent our landmark label as an image matrix encoding the coordinate i.e. the label

data is a 3D tensor Y , with the ith sample label matrix denoted as Y(i).

Using our set of training examples (X,Y), the process of training a neural network using

mini-batch Stochastic Gradient Descent (SGD) [Amari, 1993; LeCun et al., 1998] involves the

following steps:

1. Initialisation: The network’s weights θ = (W,b), where W are the weights and b the

biases, are initialised randomly.

2. Forward Propagation: A batch of c inputs
{
X(i), . . . ,X(i+c),

}
is fed through the networks

layers, producing outputs,
{
ŷ(i), . . . , ŷ(i+c),

}
.

3. Cost Calculation: We use a predefined loss function, L(Y, Ŷ) to measure the difference

between predicted outputs Ŷ and the true targets Y. The total loss is typically the

average value over the entire batch.

4. Backward Propagation: We compute the gradients of the loss function with respect to

W and b by applying the chain rule. This gives us ∂L
∂W and ∂L

∂b at each layer, indicating

the direction of steepest ascent in the loss function.

5. Weight Update: Using our computed gradient and a chosen gradient descent algorithm

(e.g. SGD), we update the weights and biases of the network in the opposite direction

of the gradient, minimising the function. Defining a learning rate, α, the weight and

bias updates are given by W = W − α ∂L
∂W and b = b− α∂L

∂b .

We repeat steps 2-5 iteratively, using batches of training data to gradually tune the weights

and biases of the network towards some local minima of the loss function. Each full pass over

the entire dataset is known as an epoch.
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Relevant Loss Functions

For landmark localisation, we are typically performing the task of regression i.e. regressing

the coordinate location or some representation of the landmark. However, in some cases we

may want to perform classification on whether some part of the image contains the landmark.

Below, we cover loss functions relevant to this thesis.

Mean Squared Error (MSE): Mean Squared Error (MSE) is a commonly used loss function

in regression tasks, where the goal is to predict a continuous value. MSE is the average of the

squared differences between the actual and predicted values, putting more weight on large

deviations due to the squaring operation:

LMSE(Y, Ŷ) =
1

N

N∑
i=1

‖y(i) − ŷ(i)‖2F , (2.4)

where Y is the target value and Ŷ is the model prediction, averaged over a matrix of N

elements. We can use MSE to train models to regress the coordinates of landmarks directly,

in which Y and Ŷ are matrices of coordinate vectors.

Alternatively, we can use MSE as a reconstruction loss in image-image regression. In

landmark localisation, it is common to frame the landmark localisation task as heatmap

regression. Rather than regressing coordinates directly, the objective of the model is to

learn a Gaussian heatmap image for each landmark, with the centre of the heatmap on

the target landmark. The network learns to generate a high response near the landmark,

smoothly attenuating the responses in a small radius around it. For each landmark Li with

2D coordinate position c̃(i), the 2D heatmap image is defined as the 2D Gaussian function:

gi

(
x || µ = c̃(i);σ

)
=

1

(2π)σ2
exp

(
−
‖x− µ‖22

2σ2

)
, (2.5)

where x is the 2D coordinate vector of each pixel and σ is a user-defined standard deviation.

The network learns weights w and biases b to predict the heatmap hi(x;w,b). During

inference, we can interpret the activation of each pixel in the predicted heatmap as the

pseudo-probability of that pixel being the landmark.

The network learns to regress N heatmaps simultaneously by minimising the MSE between

predicted heatmaps hi(x;w,b) and the corresponding target heatmaps gi
(
x || µ = c̃(i);σ

)
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for all landmarks Li. In this case, we can extend MSE in Equation (2.4) to the n-D case

LMSE(Y , Ŷ), where Y and Ŷ are tensors representing N Gaussian heatmap labels and

predictions, respectively.

We can use Weighted Mean Squared Error (WMSE) to weight certain pixels as

more important to the loss function:

LWMSE(Y , Ŷ ,W ) =
1

N

N∑
i=1

‖W(i) �Y(i) − Ŷ(i)‖2F , (2.6)

where W(i) is a matrix of weights, where W
(i)
j,k is the scalar weight for the loss at the pixel on

the jth row and kth the column. This is typically used to weight parts of the image closer to

the landmark higher than distant parts of the image.

Binary Cross Entropy (BCE): Binary Cross Entropy (BCE) is typically used for classifi-

cation tasks, in which the positive class is delineated by the label 1 and the negative class is

0:

LBCE(y, ŷ) = −
1

N

N∑
i=1

y(i) log(ŷ(i)) + (1− y(i)) log(1− ŷ(i)), (2.7)

where y is a vector of classification labels and ŷ is the vector of predictions. In landmark

localisation, we can partition the image into N patches, and assign the patch containing the

landmark the positive class label and the rest the negative class label.

Once again, we can weight certain patches as more or less important using Weighted

Binary Cross Entropy (WBCE):

LWBCE(y, ŷ,w) = − 1

N

N∑
i=1

w(i)
(
y(i) log(ŷ(i)) + (1− y(i)) log(1− ŷ(i))

)
, (2.8)

where w(i) is the scalar weight for the loss at the ith patch.

Training Techniques

Below, we list a few techniques to enhance the training of DNNs:

• Data Augmentation [Chlap et al., 2021; Pérez-García et al., 2021]. This aims to

improve model generalisation. We randomly transform images in the training set,

artificially increasing the size and diversity. Therefore, the model is exposed to a wider
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variety of data scenarios, reducing overfitting and improving generalisation to unseen

data. This is particularly important in medical imaging, where datasets are limited.

• Deep Supervision [Lee et al., 2015]. This is utilised in Encoder-Decoder models, where

which we ask the model to make predictions at multiple resolution scales, injecting the

losses at each. This technique facilitates a coarse prediction at lower feature resolutions

and helps alleviate the vanishing gradient problem.

• Multi-Task Networks. This is a general architectural design that simultaneously

optimises two or more objective functions. The intuition behind the idea is that if the

tasks are complementary, the signal provided by each task will benefit both [Zhang and

Yang, 2018]. They can be used to learn two complementary tasks such as joint motion

estimation and segmentation [Qin et al., 2018], or two representations of the same task,

such as patch-wise classification and regression of a landmark [Noothout et al., 2018].

2.2 Uncertainty Estimation

We have covered how to create and train our models in a supervised fashion, but we are yet

unable to quantify the uncertainty of our model’s prediction. This subsection will first define

what we mean by uncertainty, before moving on to discussing the current literature.

2.2.1 Defining Uncertainty

Uncertainty can be divided into two categories: (1) Aleatoric uncertainty, which is irreducible,

caused by noise inherent in the data we are modeling; and (2) Epistemic uncertainty, which is

caused by uncertainty in the model’s parameters, reducible with more data [Der Kiureghian

and Ditlevsen, 2009; Gal, 2016; Kendall and Gal, 2017].

In landmark localisation, aleatoric uncertainty can be caused by ambiguity in the ground

truth labels [Thaler et al., 2021] or imaging artifacts. This can be subcategorised again into

homoscedastic uncertainty, which is constant for all inputs and heteroscedastic uncertainty,

which is different for each input. In landmark localisation, homoscedastic uncertainty could

by caused by trying to label a pixel-precise landmark that is inherently ambiguous (i.e.

the structure of interest spans multiple pixels with no clear centre). On the other hand
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heteroscedastic uncertainty may be high for a particular poor quality image containing

imaging artifacts from the scanner. Epistemic uncertainty is a direct expression of model

uncertainty, arising when the model cannot approximate the true function between the imaging

features and landmark of interest correctly. If given an infinite amount of training data, the

epistemic uncertainty can be reduced to 0.

In practice, both forms of uncertainty are present in landmark localisation. Let us illustrate

this with an example. Consider the case where an expert radiologist is asked to provide

ground truth landmark annotations for “the bottom of the chin” for images in a Cephalometric

dataset. Since the chin does not have a defined “bottom”, the landmark label will drift along

the horizontal axis of the chin across the entire dataset. This represents aleatoric uncertainty:

random noise inherent in the task itself. Aleatoric uncertainty cannot be minimised unless we

alter the dataset itself, such as improving the quality of the images, or reannotating landmarks

with a more precise definition in this case.

Furthermore, the annotation of medical images by experts suffers from both inter-observer

and intra-observer variability [Warfield et al., 2008]. Therefore, training and evaluating a

model using only a single annotation per image is prone to the bias of a single annotator

[Lampert et al., 2016]. In landmark localisation, we can observe inter-observer variability

through the lens of aleatoric uncertainty, inferring that the higher the variation in annotator

opinion, the greater the ambiguity of the landmark Thaler et al. [2021]. Training a model to

reflect this uncertainty would be key in providing more useful, interpretable results.

Epistemic uncertainty is of particular interest in our domain since medical imaging datasets

are often small and the images complex. Therefore, at test time it is likely the model will

encounter an image outside of the distribution it was training on. For example, our training

may consist of cardiac scans of patients with a particular disease. If the model was deployed in

the general population, it may perform poorly since the features it associated with a particular

landmark were only present when a patient has the disease. Even within the same distribution

of patients, a dataset in the order of hundreds is not sufficient to train a model to recognise

a landmark in a deformable and varied structure like the heart perfectly. The solution to

this form of uncertainty over model parameters is to train our model on a sufficiently large,

representative dataset.
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The resulting combination of epistemic and aleatoric uncertainty can be used to induce

predictive uncertainty, the model’s confidence in its prediction. Furthermore, the distinction

between aleatoric and epistemic uncertainty is not entirely objective, and the lines between

can blur [Der Kiureghian and Ditlevsen, 2009]. In this thesis, we will narrow our definitions.

We will consider aleatoric uncertainty as uncertainty caused by noise in our fixed-sized

dataset. Specifically, imaging artifacts and annotator variability caused by landmark definition

ambiguity. We will consider epistemic uncertainty the uncertainty about the model parameters

given a fixed-sized dataset.

2.2.2 Bayesian and Frequentist Perspectives to Uncertainty

Similarly, for the purpose of this thesis we will broadly view uncertainty estimation techniques

through two lenses: Frequentist and Bayesian.

The Bayesian paradigm in statistics differentiates from Frequentist paradigm in two

fundamental philosophies. First, Bayesian statistics views probability as a measure of belief

in the occurrence of events, in contrast to the Frequentist paradigm that treats probability as

the limit of occurrence frequency as the number of samples approaches infinity. The Bayesian

distinction acknowledges that probability is inherently subjective, reflecting our beliefs and

uncertainties about the underlying phenomena. Secondly, Bayesian statistics recognizes the

influence of prior beliefs on posterior beliefs. By incorporating prior knowledge or beliefs

about the phenomenon of interest, Bayesian inference allows for the integration of existing

information into the analysis. This ability to formally incorporate prior beliefs sets Bayesian

statistics apart from Frequentist approaches, which rely solely on observed data.

We can explain both frameworks using Bayes’ theorem:

P(H|D) =
P(D|H) · P(H)

P(D)
, (2.9)

where

P(D) =

∫
H
P(D|H)P(H)dH. (2.10)

Here, D is our training data, and H is our hypothesis. P(H|D) represents the posterior

probability of hypothesis H given the observed data D. P(D|H) is the likelihood of the data
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given the hypothesis, P(H) denotes the prior probability distribution over the hypotheses, and

P(D) is the marginal likelihood or evidence. In the context of machine learning, the weights θ

of our network represent our hypotheses, and P(D) is the probability of our data integrated

over all possible model parameters. This term ensures that the posterior distribution P(H|D)

is a valid probability distribution that integrates to 1.

From a Bayesian perspective, all unknown quantities are treated as random variables, and

probabilities represent degrees of belief. We start with an initial belief about our parameters by

assigning a prior distribution over the weights, P(H). We update our beliefs by observing data

and comparing it to our initial belief, P(D|H), forming our posterior distribution, P(H|D).

We use P(D) as a normalising constant, which is often difficult to compute for complex models

and data. Therefore, at inference, we have a distribution of model parameters P(H|D).

In the Frequentist interpretation, unknown parameters are considered fixed but unknown,

and probabilities represent long-run frequencies of events. Therefore, the concepts of “prior”

and “posterior” are not explicitly considered, instead focusing finding a hypothesis that

maximises the likelihood, P(D|H). Therefore, the issue of calculating/approximating P(D)

is sidestepped, and the prior beliefs about the intial parameters P(H) is not considered.

We do not have a distribution over our model parameters, but instead construct confidence

intervals around the prediction. The interval is constructed such that if we were to repeat the

experiment many times, the true parameter value would fall within this interval a certain

percentage of the time (say, 95% of the time for a 95% confidence interval).

In essence, Bayesians consider hypotheses as random variables and data as fixed, while

Frequentists consider hypotheses as fixed and data as random.

The final term to introduce is calibration, a Frequentist concept, that quantifies the

disparity between model predictions and long-term empirical frequencies. The quality of

calibration, distinct from accuracy, can be evaluated using proper scoring rules such as the

Negative Log Likelihood [Friedman et al., 2001] and techniques like the Expected Calibration

Error [Naeini et al., 2015]. Therefore, a model can be accurate yet miscalibrated, and vice

versa. In classification, a model is said to be well calibrated if its uncertainty score is reliable

i.e. if there are 10 positive classifications each with a confidence score of 0.4, we would only

expect 4 of those 10 to be the positive class. For classification problems, softmax outputs,
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which are typically miscalibrated [Guo et al., 2017] can be calibrated in a straight-forward

fashion using Platt Scaling [Platt et al., 1999] or Temperature scaling [Guo et al., 2017].

Essentially, these methods use a hold-out calibration set to learn a function to transform the

miscalibrated softmax scores into better calibrated probability scores. This is not as straight

forward in regression tasks like landmark localisation, as we are predicting continuous values.

For regression, calibration can only be directly measured if we output a predictive distribution

(e.g. mean and variance) [Kuleshov et al., 2018]. A model can be considered well calibrated if

the true target values fall within the predicted distribution in a way that is consistent with

that distribution. For example, for a predicted Gaussian distribution with a predicted mean

and standard deviation, the actual target should all within one standard deviation of the

mean ∼68% of the time, within two standard deviations ∼95% of the time, etc.

2.2.3 Uncertainty Estimation for DNNs

Next, we will introduce common uncertainty estimation approaches for DNNs.

Bayesian Neural Networks

Bayesian neural networks (BNNs) are the most direct application of the Bayesian notion of

uncertainty to DNNs. BNNs model network weights as a probabilistic distribution rather than

deterministic scalar values. Initially proposed in the early ’90s and extensively researched

thereafter [Lampinen and Vehtari, 2001; Neal, 2012], BNNs alleviate the issues of overfitting,

and importantly provide a measure of epistemic uncertainty.

BNNs can be described through the lens of Bayes’ theorm, as defined in Equation (2.9).

Ideally, we aim to compute the posterior distribution P(H|D), from our training data D. We

begin by defining a prior distribution over the weights of some neural network architecture,

P(H). Since our models are often learning a complex function, we set P(H) to be a very loose

prior, such as a Gaussian distribution with a mean of zero and a large variance. The aim is

to iteratively update this prior into a posterior that better explains the observed data, in

essence, transitioning towards the true distribution of model parameters P(H|D). To achieve

this, we observe the likelihood of observing our training data given our parameters P(D|H),

combine it with our prior belief P(H) and normalize with our marginal likelihood P(D), and
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update our hypothesis H.

The concept sounds promising, but calculating P(D) is intractable, since it is computa-

tionally infeasible to integrate over the entire set of possible model weights. Therefore, we

turn to approximation.

Markov Chain Monte Carlo (MCMC) methods, particularly the Hamiltonian Monte

Carlo (HMC) method, are considered the best solutions for sampling from exact posterior

distributions. These methods generate a series of weight samples by initiating a stochastic

process from our initialisation of H, saving the samples along the way. Over time, these

samples converge towards the true posterior distribution, providing a good approximation of

P(H|D). However, they are slow to train since they are taking a more meandering approach

to model optimisation compared to the bee-line behaviour of gradient descent towards a local

minima.

Therefore, Variational Inference (VI) methods are more feasible, approximating the true

posterior with a simpler distribution. The aim is to then find the parameters of this simpler

distribution that minimizes the divergence from the true posterior [Blei et al., 2017; Graves,

2011]. In VI, we directly update the distribution of each of the model weights, rather than

sample a series of them like in MCMC. VI methods are more scalable than MCMC but can

under-estimate the uncertainty due to the simplifying assumptions made about the posterior

[Blei et al., 2017].

Regardless of method, BNNs are still significantly more expensive to train compared to

traditional DNNs since we are effectively learning a distribution over each weight rather than

a singular value, and the optimisation procedure is more complex.

At inference, we can sample from the distribution of model weights (sampled or learned),

generating a mean prediction with variance. Specifically, given a BNN and a test input x, we

can produce T predictions by running T forward passes through T sets of randomly sampled

weights. We denote each prediction as y(t), where t ranges from 1 to T . For a regression

problem the predictive mean is given by:

µ =
1

T

T∑
t=1

y(t). (2.11)
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The predictive variance is given by:

σ2 =
1

T

T∑
t=1

(y(t) − µ)2. (2.12)

The higher the variance, the higher the uncertainty in the model weights, so a higher

epistemic uncertainty. Furthermore, BNNs can also be trained to predict a mean and variance

during training. The variance here represents the model’s uncertainty about the output, given

the input. This provides a prediction for aleatoric uncertainty, too. If the model has correctly

learned this variance, it should be higher for inputs where the observed outputs are more

variable (due to noise, inherent randomness, etc.), and lower for inputs where the observed

outputs are more consistent.

Monte Carlo Dropout (MCD)

To address the scalability issue presented by BNNs while keeping the desirable Bayesian

properties of the system, Monte Carlo Dropout (MCD) for approximate Bayesian Inference

was introduced by Gal and Ghahramani [2016]. The method remains one of the most popular

forms of epistemic uncertainty estimation in DNNs, since it can be easily introduced into

an existing model with minimal effort. “Dropout” is the process of randomly turning “off”

a neuron during training and inference. Initially used as a form of regularisation, ensuring

a neural network learned robust representations of its inputs, Gal and Ghahramani [2016]

showed dropout can be seen as a variational approximation to Bayesian uncertainty from a

Deep Gaussian Process [Damianou and Lawrence, 2013]. They argued that performing dropout

during testing can be seen as performing Monte Carlo integration over this approximate

posterior. Intuitively, each configuration of the network with random dropout represents a

different network, and we can sample many networks from the space of possible networks.

Therefore, at test time, predictions are averaged over multiple forward passes and the

variance can be used to estimate model uncertainty. Specifically, given a network with dropout,

and a test input x, we can produce T predictions by running T stochastic forward passes.

We can use Equations (2.11) and (2.12) to generate our mean and variance predictions,

respectively. The higher the variance, the higher the uncertainty in the model weights, so a
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higher epistemic uncertainty.

Deep Ensembles

While not Bayesian in the traditional sense, deep ensembles can also be interpreted as a

form of approximate Bayesian inference, again modelling epistemic uncertainty. A deep

ensemble consists of T identical models, trained with different initialisations. By passing our

input through our T trained models, we can use Equations (2.11) and (2.12) to generate our

mean and variance predictions, respectively. A higher variance represents a greater epistemic

uncertainty.

In practice, Deep Ensembles achieve greater accuracy and better uncertainty estimates

than BNNs and MCD. On the surface, deep ensembles appear to be a Frequentist approach

to uncertainty, but there is a growing body of work arguing deep ensembles are approximately

Bayesian [D’Angelo and Fortuin, 2021; Fort et al., 2019; Hoffmann and Elster, 2021; Wilson and

Izmailov, 2020]. Lakshminarayanan et al. [2017] found using ensembles of deep neural networks

with different initialisations produced well-calibrated uncertainties that were comparable to

Bayesian approaches. In a large scale empirical study, Ovadia et al. [2019] found that an

ensemble of identical networks with random initialisations outperformed all other methods

in terms of accuracy and uncertainty estimation. They also found that using as little as 5

models in the ensemble was sufficient. The study performed by Fort et al. [2019] suggests

this behaviour is due to random initialisations exploring entirely different modes of the loss

landscape, whereas BNNs and MCD tend to focus on a single mode. The paper presents a series

of insightful experiments exploring the subspace of loss landscape, finding that ensembling

using random initialisations facilitates a powerful decorrelation effect between the models.

We also see extensive use of ensembles of identical models with random initialisations in the

domain of medical image segmentation to improve accuracy and estimate uncertainty [Jungo

et al., 2020; Karimi et al., 2019; Mehrtash et al., 2020; Mehta et al., 2022]. In terms of fusion

strategy, averaging the models in the ensemble is the standard technique [Jungo et al., 2020;

Lakshminarayanan et al., 2017].
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Conformal Prediction

Conformal prediction is a Frequentist approach of uncertainty, learning from data to give a

strong theoretical guarantee: the construction of a prediction set that contains the true output

with a user-specified probability [Shafer and Vovk, 2008]. The method is distribution-free;

making no assumptions about prior or posterior distributions, nor the underlying machine

learning algorithm. Using any pretrained model, an uncertainty heuristic, a calibration set,

and a user chosen error rate α, the process aims to create a prediction set C that is valid in

the following sense:

1− α ≤ P (Ytest ∈ C (Xtest )) ≤ 1− α+
1

n+ 1
, (2.13)

with a calibration set of size n. Essentially, for a regression problem, we want to create

confidence intervals around our prediction that guarantee the true label sits in within the

intervals at a probability of 1− α. Therefore, conformal prediction promises perfect marginal

calibration for the prediction intervals it produces.

This is achieved as follows [Angelopoulos and Bates, 2023]:

1. Identify a heuristic notion of uncertainty using any pre-trained model e.g. softmax, or

predicted variance (derived from Deep Ensembles, MCD etc.).

2. Define the score function s(x, y) ∈ R. (Larger scores encode worse agreement between x

and y ).

3. Compute q̂ as the d(n+1)(1−α)e
n quantile of the calibration scores s1 = s

(
X(1), Y (1)

)
, . . . , sn =

s
(
X(n), Y (n)

)
.

4. Use this quantile to form the prediction sets for new examples:

C (Xtest ) = {y : s (Xtest , y) ≤ q̂} .

Intuitively, Conformal Prediction observes the distribution of some heuristic uncertainty

over a calibration set, making the assumption that the calibration and test sets are from the

same distribution i.e. all data is independent and identically distributed (i.i.d.). By examining
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the relationship between model error and the uncertainty heuristic, conformal prediction infers

the likely error associated with a given level of uncertainty for a sample at test time. Given a

user-chosen error rate α, this learned information allows us to assign confidence bounds to

predictions.

In recent years, conformal prediction has been integrated with DNNs [Angelopoulos and

Bates, 2023; Balasubramanian et al., 2014; Stankeviciute et al., 2021; Zhang et al., 2021]

However, despite its strong theoretical guarantees, conformal prediction has limitations.

Firstly, the method requires a separate calibration set, reducing the size of the available

training data for the model itself. Secondly, if the chosen heuristic measure of uncertainty is

poor and contains limited or noisy information about error, the method will devolve towards

unhelpfully large confidence intervals.

While conformal prediction is a well-established approach, it is only recently experiencing a

resurgence within the medical imaging community, seeing applications in image segmentation

[Csillag et al., 2023; Wieslander et al., 2020] and disease classification [Lu et al., 2022a].

2.3 Gaussian Processes (GPs)

Finally, we outline the basics of Gaussian Processes (GPs), a form of Bayesian machine

learning that gives us true Bayesian uncertainty estimates. A deep dive into GPs is beyond

the scope of this thesis, since we are primarily interested in the application of GPs to the

task of landmark localisation. Nevertheless, the following section gives a brief overview for an

intuitive understanding of GPs, and the reader is pointed towards Rasmussen and Williams

[2006] and Murphy [2013] for extensive coverage.

Overview of Gaussian Processes

Gaussian Processes offer a Bayesian nonparametric approach to machine learning. A GP can

be understood as a distribution over functions, where any finite set of function values is jointly

Gaussian distributed [Rasmussen and Williams, 2006]. The properties of this distribution over

functions is informed by the training data, where predictions are certain near the training

data, and less certain far from the training data. Formally, a GP is defined by its mean
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function m(x) and a covariance function k(x,x′), and it is denoted as:

f(x) ∼ GP(m(x), k(x,x′)). (2.14)

The mean function represents the expected value of the function at x, and the covariance

function (or kernel) encodes the similarity between function values at different inputs. The

kernel chosen is dependent on the assumptions we have about the underlying problem,

capturing various properties such as smoothness, periodicity, and linearity. For instance, the

Matérn kernel provides a generalised class of functions that sits between the very smooth

functions and rougher, less regular functions.

Cν(d) = σ2 2
1−ν

Γ(ν)

(√
2ν

d

ρ

)ν

Kν

(√
2ν

d

ρ

)
, (2.15)

where d is the distance between two points, Γ is the gamma function, Kν is the modified

Bessel function of the second kind, and ρ and ν are positive parameters of covariance. The

parameter ν determines the smoothness. For instance, ν = 3
2 provides once differentiable

functions, and ν = 5
2 gives twice differentiable functions. This kernel can be employed when

the underlying function’s smoothness is in question and allows for a more flexible model.

Sparse Variational Gaussian Processes (SVGPs)

One of the major challenges with GPs is their computational complexity. In a standard GP,

the computational demand for inference scales O(n3) with the number of data points, making

it challenging to deploy GPs on large datasets. To address this, approximation methods

such as sparse variational Gaussian processes (SVGP) have been introduced and worked

on [Snelson and Ghahramani, 2005; Titsias, 2009]. Rather than model the entire training

dataset, SVGPs utilize a smaller set of inducing points to represent the GP, reducing the

computational overhead.

The primary idea is to approximate the true posterior with a variational distribution by

introducing M inducing points Z = {z1, . . . , zM}. The variational distribution is then given

by:

q(f) =

∫
p(f |u)q(u)du, (2.16)
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where u represents the function values at the inducing points. The optimal q(u) is found by

minimising the Kullback-Leibler divergence between the true posterior and the variational

approximation.



