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Abstract

The unifying thrust of this thesis is to explore asymptotic proper-
ties of discrete random structures of large “size”, focusing on their
limit shapes. The first part (Chapters 2 and 3) is concerned with
asymptotic analysis of the so-called Boltzmann distributions over the
spaces of strict integer partitions (i.e. with distinct parts) into sums
of perfect q-th powers (e.g. squares). The model is calibrated via the
hyper-parameters ⟨N⟩ and ⟨M⟩ controlling the expected weight and
length of partitions. In this framework, we obtain a variety of limit
theorems for “short” partitions as ⟨N⟩ → ∞, while ⟨M⟩ is either fixed
or grows slower than for unconstrained partitions. Our results include
the asymptotics of the cumulative cardinality in the case of fixed ⟨M⟩
and the derivation of limit shape in the case of slow growth of ⟨M⟩.

Building on these and other results, we have also designed sam-
pling algorithms for our models, and studied their complexity and
performance. Boltzmann sampling is a topical area in computer sci-
ence research, but we also argue that our algorithms can be used as
exploratory tools in additive number theory.

In the second part (Chapter 4), we study the limit shape of inte-
ger partitions emerging in the classical occupancy problem, i.e. as a
result of random allocation of a large number of independent “balls”
with a given frequency distribution over infinitely many “boxes”. To
clarify the ideas and to streamline calculations, we focus on a specific
model based on the Rayleigh frequency distribution (but generalising
to a random number of balls). We also indicate a link with strict
partitions, thereby offering an alternative method of sampling.

In the last part of the thesis (Chapter 5), we study the mass dis-
tribution in a stochastic system comprising particles of integer weight,
which can either aggregate via diffusion or fragment by chipping off
a single mass unit. For the model of pure aggregation on a one-
dimensional cycle, analysed with a combination of computer simula-
tions and analytical techniques. We observe that the Rayleigh dis-
tribution represents the limit shape for the spatial mass profile at
intermediate times. In a model with linear dependence between the
transition rates and the masses, we show that the role of the limit
shape is played by the exponentiated Weibull distribution.
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Chapter 1

Introduction

1.1. Aims and objectives

1.1.1. Background

A partition of a natural number is a decomposition of this number as a sum of
natural parts, up to reordering (e.g., partitions of 5 given by 2 + 3 and 3 + 2
are not distinguished). We call the number that is decomposed the weight or the
size of the partition. The number of parts is called the length. Partitions are
combinatorial objects that are commonly used in many areas such as:

• Algebra, where partitions represent the size of blocks in a Jordan decom-
position or the conjugacy classes of the symmetric group [35].

• Biology, notably via the Ewens sampling formula which is used to describe
distribution of non-selective alleles in a population [29].

• Statistical physics, where partitions represent the distribution of energy in
assemblies of indistinguishable particles [6].

• Analysis of citations, where partition models are used to model citation
count data [65], [94].

In addition to their expression as sums they are represented in various ways
according to the focus:

• Multiplicities/Occupancy: This consists in a sequential representation, in-
dicating the number of times each natural number appears in a partition.
This representation underlines the interpretation of integer partitions as
multisets.
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1.1 Aims and objectives

• Young diagram (French convention): This representation consists in stack-
ing squares of unit size in the first corner of the plane so that each row
contains a number of blocks corresponding to the parts in the decreasing
order.

Figure 1.1: Young diagram of 35 = 10 + 7 + 5 + 5 + 4 + 3 + 1

This representation can be interpreted as a functional embedding by con-
sidering the step function defined by the upper boundary of the diagram.

Our aim is to study ensembles of partitions of large numbers. This involves
combinatorial questions, typically consisting in the enumeration of partitions of
such large numbers, either with or without structural constraints. Our research
focuses specifically on partitions with a restriction on multiplicities (no repetitions
of parts), on the nature of the parts (restricted to perfect q-th powers for a natural
exponent), and on the number of parts (Chapters 2 and 3). From a statistical
perspective, this is the equivalent to studying the family of uniform distributions
over the level sets of the weight function.

The defining characteristic of uniform distributions is that they do not exhibit
any bias towards particular features. This is equivalent to maximising the Gibbs
entropy

S(p) = −
∑
x state

px log(px),

where S(p) is the entropy associated with a probability distribution p, and the
sum is taken over all possible outcomes. The entropy is a measurement of the
average information, or of disorder, in a random system. This naturally suggests
a connection with statistical mechanics, as it follows from the second law of ther-
modynamics that the equilibrium distribution of isolated thermodynamic systems
must also maximise the entropy. However, these systems encompass potentially
infinite sets of configurations, contrary to uniform distributions, and they are
subject to a condition of mean energy. The Boltzmann distribution appears as
the solution of this constrained maximisation problem. It is generically given by

Pβ(x) ∝ exp(−βE(x)), x state.

2



1.1 Aims and objectives

Where E(x) is the energy of the state x and β is the inverse temperature of the
system. In the case of integer partitions, the energy function E is often taken as
their weight. More generally, the energy function can include multiple extensive
quantities, as long as the level sets are finite. In this thesis, we will consider the
couple formed by the weight and the length. We observe that the Boltzmann
distribution is conditionally uniform, meaning that it is constant across the level
sets of E.

In addition, the Boltzmann distribution can be introduced for its mathemat-
ical convenience. It approximates the uniform distribution across configurations
that have a specified energy. This is achieved by setting the mean energy of
the Boltzmann distribution to match this specified energy. It possesses desirable
independence properties, which are absent in a uniform distribution constrained
by fixed energy. Typically, in the context of integer partitions, the multiplicities
of parts are independent.

The Boltzmann distribution describes closed systems in thermodynamic equi-
librium. Beyond these, numerous systems behave differently. Systems involving
aggregation (Chapter 5), for instance as a result of chemical reactions may appear
to order themselves, thus decreasing the entropy and violating the second law of
thermodynamics. This apparent paradox arises from not taking into account
that reactions of aggregation induce a release of components, such as energy or
particles, which are not tracked. These systems are classified as non-equilibrium
systems. In these, the concept of entropy must be applied more broadly, consid-
ering the interactions between the system and its surroundings. Fragmentation
can be regarded as the reverse or dual process to aggregation. However, this re-
lationship is non-trivial, as there is no direct one-to-one correspondence between
the ways an aggregate can fragment and the ways multiple aggregates can merge
into one. This is due to the loss of the spatial information of the individual frag-
ments during the aggregation process. Systems involving fragmentation should
also be understood through the lens of non-equilibrium thermodynamics, where
reactions of fragmentation are triggered by an input of energy.

Integer partitions are a natural way to encode count data, assuming that
the categories are indistinguishable. This motivates the construction of flexi-
ble partition distributions. In particular, occupancy models (Chapter 4) are a
ubiquitous class of such distributions, obtained by the independent allocation of
indistinguishable balls into bins according to a specified categorical distribution.

1.1.2. Combinatorial questions

Many results concerning integer partitions involve their enumeration [41, 90, 26,
48, 61, 43, 52]. The Hardy–Ramanujan formula [41], which gives an asymptotic
expansion for the number of partitions, stands as a prime example of such a

3



1.1 Aims and objectives

result. Similar formulas are known for the (asymptotic) enumeration of integer
partitions under various constraints, such as restrictions on the source of parts
and/or their number, on the permitted repetitions of parts, etc. Such constraints
echo in statistical physics where the energy levels of a particle are not necessarily
uniformly spread and where two identical fermions cannot occupy the same state
due to the Pauli exclusion principle.

One of our goals is to enumerate strict partitions (repetitions are not allowed),
where the parts are q-th power and the number of parts is fixed despite the size
approaching infinity. This can be seen as a variation of Waring’s problem [83],
which is concerned with determining the smallest number of parts G(q) such that
all large enough numbers can be partitioned into at least G(q) numbers, each
raised to the q-th power. This classical problem of additive number theory has
several variants such as the anti-Waring problem, which consists in finding the
number N(q,m) such that every larger integer can be written as the sum of the
q-th powers of at least m ≥ G(q) integers. Bounds for this problem have been
given in [53].

While the aforementioned problems are concerned with determining whether
numbers can be represented in a specific manner, our focus lies in determining
the number of such representations. This proves to be a challenge due to the tight
restriction of length, that prevents from finding a single closed form to estimate
the counting sequence. In this research, we bypass this limitation by deriving
a result of cumulative enumeration (Theorem 2.34). This cumulative result can
be interpreted as a partial answer to a generalised m-dimensional Gauss circle
problem under the q-norm (see Figure 2.2).

Further exploration is needed to address the irregularity and gaps in the
counting sequence. This is why we provide preliminary computing tools, facili-
tating this exploration despite the absence of an analytical solution (Section 3.3).
Incidentally, it is interesting to observe an analogy with multiplicative number
theory, as the erratic behavior of the counting sequence, notably seen in Figure
3.4, bears a resemblance to the behavior of the divisor function. In both cases,
adopting a cumulative approach is relevant in order to derive a normal order.

1.1.3. Asymptotic structure

What do partitions of large numbers look like? One approach to addressing this
question involves examining their overall shape, specifically their Young diagrams.
Temperley [81] initially provided an answer to this question (see Figure 1.2).

This result has been subsequently re-derived by Vershik [85]. To define a
limit shape, we assume that partitions are endowed with a family of distribu-
tions. In this particular context, we consider the family of uniform distributions,
which are parameterised by partition size. Vershik’s approach, inspired by sta-
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1.1 Aims and objectives

Figure 1.2: A uniformly sampled partition of n = 1000 along with the (scaled)

Temperley curve (e−xπ/
√
6n + e−yπ/

√
6n = 1)

tistical physics, relies on the use of the Boltzmann/multiplicative distribution. It
involves relaxing the constraint on the size of uniform distributions. Through
what is known of the physicists as the equivalence of ensembles, insights from the
Boltzmann distribution can be transferred to the uniform distribution.

The challenge of defining a limit shape lies in being able to implement an
appropriate scaling. In loose terms, this implies that when observing the Young
diagram from an adequate distance, a smooth curve should become discernible.
This challenge is more apparent when considering asymptotic regimes that con-
strain other parameters (such as the length) when the size goes to infinity. In this
thesis, we determine the limit shape for a family of Boltzmann distributions, Pz,
over strict partitions into perfect q-th powers with a length that grows relatively
slowly (Theorem 2.44).

Certain information cannot be extracted from scaled Young diagrams. There-
fore, it becomes imperative to focus on some observables separately, specifically
those that exhibit distinct scaling behaviors. This is the case, for instance, when
considering the maximal part and length of uniform unrestricted partitions [26].
In this thesis we determine the asymptotic distribution of the extreme parts of
Pz-distributed partitions when the number of parts is fixed as the size approaches
infinity (Theorem 2.35) and when the number of parts is allowed to grow relatively
slowly (Theorem 2.40).

Partitions can be conceptualised as the distribution of an extensive quantity
across indistinguishable sites. Therefore, it becomes pertinent to examine phys-
ical processes through this framework, with the aim of identifying the partition
distributions that emerge from these processes, assuming that we can meaning-
fully “forget” the spatial component. Temperley’s derivation [81] was in fact
motivated by modelling the growth of a crystal into a quadrant. This process
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1.1 Aims and objectives

∅

Figure 1.3: Young’s lattice for partitions of integers from 0 to 4

is defined as the successive addition of blocks to a Young diagram, that can be
interpreted as a downward random walk on the Young’s lattice (Figure 1.3).

Processes of aggregation and fragmentation are also a source of partition
distributions. These distributions can manifest either systematically, within the
framework of mean-field processes, or as marginal distributions, when the spatial
positioning of aggregates is ignored. Our research focuses on a specific process
that originates from a model previously studied by Majumdar et al. [57, 58, 59].
In this model, massive particles undergo stochastic diffusion across a lattice.
When a particle lands on an already occupied site, aggregation occurs. Addition-
ally, units of mass may dissociate from particles. There are two approaches to
obtaining limit shapes in this model:

• Purely aggregating case: In this scenario, the optimal time for observa-
tion falls between two extremes: the early phase, where the system’s state
is predominantly dictated by the initial distribution, and the late phase,
where the system ultimately converges to a single aggregate. Observing the
process at this opportune time allows for meaningful insights into the sys-
tem’s evolution. Assuming the lattice is a one-dimensional, periodic space
(a cycle), the Rayleigh distribution emerges as the limit shape.

• Equilibrium: When fragmentation is introduced, the system has a non-
trivial equilibrium distribution. In the mean-field setting, it has been shown

6
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that a phase transition occurs, contingent on the rate of fragmentation
relative to the rate of diffusion.

We have extended Majumdar’s model by introducing mass-dependent tran-
sition rates, thereby broadening the model’s applicability to a wider variety of
physical systems. Our investigation targets three specific scenarios of the purely
aggregating case on a cycle (Section 5.2). Our methods combine both simulation
and analytic techniques to arrive at the following insights:

• Diffusion rates independent of the mass: When the diffusion rates are
mass-independent, we demonstrate that the time to reach a state with a
single particle grows quadratically with the system’s size. Our simulations
coincide with Majumdar’s result and indicate that the Rayleigh distribution
is the limit shape.

• Diffusion rates proportional to the mass: Our analysis indicates that
in a system where diffusion rates scale with the mass, the time until the
ultimate aggregation exhibits a logarithmic growth relative to the system
size (equation (5.27)). We propose the exponentiated Weibull distribution
as a likely candidate for the limit shape.

• Diffusion rates inversely proportional to the mass: Our observations
remain inconclusive at this stage.

We also explored the equilibrium distribution in particular instances of the mean-
field setting (Setting 5.3). The methods used here should be applied to other cases
and extended to multispecies models.

1.1.4. Fitting

From a supply perspective, parametric partition models offer tools for fitting data,
serving as a source of models for their analysis and interpretation. An example of
such use can be found in bibliometrics [65, 14]. A range of parametric partition
models can be defined using an infinite urn scheme that involves independently
throwing balls into urns labelled by the natural numbers, according to a given
distribution. One way to produce a partition in this manner is to consider the
number of balls in each urn as the parts of the partition [36], thereby generating a
partition of the total number of balls. Alternatively, the number of balls per urn
can be interpreted as representing the multiplicities of the parts, thus providing a
flexible model where the frequency distribution can be inferred from count data
[65, 14]. In this research we only consider the latter construction.

Bogachev et al. [14] investigated the asymptotic behaviour of a model founded
on the Generalised Inverse Gaussian-Poisson Distribution (GIGP). As a model

7
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with three parameters, the determination of a limit shape necessitates the seg-
regation of multiple asymptotic regimes. This situation is reminiscent of the
situation we encounter in Chapter 2, with the Boltzmann distribution calibrated
for both weight and length.

In the present study, we opt not to explore the complexities associated with
the segregation of multiple asymptotic regimes, which are inherent in multi-
parameter models. Instead, we present an elementary example based on the
Rayleigh distribution to illustrate the core concepts involved in determining a
limit shape for such models (Section 4.2). Unlike [14], where the number of balls
is deterministic, we allow it to be random. Although occupancy/urn models dis-
cussed here are not specifically designed to fit data with structural constraints,
we establish a link with strict partitions and utilise this connection to reproduce
the Boltzmann distribution (Section 4.3).

1.1.5. Sampling

Random sampling serves as a tool for the exploration of combinatorial struc-
tures, including but not limited to integer partitions. This alternative approach
can aid in obtaining empirically-driven conjectures where analytical methods fail.
An additional practical aspect of random sampling lies in its application to the
benchmarking of computational algorithms. Generated instances of combinato-
rial structures can serve as benchmarks to empirically evaluate the performance,
robustness, and limitations of algorithms designed to process instances of these
structures. The efficiency of the sampling algorithms is generally measured in
terms of time complexity and memory requirements. Efficient sampling algo-
rithms aim to generate a large number of large instances of the combinatorial
structures in question, thereby providing a rich dataset for analysis.

In addition to their analytic properties, Boltzmann models provide a general
framework for efficient sampling of a variety of combinatorial objects. This was
demonstrated by Duchon [24], under the assumption that these objects can be
symbolically specified in the language introduced by Flajolet [32]. Specifically,
unrestricted partitions with a large expected size n can be generated in sub-linear
time [31], with a time complexity of O(n1/2). However, this comes at the cost
of requiring an oracle to estimate the generating function of the partitions. By
incorporating a rejection loop to achieve uniformly distributed partitions of n,
the complexity remains sub-quadratic, O(n5/4).

We leverage our analysis of the two-parametric Boltzmann distribution for
strict partitions into m perfect q-th powers (Chapter 2) to design and analyse
sampling algorithms (algorithms 1 and 2). We use a truncation approach, proved
to be a good approximation of the Boltzmann distribution, instead of relying on
an oracle. If an oracle is available, we propose an alternative approach that uses an

8



1.2 Layout of the thesis and contribution

occupancy scheme (Section 4.3). A significant challenge in the rejection process is
the potential emptiness of the classes of partitions to be sampled. Therefore, it is
essential to detect such scenarios with high confidence to ensure the termination
of the rejection scheme while avoiding the oversight of non-empty cases. Our
design also has the benefit of providing computing tools to study analogues of
Waring’s problems, as mentioned earlier.

1.2. Layout of the thesis and contribution

The remainder of the thesis comprises five chapters, concluding with a summary
and a review of some future research. It is accompanied by several appendices.
Appendix A provides an expanded view on integer partitions. Appendices B
and C contain supplementary material about combinatorics and Boltzmann sam-
pling. Appendix D contains selected computer codes that have been used in this
research. Chapters 2 and 3 involve material from the jointly authored paper [68]
(submitted to Advances in Applied Mathematics).

Chapter 2. We perform a thorough analysis of the Boltzmann distribution
over the class Λ̌q of strict partitions into perfect q-th powers, for a fixed natural
number q under the assumption that the weight goes to infinity while the length
growth is restricted (Assumption 2.1). The constraints considered here have not
been examined collectively. They give an interesting case of structure with gaps
in the sense that the support of the counting sequence may contain arbitrarily
large gaps depending on q and further restriction of the length. It also has po-
tential extensions to non-integral q values discussed in Chapter 6. Our analysis
is divided into two distinct cases. Firstly, we consider the expected length to be
fixed (Section 2.3). Then we allow it to go to infinity while keeping Assumption
2.1 satisfied (Section 2.4). We derive a calibration of the distribution valid in
both cases (Theorem 2.21). In the case where the expected length is fixed the
asymptotic distribution of length and weight (Theorem 2.26) as well as the ex-
trema (Theorem 2.35) are derived. The distribution of length and weight is used
to provide a cumulative enumeration result (Theorem 2.34). In the latter case
we obtain analogous results for the distribution of length and weight (Theorem
2.40) and of the extrema (Theorem 2.48), we also derive the limit shape and the
fluctuations of the Young diagram (Theorem 2.44 and Theorem 2.45).

Chapter 3. We propose an application of the previously developed tools
and results in the context of random sampling. Based on Lemma 2.12, sampling
from the Boltzmann distribution over Λ̌q is seemingly straightforward thanks to
the intrinsic independence of the random multiplicities of parts. However, there
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are issues with ensuring the finiteness of the sampling loops. A solution is to
use a method based on deploying an oracle [24, 31, 11], which is a collective
name for an external device that is capable of computing at request (exactly or
approximately) the values of the corresponding generating function, serving as a
normalising denominator in probability expressions. Oracles are frequently con-
sidered as granted primitives; however, an insightful discussion regarding their
implementation can be found in [71, Chap. 2]. Instead, we pursue an approach
based on a truncation of the sampling loop on the basis of high statistical con-
fidence, thus adopting the methodology of hypotheses testing in statistics. Se-
lection of the proper truncation thresholds is guided by our limit theorems for
the partition weight and length. This approach is especially useful in the case
of partition spaces Λ̌q(n,m) that are empty for some of the pairs (n,m) (which
may not be known in advance). This statistical approach to sampling offers a
practical method to effectively explore the hypothetical partitionability of large
integers. Section 3.3 serves as a proof of concept for this method.

Chapter 4. We turn onto partitions generated through an occupancy model
according to the scheme described in Section 4.1, whereas a random number of
parts M are allocated independently to parts size with a common distribution
(fj). Section 4.2 serves as an illustration of a general approach to limit results
for scaled Young diagrams. As previously mentioned, our approach is similar to
that in [14], where a limit for a model based on the Generalised Inverse Gaussian-
Poisson Distribution is established. However, we allow the number of parts to be
random. For simplicity, the case presented here is based on the family of Rayleigh
distributions, although it can easily be extended to other scale families, and does
not require the distinction of multiple asymptotic regimes.

Section 4.3 provides a simple connection between a strict partition distribu-
tion obtained from an occupancy model and the Boltzmann distribution. This
result can be used to design another alternative to the Boltzmann sampler for
powersets presented in [31] and which also requires an oracle contrary to the sam-
pler proposed in Chapter 3.

Chapter 5. In Section 5.1, we present a particular setup for processes of
aggregation and fragmentation involving particles with discrete mass, located on
an oriented graph (the ambient space). These particles are involved in interactions
governed by a continuous time Markov process. A notable aspect of this work
is that interaction rates vary based on the mass of the particles. Particles may
either jump or transfer a single unit of mass to an adjacent site. This setup aims
to generalise the model studied by Majumdar et al. [57, 58, 59]. The model
parameters dictate the cohesion of these aggregates, that is how the overall mass
attracts or repels individual units of mass, as well as their rate of diffusion. These

10



1.2 Layout of the thesis and contribution

parameters can be seen as a proxy for the internal structure of the sites and of
the particles.

In Section 5.2, we narrow our focus to a specific instance of the model where
the ambient space forms a directed cycle and the system is purely aggregating,
with particles only executing jumps to neighboring sites without any fragmenta-
tion. This non-reversible setup ends with the formation of a singular aggregate.
To study this, we develop and apply a simulation algorithm, detailed in Section
5.2.1 and Appendix D.4. Our simulations reveal the following:

• When the jump rates are mass-independent, the mass distribution appears
to converge to a Rayleigh distribution (Figure 5.5 and Figure 5.8). It is
consistent with the limit found in [57].

• When the jump rates are proportional to particle mass, the mass distribu-
tion seems to tend toward an exponentiated Weibull distribution (Figure
5.6). It appears to be a discovery that warrants further exploration.

Additionally, we analytically determine the second-order moments when the rates
are independent of the mass (Proposition 5.3). This analysis enables a rigorous
determination of the time scale for the final coalescence (Corollary 5.3.1). In this
case and when the jump rates are proportional to the mass, we provide heuristic
estimates for the aggregation times (equations (5.18) and (5.27)).

In Section 5.3, we consider a mean-field setting that incorporates fragmenta-
tion, where individual units of mass can jump between sites. Using generating
functions, we derive the equilibrium distributions in the following scenarios

• when units of mass chip at a rate independent of the mass of their aggregate,
the equilibrium distribution is geometric (Theorem 5.7),

• when units of mass chip at a rate proportional to the mass of their aggregate,
the equilibrium distribution is Poissonian (Theorem 5.9),

• when both diffusion and fragmentation occur at a rate that is independent
of mass, using the radius of convergence transfer theorem, we re-derive a
result that was initially proven by Majumdar [59] (Theorem 5.10).

This chapter serves as a foundational step for a larger project focused on aggre-
gation and fragmentation models, especially multispecies models, such as the one
briefly mentioned in Section 6.4.
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Chapter 2

“Short” integer partitions with
power parts: Limit laws

We focus on integer partitions under a conjunction of the following conditions:

(i) Firstly, the source of parts is limited to perfect q-th powers, with some
q ∈ N.

(ii) Secondly, partitions are assumed to be strict, in that all parts must be
distinct.

(iii) Finally, we consider “short” partitions, where the length (i.e., the number of
parts) is either fixed or grows slowly as compared to the “free”, unrestricted
regime.

We denote by Λ̌q the class of integer partitions satisfying the first two condi-
tions.

Each of the constraints (i) to (iii) taken alone has been considered in prior
research; for instance, power parts were considered in [90, 85, 39, 19, 75]; restricted
growth of length was addressed in [26, 88]; and strict partitions are a classical
subject (see, e.g., [45, 75, 33]). A juxtaposition of the first and third constraints
is new. Notably, when the length is bounded by a sufficiently small number, it
induces a structure with “gaps” that make enumerative questions challenging and
is a source of number theoretical problems. The choice of strict rather than plain
partitions is less significant. It facilitates the analysis without diminishing the
interest of our discussion.

We endow the space Λ̌q with a variant of the Boltzmann distribution Pz

(as in Definition 2.1), with probability weights assigned to each partition λ ∈
Λ̌q proportional to zNλ

1 zMλ
2 , where Nλ and Mλ are the weight and length of λ,

respectively. The couple of parameters z := (z1, z2) is calibrated through the
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moment conditions Ez(Nλ) = ⟨N⟩, Ez(Mλ) = ⟨M⟩, where ⟨N⟩ and ⟨M⟩ are
the external hyper-parameters that are used to control the distribution of the
random weight and length. In this formalism, the condition (iii) specialises as
κ := ⟨M⟩q+1 / ⟨N⟩ → 0 (Assumption 2.1) when ⟨N⟩ goes to infinity and the
calibrations are solved by (Theorem 2.21)

z1 ∼ exp

(
− ⟨M⟩
q ⟨N⟩

)
, z2 ∼

κ1/q

q1/q Γ(1 + 1/q)
.

We observe that z1 goes to 1 while z2 goes to zero. If we use thermodynamic
variables, thus interpreting − log z1 as the inverse temperature 1/(kBT ) (where
kB is the Boltzmann constant and T > 0 is the absolute temperature), and
z2 as the fugacity, it implies that we describe a particle assembly in a high-
temperature regime and at a low fugacity, which is explained by a constrained
number of particles, insufficient to create a non-negligible pressure. In this ansatz,
the calibration implies an analogue of the state equation of perfect gas,

n× kB
q
× T = E,

assuming that the expected weight ⟨N⟩ is identified to an energy E and the
number of parts ⟨M⟩ corresponds to a number of particles n. The regime dictated
by (iii) must be separated in two different cases depending if ⟨M⟩ is fixed or
allowed to go to infinity. In particular, in the latter case, there is a meaningful
limit shape for the Young diagram (Theorem 2.44)

Pz

(
λ ∈ Λ̌q : sup

x≥0

∣∣∣∣Yλ(q ⟨N⟩x/ ⟨M⟩)
⟨M⟩

− 1

Γ(1/q)

∫ ∞

x

u1/q−1 e−u du

∣∣∣∣ > ε

)
→ 0,

while in the former case, the lack of parts reduces this to a limit in expectation.
The determination of the distribution of length and weight is an essential step

towards proving enumeration results using the Boltzmann distribution. This is
an immediate consequence of the conditional uniformity.

When ⟨M⟩ is fixed, we prove that the distribution of the length Mλ is asymp-
totically Poisson, while the conditional distribution of the weight Nλ subject to
the condition Mλ = m ≥ 1 is given by (Theorem 2.26)

Pz

(
γNλ ≤ x

∣∣Mλ = m
)
→ Gm/q(x) =

1

Γ(m/q)

∫ x

0

um/q−1 e−u du, x ≥ 0,

where γ := − log z1. When ⟨M⟩ is allowed to go to infinity, one can expect a
Gaussian limit for the weight Nλ, noting that it is a sum of independent (although
not identically distributed) terms. Indeed, this Gaussian limit is established in
Theorem 2.40.
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2.1 Preliminaries

Using the conditional uniformity of the Boltzmann distribution the asymp-
totic law for length and weight can be utilised in order to identify the growth
rate of the number of elements of Λ̌q with length m and weight smaller than x
(Theorem 2.34). It gives the leading term in a generalised m-dimensional Gauss
circle problem under the q-norm in Rm,

Lq
m(x) ∼

q
(
Γ(1 + 1/q)

)m
xm/q

m!m Γ(m/q)
.

Asymptotics of extreme values in the partition spectrum (i.e., the smallest
and largest parts) can also be analysed. Specifically, if ⟨M⟩ is fixed then all parts
appear to grow on the same linear scale of order ⟨N⟩ / ⟨M⟩ (Theorem 2.35). In
the slow growth regime of ⟨M⟩, the extremal parts are on two different scales.
The smallest part is of order κ−1 = ⟨N⟩ / ⟨M⟩q+1 and has a Weibull limit dis-
tribution, whereas the largest part scales as q ⟨N⟩ / ⟨M⟩ and has the Gumbel
double-exponential limit (Theorem 2.48).

The chapter is organised as follows. Section 2.1.1 introduces the main ele-
ments that we use throughout the chapter, including the definition of restricted
classes of integer partitions and basic results about the Boltzmann distribution.
In Section 2.2 we present foundational results for our analysis of the class Λ̌q

under the asymptotic regime specified by Assumption 2.1. The main result of
this section is Theorem 2.21 about the asymptotic calibration of the Boltzmann
parameters. Section 2.3 focuses on partitions with fixed expected length, where
the main Theorem 2.26 characterises the limit distribution of the random length
and weight. This result can be used for enumeration purposes, at least in the
cumulative sense (Theorem 2.34). We also obtain the joint limit distribution of
the largest and smallest parts (Theorem 2.35). Section 2.4 extends the analysis to
partitions with a slowly growing expected length (under Assumption 2.3), where
we obtain asymptotic results for the length and weight (Theorem 2.40) as well as
for the extreme parts (Theorem 2.48). In this regime it is also possible to derive
the limit shape of appropriately scaled Young diagrams, which forms a family of
curves indexed by q (Theorems 2.44 and 2.45).

2.1. Preliminaries

2.1.1. Integer partitions

For a given integer n ∈ N, a partition of n is a decomposition of n into a sum
of non-negative integers, disregarding the order of the terms; for example, 35 =
10+7+5+5+4+3+1 is an integer partition of n = 35. To fix the notation, we
adopt a convention of non-increasing ordering of terms; that is to say, a sequence
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2.1 Preliminaries

of integers λ1 ≥ λ2 ≥ · · · ≥ 0 with finitely many parts λi > 0 is a partition of
n ∈ N if n = λ1 + λ2 + · · · . This is expressed as λ ⊢ n. We formally allow
the case n = 0 represented by the “empty” partition λ∅ = (0, 0, . . . ), with no
parts. This is convenient when working with generating functions. The set of all
partitions λ ⊢ n is denoted by Λ(n), and the set Λ :=

⋃
n∈N0

Λ(n) is the collection

of all integer partitions. The subset Λ̌ ⊂ Λ of strict partitions is defined by
the property that all parts (λi) are different from one another, λ1 > λ2 > · · · .
Accordingly, the set of all strict partitions λ ⊢ n is denoted Λ̌(n).

For a partition λ = (λi) ∈ Λ, the sum Nλ := λ1 + λ2 + · · · is referred
to as its weight (i.e., λ ⊢ Nλ), and the number of its parts Mλ := #{λi ∈
λ : λi > 0} is called the length of λ. Thus, for λ ∈ Λ(n) we have Nλ = n and
Mλ ≤ n. The largest and smallest parts of a partition λ = (λi) are denoted
λmax = λ1 = max1≤i≤Mλ

λi and λmin = λMλ
= min1≤i≤Mλ

λi, respectively. We
make a convention that for the empty partition λ∅, its largest and smallest parts
are defined1 as λmax = 0 and λmin =∞.

The alternative notation λ = (1ν12ν2 . . . ) refers to the multiplicities of the
parts involved, νℓ := #{λi ∈ λ : λi = ℓ} (ℓ ∈ N), with zero multiplicities usually
omitted from the notation. Thus, the partition λ ⊢ 35 in the example above can
be written as λ = (1131415271101).

The weight and length of a partition λ ∈ Λ can be expressed through its
multiplicities (νℓ) as follows,

Nλ =
∑
ℓ

ℓνℓ , Mλ =
∑
ℓ

νℓ . (2.1)

In terms of multiplicities (νℓ), the set of strict partitions Λ̌ is defined by the
condition that any part ℓ can be used no more than once,

Λ̌ := {λ = (ℓνℓ) ∈ Λ : νℓ ≤ 1 for all ℓ}.

2.1.2. Young diagrams and limit shape

A partition λ = (λ1, λ2, . . . ) is succinctly visualised by its Young diagram Υλ

formed by (left- and bottom-aligned) row blocks with λ1, λ2, . . . unit square cells
(see Figure 2.1(a)). The upper boundary of Υλ is a piecewise constant, non-
increasing function Yλ : [0,∞)→ N0 defined by

Yλ(x) =
∑
ℓ≥x

νℓ (x ≥ 0). (2.2)

1The familiar paradox of such definitions, suggesting that the maximum is smaller than the
minimum, is but a logical consequence of applying the operations sup and inf to the empty set
∅. Despite a counter-intuitive appearance, these definitions are perfectly consistent with our
limiting results in Theorem 2.35.
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2.1 Preliminaries

In particular, Yλ(0) = Mλ, while the area of the Young diagram Υλ is∫ ∞

0

Yλ(x) dx =
∑
ℓ

ℓνℓ = Nλ.

According to the definition (2.2), the step function Yλ(x) is left-continuous and
has right limits (and is also right-continuous at the origin).
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y = Yλ(x)
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���

Λ̌(n)

(b)

Figure 2.1: (a) The Young diagram Υλ (shaded) of partition λ =
(10, 7, 5, 5, 4, 3, 1), with weight Nλ = 35 and length Mλ = 7. The graph of
the step function x 7→ Yλ(x) defined in (2.2) depicts the upper boundary of Υλ

(shown in red in the online version). (b) Two classical limit shapes, for plain
partitions λ ∈ Λ(n) (red) and strict partitions λ ∈ Λ̌(n) (blue), determined by
equations (2.4) and (2.5), respectively.

The geometric nature of Young diagrams naturally leads to the question of
whether there is a typical behaviour of their boundaries as the “size” of partitions
grows. This motivates the concept of limit shape, which may be thought of
as such a curve to which the boundaries of the Young diagrams of the “bulk”
of random partitions are asymptotically close upon a suitable scaling. More
precisely, choosing some sequences an → ∞, bn → ∞, define, the scaled Young
boundary

Ỹ
(n)
λ (x) := b−1

n Yλ(anx), x ≥ 0.

Then (the graph of) a function y = ω∗(x) is the limit shape for partitions λ ∈ Λ(n)
as n→∞ if, for all x > 0 and for any ε > 0,

lim
n→∞

#{λ ∈ Λ(n) : |Ỹ (n)
λ (x)− ω∗(x)| ≤ ε}
#Λ(n)

= 1. (2.3)
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If such function exists for some sequences a, b, it is unique. The limit shape ω∗

exists under the scaling an = bn =
√
n and is determined by the equation

e−xπ/
√
6 + e−yπ/

√
6 = 1. (2.4)

It was first identified by Temperley [81] in connection with the equilibrium shape
of a growing crystal, with a much later mathematical derivation credited to Ver-
shik [85] (see also Pittel [70]).

The form of the above scaling limit exhibits the invariance of the uniform
distribution over unrestricted partitions under the operation of conjugation which
consists in switching the parts size and multiplicities.

Note from (2.4) that ω∗(0) = ∞, indicating that the number of parts, Mλ,
grows faster than

√
n. Indeed, as was shown by Erdős and Lehner [26], Mλ ∼

(2π)−1
√
6n log n (in a sense similar to (2.3)).

For strict partitions λ ∈ Λ̌(n), the limit shape (under the same scaling an =
bn =

√
n and in the sense of definition (2.3) adapted to Λ̌(n)) is specified by the

equation (see Vershik [85])

eyπ/
√
12 = 1 + e−xπ/

√
12. (2.5)

Note that here the value at the origin is finite, ω∗(0) = π−1
√
12 log 2, which

implies that the number of parts Mλ in a typical strict partition λ ∈ Λ̌(n) grows
like π−1 log 2

√
12n [26]. The graphs of the limit shapes (2.4) and (2.5) are shown

in Figure 2.1(b).

Remark 2.1. The limiting formula (2.3) and its version for strict partitions, as

mentioned above, may be interpreted as convergence in probability, Ỹ
(n)
λ (x)

p→
ω∗(x), under the uniform probability measure on the corresponding partition
spaces Λ(n) or Λ̌(n) (whereby all member partitions are assumed to be equally
likely). A general question about limit shapes under alternative measures was
pioneered by Vershik [84, 85]. In this chapter, we study the limit shape under
the Boltzmann measure (see Sections 2.1.4 and 2.4.2).

2.1.3. Integer partitions with constraints

We focus on strict partitions with parts confined to be q-th powers of integers (for
some q ∈ N), which means that νℓ = 0 unless ℓ ∈ Nq; we denote the corresponding
set of partitions by Λq. Moreover, it is of interest to combine these two constraints
by considering only strict partitions in Λq, leading to the subset that we naturally
denote by Λ̌q.

A general approach to introducing constraints in the partition spaces can be
described as follows. Fix non-empty integer sets A ⊆ N and Bℓ ⊆ N0 (ℓ ∈ A),
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assuming that 0 ∈ Bℓ but Bℓ ̸= {0}, for each ℓ ∈ A. The set A specifies the source
of permissible parts ℓ ∈ N. For example, if A = 2N0 + 1 then all parts must be
odd integers, or if A = Nq with some q ∈ N then only perfect q-th powers can be
used; if A = N then any (positive) integer part is allowed. The sets (Bℓ) specify
the allowed values of multiplicities νℓ ∈ Bℓ for each part ℓ ∈ A. For example, if
Bℓ = {0, 1} then part ℓ can be used no more than once; if Bℓ = N0 then νℓ is not
constrained.

Given the sets A and (Bℓ, ℓ ∈ A), we use a generic notation Λ̃ to denote
the set of integer partitions satisfying the constraints imposed by A and (Bℓ) as
described above,

Λ̃ := {λ = (ℓνℓ) ∈ Λ : ℓ ∈ A, νℓ ∈ Bℓ}. (2.6)

In this loose notation we take the liberty to omit the explicit reference to A and
(Bℓ), which should cause no confusion. When the specific choice of A and (Bℓ)
becomes important (in Section 2.2 below), this will be clarified. For a parti-
tion λ ∈ Λ̃, we keep using the notation Nλ and Mλ for its weight and length,
respectively, which are now given by (cf. (2.1))

Nλ =
∑
ℓ∈A

ℓνℓ , Mλ =
∑
ℓ∈A

νℓ . (2.7)

.

2.1.4. Boltzmann distributions

The general idea of the Boltzmann distribution as a probability measure on a
combinatorial structure A = {a} (such as the set of all integer partitions Λ or
its constrained versions, e.g., the set of strict partitions Λ̌) is that it is defined
by picking some additive structural features of the elements in A (such as weight
and/or length of a partition) and making the probability of the element a ∈ A

depend only on those features in a “geometric” fashion. Below, this idea is made
precise for the class Λ̃ of integer partitions (see (2.6)) with constraints on the
source of parts (via set A) and their multiplicities (via sets (Bℓ)). Background
material about combinatorial structures and the Boltzmann distribution is pro-
vided in Appendix B.

Definition 2.1. Suppose that the constraining sets A and (Bℓ) are fixed, and
consider the corresponding partition space Λ̃ defined in (2.6). Given a two-
dimensional parameter z = (z1, z2), with 0 < z1 < 1 and 0 < z2 < 1/z1, the
Boltzmann distribution on Λ̃ is defined by the formula

Pz(λ) =
zNλ
1 zMλ

2

F (z)
, λ ∈ Λ̃, (2.8)

19



2.1 Preliminaries

with the normalising factor

F (z) =
∑
λ∈Λ̃

zNλ
1 zMλ

2 . (2.9)

Considering the constituent subspaces

Λ̃(n,m) := {λ ∈ Λ̃ : Nλ = n,Mλ = m}, (2.10)

and indeterminate z, the generating function F (z) can be expressed as a double
power series,

F (z) =
∑
n,m

Fn,mzn1 z
m
2 , (2.11)

where Fn,m = #Λ̃(n,m). In particular, the “initial” values with n = 0 are reduced
to

F0,0 = 1, F0,m = 0 (m ≥ 1). (2.12)

Of course, Fn,m > 0 if and only if the condition {Nλ = n,Mλ = m} is realisable,
that is, if Λ̃(n,m) ̸= ∅. If the focus is on the specific weight Nλ = n or length
Mλ = m alone, this corresponds to the “marginal” subspaces

Λ̃(n, ·) :=
⋃
m≤n

Λ̃(n,m) = {λ ∈ Λ̃ : Nλ = n}, (2.13)

Λ̃(·,m) :=
⋃
n≥m

Λ̃(n,m) = {λ ∈ Λ̃ : Mλ = m}. (2.14)

The joint distribution of Nλ and Mλ under the Boltzmann measure (2.8) is
given by

Pz(Nλ = n,Mλ = m) = Pz(Λ̃(n,m)) =
Fn,mzn1 z

m
2

F (z)
, (2.15)

with the marginals

Pz(Nλ = n) = Pz(Λ̃(n, ·)) =
zn1

F (z)

∑
m≤n

Fn,mzm2 , (2.16)

Pz(Mλ = m) = Pz(Λ̃(·,m)) =
zm2
F (z)

∑
n≥m

Fn,mzn1 . (2.17)

Remark 2.2. For the empty partition λ∅ ⊢ 0 formally associated with the null
configuration νℓ ≡ 0, formula (2.8) yields Pz(λ∅) = 1/F (z) > 0. On the other
hand, Pz(λ∅) < 1, since F (z) > F (0, 0) = 1.

The following result describes the Boltzmann distribution (2.8) in terms of
the joint distribution of the multiplicities (νℓ). As a by-product, it provides a
multiplicative representation of the generating function F (z).
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Lemma 2.3. Fix z ∈ R2 as in Definition 2.1 above. Under the Boltzmann mea-
sure Pz on the generic partition space Λ̃ defined in (2.6), the random multiplicities
(νℓ, ℓ ∈ A) are mutually independent, with marginal distributions

Pz(νℓ = k) =
zℓk1 zk2
Fℓ(z)

, k ∈ Bℓ, (2.18)

where
Fℓ(z) =

∑
k∈Bℓ

zℓk1 zk2 , ℓ ∈ A. (2.19)

In particular, the generating function F (z) admits the following product repre-
sentation,

F (z) =
∏
ℓ∈A

Fℓ(z). (2.20)

Proof. It suffices to verify that the product measure P̃z on Λ̃ with marginals
(2.18) is consistent with the definition (2.8). Let a partition λ ∈ Λ̃ be specified
by the sequence of multiplicities kℓ ∈ Bℓ (ℓ ∈ A). Due to independence of (νℓ)
under P̃z and formula (2.18), we have on account of expressions (2.7),

P̃z(λ) =
∏
ℓ∈A

P̃z(νℓ = kℓ) =
∏
ℓ∈A

zℓkℓ1 zkℓ2
Fℓ(z)

=
z
∑

ℓ∈A ℓkℓ
1 z

∑
ℓ∈A kℓ

2∏
ℓ∈A Fℓ(z)

=
zNλ
1 zMλ

2

F̃ (z)
, (2.21)

where F̃ (z) :=
∏

ℓ∈A Fℓ(z). Since the probability distributions (2.8) and (2.21)

on the same space Λ̃ appear to be proportional to one another, it follows that
the normalisation factors F (z) and F̃ (z) coincide, which proves the product
representation (2.20).

Remark 2.4. Since 0 ∈ Bℓ, we have a lower bound

Fℓ(z) =
∑
k∈Bℓ

zℓk1 zk2 ≥ 1, ℓ ∈ A. (2.22)

The next lemma ensures that a random partition generated according to the
Boltzmann distribution Pz is almost surely (a.s.) finite, so that Pz(Mλ <∞) = 1.

Lemma 2.5. Fix z ∈ R2 as in Definition 2.1 above.Under the probability measure
Pz, the number of nonzero terms in the sequence of multiplicities (νℓ) is a.s. finite.
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Proof. By the Borel–Cantelli lemma (see, e.g., [78, Sec. II.10, p. 255]), it suffices
to check that ∑

ℓ∈A

Pz(νℓ > 0) <∞.

Noting that zℓ1z2 ≤ z1z2 < 1 (see Definition 2.1), we have

Fℓ(z) =
∑
k∈Bℓ

zℓk1 zk2 ≤
∞∑
k=0

(zℓ1z2)
k =

1

1− zℓ1z2
.

Hence, from the distribution formula (2.18) we get

Pz(νℓ > 0) = 1− 1

Fℓ(z)
≤ 1−

(
1− zℓ1z2

)
= zℓ1z2,

and therefore∑
ℓ∈A

Pz(νℓ > 0) ≤ z2
∑
ℓ∈A

zℓ1 ≤ z2

∞∑
ℓ=1

zℓ1 =
z1z2
1− z1

<∞,

as required.

Remark 2.6. While the constraining sets A and (Bℓ) are pre-determined they can
be relaxed by introducing supplementary free variables thus giving the following
contribution for each ℓ ∈ N

Pz(νℓ = k) =
z
1−1A(ℓ)
A z

1−1Bℓ (k)

Bℓ
zkℓ1 zk2

Fℓ(z)
. (2.23)

If it is re-expressed in terms of thermodynamic-like variables this gives

Pz(νℓ = k) =
exp (−βA(1− 1A(ℓ))− βBℓ

(1− 1Bℓ
(k))− β1kℓ− β2k)

Fℓ(z)
. (2.24)

The Boltzmann distribution studied in this chapter can be interpreted as an or-
dered version where βA and βBℓ

are sent to infinity so the “temperature” goes
to zero. More generally when studying complex systems the energy can be rep-
resented by a composite Hamiltonian that incorporates the contributions of the
components of the system, adding or removing contributions allows to merge and
interpolate models. Here, allowing finite values of βA and βBℓ

“erase” the gaps in
the structure. Though this is not discussed here, the analysis of the transition to
infinite values may provide valuable insights.
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2.1.5. Conditional Boltzmann distributions

Recall that the Boltzmann distribution Pz (see (2.8)) is defined on the partition
space Λ̃ subject to the tacit constraints determined by the sets A and (Bℓ, ℓ ∈ A),
as described in Section 2.1.1. It is sometimes useful to impose further constraints
on permissible partitions and consider the arising conditional projections of the
original measure Pz onto the corresponding partition subspaces. To be specific,
let Λ̃† ⊆ Λ̃ and consider the conditional measure supported on the space Λ̃†,

P†
z(λ) := Pz(λ |Λ̃†) =

Pz(λ)

Pz(Λ̃†)
, λ ∈ Λ̃†. (2.25)

Lemma 2.7. The measure (2.25) coincides with the Boltzmann measure on the
partition space Λ̃†.

Proof. By the definition (2.8), for any partition λ ∈ Λ̃† we have

Pz(λ |Λ̃†) =
zNλ
1 zMλ

2 /F (z)

F †(z)/F (z)
=

zNλ
1 zMλ

2

F †(z)
, λ ∈ Λ̃†, (2.26)

where
F †(z) =

∑
λ∈Λ̃†

zNλ
1 zMλ

2 .

Again referring to (2.8) together with (2.9), we see that formula (2.26) defines
the Boltzmann distribution on Λ̃† with the same parameters z = (z1, z2).

In fact, the Boltzmann measure (2.8) on the partition space Λ̃ constrained by
means of the sets A and (Bℓ) as described in Definition 2.1, can itself be identified
with the conditional Boltzmann measure projected from the full partition space
Λ via conditioning on λ ∈ Λ̃. The following particular cases of further constraints
on the space Λ̃ are also of interest:

Λ̃K := {λ ∈ Λ̃ : max νℓ ≤ K} (multiplicities bounded by K);

Λ̃L :=
{
λ ∈ Λ̃ : maxλi ≤ L

}
(parts bounded by L);

Λ̃M := {λ ∈ Λ̃ :
∑

ℓ νℓ = M} (fixed length Mλ = M);

Λ̃N :=
{
λ ∈ Λ̃ :

∑
ℓ ℓνℓ = N

}
(fixed weight Nλ = N).

Note that the result of Lemma 2.3 about mutual independence and marginal
distributions of the multiplicities (νℓ) remains true for the first two examples, Λ̃K

and Λ̃L, simply because they follow our basic Definition 2.1 with the constraining
sets Bℓ or A replaced by Bℓ,K = {k ∈ Bℓ : k ≤ K} or AL = {ℓ ∈ A : ℓ ≤ L},
respectively. However, this result does not apply to the Boltzmann measures on
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the spaces Λ̃M = Λ̃(·,M) or Λ̃N = Λ̃(N, ·) (see (2.13) and (2.14)), which take a
reduced form by “burning out” the parameters z1 or z2, respectively:

Pz(λ | Λ̃M) =
zNλ
1∑

n≥M F (n,M)zn1
, λ ∈ Λ̃M , (2.27)

Pz(λ | Λ̃N) =
zMλ
2∑

m≤N F (N,m)zm2
, λ ∈ Λ̃N . (2.28)

Individual constraints such as listed above can be combined. An important
example is considered in the next lemma, stating that the Boltzmann distribu-
tion conditioned on both Nλ and Mλ is reduced to a uniform measure on the
corresponding partition subspace.

Lemma 2.8. Let n,m ∈ N0 be such that the conditions Nλ = n and Mλ = m are
compatible with the constraining sets A and (Bℓ), that is, Λ̃(n,m) ̸= ∅. Then

Pz

(
λ |Λ̃(n,m)

)
=

1

#Λ̃(n,m)
, λ ∈ Λ̃(n,m). (2.29)

Proof. By virtue of Lemma 2.7, it suffices to observe that the Boltzmann distribu-
tion on Λ̃(n,m) is uniform, because Pz(λ) ∝ zn1 z

m
2 = const for all λ ∈ Λ̃(n,m).

Thanks to Lemma 2.8, the Boltzmann distribution can be used for enumera-
tion purposes.

Corollary 2.8.1. The following representation holds with any z = (z1, z2) such
that 0 < z1 < 1 and z2 < 1/z1,

Fn,m ≡ #Λ̃(n,m) =
F (z)Pz(Nλ = n,Mλ = m)

zn1 z
m
2

. (2.30)

To use formula (2.30) in practice, the parameters z1, z2 are usually calibrated
so as to make the events {Nλ = n,Mλ = m} “likely” under the Boltzmann
distribution Pz when n and m are close to some target values ⟨N⟩ and ⟨M⟩,
respectively (treated as hyper-parameters). We pursue the standard approach
(see, e.g., [13], [34], [87] [88]) based on making the expected values of Nλ and Mλ

consistent with the prescribed values ⟨N⟩ and ⟨M⟩, respectively,
Ez(Nλ) = ⟨N⟩ , Ez(Mλ) = ⟨M⟩ . (2.31)

Using (2.18), conditions (2.31) are rewritten more explicitly as a system of equa-
tions for the parameters z1 and z2,

∑
ℓ∈A

ℓ
∑
k∈Bℓ

k zℓk1 zk2
Fℓ(z)

= ⟨N⟩,

∑
ℓ∈A

∑
k∈Bℓ

k zℓk1 zk2
Fℓ(z)

= ⟨M⟩.
(2.32)
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Solving such a system exactly is beyond reach but an asymptotic analysis may
be feasible when one or both of the hyper-parameters ⟨N⟩ and ⟨M⟩ are large (see
Section 2.2.3 below).

Truncation of the source of parts, thus reducing the partition space to Λ̃L may
be useful in the design of Boltzmann samplers with the aim to avoid indefinite
computation (see Chapter 3). Clearly, if L < maxA then the truncation leads
to a distortion of the original Boltzmann distribution Pz; in particular, it will
cause a negative bias between the target hyper-parameters ⟨N⟩ and ⟨M⟩ used for
calibration of Pz (see (2.32)) and the truncated expected values,

EL
z (Nλ) =

∑
ℓ∈AL

ℓ
∑
k∈Bℓ

k zℓk1 zk2
Fℓ(z)

<
∑
ℓ∈A

ℓ
∑
k∈Bℓ

k zℓk1 zk2
Fℓ(z)

= Ez(Nλ) = ⟨N⟩, (2.33)

EL
z (Mλ) =

∑
ℓ∈AL

∑
k∈Bℓ

k zℓk1 zk2
Fℓ(z)

<
∑
ℓ∈A

∑
k∈Bℓ

k zℓk1 zk2
Fℓ(z)

= Ez(Mλ) = ⟨M⟩. (2.34)

However, if the probability of the condition {λ ∈ Λ̃L} is large enough, then the
two distributions are close to one another in total variation, which is justified by
the following elementary estimate.

Lemma 2.9. Let (Ω,F,P) be a probability space, and let an event A ∈ F be such
that P(A) ≥ 1− δ for some (small) δ > 0. Then for any event B ∈ F,

|P(B |A)− P(B)| ≤ 2δ

1− δ
.

Proof. Denoting Ac = Ω \ A, we have

|P(B |A)− P(B)| = |P(B ∩ A)− P(B)P(A)|
P(A)

=
|P(B ∩ A)P(Ac)− P(B ∩ Ac)P(A)|

1− P(Ac)

≤ 2P(Ac)

1− P(Ac)
≤ 2δ

1− δ
,

noting that P(Ac) ≤ δ.

A simple but useful version of the truncation idea adapted to the spaces
Λ̃(n,m) states that if the truncation threshold L is high enough then the ad-
ditional condition ℓ ≤ L does not affect the conditional uniformity stated in
Lemma 2.8.
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Definition 2.2. Assuming that the partition space Λ̃(n,m) is non-empty, denote
by L∗= L∗(n,m) any majorant of parts involved in partitions λ belonging to this
space, that is,

L∗≥ max{λ1 : λ = (λi) ∈ Λ̃(n,m)}. (2.35)

In terms of multiplicities (νℓ) encoding partitions λ ∈ Λ̃(n,m), condition (2.35)
is equivalent to saying that νℓ ≡ 0 for all ℓ > L∗.

For example, a loose majorant is provided by L∗= n; this is actually sharp if
m = 1. In general, a sharp majorant is given by

L∗= max{ℓ ∈ A : Λ̃(n− ℓ,m− 1) ̸= ∅}. (2.36)

Note that formula (2.36) holds in the boundary case m = 1 due to our convention
in Section 2.1.1, effectively stating that the set Λ̃(0, 0) is not empty by containing
a (single) partition λ∅ = (0, 0, . . . ).

The following fact is self-evident by observing that Λ̃(n,m) ∩ Λ̃L∗ = Λ̃(n,m)
and in view of Lemma 2.8.

Lemma 2.10. Suppose that Λ̃(n,m) ̸= ∅ and let L∗ be a majorant as in Defini-
tion 2.2. Then

Pz(λ | Λ̃(n,m) ∩ Λ̃L∗) =
1

#Λ̃(n,m)
, λ ∈ Λ̃(n,m). (2.37)

This lemma can be utilised in random sampling of integer partitions based
on the Boltzmann distribution. Indeed, choosing a suitable majorant L∗ and
building a random partition in Λ̃(n,m) by iteratively sampling the multiplicities
νℓ with ℓ ∈ AL∗ until the target conditions (2.10) are satisfied, the resulting
partition λ = (ℓνℓ) will be uniformly sampled from Λ̃(n,m), according to (2.37).
We will return to these issues in Chapter 3.

2.1.6. Second-order moments of the partition weight and
length

Consider the covariance matrix of the vector (Nλ,Mλ) under the Boltzmann mea-
sure Pz,

K(z) :=

(
Varz(Nλ) Covz(Nλ,Mλ)

Covz(Nλ,Mλ) Varz(Mλ)

)
, z = (z1, z2). (2.38)

As such, the matrix K(z) is automatically positive semi-definite; moreover, it is
positive definite provided that the set A of permissible parts contains at least two
elements, #A ≥ 2. To this effect, since both Varz(Nλ) > 0 and Varz(Mλ) > 0, we
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only need to check that detK(z) > 0, that is, the underlying Cauchy inequality
is strict,

∣∣Covz(Nλ,Mλ)
∣∣ <√Varz(Nλ)Varz(Mλ). Indeed, otherwise the random

variablesNλ andMλ would be linearly dependent, that is, with some deterministic
constants c1, c2 ∈ R

c1Nλ + c2Mλ =
∑
ℓ∈A

(c1ℓ+ c2) νℓ ≡ const (Pz-a.s.).

But this is impossible if #A ≥ 2, since (νℓ) are mutually independent and νℓ ̸≡
const (Pz-a.s.).

A single-parameter version of the next lemma is well known (see, e.g., [24,
Proposition 2.1] or [11, formula (2.2), p.110]). An extension to the general multi-
parametric case is stated, with a sketch proof, in [10, Proposition 7, pp. 772–
773]. For convenience, we give a direct proof in the general case of a constrained
partition space Λ̃ described in Definition 2.1.

Lemma 2.11. For s = (s1, s2), denote es := (es1, es2). Define the function

Φ(s) := logF (es), s1, s2 < 0, (2.39)

where F (z) is introduced in (2.9). Then

∂Φ

∂s1
= Ez(Nλ)

∣∣
z=es

,
∂Φ

∂s2
= Ez(Mλ)

∣∣
z=es

, (2.40)

Moreover, the Hessian of Φ(s) is expressed as follows,(
∂2Φ

∂si∂sj

)
= K(z)

∣∣
z=es

, (2.41)

where K(z) is the covariance matrix defined in (2.38).

Proof. Differentiating (2.11) and using formula (2.16), we get

z1
∂F

∂z1
= z1

∞∑
n=0

nzn−1
1

n∑
m=0

Fn,mzm2

= F (z)
∞∑
n=0

nPz(Nλ = n) = F (z) Ez(Nλ).

Similarly, using (2.17),

z2
∂F

∂z2
= z2

∞∑
m=0

mzm−1
2

∞∑
n=m

Fn,mzn1

= F (z)
∞∑

m=0

mPz(Mλ = m) = F (z) Ez(Mλ).
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Hence, the chain rule applied to (2.39) yields

∂Φ

∂s1
= es1

∂F/∂z1
F (z)

∣∣∣∣
z=es

= Ez(Nλ)
∣∣
z=es

,

∂Φ

∂s2
= es2

∂F/∂z2
F (z)

∣∣∣∣
z=es

= Ez(Mλ)
∣∣
z=es

,

which proves formulas (2.40).
Likewise, considering second-order partial derivatives, we obtain

z21
∂2F

∂z21
= z21

∞∑
n=0

n(n− 1)zn−2
1

n∑
m=0

Fn,mzm2

= F (z)
∞∑
n=0

n(n− 1)Pz(Nλ = n)

= F (z) Ez

(
N2

λ −Nλ

)
.

Therefore,

∂2Φ

∂s21
=

∂

∂s1

(
es1

∂F/∂z1
F (z)

∣∣∣∣
z=es

)
= es1

∂F/∂z1
F (z)

∣∣∣∣
z=es

+ e2s1
∂2F/∂z21
F (z)

∣∣∣∣
z=es
− e2s1

(
∂F/∂z1
F (z)

∣∣∣∣
z=es

)2

=
(
Ez(Nλ) + Ez

(
N2

λ −Nλ

)
−
(
Ez(Nλ)

)2)
z=es

= Varz(Nλ)
∣∣
z=es

. (2.42)

Similarly, one can show that

∂2Φ

∂s22
= Varz(Mλ)

∣∣
z=es

. (2.43)

Furthermore, considering the mixed partial derivative, by means of formula (2.15)
we have

z1z2
∂2F

∂z1∂z2
= z1z2

∞∑
n=0

n∑
m=0

Fn,mnzn−1
1 mzm−1

2

= F (z)
∞∑
n=0

n∑
m=0

nmPz(Nλ = n,Mλ = m) = F (z) Ez

(
NλMλ

)
.
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Hence,

∂2Φ

∂s1∂s2
=

∂

∂s2

(
es1

∂F/∂z1
F (z)

∣∣∣∣
z=es

)
= es1 es2

∂2F/∂z21
F (z)

∣∣∣∣
z=es
− es1 es2

(
∂F/∂z1
F (z)

· ∂F/∂z2
F (z)

)∣∣∣∣
z=es

=
(
Ez(NλMλ)− Ez(Nλ)Ez(Mλ)

)
z=es

= Covz(Nλ,Mλ)
∣∣
z=es

. (2.44)

Finally, it remains to notice that, collectively, formulas (2.42), (2.43) and
(2.44) prove the claim (2.41), which completes the proof of Lemma 2.11.

Corollary 2.11.1. Suppose that #A ≥ 2 (see a comment after definition (2.38)).
Then the function Φ(s) defined in (2.39) is strictly convex. Consequently, any
system of equations in variables z = (z1, z2) of the form (2.31) has at most one
solution.

Proof. Convexity of Φ(s) follows from the representation (2.41) and the fact that
the covariance matrix K(z) is positive definite.

2.2. Strict power partitions

2.2.1. Basic formulas

From now on, we consider the case A = Nq, with a fixed q ∈ N, and Bℓ ≡ {0, 1}
for all ℓ ∈ Nq. This specification corresponds to strict integer partitions (i.e., with
unequal parts) into perfect q-th powers. To highlight the choice of this model,
in what follows we switch from the generic notation Λ̃ and Λ̃(n,m) to a more
adapted notation Λ̌q and Λ̌q(n,m), where the super-index q indicates that parts
are q-th powers, while the “check” symbol ˇ stands as a reminder that partitions
are strict. To conform with the conventional notation, for q = 1 we will omit the
super-index by writing Λ̌, Λ̌(n,m), etc.

The next key lemma is but a specialisation of the general Proposition 2.3 to
the case Λ̌q.

Lemma 2.12. Under the Boltzmann distribution on the space Λ̌q, the random
multiplicities (νℓ, ℓ ∈ Nq) are mutually independent and have a Bernoulli distri-
bution with the corresponding parameter zℓ1z2 (1 + zℓ1z2)

−1,

Pz(νℓ = 0) =
1

1 + zℓ1z2
, Pz(νℓ = 1) =

zℓ1z2
1 + zℓ1z2

(ℓ ∈ Nq). (2.45)
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Furthermore, the corresponding generating function is given by

F (z) =
∏
ℓ∈Nq

(1 + zℓ1z2) =
∞∏
j=1

(1 + zj
q

1 z2). (2.46)

Remark 2.13. Here the Borel–Cantelli condition
∑

ℓ Pz(νℓ > 0) < ∞ (see the
proof of Lemma 2.5) specialises to

∑
ℓ∈Nq

zℓ1z2
1 + zℓ1z2

≤ z2

∞∑
ℓ=1

zℓ1 =
z1z2
1− z1

.

Thus, we need 0 < z1 < 1 but no condition on z2 > 0.

2.2.2. Sums asymptotics

We will be frequently using asymptotic formulas for certain sums over the integer
set Nq. Of course, such results are well known for q = 1. The analysis is greatly
facilitated by the classic (first-order) Euler–Maclaurin summation formula (see,
e.g., [22, §12.2]), conveniently written in the form

∞∑
j=1

f(j) =

∫ ∞

0

f(x) dx+

∫ ∞

0

B̃1(x)f
′(x) dx, (2.47)

where B̃1(x) := {x} ≡ x − ⌊x⌋ (x ∈ R), and both the series
∑∞

j=1 f(j) and the

integral
∫∞
0
f(x) dx are assumed to converge. In particular, formula (2.47) gives

a simple bound for the error arising from replacing the sum with the integral,

∞∑
j=1

f(j) =

∫ ∞

0

f(x) dx+O(1)

∫ ∞

0

|f ′(x)| dx.

A more general “indented” version of the Euler–Maclaurin formula reads∑
j>j∗

f(j) =

∫ ∞

j∗

f(x) dx+

∫ ∞

j∗

B̃1(x)f
′(x) dx, (2.48)

leading to the estimate

∞∑
j>j∗

f(j) =

∫ ∞

j∗

f(x) dx+O(1)

∫ ∞

j∗

|f ′(x)| dx.
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For most of our purposes, the first-order formulas will suffice. If needed,
a refined estimate of the remainder term can be obtained with a second-order
Euler–Maclaurin formula [66, #2.10.1, p. 63],

∞∑
j=1

f(j) =

∫ ∞

0

f(x) dx− f(0)

2
+

1

2

∫ ∞

0

B̃2(x)f
′′(x) dx, (2.49)

where B̃2(x) := {x} − {x}2 (x ∈ R).

Lemma 2.14. Let s ≥ 0 be fixed. Then, as γ → 0+,∑
ℓ∈Nq

ℓse−γℓ =
Γ(s+ 1/q)

q γs+1/q

(
1 +O

(
γ1/q

))
. (2.50)

Proof. Setting f(x) := ℓse−γℓ|ℓ=xq , we have

f ′(x) =
d(ℓse−γℓ)

dℓ

∣∣∣∣
ℓ=xq

· (xq)′ = (s− γℓ) ℓs−1e−γℓ|ℓ=xq · q xq−1. (2.51)

Hence, the Euler–Maclaurin formula (2.47) yields

∑
ℓ∈Nq

ℓse−γℓ =
∞∑
j=1

jqse−γjq =

∫ ∞

0

xqs e−γxq

dx+∆s(γ), (2.52)

where the error term is given by

∆s(γ) = q

∫ ∞

0

B̃1(x) (s− γxq)xqs−1 e−γxq

dx. (2.53)

The integral in (2.52) is easily computed by the substitution u = γxq,∫ ∞

0

xqs e−γxq

dx =
1

q γs+1/q

∫ ∞

0

us+1/q−1 e−u du =
Γ(s+ 1/q)

q γs+1/q
. (2.54)

To estimate the error term ∆s(γ), we have to consider the cases s = 0 and

s > 0 separately. Using that 0 ≤ B̃1(x) ≤ 1, from (2.53) we obtain, via the same
substitution u = γxq,

0 < −∆0(γ) < qγ

∫ ∞

0

xq−1e−γxq

dx =

∫ ∞

0

e−udu = 1. (2.55)

If s > 0 then expression (2.53) implies a two-sided inequality,

−qγ
∫ ∞

0

xq(s+1)−1e−γxq

dx < ∆s(γ) < qs

∫ ∞

0

xqs−1e−γxq

dx. (2.56)
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Computing the integrals as before, the bounds (2.56) specialise as follows,

−Γ(s+ 1)

γs
< ∆s(γ) <

sΓ(s)

γs
=

Γ(s+ 1)

γs
. (2.57)

In fact, the estimate (2.55) for s = 0 can be included in (2.57).
Finally, the claim (2.48) follows from (2.52), (2.54) and (2.57).

Refined asymptotics of sums of the form (2.50) can be obtained with the help
of the second-order Euler–Maclaurin formula (2.49). Keeping the same notation

f(x) = ℓse−γℓ|ℓ=xq and using that B̃2(x) is bounded, we obtain∑
ℓ∈Nq

ℓse−γℓ =

∫ ∞

0

f(x) dx− f(0)

2
+O(1)

∫ ∞

0

|f ′′(x)| dx, (2.58)

where f(0) = 0 for s > 0 and f(0) = 1 for s = 0. Similarly as in (2.51), we have

f ′′(x) =
d2(ℓse−γℓ)

dℓ2

∣∣∣∣
ℓ=xq

· (xq)′ 2 +
d(ℓse−γℓ)

dℓ

∣∣∣∣
ℓ=xq

· (xq)′′. (2.59)

Recalling from (2.51) that d
dℓ
(ℓse−γℓ) = (s− γℓ) ℓs−1e−γℓ, we further compute

d2(ℓse−γℓ)

dℓ2
=

d

dℓ

(
(s− γℓ) ℓs−1e−γℓ

)
=
(
(s− 1)s− 2sγℓ+ γ2ℓ2

)
ℓs−2 e−γℓ.

Returning to (2.59) and (2.58), one can check that each of the arising integrals
in the remainder term is estimated by O(γ−s+1/q). As a result, this leads to an
improved asymptotic formula (cf. (2.50))

∑
ℓ∈Nq

ℓse−γℓ =


Γ(1/q)

q γ1/q
− 1

2
+O

(
γ1/q

)
, s = 0,

Γ(s+ 1/q)

q γs+1/q

(
1 +O

(
γ2/q

))
, s > 0.

(2.60)

The refined estimate (2.60) with s = 1 will be useful in the discussion of a
numerical implementation of the Boltzmann sampler in Chapter 3.

Lemma 2.15. As η → 0 and γ → 0+,∑
ℓ∈Nq

log
(
1 + η e−γℓ

)
=

η Γ(1/q)

q γ1/q

(
1 +O(η) +O

(
γ1/q

))
. (2.61)
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2.2 Strict power partitions

Proof. By the elementary inequalities

x− 1
2
x2 ≤ log (1 + x) ≤ x (0 < x < 1),

applied to each term in the sum, we obtain∑
ℓ∈Nq

log
(
1 + η e−γℓ

)
= η

∑
ℓ∈Nq

e−γℓ +O(η2)
∑
ℓ∈Nq

e−2γℓ

= η
∑
ℓ∈Nq

e−γℓ

(
1 +O(η)

∑
ℓ∈Nq e−2γℓ∑
ℓ∈Nq e−γℓ

)
,

and the claim follows due to Lemma 2.14 (with s = 0).

We will also need a more general version of Lemmas 2.14 and 2.15, which
can be proved in a similar manner using the indented Euler–Maclaurin formula
(2.48). In what follows, the summation range {ℓ ≥ ℓ∗} is a shorthand for {ℓ ∈
Nq : ℓ ≥ ℓ∗}. We also use the notation

Γ(a, x) :=

∫ ∞

x

ua−1 e−u du (a > 0, x ≥ 0) (2.62)

for the (upper) incomplete gamma function [66, 8.2.2, p.174].

Lemma 2.16. As γ → 0+,∑
ℓ≥ℓ∗

ℓse−γℓ =
Γ(s+ 1/q, γℓ∗)

q γs+1/q

(
1 +O

(
γ1/q

))
. (2.63)

Lemma 2.17. As η → 0 and γ → 0+,∑
ℓ≥ℓ∗

log
(
1 + η e−γℓ

)
=

η Γ(1/q, γℓ∗)

q γ1/q

(
1 +O(η) +O

(
γ1/q

))
. (2.64)

For ease of future reference, we state a variant of Dini’s theorem. Similar
criteria for uniform convergence of monotone functions can be found in literature
(see, e.g. [74, Sec. 0.1] and [3, App.A.6])

Lemma 2.18. Let (fn)n≥1 be a sequence of all decreasing (or all increasing)
functions from R+ := R+ ∪ {∞} to R, converging pointwise to a continuous
(decreasing, or increasing) function f : R+ → R. Then, this convergence is
uniform.

Remark 2.19. By defining f as a continuous function from R+ to R we mean that
f(∞) is well-defined and finite. Specifically, it is the limit of f(x) when x goes
to ∞.
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2.2 Strict power partitions

Proof. In this proof we assume that the functions are all decreasing (the increasing
case is nearly identical). We remark that the image of R+ is the interval [a, b] :=
[f(∞), f(0)]. Let ε > 0, and q ∈ N such that 1/q < ε/(b− a) and define

βk := a+ k · b− a

q
, k ∈ J0, qK.

By virtue of the intermediate value theorem there exists

∞ = x0 > x1 > · · · > xq−1 > xq = 0

such that f(xk) = βk. The pointwise convergence of the sequence (fn)n≥1 guar-
antees that there exists N ∈ N such that for all n ≥ N ,

|fn(xk)− f(xk)| ≤ ε,

independently of k ∈ J0, qK, that is because N can be chosen as the maximum of
a finite number of Nk, each corresponding to the convergence at xk. Since f and
the functions fn are decreasing, for all x ∈ [xk+1, xk]

|f(x)− fn(x)| ≤ |f(x)− f(xk)|+ |f(xk)− fn(x)|
≤ |f(xk+1)− f(xk)|+ |f(xk)− fn(x)| ≤ ε+ |f(xk)− fn(x)|

we also have

f(xk)− ε ≤ fn(xk) ≤ fn(x) ≤ fn(xk+1) ≤ f(xk+1) + ε ≤ f(xk) + 2ε

thus we can conclude
|f(x)− fn(x)| ≤ 3ε

independently of x.

2.2.3. Calibration of the parameters

To analyse the Boltzmann distribution under various limit regimes, it is conve-
nient to re-parameterise it via the hyper-parameters

⟨N⟩ = Ez(Nλ), ⟨M⟩ = Ez(Mλ). (2.65)

The conditions (2.65) can be viewed as a set of equations on the parameters z1
and z2 (cf. (2.31)). According to Corollary 2.11.1, solution to (2.65) is unique,
if it exists. The following lemma gives an asymptotic representation of the roots
z1 and z2 in terms of ⟨N⟩ and ⟨M⟩ as ⟨N⟩ → ∞ and under a suitable growth
condition on ⟨M⟩.
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2.2 Strict power partitions

Assumption 2.1. Suppose that ⟨M⟩−1 = O(1) (that is, ⟨M⟩ is bounded away
from zero) and

κ :=
⟨M⟩q+1

⟨N⟩
→ 0. (2.66)

Remark 2.20. The meaning of Assumption 2.1 is elucidated by a comparison with
the case of all strict partitions Λ̌q, that is, without controlling the number of parts.
Here, the parameter z2 would become obsolete (we can formally set z2 = 1 in the
Boltzmann distribution formula (2.8)), while the parameter z1 ∈ (0, 1), calibrated
from the weight condition in (2.65), can be shown (using the Euler–Maclaurin
sum formula (2.73), similarly as in the proof of Theorem 2.21 below) to satisfy

the asymptotics − log z1 ∼ cq ⟨N⟩−q/(q+1), with

c1+1/q
q =

1

q

∫ ∞

0

u1/q e−u

1 + e−u
du. (2.67)

In turn, the expected length has the asymptotics Ez(Mλ) ∼ Cq ⟨N⟩1/(q+1), where

Cq =
1

q c
1/q
q

∫ ∞

0

u1/q−1 e−u

1 + e−u
du. (2.68)

For example, for q = 1 the integrals in (2.67) and (2.68) can be evaluated to
yield c1 = π/

√
12 and C1 =

(√
12 log 2

)
/π (cf. [26]). Thus, the restriction that

we put on the growth of ⟨M⟩ in Assumption 2.1 means that the number of parts
is asymptotically smaller than what is expected from typical partitions in Λ̌q of
large expected weight ⟨N⟩.

Theorem 2.21. Under Assumption 2.1, the roots z1 and z2 of the equations
(2.65) are asymptotically given by

z1 = exp

(
− ⟨M⟩
q ⟨N⟩

(
1 +O

(
κ1/q

)))
, (2.69)

z2 =
κ1/q

q1/q Γ(1 + 1/q)

(
1 +O

(
κ1/q

))
. (2.70)

Proof. Denote for short γ := − log z1. In view of Lemma 2.12 (see (2.45)), we
have

Ez(Mλ) =
∑
ℓ∈Nq

Ez(νℓ) =
∑
ℓ∈Nq

zℓ1z2
1 + zℓ1z2

= z2
∑
ℓ∈Nq

zℓ1 −R1(z), (2.71)

where

0 < R1(z) =
∑
ℓ∈Nq

z2ℓ1 z22
1 + zℓ1z2

< z22
∑
ℓ∈Nq

z2ℓ1 . (2.72)
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2.2 Strict power partitions

Then Lemma 2.14 (with s = 0) applied to the sums on the right-hand side of
(2.71) and (2.72) yields

Ez(Mλ) =
z2 Γ(1/q)

q γ1/q

(
1 +O

(
γ1/q

)
+O(z2)

)
. (2.73)

Similarly,

Ez(Nλ) =
∑
ℓ∈Nq

ℓ Ez(νℓ) =
∑
ℓ∈Nq

ℓzℓ1z2
1 + zℓ1z2

= z2
∑
ℓ∈Nq

ℓzℓ1 −R2(z), (2.74)

where

0 < R2(z) =
∑
ℓ∈Nq

ℓz2ℓ1 z
2
2

1 + zℓ1z2
< z22

∑
ℓ∈Nq

ℓz2ℓ1 . (2.75)

Again applying Lemma 2.14 (now with s = 1), we get

Ez(Nλ) =
z2 Γ(1 + 1/q)

q γ1+1/q

(
1 +O

(
γ1/q

)
+O(z2)

)
. (2.76)

Returning to the calibrating conditions (2.65) and substituting the asymp-
totic expressions (2.73) and (2.76), we obtain the following system of asymptotic
equations, 

⟨M⟩ = z2 Γ(1/q)

q γ1/q

(
1 +O

(
γ1/q

)
+O(z2)

)
,

⟨N⟩ = z2 Γ(1 + 1/q)

q γ1+1/q

(
1 +O

(
γ1/q

)
+O(z2)

)
.

(2.77)

Since ⟨M⟩ is bounded away from zero, the first of these equations implies that
γ1/q = O(z2), so that the error terms O(γ1/q) in (2.77) are superfluous.

A further simple analysis of the system (2.77) shows that z2 is of order of
κ1/q; specifically, using that Γ(1 + 1/q) = (1/q) Γ(1/q), we find

γ =
⟨M⟩
q ⟨N⟩

(
1 +O

(
κ1/q

))
,

z2 =
⟨M⟩ γ1/q

Γ(1 + 1/q)

(
1 +O

(
κ1/q

))
=

κ1/q

q1/q Γ(1 + 1/q)

(
1 +O

(
κ1/q

))
,

in line with formulas (2.69) and (2.70).

Assumption 2.2. Throughout the rest of the chapter, we assume that the pa-
rameters z1 and z2 are chosen according to formulas (2.69) and (2.70), respec-
tively. In particular, the Boltzmann measure Pz becomes dependent on the hyper-
parameters ⟨N⟩ and ⟨M⟩, as well as the Pz-probabilities and the corresponding
expected values.
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2.2 Strict power partitions

For the sake of future reference and to fix the notation already used in the
proof of Theorem 2.21, the asymptotic formula (2.69) can be written as

γ := − log z1 =
⟨M⟩
q ⟨N⟩

(
1 +O

(
κ1/q

))
. (2.78)

It is also useful to record a simple consequence of the relations (2.69) and (2.70)
(on account of the notation (2.66) and (2.78)),

z2
γ1/q

=
⟨M⟩

Γ(1 + 1/q)

(
1 +O

(
κ1/q

))
. (2.79)

Lemma 2.22. Under Assumptions 2.1 and 2.2,

logF (z) ∼ ⟨M⟩. (2.80)

Proof. Using formula (2.46) and applying Lemma 2.15 with γ = − log z1 and
η = z2, we have

logF (z) =
∑
ℓ∈Nq

log
(
1 + zℓ1z2

)
∼ z2 Γ(1 + 1/q)

γ1/q
∼ ⟨M⟩ ,

according to formula (2.79).

Remark 2.23. The result (2.80) provides the asymptotics of the probability of the
empty partition λ∅ (cf. Remark 2.2); indeed, by formula (2.8)

Pz(λ∅) =
1

F (z)
= e−⟨M⟩ (1+o(1)). (2.81)

2.2.4. Asymptotics of the covariance matrix

Theorem 2.24. Under Assumptions 2.1 and 2.2, we have

Varz(Mλ) ∼ ⟨M⟩ , Varz(Nλ) ∼
(q + 1) ⟨N⟩2

⟨M⟩
, Covz(Mλ, Nλ) ∼ ⟨N⟩ .

(2.82)

Proof. Using formulas (2.1), mutual independence of the multiplicities (νℓ) and
the Bernoulli marginals (2.45), we have

Varz(Mλ) =
∑
ℓ∈Nq

Varz(νℓ) =
∑
ℓ∈Nq

zℓ1z2
(1 + zℓ1z2)

2
= z2

∑
ℓ∈Nq

zℓ1 −R3(z), (2.83)
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2.2 Strict power partitions

where (cf. the proof of Theorem 2.21)

0 < R3(z) =
∑
ℓ∈Nq

z2ℓ1 z22
(
2 + zℓ1z2

)
(1 + zℓ1z2)

2
< 2z22

∑
ℓ∈Nq

z2ℓ1 + z32
∑
ℓ∈Nq

z3ℓ1 . (2.84)

By Lemma 2.14 we obtain, for any r > 0,

z2
∑
ℓ∈Nq

zrℓ1 ∼
z2Γ(1/q)

q (rγ)1/q
∼ ⟨M⟩

r1/q
, (2.85)

according to (2.79). Recalling that z2 = o(1) (see (2.70)), it follows from (2.84)
and (2.85) that

R3(z) = O (z2 ⟨M⟩) = o(⟨M⟩). (2.86)

Hence, returning to (2.83) and using (2.85), (2.86) and formulas (2.69) and (2.70),
we get

Varz(Mλ) ∼ z2
∑
ℓ∈Nq

zℓ1 ∼ ⟨M⟩ , (2.87)

in accord with the first formula in (2.82).
Similarly (omitting technical details), we obtain

Varz(Nλ) =
∑
ℓ∈Nq

ℓ2 Varz(νℓ) =
∑
ℓ∈Nq

ℓ2zℓ1z2
(1 + zℓ1z2)

2

∼ z2
∑
ℓ∈Nq

ℓ2zℓ1 ∼
z2 Γ(2 + 1/q)

q γ2+1/q
∼ (q + 1) ⟨N⟩2

⟨M⟩
,

(2.88)

and

Covz(Mλ, Nλ) =
∑
ℓ∈Nq

ℓ Varz(νℓ) =
∑
ℓ∈Nq

ℓzℓ1z2
(1 + zℓ1z2)

2

∼ z2
∑
ℓ∈Nq

ℓzℓ1 ∼
z2 Γ(1 + 1/q)

q γ1+1/q
∼ ⟨N⟩ , (2.89)

as claimed in (2.82).