Chapter 3

Prior Work, Data, and a Baseline

Case Study

3.1 Related Work

3.1.1 Landmark Localisation Methods

The explosion of progress in the computer vision domain over the recent years has caused a

radical change in the methods used for medical imaging analysis, leading deep learning to

become the dominant tool for landmark localisation. Before this, many early machine learning

approaches used hand crafted graphical models to encode spatial relationships alongside

image features [Cootes et al., 1995; Ibragimov et al., 2014; Lindner et al., 2014; Liu et al.,

2010]. The inductive biases injected into these approaches, such as spatially constrained

models describing how landmarks connected, facilitated impressive performance even when

the amount of training data was limited. However, after achieving great success in various

computer vision tasks [Krizhevsky et al., 2017; Simonyan and Zisserman, 2014], attention

shifted to deep learning for landmark localisation. Utilizing the building blocks outlined

in Section 2.1, it was quickly realised that Deep Neural Networks (DNNs) were not only

capable of implicitly learning these inductive biases when given enough data, but their

additional expressiveness even allowed them to outperform handcrafted models. Early deep

learning approaches used Convolutional Neural Networks (CNNs) to directly regress landmark

coordinates, achieving enough success to solidify the application of deep learning [Zhang et al.,

37
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Figure 3.1: A visualisation of encoder-decoder and patch-based methods. Typically, encoder-
decoder methods input the entire image and holistically analyse it, regressing a heatmap centred
around the target landmark. On the other hand, patch-based methods learn associations
between patches of the image and the target landmark. To obtain the final coordinates, the
patch-wise predictions are fused.

2017]. However, regressing coordinates directly from an image is a highly non-linear task, and

the method’s performance limit was quickly realised. Since then, landmark localisation can

be broadly categorised into two groups: heatmap regression using encoder-decoder models,

and patch-based models, shown in Figure 3.1.

Encoder-Decoder Methods

Inspired by works in pose estimation [Newell et al., 2016; Tompson et al., 2015, 2014],

approaches pivoted to formulate the coordinate regression problem as a heatmap estimation

problem. Using encoder-decoder style CNNs described in Section 2.1.5 such as U-Nets

[Ronneberger et al., 2015] or Hourglass networks [Yang et al., 2017b], a Gaussian heatmap

(Equation (2.5)) is predicted for each landmark [Payer et al., 2016, 2019; Tiulpin et al.,

2019; Yang et al., 2017a; Zhong et al., 2019]. Regressing heatmaps prove more effective

than regressing coordinates, as they offer a smoother supervision, while also allowing some

uncertainty in the prediction. There have been various methods using encoder-decoder style

models, with some incorporating attention [Zhong et al., 2019], pyramid networks [Chen et al.,

2019; Gilmour and Ray, 2020], specialised losses [Chen et al., 2019; Oh et al., 2020], heatmap

property regression [Payer et al., 2020; Thaler et al., 2021], multiple stages [Gilmour and Ray,

2020] and most recently transformers [Jiang et al., 2022; Yueyuan and Hong, 2021].

An interesting but less common approach combines coordinate regression and heatmap
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prediction into a single multi-task network. Davison et al. [2018] jointly predict the displace-

ment to the landmark alongside the heatmap value for each pixel using an encoder-decoder

style architecture. The final coordinate is obtained using a voting scheme, where each pixel’s

contribution is defined by its heatmap activation strength. This proved to be more robust

than simply taking the peak value of the heatmap. Chen et al. [2019] also combine heatmap

regression with displacement regression, finding the multi-task approach improves localisation

accuracy significantly. Zhou et al. [2021] use a Reinforcement Learning (RL) framework in

tandem with encoder-decoder networks to search for the optimal size of Gaussian Heatmap,

side-stepping the need to pre-define the variance hyperparameter of Equation (2.5) at the

cost of greater computation.

Patch-based Methods

In medical imaging, the number of available training samples is often small so the encoder-

decoder network is often forced to be shallow, compromising its performance [Zhang et al.,

2017]. One method to overcome this is via a patch-based approach; alleviating the problem by

sampling many small ‘patches’ from an image, and predicting the displacement from the patch

to the target landmark [Arik et al., 2017; Emad et al., 2015; Li et al., 2018]. This approach

can generate orders of magnitude more training samples from a single image compared to the

encoder-decoder style methods.

However, it is difficult to take into account high level, global features because each patch

makes a prediction based only on local features. For example, the two-stage method by Zheng

et al. [2015] first extracts candidate points, and then analyses image patches around these

points to obtain the landmark, not considering global contextual information. Zhang et al.

[2017] improve this method by first using patches to learn local information, before then using

the entire image to learn global information. However, these approaches are costly to train,

requiring two training phases. Furthermore, this method regresses coordinates directly, rather

than the more effective and smoother heatmap.

Even less common is a patch-based approach that combines displacement regression and

heatmaps. Noothout et al. [2018] come close to this method, applying multitask learning using

a Fully Convolutional Neural Network (FCN) to jointly perform classification and regression
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Figure 3.2: Landmark localisation performance on a Cephalometric dataset using the biased
ISBI 2015 evaluation protocol [Wang et al., 2016]. The success detection rate (SDRr) shows
the percentage of predictions within a rmm radius of the target landmark. Features utilised
by the methods are indicated by the presence of the coloured bands.

on each patch. The classification task determines whether a patch contains the landmark,

and the regression task estimates the 3D displacement from the patch. To dampen the effect

of parts of the image distant to the landmark the log displacement was used, meaning the

further the patch, the smaller its effect on the loss function. Similar to Donner et al. [2013],

only the patch classified as containing the landmark is used to determine the final coordinates,

filtering out the rest. This multi-task, joint learning leads to a light-weight network and

enhanced localisation performance, with the two tasks sharing a feature representation that

improves the performance of both [Zhang and Yang, 2018]. However, the resulting network

has a strong local focus and is also susceptible to failure if the predicted containing patch is

incorrect. In a followup work, Noothout et al. [2020] extend their method into a two stage

method: they first train a CNN to provide global estimates for the landmarks, then employ

specialised CNNs for each landmark for the final prediction. This method improves upon the

first in terms of localisation error, but has the drawback of requiring multiple training stages.
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Trends

Figure 3.2 shows performance over time on a public Cephalometric landmark localisation

dataset [Wang et al., 2016] (reviewed in Section 3.2.3), breaking down the features of each

method. With the exception of a combing an encoder-decoder style architecture (U-Net/pyra-

mid) and heatmap regression, there is no clear correlation between any architectural modifica-

tion and performance, with most methods tuning parameters and reporting the best results.

Even in the case of the best-performing method using a transformer [Jiang et al., 2022], the

authors provide results from a hyperparameter search which shows the method has large

fluctuations in performance based on implementation details. However, it is clear from this

case study that traditional patch-based methods have fallen out of favour, firmly replaced by

the more globally focused, large encoder-decoder style models. It is interesting to note that

Vision Transformers are a form of patch-based model, albeit more expressive than their CNN

cousins due to sequence encoding and attention.

In summary, Deep Neural Networks using supervised learning have concretely set them-

selves as the State-of-the-Art paradigm to landmark localisation. Specific architectures have

closely followed the general trends of Computer Vision research, evolving from simple FCNs, to

the Vision Transformer. However as we have seen, little attention has been paid to parameter-

efficient models that are cheap to train and small enough to be deployed on low-resource

machines.

3.1.2 Uncertainty Estimation in Landmark Localisation

It is necessary to look beyond accuracy if we aspire for large-scale adoption of our models.

Uncertainty estimation is vital. Despite the exciting progress in this area in the community,

there remains many challenges remaining for uncertainty estimation in landmark localisation.

A concentrated effort in uncertainty estimation has been applied to image segmentation by

the community, a task similar to landmark localisation that instead aims to predict a mask

for an entire structure rather than a single point.

Segmentation aims to produce a binary map, with pixels activated on the structure of

interest and inactive elsewhere. In traditional heatmap-based landmark localisation, only

the pixel pertaining to the landmark coordinate has a magnitude of 1, smoothly attenuating
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to 0 in a set radius. The loss function used by landmark localisation is the Mean Squared

Error (MSE) between the target and predicted heatmap, whereas segmentation uses pixel-wise

classification-based losses [Jungo et al., 2020]. Nevertheless, the tasks are similar in that the

magnitude of the activation of any given pixel in each image can be leveraged for information

on the epistemic “confidence” (inverse of uncertainty) of the model. Jungo et al. [2020] use

pixel activation to measure the uncertainty of each pixel segmentation class, including using

the average activation of an ensemble. They found that this naive approach was surprisingly

well calibrated and that ensembling 5+ identical but randomly initialised models significantly

improved calibration. These results have been corroborated by Mehrtash et al. [2020] who also

used pixel activation for confidence as well as an ensemble of 5 identical, randomly initialised

networks to convincing effect.

Other successful approaches for epistemic uncertainty estimation in segmentation use

Bayesian Neural Networks [Kwon et al., 2020] or Bayesian approximation methods like Monte-

Carlo dropout [Nair et al., 2020]. However, the prevailing approach is an ensemble of identical,

randomly initialised networks. This method affords better performance [Mehrtash et al., 2020]

and a more accurate mechanism for Bayesian marginalisation [Wilson and Izmailov, 2020]

compared to a single model using Monte-Carlo dropout.

In landmark localisation we are ultimately predicting a single coordinate point rather

than a mask, but similar uncertainty estimation approaches can be utilised. However, there

are limited works exploring uncertainty in landmark localisation. Payer et al. [2019] directly

modeled aleatoric uncertainty during training by learning the isotropic Gaussian covariances of

target heatmaps, and predicting the distribution of likely locations of the landmark at test time.

Thaler et al. [2021] took this approach further, learning anisotropic (directionally skewed)

Gaussian heatmaps for each landmark, demonstrating that the learned heatmap shapes

correspond to inter-observer variability from multiple annotators. However, this method only

models the homoscedastic aleatoric uncertainty of the dataset, whereby a single covariance

matrix is learned over the entire dataset for each landmark during training. At inference, a

Gaussian function is fitted to each individual prediction to model heteroscedastic aleatoric

uncertainty, however this measure heavily depends on the learned homoscedastic uncertainty.

In terms of epistemic uncertainty, Lee et al. [2020] borrowed from image segmentation
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approaches by proposing to use Monte-Carlo dropout to predict the location and subject-level

uncertainty of Cephalometric landmarks.

Another method to measure the subject-level, epistemic uncertainty of a heatmap-based

landmark prediction is to measure the maximum heatmap activation (MHA) of the predicted

heatmap. Since the activation of a Gaussian heatmap at a particular pixel represents the

pseudo-probability of the pixel being the landmark, we can use this pseudo-probability as an

uncertainty measure: the higher the activation, the more certain the prediction. Drevickỳ and

Kodym [2020] compared MHA with ensemble and Monte-Carlo dropout methods, finding MHA

surprisingly effective given its simplicity. However, similarly to image segmentation, they found

using an ensemble of models was best at predicting uncertainty. They calculated the coordinate

prediction variance between an ensemble of models, and found this method performed best

at estimating prediction uncertainty. McCouat and Voiculescu [2022] shift the task from

regression to classification by learning binary heatmaps rather than Gaussian heatmaps. This

shift allowed the authors to calibrate the heatmap activations using Temperature Scaling

[Guo et al., 2017], at the cost of reduced accuracy.

Overall, there has been limited exploration into exploiting information from regressed

Gaussian Heatmaps, which are prevalent in most State-of-the-Art (SOTA) methods. Given that

the Gaussian heatmap regression produces a 2D continuous output, traditional calibration

techniques and evaluation metrics tailored for classification aren’t immediately suitable.

Existing evaluation metrics for uncertainty in landmark localisation are somewhat limited.

Often, the primary method is to measure the correlation between an uncertainty measure and

localisation error [Drevickỳ and Kodym, 2020; Thaler et al., 2021]. This landscape underscores

the need to delve deeper into uncertainty estimation within the Gaussian Heatmap regression

framework, alongside improved evaluation metrics for such methods. A final intriguing avenue

of exploration is the application of purely Bayesian techniques to landmark localisation, which

are notably absent in the literature, likely due to the computational complexity. However, the

pursuit of these techniques promises mathematically rigorous and therefore more trustable

uncertainty estimation.
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Figure 3.3: (a) Landmarks for Short Axis (SA) CMR: Magenta = superior right ventricle
insertion point valve; Yellow = inferior right ventricle insertion point; Red = inferior lateral
reflection of right ventricle free wall. (b) Landmarks for 4 chamber (4CH) CMR: Magenta =
tricuspid valve; Yellow = mitral valve; Red = apex of left ventricle. (c) Subset of Landmarks
included in the Cephalometric dataset [Wang et al., 2016]. Displayed landmarks are a subset
of the total 19 landmarks, for better visibility.

3.2 Datasets

We use two modalities of data in this thesis: Cardiac Magnetic Resonance (CMR) images and

Cephalometric Radiographs. These modalities are distinct in structure as well as methodology

of capture, so are used at different points in this thesis to evaluate our method’s generalisability.

Table 3.1 details the attributes of the datasets used in this thesis.

3.2.1 ASPIRE Cardiac MRI (Standard): ASPIRE-S

ASPIRE-S is a subset of data from the ASPIRE Registry [Hurdman et al., 2012], with CMR

sequences containing a mix of subjects suffering from pulmonary arterial hypertension (PAH)

patients and no pulmonary hypertension (PH). Each subject has a four chamber (4CH) view

and/or a short axis view (SA). Each CMR sequence has a spatial resolution of 512 × 512

pixels, where each pixel represents 0.9375mm of the organ, and 20 frames (we use only the

first frame for landmark localisation in this thesis). There are 303 SA images, each with

three annotated landmarks: the inferior right ventricle insertion point (infSA), the superior

right ventricle insertion point (supSA), and the inferior lateral reflection of the right ventricle

free wall (RVSA). There are 422 4CH images, each with three annotated landmarks: the

apex of the left ventricle at end diastole (LVDEV Apex), the mitral valve (mitral), and
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Dataset Modality View Pixel
Resolution

Land-
marks

Annota-
tors

Samples

ASPIRE-S
[Hurdman et al., 2012]

CMR 4CH 512× 512 3 1 422

ASPIRE-S
[Hurdman et al., 2012]

CMR SA 512× 512 3 1 303

ASPIRE-L
[Hurdman et al., 2012]

CMR 4CH 512× 512 4 1 789

Cephalograms
[Wang et al., 2016]

Cephalometric
Radiographs

N/A 1935
× 2400

19 1 400

Cephalograms
[Wang et al., 2016]

Cephalometric
Radiographs

N/A 1935
× 2400

5 19 100

Table 3.1: A summary of datasets used in this thesis. CMR is Cardiac Magnetic Resonance,
4CH is Four Chamber, and SA is Short Axis.

tricuspid valve (tricuspid). Annotated examples of the SA and 4CH images are showing in

Figure 3.3a and Figure 3.3b, respectively. The 4CH dataset represents a more challenging

landmark localisation task as the images have much higher variability than the SA dataset.

The landmarks were decided and manually labelled by a radiologist.

3.2.2 ASPIRE Cardiac MRI (Large): ASPIRE-L

ASPIRE-L is a larger subset of the ASPIRE dataset registry [Hurdman et al., 2012], which

has 789 CMR images. Again, each image has a resolution of 512 × 512 pixels, where each

pixel constitutes 0.9375mm of the organ. Each subject in this dataset has a four-chamber

(4CH) view. Each image has four landmarks: the Left Ventricular Apex (LV), Lateral Mitral

Annulus (LMA), Lateral Tricuspid Annulus (LTA) and Spinal Cord (SA).

Although the dataset is larger than ASPIRE-S, this dataset represents a more challenging

task since the annotations in the data are noisier and less reliable. Unfortunately, only 1

annotation is available for each landmark, so the aleatoric noise in the labels cannot be

measured.

3.2.3 Cephalometric Radiographs

The third and final dataset used in this thesis consists of Cephalometric Radiographs (Cephalo-

grams), which contain 400 images with repetitive structures [Wang et al., 2016]. The dataset
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has a total of 19 annotated landmarks, where we use the junior annotator as the ground truth

(following the convention of [Lindner et al., 2016; Thaler et al., 2021; Zhong et al., 2019]). For

our study of aleatoric uncertainty in Section 5.5.7, we use subset of 5 landmarks which have a

total of 11 annotations provided by Thaler et al. [2021] for 100 images. The images have a

spatial resolution of 1935× 2400 pixels, where each pixel represents 0.1mm of the structure.

Fig. 3.3c shows an example image annotated with the aleatoric uncertainty landmark subset.

3.3 Case Study of Baseline Method: LannU-Net

In this section, we provide a brief experiment validating one of the large capacity baseline

models we use as a comparison in the main body of the thesis. We show LannU-Net is a

representative method of State-of-the-Art landmark localisation models.

As described in Section 3.1.1, recent developments demonstrate consistent but increasingly

incremental improvements in landmark localisation on medical images. However, much of this

progress is benchmarked on a Cephalometric dataset (Section 3.2.3) using a known biased

evaluation protocol [Lindner et al., 2016; Payer et al., 2020; Thaler et al., 2021]. In this

short study, we perform a litmus test on the validity of the reported progress by comparing

State-of-the-Art methods with a vanilla U-Net in an unbiased evaluation regime. We find

our model performs comparably or better than tailored architectures with sophisticated

modifications. Specifically, we achieve fewer gross mispredictions than the previous State-

of-the-Art method for Cephalometric landmark localisation, and show that a vanilla U-Net

using data augmentation is robust in environments with limited training data.

3.3.1 Methods

Inspired by nnU-Net [Isensee et al., 2021] for image segmentation, we hypothesise that a

vanilla U-Net with a careful training regime contains enough expressive power to perform on

par with tailored architectures.

Architecture We design a vanilla U-Net inspired by the template of the original U-Net

[Ronneberger et al., 2015] and nnU-Net [Isensee et al., 2021], we call LannU-Net. The LannU-

Net follows the standard configuration of two blocks per resolution layer, with each block
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consisting of a 3× 3 convolution, Instance Normalisation [Ulyanov et al., 2016], and Leaky

ReLU (negative slope, 0.01). Downsampling is achieved through strided convolutions and

upsampling through transposed convolutions. The initial number of feature maps is set to 32,

doubling with each downsample to a maximum of 512 and halving at each upsample step.

We automatically configure the number of resolution layers by adding encoder steps until any

dimension of the feature map resolution hits a minimum of 4.

Training scheme We use the standard landmark localisation objective function: the Mean

Squared Error (MSE) between the Gaussian target heatmap and the predicted heatmap (σ is

a hyperparameter representing the standard deviation of the 2D Gaussian function, Equation

(2.5)). The MSE loss function is detailed in Section 2.1.6, Equation (2.6). We implement deep

supervision, injecting losses at every resolution of the network except the lowest two. This

technique facilitates a coarse localisation at lower feature resolutions, achieving similar effects

to the attention mechanism in Zhong et al. [2019] and Spatial Configuration component of

Payer et al. [2019]; Thaler et al. [2021]. Unlike the patch-based sampling of nnU-Net, we force

images to be a size no larger than 512× 512 and perform training and inference on the entire

down-sized image.

Evaluation regime We evaluate localisation performance using point-to-point error, defined

by the Euclidean distance/Frobenius norm from a predicated coordinate ĉ, to a target

coordinate c̃:

DPE(ĉ− c̃) = ||ĉ− c̃||F . (3.1)

We also measure the Success Detection Rate (SDR), the percentage of predicted landmarks

within a defined point-to-point error radius:

SDRr =
100

MN

M∑
i=1

N∑
j=1

(DPE(ĉ
(i,j) − c̃(i,j)) ≤ r), (3.2)

where M is the number of images, each with N landmarks and C̃ is the tensor encoding

the coordinate labels over all images and landmarks, and Ĉ is the corresponding predicted

tensor. SDR is the standard evaluation regime for this dataset, facilitating easy comparison to
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PE (mm) SDRr

Method mean ± std 2mm 2.5mm 3mm 4mm

Lindner et al. [2016] 1.2 ± NA 84.7 % 89.38 % 92.62 % 96.3 %
Zhong et al. [2019] 1.22 ± 2.45 86.06 % 90.84 % 94.04 % 97.28 %
Gilmour and Ray [2020] 1.07 ± 0.95 86.72 % 92.03 % 94.93 % 97.82 %
Thaler et al. [2021] 0.99 ± 1.07 89.7 % 93.74 % 95.83 % 97.82 %
Ours (σ = 8) 1.15 ± 1.39 86.47 % 92.38 % 95.46 % 98.11 %

Ours (σ = 2) 1.28 ± 1.23 82.76 % 89.21 % 93.12 % 96.62 %
Ours (σ = 3) 1.21 ± 1.46 85.43 % 91.04 % 94.41 % 97.50 %
Ours (σ = 5) 1.17 ± 2.00 86.74 % 92.32 % 95.37 % 98.03 %
Ours (σ = 8) 1.15 ± 1.39 86.47 % 92.38 % 95.46 % 98.11 %
Ours (σ = 10) 1.17 ± 1.74 86.29 % 92.34 % 95.43 % 98.03 %
Ours (σ = 12) 1.19 ± 1.47 85.88 % 91.92 % 95.29 % 97.93 %
Ours (σ = 15) 1.19 ± 1.18 85.34 % 91.99 % 95.26 % 98.14 %

Ours (T = 25 %, σ = 8) 1.38 ± 2.93 82.46 % 89.29 % 93.55 % 97.17 %
Ours (T = 50 %, σ = 8) 1.23 ± 2.23 85.75 % 91.58 % 94.79 % 97.88 %
Ours (T = 75 %, σ = 8) 1.17 ± 1.12 86.24 % 91.99 % 95.36% 97.92 %

Table 3.2: Localisation results from the Cephalometric dataset [Wang et al., 2016] over a
4-fold CV. The point-to-point error (PE) is reported in mm, alongside the success detection
rate (SDRr). We show the results of our method using different percentages of the available
training data (T ), and varying the size of the Gaussian target heatmap function (σ). Bold
indicates best results, underlining indicates second-best.

other methods. We consider SDR2mm a measure of the precision of a model, and SDR4mm a

measure of robustness against outliers i.e. how many samples are not gross mispredictions.

We train models using 100%, 75%, 50% and 25% of the available training data to simulate

the effect of limited datasets.

3.3.2 Dataset

We show results on the publicly available Cephalometric dataset [Wang et al., 2016], outlined

in Section 3.2.3. We report results of a 4-fold cross validation (CV) over all 400 images, using

the junior annotations. We intentionally do not report results on the standard ISBI 2015

Challenge regime [Wang et al., 2016] since there is a systematic shift in annotation between

the training set and test set, which has been widely reported [Lindner et al., 2016; Payer

et al., 2020; Thaler et al., 2021]. For each fold, we select a random 10% of that fold’s training
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data as a validation set.

3.3.3 Experiments and Results

Experimental Setup and Training Details

We train for 500 epochs using Stochastic gradient descent with an initial learning rate of 0.01,

decaying it using the “poly” scheme, (1− epoch/epochmax)
0.9 [Chen et al., 2017]. One epoch

consists of 150 mini-batches, where each mini-batch is 12 samples. We employ early stopping

using a hold-out validation set (10% of training set), stopping training if the validation set’s

localisation error does not drop for 150 epochs. We employ data augmentations with a

probability of 0.5, uniformly sampling from a continuous range [α, ω]: Random scaling [0.8,

1.2], translation [-0.07%, 0.07%], rotation [-45°, 45°], shearing [-16, 16] and vertical flipping.

Localisation Results

Table 3.2 shows LannU-Net produces fewer gross mispredictions than the previous approaches,

achieving a SDR4mm result of 98.11% - a slight improvement over 97.82% [Thaler et al.,

2021]. However, our method is not the best in terms of precision, with an SDR2mm of 86.47%

compared to 89.7% from the approach by Thaler et al. [2021]. Overall, we achieve better or

comparable results to tailored architectures [Gilmour and Ray, 2020; Thaler et al., 2021] and

an approach using an attention mechanism [Zhong et al., 2019].

Our model is trained on images of size 512× 512, and we upscale the resulting heatmap to

the original image size of 1935× 2400. Consequently, a localisation error of a single pixel in

the model output propagates to a ∼4.2 pixel error (0.42mm) in the final upscaled prediction.

Therefore, due to the convincing performance in the coarser SDR4mm evaluation metric,

we hypothesise that the slightly worse performance in SDR2mm is in part caused by the

quantisation error from transforming the low resolution output image to the final coordinate

prediction.

Table 3.2 also shows results varying the value of σ in our target heatmap. When the

performance of recent models is so close, this hyperparameter alone has a significant impact

on the standings of our method. It would be reasonable to expect that an extensive hyperpa-

rameter search would achieve SOTA on this dataset. Finally, Table 3.2 shows the performance
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of our model under the constraint of smaller training set sizes. We show that even with 25%

of the training data, our vanilla U-Net performs surprisingly robustly.

3.3.4 Conclusion

In summary, our results suggest that a vanilla U-Net holds enough expressive power for the

task of landmark localisation, held back in terms of precision by the bottleneck of the input

image size. For the purpose of this thesis, we will use LannU-Net to represent a baseline, high

capacity model.



Chapter 4

PHD-Net: Lightweight Landmark

Localisation with Uncertainty

4.1 Introduction

In this chapter, our primary focus revolves around tackling Q1, as outlined in Section 1.2,

which centers on enhancing lightweight models with limited data availability. To this end

we propose PHD-Net: a lightweight, multi-task Patch-based network combining Heatmap

and Displacement regression. We propose two strategies to fuse the network’s outputs to

generate a final coordinate prediction. We evaluate PHD-Net on hundreds of Short Axis

and Four Chamber Cardiac Magnetic Resonance (CMR) images, showing promising results.

Using a calibration set with our branch fusion strategies, we present preliminary heuristics to

categorise predictions as high or low uncertainty. We also show that our patch-based training

regime scales with model capacity.

In more detail, we address three core challenges in this chapter. First, we confront the

challenge of limited data through the training regime itself by using patch-based sampling.

As discussed in Chapter 2, an almost universal observation has been made in the literature:

more data means better results [Sun et al., 2017]. Unfortunately, this shortcut to success is

hard to follow in the domain of medical imaging since datasets are often limited in size due to

ethical grounds and the costly process of expert annotations.

Second, a key challenge for landmark localisation in medical imaging is the prevalence of

51
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Figure 4.1: General Framework of the proposed PHD-Net. The image (cropped for clarity) is
passed to a multi-branch network, predicting a heatmap and displacement value (the black
arrows) for each patch. These are then combined with Adaptive Prediction or Candidate
Smoothing to produce the final coordinates and associated uncertainty value.

locally similar structures in the image, leading to misidentifications of the landmark [Thaler

et al., 2021]. This challenge is compounded when training with patch-based sampling compared

to full image sampling, since identifiers that would distinguish similar structures are not

always present in a given patch of the image.

The final challenge we touch on in this chapter is the need for clinicians to distinguish

between high uncertainty and low uncertainty predictions [Tonekaboni et al., 2019]. As

discussed in Section 3.1, this capability is largely absent in existing solutions. The preliminary

work on uncertainty in this chapter lays the groundwork for the subsequent investigations in

Chapter 5.

4.2 Contributions

To address the aforementioned challenges, we require a compact, uncertainty-estimating model

that can learn rich feature representations while efficiently making use of the training data

available. To this end, we propose a Patch based method that combines Heatmap and

Displacement regression: PHD-Net. Our contributions, outlined in Figure 4.1 are four-fold:

1. We improve the capabilities of patch-based approaches to landmark localisation. We

build on Noothout et al. [2018], proposing a multi-task patch-based framework in which
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one branch of the network focuses on generating locally accurate candidate predictions,

regularised by another branch focusing on the globally likely landmark location using

heatmap regression.

2. We propose and evaluate two branch-fusion strategies, Adaptive Prediction and Candidate

Smoothing, better leveraging the outputs of both branches to generate the final landmark

coordinates compared to the baseline approach of Noothout et al. [2018].

3. We reveal and exploit a useful property of the mappings produced by Candidate

Smoothing which allows us to estimate the predictive uncertainty of a prediction. We

use a Frequentist approach to categorise predictions into high uncertainty and low

uncertainty groups. We also use a Frequentist approach to categorise by uncertainty

when using Adaptive Prediction.

4. We demonstrate our patch-based multi-task training regime scales with model capacity,

experimentally showing that localisation accuracy improves with increases to model

parameters. Our study indicate our proposed approach is a high-performing alternative

to traditional Gaussian heatmap regression, with the added benefit of a unique, patch-

based notion of uncertainty.

We compare our proposed method to several State-of-the-Art (SOTA) methods. During

analysis, we not only compare localisation accuracy of the approaches, but we also use our

comparison methods to explore the subtleties of the uncertainty categorisations given by

Candidate Smoothing and Adaptive Prediction, discussing whether they are identifying aleatoric

or epistemic uncertainty. Furthermore, we scrutinise our patch-based multi-task framework

using a diversity of model architectures, including a Vision Transformer [Dosovitskiy et al.,

2020]. We demonstrate our method scales well, with performance improving as we increase

model capacity.

We provide an open-source implementation of the models presented in this work at

https://github.com/Schobs/MediMarker.

https://github.com/Schobs/MediMarker
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4.3 Methods

Section 4.3.1 describes the patch-based multi-task FCN design and architecture, PHD-Net.

Section 4.3.2 outlines our Adaptive Prediction and Candidate Smoothing strategies to fuse

the model outputs for the landmark coordinates. Section 4.3.3 describes how we leverage

the mappings produced by Adaptive Prediction and Candidate Smoothing to estimate the

uncertainty of the prediction. Finally, Section 4.3.4 outlines the evaluation metrics to assess

the landmark localisation accuracy used in this chapter.

4.3.1 PHD-Net: The Patch-based Multi-Task Network

In the multi-task FCN of Noothout et al. [2018], the regression and classification tasks share

parameters in the convolutional layers. The network processes images patch-wise, with the

regression task predicting the log-transformed 2D displacement from the centre of each patch

to the landmark location. The classification task predicts whether the landmark is contained

in the patch or not using a binary map. During training, subimages are randomly sampled

from the image and used as training samples. In testing, the whole image is taken as input,

and the patch with the highest classification score is used to calculate the landmark’s predicted

location [Noothout et al., 2018].

In PHD-Net, we formulate the model in a similar fashion, with the following key differences:

• Heatmap regression: Instead of considering the classification task as binary, we

instead regress a Gaussian heatmap centered around the landmark-containing patch,

providing smoother supervision [Payer et al., 2019].

• Weighted Loss: We further suppress the influence of distant patches by weighting the

displacement regression branch loss by the Gaussian heatmap label. This places more

importance on patches close to the landmark, which are more informative compared to

distant patches.

Our key idea is to consider the pixel-precise predictions from the displacement branch

as locally accurate candidate predictions. However, since each candidate prediction is only

informed by the small area in its patch, there may be misidentifications caused by locally
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Figure 4.2: The network architecture of the proposed PHD-Net. The image is analysed
patch-wise to produce two predictions for each patch: the displacement to the landmark, and
a heatmap value.

similar structures in the image. To regularise this, we leverage the prediction from the heatmap

branch, which indicates the globally likely location for the landmark.

In testing, PHD-Net takes as input the entire image and analyses it in a patch-wise manner.

We present the details below.

Architecture

Figure 4.2 shows the architecture of PHD-Net adopted from [Noothout et al., 2018], composing

three convolutional layers of 32 filters with 3×3 kernels, each followed by a batch normalisation

and a 2×2 maxpooling layer. Now, each 1×1 feature in the current representation corresponds

to an 8 × 8 patch in original input space. Thus the size of each patch, denoted as a two-

dimensional vector s = (s(x), s(y)), is directly determined by the number of maxpooling layers

in the network architecture. As the feature dimensionality decreases due to the pooling, the

pixel space each feature now represents increases. Given a 2× 2 maxpooling operation, each

component of the patch size, s is:

s(x) = s(y) = 2z pixels, (4.1)

where z is the number of maxpooling layers. Since the network is fully convolutional any

image size can be used, as long as the input image dimensions are a factor of the patch size.

After these layers a further 3 convolutional layers with the same properties as the previous

ones are added, followed finally by two branching sets of two fully connected layers with 64 and
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96 filters. These are modelled as convolutional layers with 1× 1 kernels. Each convolutional

layer employs batch normalisation and the Rectified Linear Unit (ReLU) activation function.

The output of the first branch is for the regression, employing a linear activation function

to output the log-transformed 2D displacement, and the output from the second is passed

through a sigmoid function to produce the heatmap value. The total number of parameters

of PHD-Net is 0.06M.

Joint Displacement and Heatmap Regression

To learn a richer, more robust feature representation we use a multi-task approach, predicting

two attributes that we can leverage to obtain coordinates for the landmark. Each input

image to PHD-Net outputs two predictions for each patch: the heatmap value and the

log-transformed displacement from the centre of the patch to the landmark.

To best learn an expressive feature representation of the image, weights are shared at

the beginning of the model, before branching to separate additional layers to generate the

two predictions. This provides the model with two opportunities to discover the landmark:

the displacement branch focuses on generating pixel-precise candidate coordinates, and the

classification branch focuses on the more coarse object-detection task. Framing the task in this

fashion facilitates predictions that are pixel-precise despite the output map’s low resolution

compared to the full image (due to patch-wise predictions, not pixel-wise). The total loss LA,

consists of the displacement loss Ld and the heatmap loss Lh:

LA = Ld + Lh. (4.2)

Heatmap Regression (Lh):

The heatmap branch of PHD-Net focuses on the sub-task of a coarse prediction, generating

a probability map over the patches. When producing the final landmark location, this coarse

prediction can be used to regularise the more precise but potentially ambiguous candidate

locations from the displacement branch. Following the popular encoder-decoder style models

[Newell et al., 2016; Ronneberger et al., 2015], we generate a patch-wise Gaussian heatmap:

the mean, µ, is the matrix indices of the patch containing the landmark, with a predefined

standard deviation σ. For a landmark Li with coordinates c̃(i contained in the patch with
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matrix indices p̃(i) ∈ R2, the 2D Gaussian heatmap image is defined as the 2D Gaussian

function: gi
(
x || µ = p̃(i);σ

)
: R2 → R:

gi

(
x || µ = p̃(i);σ

)
=

1

(2π)σ2
exp

(
−
‖x− µ‖22

2σ2

)
, (4.3)

where x is the vector of each patch’s position in the matrix and σ is a hyperparameter. The

Gaussian heatmap naturally assigns the peak value to the patch containing the landmark,

with values smoothly attenuating over the patches with distance. Compared to a binary map,

this method provides a smoother supervision, with each patch’s value now representing a

psuedo-probability of the landmark being contained in it.

Let hi(x;w,b) denote the predicted patch heatmap produced by our model for landmark

Li. The classification loss for landmark Li is then the mean squared error (MSE) between

hi(x;w,b) and the target heatmap gi
(
x || µ = p̃(i);σ

)
:

Lh =
∥∥∥hi(x;w,b)− gi

(
x || µ = p̃(i);σ

)∥∥∥2
F
. (4.4)

Displacement Regression (Ld):

This sub-task of the model concentrates on predicting precise candidate landmark locations.

Despite the trend of forgoing the use of regressing coordinates in landmark detection tasks

in favour of pure heatmap regression, pushing the model to predict both forces it to learn

a richer feature representation of the image for the task. Given an entire high-resolution

image, the task of regressing a single coordinate value is extremely non-linear and complex.

However, the task becomes much simpler when given a small patch of an image that contains

the landmark. The further the patch is from the landmark, the lower its predictive power.

Therefore, we ask the model to predict the displacement from the centre of each patch to the

landmark, but we dampen the affect of distant patches in two ways: (1) We apply the log

function to the displacement labels and (2) We weight closer patches as more important than

distant patches by multiplying the error of the patch-wise predictions by a Gaussian heatmap

centered around the landmark.

Put simply, the regression loss is the sum of the weighted mean squared error (WMSE)

between the predicted 2D log displacement and the ground truth 2D log displacements of
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each patch, weighted by a Gaussian heatmap with variance σ centered around the annotated

landmark:

Lr =
1

2P

P∑
j=1

(
gi

(
x || µ = p̃(i);σ

)p(j) ∥∥∥d̃(j) − d̂(j)
∥∥∥2
F

)
, (4.5)

where x is the patch matrix indices vector, P is the number of patches (flattened), and p(j)

is matrix indices vector of the jth patch. D̃ and D̂ are the matrices encoding the actual

and predicted log displacement vectors, respectively. Here, d̃(j) and d̂(j) are the actual and

predicted displacement vectors from the centre of patch j to landmark coordinates c̃(i), which

is contained in the patch with matrix indices p̃(i).

4.3.2 Landmark Coordinate Retrieval

After designing our multi-task network to predict patch-wise heatmap and displacement

values, we need to process the outputs to obtain the landmark’s coordinates. First, we

define strategies to obtain the landmark from a single branch. Then, we outline a baseline

approach to combine both branch outputs [Noothout et al., 2018]. We propose a data-driven

approach, Adaptive Prediction, which learns which patches to use for the final prediction using

a validation set. We also propose Candidate Smoothing, which uses all patches and does not

require a validation set. Finally, we show a data-driven Frequentist heuristic for both Adaptive

Prediction and Candidate Smoothing strategy to estimate the uncertainty of the prediction.

Single Branch Strategies

Displacement Only: We define a method to obtain predicted coordinates, ĉ(i), from the

regression branch only. Since the model predicts log-transformed displacements, we first

transform these predictions back to the original scale by taking the exponential of the predicted

log displacement. We then obtain the final coordinates by calculating a weighted average of

all the patch predictions. Each patch’s contribution is weighted inversely to the magnitude of

its predicted displacement:
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ĉ(i) =
P∑

j=1

a(j) + ed̂
(j)

‖ed̂(j)‖F
(∑P

k=1
1

‖ed̂(k)‖F

) , (4.6)

for P patches, where a(j) is the vector of the centre of patch j, d̂(j) is the predicted log-

transformed displacement vector from the centre of patch j to the landmark Li, and ed̂
(j)

is the displacement in the original scale. The terms ‖ed̂(j)‖F and ‖ed̂(k)‖F represent the

Euclidean/Frobenius norms (or magnitude) of the predicted displacement vectors in their

original scale. Each patch contributes to the final prediction, but the influence of patches

with larger displacement magnitudes is dampened in the final prediction.

Heatmap Only: We also define a method to obtain the coordinates, ĉ(i), from the heatmap

branch only. We simply return the centre of the patch with the highest activation from the

classification output, â(i). The precision of this method is constrained to the resolution of

the patch-size, s, unable to produce pixel-precise predictions. First, we retrieve the predicted

patch indices:

p̂(i) = argmax
x

hi(x;w,b). (4.7)

Next, we obtain the centre of the predicted patch in coordinate space:

ĉ(i) = â(i) =
(
p̂(i) × s

)
+

s
2
, (4.8)

where s is the patch-size, described in Equation (4.1)

Multi-branch Strategies

Baseline: Adopted from [Noothout et al., 2018], our baseline multi-branch strategy to

calculate the final coordinates ĉ(i) is as follows:

1. Identify the patch with the highest heatmap score.

2. Add the displacement prediction from the identified patch to the patch’s centre coordi-

nates to obtain the final landmark location:
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ĉ(i) = â(i) + ed̂
(
p̂(i)

)
, (4.9)

where â(i) is the centre of the peak patch (Equation. (4.8)) and ed̂
(
p̂(i)

)
is the inverse

log-transformed predicted displacement from this patch to the landmark (indexed by p̂(i),

Equation (4.7)).

Adaptive Prediction Strategy: The central idea behind Adaptive Prediction is to learn

which patches should be used for the final prediction. Since some landmarks are more difficult

to localise than others, each landmark should adapt the patch selection process. If the

landmark is difficult to localise, the prediction should be regularised by using more patches,

whereas if it is easy to localise we should eliminate noise by using only the predicted containing

patch.

Therefore, for each landmark, during the inner loops of cross validation while training,

PHD-Net learns an uncertainty threshold (T ), between 0 and 1, and a parameter representing

the number of selected patches (P ) through a grid search, optimising for the minimum

localisation error on the validation (calibration) set. This algorithm is shown in Algorithm.

4.1. If a patch’s heatmap activation exceeds T , the patch should either contain the landmark

or be part of the same visually similar anatomical structure, so is used to calculate the

landmark’s position. If no patch exceeds T , then the model failed to confidently find the patch

the landmark is contained in, and the top classifying P patches are used. When multiple

patches are selected, a weighted average based on the inverse of their predicted displacements

is calculated (see Equation (4.6)).
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Algorithm 4.1 Grid Search for Optimal T and P
procedure GridSearch(PHDNet, Svalid, T,P)

δpmin ← δtmin ←∞
Tbest ← Pbest ← None
for T ∈ T do

for P ∈ P do
δpcurr = δtcurr = 0
for X,y ∈ Svalid do

Odisp,Oclass = PHDNet(X)
ŷp = PredictionByP(Odisp,Oclass, P ) . Using Algorithm 4.2
ŷt = PredictionByT(Odisp,Oclass, T ) . Using Algorithm 4.3
δpcurr = δpcurr +DPE(y, ŷp) . Using Equation (4.12)
δtcurr = δtcurr +DPE(y, ŷt) . Using Equation (4.12)

end for
δpavg = δpcurr

‖Svalid‖ ,

δtavg = δtcurr
‖Svalid‖ ,

if δpavg < δpmin then
δpmin = δpavg
Pbest = P

end if
if δtavg < δtmin then

δtmin = δtavg
Tbest = T

end if
end for

end for
return Tbest, Pbest

end procedure

Algorithm 4.2 Generate Coordinates from PHD-Net outputs by P

procedure PredictionByP(Odisp,Oclass, P )
coords_list← empty_list()
Osort

class ← sort_descending(Oclass) . Sort Oclass in descending order of activations.
for i in range(P ) do

h← Osort
class[i]

index← get_index_of_element(Oclass, h)
coords_list.append(get_coords(h,Odisp[index])) . Using Equation (4.9).

end for
coordinates← weighted_average(coords_list) . Using Equation (4.6).
return coordinates

end procedure
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Algorithm 4.3 Generate Coordinates from PHD-Net outputs by T

procedure PredictionByT(Odisp,Oclass, T )
coords_list← empty_list()
for i in range(|Oclass|) do

t← Oclass[i]
if t ≥ T then

coords_list.append(get_coords(t,Odisp[i])) . Using Equation (4.9).
end if

end for
coordinates← weighted_average(coords_list) . Using Equation (4.6).
return coordinates

end procedure

Candidate Smoothing Strategy: Despite Adaptive Prediction’s ability to tailor a strategy

for each landmark, it still only takes into account a limited number of patches. Therefore, we

also propose the Candidate Smoothing strategy. The central idea behind this strategy is to

use a large number of patches to produce locally precise but ambiguous candidate predictions,

which are then regularised to filter out the globally unlikely locations. The process is shown in

Figure 4.3.

First, we find the V ×B area of the image which correlates to the part of the Gaussian

heatmap with the largest centre of mass (i.e. the area with the largest summed activations).

The choice of V and B is for the user, with the ideal values being the resolution of the full

image, but smaller values being less computationally expensive. In this study, we choose

V = B = 128, for greater computational speed. Second, for every patch contained in this

area, we plot the prediction from the displacement branch as a small Gaussian blob with a

standard deviation of 1. The mapping is additive, meaning if multiple patch’s predictions

overlap, the heatmap values add on to eachother.

This produces a V × B Candidate Mapping for landmark Li containing pixel-precise

candidate locations for the landmark, C(i)
map:

C(i)
map =

P∑
j=1

gj

(
x || µ = a(j) + ed̂

(j)
;σ = 1

)
, (4.10)

where x is the coordinate vector of each pixel in the V ×B subimage, a(j) is the centre of the

patch j, ed̂(j) is the inverse log predicted displacement from patch j to the landmark Li and
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Figure 4.3: Candidate Smoothing method to produce a final prediction from model outputs.
First, we isolate the part of the image with the highest heatmap activations. We additively
map each displacement prediction (black arrows) in this area as a small Gaussian blob. This
mapping is multiplied by the upsampled and smoothed predicted Gaussian heatmap. The
final coordinate is obtained by taking the peak activation in the new mapping. Note the
suppressed activations in the final mapping.

P is the number of patches. The candidate points are precise to a local degree, but since each

patch predicts a location blind to its surroundings, it can fail due to locally similar structures.

To solve this, we next smooth these predictions by multiplying the mapping with the

up-sampled corresponding Gaussian heatmap predicted by the heatmap branch, hi(x;w,b)

to create a Candidate Smoothed Map:

C(i)
smooth = υ(hi(x;w,b))�C(i)

map, (4.11)

where υ is the upsampling function (bilinear interpolation). Multiplying the mapping by the

predicted Gaussian heatmap suppresses the globally unfeasible predictions determined by the

classification branch, while retaining pixel-precise predictions from the regression branch.

To obtain the final predicted coordinate value, ĉ(i), we take the coordinates of the pixel

with the highest heatmap activation.
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T = 0.8, P = 5

Figure 4.4: Adaptive prediction strategy to produce a final prediction from model outputs.
The parameters T and P are learned in the inner loops of cross validation. If a patch’s
heatmap value exceeds T , the patch’s displacement output is used for the final prediction. If
zero patches exceed T , the P patches with the highest heatmap values are used. The black
arrows show the predicted displacement from each patch to the landmark. The red arrows
originate from the selected patches. Case A) Depicts a low uncertainty prediction, where the
model detects patches as likely to contain the landmark. Case B) Shows a high uncertainty
prediction, where no patches exceed the learned threshold, T .

4.3.3 Estimating Prediction Uncertainty

After we obtain a coordinate value for the landmark, we need to estimate that prediction’s

uncertainty.

Adaptive Prediction Uncertainty

For Adaptive Prediction, we consider images where no patch’s activation from the heatmap

branch exceeds T as High Uncertainty, and Low Uncertainty otherwise. This is depicted in

Figure 4.4.

Candidate Smoothing Uncertainty

We hypothesise that the Candidate Smoothed maps obtained from PHD-Net contain informa-

tion about the uncertainty of a prediction, which can be leveraged for subject-level uncertainty

estimation. Since the activation of the pixels in the candidate map is defined by the amount of

“patch votes” it achieved, we hypothesise a peak pixel with a low activation is more likely to

be a worse prediction than one with a high activation. We call this peak pixel the Maximum
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Candidate Smoothed Map Activation (CSMA).

We propose a data-driven (Frequentist) method using a hold-out calibration set to analyse

the mappings and give a binary prediction of Low Uncertainty or High Uncertainty. Recall

that our Candidate Smoothing maps are generated from the multi-task FCN, and are used

to give us the final coordinate values. Therefore, we can use a hold-out calibration set to

extract the localisation error from each Candidate Smoothing map alongside its CSMA value.

We calculate a CSMA threshold through a weighted average of the CSMA of the 10% least

accurate predictions’ peak values, weighted according to the magnitude of the error.

In testing, if the final heatmap’s peak value is below this threshold, we can infer that there

was no clear consensus among the patches of the landmark’s location, and consider it High

Uncertainty prediction. Otherwise, the prediction is considered Low Uncertainty.

4.3.4 Evaluation Metrics

We evaluate our method using two common metrics in the literature, to capture both the

accuracy and the robustness of the predictions.

We define the point-to-point error as the euclidean distance/Frobenius norm between a

predicted landmark coordinates, ĉ and annotated landmark coordinates c̃:

DPE(ĉ− c̃) = ||ĉ− c̃||F . (4.12)

We can calculate the mean standard deviation over all landmarks over all images from

this metric.

To quantify robustness we define the image-specific point-to-point error (DIPE) for an

image j:

DIPE(C̃
(j), Ĉ(j)) =

1

N

N∑
i=1

DPE(ĉ
(j,i), c̃(j,i)), (4.13)

over N landmarks, where C̃(j) = {c̃(j,1), . . . , c̃(j,N)} and Ĉ(j) = {ĉ(j,1), . . . , ĉ(j,N)}. DIPE can

illustrate the number of errors past a certain radius, visualising outliers. We present plots of

the cumulative DIPE distributions, which give the proportion of test images that achieve a

localisation accuracy up to a certain error.
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(a) SA Landmarks (b) 4Ch landmarks.

Figure 4.5: (a) Landmarks for 4 chamber (4Ch) CMR: Magenta = tricuspid valve; Yellow =
mitral valve; Red = apex of left ventricle. (b) Landmarks for Short Axis (SA) CMR: Magenta
= superior right ventricle insertion point valve; Yellow = inferior right ventricle insertion
point; Red = inferior lateral reflection of right ventricle free wall.

4.4 Empirical Validation of PHD-Net and Comparative Study

In this section, we perform experiments validating our proposed contributions to the patch-

based training regime and compare our method to similar low-capacity approaches in the

literature.

4.4.1 Datasets: ASPIRE-S

We evaluate PHD-Net on two datasets from the ASPIRE Registry [Hurdman et al., 2012],

ASPIRE-S, outlined in Section 3.2.1 . To remind the reader, ASPIRE-S consists of Cardiac

Magnetic Resonance (CMR) sequences, with 303 Short Axis (SA) view images, each with three

annotated landmarks and 422 Four-Chamber (4CH) view images, each with three annotated

landmarks. The 4CH dataset represents a more challenging landmark localisation task as the

images have much higher variability than the SA dataset. The landmarks were decided and

manually labelled by a radiologist, as shown in Figure 4.5.

Each dataset was split into 8 equally sized folds. Unless stated otherwise, all experiments

were performed using 8-fold cross validation. At each iteration, 6 folds were used for training,

1 for validation, and 1 for testing.
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4.4.2 Ablation Study

In this subsection we focus on our multi-task network, presenting a series of experiments

demonstrating the value of our contributions, while exploring and evaluating the effects

different choices have on the model. Building on the baseline network by [Noothout et al.,

2018], we first explore and evaluate our choice of objective function in the classification branch

of the network. Then, we qualitatively and quantitatively demonstrate key failures with the

baseline coordinate resolution method before demonstrating the effectiveness of our proposed

methods.

Experimental Setup and Training Details

PHD-Net was trained for a maximum of 500 epochs using a batch size of 32 and a learning

rate of 0.001, using the Adam Optimiser. Early stopping was employed if the validation

set’s loss had not improved for 75 epochs. The sizes of the sub-images used in training were

128× 128 pixels. During training, the sub-images were sampled randomly from the full image.

Effect of Multi-Task Learning

First, we demonstrate the effectiveness of multi-task learning, using the original binary

classification mask alongside Binary Cross-Entropy [Noothout et al., 2018] rather than our

proposed Gaussian heatmap with MSE. We train variants of PHD-Net culling either the

classification branch or regression branch and removing the corresponding term from the loss

function. For the regression-only variant, we use the weighted average method (Equation

(4.6)) to obtain the final coordinates. For the classification-only variant we use the baseline

binary mapping as the classification label, and use the peak patch method (Equation (4.8))

to obtain the final coordinates at test time.

Table 4.1 and Figure 4.6 shows the results from these experiments. Multi-task learning

provides a convincing reduction in error compared to the single branch model, doubling

performance compared to the single branch strategy. However, localisation error is still high.

Upon inspection, the majority of failures stem from failures in the classification branch; the

network cannot effectively identify the patch containing the landmark.
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Figure 4.6: Cumulative DIPE (mm) over all
landmarks in SA images over a fixed 8-fold
cross validation, comparing single branch to
multi-task learning. BCE refers to Binary
Cross Entropy, from Noothout et al. [2018].

Branch Error (mm)

BCE 42.48 ± 58.07
Displacement 47.66 ± 11.64
Multi-task 24.79 ± 31.82

Table 4.1: Comparison of different
branch strategies. Localisation er-
ror (mm) over all landmarks in SA
images, over a fixed 8-fold cross vali-
dation. BCE refers to Binary Cross
Entropy, from Noothout et al. [2018].