Corollary 2.24.1. The correlation coefficient between Mλ and Nλ is asymptoti-
cally given by

ϱ(Mλ, Nλ) ∼
1√
q + 1

.

Remark 2.25. Corollary 2.24.1 shows that the dependence between Mλ and Nλ

does not vanish, and also that the magnitude of this dependence is decreasing
with the growth of the power index q.
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2.3 Fixed expected length

2.3. Fixed expected length

2.3.1. Limit theorems for the partition length and weight

In what follows, we use the notation

Gα(x) :=
1

Γ(α)

∫ x

0

uα−1 e−u du, x ≥ 0, (2.90)

for the distribution function of the gamma distribution Gamma(α) with shape
parameter α > 0 (and unit scale parameter). We are now in a position to obtain
our main result in this section.

Theorem 2.26. Under Assumptions 2.1 and 2.2, consider the regime where
Ez(Mλ) = ⟨M⟩ > 0 is fixed, while Ez(Nλ) = ⟨N⟩ → ∞. Then the following
distributional asymptotics hold under the Boltzmann distribution Pz on the space
Λ̌q.

(a) The distribution of the length Mλ converges to a Poisson distribution with
parameter ⟨M⟩,

Pz(Mλ = m)→ πm :=
⟨M⟩m e−⟨M⟩

m!
, m ∈ N0. (2.91)

(b) The conditional distribution of the weight Nλ given Mλ = m ≥ 1 converges
to the gamma distribution with shape parameter αm = m/q,

Pz

(
γNλ ≤ x

∣∣Mλ = m
)
→ Gm/q(x) =

1

Γ(m/q)

∫ x

0

um/q−1 e−u du, x ≥ 0,

(2.92)
where γ is defined in (2.78), Moreover, convergence (2.92) is uniform in
x ≥ 0.

(c) The marginal (unconditional) distribution function G(x) = lim⟨N⟩→∞ Pz(γNλ ≤
x), with atom G(0) = π0 at zero, is determined by its Laplace transform

ϕ(s) = exp
{
−⟨M⟩

(
1− (1 + s)−1/q

)}
, s ≥ 0. (2.93)

Furthermore, conditioned on Mλ > 0, the Laplace transform becomes

ϕ̃(s) =
e−⟨M⟩

1− e−⟨M⟩

(
exp

{
⟨M⟩

(1 + s)1/q

}
− 1

)
, s ≥ 0. (2.94)
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Remark 2.27. Part (a) is a particular case of a well-known Poisson approximation
for the distribution of the total number of successes in a sequence of independent
Bernoulli trials with success probabilities (pi), which is valid as long as

∑
i pi →

const > 0 and
∑

i p
2
i → 0 [8, 64]. Indeed, here we deal with the Bernoulli sequence

(νℓ), where Mλ =
∑

ℓ νℓ and pℓ = Ez(νℓ) = zℓ1z2/(1 + zℓ1z2). According to (2.65),∑
ℓ pℓ = ⟨M⟩. Furthermore, noting that (pℓ) is monotone decreasing, we obtain∑

ℓ∈Nq

p2ℓ ≤ p1
∑
ℓ∈Nq

pℓ =
z1z2

1 + z1z2
⟨M⟩ ≤ z2 ⟨M⟩ = O

(
⟨N⟩−1/q) = o(1), (2.95)

on account of formula (2.70). Alternatively, the asymptotic estimate (2.95) fol-
lows with the help of formula (2.85) (with r = 2).

Remark 2.28. The normalising constant γ in parts (b) and (c) can be replaced
by its asymptotic equivalent γ0 = ⟨M⟩ /(q ⟨N⟩) (see (2.78)).

Remark 2.29. The case m = 0 excluded in Theorem 2.26(b) corresponds to the
empty partition λ∅,

Pz

(
γNλ ≤ x

∣∣Mλ = 0
)
= Pz(Nλ = 0 |Mλ = 0) = 1, x ≥ 0.

This is consistent with the gamma distribution (2.92) weakly converging to 0 as
the parameter αm = m/q is formally sent to zero. Indeed, using the Laplace
transform, for any s > 0 we have

1

Γ(α)

∫ ∞

0

xα−1e−sx−x dx =
1

(s+ 1)α
→ 1 (α→ 0+).

Remark 2.30. Noting that Gamma(m/q) is the convolution ofm copies of Gamma(1/q),
the result of Theorem 2.26(b) may be interpreted by saying that, on the scale
γ−1 ∼ q ⟨N⟩ / ⟨M⟩ and conditional on Mλ = m, the partition parts {λ1, . . . , λm}
(considered without ordering) behave asymptotically as m independent random
variables with distribution Gamma(1/q) each.

Proof of Theorem 2.26. Consider the Laplace transform of the pair (Nλ,Mλ),

ϕz(s) := Ez

[
exp(−s1Nλ − s2Mλ)

]
, s1, s2 ≥ 0. (2.96)

Using formulas (2.1), mutual independence of the multiplicities (νℓ) and the
Bernoulli marginals (2.45), the definition (2.96) is rewritten as

ϕz(s) = Ez

[
exp

(
−
∑
ℓ∈Nq

(s1ℓ+ s2) νℓ

)]

=
∏
ℓ∈Nq

Ez

[
e−(s1ℓ+s2)νℓ

]
=
∏
ℓ∈Nq

1 + zℓ1z2 e
−(s1ℓ+s2)

1 + zℓ1z2
.
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The normalisation γNλ corresponds to replacing the argument s1 in (2.96) by
γs1. Hence,

log ϕz(γs1, s2) = log Ez

[
exp(−γs1Nλ − s2Mλ)

]
=
∑
ℓ∈Nq

log
1 + zℓ1z2 e

−(γs1ℓ+s2)

1 + zℓ1z2

=
∑
ℓ∈Nq

log
(
1 + zℓ1z2 e

−(γs1ℓ+s2)
)
−
∑
ℓ∈Nq

log
(
1 + zℓ1z2

)
. (2.97)

Starting with the last sum in (2.97), Lemma 2.22 immediately gives∑
ℓ∈Nq

log
(
1 + zℓ1z2

)
= logF (z)→ ⟨M⟩ . (2.98)

Similarly, applying Lemma 2.15 we obtain∑
ℓ∈Nq

log
(
1 + zℓ1z2 e

−(γs1ℓ+s2)
)
∼ z2 e

−s2 Γ(1/q)

q γ1/q(1 + s1)1/q
∼ e−s2 ⟨M⟩

(1 + s1)1/q
, (2.99)

according to the asymptotic relation (2.79).
As a result, combining (2.98) and (2.99) yields

ϕz(γs1, s2)→ exp

{
−⟨M⟩

(
1− e−s2

(1 + s1)
1/q

)}
. (2.100)

In particular, setting s1 = 0 we get the limiting Laplace transform of Mλ,

ϕz(0, s2)→ exp
(
−⟨M⟩ (1− e−s2)

)
=

∞∑
m=0

πm e−s2m,

which corresponds to the Poisson distribution (πm) (see (2.91)), thus proving the
claim of part (a).

Furthermore, by Taylor expanding the exponential in the formula (2.100), we
obtain

e−⟨M⟩ exp

(
⟨M⟩ e−s2

(1 + s1)
1/q

)
=

∞∑
m=0

πm e−ms2

(1 + s1)
m/q

. (2.101)

This can be interpreted as follows: by the total expectation formula, we have

ϕz(γs1, s2) = Ez

[
Ez

(
e−γs1Nλ−s2Mλ

∣∣Mλ = m
)]

=
∞∑

m=0

Pz(Mλ = m)ϕz(γs1 |m) e−ms2 , (2.102)
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where ϕz(s |m) := Ez

(
e−sNλ |Mλ = m

)
. Comparing (2.101) and (2.102), we

conclude that

ϕz(γs1 |m)→ 1

(1 + s1)
m/q

. (2.103)

To be more precise, by the continuity theorem for Laplace transforms [30, Sec.XIII.1,
Theorem 2, p. 431] applied to the measure with atoms az(m; s1) := Pz(Mλ =
m)ϕz(γs1 |m) (with s1 ≥ 0 fixed), it follows from (2.101) and (2.102) that

az(m; s1)→
πm

(1 + s1)
m/q

, m ∈ N0.

But since the convergence (2.91) has already been established, this implies (2.103),
and it remains to observe that the right-hand side is the Laplace transform of
Gamma(m/q), as claimed in part (b). Finally, the uniform convergence in (2.92)
readily follows by application of Lemma 2.18.

As for part (c), the first claim follows immediately by setting s2 = 0 in the
limit (2.100). The atom at zero is identified as lims→∞ ϕ(s) = e−⟨M⟩ = π0, and the

conditional Laplace transform is expressed as ϕ̃(s) = (ϕ(s)− e−⟨M⟩)/(1− e−⟨M⟩).
This completes the proof of Theorem 2.26.

The limiting marginal distribution defined in (2.93) is a mixture of a discrete
family of gamma distributions indexed by the shape parameter αm = m/q (m ∈
N0), subject to a Poisson mixing distribution with parameter ⟨M⟩,

G(x) = π0 +
∞∑

m=1

πmGm/q(x), x ≥ 0. (2.104)

Formula (2.104) defines the compound Poisson-Gamma distribution of a random
variable

Y = Z1 + · · ·+ ZM , (2.105)

where (Zi) are independent random variables with gamma distribution Gamma(1/q)
and M is an independent random variable with a Poisson distribution (πm). In
line with Remark 2.29, the case m = 0 is represented in (2.104) by a point
mass π0 = e−⟨M⟩ at zero. The absolutely continuous part of this distribution has
density

g(x) =
∞∑

m=1

πmG′
m/q(x) =

∞∑
m=1

πm
xm/q−1 e−x

Γ(m/q)

=
e−⟨M⟩−x

x
W1/q

(
⟨M⟩ x1/q

)
, (2.106)
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where Wϱ(x) =
∑∞

m=1

xm

m! Γ(mϱ)
is a special case of the Wright function [91].

Noting that Gamma(α) has mean α, the expected value of the distribution (2.104)
is given by

∞∑
m=1

πm

∫ ∞

0

x dGm/q(x) =
∞∑

m=1

πm
m

q
=
⟨M⟩
q

,

which is consistent with the calibration Ez(Nλ) = ⟨N⟩ (see (2.65)) in view of
the asymptotic formula γ ∼ γ0 = ⟨M⟩ /(q ⟨N⟩) (see (2.78)). Of course, the same
result can be obtained by differentiating the Laplace transform (2.93) at s = 0.

The principal term in the asymptotics of the density g(x) as x → +∞ can
be recovered from the known asymptotic expansion of the Wright function [91,
Theorem 2, p. 258], yielding

g(x) =
e−⟨M⟩

2π (q + 1)

( q
x

) q+2
2(q+1)

exp

(
(q + 1)

(
x

q

) q
q+1

− x

)(
1 +O

(
x− q

q+1
))

.

Turning to the behaviour of g(x) near zero, from the expansion (2.106) it is clear
that this is determined by the lowest-order terms with m ≤ q, that is,

g(x) =

q∑
m=1

πm
xm/q−1

Γ(m/q)
+O(x1/q) (x→ 0+). (2.107)

Observe that if q > 1 then the density of the absolutely continuous part of
G(x) has singularity at the origin, thus causing an “excess” of partitions with an
anomalously small weight on the scale γ−1 ∼ γ−1

0 = q ⟨N⟩ / ⟨M⟩. On the other
hand, the contribution of this singularity is exponentially vanishing as ⟨M⟩ →
∞. These effects will be verified empirically using the output of the Boltzmann
sampler considered below in Section 3.1.3 (see Figure 3.1). The exact distribution
(2.104) will also be contrasted there with a crude approximation via replacing
the Poisson mixing parameter by its expected value ⟨M⟩, yielding the gamma
distribution with shape parameter ⟨M⟩ /q. Of course, such an approximation
cannot capture the aforementioned singularity at zero, but it works reasonably
well for larger values of ⟨M⟩, whereby singularity becomes immaterial.

For the benefit of the Boltzmann sampling considered below in Section 3, we
conclude this section by stating a “truncated” version of Theorem 2.26 with a
reduced source of parts. We write Gα(x | a) := Gα(x)/Gα(a) (0 ≤ x ≤ a) for
the distribution function of the Gamma(α)-distribution truncated by threshold
a > 0. The symbol ⋆ stands for the convolution of probability distributions.

Theorem 2.31. Under the hypotheses of Theorem 2.26, let L ∼ θ ⟨N⟩ with
θ > 0, and denote aθ := θ ⟨M⟩/q. Then the following distributional asymptotics
hold subject to the constraint λmax ≤ L.
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2.3 Fixed expected length

(a) The conditional distribution of the length Mλ converges to a Poisson law,

Pz(Mλ = m |λmax ≤ L)→ πθ
m :=

µm
θ e−µθ

m!
, m ∈ N0, (2.108)

with mean

µθ := ⟨M⟩ G1/q(aθ) =
⟨M⟩
Γ(1/q)

∫ aθ

0

u1/q−1 e−u du. (2.109)

(b) The conditional distribution of the weight Nλ given Mλ = m ≥ 1 converges
to the convolution of m copies of an aθ-truncated gamma distribution with
shape 1/q,

Pz(γNλ ≤ x
∣∣Mλ = m,λmax ≤ L)→

(
G1/q(· | aθ) ⋆ · · · ⋆ G1/q(· | aθ)︸ ︷︷ ︸

m

)
(x),

(2.110)
for 0 < x ≤ maθ.

Like in (2.92), convergence (2.110) is uniform in 0 ≤ x ≤ maθ.

(c) The marginal distribution function G(x; θ) := lim⟨N⟩→∞ Pz(γNλ ≤ x |λmax ≤
L), with atom G(0; θ) = πθ

0 = exp
{
−⟨M⟩ G1/q(aθ)

}
at zero, is determined

by its Laplace transform

ϕ(s; θ) = exp

{
−⟨M⟩

(
G1/q(aθ)−

G1/q

(
aθ (1 + s)

)
(1 + s)1/q

)}
, s ≥ 0. (2.111)

Furthermore, conditioned on Mλ > 0, the Laplace transform becomes

ϕ̃(s; θ) =
e−µθ

1− e−µθ

(
exp

{
⟨M⟩G1/q

(
aθ (1 + s)

)
(1 + s)1/q

}
− 1

)
, s ≥ 0. (2.112)

This theorem can be proved by adapting the proof of Theorem 2.26, whereby
the (finite) sums of logarithmic expressions are analysed with the help of Lemma
2.17 in place of Lemma 2.15.

Remark 2.32. Comparing Theorems 2.26 and 2.31, a reduction of the Poisson
parameter (mean) in part (a) from ⟨M⟩ to µθ = ⟨M⟩G1/q(aθ) < ⟨M⟩ (see (2.109)),
as well as the replacement of the gamma distribution G1/q(x) in part (b) with a
truncated version G1/q(x |aθ) (see (2.110)) is clearly due to a reduced source of
parts, ℓ ≤ L ∼ θ ⟨N⟩.
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2.3 Fixed expected length

Remark 2.33. As a sanity check of formula (2.111), the expected value of γNλ

conditional on λmax ≤ L is asymptotically evaluated (using Lemma 2.16 and
formula (2.79)) as

Ez(γNλ |λmax ≤ L) = γ
∑
ℓ≤L

ℓzℓ1z2
1 + zℓ1z2

∼ ⟨M⟩
Γ(1/q)

∫ aθ

0

u1/q e−u du. (2.113)

On the other hand, by differentiating the Laplace transform (2.111) at s = 0 we
obtain

Ez(γNλ |λmax ≤ L) ∼ ⟨M⟩

(
1

q
G1/q(aθ)−

a
1/q
θ e−aθ

Γ(1/q)

)
.

These two expressions are reconciled by integration of parts in (2.113) and in
view of notation (2.90).

2.3.2. Cumulative cardinality of strict power partitions

For fixed q,m ∈ N and for any x > 0, consider a sub-level partition set

Λ̌q
m(x) :=

⋃
n≤x

Λ̌q(n,m), (2.114)

and denote its cardinality

Lq
m(x) := #Λ̌q

m(x) =
∑
n≤x

#Λ̌q(n,m). (2.115)

That is to say, Lq
m(x) denotes the number of integral solutions to the inequality

jq1 + · · ·+ jqm ≤ x such that j1 > · · · > jm > 0.

Theorem 2.34. The following asymptotics hold as x→∞,

Lq
m(x) ∼

q
(
Γ(1 + 1/q)

)m
xm/q

m!m Γ(m/q)
. (2.116)

In particular, for q = 1 and q = 2

Lm(x) ∼
xm

m!m!
, L2

m(x) ∼
πm/2xm/2

2m−1m!m Γ(m/2)
. (2.117)

Proof. Without loss of generality, we may and will assume that x is an integer.
Set the hyper-parameters in the Boltzmann distribution Pz to be ⟨M⟩ = m and
⟨N⟩ = x. By Corollary 2.8,

#Λ̌q(n,m) =
F (z)Pz(Mλ = m)Pz(Nλ = n |Mλ = m)

zn1 z
m
2

. (2.118)
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2.3 Fixed expected length

(a) Sub-level set Λ̌q
m(x) with q = 1, m = 2,

x = 20.
(b) Sub-level set Λ̌q

m(x) with q = 2, m = 2,
x = 400.

Figure 2.2: Geometric illustration of the sub-level partition sets Λ̌q
m(x) (defined

in (2.114)) with m = 2 and (a) q = 1 or (b) q = 2, represented as the sets of
integer points (j1, j2) ∈ Z2 such that 0 < j2 < j1 and j1 + j2 ≤ x or j21 + j22 ≤ x,
respectively. In line with Theorem 2.34, their cardinalities have the asymptotics
L2(x) ∼ 1

4
x2 and L2

2(x) ∼ 1
8
πx, corresponding to the area of the shaded domains.

Hence, according to (2.115),

Lq
m(x) =

F (z)Pz(Mλ = m)

zm2

∑
n≤x

Pz (Nλ = n |Mλ = m)

zn1
. (2.119)

First of all, by Lemma 2.22, Theorem 2.26(a) and formula (2.70), we get

F (z)Pz(Mλ = m)

zm2
∼ em

mm e−m

m!

(
m1+1/q

q1/q Γ(1 + 1/q)
x−1/q

)−m

=
qm/q

(
Γ(1 + 1/q)

)m
xm/q

m!mm/q
. (2.120)

To handle the sum in (2.119), define the cumulative probabilities

Tn := Pz(Nλ ≤ n |Mλ = m), T0 := 0. (2.121)

Then by Abel’s summation-by-parts formula (see, e.g., [78, p. 390]) we can write∑
n≤x

Pz (Nλ = n |Mλ = m)

zn1
=
∑
n≤x

(
Tn − Tn−1

) 1

zn1

=
Tx

zx+1
1

− T0

z1
−
∑
n≤x

Tn

(
1

zn+1
1

− 1

zn1

)
=

Tx

zx−1
1

− 1− z1
z1

∑
n≤x

Tn

zn1
. (2.122)
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2.3 Fixed expected length

To shorten the notation, denote α := m/q. By the asymptotic formula (2.69), we
have 1− z1 ∼ α/x; moreover, uniformly in n ≤ x

z−n
1 = eαn/x

(
1 +O

(
x−1/q

))
, (2.123)

since κ = mq+1/x = O(x−1) (see (2.66)). Furthermore, using Theorem 2.26(b)
and Remark 2.28 we get for the first term in (2.122),

Tx

zx−1
1

→ eα Gα(α) =
eα

Γ(α)

∫ α

0

uα−1 e−u du. (2.124)

Generalising, observe that Tn ≈ Gα(αn/x) for n ≤ x. More precisely, taking
advantage of the uniform convergence in (2.92), for any ε > 0 and all large
enough ⟨N⟩ we have, uniformly in n ≤ x,

|Tn −Gα(αn/x)| < ε.

Hence, the total approximation error arising from the sum in (2.122) is estimated
as follows,

(1− z1)
∑
n≤x

|Tn −Gα(αn/x)|
zn1

≤ ε (1− z1)
x∑

n=0

z−n
1

= ε
(
z−x
1 − z1

)
= O(ε). (2.125)

Therefore, replacing Tn with Gα(αn/x) in the sum (2.124) and also using
(2.123), we obtain

1− z1
z1

∑
n≤x

z−n
1 Gα(αn/x) ∼

α

x

x∑
n=1

eαn/xGα(αn/x)→
∫ α

0

euGα(u) du. (2.126)

Furthermore, the integral in (2.126) is evaluated by integration by parts,∫ α

0

Gα(u) d(e
u) = eαGα(α)−

1

Γ(α)

∫ α

0

uα−1 du = eα Gα(α)−
αα−1

Γ(α)
. (2.127)

Thus, collecting (2.124), (2.125), (2.126) and (2.127), from (2.122) we obtain

lim
x→∞

∑
n≤x

Pz(Nλ = n |Mλ = m)

zn1
=

αα−1

Γ(α)
+O(ε) ≡ αα−1

Γ(α)
, (2.128)

since ε > 0 is arbitrary.
Finally, returning to (2.119) and substituting the limits (2.120) and (2.128)

(the latter with α = m/q), we obtain the asymptotic formula (2.116).
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2.3 Fixed expected length

Continuing an illustration of Theorem 2.34 for q = 1 and q = 2 started in
Figure 2.2 with m = 2, it is well known [26, Theorem 4.1, p. 341]1 (see also [2,
Theorem 4.3, p. 56]) that, with m ≥ 2 fixed (or even m = o(n1/3)),

#Λ̌(n,m) ∼ 1

m!

(
n− 1

m− 1

)
∼ nm−1

m! (m− 1)!
(n→∞). (2.129)

This is consistent with our cumulative formula (2.117) for q = 1, noting that∑
n≤x

nm−1 ∼ xm

m
(x→∞).

With regards to the case q = 2, it is interesting that in their famous paper of
1918 on an “exact” enumeration of plain integer partitions, Hardy and Ramanujan
[41, Eq. (7.21), p.110] stated without proof an asymptotic formula for the number
of representations of a large n ∈ N as the sum of m > 4 squares,

rm(n) := #{(j1, . . . , jm) ∈ Zm : j21 + · · ·+ j2m = n}

=
Cmπm/2nm/2−1

Γ(m/2)
+O(nm/4), (2.130)

where the constant Cm > 0 is defined through a series
∑

k≥1 ckk
−m/2 with com-

putable coefficients ck = O(k). Using a geometric embedding of such representa-
tions into the space Zm, it is easy to see that their enumeration is asymptotically
reduced to strict partitions with m positive parts,

rm(n) ∼ 2mm! #Λ̌2(n,m),

and in view of (2.130) it follows

#Λ̌2(n,m) ∼ Cmπm/2nm/2−1

2mm! Γ(m/2)
. (2.131)

By the order of growth, this formula matches our cumulative asymptotic result
(2.117) (for q = 2), and moreover, the constant is explicitly recovered from this
comparison, Cm = 1.

2.3.3. A joint limit theorem for the extreme parts (fixed
expected length)

In this section, we address the limiting distribution of the largest and smallest
parts of a random partition, λmax and λmin. Recall the notation γ = − log z1 ∼
γ0 = ⟨M⟩ /(q ⟨N⟩) (see (2.78)).

1To be precise, Theorem 4.1 of [26] is stated for partitions with at most m parts, but due to
Corollary 4.3 [26, p. 343] the same result also holds for partitions into exactly m distinct parts.
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2.3 Fixed expected length

Theorem 2.35. Assume that ⟨M⟩ > 0 is fixed. Then λmax and λmin are asymp-
totically independent as ⟨N⟩ → ∞, with the marginal limiting laws given by (for
any x ≥ 0)

Pz(γλmax ≤ x)→ Gmax(x) := e−⟨M⟩(1−G1/q(x)), (2.132)

Pz(γλmin > x)→ Gc
min(x) := e−⟨M⟩G1/q(x). (2.133)

Moreover, conditionally on non-empty partition,

Pz(γλmax ≤ x |λmax > 0)→ G̃max(x) :=
Gmax(x)− e−⟨M⟩

1− e−⟨M⟩ , (2.134)

Pz(γλmin > x |λmin <∞)→ G̃c
min(x) :=

Gc
min(x)− e−⟨M⟩

1− e−⟨M⟩ . (2.135)

Remark 2.36. Clearly, the normalisation γ in Theorem 2.35 can be replaced by
its asymptotic equivalent, γ0 = ⟨M⟩ /(q ⟨N⟩) (see (2.78)).

Remark 2.37. Note that the distribution function Gmax(x) has a jump at zero with
mass Gmax(0) = e−⟨M⟩. This is in line with our convention for λmax = 0, which
corresponds to the empty partition λ∅ (cf. Remark 2.23 and formula (2.81)).

On the other hand, G̃max(0) = 0, and so the distribution function G̃max(x) is
continuous at zero. Likewise, the tail distribution function Gc

min(x) is improper,
with defect mass Gc

min(∞) = e−⟨M⟩, which again matches our convention for

λmin =∞. But G̃c
min(∞) = 0, so G̃c

min(x) defines a proper distribution.

Proof of Theorem 2.35. For x ≥ 0, set ℓ∗(x) := min{ℓ ∈ Nq : ℓ > γ−1x}, and note
that γℓ∗(x)→ x. By virtue of Lemma 2.12,

Pz(γλmin > x1, γλmax ≤ x2) = Pz

(
νℓ ≡ 0 for all ℓ < ℓ∗(x1) and ℓ ≥ ℓ∗(x2)

)
=

∏
ℓ<ℓ∗(x1), ℓ≥ℓ∗(x2)

1

1 + zℓ1z2

= exp

{
−

(
∞∑

ℓ∈Nq

−
∞∑

ℓ≥ℓ∗(x1)

+
∞∑

ℓ≥ℓ∗(x2)

)
log
(
1 + zℓ1z2

)}
.

(2.136)

Hence, applying Lemma 2.17 (with γ = − log z1 and η = z2) and using the
asymptotic relation (2.79), we get

− logPz(γλmin > x1, γλmax ≤ x2) ∼
z2

q γ1/q

(∫ ∞

0

−
∫ ∞

γℓ∗(x1)

+

∫ ∞

γℓ∗(x2)

)
u1/q−1 e−u du

∼ ⟨M⟩
Γ(1/q)

(
Γ(1/q)− Γ(1/q, x1) + Γ(1/q, x2)

)
= − logGc

min(x1)− logGmax(x2),
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2.4 Slow growth of the expected length

which proves asymptotic independence and the marginal laws (2.132) and (2.133).
The conditional versions (2.134) and (2.135) easily follow using thatGmax(0) =

Gc
min(∞) = e−⟨M⟩ (see Remark 2.37),

Pz(γλmax ≤ x |λmax > 0) =
Pz(γλmax ≤ x)− Pz(λmax = 0)

1− Pz(λmax = 0)

→ Gmax(x)− e−⟨M⟩

1− e−⟨M⟩ = G̃max(x),

and similarly

Pz(γλmin > x |λmin <∞) =
Pz(γλmin > x)− Pz(λmin =∞)

1− Pz(λmin =∞)

→ Gc
min(x)− e−⟨M⟩

1− e−⟨M⟩ = G̃c
min(x),

as claimed.

Remark 2.38. The result of Theorem 2.35 indicates that all parts (λi) of a Pz-
typical partition λ ∈ Λ̌q ‘live” on the universal scale A = γ−1 ∼ q ⟨N⟩ / ⟨M⟩.
Clearly, this is a manifestation of keeping the expected number of parts ⟨M⟩
fixed. The situation is different when the parameter ⟨M⟩ is allowed to grow with
⟨N⟩, as will be shown below in Theorem 2.48.

Remark 2.39. The interpretation of the limiting distribution of parts given in
Remark 2.30 can be used for a heuristic derivation of Theorem 2.35. Indeed, using
independence and the Gamma(1/q)-distribution of the independent limiting parts
(Zi) (see (2.105)), the distribution function of Zmax = max{Z1, . . . , ZM} is given
by

Gmax(x) =
∞∑

m=0

πm

(
G1/q(x)

)m
= exp

{
−⟨M⟩

(
1−G1/q(x)

)}
= exp

{
−⟨M⟩ Γ(1/q, x)

Γ(1/q)

}
,

which conforms with claim (2.132). Derivation of (2.133) is similar.

2.4. Slow growth of the expected length

Throughout this section, we impose the following condition on the growth of the
hyper-parameters ⟨N⟩ and ⟨M⟩ (cf. Theorem 2.21).
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2.4 Slow growth of the expected length

Assumption 2.3. In addition to Assumption 2.1 stating that κ = ⟨M⟩q+1 / ⟨N⟩ →
0 as ⟨N⟩ → ∞, it is assumed that ⟨M⟩ → ∞.

Recall that the vector parameter z = (z1, z2) of the Boltzmann measure
Pz is calibrated according to Assumption 2.2. We use our standard notation
γ = − log z1 ∼ ⟨M⟩ /(q ⟨N⟩) (see (2.78)).

2.4.1. A joint limit theorem for the weight and length

Theorem 2.40. Under Assumptions 2.2 and 2.3, define the normalised versions
of Nλ and Mλ,

N∗
λ :=

√
⟨M⟩√
q + 1

(
Nλ − ⟨N⟩
⟨N⟩

)
, M∗

λ :=
Mλ − ⟨M⟩√
⟨M⟩

. (2.137)

Then both N∗
λ and M∗

λ are asymptotically standard normal,

N∗
λ

d−→ N(0, 1), M∗
λ

d−→ N(0, 1).

Moreover, the joint limiting distribution of N∗
λ and M∗

λ is bivariate normal with
zero mean and covariance matrix

Kq =

 1
1√
q + 1

1√
q + 1

1

. (2.138)

Proof. Consider the characteristic function of the pair (N∗
λ ,M

∗
λ),

φ(t1, t2) := Ez

[
exp

(
i t1N

∗
λ + i t2M

∗
λ

)]
, t1, t2 ∈ R. (2.139)

Substituting (2.137), this is transformed as

φ(t1, t2) = exp
(
−i t̃1 ⟨N⟩ − i t̃2 ⟨M⟩

)
Ez

[
exp(i t̃1Nλ + i t̃2Mλ)

]
, (2.140)

where

t̃1 =
t1
√
⟨M⟩√

q + 1 ⟨N⟩
, t̃2 =

t2√
⟨M⟩

. (2.141)

Furthermore, using formulas (2.1), mutual independence of the multiplicities (νℓ)
and the Bernoulli marginals (2.45), the expectation in (2.139) is rewritten as

Ez

[
exp

(∑
ℓ∈Nq

i
(
t̃1ℓ+ t̃2

)
νℓ

)]
=
∏
ℓ∈Nq

Ez

[
e i(t̃1ℓ+t̃2) νℓ

]
=
∏
ℓ∈Nq

1 + zℓ1z2 e
i(t̃1ℓ+t̃2)

1 + zℓ1z2
. (2.142)
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2.4 Slow growth of the expected length

Choosing the principal branch of the logarithm function C \ {0} ∋ ξ 7→ log ξ ∈ C
(i.e., such that log 1 = 0), we can rewrite (2.140) and (2.142) as

logφ(t1, t2) = −i t̃1 ⟨N⟩ − i t̃2 ⟨M⟩+
∑
ℓ∈Nq

log (1 + wℓ), (2.143)

where

wℓ ≡ wℓ(t̃1, t̃2) :=
zℓ1z2

1 + zℓ1z2

(
e i(t̃1ℓ+t̃2) − 1

)
. (2.144)

Remembering that 0 < z1 < 1 and z2 → 0 (see (2.69) and (2.70)), note that,
uniformly for ℓ ∈ Nq,

|wℓ| ≤
2zℓ1z2

1 + zℓ1z2
≤ 2z2

1 + z2
≤ 1

2
=: R0,

provided that κ = ⟨M⟩q+1 / ⟨N⟩ is small enough (cf. Assumption 2.3).
By Taylor’s formula for complex-analytic functions (see, e.g., [89, Sec. 5.4,

p. 93]) applied to the function g(w) = log (1 + w) with |w| ≤ R0 < 1, we have

g(w) = g(0) + g′(0)w +
w2

2πi

∮
ΓR

g(ξ)

ξ2 (ξ − w)
dξ, (2.145)

where ΓR is the circle of radius R ∈ (R0, 1) about the origin, positively oriented
(i.e., anti-clockwise). Noting that |ξ − w| ≥ R− R0 for all ξ ∈ ΓR and |w| ≤ R0,
the remainder term in (2.145) is bounded in modulus as follows,∣∣∣∣ w2

2πi

∮
ΓR

g(ξ)

ξ2 (ξ − w)
dξ

∣∣∣∣ ≤ 2πR

2π

(
|w|
R

)2
CR

R−R0

=
|w|2CR

R (R−R0)
,

where
CR := max

{
|g(ξ)|, ξ ∈ ΓR

}
<∞.

Thus, the expansion (2.145) specialises to

log (1 + w) = w +O(|w|2), (2.146)

where the O-term is uniform in the disk |w| ≤ R0 =
1
2
.

We will also use Taylor’s expansion for the complex exponent in (2.144) with
a uniform bound on the error term for any k ∈ N and all t ∈ R (see, e.g., [30,
Sec.XV.4, Lemma 1, p. 512]),∣∣∣∣∣eit −

k−1∑
j=0

(it)j

j!

∣∣∣∣∣ ≤ |t|kk!
. (2.147)
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2.4 Slow growth of the expected length

Now, combining the uniform expansions (2.146) and (2.147) (the latter with
k = 2 or k = 1 as appropriate) and returning to (2.143), we obtain∑
ℓ∈Nq

log (1 + wℓ) =
∑
ℓ∈Nq

zℓ1z2
1 + zℓ1z2

(
i (t̃1ℓ+ t̃2)−

1

2

(
t̃1ℓ+ t̃2

)2
+O(1)

(
t̃1ℓ+ t̃2

)3)
+O(1)

∑
ℓ∈Nq

z2ℓ1 z22
(1 + zℓ1z2)

2

(
t̃1ℓ+ t̃2

)2
= i t̃1

∑
ℓ∈Nq

ℓzℓ1z2
1 + zℓ1z2

+ i t̃2
∑
ℓ∈Nq

zℓ1z2
1 + zℓ1z2

− 1

2

∑
ℓ∈Nq

zℓ1z2
1 + zℓ1z2

(
t̃1ℓ+ t̃2

)2
+O(1)

∑
ℓ∈Nq

zℓ1z2
(
t̃1ℓ+ t̃2

)3
+O(1)

∑
ℓ∈Nq

z2ℓ1 z22
(
t̃1ℓ+ t̃2

)2
=: i t̃1Σ1 + i t̃2Σ2 − 1

2
Σ3 +O(1)Σ4 +O(1)Σ5. (2.148)

According to the calibration equations (see (2.71) and (2.74)), the first two
sums in (2.148) are known exactly,

Σ1 = ⟨N⟩ , Σ2 = ⟨M⟩ . (2.149)

Next, the error sums Σ4 and Σ5 can be shown to asymptotically vanish. Indeed,
using the elementary inequality (a + b)r ≤ 2r−1 (ar + br) (r ≥ 1) and combining
Lemma 2.14 with formulas (2.69), (2.70) and (2.79) gives upon simple calculations
the estimate

0 ≤ Σ4 ≤ 4 t̃ 31
∑
ℓ∈Nq

ℓ3zℓ1z2 + 4 t̃ 32
∑
ℓ∈Nq

zℓ1z2

=
O(1) ⟨M⟩3/2 z2
⟨N⟩3 γ3+1/q

+
O(1)z2

⟨M⟩3/2 γ1/q
=

O(1)

⟨M⟩1/2
= o(1). (2.150)

Similarly,

0 ≤ Σ5 ≤ 2 t̃ 21
∑
ℓ∈Nq

ℓ2z2ℓ1 z22 + 2 t̃ 22
∑
ℓ∈Nq

z2ℓ1 z22

=
O(1) ⟨M⟩ z22
⟨N⟩2 γ2+1/q

+
O(1)z22
⟨M⟩ γ1/q

= O(κ1/q) = o(1). (2.151)

Finally, consider the sum Σ3 in (2.148) which, as we will see, provides the
main contribution to (2.143). To this end, observe (cf. (2.71)) that

0 ≤
∑
ℓ∈Nq

zℓ1z2
(
t̃1ℓ+ t̃2

)2 −Σ3 =
∑
ℓ∈Nq

z2ℓ1 z22
1 + zℓ1z2

(
t̃1ℓ+ t̃2

)2
≤
∑
ℓ∈Nq

z2ℓ1 z22
(
t̃1ℓ+ t̃2

)2
= Σ5 = o(1), (2.152)
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2.4 Slow growth of the expected length

as shown in (2.151). In turn, using the asymptotic results (2.87), (2.88) and
(2.89), and recalling the rescaling expressions (2.141), we obtain the limit∑

ℓ∈Nq

zℓ1z2
(
t̃1ℓ+ t̃2

)2
= t̃ 21

∑
ℓ∈Nq

ℓ2zℓ1z2 + 2 t̃1t̃2
∑
ℓ∈Nq

ℓzℓ1z2 + t̃ 22
∑
ℓ∈Nq

zℓ1z2

→ t21 +
2 t1t2√
q + 1

+ t22 , (2.153)

which is a quadratic form with matrix (2.138).
Thus, substituting the estimates (2.149), (2.150), (2.151), (2.152) and (2.153)

into (2.148) and returning to (2.143), we obtain

φ(t1, t2)→ exp

{
−1

2

(
t21 +

2 t1t2√
q + 1

+ t22

)}
,

and the proof of Theorem 2.40 is complete.

Corollary 2.40.1. Under the hypotheses of Theorem 2.40, the following laws of
large numbers hold under the Boltzmann measure Pz,

Mλ

⟨M⟩
p−→ 1,

Nλ

⟨N⟩
p−→ 1. (2.154)

Remark 2.41. As a curiosity, we observe that the limiting distribution in Theorem
2.26 formally conforms to Theorem 2.40 under the additional limit as ⟨M⟩ → ∞.
Indeed, start with the intermediate limit (2.100) (with ⟨M⟩ fixed) and switch
from Laplace transform to characteristic function by formally changing (s1, s2)
(si ≥ 0) to −i (t1, t2) (ti ∈ R). Then, bearing in mind the normalisation (2.137),
we obtain

−⟨M⟩

1− eit2/
√

⟨M⟩

(
1− i t1q√

⟨M⟩

)−1/q
+

i t1
√
⟨M⟩√

q + 1
→ −1

2

(
t21 +

2 t1t2√
q + 1

+ t22

)
,

(2.155)

by Taylor expanding the left-hand side of (2.155) up to the second order in

parameter ⟨M⟩−1/2 = o(1).

2.4.2. Limit shape of Young diagrams

In this section we show that, under the slow growth condition on ⟨M⟩, properly
scaled Young diagrams of random partitions λ ∈ Λ̌q have a limit shape given by
the tail of the gamma integral,

ω∗
q (x) :=

1

Γ(1/q)

∫ ∞

x

u1/q−1 e−u du = 1−G1/q(x), x ≥ 0, (2.156)
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2.4 Slow growth of the expected length

where G1/q(x) is the distribution function of Gamma(1/q) (see (2.90)). In par-
ticular, for q = 1 the definition (2.156) is reduced to

ω∗
1(x) = e−x, x ≥ 0.

Specifically, set
A := q ⟨N⟩ / ⟨M⟩ , B = ⟨M⟩ , (2.157)

and consider a scaled Young diagram with upper boundary

Ỹλ(x) = B−1Yλ(Ax), x ≥ 0, (2.158)

where (see (2.2))

Yλ(x) =
∑
ℓ≥x

νℓ, x ≥ 0. (2.159)

Remark 2.42. The area under the scaled Young diagram is given by∫ ∞

0

Ỹλ(x) dx = B−1

∫ ∞

0

Yλ(Ax) dx =
⟨N⟩
AB

=
1

q
.

Naturally, this condition is preserved by the limit shape; indeed, integrating by
parts we get∫ ∞

0

ω∗
q (x) dx =

1

Γ(1/q)

∫ ∞

0

x1/q e−x dx =
Γ(1 + 1/q)

Γ(1/q)
=

1

q
.

First, we obtain the expected limit shape result.

Theorem 2.43. Under Assumptions 2.2 and 2.3, uniformly in x ≥ 0

Ez

(
Ỹλ(x)

)
→ ω∗

q (x), (2.160)

where the limit shape x 7→ ω∗
q (x) is defined in (2.156).

Proof. We first show that for each x ≥ 0, the convergence (2.160) holds. By
Lemma 2.12,

Ez

(
Yλ(Ax)

)
=
∑
ℓ≥Ax

Ez(νℓ) =
∑
ℓ≥Ax

zℓ1z2
1 + zℓ1z2

=
∑
ℓ≥Ax

zℓ1z2 − R̃1(z), (2.161)

where (cf. (2.71) and (2.72))

0 ≤ R̃1(z) =
∑
ℓ≥Ax

z2ℓ1 z
2
2

1 + zℓ1z2
≤
∑
ℓ∈Nq

z2ℓ1 z
2
2 = ⟨M⟩O(κ1/q), (2.162)
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2.4 Slow growth of the expected length

by virtue of (2.85) (with r = 2). Furthermore, applying Lemma 2.16 (with
γ = − log z1 and s = 0) and noting that γA→ 1, we obtain∑

ℓ≥Ax

zℓ1z2 ∼
z2

q γ1/q

∫ ∞

γAx

u1/q−1 e−u du ∼ ⟨M⟩
Γ(1/q)

∫ ∞

x

u1/q−1 e−u du, (2.163)

using the asymptotic formula (2.79), Thus, substituting (2.162) and (2.163) into
(2.161) gives

Ez

(
Ỹλ(x)

)
=

1

⟨M⟩
Ez

(
Yλ(Ax)

)
∼ 1

Γ(1/q)

∫ ∞

x

u1/q−1 e−u du = ω∗
q (x),

as claimed. Finally, the uniform convergence in formula (2.160) follows by Lemma
2.18, noting that the function x 7→ ω∗

q (x) is continuous, bounded, and decreasing
on [0,∞).

Now, we are ready to state and prove the main result of this section.

Theorem 2.44. Under Assumptions 2.2 and 2.3, the rescaled Young diagrams
converge to the limit shape y = ω∗

q (x) in Pz-probability uniformly for x ≥ 0, that
is,

Pz

(
λ ∈ Λ̌q : sup

x≥0

∣∣Ỹλ(x)− ω∗
q (x)

∣∣ > ε

)
→ 0.

Proof. By virtue of Theorem 2.43, letting Y 0
λ (x) := Yλ(x)− Ez

(
Yλ(x)

)
it suffices

to check that

Pz

(
sup
x≥0

∣∣Y 0
λ (Ax)

∣∣ > Bε

)
→ 0. (2.164)

Put Zλ(x) := Yλ(x
−1) for 0 ≤ x ≤ ∞; in particular, Zλ(0) = Yλ(∞) = 0,

Zλ(∞) = Yλ(0) = Mλ. By the definition (2.2), for any 0 < s < t ≤ ∞ we have

Zλ(t)− Zλ(s) = Yλ(t
−1)− Yλ(s

−1) =
∑

t−1≤ℓ<s−1

νℓ ,

which implies that the random process Zλ(x) (x ≥ 0) has independent incre-
ments. Hence, Z0

λ(x) := Zλ(x) − Ez

(
Zλ(x)

)
is a martingale with respect to the

filtration Fx = σ{νℓ , ℓ ≥ x−1}. From (2.2) it is also evident that Z0
λ(x) is càdlàg

(i.e., its paths are everywhere right-continuous and have left limits, cf. Figure
2.3). Therefore, by the Doob–Kolmogorov submartingale inequality (see, e.g.,
[93, Theorem 6.16, p.101]) we obtain

Pz

(
sup
x≥0

∣∣Y 0
λ (Ax)

∣∣ > Bε

)
≡ Pz

(
sup
y≤∞
|Z0

λ(yA
−1)| > Bε

)
≤

Varz
(
Zλ(∞)

)
B2ε2

=
Varz

(
Yλ(0)

)
B2ε2

. (2.165)
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2.4 Slow growth of the expected length

Recalling that Yλ(0) = Mλ and using Theorem 2.24, the right-hand side of (2.165)
is estimated by O(⟨M⟩−1). Thus, the claim (2.164) follows and the proof of
Theorem 2.44 is complete.

Convergence of normalised Young diagrams to their limits shape is illustrated
in Figure 2.3 for q = 1 and q = 2. Random partitions were simulated using a
suitable Boltzmann sampler implemented as Algorithm 1 (see Section 3.1).

q = 2

q = 1

ω∗
1(x) = e−x

ω∗
2(x) = 1−G1/2(x)

Figure 2.3: Illustration of convergence to the limit shape for q = 1 and q =
2 (in the online version shown in blue and red, respectively). The step plots
depict the upper boundary of the scaled Young diagrams (see (2.158)), while the
smooth lines represent the limit shape ω∗

q (x) = 1 − G1/q(x) (see (2.156)). The

corresponding partitions λ ∈ Λ̌q were sampled using Algorithm 1 with hyper-
parameters ⟨M⟩ = 50 and ⟨N⟩ = 2.5 · 105 (q = 1) or ⟨N⟩ = 1.25 · 107 (q = 2);
in both cases, κ = 0.01 (cf. Assumption 2.2). The respective sample weight and
length are Nλ = 236,369, Mλ = 52 (q = 1) and Nλ = 12,733,323, Mλ = 45
(q = 2).

Finally, we can analyse asymptotic fluctuations of scaled Young diagrams.

Theorem 2.45. Under Assumptions 2.2 and 2.3, for any x > 0 the random
value Ỹλ(x) is asymptotically normal with variance ω∗

q (x)/ ⟨M⟩, that is,

Ỹ ∗
λ (x) :=

√
⟨M⟩

(
Ỹλ(x)− Ez

(
Ỹλ(x)

))√
ω∗
q (x)

d−→ N(0, 1). (2.166)

Proof. Consider the characteristic function of Ỹ ∗
λ (x),

φz(t;x) := Ez

[
exp

(
i t Ỹ ∗

λ (x)
)]

(t ∈ R). (2.167)
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Substituting the definition (2.166) and using (2.157), (2.158) and (2.159), this is
transformed as

φz(t;x) = exp
{
−i t̃Ez

(
Yλ(Ax)

)}
Ez

[
exp

(
i t̃ Yλ(Ax)

)]
, t̃ :=

t√
⟨M⟩ω∗

q (x)
,

(2.168)
and furthermore (see (2.161))

Ez

(
Yλ(Ax)

)
=
∑
ℓ≥Ax

zℓ1z2
1 + zℓ1z2

. (2.169)

Next, similarly to (2.142) and (2.143) the last expectation in (2.168) is ex-
pressed as

Ez

[
exp

(
i t̃
∑
ℓ≥Ax

νℓ

)]
=
∏
ℓ≥Ax

1 + zℓ1z2 e
i t̃

1 + zℓ1z2
=
∏
ℓ≥Ax

(
1 + wℓ(t̃)

)
, (2.170)

where

wℓ(t) :=
zℓ1z2

1 + zℓ1z2
(e it − 1). (2.171)

Choosing the principal branch of the logarithm and using (2.169) and (2.170),
from (2.168) we get

logφz(t;x) = −i t̃
∑
ℓ≥Ax

zℓ1z2
1 + zℓ1z2

+
∑
ℓ≥Ax

log
(
1 + wℓ(t̃)

)
. (2.172)

In turn, similarly to (2.148) we obtain∑
ℓ≥Ax

log
(
1 + wℓ(t̃)

)
=
(
i t̃− 1

2
t̃2 +O(t̃3)

) ∑
ℓ≥Ax

zℓ1z2
1 + zℓ1z2

+O(t̃2)
∑
ℓ≥Ax

z2ℓ1 z22
(1 + zℓ1z2)

2
.

(2.173)
As was shown in the proof of Theorem 2.43 (see (2.161), (2.162)) and (2.163)),∑

ℓ≥Ax

zℓ1z2
1 + zℓ1z2

∼ ⟨M⟩ ω∗
q (x),

∑
ℓ≥Ax

z2ℓ1 z22
(1 + zℓ1z2)

2
= ⟨M⟩O(κ1/q) = ⟨M⟩ o(1).

(2.174)
Using (2.174) and recalling the notation of t̃ in (2.168), from (2.173) we get∑

ℓ≥Ax

log
(
1 + wℓ(t̃)

)
= i t̃

∑
ℓ≥Ax

zℓ1z2
1 + zℓ1z2

− 1
2
t2 + o(1).

Finally, returning to (2.172), we see that φz(t;x) → −1
2
t2, which proves the

theorem.
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Remark 2.46. The reason for using in (2.166) the intrinsic centering Ez

(
Ỹλ(x)

)
rather than the limit shape value ω∗

q (x) is that the error terms in the asymptotic

estimates (2.174) are of order ⟨M⟩κ1/q, where κ = ⟨M⟩q+1 / ⟨N⟩ = o(1) (see

Assumption 2.3). Combined with the factor t̃ = O
(
⟨M⟩−1/2), this produces the

error bound of order ⟨M⟩1/2 κ1/q, which is not guaranteed to be small. Thus, a

stronger assumption to this end is ⟨M⟩1/2 κ1/q = o(1), that is, ⟨M⟩1+3q/2 / ⟨N⟩ =
o(1). On the other hand, lifting any control over the length may restore the
limit-shape centering; for example, for q = 1 (ordinary strict partitions), a central
theorem of that kind was proved in [33].

Remark 2.47. In [23], the authors have proven that Young diagrams confined to
a rectangular box converge to the Ornstein–Uhlenbeck bridge. Extending our
result in order to obtain to a similar functional theorem would be interesting. We
observe that Theorem 2.45 could be expressed alternatively using a scaled variant
of the martingale introduced in the proof of Theorem 2.44√

⟨M⟩
(
Ỹλ(x

−1)− Ez

(
Ỹλ(x

−1)
)) d−→ N(0, ω∗

q (x
−1)),

which has independent increments. This suggests that further research might
yield a theorem of convergence to a time-changed Brownian motion.

2.4.3. A joint limit theorem for the extreme parts (growing
expected length)

We use the notation λmin and λmax (cf. Section 2.3.3).

Theorem 2.48. Under Assumptions 2.2 and 2.3, set

bq :=

(
q ⟨M⟩
Γ(1/q)

)q

, Bq := log ⟨M⟩−
(
1− 1

q

)
log log ⟨M⟩− log Γ(1/q), (2.175)

and consider the normalised versions of λmin and λmax defined as follows,

λ∗
min := γ bq λmin, λ∗

max := γλmax −Bq . (2.176)

Then λ∗
min and λ∗

max are asymptotically independent under the measure Pz as
⟨N⟩ → ∞ and their marginal limiting laws are given, respectively, by a Weibull
distribution with shape parameter 1/q and the standard double-exponential (Gum-
bel) distribution,

Pz(λ
∗
min > x1)→ exp

(
−x1/q

1

)
, x1 ≥ 0, (2.177)

Pz(λ
∗
max ≤ x2)→ exp

(
−e−x2

)
, x2 ∈ R. (2.178)
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Proof. For x1 ≥ 0 and x2 ∈ R, set

ℓ∗1(x1) := min{ℓ ∈ Nq : ℓ > x1/(γ bq)}, ℓ∗2(x2) := min{ℓ ∈ Nq : ℓ > (Bq+x2)γ
−1}.

Recalling the asymptotic relations (2.69) and (2.66), observe that

γ ℓ∗1(x1) =
x1

bq
+O(γ) ∼ x1

(
Γ(1/q)

q ⟨M⟩

)q

, (2.179)

γ ℓ∗2(x2) = Bq + x2 +O(γ) ∼ log ⟨M⟩. (2.180)

Like in the proof of Theorem 2.35, we have

Pz(λ
∗
min > x1, λ

∗
max ≤ x2) = exp

{
−

(
∞∑

ℓ∈Nq

−
∞∑

ℓ≥ℓ∗1(x1)

+
∞∑

ℓ≥ℓ∗2(x2)

)
log
(
1 + zℓ1z2

)}
.

Applying Lemmas 2.15 and 2.17 (with γ = − log z1 and η = z2) and using the
asymptotic relation (2.79), we obtain

− logPz(λ
∗
min > x1, λ

∗
max ≤ x2) ∼

⟨M⟩
Γ(1/q)

(∫ γℓ∗1(x1)

0

+

∫ ∞

γℓ∗2(x2)

)
u1/q−1 e−u du.

(2.181)
Integrating by parts and using the asymptotic relation (2.179), we obtain∫ γℓ∗1(x1)

0

u1/q−1 e−u du = q

∫ γℓ∗1(x1)

0

e−u d(u1/q) ∼ q
(
γ ℓ∗1(x1)

)1/q ∼ Γ(1/q)x
1/q
1

⟨M⟩
.

(2.182)
Next, using (2.180) we get∫ ∞

γℓ∗2(x2)

u1/q−1 eu du ∼
(
γ ℓ∗2(x2)

)1/q−1
e−γℓ∗2(x2)

∼ B1/q−1
q e−(Bq+x2) ∼ Γ(1/q) e−x2

⟨M⟩
. (2.183)

Hence, substituting (2.182) and (2.183) into (2.181) yields

− logPz(λ
∗
min > x1, λ

∗
max ≤ x2) ∼ x

1/q
1 + e−x2 ,

which completes the proof of the theorem.

Remark 2.49. The necessary use of the intrinsic calibration parameter γ = − log z1
in Theorem 2.48 may be a little disappointing. This can be easily improved un-
der a slightly stronger condition on slow growth of ⟨M⟩ than in Assumption
2.3; namely, κ1/q log ⟨M⟩ = o(1), that is, ⟨M⟩q+1 (log ⟨M⟩)q/ ⟨N⟩ = o(1). In this
case, the normalisation (2.176) can be written more explicitly by replacing γ with
γ0 = ⟨M⟩ /(q ⟨N⟩) (see (2.78)).
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Corollary 2.49.1. Under the hypotheses of Theorem 2.48, the following law of
large numbers holds,

⟨M⟩ λmax

q ⟨N⟩ log ⟨M⟩
p−→ 1, (2.184)

where the symbol
p→ indicates convergence in Pz-probability.

Proof. Theorem 2.48 implies that γλmax/Bq
p→ 1, and the claim (2.184) follows

by noting that γ ∼ γ0 = ⟨M⟩ /(q ⟨N⟩) and Bq ∼ log ⟨M⟩.

Remark 2.50. Theorem 2.48 indicates that, under the condition of slow growth
of ⟨M⟩, the smallest part λmin of a Pz-typical partition λ ∈ Λ̌q “lives” on the
scale A∗ = (γ bq)

−1 ∝ ⟨N⟩ / ⟨M⟩q+1 = κ−1. On the other hand, Corollary 2.49.1
shows that the scale of variation of the largest part λmax is given by A∗= Bq γ

−1∝
⟨N⟩ log ⟨M⟩ / ⟨M⟩. This is to be compared with the typical behaviour in the bulk
of the partition “spectrum”, where the scale of variation is given by A ∼ γ−1 ∝
⟨N⟩ / ⟨M⟩.
Remark 2.51. Continuing an asymptotic linkage between the cases of fixed or
slowly growing parameter ⟨M⟩, observed above in Remark 2.41, the limiting
distributions of Theorem 2.35 formally conform to Theorem 2.48 in the limit as
⟨M⟩ → ∞. Indeed, using (2.132) we have

− logGmax(x+Bq) =
⟨M⟩ Γ(1/q, x+Bq)

Γ(1/q)

∼ ⟨M⟩
Γ(1/q)

(x+Bq)
1/q−1 e−x−Bq

∼ ⟨M⟩
Γ(1/q)

(log ⟨M⟩)1−1/q e−x · e−Bq = e−x,

according to the definition of Bq in (2.175). Similarly, using (2.133) and (2.182)
we have

− logGc
min(x/bq) = ⟨M⟩

(
1− Γ(1/q, x/bq)

Γ(1/q)

)
∼ ⟨M⟩q

Γ(1/q)

(
x

bq

)1/q

= x1/q,

by the definition of bq in (2.175).
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Chapter 3

“Short” integer partitions with
power parts: Random sampling
and applications

Boltzmann sampling is a powerful technique conceptualised, streamlined and pop-
ularised by Duchon et al. [24] in the context of single-parameter combinatorial
structures (for multi-parametric extensions, see Bendkowski et al. [10] and the ref-
erences therein). Random integer partitions with controlled expected weight and
length provide an “exactly soluble” instance of a two-parametric combinatorial
structure, where the issues of Boltzmann sampling implementation and efficiency
can be analysed in some depth.

Specifically, in this chapter we discuss sampling from the Boltzmann distri-
bution on partition spaces Λ̌q (i.e., into distinct q-power parts), calibrated under
the predefined hyper-parameters ⟨N⟩ and ⟨M⟩, which have the meaning of the
expected weight and length, respectively. The two controlling parameters in ques-
tion are z1 and z2, which are amenable to asymptotic analysis as was shown in
Section 2.2.3. Once these parameters are fixed, due to the mutual independence
of the multiplicities (νℓ) (see Proposition 2.3 and Lemma 2.12), the Boltzmann
sampling is essentially reduced to an iterated independent testing of potential
parts ℓ = jq via dichotomous (Bernoulli) random trials with success probabilities
Pz(νℓ = 1) = zℓ1z2 (1 + zℓ1z2)

−1. The practical implementation of such sampling
algorithms thus relies on a random number generator Ber(p), in each call produc-
ing an independent pseudo-random value 1 or 0 with probabilities p and 1 − p,
respectively.

It is convenient to distinguish between the free samplers and the rejection
samplers, with the former just producing independent random realisations of
partitions under the said Boltzmann distribution, and the latter comprising one
or more rejection loops that iterate a free Boltzmann sampler until the desired
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targets are met. We discuss these two versions in Sections 3.1 and 3.2, respec-
tively.

The pseudo-codes in Section 3.1 and 3.2 were implemented using the pro-
gramming language C and Intel® oneAPI DPC++ compiler, and run on a desktop
CPU Intel® CoreTM i5-10600 (processor base frequency 3.30 GHz, turbo boost
frequency 4.80 GHz). Numerical calculations were carried out using Maple®

(Release 2022.1, licensed to the University of Leeds).

3.1. Free sampler

In this subsection, we delineate a free Boltzmann sampler (see Algorithm 1 below)
under the calibration through the hyper-parameters ⟨N⟩ and ⟨M⟩. It should be
noted that, despite an intuitive appeal of iterated Bernoulli-type tests, there are
some implementation concern that have to be addressed. We discuss them below
before presenting the algorithm.

3.1.1. Correcting the bias

The first issue to consider is that of choosing the control parameters z1 and z2
to ensure that the sampler is unbiased, that is, Ez(Nλ) = ⟨N⟩ and Ez(Mλ) =
⟨M⟩. Unfortunately, we can solve this set of equations only asymptotically (see
Lemma 2.12). In a “crude” version of Algorithm 1, we use the leading terms in
the asymptotics by setting (cf. (2.69) and (2.70))

z1 = e−γ0 , z2 =
⟨M⟩ γ1/q

0

Γ(1 + 1/q)
, (3.1)

where γ0 = ⟨M⟩/(q ⟨N⟩). Inevitably, this causes a bias in the resulting expecta-
tions. More precisely, the first source of this bias clearly comes from dropping the
(positive) remainder terms R1(z) and R2(z) in the approximate series represen-
tations of the aforementioned expected values (see equations (2.71) and (2.74)).
A further error occurs when replacing the resulting series with the corresponding
integrals, using Lemma 2.14. In fact, one can show that the overall bias due to
(3.1) is always negative. Indeed, recalling that ∆0(γ) < 0 (see (2.55)1), we have

Ez(Mλ) =
∑
ℓ∈Nq

zℓ1z2
1 + zℓ1z2

< z2
∑
ℓ∈Nq

zℓ1 = z2

∞∑
j=1

e−γ0 jq

< z2

∫ ∞

0

e−γ0xq

dx =
z2 Γ(1/q)

q γ
1/q
0

= ⟨M⟩ ,

1The inequality ∆0(γ) < 0 can also be seen directly by monotonicity of the function x 7→
e−γxq

.
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according to the parameter choice (3.1). Turning to Ez(Nλ), recall from (2.75)
that the error term −R2(z) is negative, and furthermore,

R2(z) ∼ z22
∑
ℓ∈Nq

ℓz2ℓ1 ∼
z2 q ⟨M⟩γ1/q

0

Γ(1/q)
· Γ(1 + 1/q)

q γ
1+1/q
0

=
z2 ⟨M⟩
q γ0

. (3.2)

On the other hand, the error due to replacing the sum
∑

ℓ ℓz
ℓ
1 in (2.74) by the

corresponding integral is bounded, according to (2.60), by z2O
(
γ
−1+1/q
0

)
. Since

⟨M⟩ is bounded away from zero, it follows that the R2-term (3.2) is dominant
and, therefore, the overall bias in targeting ⟨N⟩ is negative.

A practical recipe towards correcting the bias may be to move the error
terms R1(z) and R2(z) to the left-hand side of equations in (2.71) and (2.74),
for simplicity using their integral approximations. Effectively, this amounts to
redefining the hyper-parameters,

⟨Ñ⟩ := ⟨N⟩+ z22
∑
ℓ∈Nq

ℓz2ℓ1 ≈ ⟨N⟩+ z22

∫ ∞

0

xq e−2γ0xq

dx = ⟨N⟩+ ⟨M⟩
2 γ

1/q
0

21/q Γ(1/q)
,

⟨M̃⟩ := ⟨M⟩+ z22
∑
ℓ∈Nq

z2ℓ1 ≈ ⟨M⟩+ z22

∫ ∞

0

e−2γ0xq

dx = ⟨N⟩+ q ⟨M⟩2 γ1/q
0

21/q Γ(1/q)
.

Accordingly, we redefine γ̃0 = ⟨M̃⟩/(q ⟨Ñ⟩) and (cf. (3.1))

z̃1 = e−γ̃0 , z̃2 =
q ⟨M̃⟩ γ̃01/q

Γ(1/q)
. (3.3)

A numerical illustration of the proposed modification is presented in Table 3.1,
showing a significant reduction of bias. The expected values were computed from
the exact series expansions (2.71) and (2.74) using Maple.

If the remaining (small) bias is still an issue, a further recalibration can be
carried out by a suitable refinement of the solution z = (z1, z2) to the equations
(2.71) and (2.74), for instance, by using a two-dimensional Newton–Raphson
method. For a general approach to the multidimensional tuning of parameters
based on convex optimisation, see Bendkowski et al. [10].
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Table 3.1: Expected values of Nλ and Mλ for q = 1 and q = 2 under two choices
of the calibrating parameters: using the leading asymptotic terms (3.1) and after
a heuristic correction (3.3).

q = 1

⟨N⟩ = 106 ⟨Ñ⟩ .
= 1,002,499.50

⟨M⟩ = 100 ⟨M̃⟩ .
= 100.4999

z1
.
= 0.9999000 z̃1 = 0.9998998

z2
.
= 0.010000 z̃2

.
= 0.0100750

Ez(Nλ)
.
= 997,510.70 Ez̃(Nλ)

.
= 999,985.73

Ez(Mλ)
.
= 99.498326 Ez̃(Mλ)

.
= 99.992019

q = 2

⟨N⟩ = 107 ⟨Ñ⟩ .
= 10,315,391.57

⟨M⟩ = 50 ⟨M̃⟩ .
= 53.1539

z1
.
= 0.9999975 z̃1

.
= 0.9999974

z2
.
= 0.0892062 z̃2

.
= 0.0962720

Ez(Nλ)
.
= 9,699,070.63 Ez̃(Nλ)

.
= 9,981,802.71

Ez(Mλ)
.
= 47.018388 Ez̃(Mλ)

.
= 49.754495

3.1.2. Truncation of the parts pipeline

We deal with a finitary computation, so should rule out the risk of indefinite
processing. That is to say, the algorithm must have a well-defined stopping rule
that would guarantee a finite-time termination. In a free sampler, the sequence of
productive outcomes in successive Bernoulli trials (i.e., with sample multiplicities
νℓ = 1 corresponding to non-zero parts) is Pz-a.s. finite (see Lemma 2.5). More
precisely, the last successful trial selects the largest part λmax, after which the
testing settles down to pure idling. The Pz-distribution of λmax is given by (cf.
Sections 2.3.3 and 2.4.3)

Pz(λmax ≤ L) = Pz(νℓ ≡ 0 for all ℓ > L)

=
∏
ℓ>L

1

1 + zℓ1z2
=

1

F (z)

∏
ℓ≤L

(1 + zℓ1z2), (3.4)

where F (z) =
∏

ℓ∈Nq(1+zℓ1z2) is the generating function of the partition space Λ̌p

(see (2.46)). It is also easy to see that conditioning on λmax = jq0 does not change
the distribution of the preceding multiplicities {νjq , 1 ≤ j ≤ j0− 1}, that is, they
remain mutually independent and with Bernoulli distributions (2.45). Thus, if
the numerical value of F (z) can be calculated in advance, which is a common
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convention in computing known as an oracle (see, e.g., [24, 31, 10]), then we can
sample the random value λmax using formula (3.4) and then sample independently
the preceding candidate parts via the respective Bernoulli trials. Unfortunately,
this approach embeds a computational error through the numerical calculation of
F (z), so it is not quite “exact”; besides, convergence of the infinite product may
not be fast, given that the parameter z1 is close to 1 (see (2.69)). Specifically,
using Lemma 2.17 one can check that the truncation error arising from a partial
product up to ℓ∗ is of order ⟨M⟩ (γℓ∗)1/q−1e−γℓ∗ , which dictates that ℓ∗ be chosen
much bigger than γ−1 ∼ q ⟨N⟩ / ⟨M⟩.

An alternative idea is to truncate the pipeline of potential parts ℓ ∈ Nq

subject to testing at an appropriate threshold L (see Section 2.1.5), so that the
Bernoulli testing only runs over ℓ ≤ L. A simple pragmatic solution is to choose
the threshold L so that the probability of exceeding it in an indefinite free sampler
is small enough, that is,

Pz(λmax > L) ≤ δ, (3.5)

where the confidence tolerance δ > 0 can be chosen in advance to be as small as
desired. Then the corresponding threshold L = L(δ) can be determined from a
suitable limit theorem for the largest part, namely, Theorem 2.35 if ⟨M⟩ > 0 is
fixed, or Theorem 2.48 for slow growth of ⟨M⟩. In the former case, threshold L
is determined by the asymptotic equation (see (2.132))

Γ(1/q, γ0L) =
Γ(1/q)

⟨M⟩
· log 1

1− δ
, (3.6)

where, as before, γ0 = ⟨M⟩/(q ⟨N⟩). In the latter case, we obtain from (2.178)

L =
1

γ0

(
Bq − log log

1

1− δ

)
, (3.7)

where (see (2.175))

Bq = log ⟨M⟩ −
(
1− 1

q

)
log log ⟨M⟩ − log Γ(1/q).

Note that for q = 1 the bounds (3.6) and (3.7) coincide, reducing to

L =
1

γ0

(
log ⟨M⟩ − log log

1

1− δ

)
. (3.8)

An illustration of evaluation of the threshold L is presented in Table 3.2 for
q = 1 and q = 2. The equation (3.6) was solved numerically using Maple. One can
observe from the table that while the value δ = 10−k (k = 1, 2, . . . ) is decreasing
geometrically, the growth of threshold L is only about linear. Intuitively, this is
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explained by the fact that the confidence probability 1−δ enters expressions (3.6)
and (3.7) under the logarithm, that is, as log (1− δ). More precisely, it readily
follows from (3.7) that

L− Bq

γ0
∼ 1

γ0
log

1

δ
(δ → 0+).

Likewise, equation (3.6) asymptotically solves to yield

L− log ⟨M⟩
γ0 Γ(1/q)

∼ 1

γ0
log

1

δ
(δ → 0+).

Table 3.2: Threshold L for the largest part λmax with confidence probability 1−δ,
calculated from expressions (3.8) (q = 1) and (3.6) or (3.7) (q = 2) and rounded
down to the nearest q-th power.

q = 1, ⟨N⟩ = 106, ⟨M⟩ = 100 q = 2, ⟨N⟩ = 107, ⟨M⟩ = 50

δ L (3.8) δ L (3.6) L (3.7)

0.1 68,555 0.1 1,890,625 = 13752 1,962,801 = 14012

0.01 92,053 0.01 2,762,244 = 16622 2,900,209 = 17032

0.001 115,124 0.001 3,636,649 = 19072 3,825,936 = 19562

0.0001 138,154 0.0001 4,515,625 = 21252 4,743,684 = 21782

According to Lemma 2.7 (with Λ̃† = Λ̌L), the output of a truncated sampling
algorithm follows the Boltzmann distribution with a smaller source set AL =
{ℓ ∈ Nq : ℓ ≤ L}, which nonetheless approximates well the target Boltzmann
distribution Pz (see Lemma 2.9). One should be wary though that truncation
contributes to the negative bias (see (2.33) and (2.34)), which may require a
refined calibration through the parameters z1 and z2.

Note that the confidence guarantee 1 − δ as discussed above is valid only in
the case of a single output instance. If the purpose of the free algorithm is to
produce an independent sample of, say, k random Boltzmann partitions, then the
overall confidence probability is approximately given by (1 − δ)k, which may be
exponentially small if k is large while δ stays fixed. A simple upper bound for the
error probability is based on the Bernoulli inequality, yielding 1− (1− δ)k ≤ kδ.
This motivates the well-known Bonferroni correction, which amounts to choosing
the individual error probability δ0 = δ/k in order to ensure the overall error
probability not exceeding δ. As an example, if k = 1000 and we would like to
guarantee the overall error probability bound δ = 0.1, then the individual error
probability should be taken as δ0 = 0.0001. The approximation is quite accurate
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here, as the exact solution is δ0
.
= 0.000105355. Clearly, switching from δ to δ0

leads to a higher threshold L. For instance, Table 3.2 shows that in the case
q = 1 the suitable threshold L needs to double. In general, the increase of L due
to multiple errors is not really dramatic because of the logarithmic dependence
on δ mentioned above.

Another unwelcome outcome of the Bernoulli testing is that it may not return
any parts at all, which has a positive Pz-probability even in the infinite sequence
of tests (see Remark 2.23). This is not critical, as the sampling cycle can be
repeated if necessary. However, it may be wasteful and can be easily rectified
by adopting a similar approach based on confidence. Specifically, one can set a
lower cutoff L0 such that the run of the sampler is terminated, and the cycle is
repeated, if the Bernoulli tests fail to select at least one (non-zero) part ℓ ≤ L0.
To this end, we choose L0 in such a way that Pz(λmin > L0) ≤ δ, where δ > 0
is small enough (cf. (3.5)). Again referring to the limit theorems regarding the
smallest part, we obtain from Theorem 2.35 (cf. (3.6))

Γ(1/q)− Γ(1/q, γ0L0) =
Γ(1/q)

⟨M⟩
log

1

δ
, (3.9)

and from Theorem 2.48 (cf. (3.7))

L0 =
1

γ0

(
Γ(1/q)

q ⟨M⟩
log

1

δ

)q

. (3.10)

A numerical illustration of the confident lower threshold L0 is presented in
Table 3.3 for q = 1 and q = 2. The equation (3.9) was solved numerically using
Maple. The match between the results produced via equations (3.9) and (3.10) is
quite close, especially for q = 2. One should also observe a significant difference
between the thresholds L0 and L, which underpins a considerable computational
saving due to the lower cutoff, activated whenever the sampler fails to produce
at least one positive part up to L0.

Table 3.3: Asymptotic threshold L0 for the smallest part λmin with confidence
probability 1− δ, calculated from expressions (3.9) or (3.10), and rounded down
to the nearest q-th power.

q = 1, ⟨N⟩ = 106, ⟨M⟩ = 100 q = 2, ⟨N⟩ = 107, ⟨M⟩ = 50

δ L0 (3.9) L0 (3.10) δ L0 (3.9) L0 (3.10)

0.1 232 230 0.1 625 = 252 625 = 252

0.01 471 460 0.01 2,601 = 512 2,601 = 512

0.001 715 690 0.001 5,929 = 772 5,929 = 772

0.0001 966 921 0.0001 10,816 = 1042 10,609 = 1032
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Finally, if both cutoffs L and L0 are exercised as described above then, due to
the asymptotic independence of λmax and λmin, the overall confidence probability
is (asymptotically) given by (1 − δ)2 = 1 − 2δ + δ2, hence the resulting error
probability is bounded by 2δ.

3.1.3. Free sampling algorithm

A free Boltzmann sampler is presented below in pseudocode as Algorithm 1.
For simplicity, the algorithm incorporates only the upper threshold L selected in
advance for a given confidence probability 1 − δ. As discussed in Section 3.1.2,
this is essential to ensure termination of the code, but for the sake of optimisation
a lower cutoff L0 can also be included without difficulty. As explained above, the
confidence probability should be chosen carefully to match a possibly multiple
output.

Algorithm 1: FreeSampler(q, ⟨N⟩ , ⟨M⟩ , L)
Input: integer q, real ⟨N⟩ , ⟨M⟩ , L
Output: partition λ ∈ Λ̌q

L, weight Nλ, length Mλ

1 integer array λ[ ];
2 real z1, z2, γ0, q ;
3 γ0 ← ⟨M⟩/(q ⟨N⟩);
4 z1 ← e−γ0 , z2 ← q ⟨M⟩γ1/q

0 /Γ(1/q);
5 integer j∗, j, N , M ;

6 j∗ ← ⌊L1/q⌋;
7 N ← 0, M ← 0;
8 for j from j∗ to 1 by −1 do

9 p← zj
q

1 z2 (1 + zj
q

1 z2)
−1;

10 if Ber(p) = 1 then
11 N ← N + jq;
12 M ←M + 1;
13 λM ← jq;

14 end

15 end
16 Nλ ← N , Mλ ←M ;
17 return (λ,Nλ,Mλ)

The code structure is fairly straightforward and consists in a single cycle of
sequential Bernoulli tests over potential parts ℓ ∈ Nq. It is convenient to do this
via downward scoping in view of our convention to enumerate the partition parts
in decreasing order. Because the resulting length of the output partition λ = (λi)
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is unknown in advance, the space for the corresponding integer array is defined
in the code as λ[ ], that is, through a dynamically allocated memory. Finally, the
calibration parameters z1 and z2 are specified using the leading-term formulas
(3.1); if desired, these can be replaced by the bias-correcting values (3.3) or by
any other, more refined choices.

By design, the output of Algorithm 1 is a random partition λ ∈ Λ̌q
L =

Λ̌q ∩ {(λi) : λmax ≤ L}. It has a Boltzmann distribution on the space Λ̌q
L,

with expected values of weight Nλ and length Mλ close to the predefined hyper-
parameters ⟨N⟩ and ⟨M⟩, respectively. As discussed in Section 2.1.5, this dis-
tribution approximates (in total variation) the Boltzmann distribution on the
infinite partition space Λ̌q, which may suffice for the sampling purposes at hand.

3.1.4. Validation

The output performance of the code in Algorithm 1 was visually monitored via
the marginal histograms for the sample weight Nλ and length Mλ (Figure 3.1), as
well as by the bivariate histograms and frequency level plots of the sample pairs
(Nλ,Mλ) (Figure 3.2). The numerical illustration was carried out in the case of
square parts, q = 2 (selected for computational convenience in order to reduce the
completion time), and in two different regimes with regard to the hyper-parameter
⟨M⟩, that is, “fixed” and “slow growth”, illustrated by ⟨M⟩ = 5 (⟨N⟩ = 12,500)
and ⟨M⟩ = 50 (⟨N⟩ = 107), yielding for the parameter κ = ⟨M⟩3 / ⟨N⟩ values
κ = 0.01 and κ = 0.0125, respectively (cf. Assumption 2.3). The algorithm was
run at a very low confidence tolerance (error probability) δ = 10−8 and with
the corresponding truncation value L calculated using formulas (3.6) or (3.7)
according to the regime at hand, yielding L = 2992 = 89, 401 and L = 2,9032 =
8,427,409, respectively (cf. Table 3.2).

The empirical results (with 105 output partitions in both cases) were com-
pared with the theoretical predictions from Theorems 2.26 and 2.40. The marginal
histogram plots for Nλ and Mλ shown in Figure 3.1 depict bell-shaped unimodal
empirical distributions with the sample modes noticeably shifted to the left of
the calibration hyper-parameters ⟨N⟩ and ⟨M⟩, respectively. The discrepancy
between the modes and the means is observed especially well in the weight plots
(the more so for smaller ⟨M⟩), which is essentially due to the fact that the under-
lying gamma and Poisson distributions are right-skewed; for example, the mode
of Gamma(α) is given by max{α−1, 0} whereas the mean is α. Another (minor)
reason for a negative bias is due to a certain miscalibration, as was pointed out in
Section 3.1.1. In line with theoretical predictions, this mismatch is vanishing with
the growth of the hyper-parameters ⟨N⟩ and ⟨M⟩, together with the improving
accuracy of the normal approximations, both for Nλ and Mλ.

It is also interesting to note that the mean-gamma approximation Gamma(⟨M⟩)
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weight
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(a) ⟨M⟩ = 5, ⟨N⟩ = 12,500 (κ = 0.01). A dot at the origin on the left panel shows
a discrete atom π0 = e−⟨M⟩ .

= 0.00674 (see (2.104)).

weight
0 5e+06 1e+07 1.5e+07 2e+07

0
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(b) ⟨M⟩ = 50, ⟨N⟩ = 107 (κ = 0.0125). The atom π0 = e−⟨M⟩ .
= 2 · 10−22 is too

small to be visible.

Figure 3.1: Marginal histograms for the weight Nλ (left) and lengthMλ (right) for
random samples (of size 105 each) from the partition space Λ̌q (q = 2), simulated
using a free Boltzmann sampler as set out in Algorithm 1. Colour coding: blue
designates the limiting distributions under the “fixed” regime, that is, compound
Poisson-Gamma (left) and Poisson (right); red indicates a normal approximation;
magenta depicts a mean-gamma approximation (see Section 2.3.1).

(see Section 2.3.1) nearly perfectly matches the exact compound Poisson-Gamma
distribution for ⟨M⟩ = 50 (see Figure 3.1(b), left); for smaller values of ⟨M⟩,
this approximates is rather crude, however it still captures well the mode of the
Poisson-Gamma distribution and also its right shoulder (see Figure 3.1(a), left).

A remarkable exception to the unimodality of the plots in Figure 3.1 is the
compound Poisson-Gamma plot for the weight Nλ, with a relatively small value
of ⟨M⟩ = 5 (see Figure 3.1(a), left), where one can clearly see a singularity
at zero (cf. Section 2.3.1). This theoretical prediction is supported by the em-
pirical results, with an obvious excess of smaller weights. With ⟨M⟩ = 5 and
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⟨N⟩ = 12,500, the local minimum of the theoretical density g(x) defined in (2.106)
occurs at x0

.
= 0.10340 with value1 g(x0)

.
= 0.19632, which corresponds to weight

n0 = ⌈x0/γ0⌉ = 517. If the density g(x) continued to decay to the left of x0, this
would predict the (asymptotic) probability of getting weights smaller than n0 (to-
gether with an empty partition) loosely bounded by x0 g(x0)+π0

.
= 0.02704. But

the actual compound Poisson-Gamma probability is higher, G(x0)
.
= 0.03120 (see

(2.104)). The excess of “small” partitions is reminiscent of a partition interpreta-
tion of the Bose–Einstein condensation (see [86]). As already mentioned in Section
2.3.1, this is a truly finite-length phenomenon, which vanishes as ⟨M⟩ → ∞ (cf.
Figure 3.1(b), where ⟨M⟩ = 50).

(a) Bivariate frequency plot. (b) Frequency level sets.

Figure 3.2: Joint sampling distribution of weight Nλ and length Mλ for q = 2,
⟨M⟩ = 50 and ⟨N⟩ = 107 (cf. marginal plots in Figure 3.1(b)). A random Boltz-
mann sample of partitions λ ∈ Λ̌q (of size 105) was simulated using Algorithm 1.

The bivariate plots in Figure 3.2 (for ⟨M⟩ = 50) appear to be approximately
consistent with the asymptotically predicted (standardised) confidence ellipses of
the form

Lα = {x ∈ R2 : xK−1
q x⊤ ≤ χ2

2(1− α)}, (3.11)

where K−1
q is the inverse covariance matrix (2.138), and χ2

2(1−α) is the quantile
of the chi-squared distribution with two degrees of freedom, corresponding to
confidence probability 1− α. The latter distribution simplifies to an exponential
distribution with mean 2, hence χ2

2(1− α) = 2 log (1/α). According to Theorem
2.40, a sample point (N∗

λ ,M
∗
λ) belongs to the ellipse (3.11) approximately with

probability 1 − α, where the standardised values N∗
λ ,M

∗
λ are defined in (2.137).

1Note that the asymptotic formula (2.107) gives a pretty accurate approximation g(x0) ≈
0.14334.
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The inverse of Kq is easily computed,

K−1
q =

q + 1

q

 1
−1√
q + 1

−1√
q + 1

1

,

and the confidence ellipse (3.11) specialises as follows,

N∗2
λ −

2N∗
λM

∗
λ√

q + 1
+M∗2

λ ≤
2q

q + 1
log

1

α
.