Effect of Objective in Heatmap Branch

After demonstrating that our choice of multi-task learning is beneficial, we analyse the effect

changing the objective in the heatmap branch had on the task. Motivated by the success

of discussed heatmap approaches in landmark localisation, we hypothesise the smoother

supervision will overcome the challenges the binary mapping faced. We use the baseline

multi-task strategy to resolve the coordinates (Equation (4.9)). Table 4.2 shows the results

comparing using a binary map to a Gaussian heatmap of varying size. We find using a Gaussian

heatmap noticeably outperforms a simple binary map, due to its smoother supervision and

ability to encode some uncertainty in the prediction. However, the larger the Gaussian’s

standard deviation gets, the worse the performance. This is because the large Gaussian blob

does not clearly indicate the landmark, morphing the task into a much coarser object detection

task. We highlight a sweet spot of a standard deviation of two, which we settle on for all future

experiments. Despite a drastic improvement over the baseline binary mapping, reducing the

error from 24.28mm to 6.30mm, the localisation error remains subpar. Specifically, the model

is still not robust to gross misidentifications, as indicated by the high standard deviation of
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Branch Type σ Error (mm)

Binary NA 24.79 ± 31.82
Gaussian 0.25 150.66 ± 122.80
Gaussian 0.5 52.19 ± 83.91
Gaussian 0.75 19.65 ± 58.38
Gaussian 1 13.00± 42.80
Gaussian 1.5 8.27± 26.75
Gaussian 2 6.30± 19.32
Gaussian 3 8.98± 20.18
Gaussian 4 8.02 ± 18.25
Gaussian 5 8.45± 14.52
Gaussian 6 17.97± 33.13
Gaussian 7 17.07± 28.07
Gaussian 8 21.76 ± 32.46

Table 4.2: PHD-Net results between a binary map & varying Gaussian maps for the heatmap
branch. σ refers to the standard deviation parameter in Equation (4.3). Mean error and
standard deviation in mm across landmarks, over a fixed 8-fold cross validation for the SA
images is reported.

19.32mm.

Effect of Coordinate Calculation Strategy

To improve the robustness of the predictions and reduce gross misidentifications, we next

demonstrate our coordinate resolution strategies:Adaptive Prediction (AP) (Algorithm 4.1),

and Candidate Smoothing (CS) (Equation (4.11)), compared with the baseline coordinate

resolution (Equation (4.9)). Following our results in the previous subsection, we learn patch-

wise Gaussian heatmaps using σ = 2 in Equation (4.3).

For each landmark and fold, a single model was trained and all coordinate resolution

strategies were performed on the same model to fairly compare them. Table 4.3 (All Error

column) shows the localisation error for both the SA and 4CH images using the baseline,

Candidate Smoothing and Adaptive Prediction approaches. It is clear that Candidate Smoothing

and Adaptive Prediction outperform the baseline approach in terms of overall localisation

error, achieving a lower mean error with less variance, indicating an increased robustness

compared to the baseline classification branch. Further, Candidate Smoothing outperforms

Adaptive Prediction, with a slight 1.5% improvement for the SA images and a significant
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Strategy All Error % LowU LowU Error

Baseline 6.30 ± 19.32 N/A N/A
AP 4.80 ± 12.37 68% 4.43 ± 16.74
CS 4.73 ± 15.39 56% 2.97 ± 2.20

(a) Short Axis Images

Strategy All Error % LowU LowU Error

Baseline 14.31 ± 34.12 N/A N/A
AP 12.02 ± 31.73 55% 5.46 ± 8.82
CS 9.51 ± 25.89 42% 4.40 ± 4.58

(b) Four Chamber Images

Table 4.3: Comparing localisation error (mm) between PHD-Net’s coordinate calculation
strategies. LowU refers to images either Candidate Smoothing (CS) or Adaptive Prediction
(AP) considered Low Uncertainty. The accompanying % is the percentage of images considered
Low Uncertainty by each strategy. We report results over a fixed 8-fold cross validation.

23.3% improvement for the harder 4CH images. This suggests that in the more homogeneous

SA dataset, using a constant number of patches with high activation was sufficient to locate

the landmark. However, with the more heterogeneous 4CH dataset, regularising using a large

number of patches using Candidate Smoothing significantly improves performance.

A common error with the baseline coordinate resolution is landmark misidentification,

causing outliers. Since the strategy only considers the patch with the highest classification

prediction value, the information from the surrounding patches is ignored. A small error

in the classification branch can lead to a complete misidentification. This vulnerability is

qualitatively shown in Figure 4.7, where it is clear that if the surrounding context was taken

into account the error would have been avoided. Using Adaptive Prediction also fails in this

case, falling victim to the same classification path failure. Using the Candidate Smoothing

strategy, the model first plots each patch’s independent prediction. We can see there are many

high activations in the image representing locally accurate but globally ambiguous candidate

points. The globally focused heatmap suppresses the unfeasible predictions, leading to an

accurate final prediction.
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Model Output Baseline

Adaptive Prediction

Candidate Smoothing

Figure 4.7: Visualisation of an example where using Candidate Smoothing is preferable. On the
left are the patch-wise displacement (top) and heatmap (bottom) predictions. The Baseline
[Noothout et al., 2018] coordinate calculation strategy and our Adaptive Prediction strategy
fail, where Candidate Smoothing succeeds, due to the more global focus of the image. The
red square on the last images represent the model’s prediction, and the purple square is the
ground truth landmark.

Localisation Accuracy Across Uncertainty Strategies

The uncertainty estimation of the two strategies gives further texture to the evaluation.

The LowU Error column of Table 4.3 shows the localisation error for the predictions the

two strategies flagged as Low Uncertainty, compared to the results over the entire set of

landmarks (All Error column). Across both the SA and 4CH images, Adaptive Prediction

flags more predictions as Low Uncertainty compared to Candidate Smoothing, with 12.5%

more Low Uncertainty predictions on average. In the easier task of the SA images, the error

reduction in the Low Uncertainty is slight for Adaptive Prediction compared to Candidate

Smoothing (0.37mm vs. 1.76mm). In the 4CH task the improvement is more significant, at

5.11mm lower for Candidate Smoothing and 6.56mm lower for Adaptive Prediction. Notably,
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the standard deviation of errors in the LowU Error columns for Candidate Smoothing is

consistently significantly lower than the All Error column. This suggests Candidate Smoothing

is successfully filtering out the gross misidentifications of the model, retaining only the accurate

predictions. Adaptive Prediction achieves a similar but less significant reduction for the 4CH

images, but the standard deviation for the SA dataset remains high, suggesting it is not

filtering outliers as effectively.

These results highlight a precision/recall trade-off between the two strategies: Candidate

Smoothing gives lower proportions of more accurate Low Uncertainty predictions, whereas

Adaptive Prediction gives a high proportion of less accurate Low Uncertainty predictions.

However, this result is dependent on the heuristic used to set the threshold of Candidate

Smoothing. We explore this relationship in a generalised framework in Chapter 5.

Furthermore, it is difficult to pinpoint whether the samples filtered from the Low Uncer-

tainty subset were flagged due to high epistemic uncertainty within the model or aleatoric

uncertainty from the difficult data samples themselves. Upon inspection, many of the samples

flagged as High Uncertainty were poor quality with imagining artifacts, hinting the methods

are categorising by aleatoric uncertainty. We explore this further through the assistance of

comparison methods in the next subsection.

4.4.3 Comparison to State-of-the-Art (SOTA)

Next, we compare PHD-Net’s performance to several SOTA approaches, focusing our compar-

isons on relatively lightweight models. For all approaches, we tune hyper-parameters on the

first fold of the 4CH dataset. We employ early stopping if validation error does not improve.

Experimental Setup and Training Details

Proposed Network

PHD-Net: For each landmark, PHD-Net was trained using the same settings described in

Section 4.4.2. Again, all landmark localisation experiments were conducted using a fixed

8-fold cross validation. For all experiments, the standard deviation (σ) for the Gaussian

heatmap label as defined in Equation (4.3) is two.

Comparison Networks
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Hourglass Model: We compare PHD-Net to a popular encoder-decoder style work, the

Hourglass Model [Newell et al., 2016]. We follow the implementation of the model as described

by the author, downscaling the input images to 256× 256 pixels, and training the model to

output a 64× 64 heatmap for each landmark. Due to the small amount of training data, we

only use a single stacked Hourglass, leading to 6M trainable parameters. Despite the lower

resolution input compared to PHD-Net, the capacity of the model in terms of parameters is

much larger, even when taking into account its ability for simultaneous landmark localisation.

We train for a maximum of 1000 epochs using the Adam optimiser. We select a learning rate

of 0.001 and a batch size of 3.

We use the standard heatmap regression objective function, regressing a Gaussian heatmap,

with the centre of the heatmap on the target landmark. For each landmark Li with 2D

coordinate position c̃(i), the 2D heatmap image is defined as the 2D Gaussian function:

gi

(
x || µ = c̃(i);σ

)
=

1

(2π)σ2
exp

(
−
‖x− µ‖22

2σ2

)
, (4.14)

where x is the 2D coordinate vector of each pixel and σ is a user-defined standard deviation.

The network learns weights w and biases b to predict the heatmap hi(x;w,b).

U-Net Model: We also compare PHD-Net to a U-Net model [Ronneberger et al., 2015]

provided by the Monai package 1. We design the model with 5 encoding-decoding levels,

creating 1.63M learnable parameters. The model uses two residual blocks per layer, with

each block consisting of a 3× 3 convolution, Batch Normalisation and ReLU. Downsampling

is achieved through strided convolutions and upsampling through transposed convolutions.

The initial number of feature maps is 16, doubling with each downsample and halving with

each upsample. We modify the objective function from image segmentation to simultaneous

landmark localisation, jointly predicting a heatmap for each landmark (Equation (4.14)). We

downsample the input image to 256×256 pixels in order to create as much parity to PHD-Net

in terms of model capacity, but unlike the Hourglass Network, the output heatmaps are a full

size of 256× 256. We train for a maximum of 1000 epochs with a selected batch size of 2, and

a learning rate of 0.001 using the Adam Optimiser.

Patch-based Method: PIN: We also compare PHD-Net to a patch-based method, PIN
1Project MONAI, www.github.com/Project-MONAI
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Short Axis 4 Chamber

Model # Parameters All All

Noothout et al. [2018] 0.06M 24.79 ± 31.82 52.90 ± 35.58
Newell et al. [2016] 6M 5.76 ± 8.48 13.33 ± 21.63
Ronneberger et al. [2015] 1.63M 5.93 ± 12.75 7.78 ± 9.82
Li et al. [2018] 4.7M 17.22 ± 12.00 25.17 ± 15.83
PHD-Net CS 0.06M 4.73 ± 15.39 9.51 ± 25.89
PHD-Net AP 0.06M 4.80 ± 12.37 12.02 ± 31.73

Table 4.4: Comparing localisation error (mm) between PHD-Net and comparison models. CS
is Candidate Smoothing and AP is Adaptive Prediction. We report results over a fixed 8-fold
cross validation. The best results for each dataset are highlighted in bold.

[Li et al., 2018]. PIN uses a Patch-based Iterative Network that also combines classification

and regression in a multi-task framework. Patches are repeatedly passed to the CNN until

the estimated landmark position converges to the true landmark location. To the best of our

ability, we follow the implementation made available by the authors, modifying it for our

pipeline. We settle on using the Adam Optimiser with a learning rate of 0.0005, drop out

rate of 0.1 and batch size of 64. We train with the full 512× 512 resolution images. PIN has

4.72M traininable parameters.

Localisation Error Comparison

In Table 4.4, we present comprehensive results over all SA and 4CH images, using our two

strategies: Candidate Smoothing and Adaptive Prediction. These are contrasted against

our comparison methods detailed above. The cumulative DIPE for all 4CH and SA images

are shown in Figure 4.8a and Figure 4.9a, respectively. From this data, we glean three

observations.

First, we observe that our proposed approach substantially surpasses the performance

of the baseline method by Noothout et al. [2018]. This substantiates our claim that the

smoother supervision facilitated by the heatmap label, as opposed to a binary map, alongside

the improved coordinate retrieval strategies improves performance.

Second, it is discernible that PHD-Net consistently outperforms the comparison networks

on the SA images. Figure 4.9a shows the encoder-decoder methods of Ronneberger et al.

[2015] and Newell et al. [2016] converge to a similar performance as PHD-Net at a cumulative
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(a) (b)

Figure 4.8: Cumulative DIPE (mm) over a fixed 8-fold cross validation for 4CH images. (a) All
4CH images. (b) Subset of 4CH images PHD-Net considered Low Uncertainty in Candidate
Smoothing. PHD-Net uses the Candidate Smoothing strategy in reported results. Baseline is
Noothout et al. [2018], Hourglass Model is Newell et al. [2016], U-Net Model is Ronneberger
et al. [2015] and PIN Model is Li et al. [2018].

error threshold of 1̃0mm. However, the results from 4CH images show the U-Net model

[Ronneberger et al., 2015] manifests superior performance, suggesting the higher capacity

model is more robust to datasets with large variations. The other encoder-decoder method

by Newell et al. [2016] does not match performance with U-Net in this dataset, highlighting

the importance of high-resolution outputs in its final decoder layer. Despite U-Net’s superior

performance, it is noteworthy how impressively PHD-Net performs considering its significantly

smaller model capacity.

Lastly, our Candidate Smoothing strategy has been demonstrated to outperform the

Adaptive Prediction strategy on both the SA and 4CH datasets. This shows the advantage a

more globally focused model provides. The efficacy of the Candidate Smoothing strategy points

towards the benefits of implementing models that have a wider, more holistic perspective in

processing data.
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(a) (b)

Figure 4.9: Cumulative DIPE (mm) over a fixed 8-fold cross validation for SA images. (a)
All SA images. (b) Subset of SA images PHD-Net considered Low Uncertainty in Candidate
Smoothing. PHD-Net uses the Candidate Smoothing strategy in reported results. Baseline is
Noothout et al. [2018], Hourglass Model is Newell et al. [2016], U-Net Model is Ronneberger
et al. [2015] and PIN Model is Li et al. [2018].

(a) (b)

Figure 4.10: Cumulative DIPE (mm) over a fixed 8-fold cross validation for SA and 4CH images
using Adaptive Prediction. (a) Subset of SA images PHD-Net considered Low Uncertainty
in Adaptive Prediction. (b) Subset of 4CH images PHD-Net considered Low Uncertainty
in Adaptive Prediction. Baseline is Noothout et al. [2018], Hourglass Model is Newell et al.
[2016], U-Net Model is Ronneberger et al. [2015] and PIN Model is Li et al. [2018].
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Short Axis Images

Model LowU CS (56 %) Error Red LowU AP (68 %) Error Red

Noothout et al. [2018] 24.98 ± 33.98 + 0.8% 22.39 ± 31.12 - 10.2%
Newell et al. [2016] 4.54 ± 4.61 - 23.7% 4.73 ± 4.40 - 19.6%
Ronneberger et al. [2015] 4.22 ± 6.52 - 33.7% 4.51 ± 9.07 - 33.7%
Li et al. [2018] 16.21 ± 11.17 - 6.0% 16.00 ±10.40 - 7.3%

Average Comparison Models 12.48 ± 14.07 - 15.7% 11.91 ± 13.75 - 17.7%

PHD-Net 2.97 ± 2.20 - 45.7% 4.43 ± 16.74 - 8.0%
Four Chamber Images

Model LowU CS (42%) Error Red LowU AP (55 % %) Error Red

Noothout et al. [2018] 49.84 ± 32.30 - 6.0% 51.52 ± 34.15 - 2.6%
Newell et al. [2016] 8.40 ± 12.71 - 45.4% 10.96 ± 17.81 - 19.5%
Ronneberger et al. [2015] 5.72 ± 4.50 - 30.5% 6.23 ± 7.67 - 22.1%
Li et al. [2018] 22.17 ± 12.19 - 12.6% 23.21 ± 13.54 - 8.1%

Average Comparison Models 21.5 ± 15.4 - 23.6% 22.98 ± 18.29 - 13.1%

PHD-Net 4.40 ± 4.58 - 73.5% 5.46 ± 8.82 - 75.1%

Table 4.5: Comparing localisation error (mm) between PHD-Net and comparison models,
only on images PHD-Net considered Low Uncertainty. LowU CS refers to images Candidate
Smoothing considered Low Uncertainty and LowU AP refers to images Adaptive Prediction
considered Low Uncertainty. The accompanying % is the percentage of images considered
Low Uncertainty by each strategy. The column Error Red refers to the reduction in error
from All images to the subset of LowU images. We report results over a fixed 8-fold cross
validation. Bold indicates best results.

Dissecting Sources of Uncertainty: Epistemic or Aleatoric?

We also evaluate performance of the comparison models on the images PHD-Net’s two

coordinate calculation strategies flagged as Low Uncertainty. The purpose of this study is to

identify whether the uncertainty categorisations are primarily due to epistemic uncertainty in

the model or aleatoric uncertainty in the data itself. If the uncertainty is epistemic in nature,

we would expect to see no significant reduction in error for the other models. However, if

the uncertainty scores are driven by aleatoric uncertainty, the subset of images flagged as

High Uncertainty should be difficult cases for all models, leading to a greater reduction in

localisation error for all models in the Low Uncertainty subset of images. To this end, we

isolate and report results only on the subsets of samples each coordinate calculation strategy

labelled as Low Uncertainty.
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Table 4.5 shows the full results, with the reduction in error between All images and the

images flagged as Low Uncertainty. We can see that almost all models performed better on

both Low Uncertainty subsets, indicating both strategies are discriminating between difficult

and easy images. Further, the standard deviation in the error for the LowU results in Table

4.5 is significantly lower than the standard deviation in Table 4.4 for all models, particularly

the higher performing ones (PHD-Net, Newell et al. [2016]; Ronneberger et al. [2015]). Upon

inspection, this was caused by anomalous images (e.g. scanning artifacts) leading to gross

errors, which were successfully identified and filtered out of the Low Uncertainty subset by

Candidate Smoothing and Adaptive Prediction. Averaged over both datasets and comparison

models, Candidate Smoothing reduced localisation error by 19.7% and Adaptive Prediction

reduced error by 15.4%. However, this is a significantly lower reduction in error compared

to PHD-Net’s average of 59.6% for Candidate Smoothing and 41.6% Adaptive Prediction.

Therefore, we can conclude that epistemic uncertainty is a more significant factor in the

uncertainty estimation strategies than aleatoric uncertainty. Further, it highlights the difficulty

in decoupling these concepts of uncertainty in learning based models, since a dataset with high

levels of inherent aleatoric uncertainty will undoubtedly influence the epistemic uncertainty of

the learned model.

To gain more insights on the nuance of the uncertainty scores, Figure 4.8 shows a comparison

of the cumulative DIPE for all 4CH images and those flagged as Low Uncertainty by the

Candidate Smoothing strategy, and Figure 4.9 shows the same for the SA images. Figure

4.10 shows the cumulative DIPE for the images flagged as Low Uncertainty in the Adaptive

Prediction strategy for both the SA and 4CH images. For the Candidate Smoothing Low

Uncertainty SA images (Figure 4.9b), localisation errors above 1̃5mm are entirely filtered

out for PHD-Net and the encoder-decoder methods ([Newell et al., 2016; Ronneberger et al.,

2015]). For the Low Uncertainty 4CH images, (Figure 4.8b), the same elimination of gross-

identifications is not replicated, but we see significantly steeper curves for PHD-Net and the

encoder-decoder methods compared to the set of All images (Figure 4.8a). We observe similar

trends for Adaptive Prediction in Figure 4.10. However, Adaptive Prediction catches fewer

gross misidentifications compared to Candidate Smoothing for PHD-Net and the encoder-

decoder methods, shown by the Cumulative DIPE curves converging to 100% later than those
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in the Candidate Smoothing graphs (Figures 4.9b, 4.8b). Furthermore, PHD-Net significantly

outperforms all comparison models when only considering Low Uncertainty predictions. This

provides a compelling value for real world use as a user can decide to only use Low Uncertainty

predictions in sensitive task, with the rest manually corrected.

Overall, PHD-Net outperforms the comparison methods for the SA images, but falls

behind on the more challenging 4CH images. However, PHD-Net has the distinct advantage of

being able to flag predictions as uncertain using “patch votes”. When only considering certain

predictions, PHD-Net demonstrates greater accuracy and robustness, evidenced by fewer

outliers. Through deeper analysis of the uncertainty categorisations using our comparison

models, we observe that the uncertainty estimation of our methods can be used as a marker

for higher levels of aleatoric uncertainty in data samples. However, aleatoric uncertainty does

not tell the whole story, with most of the uncertainty being attributed to epistemic uncertainty

within the model itself.

4.5 Scaling Model Capacity with Patch-based Training Regime

For a final study, we explore pushing localisation performance under the patch-based, multi-

task regime further using model architectures with larger capacity and introducing data

augmentation. From the results of the previous subsection, we hypothesise that a higher

capacity model has the capability to be more expressive than our original architecture,

improving results. Therefore, we refine our training regime and design two larger models:

a Residual Network and a Vision Transformer. Furthermore, we extend our patch-based

training regime to multiple landmark prediction. We compare our method with the large

capacity SOTA baseline, LannU-Net, detailed in Section 3.3.

4.5.1 Methods

Residual PHD-Net (PHD-Resnet)

First, we simply increase the model capacity of PHD-Net in terms of parameters. Inspired by

the use of a Residual Network by Noothout et al. [2020], we opt to use a ResNet-34-esque

network [He et al., 2016] as the backbone of the network.
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First we use a convolutional block: involving 32 channels of 7× 7 convolutional kernels

with stride 2; followed by batch normalisation, ReLU and 3× 3 maxpooling operation. 16

residual blocks then follow, each block consisting of batch normalisation, a 3× 3 convolution,

ReLU, a 3× 3 convolution and a final batch normalisation. The convolutional operations in

the first 3 blocks use 32 channels, the next 4 use 64 channels, proceeded by 6 blocks using 128

channels before a final 3 blocks with 256 channels. All convolutions use a stride of 1, bar the

second group of 4 with 64 channels, which use a stride of two in order to fit the desired output

shape of the network (18 the size of the input size, where each 1× 1 feature corresponds to an

8× 8 patch of the original input, as with the original PHD-Net). A skip connection is added

from the beginning to the end of each block, concatenating the input of each block to the

output of each block.

After the 16 residual blocks, the network again splits into two separate output branches,

one for displacement regression and the other for heatmap regression. These branches are

unchanged from PHD-Net, other than the increased input size of the first layer to match the

now larger number of channels, which is now 256.

Transformer PHD-Net (PHD-Former)

Next, we evaluate the proposed training protocol using a Vision Transformer [Dosovitskiy et al.,

2020]. Given the intrinsic mechanism of Vision Transformers, which segments images into

patches, these models offer a seamless integration into the proposed task. Our implemented

model was based on the “ViT-Base” [Dosovitskiy et al., 2020]. We opt to use the more

compact “ViT-B/16” variant due to computational constraints.

For a thorough explanation of Vision Transformers, we point the reader to the original

Vision Transformer paper [Dosovitskiy et al., 2020]. The specific details of our implementation

are as follows.

Tokenisation: First, the full 512× 512 image is first split into 1024 patches of size 16× 16,

flattened, and map to a 768D vector with a trainable linear projection to acquire the token

sequence. This is followed by positional encoding, imparting the contextual spatial information

of each patch in the sequence. This facilitates the learning of spatial relationships across the

image. Here, the classification token is also integrated into the sequence. We use a dropout
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rate of 0.1.

Encoder: The sequence is then input into the transformer encoder. The encoder constitutes

eight consecutive blocks of an attention mechanism each followed by a feed-forward neural

work. Layer normalisation is applied before each block, and residual connections are applied

after each block. We use 12 heads for the multi-head self-attention mechanism. We use a

dropout of 0.1, randomly omitting a portion of the neurons in the network. Each feed-forward

neural network is implemented as a linear layer with 768 input neurons, GELU, 3072 neurons

in the hidden layer with dropout of 0.1, and 768 output neuron with dropout of 0.1. These

parameters were adopted from the original Vision Transformer paper [Dosovitskiy et al., 2020],

with the only change being reducing the number of blocks from 12 to 8, due to computational

the burden.

Multi-task Head: After the transformer encoder, the classification token is discarded. The

remaining sequence of tokens, representing the patches of the image, are then reshaped to

768× 32× 32. We then apply the same multi-task displacement and regression branches as

used by the original PHD-Net and the Residual Neural Network. However, here the patch-wise

predictions relate to patches of size 16 × 16 pixels rather than 8 × 8 pixels, again due to

computational limitations in memory.

Multi-Landmark Transformer PHD-Net (PHD-Former)

We extend the multi-task patch-based training protocol to multiple landmarks, using the

Vision Transformer network as the backbone architecture. In order to achieve this we simply

increase the number of outputs for each patch of the network. For N landmarks, an input

image size of 512 × 512, and a patch size of 16 × 16, the heatmap branch now outputs

predictions of size 32× 32×N × 1 rather than 32× 32× 1× 1. Similarly, the displacement

branch now outputs a prediction of size 32× 32×N × 2 rather than 32× 32× 1× 2.

The loss function is adjusted accordingly, using the mean of the landmark’s individual

losses.
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Comparison: Multi-Landmark & Single Landmark U-Net (LannU-Net)

For a comparison encoder-decoder network that performs traditional heatmap regression, we

use larger capacity LannU-Net, predicting full 512× 512 resolution heatmaps. This model is

a suitable benchmark for landmark localisation (see Section 3.3 for details, we use σ = 8 for

Equation (4.14)).

For our Multi-Landmark variant, we predict outputs of size 512× 512×N , where N is

the number of landmarks. For our single landmark variant, N = 1.

4.5.2 Datasets: ASPIRE-L

To test our larger capacity models we opt to use the larger but more challenging ASPIRE-L

dataset, detailed in Section 3.2.2. To remind the reader, this dataset consists of 789 4CH CMR

images, each with four annotated landmarks. Although the dataset is larger than ASPIRE-S,

it represents a more challenging task due to noiser annotations.

We split the dataset into 6 equally sized folds. For our experiments, we perform 6-fold

cross validation. At each iteration, 4 folds are used for training, 1 for validation, and 1 for

testing.

4.5.3 Experiments and Results

Experimental Setup and Training Details

We follow the same patch-based, multi-task training regime as the original PHD-Net with

the objective function defined in Equation (4.2). We use a standard deviation of 2 for the

Gaussian heatmap labels (Equation (4.3)). For the coordinate calculation, we use Candidate

Smoothing, as described in Section 4.3.2. For PHD-Net and PHD-Resnet, we perform patch-

based sampling using sub-images of size 128 × 128. Since PHD-Former does not have the

property of being fully convolutional, full image sampling was used. Full image sampling was

also used for LannU-Net.

We train for 500 epochs using Stochastic gradient descent with an initial learning rate of

0.01, decaying it using the ‘poly’ scheme, (1− epoch/epochmax)
0.9 [Chen et al., 2017]. One

epoch consists of 150 mini-batches, where each mini-batch is 12 samples. We employ early

stopping if the validation set’s localisation error does not drop for 150 epochs. We employ
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Method # Params Proposed
Patch Training Multi-Landmark Mean Error

(mm)
PHD-Net 0.06M ✓ ✗ 9.84 ± 25.46
PHD-Resnet 6.57M ✓ ✗ 7.95 ± 21.41
PHD-Former 57.77M ✓ ✗ 5.48 ± 7.22
LannU-Net 46.36M ✗ ✗ 4.88 ± 18.39

PHD-Former 57.77M ✓ ✓ 9.01 ± 7.36
LannU-Net 46.36M ✗ ✓ 4.11 ± 15.10

Table 4.6: The results of all methods on four-chamber CMRI images, for all of the landmarks
localised individually: Left Ventricular Apex (LV), Lateral Mitral Annulus (LMA), Lateral
Tricuspid Annulus (LTA) and Spinal Cord (SA). The average of the results over all landmarks
is taken for the mean error and standard deviation.

data augmentations with a probability of 0.5, uniformly sampling from a continuous range [α,

ω]: Random scaling [0.8, 1.2], translation [-0.07%, 0.07%], rotation [-45°, 45°], shearing [-16,

16] and vertical flipping.

Localisation Results

Table 4.6 shows the localisation results over ASPIRE-L. For single-landmark prediction, we

can see a significant correlation between the model capacity and localisation performance.

This supports the results from the Section 4.4.3 which showed the larger capacity U-Net

outperformed the smaller PHD-Net on the more challenging 4CH datatset. Furthermore, the

introduction of the transformer in PHD-Former dramatically reduced gross mispredictions, as

noted by the significantly lower standard deviation. The larger capacity U-Net, LannU-Net,

outperformed the CNN variants of PHD-Net and slightly better than PHD-Former. However,

LannU-Net was less robust than PHD-Former, making more gross mispredictions leading to a

higher standard deviation in results. In the multiple landmark case, LannU-Net significantly

outperformed PHD-Former. Unlike LannU-Net, predicting multiple landmarks at once did

not help PHD-Former make better predictions by implicitly learning the spatial relationships

between the landmarks. Upon inspection of the training loss, the loss for PHD-Former was

significantly less stable compared to LannU-Net, particularly the displacement loss. This

suggests learning the multi-task loss of each patch for all landmarks is a more complex, noisier

function to optimise compared to the pixel-wise single-task Gaussian heatmap regression.

Overall, for the single landmark case, the multi-task patch-wise training regime scales
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with model capacity, and offers a high-performing alternative to encoder-decoder heatmap

regression models, with the added benefit of uncertainty estimation from the patch votes. In

the multiple landmark case, the method lags behind LannU-Net due to a noisier and more

complex objective function.

4.6 Discussion and Conclusion

4.6.1 Summary of Findings

In this chapter, we proposed a lightweight, uncertainty-estimating model for landmark

localisation, PHD-Net. The method takes a patch-based, multi-task approach with joint

heatmap and displacement regression. We presented two strategies to fuse the multi-task

model outputs for a final prediction, concurrently estimating the prediction uncertainty. We

performed evaluation on a CMR dataset covering two scanning protocols, using ablation

studies to demonstrate the benefits our proposed contributions to the patch-based multi-task

training regime.

In terms of uncertainty estimation, both our heuristic-based Adaptive Prediction and

Candidate Smoothing approaches successfully discriminate between high and low error predic-

tions when using Frequentist approaches to learn thresholds. Specifically, Adaptive Prediction

strategy captures a higher proportion of images as Low Uncertainty, with lower localisation

accuracy. Candidate Smoothing on the other hand is more conservative, capturing a smaller

but more accurate cohort of Low Uncertainty predictions. These simple strategies combine

the multi-branch outputs to provide a globally informed prediction, presenting a choice of

trade-off between recall/precision.

Further, PHD-Net achieved localisation error better or similar to more expensive compari-

son models. In analysing uncertainty classifications with our comparison models, we find that

uncertainty estimation can indicate heightened aleatoric uncertainty in data. Nevertheless,

most of the categorisation can be explained by epistemic uncertainty, inherent within the

model itself.

We also demonstrate our patch-based multi-task regime is scalable, applying the method

to a large Residual Network and Vision Transformer, also extending it to predict multiple
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landmarks simultaneously. In the arena of higher capacity models, PHD-Net variants perform

comparably to the large encoder-decoder LannU-Net, with the added benefit of uncertainty

estimation through “patch votes”.

Despite this promising performance, the PHD-Net variants lagged behind U-Net in

multiple landmark prediction, due to the complex objective function. Furthermore, both

uncertainty estimation methods are based on a heuristic, lacking statistical rigour to guarantee

or approximate either the percentage of images that will be flagged as Low Uncertainty, nor

an upper or lower expected error bound.

4.6.2 Recommendations

We offer the following recommendations:

1. When constrained by memory or computation, our patch-based method PHD-Net can

perform landmark localisation more effectively than similar lightweight models.

2. For the patch-based training regime, Candidate Smoothing should be used as the coordi-

nate extraction and uncertainty estimation method, since it offers the best localisation

performance.

3. Using “patch votes” can be used as an effective heuristic for uncertainty, but lacks

statistical rigour. Enhance this with Frequentist methods using calibration sets like

Candidate Smoothing.

4. Patch-based training regimes for single landmark prediction scale well with model

capacity and should be used. However, due to an inherent local focus and complex

objective functions, fall behind State-of-the-art encoder-decoder methods in multiple-

landmark prediction.

4.6.3 Conclusion

In this chapter, we significantly improved the localisation performance of patch-based models,

achieving a lightweight solution with comparable results to larger models. Furthermore, the

scalability of our patch-based training regime with varying model capacities was experimentally
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demonstrated. We proposed Frequentist approaches to our patch-derived heuristic uncertain-

ties, demonstrating practical utility by discriminating between high and low error predictions.

In the next chapter, we will build on our findings, generalising the uncertainty estimation

to any heatmap-based method. We extend it beyond heuristics to approximate Bayesian

inference, and offer a data-driven Frequentist framework to incorporate more fine-grained

categorisations with estimated error bounds.



Chapter 5

Quantifying Uncertainty Estimation

Methods with Quantile Binning

5.1 Introduction

In the previous chapter, we introduced PHD-Net - a light-weight multi-task network that

provides a heuristic-based uncertainty estimate of its prediction. However, as discussed in

Section 3.1.2, there is a need for a general approach to uncertainty estimation in the Gaussian

Heatmap regression framework for landmark localisation. Furthermore, as outlined in research

question Q3 in Section 1.2, more holistic evaluation metrics for uncertainty estimation in

landmark localisation are needed to provide a standard benchmark on which to compare them,

In this chapter we address these issues by first extending our heatmap-based uncertainty

estimation concept introduced in the previous chapter to any heatmap-based landmark

localisation model. We address our research question Q2 in Section 1.2, which calls for more

statistical rigour, by proposing Quantile Binning. This is a data-driven framework to estimate

a prediction’s quality by explicitly approximating the relationship between any continuous

uncertainty measure and localisation error using Isotonic Regression. Using the framework,

we place predictions into bins of increasing subject-level, predictive uncertainty and assign

each bin a pair of estimated localisation error bounds. These bins can be used to identify the

subsets of predictions with expected high or low localisation errors, allowing the user to make

a choice of which subset of predictions to review and reannotate based on their expected error

87



CHAPTER 5. UNCERTAINTY ESTIMATION WITH QUANTILE BINNING 88

ො𝑥7

ො𝑥2 ො𝑥6

ො𝑥8 ො𝑥3

ො𝑥1

ො𝑥10

ො𝑥4

ො𝑥11

ො𝑥9ො𝑥5

Low 

Uncertainty
High 

Uncertainty

B1 B2 B3 B4 B5

Low est. 

Error Bound
High est.

Error Bound

Similarity to 

True Error Quantiles
All Predictions

a) Predict Landmark b) Estimate Uncertainty c) Quantile Binning d) Filter Predictions e) Evaluate Uncertainty

ො𝑥1

ො𝑥2 ො𝑥3

True Bin Predicted Bin

1

MHA

Coords Uncertainty

Ensemble 

MHA

Location

1

Ensemble
MHA

Mean 

MHA 

Location

MHA

Location

MHA 

Location

Variance

MHA = Maximum Heatmap Activation

Low Uncertainty

Predictions

Coord Extraction

ො𝑥3

ො𝑥7

ො𝑥1

ො𝑥2

ො𝑥7

ො𝑥1

S
-M
H
A

E
-M
H
A

E
-C
P
V

ො𝑥2ො𝑥1 Accuracy of Estimated 

Error Bounds

L
o
ca

li
sa

ti
o

n
 E

rr
o
r 

B2

Lower Bound

Upper Bound

ො𝑥8

ො𝑥6

Figure 5.1: Overview of our general Quantile Binning framework. a) We make a prediction
using a heatmap-based landmark localisation model, and b) extract a continuous uncertainty
measure. c) We learn thresholds to categorise predictions into bins of increasing uncertainty,
estimating error bounds for each bin. d) We filter out predictions from high uncertainty bins
to improve the proportion of acceptable predictions. e) Finally, we evaluate each uncertainty
measure’s ability to capture the true error quantiles and the accuracy of the estimated error
bounds.

bounds. We develop evaluation metrics for binning-based methods, facilitating a textured

and comprehensive comparison between uncertainty measures.

Our approach is rooted in similar Frequentist principles to Conformal Prediction, an

uncertainty estimation method discussed in Section 2.2.3. Conformal Prediction is also general

method which also uses hold-out calibration set to improve uncertainty estimation for trained

models. However, Conformal Prediction does not perform well with small calibration sets,

particularly if the uncertainty metric is noisy [Angelopoulos and Bates, 2023]. This limitation

becomes particularly pronounced in the medical domain, where training sets are often limited

in size. As a result, the derived confidence intervals can be overly broad, diminishing their

practical utility.

Our Quantile Binning method is generalisable to any continuous uncertainty measure, and

the examples we investigate in this study cannot only be applied as a post-processing step to

any heatmap-based landmark localisation method, but any regression problem that gives a

sample-wise uncertainty measure. We aspire that this method can be used as a framework

to build, evaluate and compare uncertainty metrics in landmark localisation beyond those

demonstrated in this chapter.
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5.2 Contributions

Our contributions, depicted in Figure 5.1, are threefold:

• We propose Quantile Binning, a Frequentist method to categorise predictions by any

continuous uncertainty measure, and estimate error bounds for each bin (Figure 5.1c,

Section 5.3.3).

• We construct two evaluation metrics for uncertainty estimation methods from Quantile

Binning: 1) Similarity between predicted bins and true error quantiles; 2) Accuracy of

estimated error bounds (Figure 5.1e, Section 5.3.4).

• We evaluate three heatmap-derived uncertainty measures and recommend our proposed

method Ensemble Maximum Heatmap Activation (E-MHA) to extract landmark co-

ordinates from an ensemble of heatmaps and estimate uncertainty (Figure 5.1a, 5.1b,

Section 5.3.2).

We demonstrate the impact of our contributions by using our proposed Quantile Binning

to compare E-MHA to two existing coordinate extraction and uncertainty estimation methods:

a weak baseline of Single Maximum Heatmap Activation (S-MHA), and a stronger baseline

of Ensemble Coordinate Prediction Variance (E-CPV). In Section 5.5.2, we compare the

baseline coordinate extraction performance of the three approaches, followed by the uncertainty

estimation performance in Section 5.5.3. We explore the reach of heatmap-based uncertainty

measures by demonstrating they are applicable to both U-Net regressed Gaussian heatmaps

and patch-based voting heatmaps. We show each uncertainty measure can identify a subset

of predictions with significantly lower mean error than the full set by filtering out predictions

from high uncertainty bins (Figure 5.1c). In Section 5.5.5 we demonstrate the generalisability

of our method by applying Quantile Binning to a publicly available Cephalometric dataset

[Wang et al., 2016], with significantly more annotated landmarks and images containing some

repetitive structures. We show the flexibility of our method by reporting results over a range

of binning resolutions in Section 5.5.6. Furthermore, in Section 5.5.7 we select a subset of

landmarks from the Cephalometric dataset with multiple annotations (provided by Thaler

et al. [2021]) to explore the effect of aleatoric uncertainty caused by landmark ambiguity on
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Quantile Binning using our three uncertainty measures. Finally, in Section 5.7.2 we make

recommendations for which uncertainty measure to use, and how to use it.

We provide an open-source implementation of this work and the tabular data obtained

from the landmark localisation models to reproduce our results, alongside extensive exper-

imental results at https://github.com/pykale/pykale/tree/main/examples/landmark_

uncertainty.

5.3 Methods

5.3.1 Landmark Localisation Models

First, we briefly review the two models we will use for landmark localisation, allowing us to

compare the generalisability of our uncertainty measures across different heatmap generation

approaches. We implement a variation of the popular encoder-decoder networks that regresses

Gaussian heatmaps, U-Net [Ronneberger et al., 2015]. We also implement a patch-based

method introduced in the previous chapter, PHD-Net, which produces a heatmap from patch

votes.

Encoder-Decoder Model (U-Net)

The vast majority of state-of-the-art landmark localisation approaches are based on the

foundation of a U-Net style encoder-decoder architecture, described in Section 2.1.5.

Rather than regressing coordinates directly, the objective of the model is to learn a

Gaussian heatmap image for each landmark, with the centre of the heatmap on the target

landmark. For each landmark Li with 2D coordinate position c̃(i), the 2D heatmap image is

defined as the 2D Gaussian function:

gi

(
x || µ = c̃(i);σ

)
=

1

(2π)σ2
exp

(
−
‖x− µ‖22

2σ2

)
, (5.1)

where x is the 2D coordinate vector of each pixel and σ is a user-defined standard deviation.

The network learns weights w and biases b to predict the heatmap hi(x;w,b). During

inference, we can interpret the activation of each pixel in the predicted heatmap as the

pseudo-probability of that pixel being the landmark. We will exploit this in our uncertainty

https://github.com/pykale/pykale/tree/main/examples/landmark_uncertainty
https://github.com/pykale/pykale/tree/main/examples/landmark_uncertainty
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estimation methods.

Patch-based Model (PHD-Net)

Patch-based models use a Fully Convolutional Network (FCN), with the architecture resembling

the first half of an encoder-decoder architecture. Therefore, they are more light-weight than

encoder-decoder networks, with significantly less parameters leading to faster training.

In the previous chapter, we proposed PHD-Net: a multi-task patch-based network. We

incorporated a variant of the heatmap objective function from encoder-decoder networks

into the objective function, predicting the 2D displacement from each patch to the landmark

alongside the coarse Gaussian pseudo-probability of each patch.

PHD-Net aggregates the patch-wise predictions to obtain a heatmap by plotting candidate

predictions from the displacement branch as small Gaussian blobs, then regularising the map

by the upsampled Gaussian from the heatmap branch.

Again, we can consider the activation of each pixel in heatmap as an indicator for

uncertainty, where instead of the pseudo-probability, the activation represents the amount of

“patch votes”.

Ensemble Models

Using an ensemble of identical but randomly initialised models is more robust than using a

single model, as it reduces the effect of a single model becoming stuck in a local minima during

training. Furthermore, random initialisations explore different modes of the loss landscape,

facilitating a powerful decorrelation effect between models [Fort et al., 2019]. As discussed

in Section 2.2.3, there is a growing body of work arguing deep ensembles are approximately

Bayesian [D’Angelo and Fortuin, 2021; Fort et al., 2019; Hoffmann and Elster, 2021; Wilson

and Izmailov, 2020]. Therefore, we use the variance in the predictions of each model to

estimate the uncertainty of the prediction, using an use an ensemble of T models.

5.3.2 Estimating Uncertainty and Coordinate Extraction

Although generated differently, we hypothesise both U-Net and PHD-Net produce heatmaps

containing useful information to quantify a prediction’s uncertainty - but are they equally
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effective? To this end, we compare the performance of both models under three uncertainty

estimation methods: two baseline approaches, and a proposed approach extending one of

the baselines to an ensemble of networks. Each method extracts coordinate values from the

predicted heatmap, and estimates the prediction’s uncertainty.

Single Maximum Heatmap Activation (S-MHA)

We introduce the baseline coordinate extraction and uncertainty measure. For the ith

landmark, we use the standard method to obtain the predicted coordinates ĉ(i) from the

predicted heatmap hi(x;w,b), by finding the pixel with the highest activation:

ĉ(i) = argmax
x

hi(x;w,b). (5.2)

We hypothesise that the pixel activation at the coordinates ĉ(i) can describe the model’s

uncertainty: the higher the activation, the lower the uncertainty, and the lower the prediction

error. However, due to this inverse relationship, this measures “confidence”, not uncertainty.

We transform our confidence metric to an “uncertainty” metric û(i), by applying the

following transformation to the pixel activation at the predicted landmark location:

û(i) =
1

max
x

hi(x;w,b) + ε
, (5.3)

where ε is a small constant scalar that prevents 1
0 . Now, as the pixel activation at ĉ(i) increases,

û(i) decreases.

We call the transformed activation of this peak pixel Single Maximum Heatmap Activation

(S-MHA). This is a continuous value bounded between [1ε ,
1

1+ε ] for U-Net, and bounded

between [1ε ,
1

N+ε ] for PHD-Net, where N is the number of patches. The lower the S-MHA,

the lower the uncertainty. It is important to note that the uncertainty encoded in S-MHA

does not distinguish between aleatoric and epistemic uncertainty.

Ensemble Maximum Heatmap Activation (E-MHA)

In this chapter we extend the S-MHA uncertainty measure to ensemble models. We hypothesise

that E-MHA should hold a stronger correlation with error than S-MHA due to the additional
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robustness an ensemble of models affords. We use our deep ensemble as approximate Bayesian

inference [Wilson and Izmailov, 2020], and generate the mean heatmap of the T models in

the ensemble, obtaining the predicted landmark coordinates as the pixel with the highest

activation:

ĉ(i) = argmax
x

1

T

T∑
t=1

hti(x;w,b). (5.4)

Using the average prediction of an ensemble is the simplest, low-cost, standard form of

ensemble fusion [Jungo et al., 2020; Karimi et al., 2019; Mehrtash et al., 2020; Mehta et al.,

2022]. Again, we hypothesise the activation of the pixel ĉ(i) correlates with model confidence.

Similar to S-MHA, we inverse the pixel activation and add a small ε to the activation of ĉ(i)

to give us our uncertainty measure, û(i):

û(i) =
1(

max
x

1
T

∑T
t=1 h

t
i(x;w,b)

)
+ ε

. (5.5)

E-MHA is a continuous value constrained to the same bounds as S-MHA. This is a form

of late feature fusion, combining features from all models before a decision is made. E-MHA

directly captures the uncertainty in the model parameters since we are using an ensemble, so

it is a truer measure of epistemic uncertainty than S-MHA.

Ensemble Coordinate Prediction Variance (E-CPV)

We also implement an additional strong baseline for approximately Bayesian uncertainty

estimation: Ensemble Coordinate Prediction Variance (E-CPV) [Drevickỳ and Kodym, 2020].

The more the models disagree on where the landmark is, the higher the uncertainty.

To extract a landmark’s coordinates we first use the traditional S-MHA coordinate

extraction method on each of the T models’ predicted heatmaps. Then, we use decision-level

fusion to calculate the mean coordinate of the individual predictions to compute the final

coordinate predictions ĉ(i):

ĉ(i) =
1

T

T∑
t=1

argmax
x

hti(x;w,b). (5.6)
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We generate the E-CPV by calculating the mean absolute difference between the T model

predictions Ĉens and ĉ(i):

û(i) =
1

T

T∑
t=1

|ĉ(t,i)ens − ĉ(i)|. (5.7)

This is a continuous value bounded between [0,
√
H2 +W 2], where H and W are the height

and width of the original image, respectively. The more the models disagree on the landmark

location, the higher the coordinate prediction variance, and the higher the uncertainty.

Unlike S-MHA and E-MHA, this metric completely ignores the value of the heatmap

activations. This makes E-CPV the truest measure of epistemic uncertainty. However, it

potentially loses useful uncertainty information encoded in the MHA, but avoids possible bias

caused by model miscalibration [Guo et al., 2017] or the Gaussian assumptions of the target

heatmap.

5.3.3 Quantile Binning: Categorising Predictions by Uncertainty and Esti-

mating Error Bounds

We leverage the described uncertainty measures to inform the predictive, subject-level un-

certainty of any given prediction, i.e. is the model’s prediction likely to be accurate, or

inaccurate based on this uncertainty value? We propose a data-driven Frequentist approach,

Quantile Binning, using a hold-out validation set to establish thresholds delineating varying

levels of uncertainty specific to each trained model. We use these learned thresholds to

categorise our predictions into bins and estimate error bounds for each bin. We opt for a

data-driven approach over using static, pre-defined thresholds to increase robustness. For

example, two identical models with randomly initialised weights trained on the same training

set will converge to different modes [Fort et al., 2019], with a different distribution of MHA

on the same test set. Furthermore, the difficulty of the landmark will also influence the

characteristics of the resulting localisation model as well as the distribution of the uncertainty

measures. Therefore, establishing a set of thresholds for each model is more invariant to

training differences compared to using the same thresholds for all models.

Quantile Binning is application agnostic; applicable to any data as long as it consists

of continuous tuples of <Uncertainty Measure, Evaluation Metric>. In this context, a
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continuous tuple is a pair of continuous variables output by the prediction model, relating to

a single sample.

In this instance, we generate these pairings after the landmark localisation model is trained.

We use a hold-out validation set and make coordinate predictions and uncertainty estimates

using each of our three uncertainty measures described in Section 5.3.2. Since we have the

ground truth annotations of the validation set we can produce continuous <Uncertainty

Measure, Localisation Error> tuples for each uncertainty measure.

Establishing Quantile Thresholds

We aim to categorise predictions using our continuous uncertainty metrics into Q bins. We

make the following assumption: The true function between a good uncertainty measure and

localisation error is monotonically increasing (i.e. the higher the uncertainty, the higher the

error).

Quantile binning is a non-parametric method that fits well with these assumptions - a

variant of histogram binning which is commonly used for calibration of predictive models [Guo

et al., 2017; Naeini et al., 2015]. By considering the data in quantiles rather than intervals,

we can better capture a skewed distribution as the outliers in the tail of the distribution can

be grouped into the same group. In other words, quantiles divide the probability distribution

into areas of approximately equal probability.

This property allows us to interrogate model-specific uncertainties. Rather than compute

uncertainty thresholds based on predefined error thresholds for each bin, we use Quantile

Binning to create thresholds that group our samples in relative terms. This enables the user

to flag the worst X% of predictions. We describe the steps below.

First, for any given uncertainty measure we sort our validation set <Uncertainty Measure,

Localisation Error> tuples in ascending order of their uncertainty value and sequentially

group them into Q equal-sized bins B1, ...,BQ. We assign each bin Bq a pair of boundaries

defined by the uncertainty values of the tuples at the edges of the bin to create an interval:

[αq−1, αq). To capture all predictions at the tail ends of the distribution, we set α0 = 0, and

αQ =∞.

During inference, we use these boundaries to bin our predictions into Q bins (B1...BQ), with
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uncertainty increasing with each bin. For each predicted landmark ĉ(i) with uncertainty û(i)

where αq−1 ≤ û(i) < αq, ĉ(i) is binned into Bq. As long as the validation set is representative

of the true distribution, the distribution of samples should be uniform across the bins due to

the quantile method we used to obtain thresholds.

The higher the value of Q, the more fine-grained we can categorise our uncertainty

estimates. However, as Q increases the method becomes more sensitive to any noise present

in the uncertainty measure, leading to less accurate prediction binnings. We demonstrate

this trade-off in Section 5.5.6.

Since the uncertainty boundaries are defined by the density of the validation set distribution,

the method is agnostic to the absolute range of the uncertainty measure. Therefore it is

applicable to any continuous uncertainty measure.

Estimating Error Bounds using Isotonic Regression

Establishing thresholds has allowed us to filter predictions by uncertainty in relative terms,

but we lack a method to estimate absolute localisation error for each bin. For example, for an

easy landmark, the samples in B1 may have a very low localisation error in absolute terms,

but for a more difficult landmark even the lowest relative uncertainty samples in B1 may have

a high error. Therefore, in order to offer users information about the expected error for each

group, we present a data-driven approach to predict error bounds.

A simple approach would be to observe the localisation error of the tuple at the quantile

boundaries [αq−1 and αq). However, observing a single sample from the validation set is

subject to noise and may produce a poor estimate for an error bound. Therefore, on our

hold-out validation set, we first use Isotonic Regression to approximate the function between

uncertainty and error, constraining it to be monotonically increasing. Isotonic regression

is a method to fit a free-form, non-decreasing line to a set of observations, also commonly

used for predictive model calibration [Guo et al., 2017; Zadrozny and Elkan, 2002]. It is

non-parametric, so can learn the true distribution if given enough i.i.d. data. Given a list of n

observations {(η1, β1) , . . . , (ηn, βn)}, the regression seeks a weighted least squares fit β̂i ≈ βi

subject to the constraint that β̂i ≤ β̂j whenever ηi ≤ ηj :
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min
n∑

i=1

(
β̂i − βi

)2
s.t. β̂i ≤ β̂j for all (i, j) ∈ E, (5.8)

where E = {(i, j) : ηi ≤ ηj}. In our case, the observations are the (UncertaintyMeasure,

LocalisationError) tuples.

Next, we use our isotonically regressed line to estimate error bounds for each of our

quantile bins. We input each bin’s threshold intervals [αq−1, αq) into our fitted Isotonic

Regression function, obtaining error predictions for each threshold, [γq−1, γq). We use these

values as the estimated lower and upper error bounds, respectively, of the predictions in bin

Bq. Note, that for B1 we only estimate an upper bound, and for BQ we only estimate a lower

bound.

In summary, we use a data-driven approach to learn thresholds to progressively filter

predictions at inference into Q bins of increasing uncertainty, and assign each bin estimated

error bounds.

5.3.4 Evaluation Metrics for Uncertainty Measures

Next, we construct methods to evaluate how well an uncertainty measure’s predicted bins

represent the true error quantiles, and how accurate each bin’s estimated error bounds are.