A closer inspection of the level plots in Figure 3.2(b) reveals some elongation
of the frequency level sets towards bigger values of the weight Nλ, thus indicat-
ing a bit of discrepancy with the predicted elliptical shape. This observation is
confirmed by comparison of the marginal histograms of Nλ and Mλ in Figure 3.1,
where the latter is reasonably symmetric while the former is noticeably skewed
to the right. A heuristic explanation of such an effect may be based on noticing
from formulas (2.7) that, while the length Mλ is built by summation of multi-
plicities νℓ, the weight Nλ involves size-biased terms ℓνℓ, which pinpoint skewing
the distribution to the right.

A well-localised unimodal nature of the distributions behind the outputs Nλ

and Mλ is sometimes referred to as a bumpy type [24], characterised by an asymp-
totically large signal-to-noise ratio (SNR) in response to a large signal,1

SNR(X) :=
[E(X)]2

Var(X)
→∞, E(X)→∞. (3.12)

Here, the notation X designates a random output in question (such as the size),
which has a large expected value. Following definition (3.12) and applying The-
orem 2.24, we readily get

SNR(Nλ) ∼
⟨N⟩2

(q + 1) ⟨N⟩2/⟨M⟩
=
⟨M⟩
q + 1

, SNR(Mλ) ∼
⟨M⟩2

⟨M⟩
= ⟨M⟩ ,

so that under Assumption 2.3 (slow growth of ⟨M⟩) each of the marginal SNRs
tends to infinity.

In the multivariate case, the SNR is usually defined in the literature as a
scalar value,

SNR(X) := µK−1µ⊤, µ := E(X), K := Cov(X,X) (3.13)

1The “bumpy” property is especially helpful for sampling with rejection designed to achieve
certain targets for weight and length, due to a guaranteed asymptotically fast delivery of the
output (see Section 3.2).
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(see, e.g., [72, Eq. (1), p. 511]). Again using Theorem 2.24, we find the asymptotic
inverse of the covariance matrix,

K−1(z) ∼ 1

q ⟨N⟩2

 ⟨M⟩ − ⟨N⟩

− ⟨N⟩ (q + 1)⟨N⟩2

⟨M⟩

,

and hence

SNR(Nλ,Mλ) ∼
(⟨N⟩ , ⟨M⟩)

q ⟨N⟩2

 ⟨M⟩ − ⟨N⟩

− ⟨N⟩ (q + 1)⟨N⟩2

⟨M⟩

(⟨N⟩
⟨M⟩

)
= ⟨M⟩ → ∞.

However, a scalar definition (3.13) is not entirely satisfactory— for instance, it
cannot detect whether the individual components of X are of bumpy type. As
an alternative, we propose the following matrix definition,

SNR(X) := (µK−1/2)⊤(µK−1/2) = K−1/2(µ⊤µ)K−1/2, (3.14)

where K−1/2 is the (unique) positive definite square root of the inverse covariance
matrix K−1, that is, K−1/2K−1/2 = K−1 [44, Theorem 7.2.6, p. 439]. In our
case, the exact expression for K−1/2(z) is cumbersome (although available), but
its asymptotic version under Assumption 2.3 simplifies to

K−1/2(z) ∼
√
⟨M⟩√

q (q + 1) ⟨N⟩

√q −1

−1 (q + 1) ⟨N⟩
⟨M⟩

.

Hence, after straightforward calculations we obtain from (3.14)

SNR(Nλ,Mλ) ∼
⟨M⟩
q + 1

(
1
√
q

√
q q

)
,

which tends to infinity in matrix sense.

3.2. Rejection sampler

The idea of a rejection sampler discussed in this section is to run a free sampler
in a loop until a prescribed target is met. For example, if the target is set in
terms of the required partition length as Mλ = m, with a fixed m ∈ N, then the
free sampler is iterated until a partition of exact length m is obtained. Likewise,
if the target is set for the partition weight, Nλ = n, with a fixed n ∈ N, then
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the free sampling loop runs until a partition of exact weight n is found. These
two targets can be imposed simultaneously, Mλ = m and Nλ = n; here, it is
natural to design the rejection algorithm as a juxtaposition of two loops of the
free sampler, such that the internal loop runs until the length target is met and,
every time this happens, the resulting partition is checked with regards to the
weight target and is either rejected, whereby the internal loop starts afresh, or
accepted, in which case the algorithm stops.

A more general approach, leading to the so-called approximate algorithms,
is to relax the exact targets to suitable intervals (brackets). In Algorithm 2
presented below in Section 3.2.3, we give an example of a Boltzmann rejection
sampler aiming to sample a partition λ ∈ Λ̌q satisfying two conditions, Mλ = m
and n ≤ Nλ ≤ θn, for some predefined tolerance factor θ ≥ 1. Of course, if
θ = 1, the approximate algorithm is reduced to an exact one. An approximate
target can also be considered for length, m ≤ Mλ ≤ θ′m, and furthermore, such
approximate targets can be combined if desired.

Before delineating Algorithm 2, we discuss a few implementation issues arising
therein.

3.2.1. Calibration and truncation of parts

To start with, the choice of the calibrating parameters z1 and z2 now follows a
slightly different logic as compared to the case of a free sampler. If only one
target is set, such as Mλ = m, then according to formula (2.27) the conditional
Boltzmann measure Pz(· | Λ̌q(·,m)) does not depend on the parameter z2, whereas
the other parameter, z1, can be chosen with a view on a desired expected value
⟨N⟩ of the output weight Nλ, as was the case with the free sampler. Nonetheless,
in order to maximise efficiency of the sampling algorithm, the “free” parameter
z2 should still be chosen in line with the mean conditions (2.65) subject to the
specification ⟨M⟩ = m, thus aiming to benefit from the bumpy nature of the dis-
tribution Pz(· | Λ̌q(·,m)) (cf. Section 3.1.3). Similarly, if the condition Nλ = n is
targeted then the conditional Boltzmann measure Pz(· | Λ̌q(n, ·)) does not depend
on z1, however both parameters z1 and z2 are chosen to match the mean condi-
tions (2.65) with ⟨N⟩ = n. Furthermore, if both targets are imposed, Nλ = n
and Mλ = m, then by Lemma 2.8 the measure Pz(· |Λ̌q(n,m)) is reduced to the
uniform distribution on Λ̌q(n,m) regardless of the parameters z1 and z2. But, as
explained above, it is worthwhile to calibrate them in line with the mean condi-
tions (2.65). With these targets in mind, in what follows (including Algorithm
2) we use the specific hyper-parameters ⟨N⟩ = n and ⟨M⟩ = m. Moreover, since
avoiding bias is no longer a concern (unlike in the case of the free sampler), using
the leading-term expressions (3.1) is a perfectly satisfactory option. Of course,
the same recipe applies to the approximate sampling.
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Another issue to be addressed is whether any truncation of the source of
parts is needed in the algorithm (cf. Section 3.1.2). As long as the weight target
is involved, Nλ = n, one can use a natural majorant L∗ = n as a call parameter
L in Algorithm 1 (see Section 3.1.3), which clearly causes no loss in confidence
(i.e., δ = 0, see (3.5)). The same is true in the case of an approximate target,
Nλ ∈ [n, θn], by choosing the majorant L∗ = θn. However, if only the length
target is in place then no such majorant is available and, therefore, confidence
considerations must be deployed, as discussed in Section 3.1.2.

3.2.2. Censoring of iterations

As was pointed out in the Introduction, in contrast to the special value q =
1, in the general case with q ≥ 2 and arbitrary m ≥ 1 there is no guarantee
for a given natural number n ∈ N to be partitionable into a required number
m of q-power parts (unless it is covered by a solution of the Waring problem
[83]). The requirement that the parts be distinct adds to the complexity of the
question. Therefore, the space Λ̌q(n,m) may well be empty and, not knowing this
in advance, the task of sampling from such a space may be “mission impossible”.

To be specific, consider sampling subject to the joint targets Mλ = m and
Nλ = n. As already indicated at the beginning of Section 3, a general design of
the corresponding sampling algorithm is based on the two nested loops according
to the separated targets, internal for Mλ and external for Nλ. While the internal
loop is certain to produce a random partition in Λ̌q with exactly m parts (see
more about this below), the external loop contains an inherent loose end due to
its potential failure to satisfy the weight requirement, simply because there may
be no such partitions. That is to say, although the successful completion of the
external loop will take some time by repeatedly querying the internal loop, it may
be pointless to wait for too long as there is no certainty if that is not wasteful.

We propose to resolve this difficulty by an appropriate “censoring” of pro-
cessing time, that is, by setting a limit t∗ on the waiting time, chosen to ensure
sufficiently high confidence in the algorithm’s ability to deliver a successful com-
pletion within the allocated time limit, of course provided that the task is feasible
(i.e., required partitions exist). More precisely, given a confidence tolerance (sig-
nificance level) δ ∈ (0, 1), the threshold t∗ should be such that, if the target space
is non-empty, the probability that the algorithm would not succeed by time t∗

does not exceed δ. Such an approach is akin to statistical testing of the null hy-
pothesis “the target is non-empty”. Under this hypothesis, the test (implemented
as a sampling algorithm) fails to produce a required partition (Type I error) with
rate bounded by δ.

The choice of threshold t∗ is determined by the sampling task at hand. A few
examples of interest are as follows (assuming the number of parts m to be fixed):
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(T1) Exact sampling: For a given n, attempt to sample λ ∈ Λ̌q(n,m) (in other
words, check partitionability of n).

(T2) Multiple exact sampling: For a given n and some θ > 1, attempt to sample
λ ∈ Λ̌q(k,m) for each integer k in the range k ∈ [n, θn] (that is, test
partitionability of each of these numbers).

(T3) Approximate sampling: Same as in task (T2) but attempting to sample
λ ∈

⋃
n≤k≤θn Λ̌

q(k,m) (that is, to find at least one partitionable number in
the said range).

Remark 3.1. If required, tasks (T2) and (T3) could be modified to a two-sided
version, such as θ−1n ≤ k ≤ θn or, more generally, θ1n ≤ k ≤ θ2n, with some
0 < θ1 < 1 < θ2.

First, let us look at how the internal loop performs towards its task of sam-
pling a partition λ ∈ Λ̌q

L(·,m) = Λ̌q(·,m) ∩ {λ : λmax ≤ L} (i.e., the source of
parts is truncated to {ℓ ≤ L}, see Section 2.1.5). According to Theorem 2.31(a),
if ⟨M⟩ > 0 is fixed and L ∼ θ ⟨N⟩ then the distribution of Mλ conditional
on λmax ≤ L converges to a Poisson law with mean µθ = ⟨M⟩G1/q(aθ), where
aθ = θ ⟨M⟩/q. A stronger result concerns a Poisson approximation (cf. Remark
2.27) under a suitable metric, such as the total variation distance between dis-
tributions. Namely, the said conditional distribution of Mλ can be replaced by a
Poisson distribution with mean

Ez(Mλ |λmax ≤ L) =
∑
ℓ≤L

zℓ1z2
1 + zℓ1z2

∼ µθ, (3.15)

with the error in total variation bounded by (see [7, Theorem 1, p. 474])

1

µθ

∑
ℓ≤L

(
zℓ1z2

1 + zℓ1z2

)2

= O(z2) = O(κ1/q)→ 0, (3.16)

according to (2.95). The advantage of such an approximation is that it holds true
even if ⟨M⟩ is slowly growing, whereby the error estimate (3.16) is still valid.

Returning to the analysis of the internal loop, with ⟨N⟩ = n and ⟨M⟩ = m
we have

Pz(Mλ = m |λmax ≤ θn) ∼ µm
θ e−µθ

m!
, µθ = mG1/q(θm/q). (3.17)

Hence, the probability (3.17) is bounded away from zero, and since the attempts
within the internal loop are independent, the number of internal runs until success
has geometric distribution, with the expected time to success being bounded by
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a constant (depending on m). If m→∞ (with κ = mq+1/n = o(1)), then µθ ∼ m
and, according to (3.15) and (3.16), we have

Pz(Mλ = m |λmax ≤ θn) =
µm
θ e−µθ

m!
+O(κ1/q) ∼ mm e−m

m!
∼ 1√

2πm
, (3.18)

with the help of the Stirling formula. In turn, formula (3.18) implies that the
expected number of runs of the internal loop is of order O

(√
m
)
, which is not

particularly large for practical implementation.
Let us now turn to tasks (T1) – (T3) and focus on probabilistic analysis of

runs of the external loop, taking for granted that Mλ = m and, automatically,

λmax ≤ L∗, where L∗ = θn is a majorant in
⋃

n≤k≤θn Λ̌
q(k,m). As stipulated

above, we use the hyper-parameters ⟨N⟩ = n and ⟨M⟩ = m, and specify the
calibrating parameters z1 and z2 according to the leading-term expressions (3.1).
Denote for short

p∗k := Pz(Nλ = k |Mλ = m, λmax ≤ θn), n ≤ k ≤ θn. (3.19)

for simplicity omitting reference to n and m. Of course, if Λ̌q(k,m) = ∅ then
p∗k = 0. The probability (3.19) can be interpreted as the probability of successfully
sampling a partition of weight k in a single run of the external loop. Due to
independence of successive runs, the number Tk of attempts until success for a
targeted weight value k follows geometric distribution,

Pz(Tk > t |Mλ = m,λmax ≤ n) = (1− p∗k)
t , t ∈ N0. (3.20)

This includes the case p∗k = 0, whereby Tk =∞ (Pz-a.s.). Also note that (Tk) are
mutually independent for different k.

(T1) Here, θ = 1, so L∗ = n. Suppose that Λ̌q(n,m) ̸= ∅ and let λ∗ ∈ Λ̌q(n,m),
so that Nλ∗ = n and Mλ∗ = m. Then we can write

Pz(λ∗ |Mλ = m, λmax ≤ n) =
Pz(λ∗ |λmax ≤ n)

Pz(Mλ = m |λmax ≤ n)
. (3.21)

Starting with the numerator, we have

Pz(λ∗ |λmax ≤ n) = zn1 z
m
2

∏
ℓ≤n

1

1 + zℓ1z2
.

Substituting formulas (3.1), we obtain

zn1 z
m
2 ∼ e−m/q q

2m(m/q)m+m/q(
Γ(1/q)

)m
nm/q

,
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while Lemma 2.17, with the help of the asymptotic relation (2.79), yields∏
ℓ≤n

1

1 + zℓ1z2
∼ exp

(
−mG1/q(m/q)

)
.

Furthermore, by Theorem 2.31(a) the denominator in (3.21) is asymptoti-
cally given by

Pz(Mλ = m |λmax ≤ n) ∼
mm
(
G1/q(m/q)

)m
exp
(
−mG1/q(m/q)

)
m!

. (3.22)

Hence, returning to (3.21) we obtain

p∗n ≥ Pz(λ∗ |Mλ = m,λmax ≤ n) ∼ 1

C1(m, q)nm/q
, (3.23)

where

C1(m, q) :=
1

m!

(
e1/q Γ(1/q)G1/q(m/q)

q1−1/qm1/q

)m

. (3.24)

Combining (3.20) and (3.23), we have, asymptotically,

Pz(Tn > t |Mλ = m,λmax ≤ n) = (1− p∗n)
t ≤

(
1− 1 + o(1)

C1(m, q)nm/q

)t

.

(3.25)
Thus, for the probability (3.25) not to exceed a predefined (small) confi-
dence tolerance δ > 0, it suffices to choose the threshold t = t∗n as follows,

t∗n ≃
log δ

log

(
1− 1 + o(1)

C1(m, q)nm/q

) ∼ C1(m, q)nm/q log
1

δ
. (3.26)

Remark 3.2. The bound (3.26) is very conservative due to a crude esti-
mate (3.23) leveraging just one instance λ∗ ∈ Λ̌q(n,m). If more informa-
tion was available about the size of the space Λ̌q(n,m), the bound (3.26)
could be reduced accordingly. For example, if q = 1 then it is known that
#Λ̌(n,m) ∼ nm−1(m! (m − 1)!)−1 (see (2.129)). Hence, formula (3.26) for
the time threshold in the case q = 1 is replaced by a much better and more
realistic estimate,

t̃∗n ≃
C1(m, 1)

#Λ̌(n,m)
nm log

1

δ
∼ em (1− e−m)

m
(m− 1)!

mm
n log

1

δ
. (3.27)
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Likewise, for q = 2 we get, using (2.131) (with Cm = 1),

t̃∗n ≃
C1(m, 2)

#Λ̌2(n,m)
nm/2 log

1

δ
∼
(
2e

m

)m/2

Γ(m/2)
(
G1/2(m/2)

)m
n log

1

δ
,

(3.28)
which again grows only linearly in n.

(T2) For the multiple exact sampling in the range k ∈ [n, θn], we can just repeat
the procedure in task (T1) for each k in that range. According to (3.20),
the probability that the number of attempts until success, Tk, exceeds a
threshold t∗k is given by (cf. (3.20))

Pz

(
Tk > t∗k |Mλ = m,λmax ≤ k

)
= (1− p∗k)

t∗k , n ≤ k ≤ θn.

Taking into account only partitionable numbers k ∈ [n, θn] (i.e., such that
Λ̌q(k,m) ̸= ∅ and, therefore, p∗k > 0) and using a Bonferroni-type inequal-
ity, the probability of Type I error for task (T2) (i.e., that the external loop
fails for at least one such k) is bounded as follows,

Pz

( ⌊θn⌋⋃
k=n

{t∗k < Tk <∞}
∣∣∣Mλ = m,λmax ≤ θn

)
≤
∑

k : p∗k>0

(1− p∗k)
t∗k . (3.29)

Motivated by formula (3.26), we can look for the time limits t∗k in the form

t∗k ∼ ckm/q. (3.30)

Then from (3.29) using (3.23) we get, asymptotically,

∑
k : p∗k>0

(1− p∗k)
t∗k ≲

⌊θn⌋∑
k=n

(
1− 1

C1(m, q) km/q

)ckm/q .

≤ (θ − 1)n exp

(
− c

C1(m, q)

)
≤ δ.

Solving this inequality for c and returning to (3.30) ultimately yields

t∗k ≃ C1(m, q) km/q log
(θ − 1)n

δ
, n ≤ k ≤ θn. (3.31)

Thus, the time bound (3.31) follows the same formula as in a single test
(cf. (3.26)) but with a Bonferroni-type adjustment of the significance level
in order to offset the multiple testing.
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Remark 3.3. The same comment as in Remark 3.2 applies to task (T2).
Specifically, for q = 1 and q = 2 the improved formulas for the thresholds
t∗k are given, respectively, by

t̃∗k ≃
em (1− e−m)

m
(m− 1)!

mm
k log

(θ − 1)n

δ
, (3.32)

t̃∗k ≃
(

2e

πm

)m/2

Γ(m/2)

(∫ m/2

0

u−1/2 e−u du

)m

k log
(θ − 1)n

δ
. (3.33)

(T3) In a single attempt, the external loop gets a partition λ ∈
⋃

n≤k≤θn Λ̌
q(k,m)

with probability

Pz

(
n ≤ Nλ ≤ θn |Mλ = m,λmax ≤ θn) =

⌊θn⌋∑
k=n

p∗k → G⋆m
1/q(aθ |aθ)−G⋆m

1/q(a1|aθ).

(3.34)

The limit (3.34) is due to Theorem 2.31(b), where aθ = θm/q andG⋆m
1/q(x |aθ)

stands for them-convolution of the aθ-truncated gamma distributionG1/q(x |aθ).
To circumvent the trouble of computing such a convolution, observe that
in the range 0 ≤ x ≤ a the distribution function G⋆m

α (x |a) coincides with
Gmα(x) up to the normalisation factor Gα(a)

m. This is obvious for m = 1,
and the general case can be seen by induction over m using the convolution
formula. Indeed, denoting the corresponding densities by g⋆mα (x |a) and
gmα(x), respectively, we have by definition gα(x |a) = gα(x)/Gα(a) (0 ≤
x ≤ a), and the induction step is carried out as follows,

g⋆mα (x |a) =
∫ x

0

g⋆(m−1)
α (u |a) gα(x− u |a) du

=
1

Gα(a)m

∫ x

0

g(m−1)α(u) gα(x− u) du =
gmα(x)(
Gα(a)

)m , 0 ≤ x ≤ a,

due to the convolution property of the gamma distribution. Thus, formula
(3.34) simplifies to

⌊θn⌋∑
k=n

p∗k →
Gm/q(θm/q)−Gm/q(m/q)(

G1/q(θm/q)
)m =: C3(m, q, θ). (3.35)

Now, since individual runs of the external loop are independent, the prob-
ability that the number of attempts until success, T , exceeds a threshold t
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is given by (cf. (3.20))

Pz(T > t |Mλ = m,λmax ≤ θn) =

(
1−

⌊θn⌋∑
k=n

p∗k

)t

≃
(
1− C3(m, q, θ)

)t
,

(3.36)
on account of (3.35). Hence, in order that this probability be bounded by
a confidence tolerance δ > 0, we may choose the threshold t = t∗ as follows,

t∗ ≃ log δ

log (1− C3(m, q, θ))
. (3.37)

Remark 3.4. According to formula (3.37), the threshold t∗ does not depend
on n. It is of interest to look at how it depends on the growth of the power
q. To this end, by a direct analysis of the gamma distribution (see (2.90))
one can verify that

Gα(θα) = (θα)α
(
1 +O(α)

)
(α→ 0+).

Hence, from formula (3.35) we get

C3(m, q, θ) ∼ 1− θ−m/q ∼ m log θ

q
(q →∞),

and then (3.37) gives

t∗ ≃ q log(1/δ)

m log θ
.

3.2.3. Rejection sampling algorithm

A stylised example of rejection sampler is presented below in pseudocode as Algo-
rithm 2. It is set out in a flexible way so as to be usable in exact and approximate
sampling alike, as determined by the tasks (T1)–(T3) described in Section 3.2.2.
In particular, the range parameter θ is allowed to take the value θ = 1, in which
case the algorithm would work towards the exact sampling task (T1) (i.e., with
a specific weight target Nλ = n). As explained in Section 3.2.1, the hyper-
parameters are adapted to the desired targets, ⟨N⟩ = n and ⟨M⟩ = m, and the
calibrating parameters z1 and z2 are set according to the simplified expressions
(3.1). A predefined time bound t∗ for the external loop is selected according to
the task at hand, as discussed in Section 3.2.2, and on account of the required
confidence probability 1− δ.

As briefly indicated at the start of Section 3.2, Algorithm 2 comprises an
external loop that iterates the free sampler in an internal loop (i.e., Algorithm 1,
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with the majorant L = θn), which delivers, in each productive cycle, a partition
λ that meets the length target Mλ = m. This continues until the trial partition
λ meets the weight target (e.g., Nλ = n in task (T1) or n ≤ Nλ ≤ θn in task
(T3)). However, if the limit of attempts t∗ is reached with no success then the
algorithm terminates, returning a message ‘VOID’. It remains to add that for
task (T2) involving multiple exact sampling, the algorithm should be run in an
additional loop to scan all weight values in the range k ∈ [n, θn].

Algorithm 2: ReSampler(q, n,m, θ, t∗)

Input: integer q, n,m, real θ ≥ 1, t∗

Output: partition λ ∈ Λ̌q(·,m) with Nλ ∈ [n, θn], otherwise ‘VOID’
1 integer array λ[ ];
2 integer N,M, t;
3 real L;
4 L← θn;
5 N ← 0, M ← 0, t← 0;
6 while N /∈ [n, θn] and t ≤ t∗ do
7 while M ̸= m do
8 (λ,N,M)← FreeSampler(q, n,m, L)
9 end

10 t← t+ 1;

11 end
12 if t ≤ t∗ then
13 Nλ ← N ;
14 return (λ,Nλ)

15 else
16 return ‘VOID’

17 end

Algorithm 2 can be optimised in a number of ways. Since the weight of
a valid output λ should not exceed θn, it is clear that the run of the internal
loop can be terminated prior to collecting the required number of parts m if the
next candidate part is too large, so that the incremented weight will certainly
exceed the majorant. Furthermore, if the number of collected parts has already
reached the target value m then there is no need to keep scanning the remaining
values in the range ℓ ≤ L and the current run of the internal loop may be
stopped without any loss. However, to avoid bias and maintain the Boltzmann
distribution of the output, the corresponding proposal λ ∈ Λ̌q

L(·,m) must be
accepted only if the remaining candidate parts in the range ℓ ≤ L were to be
rejected by the respective Bernoulli checks. Since individual such checks are
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mutually independent, their multitude can be replaced by a single Bernoulli trial
with the corresponding product probability of failure. An additional benefit of
such an aggregated Bernoulli check is that this will reduce the number of calls of
the random number generator and hence improve the efficiency of the sampler.

Another improvement of the code implementation in the multiple testing
task (T2) proceeds from the observation that the sequential procedure based on
separate testing of each target in the range [n, θn] (see Section 3.2.2) is apparently
wasteful, because a partition of some k′ ∈ [n, θn] obtained whilst looking for
partitions of a different number k would be discarded in that cycle of the external
loop, whereas keeping it would have helped to achieve success if an earlier search
with target k′ failed, or to save time on a duplicate job when the algorithm moves
to the new target k′. In practice, all partitions (at least, the new ones) obtained
in every run of the external loop should be stored as long as they fit into the
range [n, θn], thus leaving dynamically fewer targets to address.

For the sake of presentational clarity, Algorithm 2 embeds iterated calls of the
free sampler (Algorithm 1), but this means that the calibrating parameters z1 and
z2 are recalculated at every such call, which is of course wasteful. This drawback
can be easily amended by writing out the code explicitly. Note, however, that such
an improvement would have no significant bearing on the asymptotic estimation
of the code complexity.

3.2.4. Complexity and performance

Building on the probabilistic analysis of the internal and external loops carried out
in Section 3.2.2, it is straightforward to estimate the time complexity of Algorithm
2, understood as the expected number of elementary runs to completion.

Starting with the internal loop, in its crude (non-optimised) version each
internal run comprises ⌊(θn)1/q⌋ checks of available parts ℓ ∈ Nq not exceeding
L∗= θn. Combined with the estimate (3.17) of the probability to collect m parts
in a single run and the corresponding geometric distribution of the number of
attempts, the complexity of the internal loop is bounded by

µ−m
θ m! eµθ (θn)1/q. (3.38)

As for the external loop, its complexity depends on the task at hand. If θ = 1
(which corresponds to task (T1) of exact sampling with the weight targetNλ = n),
then the time to completion, Tn, has geometric distribution with parameter p∗n
(see (3.20)). For simplicity dropping a time bound t∗ (but still assuming that the
space Λ̌q(n,m) is non-empty, so that p∗n > 0), the expected time to completion
is given by Ez(Tn) = 1/p∗n. With a time bound t∗, the expectation is modified as
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follows,

Ez(Tn;Tn ≤ t∗) =
t∗∑

t=1

t(1− p∗n)
t−1p∗n + t∗(1− p∗n)

t∗ =
1− (1− p∗n)

t∗

p∗n
<

1

p∗n
.

(3.39)

However, the reduction in (3.39) is not significant, because under our confidence-
based choice of the time limit (see (3.23)), we always have (1 − p∗n)

t∗≤ δ. Thus,
combining formulas (3.38) and (3.39), the total complexity guarantee for task
(T1) is estimated by

m! eµ1

µm
1

O
(
n1/q/p∗n

)
, µ1 = mG1/q(m/q). (3.40)

Further specification depends on the informative lower bound for the probability
p∗n. For example, a crude estimate (3.23) gives a more explicit estimate for the
complexity, (

exp
(
G1/q(m/q) + 1/q

)
Γ(1/q)

q1−1/qm1+1/q

)m

O
(
n(m+1)/q

)
. (3.41)

For q = 1 and q = 2, this estimate can be significantly improved by using asymp-
totically exact cardinalities (2.129) and (2.131), respectively, yielding the esti-
mates

(m!)2 e2m

m2m+1
O(n2) = O(n2) (3.42)

and
2m/2m! Γ(m/2) e3m/2

m3m/2
O
(
n3/2

)
= O(n3/2). (3.43)

Interestingly, the asymptotic bounds (3.42) and (3.43) do not depend on the
number of parts m.

For task (T2) (with some θ > 1), the above estimates just need to be multi-
plied by the number of targeted weights, ⌊(θ− 1)n⌋+1 = O(n). Finally, for task
(T3) we can use formula (3.40), but with µ1 changed to µθ (see (3.38)) and with
the probability p∗n of success in a single attempt replaced by the (asymptotic)
probability (3.35) of at least one success in the range [n, θn], yielding

m! exp
(
mG1/q(θm/q)

)
mm

(
Gm/q(θm/q)−Gm/q(m/q)

) O(n1/q) = O
(
mn1/q

)
.

To evaluate real time performance of the rejection sampler, we first need to
take a practical look at the censoring time limits t∗ in tasks (T1)–(T3) proposed
in Section 3.2.2. These are numerically illustrated in Table 3.4 for q = 1 and
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Table 3.4: Confident time thresholds t∗ for the external loop in tasks (T1), (T2)
and (T3), calculated for q = 1 and q = 2 with various values of confidence
tolerance δ using formulas (3.26), (3.31) and (3.37). In both cases, the chosen
values of n and m yield κ = mq+1/n = 0.01. For tasks (T2) and (T3), the
testing range is set with the factor θ = 1.1. For comparison, corrected values t̃∗

for tasks (T1) and (T2) are calculated from formulas (3.27), (3.28) and (3.32),
(3.33), respectively.

q = 1, n = 2,500, m = 5

δ t∗n (T1) t̃∗n (T1) t∗n (T2) t̃∗n (T2) t∗ (T3)

0.1 8.603518 · 1013 6,343.202 2.923424 · 1014 21,553.82 26.01955

0.01 1.720704 · 1014 12,686.40 3.783776 · 1014 27,897.02 52.03911

0.001 2.581056 · 1014 19,029.61 4.644128 · 1014 34,240.22 78.05866

0.0001 3.441407 · 1014 25,372.81 5.504479 · 1014 40,583.43 104.0782

q = 2, n = 12,500, m = 5

δ t∗n (T1) t̃∗n (T1) t∗n (T2) t̃∗n (T2) t∗ (T3)

0.1 198,687,146 41,485.61 814,003,357 169,962.8 34.94282

0.01 397,374,292 82,971.22 1,012,690,503 211,448.4 69.88564

0.001 596,061,438 124,456.8 1,211,377,649 252,934.0 104.8285

0.0001 794,748,583 165,942.4 1,410,064,795 294,419.7 139.7713

q = 2, with various values of n and m. Observe that the crude bounds for tasks
(T1) and (T2) calculated via formulas (3.26) and (3.31) appear to be very high,
especially for q = 1 (of order 1014), casting doubt on whether such limits are
usable. In real terms, since each run of the external loop is a simple check if
Nλ = n (see line 6 in Algorithm 2), we can assume for simplicity that it needs
a single tick of the CPU clock. If the algorithm is executed on a contemporary
mid-range desktop PC (say, with processor base frequency 3.30 GHz, which we
used) then, under the estimate (3.26) for task (T1) with q = 1 and a fairly
low confidence tolerance δ = 0.001, the external loop alone may require up to
2.581056 · 1014/(3.30 · 109 · 60 · 60) .

= 21.72606 ≈ 22 hours until completion, which
is unpleasantly long but not entirely unrealistic. This estimate drops dramatically
for q = 2 to less than 1 second. A steep decreasing trend continues with larger
powers;1 for example, for q = 3, n = 62,500, m = 5 and δ = 0.001, formula
(3.26) gives t∗n = 3,358,531, leading to the maximum execution time of up to

1Keeping m and κ = mq+1/n fixed, from formulas (3.24) and (3.26) we find limq→∞ t∗n =
(mm/m!) log(1/δ). For example, for m = 5 as in Table 3.4 and δ = 0.001, this limiting value
specialises to 179.8895
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0.001 second. Thus, the sampler becomes progressively more efficient for larger
q, even under a crude time bound. On the other hand, as pointed out in Remarks
3.2 and 3.3, additional information about the size of the corresponding partition
spaces would allow a significant reduction of the estimated bound as illustrated
in Table 3.4 (by a factor 1010 for q = 1 and about 4,790 for q = 2).

Let us now look at the real time computational cost due to the internal loop.
As mentioned before (cf. (3.38)), the expected numbers of internal runs until
collecting exactly m parts is asymptotically given by µ−m

1 m! eµ1 (with θ = 1),
where µ1 = mG1/q(m/q). Using for numerical illustration the same values of q, n
and m as in Table 3.4, this formula yields 5.6993 (q = 1) and 5.7043 (q = 2). The
average computing time for each of such attempts is inversely proportional to the
CPU base frequency (such as 3.30 GHz), but it involves many other important
aspects such as the operational efficiency of a random number generator, design of
memory allocation and data storage, numerical precision, coding implementation
and compiler used, and the overall architecture of the computer (e.g., the number
of cores and whether or not parallel processing was utilised). Thus, it is impossible
to estimate the actual computing time without real benchmarking.

To test the performance of the internal loop, we implemented the algorithm
on a desktop CPU as described at the beginning of Section 3, for simplicity
using a single core. Since internal runs are independent from each other and the
computational costs due to the multi-core design are negligible, we can roughly
divide the average execution time on a single core by the number of cores at
disposal. Cores only require to communicate once a sampling attempt meet the
target in order to stop the program.

With the same values of q, n and m used above and in Table 3.4 (and with
θ = 1), the average number of sampling attempts (starting at line 7 of Algorithm
2) was 5.6956 for q = 1 and 5.6404 for q = 2; note that these sample averages
match the expected values calculated above. Furthermore, the program took on
average 2.1036 · 10−3 seconds (q = 1) and 0.9780 · 10−4 seconds (q = 2) per single
successful completion of the internal loop. The corresponding number of ticks
of the CPU clock per elementary check of a candidate part ℓ ≤ n (see formula
(3.38)) is evaluated as (2.1036 ·10−3/(5.6956 ·2500)) ·3.30 ·109 .

= 487.5258 (q = 1)
and (0.9780 ·10−4/(5.6404

√
12500)) ·3.30 ·109 = 511.7854, so it stays in the range

about 450÷ 550.
However, there is a problem: if we combine the physical times benchmarked

for the internal loop with the time bounds t∗n for the external loop given in Table
3.4 (say, with tolerance δ = 0.001), then for q = 1 we obtain, by converting
seconds to minutes, hours, days and years, 2.1036 · 10−3 · 2.581056 · 1014/(60 · 60 ·
24 · 365) ≈ 17,217 years (!), which is clearly impractical. For q = 2, a similar
calculation gives a more reasonable estimate, 0.9780 ·10−4 ·596 061438/(60 ·60) ≈
16 hours. But with the improved time bounds t̃∗n (see Table 3.4), we obtain much
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more satisfactory estimates, 2.1036 · 10−3 · 19 029.61 ≈ 40 seconds (q = 1) and
0.9780 · 10−4 · 124 456.8 ≈ 12 seconds (q = 2).

3.3. Statistical number theory

3.3.1. Test of partitionability

Having some control over the acceptance rate of sampling procedures based on
the Boltzmann distribution, we can use such procedures to design statistical tests
of the null hypothesis of the form H0 : Λ̌

p(n,m) ̸= ∅. This idea bears similarities
with Monte Carlo primality tests such as the Miller–Rabin algorithm [62, 73]
or the Solovay–Strassen algorithm [80]. In both of these algorithms, under the
null hypothesis that the number being tested is multiplicatively composite (i.e.,
non-prime), a suitable algorithmic procedure attempts to confirm this hypothesis.
with a “low” error probability. It involves,

• a null hypothesis: if H0 is true, the tested number n is composite,

• a single test procedure: take a random number b < n, and perform a
congruence test. Assuming H0, there are two outcomes:

– b is a witness : the test confirms the hypothesis H0,

– b is a liar : H0 is true but the test cannot confirm it. This is a Type I
error. The probability of this event is less than 50% for the Solovay–
Strassen algorithm and less than 25% for the Miller–Rabin algorithm

• multiple tests : successive numbers b1, · · · , bk are sampled and the test
procedure is applied to each number. It effectively reduces the probability
of Type I error to less than 2−k for the Solovay–Strassen algorithm and
4−k for the Miller–Rabin algorithm. The value of k can be set to have a
probability of Type I error below an arbitrary small threshold δ > 0 by
taking k ≥ log(δ)/ log(0.5) or k ≥ log(δ)/ log(0.25) respectively.

Since we have prior knowledge about the weight and length marginals for the
Boltzmann distribution, we can test the hypothesisH0 : Λ̌

p(n,m) ̸= ∅ by iterating
a Boltzmann sampler. Similarly to the primality tests that we have mentioned,
assuming that H0 is true, there are two possible outcomes. Either it is a success,
in the sense that the sampler has produced an element of Λ̌p(n,m) or a failure
(Type I error). The test can be optimised for our specific purpose as we do
not need conditional uniformity of the Boltzmann distribution or to have a non-
biased sampler. It is only required to provide a sampler with success probability
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Algorithm 3: TweakedSampler

Input: z1, z2, ℓ
∗, n, m, q

Output: Partition λ ∈ Λ̌q.
1 integer array λ[ ];
2 ℓ← 1;
3 while Mλ < m and ℓp ≤ n−Nλ and ℓ ≤ ℓ∗ do

4 νℓp ← Ber(zj
p

1 z2/(1 + zℓ
p

1 z2));
5 ℓ← ℓ+ 1;

6 end
7 return λ;

bounded below by the Boltzmann distribution. This can be implemented e.g.
using Algorithm 3.

We have integrated this sampler in a multithreaded code derived from proce-
dure (T1) provided in Appendix D.3. The purpose of this code is, given numbers
L, ℓ, q, m and δ to indicate which numbers between ℓ and L can be partitioned
into m parts that are q-th powers with significance level δ. The main components
of the code are:

• the sampler,

• the single test function. It tests if a given number is partitionable and, as
a byproduct, produces a table indicating partitions of smaller numbers into
m, q-th powers. To optimise the process, independent samples are realised
in parallel with time limits t∗ divided by the number of cores of the CPU.
Each core produces a table and once all cores have executed their task the
tables are combined into a single table returned by the function,

• the multiple test function. For k from L down to ℓ, if k has not been
partitioned yet, the multiple test function calls instances of the single test
function with targeted weight k.

This program can be used to tackle variants of the Gauss circle problem and of
the Waring problem. It can be used to evaluate the first term of sequences of
partitionable numbers or their density. In future work we plan to provide fur-
ther optimisation of this approach. Notably, in the multiple test it appears to
be inefficient to go down from L to l by steps of 1 as it will lead to almost iden-
tical calibration. It would increase the efficiency while maintaining an adequate
significance level to have a variable step.

This design was implemented in Python. While it typically offers slower single
core performances compared to C, it allows to easily implement functionalities
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and simplifies the design of a scalable code via the multiprocessing package that
ultimately allows to exceed the performance of a single core code in C. A sample
code is given in Appendix D.3.

3.3.2. Number of partitions

As we have seen, checking the partitionability of a given – large – number n is
a potential application of rejection sampling. Here we discuss how to use rejec-
tion sampling as a tool to obtain more information about the counting sequence
through a heuristic approach. The formulas that we derive are not proven rigor-
ously, this section should be treated as a proof of concept.

Let us fix q and m and consider that n goes to infinity. We denote by (nk)k∈N
the sequence of numbers that can be partitioned into m distinct q-th powers. We
assume that we can define a normal order ρ for the count of the partitionable
numbers, i.e.

ρ : x ∈ R 7→ ρ(x) ∼ #{k : nk ≤ x}. (3.44)

We also assume that ρ is C1 and strictly increasing. We observe that the sequence
(yk)k∈N defined yk = ρ(nk) is uniformly spread in the following sense

#{k : yk ≤ x} = #{k : nk ≤ ρ−1(x)} ∼ ρ(ρ−1(x)) = x. (3.45)

For instance if m = 1, we have nk = k2 and we can take the normal order
ρ(x) =

√
x. If m = 2 and q = 2, a result by Landau and Ramanujan [51] states

that we can take the normal order ρ(x) = Kx/
√
log x, where K

.
= 0.764223653.

Subsequently we will write g(n) := Pz(Nλ = n | Mλ = m) and γ0 = m/(qn).
For 0 < a < b we have

Pz(a/γ0 ≤ Nλ ≤ b/γ0 | Mλ = m) =
∑

a/γ0≤nk≤b/γ0

g(nk) ∼
∑

ρ(a/γ0)≤yk≤ρ(b/γ0)

g(ρ−1(yk))

∼
∫ ρ(b/γ0)

ρ(a/γ0)

g(ρ−1(y)) dy =

∫ b/γ0

a/γ0

g(x)ρ′(x) dx

=
1

γ0

∫ b

a

g(u/γ0)ρ
′(u/γ0) du.

Moreover, according to Theorem 2.26, we have

Pz(a/γ0 ≤ Nλ ≤ b/γ0 | Mλ = m) ∼ 1

Γ(α)

∫ b

a

uα−1 e−u du.