Evaluating the Predicted Bins

A good uncertainty measure will have a strong correlation with localisation error. Therefore,

it should provide quantile thresholds that correspond to the true error quantiles. For example,

since Bin B1 contains the predictions with the uncertainties at the lowest 1
Q quantile, the

localisation errors of the predictions in B1 should be the lowest 1
Q quantile of the test set.

This can be generalised to each group, until BQ, which should contain the errors in the Q−1
Q

quantile.

To evaluate this desired property, we propose to measure the similarity between each

predicted bin and its respective theoretically perfect bin.

We create the ground truth (GT) bins by ordering the test set samples in ascending order

of error. Then, we sequentially bin them into Q equally sized bins: B̃1...B̃Q.
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Figure 5.2: (a) Landmarks for Short Axis (SA) CMR: Magenta = superior right ventricle
insertion point valve; Yellow = inferior right ventricle insertion point; Red = inferior lateral
reflection of right ventricle free wall. (b) Landmarks for 4 chamber (4CH) CMR: Magenta =
tricuspid valve; Yellow = mitral valve; Red = apex of left ventricle. (c) Subset of Landmarks
included in the Cephalometric dataset [Wang et al., 2016]. Displayed landmarks are used in
the aleatoric uncertainty analysis (Section 5.5.7).

For each predicted and GT bin pair B̂q & B̃q, we calculate the Jaccard Index (JI) between

them and report the mean measure of each bin across all folds:

Jq(B̂q, B̃q) =
|B̂q ∩ B̃q|
|B̂q ∪ B̃q|

. (5.9)

The higher the JI, the better the uncertainty measure has binned predictions by localisation

error. Therefore, it follows that the higher the JI, the better the uncertainty measure predicts

localisation error.

Accuracy of Estimated Error bounds

A good uncertainty measure will have a monotonically increasing relationship with localisation

error. Therefore, estimating the true function using isotonic regression should provide accurate

error bound estimations.

To measure this, for each predicted bin B̂q, we calculate the percentage of predictions

whose error falls between the estimated error bound interval, [γq−1, γq). The higher the

percentage, the higher the accuracy of our estimated error bounds.
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5.4 Datasets

We perform our experiments using three datasets. To remind the reader, example images are

shown in Figure 5.2.

5.4.1 ASPIRE-S

The first two datasets are from the ASPIRE Registry [Hurdman et al., 2012], the ASPIRE-S

datasets, introduced in Section 3.2.1. Again, the 4CH dataset represents a more challenging

landmark localisation task as the images have much higher variability than the SA dataset.

The landmarks were decided and manually labelled by a radiologist, as shown in Figures 5.2a

& 5.2b. For this study, we consider the SA images the EASY dataset, and the 4CH images

the HARD dataset.

Once again, we split both CMR datasets into 8 folds, and perform 8-fold cross validation

for both U-Net and PHD-Net. For each of the eight iterations, we select one fold as our

testing set, one our hold-out validation set and the remaining 6 as our training set. These

splits are differently initialised to those used in Chapter 4.

5.4.2 Cephalometric Radiographs

To test generalisablity across imaging modalities, we use a third dataset consisting of Cephalo-

metric Radiographs [Wang et al., 2016]. The details are described in Section 3.2.3. To

remind the reader, the dataset has a total of 19 annotated landmarks, and the images contain

repetitive structures. For our study of aleatoric uncertainty in Section 5.5.7, we use subset

of 5 landmarks which have a total of 11 annotations provided by Thaler et al. [2021]. The

images have a spatial resolution of 1935× 2400 pixels, where each pixel represents 0.1mm of

the structure. Figure 5.2c shows an example image annotated with the aleatoric uncertainty

landmark subset.

For the Cephalometric dataset we perform 4-fold cross validation using junior annotations,

setting aside a random 20% of each fold’s training set as our hold-out validation-set.
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4 Chamber Images Short Axis Images

Method U-Net PHD-Net U-Net PHD-Net

S-MHA All 10.00 ± 18.99 11.07 ± 21.33 5.86 ± 14.19 3.58 ± 3.52
S-MHA B1 6.79 ± 6.09 5.80 ± 9.03 3.62 ± 2.45 2.78 ± 1.99

E-MHA All 6.36 ± 8.01 9.14 ± 18.11 4.37 ± 8.86 3.36 ± 3.50
E-MHA B1 4.93 ± 2.85 4.70 ± 3.21 2.98 ± 2.09 2.39 ± 1.90

E-CPV All 8.13 ± 10.16 9.42 ± 13.07 4.97 ± 7.51 3.22 ± 2.93
E-CPV B1 5.34 ± 3.00 5.10 ± 6.76 3.75 ± 2.13 2.47 ± 2.08

Table 5.1: Localisation errors (mm) for the uncertainty methods outlined. All indicates entire
set of predictions; B1 indicates subset with the lowest uncertainties. Mean error and standard
deviation are reported across all folds & all landmarks. Bold indicates best results in row for
the given dataset.

5.5 Experiments and Results

First, in Section 5.5.2 we present the baseline landmark localisation performance of PHD-Net

and U-Net over both SA and 4CH datasets using the S-MHA, E-CPV, and E-MHA methods

to extract coordinates. This gives us a comparison of the coordinate extraction performance

from each of our methods, and a baseline to measure the effectiveness of each method’s

uncertainty estimation. Second, in Section 5.5.3 we interrogate how using Quantile Binning

with our uncertainty measures delineates predictions in terms of their localisation error, and

compare the predicted bins to the ground truth error quantiles. We show a practical example

of how filtering out highly uncertain predictions can dramatically increase the proportion

of acceptable localisation predictions. In Section 5.5.4 we assess how well the uncertainty

measures can predict error bounds for each bin. Next, we demonstrate the generalisability of

Quantile Binning in Section 5.5.5 on the more diverse Cephalometric dataset. In Section 5.5.6,

we highlight the flexibility of the method by quantifying the effects of varying the number of

quantile bins (Q) used. Finally, in Section 5.5.7 we explore aleatoric uncertainty, demonstrating

Quantile Binning’s effectiveness on landmarks with high ambiguity, as well as sharing insights

on our studied uncertainty measure’s relationship with aleatoric uncertainty. When comparing

between B1,B2−4,B5 we use an unpaired t-test (p ≤ 0.05) to test for significance. When

comparing uncertainty metrics among the same Bin category and model, we use a paired

t-test (p ≤ 0.05) to test for significance.
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5.5.1 Experimental Setup and Training Details

For all data, we resize the images to 512× 512 pixels and upsample the predicted heatmaps

to the original image size before coordinate extraction. We select T = 5 for the ensemble

methods, training 5 identical, randomly initialised models at each iteration. We chose T = 5

to compromise with computational constraints, asserting that 5 models are representative to

compare the uncertainty methods for our purposes. We randomly select a model from our

trained ensemble for our S-MHA uncertainty measure. For our Quantile Binning method, we

select Q = 5 for 5 bins, striking a balance between the resolution of separation of the data

and the limited size of our hold-out validation set (∼30 samples for the CMR datasets, ∼60

samples for the Cephalometric dataset). We explore the effect of changing Q in Section 5.5.6.

since the focus of this study is uncertainty estimation rather than localisation accuracy, we

implement a vanilla U-Net model [Ronneberger et al., 2015], opting for a computationally less

expensive model. We design the architecture with 5 encoding-decoding levels, creating 1.63M

learnable parameters. Each level contains 2 residual units, where each residual unit applies a

3× 3 convolution, instance normalisation, and ReLU to the input, before concatenating the

resulting output with the unit input. As we descend down the five levels of the encoder we use

(16, 32, 64, 128, 256) input channels respective to each layer, mirroring this in the decoder path.

On the encoder path we use maxpooling after each level to reduce spatial dimensions, and

on the decoder path we use transposed convolutions to upsample the spatial resolution. We

modify the objective function from image segmentation to simultaneous landmark localisation,

minimising the mean squared error between the target and predicted heatmaps. We use

the full 512× 512 pixel image as input, and learn heatmaps of the same size. We train for

1000 epochs with a batch size of 2, and a learning rate of 0.001 using the Adam Optimiser

(settings from [Schobs et al., 2021]). We generate target heatmaps using Equation (5.1) with

a standard deviation of 8 for our CMR datasets and 2 for our Cephalometric dataset (chosen

experimentally using the first fold of each dataset). We do not use data augmentation.

We implement our PHD-Net model as described in Chapter 4, creating a model with

0.06M learnable parameters. For all experiments we trained PHD-Net for 1000 epochs using

a batch size of 32 and a learning rate of 0.001, using the Adam Optimiser. We train one

landmark at a time. Note, the only difference in setup from the previous this chapter is
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different fold splits and training for an additional 500 epochs (same as U-Net) with no early

stopping, since we now use our validation set for the calibration set in Quantile Binning. We

do not use data augmentation.
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(a) PHD-Net - 4CH Images.
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(b) U-Net - 4CH Images.
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(c) PHD-Net - SA Images.
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(d) U-Net - SA Images.

Figure 5.3: Cumulative distribution of localisation errors showing the % of predictions under
a given error threshold, comparing all predictions (All) to the lowest uncertainty subset (B1)
for the uncertainty methods across all folds & landmarks. The vertical line is the acceptable
error threshold, chosen by a radiologist. Higher percentage is better.

5.5.2 Baseline Landmark Localisation Performance

Table 5.1 shows the baseline performance for U-Net and PHD-Net at localising landmarks in

our 4CH and SA datasets. We make the following observations:

• When considering localisation error for the entire set of landmarks (All), performance
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is better on the SA dataset for both models, with PHD-Net outperforming U-Net. On

the 4CH dataset, U-Net outperforms PHD-Net in terms of fewer gross mispredictions,

suggesting the higher capacity model of U-Net is more robust to datasets with large

variations.

• Simply using a single model with our S-MHA strategy is predictably less robust than

ensemble approaches.

• E-MHA outperforms the previous strong baseline of E-CPV for coordinate extraction.

However, does it outperform E-CPV in terms of uncertainty estimation? We explore

this in Section 5.5.3.

• The standard deviation in the error for the baseline All results in Table 5.1 is high for

all models. We aspire to catch these bad predictions using Quantile Binning in Section

5.5.3.

5.5.3 Analysis of the Predicted Quantile Bins

We apply quantile binning to each uncertainty measure: S-MHA, E-MHA and E-CPV. We

compare results over U-Net and PHD-Net for both the SA and 4CH datasets.

First, we test our assumption that our uncertainty measures correlate with localisation

error. We report the Spearman’s Rank Correlation Coefficient (ρ) since we are measuring

a monotonic correlation which is not necessarily linear. All correlations are reported from

the aggregated test sets across all eight folds of our CMR datasets, using a significance level

of p < 0.001. For our 4CH dataset, S-MHA achieves correlations of 0.33 (weak-moderate) &

0.47 (moderate), E-MHA shows weak-moderate correlations of 0.39 & 0.39, and E-CPV shows

moderate correlations of 0.42 & 0.53; for U-Net and PHD-Net respectively. For our SA dataset,

S-MHA achieves correlations of 0.27 (weak) & 0.33 (weak-moderate), E-MHA weak-moderate

correlations of 0.38 & 0.38, and E-CPV correlations of 0.27 (weak), 0.36 (weak-moderate);

for U-Net and PHD-Net, respectively. The correlation strength of S-MHA has high variance,

whereas E-MHA shows a stable correlation across datasets and localisation models. E-CPV

achieves the strongest correlation with error across both models for our harder 4CH dataset,

but a weaker correlation than E-MHA for our easier SA dataset. Overall, these results show
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(a) Localisation error for each Bin - 4CH dataset
(Lower is better).

(b) Localisation error for each Bin - SA dataset
(Lower is better).
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(c) Jaccard Index for each Bin - 4CH dataset
(Higher is better).
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(d) Jaccard Index for each Bin - SA dataset (Higher
is better).
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(e) Estimated Error Bound Accuracies- 4CH
dataset (Higher is better).
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Figure 5.4: Results from Quantile Binning for U-Net and PHD-Net across all landmarks &
folds, using our three coordinate extraction & uncertainty estimation methods. Bins are in
descending order of uncertainty (B5 highest uncertainty, B1 lowest uncertainty). (a) and (b)
show the mean localisation error of each bin, with error decreasing as we move towards the
bins with lower uncertainty. (c) and (d) present the Jaccard Index, showing how similar the
predicted bins are to the ground truth error quantiles. (e) and (f) visualise the estimated error
bound accuracy, showing the percentage of predictions within the estimated error bounds for
each bin. Best viewed on screen.
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that MHA and E-CPV contain information that can be exploited to estimate the uncertainty

of our predictions.

Next, we compare how our uncertainty measures can predict the true error quantiles. We

found the most useful information is at the tail ends of the uncertainty distributions. Figures

5.4c & 5.4d plot the Jaccard Index between ground truth error quantiles and predicted error

quantiles. We notice a parabolic trend, where the outer bins are closer to the true error

quantiles than the middle bins. The highest uncertainty quantile bin (B5) is significantly

better at capturing the correct subset of predictions than the intermediate bins (B2 − B4).

Similarly, in some cases the bin representing the lowest uncertainties (B1) had a significantly

higher Jaccard Index than the intermediate bins, but still lower than B5. Figures 5.4a & 5.4b

show the mean error (N) of the samples of each quantile bin over both datasets. The most

significant reduction in localisation error is from B5 to B4 for all uncertainty measures. The

sample distribution over the bins, indicated by the red dots, confirms that B5 captures more

gross mispredictions than the remaining bins, particularly for the 4CH dataset. A tabular

representation of this data is available in Appendix A, Table A.1. These findings suggest

that most of the utility in the uncertainty measures investigated can be found at the tail

ends of the scale. This is an intuitive finding, as the predictions in B5 are certainly uncertain,

and the predictions in B1 are certainly certain. Figures 5.4a & 5.4b show that each bin

contains ∼20% of the predictions, confirming our data-driven approach to setting uncertainty

thresholds successfully approximates the true uncertainty distribution.

The worse trained the landmark localisation model, the more useful the uncertainty

measure. Table 5.1 shows the localisation error of all methods, models and datasets for

the entire set (All) and lowest uncertainty subset (B1) of predictions. PHD-Net’s baseline

localisation performance on the 4CH dataset was worse than U-Net. However, when we

consider the lowest uncertainty subset of predictions (B1), PHD-Net sees a 47% average

reduction in error from all predictions (All), compared to U-Net’s average reduction of 30%.

Similarly, U-Net performed worse than PHD-Net for the SA dataset, but saw an average

error reduction of 31% compared to PHD-Net’s 25%. This suggests that all investigated

uncertainty measures are more effective at identifying gross mispredictions when models are

poorly trained. When we separate results per-landmark, we find similar trends; landmarks
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with worse localisation performance overall see the largest proportional reduction in error

from B5 to B1 (see Appendix A, Figure A.2).

Using heatmap-based uncertainty measures is generalisable across heatmap generation

approaches. The bin similarities in Figures 5.4c & 5.4d show that using S-MHA and E-

MHA yields similar performance with PHD-Net and U-Net, despite their different heatmap

derivations. Surprisingly using E-MHA does not give a significant increase in bin similarity

compared to S-MHA, suggesting the thresholds remain relatively stable across models.

No investigated method is conclusively best for estimating uncertainty in all scenarios.

For the more challenging 4CH data, Figure 5.4c shows E-CPV is significantly better than

S-MHA and E-MHA for both models at capturing the true error quantiles, corroborating the

findings of Drevickỳ and Kodym [2020]. E-CPV is particularly good at identifying the worst

predictions (B5). For the easier SA data, no method has a significantly higher Jaccard Index.

Therefore, when we generalise across both models and datasets, all uncertainty measures

fared broadly similar on average in terms of error reduction between the entire set and the B1

subset of predictions. S-MHA had an average error reduction of 35.07%, E-MHA 32.94% and

E-CPV 32%.

Despite similar performances in uncertainty estimation, we found E-MHA yields the

greatest localisation performance overall. Table 5.1 shows E-MHA offers the best localisation

performance for B1 across both datasets and models. This is due to the combination of

offering the most robust coordinate extraction on average (Table. 5.1), and similar uncertainty

estimation performance (Figure 5.4c, Figure 5.4d). We more concretely demonstrate Quantile

Binning’s ability to identify low uncertainty predictions in Figure 5.3. We clearly observe

a significant increase in the percentage of images below the acceptable error threshold of

5mm when considering only predictions in B1 - with E-MHA giving the greatest proportion of

acceptable predictions.

5.5.4 Analysis of Error Bound Estimation

We analyse how accurate the isotonically regressed estimated error bounds are for our quantile

bins. Figures 5.4e & 5.4f show the percentage of samples in each bin that fall between the

estimated error bounds. Figure 5.5 shows the results from an example fold.
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Figure 5.5: Results from an example fold of E-MHA for the 4CH dataset. The blue bars
reprsent the estimated error bounds for each bin, and the blue diamonds represent the observed
error of each sample in the fold.

We found we can predict the error bounds for the two extreme bins better than the

intermediate bins. Figures 5.4e & 5.4f show a similar parabolic pattern to the Jaccard

Index Figures 5.4c & 5.4d, with the two extreme bins B5 and B1 predicting error bounds

significantly more accurately than the inner bins. Again, this indicates the most useful

uncertainty information is present at the extremes of the uncertainty distribution, with the

predicted uncertainty-error function unable to capture a consistent relationship for the inner

quantiles. Further, the increased accuracy of the outer bins can be explained by the fact

that it is easier to predict a single lower/upper bound than a pair of tighter bounds for the

middling bins.

We also found that a well defined upper bound for heatmap activations is important

for error bound estimates. For both the 4CH and SA datasets, S-MHA for PHD-Net is

significantly more accurate at predicting error bounds for the highest uncertainty quantile B5

compared to the lowest uncertainty quantile B1 (56% & 72% compared to 30% & 27% for

4CH & SA, respectively), correlating with S-MHA capturing a greater proportion of those
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bins (Jaccard Indexes of 32% & 24% compared to 16% & 15%). On the other hand, U-Net

using S-MHA predicts error bounds for low uncertainty bins better than high uncertainty

bins. This suggests that although PHD-Net’s heatmap activation is a robust indicator of gross

mispredictions, the upper error bound of B1 (γ1) cannot be accurately predicted due to the

loose upper bound of the heatmap activations causing high variance. This is alleviated by

using an ensemble of networks in E-MHA, where the B1 bound accuracy is improved to 62%.

E-MHA and E-CPV are more consistent than S-MHA. Overall, there is no significant

difference between the error bound estimation accuracy of E-MHA and S-MHA, but Figures

5.4e & 5.4f show E-MHA has less variation in performance between U-Net and PHD-Net

compared to S-MHA, suggesting an ensemble of models is more robust. For the 4CH dataset,

PHD-Net using E-CPV is on average significantly more accurate at predicting error bounds

than S-MHA and E-MHA. However, there are no significant differences for PHD-Net on the

easier SA dataset, nor U-Net on either dataset. There are also no significant differences

between U-Net and PHD-Net in error bound estimation accuracy, with each method broadly

equally effective for both models.

5.5.5 Generalisability

We train U-Net on the Cephalometric dataset, applying Quantile Binning to E-MHA and E-

CPV to test their generalisability across imaging modalities. First, we measure the correlation

between out uncertainty measures and localisation errors. Similar levels of correlation are seen

as with the 4CH and SA datasets for S-MHA and E-MHA, and a slightly stronger correlation

for E-CPV (more detail can be found in Appex Section A.1). For Q = 5, Figures 5.6c & 5.6d

show a predictive power of true error quantiles comparable with the CMR datasets. The

mean Jaccard Index (JI) for B5 is 22% for E-MHA and 34% for E-CPV on the Cephalometric

dataset, compared to 22% & 32% for U-Net on the 4CH dataset. B1 shows a better result

than the CMR datasets, achieving a JI of 18% for E-MHA and 19% for E-CPV, compared to

15% & 14% for U-Net on the 4CH dataset. E-CPV more effectively identifies the extreme

mis-predictions compared to E-MHA, as evidenced by a higher JI for B5 (left-most bin) in

Figures 5.6c & 5.6d, supporting the results from the challenging 4CH dataset. For Q = 5,

Figures 5.6a and 5.6b show a gradual reduction in error from B5 (left-most) to B1. Overall,
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(a) Localisation error - E-MHA (Lower is better). (b) Localisation error - E-CPV (Lower is better).
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(c) Jaccard Index - E-MHA (Higher is better).
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(d) Jaccard Index - E-CPV (Higher is better).
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(e) Estimated Error Bound Accuracies - E-MHA
(Higher is better).
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(f) Estimated Error Bound Accuracies - E-CPV
(Higher is better).

Figure 5.6: Quantile Binning varying Q (Number of Quantile Bins) on the Cephalometric
dataset. We show results for the uncertainty measures E-MHA and E-CPV, over all landmarks
from a 4-fold CV, trained on the U-Net model. Red dots represent the errors of individual
samples, best viewed on screen.
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the larger Cephalometric dataset (19 landmarks) shows a more consistent downward trend in

error across bins compared to our smaller CMR datasets (3 landmarks).

Next, to test the robustness of using MHA as an uncertainty measure across target

heatmaps of varying sizes, we repeated these experiments changing the standard deviation of

the target heatmap from Equation (5.1) to 2, 4, 8 and 12, shown in Figure 5.7. We found the

trends of our Quantile Binning results hold, with only the localisation error deteriorating as

we increased the size of the standard deviation of the Gaussian heatmap. We conclude that as

long as the standard deviation leads to a learnable heatmap, similar uncertainty estimation

properties are exhibited by MHA. Further supporting experiments showing can be found in

Section A.4.

5.5.6 Varying Quantile Binning Resolution

We vary the number of Quantile Bins (Q = {2, 3, 5, 10, 20}) for the larger Cephalometric

dataset to gain deeper insights on the flexibility of Quantile Binning. Figures 5.6a & 5.6b

show the localisation error quantiles across Q for the Cephalometric dataset, with a gradual

reduction in mean localisation error (N) from BQ to B1 for all values of Q. We find that the

edge bins are most useful for all values of Q, with the Jaccard Indexes in Figures 5.6c & 5.6d

and error bound accuracies in Figures 5.6e & 5.6f showing parabolic trends, confirming our

results from the CMR datasets.

Further, Quantile Binning provides utility for a range of Q values. First, consider the

extreme case of Q = 2, where the threshold is the median uncertainty of the validation set.

Here, B2 (the high uncertainty bin, left) captures the majority of the gross mispredictions

and B1 (the low uncertainty bin, right) captures the majority of the best predictions. Now,

consider the effect of increasing Q, shown in Figures 5.6a & 5.6b. As we increase the number

of Quantile Bins, the mean error (N) of BQ (far left bin of each set) increases. This is because

as Q increases, BQ is pushed farther towards the edge of the uncertainty measure distribution,

capturing progressively more extreme outliers. Therefore, as Q increases, we observe an

increasingly logarithmic trend of the mean error across the bins as poor predictions are filtered

out more gradually.

In practice, the higher the value of Q, the greater the resolution of separation of the data.
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Figure 5.7: Comparing results for models using different standard deviation values for the
ground truth heatmap labels. We show the Quantile Localization Errors using 5 & 10 Quantile
bins. We present results on all landmarks from a 4-fold CV on the Cephalometric dataset
Wang et al. [2016].
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For example, consider the task of flagging up uncertain landmark predictions for manual

review. Using Q = 2 and flagging predictions from the highest uncertainty bin will lead to

50% of predictions requiring review and re-annotation. On the other hand, filtering out the

highest uncertainty bin using Q = 10 leaves only 10% of predictions to be reviewed. In each

case, the user will have an upper error bound estimate for the remaining predictions with

reasonable accuracy (∼50% for E-MHA and ∼60% for E-CPV, the left-most bins, BQ, in

Figures 5.6e & 5.6f). However, the contents of BQ are more accurate when Q is small, with

a Jaccard Index of 50% for Q = 2 compared to 25% for Q = 10 for E-CPV (Figure 5.6d).

Therefore, this trade-off between true error quantile accuracy and binning resolution means Q

is a subjective choice that depends on the specificity of the downstream task and the resources

available for reannotation.

Similar trends are present for our 4CH dataset and SA dataset, but we note that results

are poor for Q >= 10 compared to the Cephalometric dataset. This is because when fitting

the data for Quantile Binning, our CMR datasets had access to a much smaller validation set

compared to the Cephalometric dataset (∼30 samples compared to ∼60 samples) and could

not accurately estimate the quantile uncertainty distribution for large values of Q. Therefore,

the larger the available validation set, the larger Q can be set. Full experimental results

varying the number of bins for PHD-Net and U-Net over the SA and 4CH datasets can be

found in Section A.5.

To address the observation that the intermediate bins (B2 − BQ−1) capture less reliable

information about localisation error than the two outer bins, we perform an experiment

combining all but the edge bins into one large super bin. The results are shown in Figure

5.8. We compared using (a) 20 Quantile Bins; (b) 3 Bins where the edge bins are the same as

(a) and the middle bin is a super bin from merging B19 − B2; and (c) 3 Quantile Bins. From

Figure 5.8 we can see that merging middle bins in (b) achieves a higher error bound accuracy

due to the greatly relaxed uncertainty bounds. Furthermore, compared to the 3 Quantile bins

in (c), (b) retains the benefits of a lower mean error for B1 and more discriminative outlier

detection in B3.
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(a) 20 Quantile Bins (b) 3 Bins merging B2 − B19

from (a) into B2
(c) 3 Quantile Bins
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Figure 5.8: Comparing using (a) 20 quantile bins, (b) 3 Bins where the edge bins are the
same as (a) and the middle bin is a super bin from merging B19 − B2, and (c) 3 Quantile
Bins. We show the distribution of localization errors in each bin, the Jaccard index of each
bin compared to the ground truth error quantiles the estimated error bound accuracies.
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5.5.7 Relationship with Aleatoric Uncertainty

Lastly, we study aleatoric uncertainty, which refers to uncertainty caused by internal random-

ness in the data. Using Quantile Binning, we explore how our predictive uncertainty measures

deal with landmarks of varying levels of aleatoric uncertainty. In landmark localisation,

one way to measure aleatoric uncertainty is from the inherent ambiguity of the landmark,

quantified by the inter-observer variability of multiple annotators. We can infer that the

higher the variation in annotator opinion, the greater the ambiguity of the landmark. We can

observe the directional ambiguity of the landmark by fitting an anistotropic (directionally

skewed) Gaussian function to the distribution of the annotations, seen in the Annotator Dist.

column of Figure 5.9. Thaler et al. [2021] provide this ground truth measure of the aleatoric

uncertainty, using a total of 11 annotators to label a subset of five landmarks (Figure 5.2c)

from 100 images of the Cephalometric dataset. We assume the landmark-specific ambiguities

hold for the full Cephalometric dataset.