As a first guess, we may identify

g(u/γ0) ∼
uα−1e−u

Γ(α)
· α

nρ′(u/γ0)
, (3.46)
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so by taking u = α, we obtain

Pz(Nλ = n | Mλ = m) ∼ ααe−α

Γ(α)
· 1

nρ′(n)
, (3.47)

this does not account for potential fluctuations as we observe a disparity in the
number of partitions, even between numbers that are partitionable. This can be
observed in the effective success rate of the Boltzmann sampler for reaching an
exact target. While the density of partitionable numbers and the success rates are
related, our observations suggest that we should we can distinguish more classes
of “partitionability” (see the Landau–Ramanujan case in Figure 3.4). In general
we may not know a normal order ρ, however we can assume that 0 ≤ ρ′ ≤ 1 since
the count of partitionable number cannot increase by more than one between two
successive integers. Thus, in the absence of further information about ρ we may
use the following estimate

Pz(Nλ = n | Mλ = m) ≳
ααe−α

nΓ(α)
. (3.48)

Figures 3.3 and 3.4 appear to be consistent with equations (3.47) and (3.48).
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Figure 3.3: Observed size success rates per 105 samples in full density cases.
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Figure 3.4: Comparison of observed size success rates per 105 samples in known
density cases.
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Chapter 4

Limit shape in occupancy models

It is common to classify data into multiple classes (or “boxes”), and to analyse
the frequency of occurrence of each class in a given experiment. Assuming that
the classes are countable and labelled by natural numbers we may provide a
sequences of frequencies (fj, j ∈ N) (positive and normalised). For instance, here
we are interested in parts size distribution. In Chapter 2, we observed that a part
j is expected to occur with a geometric frequency.

In an occupancy model, a number of sources M are distributed independently
among the classes according to the frequency distribution. One way to produce
a partition using an occupancy model is presented in [36] and consist in ignoring
the distinction between the classes and taking as parts the number of elements
that fall into each boxes, thus giving a partition of M into a random number
of parts. Alternately, if the classes are the natural numbers, a natural way to
produce a partition is to take the result of each source as a part. This is the
approach discussed in [14] under the name of “item production model” in the
context of scientometrics. We will take the latter approach. Contrary to [14]
where the number of parts is deterministic, we allow it to be random.

In Section 4.1, we describe formally the general framework to produce a
partition with an occupancy model with a random number of sources. In Section
4.2 we detail how to obtain limit results for the Young diagram produced in this
framework. While the Rayleigh distribution is used here, for illustration purposes
and convenience, the results obtained in this section are generalisable to frequency
distributions based on families of continuous distributions with a scale parameter.

The independence of sources in occupancy models means that there is no
restriction of multiplicities; however, we can easily impose a restriction of the
maximal multiplicity of a part by applying a projection. In particular, in Section
4.3 , we observe that we can reproduce the Boltzmann distribution over a class
of strict partitions (or even more generally over a powerset) using this approach.
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4.1. Occupancy models

Let M be a random variable with values in N0 and finite expectation ⟨M⟩ :=
E(M). Independently of M , consider an infinite assembly of independent random
variables (Xi) with common distribution (fj)j∈N

fj := P(Xi = j) (j ∈ N). (4.1)

We assume that E(Xi) < ∞. We can thus define a random variable in the
partition space Λ with the following multiplicities

νj :=
M∑
i=1

1{Xi=j} = #{Xi = j, i = 1, . . . ,M} (j ∈ N). (4.2)

The expected length of the said partition is ⟨M⟩ and its expected weight is

E(N) = ⟨M⟩E(Xi) (4.3)

in accordance with Wald’s identity (see [78, Sec.VII.3, Theorem 3, p.488, and
Sec. I.9, Problem 5, p. 83] for instance)).

Conditionally on M , the multiplicity νj follows the binomial distribution with
M trials and success probability fj,

P(νj = m |M) =

(
M

m

)
(fj)

m(1− fj)
M−m (m = 0, . . . ,M). (4.4)

While it is clear that the multiplicities are not independent as in the Boltzmann
model, we can still use the independence of the 1{Xi=j} across the i index. We
can also use these variables to represent the Young diagram

Y (x) =
∑
j≥x

νj =
∑
j≥x

M∑
i=1

1{Xi=j} =
M∑
i=1

1{Xi≥x}, (4.5)

where the indicators 1{Xi≥j} are independent identically distributed Bernoulli
random variables with

P(1{Xi≥j} = 1) =
∑
j≥x

fj =: F̄ (x), P(1{Xi≥j} = 0) =
∑
j<x

fj =: F (x) (4.6)

In practice we may have to determine a frequency distribution based on a
continuous density f(x), for x ∈ R+. We can obtain a frequency distribution for
the parts in the following way

fj =
f(j)∑
ℓ∈N f(ℓ)

, j ∈ N. (4.7)
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4.2. Rayleigh distribution

In this section, we confine ourselves to a specific example based on the Rayleigh
distribution, with the aim to illustrate how one can derive scaling limit results in
such models. Consider the following continuous model,

f(x) =
x

σ2
e−x2/(2σ2), x ∈ R+, (4.8)

where the scale parameter σ is strictly positive. Define the frequency distribution
as in equation (4.7). For convenience, set

γ :=
1

2σ2
, (4.9)

thus rewriting (4.8) in the form

f(x) = 2γx e−γx2

, (4.10)

This makes it easier to use the sum asymptotics lemmas from Chapter 2.
We start by establishing a series of technical lemmas.

Lemma 4.1. When σ goes to infinity, the expectation of the multiplicities is given
by

E(νj) = ⟨M⟩ f(j)(1 +O(γ1/2)). (4.11)

Proof. By definition, conditionally on M we have

E(νj |M) = M
f(j)∑

j∈N 2γje
−γj2

.

Using Lemma 2.14∑
j∈N

2γje−γj2 = 2γ
∑
ℓ∈N2

ℓ1/2e−γℓ = 1 +O(γ1/2), (4.12)

thus
E(νj |M) = Mf(j)

(
1 +O(γ1/2)

)
. (4.13)

By the total expectation rule, we have

E(νj) = E
(
E(νj |M)

)
= ⟨M⟩ f(j)

(
1 +O(γ1/2)

)
, (4.14)

and the claim follows.
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Lemma 4.2. We define the following rescaled Young diagram

Ỹ (x) =
Y (σx)

⟨M⟩
. (4.15)

When σ goes to infinity, for all x ≥ 0

E(Ỹ (x)) = e−x2/2(1 +O(γ1/2)) (4.16)

Proof. Conditionally on M , we have

E
(
Ỹ (x) |M

)
=

1

⟨M⟩
E(Y (σx) |M) =

1

⟨M⟩
E

(∑
j≥σx

M∑
i=1

1{Xi=j}

∣∣∣M) .

Recall that (Xi) are i.i.d. and that 1{Xi≥σx} follows a Bernoulli distribution. Ac-
cording to Lemmas 2.14 and 2.16

P(Xi ≥ σx) =
∑
j≥σx

fj =

∑
ℓ≥x2/(2γ),ℓ∈N2 ℓ1/2e−γℓ∑

ℓ∈N2 ℓ1/2e−γℓ

=
Γ(1, x2/2)(1 +O(γ1/2))

1 +O(γ1/2)
= e−x2/2

(
1 +O(γ1/2)

)
,

so we have

E
(
Ỹ (x) |M

)
=

M

⟨M⟩
∑
j≥σx

fj.

The proof concludes by using the total expectation rule.

Lemma 4.3. When σ goes to infinity, for all x ≥ 0, the variance of the scaled
Young diagram is given by

Var
(
Ỹ (x)

)
=

(
1

⟨M⟩
e−x2/2

(
1− e−x2/2

)
+

Var(M)

⟨M⟩2
e−x2/2

)(
1 +O(γ1/2)

)
. (4.17)

Proof. Using the representation of Young diagrams via the variables 1{Xi≥σx},
and applying the total variance rule, we have

Var(Ỹ (x)) =
1

⟨M⟩2
Var

(
M∑
i=1

1{Xi≥σx}

)

=
1

⟨M⟩2

[
E

(
Var

(
M∑
i=1

1{Xi≥σx}

∣∣∣M))+ Var

(
E

(
M∑
i=1

1{Xi≥σx}

∣∣∣M))] .
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4.2 Rayleigh distribution

Again using independence of the random variables Xi and observing that

P(1{Xi≥σx} = 1) = e−x2/2(1 +O(γ1/2)),

we obtain

E

(
Var

(
M∑
i=1

1{Xi≥σx}

∣∣∣M)) = E
(
M Var(1{Xi≥σx})

)
= ⟨M⟩ e−x/2(1− e−x2/2)

(
1 +O(γ1/2)

)
and, similarly,

Var

(
E

(
M∑
i=1

1{Xi≥σx}

∣∣∣M)) = Var(M e−x2/2)
(
1 +O(γ1/2)

)
= Var(M) e−x2/2

(
1 +O(γ1/2)

)
,

and the lemma is proved.

Observe that the variance of the scaled Young diagram goes to zero uniformly
in any asymptotic regime that satisfies the following

Assumption 4.1.

⟨M⟩ → ∞, σ →∞, Var(M) = o(⟨M⟩2). (4.18)

Theorem 4.4. Under Assumption 4.1, for any ε > 0

sup
x≥0

P
(
|Ỹ (x)− e−x2/2| ≥ ε

)
→ 0. (4.19)

Proof. Due to equation (4.15), it suffices to show that

sup
x≥0

P
(
|Ỹ (x)− E(Ỹ (x))| ≥ ε

)
→ 0.

Due to the Bienaymé–Chebyshev inequality and equation (4.17), we have, uni-
formly in x ≥ 0,

P
(
|Ỹ (x)− E(Ỹ (x))| ≥ ε

)
≤ Var(Ỹ (x))

ε2

≤ 1

ε2

(
1

⟨M⟩
+

Var(M)

⟨M⟩2

)(
1 +O(γ1/2)

)
,

and the claim follows by virtue of Assumption 4.1.
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4.2 Rayleigh distribution

Theorem 4.5. Under Assumption 4.1, for all ε > 0,

P

(
sup
x≥0

∣∣∣∣Ỹ (x)− M

⟨M⟩
e−x2/2

∣∣∣∣ ≥ ε

)
→ 0. (4.20)

Proof. We follow the proof scheme of [14, Theorem 4.1] introducing an auxiliary
martingale W in order to apply the Doob–Kolmogorov inequality [93, Theorem
6.16]. This involves minor changes due to the randomness of M . This proof
scheme bears similarities with the proof of Theorem 2.44. Instead of directly
considering the Young diagram, we consider a process indexed by the inverse of
its argument.

Zi(t) :=
1{Xi<1/t}

F (1/t)
, t ≥ 0. (4.21)

By definition, the expectation and the variance of the Zi(t) are given by

E(Zi(t)) = 1, Var(Zi(t)) =
F̄ (1/t)

F (1/t)
. (4.22)

We define the following process

W (t) :=
M∑
i=1

(Zi(t)− 1). (4.23)

Conditionally on M , the expectation and variance of W (t) are given by

E(W (t) |M) = 0, Var(W (t) |M) =
MF̄ (1/t)

F (1/t)
, (4.24)

hence

E(W (t)) = 0, Var(W (t)) =
⟨M⟩ F̄ (1/t)

F (1/t)
. (4.25)

Claim. The process W is a martingale with respected to the natural filtration F

generated by the processes (Zi)n∈N and M .

Let us check this claim. For 0 ≤ s ≤ t we have

E(W (t) |F(s)) = E

(
M∑
i=1

(Zi(t)− 1)
∣∣∣F(s)) (4.26)

=

(
M∑
i=1

E(Zi(t) |Fi(s))

)
−M, (4.27)
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4.2 Rayleigh distribution

where the Fi, i ∈ N, denote the natural filtration associated to the processes Zi.
In particular, in order to prove that W is a martingale, it is sufficient to that the
Zi are martingales i.e. we need to check the following

E(Zi(t) |F(s)) = Zi(s). (4.28)

By definition Fi(s) indicates whether or not Xi < 1/s so it suffices to compute
the expectation of Zi(t) conditionally on the realisation or the non-realisation of
this event.

E(Zi(t) |Xi < 1/s) = E(1{Xi<1/t}/F (1/t) |Xi < 1/s)

=
P(Xi < 1/t |Xi < 1/s)

F (1/t)
=

P(Xi < 1/t)

F (1/t)P(Xi < 1/s)

=
1

F (1/s)
= Zi(s),

and E(Zi(t) |Xi ≥ 1/s) = 0 since the events Xi < 1/t and Xi ≥ 1/s are mutually
exclusive. This concludes the proof that W is a martingale with respect to the
filtration F. Now we have the elements to prove the theorem. First, note that it
is equivalent to proving the following:

P

(
sup
x≥0

∣∣∣∣Ỹ (x)− M

⟨M⟩
F̄ (σx)

∣∣∣∣ ≥ ε

)
→ 0.

We have

Ỹ (x)− M

⟨M⟩
F̄ (σx) =

1

⟨M⟩

M∑
i=1

(
1{Xi≥σx} − F̄ (σx)

)
=

1

⟨M⟩

M∑
i=1

(−1{Xi<σx} + F (σx)) = −F (σx)

⟨M⟩
W (1/(σx)).

Let δ > 0. Applying the Doob–Kolmogorov inequality to the martingale W yields

P

(
sup
x≥δ

∣∣∣∣Ỹ (x)− M

⟨M⟩
F̄ (σx)

∣∣∣∣ ≥ ε

)
≤ P

(
sup

t≤1/(σδ)

|W (t)| ≥ ⟨M⟩ ε

)

≤ Var(W (1/(σδ)))

⟨M⟩2 ε2

=
F̄ (1/(σδ))

⟨M⟩F (1/(σδ))ε2
∼ e−δ2/2

⟨M⟩ ε2
≤ 1

⟨M⟩ ε2
.

This concludes the proof, since this bound is independent of δ.
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4.2 Rayleigh distribution

Remark 4.6. We did not state

P

(
sup
x≥0

∣∣Ỹ (x)− e−x2/2
∣∣ ≥ ε

)
→ 0, (4.29)

as it would involve the following less tractable decomposition

Ỹ (x)− e−x2/2 =
1

⟨M⟩

M∑
i=1

(
1{Xi≤x} −

⟨M⟩ F̄ (x)

M

)
.

Theorem 4.7. Assume that M is deterministic. When M and σ go to infinity.
We have the following convergence in law

Y ∗(x) :=

√
M
(
Ỹ (x)− E(Ỹ (x))

)
√

e−x2/2(1− e−x2/2)

d−→ N(0, 1). (4.30)

Proof. The proof is similar to the proof of the classical central limit theorem.
First of all, let us make the following decomposition

Y (σx)− E(Y (σx)) =
M∑
i=1

(
1{Xi≥σx} − F̄ (σx)

)
.

This is a sum of M i.i.d. random variables with expectation equal to zero and
with variance

F (σx)F̄ (σx) = e−x2/2(1− e−x2/2)(1 +O(γ1/2)).

The characteristic function of each term 1{Xi≥σx} − F̄ (σx) is given by

E
(
exp it

(
1{Xi≥σx} − F̄ (σx)

))
= 1− t2

2
e−x2/2(1− e−x2/2)(1 +O(γ1/2)) + o(t2).

Thus, the characteristic function of Y ∗(x) is

E(Y ∗(x)) = E

(
exp

[
it(Y (σx)− E(Y (σx)))√
Me−x2/2(1− e−x2/2)

])

= E

(
exp

[
it
(
1{X1≥σx} − F̄ (σx)

)√
Me−x2/2(1− e−x2/2)

])M

=

(
1− t2

2M
(1 +O(γ1/2)) + o(t2/M)

)M

,

which converges to exp(−t2/2) when σ and M go to infinity.

100



4.2 Rayleigh distribution

We can refine this result allowing M to be random, although it requires to
center the Young diagram using the expectation conditionally on M in order to
keep a similar proof scheme. While this proof is more tedious, it only differs
from the previous one in that it requires to segregate rare events (M too small
relatively to ⟨M⟩) in order to provide estimates.

Theorem 4.8. Under Assumption 4.1, we have the following convergence in law

Y ∗(x) :=

√
M
(
Ỹ (x)− E(Ỹ (x) |M)

)
√

e−x2/2(1− e−x2/2)

d−→ N(0, 1). (4.31)

Proof. Let us estimate the characteristic function of Y ∗(x)

E (exp (itY ∗(x)))

=
∞∑

m=0

P(M = m) E
(
exp(it̃(m)[Y (σx)− E(Y (σx) |M = m)] |M = m

)
where

t̃(m) :=

√
m√

e−x2/2(1− e−x2/2)
.

Thus we can write

E (exp(itY ∗(x))) =
∞∑

m=0

P(M = m) E

(
exp

(
it̃

[
1{X1≥σx} −

∑
j≥σx

fj

]))m

.

We separate this sum in two parts, with m ≤ ⌊⟨M⟩ /2⌋ and with m > ⌊⟨M⟩ /2⌋.
In the second part, we can argue as in the previous proof since ⌊⟨M⟩ /2⌋ goes to
infinity and we need to verify that the first part is asymptotically negligible.

For the first part, using the Bienaymé–Chebyshev inequality we obtain∣∣∣∣∣
⌊⟨M⟩/2⌋∑
m=0

P(M = m) E

(
exp

(
it̃

[
1{X1≥σx} −

∑
j≥σx

fj

]))m∣∣∣∣∣
≤

⌊⟨M⟩/2⌋∑
m=0

P(M = m) ≤ P

(
|M − ⟨M⟩| ≥ ⟨M⟩

2

)
≤ 4 Var(M)

⟨M⟩2
→ 0.

For the second part, we can use the theorem for deterministic M as in each term
m goes to infinity

∞∑
m=⌊⟨M⟩/2⌋+1

P(M = m) E

(
exp

(
it̃

[
1{X1≥σx} −

∑
j≥σx

fj

]))m

∼ exp(−t2/2)
∞∑

m=⌊⟨M⟩/2⌋+1

P(M = m) ∼ exp(−t2/2)
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4.3 Mapping to a strict partition model

4.3. Mapping to a strict partition model

The model discussed so far has the flexibility to produce any frequency distribu-
tion, but it is not suitable for classes of partitions with restricted multiplicities.
In order to obtain strict partitions, we consider a modified model where we keep
only one iteration of each part produced at least once in the initial occupancy
model, thus defining the following multiplicities

ν̌ℓ := 1{νℓ≥1}, ℓ ∈ N. (4.32)

In this model, conditionally on M , the multiplicities ν̌ℓ follow the Bernoulli dis-
tribution with success probability

P(ν̌ℓ = 1 |M) = 1− (1− fℓ)
M . (4.33)

In particular, the unconditional success probability is related to the probability
generating function of M ,

P(ν̌ℓ = 1) = 1−
∞∑

m=0

P(M = m) (1− fℓ)
m =: 1−GM(1− fℓ). (4.34)

An interesting fact stated by the subsequent theorem is that we can reproduce
the Boltzmann distribution over a class of strict partitions with this model.

Theorem 4.9. Let A be a non-empty subset of N. Let f be the frequency distri-
bution

fℓ =
log(1 + zℓ1z2)

logF (z)
, ℓ ∈ A (4.35)

where F is the generating function of PSet(A),

F (z) =
∞∏
ℓ=1

(1 + zℓ1z2) (4.36)

and suppose that M follows the Poisson distribution with rate log(F ). The strict
partition defined by the multiplicities (ν̌ℓ)ℓ∈A follows the Boltzmann distribution
over PSet(A).
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4.3 Mapping to a strict partition model

Proof. Consider a subset E = {ℓ1, ℓ2, . . . } of elements of A. The probability that
none of these are occupied is

∞∑
m=0

P(M = m)
m∏
i=1

P(Xi /∈ E}) =
∞∑

m=0

P(M = m) P(X1 /∈ E})m

= GM

(
1−

∞∑
k=1

fℓ

)
= exp

[
log(F )

(
−

∞∑
k=1

fℓk

)]

=
∞∏
k=1

exp
(
− log(1 + zℓk1 z2)

)
=

∞∏
k=1

1

1 + zℓk1 z2
,

which coincides with the Boltzmann distribution. Thus, the result follows thanks
to the monotone class lemma.

A consequence of this theorem is that we can design an alternative sam-
pling scheme for the Boltzmann distribution over classes of strict partitions (or
more general powersets). While it appears to provide an algorithm of complexity
O(⟨M⟩), this requires to assume that we can sample each part Xi from the distri-
bution f in a bounded time. In practice it may be necessary to approximate the
generating function if A is infinite. More generally the multiplicities ν̌ℓ are still
independent when M follows a Poisson distribution. For general length distribu-
tion, we can provide a simple expression of the covariance between the ν̌ℓ using
the probability generating function of M .

Lemma 4.10. The covariance of two multiplicities ℓ and ℓ′ is given by

Cov(ν̌ℓ, ν̌ℓ′) = GM(1− (fℓ + fℓ′))−GM(1− fℓ) ·GM(1− fℓ′). (4.37)

Proof. We have

Cov(ν̌ℓ, ν̌ℓ′) = E(ν̌ℓ ν̌ℓ′)− E(ν̌ℓ) E(ν̌ℓ′) = P(ν̌ℓ = 1, ν̌ℓ′ = 1)− P(ν̌ℓ = 1) P(ν̌ℓ′ = 1).

Furthermore,

P(ν̌ℓ = 1) = 1−GM(1− fℓ), P(ν̌ℓ′ = 1) = 1−GM(1− fℓ′)

and

P(ν̌ℓ = 1, ν̌ℓ′ = 1) = P(ν̌ℓ = 1) + P(ν̌ℓ′ = 1)− [1− P(ν̌ℓ = 0, ν̌ℓ′ = 0)]

= [1−GM(1− fℓ)] + [1−GM(1− fℓ′)]

− [1−GM(1− (fℓ + fℓ′))] .

This proves the lemma.
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Chapter 5

Coalescing and fragmenting
random walks of massive particles

In this chapter, we consider a continuous-time Markovian model where particles
or aggregates move on an oriented graph (the ambient space). We assume that
the aggregates are composed of units of mass and that the total mass (i.e., the
total number of constituent units) is a constant n ∈ N. The configurations of
the system are the ways to distribute the mass n among the sites of the ambient
space. In this model a given configuration can undergo two types of transitions:

• Diffusion and aggregation: at rate µ−α
x , the total mass on site x moves and

aggregates with the particle of a neighbouring site (as specified by the edges
of the ambient space),

• Chipping : if µx > 0, at rate ωµ1+β
x , the site x gives a unit to a neighbouring

site,

where α, β ∈ R and ω ≥ 0. Models involving only diffusion and aggregation
at rates independent of the mass are known as coalescing random walks. In
these models the mass of the particles is usually not tracked [21]. The models
involving only chipping are known as zero range processes [17]. A model involving
these interactions has been considered in [58] and [59] with α = β = 0. While the
aggregates are simply treated as massive particles, the parameter β can be seen as
a proxy for the microscopic structure of the sites and the aggregates (geometry
and internal forces). Assuming that there are no internal forces bounding the
units, we can take the following values of β:

• β = −1: the units stack into a linear aggregate, so only one unit at a time
is subject to chipping,

• β = 0: the units can chip independently of size of the aggregate,
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• β = −1/d: the units stack into a corner in d dimensions assuming that d
is an integer larger than 1. For instance if d = 2 the aggregates can be
identified to Young diagrams, if d = 3 they can be identified to a plane
partition. If an aggregate contains a large number of units m, we may
assume that the number of units at the boundary is proportional tom(d−1)/d.

Figure 5.1: aggregate structures without internal forces with β = −1; 0; 1/2 re-
spectively. The site is represented in black, the units that aren’t subject to
chipping are in grey and the units that can chip are in white.

Conversely, the parameter α accounts for a longer range interaction affecting all
of the units of the sites together. We may consider a system where the sites
accumulate energy at a fixed rate, the quantity µα

x is thus interpreted as the
activation energy required in order to trigger a jump of the aggregate located on
the site x.

The following types of problems are considered:

• Analysis of the purely aggregating model: in the purely aggregating case
(α = 0) the system eventually collapses to a single aggregate. We can study
the times of aggregation (or equivalently, the number of aggregates as a
function of time) as well as the distribution of mass between the aggregates
at intermediate times. In order to find a suitable family to describe the
distribution of mass as a function of the time, it is required to consider large
systems in a time range that ensures that the number of aggregates is also
large. We can distinguish two notions of asymptotics for the distribution of
mass. A cumulative notion that arises when considering the Young diagram
of an instance of the process and single aggregate mass distribution that
can only be observed with many instances of the process.

• Equilibrium distribution: which is the distribution that balances out with
the transition rates. It describes the long term behaviour of the system.
It is trivial in the purely aggregating case and it becomes interesting when
fragmentation is introduced, even in absence of diffusion and aggregation.
This should not be confused with a thermodynamic equilibrium, which
implies a state of minimal energy fluctuation and no net flow of energy,
and which is described by the Boltzmann distribution. Here, interactions
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5.1 Mathematical set-up

may involve energy exchanges with an external environment, which are not
accounted for. Therefore, even though in some cases the system may reach
a ordered state, it does not contravene the second law of thermodynamics.

This chapter starts with a description of the general aggregation and fragmen-
tation model considered here, it includes a brief review of some notions relative
to continuous time Markov processes and interacting particle systems. Then in
Section 5.2 we focus on the study of the purely aggregating case (ω = 0) on a
directed cycle of size n ∈ N, assuming that the starting configuration of system
contains one unit of mass per site. An essential tool for our study is a simulator
which is discussed in Section 5.2.1. It has been implemented in C in Appendix
D.4. We consider three particular values of α (0, −1 and 1). We observe the
aggregate mass distribution when the process is stopped at a given number of
aggregates. In particular, when α = 0 the distribution of mass is well approx-
imated by the Rayleigh distribution with parameter n/k, where n is the total
mass of the system and k is the number of aggregates left (Figures 5.5 and 5.8).
This is confirmed by statistical tests (Table 5.1 and Figure 5.11). It coincides
with a result proven in [57] and indicates that this result may be strengthened.
When α = −1, the exponentiated Weibull distribution fitted with the maximum
likelihood method appears to be a good fit (Figures 5.6 and 5.9). For α = 0, we
derive heuristically a formula for the aggregation times (equation (5.18)) which
is further corroborated by the analysis of the second-order moments (Proposi-
tion 5.3). For α = −1 we obtain an expression of the aggregation times with a
similar argument (equation (5.27)). This argument is invalid when α > 0 due to
the singularity of the transition rates. In Section 5.3 we derive the equilibrium
distribution in three different cases.

5.1. Mathematical set-up

5.1.1. Interacting particle systems

This section provides a succinct introduction to interacting particle systems start-
ing by a discussion about continuous time homogeneous Markov processes. A
more extensive and rigorous presentation can be found in [54].

A continuous time homogeneous Markov process over a configuration space
Ω with transition rates {qηη′}η,η′∈Ω is a family a random variables {X(t)}t≥0 such
that the following master equation is verified for all functions f : Ω→ R

d

dt
E (f(X(t)) | X(0) = η) =

∑
η′∈Ω

qηη′(f(η
′)− f(η)), (5.1)
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where qηη′ ≥ 0 for η ̸= η′ and qηη = −
∑

η′ ̸=η qηη′ . For convenience, here we assume
that Ω is finite but this discussion can be extended to countable configuration
spaces. A useful way to interpret Markov processes is to consider that given a
current state X(t) = η, an exponential clock with rate qηη′ is associated to each
transition η → η′. Whenever one of the clocks “rings”, the system undergoes the
corresponding transition. An interacting particle system is a Markov process over
a configuration space Ω ⊂ SK where S is called the ambient space and K is the
particle state space. The dynamic is defined via a set of local transformations Θ
and their respective rates

rT : Ω −→ R+

η 7→ rT (η)

In this case the master equation takes the form

d

dt
E (f(X(t)) | X(0) = η) =

∑
T∈Θ

rT (η) (f(Tη)− f(η)) . (5.2)

As earlier, we can give an interpretation in terms of exponential clocks. When
the system is in the configuration η ∈ Ω each local transformation T ∈ Θ is
associated to an exponential clock with rate rT (η) and when a clock rings the
corresponding transformation is applied.

5.1.2. Model of aggregation and fragmentation

Let n ∈ N (interpreted as the size of the system). The ambient space is an
oriented connected graph G = (S,A) where S is the set of the vertices, #S = n,
and A is the set of edges. The configuration space is given by

Ω :=
{
µ = (µx) ∈ NS

0 :
∑

x∈S
µx = n

}
. (5.3)

In addition, we define several parameters for our model α, β ∈ R and ω ∈ R+. A
configuration µ can undergo the following transformations:

• Diffusion and aggregation: if µx ̸= 0, at rate µ−α
x the mass located on

x moves to a neighbouring site y uniformly randomly selected in Ax = {y :
(x, y) ∈ A},

cx : µ 7→ µ+ µx(δy − δx), (5.4)

where δx : S 7→ R such that δx(x) = 1 and δx(y) = 0 if y ̸= x. In particular,
if α = 0 then every particle moves at the same rate, this is known as
coalescing random walks ; if α > 0, more massive particles have more inertia;
likewise, if α < 0 then more massive particles are more mobile.
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5.2 Aggregation model on a directed cycle

• Chipping if µx ̸= 0, at rate ωµ1+β
x , the site x gives one unit of mass to a

neighbouring site y uniformly randomly selected i.e.

fx : µ 7→ µ+ (δy − δx). (5.5)

In particular when β = 0 units of mass follow independent random walks,
when β < 0 there is an internal attraction that counterbalances the move-
ment of the masses, when β > 0 there is a repulsion.

For the rest of the chapter, we denote by µ(t) the configuration of the system
at time t ≥ 0. We encounter multiple quantities that vary with time. In order to
achieve more compact formulas, we have adopted a notational convention where
the time variable is often omitted from these quantities. This omission is made
under the assumption that the time-dependence of each variable is implicitly
understood, unless a specific instance necessitates explicit mention of the time
parameter for clarity or emphasis.

5.2. Aggregation model on a directed cycle

In this section G is a directed cycle with n ∈ N sites. We will take S = Z/nZ
and A = {(k, k − 1) | k ∈ S}. We assume that at time t = 0 the configuration
is deterministic with one unit of mass per site. This arbitrary choice is made to
bypass a discussion on the selection of initial distribution. This is particularly
convenient, as it allows to highlight the transition from a fully fragmented state
to a fully aggregated state. In this model it is clear that the process will almost
surely attain a distribution with a single particle of mass n located uniformly on
S.

Definition 5.1. For k = 1, . . . , n, we define the coalescence time Tk as first time
such that there are k particles left in the system.

The second-order moments provide relevant information on the coalescence
times. Since the initial state of the system is homogeneous, we can define them
as follows.

Definition 5.2. For d ∈ S, define the corresponding second-order moment by

V (d) = E[µx(t)µx+d(t)], (5.6)

independently of the choice of site x ∈ S.

As we said, the system almost surely ends up with only one massive particle so
the second-order moment must converge to the function nδ0 when the time goes
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5.2 Aggregation model on a directed cycle

to infinity. The rate of convergence gives us information about the coalescence
times.

It is also interesting to track the presence of particles on the sites indepen-
dently of their mass.

Definition 5.3. For a site x ∈ S, we define the corresponding particle indicator :

sx = 1{µx>0}. (5.7)

We also define the moments of orders 1 and 2 of the particle indicators by

G(1) = E[sx], G(2)(d) = E[sxsx+d], (5.8)

for d ∈ S, independently of the choice of x.

We can also consider the mass distribution independently of the location of
the particles in order to determine if the model can be matched to non-spatial
models.

Definition 5.4. We define the distribution of mass per particle

P (m; t) =
P(µx(t) = m)

G(1)
, (5.9)

independently of the choice of x ∈ S such that µx ̸= 0.

Remark 5.1. To a given configuration µ, we associate an integer partition by
only keeping the masses of the non-empty sites and ignoring the location of the
particles.

Here we are interested in knowing the distribution of mass when a certain
number of particles k are left in the system. One way to estimate this distri-
bution is by replicating the process many times and estimating the distribution
by averaging the counts of the different sizes of parts. This method requires a
large number of samples to estimate the probability of rare parts. Alternatively,
we may observe the Young diagram to select a model of distribution based its
features. This approach provides valid observations with fewer realisations of the
process as the expected Young diagram is the complementary cumulative distri-
bution associated to the distribution of mass. For instance, if a mode exists, it
should manifest as the steepest point on the expected Young diagram.

5.2.1. Simulation tool

The goal of our simulation program is to produce an instance of the aggregation
process. It saves on the hard-drive the times of each event of aggregation and

110



5.2 Aggregation model on a directed cycle

the integer partition corresponding to the configuration of the system (that is the
configuration when we forget the location of the particles). The integer partition
representation is not only a convenient tool to represent the distribution of mass
in a configuration but it also helps to identify adequate models of distributions
to fit P .

In order to do so, the simulator keeps in memory the location and the mass
of the particles in a table as well as the current time and iterates the following
operations until only one particle is left. The validity of our simulator relies on
the following lemma.

Lemma 5.2. Let X1, · · · , Xk be mutually independent exponential random vari-
ables with respective parameter λi > 0, i ∈ J1, kK. The following statements hold
true:

1. Their minimum is an exponential random variable with parameter
∑k

i=1 λi,

2. Independently of the value of their minimum, the probability that it is re-
alised by Xi is given by

P

(
Xi = min

j∈J1,kK
Xj

∣∣∣∣ min
j∈J1,kK

Xj > t

)
=

λi∑
j λj

.

Proof. The proof of the first statement is elementary:

P

(
min

j∈J1,kK
Xj > t

)
= P(Xi > x, ∀i ∈ J1, kK) =

k∏
i=1

P(Xi > t) = e−
∑

i λit.

The second statement is proven by a similar computation. For convenience,
assume without loss of generality that i = 1.

P

(
X1 = min

j∈J1,kK
Xj

∣∣∣∣ min
j∈J1,kK

Xj > t

)
=

∫ ∞

t

(
k∏

j=2

P(Xj > τ)

)
dP(X1 = τ) · e

∑k
j=1 λit

=

∫ ∞

t

λ1e
−

∑k
j=1 λjτdτ · e

∑k
j=1 λjt =

λ1∑k
j=1 λj

.

Simulation algorithm

1. Simulation of the next event: the time elapsed between two events is given
by

E = min
µx ̸=0

Ex, (5.10)
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5.2 Aggregation model on a directed cycle

where Ex are mutually independent random variables, following the expo-
nential distribution with parameter µ−α

x , respectively, for each x ∈ S such
that µx ̸= 0, therefore

E ∼ Exp(
∑
µx ̸=0

µ−α
x ). (5.11)

2. Determination of the moving aggregate: the probability that the particle
located on an occupied site x moves at the next event is

µ−α
x ·

∑
µy ̸=0

µ−α
y

−1

. (5.12)

3. Update and save: the configuration is updated accordingly, the particles
table is sorted so an integer partition can be produced an saved on a file.

A simulation code in C is presented in Appendix D.4.

5.2.2. Characterisation of the distribution of mass at inter-
mediate times

The distribution at time zero is just the Dirac distribution in 1 (the system
contains n particles of unit size). At T1 the distribution is the Dirac distribution in
n (the system contains one particle of mass n). We study the distribution of mass
at the jump times Tk, which, unlike the analysis at predetermined times, ensures
a fixed number of parts. We observed the system in three cases (independent
rates, linear rates, inverse rates) and fitted multiple distributions (see the figures
in Section 5.4). In all cases we observe that the distribution of mass at early times
is strictly decreasing, then it transitions to an intermediate unimodal distribution.
It is in this intermediate regime that we can expect to observe a limit shape.

Rates independent of the mass

Figure 5.5 has been produced through simulations for a system of size n = 1000.
We observed the distribution of mass for different numbers of particles left in the
system by computing the average over 100 simulations of the process. Initially
there are only particles of mass one and through the beginning of the process
the mass distribution is strictly decreasing. Subsequently, we observe a unimodal
distribution. The Rayleigh distribution appears to be an adequate fit during this
phase.

We compared the Rayleigh distribution with expectation equal to the size
of the system divided by the number of particles that are left with the Gamma
distribution with parameters computed via maximum likelihood estimation using
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5.2 Aggregation model on a directed cycle

R. The χ2 (Table 5.1) and the Kolmogorov–Smirnov tests (Figure 5.11) confirm
our visual inspection. Interestingly, the Rayleigh distribution is used in the study
of wave heights [55]. The behavior of mass in the system studied here bears
similarity with the superposition of waves. This observation may be more than
a mere analogy and should be investigated.

Table 5.1: χ2 test p-values (N = 1000, α = 0, data are pooled by 5% quantiles)

Rayleigh Gamma MLE
k = 50 1.31× 10−2 1.51× 10−16

k = 40 1.03× 10−2 3.96× 10−16

k = 30 2.53× 10−1 6.98× 10−11

k = 20 5.11× 10−1 3.08× 10−3

k = 10 8.44× 10−1 4.97× 10−2

Rates depending on the mass

We have simulated the aggregation process when α = −1 (diffusion rate equal
to the mass) and when α = 1 (diffusion rate equal to the inverse of the mass)
and reported the mass distribution in Figures 5.6 and 5.7. We can see that the
Rayleigh distribution does not fit well, however we can use the family of the
exponentiated Weibull distributions, which includes the Rayleigh distribution.
Upon visual inspection, the exponentiated Weibull distribution is a good fit when
α = −1 (Figure 5.6). The results of the χ2 test appear to confirm this observation
(Table 5.2). When α = 1 none of the distributions that we have tested provide
satisfactory fit (Figure 5.7) and the p-values for the goodness of fit tests are
negligible.

Table 5.2: χ2 test p-values (N = 1000, α = −1, data are pooled by 5% quantiles)

Gamma MLE Exponentiated Weibull MLE
k = 40 5.04× 10−96 3.08× 10−5

k = 30 1.31× 10−71 5.59× 10−2

k = 20 4.80× 10−57 3.86× 10−2

k = 10 7.47× 10−27 2.84× 10−2
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5.2 Aggregation model on a directed cycle

5.2.3. Moments and aggregation events times

Through the process, the particles rarefy. At least when α ≥ 0 the time between
two successive coalescence increases. Conversely, significantly negative values of
α counteract this phenomenon. We observe this general trend in Figure 5.2.
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Figure 5.2: Comparison of the coalescence times for α = 1, α = 0 and α = −1

Rates independent of the mass

Since the interaction rates don’t depend on the mass, we can realise an analysis
of the particles indicator independently of the mass distribution. This allows us
to infer the behaviour of the coalescence times.

Given the configuration at a time t, after a small increment of time ∆t the
only events that can affect a site x are a movement of the particle located on x
or a movement of the aggregate located on x+1. If the particle located on x+1
moves and x is already occupied, sx does not change.

E[sx(t+∆t)|µ(t)] = sx(t)−∆t · sx(t)︸ ︷︷ ︸
x moves

+∆t · (1− sx(t))sx+1(t)︸ ︷︷ ︸
x+1 moves

+o(∆t). (5.13)

In particular, the probability of having a particle on a given site satisfies the
following differential equation,

dG(1)(t)

dt
= −G(2)(1, t). (5.14)
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5.2 Aggregation model on a directed cycle

If we could ignore the correlations we would simply have

G(2)(d) =
(
G(1)

)2
(5.15)

Thus the solution would be

G(1) =
1{t<n−1}

t+ 1
+

1{t≥n−1}

n
. (5.16)

In particular, when k is small and n goes to infinity, up to random fluctu-
ations, we should expect that the coalescence time can be approximated in the
following way,

Tk ≃
n− k

k
. (5.17)
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Figure 5.3: Times of coalescence with rates independent of the mass

According to the simulations (Figure 5.3), this non-correlated approximation
is satisfactory in the beginning but a quadratic term needs to be added to fit
subsequent times thus giving the following approximation and the corresponding
expression f the number of particles as a function of the time

Tk ≃
2

3π

(
n− k

k

)2

+
n− k

k
, k(t) ≃ N(

√
1 + 4t− 1)

2t
. (5.18)

This expression for the coalescence times is corroborated by an analysis of the
convergence of the moments of order 2 of the mass.

Proposition 5.3.

1. The second-order moments of the mass satisfy the following equation,

d

dt


V (0)
V (1)
V (2)
...

V (n− 1)

 =


2V (1)

C ·


V (1)
V (2)
...

V (n− 1)



 (5.19)
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where C is the tridiagonal Toeplitz matrix of size (n − 1) with −2 on the
principal diagonal and 1 around the diagonal.

2. The matrix C can be diagonalised and its eigenvalues are

λk = −2
(
cos

(
kπ

n

)
+ 1

)
, k = 1, . . . , n− 1. (5.20)

Proof. 1. We have

d

dt
V(0) = 2V(1)

In a small interval of time ∆t the quantity µx(t)
2 can be modified by the following

local events at rate 1:

• The mass located on x moves: µ2
x → 0.