Figure 5.9 shows that all studied coordinate extraction methods are best for landmarks

with low aleatoric uncertainty. The mean errors (N) over the boxplots in the Quantile Errors

column in Figure 5.9 confirm that landmarks with higher aleatoric uncertainty (L3, L2)

had worse localisation performance than landmarks with low aleatoric uncertainty (L4, L1).

However, the distribution of individual samples (represented by red dots, best seen on screen)

show that E-MHA and E-CPV reliably capture the majority of gross mispredictions (B5)

regardless of landmark ambiguity. S-MHA performs poorly on some landmarks (L5, L2) due

to the reliance on a single model capacity. In terms of filtering out poor predictions, we see

the best results for all uncertainty methods for the landmark with the tightest annotation

distribution (L4), with B5 Jaccard Index’s showing a mean of 40% and 45% similarity with

the true quantile bin for E-MHA and E-CPV, respectively.

However, MHA methods falter for landmarks with directional ambiguity, whereas E-CPV

estimates uncertainty well for all types of ambiguity. The Annotator Dist. column of Figure

5.9 shows that the annotation distribution of landmarks L1 and L2 have a distinct directional

skew. The Jaccard Indexes of E-MHA for these landmarks (L1 = 16%, L2 = 20% for B5)

are lower than the other landmarks with more isotropic annotation distributions (L4 = 40%,

L5 = 24%, L3 = 23% for B5). Furthermore, the mean and median localisation errors do not
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Figure 5.9: Column Annotator Dist. shows the individual offsets from each of the 11
annotators to the mean annotation of each landmark [Thaler et al., 2021]. The larger the
fitted Gaussian, the more variance between annotators and the higher the aleatoric uncertainty.
Quantile Errors column shows the boxplots of localisation errors for each quantile bin, showing
the landmarks across all folds. The Jaccard Index column shows the similarity between the
predicted Quantiles and the true error quantiles.
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consistently trend down across bins for E-MHA for the anisotropic landmarks (L1, L2).

On the other hand, Quantile Binning shows E-CPV is consistently effective regardless of

directional ambiguity, with mean Jaccard Indexes for B5 no less than 28% across all landmarks.

This is likely because the objective function (Equation (5.1)) encourages the model to predict

isotropic Gaussian Heatmaps, which better match isotropic annotator distributions. When we

calculate the mean heatmap to extract the peak pixel using E-MHA, the resulting map will

still be constrained to the isotropic properties defined by the objective function. This explains

why E-MHA even performs well on the ambiguous yet isotropic landmarks L3 and L5, but

poorly on the directionally ambiguous, anisotropic landmarks L1 and L2. In contrast, E-CPV

calculates the variance between peak pixel activations of a group of individual models, where

sampling enough independent predictions of an ensemble can effectively approximate the

anisotropic distribution. In practice, if the Quantile Error bins for E-MHA show uniformity

as they do in L1 and L2, this is an indication to the user that the landmark may contain

some directional ambiguity.

5.6 Application to Pulmonary Arterial Wedge Pressure Pre-

diction

Quantile Binning was applied to a cardiac classification problem for training sample selection,

improving performance. The pipeline consisted of three stages: (1) landmark localisation,

which was used to register images to a common orientation, before (2) tensor feature learning

using Multilinear Principal Component Analysis (MPCA) [Lu et al., 2008] was applied to four

resolution scales of the image followed by an Support Vector Machine (SVM) using the top

k-ranked MPCA features for classification of high or low wedge pressure. We hypothesised an

incorrect landmark prediction would cause poor image registration, in turn impeding feature

extraction and classification performance. This concern was due to unlike CNNs, tensor-based

learning is not translationally invariant.

For the landmark localisation and uncertainty estimates, we used E-MHA using an ensemble

of 5 LannU-Net models (architecture and training regime detailed in Section 3.3). We chose

the larger capacity LannU-Net rather than U-Net since we had access to more training data
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Method Resolution AUC Accuracy MCC
Proposed method 64× 64 0.8146± 0.04 0.7774± 0.03 0.4460± 0.02
with uncertainty binning 128× 128 0.8327± 0.06 0.8038± 0.05 0.5099± 0.04

Proposed method 64× 64 0.7892± 0.04 0.7513± 0.05 0.4278± 0.02
without uncertainty binning 128× 128 0.8036± 0.03 0.7820± 0.04 0.4779± 0.01

Table 5.2: Performance comparison using three metrics (with best in bold). The standard
deviations of methods were obtained by dividing the test set into 5 parts based on the diagnosis
time. AUC is Area Under the Curve, a method to measure classification performance. is
Matthew’s Correlation Coefficient [Chicco and Jurman, 2020], also used for classifier evaluation.

for this task and localisation accuracy was a priority. For the target heatmaps, we used

σ = 2. We trained on a larger cohort from the ASPIRE registry [Hurdman et al., 2012] made

available especially for this study, with 1446 SA scans and 1329 4CH scans. The landmarks

were the same three as detailed in Section 3.2.1. The dataset for classification consisted of

1346 patients from the ASPIRE registry [Hurdman et al., 2012], and was non-overlapping

with the dataset used for the landmark localisation training. It was split into 1081 cases

for training and 264 cases for testing. Each patient had a 4CH and SA scan, and landmark

localisation was performed using the E-MHA strategy.

To tackle the quality control problem, we first partitioned the training scans based on the

uncertainty values of the landmarks. The predicted landmarks of the classification training set

were divided into 50 quantiles, i.e., Q = {q1, q2, ..., q50}, based on the epistemic uncertainty

values. We then iteratively filtered out training samples starting from the highest uncertainty

quantile. A sample is discarded if the uncertainty of any of its landmarks lies in quantile qk

where k = {1, 2, ..., 50}. The samples are discarded iteratively until there is no improvement

in the validation performance, as measured by the area under the curve (AUC), for two

subsequent iterations.

Figure 5.10 depicts the results of binning using 10-fold cross-validation on the training

set, where the performance improves consistently over the four scales when removed bins ≤ 5.

Based on the results, we removed 5 bins (129 out of 1081 samples) from the training set, and

used the remaining 952 training samples for the rest of the study. Table 5.2 shows results with

and without the uncertainty-based quality control, with a significant increase in classification

performance when using the quality control. The reader is encouraged to read the paper for

more details [Tripathi et al., 2023].
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Figure 5.10: Performance comparison of removing a different number of bins of training data
on 10-fold cross-validation. Each line corresponds to a different resolution scale of image used.
AUC is Area Under the Curve, a method to measure classification performance.

5.7 Discussion and Conclusion

5.7.1 Summary of Findings

This chapter presented a general Frequentist framework to assess any continuous uncertainty

measure in landmark localisation, demonstrating its use on three uncertainty metrics and two

paradigms of landmark localisation model. We introduced a new coordinate extraction and

uncertainty estimation method, E-MHA, offering the best baseline localisation performance

and competitive uncertainty estimation.

Our experiments indicate that both heatmap-based uncertainty metrics (S-MHA, E-MHA),

as well as the strong baseline of coordinate variance uncertainty metric (E-CPV) are applicable

to both U-Net and PHD-Net. Despite the two models’ distinctly different approaches to

generating heatmaps, using the maximum heatmap activation as an indicator for uncertainty

is effective for both models. We showed that all investigated uncertainty metrics were effective

at filtering out the gross mispredictions (BQ) and identifying the most certain predictions (B1),

but struggled to capture useful information for the intermediate uncertainty bins (B2-BQ−1).

Our experiments also showed that E-MHA and S-MHA had a surprisingly similar ability

to capture the true error quantiles of the best and worst 20% of predictions (Figures 5.4c

& 5.4d), but E-MHA was more consistent with its performance predicting the error bounds

of those bins across models (Figures 5.4e & 5.4f). This suggests that the correlation with

localisation error at the head and tail ends of the heatmap distributions are stable across our

ensemble of models, but susceptible to variance when fitting our isotonically regressed line to
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predict error bounds. On the more challenging 4CH dataset, E-CPV broadly remained the

strongest method for filtering out the worst predictions, but this trend did not continue in

the easier SA dataset (Fig 5.3).

In terms of error bound estimation, we found bins BQ and B1 could offer good error bound

estimates, but the intermediate bins could not (Figures 5.4e & 5.4f). We found all uncertainty

methods performed broadly the same: effective at predicting error bounds for B1 and BQ,

but poor at predicting error bounds for B2-BQ−1. The one exception was PHD-Net using

S-MHA, which could not accurately predict error bounds for B1 due to the high variance in

pixel activations of highly certain predictions.

We demonstrated our Quantile Binning and the three uncertainty metrics are generalisable

across imaging modalities by reporting effective results on the Cephalometric dataset in Figure

5.6. Here, we also showed the flexibility of Quantile Binning by varying the number of bins

(Q), illustrating the trade-off between true error quantile accuracy and binning resolution as

Q increases.

Next, in Section 5.5.7 we explored the effect of aleatoric uncertainty on our predictive

uncertainty measures, using Quantile Binning to uncover weaknesses of E-MHA when deal-

ing with landmarks with high directional ambiguity under conventional isotropic heatmap

regression.

Finally in Section 5.6 we showed an example usecase of our method, in which we use

Quantile Binning and E-MHA as a quality control for landmark predictions, improving

downsteam performance.

5.7.2 Recommendations

We offer the following recommendations:

• When resources are available, E-MHA should be used as the coordinate extraction and

uncertainty estimation method since it offers the best baseline localisation performance

with a sufficient ability to filter out the gross mispredictions.

• If the definition of the landmark is known to be directionally ambiguous, use E-CPV

over E-MHA for uncertainty estimation. If this is unknown, uniformity in the E-MHA

Quantile Bins can be an indication of directional ambiguity in the landmark.
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• When resources are constrained, S-MHA is surprisingly effective at capturing the true

error quantiles for bins B1 and BQ, but note that when using a patch-based voting

heatmap that is not strictly bounded, the error bound estimation for B1 is not robust.

• The number of Quantile Bins used (Q) is a trade-off, with a larger Q offering a finer

binning resolution at the cost of less accurate bins. Q is constrained by the size of the

hold-out validation set and can perform poorly when Q > 10 and the validation set is

smaller than 60 samples.

5.7.3 Conclusion

Beyond the above recommendations, we hope our Frequentist framework described in this

chapter can be used to assess refined or novel uncertainty metrics for landmark localisation,

and act as a baseline for future work. Not only this, but Quantile Binning is application

agnostic, relevant to any regression problem that provides sample-wise uncertainty values.

Furthermore, we have shown that both the voting derived heatmap of PHD-Net, and the

regressed Gaussian heatmap of U-Net can be exploited for uncertainty estimation. In this

chapter, we only explored the activation of the peak pixel, but it is likely that more informative

measures can be extracted from the broader structure of the heatmap, promising greater

potential for uncertainty estimation in landmark localisation waiting to be uncovered.



Chapter 6

Bayesian Uncertainty Estimation

with Convolutional Gaussian

Processes

6.1 Introduction

So far in this thesis, we have tackled landmark localisation using deep learning approaches.

As discussed in Chapter 2, and confirmed by our studies in the previous chapters, it is difficult

to obtain consistently reliable uncertainty estimates from deep neural networks. In Chapter 4

we developed a heuristic-based approach, which we extended to a Frequentist approach using

deep ensembles and Quantile Binning in Chapter 5. However, for the penultimate chapter of

this thesis we tackle the research question Q4, presenting the first Bayesian framework using

Gaussian Processes to anatomical landmark localisation. As far as we are aware, this is the

first work to apply Gaussian Processes to an image regression task of this nature.

As evident from previous chapters, current State-of-the-Art approaches for landmark

localisation are deep-learning based, the most popular paradigm being heatmap regression. It

is noteworthy that conventional training methodologies in heatmap regression models fix the

variance of the Gaussian function, preventing the model from modifying its output to reflect

elevated or diminished uncertainty in its predictions.

Thaler et al. [2021] incorporated aleatoric uncertainty directly during training by learning

121
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anisotropic Gaussian heatmaps for each landmark. The study demonstrated that the learned

heatmap shapes correspond to inter-observer variability from multiple annotators [Thaler

et al., 2021]. However, this method only models the homoscedastic aleatoric uncertainty of the

dataset, whereby a single covariance matrix is learned over the entire dataset for each landmark

during training. At inference, a Gaussian function is fitted to each individual prediction to

model heteroscedastic aleatoric uncertainty. Nonetheless, this measure heavily depends on

the learned homoscedastic uncertainty, and its post-hoc nature makes it challenging to rely

on for a true reflection of model uncertainty. As discussed in Chapter 2 and 4 , other existing

approaches to estimate landmark uncertainty include approximate Bayesian inference like

deep ensembles [Drevickỳ and Kodym, 2020], and Monte-Carlo Dropout [Lee et al., 2020].

However, these methods rely on deep neural networks and are not truly Bayesian. As far as

we know, there are no fully Bayesian methods applied to this dataset.

In this study, we depart from the conventional practice of utilising deep learning and instead

employ a Bayesian methodology for landmark localisation, relying on Gaussian processes

(GPs). GPs are nonparametric statistical models which are robust to both the presence of

noisy data and overfitting, even in low-data regimes which can prove challenging for neural

network-based techniques [Rasmussen and Williams, 2006]. Specifically, we use Convolutional

Gaussian Processes (CGPs), which offer an attractive alternative to deep neural networks for

the task of landmark localisation. CGPs are constructed using a covariance function which is

heavily inspired by the efficient convolutional structure of the kernels used in Convolutional

Neural Networks (CNNs) [Van der Wilk et al., 2017]. CGPs offer us a mathematically rigorous

Bayesian framework for predicting the distribution of likely landmark locations and quantifying

model uncertainty.

Due to limitations with the scalability of Convolutional Gaussian Processes (CGPs), we

use a two stage coarse-to-fine approach, outlined in Figure 6.1. The first stage uses a CNN

to obtain a coarse prediction of the landmark location. Then, the CGP predicts the final

landmark distribution using the corresponding cropped patch of the image. The intrinsically

Gaussian nature of the uncertainty estimates generated by CGPs render them an intriguing

alternative to the conventional deep learning approaches that aim to predict a Gaussian

Heatmap (either fixed or learned).
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Figure 6.1: Overview of our two stage coarse-to-fine framework. We utilise Deep Learning
in Stage 1 to obtain coarse predictions, and refine them in Stage 2 with a Convolutional
Gaussian Process and obtain an uncertainty estimate (covariance).

6.2 Contributions

Our contributions are threefold:

• We present a two stage coarse-to-fine approach using a multi-task CGP for fine predictions

and uncertainty estimates, which is the first of its kind for regression. The two stage

approach alleviates issues with high-resolution data when using CGPs.

• We address optimisation issues by devising a novel approach to initialise inducing patches

for the CGP using first-stage prediction information.

• We provide an evaluation of CGP uncertainty estimates against a deep learning baseline

CNN method.

We provide an open-source implementation of the model presented in this work in our

repository, MediMarker : https://github.com/Schobs/MediMarker.

6.3 Methods

Due to limitations with the scalability of Convolutional Gaussian Processes (CGPs), we use a

two stage coarse-to-fine approach. The first stage uses a CNN to obtain a coarse prediction of

https://github.com/Schobs/MediMarker
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the landmark location. Then, the CGP predicts the final landmark distribution using the

corresponding cropped patch of the image.

6.3.1 Stage 1: Coarse Prediction using U-Net

To obtain our coarse predictions, we use LannU-Net, detailed in Section 3.3. To remind the

reader, LannU-Net follows the standard configuration of two blocks per resolution layer, with

each block consisting of a 3×3 convolution, Instance Normalisation [Ulyanov et al., 2016], and

Leaky ReLU (negative slope, 0.01). Downsampling is achieved through strided convolutions

and upsampling through transposed convolutions. The initial number of feature maps is set

to 32, doubling with each downsample to a maximum of 512 and halving at each upsample

step. We automatically configure the number of resolution layers by adding encoder steps

until any dimension of the feature map resolution hits a minimum of 4. The objective for

the model is to learn a Gaussian heatmap image for each landmark, with the centre of the

heatmap on the target landmark. For a landmark Li with 2D coordinate position c̃(i), the 2D

heatmap image is defined as the 2D Gaussian function:

gi

(
x || µ = c̃(i);σ

)
=

1

(2π)σ2
exp

(
−
‖x− µ‖22

2σ2

)
, (6.1)

where x is the 2D coordinate vector of each pixel and σ is a user-defined standard deviation.

The network learns weights w and biases b to predict the heatmap hi(x;w,b). The objective

function is the Mean Squared Error (MSE) between the Gaussian target heatmap and the

predicted heatmap. We train on images of size H ×W at this stage, obtaining the coarse

predictions of our landmarks, Ĉc. For each landmark Li, we obtain ĉ
(i)
c by selecting the pixel

with the highest activation for heatmap gi.

6.3.2 Stage 2: Fine Prediction using a Convolutional Gaussian Process

Following the initial prediction, we extract cropped patches of size H ′×W ′, (H ′ < H, W ′ < W )

around each image using our Stage 1 predictions, Ĉc. We then use a multi-task CGP for the

final, sub-pixel prediction and uncertainty estimate.
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Multi-task Convolutional Gaussian Process

Gaussian processes (GPs) are powerful nonparametric Bayesian models, gaining popularity

due to their ability to provide a rigorous quantification of predictive uncertainty. A GP defines

a distribution over functions and is completely specified by a covariance function k(·, ·) and a

mean function which is commonly assumed to be zero. For an input I ∈ RDin (e.g. an image),

a GP is denoted by u(I) ∼ GP (0, k(I, I′)) [Rasmussen and Williams, 2006]. The choice of

covariance function (also called the kernel) affects the variation of the function over the input

domain, and many options for the kernel exist. The CNN-inspired image convolutional kernel

[Van der Wilk et al., 2017] has become the standard tool for applying GPs to computer vision

tasks. A GP with this kernel (i.e. a CGP) can be written as,

u ∼ GP

0,

P∑
p=1

P∑
p′=1

kg

(
I[p], I′[p

′]
) , (6.2)

where kg is a base kernel (e.g. RBF or Matérn) which generates a real-valued response value

for a square patch of pixels within the image I. P denotes the total number of patches we can

extract from our input image, and is therefore determined by the patch size, which we define

to be (5× 5). Specifically, we use the weighted kernel proposed by the authors, whereby each

patch is additionally assigned a learnable weighting parameter. As in the original work, we

take a stochastic variational approach to performing inference, using a set of inducing patches.

The intuition behind the overall approach is that the inducing patches can be considered

as analogous to the filters in a conventional CNN. For further details on the approach we

refer the reader to the original work [Van der Wilk et al., 2017] and material on variational

inducing points-based inference in GPs [Leibfried et al., 2020].

Typically, CGPs are used with a single output. However, for our problem setting, we

require a multi-output GP as we wish to predict a 2D coordinate associated with each

landmark. To achieve this, we firstly model each output using independent GPs, each with

their own separate convolutional kernel, sharing the inducing patches across both outputs.

We instantaneously mix the outputs of these two GPs u ∈ R2 using the linear model of

coregionalisation (LMC) [Alvarez and Lawrence, 2011; Journel and Huijbregts, 1976], such

that f = Wu, where f ∈ R2 are our correlated outputs, and W ∈ R2×2 is a learnable mixing
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matrix.

As this is a regression problem, we use a Gaussian likelihood with independent likelihood

noise for each spatial dimension, denoted by lx and ly. Therefore, for each prediction we

obtain the final sub-pixel coordinate prediction ĉ(i) from the CGP mean prediction m(i) and

a covariance matrix Σ(i), which is the summation of the LMC covariance and the likelihood

noise:

ĉ(i) = m(i), Σ(i) = Wu+

lx 0

0 ly

 . (6.3)

Inducing Patch Initialisation

To initialise the inducing patches, we introduce a bias towards inducing patches proximal to

the anticipated landmark location, given by Stage 1. We do so because regions in the image

near the landmark tend to contain more salient information about its location as compared to

regions further away. Therefore, this initialisation sets up a simpler optimisation problem

as opposed to choosing the initial patches purely at random. For each inducing patch P , we

randomly select an image from the training set and sample a 5× 5 patch, selecting a patch

centre point pc by sampling from a Gaussian distribution over the image:

pc ∼ g
(
x || µ = ĉ(i)c ;σ

)
, (6.4)

where g is a 2D Gaussian Distribution (see Equation (6.1)), ĉ(i)c is the coarse prediction

for landmark Li from Stage 1, and σ is defined by the user.

Neural Network Baseline

To serve as a Deep Learning baseline for Stage 2 predictions, we replace the CGP with a

compact U-Net architecture. Specifically, we adopt the identical design to LannU-Net used

in Stage 1, with the only difference being a smaller number of layers (due to the use of

smaller 64× 64 input images). To obtain a comparable likelihood distribution to the CGP,

we follow the approach by Thaler et al. [2021] to fit a 2D Gaussian function to the heatmap

prediction, robust least squares fitting method [Branch et al., 1999], obtaining the sub-pixel

mean prediction ĉ(i) and covariance matrix Σ(i).
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Training Procedure

We train using mini-batching, maxinimising the evidence lower bound (ELBO) at each iteration

step (or the MSE for the CNN baseline). At each step, we extract a batch of H ′×W ′ patches

from the image batch, centred around the Stage 1 predictions, Ĉc. To prevent overfitting and

improve robustness, we implement data augmentation by randomly selecting a new centre

point for each patch, o(i), each time the data is seen using the following equation:

o(i) = ĉ(i)c + r, r ∼ R(−D,D)2, (6.5)

where R is Uniform distribution and D < H′

2 , W
′

2 , ensuring the Stage 1 prediction ĉ
(i)
c is

always present in the image patch.

6.3.3 Evaluation Metrics

To evaluate the quality of uncertainty estimates in our predictive model, we report the Negative

Log Predictive Density (NLPD). This metric is a proper-scoring method, able to assess the

calibration of our Gaussian outputs. NLPD is defined as:

NLPD = − log p
(
C̃(i)|Ĉ(i),Σ(i)

)
= −

N∑
j=1

logP
(
c̃(i,j)|ĉ(i,j),Σ(i,j)

)
, (6.6)

where ĉ(i,j) is the predicated coordinate for landmark Li in image j, c̃(i,j) represents the target

coordinates for landmark Li, and Σ(i) the predicted covariances. The NLPD quantifies the

likelihood that the predicted distribution contains the true landmark location. Lower NLPD

values indicate a better fit of the model fit to the data, and thus better uncertainty estimates.

For completeness, we evaluate localisation performance using point-to-point error, defined by

the Euclidean distance/Frobenius norm from a predicated coordinate ĉ, to a target coordinate

c̃:

DPE(ĉ− c̃) = ||ĉ− c̃||F . (6.7)
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6.4 Datasets

6.4.1 Cephalometric Radiographs Subset

We show results on the publicly available Cephalometric dataset [Wang et al., 2016], introduced

in Chapter 3, Section 3.2.3. Using the annotator variability made available by Thaler et al.

[2021] as a indicator for annotation difficulty caused by aleatoric uncertainty, we select 3

landmarks representing various difficulty levels: the tip of the chin, the corner of the jaw,

and the tip of the incisor (exemplified in Figure 6.2). The chin has the smallest annotator

disagreement (lowest inter-observer variance) of the subset, and the jaw has the largest

annotator disagreement (highest inter-observer variance) of the subset. The images are resized

to a resolution of 512× 512 pixels, and the final sub-pixel coordinate predictions are scaled to

the original resolution. We report results of a 4-fold cross validation (CV) over all 400 images,

using the junior annotations only, following convention [Lindner et al., 2016; Payer et al.,

2020; Thaler et al., 2021]. We set aside 20% of each fold’s training data for our validation set.

6.5 Experiments and Results

6.5.1 Experimental Setup and Training Details

All hyperparameter tuning was performed on the first fold of landmark L1, the tip of the chin.

Stage 1: For the target Gaussian Heatmap in Equation (6.1), we use σ = 8. We train for 500

epochs using stochastic gradient descent with an initial learning rate of 0.01, decaying it using

the ‘poly’ scheme, (1− epoch/epochmax)
0.9 [Chen et al., 2017]. One epoch consists of 150

mini-batches, where each mini-batch is 12 samples. We employ early stopping using a hold-out

validation set (20% of training set), stopping training if the validation set’s localisation error

does not drop for 150 epochs. We employ data augmentations with a probability of 0.5,

uniformly sampling from a continuous range [α, ω]: Random scaling [0.8, 1.2], translation

[-0.07%, 0.07%], rotation [-45°, 45°], shearing [-16, 16] and vertical flipping.

Stage 2: We set H ′ = W ′ = 64 to select patches of size 64 × 64 around the Stage 1

predictions Ĉc, reaching a compromise between capturing enough context in the image patch
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Figure 6.2: Figure showing 3 landmarks of varying difficulty and predictions from our method
with learned covariances (ConvGP), and 2 deep learning baselines with fixed covariances
(CNN5 and CNN2, which use σ values of 5 and 2 in Equation 6.1, respectively.).

and computational limitations. For the data augmentation, we select D = 32 for Equation

(6.5), enabling the model to train on a diverse set of images. We do not perform further data

augmentation. At test time, we choose the model checkpoint with the lowest validation loss

during training.

For the Convolutional Gaussian Process, we use a stride of 5 when extracting the 5× 5

patches, since a stride of 1 is to demanding in terms of memory. We train for 6000 epochs

with minibatches of size 6, using the Adam optimiser [Kingma and Ba, 2014] for stochastic

gradient descent with an initial learning rate of 0.01, reducing it after 3000 epochs to 0.001.

To prevent the likelihood variance from growing large during optimisation and dominating

the posterior covariance, we fix it for 3000 epochs. For the inducing patch sampling, we set

σ = 1 for the sampler in Equation (6.4), heavily biasing the patch initialisations to parts

of the image near the Stage 1 prediction. For the base kernel within the CGP, we use an

automatic relevance determination (ARD) Matérn 1/2 kernel, initialised with a lengthscale of

1 for each input dimension, and a variance of 20.