• The mass located on x+ 1 moves: µ2
x → µ2

x + (µ2
x+1 + 2µxµx+1).

Using the homogeneity and the total expectation rule we get:

V (0, t+∆t) = E
[
E[µx(t+∆t)2|µ(t)]

]
= E

[
µx(t)

2 −∆t · µx(t)
2 +∆t · µx+1(t)

2 + 2∆t · µx(t)µx+1(t) + o(∆t)
]

= V (0, t) + 2∆t · V (1, t) + o(∆t).

Thus we have verified the equation. The proof of the subsequent equations
is nearly identical and we will simply indicate the local events that are involved.

d

dt
V(1) = −2V(1) +V(2)

• The mass located on x moves: µxµx+1 → 0.

• The mass located on x+ 1 moves: µxµx+1 → 0.

• The mass located on x+ 2 moves: µxµx+1 → µxµx+1 + µxµx+2.

Now let k ∈ {2, . . . , n− 2}, we have the equation:

d

dt
V(k) = −2V(k) +V(k− 1) +V(k+ 1)

• The mass located on x moves: µxµx+k → 0.

• The mass located on x+ 1 moves: µxµx+k → µxµx+k + µx+1µx+k.
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• The mass located on x+ k moves: µxµx+k → 0.

• The mass located on x+ k + 1 moves: µxµx+k → µxµx+k + µxµx+k+1.

d

dt
V(n− 1) = V(n− 2)− 2V(n− 1)

This equation is identical to the equation for V (1).

2. This is a consequence of formula (2.7) from [38].

An immediate consequence of this, is that we can observe the full coalescence
via the second-order moments at times of order n2.

Corollary 5.3.1. Let t∗(n) be a sequence of times such that n2 = o(t∗) when n
goes to infinity, then

V (·, t∗)
n

→ δ0. (5.21)

Proof. λn−1 is the dominant eigenvalue of C and

λn−1 ∼ −
π2

n2
, (5.22)

thus we can write V (2, t∗)
...

V (n− 1, t∗)

 = exp(t∗C) ·

1
...
1

 = O

(
exp(−t∗ · π

2

n2
)

)
→ 0. (5.23)

Rates equal to the mass

Similarly to previously, we can give the equation for the moment of the particle
indicator

d

dt
G(1) = −E[sxsx+1µx+1]. (5.24)

If we neglect the correlations between the sites, then

d

dt
G(1) = −G(1)E[sx+1µx+1] = −G(1)E[µx+1] = −G(1) (5.25)

using the fact that the initial configuration contains one unit of mass per site and
that the mass is preserved. In particular this gives the solution

G(1) =
1{t<logn}

exp(t)
+

1{t≥logn}

n
. (5.26)
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So we obtain the following approximation for the coalescence times,

Tk ≃ − log

(
k

n

)
, k(t) = n exp(−t). (5.27)

As we can see in Figure 5.4, the approximation given by equation (5.18) is still
valid for early times but the approximation given by equation (5.27) is better
overall.
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Figure 5.4: Times of coalescence with rates equal to the mass

5.3. Equilibrium distribution in mean-field

In this section, we assume that G is an infinite complete graph endowed with a
time-dependent family of distributions P (·; t) : V → R, such that

P[µx(t) = m] = P (m; t), ∀x ∈ V,m ∈ N0. (5.28)

Proposition 5.4. In this model the distribution of mass satisfies the following
set of differential equations,

d

dt
P (m) =− P (m)

(
m−α + ωm1+β +

∞∑
k=1

P (k)(k−α + ωk1+β)

)
(5.29)

+ P (m+ 1)ω(m+ 1)1+β + P (m− 1)
∞∑
k=1

P (k)(ωk1+β)

+
m∑
k=1

P (m− k)P (k) k−α (m ≥ 1),

d

dt
P (0) =− P (0)

∞∑
k=1

P (k)(k−α + ωk1+β) + ωP (1) +
∞∑
k=1

P (k)k−α.
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Proof. We have to count the events that can affect the sites of mass m and the
corresponding rates:

• Loss of sites of mass m can occur by diffusion of or chipping from sites of
mass m and by diffusion or chipping to sites of mass m.

• Gain of sites of mass m can occur by chipping from sites of mass m+1, by
chipping to sites of mass m− 1 or by diffusion from a site of mass m− k to
a site of mass k.

In this section we are specifically interested in the equilibrium distribution,
which is cancelled by the time derivative.

Definition 5.5. Denote by G the probability generating function of P

G(z) =
∞∑

m=1

P (m)zm. (5.30)

We call the equilibrium distribution, and denote by Peq = (Peq(m)), the solution
of the differential equation

d

dt
Peq(m) = 0, m ∈ N0. (5.31)

Denote by Geq the corresponding probability generating function.

Remark 5.5. As a consequence of the definition of the generating function, the
density of mass in the system—that is, the average mass per site—is given by

ρ =
∞∑

m=1

mP (m) = ∂zG(z)|z=1. (5.32)

Since we consider an isolated system, this quantity is constant. Denote by s the
probability that a site contains a non-zero mass,

s = 1− P (0) =
∞∑

m=1

P (m), (5.33)

which can be interpreted as the density of particles.

If ω is not equal to zero, there is a non-trivial equilibrium distribution. In
order to estimate it, it can be useful to estimate its probability generating function
using the radius of convergence transfer theorem [77, Theorem 5.5].
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Theorem 5.6 (Radius of convergence transfer). Let f be an analytic function
with a radius of convergence larger than 1 such that f(1) ̸= 0. For any real
number α /∈ {0,−1,−2, . . . }, the coefficients of the Taylor expansion of f in the
neighbourhood of 0 satisfy

[zn]
f(z)

(1− z)α
∼ f(1)

Γ(α)
nα−1. (5.34)

5.3.1. No diffusion and chipping rate independent of the
mass

In this case the evolution equations are

d

dt
P (m) = ω [−(1 + s)P (m) + P (m+ 1) + sP (m− 1)] ,

d

dt
P (0) = ω [P (1)− sP (0)] , (5.35)

for m ≥ 1.

Theorem 5.7. The equilibrium distribution in this model is given by the geomet-
ric distribution with parameter (1− s)

Peq(m) = sm − sm+1 (5.36)

Proof. The equilibrium distribution solves the following second-order linear re-
currence:

Peq(m+ 1) = (1 + s)Peq(m)− sPeq(m− 1), Peq(1) = s(1− s),

in particular, we have
Peq(m) = λsm + µ. (5.37)

Since Peq is a probability distribution it must add up to one, thus we can close
the equations for λ and µ (given s)

λ

1− s
+ µ = 1, λs+ µ = s(1− s)

giving λ = 1− s and µ = 0.

Remark 5.8. In this particular case, we observe that the equilibrium distribution
can be interpreted as the Boltzmann distribution over N where the inverse tem-
perature would be β = − log s. Unsurprisingly, this implies that the temperature
is equal to zero when the density of particle reaches zero (s = 0).
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5.3.2. No diffusion and chipping rate proportional to the
mass

The evolution equations are

d

dt
P (m) = ω [−mP (m)− ρP (m) + (m+ 1)P (m+ 1) + ρP (m− 1)] ,

d

dt
P (0) = ω [−ρP (0) + P (1)] . (5.38)

This model is known as the zero range process.

Theorem 5.9. The equilibrium distribution is the Poisson law with parameter ρ,

Peq(m) =
e−ρ · ρm

m!
. (5.39)

Proof. The equilibrium distribution must satisfy the following balance equations

0 = −mPeq(m)− ρPeq(m) + (m+ 1)Peq(m+ 1) + ρPeq(m− 1),

0 = −ρPeq(0) + Peq(1).

By summing the terms we find that the generating function of the equilibrium
distribution satisfies a homogeneous linear equation

0 = (1− z)G′
eq + ρ(z − 1)Geq,

we can conclude by finding the general solution of this equation and again using
the condition

∑
m P (m) = 1.

5.3.3. Diffusion and chipping rates independent of the mass

When α = 0 and β = −1 the evolution equations are

d

dt
P (m) = −(1 + ω)(1 + s)P (m) + ωP (m+ 1) + ωsP (m− 1) +

m∑
k=1

P (m− k)P (k)

d

dt
P (0) = −(1 + ω)sP (0) + ωP (1) + s, (5.40)

for m ≥ 1.

Theorem 5.10 (Majumdar et al. [59]). The moment generating function of the
equilibrium distribution is given by

Geq(z) =
ω + 2s+ ωs

2
− ω

2z
− ωsz

2
+ ωs · 1− z

2z

√
(z1 − z)(z2 − z), (5.41)
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where

z1 =
ω + 2−

√
ω + 1

ωs
, z2 =

ω + 2 +
√
ω + 1

ωs
. (5.42)

In particular, there is a subcritical phase z1 > 1 where

Peq(m) = θ(z−m
1 m−3/2) (5.43)

and a critical phase z1 = 1 where

Peq(m) = θ(m−5/2). (5.44)

Proof. By summing up, we find that the generating function of the equilibrium
distribution satisfies the following equation

0 = −(1 + ω)(1 + s)Geq +
ω

z
Geq − ωPeq(1) + ωsz(Geq + Peq(0)) +G2

eq + (1− s)Geq

0 = −(1 + ω)s(1− s) + ωPeq(1) + s.

Hence, Geq satisfies the equation

0 = G2
eq+
[
−(1 + ω)(1 + s) +

ω

z
+ ωsz

]
Geq+[−(1 + ω)s(1− s) + s+ ωsz(1− s)] .

In particular, equation (5.41) holds. When z1 > 1, using Theorem 5.6, when m
goes to infinity we have

Peq(m) = [zm] Geq(z) ∼ [zm] ωs · 1− z

2z

√
(z1 − z)(z2 − z)

=
[zm+1]− [zm]

2

(
ωs
√
z1z2 − z1z ·

√
1− z/z1

)
=

z
−(m+1)
1 [zm+1]− z−m

1 [zm]

2

(
ωs
√
z1(z2 − z1z) ·

√
1− z

)
∼ ωs(1− z1)

√
z1z2 − z21

Γ(−1/2)
· z−m

1 m−3/2 ∼ ωs(z1 − 1)

√
z1z2 − z21

π
z−m
1 m−3/2.

In particular, equation (5.43) is verified. Similarly, when z1 = 1 we can prove
equation (5.44)

Peq(m) ∼ [zm] ωs · (1− z)3/2

2z
·
√
z2 − z

∼ ωs · (1− z)3/2 ·
√
z2 − z ∼ ωs

√
z2 − 1

Γ(5/2)
·m−5/2 ∼ 4ωs

3

√
z2 − 1

π
m−5/2.
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5.4. Mass distribution fitted curves
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Figure 5.5: Mass distribution evolution (N = 1000, α = 0)
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Figure 5.6: Mass distribution evolution (N = 1000, α = −1)
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Figure 5.7: Mass distribution evolution (N = 1000, α = 1)
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Figure 5.8: Young diagram for a single instance N = 1000, α = 0, k = 50 (left),
k = 20 (right), compared to Rayleigh (black curve)
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Figure 5.9: Young diagram for a single instance N = 1000, α = −1, k = 50 (left),
k = 20 (right), compared to exponentiated Weibull (black curve)
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Figure 5.10: Young diagram for a single instance N = 1000, α = 1, k = 50 (left),
k = 20 (right), compared to exponentiated Weibull (black curve)

126



5.4 Mass distribution fitted curves

3980 4000 4020 4040 4060 4080 4100
Number of coalescence

10−21

10−18

10−15

10−12

10−9

10−6

10−3

100

KS
 p
-v
al
ue

Kolmogorov–Smirnov test: N=4096, α=0

Rayleigh
Gamma MLE
5%

Figure 5.11: Kolmogorov–Smirnov test (N = 4096, α = 0)
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Chapter 6

Conclusion and future work

6.1. Summary of the results

6.1.1. Chapter 2

We examined the Boltzmann distribution Pz under Assumption 2.1. The ex-
pected values of the pair (Nλ,Mλ) are linked to z as established in Theorem
2.21. Their variance is determined by Theorem 2.24. Subsequent sections of this
chapter address two distinct cases.

• Constant ⟨M⟩: Theorem 2.26 states that the asymptotic distribution for
the length is Poisson, while for the weight it is compound gamma. This
theorem is crucial for establishing the cumulative cardinality formula stated
in Theorem 2.34. Additionally, Theorem 2.31 is a variation of Theorem
2.26 when the largest part is bounded. Theorem 2.35 provides the limit
distribution for both minimal and maximal parts. It shows, in particular,
that asymptotically, all parts scale identically.

• Large ⟨M⟩: Theorem 2.26 evolves into a Gaussian limit, as specified in
Theorem 2.40, and a law of large numbers given in Corollary 2.40.1. Theo-
rem 2.35 turns into Theorem 2.48, which implies that that parts no-longer
scale identically. Additionally, the Young diagram assumes a uniform scal-
ing limit, described in Theorem 2.44. Fluctuations around this limit shape
are quantified and shown to be Gaussian, as detailed in Theorem 2.45.

6.1.2. Chapter 3

• Free sampling: Algorithm 1 performs a sampling from the distribution
Pz with a truncation of the part source. This approach allows us to reduce
the sampling to a finite sequence of independent Bernoulli trials for the
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6.1 Summary of the results

multiplicities. Theorems 2.35 and 2.48 provide guidelines for selecting an
appropriate truncation threshold, ensuring that the approximation of Pz is
as faithful as required. The algorithm has been implemented and subjected
to testing; the observations we gathered align with the theorems outlined
in Chapter 2, as demonstrated in Figure 3.1.

• Rejection and gap detection: Algorithm 1 is complemented by a rejec-
tion sampling scheme, detailed in Algorithm 2, which aims targets of the
form {λ : Mλ = m and n ≤ Nλ ≤ θn} (with θ ≤ 1). Generally, there
is no guarantee of a non-empty target, even when n approaches infinity.
Therefore, it is necessary to set a limit, denoted as t∗, for the number of
sampling attempts. Section 3.2.2 outlines how to select the limit t∗, ensuring
that non-empty targets are reached with a given confidence level, while also
avoiding unnecessary attempts when the target is empty. While this task is
a necessity for rejection sampling, it can be also be leveraged as a feature to
explore partitionability. A proof of this concept is provided in Section 3.3.
We also argue Boltzmann sampling can be used as an experimental tool to
estimate individual terms of the counting sequence, contrasting with the
previously derived cumulative formula. The observations reported in Fig-
ure 3.4 suggest the presence of a pattern in the fluctuation of the counting
sequence.

6.1.3. Chapter 4

Section 4.2 outlines the key principles for deriving limit shape theorems in par-
tition models constructed as per Section 4.1. This is achieved for the Rayleigh
distribution, which, unlike in [14], involves only one parameter and does not
necessitate distinguishing between multiple asymptotic regimes. Here we allow
the length to be random, provided it is independent of the parts and satisfy the
“bumpiness” Assumption 4.1. The rescaled Young diagram is shown to converge
to the complementary cumulative distribution of the Rayleigh distribution. When
the length is deterministic, the fluctuations of the Young diagram are shown to
be Gaussian.

Although the model in Section 4.1 does not inherently incorporate restrictions
on multiplicities, such restrictions can be applied a posteriori through projection.
In Section 4.3, we examine how the frequency distribution is transformed under
this projection. In particular, this link can be used to provide an alternative to
Algorithm 1.
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6.1 Summary of the results

6.1.4. Chapter 5

Section 5.1 proposes an extension of a previously studied model of aggregation and
fragmentation. This chapter presents a series of preliminary results in particular
cases of this model. In Section 5.2 we focus on a dynamic that is purely driven by
the diffusion and aggregation of massive particles on a cycle. Our study involves
the determination of aggregation times, the analysis of the second order moments
and of the distribution of mass between the particles at each aggregation time
with a combination of computer simulations (for which the design is presented in
Section 5.2.1) and analytical methods. In Section 5.3 we study the equilibrium
in a mean-field setting.

• Pure aggregation on a cycle

– Fixed diffusion rate: Times of encounter between particles are given
by equation (5.18). The equation for the second order moments is
solved by Proposition 5.3. Both the distribution of mass and the Young
diagram at late stopping times exhibits a Rayleigh limit shape as shown
in Figures 5.5 and 5.8. It is further confirmed by goodness of fit tests
reported in Table 5.1 and Figure 5.11. This is consistent with a result
of Majumdar, yet it also indicates that this result might be improved.

– Linear dependence: Times of encounter between particles are given
by Equation (5.27). The results reported in Figures 5.6 and 5.9 suggest
that the exponentiated Weibull distribution is the limit shape. The
tests reported in Table 5.2, are not sufficient to be conclusive and indi-
cate that further simulations on bigger systems should be performed.

– Inverse dependence: No analytical results have been obtained and
no distribution models have provided a good fit. The simulated coales-
cence times appear to be coherent when compared to the other cases,
as shown in Figure 5.2.

• Equilibrium in mean-field

– No diffusion and chipping rate independent of the mass: The-
orem 5.7 shows that the equilibrium distribution is geometric.

– No diffusion and chipping rate proportional to the mass: The-
orem 5.9 shows that the equilibrium distribution is the Poisson law.

– Diffusion and chipping rates independent of the mass: The
solution of Majumdar is stated in Theorem 5.10, we re-derived it by
using the radius of convergence transfer theorem.
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6.2 Extension to real powers

6.2. Extension to real powers

In this section we propose two ways to extend Pz to non integers q while main-
taining a class of integer partitions. To do so, we propose to round down the q-th
powers. The source of the parts will thus be given by the image of the function:

n 7→ ⌊nq⌋
N→ N

Definition 6.1. We define the degeneracy

gℓ = #{n ∈ N : ⌊nq⌋ = ℓ}, ℓ ∈ N, (6.1)

as the number of ways of producing each part. We remark that if q ≥ 1 the
degeneracy is 0 or 1, this case essentially coincides with what was done earlier.
However, if q < 1, we have g(ℓ) ≥ 1 (it is even going to infinity). We will focus
on this case for the rest of the section.

Lemma 6.1. For q ≤ 1, when ℓ goes to infinity,

gℓ = ⌈(ℓ+ 1)1/q⌉ − ⌈ℓ1/q⌉, (6.2)

in particular,

gℓ ∼
ℓ1/q−1

q
. (6.3)

Extension 6.1. We consider Pz as the Boltzmann distribution over the partitions
with multiplicity νℓ smaller than gℓ for all natural ℓ. Formally it is the structure
specified by ∏

ℓ∈N

Seq≤gℓ({ℓ}), Seq≤gℓ({ℓ}) := {∅, (ℓ), (ℓ, ℓ), · · · }. (6.4)

Lemma 6.2. The Boltzmann distribution for Extension 6.1 has mutually inde-
pendent multiplicities with distribution,

Pz(νℓ = k) =
zkℓ1 zk2
Fℓ

, Fℓ =
1− (zℓ1z2)

gℓ+1

1− zℓ1z2
. (6.5)

In particular the expectation of the multiplicities verifies,

Ez(νℓ) = zℓ1z2 (1 +O(z22)). (6.6)
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6.2 Extension to real powers

Proof. The law given by the equation (6.5) is an immediate consequence of the
specification. Otherwise we can easily check that the law given the equation (6.5)
coincides with the Boltzmann distribution,

∞∏
l=1

zνℓℓ1 zνℓ2
Fℓ

=
z
N(λ)
1 z

M(λ)
2∏∞

ℓ=1 Fℓ

= Pz

The estimation of the expectation is straightforward,

Ez(νℓ) =
1− zℓ1z2

1− (zℓ1z2)
gℓ

gℓ∑
k=1

k(zℓ1z2)
k

where
1

1− (zℓ1z2)
gℓ+1

= 1 +O(zgℓ+1
2 ),

and

gℓ∑
k=1

k(zℓ1z2)
k = zℓ1z2

∂

∂(zℓ1z2)

gℓ∑
k=1

(zℓ1z2)
k

= zℓ1z2
1− (gℓ + 1)(zℓ1z2)

gℓ + gℓ(z
ℓ
1z2)

gℓ+1

(1− zℓ1z2)
2

= zℓ1z2 (1 +O(z2)),

thus we can conclude,

Ez(νℓ) = (1− zℓ1z2) · (1 +O(zgℓ+1
2 )) · zℓ1z2 (1 +O(z2))

= zℓ1z2 (1 +O(z22)) = zℓ1z2 (1 +O(z22)).

Extension 6.2. We define the degenerate parts given by the structure

⌊N q⌋ :=
∞⋃
ℓ=1

gℓ⊎
k=1

{ℓ} (6.7)

We consider the state space

S := PSet(⌊Nq⌋). (6.8)

An element of S can be represented as a sequence of multiplicities for each state

(νS
(1,ϵ1)

, νS
(1,ϵ2)

, . . . , νS
(1,ϵg1 )

, νS
(2,ϵ1)

, νS
(2,ϵ2)

, . . . , νS
(2,ϵg2 )

, . . . ), (6.9)

where the ϵk are distinct elements such that N(ϵk) = M(ϵk) = 0.
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6.3 Occupancy models

In order to obtain a distribution over Λq, we consider the pushforward of the
Boltzmann distribution over Sq by the transformation:

T : Sq → Λq

νS 7→ ν =

(
g1∑
k=1

νS
(1,ϵk)

,

g2∑
k=1

νS
(2,ϵk)

, · · ·

)
.

Extension 6.2 is akin to the notion of degenerate states in physics contrary
to Extension 6.1 it does not retain the property conditional uniformity of the
Boltzmann distribution.

Lemma 6.3. The distribution given in Extension 6.2 has mutually independent
multiplicities with Binomial distribution,

Pz(νℓ = k) =

(
gℓ
k

)
pkℓ (1− pℓ)

gℓ−k, k ∈ J0, gℓK, pℓ =
zℓ1z2

1 + zℓ1z2
. (6.10)

6.3. Occupancy models

• Relaxing the independence of the length: In view of the Wald identity,
we should be able to relax the condition of M being independent of the X i

and instead take a stopping time.

• Higher dimension: The production of a plane partition from an occu-
pancy model is straightforward and would be useful to fit bi-dimensional
data. Let (Xk) be a sequence of independent identically distributed ran-
dom variables with values in N × N and distribution f := (fij). Let M be
a random variable. We define the indicators Xk

ij := 1(Xk = (i, j)) and a
random plane partition with the following diagram

Y (x, y) :=
∑
i≥x

∑
j≥y

M∑
k=1

Xk
ij, x, y ∈ R+. (6.11)

This is indeed the Young diagram of a plane partition as it is weakly de-
creasing. We remark that when f is separable (i.e. we can write fij = fifj)
the analysis in this setting is essentially identical to the one dimensional
case, provided that the scaling factors are compatible. A natural extension
of the separable case may consists in considering models with a “small”
covariance.

• Minimal difference partitions: MDP(d) the class of partitions such that
successive parts differ from one another by at least d. In particular MDP(1)
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6.4 Multispecies aggregation and fragmentation

is the class of the strict partitions. Contrary to the strict partitions there
is no canonical projection from the unrestricted partitions to MDP(d). An
arbitrary choice is to apply the projection to the strict partitions first, then
going through the parts in the increasing order and decimating parts until
the minimal difference d is achieved. As we did for the strict partitions,
it would be interesting to understand how such projection transforms the
occupancy model. Clearly, by an argument of homogeneity, it cannot be
used to reproduce the Boltzmann distribution over MDP(d). In order to do
so, we should use a randomised decimation scheme.

6.4. Multispecies aggregation and fragmentation

For more generality, it is possible to consider models with multiple types of units
of mass. It adds degrees of freedom, allowing to incorporate the interactions
between masses of different types in addition to the interactions between masses
of the same type. We have made preliminary simulation for a purely aggregating
model on a cycle S = Z/nZ with two types of mass (denoted as type A and type
B). The configuration space is defined as

Ω :=
{
µ = (µA

x , µ
B
x ) ∈ (N2)S0 :

∑
x∈S

µA
x =

∑
x∈S

µB
x = n

}
. (6.12)

The interactions are the diffusion of the whole mass of type A and the diffusion
of the whole mass of type B from a site x to a site x − 1. We made simulations
for two configurations

1. when µA
x diffuses at rate µB

x and µB
x diffuses at rate µA

x (the simulation code
is provided in D.5),

2. when µA
x diffuses at rate (µA

x )
2µB

x and µB
x diffuses at rate µA

x .

In these cases the equilibrium state is not unique and is reached when no sites
contain both types of mass. Simulation results are reported in Figure 6.1 and
Figure 6.2.
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6.4 Multispecies aggregation and fragmentation

Figure 6.1: Equilibrium state (n = 104, configuration 1)
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Figure 6.2: Equilibrium state (n = 104, configuration 2)
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Appendix A

General perspective on partitions

A.1. Asymptotic combinatorics

The study of integer partitions is a classical area of mathematics, dating back,
a least, to Euler, Sylvester, MacMahon, Hardy and Ramanujan. It is a source
of many problems and results (see the monograph by Andrews [2] for historical
comments and further references). As they form a combinatorial structure, many
significant results concern their enumeration, a famous example of such result
being the Hardy–Ramanujan formula [41, Sec.1.4, p.79, and Sec.1.7, pp. 84–85]
with the principal term

p(n) ∼ 1

4
√
3n

exp

(
π

√
2n

3

)
, (A.1)

where p(n) counts the number of partitions of n.
Partitions can also be enumerated under structural constraints. For instance

parts can be restricted to a subset of N such as the perfect q-th powers for a given
integer q [41, Sec.7.3, p.111],

p(q)(n) ∼
kq
√

q/(q + 1)

(2π)(q+1)/2 n1/(q+1)−3/2
exp

(
(q + 1) kq n

1/(q+1)
)
. (A.2)

where

kq :=

{
1

q
Γ

(
1 +

1

q

)
ζ

(
1 +

1

q

)}q/(q+1)

(q ∈ N). (A.3)

There has been intensive research into additive representations of integers with
q-power parts, starting with q = 2 (squares) and dating back to Hardy and
Ramanujan [41] (see also [82, 90]). In connection with combinatorial enumeration,
the class of (non-strict) integer partitions with a fixed number m of q-power parts
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A.1 Asymptotic combinatorics

is featured in at least two classical problems, the Waring problem [42, 83] and
the Gauss circle problem [40, Sec. F1, pp. 365–367], both originally considered
for squares (q = 2) and with m ≤ 4 or m ≤ 2 parts, respectively. The Waring
problem concerns q-power representability of all positive integers1 using at most
g(q) parts, whereas the Gauss circle problem focuses on the cumulative cardinality
of such representations (more precisely, on error bounds for the area/volume
approximation). For instance, by virtue of the Lagrange theorem it is known that
g(2) = 4, that is, any natural number can be written as a sum of at most 4 squares,
while 3 squares may not be enough. Moreover, Legendre’s theorem gives an exact
description of integers that can be represented as a sum of 3 squares— these are
numbers not congruent to 7 (mod 8); for example, for 23 = 7 (mod 8) the only
representation is 9+9+4+1 = 23. On the other hand, numbers not representable
using exactly 4 positive squares are given by the sequence comprising eight odd
numbers, 1, 3, 5, 9, 11, 17, 29, 41, and all numbers of the form ℓ · 4k with k ∈ N0

and ℓ ∈ {2, 6, 14}. These two sequences overlap: for example, 16 + 1 + 1 + 1 =
9 + 9 + 1 = 19 = 3 (mod 8). Another famous result, now about sums with up
to 2 squares, is the Landau theorem [51] stating that the fraction of numbers up
to n having such a representation is asymptotically given by Kn/

√
log n, where

K
.
= 0.764223653 is the Landau–Ramanujan constant. In physics, this kind of

constraint is relevant as the energy levels of a system are not necessarily evenly
spaced.

Another kind of structural constraints consists in imposing the parts to be
unequal. An asymptotic for the number of so-called strict partition was stated in
[41] (and later on elaborated by Hua [45])2

p̌(n) ∼ 1

4 · 31/4 n3/4
exp

(
π

√
n

3

)
. (A.4)

Strict partitions and their generating function F̌ (z) =
∏∞

n=0(1 + zx) were
considered by Euler who noticed that p̌(n) coincides with the number of partitions
of n with odd parts, using a simple identity for the corresponding generating

1It is known that g(q) ≥ 2q + ⌊(3/2)q⌋ − 2 for any q ∈ N, and it is believed that in fact the
equality is true—although exceptions may be possible in principle, no counter-examples have
been found to date. While this version of the Waring problem (i.e., for all numbers n ∈ N)
is almost completely settled, the asymptotic version asking for the smallest number of parts,
denoted G(q), sufficient to partition any sufficiently large natural number into a sum of q-
powers, remains largely open (clearly, G(2) = 4, and it is also known that G(4) = 16). See
further details and references in [83].

2The leading term of the asymptotic expansion of p̌(n) was given in [41, Sec.7.1, p.109] in
terms of (the derivative of) the Bessel function J0(z), from which it is easy to derive an explicit
formula (A.4) using the relation J ′

0(z) = −J1(z) [66, 10.6.3, p. 222] and the asymptotics of J1(z)
[66, 10.7.8, p. 223]. See more direct derivations in [48].
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functions, F̌ (z) = F (z)/F (z2), that is,

∞∏
n=0

(1 + zn) =
∞∏
n=0

1− z2n

1− zn
=

∞∏
n=0

(1− zn)−1

(
∞∏
n=0

(1− z2n)−1

)−1

. (A.5)

This identity has been made explicit via numerous bijections [67, Sec.3].

A.2. Probabilistic approach

Two identical fermions cannot occupy a same state due to the Pauli exclusion
principle. While bosons and fermions are the only two types of elementary par-
ticles in dimension 3 and above, intermediate particles known as anyons have
been theoretically predicted to emerge in physical systems that are effectively
confined to two dimensions and have been recently observed [63]. From the point
of view of the theory of partitions, extension of models based minimal difference
partitions may be viable to represent anyons systems [20, 15]. It is the class of
partitions defined by the condition that successive parts differ from one another
by at least a prescribed value (e.g. 0 for bosons, 1 for fermions).

A more recent boost of research in this area has been due to a statistical
approach focusing on asymptotic properties of typical random partitions and
other decomposable combinatorial structures of large size (see, e.g., [4, 5, 24, 84]).
The words “typical” and “random” imply that partition ensembles of interest are
endowed with suitable probability measures, such as the uniform distribution
on the spaces of partitions of a given n ∈ N (so that all such partitions are
assumed equally likely). Amongst the first results in this direction established in
a seminal paper by Erdős and Lehner [26] is that the growth rate of the number
of parts in the bulk of integer partitions of large n (i.e., in the sense of Law of
Large Numbers) is given by π−1

√
3n/2 log n. A snapshot of subsequent advances

is documented, for example, in papers [27, 34, 47, 84] and references therein.
This research culminated in the discovery of so-called limit shapes of partition
ensembles, which describe a typical settlement of parts and their multiplicities
within large partitions under appropriate scaling (see [84, 85, 70, 28, 13, 15, 87,
92]). The limit shapes have a natural geometric interpretation through the Young
diagrams. Incidentally, Young diagrams make it self-evident (by flipping rows and
columns, called conjugation) that the number of partitions of n with at most m
parts is the same as the number of partitions of n with the largest part not
exceeding m, which immediately implies that the aforementioned asymptotics for
the typical number of parts also hold for the largest part [26]. For our purposes
a shape is merely a curve given by a function f : [0,∞) → [0,∞) (hence the
boundary of every Young diagram is a shape). In this context two shapes cannot
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A.2 Probabilistic approach

be identified if the area under their curve is different. More generally two shapes
might be identified if they agree up to translation, scaling, rotation or even in
cases where they are not embedded in the same space. The comparison of such
shapes requires to introduce an adequate topology such as the one induced by
the Gromov–Hausdorff distance.

The modern approach to the asymptotic analysis of random combinatorial
structures is based on a suitable randomisation of the model parameters (collec-
tively called poissonisation) and the subsequent conditioning (de-poissonisation)
in order to return to the original (say, uniform) distribution with fixed parameters
(see, e.g., [4, 5, 69, 84]). In the context of random integer partitions, this method
was first successfully applied by Fristedt [34], leading to the probability measure
on the space of partitions of all integers n ∈ N by assigning to each such partition
a probability proportional to zn, respectively, where z ∈ (0, 1) is a free param-
eter. Under such a measure (commonly referred to as Boltzmann distribution),
the multiplicities of candidate parts j ∈ N, previously restricted by the partition
target n (often called weight), become independent geometric random variables
with success probability 1 − zj, respectively. Furthermore, conditioning on the
partition weight to be equal to n restores the uniform distribution on the space of
all partitions of that n. This holds for any value of z, but it is helpful to calibrate
the randomised model by replicating the original macroscopic properties (such
as the partition weight) in terms of expectation. Crucially, for the conditioning
trick to work effectively, asymptotic information is needed about the probability
of the condition, specialised here as a weighted sum of random multiplicities,
thus taking a familiar form of a local limit theorem in probability theory, albeit
somewhat peculiar since the number of terms in the sum is random but almost
surely finite (see [34, 37, 13, 87, 33, 47]).

Similar ideas are known as “equivalence of ensembles” in statistical physics,
where the probabilistic description of the particle system of interest (e.g., ideal
gas) may vary subject to optional fixation of the total energy and/or the number
of particles, leading accordingly to micro-canonical, canonical or grand-canonical
Gibbs distributions1. The usual tool to establish such equivalence is via the
Darwin–Fowler method involving a saddle-point asymptotic analysis of high-
dimensional integrals (see [46]). As an alternative, Khinchin [49] advocated a
systematic use of local limit theorems of probability theory in problems of sta-
tistical mechanics, which facilitates the analysis by invoking probabilistic insight
and well-developed analytical tools.

In fact, connections with statistical physics go even deeper, whereby integer

1Cf. also [15], where the term “meso-canonical” was proposed as better suited to the space
of integer partitions with a given weight and any length (interpreted as an assembly with fixed
energy and an indefinite number of particles).
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A.2 Probabilistic approach

partitions serve as a model for the random partitioning of total energy (under a
suitable choice of units) in a large assembly of indistinguishable particles. The
Boltzmann distribution arising naturally as a thermodynamic equilibrium. An
elementary derivation of the Boltzmann distribution based on Stirling formula
and the method of Lagrange multipliers can be found in numerous statistical
physics books (see e.g. [76, Chapter II] or [46, Sec.4.3]).

Specific models of relevance include an ensemble of harmonic oscillators at
high temperatures and ideal quantum gases, where discrete partition structures
are particularly tailored to the energy quantization [6]. In this context, plain par-
titions are interpreted as bosons following the Bose–Einstein statistics, with no
restriction on the energy level occupancy, while strict partitions model fermions
under the Fermi–Dirac statistics. This analogy is quite productive— for instance,
it offers an insightful combinatorial explanation of the Bose–Einstein condensa-
tion, manifested as a measurable excess of particles at the lowest (ground) energy
level at temperatures close to the absolute zero [6, 86].

The notion of Boltzmann distribution can be extended to a variety of com-
binatorial structures provided that they can be endowed with a suitable size
function and their generating function has a non-zero radius of convergence [24].
Using additional free parameters allows to control multiple combinatorial param-
eters [9, 86]. When the generating function has a null radius of convergence,
typically in the case of labelled structures such as integer partitions, with the use
of the exponential generating function, it is still possible to introduce a variant
of the Boltzmann distribution [24, Sec.4]. Multi-parametric versions may also
be considered [85, 10]. This may be needed if we wish to control more than one
macroscopic characteristic of a combinatorial object, such as the number of parts
(length) in addition to the partition weight. Another reason may arise if we are
dealing with a truly multi-dimensional structure, such as vector partitions, con-
vex lattice polygonal lines, or digitally convex polyominoes [79, 85, 16, 18, 12].
In computer science, it is an effective tool to sample random instances of com-
binatorial objects— if required, with a given size, exact or approximate (which
is achieved via rejection applied to the output of a free sampler, so as to im-
plement the conditioning step), and with a uniform distribution of the output
[24, 31, 12, 11].

Aside from Boltzmann models, alternative probability distributions on parti-
tion spaces are interest. The Ewens sampling formula [29, 50] mentioned earlier,
has significant applications in population genetics and ecology. In group the-
ory, the Plancherel measure arises by taking the uniform distribution over the
partitions of a given number and keeping only the length of cycles.

Other classes of distributions are derived from infinite occupancy models, that
is models where some “balls” are thrown independently into a series of “boxes”
labelled by j ∈ N with a certain frequency distribution (fj). One way to produce
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A.3 Stochastic processes

a partition through such scheme consists in taking as parts the number of balls
thrown into each box [36] thus producing a partition of the number of balls.
Alternately, boxes can be interpreted as parts’ multiplicities thus giving a flexible
model where the frequency distribution can be inferred via some count data
[65, 14]. Contrary to the Boltzmann models, in the latter model the independence
is in the individual parts instead of the multiplicities. This does not allow a
structural constraint of the multiplicities without applying a projection.

A.3. Stochastic processes

Partitions also occur in the context of stochastic processes. A practical example
arises in modelling the growth of a two-dimensional crystal in a quadrant [81].
In this example, a process of growth is defined by adding successive blocks to a
Young diagram. This process can be interpreted as a downward random walk
on the Young lattice, obtained by representing the relation of inclusion between
partitions via their Young diagram (see Figure 1.3).

Coalescence and fragmentation dynamics, that is, the evolution of the distri-
bution of an extensive quantity over an ambient space naturally involve integer
partitions. It is also possible to focus on mean-field models, where the ambient
space can essentially be interpreted as a complete graph. A famous example of
mathematical model of aggregation is the Smoluchowski equation, here below in
the version with discrete masses

dcj
dt

=
1

2

j−1∑
j′=1

Kj′,j−j′cj′cj−j′︸ ︷︷ ︸
formation of aggregates of mass j

− cj

∞∑
j′=1

Kj,j′cj′︸ ︷︷ ︸
loss of aggregates of mass j

.

This equation describes the evolution of a population of aggregates that can take
masses j ∈ N. (cj) corresponds to the distribution of aggregates size and the
aggregation kernel Kj,j′ is the rate of aggregations of two couples of aggregates of
respective size j and j′. It is an instance of mean-field model. Such models are
more tractable analytically than models on more complex ambient spaces, they
however remain unsolved except for particular aggregation kernels (see [1, Table
2 p8] for examples of solved cases). While it is a deterministic model, it has a
stochastic analog, the Marcus–Lushnikov process [60, 56]. In this Markov process
the configuration space is the set of all partitions of a given number N (the total
mass of the system) and a configuration represented by the multiplicities (νj) can
undergo the aggregation of a couple of masses, say j and j′, at rate Kjj′νjνj′/N .
A review of mean-field aggregation is provided in [1]. The two models mentioned
here are purely aggregating, thus their equilibrium behavior is trivial. If fragmen-
tation is introduced it allows models with non-trivial equilibrium behaviour to
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explore [25]. Moreover, it is possible to study the partitions that arise in spatial
dependent models after “forgetting” the spatial information. It is what we have
done in Section 5.2.
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Appendix B

Elements of combinatorics and
Boltzmann distributions

In Chapters 2 and 3 we focused on the Boltzmann distribution over a particular
case of combinatorial structure with two parameters (the weight and the length).
The purpose of this appendix is to provide a more general context by providing
a succinct presentation of some of the key concepts of analytic combinatorics
[32]. A key principle of analytic combinatorics is that one can describe a com-
binatorial structure with a symbolic language that can naturally be translated
into an analytic language that allows to extract information about the structure
(distribution of some parameters, counting sequence, shape ...). Similarly, one
can interpret a specification via a probabilistic language using Boltzmann distri-
butions. Our guiding principle for this section is to progressively produce more
complex structures starting from elementary objects.

B.1. Combinatorial structures with one or two

parameters

Definition B.1. A (one-parameter) combinatorial structure is a countable set A
endowed with a size function N : A→ N0 such that, for all n,

an := #{a ∈ A : N(a) = n} <∞. (B.1)

Depending on the context, N might also be called weight, energy, etc.
The generating function of the structure (A, N) is the power series defined

by

A(z) :=
∑
a∈A

zN(a) =
∞∑
n=0

anz
n, (B.2)
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B.1 Combinatorial structures with one or two parameters

where an = #{a ∈ A : N(a) = n} is the counting sequence.

In order to specify a combinatorial structure, one can combine simpler struc-
tures, or provide a recursive definition, using elementary operations that we call
constructors. We will give the most common constructors applied to two one-
parameter combinatorial structures, (A, NA) and (B, NB). For convenience we
may omit the index on the size function.

Definition B.2. In terms of sets, the Cartesian product A×B is defined as the
set of all ordered pairs (a, b) for a ∈ A and b ∈ B. We define (A × B, N) as
a combinatorial structure with the inherited size function N : A × B → N0 by
setting N(a, b) := N(a) +N(b).

Remark B.1. The restriction of a combinatorial structure to a subset is a combi-
natorial structure. Complementarily, if the size function of two structures agree
on their intersection then we have a structure on the union in the obvious way.
In particular, if two structures are disjoint then the union has a corresponding
structure.

Definition B.3. The disjoint union A⊎B is defined by introducing two distinct
singleton combinatorial structures ({ϵ1}, N = 0) and ({ϵ2}, N = 0), and writing

A ⊎B := ({ϵ1} ×A) ∪ ({ϵ2} ×B). (B.3)

Remark B.2. Contrary to the union, this allows the repetitions if A and B inter-
sect and it is a well defined structure even if the size functions don’t coincide on
the intersection.

Example B.1. The set of the natural numbers endowed with the identity as
a size function can be produced by adding up ones recursively. Thus it can be
specified recursively in the following way,

N = {1} ⊎ ({1} × N), (B.4)

where N(1) = 1.

Definition B.4. If A has no elements of size 0 (in order to satisfy condition
(B.1)), we can define the (finite) sequences Seq(A) of elements of A,

Seq(A) :=
∞⊎
n=0

An where An = A× · · · ×A︸ ︷︷ ︸
n times

. (B.5)

and A0 = {ϵ} with N(ϵ) = 0.
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B.1 Combinatorial structures with one or two parameters

Example B.2. The non-negative integers can be specified as follows:

N0 = Seq({1}), (B.6)

using N(1) = 1 as in the previous example.

Definition B.5. The multiset MSet(A) which is the set of the finite sequences
of elements of A up to permutation. Since we do not consider the order, we can
arbitrary regroup the identical elements, thus we can specify MSet(A) with the
previous constructors:

MSet(A) :=
∏
a∈A

Seq({a}). (B.7)

In other words assuming that A = {a1, a2, a3 · · · } is ordered:

MSet(A) = Seq({a1})× Seq({a2})× Seq({a3})× · · · .

It is a well defined combinatorial structure as each term Seq({aj}) contains the
empty sequence.

Example B.3. The integer partitions:

Λ = MSet(N). (B.8)

Definition B.6. The powerset PSet(A) that contains every finite subsets of A
or equivalently every element of MSet(A) with multiplicities restricted to {0, 1}:

PSet(A) :=
∏
a∈A

{a} ⊎ {ϵ}, (B.9)

where we set N(ϵ) = 0.

Example B.4. The strict partitions:

Λ̌ = PSet(N). (B.10)

Lemma B.3. The following table summarises the constructors defined previously
and their interpretation in terms of generating functions.

Table B.1: Correspondence between constructors and generating functions

Symbol Size function Generating function
C = A

⊎
B N = N · 1A +N · 1B C(z) = A(z) +B(z)

C = A×B N(a, b) = N(a) +N(b) C(z) = A(z) ·B(z)
C = Seq(A) N((ai)i) =

∑
i N(ai) C(z) = (1− A(z))−1

C = MSet(A) N((ai)i) =
∑

i N(ai) C(z) =
∏

a∈A(1− zN(a))−1

C = PSet(A) N((ai)i) =
∑

i N(ai) C(z) =
∏

a∈A(1 + zN(a))
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B.2 Boltzmann distributions

Proof.

• For the union and the Cartesian product the correspondence is immediate.

• For the Sequence, we just decompose Seq(A) into every possible lengths.
According to the correspondence for the Cartesian product the generating
function of An is A(z)n thus we obtain a geometric sum,

C(z) = 1 + A(z) + A(z)2 + · · · = (1− A(z))−1. (B.11)

• For the multiset and the powerset, it follows from the specifications (B.7)
and (B.9) and the previous correspondences.

Definition B.7. If (A, N) is a combinatorial structure, a combinatorial param-
eter is a function M : A → N0. We define the generating function of the two-
parameter structure (A, N,M)

A(z1, z2) :=
∑
a∈A

z
N(a)
1 z

M(a)
2 =

∞∑
n=0

∞∑
m=0

an,mz
n
1 z

m
2 . (B.12)

Example B.5. Λ or Λ̌ with the size and the length inherited from N(ℓ) = ℓ and
M(ℓ) = 1 for ℓ ∈ N.

B.2. Boltzmann distributions

In this section we assume that (A, N,M) is a two parameters combinatorial struc-
ture, where the corresponding generating function A(z1, z2) has a non-zero con-
vergence radius. For convenience we will write z = (z1, z2).

Definition B.8. Suppose that z = (z1, z2) is a pair of positive parameters such
that A(z) is defined. We call the Boltzmann distribution over A with the param-
eters z, the probability distribution defined by

Pz(a) =
z
N(a)
1 z

M(a)
2

A(z)
(B.13)

for all a ∈ A.

Lemma B.4. Let S ⊂ A, then the conditional distribution Pz(·|A) coincides with
the Boltzmann distribution over S.
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B.2 Boltzmann distributions

An interesting property of the Boltzmann distributions family is their stability
under conditioning.

Proof. The conditional distribution is

Pz(a|S) =
Pz(a)

Pz(S)
=

z
N(a)
1 z

M(a)
2

A(z)
× A(z)∑

a′∈S z
N(a′)
1 z

M(a′)
2

.

By definition the generating function of S is
∑

a′∈S z
N(a′)
1 z

M(a′)
2 , thus we can con-

clude.

The following lemma is fundamental if we want to use Boltzmann distribu-
tions as an enumeration tool or for the simulation of uniform distributions.

Lemma B.5. Let n,m be such that an,m ̸= 0. For all valid choice of parameters,
the corresponding Boltzmann distribution is conditionally uniform,

Pz(a|N(a) = n,M(a) = m) =
1

an,m
. (B.14)

In particular

an,m =
A(z)Pz(N(a) = n,M(a) = m)

zn1 z
m
2

. (B.15)

Lemma B.6. The following table is an interpretation of the elementary construc-
tors in terms of the Boltzmann distribution

Table B.2: Correspondence between constructors and Boltzmann distribution

Symbol Boltzmann
C = A

⊎
B Bernoulli: PC

z(A) = A(z)/(A(z) +B(z))
C = A×B Product: PC

z(a, b) = PA
z (a) · PB

z (b)
C = Seq(A) Geometric: Pz(A

d) = A(z)d(1− A(z))

In particular, for the multisets and the powersets, the multiplicities are inde-
pendent and given by:

• C = MSet(A):

Pz(νa = k) = z
kN(a)
1 z

kM(a)
2 (1− z

N(a)
1 z

M(a)
2 ). (B.16)
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B.2 Boltzmann distributions

• C = PSet(A):

Pz(νa = 1) =
z
N(a)
1 z

M(a)
2

1 + z
N(a)
1 z

M(a)
2

. (B.17)

Proof. It is an immediate consequence of the correspondences given in Table
B.1.

In order to use the Boltzmann distributions, we need to be able to select z
in order to make the the weight and the length “close” to values ⟨N⟩ and ⟨M⟩
prescribed by the user. We pursue the approach (see, e.g., [13], [34], [87] [88])
based on making the expected values of N and M consistent with ⟨N⟩ and ⟨M⟩,
respectively:

Ez(N) = ⟨N⟩ , Ez(M) = ⟨M⟩ . (B.18)

The following lemma, along with its corollary, justifies the use of hyper-parameters
⟨N⟩, and ⟨M⟩. It also gives information about the dispersion around these values.

Proposition B.7. The moments of order one and two of the Boltzmann distri-
bution over A are given by(

Ez(N)
Ez(M)

)
=

(
z1 0
0 z2

)
∇
(
logA(z)

)
, (B.19)

K(z) :=

(
Varz(N) Covz(N,M)

Covz(N,M) Varz(M)

)
=

(
z1 0
0 z2

)
∇
(
Ez(N),Ez(M)

)
. (B.20)

Proof. We just prove the first row of equation (B.19), the rest of the proof is
similar

z1 ∂z1(logA) =
∞∑
n=0

∞∑
m=0

nan,mz
n
1 z

m
2 =

∑
a∈A

N(a) · z
N(a)
1 z

M(a)
2

A(z)
=
∑
a∈A

N(a)Pz(a)

= Ez(N).

Corollary B.7.1. Any system of equations in variables z = (z1, z2) of the form
(B.18) has at most one solution if and only if detK > 0.

In particular it means that M shouldn’t be taken proportional to N .
Let us give a short example to illustrate how we can construct the Boltzmann

distribution and use it in an asymptotic regime.
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B.2 Boltzmann distributions

Example B.6. We take A as the class of the unary-binary trees, with the size
function N counts the number of internal nodes and the parameter M counts the
number of unary nodes.

The class A can be specified in the following way:

A = •︸︷︷︸
single node

⊎
(• ×A)︸ ︷︷ ︸
unary root

⊎
(A× • ×A)︸ ︷︷ ︸

binary root

. (B.21)

For convenience we will denote by U the subclass of elements that have a unary
root and by B the subclass of elements that have a binary root. The Boltzmann
distribution can be interpreted as a Galton–Watson tree with reproduction laws
given by Pz(•), Pz(U), and Pz(B).

The parameters are defined through the following relations:

• : N(•) = 0, M(•) = 0

U : N(•, A) = 1 +N(A), M(•, A) = 1 +M(A)

B : N(A1, •, A2) = 1 +N(A1) +N(A2), M(A1, •, A2) = M(A1) +M(A2).

The symbolic specification (B.21) can be immediately translated into an equation
for the generating function:

A(z) = 1 + z1z2A(z) + z1A(z)
2.

This is a quadratic equation for A(z), which solves to

A(z) =
(1− z1z2)−

√
(1− z1z2)2 − 4z1
2z1

.

The root is determined uniquely by noting that limz→0A(z) = 1. In virtue of the
law of total expectation, the expected values of N and M satisfy the relations

Ez(N) = Pz(U) · (1 + Ez(N)) + Pz(B) · (1 + 2Ez(N)),

Ez(M) = Pz(U) · (1 + Ez(M)) + Pz(B) · 2Ez(M).
(B.22)

If we assume the calibration equations (B.18) and substitute the probabilities
Pz(U) = z1z2 and Pz(B) = z1A(z), then the equations (B.22) specialise to

⟨N⟩ = z1z2(1 + ⟨N⟩) + z1A(z) · (1 + 2 ⟨N⟩),
⟨M⟩ = z1z2(1 + ⟨M⟩) + 2z1A(z) ⟨M⟩ .

Setting ⟨N⟩ = n and ⟨M⟩ = m, the calibration equations are solved exactly,

z1 =
n2 − 2mn+ n+m2 −m

4n2 − 4mn+ 4n+m2 + 1
,

z2 =
2mn−m2 +m

n2 − 2mn+ n+m2 −m
.
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Appendix C

Boltzmann sampling

C.1. Elementary principles

A Boltzmann sampler for a combinatorial structure (A, N,M) (as in Definition
B.7) is an algorithmic realisation of the Boltzmann distribution for a parameter
z given by the user. Boltzmann samplers are often integrated in a rejection loop
that repeats the sampler until the value of (N,M) of the last sampled object
belong the a prescribed set that we call the target. If this set contains only
one point, we say that the rejection scheme is exact, otherwise we say that it is
approximate. The rejected loop is usually preceded by a calibration of z in order
to minimise the number of failed iterations. Some pre-computations may also be
useful if their result will be reused at every iterations (e.g. generating function).

As we have seen in the first chapter, the Bernoulli and the geometric distribu-
tions play an important role in the interpretation of Boltzmann distributions. So
for the rest of the chapter we will assume that we have the following primitives:

• Ber(p) generates a 1 with probability p and a 0 with probability 1− p

• Geom(p) generates k ∈ J0,∞K with probability (1− p)kp.

We will also assume that those operations can produce perfectly random output
in a bounded time.

Of course, the complexity is crucial in order to determine if a particular
sampling scheme is relevant. Here, we will only consider the time complexity
assuming that every elementary operations (arithmetic, logic, Ber and Geom)
cost one unit of time. This is a random variable for which we will analyse the
expectation. We decompose it in the following way:

T = P + S ·R, (C.1)
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where T is the time complexity, P is the complexity of the pre-computations
(which will be negligible), S is the complexity of the sampler and R is the number
of rejections. Those quantities are random variables for which the law depend on
the inputs. Another measure of the efficacy of a sampling algorithm, that we do
not consider here, is its costs in terms of random bits since this will ultimately
affect the bias of the sampler.

Example C.1. Let A the set of the Bernoulli processes:

A = {0, 1} ⊎ {0, 1} ×A (C.2)

where N counts the number of attempts (i.e. N(0) = N(1) = 1) and M counts
the number of successful attempts (M(0) = 0 and M(1) = 1). The generating
function of A verifies the following equation:

A = z1 + z1z2︸ ︷︷ ︸
{0,1}

+(z1 + z1z2)A︸ ︷︷ ︸
{0,1}×A

(C.3)

so we have:

A =
z1(1 + z2)

1− z1(1 + z2)
. (C.4)

We have the Boltzmann sampler here below (Figure 4):

Algorithm 4: ΓA(z)

1 b← Ber(z1(1 + z2)/A)
2 if b = 1 then
3 b← Ber((1 + z2)

−1)
4 if b = 1 then
5 return 0
6 end
7 return 1

8 end
9 b← Ber((1 + z2)

−1)
10 if b = 1 then
11 return (0,ΓA(z))
12 end
13 return (1,ΓA(z))

Figure C.1: Boltzmann sampler for Bernoulli processes

The complexity of this algorithm is a random variable that is asymptotically
proportional to N , which follows a geometric law (starting from 1) with success
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rate Pz[{0, 1}] = 1− z1(1 + z2). In particular the expected length of the process
is:

Ez[N ] =
1

1− z1(1 + z2)
,

setting the hyperparameters ⟨N⟩ and ⟨M⟩ as usual, this gives a more convenient
expression for the generating function and the probability of termination:

A = ⟨N⟩ − 1, Pz[{0, 1}] =
1

⟨N⟩

In order to solve the calibration equations we also need to evaluate the expected
value of M . This can be done by using the recursive specification:

⟨M⟩ = Pz[(1)] + Pz[(0,A)] · ⟨M⟩+ Pz[(1,A)] · [1 + ⟨M⟩]

⇔ ⟨M⟩ = z1z2
A

+ z1 · ⟨M⟩+ z1z2 · [1 + ⟨M⟩]

⇔ ⟨M⟩
⟨N⟩

= z1z2 ·
⟨N⟩
⟨N⟩ − 1

⇔ z1z2 =
⟨N⟩ ⟨M⟩ − ⟨M⟩

⟨N⟩2
.

Thus the parameters are given by:

z1 = 1− ⟨N⟩ ⟨M⟩+ ⟨N⟩ − ⟨M⟩
⟨N⟩2

, z2 =
⟨M⟩

⟨N⟩ − ⟨M⟩
· ⟨N⟩ − 1

⟨N⟩+ 1
.

Of course we can also provide a calibrated uniform/exact sampler. We shall
remark that it only requires to have m ≤ n to end almost surely, in some cases
the target may be empty and we may either prefer to have an approximate sampler
or to set a time limit.

Let us evaluate evaluate the success rate of an exact rejection procedure i.e.
the probability to have N = n and M = m:

Pz[N = n,M = m] = Pz[M = m|N = n] · Pz[N = n]

As in Example B.6 we consider that ⟨N⟩ → ∞ and ⟨M⟩ = c ⟨N⟩ for c ∈ (0, 1).
Every time a bit is added, whether it is the ending bit or not, it is 0 with proba-
bility (1 + z1)

−1 and 1 with probability z2(1 + z2)
−1 ∼ c so the distribution of M

conditionally on having N = n is approximately Binomial(n, c). In particular we
can estimate the success rate:

Pz[N = n,M = m] = Pz[N = n,M = m] ∼ n−3/2√
2πc(1− c)

so the order of complexity of the exact sampling procedure is O(n5/2).
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Remark C.1. It is just a toy example which is not a particularly efficient. For
instance if we want to make exact sampling we can just set the length and set
each bit to 1 with probability z2(1 + z2)

−1 until we reach the required number
of 1, then we fill the rest of the sequence with 0 and to avoid bias we compute
the probability that the remaining bits are 0. This would give a complexity of
O(n3/2) as there will be no rejection for the length of the process.

C.2. Sampler for multisets and powersets

As we saw in Lemma B.6 a simple way to describe the Boltzmann distribution
over MSet(A) is to observe that the multiplicities of each elements of A are in-
dependent and geometric. Thus we deduce a (theoretical) sampling algorithm
that consists in a loop that generates all the multiplicities. Such algorithm only
terminates if the structure A is finite. In this case its complexity is deterministic
and proportional to the number of elements of A. Of course in general A may be
infinite, in which case there are at least two approaches to ensure the termination
of the algorithm. One approach consists in truncating the structure A and to not
sample multiplicities that are likely to be zero. Unless it is included in a rejection
scheme, this approach is necessarily biased and requires reliable estimates. An-
other approach consists in using an alternative specification. It is detailed in [31]
and [71] in the context of structures with a single parameter. It can be adapted
with limited efforts to structures that include multiple parameters. These ref-
erences also provide a procedure to sample powersets, alternately Theorem 4.9
can be used. Any of these procedure, apart from the one based on a truncation,
require an oracle to estimate the generating function.

158



Appendix D

Code

D.1. Young diagram visualisation

1 function young_plot(lambda)

2 lambda = flip(sort(lambda));

3 m = length(lambda); %height of the diagram (total number of

parts)

4 L = max(lambda); %length of the diagram (maximal parts)

5 Y = zeros(1,L); %y coordinates of the upper bound

6 X = zeros(1,L); %x coordinates of the upper bound

7

8 hold on;

9

10 %draw the boxes

11 for(i=1:m)

12 for(j=1: lambda(i))

13 rectangle (" position", [j-1, i-1, 1, 1], "FaceColor", [0.9,

0.9, 0.9]);

14 endfor

15 endfor

16

17 %draw the upper bound

18 for(i=1:L)

19 Y(i) = cumsum(lambda >i-1)(m);

20 X(i) = i-1;

21 endfor

22

23 for(i=1:L)

24 line([X(i),X(i)+1], [Y(i),Y(i)], "linewidth", 1, "color", "r

");

25 endfor

26

27 line([X(L)+1, X(L)+2], [0,0], "linewidth", 1, "color", "r");

28

159



D.2 Free sampler benchmark

29 plot(lambda (1) ,0, ’o’, ’markersize ’, 5, ’markeredgecolor ’, ’r’,

’markerfacecolor ’, ’w’);

30 for(i=2:L)

31 if(Y(i-1)>Y(i))

32 plot(X(i),Y(i), ’o’, ’markersize ’, 5, ’markeredgecolor ’, ’r

’, ’markerfacecolor ’, ’w’);

33 endif

34 endfor

35

36 plot(lambda (1) ,1, ’o’, ’markersize ’, 5, ’markeredgecolor ’, ’r’,

’markerfacecolor ’, ’r’);

37 for(i=1:L-1)

38 if(Y(i+1)<Y(i))

39 plot(X(i)+1,Y(i), ’o’, ’markersize ’, 5, ’markeredgecolor ’,

’r’, ’markerfacecolor ’, ’r’);

40 endif

41 endfor

42

43 plot(0,m, ’o’, ’markersize ’, 5, ’markeredgecolor ’, ’r’, ’

markerfacecolor ’, ’r’);

44

45 %set the axis at the right scale

46 set(gca , "fontsize", 14)

47 axis(" equal", [0,lambda (1)+0.5,0,m+0.5]);

48

49 %save the picture in the eps format

50 print -color -depsc young.eps

51 endfunction

D.2. Free sampler benchmark

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <math.h>

4 #include <time.h>

5

6 typedef struct partition

7 {

8 int n;

9 int m;

10 int* parts;

11 } partition;

12

13 int ber(double);

14 void freesampler(int , double , double , int , partition *);

15

16 int main()
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17 {

18 clock_t start = clock();

19

20 partition lambda;

21 int p = 2;

22 int L = 100000 * (1.1);

23 double n = 100000;

24 double m = 5;

25 srand(time(NULL));

26

27 double nmoy = 0.;

28 double mmoy = 0.;

29

30 int nsamples = 10000;

31 int nsamples_free = 0;

32 int i;

33 for (i = 0; i < nsamples; i++)

34 {

35 nsamples_free += 1;

36 freesampler(p, n, m, L, &lambda);

37 nmoy += lambda.n;

38 mmoy += lambda.m;

39 free(lambda.parts);

40 while (lambda.m != 5)

41 {

42 nsamples_free += 1;

43 freesampler(p, n, m, L, &lambda);

44 nmoy += lambda.n;

45 mmoy += lambda.m;

46 free(lambda.parts);

47 }

48 }

49

50 printf("Mean execution time : %f ms\n", (double)(clock() -

start) / (CLOCKS_PER_SEC *( nsamples /1000)));

51 printf("average size : %f\n", nmoy / nsamples_free);

52 printf("average length : %f\n", mmoy / nsamples_free);

53 printf("mean number of attempts : %f\n", (double)

nsamples_free / nsamples);

54

55

56 return EXIT_SUCCESS;

57 }

58

59 int ber(double p)

60 {

61 return (double)rand() / RAND_MAX <= p;

62 }

63
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64 void freesampler(int p, double n, double m, int L, partition*

lambda)

65 {

66 double z1, z2, gamma , q;

67 int jmax , j, N, M, l;

68 gamma = m / (p * n);

69 z1 = exp(-gamma);

70 z2 = (double)p * m * pow(gamma , 1. / (double)p) / tgamma (1. /

(double)p);

71

72 jmax = (int)floor(pow(L, 1. / (double)p));

73

74 N = 0;

75 M = 0;

76 lambda ->parts = (int*) malloc(sizeof(int));

77

78 for (j = 1; j <= jmax; j++)

79 {

80 q = 1;

81 q = pow(z1 , pow(( double)j, (double)p));

82 q = q * z2 / (1. + q * z2);

83 if (ber(q))

84 {

85 l = round(pow(( double)j, (double)p));

86 N = N + l;

87 M++;

88 lambda ->parts = (int*) realloc(lambda ->parts , M *

sizeof(int));

89 lambda ->parts[M - 1] = l;

90 }

91 }

92 lambda ->m = M;

93 lambda ->n = N;

94 }

D.3. Density test

1 """

2 Title: Partition test density

3

4 Purpose: Given four integers L, l, m and q, a float delta in

5 (0,1), this program tests with significance level delta which

6 integers from l to L can be represented as strict partitions into

7 m integers raised to the power q.

8

9 The program realises for each integer n from L down to l parallel

10 independent random realisations of a sampler that has a success
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11 rate bounded below by the Boltzmann distribution.

12 """

13

14 import multiprocessing as mp

15 import random

16 import numpy as np

17 from math import gamma , factorial , exp , log , floor

18 import time

19

20 #Sample strict partitions into m parts which are q-th powers

21 smaller than L.

22 #z1 and z2 are calibration parameters for the sampler

23 def worker_sampler(q,L,n,m,z1 ,z2):

24 part =[]

25 N=0

26 M=0

27 j=1

28 l=1

29 while M<m and l<=n-N and l<=L:

30 Z=(z1**l)*z2

31 p=Z/(1+Z)

32 if np.random.binomial(1, p):

33 part.append(l)

34 N=N+l

35 M=M+1

36 j=j+1

37 l=j**q

38 return part ,N,M

39

40 #Iterates the sampler

41 def worker_test(name ,q,L,n,m,max_attempt ,z1 ,z2 ,stop_flag):

42 nb_attempts =0

43 N=0

44 M=0

45 representable_test_worker = [0]*L

46 while (N!=n or M !=m) and (nb_attempts <max_attempt) and not

stop_flag.value:

47 part ,N,M=worker_sampler(q,L,n,m,z1 ,z2)

48 nb_attempts=nb_attempts +1

49 if M==m:

50 representable_test_worker[N -1]=1

51 if N==n and M==m:

52 stop_flag.value=True

53 return representable_test_worker

54

55 #Helper function to unpack arguments and call worker_test

56 def worker_helper(args):

57 return worker_test (*args)

58
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59 #Compute the maximal number of attempts per worker

60 def max_attempt_comp(q,n,m,delta , nworkers):

61 a=m/q

62 return floor(-n*(( exp (1)/a)**a)*( gamma(a)*log(delta))*

factorial(m)/((m**m)*exp(-m)*nworkers))

63

64 #Calibrate z1 and z2

65 def calibration(q,n,m):

66 kappa=(m**(q+1))/n

67 z1=np.exp(-m/(q*n))

68 z2=( kappa **(1/q))/((q**(1/q))*gamma (1+1/q))

69 return z1,z2

70

71 #Combine list of representability results obtained by the workers

72 def combine_workers(representable_test_workers):

73 combined_list = [int(any(elements)) for elements in zip(*

representable_test_workers)]

74 return combined_list

75

76 #Combine two lists of representability results

77 def combine_lists(list1 , list2):

78 combined_list = [max(x, y) for x, y in zip(list1 , list2)]

79 return combined_list

80

81 #Print the list of reprentable numbers that have been obtained

82 def print_representable(representable_test):

83 print("The following numbers are representable:")

84 indices = []

85 for index , value in enumerate(representable_test):

86 if value == 1:

87 indices.append(str(index + 1))

88 print(", ".join(indices))

89 print(f"This list contains {len(indices)} elements")

90

91 #Test if n is representable

92 def single_n_test(q,L,n,m,delta):

93 # Compute the number of workers

94 nworkers = mp.cpu_count () -1

95 # Compute the maximal number of attempts per worker

96 max_attempt = max_attempt_comp(q,n,m,delta ,nworkers)

97 # Calibrate the parameters

98 z1,z2=calibration(q,n,m)

99 # Create a manager to manage shared variables

100 manager = mp.Manager ()

101 # Create a shared stop flag variable

102 stop_flag = manager.Value(’i’, False)

103 # Create a pool of worker processes

104 pool = mp.Pool()

105 # Use imap_unordered with the helper function
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106 representable_test_workers=pool.imap_unordered(worker_helper ,

[(name ,q,L,n,m,max_attempt ,z1 ,z2 ,stop_flag) for name in

range(nworkers)])

107 # Close the pool to prevent any new tasks

108 pool.close()

109 # Wait for all worker processes to complete

110 pool.join()

111 # Combine the results of the workers

112 representable_test = combine_workers(

representable_test_workers)

113 return representable_test

114

115 #Test representability from L down to l

116 def multiple_test(q,L,l,m,delta):

117 representable_test = [0]*L

118 print("Coarse test")

119 for n in range(L, l-1, -1):

120 if not representable_test[n-1]:

121 print("Test the number", n)

122 representable_test=combine_lists(representable_test ,

single_n_test(q,L,n,m,delta))

123 return representable_test

124

125

126 if __name__ == ’__main__ ’:

127 # Inputs of the programs

128 while True:

129 L = int(input("Enter a weight upper limit L: "))

130 l = int(input("Enter a weight lower limit l: "))

131 m = int(input("Enter a target length m: "))

132 q = int(input("Enter a power q: "))

133 delta = float(input("Enter significance level delta of

single test (may be taken close to 1 if L-l is large):

"))

134

135 if m > 0 and q > 0 and 0 < delta < 1 and L>0 and l>0:

136 print("Input values are valid.")

137 break

138 else:

139 print("Invalid input. Please make sure n, m, q and L

are positive integers , and delta is a float

between 0 and 1.")

140

141 # Starts the timer

142 start_time = time.time()

143 representable_test=multiple_test(q,L,l,m,delta)

144

145 #print the representable numbers obtained

146 print_representable(representable_test)
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147 # End the timer

148 end_time = time.time()

149 # Calculate the elapsed time

150 execution_time = end_time - start_time

151 # Print the execution time

152 print("Execution time: ", execution_time , "seconds")

D.4. Aggregation simulator

1 #define _CRT_SECURE_NO_WARNINGS

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <math.h>

5 #include <time.h>

6 #define PI 3.14159265359

7

8 typedef struct

9 {

10 int* sites;

11 int* masses;

12 int nb_part;

13 } occupation_s;

14

15 typedef struct

16 {

17 occupation_s occupation;

18 int N;

19 float rate;

20 float alpha;

21 float second_moment;

22 } config_s;

23

24 int mod(int , int);

25 float exp_clock(float);

26 float unif_rand(float , float);

27 void init_config(config_s*, int , float);

28 void update_config(config_s *);

29 void simulation(int , float , FILE*, FILE*);

30

31 /* reordering functions */

32 /*the particles are relabelled by decreasing mass after each

coalescence event */

33 void quicksort(occupation_s*, int , int);

34 int partition(occupation_s*, int , int);

35 void swap(occupation_s*, int , int);

36

37 void print_part(occupation_s*, int , int);
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38 void print_part_file(occupation_s*, int , int , FILE*);

39

40 int main()

41 {

42 int N = 1024;

43 float alpha = 0;

44 float res = 0;

45 FILE* file = fopen("sim_time.csv", "w");

46 FILE* file2 = fopen("sim_part.csv", "w");

47

48 srand(time(NULL));

49 simulation(N, alpha , file , file2);

50 fclose(file);

51 fclose(file2);

52 return EXIT_SUCCESS;

53 }

54

55 int mod(int a, int b)

56 {

57 int c = a % b;

58

59 if (c >= 0)

60 return c;

61 else

62 return b + c;

63 }

64

65 float exp_clock(float rate)

66 {

67 return -log(1 - (rand() / (RAND_MAX + 1.0))) / rate;

68 }

69

70 float unif_rand(float m, float M)

71 {

72 return rand() / (RAND_MAX + 1.) * (M - m) + m;

73 }

74

75 void init_config(config_s* config , int N, float alpha)

76 {

77 int i;

78 config ->second_moment = N;

79 config ->N = N;

80 config ->rate = N;

81 config ->alpha = alpha;

82 config ->occupation.sites = (int*) malloc(N * sizeof(int));

83 config ->occupation.masses = (int*) malloc(N * sizeof(int));

84 config ->occupation.nb_part = N;

85

86 for (i = 0; i < N; i++)
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87 {

88 config ->occupation.sites[i] = i;

89 config ->occupation.masses[i] = 1;

90 }

91 }

92

93 void update_config(config_s* config)

94 {

95 int i = -1;

96 float s = 0;

97 float u = unif_rand (0, config ->rate);

98 int location_move = -1;

99

100 /* choice of the particle that moves (we specify the location in

the table of the occupied sites)*/

101 while (location_move == -1)

102 {

103 i++;

104 s += 1. / powf(config ->occupation.masses[i], config ->alpha);

105 if (u <= s || i >= config ->occupation.nb_part - 1)

106 location_move = i;

107 }

108

109 /*if the particle moves to an occupied site , we need to shorten

the array of the occupied sites*/

110 {

111 if (location_move > 0)

112 {

113 config ->second_moment -= powf(config ->occupation.masses[

location_move], 2) + powf(config ->occupation.masses[mod(

location_move - 1, config ->occupation.nb_part)], 2);

114 config ->second_moment += powf(config ->occupation.masses[

location_move] + config ->occupation.masses[mod(

location_move - 1, config ->occupation.nb_part)], 2);

115

116 config ->rate -= 1. / powf(config ->occupation.masses[

location_move], config ->alpha) + 1. / powf(config ->

occupation.masses[mod(location_move - 1, config ->

occupation.nb_part)], config ->alpha);

117 config ->rate += 1. / powf(config ->occupation.masses[

location_move] + config ->occupation.masses[mod(

location_move - 1, config ->occupation.nb_part)], config

->alpha);

118 config ->occupation.masses [( location_move - 1) % config ->

occupation.nb_part] += config ->occupation.masses[

location_move ];

119 config ->occupation.nb_part --;

120

121 for (i = location_move; i < config ->occupation.nb_part; i
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++)

122 {

123 config ->occupation.masses[i] = config ->occupation.masses[

i + 1];

124 config ->occupation.sites[i] = config ->occupation.sites[i

+ 1];

125 }

126 }

127 else

128 {

129 config ->second_moment -= powf(config ->occupation.masses [0],

2) + powf(config ->occupation.masses[config ->occupation.

nb_part - 1], 2);

130 config ->second_moment += powf(config ->occupation.masses [0]

+ config ->occupation.masses[config ->occupation.nb_part -

1], 2);

131

132 config ->rate -= 1. / powf(config ->occupation.masses [0],

config ->alpha) + 1. / powf(config ->occupation.masses[

config ->occupation.nb_part - 1], config ->alpha);

133 config ->rate += 1. / powf(config ->occupation.masses [0] +

config ->occupation.masses[config ->occupation.nb_part -

1], config ->alpha);

134 config ->occupation.masses[config ->occupation.nb_part - 1]

+= config ->occupation.masses [0];

135 config ->occupation.nb_part --;

136 for (i = 0; i < config ->occupation.nb_part; i++)

137 {

138 config ->occupation.masses[i] = config ->occupation.masses[

i + 1];

139 config ->occupation.sites[i] = config ->occupation.sites[i

+ 1];

140 }

141 }

142 }

143 else

144 config ->occupation.sites[location_move] = mod(config ->

occupation.sites[location_move] - 1, config ->N);

145 }

146

147 void simulation(int N, float alpha , FILE* file , FILE* file2)

148 {

149 clock_t start = clock();

150 // FILE* file = fopen("sim.csv", "w");

151

152 int i;

153 int j = 0;

154 int k = 0;

155 int l;
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156 float t = 0, t_cumul = 0;

157 config_s config;

158

159 config_s config_ordered;

160

161 int nb_part_prev = N;

162

163 init_config (&config , N, alpha);

164 init_config (& config_ordered , N, alpha);

165

166 while (config.occupation.nb_part > 1)

167 {

168 t = exp_clock(config.rate);

169 t_cumul += t;

170 j++;

171 update_config (& config);

172 if (config.occupation.nb_part > 1)

173 {

174 if (config.occupation.nb_part < nb_part_prev)

175 {

176 k++;

177 printf("coalescence %d ", k);

178 printf("rate = %f\n", config.rate);

179

180 for (l = 0; l < config.occupation.nb_part; l++)

181 {

182 config_ordered.occupation.masses[l] = config.occupation

.masses[l];

183 config_ordered.occupation.sites[l] = config.occupation.

sites[l];

184 }

185

186 print_part_file (& config_ordered.occupation , config.

occupation.nb_part , N, file2);

187 fprintf(file , "%f, %f\n", t_cumul , config.second_moment);

188 nb_part_prev = config.occupation.nb_part;

189 }

190 }

191 else

192 fprintf(file , "%f, %f\n", t_cumul , config.second_moment);

193 }

194 }

195

196 // quicksort with last element as the pivot

197 void swap(occupation_s* T, int a, int b)

198 {

199 int temp = T->masses[a];

200 T->masses[a] = T->masses[b];

201 T->masses[b] = temp;
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202 temp = T->sites[a];

203 T->sites[a] = T->sites[b];

204 T->sites[b] = temp;

205 }

206

207 int partition(occupation_s* T, int l, int u)

208 {

209 int i;

210 int j = l;

211

212 for (i = l; i < u; i++)

213 {

214 if (T->masses[i] >= T->masses[u])

215 {

216 swap(T, i, j);

217 j++;

218 }

219

220 }

221 swap(T, j, u);

222 return j;

223 }

224

225 void quicksort(occupation_s* T, int l, int u)

226 {

227 if (l < u)

228 {

229 int m = partition(T, l, u);

230 quicksort(T, l, m - 1);

231 quicksort(T, m + 1, u);

232 }

233 }

234

235 void print_part(occupation_s* T, int N, int Nmax)

236 {

237 int i;

238 quicksort(T, 0, N - 1);

239

240 for (i = 0; i < N; i++)

241 printf("%d", T->masses[i]);

242

243 for (i = N; i < Nmax; i++)

244 {

245 printf("0");

246 if (i < Nmax - 1)

247 printf(",");

248 }

249

250 printf("\n");
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251 }

252

253 void print_part_file(occupation_s* T, int N, int Nmax , FILE* data

)

254 {

255 int i;

256 quicksort(T, 0, N - 1);

257

258 for (i = 0; i < N; i++)

259 fprintf(data , "%d,", T->masses[i]);

260

261 fprintf(data , "\n");

262 }

D.5. Multispecies Aggregation simulator

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 # m_A(x) diffuses to x-1

5 def diffuseA(x, m):

6 target = x - 1 if x > 0 else len(m) - 1

7 m[target , 0] += m[x, 0]

8 m[x, 0] = 0

9

10 # m_B(x) diffuses to x-1

11 def diffuseB(x, m):

12 target = x - 1 if x > 0 else len(m) - 1

13 m[target , 1] += m[x, 1]

14 m[x, 1] = 0

15

16 #

17 def sum_of_rates(m):

18 return np.sum(m[:, 0]) + np.sum(m[:, 1])

19

20 def calculate_dt(rates_sum):

21 u = np.random.uniform(0, 1)

22 dt = -np.log(u) / rates_sum

23 return dt

24

25 # Selection of the transition

26 def choose_reaction(m, rates_sum):

27 u = np.random.uniform(0, 1)

28 cumulative_prob = 0.0

29

30 for x in range(len(m)):

31 prob_A = m[x, 1] / rates_sum
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32 prob_B = m[x, 0] / rates_sum

33

34 cumulative_prob += prob_A

35 if u < cumulative_prob:

36 return ’diffuseA ’, x

37

38 cumulative_prob += prob_B

39 if u < cumulative_prob:

40 return ’diffuseB ’, x

41

42 def is_frozen(m):

43 for m_A , m_B in m:

44 if m_A > 0 and m_B > 0:

45 return False

46 return True

47

48 def plot_distribution(m):

49 plt.figure ()

50 # Extract the masses of type A and B

51 mass_A = m[:, 0]

52 mass_B = m[:, 1]

53 # Create the x-axis labels

54 x = range(len(m))

55 # Plot mass type A

56 plt.plot(x, mass_A , label=’Type A’, marker=’o’, linestyle=’

None’)

57 # Plot mass type B

58 plt.plot(x, mass_B , label=’Type B’, marker=’x’, linestyle=’

None’)

59 # Add labels and title

60 plt.xlabel(’Site’)

61 plt.ylabel(’Mass’)

62 plt.title(’Distribution of Mass Types A and B’)

63 plt.legend ()

64 plt.show()

65

66 def plot_histogram(m):

67 plt.figure ()

68

69 mass_A = m[:, 0]

70 mass_B = m[:, 1]

71

72 # Filter out zeros

73 mass_A = m[:, 0][m[:, 0] > 0]

74 mass_B = m[:, 1][m[:, 1] > 0]

75

76 plt.subplot(1, 2, 1)

77 plt.hist(mass_A , bins=20, label=’Type A’, edgecolor=’b’,

facecolor=’none’)
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78 plt.title(’Histogram of Mass Type A’)

79 plt.xlabel(’Mass’)

80 plt.ylabel(’Frequency ’)

81

82 plt.subplot(1, 2, 2)

83 plt.hist(mass_B , bins=20, label=’Type B’, edgecolor=’r’,

facecolor=’none’)

84 plt.title(’Histogram of Mass Type B’)

85 plt.xlabel(’Mass’)

86 plt.ylabel(’Frequency ’)

87

88 plt.tight_layout ()

89 plt.show()

90

91 def plot_young(m):

92 plt.figure ()

93

94 mass_A = np.sort(m[:, 0][m[:, 0] > 0]) [:: -1]

95 mass_B = np.sort(m[:, 1][m[:, 1] > 0]) [:: -1]

96

97 plt.subplot(1, 2, 1)

98 plt.step(range(len(mass_A)), mass_A , where=’post’)

99 plt.title(’Young Diagram of Mass Type A’)

100 plt.ylabel(’Part’)

101 plt.xlabel(’Mass’)

102

103 plt.subplot(1, 2, 2)

104 plt.step(range(len(mass_B)), mass_B , where=’post’)

105 plt.title(’Young Diagram of Mass Type B’)

106 plt.ylabel(’Part’)

107 plt.xlabel(’Mass’)

108

109 plt.tight_layout ()

110 plt.show()

111

112 N = int(input("Enter the number of sites: "))

113 m = np.ones((N, 2), dtype=int)

114 t = 0

115 iteration = 0

116

117 while not (is_frozen(m)):

118 # Calculate the sum of rates

119 rates_sum = sum_of_rates(m)

120 # Calculate the time to the next event

121 dt = calculate_dt(rates_sum)

122 t = t+dt

123 # Choose the reaction and the site where it occurs

124 reaction , x = choose_reaction(m, rates_sum)

125 # Perform the chosen reaction
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126 if reaction == ’diffuseA ’:

127 diffuseA(x, m)

128 elif reaction == ’diffuseB ’:

129 diffuseB(x, m)

130 iteration += 1

131

132 plot_distribution(m)

133 plot_histogram(m)

134 plot_young(m)
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