For the CNN baseline, we use the same minibatch size, training length and learning rate

schedule as the CGP. We experiment using σ = 2 and σ = 5 for Equation (6.1) to compare
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Metric CGP CNN2 CNN5

(Learned Covariance) (Fixed Covariance) (Fixed Covariance)
A

ll NLPD(↓) 5.54 ± 2.24 6.83 ± 17.64 5.51 ± 1.87
PE (↓) 1.81 ± 1.11 1.36 ± 1.84 1.15 ± 1.28

L
1 NLPD (↓) 4.67 ± 1.33 4.30 ± 3.22 5.25 ± 0.23

PE (↓) 1.26 ± 0.76 0.91 ± 0.75 0.87 ± 0.58

L
2 NLPD (↓ 5.35 ± 1.73 5.50 ± 14.14 5.27 ± 0.85

PE (↓) 1.72 ± 1.00 0.84 ± 1.58 0.68 ± 0.93

L
3 NLPD(↓) 6.57 ± 3.55 10.67 ± 35.56 6.02 ± 4.52

PE (↓) 2.46 ± 1.55 2.33 ± 3.19 1.90 ± 2.34

Table 6.1: Localisation results from 3 landmarks of the Cepalmetric dataset [Wang et al.,
2016] over a 4-fold CV. The Negative Log Predictive Density is reported (NLPD, lower is
better), the mean point-to-point error (PE), in millimeters. Our non-Deep Learning method,
Convolutional Gaussian Process (CGP), is compared to two Deep Learning baseline methods:
CNN2, CNN5, which use a heatmap label σ = 2, σ = 5 in Equation 6.1, respectively.

the sensitivity of uncertainty estimates depending on the target heatmap size. The values

respectively represent a high and low precision choice for the target heatmap, typically selected

through a hyper-parameter search.

6.5.2 Results and Analysis

Table 6.1 shows that our CGP is capable of reliably quantifying predictive uncertainty,

achieving an NLPD of 5.54. The CNN with a target heatmap of σ = 5 (CNN5) achieves

a marginally lower NLPD score of 5.51, despite achieving much better localisation error of

1.15mm compared to the CGP’s error of 1.84mm. Notably, an improved mean estimate (PE)

will in turn improve the Negative Log Predictive Density (NLPD). Therefore, the fact that

the CGP achieves an NLPD within approximately 0.03 of CNN5 is encouraging.

Moreover, the performance of the CNN model, in terms of both the PE and NLPD, is

highly dependent on the hyperparameter σ, resulting in significant variations between CNN5

and CNN2. This reflects the limitations of deep learning methods in measuring uncertainty,

as the NLPD score is almost entirely dependent on the mean estimate. This is exemplified by

the results of CNN2 on L3, where a poor PE of 2.33mm leads to extremely poor uncertainty

estimations, resulting in an NLPD score of 10.67. In contrast, the CGP, with a higher PE

error of 2.46mm, still manages to produce more reliable uncertainty estimates, achieving an
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NLPD score of 6.57. Unlike the CNNs, the covariance of the CGP is learned during training

and mathematically grounded, making it a more trustable and stable measure of the model’s

confidence.

Figure 6.2 highlights how the distribution of the CNN’s output heatmap is highly dependent

on the value of σ from the target function in Equation (6.1), and is uniform across all landmarks.

Note, that CNN2 even has multiple hallucinated covariances. In contrast, the covariances

learned by the CGP are distinct for each landmark, but unfortunately show a relatively

uniform pattern across predictions of the same landmark. This uniformity is due to the fact

that the covariance function was dominated by the likelihood noise during training, resulting

in more homogeneous uncertainty estimates than optimal.

6.6 Discussion and Conclusion

6.6.1 Summary of Findings

We showed that Convolutional Gaussian Proccesses (CGPs) can be applied to the complex

vision task of landmark localisation, allowing us to quantify the uncertainty associated with

predictions using a nonparametric approach. Empirically, the localisation error obtained

with CGPs are not yet competitive with those of a CNN. This is attributed to optimisation

challenges related to the GP likelihood noise, which dominates the output covariance matrices,

resulting in relatively uniform uncertainty estimates.

Despite this, the CGP obtains a similar NLPD to the CNN baseline, suggesting that if

this optimisation issues can be addressed and the predictive error decreased, the uncertainty

quantification provided by the CGP would be far superior to that of the CNN. This highlights

the primary challenge of using GPs for this task: the hyperparameter tuning is prohibitively

expensive. Our Stage 2 CNN baseline was initialised and trained in less than an hour with no

hyperparameter tuning, but achieving usable results with the CGP required weeks of careful

hyperparameter tuning for the kernel and training regime. An exciting direction for future

work which could simplify the task would be to apply Deep Kernel Learning [Wilson et al.,

2016], in which we use a CNN backbone for feature extraction and a GP head for mean and

covariance prediction.
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On the other hand, a concrete benefit of the method is that the uncertainty estimates

provided by GPs are more rigorous mathematically and more interpretable in practice than

those of deep learning. A promising avenue for future work could address the uniformity of

the uncertainty estimates by incorporating a heteroscedastic likelihood that produces different

likelihood variance outputs for each image.

6.6.2 Conclusion

In this chapter, we presented a Bayesian approach to landmark localisation with uncertainty

estimation. As far as we are aware, this is the first multi-output Convolutional Gaussian

Process (CGP) approach to an image regression problem. Through careful experimental

design, inducing patch initialisation and hyperparameter tuning, we achieved a CGP model

that can localise landmarks Cephalometric landmarks to within a 1.3-2.5mm accuracy. Despite

lagging behind in accuracy to a deep learning baseline, the uncertainty estimates our method

provides are mathematically founded and therefore more reliable than those derived from deep

learning methods. If the optimisation issues can be overcome, CGPs represent an exciting

future for a Bayesian approach to trustable uncertainty estimation for landmark localisation.



Chapter 7

Discussion and Conclusions

In this thesis, we improved landmark localisation of lightweight models using a a multi-

task patch-based framework with uncertainty estimation (PHD-Net), proposed a Frequentist

uncertainty estimation framework for continuous regression and applied it to heatmap-based

landmark localisation (Quantile Binning), and proposed the first Gaussian Process approach

to landmark localisation providing truly Bayesian uncertainty estimation. All contributions

are open-source and accessible to experts and non-experts as low-code/no-code solutions.

7.1 Contributions to Research

In this thesis, we set out to answer four principal research questions.

Q1: How can we develop a lightweight and data-efficient Deep Neural Network

for landmark localisation? In real-world applications of AI in healthcare systems practi-

tioners are reluctant to send sensitive data to third-party systems based on the cloud. Unable

to harness the power of computationally powerful models based off-site, practitioners may be

constrained to their less powerful local machines. Recognising this constraint, we highlighted

the pivotal need for lightweight models with small memory footprints and fast inference. In

Chapter 4 we tackled this challenge of improving parameter-efficient models, proposing a

patch-based multi-task network: PHD-Net. We showed that our novel loss function that

that trains the model to identify globally likely coarse locations as well as locally-focused,

pixel precise locations improved the performance of our patch-based model. Furthermore,

133
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our novel branch-fusion strategies Adaptive Prediction and Candidate Smoothing improved

localisation accuracy and performed comparably or better to similarly sized State-of-the-Art

models. Alongside this contribution to lightweight models, we showed the patch-based training

regime scaled well with model capacity for single landmark localisation. Notably, it introduces

the unique benefit of estimating uncertainty through “patch votes”, allowing us to discern

between high and low error predictions using a calibration set - a foundational principle that

underpinned our subsequent uncertainty explorations.

Q2: Can heuristic uncertainties in landmark localisation be formalised using

a data-driven, Frequentist framework? Building upon our insights in Chapter 4, we

translated our concept of heuristic uncertainty derived from heatmaps to approximate Bayesian

inference using Deep Ensembles. We proposed a novel method to fuse model outputs to

calculate the mean prediction alongside prediction variance, Ensemble Maximum Heatmap

Activation. Through extensive evaluations on heatmap-based uncertainty measures spanning

patch-based and encoder-decoder style models, we showcased the broad applicability of our

uncertainty measures. These can seamlessly be integrated into any State-of-the-Art landmark

localisation model that regresses heatmaps as its objective function. Furthermore, we proposed

a more structured paradigm to uncertainty using Frequentist principles: Quantile Binning.

We proposed using Isotonic Regression with a hold-out calibration to approximate the true

monotonic function between error and uncertainty. Using the learned function with and

a user-defined number of bins, we calculated uncertainty thresholds for bins of increasing

uncertainty, each bin accompanied by estimated error bounds. Our Quantile Binning approach

is application agnostic, and can be used by any continuous regression problem that provides

sample-wise uncertainty.

Q3: How can we better benchmark uncertainty measures in landmark localisa-

tion within a Frequentist context? Historically, uncertainty estimation from post-hoc

methods in landmark localisation were primarily evaluated by assessing the measure’s cor-

relation with localisation error [Drevickỳ and Kodym, 2020; Thaler et al., 2021]. Although

a useful preliminary indicator, this one-dimensional measure offers only a narrow lens into

the intricacies of the uncertainty measure. In Chapter 5, we were faced with the challenge

of how to more holistically evaluate our uncertainty measures within our Quantile Binning
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framework. To this end, we proposed two evaluation metrics for binning based uncertainty

methods: 1) Jaccard Index Similarity, in which we evaluate the similarity to the theoretically

perfect ground truth bins using the Jaccard Index similarity measure; and 2) Error Bound

Accuracy, where we measure how well our uncertainty measures predict localisation error

beyond simple correlation by measuring how accurate the estimated bin error bounds are.

Q4: How can we overcome the computational challenges with Gaussian Pro-

cesses for rigorous, Bayesian uncertainty estimation for landmark localisation?

Deep Learning based uncertainty is often miscalibrated [Guo et al., 2017], a challenge which

can be partially remedied using data-driven, Frequentist methods as shown in Chapter 4 and

Chapter 5. However, training a model within the Bayesian paradigm intrinsically provides a

distribution of predictions without requiring post-hoc analysis using calibration sets. This

Bayesian approach offers an entirely different and more mathematically rigorous uncertainty

estimation compared to Frequentist approaches, a paradigm that is largely unexplored in

landmark localisation. To this end, in Chapter 6 we proposed the first application of Gaussian

Processes (GPs) to landmark localisation using a Convolutional Gaussian Process (CGP),

achieving the first truly Bayesian uncertainty estimation for the task. Confronted with the

notorious computational issues with GPs, we proposed a two stage approach. First, we

used a Deep Learning model for coarse predictions, followed by a CGP centred around the

coarse prediction for the final coordinate prediction with uncertainty estimation. To improve

optimisation, we proposed a novel inducing patch initialisation based on predictions from

the first stage. The final results gave trustable uncertainty measures, but compromised on

localisation accuracy. Beyond landmark localisation, to the best of our knowledge, our work

represents the first application of a multi-task CGP for image regression, which is a significant

contribution to the GP and medical imaging community.

7.2 Contributions to Open-Source

7.2.1 MediMarker

The models presented in this thesis are freely available and open-source in a single unified

framework for landmark localisation, MediMarker [Schobs, 2022]: https://github.com/

https://github.com/Schobs/MediMarker
https://github.com/Schobs/MediMarker
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Figure 7.1: Program flow of MediMarker. The Core Superclass modules are the key config-
urable/extendable classes needed to build new methods into MediMarker.

Schobs/MediMarker. MediMarker is an out-of-the-box automated pipeline for landmark

localisation, supporting uncertainty estimation for model predictions. For a user, the only

requirement is to provide data in the correct format. Pre-trained models are available for

inference. The dedication to collaborative, open research means research can have a life

beyond acceptance of publication.

To ensure accessibility to non-experts, we use a low-code/no-code approach for system

configuration, called YAML [Ben-Kiki et al., 2009]. Considering the complexity of configuring

modern machine learning systems, using command lines or Python modules can be challenging.

YAML offers a more readable and manageable alternative, making configuration changes much

easier via a default configuration specified in a single file. Non-expert users can customise

configurations by changing text in the file, where each option is comprehensively documented.

We use version control using Git, following standard software practices.

The pipeline of MediMarker is simple, and the default model is based on the U-Net

architecture, LannU-Net, described in Section 3.3. By default, we use heatmap regression

for landmark localisation. As a non-expert user, after customising the YAML file to point

towards the data, the system automatically configures the architecture based on the size of

https://github.com/Schobs/MediMarker
https://github.com/Schobs/MediMarker
https://github.com/Schobs/MediMarker
https://github.com/Schobs/MediMarker
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the images. From there, training, validation and inference is available by simply changing a

setting in the YAML file.

As a researcher/developer, it is trivial to add additional models, loss functions, training

schemes etc. by extending a few classes, as shown in Figure 7.1. The framework reduces the

need for thousands of lines of boiler plate code common to deep learning, medical imaging and

specifically landmark localisation. Both PyTorch and TensorFlow are integrated seamlessly.

At it’s core, the framework runs on the concept of a Model Trainer. This is a superclass which

automates the entire machine learning training and evaluation pipeline based on the YAML

configuration file. To add another solution to landmark localisation into MediMarker, one

should make a child class of Model Trainer and define/redefine four core functions/classes,

indicated by the gold outlines in Figure 7.1:

1. Model. A PyTorch or TensorFlow model object with trainable weights e.g. PHD-Net,

U-Net, a Convolutional Gaussian Process.

2. Generate Labels. A python function that given coordinates for a sample, generates

a label for the model e.g. Gaussian Heatmap for U-Net or patch-wise heatmap &

displacements for PHD-Net.

3. Loss Function. A PyTorch or TensorFlow loss function which calculates some error

based on model output and target e.g. Mean Square Error.

4. Obtain Coordinates. A python function that returns a coordinate prediction from

a model output e.g. Coordinates of the pixel with maximum activation for Heatmap

regression or Candidate Smoothing for PHD-Net.

MediMarker was used by three BSc. students to facilitate their dissertation research, as

detailed in Section 1.5. In each case, a Github branch was created from the main repository and

each student extended the requisite classes for their experiments. For example, PHD-Former

(detailed in Section 4.5.1) was implemented by creating a single Model class. Due to the modular

nature of Medimarker, training and evaluation could be performed completely automatically.

Furthermore, Test Time Augmentation and Monte-Carlo Dropout were integrated into the

framework with ease due to extensive documentation and collaboration enabled by Github.
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The open-source, standardised, collaborative and well documented framework of Medi-

Marker promotes re-usability of research as well as reproducability, maximising the impact

of the research in this thesis. Furthermore, the low-code/no-code options for non-experts

improve the accessibility of the machine learning solutions presented in this thesis, again

improving potential impact of the work.

7.2.2 PyKale

Beyond landmark localisation and MediMarker, we have integrated Quantile Binning (proposed

in Chapter 5) into PyKale, an open-source framework that is officially a member of the PyTorch

ecosystem [Lu et al., 2022b]. PyKale focuses on accessible machine learning from multiple

sources and follows industry standard software engineering practices including standardisation,

documentation and testing. Since Quantile Binning is applicable to any uncertainty estimation

regression problem with sample-specific uncertainty scores, the integration of the method into

PyKale promises greater impact outside of the domain of landmark localisation.

7.3 Future Developments

7.3.1 Transformer-Powered Patch-based Models for Landmark Localisation

In Chapter 4 we improved localisation accuracy for lightweight patch-based models for single

landmark localisation. Yet, when scaling this patch-based training to larger capacity models

for multi-landmark prediction, traditional heatmap regression methods surpassed them in

performance. We hypothesise that the more complex multi-task objective function is noisier

to optimise compared to the traditional Gaussian heatmap regression. However, using a

Vision Transformer [Dosovitskiy et al., 2020] as the backbone network, there is undoubtedly

room for further optimisation and tuning. Future work could continue down this patch-based

paradigm with larger models, offering patch-wise landmark predictions with the intuitive

heuristic uncertainty based on “patch votes”.
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7.3.2 Uncertainty Estimation with Quantile Binning: Beyond Landmark

Localisation

In Chapter 5 we introduced Quantile Binning, a general Frequentist framework for uncertainty

estimation for continuous regression problems. While its efficacy in landmark localisation was

established, its incorporation into PyKale [Lu et al., 2022b] hints at future opportunities for

research beyond the domain explored here.

7.3.3 Convolutional Gaussian Processes for Landmark Localisation

In Chapter 6 we proposed the first Gaussian Process (GP) for landmark localisation using

a multi-stage pipeline. We achieved comparable localisation accuracy to a Deep Learning

baseline, although the latter demonstrated superior accuracy. However, the Bayesian uncer-

tainty estimation showcased significant potential. Future work could improve the optimisation

of the GP training, with a particular focus on preventing the likelihood noise dominating

the covariance function. Furthermore, a clear direction for future work could address the

uniformity of the uncertainty estimates by incorporating a heteroscedastic likelihood that

produces different likelihood variance outputs for each image. One final avenue to point out is

to combine the benefits of Deep Learning with Gaussian Processes using Deep Kernel Learning

[Wilson et al., 2016]. Such an approach would involve performing feature extraction using a

deep neural network, with a GP head making the final mean and variance prediction, trained

end-to-end. This would have the advantage of being a single stage method, and could harness

a pre-trained landmark localisation model to initialise the feature extractor. A limitation,

however, is that uncertainty pertains to the latent image representation rather than the actual

image itself.

7.3.4 Improving Practical Application and Interpretability

The practical benefits of the uncertainty estimation techniques introduced in this thesis include

the ability to flag potentially erroneous model predictions, which can be corrected manually

by a human-in-the-loop. However, no such study was undertaken to measure the efficacy or

practicality of this application. While technical advancements are crucial, the integration of

human-in-the-loop perspectives is equally important to ensure these technologies are effectively
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translated into real-world medical scenarios.

Therefore, future work could focus on establishing collaborative frameworks with clinicians

to evaluate the proposed models in practical medical scenarios. This could involve usability

studies, where clinicians interact with the models in simulated or real clinical environments,

providing feedback on the model’s performance, interpretability of uncertainty estimates, and

overall integration into the clinical workflow.

Furthermore, involving a human-in-the-loop in the model development process itself

presents a promising avenue for exploration with active learning [Ren et al., 2021]. This

technique involves a human during training acting as an oracle, annotating data when necessary.

In our case, highly uncertain predictions could be passed to the oracle for correction before

being fed back into model training, improving model accuracy.

Finally, the issue of interpretability is critical in the medical domain, where the demand for

explainable and transparent AI models is particularly pronounced [WHO, 2021]. The ability

of medical professionals to understand and trust the outputs of AI models is paramount, as

these tools increasingly inform critical decisions regarding diagnosis, treatment planning, and

patient management. While this thesis has made progress in quantifying model uncertainty,

this is only one aspect of interpretability. At this stage in time, a fundamental problem

of relying on Deep Neural Networks is that they are ”black boxes”; their decision-making

processes incomprehensible to a human. Therefore, future research should also prioritize the

development of methodologies that enhance their interpretability, where a human-in-the-loop

could allow practitioners to provide direct input and oversight.

7.3.5 Advocacy for Open-Source Software

Finally, I would like to end by emphasising the importance of open-source and reiterating

the commitment to it throughout this thesis. By integrating the work in this thesis with the

actively maintained package PyKale [Lu et al., 2022b], as well as MediMarker, it ensures the

progress made in this journey has a life beyond it. Future researchers can easily reproduce,

reuse and build on the ideas presented this thesis; an optimistic and fulfilling promise after

the long and arduous journey of a PhD.
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Appendix A

Additional Experimental Results for

Quantile Binning

We present additional experimental results for Quantile Binning, introduced in Chapter 5.

Section A.1 motivates using our metrics as uncertainty measures, showing positive correlation

between the metrics and localisation errors with piece-wise linear regression plots. Section

A.2 shows the tabular data of Figures 5.4a & 5.4b. Section A.3 shows results per-landmark,

allowing us to see our uncertainty measures are more effective at predicting error for landmarks

with lower localisation accuracy overall. Section A.4 shows experimental results of using

Quantile Binning on models trained with varying the standard deviation of the Gaussian

heatmap objective function (Equation (2.5)). The results show our method performs similarly

regardless of the hyperparameter chosen. Finally, Section A.5 shows our approach is general,

with extensive results varying the number of Quantile Bins over our two cardiac datasets

(Section 3.2.1) using PHD-Net and U-Net.
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A.1 Uncertainty-Error Correlation

S-
M
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Figure A.1: Piece-wise linear regression of uncertainty with localisation error, with breakpoints
at the uncertainty quantiles. Grey represents bootstrap confidence intervals. Data is reported
on all data from 4-fold cross validation on the Cephalometric dataset [Wang et al., 2016] using
the U-Net model. ρ is the Spearman’s Rank Correlation Coefficient between the uncertainty
measure and error. Both the x-axis and y-axis are log-transformed.
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A.2 Localisation Results Over all Bins

4 Chamber Images Short Axis Images

Method U-Net PHD-Net U-Net PHD-Net

S-MHA All 10.00 ± 18.99 11.07 ± 21.33 5.86 ± 14.19 3.58 ± 3.52
S-MHA B5 18.09 ± 35.09 21.85 ± 33.77 11.28 ± 28.3 5.34 ± 5.87
S-MHA B4 8.66 ± 10.63 12.05 ± 21.25 6.55 ± 13.21 3.62 ± 2.89
S-MHA B3 7.52 ± 6.73 8.93 ± 17.05 4.17 ± 2.56 3.21 ± 2.58
S-MHA B2 9.74 ± 19.48 6.05 ± 8.78 4.03 ± 2.36 2.88 ± 1.96
S-MHA B1 6.79 ± 6.09 5.80 ± 9.03 3.62 ± 2.45 2.78 ± 1.99

E-MHA All 6.36 ± 8.01 9.14 ± 18.11 4.37 ± 8.86 3.36 ± 3.50
E-MHA B5 9.99 ± 14.51 19.12 ± 32.75 8.56 ± 19.53 5.31 ± 6.18
E-MHA B4 6.09 ± 6.18 8.56 ± 16.04 4.29 ± 2.71 3.21 ± 2.36
E-MHA B3 5.61 ± 6.12 7.55 ± 11.69 3.11 ± 2.43 2.95 ± 1.93
E-MHA B2 5.36 ± 3.72 5.99 ± 6.06 3.32 ± 2.28 3.05 ± 2.52
E-MHA B1 4.93 ± 2.85 4.70 ± 3.21 2.98 ± 2.09 2.39 ± 1.90

E-CPV All 8.13 ± 10.16 9.42 ± 13.07 4.97 ± 7.51 3.22 ± 2.93
E-CPV B5 16.3 ± 17.77 25.04 ±22.1 9.65 ± 15.5 5.08 ± 4.7
E-CPV B4 6.82 ± 6.34 9.66 ±11.88 4.18 ± 2.69 2.95 ± 2.03
E-CPV B3 6.84 ± 7.97 5.87 ± 3.61 3.88 ± 2.49 3.24 ± 2.38
E-CPV B2 5.62 ± 3.45 5.38 ± 3.07 3.63 ± 2.22 2.65 ± 2.08
E-CPV B1 5.34 ± 3.0 5.10 ± 6.76 3.75 ± 2.13 2.47 ± 2.08

Table A.1: Localization errors (mm) for the uncertainty methods outlined. All indicates entire
set of predictions; B1 indicates subset with the lowest uncertainties. Mean error and standard
deviation are reported across all folds & all landmarks. Bold indicates best results in row for
the given dataset for All and B1.
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A.3 Quantile Binning Separating Landmarks

Quantile Errors Jaccard Index Error Bound Accuracy
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Figure A.2: The results from Quantile Binning for S-MHA, E-MHA and E-CPV uncertainty
measures on individual landmarks from the 4CH dataset. The Quantile Errors column shows
the boxplots of localization errors for each quantile bin, showing the landmarks across all
folds. The Jaccard Index column shows the similarity between the predicted Quantiles and
the true error quantiles, and the Error Bound Accuracy column shows the accuracy of the
predicted error bounds for each quantile bin.
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Figure A.3: Comparing results for models using different standard deviation values for the
ground truth heatmap labels. We show the Quantile Localization Errors using 5 & 10 Quantile
bins. We present results on all landmarks from a 4-fold CV on the Cephalometric dataset
[Wang et al., 2016].
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A.4 Variance of Target Heatmap Comparison
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Figure A.4: Quantile Binning from a U-Net localization model trained using target heatmaps,
varying the standard deviation of the Gaussian blob. The Quantile Errors, Jaccard index and
Error Bound Accuracy are presented over a 4-fold Cross Validation on the Cephalometric
dataset [Wang et al., 2016].
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A.5 Comparing Q Values
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Figure A.5: Quantile Errors varying Q (Number of Quantile Bins). We show results for
the uncertainty measures E-MHA and E-CPV, over all landmarks from a 4-fold CV on the
Cephalometric dataset [Wang et al., 2016], trained on the U-Net model.
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Figure A.6: Quantile Errors varying Q (Number of Quantile Bins). We show results for
the uncertainty measures E-MHA and S-MHA, over all landmarks from a 4-fold CV on the
Cephalometric dataset [Wang et al., 2016], trained on the U-Net model.
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Figure A.7: Quantile Errors varying Q (Number of Quantile Bins). We show results for the
uncertainty measures S-MHA, E-MHA and E-CPV, over all landmarks from a 4-fold CV on
the Cephalometric dataset [Wang et al., 2016], trained on the U-Net model.
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Figure A.8: Quantile Errors varying Q (Number of Quantile Bins). We show results for the
uncertainty measures S-MHA, E-MHA and E-CPV, over all landmarks from a 8-fold CV on
the SA dataset, trained on the PHD-Net model.
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Figure A.9: Quantile Errors varying Q (Number of Quantile Bins). We show results for the
uncertainty measures S-MHA, E-MHA and E-CPV, over all landmarks from a 8-fold CV on
the 4CH dataset, trained on the PHD-Net model.
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Figure A.10: Quantile Errors varying Q (Number of Quantile Bins). We show results for the
uncertainty measures S-MHA, E-MHA and E-CPV, over all landmarks from a 8-fold CV on
the SA dataset, trained on the U-Net model.
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Figure A.11: Quantile Errors varying Q (Number of Quantile Bins). We show results for the
uncertainty measures S-MHA, E-MHA and E-CPV, over all landmarks from a 8-fold CV on
the 4CH dataset, trained on the U-Net model.
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